Jsas® ‘ SAS Publishing H B B

SAS 9.1 XML LIBNAME Engine

User’s Guide

The Power to Know,

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS® 9.1 XML LIBNAME Engine User’s Guide. Cary, NC: SAS Institute Inc.

SAS® 9.1 XML LIBNAME Engine User’s Guide
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
ISBN 1-59047-176-8

All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing,January 2004

SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

PART I

What’s New
Overview v
Details [

Usage i

Chapter 1 A Getting Started with the XML Engine
What Does the XML Engine Do? 3

Understanding How the XML Engine Works

SAS Processing Supported by the XML Engine [5
Frequently Asked Questions E

Chapter 2 A Exporting XML Documents B

Understanding How to Export an XML Document

Exporting an XML Document for Use by Oracle

Exporting an XML Document Containing a SAS User-Defined Format
Exporting an XML Document Containing SAS Dates, Times, and Datetimes
Exporting an HTML Document

Exporting Numeric Values

Exporting an XML Document with Separate Metadata @l

Chapter 3 A Importing XML Documents
Understanding How to Import an XML Document

Understanding the Required Physical Structure for an XML Document to Be
Imported

Importing an XML Document with the Correct Physical Structure
Importing an XML Document with Numeric Values

Importing an XML Document with Non-Escaped Character Data [33]
Importing an XML Document Created by Microsoft Access
Importing Concatenated XML Documents

Chapter 4 A Importing XML Documents Using an XMLMap

Why Use an XMLMap When Importing?

Using an XMLMap to Import an XML Document as One SAS Data Set
Using an XMLMap to Import an XML Document as Multiple SAS Data Sets
Importing Hierarchical Data as Related Data Sets

Including a Key Field with Generated Numeric Keys

Determining the Observation Boundary to Avoid Concatenated Data @l
Determining the Observation Boundary to Select the Best Columns

Chapter 5 A Using the XML Engine to Transport SAS Data Sets across Operating
Environments i

What Is Transporting a SAS Data Set?

Transporting a SAS Data Set

Chapter 6 A Understanding and Using Tagsets for the XML Engine
What Is a Tagset?

SAS Tagsets

Creating Customized Tagsets

Using a SAS Tagset to Remove White Spaces in Output XML Markup
Defining and Using a Customized Tagset to Use Labels in Node Names

PARTZ Reference

Chapter 7 A LIBNAME Statement for the XML Engine
Using the LIBNAME Statement
LIBNAME Statement Syntax

Chapter 8 A Creating an XMLMap

Using XMLMap Syntax

XMLMap Syntax Version 1.2

Using SAS XML Mapper to Generate and Update an XMLMap
Using XMLMap Manager to Manage XMLMaps as Metadata Objects

PART3 Appendices [101

Appendix 1 A IS0 8601 SAS Formats and Informats
SAS Support of the ISO 8601 Standard

SAS Informats for the Extended Format |105

SAS Informats for the Basic Format [109

SAS Formats for the Extended Format (111

Using the Informats and Formats |115

Appendix 2 A Recommended Reading
Recommended Reading

Glossary [121]
Index [123]

What’s New

Overview

The SAS 9.1 XML engine imports and exports a broader variety of XML documents.
The XMLMAP-= option specifies a separate XML document that contains specific
XMLMap syntax. The XMLMap syntax tells the XML engine how to interpret the XML
markup in order to successfully import an XML document.

Note:

This section describes the features of the SAS XML engine that are new or

enhanced since SAS 8.2. A

Details
0 The “LIBNAME Statement Syntax” on page 73 provides the following
enhancements:
0 The new ODSRECSEP= option controls the generation of a record separator

that marks the end of a line in the output XML document.

The new XMLCONCATENATE= option enables you to import an XML
document that contains multiple XML documents, which are concatenated
into one file.

The new XMLFILEREF= option enables you to specify a fileref for the XML
document that does not match the libref. Note that if the libref and fileref
match, you do not need to specify XMLFILEREF= or the XML document.

Beginning in SAS 9, the keyword for the XMLSCHEMA-= option changed to
XMLMETA=. The XMLMETA= option specifies whether to include
metadata-related information in the exported markup. In SAS 9.1, the values
for the XMLMETA= option are changed to DATA, SCHEMADATA, and
SCHEMA.

After dropping the keyword XMLSCHEMA in SAS 9, the keyword returns in
SAS 9.1 as new functionality. In SAS 9.1, the XMLSCHEMA-= option specifies
an external file to contain separate schema output.

The new XMLPROCESS= option determines how the XML engine processes
character data that does not conform to W3C specifications.

Vi

What’s New

0 The XMLTYPE= option now supports the MSACCESS format type.
MSACCESS is the XML format for the markup standards supported for a
Microsoft Access database.

o In SAS 9.1, you can store and access XMLMaps as metadata objects in a SAS
Metadata Repository. Several new metadata options enable you to access a
particular XMLMap in a specific repository: METAPASS=, METAPORT=,
METAREPOSITORY=, METASERVER=, and METAXMLMAP-=.

The “XMLMap Syntax Version 1.2” on page 85 has these changes:

0 The content for the DATATYPE element, which specifies the type of data
being read from the XML document for the variable, is changed to conform
directly to the XML Schema datatypes specification. For example, earlier
versions accepted <DATATYPE>DT-8601</DATATYPE>; version 1.2 accepts
<DATATYPE>dateTime</DATATYPE>.

Several ISO 8601 SAS formats and informatsAppendix 1, “ISO 8601 SAS Formats
and Informats,” on page 103 are available to support the international standard
for the representation of dates and times.

Using the LABEL= data set option no longer results in a warning message.
However, the XML engine does not persist the information.

SAS XML Mapper (formerly called XML Atlas) is a graphical interface that you
can use in order to generate or modify the XML markup for an XMLMap. See
“Using SAS XML Mapper to Generate and Update an XMLMap” on page 97.

The new XMLMap Manager, which is a plug-in on the SAS Management Console,
provides centralized management of XMLMaps as metadata objects in a SAS
Metadata Repository. See “Using XMLMap Manager to Manage XMLMaps as
Metadata Objects” on page 99.

PART

Usage

Chapter I........ .. Getting Started with the XML Engine 3
Chapter2.......... Exporting XML Documents 9

Chapter 3.......... Importing XML Documents 27

Chapter4.......... Importing XML Documents Using an XMLMap 41
Chapter &........ .. Using the XML Engine to Transport SAS Data Sets across

Operating Environments 61

Chapter 6. Understanding and Using Tagsets for the XML Engine 65

CHAPTER

Getting Started with the XML
Engine

What Does the XML Engine Do? 3
Understanding How the XML Engine Works 3
Assigning a Libref to an XML Document 3
Importing an XML Document 4
Exporting an XML Document 4
SAS Processing Supported by the XML Engine 5
Frequently Asked Questions 5
Is the XML Engine a DOM or SAX Application? 5
Does the XML Engine Validate an XML Document? 6
What Is the Difference between Using the XML Engine and the ODS MARKUP Destination? 6
Why Do I Get Errors When Importing XML Documents Not Created with SAS? 6
Can I Use SAS Data Set Options with the XML Engine? 6
Why Does an Exported XML Document Include White Space? 17

What Does the XML Engine Do?

The XML engine processes an XML document. The engine can

O export (write to an output file) an XML document from a SAS data set of type
DATA by translating the SAS proprietary file format to XML markup. The output
XML document can then be

0 used by a product that processes XML documents.

0 moved to another host for the XML engine to then process by translating the
XML markup back to a SAS data set.

O import (read from an input file) an external XML document. The input XML
document is translated to a SAS data set.

Understanding How the XML Engine Works

Assigning a Libref to an XML Document

The XML engine works much like other SAS engines. That is, you execute a
LIBNAME statement in order to assign a libref and specify an engine. You then use
that libref throughout the SAS session where a libref is valid.

However, instead of the libref being associated with the physical location of a SAS
data library, the libref for the XML engine is associated with a physical location of an
XML document. When you use the libref that is associated with an XML document,

4

Importing an XML Document A Chapter 1

SAS either translates the data in a SAS data set into XML markup or translates the

XML markup into SAS format.

Importing an XML Document

To import an XML document as a SAS data set, the following LIBNAME statement

assigns a libref to a specific XML document and specifies the XML engine:

libname myxml xml ‘C:\My Files\XML\Students.xml’;

Executing the DATASETS procedure shows that SAS interprets the XML document

as a SAS data set:

proc datasets library=myxml;

Output 1.1 PROC DATASETS Output for MYXML Library

Directory
Libref MYXML
Engine XML
Physical Name C:\My Files\XML\Students.xml
XMLType GENERIC
XMLMap NO XMLMAP IN EFFECT
Member
Name Type
1 STUDENTS DATA

The PRINT procedure results in the following output:

proc print data=myxml.students;
run;

Output 1.2 PROC PRINT Output of SAS Data Set MYXML.STUDENTS

The SAS System

Obs STATE CITY ADDRESS NAME
1 Texas Huntsville 1611 Glengreen Brad Martin
2 Texas Houston 11900 Glenda Zac Harvell

ID

755
1522

Exporting an XML Document

To export an XML document from a SAS data set, the LIBNAME statement for the
XML engine assigns a libref to an XML document to be created from the SAS data set:

libname myxml xml ’'C:\My Files\XML\Singers.xml'’;

Getting Started with the XML Engine /A Is the XML Engine a DOM or SAX Application? 5

Executing these statements creates the following XML document named
Singers. XML:

data myxml.Singers;
set myfiles.Singers;
run;

Output 1.3 XML Document Singers. XML

<?xml version="1.0" encoding="windows-1252" ?>
<TABLE>
<SINGERS>
<FirstName> Tom </FirstName>
<LastName> Jones </LastName>
<Age> 62 </Age>
</SINGERS>
<SINGERS>
<FirstName> Willie </FirstName>
<LastName> Nelson </LastName>
<Age> 70 </Age>
</SINGERS>
<SINGERS>
<FirstName> Randy </FirstName>
<LastName> Travis </LastName>
<Age> 43 </Age>
</SINGERS>
</TABLE>

SAS Processing Supported by the XML Engine

The XML engine provides input (read) and output (create) processing. However, the
XML engine does not support update processing.

The XML engine is a sequential access engine in that it processes data one record
after the other, starting at the beginning of the file and continuing in sequence to the
end of the file. The XML engine does not provide random (direct) access, which is
required for some SAS applications and features. For example, you cannot use the
SORT procedure or ORDER BY in the SQL procedure with the XML engine. If you
request processing that requires random access, a message in the SAS log notifies you
that the processing is not valid for sequential access. If this occurs, put the XML data
into a temporary SAS data set before you continue. Note that the text of the SAS log
messages will refer to invalid access attempts.

Frequently Asked Questions

Is the XML Engine a DOM or SAX Application?

Currently, the XML engine can be either a DOM application or a SAX application,
depending on what you are doing:

o If the format type is either GENERIC (the default) or ORACLE, the XML engine
uses a modified Document Object Model (DOM), which converts the document’s
contents into a node tree. However, for the XML engine, the node tree cannot be
queried (traversed).

6

Does the XML Engine Validate an XML Document? A Chapter 1

o If you are using an XMLMap to import an XML document, the XML engine uses a
Simple API for XML (SAX) model. SAX does not provide a random access lookup
to the document’s contents; it scans the document sequentially and presents each
item to the application only one time.

Note that for large XML documents for which you are simply using the format type
GENERIC or ORACLE, if you are having resource problems, convert to using an
XMLMap, which uses the SAX model.

Does the XML Engine Validate an XML Document?

The XML engine does not validate an input XML document. The engine assumes
that the data passed to it is in valid, well-formed XML format. Because the engine does
not use a DTD (Document Type Definition) or SCHEMA, there is nothing to validate
against.

What Is the Difference hetween Using the XML Engine and the 0DS
MARKUP Destination?

Typically, you use the XML engine to transport data, while the ODS MARKUP
destination is used to create XML from SAS output. The XML engine creates and reads
XML documents; ODS MARKUP creates but does not read XML documents.

Why Do I Get Errors When Importing XML Documents Not Created with
SAS?

Basically, the XML engine reads only generic and IOM files. Attempting to import
free-form XML documents will generate errors. To successfully import those files, you
can create a separate XML document, called an XMLMap. The XMLMap syntax tells
the XML engine how to interpret the XML markup into SAS data set(s), variables
(columns), and observations (rows).

See “Understanding the Required Physical Structure for an XML Document to Be
Imported” on page 27 and Chapter 8, “Creating an XMLMap,” on page 85.

Can | Use SAS Data Set Options with the XML Engine?

Use SAS data set options with caution.
Note that while the LABEL= data set option no longer produces a warning message
in the SAS log, the XML engine does not persist the information.

Getting Started with the XML Engine /A Why Does an Exported XML Document Include White Space? 7

Why Does an Exported XML Document Include White Space?

The XML engine is in accordance with the Worldwide Web Consortium (W3C)
specifications regarding handling white space, which basically states that it is often
convenient to use white space (spaces, tabs, and blank lines) to set apart the markup
for greater readability. An XML processor must always pass all characters in a
document that are not markup through to the application. A validating XML processor
must also inform the application which of these characters constitute white space
appearing in element content.

When exporting an XML document, the XML engine adds a space (padding) to the
front and end of each output XML element. Here is an example of an exported XML
document that shows the white space.

Output 1.4 XML Document with White Space

<?xml version="1.0" encoding="windows-1252" ?>
- <TABLE>
—-- <CLASS>
<Name> Alfred </Name>
<Sex> M </Sex>
<Age> 14 </Age>
<Height> 69 </Height>
<Weight> 112.5 </Weight>
</CLASS>

The XML engine does not produce the special attribute xml:space for data elements
but assumes default processing, which is to ignore leading and trailing white space.

You can remove the white space by specifying the SAS tagset TAGSETS.SASXMNSP.
See “Using a SAS Tagset to Remove White Spaces in Output XML Markup” on page 67
for an example.

CHAPTER

Exporting XML Documents

Understanding How to Export an XML Document 9

Exporting an XML Document for Use by Oracle 9

Exporting an XML Document Containing a SAS User-Defined Format 11
Exporting an XML Document Containing SAS Dates, Times, and Datetimes 15
Exporting an HTML Document 16

Exporting Numeric Values 18

Exporting an XML Document with Separate Metadata 22

Understanding How to Export an XML Document

Exporting an XML document is the process of writing a SAS data set of type DATA
to an output XML document. The XML engine exports an XML document by
translating SAS proprietary format to XML markup.

To export an XML document, you execute the LIBNAME statement for the XML
engine in order to assign a libref to the physical location of an XML document to be
created. Then, you execute SAS code that produces output such as a DATA step or the
COPY procedure.

Exporting

an XML Document for Use by Oracle

This example exports an XML document from a SAS data set for use by Oracle. By
specifying the Oracle format, the XML engine generates tags that are specific to Oracle

standards.
The following output shows the SAS data set MYFILES.CLASS to be exported to

Oracle.

10

Exporting an XML Document for Use by Oracle A Chapter 2

Output 2.1 SAS Data Set MYFILES.CLASS to Be Exported for Use by Oracle

Obs Name Sex Age Height Weight
1 Alfred M 14 69.0 112.5
2 Alice F 13 56.5 84.0
3 Barbara F 13 65.3 98.0
4 Carol F 14 62.8 102.5
5 Henry M 14 63.5 102.5
6 James M 12 57.3 83.0
7 Jane F 12 59.8 84.5
8 Janet F 15 62.5 112.5
9 Jeffrey M 13 62.5 84.0

10 John M 12 59.0 99.5
11 Joyce F 11 51.3 50.5
12 Judy F 14 64.3 90.0
13 Louise F 12 56.3 77.0
14 Mary F 15 66.5 112.0
15 Philip M 16 72.0 150.0
16 Robert M 12 64.8 128.0
17 Ronald M 15 67.0 133.0
18 Thomas M 11 57.5 85.0
19 William M 15 66.5 112.0

The following SAS program exports an XML document from the SAS data set
MYFILES.CLASS:

libname myfiles 'SAS-data-library’; @
libname trans xml 'XML-document' xmltype=oracle; @

data trans.class; @
set myfiles.class;

run;

1 The first LIBNAME statement assigns the libref MYFILES to the physical location
of the SAS data library that stores the SAS data set CLASS. The V9 engine is the
default.

2 The second LIBNAME statement assigns the libref TRANS to the physical location
of the file that will store the exported XML document (complete pathname,
filename, and file extension) and specifies the XML engine. The engine option
XMLTYPE=ORACLE produces tags that are equivalent to the Oracle8iXML
implementation.

3 The DATA step reads the SAS data set MYFILES.CLASS and writes its content in
ORACLE XML format to the specified XML document.

Here is the resulting XML document.

Exporting XML Documents

A Exporting an XML Document Containing a SAS User-Defined Format

Output 2.2 XML Document Exported from MYFILES.CLASS to Be Used by Oracle

<ROWSET>
<ROW>
<Name> Alfred </Name>
<Sex> M </Sex>
<Age> 14 </Age>
<Height> 69 </Height>
<Weight> 112.5 </Weight>
</ROW>
<ROW>
<Name> Alice </Name>
<Sex> F </Sex>
<Age> 13 </Age>
<Height> 56.5 </Height>
<Weight> 84 </Weight>
</ROW>

<ROW>
<Name> William </Name>
<Sex> M </Sex>
<Age> 15 </Age>
<Height> 66.5 </Height>
<Weight> 112 </Weight>
</ROW>
</ROWSET>

<?xml version="1.0" encoding="windows-1252" ?>

11

Exporting an XML Document Containing a SAS User-Defined Format

This example exports an XML document from a SAS data set that contains a
user-defined format. The only XML format that interprets SAS user-defined formats is

the OIMDBM format.

Note:

format type. A

The OIMDBM format type is deprecated in SAS 9. The format type will not
be supported in a future release. Functionality will be implemented with a different

First, the following SAS program defines a user-defined format, creates a simple SAS
data set, and prints the contents of the data set:

proc format;
value sex 1='Male’
2='Female'’;

run;

data grades;

input Student $ Gender Testl Test2 Final;

format Gender sex.;
datalines;

Fred 1 66 80 70

Wilma 2 97 91 98

r

proc print data=grades;
run;

12 Exporting an XML Document Containing a SAS User-Defined Format A Chapter 2

Output 2.3 PROC PRINT Output for SAS Data Set WORK.GRADES

The SAS System 1
Obs Student Gender Testl Test2 Final
1 Fred Male 66 80 70
2 Wilma Female 97 91 98

The following code exports an XML document that includes the SAS user-defined
format in the metadata-related information:

libname trans xml 'XML-document’ xmltype=oimdbm xmlmeta=schemadata; @

data trans.grades; @
set work.grades;

run;

1 The LIBNAME statement assigns the libref TRANS to the physical location of the
file that will store the exported XML document (complete pathname, filename, and
file extension) and specifies the XML engine. XMLTYPE=OIMDBM specifies the
XML format for the standards supported by the Open Information Model, which is
the only XML format that recognizes SAS user-defined formats. To generate the
appropriate markup for a user-defined format, you must include metadata-related
information by specifying XMLMETA=SCHEMADATA.

2 The DATA step reads the SAS data set WORK.GRADES and writes its content in
XML markup to the specified file.

The resulting XML document follows. The user-defined format is contained in the
metadata-related information in a transformation element using tags <tfm:
Transformation> and </tfm: Transformation>.

Exporting XML Documents

A Exporting an XML Document Containing a SAS User-Defined Format

Output 2.4 XML Document Containing a SAS User-Defined Format

13

<?xml version="1.0"
<oim:Transfer xmlns
xmlns
xmlns

encoding="windows-1252" ?>
:oim="http://www.mdcinfo.com/oim/oim.dtd"
:dbm="http://www.mdcinfo.com/oim/dbm.dtd"
:tfm="http://www.mdcinfo.com/oim/tfm.dtd">

<!-- VersionHeader OimVersion="1.1" OimStatus="Proposal" -->
<oim:TransferHeader Exporter="SAS Proprietary Software Release

9.1(9.01.00A0D01262003)"

ExporterVersion="9.1"
TransferDateTime="2003-01-27T13:23:00" />

<dbm:ColumnTypeSet oim:id="_7999" name="http://www.w3.org/TR/1998/

NOTE-XML-data-0105/">

<dbm:ColumnTypeSetColumnTypes>
<dbm:ColumnType oim:id="_8000"
<dbm:ColumnType oim:id="_8001"
<dbm:ColumnType oim:id="_8002"
<dbm:ColumnType oim:id="_8003"
<dbm:ColumnType oim:id="_8004"
<dbm:ColumnType oim:id="_8005"
<dbm:ColumnType oim:id="_8006"
<dbm:ColumnType oim:id="_8007"
<dbm:ColumnType oim:id="_8008"
<dbm:ColumnType oim:id="_8009"
<dbm:ColumnType oim:id="_8010"
<dbm:ColumnType oim:id="_8011"
<dbm:ColumnType oim:id="_8012"
<dbm:ColumnType oim:id="_8013"
<dbm:ColumnType oim:id="_8014"
<dbm:ColumnType oim:id="_8015"
<dbm:ColumnType oim:id="_8016"
<dbm:ColumnType oim:id="_8017"
<dbm:ColumnType oim:id="_8018"
<dbm:ColumnType oim:id="_8019"
<dbm:ColumnType oim:id="_8020"
<dbm:ColumnType oim:id="_8021"
<dbm:ColumnType oim:id="_8022"
<dbm:ColumnType oim:id="_8023"
<dbm:ColumnType oim:id="_8024"
<dbm:ColumnType oim:id="_8026"
<dbm:ColumnType oim:id="_8027"
<dbm:ColumnType oim:id="_8028"
<dbm:ColumnType oim:id="_8025"

</dbm:ColumnTypeSetColumnTypes>

</dbm:ColumnTypeSet>

name="string" IsFixedLength="True" />
name="number" />

name="int" />

name="float" />
name="fixed.14.4" />
name="boolean" />
name="dateTime.iso8601" />
name="dateTime.iso8601tz" />
name="date.iso8601" />
name="time.iso8601" />
name="time.iso8601ltz" />
name="il" />

name="i2" />

name="i4" />

name="ig8" />

name="uil" />

name="ui2" />

name="ui4" />

name="uig8" />

name="r4" />

name="r8" />
name="float.IEEE.754.32" />
name="float.IEEE.754.64" />
name="uuid" />

name="uri" />
name="bin.hex" />
name="char" />
name="string.ansi" />
name="bin.base64" />

14

Exporting an XML Document Containing a SAS User-Defined Format A Chapter 2

<dbm:Catalog oim:id="_1">
<dbm:CatalogSchemas>
<dbm:Schema oim:id="_2">

<dbm:SchemaTables>

<l-- -
<!-- version 8.2 -——>
<!-- this is a new location for the transformation -->
<!-- desired for supporting multiple table exports -->
<!l-= -

<tfm:Transformation>
<tfm:TransformationConversion>
<tfm:CodeDecodeSet name="SEX">
<tfm:CodeDecodeSetCodeColumn oim:href="# 5" />
<tfm:CodeDecodeValue name="_TYPE" value="Value" />
<tfm:CodeDecodeValue value="1"
DecodeValue="'Male'" />
<tfm:CodeDecodeValue value="2"
DecodeValue="'Female'" />
</tfm:CodeDecodeSet>
</tfm:TransformationConversion>
</tfm:Transformation>

<dbm:Table oim:id="_3"
name="GRADES"
label="Table"
EstimatedRows="-1">
<dbm:ColumnSetColumns>
<dbm:Column oim:id="_4"
name="Student"
Length="8">
<dbm:ColumnDataType>
<dbm:ColumnType oim:href="# 8000" />
</dbm:ColumnDataType>
</dbm:Column>
<dbm:Column oim:id="_5"
name="Gender">
<dbm:ColumnDataType>
<dbm:ColumnType oim:href="# 8003" />
</dbm:ColumnDataType>
</dbm:Column>
<dbm:Column oim:id="_6"
name="Testl">
<dbm:ColumnDataType>
<dbm:ColumnType oim:href="# 8003" />
</dbm:ColumnDataType>
</dbm:Column>
<dbm:Column oim:id="_7"
name="Test2">
<dbm:ColumnDataType>
<dbm:ColumnType oim:href="# 8003" />
</dbm:ColumnDataType>
</dbm:Column>
<dbm:Column oim:id="_8"
name="Final">
<dbm:ColumnDataType>
<dbm:ColumnType oim:href="# 8003" />
</dbm:ColumnDataType>
</dbm:Column>
</dbm:ColumnSetColumns>
</dbm:Table>

Exporting XML Documents /\ Exporting an XML Document Containing SAS Dates, Times, and Datetimes 15

<Table oim:href="#_3">
<ColumnSetColumns>
<Column oim:href="#_4"> Fred </Column>
<Column oim:href="#_5"> 1 </Column>
<Column oim:href="# _6"> 66 </Column>
<Column oim:href="#_7"> 80 </Column>
<Column oim:href="#_8"> 70 </Column>
</ColumnSetColumns>
<ColumnSetColumns>
<Column oim:href="#_4"> Wilma </Column>
<Column oim:href="# 5"> 2 </Column>
<Column oim:href="#_6"> 97 </Column>
<Column oim:href="#_7"> 91 </Column>
<Column oim:href="#_8"> 98 </Column>
</ColumnSetColumns>
</Table>

</dbm:SchemaTables>
</dbm: Schema>
</dbm:CatalogSchemas>
</dbm:Catalog>

</oim:Transfer>

Exporting an XML Document Containing SAS Dates, Times, and
Datetimes

This example exports an XML document from a SAS data set that contains datetime,
date, and time values. The XML document is generated for the GENERIC format.

First, the following SAS program creates a simple SAS data set and prints the
contents of the data set. The variable DateTime contains a datetime value, Date
contains a date value, and Time contains a time value.

data test;
DateTime=14686;
format DateTime datetime.;
Date=14686;
format Date date9.;
Time=14686;
format Time timeampm.

~e

proc print data=test;
run;

Output 2.5 PROC PRINT of SAS Data Set WORK.TEST Containing SAS Dates, Times, and Datetimes

The SAS System 1

Obs DateTime Date Time

1 01JAN60:04:04:46 17MAR2000 4:04:46 AM

16 Exporting an HTML Document A Chapter 2

The following code exports an XML document for the XML format GENERIC that
includes the SAS date, time, and datetime information:

libname trans xml 'XML-document’ xmltype=generic; @

data trans.test; @
set work.test;
run;

1 The LIBNAME statement assigns the libref TRANS to the physical location of the
file that will store the exported XML document (complete pathname, filename, and
file extension), and then specifies the XML engine. XMLTYPE= specifies the
GENERIC format type, which is the default.

2 The DATA step reads the SAS data set WORK.TEST and writes its content in
XML markup to the specified XML document.

Here is the resulting XML document.

Output 2.6 XML Document Using GENERIC Format

<?xml version="1.0" encoding="windows-1252" 2>
<TABLE>
<TEST>
<DateTime> 1960-01-01T04:04:46.000000 </DateTime>
<Date> 2000-03-17 </Date>
<Time> 04:04:46 </Time>
</TEST>
</TABLE>

Exporting an HTML Document
This example exports an HTML document from a SAS data set. With the HTML
format type specified, the XML engine generates HTML tags. The following output
shows the SAS data set MYFILES.CLASS to be exported to an HTML document.

Output 2.7 SAS Data Set MYFILES.CLASS

Obs Name Sex Age Height Weight
1 Alfred M 14 69.0 112.5
2 Alice F 13 56.5 84.0
3 Barbara F 13 65.3 98.0
4 Carol F 14 62.8 102.5
5 Henry M 14 63.5 102.5
6 James M 12 57.3 83.0
7 Jane F 12 59.8 84.5
8 Janet F 15 62.5 112.5
9 Jeffrey M 13 62.5 84.0

10 John M 12 59.0 99.5
11 Joyce F 11 51.3 50.5
12 Judy F 14 64.3 90.0
13 Louise F 12 56.3 77.0
14 Mary F 15 66.5 112.0
15 Philip M 16 72.0 150.0
16 Robert M 12 64.8 128.0
17 Ronald M 15 67.0 133.0
18 Thomas M 11 57.5 85.0
19 William M 15 66.5 112.0

Exporting XML Documents /A Exporting an HTML Document 17

The following SAS program exports an HTML document from the SAS data set

MYFILES.CLASS:

libname myfiles ’'SAS-data-library’'; @

libname trans xml ’‘XML-document’ xmltype=html; @

data trans.class; @

set myfiles.class;

run;

1 The first LIBNAME statement assigns the libref MYFILES to the physical location
of the SAS data library that stores the SAS data set CLASS. The V9 engine is the

default.

2 The second LIBNAME statement assigns the libref TRANS to the physical location
of the file that will store the exported HTML document (complete pathname,
filename, and file extension) and specifies the XML engine. The engine option
XMLTYPE=HTML produces the HTML tags. By default, metadata-related
information is not generated.

3 The DATA step reads the SAS data set MYFILES.CLASS and writes its content in
HTML format to the specified XML document.

Here is the resulting HTML document.

Output 2.8 HTML Document Exported from MYFILES.CLASS

<!DOCTYPE HTML PUBLIC

<HTML>
<BODY>

<TABLE border="1"

<TBODY>
<TR>
<TD>
<TD>
<TD>
<TD>
<TD>
</TR>
<TR>
<TD>
<TD>
<TD>
<TD>
<TD>
</TR>

<TR>
<TD>
<TD>
<TD>
<TD>
<TD>
</TR>
</TBODY>
</TABLE>
</BODY>
</HTML>

Alfred </TD>
M </TD>
14 </TD>
69 </TD>
112.5 </TD>

Alice </TD>
F </TD>
13 </TD>
56.5 </TD>
84 </TD>

William </TD>
M </TD>

15 </TD>

66.5 </TD>
112 </TD>

"-//W3C//DTD HTML 3.2 Final//EN">

width="100%">

18 Exporting Numeric Values A Chapter 2

Exporting Numeric Values

This example uses a small SAS data set, with a numeric variable that contains values
with a high precision. The following SAS program creates the data set with an assigned
user-defined format, then exports two XML documents to show the difference in output:

libname format xml ’‘C:\My Documents\format.xml’'; @

libname prec xml ’‘C:\My Documents\precision.xml’ xmldouble=precision; @

data npi; @

do n=1 to 10;
n pi = n*3.141592653589793;
output;

end;

format n _pi £14.2;

run;

data format.dbltest; @

set npi;

run;

data prec.rawtest; @

set npi;

run;

title ’'Drops the Precision’; @

proc print data=format.dbltest;

format n_pi f14.10;

run;

title 'Keeps the Precision’; @

proc print data=prec.rawtest;

format n_pi f14.10;

run;

1

First LIBNAME statement assigns the libref FORMAT to the file that will store
the generated XML document FORMAT.XML. The default behavior for the engine
is that an assigned SAS format controls numeric values.

Second LIBNAME statement assigns the libref PREC to the file that will store the
generated XML document PRECISION.XML. The XMLDOUBLE= option specifies
PRECISION, which causes the engine to retrieve the stored raw values.

DATA step creates the temporary data set NPI. The data set has a numeric
variable that contains values with a high precision. The variable has an assigned
user-defined format that specifies two decimal points.

4 DATA step creates the data set FORMAT.DBLTEST from WORK.NPIL.
5 DATA step creates the data set PREC.RAWTEST from WORK.NPI.
6 From the data set FORMAT.DBLTEST, PROC PRINT generates the XML

document FORMAT. XML, which contains numeric values controlled by the SAS
format.

Exporting XML Documents /\ Exporting Numeric Values 19

Output 2.9 XML Document FORMAT.XML

<?xml version="1.0" encoding="iso-8859-1" 2>
<TABLE>
<DBLTEST>
<n> 1 </n>
<n_pi> 3.14 </n_pi>
</DBLTEST>
<DBLTEST>
<n> 2 </n>
<n_pi> 6.28 </n_pi>
</DBLTEST>
<DBLTEST>
<n> 3 </n>
<n_pi> 9.42 </n_pi>
</DBLTEST>
<DBLTEST>
<n> 4 </n>
<n_pi> 12.57 </n_pi>
</DBLTEST>
<DBLTEST>
<n> 5 </n>
<n_pi> 15.71 </n_pi>
</DBLTEST>
<DBLTEST>
<n> 6 </n>
<n_pi> 18.85 </n_pi>
</DBLTEST>
<DBLTEST>
<n> 7 </n>
<n_pi> 21.99 </n_pi>
</DBLTEST>
<DBLTEST>
<n> 8 </n>
<n_pi> 25.13 </n_pi>
</DBLTEST>
<DBLTEST>
<n> 9 </n>
<n_pi> 28.27 </n_pi>
</DBLTEST>
<DBLTEST>
<n> 10 </n>
<n_pi> 31.42 </n_pi>
</DBLTEST>
</TABLE>

For the PRINT procedure output, a format was specified in order to show the
precision loss. In the output, the decimals after the second digit are zeros. Here is
the procedure output.

20

Exporting Numeric Values A Chapter 2

Output 2.10 PRINT Procedure Output for FORMAT.DBLTEST

Drops the Precision 1

=4

Obs N_PI

3.1400000000

6.2800000000

9.4200000000
12.5700000000
15.7100000000
18.8500000000
21.9900000000
25.1300000000
28.2700000000
31.4200000000

O VWO U b WN K
O VWO U b WN K

iy
=

7 From the data set PREC.RAWTEST, PROC PRINT generates the XML document
PRECISION.XML, which contains the stored numeric values.

Exporting XML Documents /A Exporting Numeric Values

Output 2.11 XML Document PRECISION.XML

<?xml version="1.0" encoding="iso-8859-1" 2>

<TABLE>

<RAWTEST>

<n rawvalue="QRAAAAAAAAA="> 1 </n>

<n_pi rawvalue="QTJDIgiIWjA="> 3.14 </n_pi>
</RAWTEST>
<RAWTEST>

<n rawvalue="QSAAAAAAAAA="> 2 </n>

<n_pi rawvalue="QWSH7VEQtGA="> 6.28 </n_pi>
</RAWTEST>
<RAWTEST>

<n rawvalue="QTAAAAAAAAA="> 3 </n>

<n_pi rawvalue="QZzZbL4/mZDpA="> 9.42 </n_pi>
</RAWTEST>
<RAWTEST>

<n rawvalue="QUAAAAAAAAA="> 4 </n>

<n_pi rawvalue="QckP2qIhaMA="> 12.57 </n_pi>
</RAWTEST>
<RAWTEST>

<n rawvalue="QVAAAAAAAAA="> 5 </n>

<n_pi rawvalue="QftTO0UgpwvA="> 15.71 </n_pi>
</RAWTEST>
<RAWTEST>

<n rawvalue="QWAAAAAAAAA="> 6 </n>

<n_pi rawvalue="QhLZfH8zIdI="> 18.85 </n_pi>
</RAWTEST>
<RAWTEST>

<n rawvalue="QXAAAAAAAAA="> 7 </n>

<n_pi rawvalue="QhX9u+m7p3U="> 21.99 </n_pi>
</RAWTEST>
<RAWTEST>

<n rawvalue="QYAAAAAAAAA="> 8 </n>

<n_pi rawvalue="Qhkh+1RELRg="> 25.13 </n_pi>
</RAWTEST>
<RAWTEST>

<n rawvalue="QZAAAAAAAAA="> 9 </n>

<n_pi rawvalue="QhxGOr7Msrs="> 28.27 </n_pi>
</RAWTEST>
<RAWTEST>

<n rawvalue="QaAAAAAAAAA="> 10 </n>

<n_pi rawvalue="Qh9geilVOF4="> 31.42 </n_pi>
</RAWTEST>

</TABLE>

For the PRINT procedure output, a format was specified in order to show the
retained precision. Here is the procedure output.

Output 2.12 PRINT Procedure Output from PREC.RAWTEST

Keeps the Precision 2

Obs N_PI

=2

3.1415926536

6.2831853072

9.4247779608
12.5663706144
15.7079632679
18.8495559215
21.9911485751
25.1327412287
28.2743338823
31.4159265359

O VWO JOU b WN K
C VWO NV WNE

=
[y

22

Exporting an XML Document with Separate Metadata A Chapter 2

Exporting an XML Document with Separate Metadata

This example exports an XML document from a SAS data set and specifies a
separate file to contain metadata-related information.

Because this example illustrates using the options XMLMETA= and XMLSCHEMA-=,
which are available for the HTML and MSACCESS format types only, the example uses
a SAS data set that was created from a Microsoft Access 2000 database.

The following SAS program exports an XML document from the SAS data set
MYFILES.SUPPLIERS:

libname input ’‘c:\My Documents\myfiles’; @
filename xsd ‘c:\My Documents\XML\suppliers.xsd’'; @

libname output xml ’‘c:\My Documents\XML\suppliers.xml’ xmltype=msaccess

xmlmeta=schemadata xmlschema=xsd’; @

data output.suppliers; @

set input.suppliers;

run;

1 The first LIBNAME statement assigns the libref INPUT to the physical location of

the SAS data library that stores the SAS data set SUPPLIERS.

The FILENAME statement assigns the fileref XSD to the physical location of the
separate external file that will contain the metadata-related information.
The second LIBNAME statement assigns the libref OUTPUT to the physical
location of the file that will store the exported XML document (complete pathname,
filename, and file extension) and specifies the XML engine. The engine options
o XMLTYPE=MSACCESS supports the markup standards for Microsoft Access
2002.
0 XMLMETA=SCHEMADATA specifies to include both data content and
metadata-related information in the exported markup.
o XMLSCEHMA= specifies the fileref that is assigned, in the previous
FILENAME statement, to the separate external file that will contain the
metadata-related information.

The DATA step reads the SAS data set INPUT.SUPPLIERS and writes its data
content in Microsoft Access 2002 XML format to the XML document

Suppliers. XML, then writes the metadata information to the separate external file
Suppliers.XSD.

Here is part of the resulting XML document.

Exporting XML Documents /\ Exporting an XML Document with Separate Metadata 23

Output 2.13 XML Document Suppliers. XML

<?xml version="1.0" encoding="windows-1252" ?>
<dataroot =xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:od="urn:schemas-microsoft-com:officedata">
xs :noNamespaceSchemaLocation="SUPPLIERS.xsd">

<SUPPLIERS>
<SupplierID>1</SupplierID>
<CompanyName>Exotic Flowers</CompanyName>
<ContactName>Charlotte Smith</ContactName>
<ContactTitle>Purchasing Manager</ContactTitle>
<Address>49 Franklin St.</Address>
<City>London</City>
<Region/>
<PostalCode>EC1l 4SD</PostalCode>
<Country>UK</Country>
<Phone>(272) 444-2222</Phone>
<Fax/>
<HomePage/>

</SUPPLIERS>

<SUPPLIERS>
<SupplierID>2</SupplierID>
<CompanyName>New Orleans Cajun Foods</CompanyName>
<ContactName>Shelley Martin</ContactName>
<ContactTitle>Order Administrator</ContactTitle>
<Address>P.0. Box 78934</Address>
<City>New Orleans</City>
<Region>LA</Region>
<PostalCode>70117</PostalCode>
<Country>USA</Country>
<Phone>(512) 284-3677</Phone>
<Fax/>
<HomePage>#MYCAJUN.HTM#</HomePage>

</SUPPLIERS>

</dataroot>

And here is the separate metadata information.

24

Exporting an XML Document with Separate Metadata A Chapter 2

Output 2.14 Separate Metadata Information Suppliers.XSD

<?xml version="1.0" encoding="windows-1252" 2>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:od="urn:schemas-microsoft-com:officedata">
<xs:element name="dataroot">
<xs:complexType>
<xs:sequence>
<xs:element ref="SUPPLIERS" minOccurs="0" maxOccurs="unbounded"
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="SUPPLIERS">
<xs:complexType>
<xs:sequence>
<xs:element name="SupplierID" minOccurs="0"
od:jetType="double" od:sqlSType="double" type="xs:double" />
<xs:element name="CompanyName" minOccurs="0"
od:jetType="text" od:sqlSType="nvarchar">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="40" />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="ContactName" minOccurs="0"
od:jetType="text" od:sqlSType="nvarchar">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="30" />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="ContactTitle" minOccurs="0"
od:jetType="text" od:sqlSType="nvarchar">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="30" />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Address" minOccurs="0"
od:jetType="text" od:sqlSType="nvarchar">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="60" />
</xs:restriction>
</xs:simpleType>
</xs:element>

/>

Exporting XML Documents /\ Exporting an XML Document with Separate Metadata 25

<xs:element name="City" minOccurs="0"
od:jetType="text" od:sqlSType="nvarchar">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="15" />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Region" minOccurs="0"
od:jetType="text" od:sqlSType="nvarchar">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="15" />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="PostalCode" minOccurs="0"
od:jetType="text" od:sqlSType="nvarchar">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="10" />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Country" minOccurs="0"
od:jetType="text" od:sqlSType="nvarchar">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="15" />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Phone" minOccurs="0"
od:jetType="text" od:sqlSType="nvarchar">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="24" />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Fax" minOccurs="0"
od:jetType="text" od:sqlSType="nvarchar">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="24" />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="HomePage" minOccurs="0"
od:jetType="text" od:sqlSType="nvarchar">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="256" />
</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

26

27

CHAPTER

Importing XML Documents

Understanding How to Import an XML Document 27
Understanding the Required Physical Structure for an XML Document to Be Imported 27
What Is the Required Physical Structure? 21
Why Is a Specific Physical Structure Required? 29
Handling XML Documents That Are Not in the Required Physical Structure 30
Importing an XML Document with the Correct Physical Structure 30
Importing an XML Document with Numeric Values 31
Importing an XML Document with Non-Escaped Character Data 33
Importing an XML Document Created by Microsoft Access 34
Importing Concatenated XML Documents 37

Understanding How to Import an XML Document

Importing an XML document is the process of reading an external XML document as
a SAS data set. The XML engine translates the input XML document to the SAS
proprietary file format.

To import an XML document, you execute the LIBNAME statement for the XML
engine in order to assign a libref to the physical location of an existing XML document.
Then, you execute SAS code to access the XML document as a SAS data set.

Understanding the Required Physical Structure for an XML Document to
Be Imported

What Is the Required Physical Structure?

For an XML document to be successfully imported, the requirements for well-formed
XML must translate as follows:

0 The root-enclosing element (top-level node) of an XML document is the document
container. For SAS, it is like the SAS data library.

O The nested elements (repeating element instances) that occur within the container
begin with the second-level instance tag.

0 The repeating element instances must represent a rectangular organization. For a
SAS data set, they determine the observation boundary that becomes a collection
of rows with a constant set of columns.

28 What Is the Required Physical Structure? A Chapter 3

Here is an example of an XML document that illustrates the physical structure that
is required:

<?xml version="1.0" encoding="windows-1252" ?>
<LIBRARY> @
<STUDENTS> @
<ID> 0755 </ID>
<NAME> Brad Martin </NAME>
<ADDRESS> 1611 Glengreen </ADDRESS>
<CITY> Huntsville </CITY>
<STATE> Texas </STATE>
</STUDENTS>

<STUDENTS> @
<ID> 1522 </ID>
<NAME> Zac Harvell </NAME>
<ADDRESS> 11900 Glenda </ADDRESS>
<CITY> Houston </CITY>
<STATE> Texas </STATE>
</STUDENTS>

more instances of <STUDENTS>

</LIBRARY>

This is what happens when the previous XML document is imported:
1 The XML engine recognizes <LIBRARY> as the root-enclosing element.

2 The engine goes to the second-level instance tag, which is <STUDENTS>,
translates it as the data set name, and begins scanning the elements that are
nested (contained) between the <STUDENTS> start tag and the </STUDENTS>
end tag, looking for variables.

3 Because the instance tags <ID>, <NAME>, <ADDRESS>, <CITY>, and <STATE>
are contained within the <STUDENTS> start tag and </STUDENTS> end tag, the
XML engine interprets them as variables. The individual instance tag names
become the data set variable names. The repeating element instances are
translated into a collection of rows with a constant set of columns.

These statements result in the following SAS output:

libname test xml ’'C:\My Documents\test\students.xml’;

proc print data=test.students;

run;

Output 3.1 PROC PRINT of TEST.STUDENTS

ID NAME ADDRESS CITY STATE

0755 Brad Martin 1611 Glengreen Huntsville Texas
1522 Zac Harvell 11900 Glenda Houston Texas

Importing XML Documents /. Why Is a Specific Physical Structure Required? 29

Why Is a Specific Physical Structure Required?

Well-formed XML is determined by structure, not content. Therefore, while the XML
engine can assume that the XML document is valid, well-formed XML, the engine
cannot assume that the root element encloses only instances of a single node element,
that is, only a single data set. Therefore, the XML engine has to account for the
possibility of multiple nodes, that is, multiple SAS data sets.

For example, when the following correctly structured XML document is imported, it
is recognized as containing two SAS data sets: HIGHTEMP and LOWTEMP.

<?xml version="1.0" encoding="windows-1252" 2>
<CLIMATE> @
<HIGHTEMP> @
<PLACE> Libya </PLACE>
<DATE> 1922-09-13 </DATE>
<DEGREE-F> 136 </DEGREE-F>
<DEGREE-C> 58 </DEGREE-C>
</HIGHTEMP>

more instances of <HIGHTEMP>

<LOWTEMP> @
<PLACE> Antarctica </PLACE>
<DATE> 1983-07-21 </DATE>
<DEGREE-F> -129 </DEGREE-F>
<DEGREE-C> -89 </DEGREE-C>
</LOWTEMP>

more instances of <LOWTEMP>

</CLIMATE>

This is what happens when the previous XML document is imported:

1 The XML engine recognizes the first instance tag <CLIMATE> as the
root-enclosing element, which is the container for the document.

2 Starting with the second-level instance tag, which is <HIGHTEMP>, the XML
engine uses the repeating element instances as a collection of rows with a constant
set of columns.

3 When the second-level instance tag changes, the XML engine interprets that
change as a different SAS data set.

The result is two SAS data sets: HIGHTEMP and LOWTEMP. Both happen to have
the same variables, but of course, different data.

To ensure that an import result is what you expect, use the DATASETS procedure.
For example, these SAS statements result in the following:

libname climate xml ‘C:\My Documents\xml\climate.xml’;

proc datasets library=climate;
quit;

30 Handling XML Documents That Are Not in the Required Physical Structure A Chapter 3

Output 3.2 PROC DATASETS Output for CLIMATE Library

————— Directory-----
Libref: CLIMATE
Engine: XML

Physical Name: C:\My Documents\xml\climate.xml

1 HIGHTEMP DATA
2 LOWTEMP DATA

Handling XML Documents That Are Not in the Required Physical
Structure

If your XML document is not in the required physical structure, you can tell the
XML engine how to interpret the XML markup in order to successfully import the
document. See Chapter 4, “Importing XML Documents Using an XMLMap,” on page 41.

Importing an XML Document with the Correct Physical Structure

This example imports the following XML document, which conforms to the physical
structure that the XML engine requires:

<?xml version="1.0" encoding="windows-1252" ?>
<TABLE>
<CLASS>
<Name> Alfred </Name>
<Sex> M </Sex>
<Age> 14 </Age>
<Height> 69 </Height>
<Weight> 112.5 </Weight>
</CLASS>
<CLASS>
<Name> Alice </Name>
<Sex> F </Sex>
<Age> 13 </Age>
<Height> 56.5 </Height>
<Weight> 84 </Weight>
</CLASS>

<CLASS>
<Name> William </Name>
<Sex> M </Sex>
<Age> 15 </Age>
<Height> 66.5 </Height>
<Weight> 112 </Weight>

</CLASS>

</TABLE>

Importing XML Documents /A Importing an XML Document with Numeric Values 31

The following SAS program translates the XML markup to SAS proprietary format:

libname trans xml ’'XML-document’; @
libname myfiles ’'SAS-data-library’'; @

data myfiles.class; @
set trans.class;

run;

1 The first LIBNAME statement assigns the libref TRANS to the physical location of
the XML document (complete pathname, filename, and file extension), and
specifies the XML engine. By default, the XML engine expects GENERIC format.

2 The second LIBNAME statement assigns the libref MYFILES to the physical
location of the SAS data library that will store the resulting SAS data set. The V9
engine is the default.

3 The DATA step reads the XML document and writes its content in SAS
proprietary format.

Issuing the PRINT procedure produces the output for the data set that was
translated from the XML document:

proc print data=myfiles.class;

run;

Output 3.3 PROC PRINT Output for MYFILES.CLASS

The SAS System 1

Obs WEIGHT HEIGHT AGE SEX NAME

1 112.5 69.0 14 M Alfred

2 84.0 56.5 13 F Alice

3 98.0 65.3 13 F Barbara

4 102.5 62.8 14 F Carol

5 102.5 63.5 14 M Henry

6 83.0 57.3 12 M James

7 84.5 59.8 12 F Jane

8 112.5 62.5 15 F Janet

9 84.0 62.5 13 M Jeffrey

10 99.5 59.0 12 M John

11 50.5 51.3 11 F Joyce

12 90.0 64.3 14 F Judy

13 77.0 56.3 12 F Louise

14 112.0 66.5 15 F Mary

15 150.0 72.0 16 M Philip

16 128.0 64.8 12 M Robert

17 133.0 67.0 15 M Ronald

18 85.0 57.5 11 M Thomas

19 112.0 66.5 15 M William

Importing an XML Document with Numeric Values

This example imports the XML document PRECISION. XML, which was exported in
“Exporting Numeric Values” on page 18. This example illustrates how you can change
the behavior for importing numeric values.

32 Importing an XML Document with Numeric Values A Chapter 3

The first SAS program imports the XML document using the default behavior, which
retrieves PCDATA from the element:

libname default xml ’C:\My Documents\precision.xml’;
title ’'Default Method’;
proc print data=default.rawtest;

format n_pi f14.10;

run;

The result of the import is the SAS data set DEFAULT.RAWTEST.

Output 3.4 PROC PRINT of Data Set DEFAULT.RAWTEST

Default Method 1

Obs N_PI

=4

3.1400000000

6.2800000000

9.4200000000
12.5700000000
15.7100000000
18.8500000000
21.9900000000
25.1300000000
28.2700000000
31.4200000000

O VWO NV WNE
O VWO JOU b WN K

=
iy

The second SAS program imports the XML document using the XMLDOUBLE=
option in order to change the behavior, which retrieves the value from the rawdata=
attribute in the element:

libname new xml ’'C:\My Documents\precision.xml’ xmldouble=precision;
title 'Precision Method’;
proc print data=new.rawtest;

format n _pi £14.10;
run;

The result of the import is SAS data set NEW.RAWTEST.

Output 3.5 PROC PRINT of Data Set NEW.RAWTEST

Precision Method 2

Obs N_PI

=4

3.1415926536

6.2831853072

9.4247779608
12.5663706144
15.7079632679
18.8495559215
21.9911485751
25.1327412287
28.2743338823
31.4159265359

O VWO JOUbd WNKE
O VWO Ub WN -

—
=

Importing XML Documents /A Importing an XML Document with Non-Escaped Character Data 33

Importing an XML Document with Non-Escaped Character Data

W3C specifications state that for character data, certain characters such as the left
angle bracket (<), the ampersand (&), and the apostrophe () must be escaped using
character references or strings like samp;. For example, to allow attribute values to
contain both single and double quotation marks, the apostrophe or single-quotation
character () can be represented as ' and the double-quotation character (") as
".

To import an XML document that contains non-escaped characters, you can specify
the LIBNAME statement option XMLPROCESS=RELAX in order for the XML engine
to accept character data that does not conform to W3C specifications. That is,
non-escaped characters like the apostrophe, double quotation marks, and the
ampersand are accepted in character data.

This example imports the following XML document named Relax. XML, which
contains non-escaped character data:

<?xml version="1.0" 2>
<RELAX>
<CHARS>
<accept>0K</accept>
<status>proper escape sequence</status>
<ampersand>& </ampersand>
<squote>'</squote>
<dquote>"</dquote>
<less><</less>
<greater>></greater>
</CHARS>
<CHARS>
<accept>0K</accept>
<status>unescaped character in CDATA</status>
<ampersand><![CDATA[Abbott & Costello]]></ampersand>
<squote><![CDATA[Logan’s Run]]></squote>
<dquote><![CDATA[This is "realworld" stuff]]></dquote>

<less><![CDATA[e <pi]]></less>
<greater><![CDATA[pen > sword]]></greater>
</CHARS>
<CHARS>

<accept>NO</accept>
<status>single unescaped character</status>
<ampersand>&</ampersand>
<squote>’'</squote>
<dquote>"</dquote>
<!-- purposely left out the less tag here -->
<greater/>

</CHARS>

<CHARS>
<accept>NO</accept>
<status>unescaped character in string</status>
<ampersand>Dunn & Bradstreet</ampersand>
<squote>Isn’t this silly?</squote>
<dquote>Quoth the raven, "Nevermore!"</dquote>
<less></less>
<!-- purposely left out the greater tag here -->

34 Importing an XML Document Created by Microsoft Access A Chapter 3

</CHARS>

</RELAX>

First, using the default XML engine behavior, which expects XML markup to
conform to W3C specifications, the following SAS program imports only the first two
observations, which contain valid XML markup, and produces errors for the last two
records, which contain non-escaped characters:

libname relax xml ’‘c:\My Documents\XML\relax.xml’;

proc print data=relax.chars;

run;

Output 3.6 SAS Log Output

ERROR: There is an

illegal character in the entity name.

encountered during XMLInput parsing
occurred at or near line 24, column 22
NOTE: There were 2

observations read from the data set RELAX.CHARS.

Specifying the LIBNAME statement option XMLPROCESS=RELAX enables the
XML engine to import the XML document:

libname relax xml ’‘c:\My Documents\XML\relax.xml’ xmlprocess=relax;

proc print data=relax.chars;

run;

Output 3.7 PROC PRINT Output

Obs

=W N R

Obs

B W N e

The SAS System

GREATER LESS DQUOTE

> < "

pen > sword e < pi This is "realworld" stuff
Quoth the raven, "Nevermore!"

AMPERSAND STATUS ACCEPT

& proper escape sequence OK

Abbott & Costello unescaped character in CDATA OK

& single unescaped character NO

Dunn & Bradstreet

unescaped character in string NO

SQUOTE

’

Logan’s Run
'

Isn’t this silly?

Importing an XML Document Created by Microsoft Access

This example imports the following XML document, which was created from a
Microsoft Access 2002 database. Because the XML document contains an embedded
XML schema, you must use the MSACCESS format type rather than the default
GENERIC format type.

<?xml version="1.0" encoding="UTF-8"?>
<root xmlns:xsd="http://www.w3.0rg/2000/10/XMLSchema"

Importing XML Documents /. Importing an XML Document Created by Microsoft Access

xmlns:od="urn:schemas-microsoft-com:officedata">

<xsd:schema>

<xsd:element name="dataroot">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element ref="Suppliers"/>

</xsd:choice>

</xsd:complexType>

</xsd:element>

<xsd:element name="Suppliers">

<xsd:annotation>

<xsd:appinfo>

<od:index index-name="PrimaryKey" index-key="SupplierID " primary="yes"
unique="yes" clustered="no"/>

<od:index index-name="CompanyName" index-key="CompanyName " primary="no"
unique="no" clustered="no"/>

<od:index index-name="PostalCode" index-key="PostalCode " primary="no"
unique="no" clustered="no"/>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="SupplierID" od:jetType="autonumber" od:sqlSType="int"
od:autoUnique="yes" od:nonNullable="yes">

<xsd:simpleType>

<xsd:restriction base="xsd:integer"/>

</xsd:simpleType>

</xsd:element>

<xsd:element name="CompanyName" minOccurs="0" od:jetType="text"
od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="40"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="ContactName" minOccurs="0" od:jetType="text"
od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="30"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

<dataroot xmlns:xsi="http://www.w3.0rg/2000/10/XMLSchema-instance">

<Suppliers>

<SupplierID>1</SupplierID>

35

36 Importing an XML Document Created by Microsoft Access A Chapter 3

<CompanyName>Exotic Flowers</CompanyName>
<ContactName>Charlotte Smith</ContactName>
<ContactTitle>Purchasing Manager</ContactTitle>
<Address>49 Franklin St.</Address>
<City>London</City>

<PostalCode>EC1l 4SD</PostalCode>
<Country>UK</Country>

<Phone>(272) 444-2222</Phone>

</Suppliers>

<Suppliers>

<SupplierID>2</SupplierID>

<CompanyName>New Orleans Cajun Foods</CompanyName>
<ContactName>Shelley Martin</ContactName>
<ContactTitle>Order Administrator</ContactTitle>
<Address>P.0. Box 78934</Address>

<City>New Orleans</City>

<Region>LA</Region>
<PostalCode>70117</PostalCode>
<Country>USA</Country>

<Phone>(512) 284-3677</Phone>
<HomePage>#MYCAJUN.HTM#</HomePage>

</Suppliers>

</dataroot>
</root>

The following SAS program interprets the XML document as a SAS data set:

libname access xml ’'/u/myid/myfiles/suppliers.xml’ xmltype=msaccess; @
proc print data=access.suppliers (obs=2); @

var companyname contactname;
run;

1 The LIBNAME statement assigns the libref ACCESS to the physical location of
the XML document (complete pathname, filename, and file extension), and
specifies the XML engine. By default, the XML engine expects GENERIC format,
so you must include the XMLTYPE= option in order to read the XML document in
MSACCESS format.

2 The PRINT procedure produces the output. The procedures uses the OBS= data
set option to print only the first two observations and the VAR statement to print
only specific variables (columns).

Output 3.8 PROC PRINT Output for ACCESS.SUPPLIERS

The SAS System 1
Obs COMPANYNAME CONTACTNAME
1 Exotic Flowers Charlotte Smith
2 New Orleans Cajun Foods Shelley Martin

Using PROC CONTENTS, the output displays the file’s attributes as well as the
attributes of each interpreted column (variable), such as the variable’s type and length,

Importing XML Documents /A Importing Concatenated XML Documents 37

which are obtained from the embedded XML schema. Without the embedded XML
schema, the results for the attributes would be default values.

proc contents data=access.suppliers;

run;

Output 3.9 PROC CONTENTS Output for ACCESS.SUPPLIERS

The SAS System 2

The CONTENTS Procedure

Data Set Name ACCESS.SUPPLIERS Observations .
Member Type DATA Variables 12
Engine XML Indexes 0
Created . Observation Length 0
Last Modified . Deleted Observations 0
Protection Compressed NO
Data Set Type Sorted NO
Label

Data Representation Default

Encoding Default

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label

8 ADDRESS Char 45 $45. $45. ADDRESS

7 CITY Char 13 $13. $13. CITY
11 COMPANYNAME Char 38 $38. $38. COMPANYNAME
10 CONTACTNAME Char 26 $26. $26. CONTACTNAME
9 CONTACTTITLE Char 28 $28. $28. CONTACTTITLE
4 COUNTRY Char 11 $11. $11. COUNTRY

2 FAX Char 15 $15. $15. FAX

1 HOMEPAGE Char 94 $94. $94. HOMEPAGE

3 PHONE Char 15 $15. $15. PHONE

5 POSTALCODE Char 8 $8. $8. POSTALCODE
6 REGION Char 8 $8. $8. REGION
12 SUPPLIERID Num 8 F8. F8. SUPPLIERID

Importing Concatenated XML Documents

For a file that is a concatenation of multiple XML documents, you can use the XML
engine to import the file. To import concatenated XML documents, simply specify the
LIBNAME statement option XMLCONCATENATE=YES.

This example imports the following file named ConcatStudents. XML, which consists
of two XML documents:

<?xml version="1.0" 2>
<LIBRARY>
<STUDENTS>
<ID>1345</ID>
<NAME>Linda Kay</NAME>
<SCHOOL>Bellaire</SCHOOL>
<CITY>Houston</CITY>
</STUDENTS>
<STUDENTS>
<ID>2456</ID>
<NAME>Chas Wofford</NAME>

38

Importing Concatenated XML Documents A Chapter 3

<SCHOOL>Sam Houston</SCHOOL>
<CITY>Houston</CITY>
</STUDENTS>
<STUDENTS>
<ID>3567</ID>
<NAME>Jerry Kolar</NAME>
<SCHOOL>Sharpstown</SCHOOL>
<CITY>Houston</CITY>
</STUDENTS>
</LIBRARY>

<?xml version="1.0" 2>
<LIBRARY>
<STUDENTS>
<ID>1234</1ID>
<NAME>Brad Martin</NAME>
<SCHOOL>Reagan</SCHOOL>
<CITY>Austin</CITY>
</STUDENTS>
<STUDENTS>
<ID>2345</ID>
<NAME>Zac Harvell</NAME>
<SCHOOL>Westwood</SCHOOL>
<CITY>Austin</CITY>
</STUDENTS>
<STUDENTS>
<ID>3456</ID>
<NAME>Walter Smith</NAME>
<SCHOOL>Bowie</SCHOOL>
<CITY>Austin</CITY>
</STUDENTS>
</LIBRARY>

First, using the default XML engine behavior, which does not support concatenated
XML documents (XMLCONCATENATE=NO), the following SAS program imports the
first XML document, which consists of three observations, and produces an error for the
second XML document:

libname concat xml ’/u/My Documents/XML/ConcatStudents.xml’;

proc datasets library=concat;

Importing XML Documents /A Importing Concatenated XML Documents 39

Output 3.10 SAS Log Output

NOTE: Libref CONCAT was successfully assigned as follows:
Engine: XML
Physical Name: /u/My Documents/XML/ConcatStudents.xml
20 proc datasets library=concat;
ERROR: "xml" is illegal as a processing-instruction target name.
encountered during XMLMap parsing
occurred at or near line 23, column 7

Directory
Libref CONCAT
Engine XML
Physical Name /u/My Documents/XML/ConcatStudents.xml
XMLType GENERIC
XMLMap NO XMLMAP IN EFFECT
Member
Name Type

1 STUDENTS DATA

Specifying the LIBNAME statement option XMCONCATENATE=YES enables the
XML engine to import the concatenated XML documents as one SAS data set:

libname concat xml ’/u/My Documents/XML/ConcatStudents.xml’ xmlconcatenate=yes;

proc print data=concat.students;

run;

Output 3.11 PROC PRINT Output

The SAS System 1
Obs CITY SCHOOL NAME ID
1 Houston Bellaire Linda Kay 1345
2 Houston Sam Houston Chas Wofford 2456
3 Houston Sharpstown Jerry Kolar 3567
4 Austin Reagan Brad Martin 1234
5 Austin Westwood Zac Harvell 2345
6 Austin Bowie Walter Smith 3456

40

4

CHAPTER

Importing XML Documents Using
an XMLMap

Why Use an XMLMap When Importing? 41

Using an XMLMap to Import an XML Document as One SAS Data Set 41
Using an XMLMap to Import an XML Document as Multiple SAS Data Sets 44
Importing Hierarchical Data as Related Data Sets 48

Including a Key Field with Generated Numeric Keys 51

Determining the Observation Boundary to Avoid Concatenated Data 55
Determining the Observation Boundary to Select the Best Columns 57

Why Use an XMLMap When Importing?

To successfully import an XML document, the XML engine requires a specific XML
physical structure so that the engine can identify columns of data from collections of
rows. If an XML document does not represent the required physical structure, the
results can be unexpected and unwanted. For information about the required physical
structure, see “What Is the Required Physical Structure?” on page 27 and “Why Is a
Specific Physical Structure Required?” on page 29.

If your XML document does not import successfully, rather than transform the
document, you can tell the XML engine how to interpret the XML markup in order to
successfully import the XML document. You create a separate XML document, called an
XMLMap, that contains specific XMLMap syntax, which is XML markup. The XMLMap
syntax tells the XML engine how to interpret the XML markup into SAS data set(s),
variables (columns), and observations (rows). See Chapter 8, “Creating an XMLMap,”
on page 85.

After you have created the XMLMap, use the XMLMAP= option either in the
LIBNAME statement or as a SAS data set option in order to specify the file.

Using an XMLMap to Import an XML Document as One SAS Data Set

This example explains how to create and use an XMLMap in order to tell the XML
engine how to map XML markup to a SAS data set, variables, and observations.

First, here is the XML document NHL.XML to be imported. Although simply
constructed and relatively easy for you to read, it does not import successfully because
its XML markup is not in the required physical structure:

<?xml version="1.0" encoding="iso-8859-1" 2>
<NHL>
<CONFERENCE> Eastern
<DIVISION> Southeast

42 Using an XMLMap to Import an XML Document as One SAS Data Set A Chapter 4

<TEAM name="Thrashers" abbrev="ATL" />
<TEAM name="Hurricanes" abbrev="CAR" />

<TEAM name="Panthers" abbrev="FLA" />

<TEAM name="Lightning" abbrev="TB" />

<TEAM name="Capitals" abbrev="WSH" />
</DIVISION>
</CONFERENCE>

<CONFERENCE> Western
<DIVISION> Pacific

<TEAM name="Stars" abbrev="DAL" />
<TEAM name="Kings" abbrev="LA" />
<TEAM name="Ducks" abbrev="ANA" />

<TEAM name="Coyotes" abbrev="PHX" />
<TEAM name="Sharks" abbrev="SJ" />
</DIVISION>
</CONFERENCE>
</NHL>

To successfully import the XML document, an XMLMap is needed. After
familiarizing yourself with the data to be imported, you can code the XMLMap syntax
so that the data is successfully imported. Here is the XMLMap used to import the XML
document, with notations as to the data investigation:

<?xml version="1.0" 2>
<SXLEMAP version="1.2">
<TABLE name="TEAMS"> @
<TABLE-PATH syntax="xpath"> @
/NHL/CONFERENCE/DIVISION/TEAM
</TABLE-PATH>

<COLUMN name="name"> @
<PATH> @
/NHL/CONFERENCE/DIVISION/TEAM/@name
</PATH>
<TYPE>character</TYPE>
<DATATYPE>STRING</DATATYPE>
<LENGTH>30</LENGTH>
</COLUMN>

<COLUMN name="abbrev"> @
<PATH> @
/NHL/CONFERENCE/DIVISION/TEAM/@abbrev
</PATH>
<TYPE>character</TYPE>
<DATATYPE>STRING</DATATYPE>
<LENGTH>3</LENGTH>
</COLUMN>

<COLUMN name="CONFERENCE" retain="YES"> @
<PATH>/NHL/CONFERENCE</PATH> @
<TYPE>character</TYPE>
<DATATYPE>STRING</DATATYPE>
<LENGTH>10</LENGTH>

Importing XML Documents Using an XMLMap /. Using an XMLMap to Import an XML Document as One SAS Data Set 43

</COLUMN>

<COLUMN name="DIVISION" retain="YES"> @
<PATH> @
/NHL/CONFERENCE/DIVISION
</PATH>
<TYPE>character</TYPE>
<DATATYPE>STRING</DATATYPE>

<LENGTH>10</LENGTH>
</COLUMN>
</TABLE>
</SXLEMAP>

The previous XMLMap syntax defines how to translate the XML markup as
explained below, using the following data investigation steps:

1 Locate and identify distinct tables of information.

You want a SAS data set (table) that contains some of the teams of the National
Hockey League. Because that is the only information contained in the XML
document, you can define a single data set named TEAMS in the XMLMap. (Note
that other XML documents might contain more than one table of related
information. Importing multiple tables is supported by the XMLMap syntax as
shown in “Using an XMLMap to Import an XML Document as Multiple SAS Data
Sets” on page 44.)

2 Identify the SAS data set observation boundary, which translates into a collection
of rows with a constant set of columns.

In the XML document, information about individual teams occurs in a <TEAM>
tag located with <CONFERENCE> and <DIVISION> enclosures. You want a new
observation generated each time a TEAM element is read.

3 Collect column definitions for each table.

For this XML document, the data content form is mixed. Some data occurs as
XML PCDATA (for example, CONFERENCE), and other data is contained in
attribute-value pairs (for example, NAME). Data types are all string values. The
constructed observation will also include the team NAME and ABBREV. A length
of 30 characters is sufficient for the NAME, and three characters is enough for the
ABBREYV field contents.

4 Add foreign keys or required external context.

You want to include information about the league orientation for the teams.
Also, you want to extract CONFERENCE and DIVISION data.

Note: The retain= attribute in the column definition forces retention of
processed data values after an observation is written to the output data set.
Because the foreign key fields occur outside the observation boundary (that is,
they are more sparsely populated in the hierarchical XML data than in the SAS
observation), their values for additional rows need to be retained as they are
encountered. A

5 Define a location path for each variable definition.

The PATH element identifies a position in the XML document from which to
extract data for each column. Element-parsed character data is treated differently
than attribute values. There is no conditional selection criteria involved.

The following SAS statements import the XML document NHL. XML and specify the
XMLMap named NHL.MAP. The PRINT procedure verifies that the import is successful:

filename NHL ’‘C:\My Documents\XML\NHL.xml’;
filename MAP ’'C:\My Documents\XML\NHL.map’;

44 Using an XMLMap to Import an XML Document as Multiple SAS Data Sets A Chapter 4

libname NHL xml xmlmap=MAP;

proc print data=NHL.TEAMS noobs;

run;

Output 4.1 PROC PRINT of Data Set NHL.TEAMS

The SAS System
name abbrev CONFERENCE DIVISION
Thrashers ATL Eastern Southeast
Hurricanes CAR Eastern Southeast
Panthers FLA Eastern Southeast
Lightning TB Eastern Southeast
Capitals WSH Eastern Southeast
Stars DAL Western Pacific
Kings LA Western Pacific
Ducks ANA Western Pacific
Coyotes PHX Western Pacific
Sharks sJ Western Pacific

Using an XMLMap to Import an XML Document as Multiple SAS Data
Sets

This example explains how to create and use an XMLMap in order to define how to
map XML markup into two SAS data sets. The example uses the XML document
RSS. XML, which does not import successfully because its XML markup is incorrectly
structured for the XML engine to translate successfully.

Note: The XML document RSS. XML uses the XML format RSS (Rich Site
Summary), which was designed by Netscape originally for exchange of content within
the My Netscape Network (MNN) community. The RSS format has been widely adopted
for sharing headlines and other Web content and is a good example of XML as a
transmission format. A

First, here is the XML document RSS.XML to be imported:

<?xml version="1.0" encoding="IS0-8859-1" 2>
<rss version="0.91">
<channel>
<title>WriteTheWeb</title>
<link>http://writetheweb.com</link>
<description>News for web users that write back</description>
<language>en-us</language>
<copyright>Copyright 2000, WriteTheWeb team.</copyright>
<managingEditor>editor@writetheweb.com</managingEditor>
<webMaster>webmaster@writetheweb.com</webMaster>

<item>
<title>Giving the world a pluggable Gnutella</title>
<link>http://writetheweb.com/read.php?item=24</1link>
<description>WorldOS is a framework on which to build programs that work
like Freenet or Gnutella -allowing distributed applications using
peer-to-peer routing.</description>
</item>
<item>
<title>Syndication discussions hot up</title>
<link>http://writetheweb.com/read.php?item=23</1link>
<description>After a period of dormancy, the Syndication mailing list
has become active again, with contributions from leaders in traditional media
and Web syndication.</description>
</item>
<item>
<title>Personal web server integrates file sharing and messaging
</title>
<link>http://writetheweb.com/read.php?item=22</1link>
<description>The Magi Project is an innovative project to create a
combined personal web server and messaging system that enables the sharing
and synchronization of information across desktop, laptop and palmtop devices.
</description>
</item>
<item>
<title>Syndication and Metadata</title>
<link>http://writetheweb.com/read.php?item=21</1link>
<description>RSS is probably the best known metadata format around.
RDF is probably one of the least understood. In this essay, published on my
O'Reilly Network weblog, I argue that the next generation of RSS
should be based on RDF.</description>
</item>
<item>
<title>UK bloggers get organized</title>
<link>http://writetheweb.com/read.php?item=20</1link>
<description>Looks like the weblogs scene is gathering pace beyond
the shores of the US. There's now a UK-specific page on weblogs.com,
and a mailing list at egroups.</description>
</item>
<item>
<title>Yournamehere.com more important than anything</title>
<link>http://writetheweb.com/read.php?item=19</1link>
<description>Whatever you're publishing on the web, your site
name is the most valuable asset you have, according to Carl Steadman.
</description>
</item>
</channel>
</rss>

The XML document can be successfully imported by creating an XMLMap that
defines how to map the XML markup. The following is the XMLMap named RSS.MAP,
which contains the syntax that is needed to successfully import RSS.XML. The syntax
tells the XML engine how to interpret the XML markup as explained in the subsequent
descriptions. Note that the contents of RSS. XML will result in two SAS data sets:

46 Using an XMLMap to Import an XML Document as Multiple SAS Data Sets A Chapter 4

CHANNEL to contain content information and ITEMS to contain the individual news
stories.

<?xml version="1.0" 2>
<SXLEMAP version="1.2"> @

<!-- TABLE (CHANNEL) -->
<!-- top level channel content description (TOC) -->
<TABLE name="CHANNEL"> 9
<TABLE-PATH syntax="xpath"> /rss/channel </TABLE-PATH> @
<TABLE-END-PATH syntax="xpath" beginend="Begin">
/rss/channel/item </TABLE-END-PATH> @

<l-- title -->

<COLUMN name="title"> @
<PATH> /rss/channel/title </PATH>
<TYPE> character </TYPE>
<DATATYPE> string </DATATYPE>
<LENGTH> 200 </LENGTH>

</COLUMN>

<!-- link -->
<COLUMN name="link"> @

<PATH> /rss/channel/link </PATH>

<TYPE> character </TYPE>

<DATATYPE> string </DATATYPE>

<LENGTH> 200 </LENGTH>

<DESCRIPTION> Story link </DESCRIPTION>
</COLUMN>

<!-- description -->
<COLUMN name="description">
<PATH> /rss/channel/description </PATH>
<TYPE> character </TYPE>
<DATATYPE> string </DATATYPE>
<LENGTH> 1024 </LENGTH>
</COLUMN>

<!-- language -->

<COLUMN name="language">
<PATH> /rss/channel/language </PATH>
<TYPE> character </TYPE>
<DATATYPE> string </DATATYPE>
<LENGTH> 8 </LENGTH>

</COLUMN>

<!-- version -->

<COLUMN name="version"> @
<PATH> /rss@version </PATH>
<TYPE> character </TYPE>
<DATATYPE> string </DATATYPE>
<LENGTH> 8 </LENGTH>

</COLUMN>

</TABLE>

Importing XML Documents Using an XMLMap /\ Using an XMLMap to Import an XML Document as Multiple SAS Data Sets 47

<!-- TABLE (ITEMS) -->
<!-- individual news stories -->
<TABLE name="ITEMS"> @
<TABLE-PATH syntax="xpath"> /rss/channel/item </TABLE-PATH>
<TABLE-DESCRIPTION> Individual news stories </TABLE-DESCRIPTION>

<l-- title -->
<COLUMN name="title"> @
<PATH> /rss/channel/item/title </PATH>
<TYPE> character </TYPE>
<DATATYPE> string </DATATYPE>
<LENGTH> 200 </LENGTH>

</COLUMN>
<!-- link -->
<!-- link is renamed to url, assigned a label and max length -->

<COLUMN name="URL"> @
<PATH> /rss/channel/item/link </PATH>
<TYPE> character </TYPE>
<DATATYPE> string </DATATYPE>
<LENGTH> 200 </LENGTH>
<DESCRIPTION> Story link </DESCRIPTION>
</COLUMN>

<!-- description -->

<COLUMN name="description">
<PATH> /rss/channel/item/description </PATH>
<TYPE> character </TYPE>
<DATATYPE> string </DATATYPE>
<LENGTH> 1024 </LENGTH>

</COLUMN>

</TABLE>

</SXLEMap>

The previous XMLMap defines how to translate the XML markup as explained below:

1
2
3

Root-enclosing element for SAS data set definitions.
Element for the CHANNEL data set definition.

Element specifying the location path that defines where in the XML document to
collect variables for the CHANNEL data set.

Element specifying the location path that specifies when to stop processing data
for the CHANNEL data set.

Element containing the attributes for the TITLE variable in the CHANNEL data
set. The XPath construction specifies where to find the current tag and to access
data from the named element.

Subsequent COLUMN elements define the variables LINK, DESCRIPTION, and
LANGUAGE for the CHANNEL data set.

Element containing the attributes for the last variable in the CHANNEL data set,
which is VERSION. This XPath construction specifies where to find the current
tag and uses the attribute form to access data from the named attribute.
Element for the ITEMS data set definition.

48 Importing Hierarchical Data as Related Data Sets A Chapter 4

9 Element containing the attributes for the TITLE variable in the ITEMS data set.

10 Subsequent COLUMN elements define other variables for the ITEMS data set,
which are URL and DESCRIPTION.

The following SAS statements import the XML document RSS. XML and specify the
XMLMap named RSS.MAP. The DATASETS procedure then verifies the import results:

filename rss 'C:\My Documents\xml\rss.xml’;
filename map 'C:\My Documents\xml\rss.map’;

libname rss xml xmlmap=map access=readonly;
proc datasets library=rss;

run;
quit;

Output 4.2 PROC DATASETS Output for RSS Library Showing Two Data Sets

————— Directory-----
Libref: RSS
Engine: XML
Physical Name: C:\My Documents\xml\rss.xml
XMLType: GENERIC
XMLMap: MAP
Name Memtype

1 CHANNEL DATA
2 ITEMS DATA

Importing Hierarchical Data as Related Data Sets

XML documents often contain hierarchical data in that the data is structured into
different levels like a company organization chart. Hierarchical structures are
one-to-many relationships, with top items having one or more items below it, for
example, customer to orders.

This example explains how to define an XMLMap in order to import an XML
document as two data sets that have related information.

First, here is the XML document Pharmacy.XML. The file contains hierarchical data
with related entities in the form of individual customers and their prescriptions. Each
customer can have one or multiple prescriptions. Notice that PRESCRIPTION elements
are nested within each <PERSON> start tag and </PERSON> end tag:

<?xml version="1.0" ?>
<PHARMACY>
<PERSON>
<NAME>Brad Martin</NAME>
<STREET>11900 Glenda Court</STREET>
<CITY>Austin</CITY>
<PRESCRIPTION>
<NUMBER>1234</NUMBER>

Importing XML Documents Using an XMLMap /. Importing Hierarchical Data as Related Data Sets 49

<DRUG>Tetracycline</DRUG>
</PRESCRIPTION>
<PRESCRIPTION>
<NUMBER>1245</NUMBER>
<DRUG>Lomotil</DRUG>
</PRESCRIPTION>
</PERSON>
<PERSON>
<NAME>Jim Spano</NAME>
<STREET>1611 Glengreen</STREET>
<CITY>Austin</CITY>
<PRESCRIPTION>
<NUMBER>1268</NUMBER>
<DRUG>Nexium</DRUG>
</PRESCRIPTION>
</PERSON>
</PHARMACY>

To import separate data sets, one describing the customers and the other containing
prescription information, a relation between each customer and associated prescriptions
must be designated in order to know which prescriptions belong to each customer.

An XMLMap defines how to translate the XML markup into two SAS data sets. The
customer table imports the name and address of each customer, and the prescription
table imports the customer’s name, prescription number, and drug. Notations in the
XMLMap syntax are explained below.

Note: The XMLMap was generated by using SAS XML Mapper. A

<?xml version="1.0" encoding="UTF-8"?>

U HHEHHHHHHEE A R R R R . >
<!-- 2003-04-08T15:03:16 -->

<!-- SAS XML Libname Engine Map -->

<!-- Generated by XML Mapper, 9.1.10.20030407.1378 -->

<l HHHHHHEHEEEE R H A AA A AR R R R R >

<SXLEMAP version="1.2" name="SXLEMAP"> @

<U—— HHHH4H4EHHFAH R AR RS EAHAA AR R AR ASAA S A A SRR R AR ——>
<TABLE name="PERSON"> @
<TABLE-PATH syntax="XPath">/PHARMACY/PERSON</TABLE-PATH>

<COLUMN name="NAME"> @
<PATH syntax="XPath">/PHARMACY/PERSON/NAME</PATH>
<TYPE>character</TYPE>
<DATATYPE>string</DATATYPE>
<LENGTH>11</LENGTH>
</COLUMN>

<COLUMN name="STREET"> @
<PATH syntax="XPath">/PHARMACY/PERSON/STREET</PATH>
<TYPE>character</TYPE>
<DATATYPE>string</DATATYPE>
<LENGTH>18</LENGTH>

50 Importing Hierarchical Data as Related Data Sets A Chapter 4

</COLUMN>

<COLUMN name="CITY"> @
<PATH syntax="XPath">/PHARMACY/PERSON/CITY</PATH>
<TYPE>character</TYPE>
<DATATYPE>string</DATATYPE>
<LENGTH>6</LENGTH>
</COLUMN>

</TABLE>

<le— HHH4HHHH4HAHAFHRHAHARAAERAAAHRAAARAHAERAHARAAAE SR A SRR E RS RS ——>
<TABLE name="PRESCRIPTION"> @
<TABLE-PATH syntax="XPath">/PHARMACY/PERSON/PRESCRIPTION</TABLE-PATH>

<COLUMN name="NAME" retain="YES"> @
<PATH syntax="XPath">/PHARMACY/PERSON/NAME</PATH>
<TYPE>character</TYPE>
<DATATYPE>string</DATATYPE>
<LENGTH>11</LENGTH>
</COLUMN>

<COLUMN name="NUMBER"> e
<PATH syntax="XPath">/PHARMACY/PERSON/PRESCRIPTION/NUMBER</PATH>
<TYPE>numeric</TYPE>
<DATATYPE>integer</DATATYPE>

</COLUMN>

<COLUMN name="DRUG"> @
<PATH syntax="XPath">/PHARMACY/PERSON/PRESCRIPTION/DRUG</PATH>
<TYPE>character</TYPE>
<DATATYPE>string</DATATYPE>
<LENGTH>12</LENGTH>
</COLUMN>

</TABLE>

</SXLEMAP>

1 SXLEMAP is the root-enclosing element for the two SAS data set definitions.
2 First TABLE element defines the Person data set.

3 COLUMN elements contain the attributes for the Name, Street, and City variables
in the Person data set.

4 Second TABLE element defines the Prescription data set.

5 COLUMN element contains the attributes for the Name variable in the
Prescription data set. Specifying the retain="yes" attribute causes the name to
be held for each observation until it is replaced by a different value. (Note that
this is much like using the SAS DATA step RETAIN statement, which causes a
variable to retain its value from one iteration of the DATA step to the next.)

6 COLUMN elements contain the attributes for the Number and Drug variables in
the Prescription data set.

Importing XML Documents Using an XMLMap A Including a Key Field with Generated Numeric Keys 51

The following SAS statements import the XML document and specify the XMLMap:

filename pharm ’‘c:\My Documents\XML\Pharmacy.xml’;
filename map ‘c:\My Documents\XML\Pharmacy.map’;

libname pharm xml xmlmap=map;

The DATASETS procedure verifies that SAS interprets the XML document
Pharmacy. XML as two SAS data sets: PHARM.PERSON and PHARM.PRESCRIPTION.

proc datasets library=pharm;

Output 4.3 PROC DATASETS Qutput for the PHARM Data Library

5 proc datasets library=pharm;

Directory
Libref PHARM
Engine XML
Physical Name PHARM
XMLType GENERIC
XMLMap MAP

Member
Name Type
1 PERSON DATA
2 PRESCRIPTION DATA

Here is PROC PRINT output for both of the imported SAS data sets.

Output 4.4 PROC PRINT Output for PHARM.PERSON

The SAS System 1
Obs NAME STREET CITY
1 Brad Martin 11900 Glenda Court Austin
2 Jim Spano 1611 Glengreen Austin

Output 4.5 PROC PRINT Output for PHARM.PRESCRIPTION

The SAS System 2
Obs NAME NUMBER DRUG
1 Brad Martin 1234 Tetracycline
2 Brad Martin 1245 Lomotil
3 Jim Spano 1268 Nexium

Including a Key Field with Generated Numeric Keys

This example imports the XML document Pharmacy. XML, which contains
hierarchical data and is used in the example “Importing Hierarchical Data as Related

52 Including a Key Field with Generated Numeric Keys A Chapter 4

Data Sets” on page 48. This example continues with the XMLMap by adding a key field
with generated numeric key values in order to provide a relationship between the two
data sets. (A key field holds unique data in order to identify that record from the other
records. For example, account number, product code, and customer name are typical
key fields.)

To generate key field values, use the ordinal="yes" attribute in the COLUMN
element in order to create a counter variable. A counter variable keeps track of the
number of times the location path, which is specified by the INCREMENT-PATH
element, is encountered. The counter variable increments its count by 1 each time the
path is matched. (The counter variable is similar to the _N_ automatic variable in
DATA step processing in that it counts the number of observations being read into a
SAS data set.)

Note: When using a counter variable to create a key field for related data sets, you
must specify the same location paths for both TABLE elements; otherwise, the results
will not match. Each table must have the same generated key for like-named data
elements. A

The following XMLMap imports Pharmacy. XML document as two SAS data sets that
have related information and also creates a key field that holds generated numeric key
values:

<?xml version="1.0" encoding="UTF-8" ?>

<Ueo— HEFHHHHFEHFAARHHAERAHAAAAHERAFHA R E SRR A SRR AR RS >
<!-- 2003-04-15T10:55:43 -->

<!-- SAS XML Libname Engine Map -->

<!-- Generated by XML Mapper, 9.1.10.20030413.1400 -->

<U—— HEHEHHHFEHHAEAHHAESAA A A A A AR AR AR R R R R >

<SXLEMAP version="1.2" name="SXLEMAP">

U= FHHHHHHHHEHH4 AR H R R AR A AR R R AR R R R R R R R ——>
<TABLE name="PERSON">
<TABLE-PATH syntax="XPath">/PHARMACY/PERSON</TABLE-PATH> @

<COLUMN name="KEY" retain="YES" ordinal="YES"> @
<INCREMENT-PATH syntax="XPath">/PHARMACY/PERSON</INCREMENT-PATH>
<TYPE>numeric</TYPE>
<DATATYPE>integer</DATATYPE>
<FORMAT width="3">Z%</FORMAT>
</COLUMN>

<COLUMN name="NAME">
<PATH syntax="XPath">/PHARMACY/PERSON/NAME</PATH>
<TYPE>character</TYPE>
<DATATYPE>String</DATATYPE>
<LENGTH>11</LENGTH>
</COLUMN>

<COLUMN name="STREET">
<PATH syntax="XPath">/PHARMACY/PERSON/STREET</PATH>
<TYPE>character</TYPE>
<DATATYPE>string</DATATYPE>
<LENGTH>18</LENGTH>
</COLUMN>

Importing XML Documents Using an XMLMap A Including a Key Field with Generated Numeric Keys 53

<COLUMN name="CITY">
<PATH syntax="XPath">/PHARMACY/PERSON/CITY</PATH>
<TYPE>character</TYPE>
<DATATYPE>string</DATATYPE>
<LENGTH>6</LENGTH>
</COLUMN>

</TABLE>

U= HHHHHH4EFH4E R H R R HERE A4 R R AR R R R R R R R ——>
<TABLE name="PRESCRIPTION">
<TABLE-PATH syntax="XPath">/PHARMACY/PERSON/PRESCRIPTION</TABLE-PATH> @

<COLUMN name="KEY" retain="YES" ordinal="YES"> @
<INCREMENT-PATH syntax="XPath">/PHARMACY/PERSON</INCREMENT-PATH>
<TYPE>numeric</TYPE>
<DATATYPE>integer</DATATYPE>
<FORMAT width="3">Z</FORMAT>
</COLUMN>

<COLUMN name="NUMBER">
<PATH syntax="XPath">/PHARMACY/PERSON/PRESCRIPTION/NUMBER</PATH>
<TYPE>numeric</TYPE>
<DATATYPE>integer</DATATYPE>

</COLUMN>

<COLUMN name="DRUG">
<PATH syntax="XPath">/PHARMACY/PERSON/PRESCRIPTION/DRUG</PATH>
<TYPE>character</TYPE>
<DATATYPE>String</DATATYPE>
<LENGTH>12</LENGTH>
</COLUMN>

</TABLE>

</SXLEMAP>

The following explains the XMLMap syntax that generates the key fields:

1 In the TABLE element that defines the Person data set, the TABLE-PATH element
identifies the observation boundary for the data set. The location path generates a
new observation each time a PERSON element is read.

2 For the Person data set, the COLUMN element for the Key variable contains the
ordinal="yes" attribute as well as the INCREMENT-PATH element. This is the
process that the XML engine follows in order to generate the key field values for
the Person data set:

a When the XML engine encounters the <PERSON> start tag, it reads the value
into the input buffer, then increments the value for the Key variable by 1.

b The XML engine continues reading values into the input buffer until it
encounters the </PERSON> end tag, at which time it writes the completed
input buffer to the SAS data set as one observation.

¢ The process is repeated for each <PERSON> start tag (from
INCREMENT-PATH) and </PERSON> end tag (from TABLE-PATH)
sequence.

54 Including a Key Field with Generated Numeric Keys A Chapter 4

d The result is four variables and two observations.

3 In the TABLE element that defines the Prescription data set, the TABLE-PATH
element identifies the observation boundary for the data set. The location path
generates a new observation each time a PRESCRIPTION element is read.

4 For the Prescription data set, the COLUMN element for the Key variable contains
the ordinal="yes" attribute as well as the INCREMENT-PATH element.

This is the process that the XML engine follows in order to generate the key
field values for the Prescription data set:

a When the XML engine encounters the <PERSON> start tag, it reads the value
into the input buffer, then increments the value for the Key variable by 1.

b The XML engine continues reading values into the input buffer until it
encounters the </PRESCRIPTION> end tag, at which time it writes the
completed input buffer to the SAS data set as one observation.

Note: Because the increment paths for the counter variables must be the
same for both TABLE elements, the behavior of the XML engine for the
Prescription table Key variable is the same as the Person table Key variable.
While the XML engine tracks the occurrence of a PERSON tag as a key for
both counter variables, the observations are derived from different
TABLE-PATH locations. A

¢ The process is repeated for each <PERSON> start tag (from
INCREMENT-PATH) and </PRESCRPTION> end tag (from TABLE-PATH)
sequence.

d The result is three variables and three observations.

The following SAS statements import the XML document:

filename pharm ’‘c:\My Documents\XML\Pharmacy.xml’;
filename map ‘c:\My Documents\XML\PharmacyOrdinal.map’;
libname pharm xml xmlmap=map;

Here is PROC PRINT output for both of the imported SAS data sets with a numeric
key:

Output 4.6 PROC PRINT Output for PHARM.PERSON

The SAS System 1
Obs KEY NAME STREET CITY
1 001 Brad Martin 11900 Glenda Court Austin
2 002 Jim Spano 1611 Glengreen Austin

Output 4.7 PROC PRINT Output for PHARM.PRESCRIPTION

The SAS System 2
Obs KEY NUMBER DRUG
1 001 1234 Tetracycline
2 001 1245 Lomotil
3 002 1268 Nexium

Importing XML Documents Using an XMLMap /. Determining the Observation Boundary to Avoid Concatenated Data 55

Determining the Observation Boundary to Avoid Concatenated Data

This example imports an XML document that illustrates how to determine the
observation boundary so that the result is separate observations and not concatenated
data.

The observation boundary translates into a collection of rows with a constant set of
columns. Using an XMLMap, you determine the observation boundary with the
TABLE-PATH element by specifying a location path. The end tag for the location path
determines when data is written to the SAS data set as an observation.

Identifying the observation boundary can be tricky due to sequences of start tag and
end-tag pairing. If you do not identify the appropriate observation boundary, the result
could be a concatenated data string instead of separate observations. This example
illustrates pairing situations that can cause unwanted results.

For the following XML document, an XMLMap is necessary in order to import the file
successfully. Without an XMLMap, the XML engine would import a data set named
FORD with columns ROW0, MODELO, YEARO, ROW1, MODEL1, YEAR1, and so on.

<?xml version="1.0" ?>
<VEHICLES>
<FORD>
<ROW>
<Model>Mustang</Model>
<Year>1965</Year>
</ROW>
<ROW>
<Model>Explorer</Model>
<Year>1982</Year>
</ROW>
<ROW>
<Model>Taurus</Model>
<Year>1998</Year>
</ROW>
<ROW>
<Model>F150</Model>
<Year>2000</Year>
</ROW>
</FORD>
</VEHICLES>

Looking at the above XML document, there are three sequences of element start tags
and end tags: VEHICLES, FORD, and ROW. If you specify the following table location
path and column locations paths, this is the process that the XML engine would follow:

<TABLE-PATH syntax="xpath"> /VEHICLES/FORD </TABLE-PATH>
<PATH syntax="xpath"> /VEHICLES/FORD/ROW/Model </PATH>
<PATH syntax="xpath"> /VEHICLES/FORD/ROW/Year </PATH>

1 The XML engine reads the XML markup until it encounters the <FORD> start
tag, because FORD is the last element specified in the table location path.

2 The XML engine clears the input buffer and scans subsequent elements for
variables based on the column location paths. As a value for each variable is
encountered, it is read into the input buffer. For example, after reading the first
ROW element, the input buffer contains the values Mustang and 1965.

56 Determining the Observation Boundary to Avoid Concatenated Data A Chapter 4

3 The XML engine continues reading values into the input buffer until it encounters
the </FORD> end tag, at which time it writes the completed input buffer to the
SAS data set as an observation.

4 The end result is one observation, which is not what you want.

Here is PROC PRINT output showing the concatenated observation. (Note that the
data in the observation is truncated due to the LENGTH element.)

Output 4.8 PROC PRINT Qutput Showing Unacceptable FORD Data Set

The SAS System 1

Model Year

Mustang Explorer Tau 1965

To get separate observations, you must change the table location path so that the
XML engine writes separate observations to the SAS data set. Here are the correct
location paths and the process that the engine would follow:

<TABLE-PATH syntax="xpath"> /VEHICLES/FORD/ROW </TABLE-PATH>
<PATH syntax="xpath"> /VEHICLES/FORD/ROW/Model </PATH>
<PATH syntax="xpath"> /VEHICLES/FORD/ROW/Year </PATH>

1 The XML engine reads the XML markup until it encounters the <ROW> start tag,
because ROW is the last element specified in the table location path.

2 The XML engine clears the input buffer and scans subsequent elements for
variables based on the column location paths. As a value for each variable is
encountered, it is read into the input buffer.

3 The XML engine continues reading values into the input buffer until it encounters
the </ROW> end tag, at which time it writes the completed input buffer to the
SAS data set as an observation. That is, one observation is written to the SAS
data set that contains the values Mustang and 1965.

4 The process is repeated for each <ROW> start-tag and </ROW> end-tag sequence.
5 The result is four observations.

Here is the complete XMLMap syntax:

<?xml version="1.0" 2>
<SXLEMAP version="1.2" name="path" description="XMLMap for path">
<TABLE name="FORD">
<TABLE-PATH syntax="xpath"> /VEHICLES/FORD/ROW </TABLE-PATH>
<COLUMN name="Model">
<DATATYPE> string </DATATYPE>
<LENGTH> 20 </LENGTH>
<TYPE> character </TYPE>
<PATH syntax="xpath"> /VEHICLES/FORD/ROW/Model </PATH>
</COLUMN>
<COLUMN name="Year">
<DATATYPE> string </DATATYPE>
<LENGTH> 4 </LENGTH>
<TYPE> character </TYPE>
<PATH syntax="xpath"> /VEHICLES/FORD/ROW/Year </PATH>
</COLUMN>

Importing XML Documents Using an XMLMap /A Determining the Observation Boundary to Select the Best Columns 57

</TABLE>
</SXLEMAP>

The following SAS statements import the XML document and specify the XMLMap.
The PRINT procedure verifies the results.

filename PATH ’c:\My Documents\XML\path.xml’;
filename MAP ’‘c:\My Documents\XML\path.map’;
libname PATH xml xmlmap=MAP;

proc print data=PATH.FORD noobs;
run;

Output 4.9 PROC PRINT Output Showing Desired FORD Data Set

The SAS System 1
Model Year
Mustang 1965
Explorer 1982
Taurus 1998
F150 2000

Determining the Observation Boundary to Select the Best Columns

This example imports an XML document that illustrates how to determine the
observation boundary so that the result is the best collection of columns.

The observation boundary translates into a collection of rows with a constant set of
columns. Using an XMLMap, you determine the observation boundary with the
TABLE-PATH element by specifying a location path.

In the following XML document, PUBLICATION appears to be a possible element to
use as the observation boundary, which would result in these columns: TITLE,
ACQUIRED, TOPIC. However, the TOPIC element occurs arbitrarily within a single
PUBLICATION container, so the result would be a set of columns with TOPIC
occurring more than once. Therefore, the TOPIC element is the better choice to use as
the observation boundary in order to result in these columns: TITLE, ACQUIRED,
TOPIC, MAJOR.

<?xml version="1.0" encoding="iso-8859-1" ?>
<Library>
<Publication>
<Title>Developer’s Almanac</Title>
<Acquired>12-11-2000</Acquired>
<Topic Major="Y">JAVA</Topic>
</Publication>
<Publication>
<Title>Inside Visual C++</Title>
<Acquired>06-19-1998</Acquired>
<Topic>Major="Y">C</Topic>
<Topic>Reference</Topic>
</Publication>
<Publication>

58 Determining the Observation Boundary to Select the Best Columns A Chapter 4

<Title>Core Servlets</Title>
<Acquired>05-30-2001</Acquired>
<Topic Major="Y">JAVA</Topic>
<Topic>Servlets</Topic>
<Topic>Reference</Topic>
</Publication>
</Library>

Here is the XMLMap syntax to use in order to import the previous XML document:

<?xml version="1.0" ?>
<SXLEMAP version="1.2">
<TABLE name="Publication">
<TABLE-PATH syntax="xpath">
/Library/Publication/Topic @
</TABLE-PATH>

<COLUMN name="Title" retain="YES">

<PATH>
/Library/Publication/Title

</PATH>
<TYPE>character</TYPE>
<DATATYPE>STRING</DATATYPE>
<LENGTH>19</LENGTH>

</COLUMN>

<COLUMN name="Acquired" retain="YES">
<PATH>
/Library/Publication/Acquired
</PATH>
<TYPE>numeric</TYPE>
<DATATYPE>FLOAT</DATATYPE>
<LENGTH>10</LENGTH>
<FORMAT width="10" >mmddyy</FORMAT> €
<INFORMAT width="10" >mmddyy</INFORMAT>
</COLUMN>

<COLUMN name="Topic">
<PATH>
/Library/Publication/Topic</PATH>
<TYPE>character</TYPE>
<DATATYPE>STRING</DATATYPE>
<LENGTH>9</LENGTH>
</COLUMN>

<COLUMN name="Major">
<PATH>
/Library/Publication/Topic/@Major

</PATH>
<TYPE>character</TYPE>
<DATATYPE>STRING</DATATYPE>
<LENGTH>1</LENGTH>
<ENUM> @

<VALUE>Y</VALUE>

Importing XML Documents Using an XMLMap /A Determining the Observation Boundary to Select the Best Columns 59

<VALUE>N</VALUE>
</ENUM>
<DEFAULT>N</DEFAULT> @
</COLUMN>
</TABLE>
</SXLEMAP>

The previous XMLMap tells the XML engine how to interpret the XML markup as
explained below:

1 The TOPIC element determines the location path that defines where in the XML
document to collect variables for the SAS data set. An observation is written each
time a </TOPIC> end tag is encountered in the XML document.

2 For the ACQUIRED column, the date is constructed using the XMLMap syntax
FORMAT element. Elements like FORMAT and INFORMAT are useful for
situations where data must be converted for use by SAS. The XML engine also
supports user-written formats and informats, which can be used independently of
each other.

3 Enumerations are also supported by XMLMap syntax. The ENUM element
specifies that the values for the column MAJOR must be either Y or N. Incoming
values not contained within the ENUM list are set to MISSING.

4 By default, a missing value is set to MISSING. The DEFAULT element specifies a
default value for a missing value, which for this example is specified as N. Note
that when the ENUM element is used, a value specified by DEFAULT must be one
of the ENUM values in order to be valid.

The following SAS statements import the XML document and specify the XMLMap.
The PRINT procedure verifies the results.

filename REP ’‘C:\My Documents\XML\Rep.xml’;
filename MAP ’'C:\My Documents\XML\Rep.map'’;
libname REP xml xmlmap=MAP;

proc print data=REP.Publication noobs;
run;

Output 4.10 PROC PRINT Output for PUBLICATION Data Set

The SAS System 1
Title Acquired Topic Major
Developer'’s Almanac 12/11/2000 JAVA Y
Inside Visual C++ 06/19/1998 C Y
Inside Visual C++ 06/19/1998 Reference N
Core Servlets 05/30/2001 JAVA Y
Core Servlets 05/30/2001 Servlets N
Core Servlets 05/30/2001 Reference N

60

61

CHAPTER

Using the XML Engine to
Transport SAS Data Sets across
Operating Environments

What Is Transporting a SAS Data Set? 61
Transporting a SAS Data Set 61

What Is Transporting a SAS Data Set?

Transporting a SAS data set is the process of putting the file in a format in order to
move it across hosts. The process consists of the following steps:

1 Export an XML document on the source host. The XML document contains the
data and file attributes of one or more SAS data sets in XML markup. To export
an XML document, use the LIBNAME statement and specify the XML engine,
then use either the DATA step or COPY procedure.

2 Transfer the XML document to the target host. Transferring is the process of
moving a file between hosts across a network. Various third-party products are
available for performing this operation.

3 Translate the XML document to SAS proprietary format on the target host. To
translate XML markup to SAS proprietary format, use the LIBNAME statement,
specify the XML engine, then use either the DATA step or COPY procedure.

For more information about moving SAS files, see Moving and Accessing SAS Files.

Note: The XML engine supports features starting with SAS 7, such as long data set
and variable names. For moving SAS data sets across operating environments, the
XML engine does not replace the XPORT transport engine; however, the XPORT engine
does not support these features. A

Transporting a SAS Data Set

This example exports an XML document from a SAS data set on a source host, then
imports the XML document to a SAS data set on a target host. The XML engine uses
all defaults; for example, the format is GENERIC, which is a simple, well-formed XML
markup. The COPY procedure is used to read the SAS data set and write its content in
XML markup, then the DATA step is used to read the XML document and write its
content to a SAS data set.

The following output shows the SAS data set MYFILES.CLASS to be moved to
another host.

62 Transporting a SAS Data Set A Chapter 5

Output 5.1 SAS Data Set MYFILES.CLASS to Be Exported

Obs Name Sex Age Height Weight
1 Alfred M 14 69.0 112.5
2 Alice F 13 56.5 84.0
3 Barbara F 13 65.3 98.0
4 Carol F 14 62.8 102.5
5 Henry M 14 63.5 102.5
6 James M 12 57.3 83.0
7 Jane F 12 59.8 84.5
8 Janet F 15 62.5 112.5
9 Jeffrey M 13 62.5 84.0

10 John M 12 59.0 99.5
11 Joyce F 11 51.3 50.5
12 Judy F 14 64.3 90.0
13 Louise F 12 56.3 77.0
14 Mary F 15 66.5 112.0
15 Philip M 16 72.0 150.0
16 Robert M 12 64.8 128.0
17 Ronald M 15 67.0 133.0
18 Thomas M 11 57.5 85.0
19 William M 15 66.5 112.0

The following SAS program exports an XML document on the source host for the
SAS data set MYFILES.CLASS:

libname myfiles 'SAS-data-library’; @
libname trans xml 'XML-document’; @

proc copy in=myfiles out=trans; @
select class;

run;

1 The first LIBNAME statement assigns the libref MYFILES to the physical location
of the SAS data library that stores the SAS data set CLASS in SAS proprietary
format. The V9 engine is the default.

2 The second LIBNAME statement assigns the libref TRANS to the physical location
of the file (complete pathname, filename, and file extension) that will store the
exported XML document, and then specifies the XML engine. By default, the XML
engine generates GENERIC format.

3 The COPY procedure reads the SAS data set MYFILES.CLASS and writes its
content in XML markup to the specified file.

Here is the resulting XML document.

Using the XML Engine to Transport SAS Data Sets across Operating Environments

Output 5.2 XML Document Exported from MYFILES.CLASS

A Transporting a SAS Data Set

<TABLE>

<CLASS>
<Name> Alfred </Name>
<Sex> M </Sex>
<Age> 14 </Age>
<Height> 69 </Height>
<Weight> 112.5 </Weight>

</CLASS>

<CLASS>
<Name> Alice </Name>
<Sex> F </Sex>
<Age> 13 </Age>
<Height> 56.5 </Height>
<Weight> 84 </Weight>

</CLASS>

<CLASS>
<Name> William </Name>
<Sex> M </Sex>
<Age> 15 </Age>
<Height> 66.5 </Height>
<Weight> 112 </Weight>

</CLASS>

</TABLE>

<?xml version="1.0" encoding="windows-1252" ?

63

After the XML document is exported on the source host, it must be transferred from
the source host to the target host. Then, with the XML document available on the target
host, the following SAS program translates the XML markup to SAS proprietary format:

libname trans xml ’'XML-document’; @

libname myfiles ’'SAS-data-library’'; @

data myfiles.class; @
set trans.class;

run;

1 The first LIBNAME statement assigns the libref TRANS to the physical location of

the XML document (complete pathname, filename, and file extension) that was

transferred to the target host, and specifies the XML engine. By default, the XML

engine expects GENERIC format.

2 The second LIBNAME statement assigns the libref MYFILES to the physical
location of the SAS data library that will store the resulting SAS data set. The V9

engine is the default.

3 The DATA step reads the XML document and writes its content in SAS

proprietary format.

Issuing the PRINT procedure produces the output for the data set that was

translated from the XML document:

proc print data=myfiles.class;

run;

64 Transporting a SAS Data Set A Chapter 5

Output 5.3 PROC PRINT Output for MYFILES.CLASS Moved to Another Host by Importing XML Document

The SAS System 1
Obs WEIGHT HEIGHT AGE SEX NAME

1 112.5 69.0 14 M Alfred

2 84.0 56.5 13 F Alice

3 98.0 65.3 13 F Barbara

4 102.5 62.8 14 F Carol

5 102.5 63.5 14 M Henry

6 83.0 57.3 12 M James

7 84.5 59.8 12 F Jane

8 112.5 62.5 15 F Janet

9 84.0 62.5 13 M Jeffrey
10 99.5 59.0 12 M John
11 50.5 51.3 11 F Joyce
12 90.0 64.3 14 F Judy
13 77.0 56.3 12 F Louise
14 112.0 66.5 15 F Mary
15 150.0 72.0 16 M Philip
16 128.0 64.8 12 M Robert
17 133.0 67.0 15 M Ronald
18 85.0 57.5 11 M Thomas
19 112.0 66.5 15 M William

65

CHAPTER

Understanding and Using
Tagsets for the XML Engine

What Is a Tagset? 65

SAS Tagsets 65

Creating Customized Tagsets 66

Using a SAS Tagset to Remove White Spaces in Output XML Markup 67
Defining and Using a Customized Tagset to Use Labels in Node Names 68

What Is a Tagset?

A tagset specifies instructions for generating a markup language from your SAS data
set. The resulting output contains embedded instructions in order to define layout and
some content. SAS provides tagsets for a variety of markup languages, which includes
XML.

SAS Tagsets

SAS provides tagset definitions for a variety of markup language output. SAS
supplies several tagsets for XML output. That is, when you specify the format type with
XMLTYPE=, the XML engine uses a specific tagset for the XML output. For example,
XMLTYPE=GENERIC uses Tagsets.Sasxmog.

You can override the default tagset that is used for a format type by using the
TAGSET= option and specifying a tagset. There are several SAS tagsets that are
associated with the XML engine. Currently, the tagset names that begin with SAS are
associated with the XML engine:

Tagsets.Sasxmiss
produces an empty element start tag and end tag for a missing value.

Tagsets.Sasxmnmis
does not generate element tags for a missing value. That is, if a variable contains

a missing value, the XML engine does not generate an element occurrence.

Tagsets.Sasxmnsp
does not pad PCDATA with blanks. For an example, see “Using a SAS Tagset to
Remove White Spaces in Output XML Markup” on page 67.

Tagsets.Sasxmog
produces XML markup that is similar to the Oracle8iXML implementation used by
Oracle but is more generic. This is the tagset used by the GENERIC format type.

66 Creating Customized Tagsets A Chapter 6

Tagsets.Sasxmoh
produces very simple HTML markup. This is the tagset used by the HTML format

type.
Tagsets.Sasxmor

produces XML markup that is equivalent to the Oracle8iXML implementation,
which is used by Oracle. This is the tagset used by the ORACLE format type.

Tagsets.sasFMT
produces XML markup for FORMAT and INFORMAT metadata generation.

Tagsets.sasxmdtd
for export only, produces an embedded DTD (Document Type Definition) in the
body of the data markup. Note that DTDs are obsolete and XML Schema will be
the only fully supported form in future releases.

Tagsets.sasxmxsd
for exporting only, produces an embedded XSD (W3C XML Schema) in the body of
the data markup.

To get a current list of tagsets, issue the following SAS statements:

proc template;
list tagsets;

To view the definition for a tagset, issue the following SAS statements:

proc template;
source tagset-name;

CAUTION:
Use the XML engine tagsets outside of the engine with caution. Even though you can
specify the tagsets that are associated with the XML engine for ODS output, those
tagsets were designed specifically for the XML engine. The results of specifying them
for ODS MARKUP output might not be suitable. A

Creating Customized Tagsets

In addition to using the tagsets provided by SAS, you can modify the SAS tagsets,
and you can create your own tagsets. To create a tagset, use the TEMPLATE procedure
in order to define the tagset definition. For information about creating customized
tagsets, see PROC TEMPLATE in the SAS Output Delivery System User’s Guide.

For an example, see “Defining and Using a Customized Tagset to Use Labels in Node
Names” on page 68.

CAUTION:
Use customized tagsets with caution. If you are unfamiliar with XML output, do not
specify different tagsets. If you alter the tagset when exporting an XML document
and then attempt to import the XML document generated by that altered tagset, the
XML engine might not be able to translate the XML markup back to SAS proprietary
format. A

Understanding and Using Tagsets for the XML Engine /A Using a SAS Tagset to Remove White Spaces in Output XML Markup 67

Using a SAS Tagset to Remove White Spaces in Output XML Markup

This example uses a SAS tagset in order to generate customized XML output. The
default tagset for XMLTYPE=GENERIC is Tagsets.Sasxmog, which adds an extra space
(padding) to the beginning and end of each output XML element.

The customized tagset Tagsets.Sasxmnsp, which is supplied by SAS, does not include
the white space. The example uses the data set SASHELP.CLASS.

These statements specify the SAS tagset Tagsets.Sasxmnsp and generate the
following XML output. Only the first observation (row) is shown.

libname testxml xml ’‘C:\My Documents\XML\nospace.xml’ tagset=tagsets.sasxmnsp;

proc copy in=sashelp out=testxml;
select class;

run;

Output 6.1 XML Document NOSPACE.XML

<?xml version="1.0" encoding="windows-1252" ?>
- <TABLE>
—-- <CLASS>
<Name>Alfred</Name>
<Sex>M</Sex>
<Age>14</Age>
<Height>69</Height>
<Weight>112.5</Weight>
</CLASS>

To compare the results, these statements use the default tagset, which is
Tagsets.Sasxmog, and generate the following XML output GENERIC.XML.:

libname xmlgenr xml ’'C:\My Documents\XML\generic.xml’;

proc copy in=sashelp out=xmlgenr;
select class;

run;

Output 6.2 XML Document GENERIC.XML

<?xml version="1.0" encoding="windows-1252" 2>
- <TABLE>
-- <CLASS>
<Name> Alfred </Name>
<Sex> M </Sex>
<Age> 14 </Age>
<Height> 69 </Height>
<Weight> 112.5 </Weight>
</CLASS>

68 Defining and Using a Customized Tagset to Use Labels in Node Names A Chapter 6

Defining and Using a Customized Tagset to Use Labels in Node Names

This example defines a customized tagset in order to generate XML output that uses
labels rather than the variable names in node names. The default tagset for
XMLTYPE=GENERIC is Tagsets.Sasxmog, which uses variable names. The customized
tagset uses labels.

Note: When you use customized tagsets, especially when exporting an XML
document, be sure that you produce valid XML markup. While this example uses labels
as XML element tags, labels might not be appropriate, for example, if they contain
quotation marks, embedded blanks, special characters, and so on. A

First, the following code creates the data set WORK.SINGERS:

data Singers;
input Name $ Style $;
label Name="SingerFirstName"

Style="MusicStyle";

datalines;

Tom Rock

Kris Country

Willie Country

Barbra Contemporary

Paul Rock

Randy Country

i

The following code defines the new tagset Tagsets.Uselabs:

proc template;
define tagset Tagsets.Uselabs;
parent = tagsets.sasxmog;
notes "Uses label instead of name for tags";
define event SASColumn;
start:
ndent;
put <o,
put TEXT / if cmp(XMLDATAFORM, "ATTRIBUTE");
put ' name=""' / if cmp(XMLDATAFORM, "ATTRIBUTE");
put LABEL;
put Ty / if cmp(XMLDATAFORM, "ATTRIBUTE");
break;
finish:
if exists(MISSING);
if exists(MISSING);
if cmp(XMLDATAFORM, "ATTRIBUTE");
if cmp(XMLDATAFORM, "ATTRIBUTE");
if cmp(XMLDATAFORM, "ATTRIBUTE");
if cmp(XMLDATAFORM, "ATTRIBUTE");

xdent

break

put r/>
put CR
xdent

~N N N N NN N

break
put </
put LABEL;
put >
put CR;
xdent;
break;

end;

Understanding and Using Tagsets for the XML Engine

end; /* uselabs */

run;

These statements specify the customized tagset Tagsets.Uselabs and generate the

following XML output Labels. XML:

libname testxml xml ’‘C:\My Documents\XML\labels.xml’ tagset=tagsets.uselabs;

proc copy in=work out=testxml;
select Singers;

run;

Output 6.3 XML Document Labels. XML

.\ Defining and Using a Customized Tagset to Use Labels in Node Names

<?xml version="1.0" encoding="windows-1252" ?>
<TABLE>
<SINGERS>
<SingerFirstName> Tom </SingerFirstName>
<MusicStyle> Rock </MusicStyle>
</SINGERS>
<SINGERS>
<SingerFirstName> Kris </SingerFirstName>
<MusicStyle> Country </MusicStyle>
</SINGERS>
<SINGERS>
<SingerFirstName> Willie </SingerFirstName>
<MusicStyle> Country </MusicStyle>
</SINGERS>
<SINGERS>
<SingerFirstName> Barbra </SingerFirstName>
<MusicStyle> Contempo </MusicStyle>
</SINGERS>
<SINGERS>
<SingerFirstName> Paul </SingerFirstName>
<MusicStyle> Rock </MusicStyle>
</SINGERS>
<SINGERS>
<SingerFirstName> Randy </SingerFirstName>
<MusicStyle> Country </MusicStyle>
</SINGERS>
</TABLE>

To compare the results, these statements use the default tagset, which is
Tagsets.Sasxmog, and generate the following XML output GENERIC.XML.:

libname xmlgenr xml ‘C:\My Documents\XML\generic.xml’ xmltype=generic;

proc copy in=work out=xmlgenr;
select Singers;
run;

69

70 Defining and Using a Customized Tagset to Use Labels in Node Names A Chapter 6

Output 6.4 XML Document GENERIC. XML

<?xml version="1.0" encoding="windows-1252" 2>
<TABLE>
<SINGERS>
<Name> Tom </Name>
<Style> Rock </Style>
</SINGERS>
<SINGERS>
<Name> Kris </Name>
<Style> Country </Style>
</SINGERS>
<SINGERS>
<Name> Willie </Name>
<Style> Country </Style>
</SINGERS>
<SINGERS>
<Name> Barbra </Name>
<Style> Contempo </Style>
</SINGERS>
<SINGERS>
<Name> Paul </Name>
<Style> Rock </Style>
</SINGERS>
<SINGERS>
<Name> Randy </Name>
<Style> Country </Style>
</SINGERS>
</TABLE>

PAR

T

Reference

Chapter 7

Chapter 8

LIBNAME Statement for the XML Engine 73

Creating an XMLMap 85

n

72

73

CHAPTER

LIBNAME Statement for the XML
Engine

Using the LIBNAME Statement 13
LIBNAME Statement Syntax 13
Arguments 13
XML Engine Options 14
Statement Options for National Language Support 80
XML Engine Advanced Options 80

Using the LIBNAME Statement

For the XML engine, the LIBNAME statement associates a SAS libref with an XML
document in order to import or export the XML document.

For basic examples, see Chapter 3, “Importing XML Documents,” on page 27 and
Chapter 2, “Exporting XML Documents,” on page 9.

To successfully import an XML document, it must conform to a specific physical
structure. See “Understanding the Required Physical Structure for an XML Document
to Be Imported” on page 27. If your XML document does not conform to the required
physical structure, you can create an XMLMap in order to tell the XML engine how to
interpret the XML markup. See Chapter 4, “Importing XML Documents Using an
XMLMap,” on page 41 and Chapter 8, “Creating an XMLMap,” on page 85.

LIBNAME Statement Syntax

LIBNAME [libref XML <’XML-document-path’ > <XML-engine-options>;

Arguments

libref
is a valid SAS name that serves as a shortcut name to associate with the physical
location of the XML document. The name must conform to the rules for SAS
names. A libref cannot exceed eight characters.

Limitation: The maximum number of concurrent open librefs that you can have
assigned to the XML engine is 20.

74 XML Engine Options A Chapter 7

Interaction: If the libref matches an assigned fileref, which you assign with the
FILENAME statement, then you do not need to specify the XML document. For
example, the following code writes to the XML document Fred XML:

filename fred ’'C:\XMLdata\fred.xml’;
libname fred xml;

proc print data=fred.fred;

run;

Tip: To specify a fileref for the XML document that does not match the libref, you
can use the XMLFILEREF= option. See “XML Engine Options” on page 74.

XML
is the engine name for the SAS XML engine that imports and exports an XML
document.

Note: At your site, the XML engine name could be different if your system
administrator assigned a different nickname to the XML engine. See your system
administrator for the correct XML engine nickname. A

"XML-document-path’
is the physical location of the XML document for export or import. Include the
complete pathname, the filename, and the file extension. An example is
'C:\My Documents\XML\myfile.xml’. Enclose the physical name in single or
double quotation marks.
Requirement: The external file specification must be a file, not a folder. The .xml
extension is not assumed.

XML Engine Options

The following options are the basic options for the XML engine:

INDENT=integer
specifies the number of columns to indent each nested element in the exported
XML document. The value can be from 0 (which specifies no indention) through
32. This is a cosmetic specification, which is ignored by an XML-enabled browser.
Default: 3

Restriction: Use this option when exporting an XML document only.

OIMSTART=nnn
specifies a beginning reference number, which in the exported XML document will
increment sequentially for catalog, schema, table, and column identification.
Default: 1
Deprecated: The OIMSTART= option is deprecated in SAS 9. The option will not
be supported in a future release. Functionality will be provided with a different
option.
XMLCONCATENATE | XMLCONCAT=NO | YES
specifies whether the file to be imported contains multiple, concatenated XML
documents. Importing concatenated XML documents is useful, for example, if an
application is producing a complete document per query/response as in a Web form.

Note: While the XMLCONCATENATE= option enables you to import
concatenated XML documents, the content is not standard XML construction and
should be used cautiously. A

LIBNAME Statement for the XML Engine /A XML Engine Options 75

Default: NO
Restriction: Use this option when importing an XML document only.

Featured in: “Importing Concatenated XML Documents” on page 37.

XMLDATAFORM=ELEMENT | ATTRIBUTE
specifies whether the tag for the element to contain SAS variable information
(name and data) is in open element or enclosed attribute format. For example, if
the variable name is PRICE and the value of one observation is 1.98, the
generated output for ELEMENT is <PRICE> 1.98 </PRICE> and for ATTRIBUTE
it is <COLUMN name="PRICE" value="1.98" />.

Default: ELEMENT
Restriction: Use this option when exporting an XML document only.

XMLDOUBLE=FORMAT | PRECISION
determines the precision of a numeric value by specifying whether you want the
value to be controlled by an assigned SAS format or whether you want the stored
raw value.

In SAS, numeric variables store values in floating-point format. Rarely though
do you display numeric values as they are stored. Usually, a numeric variable has
an assigned SAS format, which controls the written appearance of the values,
making them more readable. For example, if the stored value is 12345.1234 and
the SAS format best8.2 is assigned to the variable, SAS displays the value as
12345.12. When written, the SAS format reduces the number of digits.

When a numeric variable has an assigned SAS format, the default behavior of
the XML engine is that the format controls the numeric values that are imported
or exported. For example, using the stored value and SAS format example above,
if you exported the value to an XML document, by default, the XML element
would contain the truncated value 12345.12, not the stored raw value.

FORMAT
uses an assigned SAS format in order to control the value:

When exporting, the XML engine uses the assigned SAS format in order to
control the values for a numeric variable. Note that an assigned SAS format
could reduce the number of digits for a numeric value in the output.

When importing, the XML engine retrieves PCDATA (parsable character
data) from the named element.

PRECISION
retains the precision of numeric values:

When exporting, the XML engine generates an attribute-value pair (of the
form rawvalue="value"). SAS uses the base64 encoding of the stored
machine representation. (The base64 encoding method converts binary data
into ASCII text and vice versa and is similar to the MIME format.)

When importing, the XML engine retrieves the value from the rawvalue=
attribute in the element, ignoring the PCDATA content of the element.
Typically, you would use XMLDOULE=PRECISION to import an XML
document when data content is more important than readability.

Default: FORMAT

Featured in: “Exporting Numeric Values” on page 18 and “Importing an XML
Document with Numeric Values” on page 31.

76 XML Engine Options A Chapter 7

XMLFILEREF=fileref
is the SAS name that is associated with the physical location of the XML document
to be exported or imported. To assign the fileref, use the FILENAME statement.
For example, the following code writes to the XML document Wilma.XML:

filename wilma ’C:\XMLdata\wilma.xml’;
libname myxml xml xmlfileref=wilma;

proc print data=myxml.wilma;

run;

Tip: The XML engine can access any data referenced by a fileref assigned by the
FILENAME statement, including the URL access method.

XMLMETA=DATA | SCHEMADATA | SCHEMA
specifies whether to include metadata-related information in the exported markup,
or specifies whether to import metadata-related information that is included in the
input XML document.

Metadata-related information is metadata that describes the characteristics
(types, lengths, levels, and so on) of columns within the table markup. Including
the metadata-related information can be useful when exporting an XML document
from a SAS data set to process on an external product.

DATA
ignores metadata-related information. DATA includes only data content in the
exported markup and imports only data content in the input XML document.

SCHEMADATA
includes both data content and metadata-related information in the exported
markup and imports both data content and metadata-related information in
the input XML document.

SCHEMA
ignores data content. SCHEMA includes only metadata-related information
in the exported markup and imports only metadata-related information in
the input XML document.

Default: DATA

Aliases:
DATA NONE, NO, IGNORE

SCHEMADATA FULL, YES
Restriction: Use this option for the HTML and MSACCESS formats only.

Interaction: For XMLMETA=SCHEMADATA, if XMLSCHEMA-= is specified,
separate metadata-related information is written to the physical location
specified with XMLSCHEMA-=. The data content is written to the physical
location of the XML document specified in the LIBNAME statement. If
XMLSCHEMA-= is not specified, the metadata-related information is embedded
with the data content in the XML document.

Featured in: “Exporting an XML Document Containing a SAS User-Defined
Format” on page 11 and “Exporting an XML Document Containing SAS Dates,
Times, and Datetimes” on page 15.

Note: Prior to SAS 9, the functionality for the XMLMETA= option used the
keyword XMLSCHEMA=. SAS 9 changed XMLSCHEMA= to XMLMETA-=.
SAS 9.1 continues the functionality for XMLMETA= and adds new functionality
using XMLSCHEMA-=. 2

LIBNAME Statement for the XML Engine /A XML Engine Options 1

XMLPROCESS=CONFORM | RELAX
determines how the XML engine processes character data that does not conform to
W3C specifications.

CONFORM
requires that the XML conform to W3C specifications. W3C specifications
state that for character data, certain characters such as the left angle bracket
(<), the ampersand (&), and the apostrophe (') must be escaped using
character references or strings like samp;. For example, to allow attribute
values to contain both single and double quotation marks, the apostrophe or
single-quotation mark character () can be represented as ' and the
double-quotation mark character (") can be represented as ".

RELAX
allows for character data that does not conform to W3C specifications to be
accepted. That is, non-escaped characters such as the apostrophe, double
quotation marks, and the ampersand are accepted in character data.

Restriction: Non-escaped angle brackets in character data are not accepted.
Default: CONFORM

Featured in: “Importing an XML Document with Non-Escaped Character Data”
on page 33.

XMLSCHEMA-=fileref | ’external-file’
specifies an external file to contain metadata-related information.

fileref
is the SAS name that is associated with the physical location of the output

file. To assign a fileref, use the FILENAME statement.

‘external-file’
is the physical location of the file to contain the metadata-related
information. Include the complete pathname and the filename. Enclose the
physical name in single or double quotation marks.

Restriction: Use this option when exporting an XML document only and with
XMLMETA=SCHEMADATA specified.
Restriction: Use this option for the GENERIC and MSACCESS formats only.

Interaction: If XMLMETA=SCHEMADATA and XMLSCHEMA-= is specified, the
data is written to the physical location of the XML document specified in the
LIBNAME statement, and separate metadata-related information is written to
the physical location specified with XMLSCHEMA=. If XMLSCHEMA-= is not
specified, the metadata-related information is embedded with the data content
in the XML document.

Featured in: “Exporting an XML Document with Separate Metadata” on page 22.
XMLTYPE=GENERIC | ORACLE | OIMDBM | EXPORT | HTML | MSACCESS

specifies the format type:

Default: GENERIC

Tip: You can control the markup by specifying options such as INDENT=,
XMLDATAFORM=, XMLMETA= (when applicable), and TAGSET=.

GENERIC
a simple, well-formed XML format. The XML document consists of a root
(enclosing) element and repeating element instances as shown in the
following XML document.

78 XML Engine Options A Chapter 7

Output 7.1 XML Document for GENERIC Format

<?xml version="1.0" encoding="windows-1252" 2>
<LIBRARY>
<GRADES>
<STUDENT> Fred </STUDENT>
<TEST1> 66 </TEST1>
<TEST2> 80 </TEST2>
<FINAL> 70 </FINAL>
</GRADES>
<GRADES>
<STUDENT> Wilma </STUDENT>
<TEST1> 97 </TEST1>
<TEST2> 91 </TEST2>
<FINAL> 98 </FINAL>
</GRADES>
</LIBRARY>

Featured in: “Exporting an XML Document Containing SAS Dates, Times,
and Datetimes” on page 15.

ORACLE
is the XML format for the markup standards equivalent to the Oracle8iXML
implementation, as shown in the following XML document. The number of
columns to indent each nested element is one, and the enclosing element tag
for the contents of the SAS data set is ROWSET.

Output 7.2 XML Document for ORACLE Format

<?xml version="1.0" encoding="windows-1252" ?>
<ROWSET>
<ROW>
<STUDENT> Fred </STUDENT>
<TEST1> 66 </TEST1>
<TEST2> 80 </TEST2>
<FINAL> 70 </FINAL>
</ROW>
<ROW>
<STUDENT> Wilma </STUDENT>
<TEST1> 97 </TEST1>
<TEST2> 91 </TEST2>
<FINAL> 98 </FINAL>
</ROW>
</ROWSET>

Featured in: “Exporting an XML Document for Use by Oracle” on page 9.

OIMDBM
is the XML format for the markup standards supported by the Open
Information Model (Database Schema Model) proposed by the Metadata
Coalition (MDC) as vendor and technology independent, conforming to the 1.0
specification. The XML markup contains metadata that is used in operational
and data warehousing environments.

Deprecated: The OIMDBM format type is deprecated in SAS 9. The format
type will not be supported in a future release. Functionality will be
provided with a different format type.

EXPORT
is an alias to specify the XML format that is most commonly used in the
industry. In SAS 9.1, specifying XMLTYPE=EXPORT is the same as

LIBNAME Statement for the XML Engine /A XML Engine Options 79

specifying XMLTYPE=OIMDBM. Future releases will upgrade this format
specification as needed.

HTML

is the HyperText Markup Language format. The XML engine generates
HTML table markup, intended to facilitate viewing data in a tabular format.

Output 7.3 XML Document for HTML Format

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>
<BODY>
<TABLE border="1" width="100%">
<TBODY>
<TR>
<TD> Fred </TD>
<TD> 66 </TD>
<TD> 80 </TD>
<TD> 70 </TD>
</TR>
<TR>
<TD> Wilma </TD>
<TD> 97 </TD>
<TD> 91 </TD>
<TD> 98 </TD>
</TR>
</TBODY>
</TABLE>
</BODY>
</HTML>

Restriction: XMLTYPE=HTML is available for exporting only.

Featured in: “Exporting an HTML Document” on page 16.

MSACCESS
is the XML format for the markup standards supported for a Microsoft Access
2002 database (.mdb). If the Microsoft Access file contains metadata-related
information, then you must specify MSACCESS rather than the default
GENERIC format type.

Output 7.4 XML Document from MSACCESS Format

<?xml version="1.0" encoding="windows-1252" 2>
<>
<FLINTSTONES>
<Student> Fred </Student>
<Testl> 66 </Testl>
<Test2> 80 </Test2>
<Final> 70 </Final>
</FLINTSTONES>
<FLINTSTONES>
<Student> Wilma </Student>
<Testl> 97 </Testl>
<Test2> 91 </Test2>
<Final> 98 </Final>
</FLINTSTONES>
</>

Featured in: “Importing an XML Document Created by Microsoft Access” on
page 34.

80 Statement Options for National Language Support A Chapter 7

Statement Options for National Language Support

The following options are for National Language Support (NLS), which is the ability
of a software program to handle more than one language, country, and cultural setting.

CAUTION:
These options should be used with caution. If you are unfamiliar with character sets,
encoding methods, or translation tables, do not use these options without proper
technical advice. A

ODSCHARSET=character-set
specifies the character set to use for the output file. A character set includes
letters, logograms, digits, punctuation, symbols, and control characters that are
used for display and printing. An example of a character set is ISO-8859-1.
Restriction: Use this option when exporting an XML document only.

Tip: The combination of the character set and translation table (encoding
method) results in the file’s encoding.

See: For more information about character sets, see the SAS National Language
Support (NLS): User’s Guide.

ODSTRANTAB=table-name
specifies the translation table to use for the output file. The translation table
(encoding method) is a set of rules that are used to map characters in a character
set to numeric values. An example of a translation table is one that converts
characters from EBCDIC to ASCII-ISO. The table-name can be any translation
table that SAS provides or any user-defined translation table. The value must be
the name of a SAS catalog entry in either the SASUSER.PROFILE catalog or the
SASHELP.HOST catalog.

Restriction: Use this option when exporting an XML document only.

Tip: The combination of the character set and translation table results in the
file’s encoding.

See: For more information on translation tables, see the SAS National Language
Support (NLS): User’s Guide.

XMLENCODING=encoding-value
overrides the SAS data set’s encoding for the output file.
Restriction: Use this option when exporting an XML document only.

Tip: The combination of the character set and translation table (encoding
method) results in the file’s encoding.

Tip: When using FTP to transfer an exported XML document, transfer the file in
ASCII (text) mode if you used the default encoding or binary mode if you
specified an encoding value.

See: For more information about encoding and a list of encoding values, see the
SAS National Language Support (NLS): User’s Guide.

XML Engine Advanced Options

The following advanced options provide customization:

METAPASS=password
specifies the password that corresponds to the user identification on the SAS
Metadata Server. The maximum length is 512 characters.

LIBNAME Statement for the XML Engine /A XML Engine Advanced Options 81

The network protocol determines whether a password is required. If the protocol
is COM, a password is not required; if the protocol is BRIDGE (which is the
default), a password is required. If this option is not specified and the protocol is
BRIDGE, the value is obtained from the METAPASS= system option. See the SAS
Language Reference: Dictionary for information on the METAPASS= system option.

METAPORT=number
specifies the TCP port that the SAS Metadata Server is listening to for
connections. An example is metaport=5282.

The network protocol determines whether a port number is required. If the
protocol is COM, a port number is not required. If the protocol is BRIDGE (which
is the default), a port number is required. If this option is not specified and the
protocol is BRIDGE, the value is obtained from the METAPORT= system option or
defaults to 9999. See SAS Language Reference: Dictionary for information on the
METAPORT= system option.

METAREPOSITORY=name
specifies the name that is assigned to a specific SAS Metadata Repository to use
on the SAS Metadata Server. The maximum length is 32,000 characters. An
example is metarepository=myrepos. If a name is not specified, the value is
obtained from the METAREPOSITORY= system option. See the SAS Language
Reference: Dictionary for information on the METAREPOSITORY= system option.

METASERVER=address
specifies the network IP (Internet Protocol) address of the computer that hosts the
SAS Metadata Server. An example is metaserver=d441.na.sas.com. The
maximum length is 256 characters.

The network protocol determines whether an IP address is required. If the
protocol is COM and the server is on a local machine, an IP address is not
required. If the protocol is COM and the server is not local (DCOM services) or the
protocol is BRIDGE, an IP address is required. If this option is not specified and
the protocol is specified as COM on the LIBNAME statement, this indicates a local
server and no IP address will be used to connect to the server. Otherwise, if this
option is not specified, the value is obtained from the METASERVER= system
option. See the SAS Language Reference: Dictionary for information on the
METASERVER= system option.

METAUSER=id
specifies the user identification for logging into the SAS Metadata Server. The
maximum length is 256 characters.

The network protocol determines whether a user identification is required. If
the protocol is COM, a user identification is not required; if the protocol is
BRIDGE (which is the default), a user identification is required. If this option is
not specified and the protocol is BRIDGE, the value is obtained from the
METAUSER= system option. See the SAS Language Reference: Dictionary for
information on the METAUSER= system option.

METAXMLMAP=o0bject-name
is the name of a specific metadata object that is assigned to an XMLMap in a SAS
Metadata Repository. The object defines the XMLMap, which is an XML document
that you create that contains specific XMLMap syntax. The syntax tells the XML
engine how to interpret the XML markup for importing or how to generate XML
markup for exporting an XML document. The ID can be up to 17 characters. An
example is metaxmlmap="MyXMLMap". See “Using XMLMap Manager to Manage
XMLMaps as Metadata Objects” on page 99 for information on how to import and
create XMLMap metadata objects.

82 XML Engine Advanced Options A Chapter 7

ODSRECSEP= DEFAULT | NONE | YES
controls the generation of a record separator that marks the end of a line in the
output XML document.

DEFAULT
enables the XML engine to determine whether to generate a record separator
based on the operating environment where you run the SAS job.
The use of a record separator varies by operating environment.

Recommendation: If you do not transport XML documents across
environments, use the default behavior.

NONE
specifies to not generate a record separator.
The XML engine uses the logical record length of the file that you are
writing to and writes one line of XML markup at a time to the output file.

Requirement: The logical record length of the file that you are writing to
must be at least as long as the longest line that is produced. If the logical
record length of the file is not long enough, then the markup might wrap to
another line at an inappropriate place.

Limitation: Transporting an XML document that does not contain a record
separator can be a problem. For example, FTP needs a record separator in
order to transfer data properly in ASCII (text) mode.

YES
specifies to generate a record separator.

Tip: Most transfer utilities will interpret the record separator as a carriage
return sequence. For example, using FTP in ASCII (text) mode to
transport an XML document that contains a record separator results in
properly constructed line breaks for the target environment.

Default: The XML engine determines whether to generate a record separator
based on the operating environment where you run the SAS job.

Restriction: Use this option when exporting an XML document only.

TAGSET=tagset-name

specifies the name of a tagset in order to override the default tagset that is used
by the format type specified with XMLTYPE=. For example, by default,
XMLTYPE=GENERIC uses the tagset TAGSETS.SASXMOG, which uses the
variable name to enclose the contents of a SAS variable (for example, <STUDENT>
and </STUDENT>) and the name of the data set to enclose the contents of a SAS
observation (for example, <GRADES> and </GRADES>).

To change the tags that are produced, you can create a customized tagset and
specify it with the TAGSET= option. For information about creating customized
tagsets, see PROC TEMPLATE in the SAS Output Delivery System: User’s Guide.

Restriction: Use this option when exporting an XML document only.

Restriction: Use this option with caution. If you are unfamiliar with XML
output formats, do not use this option.

Featured in: “Using a SAS Tagset to Remove White Spaces in Output XML

Markup” on page 67 and “Defining and Using a Customized Tagset to Use
Labels in Node Names” on page 68.

CAUTION:
If you alter the tagset when exporting an XML document and then attempt to import
the XML document generated by that altered tagset, the XML engine might not bhe
able to translate the XML markup back to SAS proprietary format. »

LIBNAME Statement for the XML Engine /A XML Engine Advanced Options 83

XMLMAP=fileref | ’XMLMap’
specifies an XML document that you create that contains specific XMLMap syntax.
The syntax tells the XML engine how to interpret the XML markup for importing.
The XMLMap syntax is itself XML markup. See Chapter 8, “Creating an
XMLMap,” on page 85 for the XML tag names and descriptions.

fileref
is the SAS name that is associated with the physical location of the

XMLMap. To assign a fileref, use the FILENAME statement.

XMLMap’
is the physical location of the XMLMap. Include the complete pathname and
the filename. It is suggested that you use the filename extension .map.
Enclose the physical name in single or double quotation marks.

For example, the following statements import an XML document named
MY.XML and specify the XMLMap named MY.MAP, which contains specific
XMLMap syntax. The XML engine interprets the XML document as a SAS data
set (table) named MY. In this example, XMLMAP= is used as an option in the
LIBNAME statement:

libname test xml ’'C:\XMLdata\my.xml’ xmlmap='C:\XMLdata\my.map’;
proc print data=test.my;
run;

Tip: You can also specify XMLMAP= as a data set option. The following example
uses XMLMAP= as a data set option and also uses a fileref that is assigned to
the XMLMap:

filename map ‘C:\XMLdata\my.map’;
libname test xml ’'C:\XMLdata\my.xml’;

proc print data=test.my (xmlmap=map);

run;

Featured in: Chapter 4, “Importing XML Documents Using an XMLMap,” on
page 41.

84

85

CHAPTER

Creating an XMLMap

Using XMLMap Syntax 85
XMLMap Syntax Version 1.2 85
Element Descriptions 85
Using SAS XML Mapper to Generate and Update an XMLMap 97
What Is SAS XML Mapper? 97
Using the Windows 98
Using the Menu Bar 98
Using the Tool Bar 98
How Do I Get SAS XML Mapper? 99
Using XMLMap Manager to Manage XMLMaps as Metadata Objects 99
What Is XMLMap Manager? 99
How Do I Get XMLMap Manager? 99

Using XMLMap Syntax

The following topic contains the XML elements for the XMLMap syntax for Version
1.2. They are listed in the order in which you would typically code them in an XMLMap.

CAUTION:
The XMLMap markup, as XML itself, is case sensitive. The tag names must be
uppercase, and the attributes must be lowercase. An example is <SXLEMAP
version="1.2">. In addition, the supported XPath syntax is case sensitive as well. A

XMLMap Syntax Version 1.2

Element Descriptions

SXLEMAP version="number" name="XMLMap" description="description"
is the primary (root) enclosing element to contain the definition of the data set(s).
The element provides the XML well-formed constraint for the definition(s).

Requirement: The SXLEMAP element is required.

86 Element Descriptions A Chapter 8

SXLEMAP has these attributes:

version="number"

specifies the version of the XMLMap syntax. The documented syntax version

is 1.2 and must be specified in order to obtain full functionality.

Default: The version= attribute default value is 1.0 and is retained for
compatibility with prior releases of the XMLMap syntax. It is
recommended that you update existing XMLMaps to Version 1.2.

Tip: To automatically update an XMLMap to Version 1.2, load the Version 1.0
or 1.1 XMLMap syntax into SAS XML Mapper, then save the file. For
information on SAS XML Mapper, see “Using SAS XML Mapper to
Generate and Update an XMLMap” on page 97.

name="XMLMap"

is an optional attribute that specifies the filename of the XMLMap.

Tip: If you use the XMLMap Manager to import an XMLMap as a metadata
object, the name= attribute value is used as the name for the metadata
object. The name cannot be SXLEMAP or XMLMAP and must be unique
to the repository. See “Using XMLMap Manager to Manage XMLMaps as
Metadata Objects” on page 99.

description="description"
is an optional attribute that specifies a description of the XMLMap.

The SXLEMAP element can contain one or more TABLE elements. For example,

<?xml version="1.0" ?>
<SXLEMAP version="1.2" name="Myxmlmap" description="sample XMLMap">
<TABLE name="testl">

</TABLE>
<TABLE name="test2">

</TABLE>
</SXLEMAP>

TABLE name="data-set-name"
is an element to contain a data set definition. For example,

<TABLE name="channel">

Requirement: The TABLE element is required.

TABLE has this attribute:

name="data-set-name"
specifies the name for the SAS data set. The name must be unique in the
XMLMap definition, and the name must be a valid SAS name, which can be
up to 32 characters.
Requirement: The name= attribute is required.
The TABLE element can contain one or more of the following elements that
describe the data set attributes: TABLE-PATH, TABLE-END-PATH,
TABLE-DESCRIPTION, and COLUMN.

Creating an XMLMap /\ Element Descriptions 87

TABLE-PATH syntax="type"
specifies a location path that tells the XML engine where in the XML document to
locate and access specific elements in order to collect variables for the SAS data
set. The location path defines the repeating element instances in the XML
document, which is the SAS data set observation boundary. The observation
boundary is translated into a collection of rows with a constant set of columns.

Requirement: The TABLE-PATH element is required.

TABLE-PATH has this attribute:

syntax="type"

is an optional attribute that specifies the type of syntax used in order to
specify the location path. For all versions prior to and including Version 1.2,
the supported syntax is a valid XPath construction in compliance with the
World Wide Web Consortium (W3C) XPath specification.

Default: The default is XPath, that is, syntax="xpath".

Requirement: The XPath construction is a formal specification that puts a
path description similar to UNIX on each element of the XML structure.
Note that XPath syntax is case sensitive. For example, if an element tag
name is uppercase, it must be uppercase in the location path; if it is
lowercase, it must be lowercase. All paths must begin with the
root-enclosing element (denoted by a slash /) or with the "any parent"
variant (denoted by double slashes ’//’). Other W3C documented forms are
not currently supported.

For example, using the XML document RSS. XML, which is used in the example
“Using an XMLMap to Import an XML Document as Multiple SAS Data Sets” on
page 44, this TABLE-PATH element causes the following to occur:

<TABLE-PATH syntax="xpath"> /rss/channel/item </TABLE-PATH>

1

The XML engine reads the XML markup until it encounters the <ITEM>
start tag.

The XML engine clears the input buffer, sets the contents to MISSING (by
default), and scans elements for variable names based on the COLUMN
element definitions. As values are encountered, they are read into the input
buffer. (Note that whether the XML engine resets to MISSING is determined
by the DEFAULT element as well as the COLUMN element retain=
attribute.)

When the </ITEM> end tag is encountered, the XML engine writes the
completed input buffer to the SAS data set as a SAS observation.

The process is repeated for each <ITEM> start-tag and </ITEM> end-tag
sequence until the end-of-file is encountered in the input stream or until the
TABLE-END-PATH (if specified) is achieved, which results in six
observations.

CAUTION:
Specifying the table location path, which is the observation boundary, can be tricky
due to start-tag and end-tag pairing. The table location path determines which end
tag causes the XML engine to write the completed input buffer to the SAS data
set. If you do not identify the appropriate end tag, the result could be
concatenated data instead of separate observations, or an unexpected set of
columns. For examples, see “Determining the Observation Boundary to Avoid
Concatenated Data” on page 55 and “Determining the Observation Boundary to
Select the Best Columns” on page 57. A

88 Element Descriptions A Chapter 8

TABLE-END-PATH syntax="type" beginend="Begin | End"

is an optional, optimization element that saves resources by stopping the

processing of the XML document before the end of file. The location path tells the

XML engine where in the XML document to locate and access a specific element in

order to stop processing the XML document.

Default: Processing continues until the last end tag in the XML document.

Interaction: The TABLE-END-PATH element does not affect the observation
boundary; that is determined with the TABLE-PATH element.

Tip: Specifying a location in order to stop processing is useful for XML documents
that are hierarchical, but generally not appropriate for repeating instance data.

Featured in: “Using an XMLMap to Import an XML Document as Multiple SAS
Data Sets” on page 44.

TABLE-END-PATH has these attributes:

syntax="type"

is an optional attribute that specifies the type of syntax used to specify the

location path. For Version 1.2, the syntax is a valid XPath construction in

compliance with the World Wide Web Consortium (W3C). The XPath form
supported by the XML engine allows elements and attributes to be
individually selected for exclusion in the generated SAS data set.

Default: The default is XPath, that is, syntax="xpath".

Requirement: The XPath construction is a formal specification that puts a
path description similar to UNIX on each element of the XML structure.
Note that XPath syntax is case sensitive. For example, if an element tag
name is uppercase, it must be uppercase in the location path; if it is
lowercase, it must be lowercase. All paths must begin with the
root-enclosing element (denoted by a slash /) or with the "any parent"
variant (denoted by double slashes ’//’). Other W3C documented forms are
not currently supported.

Featured in: “Using an XMLMap to Import an XML Document as Multiple
SAS Data Sets” on page 44.

beginend="Begin | End"
is an optional attribute that specifies to stop processing when either the
element start tag is encountered or the element end tag is encountered.
Default: The default is Begin.

For example, using the XML document RSS.XML, which is used in the example
“Using an XMLMap to Import an XML Document as Multiple SAS Data Sets” on
page 44, there is only one <CHANNEL> start-tag and one </CHANNEL> end-tag.
With the TABLE-PATH location path,

<TABLE-PATH syntax="xpath"> /rss/channel </TABLE-PATH>

the XML engine would process the entire XML document, even though it does not
store new data in the input buffer after it encounters the first <ITEM> start tag,
because the remaining elements no longer qualify. The following
TABLE-END-PATH location path tells the XML engine to stop processing when
the <ITEM> start tag is encountered:

<TABLE-END-PATH syntax="xpath" beginend="Begin">
/rss/channel/item </TABLE-END-PATH>

Therefore, with the two location path specifications, the XML engine processes
only the highlighted data in the RSS. XML document for the CHANNEL data set,
rather than the entire XML document:

Creating an XMLMap /\ Element Descriptions 89

<?xml version="1.0" encoding="IS0-8859-1" 2>
<rss version="0.91">
<channel>
<title>WriteTheWeb</title>
<link>http://writetheweb.com</link>
<description>News for web users that write back
</description>
<language>en-us</language>
<copyright>Copyright 2000, WriteTheWeb team.
</copyright>
<managingEditor>editor@writetheweb.com
</managingEditor>
<webMaster>webmaster@writetheweb.com</webMaster>

<item>
<title>Giving the world a pluggable Gnutella</title>
<link>http://writetheweb.com/read.php?item=24</1link>
<description>WorldOS is a framework on which to build programs
that work like Freenet or Gnutella-allowing distributed
applications using peer-to-peer routing.</description>
</item>
<item>

</channel>
</rss>

TABLE-DESCRIPTION
is an optional element that specifies a description for the data set, which can be up
to 256 characters. This description is similar to the attribute that describes a data
set, which you can assign with the DATASETS procedure using the LABEL=
option in the MODIFY statement. For example,

<TABLE-DESCRIPTION> Data Set contains TV channel
information </TABLE-DESCRIPTION>

COLUMN name="name" retain="NO | YES" ordinal="NO | YES"
is an element to contain a variable definition. For example,

<COLUMN name="title">

Requirement: At least one COLUMN element is required.

COLUMN has these attributes:

90 Element Descriptions A Chapter 8

name="name"
specifies the name for the variable. The name must be a valid SAS name,
which can be up to 32 characters.

Requirement: The name= attribute is required.

retain="NO | YES"
is an optional attribute that determines the contents of the input buffer at
the beginning of each observation.

NO
sets the value for the beginning of each observation either to MISSING
or to the value of the DEFAULT element if specified. NO is the default.

YES
keeps the current value until it is replaced by a new, non-missing value.
Specifying YES is much like the RETAIN statement in DATA step
processing. It forces the retention of processed values after an
observation is written to the output data set.

Default: The default is NO.
Featured in: “Importing Hierarchical Data as Related Data Sets” on page 48.

ordinal="NO | YES"
is an optional attribute that determines whether the variable is a counter
variable (similar to the _N_ automatic variable in SAS DATA step processing)
that keeps track of the number of times the location path, which is specified
by the INCREMENT-PATH element, is encountered. The counter variable
increments its count by 1 each time the path is matched. Counters can be
useful for identifying individual occurrences of like-named data elements or
for counting observations. The value for the ordinal= attribute also
determines which column location path to use for collecting the column’s
values.

NO
determines that the variable is not a counter variable, requires the
PATH element, and does not allow INCREMENT-PATH and
RESET-PATH elements. NO is the default.

YES
determines that the variable is a counter variable, requires the
INCREMENT-PATH element with the RESET-PATH element optional,
and does not allow the PATH element.

Default: NO

Featured in: “Including a Key Field with Generated Numeric Keys” on page
51.

COLUMN can contain one or more of the following elements that describe the
variable attributes: DATATYPE, DEFAULT, ENUM, FORMAT, INFORMAT,
DESCRIPTION, LENGTH, TYPE, PATH, INCREMENT-PATH, and RESET-PATH.

TYPE
specifies the SAS data type (character or numeric) for the variable, which is how
SAS stores the data. For example, the following specifies that the SAS data type
for the variable is numeric:

Creating an XMLMap /\ Element Descriptions 91

<TYPE> numeric </TYPE>

Requirement: The TYPE element is required.
Tip: To assign a floating-point type, use

<DATATYPE> FLOAT </DATATYPE>
<TYPE> numeric </TYPE>

Tip: To apply output formatting, use the FORMAT element.
Tip: To control data type conversion on input, use the INFORMAT element.

<INFORMAT> datetime </INFORMAT>

DATATYPE
specifies the type of data being read from the XML document for the variable. For
example, the following DATATYPE element specifies that the data contains
alphanumeric characters:

<DATATYPE> string </DATATYPE>
The type of data specification can be

string
specifies that the data contains alphanumeric characters and does not
contain numbers used for calculations.

integer
specifies that the data contains whole numbers used for calculations.

double

specifies that the data contains floating-point numbers.

dateTime
specifies that the input represents a valid datetime value, which is either
O in the form of the XML specification ISO-8601 format. The default form
is: yyyy-mm-ddThh:mm:ss[.nnnnnn].
O in a form for which a SAS informat (either supplied by SAS or

user-written) properly translates the input into a valid SAS datetime
value. See also the INFORMAT element.

date
specifies that the input represents a valid date value, which is either
O in the form of the XML specification ISO-8601 format. The default form
is: yyyy-mm-dd.
0 in a form for which a SAS informat (either supplied by SAS or

user-written) properly translates the input into a valid SAS date value.
See also the INFORMAT element.

time
specifies that the input represents a valid time value, which is either
O in the form of the XML specification ISO-8601 format. The default form
is: hh:mm:ss[.nnnnnn].
0O in a form for which a SAS informat (either supplied by SAS or

user-written) properly translates the input into a valid SAS date value.
See also the INFORMAT element.

92 Element Descriptions A Chapter 8

Requirement: The DATATYPE element is required.

Restriction: The values for XMLMap syntax Version 1.0 and 1.1 are not accepted
by Version 1.2.

DEFAULT
is an optional element that specifies a default value for a missing value for the
variable. Use the DEFAULT element in order to assign a non-missing value to
missing data. For example, by including the following element, the engine will
assign the value single when a missing value occurs:

<DEFAULT> single </DEFAULT>

Default: By default, the XML engine sets a missing value to MISSING.

Featured in: “Determining the Observation Boundary to Select the Best
Columns” on page 57.

ENUM
is an optional element to contain a list of valid values for the variable. The ENUM
element can contain one or more VALUE elements in order to list the values. By
using ENUM, values in the XML document are verified against the list of values.
If a value is not valid, then it is either set to MISSING (by default) or set to the
value specified by the DEFAULT element. Note that a value specified for
DEFAULT must be one of the ENUM values in order to be valid.

<COLUMN name="filing-status">

<DEFAULT> single </DEFAULT>

<ENUM>
<VALUE> single </VALUE>
<VALUE> married filing joint return </VALUE>
<VALUE> married filing separate return </VALUE>
<VALUE> head of household </VALUE>
<VALUE> qualifying widow(er) </VALUE>

</ENUM>

</COLUMN>

Featured in: “Determining the Observation Boundary to Select the Best
Columns” on page 57.

FORMAT width="w" ndec="d"

is an optional element that specifies a SAS format for the variable. A format name
can be up to 31 characters for a character format and 32 characters for a numeric
format. A SAS format is an instruction that SAS uses to write values. You use
formats to control the written appearance of values. Do not include a period (.) as
part of the format name. Specify a width and length as attributes, not as part of
the format name.

For a list of the SAS formats, see SAS Language Reference: Dictionary. For
information on the ISO 8601 SAS formats, see Appendix 1, “ISO 8601 SAS
Formats and Informats,” on page 103.

Featured in: “Determining the Observation Boundary to Select the Best
Columns” on page 57.

Creating an XMLMap /\ Element Descriptions 93

FORMAT has these attributes:

width="w"
is an optional attribute that specifies a format width, which for most formats
is the number of columns in the output data.

ndec="d"
is an optional attribute that specifies a decimal scaling factor for numeric
formats.

Here is an example:

<FORMAT> IS8601DA </FORMAT>
<FORMAT width="8"> best </FORMAT>
<FORMAT width="8" ndec="2"> dollar </FORMAT>

INFORMAT width="w" ndec="d"

is an optional element that specifies a SAS informat for the variable. An informat
name can be up to 30 characters for a character informat and 31 characters for a
numeric informat. A SAS informat is an instruction that SAS uses to read values
into a variable, that is, to store the values. Do not include a period (.) as part of
the informat name. Specify a width and length as attributes, not as part of the
informat name.

For a list of the SAS informats, see SAS Language Reference: Dictionary. For
information on the ISO 8601 SAS informats, see Appendix 1, “ISO 8601 SAS
Formats and Informats,” on page 103.

Featured in: “Determining the Observation Boundary to Select the Best
Columns” on page 57.

INFORMAT has these attributes:

width="w"
is an optional attribute that specifies an informat width, which for most
informats is the number of columns in the input data.

ndec="d"
is an optional attribute that specifies a decimal scaling factor for numeric
informats. SAS divides the input data by 10 to the power of this value.

Here is an example:

<INFORMAT> IS8601DA </INFORMAT>
<INFORMAT width="8"> best </INFORMAT>
<INFORMAT width="8" ndec="2"> dollar </INFORMAT>

DESCRIPTION
is an optional element that specifies a description for the variable, which can be up
to 256 characters. The description is assigned as the variable label. For example,

<DESCRIPTION> Story link </DESCRIPTION>

LENGTH
for character data, is the maximum field storage length from the XML data for the
variable. The value refers to the number of bytes used to store each of the
variable’s values in a SAS data set. The value can be 1 to 32,767. During the
input process, a maximum length of characters is read from the XML document
and transferred to the observation buffer. For example,

<LENGTH> 200 </LENGTH>

94 Element Descriptions A Chapter 8

Requirement: For data that is defined as a STRING data type, the LENGTH
element is required.

Tip: You can use LENGTH to truncate a long field.

PATH syntax="type"
specifies a location path that tells the XML engine where in the XML document to
locate and access a specific tag for the current variable, then perform a function as
determined by the location path form in order to retrieve the value for the
variable. The XPath forms that are supported allow elements and attributes to be
individually selected for inclusion in the generated SAS data set.

Requirement: Whether the PATH element is required or not allowed is
determined by the ordinal= attribute for the COLUMN element: if
ordinal="No", which is the default, PATH is required and INCREMENT-PATH
and RESET-PATH are not allowed; if ordinal="YESs", PATH is not allowed and
INCREMENT-PATH is required, with RESET-PATH optional.

PATH has this attribute:

syntax="type"
is an optional attribute that specifies the type of syntax used to specify the
location path. For Version 1.2, the syntax is a valid XPath construction in
compliance with the World Wide Web Consortium (W3C). The XPath form
supported by the XML engine allows elements and attributes to be
individually selected for inclusion in the generated data set.

Default: The default is XPath, that is, syntax="xpath".

Requirement: The XPath construction is a formal specification that puts a
path description similar to UNIX on each element of the XML structure.
Note that XPath syntax is case sensitive. For example, if an element tag
name is uppercase, it must be uppercase in the location path; if it is
lowercase, it must be lowercase. All paths must begin with the
root-enclosing element (denoted by a slash /) or with the "any parent"
variant (denoted by double slashes ’//’). Other W3C documented forms are
not currently supported.

To specify the PATH location path, use one of the following forms.

CAUTION:
These forms are the only XPath forms that the XML engine supports. If you use any
other valid W3C form, the results will be unpredictable. A

element-form
accesses PCDATA (parsable character data) from the named element.

<PATH syntax="xpath"> /rss/channel/title </PATH>

The above example tells the XML engine to scan the XML markup until it
finds the specific TITLE element. The engine retrieves the value between the
<TITLE> start tag and the </TITLE> end tag. That is, for the TITLE
variable in the CHANNEL data set, the XML engine retrieves the
highlighted value in the following XML document:

<?xml version="1.0" encoding="IS0-8859-1" 2>
<rss version="0.91">
<channel>
<title>WriteTheWeb</title>
<link>http://writetheweb.com</link>
<description>News for web users that write back

Creating an XMLMap /\ Element Descriptions 95

</description>
<language>en-us</language>
<copyright>Copyright 2000, WriteTheWeb team.
</copyright>
<managingEditor>editor@writetheweb.com
</managingEditor>
<webMaster>webmaster@writetheweb.com</webMaster>

<item>

</channel>
</rss>

attribute-form
accesses data from the named attribute (of the form NAME="value").

<PATH syntax="xpath"> /rss@version </PATH>

The above example tells the XML engine to scan the XML markup until it
finds the specific RSS element. The engine retrieves the value from the
version= attribute in the RSS element. That is, for the VERSION variable in
the CHANNEL data set, the XML engine would retrieve the highlighted
value in the following XML document:

<?xml version="1.0" encoding="IS0-8859-1" 2>
<rss version="0.91">
<channel>

<title>WriteTheWeb</title>

<link>http://writetheweb.com</link>

<description>News for web users that write back
</description>

<language>en-us</language>

<copyright>Copyright 2000, WriteTheWeb team.
</copyright>

<managingEditor>editor@writetheweb.com
</managingEditor>

<webMaster>webmaster@writetheweb.com</webMaster>


<item>

</channel>
</rss>

element-conditional-form
accesses PCDATA from the named element with a specific attribute value.

<PATH syntax="xpath"> /constant[@name="PI"] </PATH>

If the XML contains the following, the above example tells the XML engine to
scan the XML markup until it finds the specific CONSTANT element where
the value of the name= attribute is PI. The engine would retrieve the value
3.14159.

<constant name="PI"> 3.14159 </constant>

INCREMENT-PATH syntax="type" beginend="Begin | End"

specifies a location path for a counter variable, which is established by specifying
the COLUMN element attribute ordinal="YES". The location path tells the XML
engine where in the XML document to increment the accumulated value for the
counter variable by 1. The counter variable keeps track of the number of times a
given path condition is met, which is applied to, for example, counting rows,
multiple occurrences of data fields, or assignment of incremental key values.

Requirement: Whether the INCREMENT-PATH element is required or not
allowed is determined by the ordinal= attribute for the COLUMN element: if
ordinal="No0", which is the default, PATH is required and INCREMENT-PATH
and RESET-PATH are not allowed; if ordinal="YES", PATH is not allowed and
INCREMENT-PATH is required with RESET-PATH optional.

Featured in: “Including a Key Field with Generated Numeric Keys” on page 51.

INCREMENT-PATH has these attributes:

syntax="type"
is an optional attribute that specifies the type of syntax used to specify the
location path. For Version 1.2, the syntax is a valid XPath construction in
compliance with the World Wide Web Consortium (W3C). The XPath form
supported by the XML engine allows elements and attributes to be
individually selected for inclusion in the generated SAS data set.

Default: The default is XPath, that is, syntax="xpath".

Requirement: The XPath construction is a formal specification that puts a
path description similar to UNIX on each element of the XML structure.
Note that XPath syntax is case sensitive. For example, if an element tag
name is uppercase, it must be uppercase in the location path; if it is
lowercase, it must be lowercase. All paths must begin with the
root-enclosing element (denoted by a slash /) or with the "any parent"
variant (denoted by double slashes ’//’). Other W3C documented forms are
not currently supported.

beginend="Begin | End"
is an optional attribute that specifies to stop processing when either the
element start tag is encountered or the element end tag is encountered.

Creating an XMLMap / What Is SAS XML Mapper? 97

Default: The default is Begin.

RESET-PATH syntax="type" beginend="Begin | End"
specifies a location path for a counter variable, which is established by specifying
the COLUMN element attribute ordinal="YES". The location path tells the XML
engine where in the XML document to reset the accumulated value for the counter
variable to 0. The counter variable keeps track of the number of times a given
path condition is met, which is applied to, for example, counting rows, multiple
occurrences of data fields, or assignment of incremental key values.

Requirement: Whether the RESET-PATH element is optional or not allowed is
determined by the ordinal= attribute for the COLUMN element: if
ordinal="NoO", which is the default, PATH is required and INCREMENT-PATH
and RESET-PATH are not allowed; if ordinal="YES", PATH is not allowed and
INCREMENT-PATH is required with RESET-PATH optional. RESET-PATH is
always an optional element.

RESET-PATH has these attributes:

syntax="type"
is an optional attribute that specifies the type of syntax used to specify the
location path. For Version 1.2, the syntax is a valid XPath construction in
compliance with the World Wide Web Consortium (W3C). The XPath form
supported by the XML engine allows elements and attributes to be
individually selected for inclusion in the generated SAS data set.

Default: The default is XPath, that is, syntax="xpath".

Requirement: The XPath construction is a formal specification that puts a
UNIX-like path description on each element of the XML structure. Note
that XPath syntax is case sensitive. For example, if an element tag name is
uppercase, it must be uppercase in the location path; if it is lowercase, it
must be lowercase. All paths must begin with the root-enclosing element
(denoted by a slash /') or with the "any parent" variant (denoted by double
slashes ’//’). Other W3C documented forms are not currently supported.

beginend="Begin | End"
is an optional attribute that specifies to stop processing when either the
element start tag is encountered or the element end tag is encountered.

Default: The default is Begin.

Using SAS XML Mapper to Generate and Update an XMLMap

What Is SAS XML Mapper?

SAS XML Mapper is a Java application that assists you in creating and modifying
XMLMaps for use by the XML engine.

SAS XML Mapper provides a graphical interface that you can use in order to
generate the appropriate XML elements. SAS XML Mapper analyzes the structure of
an XML document and generates basic XML syntax for the XMLMap.

The interface consists of windows, a menu bar, and a tool bar. Using SAS XML
Mapper, you can display an XML document or an XML schema, create and modify an
XMLMap, and generate example SAS programs.

98

Using the Windows A Chapter 8

o mmaner aloix
Fle Took Help
EEE
YL pathnd) Propesties | %3 Fomat | [7) Conatian | €} Enumeration | (3 oranat | &1 0 Mo Settings |
T Condercsed | T Fua | S Schema| Mame [exiemar
L] VEHICLES (1)
5 (,] Foro 1) |
=[] rRowm th [
=i Madel (4)
& Mustang EniXP | | |
& Explorer I et
& Taurus
& F150
] Year 4) > B

@ 1965
@ 1982
@ 1998
@ 2000

[304 scurce | (2] 104 Schema source |) 1ouhasp | (4] 585 code | B Samle data| (2] Log |

«7xmi version="1.0" encoding="windows-1252" >
<VEHICLES>

<FORD>

<ROW> <Model-Mustang<iodel> <Y ear-1 966 <Y ear<ROW>
<ROW=<Model>Explorer<Muodel>=Year>10382 </ ear> <IROW>
<FOW= <Modals Tauns =Models <Y aar-1998=1Y ears <IRCW=
<ROW= <Model>F 1 50<bdodel><Year>2000 <Y ear> <ROW=
</FORD>

<VEHICLES»

Using the Windows

The XML window and the XMLMap window are the two primary windows. The XML
window, which is on the left, displays an XML document in a tree structure. The
XMLMap window, which is on the right, displays an XMLMap in a tree structure. The
map tree displays three layers: the top level is the map itself, the second tier includes
tables, and the leaf nodes are columns. The detail area at the top displays information
about the currently selected item, such as attributes for the table or column. The
information is subdivided into tabs.

There are several source windows on the bottom of the interface, such as the XML
source window, the XMLMap source window, the SAS code example window, and so on.

Using the Menu Bar

The menu bar provides pull-down menus in order to request functionality. For
example, select the File menu, then Open XML in order to display a browser so that
you can select an XML document to open.

Using the Tool Bar

The tool bar contains icons for shortcuts to several items on the menu bar. For
example, the first icon from the left is the Open an XML file icon. Select it in order to
display a browser to so that you can select an XML document to open.

Creating an XMLMap /A How Do | Get XMLMap Manager? 99

How Do I Get SAS XML Mapper?

SAS XML Mapper is available for installation from your SAS Installation Kit. SAS
XML Mapper is on the SAS Client-Side Components Volume 1 CD.

SAS XML Mapper has online help attached, which includes a usage example. From
the menu bar, select Help, then Help Topics.

Using XMLMap Manager to Manage XMLMaps as Metadata Objects

What Is XMLMap Manager?

XMLMap Manager provides centralized management of XMLMaps as metadata
objects in a SAS metadata environment. You can use XMLMap Manager to

O import existing XMLMaps and store them as metadata objects
O create new XMLMaps by invoking SAS XML Mapper
O manage your XMLMaps.

How Do | Get XMLMap Manager?

XMLMap Manager is a plug-in on the SAS Management Console, which is available
for installation from your SAS Installation Kit. SAS Management Console is on the
SAS Client-Side Components Volume 1 CD.

From the SAS Management Console, the XMLMap Manager plug-in is available from
Environment Management.

To display online help, select XMLMap Manager, then from the menu bar, select Help,
then Help on XMLMap Manager.

100

PART

Appendices

Appendix 1 ISO 8601 SAS Formats and Informats 703

Appendix 2. Recommended Reading 119

101

102

103

APPENDIX

ISO 8601 SAS Formats and
Informats

SAS Support of the ISO 8601 Standard 104
Introduction 104
Elements of the ISO 8601 Standard Not Supported 104
Understanding Time Zone Processing 105
SAS Informats for the Extended Format 105
Introduction 105
IS8601DA Informat 106
IS8601DN Informat 106
IS8601DT Informat 106
IS8601DZ Informat 107
IS8601LZ Informat 107
IS8601TM Informat 108
IS8601TZ Informat 108
SAS Informats for the Basic Format 109
Introduction 109
ND8601DA Informat 109
ND8601DN Informat 109
ND8601DT Informat 110
ND8601DZ Informat 110
ND8601TM Informat 111
ND8601TZ Informat 111
SAS Formats for the Extended Format 111
Introduction 111
IS8601DA Format 112
IS8601DN Format 112
IS8601DT Format 112
IS8601DZ Format 113
IS8601LZ Format 113
IS8601TM Format 114
IS8601TZ Format 114
Using the Informats and Formats 115
Importing Both Basic Format and Extended Format Dates 115
Importing Time Values with a Time Zone 116

104 SAS Support of the IS0 8601 Standard A Appendix 1

SAS Support of the I1SO 8601 Standard

Introduction

ISO 8601 is an international standard for the representation of dates and times. The
standard defines a large number of alternative representations of dates, times, and time
intervals.

The representations can be either in a basic format that has a minimal number of
characters or in an extended format that adds characters to enhance human readability.
For example, January 3, 2003 can be represented as either 20030103 (basic format) or
2003-01-03 (extended format).

The SAS XML LIBNAME engine supports ISO 8601 date and time representations
with several SAS formats and SAS informats.

Elements of the IS0 8601 Standard Not Supported

SAS does not support or does not fully support the ISO 8601 elements listed in the
following table:

Table A1.1 Elements of the ISO 8601 Standard Not Supported or Not Fully Supported

Element Category
5.2.1.2 Representations with reduced precision Date
5.2.1.3 Truncated representations Date
5.2.14 Expanded representations Date
5.2.2 Ordinal date Date
5.2.3 Week date Date
5.3.1.2 Representations with reduced precision Time
5.3.1.3 Representation of decimal fractions Time

Fractions are supported only on the seconds field value and
use a decimal point delimiter.

53.14 Truncated representations Time

5.3.1.5 Representation with time designator Time

5.3.2 Midnight Time
Only the zero hour representation is supported.

5.3.3 Coordinated Universal Time (UTC) Time

Only full hhmmss forms in either extended or basic format
can contain the UTC designator.

5.3.4.1 Difference between local time and Coordinated Universal Time
Time
5.3.4.2 Local time and the difference with Coordinated Universal Time

Time

ISO 8601 SAS Formats and Informats /A Introduction 105

Element Category

5.4.1 Complete representation Datetime

Only subitem a) For calendar dates is supported. Subitems
b) For ordinal dates and c) For week dates are not supported.

5.4.2 Representations other than complete Datetime
5.5 Time-intervals Time
5.6 Recurring time-intervals Time

Understanding Time Zone Processing

The SAS formats and informats that support the ISO 8601 standard read and write
time values with and without a time zone indicator. There are specific formats and
informats for time zone sensitive and time zone insensitive processing. Note that using
a time zone indicator with a time zone insensitive informat or not using a time zone
indicator with a time zone sensitive informat is considered an error.

Without a time zone indicator, the context of the value is local time. That is, the
value is assumed to be in some local time zone and no conversion or adjustment is
made. For example, in the United States in the state of Texas, the value 09:00:00 is
9:00 a.m. Central Standard Time and in the state of North Carolina, the value is 9:00
a.m. Eastern Standard Time. Note that these time values are not equivalent to
Coordinated Universal Time (UTC) time values due to the differing time zones.

With a time zone offset present, time zone sensitive informats convert the value to
UTC, which is the international time standard. For example, the value 09:00:00-05:00
is converted to 15:00:00, which is 3:00 p.m. With the Z time zone indicator (a special
case in the ISO standard), the value is assumed to be expressed in UTC and no
adjustment or conversion is made.

CAUTION:
With all time informats, the time zone context is not stored with the value. It is
recommended that you do not mix time-based values. When a time value is read into a
variable using a time zone sensitive SAS informat, the value is adjusted to UTC as
requested via the time zone indicator, but the time zone context is not stored with
the value. When a time value is written using a time zone sensitive SAS format, the
value is expressed as UTC with a zero offset value and is not adjusted to or from
local time. A

See the example “Importing Time Values with a Time Zone” on page 116.

SAS Informats for the Extended Format

Introduction

This set of SAS informats represents the ISO 8601 extended format. Each informat
has a corresponding SAS format that represents the extended format.

106 IS8601DA Informat A Appendix 1

IS8601DA Informat

Syntax: IS8601DA
Category: Date
ISO 8601 Element: 5.2.1.1 Complete representation

The IS8601DA informat reads date values into a variable in the extended format
YYYY-MM-DD, where

YYYY
is a four-digit year including century, for example, 2003.

MM
is a two-digit month (zero padded), for example, 01 is January.

DD
is a two-digit day of the month (zero padded), that is, 01 through 31.

IS8601DN Informat

Syntax: 1S8601DN

Category: Datetime

Time Zone: No

ISO 8601 Element: 5.2.1.1 Complete representation

The IS8601DN informat reads datetime values with only a date portion into a
variable in the extended format YYYY-MM-DD, where

YYYY
is a four-digit year including century, for example, 2003.

MM

is a two-digit month (zero padded), for example, 01 is January.

DD
is a two-digit day of the month (zero padded), that is, 01 through 31.

1IS8601DT Informat

Syntax: 1S8601DT

Category: Datetime

Time Zone: No

ISO 8601 Element: 5.4.1 Complete representation

The IS8601DT informat reads datetime values into a variable in the extended format
YYYY-MM-DDThh:mm:ss|.fff{fl, where

YYYY
is a four-digit year including century, for example, 2003.
MM
is a two-digit month (zero padded), for example, 01 is January.
DD
is a two-digit day of the month (zero padded), that is, 01 through 31.
T
is a required capital letter T to indicate the beginning of the time element.
hh

is a two-digit hour (zero padded), that is, 00 through 23.

ISO 8601 SAS Formats and Informats /A 188601LZ Informat 107

mm
is a two-digit minute (zero padded), that is, 00 through 59.

ss
is a two-digit second (zero padded), that is, 00 through 59.

M

are optional fractional seconds.

1IS8601DZ Informat

Syntax: 1S8601DZ

Category: Datetime

Time Zone: Yes

ISO 8601 Element: 5.4.1 Complete representation

The IS8601DZ informat reads datetime values with a time zone into a variable in the
extended format YYYY-MM-DDThh:mm:ssLffffAAlZ] | [[+|-1hh:mm], where

YYYY

is a four-digit year including century, for example, 2003.
MM

is a two-digit month (zero padded), for example, 01 is January.
DD

is a two-digit day of the month (zero padded), that is, 01 through 31.
T

is a required capital letter T to indicate the beginning of the time element.
hh

is a two-digit hour (zero padded), that is, 00 through 23.
mm

is a two-digit minute (zero padded), that is, 00 through 59.

ss
is a two-digit second (zero padded), that is, 00 through 59.

ik

are optional fractional seconds.

Z
is an optional capital letter Z to indicate Universal Coordinated Time.
+|-hh:mm
is an optional hour and minute signed offset from UTC base. Note that the offset
must be +|-hh:mm (that is, + or - and five characters). The shorter form + |-hh is
not supported.
1S8601LZ Informat

Syntax: 1S8601LZ

Category: Time

Time Zone: Yes

ISO 8601 Element: 5.3.1.1 Complete representation

The IS8601LZ informat reads time values with a time zone into a variable in the
extended format hh:mm:ss[ffffAI[Z][[+ |-lhh:mm], where

hh
is a two-digit hour (zero padded), that is, 00 through 23.

108 IS8601TM Informat A Appendix 1

mm
is a two-digit minute (zero padded), that is, 00 through 59.

ss
is a two-digit second (zero padded), that is, 00 through 59.

Nl
are optional fractional seconds.
Z
is an optional capital letter Z to indicate Universal Coordinated Time.
+|-hh:mm
is an optional hour and minute signed offset from UTC base. Note that the offset

must be +|-hh:mm (that is, + or - and five characters). The shorter form + |-hh is
not supported.

IS8601TM Informat

Syntax: 1S8601TM

Category: Time

Time Zone: No

ISO 8601 Element: 5.3.1.1 Complete representation and 5.3.1.3 Representation of
decimal fractions

The IS8601TM informat reads time values into a variable in the extended format

hh:mm:ssl.fffff], where

hh
is a two-digit hour (zero padded), that is, 00 through 23.

mm
is a two-digit minute (zero padded), that is, 00 through 59.

ss
is a two-digit second (zero padded), that is, 00 through 59.

ik

are optional fractional seconds.

IS8601TZ Informat

Syntax: 1S8601TZ

Category: Time

Time Zone: Yes

ISO 8601 Element: 5.3.1.1 Complete representation

The IS8601TZ informat reads time values with a time zone into a variable in the
extended format hh:mm:ss[.fffffI[Z][[+ |-lhh:mm], where

hh
is a two-digit hour (zero padded), that is, 00 through 23.

mm
is a two-digit minute (zero padded), that is, 00 through 59.

ss
is a two-digit second (zero padded), that is, 00 through 59.

M

are optional fractional seconds.

ISO 8601 SAS Formats and Informats /A ND8601DN Informat 109

Z

is an optional capital letter Z to indicate Universal Coordinated Time.

+|-hh:mm
is an optional hour and minute signed offset from UTC base. Note that the offset
must be +|-hh:mm (that is, + or - and five characters). The shorter form + |-kh is
not supported.

SAS Informats for the Basic Format

Introduction

This set of SAS informats represents the ISO 8601 basic format. The ND part of the
informat’s syntax designates non-delimited.

Note: Because using the basic format in XML content is discouraged, it is
recommended that when you read in values with one of the basic format SAS informats,
you write values with the corresponding extended format SAS format. A

ND8601DA Informat

Syntax: ND8601DA
Category: Date
ISO 8601 Element: 5.2.1.1 Complete representation

The ND8601DA informat reads date values into a variable in the basic format
YYYYMMDD, where

YYYY
is a four-digit year including century, for example, 2003.

MM

is a two-digit month (zero padded), for example, 01 is January.

DD
is a two-digit day of the month (zero padded), that is, 01 through 31.

ND8601DN Informat

Syntax: ND8601DN

Category: Datetime

Time Zone: No

ISO 8601 Element: 5.2.1.1 Complete representation

The ND8601DN informat reads datetime values with only a date portion into a
variable in the basic format YYYYMMDD, where

YYYY

is a four-digit year including century, for example, 2003.

MM

is a two-digit month (zero padded), for example, 01 is January.

DD
is a two-digit day of the month (zero padded), that is, 01 through 31.

110 ND8601DT Informat A Appendix 1

ND8601DT Informat

Syntax: ND8601DT

Category: Datetime

Time Zone: No

ISO 8601 Element: 5.4.1 Complete representation

The ND8601DT informat reads datetime values into a variable in the basic format
YYYYMMDDhhmmss.[fff{f]l, where

YYYY
is a four-digit year including century, for example, 2003.
MM
is a two-digit month (zero padded), for example, 01 is January.
DD
is a two-digit day of the month (zero padded), that is, 01 through 31.
hh

is a two-digit hour (zero padded), that is, 00 through 23.

mm
is a two-digit minute (zero padded), that is, 00 through 59.

ss
is a two-digit second (zero padded), that is, 00 through 59.

ik

are optional fractional seconds.

ND8601DZ Informat

Syntax: ND8601DZ

Category: Datetime

Time Zone: Yes

ISO 8601 Element: 5.4.1 Complete representation

The ND8601DZ informat reads datetime values with a time zone into a variable in
the basic format YYYYMMDDhhmmss| fffff1l[+|-lhhmm], where

YYYY
is a four-digit year (zero padded), for example, 2003.

MM
is a two-digit month (zero padded), for example, 01 is January.

DD
is a two-digit day of the month (zero padded), that is, 01 through 31.

hh
is a two-digit hour (zero padded), that is, 00 through 23.

mm
is a two-digit minute (zero padded), that is, 00 through 59.

ss
is a two-digit second (zero padded), that is, 00 through 59.

Vil

are optional fractional seconds.

ISO 8601 SAS Formats and Informats /A Introduction 11

+|-hhmm
is an optional hour and minute signed offset from UTC base. Note that the offset
must be +|-hhmm (that is, + or - and four characters). The shorter form +|-hh is
not supported.

ND8601TM Informat

Syntax: ND8601TM

Category: Time

Time Zone: No

ISO 8601 Element: 5.3.1.1 Complete representation and 5.3.1.3 Representation of
decimal fractions

The ND8601TM informat reads time values into a variable in the basic format
hhmmss, where

hh

is a two-digit hour (zero padded), that is, 00 through 23.
mm

is a two-digit minute (zero padded), that is, 00 through 59.

ss
is a two-digit second (zero padded), that is, 00 through 59.

ND8601TZ Informat

Syntax: ND8601TZ

Category: Time

Time Zone: Yes

ISO 8601 Element: 5.3.1.1 Complete representation

The ND8601TZ informat reads time values with a time zone into a variable in the
basic format Ahmmss[.fffff1[[+ |-lhhmm], where

hh
is a two-digit hour (zero padded), that is, 00 through 23.

mm
is a two-digit minute (zero padded), that is, 00 through 59.

ss
is a two-digit second (zero padded), that is, 00 through 59.

ik

are optional fractional seconds.

+|-hhmm
is an optional hour and minute signed offset from UTC base. Note that the offset
must be +|-hhmm (that is, + or - and four characters). The shorter form +|-hh is
not supported.

SAS Formats for the Extended Format

Introduction

This set of SAS formats represents the ISO 8601 extended format. Each SAS format
has a corresponding SAS informat that represents the extended format.

112 IS8601DA Format A Appendix 1

IS8601DA Format

Syntax: IS8601DA

Category: Date

ISO 8601 Element: 5.2.1.1 Complete representation

The IS8601DA format writes data values in the extended format YYYY-MM-DD,
where

YYYY
is a four-digit year including century, for example, 2003.

MM
is a two-digit month (zero padded), for example, 01 is January.

DD
is a two-digit day of the month (zero padded), that is, 01 through 31.

IS8601DN Format

Syntax: 1S8601DN

Category: Datetime

Time Zone: No

ISO 8601 Element: 5.2.1.1 Complete representation

The IS8601DN format writes datetime values with only a date portion in the
extended format YYYY-MM-DD, where

YYYY
is a four-digit year including century, for example, 2003.

MM

is a two-digit month (zero padded), for example, 01 is January.

DD
is a two-digit day of the month (zero padded), that is, 01 through 31.

IS8601DT Format

Syntax: 1S8601DT

Category: Datetime

Time Zone: No

ISO 8601 Element: 5.4.1 Complete representation

The IS8601DT format writes datetime values in the extended format
YYYY-MM-DDThh:mm:ss|.fff{fl, where

YYYY

is a four-digit year including century, for example, 2003.

MM
is a two-digit month (zero padded), for example, 01 is January.

DD
is a two-digit day of the month (zero padded), that is, 01 through 31.

T
is a required capital letter T to indicate the beginning of the time element.

hh
is a two-digit hour (zero padded), that is, 00 through 23.

ISO 8601 SAS Formats and Informats /. 188601LZ Format

mm
is a two-digit minute (zero padded), that is, 00 through 59.

ss
is a two-digit second (zero padded), that is, 00 through 59.

ik

are optional fractional seconds.

113

1IS8601DZ Format

Syntax: 1S8601DZ

Category: Datetime

Time Zone: Yes

ISO 8601 Element: 5.4.1 Complete representation

The IS8601DZ format writes datetime values with a time zone in the extended
format YYYY-MM-DDThh:mm:ssLffffA1IZ] | [[+|-lhh:mm], where

YYYY

is a four-digit year including century, for example, 2003.

MM
is a two-digit month (zero padded), for example, 01 is January.

DD
is a two-digit day of the month (zero padded), that is, 01 through 31.

T
is a required capital letter T to indicate the beginning of the time element.

hh
is a two-digit hour (zero padded), that is, 00 through 23.

mm
is a two-digit minute (zero padded), that is, 00 through 59.

ss
is a two-digit second (zero padded), that is, 00 through 59.

ik

are optional fractional seconds.

Z
is an optional capital letter Z to indicate Universal Coordinated Time.

+|-hh:mm

is an optional hour and minute signed offset from UTC base. Note that the offset
must be +|-hh:mm (that is, + or - and five characters). The shorter form + |-kh is

not supported.

IS8601LZ Format

Syntax: 1S8601LZ
Category: Time

Time Zone: Yes. The format appends the UTC offset to the value as determined by

the local SAS session.
ISO 8601 Element: 5.3.1.1 Complete representation
The IS8601LZ format writes time values with a time zone in the extended format

hh:mm:ssfffffllZ][+ | -lhh:mm], where

114 IS8601TM Format A Appendix 1

hh
is a two-digit hour (zero padded), that is, 00 through 23.

mm
is a two-digit minute (zero padded), that is, 00 through 59.

ss
is a two-digit second (zero padded), that is, 00 through 59.

ik

are optional fractional seconds.
Z

is an optional capital letter Z to indicate Universal Coordinated Time.

+|-hh:mm
is an optional hour and minute signed offset from UTC base. Note that the offset
must be +|-hh:mm (that is, + or - and five characters). The shorter form +|-kh is
not supported.

IS8601TM Format

Syntax: 1S8601TM

Category: Time

Time Zone: No

ISO 8601 Element: 5.3.1.1 Complete representation and 5.3.1.3 Representation of
decimal fractions

The IS8601TM format writes time values in the extended format hAh:mm:ss[.fff{f],
where

hh
is a two-digit hour (zero padded), that is, 00 through 23.

mm
is a two-digit minute (zero padded), that is, 00 through 59.

ss
is a two-digit second (zero padded), that is, 00 through 59.

Vs

are optional fractional seconds.

1IS8601TZ Format

Syntax: 1S8601TZ

Category: Time

Time Zone: Yes

ISO 8601 Element: 5.3.1.1 Complete representation

The IS8601TZ format writes time values with a time zone in the extended format
hh:mm:sslffffAllZ]l[+ | -lhh:mm], where

hh
is a two-digit hour (zero padded), that is, 00 through 23.

mm
is a two-digit minute (zero padded), that is, 00 through 59.

ss
is a two-digit second (zero padded), that is, 00 through 59.

IS0 8601 SAS Formats and Informats /A Importing Both Basic Format and Extended Format Dates 115

¥iiiia

are optional fractional seconds.

Z
is an optional capital letter Z to indicate Universal Coordinated Time.

+|-hh:mm
is an optional hour and minute signed offset from UTC base. Note that the offset
must be + |-hh:mm (that is, + or - and five characters). The shorter form + |-kh is
not supported.

Using the Informats and Formats

Importing Both Basic Format and Extended Format Dates

This simple example illustrates importing an XML document that contains date
values in both the basic format and the extended format. The XMLMap uses the
FORMAT and INFORMAT elements to specify the appropriate SAS format and SAS
informat in order to represent the dates according to ISO 8601 standards.

First, here is the XML document:

<?xml version="1.0" 2>
<Root>
<ISODATE>
<BASIC>20010911</BASIC>
<EXTENDED>2001--09--11</EXTENDED>
</ISODATE>
</Root>

The following XMLMap imports the XML document using the SAS informats and
formats to read and write the date values:

<?xml version="1.0" encoding="UTF-8"?>
<SXLEMAP version="1.2" name="ISOdate"
description="Reading a Basic and Extended format ISO date field">
<U—— HHHHHEHHHEAAHAEHHEAA AR R R R R R >
<TABLE name="ISODATE">
<TABLE-PATH syntax="XPath">/Root/ISODATE</TABLE-PATH>

<COLUMN name="BASIC">
<PATH syntax="XPath">/Root/ISODATE/BASIC</PATH>
<TYPE>numeric</TYPE>
<DATATYPE>date</DATATYPE>
<FORMAT width="10">IS8601DA</FORMAT> @
<INFORMAT width="8">ND8601DA</INFORMAT> @
</COLUMN>

<COLUMN name="EXTENDED">
<PATH syntax="XPath">/Root/ISODATE/EXTENDED</PATH>
<TYPE>numeric</TYPE>
<DATATYPE>date</DATATYPE>
<FORMAT>IS8601DA</FORMAT> @
<INFORMAT>IS8601DA</INFORMAT> @

</COLUMN>

116

Importing Time Values with a Time Zone A Appendix 1

</TABLE>

</SXLEMAP>

The following explains the XMLMap syntax that imports the date values:

1 For the Basic variable, the FORMAT element specifies the IS8601DA SAS format,
which writes data values in the extended format YYYY-MM-DD.

2 For the Basic variable, the INFORMAT element specifies the ND8601DA SAS
informat, which reads date values into a variable in the basic format YYYYMMDD.

Note: As recommended, when you read values into a variable with a basic
format SAS informat, this example writes the values with the corresponding
extended format SAS format. A

3 For the Extended variable, the FORMAT element specifies the IS8601DA SAS
format, which writes data values in the extended format YYYY-MM-DD.
4 For the Extended variable, the INFORMAT element specifies the IS8601DA SAS

informat, which reads date values into a variable in the basic format
YYYY-MM-DD.

The following SAS statements import the XML document and display PRINT
procedure output:

filename dates ‘c:\My Documents\XML\ISOdate.xml’;
filename map ‘c:\My Documents\XML\ISOdate.map’;
libname dates xml xmlmap=map;

proc print data=dates.isodate;

run;

Output A1.1 PRINT Procedure Output for Imported Data Set DATES.ISODATE

The SAS System 1

Obs BASIC EXTENDED

1 2001-09-11 2001-09-11

Importing Time Values with a Time Zone

This example illustrates importing an XML document that contains time values in
various forms. The XMLMap uses the FORMAT and INFORMAT elements to specify
the appropriate SAS formats and SAS informats in order to represent the times
appropriately.

First, here is an XML document that contains a variety of time values:

<?xml version="1.0" ?>
<Root>
<TIME>
<LOCAL>09:00:00</LOCAL>
<UTC>09:00:00z</UTC>
<OFFSET>14:00:00+05:00</OFFSET>
</TIME>

ISO 8601 SAS Formats and Informats /A Importing Time Values with a Time Zone 117

</Root>

The following XMLMap imports the XML document using the SAS informats and
formats to read and write the time values:

<?xml version="1.0" encoding="UTF-8"?>
<SXLEMAP version="1.2" name="ISOtime">
description="Reading time values with and without offsets">
<U—— HHHHHEHAHESAHAEHHE S AR R R R R R R >
<TABLE name="TIME">
<TABLE-PATH syntax="XPath">/Root/TIME</TABLE-PATH>

<COLUMN name="LOCAL">
<PATH syntax="XPath">/Root/TIME/LOCAL</PATH>
<TYPE>numeric</TYPE>
<DATATYPE>time</DATATYPE>
<INFORMAT width="8">IS8601TM</INFORMAT> @
<FORMAT width="8">IS8601TM</FORMAT>
</COLUMN>

<COLUMN name="LOCALZONE">
<PATH syntax="XPath">/Root/TIME/LOCAL</PATH>
<TYPE>numeric</TYPE>
<DATATYPE>time</DATATYPE>
<INFORMAT width="8">IS8601TM</INFORMAT> @
<FORMAT width="14">IS8601LZ</FORMAT>
</COLUMN>

<COLUMN name="UTC">
<PATH syntax="XPath">/Root/TIME/UTC</PATH>
<TYPE>numeric</TYPE>
<DATATYPE>time</DATATYPE>
<INFORMAT width="9">IS8601TZ</INFORMAT> @
<FORMAT width="9">IS8601TZ</FORMAT>
</COLUMN>

<COLUMN name="OFFSET">
<PATH syntax="XPath">/Root/TIME/OFFSET</PATH>
<TYPE>numeric</TYPE>
<DATATYPE>time</DATATYPE>
<INFORMAT width="14">IS8601TZ</INFORMAT> @
<FORMAT width="14">IS8601TZ</FORMAT>

</COLUMN>
</TABLE>

</SXLEMAP>

The following explains the XMLMap syntax that imports the time values:

1 For the Local variable, the INFORMAT and FORMAT elements specify the
IS8601TM SAS informat and format, which reads and writes time values in the
extended format hh:mm:ss[.fffff]l. Because there is no time zone indicator, the
context of the value is local time.

2 For the Localzone variable, which reads the same value as the Local variable, the
INFORMAT element specifies the IS8601TM SAS informat, which reads time
values in the extended format hh:mm:ss[.fffff. Because there is no time zone
indicator, the context of the value is local time.

118

Importing Time Values with a Time Zone A Appendix 1

The FORMAT element, however, specifies the IS8601LZ SAS format, which
writes time values in the extended format hh:mm:ss[fffffl[Z][+|-lhh:mm]. The
IS8601LZ format appends the UTC offset to the value as determined by the local,
current SAS session. Using the IS8601LZ format enables you to provide a time
notation in order to eliminate the ambiguity of local time.

Note: Even with the time notation, it is recommended that you do not mix
time-based values. A

3 For the UTC variable, the INFORMAT and FORMAT elements specify the
IS8601TZ SAS informat and format, which reads and writes time values in the
extended format hh:mm:ss[fffffI[Z][+ | -lhh:mm]. Because there is a time zone
indicator, the value is assumed to be expressed in UTC. No adjustment or
conversion is made to the value.

4 For the Offset variable, the INFORMAT and FORMAT elements specify the
IS8601TZ SAS informat and format, which reads and writes time values in the
extended format hh:mm:ss[.fffff1[Z]1[+|-lhh:-mm]. Because there is a time zone
offset present, when the time value is read into the variable using the time zone
sensitive SAS informat, the value is adjusted to UTC as requested via the time
zone indicator, but the time zone context is not stored with the value. When the
time value is written using the time zone sensitive SAS format, the value is
expressed as UTC with a zero offset value and is not adjusted to or from local time.

The following SAS statements import the XML document and display the PRINT
procedure output:

filename timzn ‘c:\My Documents\XML\Time.xml';
filename map ‘c:\My Documents\XML\Time.map’;
libname timzn xml xmlmap=map;

proc print data=timzn.time;

run;

Output A1.2 PRINT Procedure Output for Imported Data Set TIMZN.TIME

The SAS System 1

Obs LOCAL LOCALZONE UTC OFFSET

1 09:00:00 09:00:00-04:00 09:00:002 09:00:00+00:00

119

APPENDIX

Recommended Reading

Recommended Reading 119

Recommended Reading

Here is the recommended reading list for this title:
0O The Little SAS Book: A Primer
0 SAS Language Reference: Concepts

O

SAS Companion that is specific to your operating environment

O

Base Communities Web site at support.sas.com/rnd/base/index.html

O

For information about XML (Extensible Markup Language), see the Web site
www.w3.org/XML

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales

SAS Campus Drive

Cary, NC 27513

Telephone: (800) 727-3228*

Fax: (919) 677-8166

E-mail: sasbook@sas.com

Web address: support.sas.com/pubs

* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=59216

120

121

Glossary

encoding
a set of characters (letters, logograms, digits, punctuation, symbols, control
characters, and so on) that have been mapped to numeric values (called code points)
that can be used by computers. The code points are assigned to the characters in the
character set by applying an encoding method. Some examples of encodings are
wlatinl, weyrillic, and shift-jis.

fileref (file reference)
a short name (or alias) for the full physical name of an external file. A SAS
FILENAME statement maps the fileref to the full physical name.

libref (library reference)
a valid SAS name that serves as a shortcut name to associate with the physical
location of an XML document.

markup language
a set of codes that are embedded in text in order to define layout and certain content.

metadata
a description or definition of data or information.

observation
a row in a SAS data set. All of the data values in an observation are associated with
a single entity such as a customer or a state. Each observation contains one data
value for each variable.

SAS data file
a type of SAS data set that contains data values as well as descriptor information
that is associated with the data. The descriptor information includes information
such as the data types and lengths of the variables, as well as the name of the engine
that was used to create the data. See also SAS data set, SAS data view.

SAS data library
one or more SAS files that are accessed by the same library engine and which are
referenced and stored as a unit.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS

122 Glossary

data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS data view
a type of SAS data set that retrieves data values from other files. A SAS data view
contains only descriptor information such as the data types and lengths of the
variables (columns), plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors’ file
formats. SAS data views can be created by the ACCESS and SQL procedures, as well
as by the SAS DATA step.

SAS XML LIBNAME engine
the SAS engine that processes XML documents. The engine exports an XML
document from a SAS data set by translating the proprietary SAS file format to XML
markup. The engine also imports an external XML document by translating XML
markup to a SAS data set.

SAS XML Mapper
a graphical interface that you can use to create and modify XMLMaps for use by the
SAS XML LIBNAME engine. The SAS XML Mapper analyzes the structure of an
XML document and generates basic XML markup for the XMLMap.

variable
a column in a SAS data set or in a SAS data view. The data values for each variable
describe a single characteristic for all observations.

XML (Extensible Markup Language)
a markup language that structures information by tagging it for content, meaning, or
use. Structured information contains both content (for example, words or numbers)
and an indication of what role the content plays. For example, content in a section
heading has a different meaning from content in a database table.

XML engine
See SAS XML LIBNAME engine.

XMLMap
a file that contains XML tags that tell the SAS XML LIBNAME engine how to
interpret an XML document.

Index

Index 123

A

Access documents

importing
ampersand

importing XML documents with
apostrophe (*)

importing XML documents with

beginend attribute
INCREMENT-PATH element @
RESET-PATH element
TABLE-END-PATH element

Cc

character data
non-escaped
character sets
specifying
column definitions
XMLMap translation
COLUMN element
XMLMaps
columns
selecting best for XML documents
concatenated data
avoiding
concatenated XML documents
importing
CONTENTS procedure
XML LIBNAME engine and
customized tagsets

D

data set options E
data sets
data set options E
importing hierarchical data as
transporting across operating environments
data sets, exporting XML documents from E E
date and time information
for Oracle
metadata information in separate file

National Language Support (NLS)
user-defined formats
white space E
data sets, importing XML documents as E,
as multiple data sets
as one data set
concatenated documents
correct physical structure
errors if not created with SAS E
Microsoft Access documents
physical structure requirements
with non-escaped character data
with numeric values
DATATYPE element
XMLMaps
date and time information
exported XML documents with
DEFAULT element
XMLMaps
description attribute
SXLEMAP element
DESCRIPTION element
XMLMaps
DOM application
XML engine as
double quotation marks
importing XML documents with

E

ENUM element
XMLMaps
EXPORT format
XML documents
exporting HTML documents
exporting numeric values
exporting XML documents E E
date and time information
for Oracle E
metadata information in separate file
National Language Support (NLS)
user-defined formats
white space

F

foreign keys
XMLMap translation

FORMAT element
XMLMaps [92]
formats

ISO 8601

G

generated numeric keys
for key fields
GENERIC format
XML documents

H

HTML documents
exporting

importing hierarchical data
as related data sets
importing XML documents E
as multiple data sets
as one data set
concatenated documents
correct physical structure
errors when not created with SAS E
Microsoft Access documents
physical structure requirements
with non-escaped character data
with numeric values
importing XML documents with XMLMaps
generating and updating with SAS XML Map-
per
importing hierarchical data as related data
sets
importing XML documents as multiple data
sets
importing XML documents as one data set
managing as metadata objects with XMLMap
Manager
metadata objects assigned to
observation boundaries
when to use
XMLMap syntax
INCREMENT-PATH element
XMLMaps

124 Index

INDENT= option

LIBNAME statement [74]
INFORMAT element

XMLMaps
informats

ISO 8601
internationalization support

LIBNAME statement
IP address

SAS Metadata Server host
IS8601DA format [112]
IS8601DA informat |1
IS8601DN format [112]
IS8601DN informat |1
IS8601DT format [112]
IS8601DT informat [106]
1S8601DZ format [L13]
1S8601DZ informat |1
I1S8601LZ format [113]
IS8601LZ informat [107]
IS8601TM format [114]
IS8601TM informat |1
I1S8601TZ format
1S8601TZ informat
ISO 8601 standard [104

elements not supported

formats for extended format |[111

importing dates [115

importing time values with a time zone

informats for basic format

informats for extended format [105

time zone processing |105

FrEEERE=ERE
#H S E =y (IS (1Y IS
2 ST ERCIRCIR

—
(=}
o0

K

key fields
generated numeric keys

L

language support
LIBNAME statement
left angle bracket (<)
importing XML documents with
LENGTH element
XMLMaps
LIBNAME statement, XML
advanced options
exporting XML documents from data sets E
importing XML documents as data sets
National Language Support (NLS)
librefs
assigning to XML documents EI,
login
SAS Metadata Server

M

menu bar
SAS XML Mapper
metadata information
separaie from exported XML documents

XMLMaps as metadata objects
Metadata Server
LIBNAME options for
METAPASS= option
LIBNAME statement
METAPORT= option
LIBNAME statement
METAREPOSITORY= option
LIBNAME statement
METASERVER= option
LIBNAME statement
METAUSER= option
LIBNAME statement
METAXMLMAP= option
LIBNAME statement
Microsoft Access documents
importing
MSACCESS format
for XML documents

N

name attribute

COLUMN element [o0]

SXLEMAP element

TABLE element
National Language Support (NLS)
ND8601DA informat [109]
ND8601DN informat
ND8601DT informat |110
ND8601DZ informat [110]
ND8601TM informat (111
ND8601TZ informat
ndec attribute

FORMAT element

INFORMAT element
NLS (National Language Support)
non-escaped character data
numeric values

exporting

importing XML documents with

precision control

(o)

observation boundaries

avoiding concatenated data

selecting best columns
ODS MARKUP destination

XML engine vs.
ODSCHARSET= option

LIBNAME statement
ODSRECSEP= option

LIBNAME statement
ODSTRANTAB= option

LIBNAME statement
OIMDBM format

XML documents
OIMSTART= option

LIBNAME statement
one-to-many data

importing as related data sets
operating environments

transporting data sets across

Oracle

exporting XML documents for H,
ORACLE format

for XML documents
ordinal attribute

COLUMN element

P

passwords
SAS Metadata Server
PATH element
XMLMaps [94]
physical structure
for imported XML documents
for XML documents
precision control
PRINT procedure
numeric values

R

record separators
XML documents
relating data sets
importing as hierarchical data
key fields with generated numeric keys
RESET-PATH element
XMLMaps
retain attribute
COLUMN element
column definitions

S

SAS Metadata Server
LIBNAME options for
SAS XML Mapper
SAX application
XML engine as E
sequential access engine E
single quotation mark (*)
importing XML documents with
special characters
importing XML documents with
SXLEMAP element
XMLMaps
syntax attribute
INCREMENT-PATH element
PATH element
RESET-PATH element
TABLE-END-PATH element
TABLE-PATH element

T

TABLE-DESCRIPTION element
XMLMaps

TABLE element
XMLMaps

TABLE-END-PATH element
XMLMaps

TABLE-PATH element

XMLMaps
TAGSET= option

LIBNAME statement
tagsets

customized

overriding

removing white space in XML output
TCP port

SAS Metadata Server
time zone processing |105
tool bar

SAS XML Mapper
translation tables

for output files
transporting data sets

across operating environments
TYPE element

XMLMaps [90]

U

updating XMLMaps
user-defined formats

in exported XML documents
user identification

SAS Metadata Server

\'}

validating XML documents E
variable definitions

XMLMap translation
version attribute

SXLEMAP element

w

white space
in exported XML documents ﬂ,

width attribute
FORMAT element
INFORMAT element
windows
SAS XML Mapper

X

XML documents
assigning librefs to
avoiding concatenated data
concatenated
record separators
selecting best columns

transporting data sets across operating environ-

ments

validating E

XML documents, exporting E E
date and time information
for Oracle E
metadata information in separate file
National Language Support (NLS)
user-defined formats
white space E

XML documents, importing E
as multiple data sets
as one data set
concatenated documents
correct physical structure
errors when not created with SAS E
Microsoft Access documents
physical structure requirements
with non-escaped character data
with numeric values

XML engine
advanced LIBNAME statement options
as DOM and SAX applications [3
ODS MARKUP destination vs. [

supported processing |3

Index 125

tagsets

transporting data sets across operating environ-
ments

XMLCONCATENATE-= option

LIBNAME statement
XMLDATAFORM= option

LIBNAME statement
XMLDOUBLE= option

LIBNAME statement
XMLENCODING= option

LIBNAME statement
XMLFILEREF= option

LIBNAME statement
XMLMap elements
XMLMAP= option

LIBNAME statement
XMLMaps

generating with SAS XML Mapper

importing hierarchical data as related data

sets

importing XML documents as multiple data
sets
importing XML documents as one data set

managing as metadata objects with XMLMap
Manager

metadata objects assigned to

observation boundaries

syntax

updating with SAS XML Mapper

when to use

XMLMap Manager @
XMLMETA= option

LIBNAME statement
XMLPROCESS= option

LIBNAME statement
XMLSCHEMA= option

LIBNAME statement
XMLTYPE= option

LIBNAME statement

Your Turn

If you have comments or suggestions about SAS 9.1 XML LIBNAME Engine User’s
Guide, please send them to us on a photocopy of this page, or send us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513

E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive

Cary, NC 27513

E-mail: suggest@sas.com

	Table of Contents
	Contents

	What’s New
	Overview
	Details

	Usage
	Getting Started with the XML Engine
	What Does the XML Engine Do?
	Understanding How the XML Engine Works
	Assigning a Libref to an XML Document
	Importing an XML Document
	Exporting an XML Document

	SAS Processing Supported by the XML Engine
	Frequently Asked Questions
	Is the XML Engine a DOM or SAX Application?
	Does the XML Engine Validate an XML Document?
	What Is the Difference between Using the XML Engine and the ODS MARKUP Destination?
	Why Do I Get Errors When Importing XML Documents Not Created with SAS?
	Can I Use SAS Data Set Options with the XML Engine?
	Why Does an Exported XML Document Include White Space?

	Exporting XML Documents
	Understanding How to Export an XML Document
	Exporting an XML Document for Use by Oracle
	Exporting an XML Document Containing a SAS User-Defined Format
	Exporting an XML Document Containing SAS Dates, Times, and Datetimes
	Exporting an HTML Document
	Exporting Numeric Values
	Exporting an XML Document with Separate Metadata

	Importing XML Documents
	Understanding How to Import an XML Document
	Understanding the Required Physical Structure for an XML Document to Be Imported
	What Is the Required Physical Structure?
	Why Is a Specific Physical Structure Required?
	Handling XML Documents That Are Not in the Required Physical Structure

	Importing an XML Document with the Correct Physical Structure
	Importing an XML Document with Numeric Values
	Importing an XML Document with Non-Escaped Character Data
	Importing an XML Document Created by Microsoft Access
	Importing Concatenated XML Documents

	Importing XML Documents Using an XMLMap
	Why Use an XMLMap When Importing?
	Using an XMLMap to Import an XML Document as One SAS Data Set
	Using an XMLMap to Import an XML Document as Multiple SAS Data Sets
	Importing Hierarchical Data as Related Data Sets
	Including a Key Field with Generated Numeric Keys
	Determining the Observation Boundary to Avoid Concatenated Data
	Determining the Observation Boundary to Select the Best Columns

	Using the XML Engine to Transport SAS Data Sets across Operating Environments
	What Is Transporting a SAS Data Set?
	Transporting a SAS Data Set

	Understanding and Using Tagsets for the XML Engine
	What Is a Tagset?
	SAS Tagsets
	Creating Customized Tagsets
	Using a SAS Tagset to Remove White Spaces in Output XML Markup
	Defining and Using a Customized Tagset to Use Labels in Node Names

	Reference
	LIBNAME Statement for the XML Engine
	Using the LIBNAME Statement
	LIBNAME Statement Syntax
	Arguments
	XML Engine Options
	Statement Options for National Language Support
	XML Engine Advanced Options

	Creating an XMLMap
	Using XMLMap Syntax
	XMLMap Syntax Version 1.2
	Element Descriptions

	Using SAS XML Mapper to Generate and Update an XMLMap
	What Is SAS XML Mapper?
	Using the Windows
	Using the Menu Bar
	Using the Tool Bar
	How Do I Get SAS XML Mapper?

	Using XMLMap Manager to Manage XMLMaps as Metadata Objects
	What Is XMLMap Manager?
	How Do I Get XMLMap Manager?

	Appendices
	ISO 8601 SAS Formats and Informats
	SAS Support of the ISO 8601 Standard
	Introduction
	Elements of the ISO 8601 Standard Not Supported
	Understanding Time Zone Processing

	SAS Informats for the Extended Format
	Introduction
	IS8601DA Informat
	IS8601DN Informat
	IS8601DT Informat
	IS8601DZ Informat
	IS8601LZ Informat
	IS8601TM Informat
	IS8601TZ Informat

	SAS Informats for the Basic Format
	Introduction
	ND8601DA Informat
	ND8601DN Informat
	ND8601DT Informat
	ND8601DZ Informat
	ND8601TM Informat
	ND8601TZ Informat

	SAS Formats for the Extended Format
	Introduction
	IS8601DA Format
	IS8601DN Format
	IS8601DT Format
	IS8601DZ Format
	IS8601LZ Format
	IS8601TM Format
	IS8601TZ Format

	Using the Informats and Formats
	Importing Both Basic Format and Extended Format Dates
	Importing Time Values with a Time Zone

	Recommended Reading
	Recommended Reading

	Glossary
	Index

