
Communications Access Methods for

SAS/CONNECT®

9.1 and
SAS/SHARE®

9.1

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
Communications Access Methods for SAS/CONNECT® 9.1 and SAS/SHARE® 9.1. Cary, NC:
SAS Institute Inc.

Communications Access Methods for SAS/CONNECT® and SAS/SHARE® 9.1

Copyright © 2004, SAS Institute Inc., Cary, NC, USA

ISBN 1-59047-229-2

All rights reserved. Produced in the United States of America. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, or otherwise, without the prior written permission of the publisher,
SAS Institute Inc.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and
related documentation by the U.S. government is subject to the Agreement with SAS Institute and
the restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights
(June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, January 2004

SAS Publishing provides a complete selection of books and electronic products to help customers
use SAS software to its fullest potential. For more information about our e-books, e-learning
products, CDs, and hard-copy books, visit the SAS Publishing Web site at support.sas.com/pubs
or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Contents

What’s New vii

Overview vii

Details viii

P A R T 1 Introduction 1

Chapter 1 � Communications Access Methods 3
Communications Access Method: Definition 3

Communications Access Methods Supported by SAS/CONNECT and SAS/SHARE 3

Supported Communications Access Methods by Operating Environment 3

Operating Environments Supported in SAS 9.1 4

Finding Information in This Documentation 5

Additional SAS Documentation 5

SAS Syntax Conventions 5

P A R T 2 z/OS Operating Environment 7

Chapter 2 � z/OS: TCP/IP Access Method 9
Prerequisites for Using TCP/IP under z/OS 10

SAS/CONNECT Client Tasks 14

SAS/CONNECT Server Tasks 18

SAS/SHARE Client Tasks 20

SAS/SHARE Server Tasks 22

System Configuration for TCP/IP 25

Chapter 3 � z/OS: XMS Access Method 45
Prerequisites for Using XMS under z/OS 46

SAS/CONNECT Client Tasks 47

SAS/CONNECT Server Tasks 49

SAS/SHARE Client Tasks 49

SAS/SHARE Server Tasks 51

System Configuration for the XMS Access Method 52

P A R T 3 OpenVMS Alpha Operating Environment 55

Chapter 4 � OpenVMS Alpha: TCP/IP Access Method 57
Prerequisites for Using TCP/IP under OpenVMS Alpha 58

SAS/CONNECT Client Tasks 60

SAS/CONNECT Server Tasks 66

SAS/SHARE Client Tasks 67

SAS/SHARE Server Tasks 70

iv

P A R T 4 UNIX Operating Environments 73

Chapter 5 � UNIX: TCP/IP Access Method 75
Prerequisites for Using TCP/IP under UNIX 76

SAS/CONNECT Client Tasks 78

SAS/CONNECT Server Tasks 84

SAS/SHARE Client Tasks 84

SAS/SHARE Server Tasks 87

P A R T 5 Windows Operating Environments 91

Chapter 6 � Windows: TCP/IP Access Method 93
Prerequisites for Using TCP/IP under Windows 94

SAS/CONNECT Client Tasks 97

SAS/CONNECT Server Tasks 103

SAS/SHARE Client Tasks 104

SAS/SHARE Server Tasks 107

Data Security for SAS/CONNECT or SAS/SHARE Servers 109

P A R T 6 Spawners and Files 111

Chapter 7 � SAS/CONNECT Spawners 113
Spawner Definition 113

Benefits of Using a Spawner to Sign On to a Server 114

Support for Spawners by Operating Environment 114

Client Connection to a Spawner 114

Spawner Connection Examples 115

Chapter 8 � OpenVMS Alpha Spawner 119
OpenVMS Alpha Spawner Requirements 119

Starting the OpenVMS Alpha Spawner 120

Ending the OpenVMS Spawner 121

Chapter 9 � z/OS Spawner 123
z/OS Spawner Requirements 123

Starting the z/OS Spawner 124

Defining the Shell Script for Starting SAS 125

Ending the z/OS Spawner 126

Chapter 10 � UNIX Spawner 127
UNIX Spawner Requirements 127

Starting the UNIX Spawner 127

Ending the UNIX Spawner 129

Chapter 11 � Windows Spawner 131
Windows Spawner Requirements 131

Starting the Windows Spawner 131

v

Ending the Windows Spawner 135

Chapter 12 � Encryption Options 137
Security Services 137

Security Service Requirements 138

Encryption Options 138

SAS/SECURE Options 139

SAS Proprietary Options 141

SSL Options 141

Chapter 13 � TCP/IP SERVICES File 145
Configuring the SERVICES File 145

P A R T 7 Configuring SAS/CONNECT for Use with Firewalls 147

Chapter 14 � Configuring SAS/CONNECT for Use with a Firewall 149
Definitions 149

Requirements for Using a Firewall 149

Firewall Configuration Example 150

P A R T 8 SAS/CONNECT Scripts 153

Chapter 15 � Sign-On Scripts 155
Script Rules 155

Sample Scripts 156

P A R T 9 Error Messages 175

Chapter 16 � z/OS Error Messages 177
z/OS: TCP/IP Access Method 177

Chapter 17 � OpenVMS Alpha Error Messages 179
OpenVMS Alpha: TCP/IP Access Method 179

Chapter 18 � UNIX Error Messages 181
UNIX: TCP/IP Access Method 181

Chapter 19 � Windows Error Messages 183
Windows: TCP/IP Access Method 183

P A R T 10 Appendix 185

Appendix 1 � Recommended Reading 187
Recommended Reading 187

Glossary 189

Index 193

vi

vii

What’s New

Overview
SAS now supports
� the TCP/IP communications access method for network connections between these

operating environments: OpenVMS Alpha, UNIX, Windows, and z/OS. Also, the
XMS communications access method can be used between address spaces under z/
OS.

� the network security protocol Secure Sockets Layer (SSL), which encrypts
connections between client and server.

� a new shell script for starting SAS is provided for the z/OS spawner.
� new instructions for configuring TCP/IP that runs under the OS/390 and z/OS

operating environments.
� the new Windows spawner option -NAME.
� new options for the OpenVMS spawner, UNIX spawner, Windows spawner, and z/

OS spawner are -OMRCONFIGFILE and -SASSPAWNERCN. The
-INSTALLDEPENDENCIES option is valid only in the Windows spawner.

Note:
� This section describes the features of the SAS communications access methods

that are new or enhanced since SAS 8.2.
� z/OS is the successor to the OS/390 operating system. Throughout this document,

any reference to z/OS also applies to OS/390, unless otherwise stated.

�

viii What’s New

Details

Access Methods and Operating Environments
� SAS now supports the TCP/IP and XMS communications access methods. For

details, see “Supported Communications Access Methods by Operating
Environment” on page 3.

� SAS now supports the OpenVMS Alpha, UNIX, Windows, and z/OS operating
environments. For details, see “Operating Environments Supported in SAS 9.1” on
page 4.

� SAS no longer supports the APPC, DECnet, EHLLAPI, and NETBIOS
communications access methods or the CMS, OpenVMS VAX, OS/2, Windows 95,
and Windows 98 operating environments.

SSL Protocol
SAS/CONNECT and SAS/SHARE support the Secure Sockets Layer (SSL) protocol,

which provides network security and protects the privacy of information by encrypting
client/server transfers under the UNIX and Windows operating environments. For
details, see Chapter 12, “Encryption Options,” on page 137.

OS/390 and z/OS Operating Environments
� A new shell script for starting SAS is provided for the z/OS spawner. For details,

see “Defining the Shell Script for Starting SAS” on page 125.
� New instructions are provided to configure TCP/IP that runs under the OS/390

and z/OS operating environments. For details, see “System Configuration for TCP/
IP” on page 25.

Spawners
� The new -NAME option for the Windows spawner is used to assign a name to the

spawner that is installed and started as a service. A specified name overrides the
default name that is automatically assigned when the -INSTALL option is used.
For details, see “Starting the Windows Spawner” on page 131.

� New options for the OpenVMS spawner, UNIX spawner, Windows spawner, and z/
OS spawner are -OMRCONFIGFILE and -SASSPAWNERCN. The new
-INSTALLDEPENDENCIES option is valid only in the Windows spawner. For
details about these options, see the sections about the spawners.

1

P A R T1

Introduction

Chapter 1.Communications Access Methods 3

2

3

C H A P T E R

1
Communications Access
Methods

Communications Access Method: Definition 3
Communications Access Methods Supported by SAS/CONNECT and SAS/SHARE 3

Supported Communications Access Methods by Operating Environment 3

Operating Environments Supported in SAS 9.1 4

Finding Information in This Documentation 5

Additional SAS Documentation 5
SAS Syntax Conventions 5

Communications Access Method: Definition
A communications access method is the interface between SAS and the network

protocol that you use to connect two operating environments.
You must use a communications access method with both SAS/CONNECT and

SAS/SHARE.
The communications access method that you choose is determined by the network

protocols that you have available at your site and the operating environments that you
are connecting.

Communications Access Methods Supported by SAS/CONNECT and
SAS/SHARE

SAS/CONNECT and SAS/SHARE support the following communications access
methods:

TCP/IP (Transmission Control Protocol/Internet Protocol)
is a program-to-program interface that is supported on hardware from multiple
vendors.

XMS (Cross-Memory Services)
is an interface that is part of the z/OS operating environment and is used by
programs that run within a single z/OS environment.

Supported Communications Access Methods by Operating Environment

Note: The following table shows only the communications access methods that are
supported in SAS/CONNECT 9.1 and SAS/SHARE 9.1. �

4 Operating Environments Supported in SAS 9.1 � Chapter 1

Table 1.1 SAS/CONNECT and SAS/SHARE: Valid Communications Access Methods
between a Client and a Server

Client Operating EnvironmentsServer Operating
Environments OpenVMS Alpha z/OS UNIX Windows

OpenVMS Alpha TCP/IP TCP/IP TCP/IP TCP/IP

z/OS TCP/IP TCP/IP

XMS

TCP/IP TCP/IP

UNIX TCP/IP TCP/IP TCP/IP TCP/IP

Windows TCP/IP TCP/IP TCP/IP TCP/IP

Operating Environments Supported in SAS 9.1

Table 1.2 Operating Environments Supported in SAS 9.1

Machine Baseline Operating Environment Size (in
bits)

OpenVMS Alpha

OpenVMS Alpha 7.2 64

z/OS

OS/390 V2R10 32

z/OS V1R1 (and later) 64

UNIX

AIX 64 5.1 64

Compaq Digital UNIX 5.1 64

HP 64 11.0 PA 64

HP/UX for Itanium Platform
Family

11i 64

RedHatLinux on Intel 2.4 32

Solaris 64 8 64

Windows

Windows NT/2000/XP 4.0 32

Windows for IPF XP 64

Communications Access Methods � SAS Syntax Conventions 5

Finding Information in This Documentation

To find the information that you need to perform tasks at the client:

1 Find the number of the Part for the client operating environment that you will use.

2 In that Part, find the chapter for the communications access method that you will
use.

3 In that chapter, find the section for the SAS product (SAS/CONNECT or SAS/
SHARE) that you will use.

To find the information that you need to perform tasks at the server:

1 Find the number of the Part for the server operating environment.

2 In that Part, find the chapter for the communications access method that you will
use.

3 In that chapter, find the section for the SAS product (SAS/CONNECT or SAS/
SHARE) that you will use.

Table 1.3 Finding Information for the Server

Question Answer

What is the server operating environment? z/OS, Part 2

What communications access method am I using? TCP/IP, Part 2, Chapter 2,

What SAS product am I using? SAS/CONNECT

Additional SAS Documentation

If you use the TCP/IP communications access method under the OS/390 and z/OS
operating environments, the following SAS publication might be helpful.

� SAS/C Library Reference, Third Edition, Volume 2, Release 7.00.

SAS Syntax Conventions

6

7

P A R T2

z/OS Operating Environment

Chapter 2.z/OS: TCP/IP Access Method 9

Chapter 3.z/OS: XMS Access Method 45

8

9

C H A P T E R

2
z/OS: TCP/IP Access Method

Prerequisites for Using TCP/IP under z/OS 10
Task List 10

Software Requirements 11

TCP/IP Access Method Terminology 11

SAS/CONNECT and SAS/SHARE Network Security 11

SAS/CONNECT and SAS/SHARE Options 12
SAS/CONNECT Options Only 13

SAS/SHARE Options Only 13

SAS/CONNECT Client Tasks 14

Task List 14

Specifying TCP/IP as the Communications Access Method 15

Encrypting Data in Client/Server Transfers 15
Choosing a Method to Use to Sign On 15

Signing On Using a Spawner 15

Ensuring That the Spawner Is Running on the Server 15

Specifying the Server and the Spawner Service 16

Specifying a Sign-On Script or a User ID and Password 17
Specifying a Sign-On Script 17

Specifying a User ID and Password 17

Signing On Using the Spawner 17

Signing On Using a Telnet Daemon 18

Specifying the Server 18
Specifying a Sign-On Script 18

Signing On to the Server Session 18

SAS/CONNECT Server Tasks 18

Task List 18

Installing the Logon Procedure on the Server 19

SAS/CONNECT Server Example 19
SAS/SHARE Client Tasks 20

Task List 20

Configuring the Server Service 20

Specifying TCP/IP as the Communications Access Method 20

Accessing a Secured Server 20
Encrypting Data in Client/Server Transfers 21

Specifying the Server 21

SAS/SHARE Client Example 22

SAS/SHARE Server Tasks 22

Task List 22
Installing the SAS SVC Routine 23

Configuring the Server Service 23

Setting the TCPSEC Option to Require Client Authentication 23

10 Prerequisites for Using TCP/IP under z/OS � Chapter 2

Encrypting Data in Server/Client Transfers 23
Specifying TCP/IP as the Communications Access Method 24

Specifying the Server 24

SAS/SHARE Server Example 25

System Configuration for TCP/IP 25

Using a SAS TCP/IP Configuration Plan 25
TCP/IP Overview 26

TCP/IP: Software Requirements 26

SAS Transient Library 27

Processing the CTRANSLOC Option 27

TCP/IP Stacks 29

TCP/IP Communication Stack: Definition 29
Sample Definitions of TCP/IP Stacks 29

System and Process Limits 30

TCP/IP Host Name Configuration 31

IP Addresses 31

TCP/IP Host Name Configuration for Communications Servers 31
TCP/IP Stack Configuration Files 33

IBM and CA TCP/IP Stack Configuration Files 33

IBM PROFILE.TCPIP File 33

IBM TCPIP.DATA File 34

CA TCPCPGnn TCPIP.PARM Member 34
TCP/IP Name Resolver Configuration 35

Name Resolver: Definition 35

Supported Name Resolvers 35

IBM OS/390 Name Resolvers: Overview 35

IBM z/OS Name Resolver: Overview 35

SAS/C Name Resolver: Overview 37
SAS/C Environment Variables and SAS 9.1 System Options 40

SAS/C Environment Variables and SAS System Options: Definitions 40

The Default TCPIP Prefix 41

Changing the Default TCPIP Prefix 42

SAS/C Environment Variables in the SASCTCPV Data Set 42
The UNIX System Services (USS) Shell 42

Shell Configuration Requirements 42

Specifying the SAS Transient Library 43

Configuring TCP/IP Using SAS/C Environment Variables 43

The Shell Profile File 43
The Services File 44

Services File: Overview 44

The Services File Search Order 44

References 44

Prerequisites for Using TCP/IP under z/OS

Task List
� Verify that the software requirements are met.

� Become familiar with the TCP/IP access method terminology.

z/OS: TCP/IP Access Method � SAS/CONNECT and SAS/SHARE Network Security 11

� If using network security, set the appropriate SAS system options.

� Set the appropriate SAS/CONNECT and SAS/SHARE options.

Software Requirements

� Base SAS software and either SAS/CONNECT or SAS/SHARE must be installed
on both the client and the server.

� SAS/CONNECT and SAS/SHARE require the SAS Transient Library that is
provided with SAS/CONNECT 9.1 and SAS/SHARE 9.1.

Note: If your site has installed a previous release of the SAS Transient Library,
you must replace it with the transient library that is included with SAS 9.1. For
details, see “SAS Transient Library” on page 27. �

� SAS/CONNECT and SAS/SHARE also require one of the following
Communications Servers:

� IBM OS/390 V2R10 Communications Server

� IBM z/OS Communications Server

� CA Unicenter TCPaccess Communications Server (formerly named Interlink
SNSTCP), Version 5.3 or later.

� SAS/CONNECT or SAS/SHARE require the definition of TCP/IP resources for the
z/OS system. For details, see “System Configuration for TCP/IP” on page 25.

TCP/IP Access Method Terminology
Familiarity with the following terms will help you when you set SAS options:

name resolution
The process of mapping a server name to an address. The domain name system
provides a facility for naming servers in which programs use remote name servers
to resolve server names into IP addresses.

name server
The server program that supplies name-to-address translation, that is, mapping
from server names to IP addresses. The server program often runs on a dedicated
processor, and the operating environment itself is referred to as the name server.

name resolver
The client software that uses one or more name servers when translating a server
name.

For a complete discussion about DNS and name resolution, see DNS and BIND, 4th
Ed., by Paul Albitz & Cricket Liu, O’Reilly and Associates, Inc.

SAS/CONNECT and SAS/SHARE Network Security
Encryption is the process of transforming plaintext into a less readable form (called

ciphertext) by using a mathematical process. The ciphertext is translated back to
plaintext for anyone who can supply the appropriate key, which is necessary for
decrypting (or unlocking) the ciphertext.

SAS/CONNECT and SAS/SHARE support the following network security services in
the z/OS operating environment:

12 SAS/CONNECT and SAS/SHARE Options � Chapter 2

SASproprietary
a fixed encoding algorithm that is included with Base SAS software and is
available in all SAS supported operating environments. It requires no additional
SAS product licenses.

SAS/SECURE
an add-on product that uses the encryption algorithms RC2, RC4, DES, and
tripleDES.

For complete details about setting up and using network security, see the
SAS/CONNECT User’s Guide. After network security is set up in your environment,
you set SAS encryption options that are appropriate to the network security service and
to the requirements of the client or the server session.

SAS/CONNECT and SAS/SHARE Options

TCPIPMCH=value
Setting TCPIPMCH= is highly recommended for sites that run multiple versions of
TCP/IP.

Note: Do not use this option if your site uses only one version of TCP/IP. �
The TCPIPMCH= option identifies which version of TCP/IP to use at sites that

simultaneously run multiple versions of TCP/IP. Each version is referred to as a
specific TCP/IP stack or transport driver.

The IBM Communications Server and the CA Unicenter TCPaccess
Communications Server are implemented as IBM UNIX System Services Physical
File Systems (PFS) and are defined in the system’s SYS1.PARMLIB(BPXPRMnn)
file. A PFS is defined by using a type of CINET, and each TCP/IP stack is defined
as a SUBFILESYSTYPE under this PFS and has a NAME(value) associated with
it.

The value for TCPIPMCH should be identical to the NAME(value) for the TCP/
IP stack. If TCPIPMCH is not defined, SAS will use the value that is specified in
either the TCPIPJOBNAME statement or the TCPIPUSERID statement in a
TCPIP.DATA file, if available. Otherwise, SAS will use the default name TCPIP.

You can set TCPIPMCH in a SAS configuration file, in a SAS start-up
command, or in a CLIST variable.

TCPIPPRF=name
enables you to specify a naming convention for a data set at your site by attaching
a descriptive prefix to data set names. For example, to attach the descriptive
prefix SYS2.VER2.TCP to the configuration file ETC.HOSTS, set

TCPIPPRF=SYS2.VER2.TCP

This option setting produces the data set name SYS2.VER2.TCP.ETC.HOSTS.

Note: The TCPIPPRF option initializes a data set prefix for the current SAS
session. You must set this option each time you start a SAS session on the client
and the server in a SAS/CONNECT session and at the SAS/SHARE server and
client. �

You can set TCPIPPRF in a SAS configuration file, in a SAS start-up command, or
in a CLIST variable.

z/OS: TCP/IP Access Method � SAS/SHARE Options Only 13

SAS/CONNECT Options Only
TCPMSGLEN n

defines the size of the buffer (in bytes) that the TCP/IP access method uses for
breaking up a message that it sends to or receives from the SAS/CONNECT
application layer during a SAS/CONNECT session. The application layer uses a
message size that is stored in the TBUFSIZE option (default 32768) that you can
specify in the SIGNON statement or as a SAS option. For details, see the
TBUFSIZE= system option in the SAS/CONNECT User’s Guide.

If TBUFSIZE is larger than TCPMSGLEN, the TCP/IP access method breaks
the message into a buffer whose size is defined by TCPMSGLEN, and issues the
number of send and receive messages that are necessary to complete the message
transaction.

The value for TCPMSGLEN (default=32768) must be set at both the client and
the server. If the values that are set for TCPMSGLEN at the client and at the
server are different, the smaller value of the two is used during the
SAS/CONNECT session.

TCPPORTFIRST=port-number (set at the server)
TCPPORTLAST=port-number (set at the server)

restrict the range of TCP/IP ports that clients can use to access servers.
Within the range of 0 through 32767, assign a beginning value to

TCPPORTFIRST and an ending value to TCPPORTLAST. To restrict the number
of ports to only one port, set the values for both the TCPPORTFIRST and
TCPPORTLAST options to the same number. Consult with your network
administrator for advice about setting these values.

At the server, you can set TCPPORTFIRST and TCPPORTLAST in the
AUTOEXEC file or in the SAS configuration file.

In the following example, the client is restricted to TCP/IP ports 4020 through
4050 when connecting to a server:

options tcpportfirst=4020;
options tcpportlast=4050;

TCPTN3270 (set at the client)
supports connections to a z/OS server that uses the full-screen 3270 Telnet
protocol. The script file TCPTSO32 is provided. See Table 2.1 on page 17 for a
complete list of sign-on scripts.

You can set the TCPTN3270 variable only in the SAS CLIST.
To set the TCPTN3270 variable,

� set the TCPTN3270 CLIST variable at the client.
� add TCPTN3270(1) to the SAS CLIST.

If you do not set this variable, the TCP/IP access method uses the Telnet line
mode protocol by default.

SAS/SHARE Options Only

TCPSEC=_SECURE_ | _NONE_ (set at the server)
specifies whether the TCP/IP access method verifies user access authority before
allowing clients to access the server. The TCPSEC option must be set at the server
before the server session is started.

14 SAS/CONNECT Client Tasks � Chapter 2

SECURE
requires the TCP/IP access method to verify the authority of clients that
attempt to access the server. Each client must supply a user ID and a
password that are valid at the server.

NONE
specifies that the TCP/IP access method does not authenticate SAS/SHARE
clients that attempt to access the server.

Default: _NONE_

SECPROFILE=name (set at the client and the server)
specifies the name of a RACF (Resource Access Control Facility) secured sign-on
function profile. SAS uses the secured sign-on function to permit a SAS/SHARE
client to access a SAS/SHARE server without specifying a password. Successful
signon without a password requires that the following conditions are met:

� Both the client and the server run under z/OS operating environments that
are secured by RACF or by another security product that supports
PassTickets.

� The RACF security administrator has activated the PTKTDATA class, and
has defined at least one PTKTDATA profile for use by SAS/SHARE.

If the client and server run under different z/OS operating environments,
the RACF security administrator must activate the PTKTDATA class and
define identical PTKTDATA profiles in both z/OS operating environments.

� TCP/IP is the communications access method.

� At the server, the SECPROFILE= option is assigned the name of a valid
PTKTDATA profile.

� At the client, the SECPROFILE= option is assigned the same name as that
assigned at the server.

� The client’s user ID is specified in either of these ways:

� The USER= option in a LIBNAME or a PROC OPERATE statement
specifies the client’s RACF user ID.

� If the USER= option in a LIBNAME or a PROC OPERATE statement is
omitted, the client’s user ID is used by default.

SAS/CONNECT Client Tasks

Task List

1 Specify TCP/IP as the communications access method.

2 Specify encryption of client/server data transfers (optional).

3 Sign on to the server.

Note: SAS/CONNECT enables TCP/IP connections from clients outside a firewall to
spawners that run on servers inside a firewall. For details, see Chapter 14,
“Configuring SAS/CONNECT for Use with a Firewall,” on page 149. �

z/OS: TCP/IP Access Method � Signing On Using a Spawner 15

Specifying TCP/IP as the Communications Access Method
TCP/IP is the default communications access method for all the SAS supported

operating environments, except z/OS. Therefore, you do not have to explicitly specify
the default.

If you choose to explicitly specify TCP/IP, you can use the following syntax:

OPTIONS COMAMID=access-method-ID;

COMAMID is an acronym for Communications Access Method Identification.
access-method-ID identifies the method used by the client to communicate with the
server. TCP (short for TCP/IP, which is an abbreviation for Transmission Control
Protocol/Internet Protocol) is an example of an access-method-ID. You can set this option
in an OPTIONS statement, in a SAS start-up command, or in a SAS configuration file.

Example:

options comamid=tcp;

Encrypting Data in Client/Server Transfers
If network security is available and is configured at the client, you can specify SAS

options to encrypt all data that is transferred between a client and a server. In the
following example, the NETENCRYPTALGORITHM= option specifies the RC4
encryption algorithm.

options netencryptalgorithm=rc4;

For complete details about network security options, see the SAS/CONNECT User’s
Guide.

Choosing a Method to Use to Sign On
Based on your operating environment, you can use one of the following methods to

sign on:
� a spawner
� a Telnet daemon.

Signing On Using a Spawner

1 Ensure that the spawner is running on the server.
2 Specify the server and an optional service.
3 Specify the sign-on script (if you are signing on using a script), or specify a user ID

and password (if you are signing on without a script).
4 Sign on to the server through the spawner.

Ensuring That the Spawner Is Running on the Server
Before you can access the spawner, the spawner program must be running on the

server. For information about the spawner that you are connecting to, see Chapter 7,
“SAS/CONNECT Spawners,” on page 113.

Note: The system administrator for the machine that the spawner runs on must
start the spawner. The spawner program on the server cannot be started by the client. �

16 Signing On Using a Spawner � Chapter 2

Specifying the Server and the Spawner Service
The name of the server can be specified either in an OPTIONS statement:

OPTIONS REMOTE=node-name[.service-name | .port-number];

or directly in the SIGNON statement or command:

SIGNON node-name[.service-name | .port-number];

node-name is based on the server that you are connecting to. node-name must be a
valid SAS name that is 1 to 8 characters in length and is either:

� the short machine name of the server you are connecting to. This name must be
defined in the HOSTS file in the client operating environment or in your Domain
Name Server (DNS).

� a macro variable that contains either the IP address or the name of the server you
are connecting to.

The process for evaluating node-name follows:
1 If node-name is a macro variable, the value of the macro variable is passed to the

operating environment’s GETHOSTBYNAME function.
2 If node-name is not a macro variable or the value of the macro variable does not

produce a valid value, node-name is passed to the GETHOSTBYNAME function.
3 If GETHOSTBYNAME fails to resolve node-name, an error message is returned

and the signon fails.

Note: The order in which the GETHOSTBYNAME function calls the DNS or
searches the HOSTS file to resolve node-name varies based on the operating
environment implementation. �

You specify service-name when connecting to a server that runs a spawner program
that is listening on a port other than the Telnet port. If the spawner was started using
the -SERVICE spawner option, you must specify an explicit service-name. The value of
service-name and the value of the -SERVICE spawner option must be identical.
Alternatively, you can specify the explicit port number that is associated with
service-name.

Example 1:
In the following example, REMHOST is the name of the node that the spawner is

running on. PORT1 is the name of the service that is defined at the client. The client
service PORT1 must be assigned to the same port that the spawner is listening on.

signon remhost.port1;

Example 2:
In the following example, the macro variable REMHOST is assigned to the

fully-qualified name of the machine that the server runs on. This server has a spawner
running that is listening on port 5050. The server session that is specified in the
SIGNON statement uses the node-name REMHOST and the port number 5050.

%let remhost=pc.rem.us.com;
signon remhost.5050;

You can also assign a specific port number by including the port number in the
definition of the macro variable, for example,

%let remhost=pc.rem.us.com 5050;
signon remhost;

z/OS: TCP/IP Access Method � Signing On Using a Spawner 17

Specifying a Sign-On Script or a User ID and Password
You can use a sign-on script to sign on to the spawner, or you can sign on to a

spawner without a script. If you do not use a sign-on script and if the spawner is
running secured, you must supply a user ID and password to sign on to the spawner.

Note: If you connect to a spawner, you can sign on by using a script unless the
spawner is started using the -NOSCRIPT option. If the -NOSCRIPT option is set, you
cannot use a script. If there is no script, you do not assign the fileref RLINK in a
FILENAME statement. For information about the spawner that you are connecting to,
see Chapter 7, “SAS/CONNECT Spawners,” on page 113. �

Specifying a Sign-On Script
If you are signing on by using a script, you must specify the script that you want to

use. The script file is executed by the SIGNON statement or command. By default, the
script prompts for user ID and password.

To use one of the sample script files that are supplied with SAS/CONNECT for
signing on and signing off, assign the default fileref RLINK to the appropriate script
file. The script is based on the server that you are connecting to. The sample scripts
are installed at

prefix.CTMISC

To specify a script, use the FILENAME statement. For example,

FILENAME RLINK ’prefix.CTMISC/script-name’;

script-name specifies the appropriate script file for the server.
Table 2.1 on page 17 lists the scripts that are supplied in SAS software:

Table 2.1 SAS/CONNECT Sign-on Scripts for Using TCP/IP under z/OS

Server Script Name

TSO under OS/390 tcptso.scr

TSO under z/OS, SAS 9 or later tcptso9.scr

z/OS (without TSO) tcpmvs.scr

z/OS (using full-screen 3270 Telnet protocol) tcptso32.scr

OpenVMS Alpha tcpvms.scr

UNIX tcpunix.scr

Windows tcpwin.scr

Specifying a User ID and Password
If you are signing on to the spawner without using a script and the spawner is

running secured, you must submit the SIGNON statement and provide a user ID and a
password in order to log on to the server. For example,

SIGNON USER=user-ID | _PROMPT_ [PASSWORD=password | _PROMPT_];

Signing On Using the Spawner
To start SAS, sign on to the server by using the spawner.

18 Signing On Using a Telnet Daemon � Chapter 2

In the following example, a client connects to a UNIX server through a spawner
without using a script file. In the SIGNON statement, RMTHOST.SPAWNER specifies
the node RMTHOST and the service SPAWNER. This server specification presumes
that a spawner is running on the node RMTHOST, and that the spawner was started
with the service SPAWNER. Specifying USER=_PROMPT_ causes a log-on dialog box to
appear so that a user ID and a password can be provided.

options comamid=tcp;
signon rmthost.spawner user=_prompt_;

Signing On Using a Telnet Daemon

1 Specify the server.
2 Specify a sign-on script.
3 Sign on to the server session.

Specifying the Server
The name of the server can be specified either in an OPTIONS statement:

OPTIONS REMOTE=node-name;

or directly in the SIGNON statement or command:

SIGNON node-name;

Specifying a Sign-On Script
If you are signing on by using a script, you must specify the script that you want to

use. The script file is executed by the SIGNON statement or command. By default, the
script prompts for user ID and password. For details, see “Specifying a Sign-On Script”
on page 17.

Signing On to the Server Session
In the following example, you specify the statements at a z/OS client to use the TCP/

IP access method to connect to a server. The FILENAME statement identifies the script
file that you use to sign on to the server. The script file contains a prompt for a user ID
and a password that are valid on the server. The COMAMID= option specifies the TCP/
IP communications access method for connecting to the server RMTNODE, which is
specified in the REMOTE= option.

filename rlink ’prefix.CTMISC/tcptso.scr’;
options comamid=tcp remote=rmtnode;
signon;

SAS/CONNECT Server Tasks

Task List
If you are signing on to a z/OS server with TSO, there are no server tasks.

z/OS: TCP/IP Access Method � SAS/CONNECT Server Example 19

Otherwise, follow either of these tasks, as appropriate:
1 To allow a client to connect to a z/OS server that is running a z/OS spawner, start

the spawner program at the z/OS server. For details, see Chapter 9, “z/OS
Spawner,” on page 123.

2 To allow a client to connect to a z/OS server without running a TSO terminal
monitor program, install the logon procedure on the z/OS server.

Installing the Logon Procedure on the Server
For z/OS server connections, you can eliminate the need for TSO by replacing the

terminal monitor program (also called logon procedure) with a procedure that starts
SAS with the options that you want. The benefits of this method are that signing on
and signing off a z/OS server is much faster than running with TSO, and you eliminate
the overhead consumed by running TSO. However, a disadvantage of running without
TSO is that you cannot execute any X commands or TSO commands.

In the following example, the logon procedure starts SAS with the DMR and the
COMAMID=TCP options. When you log on to the z/OS server, this procedure is
immediately run so that the current z/OS account is limited to running SAS each time
that the current z/OS account user logs on.

//JOBDL PROC ENTRY=SASHOST,
// OPTIONS=,
// WORK=’500,200’
//JOBDL EXEC PGM=&ENTRY,
// PARM=’&OPTIONS DMR COMAMID=TCP’,REGION=4096K
//STEPLIB DD DISP=SHR,DSN=&prefix.TS450.LIBRARY
//CONFIG DD DISP=SHR,DSN=&prefix.TS450.CNTL(TSOXA)
//SASAUTOS DD DISP=SHR,DSN=&prefix.TS450.AUTOLIB
//SASHELP DD DISP=SHR,DSN=&prefix.TS450.SASHELP
//SASMSG DD DISP=SHR,DSN=&prefix.TS450.SASMSG
//WORK DD UNIT=SYSDA,SPACE=(6144,(&WORK),,,ROUND),
// DCB=(RECFM=FS,DSORG=PS,LRECL=6144,BLKSIZE=6144)
//SASPARM DD UNIT=SYSDA,SPACE=(400,(100,300)),

DCB=(RECFM=FB,LRECL=80,BLKSIZE=400,BUFNO=1)

A script file is still required at the client for signon. However, a SAS start-up
command is not included in the script file because the logon procedure already executes
the SAS start-up command.

For the content of the script file, see “TCPMVS.SCR Script” on page 164.

SAS/CONNECT Server Example
The following command starts the spawner O390SPAWN on a z/OS machine. The

absence of the -SASCMD option in the spawner start-up command implies that the
client will use a script file to specify the SAS command that starts SAS on the z/OS
machine.

sastcpd -service o390spawn

20 SAS/SHARE Client Tasks � Chapter 2

SAS/SHARE Client Tasks

Task List

1 Configure the server service.
2 Specify TCP/IP as the communications access method.
3 Access a secured server.
4 Specify encryption of client/server data transfers (optional).
5 Specify the server.

Configuring the Server Service
Each server must be defined as a service in the SERVICES file on each machine that

a client will access the server from. For details about editing the SERVICES file, see
“Configuring the SERVICES File” on page 145.

Specifying TCP/IP as the Communications Access Method
You must specify the TCP/IP communications access method at the server before you

can start a server. You can use the COMAMID= option in an OPTIONS statement. For
example:

options comamid=tcp;

The COMAMID= option specifies the communications access method. TCP specifies
the TCP/IP access method.

Alternatively, you can specify the COMAMID= option in a SAS configuration file or in
a SAS start-up command.

The COMAUX1= specifies an auxiliary communications access method and can be
specified only in a SAS configuration file or in a SAS start-up command. The syntax for
the COMAUX1= option is:

COMAUX1=alternate-method

If the first method that you specify in the COMAMID= option fails to access a server,
the second method is used. You can specify one auxiliary access method.

Example:

comamid=tcp
comaux1=xms

For details about the supported access methods, see “Supported Communications Access
Methods by Operating Environment” on page 3.

Accessing a Secured Server
Requiring clients to supply a valid user ID and password when attempting to access

a server enforces server security. The values for a user ID and a password are provided
in the USER= and PASSWORD= options in the LIBNAME statement and the PROC

z/OS: TCP/IP Access Method � Specifying the Server 21

OPERATE statement. For details, see the LIBNAME statement and the OPERATE
procedure in the SAS/SHARE User’s Guide.

Example:

libname sasdata ’edc/prog2/sasdata’ server=rmtnode.share user=_prompt_ ;

The value _PROMPT_ requires the client to provide a user ID and password when a
client attempts to access the server.

Encrypting Data in Client/Server Transfers
If network security is configured at the client, you can specify SAS options to encrypt

data that a client transfers to a server. For example,

options netencrypt netencryptalgorithm=rc4;

The NETENCRYPT option specifies that all data transactions between a client and a
server will be encrypted. The RC4 encryption algorithm is assigned in the
NETENCRYPTALGORITHM= option. For general information about security services,
see “SAS/CONNECT and SAS/SHARE Network Security” on page 11.

Specifying the Server
If the client and server sessions are running on different network nodes, you must

include the TCP/IP node in the server ID in the LIBNAME or in the PROC OPERATE
statement by using a two-level server name as follows:

SERVER=node.server

node must be specified by using either a server-ID or a port number.
If the server and the client sessions are running on the same node, you can omit the

node name.
server can be either a server-ID or a port.
The server-ID must be identical to the service name that is specified in the

SERVICES file. For details, see Chapter 13, “TCP/IP SERVICES File,” on page 145.
The value for port is the unique number that is associated with the service that is

used for passing data to and receiving data from the server.
Precede the port number with two consecutive underscores.

Note: Do not space after the first underscore or the second underscore. �

Example:

libname mylib ’.’ server=srvnode._ _5000;

If the TCP/IP node name is not a valid SAS name, assign the name of the server
node to a SAS macro variable, then use the name of that macro variable for node in the
two-level server name.

The access method evaluates the node name, in this order of priority:

1 SAS macro variable
2 acceptable node name.

22 SAS/SHARE Client Example � Chapter 2

Example 1:
You might assign the node name and the server ID to a macro variable:

%let srvnode=mktserver.acme.com 5000;
libname sales server=srvnode;

or

%let srvnode=12.34.56.78 5000;
libname sales server=srvnode;

Example 2:

%let srvnode=mktserve.acme.com;
libname sales server=srvnode.server1;

Note: Do not use an ampersand (&) in a two-level server name. An ampersand
would cause a macro variable to be resolved by the SAS parser prior to syntactic
evaluation of the SERVER= option. �

For details about SAS naming rules, see SAS Language Reference: Concepts. For
details about LIBNAME, see the LIBNAME statement, and for details about PROC
OPERATE, see the OPERATE procedure, in the SAS/SHARE User’s Guide.

SAS/SHARE Client Example
The following example shows the statements that are used at a z/OS client to access

a server by using the TCP/IP access method:

options comamid=tcp;
libname sasdata ’edc.prog2.sasdata’ user=_prompt_ server=rmtnode.share1;

The COMAMID= option specifies the TCP/IP access method. The LIBNAME
statement specifies the SAS data library that is accessed through the server. The value
PROMPT in the USER= option specifies that the client must provide a valid user ID
and password. The SERVER= option specifies the two-level server name
RMTNODE.SHARE1.

SAS/SHARE Server Tasks

Task List

1 Verify that the SAS SVC routine has been installed.
2 Configure SAS/SHARE servers in the SERVICES file.
3 Configure SAS options (optional).

� Set the TCPSEC= option to require client authentication.
� Set security service options to encrypt data that is transferred between a server

and a client.

z/OS: TCP/IP Access Method � Encrypting Data in Server/Client Transfers 23

4 Specify TCP/IP as the communications access method.
5 Specify the server name.

Installing the SAS SVC Routine
The SAS SVC control program routine is an interface between the z/OS operating

environment and a specific request, such as "third-party checking." This facility
provides verification in the form of calls for authentication of user IDs and passwords
and of library authority.

1 Install the SAS SVC routine, if necessary.
If you have already installed the SAS SVC routine for Release 6.09 of SAS

software, do not repeat the step here. If you need to perform the installation, see
the Installation Instructions and System Manager’s Guide, The SAS System under
MVS for details.

Because SAS SVC in Release 6.09 is backward compatible, it replaces the SAS
SVC routines from previous releases. You might continue using previous releases
of Base SAS and SAS/SHARE with the Release 6.09 SAS SVC that is installed on
your system.

2 Verify the SVC routine SAS system options.
Verify that the SAS system options for the SVC routine accurately reflect the

way that the SAS SVC is installed. The SAS system option SVC0SVC should be
set to the number at which the SAS SVC is installed (for example, 251 or 109). If
the SAS SVC is installed at 109 as an ESR SVC, the SAS system option SVC0R15
should be set to the ESR code (for example, 4).

3 Verify installation on all CPUs, as needed.
If you have more than one CPU, verify that the SAS SVC is installed on the

systems that will be running SAS/SHARE at your site.

Configuring the Server Service
Each server must be defined as a service in the TCP/IP SERVICES file on each node

that a client will connect to. This file usually is located in the directory that the TCP/IP
software is installed in. For details about editing the SERVICES file, see “Configuring
the SERVICES File” on page 145.

Example:

sassrv2 5011/tcp # SAS/SHARE server 2

Setting the TCPSEC Option to Require Client Authentication
To authenticate connecting clients, you must specify the value _SECURE_ in the

TCPSEC= option to require that clients provide a user ID and a password that are valid
on the server. For details about the TCPSEC= option, see “SAS/SHARE Options Only”
on page 78.

Encrypting Data in Server/Client Transfers
If network security is configured at the server, you can specify SAS options to encrypt

data that a server transfers to a client, for example,

options netencrypt netencryptalgorithm=rc4;

24 Specifying TCP/IP as the Communications Access Method � Chapter 2

The NETENCRYPT option specifies that all data transfers between a server and a
client will be encrypted. The RC4 security algorithm is assigned in the
NETENCRYPTALGORITHM= option. For general information about security services,
see “SAS/CONNECT and SAS/SHARE Network Security” on page 11.

Specifying TCP/IP as the Communications Access Method
You must specify TCP/IP as the communications access method at the server before a

client can access it. You can use the COMAMID= option in an OPTIONS statement.
For example:

options comamid=tcp;

The COMAMID= option specifies the communications access method. TCP specifies
the TCP/IP access method.

Alternatively, you can specify the COMAMID= option in a SAS start-up command or
in a SAS configuration file.

The COMAUX1= option specifies an auxiliary communications access method and
can be specified only in a SAS start-up command or in a SAS configuration file.

The syntax for the COMAUX1= option is:

COMAUX1=alternate-method

If the first method fails to access a server, the second method is used. You can specify
one auxiliary access method.

Example:

comamid=tcp
comaux1=xms

For details about the supported access methods, see “Supported Communications
Access Methods by Operating Environment” on page 3.

Specifying the Server
You must specify the name of the server in the SERVER= option in the PROC

SERVER statement.

SERVER=server

server can be either a server-ID or a port number. The server-ID corresponds to the
service that was configured in the SERVICES file. For details, see “Configuring the
Server Service” on page 23. The value for port is the unique number that is associated
with the service that is used for transferring data between a client and a server.
Precede the port number with two consecutive underscores.

Note: Do not space after the first underscore or the second underscore. �

Examples:

proc server server=apex;
proc server server=_ _5000;

For details about creating valid SAS names, see SAS Language Reference: Concepts.
For details about PROC SERVER, see the SERVER procedure in the SAS/SHARE
User’s Guide.

z/OS: TCP/IP Access Method � Using a SAS TCP/IP Configuration Plan 25

SAS/SHARE Server Example
The following example shows the statements that you specify in the server

configuration file on a machine that runs the z/OS operating environment:

tcpsec=_secure_
options comamid=tcp;
proc server id=share1;
run;

The value _SECURE_ that is specified for the TCPSEC option requires clients to
provide a user ID and a password that are valid on the server.

The COMAMID= option specifies the TCP/IP access method. The PROC SERVER
statement specifies the server SHARE1.

System Configuration for TCP/IP

Using a SAS TCP/IP Configuration Plan
You are encouraged to use this plan to collect information that is necessary to

configure (or to verify your configuration of) TCP/IP communication servers that will
run under the OS/390 operating environment or the z/OS operating environment.

1 Is your operating environment running multiple TCP/IP stacks?
� If yes, go to Step 2.
� If no, go to Step 3.

2 What is the name of the TCP/IP stack that you want SAS to use?
Set the TCPIP_MACH SAS/C environment variable or the TCPIPMCH SAS system

option.
3 Which vendor’s TCP/IP stack will SAS be using?

� IBM IP Communications Server

Configure or verify the host name configuration by adding a HOSTNAME
statement in the appropriate IBM TCPIP.DATA file.

� CA Unicenter TCPaccess Communications Server

Configure or verify the host name configuration by adding a SYSUNIQ
SYSNAME() statement in the appropriate CA TCPCFGnn PARM member.

4 Which operating environment is SAS running under?
� OS/390

Configure SAS to use the SAS/C Name Resolver.
� z/OS

Which DNS Name Resolver do you want to use?
� IBM z/OS Name Resolver

Apply the zap in Usage Note 2143 to the SAS Transient Library.
Configure SAS to use the IBM z/OS Name Resolver.

� SAS/C Name Resolver
Configure SAS to use the SAS/C Name Resolver.

26 TCP/IP Overview � Chapter 2

5 Verify that appropriate services are configured for SAS/CONNECT or SAS/SHARE
in the SERVICES file. For details, see “The Services File” on page 44.

u and v For information about TCP/IP stacks and how to determine whether a
system is running using single or multiple TCP/IP stacks, see “TCP/IP Stacks” on page
29. For details about the SAS/C environment variable and the SAS system option, see
“SAS/C Environment Variables and SAS 9.1 System Options” on page 40.

w Consult the person who installed SAS on your system. For information about host
names, see “TCP/IP Host Name Configuration” on page 31. For information about
configuring TCP/IP stack files, see “TCP/IP Stack Configuration Files” on page 33.

x Consult your system administrator. For information about configuring the
appropriate TCP/IP Name Resolver, see “TCP/IP Name Resolver Configuration” on page
35. Also, see this topic for details about applying the zap in Usage Note 2143 to the
SAS Transient Library.

If you are using the SAS/C Name Resolver, see “SAS/C Environment Variables and
SAS 9.1 System Options” on page 40, “SAS/C Environment Variables in the SASCTCPV
Data Set” on page 42, and “The UNIX System Services (USS) Shell” on page 42.

TCP/IP Overview
TCP/IP is a set of layered protocols that enable cooperating computers to perform

tasks and to share resources across a network. TCP/IP is comprised of TCP and IP.
TCP is a set of routines that applications use to communicate with another computer

over a network. All applications do not use TCP. However, all network applications
require the services that are provided in IP. IP is a set of routines that TCP calls, but
the IP routines are also available to applications that do not use TCP. SAS 9.1 uses
both TCP and IP, and requires that certain types of information be made available to
the operating environment.

Although you might refer to a computer by using its host name, TCP/IP applications
refer to computers by using their IP addresses. To facilitate the use of host names in a
network, the Domain Name System translates host names to IP addresses. This
Domain Name System provides host-to-IP address mapping through network server
hosts, which are called domain name servers. The Domain Name System also provides
other information about server hosts and networks, such as the TCP/IP services that are
available to the server host and the location of the domain name servers in the network.

TCP/IP: Software Requirements
Verify that these software requirements have been met:
� The 7.50C version of the SAS Transient Library that is shipped with SAS 9.1 has

been installed.
� One of the following TCP/IP packages has been installed:

� IBM OS/390 IP Communications Server
� IBM z/OS IP Communications Server
� Computer Associates (CA) Unicenter TCPaccess Communications Server 5.3 or

later.

Note: The Unicenter TCPaccess Communications Server 5.3 must be running
at maintenance level SP0208 and requires fix TP09208 from Computer
Associates. �

� The UNIX System Services (USS) file system is available.
� A default OE segment (or an individual OE segment for each user ID) is required

and must be defined in the security software (such as RACF).

z/OS: TCP/IP Access Method � TCP/IP: Software Requirements 27

� Ensure that the appropriate software zaps have been applied to SAS, as necessary.
Zaps are included on the SAS software install tape and are documented in usage
notes.

UN2143
To use the SAS Transient Library with the z/OS Name Resolver instead of
the SAS/C Name Resolver, apply this zap.

M7504151
To change the default prefix for a data-set name from TCPIP to another
name, apply this zap.

SAS Transient Library

The SAS Transient Library contains various modules and routines that SAS 9.1 uses
during execution. The SAS Transient Library is also required for communication
between SAS 9.1 and the TCP/IP Communications Servers. The library is automatically
unloaded from tape during the installation process into a data set that is named
&prefix.SASC.TRANSLIB. The prefix is a high-level qualifier of SAS 9.1 installation
libraries. &prefix.SASC.TRANSLIB is copied to a link-list library or to the LPA.

The SAS Transient Library is made available to SAS 9.1 in one of the following ways:

1 The CTRANSLOC option that is specified in the SAS config file. This is the default.

The CTRANSLOC option is generated in the BATCH and TSO members of the
CNTL data set during installation. For example,
CTRANSLOC=&prefix.SASC.TRANSLIB. For details, see “Processing the
CTRANSLOC Option” on page 27.

2 &prefix.SASC.TRANSLIB is copied to a link-list library of the LPA.

3 &prefix.SASC.TRANSLIB is added to the STEPLIB or the TASKLIB
concatenations in the SAS cataloged procedure and to the SAS CLIST, respectively.

4 An allocation for the CTRANS DD is added to the &prefix.SASC.TRANSLIB data
set in the SAS cataloged procedure and SAS CLIST.

An example of an allocation for BATCH follows:

//CTRANS DD DISP=SHR,DSN=&prefix.SASC.TRANSLIB

An example of an allocation for TSO follows:

ALLOC F(CTRANS) DA(’&prefix.SASC.TRANSLIB’) SHR

Processing the CTRANSLOC Option

CTRANSLOC=CTRANS
If CTRANS is already allocated, a note is posted to the job log:

Note: A note is not posted to the SAS log because the SAS log is not yet available
when this message is generated. �

NOTE: C TRANSIENTS WILL BE LOADED FROM location

If CTRANS has not been allocated, a note is posted to the job log:

Note: A note is not posted to the SAS log because the SAS log is not yet available
when this message is generated. �

NOTE: C TRANSIENTS WILL BE LOADED FROM LIBRARIES IN THE NORMAL SEARCH PATH.

28 TCP/IP: Software Requirements � Chapter 2

CTRANSLOC= DDname or Data Set Name
If CTRANS is already allocated:
1 CTRANSLOC obtains the name of the data set that was allocated to CTRANS.

� If DDname is specified as the value of CTRANSLOC, CTRANSLOC obtains the
name of the data set that is associated with the DDname.

� If no data set is associated with the DDname, a warning is posted to the job log:

Note: A warning is not posted to the SAS log because the SAS log is not yet
available when this message is generated. �

WARNING: NO DATA SET ALLOCATED TO DDNAME name.
C TRANSIENTS WILL BE LOADED FROM LIBRARIES IN THE NORMAL SEARCH PATH.

2 CTRANSLOC compares the names of the data sets.
� If the names of the data sets match, a note is posted to the job log:

NOTE: C TRANSIENTS WILL BE LOADED FROM location.

� If the names of the data sets do not match, a warning is posted to the job log:

WARNING: THE VALUE SPECIFIED IN CTRANSLOC IS IGNORED
BECAUSE CTRANS IS ALREADY ALLOCATED TO DATA SET name.

If CTRANS has not been allocated:
1 If DDname is specified as the value for CTRANSLOC, CTRANSLOC obtains the

name of the data set that is associated with the DDname.
2 If no data set is associated with the DDname, a warning is posted to the job log:

Note: A warning is not posted to the SAS log because the SAS log is not yet
available when this message is generated. �

WARNING: NO DATA SET ALLOCATED TO DDNAME name.
C TRANSIENTS WILL BE LOADED FROM LIBRARIES IN THE NORMAL SEARCH PATH.

3 The data set is allocated to CTRANS.
� If there is an error in allocation, a warning is posted to the job log:

Note: A warning is not posted to the SAS log because the SAS log is not yet
available when this message is generated. �

WARNING: DATA SET name COULD NOT BE ALLOCATED TO CTRANS.
C TRANSIENTS WILL BE LOADED FROM LIBRARIES IN THE NORMAL SEARCH PATH.

� If the data set is allocated successfully, a note is posted to the job log:

NOTE: C TRANSIENTS WILL BE LOADED FROM location

CTRANLSLOC=Null
If CTRANS is already allocated or has not been allocated, a note is posted to the job

log:

Note: A note is not posted to the SAS log because the SAS log is not yet available
when this message is generated. �

NOTE: C TRANSIENTS WILL BE LOADED FROM LIBRARIES IN THE NORMAL SEARCH PATH.

z/OS: TCP/IP Access Method � TCP/IP Stacks 29

TCP/IP Stacks

TCP/IP Communication Stack: Definition
TCP/IP stack is a term for the set of protocols that comprise TCP/IP. A TCP/IP

Communication stack that runs under the OS/390 and z/OS operating environments is
implemented as a UNIX System Services (USS) physical file system (PFS). An
operating environment can run using one or more TCP/IP stacks.

Note: A TCP/IP stack is also referred to as a transport driver. �

The IBM INET physical file system type supports a single TCP/IP stack. The IBM
CINET physical file system type supports multiple stacks.

Note: If you will configure only one TCP/IP stack and you have access to both INET
and CINET, it is advisable to configure the stack under INET because of its efficiency
over CINET. �

Sample Definitions of TCP/IP Stacks
USS physical file systems are configured in the IBM parmlib member BPXPRMnn.

The following examples show typical entries in the BPXPRMnn parmlib member for
INET and CINET physical file systems.

� Defining a Single IBM TCP/IP Stack
The following example shows the statements in the IBM parmlib member

BPXPRMnn that define an INET physical file system for a single IBM TCP/IP
stack system.
FILESYSTYPE TYPE(INET) ENTRYPOINT(EZBPFINI)

NETWORK DOMAINNAME(AF_INET)
DOMAINNUMBER(2)
MAXSOCKETS(64000)
TYPE(INET)

� Defining a Single CA TCPaccess Stack
The following example shows the statements in the IBM parmlib member

BPXPRMnn that define an INET physical file system for a single CA TCPaccess
stack system.
FILESYSTYPE TYPE(INET) ENTRYPOINT(T010PFSA)
PARM(’SYSID(ACSS)’)

NETWORK DOMAINNAME(AF_INET)
DOMAINNUMBER(2)
MAXSOCKETS(64000)
TYPE(INET)

� Defining Multiple IBM TCP/IP Stacks
The following example shows the statements in the IBM parmlib BPXPRMnn

member that define a multiple TCP/IP stack system. This example includes three
stacks:

� two IBM stacks, TCPIP and TCPIP2
� one CA TCPaccess stack, SNSTCP.

The values of the FILESYSTYPE substatements, TYPE and ENTRYPOINT,
define the PFS type and the entry point for the CINET PFS. CINET requires a
SUBFILESYSTYPE statement for each stack. The NAME substatement names

30 TCP/IP Stacks � Chapter 2

the TCP/IP stack that is being defined. This name is also used as the name of the
Started Task that invokes the TCP/IP stack.

Note: CINET requires the NAME substatement. �

An optional SUBFILESYSTYPE substatement named DEFAULT defines the
default TCP/IP stack for a multiple stack system. If DEFAULT is not specified or if
the default stack is not active, the first stack that is activated is the default stack.

Note: The entry point for CA’s TCPaccess TCP/IP stack must be T010PFSA. �

FILESYSTYPE TYPE(CINET) ENTRYPOINT(BPXTCINT)
NETWORK DOMAINNAME(AF_INET)

DOMAINNUMBER(2)
MAXSOCKETS(64000)
TYPE(CINET)
INADDRANYPORT(63000)
INADDRANYCOUNT(1000)

SUBFILESYSTYPE NAME(TCPIP)
TYPE(CINET)
ENTRYPOINT(EZBPFINI)
DEFAULT

SUBFILESYSTYPE NAME(TCPIP2)
TYPE(CINET)
ENTRYPOINT(EZBPFINI)

SUBFILESYSTYPE NAME(SNSTCP)
TYPE(CINET)
ENTRYPOINT(T010PFSA)
PARM(’SYSID(ACSS)’)

For complete details, see the IBM documentation z/OS UNIX System Services
Planning, GA22-7800.

System and Process Limits

The following IBM system values are set in the parmlib member BPXPRMnn and
affect the number of TCP/IP sockets that SAS can use.

MAXSOCKETS
system limit; specifies the maximum number of sockets that can be obtained for a
given file system type. IBM recommends that this value be set to 64000.

MAXFILEPROC
process limit; specifies the maximum number of file descriptors that a single
process can have open concurrently, such as all open files, directories, sockets, and
pipes. This value is usually set to 256. However, for heavy server use, it is
advisable to set this number to 2000.

Note: You can use the RACF ALTUSER or ADDUSER system commands to set
MAXFILEPROC on a per-user basis. �

For complete details about MAXSOCKETS and MAXFILEPROC, see the IBM
documentation z/OS UNIX System Services Planning, GA22-7800.

z/OS: TCP/IP Access Method � TCP/IP Host Name Configuration 31

TCP/IP Host Name Configuration

IP Addresses
In order for a process to connect to a host machine via TCP/IP, the process must

know the IP address of the host machine. To obtain the IP address, the process calls the
following functions:

gethostname()
retrieves a string that contains its host name.

gethostbyname()
resolves the host name string to its IP address.

Because each host name is associated with a TCP/IP stack, it is critical that the host
name be configured correctly for each TCP/IP stack.

TCP/IP Host Name Configuration for Communications Servers
Configuration for TCP/IP host names varies according to the communications server

that is used.
� TCP/IP Host Names for IBM Communications Servers

When an IBM TCP/IP stack starts, the configuration process searches the
TCPIP.DATA data set, which contains configuration statements, to locate its host
name. For details, see “TCP/IP Stack Configuration Files” on page 33.
� Search Order to Locate Stack Host Name

1 If the IBM stack reads a TCPIP.DATA HOSTNAME configuration statement,
it saves this value as the stack’s host name.

2 If a TCPIP.DATA HOSTNAME configuration statement is not read, the TCP/
IP stack searches for the Virtual Machine Communication Facility (VMCF)
node name from VMCF and uses its node name as the stack’s host name.

Note: VMCF should be running before any TCP/IP stacks are started. �
3 If VMCF is not running when the TCP/IP stack is started, the TCP/IP stack’s

host name is determined by the release of the operating environment.
� Under OS/390 2.10 and earlier releases, the stack’s host name is set to a

NULL string.
� Under z/OS 1.2 and later releases, the stack’s host name is set to the

CVTSNAME, which is the SYSNAME=value in IEASYSnn that was used
when the system was started.

� Multiple Host Names in a Single File
As an option, you can insert a prefix system_name in TCPIP.DATA configuration

statements. Using prefixes enables you to configure multiple hosts in a single
TCPIP.DATA data set. The system_name prefix is matched against the system
name that the TCP/IP stack is started under. The system_name is identical to the
VMCF node name. The TCP/IP stack reads and processes the TCPIP.DATA
configuration statements in the order that they appear in the data set.

The following example shows a HOSTNAME statement in a TPCIP.DATA data
set:
SDCESA: HOSTNAME TEST
S390DEVA: HOSTNAME DEV
SDCMVS: HOSTNAME PROD

32 TCP/IP Host Name Configuration � Chapter 2

The system_name is specified in the first column; the associated host_name is
specified in the final column.

A TCP/IP stack that started on the system named SDCESA would set its host
name to TEST. A TCP/IP stack that started on the system named S390DEVA
would set its host name to DEV. A TCP/IP stack that was started on the system
named SDCMVS would set its host name to PROD.

The following rules are used to process HOSTNAME statements:
1 If the system_name prefix does not match a host name, the configuration

statement is ignored.
2 If the system_name prefix is not located, the configuration statement is

applied to all hosts.

3 If the system_name matches a host name, the associated configuration
statement is applied to that host.

4 The final configuration statement that matches a system_name remains in
effect.

A HOSTNAME statement is ignored under these conditions:
� the system_name prefix did not match the VMCF node name
� VMCF is unavailable
� The system name does not match the MVS name of the system that the TCP/

IP stack started under.

� IBM System Name Considerations
The Virtual Machine Communication Facility (VMCF) node name is used as the

system_name prefix when processing IBM TCPIP.DATA configuration statements.
The VMCF can be configured in two ways:

� as a restartable subsystem
If you have configured VMCF as a restartable subsystem, the node

name is obtained from the value of the P= parameter in the EZAZSSI started
procedure.

� as a non-restartable subsystem
If you configured VMCF as a non-restartable subsystem, the node name

is specified in the IEFSSNnn member of PARMLIB.

Note: IBM recommends that the MVS system name be used for the VMCF
node name specification. �

For details about configuring VMCF, see the IBM documentation z/OS
Communication Server: IP Configuration Guide, SC31-8775.

� TCP/IP Host Names for the CA TCPaccess Communications Server

When a CA TCPaccess TCP/IP stack starts, the configuration process searches
the TCPCFGnn PARM member, which contains configuration statements, to locate
its host name. The host name is defined by the SYSUNIQ SYSNAME(host_name),
which is stored in the TCPCPGnn TCPIP.PARM member. For details about this
file, see “CA TCPCPGnn TCPIP.PARM Member” on page 34.

If a configuration statement is not located in the TCPCFGnn PARM member,
the host name is obtained from the SYS1.PARMLIB(IEASYnn)
SYSNAME=system_name.

For complete details, see the CA documentation Unicenter TCPaccess
Communications Server: Customization Guide 6.0.

Note: Support for SYSUNIQ for releases prior to TCPaccess 6.0 requires the
following maintenance:

z/OS: TCP/IP Access Method � TCP/IP Stack Configuration Files 33

� maintenance level SP0208

� fix TP09208.

�

TCP/IP Stack Configuration Files

IBM and CA TCP/IP Stack Configuration Files

When a TCP/IP stack is started, the TCP/IP stack reads one or more configuration
files that contain statements that define its default behavior. For details, see “IBM
PROFILE.TCPIP File” on page 33, “IBM TCPIP.DATA File” on page 34 and “CA
TCPCPGnn TCPIP.PARM Member” on page 34.

IBM PROFILE.TCPIP File

� Important Statements

The following PROFILE.TCPIP statements can restrict the ports that SAS
servers can use:

PORT
reserves ports for server tasks. The PORT statement specifies only the job
names and PROC names that are allowed access to the port.

PORTRANGE
same as PORT parameter but for a range of ports.

RESTRICT
defines a list of user IDs that are prohibited from using TCP/IP.

RESTRICTLOWPORTS
restricts the use of ports 1 to 1023 to specific job names or PROC names that
are specified in the PORT or the PORTRANGE statement.

For details about the IBM PROFILE.TCPIP statements, see the IBM
documentation z/OS Communication Server: IP Configuration Reference, IBM
SC31-8776.

� Search Order to Locate PROFILE.TCPIP

The search order that is used by the IBM TCP/IP stack to locate
PROFILE.TCPIP involves both explicit and dynamic data-set allocation, as follows:

1 //PROFILE DD DSN=

2 jobname.nodename.TCPIP

3 hlq.nodename.TCPIP

4 jobname.PROFILE.TCPIP

5 TCPIP.PROFILE.TCPIP

Note: IBM recommends explicitly specifying the PROFILE DD statement in the
TCPIPROC JCL. �

� Neither SAS nor the SAS Transient Library access the PROFILE.TCPIP file
directly. However, because this file is used to configure the IBM TCP/IP stack, the
statements in this file can have an indirect effect on how SAS functions.

34 TCP/IP Stack Configuration Files � Chapter 2

IBM TCPIP.DATA File
� Important Statements

The TCPIP.DATA file contains the following statements that are used to
configure the IBM TCP/IP stack and Communication Server applications.

TCPIPJOBNAME (or TCPIPUSERID)
specifies the member name of the procedure that is used to start the TCPIP
address space, which is the TCP/IP stack name.

HOSTNAME
is used by the TCP/IP stack to determine its host name.

DATASETPREFIX
is a high-level qualifier (hlq) for the dynamic allocation of data sets in IBM
TCP/IP servers and clients.

For complete details about the IBM TCPIP.DATA statements, see the IBM
documentation z/OS Communication Server: IP Configuration Reference, IBM
SC31-8776.

� Search Order to Locate TCPIP.DATA

The IBM TCP/IP stack and the IBM Communication Server applications,
including its Name Resolvers, use the following search order to locate the data set
that contains the TCPIP.DATA configuration statements:

1 GLOBALTCPIPDATA value (z/OS 1.2 and later releases)

2 RESOLVER_CONFIG environment variable

3 /etc/resolv.conf

4 SYSTCPD DD

5 jobname.TCPIP.DATA

6 SYS1.TCPPARMS(TCPDATA)

7 DEFAULTTCPIPDATA value (z/OS 1.2 and later releases)

8 TCPIP.TCPIP.DATA

Note: The SAS Transient Library also uses TCPIP.DATA under certain
circumstances. For details, see “SAS/C Name Resolver: Overview” on page 37. �

CA TCPCPGnn TCPIP.PARM Member
The CA Unicenter TCPaccess Communications Server uses a TCPCFGnn

TCPIP.PARM member to configure its TCP/IP stack at start-up.

� Important Statements

The following TCPCFGnn statements are used to configure the TCP/IP stack
and to restrict the ports that SAS servers can use:

SYSUNIQ SYSNAME(host_name)
defines the host name that is associated with the TCP/IP stack

TCP PORTASGN
restricts the range of port numbers.

For details about the TCPaccess TCPCFGnn statements, see the CA
documentation Unicenter TCPaccess Communications Server: Customization Guide
6.0.

z/OS: TCP/IP Access Method � TCP/IP Name Resolver Configuration 35

TCP/IP Name Resolver Configuration

Name Resolver: Definition
A name resolver is a set of routines that act as a client on behalf of an application to

read a local host file or to access one or more domain name servers (DNS) for
name-to-address or address-to-name resolution. Name resolution occurs by calling the
name resolver functions gethostbyname() and gethostbyaddr().

A name resolver must be configured for each host. Configuration files under UNIX
were traditionally placed in the /etc directory. The local host configuration data is in
the /etc/hosts file. The DNS domain name and the name servers IP addresses are in
the configuration file /etc/resolv.conf.

Supported Name Resolvers
� “IBM OS/390 Name Resolvers: Overview” on page 35 (not supported)
� “IBM z/OS Name Resolver: Overview” on page 35
� “SAS/C Name Resolver: Overview” on page 37
� CA TCPaccess Domain Name Resolver (DNR) (not supported).

IBM OS/390 Name Resolvers: Overview
Prior to z/OS V1R2, IBM supported six name resolvers, depending on the IBM

application or TCP/IP API. These resolvers were based on versions of BIND that
preceded Version 4.8.3. Some of these resolvers used different configuration data sets or
files and different search orders for these data sets.

The primary file that was used for most of the IBM TCP/IP resolvers was the
TCPIP.DATA data set, which

� configured the IBM TCPIP stack
� configured the TCPIP Name resolver (instead of using the RESOLV.CONF resolver

configuration file).

The primary directives for the IBM TCP/IP Name Resolver are:
� DOMAINORIGIN (alias DOMAIN)
� NSINTERADDR (alias NAMESERVER)
� NSPORTADDR
� RESOLVERTIMEOUT
� RESOLVERUDPRETRIES
� RESOLVEVIA.

For details about the IBM TCPIP.DATA statements, see the IBM document z/OS
Communication Server: IP Configuration Reference, IBM SC31-8776.

Note: The SAS Transient Library does not use any of the IBM z/OS Name Resolvers.
Instead, it uses its own SAS/C Name Resolver that can use the IBM TCPIP.DATA file. �

IBM z/OS Name Resolver: Overview
Starting with z/OS V1R2, IBM introduced a name resolver that was designed to

replace all previous IBM name resolvers. The IBM z/OS Name Resolver is based on the
most recent version of the BIND Name Resolver, Version 9. Instead of running in the
application’s address space, the IBM z/OS Name Resolver runs in a separate address

36 TCP/IP Name Resolver Configuration � Chapter 2

space and is executed by a started task. The IBM z/OS Name Resolver must be running
before any resolver API calls can be made.

When the IBM z/OS Name Resolver is started, it reads a new IBM configuration file
that is pointed to by the DD statement SETUP, which can contain the following SETUP
directives.

COMMONSEARCH | NOCOMMONSEARCH

DEFAULTIPNODES

DEFAULTTCPIPDATA

GLOBALIPNODES

GLOBALTCPIPDATA.

Note: The most important SETUP directives are GLOBALTCPIPDATA and
DEFAULTTCPIPDATA. �

GLOBALTCPIPDATA
identifies a global TCPIP.DATA file. Any TCPIP.DATA directive that is specified in
this file are system-wide and cannot be overridden by a local TCPIP.DATA file.

DEFAULTTCPIPDATA
identifies a default TCPIP.DATA file, which overrides the TCPIP.DATA file that is
named TCPIP.TCPIP.DATA.

If a GLOBALTCPIPDATA statement is located in the resolver setup file, the IBM z/
OS Name Resolver will read any name resolver directives that are located in this global
TCPIP.DATA file. The IBM z/OS Name Resolver will then search for a local
TCPIP.DATA file in the following order:

1 RESOLVER_CONFIG environment variable

2 /etc/resolv.conf

3 SYSTCPD DD

4 jobname.TCPIP.DATA

5 SYS1.TCPPARMS(TCPDATA)

6 DEFAULTTCPIPDATA value (if specified in the z/OS Name Resolver setup file)

7 TCPIP.TCPIP.DATA

Some useful IBM z/OS Name Resolver Server directives include:

LOOKUP
changes the order in which name resolution is performed between a DNS name
server and a local hosts file. Using the LOOKUP directive, you can specify DNS
(only), LOCAL (only), DNS LOCAL, or LOCAL DNS. By default, a DNS name
server is queried first. If DNS fails, then DNS LOCAL is used.

SEARCH
specifies a search of up to six domains, in the specified order. The first domain
name that is specified is used as the value for DOMAINORIGIN. If both the
SEARCH and DOMAINORIGIN statements are specified, the one that appears
last is used.

SORTLIST
specifies up to four IP addresses to use for a specific host. If DNS returns more
than one IP address for a host, SORTLIST can use search masks to sort and
identify which IP address the resolver returns.

z/OS: TCP/IP Access Method � TCP/IP Name Resolver Configuration 37

OPTIONS
specifies that for a domain name that contains n or more periods (.), the resolver
should look up the name as is before applying the DOMAINORIGIN or SEARCH
statement settings. The range of n is 1 to 15. The default is 2.

For complete information about these directives, see the IBM documentation z/OS IP
Configuration Guide and IP Configuration Reference.

SAS/C Name Resolver: Overview
The SAS/C Name Resolver was ported from the BIND Name Resolver. The version of

BIND that was ported, although current at the time of the port, was prior to Version
4.8.3. Because the nonstandard TCPIP.DATA file is used instead of /etc/resolv.conf,
significant changes were made to the BIND code in order to support this data set,
including the code to search for this file.

The SAS/C Name Resolver provides limited compatibility with the IBM resolvers by
means of environment variables that are used to configure the SAS/C Name Resolver.
Because the TCPIP.DATA file usually configures resolvers and TCP/IP stacks, the
presence of multiple TCP/IP stacks changes the behavior of the SAS/C Name Resolver.

When the first TCP/IP function call is made to the SAS Transient Library, the library
loads (by default) and initializes its "OE" socket library (LSCNOE). Initialization
includes code that identifies whether one or more TCP/IP stacks is running. This code
calls the UNIX System Services pfsctl(BPX1PCT), using the TCP/IP stack name ",".

� Only One TCP/IP Stack Is Detected
If one TCP/IP stack is detected, pfsctl() returns an errno of ENXIO.
No attempt is made to search for and read the TCPIP.DATA file.

� TCPIP_MACH Is Located
1 If pfsctl() returns any value that is not ENXIO, it is assumed that multiple

TCP/IP stacks are running.
The SAS Transient Library searches for the SAS/C environment variable

TCPIP_MACH.
2 If TCPIP_MACH is set, the SAS Transient Library uses that value.

No further attempt is made to search for and read the TCPIP.DATA file.
� TCPIP.DATA Is Located or Default TCP/IP Stack Name Is Used

1 If TCPIP_MACH is not set, the SAS Transient Library searches for the
TCPIP.DATA file, which contains the TCIPJOBNAME (or TCPIPUSERID)
directive.

If the TCPIPJOBNAME directive specifies the TCP/IP stack, pfsctl() is
called with the value that is set by the directive.

2 If the TCPIP.DATA file is not found or it does not contain TCPIPJOBNAME,
pfsctl() is called with the default TCP/IP stack name TCPIP.

The SAS Transient Library reads a TCPIP.DATA file.
� Name Resolver Directives Are Located

1 When the SAS Transient Library reads a TCPIP.DATA file, it caches the
values of all statements or directives that are found, including name resolver
directives.

When the first resolver function is called (gethostbyname() or
gethostbyaddr()), the SAS Transient Library searches for a RESOLV.CONF
name resolver configuration file, in the following order:

a value of ETC_RESOLV_CONF environment variable, if defined
b /etc/resolv.conf

38 TCP/IP Name Resolver Configuration � Chapter 2

c tso-prefix.ETC.RESOLV.CONF if under TSO
d ETC.RESOLV.CONF
e tcpip-prefix.ETC.RESOLV.CONF, if TCPIP_PREFIX is defined.

2 If the SAS Transient Library locates a resolver configuration file, it uses the
resolver configuration file to configure the SAS/C Name Resolver and it clears
its cache.

Note: The UNIX and IBM resolver directives are recognized. �

� Cached Resolver Data or TCPIP.DATA File Is Located

1 If a RESOLV.CONF file is not located, the SAS Transient Library uses any
cached resolver data from a previously read TCPIP.DATA file.

2 If there is no cached resolver data, the SAS Transient Library searches for
and reads a TCPIP.DATA file for resolver directives and uses these directives
to configure the SAS/C Name Resolver.

The SAS Transient Library searches for the IBM TCPIP.DATA file in the
following order:

a the SAS/C environment variable TCPIP_DATA string
b the data set that is identified by the DDname SYSTCPD
c the tso-prefix.TCPIP.DATA, if under TSO
d the SYS1.TCPPARMS(TCPDATA) data set
e the SAS/C environment variable TCPIP_PREFIX
f the tcpip_prefix.TCPIP.DATA
g the default value of TCPIP_PREFIX
h the default-value.TCPIP.DATA
i TCPIP.DATA.

� Hosts Files Are Located

If a TCPIP.DATA file is not located or the resolver directory is not read, the SAS
Transient Library searches for and attempts to read a local hosts file; for example,
ETC.HOSTS, in the following order:

1 value of ETC_HOSTS environment variable, if defined

2 /etc/hosts

3 tso-prefix.ETC.HOSTS if under TSO

4 ETC.HOSTS

5 tcpip-prefix.ETC.HOSTS, if TCPIP_PREFIX is defined

Example excerpt from a HOSTS file:

The form for each entry is:
<internet address> <official hostname> <aliases>
For example:
192.1.2.34 hpfcrm loghost
#
See the hosts(4) manual page for more information.
Note: The entries cannot be preceded by a space.
The format described in this file is the correct format.
The original Berkeley manual page contains an error in
the format description.
#

10.19.0.127 snstcp
127.0.0.1 localhost loopback

� Limitations of the SAS/C Name Resolver

z/OS: TCP/IP Access Method � TCP/IP Name Resolver Configuration 39

The SAS/C Name Resolver does not support the IBM Name Resolver setup
directives or the new resolver configuration directives. The SAS/C Name Resolver
ignores any directive that it does not recognize.

In order for the SAS/C Name Resolver to correctly use a TCPIP.DATA file that
was written for the IBM Name Resolver, the DOMAINORIGIN directive must be
included in the TCPIP.DATA file. If one or more SEARCH directives are used in
the file, the DOMAINORIGIN directive must precede them. The SAS/C Name
Resolver reads the DOMAINORIGIN directive but ignores SEARCH directives,
because the SAS/C Name Resolver does not recognize them. However, the IBM
Name Resolver reads the DOMAINORIGIN directive, but any SEARCH directives
that follow will override the behavior of the DOMAINORIGIN directive.

If your site uses any of the new features of the IBM z/OS Name Resolver, it is
highly recommended that the SAS Transient Library be configured to use the IBM
z/OS Name Resolver instead of the SAS/C Name Resolver.

� Configuring the SAS Transient Library to Use the IBM z/OS Name Resolver

If you use the SAS Transient Library and want to use the z/OS Name Resolver
instead of the SAS/C Name Resolver, apply a zap (see Usage Note UN2143), which
causes the SAS Transient Library to call the z/OS Resolver functions instead of
the SAS/C Resolver functions.

� Configuring the CA Unicenter TCPaccess Communication Server to Use a Name
Resolver

Although the CA Unicenter TCPaccess Communication Server provides the
DNR (Domain Name Resolver), neither SAS nor SAS/C can use it. Therefore, if
you are using the TCPaccess stack, you must use the SAS/C Name Resolver.

� Configuring SAS to Use the SAS/C Name Resolver

The SAS/C Name Resolver must be configured before the SAS Transient Library
can search for and access it. The resolver can be configured by using the following
SAS/C environment variables, SAS system options, and files in the operating
environment:

ETC_RESOLV_CONF environment variable
Assigning an IBM TCPIP.DATA file to this environment variable prevents the
SAS Transient Library from using a long search list. This file does not
contain TCPIPJOBNAME or the TCPIPPREFIX statements.

TCPIP_DATA environment variable
If access to TCPIPJOBNAME or the TCPIPPREFIX statements is needed,
then TCPIP_DATA should be set.

If SAS is running under a multiple TCP/IP stack system, and unless
TCPIP_MACH is specified, the SAS Transient Library must have access to
the TCPIP.DATA file, which contains a TCPIPJOBNAME statement.

TCPIP_MACH environment variable
specifies the version of TCP/IP that is running when multiple TCP/IP stacks
are being used.

TCPIPMCH system option
This SAS system option is another implementation of the TCPIP_MACH
environment variable.

TCPIP_PREFIX environment variable
If multiple TCP/IP stacks are configured and prefixes are used to differentiate
among names for TCP/IP stacks, this variable identifies the prefix name.

40 SAS/C Environment Variables and SAS 9.1 System Options � Chapter 2

TCPIPPRF SAS system option
This SAS system option is another implementation of the TCPIP_PREFIX
environment variable.

SERVICES file
specifies the services that are required by SAS/CONNECT and SAS/SHARE.

� Configuring SAS to Use the IBM z/OS Name Resolver
In order for SAS to use the IBM z/OS Name Resolver, you must apply a zap (see

Usage Note UN2143) to the SAS Transient Library that was supplied with SAS
9.1. If this zap is applied, configuration is complete.

However, if SAS runs multiple TCP/IP stacks, the SAS Transient Library must
have access to resolver information that is contained in the following files:

TCPIP.DATA file
contains a TCPIPJOBNAME statement and also contains a
DATASETPREFIX statement.

TCPIP_MACH environment variable
specifies the version of TCP/IP that is running when multiple TCP/IP stacks
are being used.

TCPIPMCH system option
This SAS system option is another implementation of the TCPIP_MACH
environment variable.

TCPIP_PREFIX environment variable
If multiple TCP/IP stacks are configured and prefixes are used to differentiate
among names for TCP/IP stacks, this variable identifies the prefix name.

TCPIPPRF SAS system option
This SAS system option is another implementation of the TCPIP_PREFIX
environment variable.

SERVICES file
specifies the ports that are available for TCP/IP stacks, and also might
specify prefixes that are used to differentiate among multiple TCP/IP stacks.

SAS/C Environment Variables and SAS 9.1 System Options

SAS/C Environment Variables and SAS System Options: Definitions
If your site’s TCP/IP system configuration files are not included in the search path, or

the configuration files are not formatted as required by the SAS Transient Library, you
can customize SAS 9.1 by using SAS/C environment variables and SAS system options.

SAS 9.1 uses the following SAS/C environment variables (and SAS system option
equivalents) to alter default processing for TCP/IP initialization:

TCPIP_MACH=name (environment variable)
TCPIPMCH=name (SAS system option)

is useful for sites that run TCP/IP from multiple vendors or multiple instances of
the same vendor’s TCP/IP simultaneously.

The TCPIP_MACH environment variable can be used to specify the name of the
TCP/IP stack name, which is also referred to as a started task. Setting
TCPIP_MACH is the same as using the TCPIPJOBNAME/TCPIPUSERID
configuration keywords in the IBM TCPIP.DATA file. If TCPIP_MACH is set, the
SAS Transient Library does not search for these keywords.

z/OS: TCP/IP Access Method � SAS/C Environment Variables and SAS 9.1 System Options 41

The default name for the TCP/IP stack is TCPIP.

TCPIP_DATA=dsn:data.set.name (environment variable)
specifies the fully qualified name of an IBM TCPIP.DATA configuration data set. If
the TCPIP_MACH environment variable is not set, the SAS Transient Library
uses this file to locate the TCP/IP stack name. If a RESOLV.CONF file is not
located, the SAS/C Name Resolver will also read this file to retrieve DNS name
resolver directives. Specifying this environment variable will override the default
search order for this file.

ETC_RESOLV_CONF=dsn:data.set.name (environment variable)
used by the SAS/C Name Resolver, specifies the fully qualified name of a
RESOLV.CONF file that contains DNS name resolver directives for domain-name
server processing. This data set name can be a TCPIP.DATA file because IBM uses
this file to store resolver directives. Specifying this environment variable will
override the default search order for this file.

ETC_HOSTS=dsn:data.set.name (environment variable)
used by the SAS/C Name Resolver, specifies the fully qualified name of the data
set that contains host-name resolution information. For details, see “TCP/IP Name
Resolver Configuration” on page 35.

If your site does not enable domain-name server processing and you are using
the SAS/C Name Resolver, you must specify a local host file.

ETC_SERVICES=dsn:data.set.name (environment variable)
specifies the fully qualified name for the data set name that contains service
names and port numbers. Specifying this environment variable will override the
default search order for this file.

TCPIP_PREFIX=high.level.qualifier (environment variable)
TCPIPPRF=high.level.qualifier (SAS system option)

specifies a high-level qualifier for the various TCP/IP configuration data sets. The
DATASETPREFIX keyword and the assigned value in the TCP/IP configuration
file can also be used to specify the high-level qualifier.

For example, you might organize the configuration data sets under a single
high-level qualifier, as follows:

TCPIPPRF=SYS2.TCP26

The TCP/IP prefix is used to name the data sets, as follows:

SYS2.TCP26.TCPIP.DATA
SYS2.TCP26.ETC.HOSTS
SYS2.TCP26.ETC.SERVICES

If a form of the TCP/IP prefix is used, the SAS Transient Library will not search
for the DATASETPREFIX keyword. Also, specifying this environment variable will
override the default data-set prefix.

The Default TCPIP Prefix
Unless you applied the zap to change the default prefix for a data-set name, TCPIP is

the default.
If you cannot use ETC at your site and if DS names do not conflict with the ETC

high-level qualifier, you can use the default prefix to produce names such as
TCPIP.ETC.HOSTS.

Note: If you use the default TCPIP prefix, do not set the TCPIPPRF option to
override the TCPIP prefix, and do not apply the zap to change the default value of the
TCPIP prefix in the SAS Transient Library. �

42 SAS/C Environment Variables in the SASCTCPV Data Set � Chapter 2

Changing the Default TCPIP Prefix
To change the default DATASETPREFIX value of TCPIP, you can apply zap number

M7504151, which is included on the SAS software install tape and is documented in
usage notes.

For example, to change the name of the TCPIP.SERVICES file to
SYS.PROD.CONFIG.ETC.SERVICES, use the provided zap. The default TCPIP prefix
is changed to SYS.PROD.CONFIG.

SAS/C Environment Variables in the SASCTCPV Data Set
The following guidelines show how to store SAS/C environment variables in the data

set SASCTCPV:

� Allocate the data set to the SASCTCPV DD, using RECFM=FB and LRECL=80.

� Do not enable line numbers in the SASCTCPV data set.

� If you use SAS/C environment variables, you must allocate the SASCTCPV DD in
the JCL or the CLIST that executes SAS 9.1.

For example, if the data set SAS.TCPIP.ENVIRON.DATA contains the
environment variable information that you want, you would use the following
allocation statements for BATCH and TSO:
//SASCTCPV DD DISP=SHR,DSN=SAS.TCPIP.ENVIRON.DATA

or
ALLOC F(SASCTCPV) DA(’SAS.TCPIP.ENVIRON.DATA’) SHR

Each logical record is assumed to contain an environment variable assignment
in the form:

environment_variable_name=value

Specifying SAS 9.1 system options that control configuration data sets will override
the SAS/C environment variables that are set in the SASCTCPV data set.

The UNIX System Services (USS) Shell

Shell Configuration Requirements
Some SAS 9.1 applications, such as the Broker for SAS/IntrNet, that execute under

the UNIX System Services (USS) shell must be customized for the shell environment,
which requires using the shell export command to set SAS/C environment variables.
These SAS/C environment variables control how SAS 9.1 initializes and how it uses the
SAS Transient Library and TCP/IP configuration files under the shell.

Store the SAS/C environment variables in the user’s shell configuration file
.profile, which is located in the user’s home directory, or in the system configuration
file /etc/profile.

The USS shell reads these configuration files when the shell starts. The shell
requires the following information:

� The location of the SAS Transient Library

� If running multiple TCP/IP stacks, the name of the TCP/IP stack

� The name of the TCP/IP stack configuration data set TCPIP.DATA

� The name of file that is used for domain name-server processing

z/OS: TCP/IP Access Method � The UNIX System Services (USS) Shell 43

� The name of the file that is used for host table lookup
� The name of the SERVICES file.

Specifying the SAS Transient Library
The SAS Transient Library contains various modules and routines that are used by

SAS 9.1 during execution. These libraries are unloaded from tape during SAS 9.1
installation. If the SAS Transient Library is not located in LINKLIST or LPALIB, you
must specify the SAS Transient Library by using the SAS/C environment variable,
ddn_CTRANS, in the following shell export command:

export ddn_CTRANS=&prefix.SASC.TRANSLIB

&prefix is a high-level qualifier of SAS 9.1 installation libraries.
You are advised to store this shell command in the shell system file /etc/profile to

ensure that all SAS users who are executing under a USS shell will locate the SAS
Transient Library.

Configuring TCP/IP Using SAS/C Environment Variables
You can set any SAS/C environment variable by using the shell export command
For example, to set the SAS/C environment variable TCPIP_MACH to specify the

TCP/IP stack name on a multiple TCP/IP stack system, use the following shell export
command:

export TCPIP_MACH=TCPIP2

TCPIP2 is the name of the TCP/IP stack, which is specified in the
SYS1.PARMLIB(BPXPR4Mnn) system parmlib.

For descriptions of the SAS/C environment variables, see “SAS/C Environment
Variables and SAS 9.1 System Options” on page 40.

Note: With the exception of the SAS Transient Library, all MVS data sets need to be
prefixed with //dsn: and any allocated DD NAME with //ddn:.

Example:

export TCPIP_DATA=’//dsn:SSD.TCPACC53.TCPIP.DATA’

�

The Shell Profile File
During USS shell initialization, the shell reads and executes any shell commands

that are located in these files, in this order:
1 the system shell profile file /etc/profile

2 the user file .profile, which is located in the invoking user’s home directory.

SAS/C environment variables that are specified via export commands are
automatically set when the shell is initialized.

A typical user .profile follows:

#---
.profile - default ksh login script.
#
items in this file are executed once at login

44 The Services File � Chapter 2

#
#---

#---
Set SAS Transient Library
#---
export ddn_CTRANS=’SAS.SASC.TRANSLIB’

#---
Set SAS/C TCP/IP environment variables
#---
export TCPIP_MACH=SNSTCP
export TCPIP_DATA=’//dsn:SSD.TCPACC53.TCPIP.DATA’

The Services File

Services File: Overview
The SERVICES file defines port resources that are used when TCP/IP is used to

connect client/server sessions. Examples of configured port services include the telnet
port, spawner ports, MP CONNECT pipes, and SAS/SHARE servers. For more
information, see “Configuring the SERVICES File” on page 145.

The Services File Search Order
The SAS Transient Library searches for the SERVICES file, in the following order:
1 value of the ETC_SERVICES environment variable
2 /etc/services

3 tso-prefix.ETC.SERVICES under TSO or user-ID.ETC.SERVICES under batch
execution

4 ETC.SERVICES
5 TCPIP.ETC.SERVICES
6 tcpip-prefix.ETC.SERVICES.

References
DNS and BIND, 4th Ed., by Paul Albitz & Cricket Liu, O’Reilly and Associates, Inc.
CA Unicenter TCPaccess Communications Server: Customization Guide 6.0
SAS/C Library Reference, Volume 2, SAS Institute Inc.
z/OS Communication Server: IP Configuration Guide, IBM SC31-8775
z/OS Communication Server: IP Configuration Reference, IBM SC31-8776
z/OS UNIX System Services Planning, IBM GA22-7800

45

C H A P T E R

3
z/OS: XMS Access Method

Prerequisites for Using XMS under z/OS 46
Task List 46

Software Requirements 46

Defining Resources for the XMS Communications Access Method 46

SAS/CONNECT and SAS/SHARE Network Security 46

SAS/SHARE SUBSYSID= Option 47
SAS/CONNECT Client Tasks 47

Task List 47

Specifying XMS as the Communications Access Method 47

Encrypting Data in Client/Server Transfers 48

Signing On to the Same Multi-Processor Machine 48

Specifying the Server Session 48
Starting SAS Using the SASCMD Option 48

Signing On to the Server Session 49

SAS/CONNECT Server Tasks 49

SAS/SHARE Client Tasks 49

Task List 49
Specifying XMS as the Communications Access Method 49

Specifying the Server 50

SAS/SHARE Client Example 50

SAS/SHARE Server Tasks 51

Task List 51
Installing the SAS SVC Routine 51

Specifying XMS as the Communications Access Method 51

Specifying a Server Name 52

SAS/SHARE Server Example 52

System Configuration for the XMS Access Method 52

Installation Tasks 52
Steps for Installing the Load Module 53

Defining an Anchor Point 53

Anchor Point: Definition 53

Steps for Defining an Anchor Point 53

46 Prerequisites for Using XMS under z/OS � Chapter 3

Prerequisites for Using XMS under z/OS

Task List

� Verify that software requirements are met.

� Define resources for the XMS access method.

� If using network security, set the appropriate SAS system options

� Set the SAS/SHARE SUBSYSID= option, if applicable.

Software Requirements
Ensure that

� Base SAS and either SAS/CONNECT or SAS/SHARE are installed on both the
client and the server.

� XMS has been installed on both the client and the server.

Defining Resources for the XMS Communications Access Method
Network Administrator

Before you can use SAS/CONNECT and SAS/SHARE with the XMS
communications access method, you must first define XMS resources for the z/OS
operating environment. For the tasks to define resources for SAS/CONNECT and
SAS/SHARE, see “System Configuration for the XMS Access Method” on page 52.

SAS/CONNECT and SAS/SHARE Network Security
Encryption is the process of transforming plaintext into a less readable form (called

ciphertext) by using a mathematical process. The ciphertext is translated back to
plaintext for anyone who can supply the appropriate key, which is necessary for
decrypting (or unlocking) the ciphertext.

SAS/CONNECT and SAS/SHARE support the following network security services for
protecting data on a network.

SASproprietary
a fixed encoding algorithm that is included with Base SAS software and is
available in all SAS supported operating environments. It requires no additional
SAS product licenses.

SAS/SECURE
an add-on product that provides additional encryption algorithms in addition to
the SAS proprietary algorithm.

For complete details about using network security, see the SAS/CONNECT User’s
Guide. After network security is set up in your environment, you set a SAS encryption
option that is appropriate to the network security service and to the requirements of
the client or the server session.

z/OS: XMS Access Method � Specifying XMS as the Communications Access Method 47

SAS/SHARE SUBSYSID= Option

SUBSYSID=anchor-point
stands for subsystem identifier, which specifies the cross-memory anchor point
that identifies the inactive z/OS subsystem. The subsystem is defined by your
network administrator during the XMS access method configuration. For details,
see “System Configuration for the XMS Access Method” on page 52.

Defining an inactive subsystem causes a z/OS machine to create a subsystem
communications vector table (SSCVT) at IPL time. The SSCVT chain is in
common memory and is easily accessible to the XMS access method routines. The
SSCTSUSE field of the SSCVT is available to these routines and is used as the
anchor point for their control blocks.

The default value for SUBSYSID= is SAS0. You must set this option to enable
clients to access the server with the XMS communications access method. Set this
option at both the SAS/SHARE server and at each client that will access the server.

SAS/CONNECT Client Tasks

Task List
1 Specify XMS as the communications access method.

2 Specify encryption of client/server data transfers (optional).

3 Sign on to the same SMP (Symmetrical Multi-Processor) machine.

Specifying XMS as the Communications Access Method
XMS is the default communications access method to sign on to one or more sessions

on the same multi-processor machine that runs the z/OS operating environment.
Therefore, you do not have to explicitly specify the default.

Note: TCP/IP is the default communications access method for all other operating
environments. �

If you choose to explicitly specify XMS, you can use the COMAMID= option in an
OPTIONS statement. For example:

OPTIONS COMAMID=access-method-ID;

COMAMID is an acronym for Communications Access Method Identification.
access-method-ID identifies the method used by the client to communicate with the
server. XMS, which is an abbreviation for Cross Memory Services, is an example of an
access-method-ID. Alternatively, you can set this option in a SAS configuration file or in
a SAS start-up command.

Example:

options comamid=xms;

48 Encrypting Data in Client/Server Transfers � Chapter 3

Encrypting Data in Client/Server Transfers
If network security is available and is configured at the client, you can specify SAS

options to encrypt all data that is transferred between a client and a server. In the
following example, the NETENCRYPTALGORITHM= option specifies the DES
encryption algorithm.

options netencryptalgorithm=des;

For complete details about network security options, see the SAS/CONNECT User’s
Guide.

Signing On to the Same Multi-Processor Machine
If your client machine is equipped with SMP (Symmetric Multi-Processors), and if

you want to run one or more server sessions on your machine, perform these steps:
1 Specify the server session.
2 Specify the SASCMD command to start SAS.
3 Sign on to the server session.

Specifying the Server Session
You can specify the server session in an OPTIONS statement:

OPTIONS PROCESS=session-ID;

or in the SIGNON statement or command:

SIGNON session-ID;

session-ID must be a valid SAS name that is 1 to 8 characters in length, and is the
name that you assign to the server session on the multi-processor machine.

Note: PROCESS=, REMOTE=, CREMOTE=, and CONNECTREMOTE= can be used
interchangeably. For details, see the CONNECTREMOTE= system option in the
SAS/CONNECT User’s Guide. �

For details about SIGNON, see the SIGNON statement in the SAS/CONNECT User’s
Guide.

Starting SAS Using the SASCMD Option
Use the SASCMD option to specify the SAS command and any additional options that

you want to use to start SAS in the server session on the same multi-processor machine.
The SASCMD option can be specified either in an OPTIONS statement:

OPTIONS SASCMD=":SAS-system-options" | "!SASCMD SAS-system-options" ;

or directly in the SIGNON statement or command:

SIGNON name SASCMD=":SAS-system-options" | "!SASCMD SAS-system-options" ;

Example:

options sascmd=":memsize=64M nonumber";

The -DMR option is automatically appended to the command. If !SASCMD is
specified, SAS/CONNECT starts SAS on the server by using the same command that
was used to start SAS for the current (parent) session.

z/OS: XMS Access Method � Specifying XMS as the Communications Access Method 49

Note: In order to execute additional commands prior to starting SAS, you might
write a script that contains the SAS start-up commands that are appropriate for the
operating environment. Specify this script as the value in the SASCMD= option. �

For details, see the SASCMD= system option and the SIGNON statement in the
SAS/CONNECT User’s Guide.

Signing On to the Server Session

Example 1:
In the following example, XMS is the access method, SAS1 is the name of the server

session, and the MEMSIZE= option is used when starting SAS on a multi-processor
machine.

options comamid=xms;
signon sas1 sascmd=":memsize=64M";

Example 2:
In the following example, OPTIONS statements set the values for the COMAMID= ,

the SASCMD=, and the PROCESS= options. The SASCMD= option is a non-blank
value that causes the same CLIST that was used to start the client session to be used
to start the server session. The PROCESS= option identifies the server session on the
same multi-processor machine. Because the SASCMD= and the PROCESS= options are
defined, only a simple SIGNON statement is needed.

options comamid= xms sascmd="abc";
options process=sas1;
signon;

SAS/CONNECT Server Tasks

There are no SAS/CONNECT server tasks.

SAS/SHARE Client Tasks

Task List

1 Specify XMS as the communications access method.

2 Specify a server name.

Specifying XMS as the Communications Access Method
XMS is the default communications access method in the z/OS operating

environment. You can omit specifying the access method in a COMAMID statement and
the XMS access method is assumed, by default.

50 Specifying the Server � Chapter 3

If you choose to specify XMS to connect to a server, you can use the COMAMID=
option in an OPTIONS statement.

options comamid=xms;

The COMAMID= option specifies the communications access method. XMS is an
abbreviation for the Cross Memory Services access method.

Alternatively, you can specify the COMAMID= option in a SAS configuration file or in
a SAS start-up command.

The COMAUX1= option specifies an auxiliary communications access method and
can be used only in a SAS configuration file or in a SAS start-up command. If the first
method that you specify in the COMAMID= option fails to access the server, the
auxiliary access method is used. You can specify one auxiliary access method.

The syntax for the COMAUX1= option is:

COMAUX1=alternate-method

Example:

comamid=xms
comaux1=tcp

For details about the supported access methods, see “Supported Communications Access
Methods by Operating Environment” on page 3.

Specifying the Server
To use the XMS access method, a server and a client must be running under the

same z/OS operating environment.
To access the server, you specify the server name in the LIBNAME and PROC

OPERATE statements using this syntax:

SERVER=server-ID

server-ID is the name that you assign to the server. The name can be a maximum of
8 characters in length.

For details about creating valid SAS names, see the SAS Language Reference:
Concepts. For details about LIBNAME and PROC OPERATE, see the LIBNAME
statement and the OPERATE procedure in the SAS/SHARE User’s Guide.

SAS/SHARE Client Example
The following example shows the statements that you specify in a z/OS client

configuration file to access a server by using the XMS access method. The XMS access
method is assumed by default. The LIBNAME statement specifies the SAS data library
that is accessed through the server SHARE1.

libname sasdata ’edc.prog2.sasdata’ server=share1;

z/OS: XMS Access Method � Specifying XMS as the Communications Access Method 51

SAS/SHARE Server Tasks

Task List

1 Ensure that the SAS SVC routine has been installed.

2 Specify XMS as the communications access method.

3 Specify a server name.

Installing the SAS SVC Routine
The SAS SVC control program routine is an interface between the z/OS operating

environment and a specific request, such as "third-party checking." This facility
provides verification by requiring authentication of both the user ID and password and
of library authority.

1 Install the SAS SVC routine, if necessary.

If you have already installed the SAS SVC routine for Release 6.09 of SAS, do
not repeat the step now.

If you need to perform the installation, see the Installation Instructions and
System Manager’s Guide, The SAS System under MVS.

Because SAS SVC in Release 6.09 is backward compatible, it replaces the SAS
SVC routines from previous releases. You can continue using previous releases of
SAS and SAS/SHARE with the Release 6.09 SAS SVC that is installed on your
machine.

2 Verify the SAS options for the SVC routine.

You must verify that SAS for the SVC routine accurately reflects the way that
the SAS SVC is installed. The SAS option SVC0SVC and SAS SVC should be set
to the same number. If the SAS SVC is installed at 109 as an ESR SVC, the SAS
option SVC0R15 should be set to the ESR code (for example, 4).

3 Verify installation on all CPUs, as needed.

If you have more than one CPU, verify that the SAS SVC routine is installed on
the machines that will run SAS/SHARE at your site.

Specifying XMS as the Communications Access Method
XMS is the default communications access method in the z/OS operating

environment. You can omit specifying the access method in a COMAMID= option and
the XMS access method is assumed, by default.

If you choose to specify XMS to connect to a server, you can use the COMAMID=
option in an OPTIONS statement. For example:

options comamid=xms;

Alternatively, you can specify the COMAMID= option in a SAS configuration file or in
a SAS start-up command.

52 Specifying a Server Name � Chapter 3

The COMAUX1= option specifies an auxiliary communications access method and
can be specified only in a SAS configuration file or in a SAS start-up command. If the
first method that you specify in the COMAMID= option fails to access the server, the
auxiliary access method is used. You can specify one auxiliary access method.

The syntax for the COMAUX1= option is:

COMAUX1=alternate-method

Example:

comamid=xms
comaux1=tcp

For details about the supported access methods, see “Supported Communications Access
Methods by Operating Environment” on page 3.

Specifying a Server Name

To use the XMS access method, a server and a client must be running under the
same z/OS operating environment.

Specify the server name in the PROC SERVER statement using this syntax:

SERVER=server-ID

server-ID is the name that you assign to the server. The name can be a maximum of
8 characters in length.

For details about creating valid SAS names, see SAS Language Reference: Concepts.
For details about PROC SERVER, see the SERVER procedure in the SAS/SHARE
User’s Guide.

SAS/SHARE Server Example

The following example shows the statements that you specify to start the server
SHARE1 in the z/OS operating environment. The XMS access method is assumed by
default.

proc server id=share1;
run;

System Configuration for the XMS Access Method

Installation Tasks

1 Install the SASVXMS load module. See “Steps for Installing the Load Module” on
page 53

Note: The version of SASVXMS that is distributed with each maintenance
release of SAS/SHARE can be used only with that maintenance release. �

2 Define an anchor point. See “Defining an Anchor Point” on page 53.

z/OS: XMS Access Method � Defining an Anchor Point 53

Steps for Installing the Load Module
To install the SASVXMS0 load module, perform these tasks:
1 Copy SASVXMS0 into an authorized link list library.

� You can copy the module SASVXMS0 into any authorized library that is part of
the link list.

� Alternatively, you can install this module into the link pack area.
You can use any standard utility program to copy the module SASVXMS0

from your HLQ.LIBRARY data set to your link list library.

2 Rename SASVXMS0.
After you copy SASVXMS0 into the appropriate library, you must rename it.

You can use any standard utility to rename the module.
� If you have a previous release of SAS/SHARE installed, rename SASVXMS0 to

SASVXMSn, where n is the last digit of the release of SAS. Specify the
communications access method as XMSn.

For example, for Release 6.08, rename SASVXMS0 to SASVXMS8 and specify
the access method as XMS8. For details, see “Specifying XMS as the
Communications Access Method” on page 51.

� If you do not have a previous release of SAS/SHARE installed, rename
SASVXMS0 to SASVXMS. Specify the communications access method as XMS
in the SAS configuration file for batch processing and in the TSO CLIST. For
details, see “Specifying XMS as the Communications Access Method” on page 49.

When SAS/SHARE loads the module SASVXMS, it must find that module
marked as authorized, re-entrant, and reusable and that it was loaded from an
authorized library.

Defining an Anchor Point

Anchor Point: Definition
The anchor point is a place in common memory that can be located by servers and

clients and that is used to store and retrieve cross-memory communication information.
The anchor point is specified by defining an inactive z/OS subsystem. Doing this

causes z/OS to create a subsystem communications vector table (SSCVT) at IPL time.
The SSCVT chain is in common memory and easily accessible to the cross-memory
access method routines. The SSCTSUSE field of the SSCVT is available to these
routines and is used as the anchor point for their control blocks.

Steps for Defining an Anchor Point
Note: If you have defined an anchor point for a previous release of SAS/SHARE, do

not repeat these steps now. �

To define an anchor point, perform these tasks:
1 Define an inactive z/OS subsystem by adding the entry SAS0 to any of the

following:
� the SCHEDULER SYSGEN macro instruction
� the IEFJSSNT member of ’SYS1.LINKLIB’

54 Defining an Anchor Point � Chapter 3

� an IEFSSNxx member of ’SYS1.PARMLIB’.

CAUTION:
Do not use the name SAS0 if it conflicts with standards or conventions at your
site. Regardless of the method that is used, you must include the subsystem
name, but you should not specify an initialization routine name. �

For details about each option, see the z/OS system initialization and tuning
documentation.

Although you define a subsystem to z/OS, the subsystem will never be
considered active and will provide no system services because the SSCTSSVT field
of the SSCVT will never be non-zero.

2 Assign the anchor point to the SUBSYSID system option.

For details, see “SAS/SHARE SUBSYSID= Option” on page 47.

55

P A R T3

OpenVMS Alpha Operating Environment

Chapter 4.OpenVMS Alpha: TCP/IP Access Method 57

56

57

C H A P T E R

4
OpenVMS Alpha: TCP/IP Access
Method

Prerequisites for Using TCP/IP under OpenVMS Alpha 58
Task List 58

Software Requirements 58

SAS/CONNECT and SAS/SHARE Network Security 58

SAS/CONNECT Options Only 59

SAS/SHARE Options Only 59
SAS/CONNECT Client Tasks 60

Task List 60

Specifying TCP/IP as the Communications Access Method 60

Encrypting Data in Client/Server Transfers 60

Choosing a Method to Use to Sign On 61

Signing On to the Same Multi-Processor Machine 61
Specifying the Server Session 61

Starting SAS Using the SASCMD Option 61

Signing On to the Server Session 62

Signing On Using a Spawner 62

Ensuring That the Spawner Is Running on the Server 62
Specifying the Server and the Spawner Service 62

Specifying a Sign-On Script or a User ID and Password 63

Specifying a Sign-On Script 64

Specifying a User ID and Password 64

Signing On Using the Spawner 64
Signing On Using a Telnet Daemon 65

Specifying the Server 65

Specifying a Sign-On Script File 65

Signing On to the Server Session 65

SAS/CONNECT Server Tasks 66

Task List 66
Configuring the OpenVMS Alpha Spawner Service 66

Starting the OpenVMS Alpha Spawner 67

SAS/CONNECT Server Example 67

SAS/SHARE Client Tasks 67

Task List 67
Configuring the Server Service 67

Specifying TCP/IP as the Communications Access Method 67

Accessing a Secured Server 68

Encrypting Data in Client/Server Transfers 68

Specifying the Server 68
SAS/SHARE Client Example 69

SAS/SHARE Server Tasks 70

Task List 70

58 Prerequisites for Using TCP/IP under OpenVMS Alpha � Chapter 4

Configuring the Server Service 70
Setting the TCPSEC Option to Require Client Authentication 70

Encrypting Data in Server/Client Transfers 70

Specifying TCP/IP as the Communications Access Method 70

Specifying the Server 71

SAS/SHARE Server Example 71

Prerequisites for Using TCP/IP under OpenVMS Alpha

Task List
� Verify that software requirements are met.
� If using network security, set the appropriate SAS options.
� Set the appropriate SAS/CONNECT and SAS/SHARE options.

Software Requirements
Ensure that
� Base SAS and either SAS/CONNECT or SAS/SHARE are installed on both the

client and the server.
� One of the following packages must be installed on each machine that runs the

OpenVMS Alpha operating environment that is used as either the client or the
server.

� DEC TCP/IP Services for OpenVMS, Version 3.0 or later
� TGV MultiNet Software with UCX compatibility
� Wollongong PathWay with UCX compatibility, Version 1.1 through Version 3.5
� Process Software TCPware for OpenVMS with UCX compatibility
� any package that provides an interface that is compatible with DEC TCP/IP

Services for OpenVMS, Version 3.0 or later

SAS/CONNECT and SAS/SHARE Network Security
Encryption is the process of transforming plaintext into a less readable form (called

ciphertext) by using a mathematical process. The ciphertext is translated back to
plaintext for anyone who can supply the appropriate key, which is necessary for
decrypting (or unlocking) the ciphertext.

SAS/CONNECT and SAS/SHARE support the SASproprietary network security
service in the OpenVMS Alpha operating environment. SASproprietary is a fixed
encoding algorithm that is included with Base SAS software and is available in all SAS
supported operating environments. It requires no additional SAS product licenses.

For complete details about setting up and using network security, see the
SAS/CONNECT User’s Guide. After network security is set up in your environment,
you set a SAS encryption option that is appropriate to the network security service and
to the requirements of the client or the server session.

OpenVMS Alpha: TCP/IP Access Method � SAS/SHARE Options Only 59

SAS/CONNECT Options Only
TCPMSGLEN n

defines the size of the buffer (in bytes) that the TCP/IP access method uses for
breaking up a message that it sends to or receives from the SAS/CONNECT
application layer during a SAS/CONNECT session. The application layer uses a
message size that is stored in the TBUFSIZE option (default 32768) that you can
specify in the SIGNON statement or as a SAS option. For details, see the
TBUFSIZE= system option in the SAS/CONNECT User’s Guide.

If TBUFSIZE is larger than TCPMSGLEN, the TCP/IP access method breaks
the message into a buffer whose size is defined by TCPMSGLEN and issues the
number of send and receive messages that are necessary to complete the message
transaction.

The value for TCPMSGLEN value (default 32768) must be set at both the client
and server. If the values that are set for TCPMSGLEN at the client and at the
server are different, the smaller value of the two is used during the
SAS/CONNECT session.

Example:

TCPMSGLEN:==65536

TCPPORTFIRST=port-number (set at the server)
TCPPORTLAST=port-number (set at the server)

restricts the range of TCP/IP ports that clients can use to remotely access servers.
Within the range of 0 through 32767, assign a beginning value to

TCPPORTFIRST and an ending value to TCPPORTLAST. To restrict the range of
ports to only one port, set the values for TCPPORTFIRST and TCPPORTLAST to
the same number. Consult with your network administrator for advice about
setting these values.

At the server, you can set TCPPORTFIRST and TCPPORTLAST in a SAS
start-up command or in the configuration file.

In the following example, the server is restricted to the TCP/IP ports 4020
through 4050:

/tcpportfirst=4020;
/tcpportlast=4050;

TCPTN3270
supports connections to z/OS servers that use the full-screen 3270 Telnet protocol.
The script file TCPTS032.SCR is provided. See Table 4.1 on page 64 for a complete
list of sign-on scripts.

Note: You must use the environment variable form to set TCPTN3270. �
To set the TCPTN3270 variable, enter the following command at the client:

TCPTN3270:==1

If you do not set this variable, the TCP/IP access method uses the Telnet
line-mode protocol by default.

SAS/SHARE Options Only
TCPSEC:==_SECURE_ (set at the server)

specifies whether the TCP/IP access method verifies user access authority before
allowing clients to access the server. The TCPSEC option must be set at the server
before the server session is started.

60 SAS/CONNECT Client Tasks � Chapter 4

SECURE
requires that the TCP/IP access method verify the authority of clients that
attempt to access the server. Each client must supply a user ID and a
password that are valid at the server.

Example:

TCPSEC:==_SECURE_

If you do not set this variable, the TCP/IP access method does NOT verify the
authority of clients that attempt to access the server.

SAS/CONNECT Client Tasks

Task List
1 Specify TCP/IP as the communications access method.
2 Specify encryption of client/server data transfers (optional).
3 Sign on to the server.

Note: SAS/CONNECT enables TCP/IP connections from clients outside a firewall to
spawners that run on servers inside a firewall. For details, see Chapter 14,
“Configuring SAS/CONNECT for Use with a Firewall,” on page 149 �

Specifying TCP/IP as the Communications Access Method
TCP/IP is the default communications access method for all operating environments,

except z/OS. Therefore, you do not have to explicitly specify the default.
If you choose to specify TCP/IP to connect to a server, you can use the COMAMID=

option in an OPTIONS statement.

OPTIONS COMAMID=access-method-ID;

COMAMID is an acronym for Communications Access Method Identification.
access-method-ID identifies the method used by the client to communicate with the
server. TCP (short for TCP/IP, which is an abbreviation for Transmission Control
Protocol/Internet Protocol) is as example of an access-method-ID. Alternatively, you can
set this option in a SAS start-up command or in a SAS configuration file.

Example:

options comamid=tcp;

Encrypting Data in Client/Server Transfers
If network security is available and is configured at the client, you can specify SAS

options to encrypt all data that is transferred between a client and a server. In the
following example, the NETENCRYPTALGORITHM= option specifies the
SASPROPRIETARY algorithm.

options netencryptalgorithm=sasproprietary;

For complete details about network security options, see the SAS/CONNECT User’s
Guide.

OpenVMS Alpha: TCP/IP Access Method � Signing On to the Same Multi-Processor Machine 61

Choosing a Method to Use to Sign On
Based on your operating environment, you can use one of the following methods to

sign on:
� the same multi-processor machine

Note: This method is most useful if your client machine is equipped with SMP
(Symmetric Multi-Processor) hardware. �

� a spawner
� a Telnet daemon.

Signing On to the Same Multi-Processor Machine
If your client machine is equipped with SMP (Symmetric Multi-Processors), and if

you want to run one or more server sessions on your machine, perform these tasks:
1 Specify the server session.
2 Specify the SASCMD command to start SAS.
3 Sign on to the server session.

Specifying the Server Session
You can specify the server session in an OPTIONS statement:

OPTIONS PROCESS=session-ID;

or in the SIGNON statement or command:

SIGNON session-ID;

session-ID must be a valid SAS name that is 1 to 8 characters in length, and is the
name that you assign to the server session on the multi-processor machine.

Note: PROCESS=, REMOTE=, CREMOTE=, and CONNECTREMOTE= can be used
interchangeably. For details, see CONNECTREMOTE= system option in the
SAS/CONNECT User’s Guide. �

For details about SIGNON=, see the SIGNON statement in the SAS/CONNECT User’s
Guide.

Starting SAS Using the SASCMD Option
Use the SASCMD option to specify the SAS command and any additional options that

you want to use to start SAS in a server session on the same multi-processor machine.
The SASCMD option can be specified either in an OPTIONS statement:

OPTIONS SASCMD="SAS-command" | "!SASCMD";

or directly in the SIGNON statement or command:

SIGNON name SASCMD="SAS-command" | "!SASCMD";

The -DMR option is automatically appended to the command. If !SASCMD is
specified, SAS/CONNECT starts SAS on the server by using the same command that
was used to start SAS for the current (parent) session.

Note: In order to execute additional commands prior to starting SAS, you might
write a script that contains the SAS start-up commands that are appropriate for the
operating environment. Specify this script as the value in the SASCMD= option. �

62 Signing On Using a Spawner � Chapter 4

For details, see the SASCMD= system option and the SIGNON statement in the
SAS/CONNECT User’s Guide.

Signing On to the Server Session
Example 1:
In the following example, TCP is the access method, SAS1 is the name of the server

session, and SAS_START is the command that starts SAS on the same multi-processor
machine.

options comamid=tcp;
signon sas1 sascmd=’sas_start’;

Example 2:
In the following example, the values for the COMAMID=, SASCMD=, and

PROCESS= options are set in the OPTIONS statements. The SASCMD= option
identifies the command that starts SAS. The PROCESS= option identifies the server
session on the same multi-processor machine. Because the SASCMD= and the
PROCESS= options are defined, only a simple SIGNON statement is needed.

options comamid=tcp sascmd=’sas_start’;
options process=sas1;
signon;

Signing On Using a Spawner

1 Ensure that the spawner is running on the server.
2 Specify the server and an optional service.
3 Specify the sign-on script (if you are signing on using a script), or specify a user ID

and password (if you are signing on without a script).
4 Sign on to the server using a spawner.

Ensuring That the Spawner Is Running on the Server
Before you can access the spawner, the spawner program must be running on the

server. For information about the spawner that you are connecting to, see Chapter 7,
“SAS/CONNECT Spawners,” on page 113.

Note: The system administrator for the machine that the spawner runs on must
start the spawner. The spawner program on the server cannot be started by the client. �

Specifying the Server and the Spawner Service
The name of the server can be specified either in an OPTIONS statement:

OPTIONS REMOTE=node-name[.service-name | .port-number];

or directly in the SIGNON statement or command:

SIGNON node-name[.service-name | .port-number];

node-name is based on the server that you are connecting to. node-name must be a
valid SAS name that is 1 to 8 characters in length and is either:

� the short machine name of the server that you are connecting to. This name must
be defined in the /etc/hosts file in the client operating environment or in your
Domain Name Server (DNS).

OpenVMS Alpha: TCP/IP Access Method � Signing On Using a Spawner 63

� a macro variable that contains either the IP address or the name of the server that
you are connecting to.

The process for evaluating node-name follows:
1 If node-name is a macro variable, the value of the macro variable is passed to the

operating environment’s GETHOSTBYNAME function.
2 If node-name is not a macro variable or the value of the macro variable does not

produce a valid value, node-name is passed to the GETHOSTBYNAME function.
3 If GETHOSTBYNAME fails to resolve node-name, an error message is returned

and the sign on fails.

Note: The order in which the GETHOSTBYNAME function calls the DNS or
searches the HOSTS file to resolve node-name varies based on the operating
environment implementation. �

You specify service-name when connecting to a server that runs a spawner program
that is listening on a port other than the Telnet port. If the spawner was started by
using the -SERVICE spawner option, you must specify an explicit service-name. The
value of service-name and the value of the -SERVICE spawner option must be identical.
Alternatively, you can specify the explicit port number that is associated with
service-name.

Example 1:
In the following example, REMHOST is the name of the node that the spawner runs

on. PORT1 is the name of the service that is defined at the client. The client service
PORT1 must be assigned to the same port that the spawner is listening on.

signon remhost.port1;

Example 2:
In the following example, the macro variable REMHOST is assigned to the

fully-qualified name of the machine that the server runs on. This server has a spawner
running that is listening on port 5050. The server session that is specified in the
SIGNON statement uses the node name REMHOST and the service name 5050, which
is the explicit port value.

%let remhost=pc.rem.us.com;
signon remhost.5050;

You can also assign a specific port number by including the port number in the
definition of the macro variable, for example,

%let remhost=pc.rem.us.com 5050;
signon remhost;

Specifying a Sign-On Script or a User ID and Password
You can use a sign-on script to sign on to the spawner, or you can sign on to a

spawner without a script . If you do not use a sign-on script and if the spawner is
running secured, you must supply a user ID and password to sign on to the spawner.

Note: If you connect to a spawner, you can sign on by using a script unless the
spawner is started by using the -NOSCRIPT option. If the -NOSCRIPT option is set,
you cannot use a script. If there is no script, you do not assign the fileref RLINK in a
FILENAME statement. For information about the spawner that you are connecting to,
see Chapter 7, “SAS/CONNECT Spawners,” on page 113. �

64 Signing On Using a Spawner � Chapter 4

Specifying a Sign-On Script
If you are signing on by using a script, you must specify the script that you want to

use. The script file is executed by the SIGNON statement or command. By default, the
script prompts for user ID and password.

To use one of the sample script files that are provided with SAS/CONNECT for
signing on and signing off, assign the fileref RLINK to the appropriate script file. The
script is based on the server that you are connecting to. The sample scripts are
installed at

SAS$ROOT:[TOOLS]

To specify a script, use the FILENAME statement. For example,

FILENAME RLINK ’SAS$ROOT:[TOOLS]script-name’;

script-name specifies the appropriate script file for the server.
Table 4.1 on page 64 lists the scripts that are provided in SAS software:

Table 4.1 SAS/CONNECT Sign-on Scripts for TCP/IP under OpenVMS Alpha

Server Script Name

TSO under OS/390 tcptso.scr

TSO under z/OS, SAS 9 or later tcptso9.scr

z/OS (without TSO) tcpmvs.scr

z/OS (using full-screen 3270 Telnet protocol) tcptso32.scr

OpenVMS Alpha tcpvms.scr

UNIX tcpunix.scr

Windows tcpwin.scr

Specifying a User ID and Password
If you are signing on to the spawner without using a script and the spawner is

running secured, you must submit the SIGNON statement and provide a user ID and a
password in order to log on to the server. For example,

SIGNON USER=user-ID | _PROMPT_ [PASSWORD=password | _PROMPT_];

Signing On Using the Spawner
In the following example, a client connects to a UNIX server by using a spawner

without a script. In the SIGNON statement, RMTHOST.SPAWNER specifies the node
RMTHOST and the service SPAWNER. This server specification presumes that a
spawner is running on the node RMTHOST, and that the spawner was started with the
service SPAWNER. Specifying USER=_PROMPT_ causes a dialog box to appear so that
a user ID and a password can be provided.

Example:

options comamid=tcp;
signon rmthost.spawner user=_prompt_;

OpenVMS Alpha: TCP/IP Access Method � Signing On Using a Telnet Daemon 65

Signing On Using a Telnet Daemon

1 Specify the server.
2 Specify a sign-on script.
3 Sign on to the server session.

Specifying the Server
The name of the server can be specified either in an OPTIONS statement:

OPTIONS REMOTE=node-name;

or directly in the SIGNON statement or command:

SIGNON node-name;

Specifying a Sign-On Script File
If you are signing on by using a script, you must specify the script that you want to

use. The script file is executed by the SIGNON statement or command. By default, the
script prompts for user ID and password. For details, see “Specifying a Sign-On Script”
on page 64.

Signing On to the Server Session
In the following example, you specify the statements at an OpenVMS client to use

the TCP/IP access method to connect to a server. The FILENAME statement identifies
the script file that you use to sign on to the server. The script file contains a prompt for
a user ID and a password that are valid on the server. The COMAMID= option specifies
the TCP/IP communications access method for connecting to the server RMTNODE,
which is specified in the REMOTE= option.

filename rlink ’SAS$ROOT:[TOOLS]tcptso.scr’;
options comamid=tcp remote=rmtnode;
signon;

66 SAS/CONNECT Server Tasks � Chapter 4

SAS/CONNECT Server Tasks

Task List
1 Configure the OpenVMS Alpha spawner service.
2 Start the OpenVMS Alpha spawner at the server.

Note: If the OpenVMS Alpha spawner is not being used, there are no server tasks. �

Configuring the OpenVMS Alpha Spawner Service
To enable clients to connect to an OpenVMS Alpha server by using the OpenVMS

Alpha spawner, configure the spawner service in the SERVICES file at the server. For
details, see Chapter 13, “TCP/IP SERVICES File,” on page 145.

OpenVMS Alpha: TCP/IP Access Method � Specifying TCP/IP as the Communications Access Method 67

Starting the OpenVMS Alpha Spawner
You must start the OpenVMS Alpha spawner on an OpenVMS Alpha server to enable

clients to connect to it. The spawner program resides on a server and listens for
SAS/CONNECT client requests for connection to the server. After the spawner program
receives a request, it starts a server session. For details, see Chapter 8, “OpenVMS
Alpha Spawner,” on page 119.

If network security has been configured at the server, set the appropriate encryption
options when starting the spawner.

SAS/CONNECT Server Example
The following command starts the spawner VMSSPAWN on an OpenVMS Alpha

machine. The absence of the -SASCMD option in the spawner start-up command
implies that the client will use a script to specify the SAS command that starts SAS on
the OpenVMS Alpha machine.

!sasroot/utilities/bin/sastcpd -service vmsspawn

SAS/SHARE Client Tasks

Task List

1 Configure the server service.

2 Specify TCP/IP as the communications access method.

3 Access a secured server.

4 Specify encryption of client/server data transfers (optional).

5 Specify the server.

Configuring the Server Service
Each server must be defined as a service in the SERVICES file on each machine that

a client will access the server from. The SERVICES file usually is located in the
directory in which the TCP/IP software is installed. For details about editing the
SERVICES file, see “Configuring the SERVICES File” on page 145.

Specifying TCP/IP as the Communications Access Method
You must specify TCP/IP as the communications access method at the client before

you access a server. An example follows:

/comamid=tcp

The COMAMID= option specifies the communications access method. TCP specifies
the TCP/IP access method.

68 Accessing a Secured Server � Chapter 4

You can specify the COMAMID= option in an OPTIONS statement, in a SAS
configuration file, or in a SAS start-up command.

Accessing a Secured Server
Requiring clients to supply a valid user ID and password when attempting to access

a server enforces server security. The values for a user ID and a password are provided
in the USER= and PASSWORD= options in the LIBNAME statement and the PROC
OPERATE statement. For details about supplying a user ID and a password, see the
LIBNAME statement and the OPERATE procedure in the SAS/SHARE User’s Guide.

Example:

libname sasdata ’edc/prog2/sasdata’ server=rmtnode.share user=_prompt_ ;

The value _PROMPT_ requires the client to provide a user ID and password when a
client attempts to access the server.

Encrypting Data in Client/Server Transfers
If network security is configured at the client, you can specify SAS options to encrypt

data that a client transfers to a server. For example:

options netencrypt netencryptalgorithm=rc2;

The NETENCRYPT option specifies that all data transactions between a client and a
server will be encrypted. The RC2 encryption algorithm is specified. For general
information about network security, see “SAS/CONNECT and SAS/SHARE Network
Security” on page 76.

Specifying the Server
If the client and server sessions are running on different network nodes, you must

include the TCP/IP node in the server ID in the LIBNAME or the PROC OPERATE
statement by using a two-level name as follows:

SERVER=node.server

Note: Do not use the pound sign (#) in a server node name. �

node must be a valid SAS node name. If the server and the client sessions are
running on the same node, you can omit the node name. If the TCP/IP node name is
not a valid SAS name, you must assign the name of the server node to a SAS macro
variable, then use the name of the macro variable for node in the two-level server
name, or assign the node name to a DCL symbol and use the DCL symbol for node in
the two-level server name.

The access method evaluates the node name, using this order of precedence:
� SAS macro variable
� DCL symbol
� valid node name.

OpenVMS Alpha: TCP/IP Access Method � SAS/SHARE Client Example 69

server can be either a server-ID or a port.
The server-ID must be identical to the service name that is specified in the

SERVICES file. For details, see “Configuring the SERVICES File” on page 145.
Example 1:
A SAS macro variable is used to contain the name of a server node.

%let srvnode=mktserve.acme.com;
libname sales server=srvnode.server1;

Example 2:
The DCL symbol SRVNODE is assigned to the fully qualified node name and is then

used in the two-level node name.

$srvnode:==mktserve.acme.com
libname mylib server=srvnode.server;

Example 3:
A port is the unique number that is associated with the service that is used for

passing data to and receiving data from the server.
Precede the port number with two consecutive underscores.

Note: Do not space after the first underscore or the second underscore. �

libname mylib ’.’ server=srvnode._ _5000;

Example 4:
You can also include the server’s port number or service by using a macro variable

that specifies the port or service.

%let server2=host.name.com 5000;
libname servf1 ’pathname’ server=server2;

or

%let server2=12.34.56.78 5000;
libname servf1 ’pathname’ server=server2;

Note: Do not use an ampersand (&) in a two-level server name. An ampersand
causes the macro variable to be resolved by the SAS parser prior to syntactic evaluation
of the SERVER= option. �

For details about creating valid SAS names, see SAS Language Reference: Concepts.
For details about the LIBNAME and PROC OPERATE statements, see SAS/SHARE
User’s Guide.

SAS/SHARE Client Example
The following example shows the statements that are specified at an OpenVMS

Alpha client to access a server by using the TCP/IP access method. The LIBNAME
statement specifies the data library that is accessed through the server. The value
PROMPT in the USER= option specifies that the client must provide a valid user ID
and password to access the server. The SERVER= option specifies the two-level server
name RMTNODE.SHARE1.

options comamid=tcp;
libname sasdata [edc.prog2.sasdata] user=_prompt_ server=rmtnode.share1;

70 SAS/SHARE Server Tasks � Chapter 4

SAS/SHARE Server Tasks

Task List

1 Configure the SAS/SHARE server service.
2 Specify SAS options and network security (optional).

� If the server is to run secured, set the TCPSEC= option to require client
authentication.

� Specify security service options to encrypt client/server data transfers.

3 Specify TCP/IP as the communications access method.
4 Specify the server.

Configuring the Server Service
Each server must be defined as a service in the SERVICES file on each node that

each client will access. The SERVICES file is located in the directory where the TCP/IP
software is installed. Find out the correct location of the TCP/IP software in your
operating environment. For details about editing the SERVICES file, see “Configuring
the SERVICES File” on page 145.

Example:

sassrv2 5011/tcp # SAS/SHARE server 2

Setting the TCPSEC Option to Require Client Authentication
To authenticate clients that attempt to access the server, you must specify the value

SECURE in the TCPSEC= option to require that clients provide a user ID and a
password that are valid on the server. For details about the TCPSEC= option, see “SAS/
SHARE Options Only” on page 59.

Example:
TCPSEC:==_SECURE_

Encrypting Data in Server/Client Transfers
If network security is configured at the server, you can specify SAS options to encrypt

data that a server transfers to a client. For example:

options netencrypt netencryptalgorithm=sasproprietary;

The NETENCRYPT option specifies that all data transfers between a server and a
client will be encrypted. SASPROPRIETARY is the encryption algorithm. For general
information about network security, see “SAS/CONNECT and SAS/SHARE Network
Security” on page 58.

Specifying TCP/IP as the Communications Access Method
You must specify the TCP/IP communications access method at the server before a

client can access it.

OpenVMS Alpha: TCP/IP Access Method � SAS/SHARE Server Example 71

Example:

/comamid=tcp

The COMAMID= option specifies the communications access method. TCP specifies
the TCP/IP access method.

You can specify the COMAMID option in an OPTIONS statement, in a configuration
file, or in a SAS start-up command.

Specifying the Server
You must specify the name of the server in the SERVER= option in the PROC

SERVER statement. The syntax follows:

SERVER=server-ID

server-ID can be either a server-ID or a port number. The value for server-ID
corresponds to the service that was configured in the SERVICES file. For details, see
“Configuring the SERVICES File” on page 145. port is the unique number that is
associated with the service that is used for transferring data between a client and a
server.

Precede the port number with two consecutive underscores.

Note: Do not space after the first underscore or the second underscore. �

Note: Specifying a server by using a port number is not supported for ODBC clients.
�

Examples:

proc server server=apex;
proc server server=_ _5000;

For details about creating valid SAS names, see SAS Language Reference: Concepts.
For details about PROC SERVER, see the SERVER procedure in the SAS/SHARE
User’s Guide

SAS/SHARE Server Example
The following example shows the statements that you specify at an OpenVMS Alpha

machine to start a server. The value _SECURE_ that is specified in the TCPSEC option
requires clients to provide a user ID and a password that are valid on the server. The
NETENCRYPT option specifies that encryption is required, and the
NETENCRYPTALGORITHM option specifies that the encryption algorithm is
SASPROPRIETARY. The COMAMID= option specifies the TCP/IP access method. The
PROC SERVER statement specifies the server SHARE1.

%let tcpsec=_secure_;
options netencrypt;
options netencryptalgorithm=sasproprietary;
options comamid=tcp;
proc server id=share1;
run;

72

73

P A R T4

UNIX Operating Environments

Chapter 5.UNIX: TCP/IP Access Method 75

74

75

C H A P T E R

5
UNIX: TCP/IP Access Method

Prerequisites for Using TCP/IP under UNIX 76
Task List 76

Software Requirements 76

SAS/CONNECT and SAS/SHARE Network Security 76

SAS/CONNECT Options Only 77

SAS/SHARE Options Only 78
SAS/CONNECT Client Tasks 78

Task List 78

Specifying TCP/IP as the Communications Access Method 78

Encrypting Data in Client/Server Transfers 79

Choosing a Method to Use to Sign On 79

Signing On to the Same Multi-Processor Machine 79
Specifying the Server Session 79

Starting SAS Using the SASCMD Option 80

Signing On to the Server Session 80

Signing On Using a Spawner 80

Ensuring That the Spawner Is Running on the Server 81
Specifying the Server and the Spawner Service 81

Specifying a Sign-On Script or a User ID and Password 82

Specifying a Sign-On Script 82

Specifying a User ID and Password 82

Signing On Using the Spawner 83
Signing On Using a Telnet Daemon 83

Specifying the Server 83

Specifying a Sign-On Script File 83

Signing On to the Server Session 83

SAS/CONNECT Server Tasks 84

Task List 84
Configuring the UNIX Spawner Service 84

Starting the UNIX Spawner 84

SAS/CONNECT Server Example 84

SAS/SHARE Client Tasks 84

Task List 84
Configuring the Server Service 85

Specifying TCP/IP as the Communications Access Method 85

Accessing a Secured Server 85

Encrypting Data in Client/Server Transfers 85

Specifying the Server 86
SAS/SHARE Client Example 87

SAS/SHARE Server Tasks 87

Task List 87

76 Prerequisites for Using TCP/IP under UNIX � Chapter 5

Configuring the Server Service 87
Setting the TCPSEC Option to Require Client Authentication 87

Configuring User Access Authority 88

Configuring the Authentication Program 88

Configuring the Permission Program 88

Encrypting Data in Server/Client Transfers 88
Specifying TCP/IP as the Communications Access Method 89

Specifying the Server 89

SAS/SHARE Server Example 89

Prerequisites for Using TCP/IP under UNIX

Task List

� Verify that software requirements are met.
� If using network security, set the appropriate SAS options.
� Set the appropriate options for SAS/CONNECT and SAS/SHARE.

Software Requirements
Ensure that
� Base SAS and either SAS/CONNECT or SAS/SHARE are installed on both the

client and the server.
� Any TCP/IP package that comes with the operating environment has been

installed.

SAS/CONNECT and SAS/SHARE Network Security
Encryption is the process of transforming plaintext into a less readable form (called

ciphertext) by using a mathematical process. The ciphertext is translated back to
plaintext for anyone who can supply the appropriate key, which is necessary for
decrypting (or unlocking) the ciphertext.

SAS/CONNECT and SAS/SHARE support the following network security services in
the UNIX operating environment.

SASproprietary
a fixed encoding algorithm that is included with Base SAS software and is
available in all SAS supported operating environments. It requires no additional
SAS product licenses.

UNIX: TCP/IP Access Method � SAS/CONNECT Options Only 77

SAS/SECURE
an add-on product that uses the encryption algorithms RC2, RC4, DES, and
tripleDES.

SSL
SSL is an abbreviation for Secure Sockets Layer, which is a protocol that provides
network security and privacy. Developed by Netscape Communications, SSL uses
encryption algorithms that include RC2, RC4, DES, tripleDES, and MD5.

For complete details about setting up and using network security, see the
SAS/CONNECT User’s Guide. After network security is set up in your environment,
you set a SAS encryption option that is appropriate to the network security service and
to the requirements of the client or the server session.

SAS/CONNECT Options Only

TCPMSGLEN n
defines the size of the buffer (in bytes) that the TCP/IP access method uses for
breaking up a message that it sends to or receives from the SAS/CONNECT
application layer during a SAS/CONNECT session. The application layer uses a
message size that is stored in the TBUFSIZE option (default 32768) that you can
specify in the SIGNON statement or as a SAS option. For details, see the
TBUFSIZE= system option in the SAS/CONNECT User’s Guide.

If TBUFSIZE is larger than TCPMSGLEN, the TCP/IP access method breaks
the message into a buffer whose size is defined by TCPMSGLEN and issues the
number of send and receive messages that are necessary to complete the message
transaction.

The value for TCPMSGLEN (default=32768) must be set at both the client and
server. If the values that are set for TCPMSGLEN at the client and at the server
are different, the smaller value of the two is used during the SAS/CONNECT
session.

Example:

-set tcpmsglen 65536

TCPPORTFIRST=port-number (set at the server)
TCPPORTLAST=port-number (set at the server)

restricts the range of TCP/IP ports through which clients can connect to a server.
Within the range of 0 through 32767, assign a beginning value to

TCPPORTFIRST and an ending value to TCPPORTLAST. To restrict the range of
ports to only one port, set the values for TCPPORTFIRST and TCPPORTLAST to
the same number. Consult with your network administrator for advice about
setting these values.

At the server, you can set TCPPORTFIRST and TCPPORTLAST in a SAS
startup command or in the SAS configuration file.

In the following example, the server is restricted to the TCP/IP ports 4020
through 4050:

-tcpportfirst 4020;
-tcpportlast 4050;

TCPTN3270 (set at the client)
supports connections to z/OS servers that use the full-screen 3270 Telnet protocol.
The script file TCPTSO32.SCR is provided. See Table 5.1 on page 82 for a
complete list of sign-on scripts.

78 SAS/SHARE Options Only � Chapter 5

You can set the TCPTN3270 option only in the SAS configuration file. If you do
not set this option, the TCP/IP access method uses the Telnet line-mode protocol
by default.

Example:

-set TCPTN3270 1

SAS/SHARE Options Only
TCPSEC=_SECURE_ | _NONE_ (set at the server)

specifies whether the TCP/IP access method verifies user access authority before
allowing clients to access the server. The TCPSEC option must be set at the server
before the server session is started. The default is _NONE_.

SECURE
requires that the TCP/IP access method verify the authority of clients that
attempt to access the server. Each client must supply a user ID and a
password that are valid at the server.

NONE
specifies that the TCP/IP access method does not verify the authority of
SAS/SHARE clients that attempt to access the server.

Examples:

%let TCPSEC=_secure_;
%let TCPSEC=_none_;

SAS/CONNECT Client Tasks

Task List

1 Specify TCP/IP as the communications access method.
2 Specify encryption of client/server data transfers (optional).
3 Sign on to the server.

Note: SAS/CONNECT enables TCP/IP connections from clients outside a firewall to
spawners that run on servers inside a firewall. For details, see Chapter 14,
“Configuring SAS/CONNECT for Use with a Firewall,” on page 149. �

Specifying TCP/IP as the Communications Access Method
TCP/IP is the default communications access method for all operating environments,

except z/OS. Therefore, you do not have to explicitly specify the default.
If you choose to specify TCP/IP to connect to a server, you can use the COMAMID=

option in an OPTIONS statement.

OPTIONS COMAMID=access-method-ID;

COMAMID is an acronym for Communications Access Method Identification.
access-method-ID identifies the method used by the client to communicate with the

UNIX: TCP/IP Access Method � Signing On to the Same Multi-Processor Machine 79

server. TCP (short for TCP/IP, which is an abbreviation for Transmission Control
Protocol/Internet Protocol) is an example of an access-method-ID. Alternatively, you can
set this option in a SAS start-up command or in a SAS configuration file.

Example:

options comamid=tcp;

Encrypting Data in Client/Server Transfers
If network security is available and is configured at the client, you can specify SAS

options to encrypt all data that is transferred between a client and a server. In the
following example, the NETENCRYPTALGORITHM= option specifies the SSL
algorithm.

options netencryptalgorithm=ssl;

For complete details about network security options, see the SAS/CONNECT User’s
Guide.

Choosing a Method to Use to Sign On
Based on your operating environment, you can use one of the following methods to

sign on.
� the same multi-processor machine

Note: This method is most useful if your client machine is equipped with SMP
(Symmetric Multi-Processor) hardware. �

� a spawner
� a Telnet daemon.

Signing On to the Same Multi-Processor Machine
If your client machine is equipped with SMP (Symmetric Multi-Processors), and if

you want to run one or more server sessions on your machine, perform these tasks:
1 Specify the server session.
2 Specify the SASCMD command to start SAS.
3 Sign on to the server session.

Specifying the Server Session
You can specify the server session in an OPTIONS statement:

OPTIONS PROCESS=session-ID;

or in the SIGNON statement or command:

SIGNON session-ID;

session-ID must be a valid SAS name that is 1 to 8 characters in length, and is the
name that you assign to the server session on the same multi-processor machine.

Note: PROCESS=, REMOTE=, CREMOTE=, and CONNECTREMOTE= can be used
interchangeably. For details, see the CONNECTREMOTE= system option in the
SAS/CONNECT User’s Guide. �

80 Signing On Using a Spawner � Chapter 5

For details about SIGNON=, see the SIGNON statement in the SAS/CONNECT User’s
Guide.

Starting SAS Using the SASCMD Option

Use the SASCMD option to specify the SAS command and any additional options that
you want to use to start SAS in a server session on the same multi-processor machine.

The SASCMD option can be specified either in an OPTIONS statement:

OPTIONS SASCMD="SAS-command" | "!SASCMD";

or directly in the SIGNON statement or command:

SIGNON name SASCMD="SAS-command" | "!SASCMD";

The -DMR option is automatically appended to the command. If !SASCMD is
specified, SAS/CONNECT starts SAS on the server by using the same command that
was used to start SAS for the current (parent) session.

Note: In order to execute additional commands prior to starting SAS, you might
write a script that contains the SAS start-up commands that are appropriate for the
operating environment. Specify this script as the value in the SASCMD= option. �

For details, see the SASCMD= system option and the SIGNON statement in the
SAS/CONNECT User’s Guide.

Signing On to the Server Session

Example 1:
In the following example, TCP is the access method, SAS1 is the name of the server

session, and SAS_START is the command that starts SAS on the same multi-processor
machine.

options comamid=tcp;
signon sas1 sascmd=’sas_start’;

Example 2:
In the following example, the values for the COMAMID=, SASCMD=, and

PROCESS= options are set in the OPTIONS statements. The SASCMD= option
identifies the command that starts SAS. The PROCESS= option identifies the server
session on the same multi-processor machine. Because the SASCMD= and the
PROCESS= options are defined, only a simple SIGNON statement is needed.

options comamid=tcp sascmd="sas_start";
options process=sas1;
signon;

Signing On Using a Spawner

1 Ensure that the spawner is running on the server.

2 Specify the server and an optional service.

3 Specify the sign-on script (if you are signing on using a script),
or specify a user ID and password (if you are signing on without a script).

4 Sign on to the server using a spawner.

UNIX: TCP/IP Access Method � Signing On Using a Spawner 81

Ensuring That the Spawner Is Running on the Server
Before you can access the spawner, the spawner program must be running on the

server. For information about the spawner that you are connecting to, see Chapter 7,
“SAS/CONNECT Spawners,” on page 113.

Note: The system administrator for the machine that the spawner runs on must
start the spawner. The spawner program on the server cannot be started by the client. �

Specifying the Server and the Spawner Service
The name of the server can be specified either in an OPTIONS statement:

OPTIONS REMOTE=node-name[.service-name | .port-number];

or directly in the SIGNON statement or command:

SIGNON node-name[.service-name | .port-number];

node-name is based on the server that you are connecting to. node-name must be a
valid SAS name that is 1 to 8 characters in length and is either:

� the short machine name of the server that you are connecting to. This name must
be defined in the /etc/hosts file in the client operating environment or in your
Domain Name Server (DNS).

� a macro variable that contains either the IP address or the name of the server that
you are connecting to.

The process for evaluating node-name follows:

1 If node-name is a macro variable, the value of the macro variable is passed to the
operating environment’s GETHOSTBYNAME function.

2 If node-name is not a macro variable or the value of the macro variable does not
produce a valid value, node-name is passed to the GETHOSTBYNAME function.

3 If GETHOSTBYNAME fails to resolve node name, an error message is returned
and the signon fails.

Note: The order in which the GETHOSTBYNAME function calls the DNS or
searches the HOSTS file to resolve node-name varies based on the operating
environment implementation. �

You specify service-name when connecting to a server that runs a spawner program
that is listening on a port other than the Telnet port. If the spawner was started by
using the -service spawner option, you must specify an explicit service-name. The
value of service-name and the value of the -service spawner option must be identical.
Alternatively, you can specify the explicit port number that is associated with
service-name.

Example 1:
In the following example, REMHOST is the name of the node on which the spawner

runs, and PORT1 is the name of the service that is defined at the client. The client
service PORT1 must be assigned to the same port that the spawner is listening on.

signon remhost.port1;

Example 2:
In the following example, the macro variable REMHOST is assigned to the

fully-qualified name of the machine on which the server runs. This server has a
spawner running that is listening on port 5050. The server session that is specified in
the SIGNON statement uses the node name REMHOST and the service name 5050,
which is the explicit port value.

82 Signing On Using a Spawner � Chapter 5

%let remhost=pc.rem.us.com;
signon remhost.5050;

You can also assign a specific port number by including the port number in the
definition of the macro variable, for example,

%let remhost=pc.rem.us.com 5050;
signon remhost;

Specifying a Sign-On Script or a User ID and Password
You can use a sign-on script to sign on to the spawner, or you can sign on to a

spawner without a script. If you do not use a sign-on script and if the spawner is
running secured, you must supply a user ID and password to sign on to the spawner.

Note: If you connect to a spawner, you can sign on by using a script unless the
spawner is started using the -NOSCRIPT option. If the -NOSCRIPT option is set, you
cannot use a script. If there is no script, you do not assign the fileref RLINK in a
FILENAME statement. For information about the spawner that you are connecting to,
see Chapter 7, “SAS/CONNECT Spawners,” on page 113. �

Specifying a Sign-On Script
If you are signing on by using a script, you must specify the script that you want to

use. The script file is executed by the SIGNON statement or command. By default, the
script prompts for user ID and password.

To use one of the sample script files that are provided with SAS/CONNECT for
signing on and signing off, assign the fileref RLINK to the appropriate script file. The
script is based on the server that you are connecting to. The sample scripts are
installed at

!sasroot/misc/connect

To specify a script, use the FILENAME statement. For example,

FILENAME RLINK ’!sasroot/misc/connect/script-name’;

Script-name specifies the appropriate script file for the server.
Table 5.1 on page 82 lists the scripts that are provided in SAS software:

Table 5.1 SAS/CONNECT Sign-on Scripts for TCP/IP under UNIX

Server Script Name

TSO under OS/390 tcptso.scr

TSO under z/OS, SAS 9 or later tcptso9.scr

z/OS (without TSO) tcpmvs.scr

z/OS (using full-screen 3270 Telnet protocol) tcptso32.scr

OpenVMS Alpha tcpvms.scr

UNIX tcpunix.scr

Windows tcpwin.scr

Specifying a User ID and Password
If you are signing on to the spawner without using a script and the spawner is

running secured, you must submit the SIGNON statement and provide a user ID and a
password in order to log on to the server. For example,

UNIX: TCP/IP Access Method � Signing On Using a Telnet Daemon 83

SIGNON USER=user-ID | _PROMPT_ [PASSWORD=password | _PROMPT_];

Signing On Using the Spawner
In the following example, a client connects to a UNIX server by using a spawner

without a script. In the SIGNON statement, RMTHOST.SPAWNER specifies the node
RMTHOST and the service SPAWNER. This server specification presumes that a
spawner is running on the node RMTHOST, and that the spawner was started using
the service SPAWNER. Specifying USER=_PROMPT_ causes a dialog box to appear so
that a user ID and a password can be provided.

Example:

options comamid=tcp;
signon rmthost.spawner user=_prompt_;

Signing On Using a Telnet Daemon

1 Specify the server.
2 Specify a sign-on script.
3 Sign on to the server session.

Specifying the Server
The name of the server can be specified either in an OPTIONS statement:

OPTIONS REMOTE=node-name;

or directly in the SIGNON statement or command:

SIGNON node-name;

Specifying a Sign-On Script File
If you are signing on by using a script, you must specify the script that you want to

use. The script file is executed by the SIGNON statement or command. By default, the
script prompts for user ID and password. For details, see “Specifying a Sign-On Script”
on page 82.

Signing On to the Server Session
In the following example, you specify the statements at a UNIX client to use the

TCP/IP access method to connect to a z/OS server. The FILENAME statement identifies
the script file that you use to sign on to a server. The script file contains a prompt for a
user ID and a password that are valid on the server. The COMAMID= option specifies
the TCP/IP communications access method for connecting to the server RMTNODE,
which is specified in the REMOTE= option.

filename rlink ’!sasroot/misc/connect/tcptso.scr’;
options comamid=tcp remote=rmtnode;
signon;

84 SAS/CONNECT Server Tasks � Chapter 5

SAS/CONNECT Server Tasks

Task List

1 Configure the UNIX spawner service.
2 Start the UNIX spawner at the server.

Note: If the UNIX spawner is not being used, there are no server tasks. �

Configuring the UNIX Spawner Service
To enable clients to connect to a UNIX server by using the UNIX spawner, configure

the spawner service in the /etc/services file at the server. For details, see Chapter
13, “TCP/IP SERVICES File,” on page 145.

Starting the UNIX Spawner
You must start the UNIX spawner on a UNIX server to enable clients to connect to

it. The spawner program resides on a server and listens for SAS/CONNECT client
requests for connection to the server. After the spawner program receives a request, it
starts a server session. For details about starting the UNIX spawner, see Chapter 10,
“UNIX Spawner,” on page 127.

If network security has been configured at the server, set the appropriate encryption
options when starting the spawner.

SAS/CONNECT Server Example
The following command starts the UNIX spawner. The -SERVICE option specifies

the service SPAWNER that listens for incoming connections. The -SASCMD option
specifies the path to the MYSTARTUP file, which starts the SAS session on the server.

sastcpd -service spawner -sascmd "/u/username/mystartup"

SAS/SHARE Client Tasks

Task List
1 Configure the server service.
2 Specify TCP/IP as the communications access method.
3 Access a secured server.
4 Specify encryption of client/server data transfers (optional).
5 Specify the server.

UNIX: TCP/IP Access Method � Encrypting Data in Client/Server Transfers 85

Configuring the Server Service
Each server must be defined as a service in the /etc/services file on each machine

that a client will access the server from. This file is usually located in the directory that
the TCP/IP software is installed in. For details about editing the /etc/services, see
“Configuring the SERVICES File” on page 145.

Specifying TCP/IP as the Communications Access Method
TCP/IP is the default communications access method in the UNIX operating

environment. You can omit specifying the access method in the COMAMID= option and
the TCP/IP access method is assumed, by default.

If you choose to specify TCP/IP to connect to a server, you can use the COMAMID=
option in an OPTIONS statement.

options comamid=tcp;

The COMAMID= option specifies the communications access method. TCP specifies
the TCP/IP access method.

Alternatively, you can specify the COMAMID= option in a configuration file or in a
SAS start-up command.

Accessing a Secured Server
Requiring clients to supply a valid user ID and password when attempting to access

a server enforces server security. The values for a user ID and a password are provided
in the USER= and PASSWORD= options in the LIBNAME statement and the PROC
OPERATE statement. For details about supplying a user ID and a password, see the
LIBNAME statement and the OPERATE procedure in the SAS/SHARE User’s Guide.

Example:

libname sasdata ’edc/prog2/sasdata’ server=rmtnode.share user=_prompt_ ;

The value _PROMPT_ requires the client to provide a user ID and password when a
client attempts to access the server.

Encrypting Data in Client/Server Transfers
If network security is configured at the client, you can specify SAS options to encrypt

data that a client transfers to a server. For example:

options netencrypt netencryptalgorithm=ssl;
options sslcalistloc="/users/johndoe/certificates/cacerts.pem";

The NETENCRYPT option specifies that all data transfers between a client and a
server will be encrypted. SSL is the network security service that is specified in the
NETENCRYPTALGORITHM= option. The SSLCALISTLOC= option specifies the name
of a file that contains a list of CA certificates that are to be trusted. For general
information about security services, see “SAS/CONNECT and SAS/SHARE Network
Security” on page 76.

86 Specifying the Server � Chapter 5

Specifying the Server
If the client and server sessions are running on different network nodes, you must

include the TCP/IP node in the server ID in the LIBNAME or the PROC OPERATE
statement by using a two-level server name as follows:

SERVER=node.server

The access method evaluates the node name, in this order of priority:
1 a SAS macro variable
2 an environment variable
3 valid node name.

node can be either of the following:
� valid TCP/IP node name
� IP address

If the server and the client sessions are running on the same node, you can omit the
node name.

server can be either of the following:
� server-ID
� port

The server-ID must be identical to the service name that is specified in the /etc/
services file. For details, see “Configuring the SERVICES File” on page 145.

Example 1:
A port is the unique number that is associated with the service that is used for

passing data to and receiving data from the server.
Precede the port number with two consecutive underscores.

Note: Do not space after the first underscore or the second underscore. �

libname mylib ’.’ server=srvnode._ _5000;

Example 2:
If the TCP/IP node name is not a valid eight-character SAS name, assign the name of

the server node to a SAS macro variable, then use the name of that macro variable for
node in the two-level server name.

%let srvnode=mktserver.acme.com;
libname sales server=srvnode.server1;

Note: Do not use an ampersand (&) in a two-level name. An ampersand causes a
macro variable to be resolved by the SAS parser prior to syntactic evaluation of the
SERVER= option. �

Example 3:
You might assign the node name and the server ID to a macro variable.

%let srvnode=mktserver.acme.com 5000;
libname sales server=srvnode;

or

%let srvnode=12.34.56.78 5000;
libname sales server=srvnode;

For details about creating valid SAS names, see SAS Language Reference: Concepts.
For details about LIBNAME and PROC OPERATE, see the LIBNAME statement and
the OPERATE procedure in the SAS/SHARE User’s Guide.

UNIX: TCP/IP Access Method � Setting the TCPSEC Option to Require Client Authentication 87

SAS/SHARE Client Example
The following example shows the statements that are specified at a UNIX client to

access a server by using the TCP/IP access method. The LIBNAME statement specifies
the SAS data library that is accessed through the server. The value _PROMPT_ in the
USER= option specifies that the client must provide a valid user ID and password to
access the server. The SERVER= option specifies the two-level server name
RMTNODE.SHARE1.

options comamid=tcp;
libname sasdata ’edc/prog2/sasdata’ user=_prompt_ server=rmtnode.share1;

SAS/SHARE Server Tasks

Task List

1 Configure the SAS/SHARE server service.
2 Specify SAS options and security programs and services (optional).

� If the server is to run secured, set the TCPSEC= option to require client
authentication.

� Configure the authorization of users on servers.
� Configure the Authentication program.
� Configure the Permission program.
� Specify options to encrypt client/server data transfers.

3 Specify TCP/IP as the communications access method.
4 Specify the server.

Configuring the Server Service
Each server must be defined as a service in the /etc/services file on each node

that a client will access. For details about editing the /etc/services file, see
“Configuring the SERVICES File” on page 145.

Example:

sassrv2 5011/tcp # SAS/SHARE server 2

Setting the TCPSEC Option to Require Client Authentication
To authenticate connecting clients, you must specify the value _SECURE_ in the

TCPSEC= option to require that clients provide a user ID and a password that are valid
on the server. For details about the TCPSEC= option, see “SAS/SHARE Options Only”
on page 78.

Example:

options TCPSEC=_secure_;

88 Configuring User Access Authority � Chapter 5

Configuring User Access Authority
If SAS was installed from the root account, you can assume that the following task

has already been performed. If SAS was not installed from the root account, in order to
verify a client’s identity and the user’s authority to access resources, you must configure
resources on the machine that the server runs on. You can provide security on the
server by using one of the following.

1 From the root account, to access the SAS Setup Primary menu, issue the following
command at a shell prompt (where !SASROOT is the directory in which SAS was
installed).

!SASROOT/sassetup

From the SAS Setup Primary menu, select
Run Setup Utilities -> Perform SAS System Configuration ->
Configure User Authorization

2 Alternatively, issue the following commands at a UNIX shell prompt:

su root
cd !SASROOT/utilities/bin
chown root sasauth sasperm sastcpd objspawn
chmod 4755 sasauth sasperm sastcpd objspawn
exit

Configuring the Authentication Program
To configure the Authentication program, !sasroot/utilities/bin/sasauth must

be owned by root, and the “Set-user-id” mode bit must be set for the file
(chmod 4755 !sasroot/utilities/bin/sasauth). The built-in Authentication
program sasauth is started automatically when a client accesses a server that is
secured. This program verifies the user ID and password that allows a client to access
the server.

Configuring the Permission Program
To configure the Permission program, !sasroot/utilities/bin/sasperm must be

owned by root, and the “Set-user-id” mode bit is set for the file (chmod 4755 !sasroot/
utilities/bin/sasperm).

When given a validated user ID, the server automatically runs the default program
sasperm. The sasperm program verifies that the requesting user has access authority
to the file or to the directory that is specified. sasperm validates:

� the user ID
� the file or the directory path for a SAS library or SAS file
� the file or the directory access permissions (read or write).

Encrypting Data in Server/Client Transfers
If network security is configured at the server, you can specify SAS options to encrypt

data that a server transfers to a client. For example:

options netencrypt netencryptalgorithm=ssl;
options sslcalistloc="/users/johndoe/certificates/cacerts.pem";

UNIX: TCP/IP Access Method � SAS/SHARE Server Example 89

The NETENCRYPT option specifies that all data transfers between a server and a
client will be encrypted. SSL is the network security service that is specified in the
NETENCRYPTALGORITHM= option. The SSLCALISTLOC= option specifies the name
of a file that contains a list of CA certificates that are to be trusted. For general
information about network security, see “SAS/CONNECT and SAS/SHARE Network
Security” on page 76.

Specifying TCP/IP as the Communications Access Method
You must specify the TCP/IP communications access method at the server before a

client can access it. Use the COMAMID= option in an OPTIONS statement.
Example:

options comamid=tcp;

The COMAMID= option specifies the communications access method. TCP specifies
the TCP/IP access method.

Alternatively, you can specify the COMAMID= option in a SAS start-up command or
in a SAS configuration file.

Specifying the Server
You must specify the name of the server in the SERVER= option in the PROC

SERVER statement. The syntax follows:

SERVER=server-ID

server-ID can be either a server-ID or a port number. The value for server-ID
corresponds to the service that was configured in the /etc/services file. For details,
see “Configuring the SERVICES File” on page 145. port is the unique number that is
associated with the service that is used for transferring data between a client and a
server.

Precede the port number with two consecutive underscores.

Note: Do not space after the first underscore or the second underscore. �

Note: Specifying a server by using a port number is not supported for ODBC clients.
�

Examples:

proc server server=apex;
proc server server=_ _5000;

For details about creating valid SAS names, see SAS Language Reference: Concepts.
For details about PROC SERVER, see the SERVER procedure in the SAS/SHARE
User’s Guide.

SAS/SHARE Server Example
The following example shows commands that you specify in the server configuration

file on a UNIX machine. The value _SECURE_ that is specified in the TCPSEC option
requires clients to provide a user ID and a password that are valid on the server.

-set TCPSEC _secure_

options comamid=tcp;

90 SAS/SHARE Server Example � Chapter 5

proc server id=share1;
run;

The COMAMID= option specifies the TCP/IP access method. The PROC SERVER
statement specifies the server SHARE1.

91

P A R T5

Windows Operating Environments

Chapter 6.Windows: TCP/IP Access Method 93

92

93

C H A P T E R

6
Windows: TCP/IP Access
Method

Prerequisites for Using TCP/IP under Windows 94
Task List 94

Software Requirements 94

Contexts for User IDs 94

User Context: Definition 94

Accessing a Secured Server Using Your Own Context 95
Accessing a Server Using a Different Context 95

SAS/CONNECT and SAS/SHARE Server Security 95

SAS/CONNECT and SAS/SHARE Network Security 95

SAS/CONNECT Options Only 96

SAS/SHARE Options Only 97

SAS/CONNECT Client Tasks 97
Task List 97

Specifying TCP/IP as the Communications Access Method 98

Encrypting Data in Client/Server Transfers 98

Choosing a Method to Use to Sign On 98

Signing On to the Same Multi-Processor Machine 98
Specifying the Server Session 98

Starting SAS Using the SASCMD Option 99

Signing On to the Server Session 99

Signing On Using a Spawner 100

Ensuring That the Spawner Is Running on the Server 100
Specifying the Server and the Spawner Service 100

Specifying a Sign-On Script or a User ID and Password 101

Specifying a Sign-On Script 101

Specifying a User ID and Password 102

Signing On Using the Spawner 102

Signing On Using a Telnet Daemon 102
Specifying the Server 102

Specifying a Sign-On Script File 102

Signing On to the Server Session 102

SAS/CONNECT Server Tasks 103

Task List 103
Configuring the Windows Spawner Service 103

Assigning User Rights for a Server That Is Running Secured 103

Encrypting Data in Server/Client Transfers 103

Starting the Windows Spawner 104

SAS/CONNECT Server Example 104
SAS/SHARE Client Tasks 104

Task List 104

Configuring the Server Service 105

94 Prerequisites for Using TCP/IP under Windows � Chapter 6

Specifying TCP/IP as the Communications Access Method 105
Encrypting Data in Client/Server Transfers 105

Specifying the Server 105

SAS/SHARE Client Example 106

SAS/SHARE Server Tasks 107

Task List 107
Configuring the Server Service 107

Setting the TCPSEC Option to Require Client Authentication 107

Assigning User Rights for a Server That Is Running Secured 107

Encrypting Data in Server/Client Transfers 108

Specifying TCP/IP as the Communications Access Method 108

Specifying the Server 108
SAS/SHARE Server Example 108

Data Security for SAS/CONNECT or SAS/SHARE Servers 109

Client Authentication 109

Simulated Logon Method 109

Requirements for Using Simulated Logon with SAS/CONNECT or SAS/SHARE 109
SSPI 110

SSPI Requirements for SAS/CONNECT 110

SSPI Requirements for SAS/SHARE 110

Prerequisites for Using TCP/IP under Windows

Task List
System Administrator or User
� Verify that software requirements are met.
� If running the SAS/CONNECT or SAS/SHARE server secured, you must

understand user contexts and know the two methods for authenticating clients.
� If using network security, set the appropriate SAS options.
� Set the appropriate SAS/CONNECT and SAS/SHARE options.

Software Requirements
Ensure that
� Base SAS and either SAS/CONNECT or SAS/SHARE are installed on both the

client and the server.
� The Microsoft TCP/IP System Driver that is provided with the Windows operating

environment is installed and configured.

Contexts for User IDs

User Context: Definition
User context is the identifying credentials of the client who is attempting to access a

secured server. Identifying credentials include the user ID, password, and file access

Windows: TCP/IP Access Method � SAS/CONNECT and SAS/SHARE Network Security 95

permissions. Users can specify their own user context or a different user context when
accessing a server.

Users specify their own user contexts when logging on to a server by using their user
IDs and passwords to access files that they have permission to access.

Users can specify different user contexts when logging on to a server by using
someone else’s user ID and password. Supplying someone else’s user ID and password
gives permission to users to access files that they might otherwise be denied access to.
A system administrator’s user ID and password is an example of a different user
context that might be specified. Such a context does not belong to the user but can be
granted to the user for access to specific files.

Accessing a Secured Server Using Your Own Context
To access a secured server by using your own user context, specify your user ID and

password.

Note: If SSPI (Security Support Provider Interface) is available, you do not need to
specify a user ID and password. For details, see “SSPI” on page 110. �

Accessing a Server Using a Different Context
To access a server by using a different context, specify the appropriate user ID and

password.

Note: If SSPI is available, you must specify the user ID explicitly in a sign-on script
or as an option in the SIGNON statement for SAS/CONNECT or in the LIBNAME
statement for SAS/SHARE. For details, see “SSPI” on page 110. �

SAS/CONNECT and SAS/SHARE Server Security
Security for a SAS/CONNECT or a SAS/SHARE server’s resources can be enforced

only by authenticating the identity of the user who runs the client session that is
accessing the server session.

Two methods are available for authenticating a client’s identity:

� Simulated logon (introduced in Version 6)

� Microsoft SSPI (introduced in Version 8).

For complete details about server security, see “Data Security for SAS/CONNECT or
SAS/SHARE Servers” on page 109.

SAS/CONNECT and SAS/SHARE Network Security
Encryption is the process of transforming plaintext into a less readable form (called

ciphertext) by using a mathematical process. The ciphertext is translated back to
plaintext for anyone who can supply the appropriate key, which is necessary for
decrypting (or unlocking) the ciphertext.

SAS/CONNECT and SAS/SHARE support the following network security services in
the Windows operating environment:

SASproprietary
a fixed encoding algorithm that is included with Base SAS software and is
available in all SAS supported operating environments. It requires no additional
SAS product licenses.

96 SAS/CONNECT Options Only � Chapter 6

SAS/SECURE
an add-on product that uses the encryption algorithms RC2, RC4, DES, and
tripleDES.

SSL
is an abbreviation for Secure Sockets Layer, which is a protocol that provides
network security and privacy. Developed by Netscape Communications, SSL uses
encryption algorithms that include RC2, RC4, DES, tripleDES, and MD5.

For complete details about setting up and using network security, see the
SAS/CONNECT User’s Guide. After network security is set up in your environment,
you set SAS encryption options that are appropriate to the network security service and
to the requirements of the client or the server session.

SAS/CONNECT Options Only
TCPMSGLEN n

defines the size of the buffer (in bytes) that the TCP/IP access method uses for
breaking up a message that it sends to or receives from the SAS/CONNECT
application layer during a SAS/CONNECT session. The application layer uses a
message size that is stored in the TBUFSIZE option (default 32768) that you can
specify in the SIGNON statement or as a SAS option. For details, see the
TBUFSIZE= system option in the SAS/CONNECT User’s Guide.

If TBUFSIZE is larger than TCPMSGLEN, the TCP/IP access method breaks
the message into a buffer whose size is defined by TCPMSGLEN and issues the
number of send and receive messages that are necessary to complete the message
transaction.

The value for TCPMSGLEN (default=16384) must be set at both the client and
the server. If the values that are set for TCPMSGLEN at the client and at the
server are different, the smaller value of the two is used during the
SAS/CONNECT session.

Example:

-set tcpmsglen 8192

TCPPORTFIRST=port-number(set at the server)
TCPPORTLAST=port-number(set at the server)

restricts the range of TCP/IP ports that clients can use to remotely access servers.
Within the range of 0 through 32767, assign a beginning value to

TCPPORTFIRST and an ending value to TCPPORTLAST. To restrict the range of
ports to only one port, set the values for TCPPORTFIRST and TCPPORTLAST to
the same number. Consult with your network administrator for advice about these
settings.

At the server, you can set TCPPORTFIRST and TCPPORTLAST in a SAS
start-up command or in the configuration file.

In the following example, the server is restricted to the TCP/IP ports 4020
through 4050:

options tcpportfirst=4020;
options tcpportlast=4050;

TCPTN3270 (set at the client)
TCPTN3270 is an environment variable that supports connections to z/OS servers
that use the full-screen 3270 Telnet protocol. The script file TCPTSO32.SCR is
provided. See Table 6.1 on page 101 for a complete list of sign-on scripts.

Set TCPTN3270 to the value of 1 at the Windows client in the SAS
configuration file or in an OPTIONS statement.

Windows: TCP/IP Access Method � Task List 97

Examples:

-set tcptn3270 1

options set=tcptn3270 1;

If you do not set this variable, the TCP/IP access method uses the Telnet
line-mode protocol by default.

SAS/SHARE Options Only
AUTHSERVER domain-or-server

specifies the location of the database that contains the user ID and password pairs
that are used for validation.

You can specify the AUTHSERVER option in an OPTIONS statement in a SAS
session or in an AUTOEXEC file, in a SAS configuration file, in a SAS start-up
command, or as a SAS macro variable.

You can also specify a single domain in the form domain\user ID when you
provide your user ID to the Windows environment.

Example:

signon user=apex\bass password=time2go;

The domain name apex identifies the location of the user ID and password
database. The user ID bass and the password time2go will be verified in the apex
user ID and password database.

TCPSEC=_SECURE_ | _NONE_ (set at the server)
specifies whether the TCP/IP access method verifies user access authority before
allowing clients to access the server. The TCPSEC option must be set at the server
before the server session is started. The default is _NONE_.

SECURE
requires that the TCP/IP access method verify the authority of clients that
attempt to access the server. Each client must supply a user ID and a
password that are valid at the server.

NONE
specifies that the TCP/IP access method does NOT authenticate SAS/SHARE
clients that attempt to access the server.

Examples:

%let tcpsec=_secure_;
%let tcpsec=_none_;

SAS/CONNECT Client Tasks

Task List
1 Specify TCP/IP as the communications access method.

2 Specify encryption of client/server data transfers (optional).

3 Sign on to the server.

98 Specifying TCP/IP as the Communications Access Method � Chapter 6

Note: SAS/CONNECT permits TCP/IP connections between clients outside a
firewall to spawners that run on hosts inside a firewall. For details, see Chapter 14,
“Configuring SAS/CONNECT for Use with a Firewall,” on page 149. �

Specifying TCP/IP as the Communications Access Method
TCP/IP is the default communications access method for all operating environments,

except z/OS. Therefore, you do not have to explicitly specify the default.
If you choose to specify TCP/IP to connect to a server, you can use the COMAMID=

option in an OPTIONS statement.

OPTIONS COMAMID=access-method-ID;

COMAMID is an acronym for Communications Access Method Identification.
access-method-ID identifies the method used by the client to communicate with the
server. TCP (short for TCP/IP, which is an abbreviation for Transmission Control
Protocol/Internet Protocol) is an example of an access-method-ID. Alternatively, you can
set this option in a SAS start-up command or in a SAS configuration file.

Example:

options comamid=tcp;

Encrypting Data in Client/Server Transfers
If network security is available and is configured at the client, you can specify SAS

options to encrypt all data that is transferred between a client and a server. In the
following example, the NETENCRYPTALGORITHM= option specifies the RC2
encryption algorithm.

options netencryptalgorithm=rc2;

For complete details about network security options, see the SAS/CONNECT User’s
Guide.

Choosing a Method to Use to Sign On
� the same multi-processor machine

Note: This method is most useful if your client machine is equipped with SMP
(Symmetric Multi-Processor) hardware. �

� a spawner
� a Telnet daemon.

Signing On to the Same Multi-Processor Machine
If your client machine is equipped with SMP (Symmetric Multi-Processors), and if

you want to run one or more server sessions on your machine, perform these tasks:
1 Specify the server session.
2 Specify the SASCMD command to start SAS.
3 Sign on to the server session.

Specifying the Server Session
You can specify the server session in an OPTIONS statement:

Windows: TCP/IP Access Method � Signing On to the Same Multi-Processor Machine 99

OPTIONS PROCESS=session-ID;

or in the SIGNON statement or command:

SIGNON session-ID;

session-ID must be a valid SAS name that is 1 to 8 characters in length, and is the
name that you assign to the server session on the same multi-processor machine.

Note: PROCESS=, REMOTE=, CREMOTE=, and CONNECTREMOTE= can be used
interchangeably. For details, see the CONNECTREMOTE= system option in the
SAS/CONNECT User’s Guide. �

For details about SIGNON=, see the SIGNON statement in the SAS/CONNECT
User’s Guide.

Starting SAS Using the SASCMD Option

Use the SASCMD option to specify the SAS command and any additional options that
you want to use to start SAS in the server session on the same multi-processor machine.

The SASCMD option can be specified either in an OPTIONS statement:

OPTIONS SASCMD="SAS-command" | "!SASCMD";

or directly in the SIGNON statement or command:

SIGNON name SASCMD="SAS-command" | "!SASCMD";

The -DMR option is automatically appended to the command. If !SASCMD is
specified, SAS/CONNECT starts SAS on the server by using the same command that
was used to start SAS for the current (parent) session.

Note: In order to execute additional commands prior to starting SAS , you might
write a script that contains the SAS start-up commands that are appropriate for the
operating environment. Specify this script as the value in the SASCMD= option. �

For details, see the SASCMD= system option and the SIGNON statement in the
SAS/CONNECT User’s Guide.

Signing On to the Server Session

Example 1:
In the following example, TCP is the access method, SAS1 is the name of the server

session, and SAS_START is the command that starts SAS on the same multi-processor
machine.

options comamid=tcp;
signon sas1 sascmd=’sas_start’;

Example 2:
In the following example, the values for the COMAMID=, SASCMD=, and

PROCESS= options are set in OPTIONS statements. The SASCMD= option identifies
the command that starts SAS. The PROCESS= option identifies the server session on
the same multi-processor machine. Because the SASCMD= and the PROCESS= options
are defined, only a simple SIGNON statement is needed.

options comamid=tcp sascmd="sas_start";
options process=sas1;
signon;

100 Signing On Using a Spawner � Chapter 6

Signing On Using a Spawner

1 Ensure that the spawner is running on the server.

2 Specify the server and an optional service.

3 Specify the sign-on script (if you are signing on using a script),
or specify a user ID and password (if you are signing on without a script).

Note: If the SSPI is available or the server is not running secured, you do not
have to specify a user ID and password. For details, see “SSPI” on page 110. �

4 Sign on to the server using a spawner.

Ensuring That the Spawner Is Running on the Server
Before you can access the spawner, the spawner program must be running on the

server. For information about the spawner that you are connecting to, see Chapter 7,
“SAS/CONNECT Spawners,” on page 113.

Note: The system administrator for the machine that the spawner runs on must
start the spawner. The spawner program on the server cannot be started by the client. �

Specifying the Server and the Spawner Service
The name of the server can be specified either in an OPTIONS statement:

OPTIONS REMOTE=node-name[.service-name | .port-number];

or directly in the SIGNON statement or command:

SIGNON node-name[.service-name | .port-number];

node-name is based on the server that you are connecting to. node-name must be a
valid SAS name that is 1 to 8 characters in length and is either:

� the short machine name of the server that you are connecting to. This name must
be defined in the HOSTS file in the client operating environment or in your
Domain Name Server (DNS).

� a macro variable that contains either the IP address or the name of the server that
you are connecting to.

You specify service-name when connecting to a server that runs a spawner program
that is listening on a port other than the Telnet port. If the spawner was started by
using the -SERVICE spawner option, you must specify an explicit service-name. The
value of service-name and the value of the -SERVICE spawner option must be identical.
Alternatively, you can specify the explicit port number that is associated with
service-name.

Example 1:
In the following example, REMHOST is the name of the node that the spawner runs

on, and PORT1 is the name of the service that is defined at the client. The client
service PORT1 must be assigned to the same port that the spawner is listening on.

signon remhost.port1;

Example 2:
In the following example, the macro variable REMHOST is assigned to the

fully-qualified name of the machine that the server runs on. This server has a spawner
running that is listening on port 5050. The server session that is specified in the

Windows: TCP/IP Access Method � Signing On Using a Spawner 101

SIGNON statement uses the node name REMHOST and the service-name 5050, which
is the explicit port value.

%let remhost=pc.rem.us.com;
signon remhost.5050;

You can also assign a specific port number by including the port number in the
definition of the macro variable, for example,

%let remhost=pc.rem.us.com 5050;
signon remhost;

Specifying a Sign-On Script or a User ID and Password
You can use a sign-on script to sign on to the spawner, or you can sign on to a spawner

without a script. If you sign on to a secured spawner without a script, you must supply
a user ID and password unless SSPI is available. For details, see “SSPI” on page 110.

Note: If you connect to a spawner, you can sign on by using a script unless the
spawner is started by using the -NOSCRIPT option. If the -NOSCRIPT option is set,
you cannot use a script. If there is no script, you do not assign the fileref RLINK in a
FILENAME statement. For information about the spawner that you are connecting to,
see Chapter 7, “SAS/CONNECT Spawners,” on page 113. �

Specifying a Sign-On Script
If you are signing on by using a script, you must specify the script that you want to

use. The script file is executed by the SIGNON statement or command. By default, the
script prompts for user ID and password.

To use one of the sample script files that are provided with SAS/CONNECT for
signing on and signing off, assign the fileref RLINK to the appropriate script file. The
script is based on the server that you are connecting to. The sample scripts are
installed at

!sasroot\CONNECT\SASLINK

To specify a script, use the FILENAME statement. For example,

FILENAME RLINK ’!sasroot\connect\saslink\script-name’;

script–name specifies the appropriate script file for the server.
Table 6.1 on page 101 lists the scripts that are provided in SAS software:

Table 6.1 SAS/CONNECT Sign-on Scripts for TCP/IP under Windows

Server Script Name

TSO under OS/390 tcptso.scr

TSO under z/OS, SAS 9 or later tcptso9.scr

z/OS (without TSO) tcpmvs.scr

z/OS (using full-screen 3270 Telnet protocol) tcptso32.scr

OpenVMS Alpha tcpvms.scr

102 Signing On Using a Telnet Daemon � Chapter 6

Server Script Name

UNIX tcpunix.scr

Windows tcpwin.scr

Specifying a User ID and Password
If SSPI is available, you can submit the SIGNON statement without a user ID and

password. If SSPI is not available and you are signing on to a secured spawner without
using a script, you must provide a user ID and password in order to log on. For example,

SIGNON USER=user-ID | _PROMPT_ [PASSWORD=password | _PROMPT_];

Signing On Using the Spawner
To start SAS, sign on to the server using the spawner.
In the following example, a Windows client connects to a Windows server by using a

spawner without a script file. In the SIGNON statement, RMTHOST.SPAWNER
specifies the node RMTHOST and the service SPAWNER. This server specification
presumes that a spawner is running on the node RMTHOST, and that the spawner was
started using the service SPAWNER. Because SSPI is used, the client does not set the
USER= and PASSWORD= options.

Example:

options comamid=tcp;

signon rmthost.spawner;

Signing On Using a Telnet Daemon

1 Specify the server.
2 Specify a sign-on script file.
3 Sign on to the server session.

Specifying the Server
The name of the server can be specified either in an OPTIONS statement:

OPTIONS REMOTE=node-name;

or directly in the SIGNON statement or command:

SIGNON node-name;

Specifying a Sign-On Script File
If you are signing on by using a script, you must specify the script that you want to

use. The script file is executed by the SIGNON statement or command. By default, the
script prompts for user ID and password. For details, see “Specifying a Sign-On Script”
on page 101.

Signing On to the Server Session
In the following example, you specify the statements at a Windows client to use the

TCP/IP access method to connect to a z/OS server. The FILENAME statement identifies

Windows: TCP/IP Access Method � Encrypting Data in Server/Client Transfers 103

the script file that you use to sign on to a server. The script file contains a prompt for a
user ID and a password that are valid on the server. The COMAMID= option specifies
the TCP/IP communications access method for connecting to the server RMTNODE,
which is specified in the REMOTE= option.

filename rlink ’!sasroot\CONNECT\SASLINK\tcptso.scr’;
options comamid=tcp remote=rmtnode;
signon;

SAS/CONNECT Server Tasks

Task List
1 Configure the Windows spawner service.
2 Configure user rights and security services (optional).

� Assign user rights if the server is to run secured.
� Specify security service options to encrypt client/server data transfers.

3 Start the Windows spawner at the server.

Note: If the Windows spawner is not being used, there are no server tasks. �

Configuring the Windows Spawner Service
To enable clients to connect to a Windows server by using the Windows spawner,

configure the spawner service in the SERVICES file at the server. For details, see
Chapter 13, “TCP/IP SERVICES File,” on page 145.

Assigning User Rights for a Server That Is Running Secured
If you only use SSPI for authentication, setting user rights is not necessary.
If you use the simulated logon method of authentication, the following user rights

must be set at the server machine:
� “Act as part of the operating system” for the user who runs the spawner
� “Increase quotas” for the user who runs the spawner
� “Replace process level tokens” for the user who runs the spawner
� “Log on as batch job” for all clients who need to connect to the server.

For details about the simulated logon and SSPI methods of authentication, see “Data
Security for SAS/CONNECT or SAS/SHARE Servers” on page 109.

Encrypting Data in Server/Client Transfers
If network security is configured at the server, you can specify SAS options to encrypt

data that a server transfers to a client. For example:

options netencrypt netencryptalgorithm=ssl;

104 Starting the Windows Spawner � Chapter 6

The NETENCRYPT option specifies that all data transfers between a server and a
client will be encrypted. SSL is the network security service that is specified in the
NETENCRYPTALGORITHM= option. For general information about network security,
see “SAS/CONNECT and SAS/SHARE Network Security” on page 95.

Starting the Windows Spawner
You must start the Windows spawner on a Windows server to enable clients to

connect to it. The spawner program resides on a server and listens for SAS/CONNECT
client requests for connection to the server. After the spawner program receives a
request, it starts a server session. For details about starting the Windows spawner, see
Chapter 11, “Windows Spawner,” on page 131.

Specifying the -SECURITY option in the Windows spawner start-up command
requires authentication of connecting clients.

If network security has been configured at the server, set the appropriate encryption
options when starting the spawner.

SAS/CONNECT Server Example
Setting these options on the command line restricts access to ports 5020 through

5050.

options tcpportfirst=5020;
options tcpportlast=5050;

The following example shows the spawner start-up command. The TCP/IP access
method is specified. The -FILE option executes the MYSAS.CMD file, which starts a
SAS session.

c:\sas\connect\sasexe\spawner -comamid tcp -file mysas.cmd

For details about the contents of a command file and how to run the Windows
spawner, see Chapter 11, “Windows Spawner,” on page 131. Options that are specified
during spawner start-up override options that are specified in a server configuration file.

SAS/SHARE Client Tasks

Task List

1 Configure the server service.

2 Specify TCP/IP as the communications access method.

3 Access a secured server.

4 Specify encryption of client/server data transfers (optional).

5 Specify the server name.

Windows: TCP/IP Access Method � Specifying the Server 105

Configuring the Server Service
Each server must be defined as a service in the SERVICES file on each machine that

a client will access the server from. The SERVICES file is usually located in the
directory where the TCP/IP software is installed. For details about editing the
SERVICES file, see “Configuring the SERVICES File” on page 145.

Specifying TCP/IP as the Communications Access Method
TCP/IP is the default communications access method that is used in the Windows

operating environment. You can omit specifying the access method in the COMAMID=
option and the TCP/IP access method is assumed, by default.

If you choose to specify TCP/IP to connect to a server, you can use the COMAMID=
option in an OPTIONS statement.

options comamid=tcp;

The COMAMID= option specifies the communications access method. TCP specifies
the TCP/IP access method.

Alternatively, you can specify the COMAMID= option in a configuration file or in a
SAS start-up command.

Encrypting Data in Client/Server Transfers
If network security is configured at the client, you can specify SAS options to encrypt

data that a client transfers to a server. An example follows:

options netencrypt netencryptalgorithm=ssl;

The NETENCRYPT option specifies that all data transfers between a client and a
server will be encrypted. SSL is the network security service that is specified in the
NETENCRYPTALGORITHM= option. For general information about network security,
see “SAS/CONNECT and SAS/SHARE Network Security” on page 95.

Specifying the Server
If the client and server sessions are running on different network nodes, you must

include the TCP/IP node in the server ID in the LIBNAME and PROC OPERATE
statements by using a two-level server name as follows:

SERVER=node.server

The access method evaluates the node name in this order of precedence:

1 SAS macro variable

2 environment variable

3 acceptable node name.

node can be either of the following:

� valid TCP/IP node name

� IP address.

If the server and the client sessions are running on the same node, you can omit the
node name.

106 SAS/SHARE Client Example � Chapter 6

server can be either of the following:
� server-ID
� port.

The server-ID must be identical to the service name that is specified in the
SERVICES file. For details, see “Configuring the SERVICES File” on page 145.

Example 1:
A port is the unique number that is associated with the service that is used for

passing data to and receiving data from the server.
Precede the port number with two consecutive underscores.

Note: Do not space after the first underscore or the second underscore. �

Note: Specifying a server by using a port number is not supported for ODBC clients.
�

libname mylib ’.’ server=srvnode._ _5000;

Example 2:
If the TCP/IP node name is not a valid eight-character SAS name, assign the name of

the server node to a SAS macro variable, then use the name of that macro variable for
node in the two-level server name.

Note: Do not use an ampersand (&) in a two-level name. An ampersand would
cause the macro variable to be resolved by the SAS parser prior to syntactic evaluation
of the SERVER= option. The access method evaluates the node name in a two-level
server name. �

%let srvnode=mktserver.acme.com;
libname sales server=srvnode.server1;

Example 3:
You might assign the node name and the server ID to a macro variable.

%let srvnode=mktserver.acme.com 5000;
libname sales server=srvnode;

or

%let srvnode=12.34.56.78 5000;
libname sales server=srvnode;

For details about creating valid SAS names, see SAS Language Reference: Concepts.
For details about LIBNAME and PROC OPERATE, see the LIBNAME statement and
the OPERATE procedure in the SAS/SHARE User’s Guide.

SAS/SHARE Client Example
The following example shows the statements that are specified at a Windows client

who accesses a server by using a different user context. The LIBNAME statement
specifies the SAS data library that is accessed through the server, which is specified by
the two-level server name RMTNODE.SHARE1.

options comamid=tcp;
libname sasdata ’c:edc\prog2\sasdata’ server=rmtnode.share1;

Windows: TCP/IP Access Method � Assigning User Rights for a Server That Is Running Secured 107

SAS/SHARE Server Tasks

Task List
1 Configure the SAS/SHARE server.

2 Configure SAS options and security programs and services (optional).

� If the server is to run secured, specify the TCPSEC= option to require client
authentication.

� Assign user rights for a server that is to run secured.

� Specify security service options to encrypt client/server data transfers.

3 Specify TCP/IP as the communications access method.

4 Specify the server.

Configuring the Server Service
Each server must be defined as a service in the SERVICES file on each node that a

client will access. The SERVICES file is located in the directory where the TCP/IP
software is installed. For details about editing the SERVICES file, see “Configuring the
SERVICES File” on page 145.

Example:

sassrv2 5011/tcp # SAS/SHARE server 2

Setting the TCPSEC Option to Require Client Authentication
To authenticate connecting clients, you must specify the value _SECURE_ in the

TCPSEC= option to require that clients provide a user ID and a password that are valid
on the server. For details about the TCPSEC= option, see “SAS/SHARE Options Only”
on page 97.

Example:

options tcpsec=_secure_;

Assigning User Rights for a Server That Is Running Secured
If you only use SSPI for authentication, setting user rights is not necessary.
If you use the simulated logon method of authentication, the following user rights

must be set at the server machine:

� “Act as part of the operating system” for the server administrator

� “Increase quotas” for the server administrator

� “Replace process level tokens” for the server administrator

� “Log on as batch job” for all clients who need to access to the server.

108 Encrypting Data in Server/Client Transfers � Chapter 6

Encrypting Data in Server/Client Transfers
If network security is configured at the server, you can specify SAS options to encrypt

data that a server transfers to a client. For example:

options netencrypt netencryptalgorithm=ssl;

The NETENCRYPT option specifies that all data transfers between a server and a
client will be encrypted. SSL is the network security service that is specified in the
NETENCRYPTALGORITHM= option. For general information about network security,
see “SAS/CONNECT and SAS/SHARE Network Security” on page 95.

Specifying TCP/IP as the Communications Access Method
TCP/IP is the default communications access method on Windows. You can omit

specifying the access method in the COMAMID= option, and the TCP/IP
communications access method is assumed, by default. If you choose to specify TCP/IP
to connect to a server, you can use the COMAMID= option in an OPTIONS statement.

options comamid=tcp;

Alternatively, you can specify the COMAMID option in a SAS configuration file or in
a SAS start-up command.

Specifying the Server
You must specify the name of the server in the SERVER= option in the PROC

SERVER statement.

SERVER=server

server can be either a server-ID or a port number. The value for server-ID corresponds
to the service that was configured in the SERVICES file. For details, see “Configuring
the SERVICES File” on page 145. port is the unique number that is associated with the
service that is used for transferring data between a client and a server.

Precede the port number with two consecutive underscores.

Note: Do not space after the first underscore or the second underscore. �

Examples:

proc server server=apex;
proc server server=_ _5000;

For details about SAS naming rules, see SAS Language Reference: Concepts. For
details about the PROC SERVER statement, see the SAS/SHARE User’s Guide.

SAS/SHARE Server Example
The following example shows the statements that you specify in a SAS session at the

machine where the server runs. The TCP/IP access method is specified and the server
SHARE1 is started on the Windows machine.

options comamid=tcp;
proc server id=share1 authenticate=required;
run;

Windows: TCP/IP Access Method � Simulated Logon Method 109

Data Security for SAS/CONNECT or SAS/SHARE Servers

Client Authentication
Authentication is the act of verifying the identity of the user who is attempting to

access a machine, that is, the machine that either the client session or the server
session runs on. Authentication is performed so that a machine can use the identity
information to make decisions about the user’s authority to access protected resources.
Under Windows, the user ID, password, and access permissions make up a user context.

Resources on a SAS/CONNECT or a SAS/SHARE server are considered to be
protected when both of the following conditions are met:

� The server requires that the client provide its identity.

� The client presents an identity that is successfully authenticated.

After the client’s identity is authenticated, the client is given the appropriate
permissions to access the server’s resources.

Under Windows, two methods are available for authenticating a client’s identity:

� Simulated logon (introduced in Version 6)

� SSPI (introduced in Version 8).

Simulated Logon Method
The simulated logon method is the most commonly used method of authentication

and is available in all SAS supported operating environments. In a simulated logon, the
client provides a user ID and password that are checked by the server.

You use a simulated logon when:

� the client or the server (or both) does not run on a Windows machine

� the user who runs the client machine is not a “trusted” user at the server machine

� the user who runs the client machine wants to log on by using a different user
context.

For details about user context, see “Contexts for User IDs” on page 94.

Requirements for Using Simulated Logon with SAS/CONNECT or SAS/SHARE
In order to authenticate the credentials (user ID and password) of a user who runs a

client session, the server administrator of the SAS/CONNECT or the SAS/SHARE
server must either set user rights for others or possess user rights.

SAS/CONNECT and SAS/SHARE Requirements

� set the “Log on as batch job” user right at the server machine for the user who
runs the client session

� possess the “Act as part of the operating system” user right on the server machine

SAS/CONNECT Only Requirements

� possess the “Increase quotas” user right on the server machine

� possess the “Replace a process level token” user right on the server machine

� set the -SECURITY option at spawner invocation.

110 SSPI � Chapter 6

SAS/SHARE Only Requirements
� set the option TCPSEC=_SECURE_
� set the option AUTHENTICATE=REQUIRED in the PROC SERVER statement.

REQUIRED is the default value.

SSPI
SSPI (Security Support Provider Interface) enables transparent authentication for

connections between Windows machines. Users that are members of a “trusted” domain
are authenticated automatically, and user context information is transferred to the
server.

Windows attempts to use SSPI for authentication whenever a user ID is not
explicitly supplied.

SSPI is available only when the client and the server sessions both run on Windows
machines, and the user who runs the client machine is a member of a domain that is
“trusted” at the server machine.

SSPI Requirements for SAS/CONNECT
In order to use SSPI for authentication, the SAS/CONNECT server administrator

must:
� set the -SECURITY option at spawner invocation.

SSPI Requirements for SAS/SHARE
In order to use SSPI for authentication, the SAS/SHARE server administrator must:
� specify the option TCPSEC=_SECURE_
� specify the option AUTHENTICATE=REQUIRED in the PROC SERVER

statement. REQUIRED is the default value.

111

P A R T6

Spawners and Files

Chapter 7.SAS/CONNECT Spawners 113

Chapter 8.OpenVMS Alpha Spawner 119

Chapter 9.z/OS Spawner 123

Chapter 10.UNIX Spawner 127

Chapter 11.Windows Spawner 131

Chapter 12.Encryption Options 137

Chapter 13.TCP/IP SERVICES File 145

112

113

C H A P T E R

7
SAS/CONNECT Spawners

Spawner Definition 113
Benefits of Using a Spawner to Sign On to a Server 114

Protects Client’s User ID and Password 114

Controls Client Access to the Server in a Firewall Configuration 114

Eliminates the Need for a Sign-On Script 114

Support for Spawners by Operating Environment 114
Client Connection to a Spawner 114

Spawner Connection Examples 115

Scripted Signon to a UNIX Spawner 115

Server 115

Client 115

Scriptless Signon to a Windows Spawner That Runs as a Service 116
Server 116

Client 116

Scripted Signon to an OpenVMS Spawner 116

Server 116

Client 116
Encrypted Signon to a z/OS Spawner 117

Server 117

Client 118

Spawner Definition
A spawner is a program that starts a SAS session on the server on behalf of the

connecting client. Signing on to a SAS/CONNECT spawner that runs on a server is an
alternative to signing on to a server by using a Telnet daemon. A spawner is assigned
to a single port on the server. The port listens for requests for connection to the server.

Note: Do not confuse a SAS/CONNECT spawner with the SAS Integration
Technologies object spawner. Visit the support.sas.com/rnd/itech/library/
index.html Web site for information about the planning and administration of a SAS
Integration Technologies object spawner. �

114 Benefits of Using a Spawner to Sign On to a Server � Chapter 7

Benefits of Using a Spawner to Sign On to a Server

Protects Client’s User ID and Password
By default, the spawner encrypts the client’s user ID and password that are sent to

the spawner during signon. Without encryption, the user ID and password would pass
through the network as clear, readable text, which presents a security risk.

Note: Release 6.09E and subsequent releases and Release 6.11 TS040 and
subsequent releases support user ID and password encryption. Prior releases do not
support user ID and password encryption. �

To encrypt all data that flows through the network after signon (such as for remote
submits and data transfers), you must use a security service. For details about security
services that are supported in SAS 9.1, see the SAS/CONNECT User’s Guide.

Controls Client Access to the Server in a Firewall Configuration
A spawner can be used to control the number of ports that clients outside a firewall

can use to access a server that is inside the firewall. Controlled client access facilitates
a machine’s security and economizes resources. For details, see Chapter 14,
“Configuring SAS/CONNECT for Use with a Firewall,” on page 149.

Eliminates the Need for a Sign-On Script
The primary purpose of a sign-on script is to

� send the user ID and password to the server
� supply the SAS command for starting the SAS session on the server.

Because the user ID and password can be directly specified as options in the SIGNON
statement (or command), and the spawner controls the start-up of a SAS session on the
server, the need for a sign-on script is eliminated.

Support for Spawners by Operating Environment
SAS 9 supports only the TCP/IP access method in the following operating

environments:

� OpenVMS Alpha

� UNIX

� Windows
� z/OS.

Client Connection to a Spawner
1 The spawner service must be configured in the client’s SERVICES file. Verify that

the spawner is configured in the SERVICES file. For details, see Chapter 13,
“TCP/IP SERVICES File,” on page 145.

SAS/CONNECT Spawners � Scripted Signon to a UNIX Spawner 115

2 If you use a script when connecting to a spawner, script file processing passes the
user ID and password to the server.

However, if you do not use a script file, you can deliver the user ID and
password to the server by specifying values for the USERID= and PASSWORD=
options in the SIGNON statement.

3 If you do not use a script file, use the following syntax to connect to the spawner:

options comamid=tcp remote=spawner-ID;
signon user=user-ID password=password;

Example:

options comamid=tcp remote=rmthost.spawn;
signon user=slim password=_prompt_;

The COMAMID option specifies the TCP/IP access method, which is used to
connect the client to the spawner SPAWN that runs on the UNIX node RMTHOST.
In the absence of a script file, the user ID and password are specified as options in
the SIGNON statement. The value _PROMPT_ for PASSWORD causes SAS to
prompt for a password at signon. The SIGNON statement makes the connection
and starts a SAS session on the server.

Spawner Connection Examples

Scripted Signon to a UNIX Spawner

Server

From the UNIX node that the server will run on, use the following command to start
the spawner.

sastcpd -service spawner -sascmd /u/username/mystartup

The -SERVICE option specifies the name of the service SPAWNER that listens for
incoming connections. The -SASCMD option specifies the path to the MYSTARTUP file,
which starts the SAS session on the server. For a description of the -SASCMD option
and an example of the content of the MYSTARTUP executable file, see Chapter 10,
“UNIX Spawner,” on page 127.

Client

At a Windows client, the following statements are entered to sign on to the UNIX
node RMTHOST by using the TCP/IP access method. A script file that is assigned to
the RLINK fileref prompts the user at the client for the user ID and the password that
are needed to log on to the UNIX server. The server name (in this example, RMTHOST)
must be either the name of the UNIX node or a macro variable that contains the IP
address or the name of the UNIX node that runs the spawner. The SIGNON statement
contains the ID of the server session, which is specified as a two-level name: the node
name and the service name. A two-level name is needed when signing on to a UNIX
node that runs a spawner.

116 Scriptless Signon to a Windows Spawner That Runs as a Service � Chapter 7

options comamid=tcp;
filename rlink ’!sasroot\connect\saslink\tcpunx.scr’;
signon rmthost.spawner;

Scriptless Signon to a Windows Spawner That Runs as a Service

Server
The following command installs the spawner service on a Windows machine:

C:\SAS> spawner -install -authserver ntdomain

In this example, the -INSTALL option installs the spawner as a service on a Windows
machine. The -AUTHSERVER option specifies NTDOMAIN as the database to be used
for performing user authentication of the user ID and password for connecting clients.

After the service is installed, it must be started before it can be used. You can start
the service using either of the following:

� the NET START command
� the services applet
� rebooting the machine.

Client
From any client, the following statements connect to the spawner program by using

the TCP/IP access method. The SIGNON statement specifies the ID of the server
session REMNODE. This ID must be the name of the Windows machine or a macro
variable that contains the IP address of the Windows machine that the spawner runs
on. Because a script file is not used, the user ID and password to the server must be
specified as options in the SIGNON statement. The value _PROMPT_ in the SIGNON
statement causes SAS to prompt for the password.

options comamid=tcp;
signon remnode user=joeblack password=_prompt_;

Note: The password is displayed as Xs in the SAS log. �

Scripted Signon to an OpenVMS Spawner

Server
The following command starts the spawner VMSSPAWN on an OpenVMS Alpha

machine. The absence of the -SASCMD option in the spawner start-up command
implies that the client will use a script file to specify the SAS command that starts SAS
on the OpenVMS Alpha machine.

sastcpd -service vmsspawn

Client
At a UNIX client, the following statements specify the script file TCPVMS.SCR,

which makes a connection to the spawner MONARCH.VMSSPAWN. The machine name

SAS/CONNECT Spawners � Encrypted Signon to a z/OS Spawner 117

(in this example, MONARCH) must be either the name of the OpenVMS Alpha node or
a macro variable that contains the IP address or name of the OpenVMS Alpha node
that the spawner runs on. In this example, an OPTIONS statement specifies the ID of
the server session as a two-level name, which represents the node name and the service
name. A two-level name is needed when signing on to an OpenVMS Alpha machine
that runs a spawner.

options comamid=tcp;
options remote=monarch.vmsspawn;
filename rlink "!sasroot/misc/connect/tcpvms.scr";
signon;

Encrypted Signon to a z/OS Spawner

Server
The following z/OS command starts the spawner on the z/OS server.

START SPAWNER

This command activates the started task procedure. SPAWNER is the name of the
service that is defined in the started task procedure.

An example follows:

//SPAWNER PROC PROG=SASTCPD,
// SERVICE=’spawner’,
// PARMFILE=’SAS.SPAWNER.PARMS’
//*
//SPAWNER EXEC PGM&PROG,REGION=40M,
// PARM=’-service &SERVICE =<//DDN:PARMS’
//*
//STEPLIB DD DISP=SHR,DSN=SAS.AUTH.LOAD
//PARMS DD DISP=SHR,DSN=&PARMFILE,FREE=CLOSE
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

PARMFILE contains the options that start a spawner. For example,

-netencryptalgorithm rc2
-sascmd "/usr/local/bin/spawnsas.sh nosasuser opt(’’dmr noterminal comamid=tcp’’)"

The -NETENCRYPTALGORITHM option specifies that the spawner is started using
the RC2 encryption algorithm. The -SASCMD option specifies a UNIX System Services
shell script that starts SAS. This command assumes that a shell script named
spawnsas.sh is installed in /usr/local/bin. The command specifies the SAS CLIST
option NOSASUSER, which specifies that a user’s SASUSER file should not be
allocated. NOSASUSER allows a client to sign on to a server multiple times using the
same user ID and password. The parenthesis enclose the SAS system options DMR and
COMAMID=TCP. NOTERMINAL prevents the display of requestor windows in the
server session.

118 Encrypted Signon to a z/OS Spawner � Chapter 7

Client
In the following example, the client specifies user ID and password encryption by

setting the RC2 encryption algorithm. In this example, the two-level name, which
represents the node name and the service name, specifies the ID of the server session in
the SIGNON statement. A two-level name is needed when signing on to a z/OS
operating environment that runs a spawner. The user must supply a valid user ID and
password as values for the USER= and PASSWORD= options in the SIGNON statement.

options netencryptalgorithm=rc2;
signon rmthost.spawner user=joeblack password=born2run;

119

C H A P T E R

8
OpenVMS Alpha Spawner

OpenVMS Alpha Spawner Requirements 119
Location of the OpenVMS Alpha Spawner 119

Spawner Privileges 119

Starting the OpenVMS Alpha Spawner 120

Ending the OpenVMS Spawner 121

OpenVMS Alpha Spawner Requirements

Location of the OpenVMS Alpha Spawner
The OpenVMS Alpha spawner program is stored on the server’s node in the

executables directory. An alias can be defined that points to the appropriate directory
and executable for the spawner program by using the following DCL command:

SASTCPD:==SAS$LIBRARY:SASTCPD.EXE

Included in the installation of Base SAS are sample DCL files that demonstrate how to
start the daemon as a detached process. The samples are located in
SAS$ROOT:[MISC.BASE]. Make a back-up copy of these files before you make any
modifications to them.

SASTCPD_STARTUP.COM
executes SASTCPD.COM as a detached process.

SASTCPD_SETUP.COM
defines the necessary process-level logicals and symbols that are required to run
SASTCPD as a detached process. This file is generated during the installation of
Base SAS.

SASTCPD_TEMPLATE.COM
performs setup, which might be needed to enable the client process to execute.

Spawner Privileges
In order for the spawner to start the SAS process, the spawner must have the

SYSPRV privilege.

120 Starting the OpenVMS Alpha Spawner � Chapter 8

Starting the OpenVMS Alpha Spawner
The syntax for the command to start the OpenVMS Alpha spawner follows:

SASTCPD <options>

options can be any of the following.

-HELP
prints a list of valid parameters.

-NOCLEARTEXT
prevents signons from clients that do not support user ID and password
encryption. This option prevents clients that are running “older” releases (prior to
6.09E and 6.11 TS040, which do not support user ID and password encryption)
from signing on to the spawner program. However, the default permits both
encrypted and clear-text user IDs and passwords.

-NOINHERITANCE
disables socket inheritance. Socket inheritance allows SAS/CONNECT servers to
use the socket connection that is established between the SAS/CONNECT client
and the spawner. Socket inheritance saves resources and is easier to configure
when clients connect to a server that is within a firewall. Socket inheritance is
enabled by default.

-NOSCRIPT
prevents signon from clients that use scripts, and allows signon only from clients
that do not use scripts.

This option requires that the client specify a user ID and a password during
signon. For details, see the SIGNON statement in the SAS/CONNECT User’s
Guide.

-NOSCRIPT can be useful if you want to limit SAS start-up commands to the
use of the -SASCMD option. Specifying -NOSCRIPT restricts clients from
specifying additional options in SAS start-up commands or script files. If
-NOSCRIPT is used, -SASCMD must also be used.

-OMRCONFIGFILE fully-qualified-path
specifies a fully-qualified path to the configuration file in XML format that
contains the information necessary to connect to a SAS Metadata Server. For
details about creating the configuration file, see the Base SAS Help for the
Metadata Server Connections window.

If -OMRCONFIGFILE is used, -SASSPAWNERCN must also be used.

-SASCMD “command”
specifies the SAS command or a command file that is specific to the OpenVMS
Alpha operating environment that starts a SAS session when you sign on without
a script. If the client does not specify a script file at sign on, the -SASCMD option
must be specified when starting the spawner. For example:

sastcpd -service sasjob -sascmd "@mystartup.com"

The MYSTARTUP file contains these lines, which starts SAS in an OpenVMS
Alpha environment:

$!
$! mystartup
$!
sas /DMR/NOTERMINAL/NOSYNTAXCHECK/COMAMID=TCP
$ exit

OpenVMS Alpha Spawner � Ending the OpenVMS Spawner 121

-SASSPAWNERCN “CONNECT-spawner-object-name”
specifies the name of the CONNECT spawner object in the SAS Metadata
Repository. A name that includes one or more spaces must be enclosed in
quotation marks. For details about generating a CONNECT spawner definition,
see the help for the SAS/CONNECT Spawner server type in the Server Manager of
SAS Management Console.

If -SASSPAWNERCN is used, -OMRCONFIGFILE must also be used.

-SERVICE service-name
specifies the name of the service that the spawner uses to listen for incoming
requests. This value is identical to the service value in the REMOTE= option that
the user specifies at the client prior to sign on. Because there is no default, you
must specify this value.

The service name must also be defined in the SERVICES file at both the client
and the server. For details, see Chapter 13, “TCP/IP SERVICES File,” on page 145.

-SHELL
enables the SAS session that is invoked by the spawner to create a shell, which is
required in order for the server’s SAS session to execute commands.

encryption-options
The encryption options that you can set depend on which security service is used.
For details, see Chapter 12, “Encryption Options,” on page 137.

For an example of how to start a spawner, see “Scripted Signon to an OpenVMS
Spawner” on page 116.

Ending the OpenVMS Spawner
To end the spawner, enter the interrupt signal (which, usually, is CTRL-C). If the

OpenVMS Alpha spawner is running in the background, kill its process.

122

123

C H A P T E R

9
z/OS Spawner

z/OS Spawner Requirements 123
Location of the z/OS Spawner 123

z/OS Spawner User ID Requirement 123

Assigning a User ID to the Started Task 123

z/OS Version Level Requirement 124

Starting the z/OS Spawner 124
Defining the Shell Script for Starting SAS 125

Ending the z/OS Spawner 126

z/OS Spawner Requirements

Location of the z/OS Spawner
The z/OS spawner program, SASTCPD, is located in the SAS load library. If the

BPX.DAEMON RACF profile is enabled and RACF Program Control is active, then this
library, as well as the SAS Transient Library, must be RACF program controlled.

z/OS Spawner User ID Requirement
If the BPX.DAEMON profile in the RACF FACILITY class and RACF Program

Control are active, then the user ID for the spawner started task does not require
superuser (uid=0) authority.

The spawner user ID does not require READ access to the BPX.DAEMON profile.
This is a change from prior releases of the spawner.

The spawner no longer requires APF authorization.

Assigning a User ID to the Started Task
To assign a user ID to the started task, do either of the following:

� Add the started task to the RACF Started Procedures Table ICHRIN03.

� Define a profile for the started task in the RACF class STARTED.

For details, see z/OS Security Server (RACF) Command Language Reference from
IBM.

124 z/OS Version Level Requirement � Chapter 9

z/OS Version Level Requirement
The spawner requires z/OS or OS/390 Version 2 Release 10.

Starting the z/OS Spawner
In order to start the z/OS spawner, you must specify options in the PARMS file. You

can use any of the following options.

-HELP
prints a list of valid options.

-NOCLEARTEXT
prevents signons from clients that do not support user ID and password
encryption. This option prevents clients that are running “older” releases (prior to
6.09E and 6.11 TS040, which do not support user ID and password encryption)
from signing on to the spawner program. However, the default permits both
encrypted and clear-text user IDs and passwords.

-NOINHERITANCE
disables socket inheritance. Socket inheritance allows SAS/CONNECT servers to
use the socket connection that is established between the SAS/CONNECT client
and the spawner. Socket inheritance saves resources and is easier to configure
when clients connect to a server that is within a firewall. Socket inheritance is
enabled by default.

-NOSCRIPT
prevents signon from clients that use scripts, and allows signon only from clients
that do not use scripts.

This option requires that the client specify a user ID and a password during
signon. For details, see the SIGNON statement in the SAS/CONNECT User’s
Guide.

-NOSCRIPT can be useful if you want to limit SAS start-up commands to the
use of the -SASCMD option. Specifying -NOSCRIPT restricts clients from
specifying additional options in SAS start-up commands or script files. If
-NOSCRIPT is used, -SASCMD must also be used.

-OMRCONFIGFILE fully-qualified-path
specifies a fully-qualified path to the configuration file in XML format that
contains the information necessary to connect to a SAS Metadata Server. Use
UNIX file-naming conventions for specifying the path. For details about creating
the configuration file, see the Base SAS Help for the Metadata Server Connections
window.

If -OMRCONFIGFILE is used, -SASSPAWNERCN must also be used.

-SASCMD “command”
specifies a UNIX System Services (USS) shell script for starting a SAS session.
You must use -SASCMD and a shell script if you do not specify a signon script in
the client session using an RLINK fileref.

The script interprets the command arguments and environment variables and
builds a TSO command that invokes a SAS session. For an example of a SAS
start-up shell script, see “Defining the Shell Script for Starting SAS” on page 125.

-SASSPAWNERCN “CONNECT-spawner-object-name”
specifies the name of the CONNECT spawner object to use in the SAS Metadata
Repository. A name that includes one or more spaces must be enclosed in

z/OS Spawner � Defining the Shell Script for Starting SAS 125

quotation marks. For details about generating a CONNECT spawner definition for
the SAS Metadata Server, see the help for SAS/CONNECT Spawner server type in
the Server Manager of SAS Management Console.

If -SASSPAWNERCN is used, -OMRCONFIGFILE must also be used

-SERVICE service-name | port-number
specifies the name or TCP/IP port number of the service that the z/OS spawner
uses to listen for incoming requests. This value is identical to the service value in
the REMOTE= option that the user specifies at the client prior to signon. Because
there is no default, you must specify this value.

Service names and ports must be configured in the SERVICES file on both the
client and server. Choose a unique port number that is in the range of 1 to 65535.
For details about the SERVICES files, see Chapter 13, “TCP/IP SERVICES File,”
on page 145.

encryption-options
The encryption options that you can set depend on which security service is used.
For details, see Chapter 12, “Encryption Options,” on page 137.

For an example of how to start the spawner, see “Encrypted Signon to a z/OS
Spawner” on page 117.

Defining the Shell Script for Starting SAS
The spawner invokes a UNIX System Services (USS) shell script that can be

specified in either a SAS/CONNECT signon script or the -SASCMD spawner option.
Example:

-sascmd "/usr/local/bin/spawnsas.sh nosasuser opt(’’dmr noterminal comamid=tcp’’)"

This command assumes that a shell script named spawnsas.sh is installed in /usr/
local/bin. The command specifies the SAS CLIST option NOSASUSER, and the SAS
system options DMR and COMAMID=TCP. NOTERMINAL prevents the display of
requestor windows in the server session. The parenthesis enclose the SAS options. In
addition, the two single quotes around the SAS options are required.

The shell script interprets the parameters that are received from the spawner and
builds a TSO command that starts a SAS session.

The following shell script parses a command and interprets environment variables to
build a TSO command to start SAS. This command is executed using the USS /bin/
tso command. In this example, you must change the values of &prefix to the high-level
qualifier of your CLIST library that contains the TSO command to start SAS.

Example Code 9.1 Shell Script to Invoke SAS

#!/bin/sh

#
Initialize SAS start-up command...
#

cmd="/bin/tso -t EX ’&prefix.CLIST(SAS)’ ’"

#
Construct CLIST parameters from command arguments
#

126 Ending the z/OS Spawner � Chapter 9

for arg in "$@"; do
cmd="cmdarg "

done

#
Construct CLIST parameters from environment variables
#

if [-n "$INHERIT"] ; then
inherit="INHERIT($INHERIT)"

fi
if [-n "$NETENCRALG"] ; then

netencralg="NETENCRALG($NETENCRALG)"
fi
if [-n "$SASDAEMONPORT"] ; then

sasdaemonport="SASDAEMONPORT($SASDAEMONPORT)"
fi
if [-n "$SASCLIENTPORT"] ; then

sasclientport="SASCLIENTPORT($SASCLIENTPORT)"
fi
if [-n "$TCPDFILE"] ; then
tcpdebug="TCPDEBUG(62)"
fi

cmd="$cmd $sasdaemonport $sasclientport $inherit $netencralg’"

#
Set additional environment variables...
SYSPROC specifies the data set containing the SAS CLIST
#

export SYSPROC=&prefix.CLIST
export STEPLIB=

#
Start SAS
#
exec $cmd

Ending the z/OS Spawner
To stop the spawner, enter the following system command:

STOP SPAWNER

127

C H A P T E R

10
UNIX Spawner

UNIX Spawner Requirements 127
Location of the UNIX Spawner 127

Starting a UNIX Spawner 127

Starting the UNIX Spawner 127

Ending the UNIX Spawner 129

UNIX Spawner Requirements

Location of the UNIX Spawner
The UNIX spawner is located in the directory !sasroot/utilities/bin.

Starting a UNIX Spawner
If connecting to a UNIX server via a spawner, SAS/CONNECT uses the default

authentication mechanism to verify the user ID and to verify that the password is
correct for the specified user ID.

Starting the UNIX Spawner
The syntax for the command to start the UNIX spawner follows:

sastcpd <options>

options can be any of the following.

-nocleartext
prevents signons from clients that do not support user ID and password
encryption. This option prevents clients that are running “older” releases (prior to
6.09E and 6.11 TS040, which do not support user ID and password encryption)
from signing on to the spawner program. However, the default permits both
encrypted and clear-text user IDs and passwords.

-noinheritance
disables socket inheritance. Socket inheritance allows SAS/CONNECT servers to
use the socket connection that is established between the SAS/CONNECT client

128 Starting the UNIX Spawner � Chapter 10

and the spawner. Socket inheritance saves resources and is easier to configure
when clients connect to a server that is within a firewall. Socket inheritance is
enabled by default.

-noscript
prevents signon from clients that use scripts, and allows signon only from clients
that do not use scripts.

This option requires that the client specify a user ID and a password during
signon. For details, see the SIGNON statement in the SAS/CONNECT User’s
Guide.

-noscript is useful if you want to limit SAS start-up commands to the use of the
-sascmd option. Specifying -noscript restricts clients from specifying additional
options in SAS start-up commands or script files. If -noscript is used, -sascmd
must also be used.

-omrconfigfile fully-qualified-path
specifies a fully-qualified path to the configuration file in XML format that
contains the information necessary to connect to a SAS Metadata Server. For
details about creating the configuration file, see the Base SAS Help for the
Metadata Server Connections window.

If -omrconfigfile is used, -sasspawnercn must also be used.

-sascmd “command”
specifies the SAS command or a command file that is specific to the UNIX
operating environment that starts a SAS session when you signon without a
script. If the client does not specify a script file at sign on, the -sascmd option
must be specified when starting the spawner.

An example of a script for starting SAS for UNIX follows.

#!/bin/ksh
#----------------------------------
mystartup
#----------------------------------
. ~/.profile
sas -dmr -noterminal -nosyntaxcheck -device grlink -comamid tcp
#------------------------------

-sasspawnercn “CONNECT-spawner-object-name”
specifies the name of the CONNECT spawner object in the SAS Metadata
Repository. A name that includes one or more spaces must be enclosed in
quotation marks. For details about generating a CONNECT spawner definition for
the SAS Metadata Server, see the help for the SAS/CONNECT Spawner server
type in the Server Manager of SAS Management Console.

If -sasspawnercn is used, -omrconfigfile must also be used.

-service service-name
specifies the name of the service that the UNIX spawner program uses to listen for
incoming requests. This value is identical to the service value in the REMOTE=
option that the user specifies at the client at sign on. Because there is no default,
you must specify this value.

The service name must also be defined in the /etc/services file at both the client
and the server. For details, see Chapter 13, “TCP/IP SERVICES File,” on page 145.

-shell
enables the SAS session that is invoked by the spawner program to create a shell,
which is required in order for the server to execute commands or to run X
commands.

UNIX Spawner � Ending the UNIX Spawner 129

encryption-options
The encryption options that you can set depend on which security service is used.
For details, see Chapter 12, “Encryption Options,” on page 137.

For an example of how to start the UNIX spawner, see “Scripted Signon to a UNIX
Spawner” on page 115.

Ending the UNIX Spawner

To end the spawner, enter the interrupt signal (which, usually, is CTRL-C). If the
UNIX spawner is running in the background, kill its process.

130

131

C H A P T E R

11
Windows Spawner

Windows Spawner Requirements 131
Location of the Windows Spawner 131

Windows Security 131

Starting the Windows Spawner 131

Ending the Windows Spawner 135

Windows Spawner Requirements

Location of the Windows Spawner
The default location of the Windows spawner in the Windows operating environment

is !sasroot.

Windows Security
CAUTION:

To run a spawner secured by specifying the -SECURITY option, the person who runs
the spawner must have the following user rights in the Windows domain:

act as part of the operating environment

bypass traverse checking (the default is everyone)

increase quotas

replace a process level token

log on locally (the default is everyone)

The client that is connecting to the spawner at signon needs only the Windows
domain user right “log on as a batch job.” �

Starting the Windows Spawner

The syntax for the command to start the Windows spawner follows.

SPAWNER <options>

132 Starting the Windows Spawner � Chapter 11

options can be any of the following:

-AUTHSERVER domain-or-server
specifies the location of the user authentication database. You can specify the
name of either a Windows domain or a Windows server where the database resides.

Instead of specifying a single domain in the -AUTHSERVER option, you can
bypass this option and specify the domain name in the form domain\user-ID when
you provide your user ID to the Windows environment. For example,

signon user="apex\bass" password=time2go;

The domain name APEX identifies the location of the user authentication
database. The user ID BASS and the password TIME2GO are verified against the
user ID-and-password database of the specified domain.

-DELETE
calls the Service Control Manager to remove the SAS Job Spawner Windows
service, which was previously installed and started by using the -INSTALL option.
If multiple instances of the spawner service are running, you can specify which
instance to delete by using the -INSTANCE option. You do not need to specify the
-INSTANCE option to reference the first instance of the spawner.

If you used the -NAME option with the -INSTALL option to install a spawner,
you can use the -NAME option with the -DELETE option to identify the spawner
to be deleted.

spawner -delete -name "Glenn’s spawner"

-HELP
prints a list of valid parameters.

-INSTALL
causes an instance of a spawner to be installed as a Windows service. Each
spawner instance is assigned a name, by default, in the following form:

SAS Job Spawner #xx

xx can range from 2 to 99. For example, if three instances of the spawner are
installed, they are named, by default:

� SAS Job Spawner

� SAS Job Spawner #2
� SAS Job Spawner #3.

After the spawner is installed, unless the -NOSECURITY option is specified, the
spawner will run secured.

You can install each instance of the spawner by using the following command:

C:\SAS> SPAWNER -install

Instead of accepting a default name for a spawner service, you can assign a
specific name to a spawner service by using the -NAME option.

You can start the spawner service by using either the NET START command or
the services applet, or by rebooting the machine that the spawner runs on.

-INSTALLDEPENDENCIES “service- name”
specifies the Windows service that must be started before the spawner service
starts.

-INSTANCE xx
identifies the instance of the spawner service to be deleted by using the -DELETE
option, where xx represents values from 2 to 99. If only the first instance of a
spawner service (named SAS Job Spawner) is running and you want to delete it,

Windows Spawner � Starting the Windows Spawner 133

you do not need to specify the instance. If you want to delete any instance other
than the first one that was installed, you can either specify the instance or use
-NAME to specify the spawner.

For example, if three instances of the spawner are running and you want to
delete only the second instance, use the following command:

spawner -delete -instance 2

To delete a specific spawner that was installed by using the -NAME option, use
the following command:

spawner -delete -name "Glenn’s spawner"

-NAME spawner-service-name
specifies the name that you assign to the spawner that is installed and started as
a service. A specified name overrides the default name that is automatically
assigned when the -INSTALL option is used.

A specified spawner name cannot exceed 80 alphanumeric characters. A name
string that includes one or more spaces must be enclosed in quotation marks.

The following example shows how to install an explicitly named spawner as a
service:

spawner -install -name "Glenn’s spawner"

The following example shows how to start an explicitly named Windows
spawner by using the NET START command:

net start "Glenn’s spawner"

-NOCLEARTEXT
prevents signons from clients that do not support user ID and password
encryption. This option prevents clients that are running “older” releases (prior to
6.09E and 6.11 TS040, which do not support user ID and password encryption)
from signing on to the spawner program. However, the default permits both
encrypted and clear-text user IDs and passwords.

-NOINHERITANCE
disables socket inheritance. Socket inheritance allows SAS/CONNECT servers to
use the socket connection that is established between the SAS/CONNECT client
and the spawner. Socket inheritance saves resources and is easier to configure
when clients connect to a server that is within a firewall. Socket inheritance is
enabled by default.

-NOSCRIPT
prevents signon from clients that use scripts, and allows signon only from clients
that do not use scripts.

-NOSCRIPT can be useful if you want to limit SAS start-up commands to the
use of the -SASCMD option. Specifying -NOSCRIPT restricts clients from
specifying additional options in SAS start-up commands or script files. If
-NOSCRIPT is used, -SASCMD must also be used.

-OMRCONFIGFILE “fully-qualified-path”
specifies a fully-qualified path to the configuration file in XML format that
contains the information necessary to connect to a SAS Metadata Server. A path
that includes one or more spaces must be enclosed in quotation marks. For details
about creating the configuration file, see the Base SAS Help for the Metadata
Server Connections window.

If -OMRCONFIGFILE is used, -SASSPAWNERCN must also be used.

134 Starting the Windows Spawner � Chapter 11

-SASCMD
specifies the SAS command or a command file that invokes SAS when a client
attempts to connect to a server.

Use the -SASCMD option in order to

� invoke SAS from a directory that is not the default location

� specify different SAS start-up command options

� execute other statements before invoking SAS.

The following options are supplied by default when you invoke SAS:

-DMR -COMAMID access-method -NOLOGO -ICON -NOTERMINAL

An alternate file that can be invoked is a batch file, which is signified by the
.BAT extension. An example of a batch file follows.

cd \sas
sas.exe %*

The first line changes to the directory where the SAS executable is stored. The
second line starts SAS. Add options as needed at this SAS start-up command.

-SASSPAWNERCN “CONNECT-spawner-object-name”
specifies the name of the CONNECT spawner object to use in the SAS Metadata
Repository. A name that includes one or more spaces must be enclosed in
quotation marks. For details about generating a CONNECT spawner definition for
the SAS Metadata Server, see the help for the SAS/CONNECT Spawner server
type in the Server Manager of SAS Management Console.

If -SASSPAWNERCN is used, -OMRCONFIGFILE must also be used.

-SECURITY | -NOSECURITY
-SECURITY specifies that clients supply their own unique user IDs and passwords
in order to connect to a spawner. -NOSECURITY specifies that all server sessions
will be started by using a common user ID and password.

If the spawner is installed as a service (-INSTALL is specified), security is
assumed by default.

The person who installs the spawner must have the following user rights in the
Windows domain:

act as part of the operating environment

bypass traverse checking (the default is everyone)

increase quotas

replace a process level token

log on locally (the default is everyone).

All users who connect to the spawner must have the Windows domain user right
"log on as a batch job".

-SERVICE port-number | service-name
specifies an alternate port that the spawner uses to listen for incoming requests
for connection. The default is the Telnet port.

SERVUSER=user-ID
SERVPASS=password

are used if the spawner is installed as a service (-INSTALL is specified). However,
if the spawner is installed as a service and the SSL encryption service is used
(-NETENCRYPTALGORITHM=SSL is specified), SERVUSER= and
SERVERPASS= must be specified. For details about SSL, see Chapter 12,
“Encryption Options,” on page 137.

Windows Spawner � Ending the Windows Spawner 135

In order to obtain a digital certificate from a certificate store, you must specify
SERVUSER= and SERVPASS=, which define the user ID and password to be used
to start the spawner service.

Specify both the SERVUSER= and the SERVPASS= options.

USERID=user-ID
PASSWORD=password

You must specify USERID= and PASSWORD= if the spawner is installed as a
service (-INSTALL is specified) and the spawner explicitly runs unsecured
(-NOSECURITY is specified).

Because the spawner is running unsecured, clients do not have their own
identities authenticated. Instead, all clients that connect to a spawner will use a
common user ID and password.

Specify both the USERID= and PASSWORD= options.

encryption-options
The encryption options that you can set depend on which security service is used.
For details, see Chapter 12, “Encryption Options,” on page 137.

For an example of starting the Windows spawner as a service, see “Scriptless Signon
to a Windows Spawner That Runs as a Service” on page 116.

Ending the Windows Spawner
To end the spawner that runs in a DOS window, type CTRL-C or double-click in the

upper-left corner of the window that runs the spawner.
If the Windows Spawner runs as a service, you can end the spawner by using one of

the following:
� the Windows Services panel

� Type net stop "sas job spawner"

� the command spawner -delete.

136

137

C H A P T E R

12
Encryption Options

Security Services 137
Security Service Requirements 138

TCP/IP Is the Only Access Method Supported 138

Operating Environments Supported 138

Encryption Options 138

Overview 138
SAS/SECURE Options 139

SAS Proprietary Options 141

SSL Options 141

Security Services

To encrypt client/server data transfers across a network, you can use any of the
following security services.

SASproprietary
a fixed encoding algorithm is included with Base SAS software and is available in
all supported operating environments. It requires no additional SAS product
licenses. The SAS proprietary algorithm is strong enough to protect your data
from casual viewing. However, a determined hacker can break this encoding.

SAS/SECURE
an add-on product that provides additional encryption algorithms besides the SAS
proprietary algorithm. The encryption algorithms that are supported are: RC2,
RC4, DES, and TripleDES. SAS/SECURE software requires a license and must be
installed on each machine that runs a SAS/CONNECT server or a SAS/SHARE
server that will use the encryption algorithms.

SSL
SSL is an abbreviation for Secure Sockets Layer, which is a protocol that provides
network security and privacy. Developed by Netscape Communications, SSL uses
encryption algorithms that include RC2, RC4, DES, tripleDES, and MD5. Not
limited to providing only encryption services, SSL can also perform client and
server authentication, and it uses message authentication codes. SSL is supported
by both Netscape Navigator and Internet Explorer. Many Web sites use the
protocol to protect confidential user information, such as credit card numbers. By
convention, URLs that require an SSL connection begin with https: instead of
http:. The SSL protocol is application independent and allows protocols such as
HTTP, FTP, and Telnet to be transparently layered above it. SSL is optimized for
HTTP.

138 Security Service Requirements � Chapter 12

Security Service Requirements

TCP/IP Is the Only Access Method Supported
TCP/IP is the only communications access method that can be used to connect a

client to a server via a spawner.

Operating Environments Supported
The following table shows which security services support which operating

environments.

Table 12.1 Security Services Supported by Operating Environment

Security ServiceOperating
Environments SASProprietary SAS/SECURE SSL

OpenVMS Alpha X

z/OS X X

UNIX X X* X

Windows X X X

* SAS/SECURE supports the following UNIX operating environments only:
� Compaq Tru64 UNIX
� HP UX on Itanium 64-bit platform
� HP UX on a 64-bit platform
� Linux for Intel Architecture on 32-bit platform
� Solaris on a 64-bit platform

Encryption Options

Overview
The encryption options that you can specify depend on which security service is used.

The following table lists the options and indicates which service supports the option.

Table 12.2 Encryption Options

Security Services

SSL

Encryption Options

SAS
Proprietary

SAS/
SECURE UNIX Windows

-NETENCRYPT X X X X

-NETENCRYPTALGORITHM X X X X

-NETENCRYPTKEYLEN X

Encryption Options � SAS/SECURE Options 139

Security Services

SSL

Encryption Options

SAS
Proprietary

SAS/
SECURE UNIX Windows

-SSLCLIENTAUTH X X

-SSLCRLCHECK X X

-SSLCALISTLOC X

-SSLCERTLOC X

-SSLCRLLOC X

-SSLPVTKEYLOC X

-SSLPVTKEYPASS X

-SSLCERTISS X

-SSLCERTSERIAL X

-SSLCERTSUBJ X

SAS/SECURE Options

The following options can be used with SAS/SECURE.

-NETENCRYPT | -NONETENCRYPT
-NETENCRYPT specifies that encryption is required. -NONETENCRYPT specifies
that encryption is not required, but is optional. If -NETENCRYPT is not specified,
or if neither -NETENCRYPT nor -NONETENCRYPT is explicitly specified,
-NONETENCRYPT is the default.

If the -NETENCRYPTALGORITHM option is set and if both the client and the
server are capable of encryption, the default for this option is that encryption is
used. If encryption algorithms are specified but either the client or the server is
incapable of encryption, then encryption is not performed.

There is an interaction between -NETENCRYPT and
-NETENCRYPTALGORITHM. For details, see information about
-NETENCRYPTALGORITHM.

Encryption might not be supported at the client or at the server if

� A release of SAS (prior to Version 8) that does not support encryption is being
run.

� Your site (the client or the machine where the spawner is running) does not
have security software installed.

� You specified incompatible encryption algorithms in SAS sessions on the
client and the server.

� You do not have a cryptographic service provider installed in your Windows
operating environment.

� You did not specify SASPROPRIETARY, which is the only algorithm that is
supported in the OpenVMS Alpha operating environment.

-NETENCRYPTALGORITHM RC2 | RC4 | DES | TripleDES
Set this option at the server to specify one or more encryption algorithms to use in
a SAS/CONNECT session. Setting this option at the client is optional. The client
and the server must share an encryption algorithm in common. There is an

140 SAS/SECURE Options � Chapter 12

interaction between either NETENCRYPT or NONETENCRYPT and
NETENCRYPTALGORITHM. Possible sign-on interaction results follow.

Table 12.3 Sign-on Interaction Results between Options

Server Settings Client Settings Sign-On Results

-NONETENCRYPT

-NETENCRYPTALGORITHM=algorithm

No settings If the client is
capable of
encryption, an
encrypted signon
occurs. Otherwise,
the signon occurs
without
encryption.

-NETENCRYPT

-NETENCRYPTALGORITHM=algorithm

No settings If the client is
capable of
encryption, an
encrypted signon
occurs. Otherwise,
signon fails.

No settings -NONETENCRYPT

-NETENCRYPTALGORITHM=algorithm

Signon (without
encryption) occurs

No settings -NETENCRYPT

-NETENCRYPTALGORITM=algorithm

Signon fails

-NETENCRYPT or -NONETENCRYPT

-NETENCRYPTALGORITHM=algorithm-a

-NETENCRYPTALGORITHM=algorithm-b Regardless of
whether
-NETENCRYPT or
-NONETENCRYPT
is specified, signon
fails

If you specify multiple encryption algorithms, repeat the
-NETENCRYPTALGORITHM option for each algorithm name.

-NETENCRYPTKEYLEN n
Set this option in the SAS session on either the client or the server. It specifies the
key length to be used by the encryption algorithm.

Valid values for this option are

128 specifies 128-bit RC2 and RC4 algorithms.

40 specifies 40-bit RC2 and RC4 algorithms.

0 no value is set. This is the default.
If you require extra security, set the -NETENCRYPTKEYLEN option to 128. If

you prefer to save CPU, set the -NETENCRYPTKEYLEN option to 40.
By default, if you try to connect a machine that is capable of only a 40-bit key

length to a machine that is capable of both a 40-bit and a 128-bit key length, the
connection is made using the lesser key length. If both machines are capable of
128-bit key lengths, a 128-bit key length is used.

Encryption Options � SSL Options 141

SAS Proprietary Options
The following options apply to SASproprietary.

-NETENCRYPT | -NONETENCRYPT
-NETENCRYPT specifies that encryption is required. -NONETENCRYPT specifies
that encryption is not required, but is optional. If -NETENCRYPT is not specified,
or if neither -NETENCRYPT nor -NONETENCRYPT is explicitly specified,
-NONETENCRYPT is the default.

If the -NETENCRYPTALGORITHM option is set and if both the client and the
server are capable of encryption, the default for this option is that encryption is
used. If encryption algorithms are specified but either the client or the server is
incapable of encryption, then encryption is not performed.

There is an interaction between -NETENCRYPT and
-NETENCRYPTALGORITHM. For details, see information about
-NETENCRYPTALGORITHM.

Encryption might not be supported at the client or at the server if

� A release of SAS (prior to Version 8) that does not support encryption is being
run.

� Your site (the client or the machine where the spawner is running) does not
have security software installed.

� You specified incompatible encryption algorithms in SAS sessions on the
client and the server.

� You do not have a cryptographic service provider installed in your Windows
operating environment.

� You did not specify SASPROPRIETARY, which is the only algorithm that is
supported in the OpenVMS Alpha operating environment.

-NETENCRYPTALGORITHM SASPROPRIETARY
Set this option at the server to specify one or more encryption algorithms to use in
a SAS/CONNECT session. Setting this option at the client is optional. However,
the client and the server must share an encryption algorithm in common. There is
an interaction between either -NETENCRYPT or -NONETENCRYPT and
-NETENCRYPTALGORITHM. See Table 12.2 on page 138 for possible sign-on
interaction results.

SSL Options
The following options apply to SSL.

Note: SSL must be installed and configured before the SSL options can be used. For
details, see SSL setup in the SAS/CONNECT User’s Guide. �

-NETENCRYPT | -NONETENCRYPT
-NETENCRYPT specifies that encryption is required. -NONETENCRYPT specifies
that encryption is not required, but is optional. If -NETENCRYPT is not specified,
or if neither -NETENCRYPT nor -NONETENCRYPT is explicitly specified,
-NONETENCRYPT is the default.

If the -NETENCRYPTALGORITHM option is set and if both the client and the
server are capable of encryption, the default for this option is that encryption is
used. If encryption algorithms are specified but either the client or the server is
incapable of encryption, then encryption is not performed.

142 SSL Options � Chapter 12

There is an interaction between -NETENCRYPT and
-NETENCRYPTALGORITHM. For details, see information about
-NETENCRYPTALGORITHM.

Encryption might not be supported at the client or at the server if
� A release of SAS (prior to Version 8) that does not support encryption is being

run.
� Your site (the client or the machine where the spawner is running) does not

have security software installed.
� You specified incompatible encryption algorithms in SAS sessions on the

client and the server.
� You do not have a cryptographic service provider installed in your Windows

operating environment.
� You did not specify SASPROPRIETARY, which is the only algorithm that is

supported in the OpenVMS Alpha operating environment.

-NETENCRYPTALGORITHM SSL
Set this option at the server to specify one or more encryption algorithms to use in
a SAS/CONNECT session. Setting this option at the client is optional. However,
the client and the server must share an encryption algorithm in common. There is
an interaction between either -NETENCRYPT or -NONETENCRYPT and
-NETENCRYPTALGORITHM. See Table 12.2 on page 138 for possible sign-on
interaction results.

-SSLCLIENTAUTH | -NOSSLCLIENTAUTH
Use this option to specify whether the server should require SSL to provide client
authentication. Server authentication is always performed, but this option enables
a user to control client authentication. This option is meaningful only when used
on a server.

Valid only if using the SSL security service, this option is valid in UNIX and
Windows operating environments.

-SSLCRLCHECK | -NOSSLCRLCHECK
Use this option to specify whether Certificate Revocation Lists (CRLs) are checked
when a digital certificate is validated.

Valid only if using the SSL security service, this option is valid in UNIX and
Windows operating environments.

-SSLCALISTLOC file-path
specifies the location of a file that contains the digital certificates for the trusted
certificate authorities (CA). The value must be a name of a file that contains a list
of CA digital certificates that are to be trusted. This option is required at the client.
This option is required at the server only if -SSLCLIENTAUTH is also enabled.

Valid only if using the SSL security service, this option is valid in UNIX
operating environments only.

-SSLCERTLOC file-path
specifies the name of a file that contains a digital certificate. This option is
required on a server. This option is required on a client only when client
authentication is being performed.

Valid only if using the SSL security service, this option is valid in UNIX
operating environments only.

-SSLCRLLOC file-path
specifies the location of a Certificate Revocation List (CRL). Use this option only
when the -SSLCRLCHECK option is enabled.

Valid only if using the SSL security service, this option is valid in UNIX
operating environments only.

Encryption Options � SSL Options 143

-SSLPVTKEYLOC file-path
specifies the name of the file that contains the private key that corresponds to the
digital certificate that was specified by -SSLCERTLOC. Use this option only when
the -SSLCERTLOC option is specified.

Valid only if using the SSL security service, this option is used in UNIX
operating environments only.

-SSLPVTKEYPASS password
specifies the password that SSL should use to decrypt the private key that is
stored in the file that is specified by -SSLPVTKEYLOC.

This option is needed only when the private key is encrypted.
Valid only if using the SSL security service, this option is used in UNIX

operating environments only.

-SSLCERTISS issuer-of-certificate
specifies the name of the issuer of the digital certificate that SSL should use. This
option is used with -SSLCERTSERIAL to uniquely identify a digital certificate
from the Microsoft certificate store.

Valid only if using the SSL security service, this option is valid in Windows
operating environments only.

-SSLCERTSERIAL serial-number
specifies the serial number of the digital certificate that SSL should use. This
option is used with -SSLCERTISS to uniquely identify a digital certificate from the
Microsoft certificate store.

Valid only if using the SSL security service, this option is used in Windows
operating environments only.

-SSLCERTSUBJ subject-name
specifies the subject name in the digital certificate that can be used to search for
the certificate in the Microsoft certificate store.

Valid only if using the SSL security service, this option is used in Windows
operating environments only.

144

145

C H A P T E R

13
TCP/IP SERVICES File

Configuring the SERVICES File 145
Services That Require an Entry in the SERVICES File 145

Example SERVICES File 145

Explanation of Fields 146

Configuring the SERVICES File

Services That Require an Entry in the SERVICES File
You must have an entry in the SERVICES file for each of the following services, as

needed:
� Telnet service

� Spawner port

� SAS/SHARE server ID or port
� Firewall machine ports

� Dedicated TCP/IP port service that is used for MP CONNECT piping.

Note: If you have access to a UNIX operating environment, see the services (4)
manual page for more information about this file. �

The location of the SERVICES file depends on the operating environment. For
example, the UNIX services file is located at /etc/services.

Example SERVICES File
Here is an example excerpt from a SERVICES file.

The form for each entry is:
<official service name> <port number/protocol name> <alias name>
<comments>
#
Port Services

telnet 23/tcp # Telnet service
spawnport 4016/tcp # UNIX spawner port
mktserve 4017/tcp # Server for Marketing & Sales

146 Explanation of Fields � Chapter 13

server1 5011/tcp # SAS/SHARE server 1
sassrv2 5012/tcp # SAS/SHARE server 2
firewall 5010/tcp # Firewall machine port
pipe1 5020/tcp # MP Connect pipe
sea 5021/tcp biscuit # SAS/SHARE server 3

Explanation of Fields
An explanation of each field follows.

official service name
specifies the name of the service. Service names must meet the criteria for a valid
SAS name. (For details about SAS naming rules, see SAS Language Reference:
Concepts.) For example, you can create a service named SPAWNER for the UNIX
spawner program. You will need the Telnet service when signing on to any server
that does not use a PC or a UNIX spawner program.

You will also use the service name as the value for the REMOTE= option or in
the SIGNON statement to perform a server sign on.

port number
is a unique number that is associated with the service name. Each reference to
that service in other node SERVICES files must match the service’s port number
exactly. Port numbers 0 through 1023 are reserved for system use. Port numbers
that are greater than 1023 are available for user-created services.

protocol name
identifies the protocol. udp and tcp are examples of protocol names.

alias name
is an optional synonym for the service. Alias names can be application- or
user-dependent. For example, one application can refer to the server as sea and
another application refers to the same server as biscuit.

Note: Each client and server must configure the alias in its SERVICES file
before the alias can be successfully used. For example, sea and biscuit must be
configured in the SERVICES file of each client and server that will use the alias. �

comments
describe the service.

147

P A R T7

Configuring SAS/CONNECT for Use with
Firewalls

Chapter 14.Configuring SAS/CONNECT for Use with a Firewall 149

148

149

C H A P T E R

14
Configuring SAS/CONNECT for
Use with a Firewall

Definitions 149
Firewall 149

Socket Inheritance 149

Requirements for Using a Firewall 149

Firewall Configuration Example 150

Firewall Configuration 150
External Windows Client Connecting through a Firewall 150

External UNIX Client Connecting through a Firewall 151

Definitions

Firewall
A firewall is a controlled gateway between two networks. Firewalls are used to

provide a secure connection between an internal network and the Internet.
Web servers and other network applications can also use firewalls to limit access to

sensitive data. SAS/CONNECT permits TCP/IP connections between clients outside a
firewall to spawners that run on servers inside a firewall via socket inheritance.

Socket Inheritance
Socket inheritance allows the server session to inherit the socket that the spawner

uses to communicate with the client session. The socket is then used for subsequent
communications between the client and the server session. Socket inheritance is
significant because a single port can be used for starting an unlimited number of server
sessions.

Prior to this innovation, the spawner monopolized an entire port, listening for
connections, and a separate port was opened for each client that connected to a server
by using a spawner. Socket inheritance limits the number of ports that are used for
connections through a firewall, which makes the firewall configuration more secure.

Requirements for Using a Firewall

� The external clients and the servers within the firewall must be running SAS
Release 6.12 TS065 or later.

150 Firewall Configuration Example � Chapter 14

� The TCP/IP communications access method must be used for establishing a
network connection between clients and servers.

� Firewall software must be installed on the server that maintains the separation
between the internal network and the Internet.

� A port must be defined on the firewall server to be used as a gateway between
external clients and the internal network. The firewall software must route the
firewall server port to the pre-defined server port.

� A spawner must be running on a server inside the firewall. For complete details
about the spawner program, see Chapter 7, “SAS/CONNECT Spawners,” on page
113.

� Each port number can be configured into the respective services file.

Firewall Configuration Example

Firewall Configuration
The following example configuration includes three Windows NT client workstations

that are external to the organization, a firewall that runs on a Windows NT server, and
an internal local area network (LAN) that contains multiple Windows NT and UNIX
workstations.

Figure 14.1 Firewall Configuration Example

External Windows Client Connecting through a Firewall
Port 5010 on the Windows NT server that runs the firewall software has been

defined as the single port through which all external clients gain access to servers on
the internal network. On the firewall machine, port 5010 must be routed to port 5080
on the Windows NT server PCNODE that runs a spawner on the internal LAN.

Configuring SAS/CONNECT for Use with a Firewall � External UNIX Client Connecting through a Firewall 151

spawner -inheritance -service 5080
options comamid=tcp;
signon firewall.5010

The spawner is initialized to listen on port 5080 on PCNODE. An external client uses
TCP/IP to sign on to a server that is located inside the firewall by using port 5010 on
the Windows NT server FIREWALL. The firewall software routes traffic from port 5010
to port 5080 on PCNODE.

External UNIX Client Connecting through a Firewall
Port 5010 on the UNIX server that runs the firewall software has been defined as the

single port through which all external clients gain access to servers on the internal
network. On the firewall machine, port 5010 must be routed to port 5080 on the UNIX
operating environment HPNODE that runs a spawner on the internal LAN.

sastcpd -inheritance -service 5080
options comamid=tcp;
signon firewall.5010

The spawner is initialized to listen on port 5080 on HPNODE. An external client
uses TCP/IP to sign on to a server that is located inside the firewall by using port 5010
on the UNIX server FIREWALL. The firewall software routes traffic from port 5010 to
port 5080 on HPNODE.

152

153

P A R T8

SAS/CONNECT Scripts

Chapter 15.Sign-On Scripts 155

154

155

C H A P T E R

15
Sign-On Scripts

Script Rules 155
Syntax 155

Specifying Time 156

Using the WAITFOR and TYPE Statements 156

Sample Scripts 156

TCPUNIX.SCR Script 156
TCPWIN.SCR Script 161

TCPMVS.SCR Script 164

TCPTSO9.SCR Script 167

Script Rules

Syntax
For details about writing scripts, see Sign-on script files in the SAS/CONNECT

User’s Guide.
� Like other SAS statements, all script statements must end with a semicolon(;).

� Script statements have a free format, which means that there are no spacing or
indention requirements. A statement can be contained within a single line or it
can span several lines. Statement keywords are not case sensitive.

� Enclose case-sensitive text strings in quotation marks. For example, if your script
defines a text string in a WAITFOR statement, be sure that the uppercase and
lowercase characters in the text string exactly match the text string from the
server.

� You can use either single or double quotation marks to quote a string, such as a
server command, in a script statement. The rules that you use to embed quotation
marks in a SAS statement and to embed quotation marks in a script statement
are the same.

� Any script statement can include a label specification. The label must be a valid
SAS name, with a maximum of eight characters. The first character must be an
alphabetic character or an underscore. A label must be followed immediately by a
colon (:) and it can be defined only once in the script.

156 Specifying Time � Chapter 15

Specifying Time
Some script statements specify time in seconds, as follows:

n SECONDS

where n can be any number, including decimal fractions. SECOND is an alias for
SECONDS. Examples of valid time specifications follow:

0 SECONDS
0.25 SECONDS
1 SECOND
3.14 SECONDS

Using the WAITFOR and TYPE Statements
When writing a script or modifying an existing script, pay special attention to the

WAITFOR and the TYPE statements. To ensure that the script recognizes the expected
prompt during each stage of sign on, specify the exact sequence of prompts and
responses for the server.

You might test the sequence by experimenting at the server by going through the
process that you want to capture in the WAITFOR and the TYPE statements. For each
display at the server, choose a word from that display for the WAITFOR statement.
Capture in a TYPE statement the information that you type in response to a display.
Be sure to note all carriage returns or other special keys.

For example, if TSO is the server and you need to use a TYPE statement in a sign-on
script whose length is greater than 80 characters, divide the TYPE statement into two
or more TYPE statements.

To divide the TYPE statement, insert a hyphen (-) at the division point. The remote
TSO machine interprets the hyphen as the continuation of the TYPE statement from
the previous line.

For example, consider the following TYPE statement:

type "sas options (’dmr comamid=tcp’)" enter;

To divide the statements, change it to:

type "sas options (’dmr comamid=-" enter;
type "tcp’)" enter;

Note: Do not insert spaces around the hyphen. �

Sample Scripts

TCPUNIX.SCR Script
The following script connects a client to a UNIX server by using the TCP/IP access

method.

/* trace on; */
/* echo on; */
/*---*/

Sign-On Scripts � TCPUNIX.SCR Script 157

/*-- Copyright (C) 1996 by SAS Institute Inc., Cary NC --*/
/*-- --*/
/*-- name: tcpunix.scr --*/
/*-- --*/
/*-- purpose: SAS/CONNECT SIGNON/SIGNOFF script for connecting --*/
/*-- to any UNIX host by means of the TCP/IP access --*/
/*-- method --*/
/*-- --*/
/*-- notes: 1. This script might need modifications that account --*/
/*-- for the local flavor of your UNIX environment. --*/
/*-- The logon process should mimic the tasks that --*/
/*-- you perform when "telnet"-ing to the same --*/
/*-- UNIX host. If you are connecting to a spawner --*/
/*-- that is running in your UNIX environment, this --*/
/*-- script should need few or no modifications. --*/
/*-- --*/
/*-- 2. You must have specified OPTIONS COMAMID=TCP --*/
/*-- in the local SAS session before using the SIGNON --*/
/*-- statement. --*/
/*-- --*/
/*-- assumes: 1. The command to execute SAS in your remote (UNIX) --*/
/*-- environment is "sas". If this is incorrect --*/
/*-- for your site, change the contents of the line --*/
/*-- that contains: --*/
/*-- type ’sas ... --*/
/*-- --*/
/*-- support: SAS Institute staff --*/
/*-- --*/
/*---*/

/*--*/
/*-- if you are connecting to DEC ULTRIX, and the remote --*/
/*-- machine does not run the DECnet connection/gateway --*/
/*-- software, logins by means of SAS/CONNECT will appear to --*/
/*-- hang. This is due to the ULTRIX "/etc/telnetd" server --*/
/*-- treating a DONT ECHO request for both input and output --*/
/*-- streams. --*/
/*-- --*/
/*-- The DEBUG statement causes the SAS TCP/IP access method --*/
/*-- not to reply to the ECHO request, keeping the DEC telnetd --*/
/*-- server happy. --*/
/*-- --*/
/*-- Uncomment the DEBUG statement, if the logon appears to hang--*/
/*--*/
/* debug ’00001000’; */

/*--*/
/*-- If you are connecting to INTEL ABI, you need to uncomment --*/
/*-- the following DEBUG statement. This DEBUG statement --*/
/*-- allows SAS/CONNECT to set the terminal type to TTY during --*/
/*-- the Telnet negotiations that take place during SIGNON. --*/
/*--*/
/* debug ’00004000’; */

158 TCPUNIX.SCR Script � Chapter 15

u log "NOTE: Script file ’tcpunix.scr’ entered.";

if not tcp then goto notcp;
v if signoff then goto signoff;

/* --------------- TCP/IP SIGNON ---------------------------------*/

w waitfor ’login:’
, ’Username:’
, ’Scripted signon not allowed’ : noscript
, 120 seconds: noinit;

/*----------------UNIX LOGON---------------------------------------*/
/*-- for some reason, it needs an LF to turn the line around --*/
/*-- after the login name has been typed. (CR will not do) --*/
/*---*/

x input ’Userid?’;
type LF;

y waitfor ’Password’, 30 seconds : nolog;
input nodisplay ’Password?’;
type LF;

unx_log:
U waitfor ’Hello>’ : unxspawn /*- UNIX spawner prompt-*/

, ’$’ /*-- a common prompt character --*/
, ’>’ /*-- another common prompt character --*/
, ’%’ /*-- another common prompt character --*/
, ’}’ /*-- another common prompt character --*/
, ’Login incorrect’ : nouser
, ’Enter terminal type’ : unx_term
, ’TERM’ : unx_term
, 30 seconds : timeout
;

log ’NOTE: Logged onto UNIX... Starting remote SAS now.’;
/* NOTERMINAL suppresses prompts from remote SAS session. */
/* NO\$SYNTAXCHECK prevents remote side from going into */
/* syntax checking mode when a syntax error is encountered. */

V type ’sas -dmr -comamid tcp -device grlink -noterminal -no\$syntaxcheck’ LF;
W waitfor ’SESSION ESTABLISHED’, 90 seconds : nosas;

X log ’NOTE: SAS/CONNECT conversation established.’;
stop;

at unxspawn:
/* The UNIX spawner executes only a single UNIX command */
/* after the client logs on. In the TYPE statement below, */
/* you can specify a SAS command line. You can also specify */
/* a UNIX shell script that issues the SAS command line in */
/* addition to any other commands to be executed prior to */

Sign-On Scripts � TCPUNIX.SCR Script 159

/* SAS invocation. The following is a sample start-up */
/* file: */
/*#---*/
/*# sas_startup */
/*#---*/
/*#!/bin/ksh */
/*. ~/.profile */
/*sas -dmr -noterminal -no\$syntaxcheck -device grlink */
/*#---*/
/* */
/* If you choose to use a "startup" file, change the TYPE */
/* statement below to something similar to the following: */
/* type ’/usr/local/whatever/sas_startup’ LF; */

ak type ’sas -dmr -comamid tcp -device grlink -noterminal ’;
type ’-no\$syntaxcheck’ LF;

waitfor ’SESSION ESTABLISHED’, 90 seconds : nosas;
stop;

/*---------------- TCP/IP SIGNOFF --------------------------------------*/
signoff:

/* If you have established your connection to UNIX by using */
/* a UNIX spawner, you should delete or comment the */
/* following WAITFOR and TYPE statements. They are not */
/* necessary for signing off a UNIX spawner and will */
/* result in slower performance of SIGNOFF. */

al waitfor ’$’
, ’>’ /*-- another common prompt character --*/
, ’%’ /*-- another common prompt character --*/
, ’}’ /*-- another common prompt character --*/
, 30 seconds
;

type ’logout’ LF;
log ’NOTE: SAS/CONNECT conversation terminated.’;
stop;

/*--------------- SUBROUTINES -----------------------------------*/

unx_term:
/*---*/
/*-- Some UNIX platforms want the terminal type, --*/
/*-- so tell them this is the most basic of terminals. --*/
/*---*/

type ’tty’ LF;
goto unx_log;

/*--------------- ERROR ROUTINES --------------------------------*/

am timeout:
log ’ERROR: Timeout waiting for remote session response.’;

160 TCPUNIX.SCR Script � Chapter 15

abort;

nouser:
log ’ERROR: Unrecognized userid or password.’;
abort;

notcp:
log ’ERROR: Incorrect communications access method.’;
log ’NOTE: You must set "OPTIONS COMAMID=TCP;" before using this’;
log ’ script file.’;
abort;

noinit:
log ’ERROR: Did not understand remote session banner.’;

nolog:
log ’ERROR: Did not receive userid or password prompt.’;
abort;

nosas:
log ’ERROR: Did not get SAS software start-up messages.’;
abort;

noscript:
/* This is the result of trying to sign on with a script file */
/* to a UNIX spawner that has been invoked with the -NOSCRIPT */
/* option. You need to clear any script file reference and */
/* then re-execute SIGNON. */
log ’ERROR: Scripted signons are not allowed.’;
log ’NOTE: Clear any script file reference and retry SIGNON.’;
abort;

1 The LOG statement sends the enquoted message to the log file or to the LOG
window of the SAS session at the client. Although it is unnecessary to include
LOG statements in your script file, the LOG statements keep the user informed
about the progress of the connection.

2 The IF/THEN statement can detect whether the script was called by the SIGNON
statement or the SIGNOFF statement. When you are signing off, the IF/THEN
statement directs script processing to the statement labeled SIGNOFF. See step 12.

3 The WAITFOR statement awaits the login prompt from the server. If the
statement does not receive the prompt within 120 seconds, it directs script
processing to branch to the statement labeled NOINIT.

4 The INPUT statement displays a window with the text Userid? to allow the user
to enter a server logon user ID. The TYPE statement sends a line feed to the
server to enter the user ID to the server.

5 The WAITFOR statement waits for the password prompt from the server and
branches to the NOLOG label if it is not received within 30 seconds. The INPUT
statement that follows the WAITFOR statement displays a window in which the
user enters a password.

6 The WAITFOR statement waits for one of several common UNIX prompts and
branches to various error handles if a prompt is not displayed. For a connection to
the UNIX spawner, the string "Hello >" is received and the control branches to the

Sign-On Scripts � TCPWIN.SCR Script 161

unxspawn label in step 10. Verify that the WAITFOR statement in the script looks
for the correct prompt for your site.

7 The TYPE statement invokes SAS on the server. The -DMR option is necessary to
invoke a special processing mode for SAS/CONNECT. The -COMAMID option
specifies the access method that is used to make the connection.

8 The message SESSION ESTABLISHED is displayed when a SAS session is started on
the server by using the options -DMR and -COMAMID TCP. The WAITFOR
statement awaits the display of the message SESSION ESTABLISHED to be issued
by the server. If the SESSION ESTABLISHED response is received within 90 seconds,
processing continues with the next LOG statement. If the SESSION ESTABLISHED
response does not occur within 90 seconds, the script assumes that the remote SAS
session has not started, and processing branches to the statement labeled NOSAS.

9 After the connection has been successfully established, the user must stop the rest
of the script from processing. Without this STOP statement, processing continues
through the remaining statements in the script.

10 This section of code is executed when you connect to a remote UNIX spawner.
11 The TYPE statement invokes SAS on the server. The -DMR option is necessary to

invoke a special processing mode for SAS/CONNECT. The -COMAMID option
specifies the access method that is used to make the connection.

12 This section of code is executed when the script is invoked to terminate the link.
The IF statement (see step 2) sends processing to this section of the script when
the script is invoked by a SIGNOFF statement. This section logs the user off the
server after the user executes LOGOFF. Before it stops the link, the script issues a
LOG statement to notify the user that the link is terminated.

13 These statements are processed only if the prompts expected in the previous steps
are not received. This section of the script issues messages to the SAS log at the
client and then abnormally ends the script processing as well as the SIGNON.

TCPWIN.SCR Script
The following script signs a client on and off a Windows NT or a Windows 95 server

by using the TCP/IP access method.

/* trace on; */
/* echo on; */
/*---*/
/*-- Copyright (C) 1996 by SAS Institute Inc., Cary NC --*/
/*-- --*/
/*-- name: tcpwin.scr --*/
/*-- --*/
/*-- purpose: SAS/CONNECT SIGNON/SIGNOFF script for connecting --*/
/*-- to either a Windows 95 or a Windows NT host by --*/
/*-- using the TCP/IP access method. --*/
/*-- --*/
/*-- notes: 1. You must have the spawner program executing on --*/
/*-- the remote Windows 95 or Windows NT workstation --*/
/*-- in order for the local session to be able to --*/
/*-- establish the connection. If the spawner is --*/
/*-- running on the remote node, you will receive a --*/
/*-- message that tells you that the connection has --*/
/*-- been refused. --*/
/*-- --*/
/*-- 2. You must have specified OPTIONS COMAMID=TCP --*/

162 TCPWIN.SCR Script � Chapter 15

/*-- in the local SAS session before using the SIGNON --*/
/*-- command. --*/
/*-- --*/
/*-- assumes: 1. The command to execute SAS in your remote --*/
/*-- (Windows 95 or Windows NT) environment is "sas". --*/
/*-- If this is incorrect for your site, change the --*/
/*-- contents of the line that contains: --*/
/*-- type ’sas ... --*/
/*-- --*/
/*-- support: SAS Institute staff --*/
/*-- --*/
/*---*/

u log "NOTE: Script file ’tcpwin.scr’ entered.";

if not tcp then goto notcp;
v if signoff then goto signoff;

/* --------------- TCP/IP SIGNON ---------------------------------*/

w waitfor ’Username:’
, ’Hello>’ : ready
, ’access denied’ : nouser
, 120 seconds : noprompt
;

x input ’Userid?’;
type LF;

y waitfor ’Password:’ , 120 seconds: nolog;
input nodisplay ’Password?’;
type LF;

U waitfor ’Hello>’
, ’access denied’ : nouser
, 120 seconds : timeout
;

ready:
log ’NOTE: Logged onto Windows... Starting remote SAS now.’;
/* NOTERMINAL suppresses prompts from remote SAS session. */
/* NO$SYNTAXCHECK prevents remote side from going into syntax */
/* checking mode when a syntax error is encountered. */

V type ’sas -dmr -comamid tcp -device grlink -noterminal -no$syntaxcheck’ LF;
W waitfor ’SESSION ESTABLISHED’, 120 seconds : nosas;

X log ’NOTE: SAS/CONNECT conversation established.’;
stop;

/*---------------- TCP/IP SIGNOFF -----------------------------------*/

at signoff:
log ’NOTE: SAS/CONNECT conversation terminated.’;
stop;

Sign-On Scripts � TCPWIN.SCR Script 163

/*--------------- SUBROUTINES -----------------------------------*/

/*--------------- ERROR ROUTINES --------------------------------*/
ak

notcp:
log ’ERROR: Incorrect communications access method.’;
log ’NOTE: You must set "OPTIONS COMAMID=TCP;" before using this’;
log ’ script file.’;
abort;

noprompt:
log ’ERROR: Did not receive userid prompt.’;
log ’NOTE: Ensure spawner process is running on remote node.’;
abort;

nolog:
log ’ERROR: Did not receive password prompt.’;
abort;

nouser:
log ’ERROR: Unrecognized userid or password.’;
abort;

nosas:
log ’ERROR: Did not get SAS software startup messages.’;
abort;

timeout:
log ’ERROR: Timeout waiting for remote session response.’;
abort;

1 The LOG statement sends the enquoted message to the log file or to the LOG
window of the SAS session at the client. Although it is not necessary to include
LOG statements in your script file, the LOG statements keep the user informed
about the progress of the connection.

2 The IF/THEN statement detects whether the script was called by the SIGNON
statement or by the SIGNOFF statement. When you sign off, the IF/THEN
statement directs script processing to the statement that is labeled SIGNOFF. See
step 10.

3 The WAITFOR statement awaits the login prompt from the server and branches to
various error handles if this prompt is not displayed.

4 The INPUT statement displays a window with the text Userid? to allow the user
to enter a server logon user ID. The TYPE statement sends a line feed to the
server to enter the user ID to the server.

5 The WAITFOR statement awaits the password prompt from the server and
branches to the NOLOG label if it is not received within 120 seconds. The INPUT
statement that follows the WAITFOR statement displays a window in which the
user enters a password.

6 The WAITFOR statement awaits the "Hello > " prompt that it expects to see from
the Windows spawner. If the statement does not receive the prompt within 120

164 TCPMVS.SCR Script � Chapter 15

seconds, it directs script processing to branch to the statement that is labeled
TIMEOUT.

7 The TYPE statement invokes SAS on the server. The -DMR option is necessary to
invoke a special processing mode for SAS/CONNECT. The -COMAMID option
specifies the access method that is used to make the connection.

8 The message SESSION ESTABLISHED is displayed when a SAS session is started on
the server by using the -DMR and -COMAMID TCP options. The WAITFOR
statement awaits the display of the message SESSION ESTABLISHED to be issued
by the server. If the SESSION ESTABLISHED response is received within 120
seconds, processing continues with the next LOG statement. If the SESSION
ESTABLISHED response does not occur within 120 seconds, the script assumes that
the remote SAS session has not started and processing branches to the statement
labeled NOSAS.

9 After the connection has been successfully established, the user must stop the rest
of the script from processing. Without this STOP statement, processing continues
through the remaining statements in the script.

10 This section of code is executed when the script is invoked to terminate the link.
The IF statement (see step 2) sends processing to this section of the script when
the script is invoked by a SIGNOFF statement. Before it stops the link, the script
issues a LOG statement to notify the user that the link is terminated.

11 These statements are processed only if the prompts expected in the previous steps
are not received. This section of the script issues messages to the SAS log at the
client and then abnormally ends the script processing as well as the SIGNON.

TCPMVS.SCR Script
The following script enables a client to sign on and to sign off a z/OS server with

TSO. The TCP/IP access method is used.

/*---*/
/*-- Copyright (C) 1990 by SAS Institute Inc., Cary NC --*/
/*-- --*/
/*-- name: tcpmvs.scr --*/
/*-- --*/
/*-- purpose: SAS/CONNECT SIGNON/SIGNOFF script for connecting --*/
/*-- to a z/OS host via the TCP/IP access method --*/
/*-- --*/
/*-- notes: 1. This script might need modifications that account --*/
/*-- for the local flavor of your z/OS environment. --*/
/*-- The logon procedure should mimic the tasks that --*/
/*-- you perform when "telnet"-ing to the same --*/
/*-- z/OS host through TSO. --*/
/*-- --*/
/*-- 2. You must have specified OPTIONS COMAMID=TCP --*/
/*-- in the local SAS session before using the signon --*/
/*-- command. --*/
/*-- --*/
/*-- 3. This script supports one flavor of connection: --*/
/*-- through a TSO session whose logon procedure --*/
/*-- invokes SAS directly rather than the TSO TMP. --*/
/*-- --*/
/*-- support: SAS Institute staff --*/
/*-- --*/

Sign-On Scripts � TCPMVS.SCR Script 165

/*---*/

u log "NOTE: Script file ’tcpmvs.scr’ entered.";

if not tcp then goto notcp;
v if signoff then goto signoff;

/* ------------------------ TCP SIGNON ------------------------------*/

/* make sure you are running the IBM TCP/IP */
w waitfor ’ENTER USERID’ : tsologon,

120 seconds : noinit;

/*-------------------------- TSO LOGON ------------------------------*/

tsologon:
x input ’Userid?’;

type LF;
y waitfor ’ENTER PASSWORD’, 60 seconds : nolog;

tsopass:
input nodisplay ’Password?’;
type LF;

tsodone:
U waitfor ’SESSION ESTABLISHED’,

’PASSWORD INVALID’ : tsopass,
’ENTER NEW PASSWORD’ : tsonewp,
’CURRENTLY LOGGED ON’ : dup_log,
’NOT VALID’ : nouser,
120 seconds : notso;

waitfor 1 second;

V log ’NOTE: SAS/CONNECT conversation established.’;
stop;

tsonewp:
W input nodisplay ’New Password?’;

type LF;

X waitfor ’VERIFY NEW PASSWORD’,
120 seconds : notso;

input nodisplay ’Verify New Password’;
type LF;

goto tsodone;

/*---------------------------- SIGNOFF ------------------------------*/
at signoff:

type ’logoff’ LF;
waitfor ’LOGGED OFF’ : logoff,

20 seconds;

166 TCPMVS.SCR Script � Chapter 15

log ’WARNING: Did not get messages confirming logoff.’;
abort;

logoff:
log ’NOTE: SAS/CONNECT conversation terminated.’;
stop;

/*----------------------- TSO ERROR ROUTINES ------------------------*/

ak nouser:
log ’ERROR: Unrecognized userid.’;
abort;

notcp:
log ’ERROR: Incorrect communications access method.’;
log ’NOTE: You must set "OPTIONS COMAMID=TCP;" before using this’;
log ’ script file.’;
abort;

noinit:
log ’ERROR: Did not understand remote session banner.’;
abort;

nolog:
log ’ERROR: Did not get userid or password prompt.’;
abort;

notso:
log ’ERROR: Did not get TSO startup messages after logon.’;
abort;

dup_log:
log ’ERROR: User is already logged onto TSO.’;
abort;

1 The LOG statement sends the enquoted message to the log file or to the LOG
window of the SAS session at the client. Although it is not necessary to include
LOG statements in your script file, the LOG statements keep the user informed
about the progress of the connection.

2 The IF/THEN statement detects whether the script was called by the SIGNON
statement. When you are signing off, the IF/THEN statement directs script
processing to the statement labeled SIGNOFF. See step 10.

3 The WAITFOR statement awaits the login prompt from the server. If the
statement does not receive the prompt within 120 seconds, it directs script
processing to branch to the statement labeled NOINIT.

4 The INPUT statement displays a window with the text Userid? to allow the user
to enter a server logon user ID. The TYPE statement sends a line feed to the
server to enter the user ID to the server.

5 The WAITFOR statement waits for the password prompt from the server and
branches to the NOLOG label if it is not received within 60 seconds. The INPUT
statement that follows the WAITFOR statement displays a window for the user to
enter a password.

6 The message SESSION ESTABLISHED is displayed when a SAS session is started on
the server. The WAITFOR statement awaits the display of the message SESSION

Sign-On Scripts � TCPTSO9.SCR Script 167

ESTABLISHED to be issued by the server. If the SESSION ESTABLISHED response is
received within 120 seconds, processing continues with the next LOG statement. If
the SESSION ESTABLISHED response does not occur within 120 seconds, the script
assumes that the remote SAS session has not started and processing branches to
the statement labeled NOTSO.

7 After the connection has been successfully established, the user must stop the rest
of the script from processing. Without this STOP statement, processing continues
through the remaining statements in the script.

8 This section prompts for a new password if the password has expired. The INPUT
statement displays a window with the text New Password? to allow the user to
enter a password. The TYPE statement sends a line feed to the server to enter the
password to the server.

9 The WAITFOR statement waits for the prompt to verify the new password from
the server and branches to the NOTSO label if it is not received within 120
seconds. The INPUT statement that follows the WAITFOR statement displays a
window in which the user re-enters the new password for verification.

10 This section of code is executed when the script is invoked to terminate the link.
The IF statement (see step 2) sends processing to this section of the script when
the script is invoked by a SIGNOFF statement. This section awaits a server
prompt before displaying LOGOFF, which logs the user off the server. Before it
stops the link, the script issues a LOG statement to notify the user that the link is
terminated.

11 These statements are processed only if the prompts expected in the previous steps
are not received. This section of the script issues messages to the SAS log at the
client and then abnormally ends the script processing as well as the SIGNON.

TCPTSO9.SCR Script
The following script enables a client to sign on and to sign off a z/OS server with

TSO or to a z/OS spawner. The TCP/IP access method is used.

/* trace on; */
/* echo on; */
/*---*/
/*-- Copyright (C) 2003 by SAS Institute Inc., Cary NC --*/
/*-- --*/
/*-- name: tcptso9.scr --*/
/*-- --*/
/*-- purpose: SAS/CONNECT SIGNON/SIGNOFF script for connecting --*/
/*-- to a z/OS host running SAS 9 or later via the --*/
/*-- TCP/IP access method. --*/
/*-- --*/
/*-- notes: 1. This script might need modifications that account --*/
/*-- for the local flavor of your z/OS environment. --*/
/*-- The logon procedure should mimic the tasks that --*/
/*-- you perform when "telnet"-ing to the same --*/
/*-- z/OS host, either to TSO or to the z/OS --*/
/*-- spawner. --*/
/*-- --*/
/*-- 2. You must have specified OPTIONS COMAMID=TCP --*/
/*-- in the local SAS session before using the SIGNON --*/
/*-- command. --*/
/*-- --*/

168 TCPTSO9.SCR Script � Chapter 15

/*-- 3. This script supports two flavors of connection: --*/
/*-- through a TSO session whose logon procedure --*/
/*-- invokes the TSO TMP or through the z/OS --*/
/*-- spawner. --*/
/*-- --*/
/*-- 4. If you use the spawner to start the SAS session, --*/
/*-- in the signoff portion of the script, comment the --*/
/*-- LOGOFF command, which is only needed to complete --*/
/*-- TSO session termination and is not necessary for --*/
/*-- a spawned session. --*/
/*-- --*/
/*-- assumes: 1. The shell script to execute SAS in your remote --*/
/*-- z/OS environment is: --*/
/*-- "/usr/local/bin/spawnsas.sh" --*/
/*-- If you are using a different shell script or have --*/
/*-- your shell script stored in a different location, --*/
/*-- change the contents of the type statement that --*/
/*-- specifies this shell script: --*/
/*-- type "/usr/local/bin/spawnsas.sh ..." LF; --*/
/*-- --*/
/*-- 2. The command to execute SAS in your remote --*/
/*-- (MVS/TSO) environment is "sas". If this is --*/
/*-- incorrect for your site, change the contents of --*/
/*-- the line for connection through TSO that --*/
/*-- contains: --*/
/*-- type "sas ..." lf; --*/
/*-- --*/
/*-- support: SAS Institute staff --*/
/*-- --*/
/*---*/

u log "NOTE: Script file ’tcptso9.scr’ entered.";

if not tcp then goto notcp;
v if signoff then goto signoff;

/* ------------------------ TCP SIGNON ------------------------------*/

/* make sure you are running the IBM TCP/IP or the z/OS spawner */
w waitfor ’Username:’ : spnlogon,

’ENTER USERID’ : tsologon,
120 seconds : noinit;

/*------------------------- SPAWNER LOGON ---------------------------*/

spnlogon:
x input ’Userid?’;

type LF;

y waitfor ’Password’, 120 seconds : spnfail;
input nodisplay ’Password?’;
type LF;

spndone:

Sign-On Scripts � TCPTSO9.SCR Script 169

U waitfor ’Hello>’,
’Userid’ : spnlogon,
’Password expired’ : spnnewp,
120 seconds : spnfail;

V type "/usr/local/bin/spawnsas.sh nosasuser opt(’’dmr comamid=tcp’’)" LF;

W waitfor ’SESSION ESTABLISHED’, 120 seconds : spnfail;

X log ’NOTE: SAS/CONNECT conversation established.’;
stop;

spnnewp:
at input nodisplay ’New Password?’;

type LF;

waitfor ’Verify new password’, 120 seconds : spnfail;

input nodisplay ’Verify New Password’;
type LF;

goto spndone;

spnfail:
log ’ERROR: Invalid SPAWNER prompt message received.’;
abort;

/*-------------------------- TSO LOGON ------------------------------*/

tsologon:
ak input ’Userid?’;

type LF;
al waitfor ’ENTER PASSWORD’, 60 seconds : nolog;

input nodisplay ’Password?’;
type LF;

tsodone:
am waitfor ’READY’,

’CURRENTLY LOGGED ON’ : dup_log,
’NOT VALID’ : nouser,
’PASSWORD INVALID’ : nopass,
’ENTER NEW PASSWORD’ : tsonewp,
’RECONNECT SUCCESS’ : recon,
120 seconds : notso;

waitfor 1 second;

strt_sas:
log ’NOTE: Logged on to TSO.... Starting remote SAS now.’;
/* The value for the TCPIPPRF option, which locates TCP config */
/* data sets, is site specific. The need for this option depends */
/* on your TCP configuration. NOTERMINAL suppresses prompts from */
/* remote SAS session. NOSYNTAXCHECK prevents remote side from */
/* going into syntax checking mode when a syntax error is encountered. */

an type "sas o(’dmr,comamid=TCP,noterminal,nosyntaxcheck’)" LF;

170 TCPTSO9.SCR Script � Chapter 15

ao waitfor ’SESSION ESTABLISHED’, 120 seconds : nosas;

ap log ’NOTE: SAS/CONNECT conversation established.’;
stop;

tsonewp:
aq input nodisplay ’New Password?’;

type LF;

waitfor ’VERIFY NEW PASSWORD’,
120 seconds : notso;

input nodisplay ’Verify New Password’;
type LF;

goto tsodone;

/*---------------------------- SIGNOFF ------------------------------*/
ar signoff:
/* --------- for the spawner, comment the following section ---------*/

waitfor ’READY’, 20 seconds: noterm;
type ’logoff’ LF;
waitfor ’LOGGED OFF’ : logoff,

20 seconds;

log ’WARNING: Did not get messages confirming logoff.’;
abort;

logoff:
/*---------- for the spawner, comment the previous section ----------*/

log ’NOTE: SAS/CONNECT conversation terminated.’;
stop;

/*----- SUBROUTINES ---*/

as recon:
log ’NOTE: Reconnected to previous session. Old SAS session lost.’;
type LF;
waitfor ’READY’ : strt_sas,

120 seconds;
log ’NOTE: Reconnected to a Running Session, but no READY prompt’;
abort;

/*--------------- ERROR ROUTINES --------------------------------*/

bt nouser:
log ’ERROR: Unrecognized userid.’;
abort;

nopass:
log ’ERROR: Invalid password.’;
abort;

Sign-On Scripts � TCPTSO9.SCR Script 171

notcp:
log ’ERROR: Incorrect communications access method.’;
log ’NOTE: You must set "OPTIONS COMAMID=TCP;" before using this’;
log ’ script file.’;
abort;

noinit:
log ’ERROR: Did not understand remote session banner.’;
abort;

nolog:
log ’ERROR: Did not get userid or password prompt.’;
abort;

notso:
log ’ERROR: Did not get TSO startup messages after logon.’;
abort;

nosas:
log ’ERROR: Did not get SAS software startup messages.’;
abort;

dup_log:
log ’ERROR: User is already logged onto TSO.’;
abort;

noterm:
log ’ERROR: Did not get READY prompt; remote session still logged on.’;
abort;

1 The LOG statement sends the quoted message to the log file or to the LOG
window of the SAS session at the client. Although it is not necessary to include
LOG statements in your script file, the LOG statements keep the user informed
about the progress of the connection.

2 The IF/THEN statement detects whether the script was called by the SIGNON
statement or by the SIGNOFF statement. When you sign off, the IF/THEN
statement directs script processing to the statement that is labeled SIGNOFF. See
step 18.

3 The WAITFOR statement awaits the login prompt from the server. If the
statement does not receive the prompt within 120 seconds, it directs script
processing to branch to the statement labeled NOINT.

4 The INPUT statement displays a window containing a prompt for a user ID so
that the user can enter a server logon user ID. The TYPE statement sends a line
feed to the server to enter the user ID to the server. This section is entered when
the SAS/CONNECT spawner is encountered.

5 The WAITFOR statement waits for the password prompt from the server and
branches to the SPNFAIL label if it is not received within 120 seconds. The
INPUT statement that follows the WAITFOR statement displays a window for the
user to enter a password in.

6 The WAITFOR statement awaits the Hello prompt that it expects to receive from
the spawner. If WAITFOR does not receive the prompt, it branches to various
condition handlers.

172 TCPTSO9.SCR Script � Chapter 15

7 The TYPE statement calls a shell script to start SAS, and it passes the options
that are needed for the SAS/CONNECT session. For a sample shell script, see
“Defining the Shell Script for Starting SAS” on page 125.

8 The message SESSION ESTABLISHED is displayed when a SAS session is started on
the server by using the DMR and COMAMID=TCP options. The WAITFOR
statement awaits the display of the message SESSION ESTABLISHED that is issued
by the server. If the SESSION ESTABLISHED response is received within 120
seconds, processing continues with the next LOG statement. If the response is not
received in the specified time period, the script assumes that the remote SAS
session has not started and processing branches to the statement labeled
SPNFAIL.

9 After the connection has been successfully established, the user must stop the rest
of the script from processing. Without this STOP statement, processing continues
through the remaining statements in the script. Prior to the STOP, a message is
output to the log, which informs the user that the connection has been established.

10 This section prompts for a new password if the password has expired.
11 The INPUT statement displays a window that contains a prompt for a user ID so

that the user can enter a server logon user ID. The TYPE statement sends a line
feed to the server to enter the user ID to the server. This section is entered when a
TSO login is encountered.

12 The WAITFOR statement awaits the password prompt from the server and
branches to the NOLOG label if it is not received within 60 seconds. The INPUT
statement that follows the WAITFOR statement displays a window for the user to
enter a password.

13 The WAITFOR statement awaits the READY prompt after successful TSO logon.
It branches to various condition handlers if this prompt is not received.

14 The TYPE statement issues the command to start SAS through the TSO session,
and passes options that are needed for the SAS/CONNECT session.

15 The message SESSION ESTABLISHED is displayed when a SAS session is started on
the server using the DMR and COMAMID=TCP options. The WAITFOR statement
awaits the display of the message SESSION ESTABLISHED to be issued by the
server. If the SESSION ESTABLISHED response is received within 120 seconds,
processing continues with the next LOG statement. If the response is not received
within the time limit, the script assumes that the remote SAS session has not
started and processing branches to the statement labeled NOSAS.

16 After the connection has been successfully established, the user must stop the rest
of the script from processing. Without this STOP statement, processing continues
through the remaining statements in the script. Prior to the STOP, a message is
output to the log, which informs the user that the connection has been established.

17 This section prompts for a new password if the password has expired.
18 This section of code is executed when the script to terminate the link is invoked.

The IF statement (see step 2) sends processing to this section of the script when
the script is invoked by a SIGNOFF statement. This section awaits a server
prompt before displaying LOGOFF, which logs the user off the server. Before it
terminates the link, the script issues a LOG statement to notify the user that the
link is terminated.

Note: If the session has been established through the z/OS spawner, the
WAITFOR and TYPE statements should be deleted or commented out. They are
necessary only for signing off a TSO connection. �

19 This section handles the case where SIGNON reconnects the user to a SAS session
that is still running on the server. It sends the script back to the section that
starts SAS through a TSO signon.

Sign-On Scripts � TCPTSO9.SCR Script 173

20 These statements are processed only if the prompts expected in the previous steps
are not received. This section of the script issues messages to the SAS log at the
client and then abnormally ends the script processing as well as the SIGNON.

174

175

P A R T9

Error Messages

Chapter 16.z/OS Error Messages 177

Chapter 17.OpenVMS Alpha Error Messages 179

Chapter 18.UNIX Error Messages 181

Chapter 19.Windows Error Messages 183

176

177

C H A P T E R

16
z/OS Error Messages

z/OS: TCP/IP Access Method 177
SAS/CONNECT Error Messages under z/OS 177

SAS/SHARE Error Messages under z/OS 177

z/OS: TCP/IP Access Method

SAS/CONNECT Error Messages under z/OS
For TCP/IP, if SAS/CONNECT is unable to connect to the TCP/IP port, the following

system message appears:

connection refused

The connection might fail at SIGNON because

� The remote side is not listening.

� The packet sequence is out of order, which can indicate that the routers are not
working properly.

� The maximum number of connections has been reached.

� There is a flow problem, which indicates that too many packets are being sent to
the remote side at the same time.

Under z/OS, use the NETSTAT utility to show active sockets and to show who is
waiting for a socket.

SAS/SHARE Error Messages under z/OS

No TCP service <server-id> on this host

The service that is specified in the SERVERID= option is not one of the SAS/SHARE
TCP/IP services that are defined in the TCP services file.

Cannot locate TCP host <host name>

The TCP/IP software is probably not running on the server’s node.

Cannot bind TCP socket. System message is ’address already in use ’

178 SAS/SHARE Error Messages under z/OS � Chapter 16

Another server with the same name is already running on this node, or another TCP/
IP application is using the predefined port numbers that the TCP/IP access method is
trying to use. If another server of the same name is running, choose one of the other
defined server names. If there is no other server running that has the same name,
there might be a conflict with another software package. Please contact your system
administrator.

Cannot connect to TCP socket. System message is ’connection refused’

The server that is specified by the SERVER= option cannot be located on the
specified node.

Cannot locate TCP host <node>

The node that is specified in a two-level name is not known to the TCP/IP software,
or the TCP/IP software is not running on the user’s node. See “Specifying the Server”
on page 21 for information about two-level server names.

179

C H A P T E R

17
OpenVMS Alpha Error Messages

OpenVMS Alpha: TCP/IP Access Method 179
SAS/CONNECT and SAS/SHARE Error Messages under OpenVMS Alpha 179

SAS/SHARE Error Messages under OpenVMS Alpha 179

OpenVMS Alpha: TCP/IP Access Method

SAS/CONNECT and SAS/SHARE Error Messages under OpenVMS Alpha
If SAS/CONNECT or SAS/SHARE is unable to connect to the TCP/IP port, the

following system message appears:

connection refused

The connection might fail at SIGNON because
� The remote side is not listening.
� The maximum number of connections has been reached.

SAS/SHARE Error Messages under OpenVMS Alpha
Failure to enter a server’s name, a port, and an alias in the SERVICES file results in

an error when you try to access the server.
The following partial SAS log shows the error message that the user receives if the

server service is omitted from the SERVICES file.

36 options comamid=tcp fullstimer;
37 %let tcpsec=_prompt_;
38 libname sasdata ’edc.prog2.sasdata’

server=sdcmvs.sharsrvx;
You cannot connect to server SDCMVS.SHARSRVX because
ERROR: No TCP service ’sharsrvx’ on this host.
ERROR: Error in the LIBNAME or FILENAME statement.

No TCP service <server-id> on this host.

The service that is specified in the SERVERID= option is not one of the SAS/SHARE
TCP/IP service names that are defined in the TCP services file.

180 SAS/SHARE Error Messages under OpenVMS Alpha � Chapter 17

Cannot locate TCP host <node>

The TCP/IP software is probably not running on the server’s node.

Cannot bind TCP socket. System message is ’address already in use’

Another server that has the same name is already running on this node, or another
TCP/IP application is using the predefined port numbers that the TCP/IP access method
is trying to use. If another server that has the same name is running, choose one of the
other defined server names. If there is no other server running that has the same
name, there might be a conflict with another software package. Contact your system
administrator.

181

C H A P T E R

18
UNIX Error Messages

UNIX: TCP/IP Access Method 181
SAS/CONNECT Error Messages under UNIX 181

SAS/SHARE Error Messages under UNIX 181

UNIX: TCP/IP Access Method

SAS/CONNECT Error Messages under UNIX
For TCP/IP, if SAS/CONNECT is unable to connect to the TCP/IP port, the following

system message appears:

connection refused

The connection might fail at SIGNON because

� The remote side is not listening.

� The maximum number of connections has been reached.

SAS/SHARE Error Messages under UNIX
The TCP/IP access method that is used by SAS/SHARE sometimes issues generalized

messages to identify problems. This section describes some of the most frequently
encountered messages.

No TCP service <server-id> on this host

The service that is specified in the SERVERID= option is not one of the services that
is defined in the TCP services file.

Cannot bind TCP socket. System message is ’address already in use’

Another server that has the same name is already running on this node, or another
TCP/IP application is using the predefined port numbers that the TCP/IP access method
is trying to use. If another server of the same name is running, choose one of the other
predefined server names. If there is no other server running that has the same name,
there might be a conflict with another software package. Please contact your SAS
support consultant.

Cannot connect to TCP socket. System message is ’connection refused’

182 SAS/SHARE Error Messages under UNIX � Chapter 18

The server that is specified by the SERVER= option cannot be located on the
specified node.

Cannot locate TCP host ’node’

The node that is specified in a two-level node name is not known to the TCP/IP
software.

183

C H A P T E R

19
Windows Error Messages

Windows: TCP/IP Access Method 183
SAS/CONNECT Error Messages under Windows 183

SAS/SHARE Error Messages under Windows 183

Windows: TCP/IP Access Method

SAS/CONNECT Error Messages under Windows
For TCP/IP, if SAS/CONNECT is unable to connect to the TCP/IP port, the following

system message appears:

connection refused

The connection might fail at SIGNON because

� The remote side is not listening.

� The maximum number of connections has been reached.

SAS/SHARE Error Messages under Windows
The TCP/IP access method used by SAS/SHARE sometimes issues generalized

messages to identify problems. This section describes some of the most frequently
encountered messages.

ERROR: Communication request rejected by partner:
security verification failure

An unauthorized client tried to connect to a secure server.

No TCP service server-id on this host.

The service that is specified in the SERVERID= option is not one of the SAS/SHARE
TCP/IP service names that are defined in the TCP/IP services file.

Cannot locate TCP host ’node’.

The TCP/IP software is probably not running on the server’s node. The node that
was specified in a two-level name is not known to the TCP/IP software, or the TCP/IP
software is not running on the user’s node.

184 SAS/SHARE Error Messages under Windows � Chapter 19

Cannot bind TCP socket.
System message is ’address already in use’.

Another server that has the same name is already running on this node, or another
TCP/IP application is using the predefined port numbers that the TCP/IP access method
is trying to use. If another server that has the same name is running, choose one of the
other predefined server names. If there is no other server running that has the same
name, there might be a conflict with another software package. Contact the SAS
installation representative at your site for assistance in resolving the problem.

Cannot connect to TCP socket.
System message is ’connection refused’.

The server that was specified by the SERVER= option cannot be located on the
specified node.

185

P A R T10

Appendix

Appendix 1.Recommended Reading 187

186

187

A P P E N D I X

1
Recommended Reading

Recommended Reading 187

Recommended Reading

Here is the recommended reading list for this title:
� SAS/CONNECT User’s Guide
� SAS/SHARE User’s Guide
� Moving and Accessing SAS Files
� SAS Companion that is specific to your operating environment

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

188

189

Glossary

autoexec file
a file that contains SAS statements that are executed automatically when you start
SAS. The autoexec file can be used to specify some of the SAS system options, as well
as to assign librefs and filerefs to data sources that are used frequently.

authentication
the act of verifying the identity of the user who is attempting to access the machine
that either the client session or the server session runs on. Authentication is
performed so that a machine can use the identity to make decisions about the user’s
permissions to access protected resources. In Windows, the user ID, password, and
access permissions make up a user context. See also user context.

client
the side of the client/server relationship that requests the delivery of a particular
type of information. The client side is often considered the workstation or personal
computer from which the request is made. Implicit in the client/server relationship is
the network. See also server, SAS/CONNECT client, SAS/SHARE client.

client authentication
See authentication.

client session
See client, SAS/CONNECT client, SAS/SHARE client.

command file
a file that contains operating environment commands to be executed in sequence.

communications access method
the method that a client uses to communicate with a server. You can use the
COMAMID= system option to specify the communications access method.

data set
See SAS data set.

fileref
a name that is temporarily assigned to an external file or to an aggregate storage
location such as a directory or folder. The fileref identifies the file or the storage
location to SAS. See also libref.

190 Glossary

Job Control Language (JCL)
a language that is used in the z/OS operating environment to communicate
information about a job to the operating environment, including the data sets, time,
and memory that the job needs.

libref
a name that is temporarily associated with a SAS data library. For example, in the
name SASUSER.ACCOUNTS, the name SASUSER is the libref. You can assign a
libref by using a LIBNAME statement or an operating environment command.

name resolution
in TCP/IP, the process of mapping a server name to an address. The domain name
system provides a facility for naming servers in which programs use remote name
servers to resolve server names into IP addresses. See also name server.

name server
in TCP/IP, the server program that supplies name-to-address translation, mapping
from server names to IP addresses. The server program often runs on a dedicated
processor, and the operating environment itself is referred to as the name server. See
also name resolution.

name resolver
in TCP/IP, the client software that uses one or more name servers to translate a
server name. See also name resolution, name server.

operating environment
a computer, or a logical partition of a computer, and the resources (such as an
operating system and other software and hardware) that are available to the
computer or partition.

return code
a numeric value that indicates whether a request was successful. A return code can
also indicate a specific error or warning.

SAS client
a SAS session that requests access to remote data by means of a SAS server. See also
SAS server.

SAS/CONNECT client
a SAS/CONNECT session that acts as a client. The user that runs a SAS/CONNECT
client requests services from a SAS/CONNECT server that can run on a remote
single-processor machine or on a local or remote multi-processor machine. The
services that are supported are: Remote Library Services, which enables access to
SAS files; Compute Services, which exploits fast processing resources; and Data
Transfer Services, which allows the upload or download of selected data for
processing. See also client, server, SAS/CONNECT server.

SAS/CONNECT server
a SAS/CONNECT session that acts as a server. The SAS/CONNECT server runs a
SAS session on a machine that receives requests for services from a SAS/CONNECT
client. A server can run on a remote single-processor machine or on a local or remote
multi-processor machine. The services that are supported are: Remote Library
Services, which enables access to SAS files; Compute Services, which exploits fast
processing resources; and Data Transfer Services, which allows the upload or
download of selected data for processing. See also client, server, SAS/CONNECT
client.

SAS data file
a SAS data set that contains data values as well as descriptor information.

Glossary 191

SAS data library
a collection of one or more SAS files that are recognized by SAS and that are
referenced and stored as a unit. Each file is a member of the library.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data values
in addition to descriptor information that is associated with the data. SAS data
views contain only the descriptor information plus other information that is required
for retrieving data values from other SAS data sets or from files whose contents are
in other software vendors’ file formats. See also SAS data file, SAS data view.

SAS data view
a type of SAS data set that retrieves data values from other files. A SAS data view
contains only descriptor information such as the data types and lengths of the
variables (columns), plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors’ file
formats. See also SAS data set.

SASproprietary
a fixed encoding algorithm that is included with Base SAS software and is available
in all supported operating environments. It requires no additional SAS product
licenses. The SAS proprietary algorithm is strong enough to protect your data from
casual viewing, but a determined hacker can break this encoding.

SAS/SECURE
an add-on product that provides additional encryption algorithms beyond the SAS
proprietary algorithm. The RC2, RC4, DES, and TripleDES security algorithms are
supported. SAS/SECURE software requires a license and must be installed on each
machine that runs a SAS/CONNECT or a SAS/SHARE server that will use the
encryption algorithms.

SAS/SHARE client
a SAS/SHARE session that acts as a client. The user that runs a SAS/SHARE client
accesses data on a SAS/SHARE server through Remote Library Services (RLS). See
also client, server, SAS/SHARE server.

SAS/SHARE server
the result of an execution of the SERVER procedure. The SERVER procedure is part
of SAS/SHARE software. A server runs in a separate SAS execution that services
users’ SAS sessions by controlling and executing input and output requests to one or
more SAS data libraries. See also client, server, SAS/SHARE client.

SAS spawner
a program that runs on a remote host and listens for client requests for connection to
the remote host. When the spawner program receives a request, it invokes a SAS
session on the remote host.

script
an external file that contains SAS script statements. The script is stored on a client
and provides the instructions for establishing and terminating a SAS/CONNECT
link. Scripts are executed by the SIGNON and SIGNOFF commands. See also script
statement.

script statement
a special kind of SAS statement developed for use in scripts for SAS/CONNECT
software. Script statements are not used in any kind of SAS program except a script.

192 Glossary

Secure Sockets Layer (SSL)
a protocol that was developed by Netscape for transmitting private documents across
the Internet. SSL uses a private key to encrypt data that is transmitted between a
Web browser and a server.

server
the side of the client/server relationship that receives requests from a "client" and
responds to those requests by delivering a particular type of information. Access to
computing resources and files (SAS files and external files) might be requested by a
client. Implicit in the client/server relationship is the network. "Server" sometimes
refers to the machine that the server runs on. See also client, SAS/CONNECT server,
SAS/SHARE server.

server session
See server.

simulated logon
a commonly used method of client authentication that is available in all operating
environments. In a simulated logon, the client provides a user ID and password that
are checked by the server.

spawner
See SAS spawner.

SSPI (Security Support Provider Interface)
Microsoft’s built-in security provider for Windows machines. SSPI enables
transparent authentication for connections between Windows machines. Users that
are members of a "trusted" domain are authenticated automatically, and user context
information is transferred to the server.

TCP/IP (Transmission Control Protocol/Internet Protocol)
an abbreviation for a pair of networking protocols. Transmission Control Protocol
(TCP) is a standard protocol for transferring information on local area networks such
as Ethernets. TCP ensures that process-to-process information is delivered in the
proper order. Internet Protocol (IP) is a protocol for managing connections between
operating environments. IP routes information through the network to a particular
operating environment and fragments and reassembles information in transfers.

user context
the identifying credentials of the client who is attempting to access a secured server.
Identifying credentials include the user ID, password, and file access permissions.
Users can use their own user context or a different user context when accessing a
server. A different user context (such as for a system administrator) does not belong
to the user but can be granted to the user for access to specific files.

user rights
a set of privileges that is assigned to each user of a client machine and a server
machine in a Windows domain. Setting the appropriate user rights at the server
machine permits users to connect to a secured server. User rights are configured in
the Microsoft Windows User Manager panel of the Administrative Tools program.

XMS (Cross-Memory Services)
an interface that is part of the z/OS operating environment and is used by programs
that run within a single z/OS operating environment.

Index 193

Index

A
anchor points

XMS under z/OS 53

Authentication program

TCP/IP under UNIX 88

AUTHSERVER option

TCP/IP under Windows 97

C
client authentication

TCP/IP under OpenVMS Alpha 70

TCP/IP under UNIX 87

TCP/IP under Windows 107, 109

TCP/IP under z/OS 23

communications access methods

definition 3

supported by operating environment 3

supported by SAS/CONNECT and SAS/
SHARE 3

supported in SAS 9.1 4

D
data security

TCP/IP under Windows 109

E
encryption 137

security services options 138

TCP/IP under OpenVMS Alpha 60, 68, 70

TCP/IP under UNIX 79, 88

TCP/IP under Windows 98, 103, 105, 108

TCP/IP under z/OS 15, 21, 23

XMS under z/OS 48

error messages

TCP/IP under OpenVMS Alpha 179

TCP/IP under UNIX 181

TCP/IP under Windows 183

TCP/IP under z/OS 177

F
firewalls 149

configuration example 150
external UNIX client 151
external Windows client 150
requirements for 149
spawners and 114

L
load module

XMS under z/OS 53
logon procedure

TCP/IP under z/OS 19

M
multi-processor machines

TCP/IP under UNIX 79
TCP/IP under Windows 98
XMS under z/OS 48

N
name resolution 11
name resolver 11
name server 11
network security

TCP/IP under OpenVMS Alpha 58
TCP/IP under UNIX 76
TCP/IP under Windows 95
TCP/IP under z/OS 11
XMS under z/OS 46

O
OpenVMS Alpha

See TCP/IP access method, OpenVMS Alpha
OpenVMS Alpha spawner 119

ending 121
location of 119
privileges 119
scripted signon to 116
starting 120

OpenVMS Alpha spawner service
configuring 66
starting 67

OpenVMS spawner program
encryption 139, 141

P
passwords

spawners and 114
Permission program

TCP/IP under UNIX 88

R
resources

XMS under z/OS 46

S
SAS, starting

TCP/IP under OpenVMS Alpha 61
TCP/IP under UNIX 80
TCP/IP under Windows 99
XMS under z/OS 48
z/OS spawner 125

SAS/CONNECT
communications access methods supported 3

SAS/SECURE 137
security services options 139
TCP/IP under Windows 96
TCP/IP under z/OS 12

SAS/SHARE
communications access methods supported 3

SAS SVC routine
installing 51
TCP/IP under z/OS 23

SASCMD option
TCP/IP under OpenVMS Alpha 61
TCP/IP under UNIX 80
TCP/IP under Windows 99
XMS under z/OS 48

SASproprietary encoding algorithm 137
security services options 141
TCP/IP under Windows 95
TCP/IP under z/OS 12

194 Index

SASTCPD command
OpenVMS Alpha spawner 120

scoket inheritance 149
SECPROFILE= option

TCP/IP under z/OS 14
secured servers

TCP/IP under OpenVMS Alpha 68
TCP/IP under UNIX 85
TCP/IP under Windows 103, 107
TCP/IP under z/OS 20

security services 137
access method supported 138
encryption options 138
operating environments supported 138
SAS/SECURE options 139
SASproprietary options 141
SSL options 141

server name
XMS under z/OS 52

server security
TCP/IP under Windows 95

server service
TCP/IP under OpenVMS Alpha 67, 70
TCP/IP under UNIX 85, 87
TCP/IP under Windows 105, 107
TCP/IP under z/OS 20, 23

server sessions
TCP/IP under OpenVMS Alpha 61, 62
TCP/IP under UNIX 79, 80
TCP/IP under Windows 98
XMS under z/OS 48, 49

servers
TCP/IP under OpenVMS Alpha 68, 71
TCP/IP under UNIX 86, 89
TCP/IP under Windows 105, 108
TCP/IP under z/OS 21, 24
XMS under z/OS 50

SERVICES file
configuring 145

shell scripts
z/OS spawner 125

sign-on scripts
spawners and 114
specifying time 156
syntax 155
TCP/IP under OpenVMS Alpha 64
TCP/IP under UNIX 82, 156
TCP/IP under Windows 101, 161
TCP/IP under z/OS 17, 164, 167
TCPMVS.SCR script 164
TCPTS09.SCR script 167
TCPUNIX.SCR script 156
TCPWIN.SCR script 161
TYPE statement and 156
WAITFOR statement and 156

signing on
TCP/IP under OpenVMS Alpha 61
TCP/IP under UNIX 79
TCP/IP under Windows 98
TCP/IP under z/OS 15
XMS under z/OS 48

simulated logon method
TCP/IP under Windows 109

SMP machines
TCP/IP under OpenVMS Alpha 61
TCP/IP under UNIX 79
TCP/IP under Windows 98

XMS under z/OS 48
software requirements

TCP/IP under OpenVMS Alpha 58
TCP/IP under UNIX 76
TCP/IP under Windows 94
TCP/IP under z/OS 11
XMS under z/OS 46

spawners 113
See also OpenVMS Alpha spawner
See also UNIX spawner
See also Windows spawner
See also z/OS spawner
client connection to 114
connection examples 115
firewalls and 114
passwords and 114
sign-on scripts and 114
support by operating environment 114
TCP/IP under OpenVMS alpha 66
TCP/IP under OpenVMS Alpha 62, 67
TCP/IP under UNIX 80, 84
TCP/IP under Windows 100, 103, 104
TCP/IP under z/OS 15
user IDs and 114

SSL (Secure Sockets Layer) 137
security services options 141
TCP/IP under Windows 96

SSPI (Security Support Provider Interface)
TCP/IP under Windows 110

SUBSYSID= option
XMS under z/OS 47

subsystem identifier
XMS under z/OS 47

system configuration
XMS under z/OS 52

T
TCP/IP access method 3

security services 138
TCP/IP access method, OpenVMS Alpha 58

accessing secured server 68
client authentication 70
client example 69
client tasks (SAS/CONNECT) 60
client tasks (SAS/SHARE) 67
configuring server service 67, 70
configuring spawner service 66
encryption 60, 68, 70
error messages 179
network security 58
options (SAS/CONNECT) 59
options (SAS/SHARE) 59
server example 67, 71
server tasks (SAS/CONNECT) 66
server tasks (SAS/SHARE) 70
signing on to same SMP machine 61
signing on with spawner 62
signing on with Telnet daemon 65
signon method 61
software requirements 58
specifying 60, 67, 70
specifying server 68, 71
starting spawner service 67

TCP/IP access method, UNIX 76
accessing secured servers 85

client authentication 87
client example 87
client tasks (SAS/CONNECT) 78
client tasks (SAS/SHARE) 84
configuring authentication program 88
configuring permission program 88
configuring server service 85, 87
configuring spawner service 84
configuring user access authority 88
encryption 79, 85, 88
error messages 181
network security 76
options (SAS/CONNECT) 77
server example 84, 89
server tasks (SAS/CONNECT) 84
server tasks (SAS/SHARE) 87
sign-on scripts 156
signing on to same SMP machine 79
signing on with spawner 80
signing on with Telnet daemon 83
signon method 79
software requirements 76
specifying 78, 85, 89
specifying server 86, 89
starting spawner 84

TCP/IP access method, Windows 94
client authentication 107, 109
client example 106
client tasks (SAS/CONNECT) 97
client tasks (SAS/SHARE) 104
configuring server service 105, 107
configuring spawner service 103
data security 109
encryption 98, 103, 105, 108
error messages 183
network security 95
options (SAS/CONNECT) 96
options (SAS/SHARE) 97
server example 104, 108
server security 95
server tasks (SAS/CONNECT) 103
server tasks (SAS/SHARE) 107
sign-on scripts 161
signing on to same SMP machine 98
signing on with spawner 100
signing on with Telnet daemon 102
signon method 98
simulated logon method 109
software requirements 94
specifying 98, 105, 108
specifying server 105, 108
SSPI 110
starting the spawner 104
user context 94
user rights for secured server 103, 107

TCP/IP access method, z/OS 10
accessing secured servers 20
client authentication 23
client example 22
client tasks (SAS/CONNECT) 14
client tasks (SAS/SHARE) 20
configuring server service 20, 23
encryption 15, 21, 23
error messages 177
installing logon procedure 19
installing SAS SVC routine 23
network security 11

Index 195

options (SAS/CONNECT) 12, 13
options (SAS/SHARE) 12, 13
server example 19, 25
server tasks (SAS/CONNECT) 18
server tasks (SAS/SHARE) 22
sign-on scripts 164, 167
signing on with spawner 15
signing on with Telnet daemon 18
signon method 15
software requirements 11
specifying 15, 20, 24
specifying server 21, 24
terminology 11

TCPIPMCH= option
TCP/IP under z/OS 12

TCPIPPRF= option
TCP/IP under z/OS 12

TCPMSGLEN option
TCP/IP under OpenVMS Alpha 59
TCP/IP under UNIX 77
TCP/IP under Windows 96
TCP/IP under z/OS 13

TCPMVS.SCR script 164
TCPPORTFIRST= option

TCP/IP under OpenVMS Alpha 59
TCP/IP under UNIX 77
TCP/IP under Windows 96
TCP/IP under z/OS 13

TCPPORTLAST= option
TCP/IP under OpenVMS Alpha 59
TCP/IP under Windows 96
TCP/IP under z/OS 13

TCPSEC= option
TCP/IP under OpenVMS Alpha 59, 70
TCP/IP under UNIX 78, 87
TCP/IP under Windows 97, 107
TCP/IP under z/OS 13, 23

TCPTN3270 option
TCP/IP under OpenVMS Alpha 59
TCP/IP under UNIX 77
TCP/IP under Windows 96
TCP/IP under z/OS 13

TCPTS09.SCR script 167
TCPUNIX.SCR script 156
TCPWIN.SCR script 161

Telnet daemon for signing on
TCP/IP under OpenVMS Alpha 65

TCP/IP under UNIX 83

TCP/IP under Windows 102

TCP/IP under z/OS 18

time

specifying for sign-on scripts 156

TYPE statement

sign-on scripts and 156

U
UNIX

See TCP/IP access method, UNIX

UNIX spawner 127

ending 129

location of 127

scripted signon to 115

starting 127
UNIX spawner service

configuring 84

starting 84

user access authority

TCP/IP under UNIX 88

user context

TCP/IP under Windows 94

user IDs
spawners and 114

z/OS spawner 123

user rights

TCP/IP under Windows 103, 107

W
WAITFOR statement

sign-on scripts and 156

Windows

See TCP/IP access method, Windows
Windows spawner 131

ending 135

location of 131

security 131

starting 104, 131
Windows spawner service

configuring 103

scriptless signon to 116

X
XMS access method 3

XMS access method, z/OS 46

client example 50

client tasks (SAS/CONNECT) 47

client tasks (SAS/SHARE) 49
defining resources 46

encryption 48

installation tasks 52

installing load module 53

installing SAS SVC routine 51

network security 46

server example 52
server name 52

server tasks (SAS/SHARE) 51

signing on to multi-processor machine 48

software requirements 46

specifying 47, 49, 51

specifying server 50

SUBSYSID= option 47

system configuration 52

Z
z/OS

See TCP/IP access method, z/OS

See XMS access method, z/OS

z/OS spawner 123

assigning user ID to started task 123

encrypted signon to 117

ending 126

location of 123
shell script for starting SAS 125

starting 124

user ID requirement 123

version level requirement 124

Your Turn

If you have comments or suggestions about Communications Access Methods for
SAS/CONNECT 9.1 and SAS/SHARE 9.1, please send them to us on a photocopy of
this page or send us electronic mail.

For comments about this book, please return the photocopy to
SAS Publishing
SAS Campus Drive
Cary, NC 27513
email: yourturn@sas.com

For suggestions about the software, please return the photocopy to
SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
email: suggest@sas.com

	Table of Contents
	Contents

	What’s New
	Overview
	Details
	Access Methods and Operating Environments
	SSL Protocol
	OS/390 and z/OS Operating Environments
	Spawners

	Introduction
	Communications Access Methods
	Communications Access Method: Definition
	Communications Access Methods Supported by SAS/CONNECT and SAS/ SHARE
	Supported Communications Access Methods by Operating Environment
	Operating Environments Supported in SAS 9.1
	Finding Information in This Documentation
	Additional SAS Documentation
	SAS Syntax Conventions

	z/OS Operating Environment
	z/OS: TCP/IP Access Method
	Prerequisites for Using TCP/IP under z/OS
	Task List
	Software Requirements
	TCP/IP Access Method Terminology
	SAS/CONNECT and SAS/SHARE Network Security
	SAS/CONNECT and SAS/SHARE Options
	SAS/CONNECT Options Only
	SAS/SHARE Options Only

	SAS/CONNECT Client Tasks
	Task List
	Specifying TCP/IP as the Communications Access Method
	Encrypting Data in Client/Server Transfers
	Choosing a Method to Use to Sign On
	Signing On Using a Spawner
	Signing On Using a Telnet Daemon

	SAS/CONNECT Server Tasks
	Task List
	Installing the Logon Procedure on the Server
	SAS/CONNECT Server Example

	SAS/SHARE Client Tasks
	Task List
	Configuring the Server Service
	Specifying TCP/IP as the Communications Access Method
	Accessing a Secured Server
	Encrypting Data in Client/Server Transfers
	Specifying the Server
	SAS/SHARE Client Example

	SAS/SHARE Server Tasks
	Task List
	Installing the SAS SVC Routine
	Configuring the Server Service
	Setting the TCPSEC Option to Require Client Authentication
	Encrypting Data in Server/Client Transfers
	Specifying TCP/IP as the Communications Access Method
	Specifying the Server
	SAS/SHARE Server Example

	System Configuration for TCP/IP
	Using a SAS TCP/IP Configuration Plan
	TCP/IP Overview
	TCP/IP: Software Requirements
	TCP/IP Stacks
	TCP/IP Host Name Configuration
	TCP/IP Stack Configuration Files
	TCP/IP Name Resolver Configuration
	SAS/C Environment Variables and SAS 9.1 System Options
	SAS/C Environment Variables in the SASCTCPV Data Set
	The UNIX System Services (USS) Shell
	The Services File
	References

	z/OS: XMS Access Method
	Prerequisites for Using XMS under z/OS
	Task List
	Software Requirements
	Defining Resources for the XMS Communications Access Method
	SAS/CONNECT and SAS/SHARE Network Security
	SAS/SHARE SUBSYSID= Option

	SAS/CONNECT Client Tasks
	Task List
	Specifying XMS as the Communications Access Method
	Encrypting Data in Client/Server Transfers
	Signing On to the Same Multi-Processor Machine

	SAS/CONNECT Server Tasks
	SAS/SHARE Client Tasks
	Task List
	Specifying XMS as the Communications Access Method
	Specifying the Server
	SAS/SHARE Client Example

	SAS/SHARE Server Tasks
	Task List
	Installing the SAS SVC Routine
	Specifying XMS as the Communications Access Method
	Specifying a Server Name
	SAS/SHARE Server Example

	System Configuration for the XMS Access Method
	Installation Tasks
	Steps for Installing the Load Module
	Defining an Anchor Point

	OpenVMS Alpha Operating Environment
	OpenVMS Alpha: TCP/IP Access Method
	Prerequisites for Using TCP/IP under OpenVMS Alpha
	Task List
	Software Requirements
	SAS/CONNECT and SAS/SHARE Network Security
	SAS/CONNECT Options Only
	SAS/SHARE Options Only

	SAS/CONNECT Client Tasks
	Task List
	Specifying TCP/IP as the Communications Access Method
	Encrypting Data in Client/Server Transfers
	Choosing a Method to Use to Sign On
	Signing On to the Same Multi-Processor Machine
	Signing On Using a Spawner
	Signing On Using a Telnet Daemon

	SAS/CONNECT Server Tasks
	Task List
	Configuring the OpenVMS Alpha Spawner Service
	Starting the OpenVMS Alpha Spawner
	SAS/CONNECT Server Example

	SAS/SHARE Client Tasks
	Task List
	Configuring the Server Service
	Specifying TCP/IP as the Communications Access Method
	Accessing a Secured Server
	Encrypting Data in Client/Server Transfers
	Specifying the Server
	SAS/SHARE Client Example

	SAS/SHARE Server Tasks
	Task List
	Configuring the Server Service
	Setting the TCPSEC Option to Require Client Authentication
	Encrypting Data in Server/Client Transfers
	Specifying TCP/IP as the Communications Access Method
	Specifying the Server
	SAS/SHARE Server Example

	UNIX Operating Environments
	UNIX: TCP/IP Access Method
	Prerequisites for Using TCP/IP under UNIX
	Task List
	Software Requirements
	SAS/CONNECT and SAS/SHARE Network Security
	SAS/CONNECT Options Only
	SAS/SHARE Options Only

	SAS/CONNECT Client Tasks
	Task List
	Specifying TCP/IP as the Communications Access Method
	Encrypting Data in Client/Server Transfers
	Choosing a Method to Use to Sign On
	Signing On to the Same Multi-Processor Machine
	Signing On Using a Spawner
	Signing On Using a Telnet Daemon

	SAS/CONNECT Server Tasks
	Task List
	Configuring the UNIX Spawner Service
	Starting the UNIX Spawner
	SAS/CONNECT Server Example

	SAS/SHARE Client Tasks
	Task List
	Configuring the Server Service
	Specifying TCP/IP as the Communications Access Method
	Accessing a Secured Server
	Encrypting Data in Client/Server Transfers
	Specifying the Server
	SAS/SHARE Client Example

	SAS/SHARE Server Tasks
	Task List
	Configuring the Server Service
	Setting the TCPSEC Option to Require Client Authentication
	Configuring User Access Authority
	Configuring the Authentication Program
	Configuring the Permission Program
	Encrypting Data in Server/Client Transfers
	Specifying TCP/IP as the Communications Access Method
	Specifying the Server
	SAS/SHARE Server Example

	Windows Operating Environments
	Windows: TCP/IP Access Method
	Prerequisites for Using TCP/IP under Windows
	Task List
	Software Requirements
	Contexts for User IDs
	SAS/CONNECT and SAS/SHARE Server Security
	SAS/CONNECT and SAS/SHARE Network Security
	SAS/CONNECT Options Only
	SAS/SHARE Options Only

	SAS/CONNECT Client Tasks
	Task List
	Specifying TCP/IP as the Communications Access Method
	Encrypting Data in Client/Server Transfers
	Choosing a Method to Use to Sign On
	Signing On to the Same Multi-Processor Machine
	Signing On Using a Spawner
	Signing On Using a Telnet Daemon

	SAS/CONNECT Server Tasks
	Task List
	Configuring the Windows Spawner Service
	Assigning User Rights for a Server That Is Running Secured
	Encrypting Data in Server/Client Transfers
	Starting the Windows Spawner
	SAS/CONNECT Server Example

	SAS/SHARE Client Tasks
	Task List
	Configuring the Server Service
	Specifying TCP/IP as the Communications Access Method
	Encrypting Data in Client/Server Transfers
	Specifying the Server
	SAS/SHARE Client Example

	SAS/SHARE Server Tasks
	Task List
	Configuring the Server Service
	Setting the TCPSEC Option to Require Client Authentication
	Assigning User Rights for a Server That Is Running Secured
	Encrypting Data in Server/Client Transfers
	Specifying TCP/IP as the Communications Access Method
	Specifying the Server
	SAS/SHARE Server Example

	Data Security for SAS/CONNECT or SAS/SHARE Servers
	Client Authentication
	Simulated Logon Method
	SSPI

	Spawners and Files
	SAS/CONNECT Spawners
	Spawner Definition
	Benefits of Using a Spawner to Sign On to a Server
	Protects Client’s User ID and Password
	Controls Client Access to the Server in a Firewall Configuration
	Eliminates the Need for a Sign-On Script

	Support for Spawners by Operating Environment
	Client Connection to a Spawner
	Spawner Connection Examples
	Scripted Signon to a UNIX Spawner
	Scriptless Signon to a Windows Spawner That Runs as a Service
	Scripted Signon to an OpenVMS Spawner
	Encrypted Signon to a z/OS Spawner

	OpenVMS Alpha Spawner
	OpenVMS Alpha Spawner Requirements
	Location of the OpenVMS Alpha Spawner
	Spawner Privileges

	Starting the OpenVMS Alpha Spawner
	Ending the OpenVMS Spawner

	z/OS Spawner
	z/OS Spawner Requirements
	Location of the z/OS Spawner
	z/OS Spawner User ID Requirement
	Assigning a User ID to the Started Task
	z/OS Version Level Requirement

	Starting the z/OS Spawner
	Defining the Shell Script for Starting SAS
	Ending the z/OS Spawner

	UNIX Spawner
	UNIX Spawner Requirements
	Location of the UNIX Spawner
	Starting a UNIX Spawner

	Starting the UNIX Spawner
	Ending the UNIX Spawner

	Windows Spawner
	Windows Spawner Requirements
	Location of the Windows Spawner
	Windows Security

	Starting the Windows Spawner
	Ending the Windows Spawner

	Encryption Options
	Security Services
	Security Service Requirements
	TCP/IP Is the Only Access Method Supported
	Operating Environments Supported

	Encryption Options
	Overview

	SAS/SECURE Options
	SAS Proprietary Options
	SSL Options

	TCP/IP SERVICES File
	Configuring the SERVICES File
	Services That Require an Entry in the SERVICES File
	Example SERVICES File
	Explanation of Fields

	Configuring SAS/CONNECT for Use with Firewalls
	Configuring SAS/CONNECT for Use with a Firewall
	Definitions
	Firewall
	Socket Inheritance

	Requirements for Using a Firewall
	Firewall Configuration Example
	Firewall Configuration
	External Windows Client Connecting through a Firewall
	External UNIX Client Connecting through a Firewall

	SAS/CONNECT Scripts
	Sign-On Scripts
	Script Rules
	Syntax
	Specifying Time
	Using the WAITFOR and TYPE Statements

	Sample Scripts
	TCPUNIX.SCR Script
	TCPWIN.SCR Script
	TCPMVS.SCR Script
	TCPTSO9.SCR Script

	Error Messages
	z/OS Error Messages
	z/OS: TCP/IP Access Method
	SAS/CONNECT Error Messages under z/OS
	SAS/SHARE Error Messages under z/OS

	OpenVMS Alpha Error Messages
	OpenVMS Alpha: TCP/IP Access Method
	SAS/CONNECT and SAS/SHARE Error Messages under OpenVMS Alpha
	SAS/SHARE Error Messages under OpenVMS Alpha

	UNIX Error Messages
	UNIX: TCP/IP Access Method
	SAS/CONNECT Error Messages under UNIX
	SAS/SHARE Error Messages under UNIX

	Windows Error Messages
	Windows: TCP/IP Access Method
	SAS/CONNECT Error Messages under Windows
	SAS/SHARE Error Messages under Windows

	Appendix
	Recommended Reading
	Recommended Reading

	Glossary
	Index

