
SAS®

9.1 SQL Procedure
User’s Guide

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., 2004.
SAS ® 9.1 SQL Procedure User’s Guide. Cary, NC: SAS Institute Inc.

SAS® 9.1 SQL Procedure User’s Guide
Copyright © 2004, SAS Institute Inc., Cary, NC, USA.
ISBN 1-59047-334-5
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

Chapter 1 � Introduction to the SQL Procedure 1
What Is SQL? 1

What Is the SQL Procedure? 1

Terminology 2

Comparing PROC SQL with the SAS DATA Step 3

Notes about the Example Tables 4

Chapter 2 � Retrieving Data from a Single Table 11
Overview of the SELECT Statement 12

Selecting Columns in a Table 14

Creating New Columns 18

Sorting Data 25

Retrieving Rows That Satisfy a Condition 30

Summarizing Data 39

Grouping Data 45

Filtering Grouped Data 50

Validating a Query 52

Chapter 3 � Retrieving Data from Multiple Tables 55
Introduction 56

Selecting Data from More Than One Table by Using Joins 56

Using Subqueries to Select Data 74

When to Use Joins and Subqueries 80

Combining Queries with Set Operators 81

Chapter 4 � Creating and Updating Tables and Views 89
Introduction 90

Creating Tables 90

Inserting Rows into Tables 93

Updating Data Values in a Table 96

Deleting Rows 98

Altering Columns 99

Creating an Index 102

Deleting a Table 103

Using SQL Procedure Tables in SAS Software 103

Creating and Using Integrity Constraints in a Table 103

Creating and Using PROC SQL Views 105

Chapter 5 � Programming with the SQL Procedure 111
Introduction 111

Using PROC SQL Options to Create and Debug Queries 112

Improving Query Performance 115

iv

Accessing SAS System Information Using DICTIONARY Tables 117

Using PROC SQL with the SAS Macro Facility 120

Formatting PROC SQL Output Using the REPORT Procedure 127

Accessing a DBMS with SAS/ACCESS Software 128

Using the Output Delivery System (ODS) with PROC SQL 132

Chapter 6 � Practical Problem-Solving with PROC SQL 133
Overview 134

Computing a Weighted Average 134

Comparing Tables 136

Overlaying Missing Data Values 138

Computing Percentages within Subtotals 140

Counting Duplicate Rows in a Table 141

Expanding Hierarchical Data in a Table 143

Summarizing Data in Multiple Columns 144

Creating a Summary Report 146

Creating a Customized Sort Order 148

Conditionally Updating a Table 150

Updating a Table with Values from Another Table 153

Creating and Using Macro Variables 154

Using PROC SQL Tables in Other SAS Procedures 157

Appendix 1 � Recommended Reading 161
Recommended Reading 161

Glossary 163

Index 167

1

C H A P T E R

1
Introduction to the SQL
Procedure

What Is SQL? 1
What Is the SQL Procedure? 1

Terminology 2

Tables 2

Queries 2

Views 2
Null Values 3

Comparing PROC SQL with the SAS DATA Step 3

Notes about the Example Tables 4

What Is SQL?
Structured Query Language (SQL) is a standardized, widely used language that

retrieves and updates data in relational tables and databases.
A relation is a mathematical concept that is similar to the mathematical concept of a

set. Relations are represented physically as two-dimensional tables that are arranged
in rows and columns. Relational theory was developed by E. F. Codd, an IBM
researcher, and first implemented at IBM in a prototype called System R. This
prototype evolved into commercial IBM products based on SQL. The Structured Query
Language is now in the public domain and is part of many vendors’ products.

What Is the SQL Procedure?
The SQL procedure is SAS’ implementation of Structured Query Language. PROC

SQL is part of Base SAS software, and you can use it with any SAS data set (table).
Often, PROC SQL can be an alternative to other SAS procedures or the DATA step. You
can use SAS language elements such as global statements, data set options, functions,
informats, and formats with PROC SQL just as you can with other SAS procedures.
PROC SQL can

� generate reports
� generate summary statistics
� retrieve data from tables or views
� combine data from tables or views
� create tables, views, and indexes
� update the data values in PROC SQL tables
� update and retrieve data from database management system (DBMS) tables

2 Terminology � Chapter 1

� modify a PROC SQL table by adding, modifying, or dropping columns.

PROC SQL can be used in an interactive SAS session or within batch programs, and
it can include global statements, such as TITLE and OPTIONS.

Terminology

Tables
A PROC SQL table is the same as a SAS data file. It is a SAS file of type DATA.

PROC SQL tables consist of rows and columns. The rows correspond to observations in
SAS data files, and the columns correspond to variables. The following table lists
equivalent terms that are used in SQL, SAS, and traditional data processing.

SQL Term SAS Term Data Processing Term

table SAS data file file

row observation record

column variable field

You can create and modify tables by using the SAS DATA step, or by using the PROC
SQL statements that are described in Chapter 4, “Creating and Updating Tables and
Views,” on page 89. Other SAS procedures and the DATA step can read and update
tables that are created with PROC SQL.

DBMS tables are tables that were created with other software vendors’ database
management systems. PROC SQL can connect to, update, and modify DBMS tables,
with some restrictions. For more information, see “Accessing a DBMS with SAS/
ACCESS Software” on page 128.

Queries
Queries retrieve data from a table, view, or DBMS. A query returns a query result,

which consists of rows and columns from a table. With PROC SQL, you use a SELECT
statement and its subordinate clauses to form a query. Chapter 2, “Retrieving Data
from a Single Table,” on page 11 describes how to build a query.

Views
PROC SQL views do not actually contain data as tables do. Rather, a PROC SQL

view contains a stored SELECT statement or query. The query executes when you use
the view in a SAS procedure or DATA step. When a view executes, it displays data that
is derived from existing tables, from other views, or from SAS/ACCESS views. Other
SAS procedures and the DATA step can use a PROC SQL view as they would any SAS
data file. For more information about views, see Chapter 4, “Creating and Updating
Tables and Views,” on page 89.

Introduction to the SQL Procedure � Comparing PROC SQL with the SAS DATA Step 3

Null Values
According to the ANSI Standard for SQL, a missing value is called a null value. It is

not the same as a blank or zero value. However, to be compatible with the rest of SAS,
PROC SQL treats missing values the same as blanks or zero values, and considers all
three to be null values. This important concept comes up in several places in this
document.

Comparing PROC SQL with the SAS DATA Step
PROC SQL can perform some of the operations that are provided by the DATA step

and the PRINT, SORT, and SUMMARY procedures. The following query displays the
total population of all the large countries (countries with population greater than 1
million) on each continent.

proc sql;
title ’Population of Large Countries Grouped by Continent’;
select Continent, sum(Population) as TotPop format=comma15.

from sql.countries
where Population gt 1000000
group by Continent
order by TotPop;

quit;

Output 1.1 Sample SQL Output

Population of Large Countries Grouped by Continent

Continent TotPop

Oceania 3,422,548
Australia 18,255,944
Central America and Caribbean 65,283,910
South America 316,303,397
North America 384,801,818
Africa 706,611,183
Europe 811,680,062
Asia 3,379,469,458

Here is a SAS program that produces the same result.

title ’Large Countries Grouped by Continent’;
proc summary data=sql.countries;

where Population > 1000000;
class Continent;
var Population;
output out=sumPop sum=TotPop;

run;

proc sort data=SumPop;
by totPop;

run;

4 Notes about the Example Tables � Chapter 1

proc print data=SumPop noobs;
var Continent TotPop;
format TotPop comma15.;
where _type_=1;

run;

Output 1.2 Sample DATA Step Output

Large Countries Grouped by Continent

Continent TotPop

Oceania 3,422,548
Australia 18,255,944
Central America and Caribbean 65,283,910
South America 316,303,397
North America 384,801,818
Africa 706,611,183
Europe 811,680,062
Asia 3,379,469,458

This example shows that PROC SQL can achieve the same results as base SAS
software but often with fewer and shorter statements. The SELECT statement that is
shown in this example performs summation, grouping, sorting, and row selection. It
also displays the query’s results without the PRINT procedure.

PROC SQL executes without using the RUN statement. After you invoke PROC SQL
you can submit additional SQL procedure statements without submitting the PROC
statement again. Use the QUIT statement to terminate the procedure.

Notes about the Example Tables
For all examples, the following global statements are in effect:

options nodate nonumber linesize=80 pagesize=60;
libname sql ’SAS-data-library’;

The tables that are used in this document contain geographic and demographic data.
The data is intended to be used for the PROC SQL code examples only; it is not
necessarily up to date or accurate.

The COUNTRIES table contains data that pertains to countries. The Area column
contains a country’s area in square miles. The UNDate column contains the year a
country entered the United Nations, if applicable.

Introduction to the SQL Procedure � Notes about the Example Tables 5

Output 1.3 COUNTRIES (Partial Output)

COUNTRIES

Name Capital Population Area Continent UNDate
--
Afghanistan Kabul 17070323 251825 Asia 1946
Albania Tirane 3407400 11100 Europe 1955
Algeria Algiers 28171132 919595 Africa 1962
Andorra Andorra la Vell 64634 200 Europe 1993
Angola Luanda 9901050 481300 Africa 1976
Antigua and Barbuda St. John’s 65644 171 Central America 1981
Argentina Buenos Aires 34248705 1073518 South America 1945
Armenia Yerevan 3556864 11500 Asia 1992
Australia Canberra 18255944 2966200 Australia 1945
Austria Vienna 8033746 32400 Europe 1955
Azerbaijan Baku 7760064 33400 Asia 1992
Bahamas Nassau 275703 5400 Central America 1973
Bahrain Manama 591800 300 Asia 1971
Bangladesh Dhaka 1.2639E8 57300 Asia 1974
Barbados Bridgetown 258534 200 Central America 1966

The WORLDCITYCOORDS table contains latitude and longitude data for world
cities. Cities in the Western hemisphere have negative longitude coordinates. Cities in
the Southern hemisphere have negative latitude coordinates. Coordinates are rounded
to the nearest degree.

Output 1.4 WORLDCITYCOORDS (Partial Output)

WORLDCITCOORDS

City Country Latitude Longitude
--
Kabul Afghanistan 35 69
Algiers Algeria 37 3
Buenos Aires Argentina -34 -59
Cordoba Argentina -31 -64
Tucuman Argentina -27 -65
Adelaide Australia -35 138
Alice Springs Australia -24 134
Brisbane Australia -27 153
Darwin Australia -12 131
Melbourne Australia -38 145
Perth Australia -32 116
Sydney Australia -34 151
Vienna Austria 48 16
Nassau Bahamas 26 -77
Chittagong Bangladesh 22 92

The USCITYCOORDS table contains the coordinates for cities in the United States.
Because all cities in this table are in the Western hemisphere, all of the longitude
coordinates are negative. Coordinates are rounded to the nearest degree.

6 Notes about the Example Tables � Chapter 1

Output 1.5 USCITYCOORDS (Partial Output)

USCITYCOORDS

City State Latitude Longitude

Albany NY 43 -74
Albuquerque NM 36 -106
Amarillo TX 35 -102
Anchorage AK 61 -150
Annapolis MD 39 -77
Atlanta GA 34 -84
Augusta ME 44 -70
Austin TX 30 -98
Baker OR 45 -118
Baltimore MD 39 -76
Bangor ME 45 -69
Baton Rouge LA 31 -91
Birmingham AL 33 -87
Bismarck ND 47 -101
Boise ID 43 -116

The UNITEDSTATES table contains data that is associated with the states. The
Statehood column contains the date when the state was admitted into the Union.

Output 1.6 UNITEDSTATES (Partial Output)

UNITEDSTATES

Name Capital Population Area Continent Statehood
--
Alabama Montgomery 4227437 52423 North America 14DEC1819
Alaska Juneau 604929 656400 North America 03JAN1959
Arizona Phoenix 3974962 114000 North America 14FEB1912
Arkansas Little Rock 2447996 53200 North America 15JUN1836
California Sacramento 31518948 163700 North America 09SEP1850
Colorado Denver 3601298 104100 North America 01AUG1876
Connecticut Hartford 3309742 5500 North America 09JAN1788
Delaware Dover 707232 2500 North America 07DEC1787
District of Colum Washington 612907 100 North America 21FEB1871
Florida Tallahassee 13814408 65800 North America 03MAR1845
Georgia Atlanta 6985572 59400 North America 02JAN1788
Hawaii Honolulu 1183198 10900 Oceania 21AUG1959
Idaho Boise 1109980 83600 North America 03JUL1890
Illinois Springfield 11813091 57900 North America 03DEC1818
Indiana Indianapolis 5769553 36400 North America 11DEC1816

The POSTALCODES table contains postal code abbreviations.

Introduction to the SQL Procedure � Notes about the Example Tables 7

Output 1.7 POSTALCODES (Partial Output)

POSTALCODES

Name Code

Alabama AL
Alaska AK
American Samoa AS
Arizona AZ
Arkansas AR
California CA
Colorado CO
Connecticut CT
Delaware DE
District Of Columbia DC
Florida FL
Georgia GA
Guam GU
Hawaii HI
Idaho ID

The WORLDTEMPS table contains average high and low temperatures from various
international cities.

Output 1.8 WORLDTEMPS (Partial Output)

WORLDTEMPS

City Country AvgHigh AvgLow

Algiers Algeria 90 45
Amsterdam Netherlands 70 33
Athens Greece 89 41
Auckland New Zealand 75 44
Bangkok Thailand 95 69
Beijing China 86 17
Belgrade Yugoslavia 80 29
Berlin Germany 75 25
Bogota Colombia 69 43
Bombay India 90 68
Bucharest Romania 83 24
Budapest Hungary 80 25
Buenos Aires Argentina 87 48
Cairo Egypt 95 48
Calcutta India 97 56

The OILPROD table contains oil production statistics from oil-producing countries.

8 Notes about the Example Tables � Chapter 1

Output 1.9 OILPROD (Partial Output)

OILPROD

Barrels
Country PerDay

Algeria 1,400,000
Canada 2,500,000
China 3,000,000
Egypt 900,000
Indonesia 1,500,000
Iran 4,000,000
Iraq 600,000
Kuwait 2,500,000
Libya 1,500,000
Mexico 3,400,000
Nigeria 2,000,000
Norway 3,500,000
Oman 900,000
Saudi Arabia 9,000,000
United States of America 8,000,000

The OILRSRVS table lists approximate oil reserves of oil-producing countries.

Output 1.10 OILRSRVS (Partial Output)

OILRSRVS

Country Barrels

Algeria 9,200,000,000
Canada 7,000,000,000
China 25,000,000,000
Egypt 4,000,000,000
Gabon 1,000,000,000
Indonesia 5,000,000,000
Iran 90,000,000,000
Iraq 110,000,000,000
Kuwait 95,000,000,000
Libya 30,000,000,000
Mexico 50,000,000,000
Nigeria 16,000,000,000
Norway 11,000,000,000
Saudi Arabia 260,000,000,000
United Arab Emirates 100,000,000

The CONTINENTS table contains geographic data that relates to world continents.

Introduction to the SQL Procedure � Notes about the Example Tables 9

Output 1.11 CONTINENTS

CONTINENTS

Name Area HighPoint Height LowPoint Depth
--
Africa 11506000 Kilimanjaro 19340 Lake Assal -512
Antarctica 5500000 Vinson Massif 16860 .
Asia 16988000 Everest 29028 Dead Sea -1302
Australia 2968000 Kosciusko 7310 Lake Eyre -52
Central America . . .
Europe 3745000 El’brus 18510 Caspian Sea -92
North America 9390000 McKinley 20320 Death Valley -282
Oceania . . .
South America 6795000 Aconcagua 22834 Valdes Peninsul -131

The FEATURES table contains statistics that describe various types of geographical
features, such as oceans, lakes, and mountains.

Output 1.12 FEATURES (Partial Output)

FEATURES

Name Type Location Area Height Depth Length
--
Aconcagua Mountain Argentina . 22834 . .
Amazon River South America . . . 4000
Amur River Asia . . . 2700
Andaman Sea 218100 . 3667 .
Angel Falls Waterfall Venezuela . 3212 . .
Annapurna Mountain Nepal . 26504 . .
Aral Sea Lake Asia 25300 . 222 .
Ararat Mountain Turkey . 16804 . .
Arctic Ocean 5105700 . 17880 .
Atlantic Ocean 33420000 . 28374 .
Baffin Island Arctic 183810 . . .
Baltic Sea 146500 . 180 .
Baykal Lake Russia 11780 . 5315 .
Bering Sea 873000 . 4893 .
Black Sea 196100 . 3906 .

10

11

C H A P T E R

2
Retrieving Data from a Single
Table

Overview of the SELECT Statement 12
SELECT and FROM Clauses 12

WHERE Clause 13

ORDER BY Clause 13

GROUP BY Clause 13

HAVING Clause 13
Ordering the SELECT Statement 14

Selecting Columns in a Table 14

Selecting All Columns in a Table 14

Selecting Specific Columns in a Table 15

Eliminating Duplicate Rows from the Query Results 16

Determining the Structure of a Table 17
Creating New Columns 18

Adding Text to Output 18

Calculating Values 19

Assigning a Column Alias 20

Referring to a Calculated Column by Alias 21
Assigning Values Conditionally 21

Using a Simple CASE Expression 22

Using the CASE-OPERAND Form 23

Replacing Missing Values 24

Specifying Column Attributes 24
Sorting Data 25

Sorting by Column 25

Sorting by Multiple Columns 26

Specifying a Sort Order 27

Sorting by Calculated Column 27

Sorting by Column Position 28
Sorting by Unselected Columns 29

Specifying a Different Sorting Sequence 29

Sorting Columns That Contain Missing Values 30

Retrieving Rows That Satisfy a Condition 30

Using a Simple WHERE Clause 30
Retrieving Rows Based on a Comparison 31

Retrieving Rows That Satisfy Multiple Conditions 32

Using Other Conditional Operators 33

Using the IN Operator 34

Using the IS MISSING Operator 34
Using the BETWEEN-AND Operators 35

Using the LIKE Operator 36

Using Truncated String Comparison Operators 37

12 Overview of the SELECT Statement � Chapter 2

Using a WHERE Clause with Missing Values 37
Summarizing Data 39

Using Aggregate Functions 39

Summarizing Data with a WHERE Clause 40

Using the MEAN Function with a WHERE Clause 40

Displaying Sums 40
Combining Data from Multiple Rows into a Single Row 41

Remerging Summary Statistics 41

Using Aggregate Functions with Unique Values 43

Counting Unique Values 43

Counting Nonmissing Values 43

Counting All Rows 44
Summarizing Data with Missing Values 44

Finding Errors Caused by Missing Values 44

Grouping Data 45

Grouping by One Column 46

Grouping without Summarizing 46
Grouping by Multiple Columns 47

Grouping and Sorting Data 48

Grouping with Missing Values 48

Finding Grouping Errors Caused by Missing Values 49

Filtering Grouped Data 50
Using a Simple HAVING Clause 50

Choosing Between HAVING and WHERE 51

Using HAVING with Aggregate Functions 51

Validating a Query 52

Overview of the SELECT Statement

This chapter shows you how to

� retrieve data from a single table by using the SELECT statement

� validate the correctness of a SELECT statement by using the VALIDATE
statement.

With the SELECT statement, you can retrieve data from tables or data that is
described by SAS data views.

Note: The examples in this chapter retrieve data from tables that are SAS data
sets. However, you can use all of the operations that are described here with SAS data
views. �

The SELECT statement is the primary tool of PROC SQL. You use it to identify,
retrieve, and manipulate columns of data from a table. You can also use several
optional clauses within the SELECT statement to place restrictions on a query.

SELECT and FROM Clauses
The following simple SELECT statement is sufficient to produce a useful result:

select Name
from sql.countries;

The SELECT statement must contain a SELECT clause and a FROM clause, both of
which are required in a PROC SQL query. This SELECT statement contains

Retrieving Data from a Single Table � Overview of the SELECT Statement 13

� a SELECT clause that lists the Name column
� a FROM clause that lists the table in which the Name column resides.

WHERE Clause
The WHERE clause enables you to restrict the data that you retrieve by specifying a

condition that each row of the table must satisfy. PROC SQL output includes only those
rows that satisfy the condition. The following SELECT statement contains a WHERE
clause that restricts the query output to only those countries that have a population
that is greater than 5,000,000 people:

select Name
from sql.countries
where Population gt 5000000;

ORDER BY Clause
The ORDER BY clause enables you to sort the output from a table by one or more

columns; that is, you can put character values in either ascending or descending
alphabetical order, and you can put numerical values in either ascending or descending
numerical order. The default order is ascending. For example, you can modify the
previous example to list the data by descending population:

select Name
from sql.countries
where Population gt 5000000
order by Population desc;

GROUP BY Clause
The GROUP BY clause enables you to break query results into subsets of rows.

When you use the GROUP BY clause, you use an aggregate function in the SELECT
clause or a HAVING clause to instruct PROC SQL how to group the data. For details
about aggregate functions, see “Summarizing Data” on page 39. PROC SQL calculates
the aggregate function separately for each group. When you do not use an aggregate
function, PROC SQL treats the GROUP BY clause as if it were an ORDER BY clause,
and any aggregate functions are applied to the entire table.

The following query uses the SUM function to list the total population of each
continent. The GROUP BY clause groups the countries by continent, and the ORDER
BY clause puts the continents in alphabetical order:

select Continent, sum(Population)
from sql.countries
group by Continent
order by Continent;

HAVING Clause
The HAVING clause works with the GROUP BY clause to restrict the groups in a

query’s results based on a given condition. PROC SQL applies the HAVING condition
after grouping the data and applying aggregate functions. For example, the following
query restricts the groups to include only the continents of Asia and Europe:

select Continent, sum(Population)
from sql.countries
group by Continent

14 Selecting Columns in a Table � Chapter 2

having Continent in (’Asia’, ’Europe’)
order by Continent;

Ordering the SELECT Statement
When you construct a SELECT statement, you must specify the clauses in the

following order:
1 SELECT
2 FROM
3 WHERE
4 GROUP BY
5 HAVING
6 ORDER BY

Note: Only the SELECT and FROM clauses are required. �

The PROC SQL SELECT statement and its clauses are discussed in further detail in
the following sections.

Selecting Columns in a Table
When you retrieve data from a table, you can select one or more columns by using

variations of the basic SELECT statement.

Selecting All Columns in a Table
Use an asterisk in the SELECT clause to select all columns in a table. The following

example selects all columns in the SQL.USCITYCOORDS table, which contains latitude
and longitude values for U.S. cities:

proc sql outobs=12;
title ’U.S. Cities with Their States and Coordinates’;
select *

from sql.uscitycoords;

Note: The OUTOBS= option limits the number of rows (observations) in the output.
OUTOBS= is similar to the OBS= data set option. OUTOBS= is used throughout this
document to limit the number of rows that are displayed in examples. �

Note: In the tables used in these examples, latitude values that are south of the
Equator are negative. Longitude values that are west of the Prime Meridian are also
negative. �

Retrieving Data from a Single Table � Selecting Specific Columns in a Table 15

Output 2.1 Selecting All Columns in a Table

U.S. Cities with Their States and Coordinates

City State Latitude Longitude
--
Albany NY 43 -74
Albuquerque NM 36 -106
Amarillo TX 35 -102
Anchorage AK 61 -150
Annapolis MD 39 -77
Atlanta GA 34 -84
Augusta ME 44 -70
Austin TX 30 -98
Baker OR 45 -118
Baltimore MD 39 -76
Bangor ME 45 -69
Baton Rouge LA 31 -91

Note: When you select all columns, PROC SQL displays the columns in the order in
which they are stored in the table. �

Selecting Specific Columns in a Table
To select a specific column in a table, list the name of the column in the SELECT

clause. The following example selects only the City column in the
SQL.USCITYCOORDS table:

proc sql outobs=12;
title ’Names of U.S. Cities’;
select City

from sql.uscitycoords;

Output 2.2 Selecting One Column

Names of U.S. Cities

City

Albany
Albuquerque
Amarillo
Anchorage
Annapolis
Atlanta
Augusta
Austin
Baker
Baltimore
Bangor
Baton Rouge

16 Eliminating Duplicate Rows from the Query Results � Chapter 2

If you want to select more than one column, then you must separate the names of the
columns with commas, as in this example, which selects the City and State columns in
the SQL.USCITYCOORDS table:

proc sql outobs=12;
title ’U.S. Cities and Their States’;
select City, State

from sql.uscitycoords;

Output 2.3 Selecting Multiple Columns

U.S. Cities and Their States

City State

Albany NY
Albuquerque NM
Amarillo TX
Anchorage AK
Annapolis MD
Atlanta GA
Augusta ME
Austin TX
Baker OR
Baltimore MD
Bangor ME
Baton Rouge LA

Note: When you select specific columns, PROC SQL displays the columns in the
order in which you specify them in the SELECT clause. �

Eliminating Duplicate Rows from the Query Results
In some cases, you might want to find only the unique values in a column. For

example, if you want to find the unique continents in which U.S. states are located,
then you might begin by constructing the following query:

proc sql outobs=12;
title ’Continents of the United States’;
select Continent

from sql.unitedstates;

Retrieving Data from a Single Table � Determining the Structure of a Table 17

Output 2.4 Selecting a Column with Duplicate Values

Continents of the United States

Continent

North America
North America
North America
North America
North America
North America
North America
North America
North America
North America
North America
Oceania

You can eliminate the duplicate rows from the results by using the DISTINCT
keyword in the SELECT clause. Compare the previous example with the following
query, which uses the DISTINCT keyword to produce a single row of output for each
continent that is in the SQL.UNITEDSTATES table:

proc sql;
title ’Continents of the United States’;
select distinct Continent

from sql.unitedstates;

Output 2.5 Eliminating Duplicate Values

Continents of the United States

Continent

North America
Oceania

Note: When you specify all of a table’s columns in a SELECT clause with the
DISTINCT keyword, PROC SQL eliminates duplicate rows, or rows in which the values
in all of the columns match, from the results. �

Determining the Structure of a Table
To obtain a list of all of the columns in a table and their attributes, you can use the

DESCRIBE TABLE statement. The following example generates a description of the
SQL.UNITEDSTATES table. PROC SQL writes the description to the log.

proc sql;
describe table sql.unitedstates;

18 Creating New Columns � Chapter 2

Output 2.6 Determining the Structure of a Table (Partial Log)

NOTE: SQL table SQL.UNITEDSTATES was created like:

create table SQL.UNITEDSTATES(bufsize=12288)
(
Name char(35) format=$35. informat=$35. label=’Name’,
Capital char(35) format=$35. informat=$35. label=’Capital’,
Population num format=BEST8. informat=BEST8. label=’Population’,
Area num format=BEST8. informat=BEST8.,
Continent char(35) format=$35. informat=$35. label=’Continent’,
Statehood num
);

Creating New Columns

In addition to selecting columns that are stored in a table, you can create new
columns that exist for the duration of the query. These columns can contain text or
calculations. PROC SQL writes the columns that you create as if they were columns
from the table.

Adding Text to Output

You can add text to the output by including a string expression, or literal expression,
in a query. The following query includes two strings as additional columns in the output:

proc sql outobs=12;
title ’U.S. Postal Codes’;
select ’Postal code for’, Name, ’is’, Code

from sql.postalcodes;

Output 2.7 Adding Text to Output

U.S. Postal Codes

Name Code

Postal code for Alabama is AL
Postal code for Alaska is AK
Postal code for American Samoa is AS
Postal code for Arizona is AZ
Postal code for Arkansas is AR
Postal code for California is CA
Postal code for Colorado is CO
Postal code for Connecticut is CT
Postal code for Delaware is DE
Postal code for District Of Columbia is DC
Postal code for Florida is FL
Postal code for Georgia is GA

Retrieving Data from a Single Table � Calculating Values 19

To prevent the column headers Name and Code from printing, you can assign a label
that starts with a special character to each of the columns. PROC SQL does not output
the column name when a label is assigned, and it does not output labels that begin with
special characters. For example, you could use the following query to suppress the
column headers that PROC SQL displayed in the previous example:

proc sql outobs=12;
title ’U.S. Postal Codes’;
select ’Postal code for’, Name label=’#’, ’is’, Code label=’#’

from sql.postalcodes;

Output 2.8 Suppressing Column Headers in Output

U.S. Postal Codes

Postal code for Alabama is AL
Postal code for Alaska is AK
Postal code for American Samoa is AS
Postal code for Arizona is AZ
Postal code for Arkansas is AR
Postal code for California is CA
Postal code for Colorado is CO
Postal code for Connecticut is CT
Postal code for Delaware is DE
Postal code for District Of Columbia is DC
Postal code for Florida is FL
Postal code for Georgia is GA

Calculating Values
You can perform calculations with values that you retrieve from numeric columns.

The following example converts temperatures in the SQL.WORLDTEMPS table from
Fahrenheit to Celsius:

proc sql outobs=12;
title ’Low Temperatures in Celsius’;
select City, (AvgLow - 32) * 5/9 format=4.1

from sql.worldtemps;

Note: This example uses the FORMAT attribute to modify the format of the
calculated output. See “Specifying Column Attributes” on page 24 for more
information. �

20 Assigning a Column Alias � Chapter 2

Output 2.9 Calculating Values

Low Temperatures in Celsius

City

Algiers 7.2
Amsterdam 0.6
Athens 5.0
Auckland 6.7
Bangkok 20.6
Beijing -8.3
Belgrade -1.7
Berlin -3.9
Bogota 6.1
Bombay 20.0
Bucharest -4.4
Budapest -3.9

Assigning a Column Alias
By specifying a column alias, you can assign a new name to any column within a

PROC SQL query. The new name must follow the rules for SAS names. The name
persists only for that query.

When you use an alias to name a column, you can use the alias to reference the
column later in the query. PROC SQL uses the alias as the column heading in output.
The following example assigns an alias of LowCelsius to the calculated column from the
previous example:

proc sql outobs=12;
title ’Low Temperatures in Celsius’;
select City, (AvgLow - 32) * 5/9 as LowCelsius format=4.1

from sql.worldtemps;

Output 2.10 Assigning a Column Alias to a Calculated Column

Low Temperatures in Celsius

City LowCelsius

Algiers 7.2
Amsterdam 0.6
Athens 5.0
Auckland 6.7
Bangkok 20.6
Beijing -8.3
Belgrade -1.7
Berlin -3.9
Bogota 6.1
Bombay 20.0
Bucharest -4.4
Budapest -3.9

Retrieving Data from a Single Table � Assigning Values Conditionally 21

Referring to a Calculated Column by Alias
When you use a column alias to refer to a calculated value, you must use the

CALCULATED keyword with the alias to inform PROC SQL that the value is
calculated within the query. The following example uses two calculated values, LowC
and HighC, to calculate a third value, Range:

proc sql outobs=12;
title ’Range of High and Low Temperatures in Celsius’;

select City, (AvgHigh - 32) * 5/9 as HighC format=5.1,
(AvgLow - 32) * 5/9 as LowC format=5.1,
(calculated HighC - calculated LowC)
as Range format=4.1

from sql.worldtemps;

Note: You can specify a calculated column only in a SELECT clause or a WHERE
clause. �

Output 2.11 Referring to a Calculated Column by Alias

Range of High and Low Temperatures in Celsius

City HighC LowC Range

Algiers 32.2 7.2 25.0
Amsterdam 21.1 0.6 20.6
Athens 31.7 5.0 26.7
Auckland 23.9 6.7 17.2
Bangkok 35.0 20.6 14.4
Beijing 30.0 -8.3 38.3
Belgrade 26.7 -1.7 28.3
Berlin 23.9 -3.9 27.8
Bogota 20.6 6.1 14.4
Bombay 32.2 20.0 12.2
Bucharest 28.3 -4.4 32.8
Budapest 26.7 -3.9 30.6

Note: Because this query sets a numeric format of 4.1 on the HighC, LowC, and
Range columns, the values in those columns are rounded to the nearest tenth. As a
result of the rounding, some of the values in the HighC and LowC columns do not
reflect the range value output for the Range column. When you round numeric data
values, this type of error sometimes occurs. If you want to avoid this problem, then you
can specify additional decimal places in the format. �

Assigning Values Conditionally
CASE expressions enable you to interpret and change some or all of the data values

in a column to make the data more useful or meaningful.

22 Assigning Values Conditionally � Chapter 2

Using a Simple CASE Expression
You can use conditional logic within a query by using a CASE expression to

conditionally assign a value. You can use a CASE expression anywhere that you can
use a column name.

The following table, which is used in the next example, describes the world climate
zones (rounded to the nearest degree):

Table 2.1 World Climate Zones

This climate
zone...

is between... at this
latitude...

and... at this
latitude...

North Frigid North Pole 90 Arctic Circle 67

North Temperate Arctic Circle 67 Tropic of Cancer 23

Torrid Tropic of Cancer 23 Tropic of Capricorn -23

South Temperate Tropic of Capricorn -23 Antarctic Circle -67

South Frigid Antarctic Circle -67 South Pole -90

In this example, a CASE expression determines the climate zone for each city based
on the value in the Latitude column in the SQL.WORLDCITYCOORDS table. The
query also assigns an alias of Location to the value. You must close the CASE logic with
the END keyword.

proc sql outobs=12;
title ’Climate Zones of World Cities’;
select City, Country, Latitude,

case
when Latitude gt 67 then ’North Frigid’
when 67 ge Latitude ge 23 then ’North Temperate’
when 23 gt Latitude gt -23 then ’Torrid’
when -23 ge Latitude ge -67 then ’South Temperate’
else ’South Frigid’

end as ClimateZone
from sql.worldcitycoords
order by City;

Retrieving Data from a Single Table � Assigning Values Conditionally 23

Output 2.12 Using a Simple CASE Expression

Climate Zones of World Cities

City Country Latitude ClimateZone

Abadan Iran 30 North Temperate
Acapulco Mexico 17 Torrid
Accra Ghana 5 Torrid
Adana Turkey 37 North Temperate
Addis Ababa Ethiopia 9 Torrid
Adelaide Australia -35 South Temperate
Aden Yemen 13 Torrid
Ahmenabad India 22 Torrid
Algiers Algeria 37 North Temperate
Alice Springs Australia -24 South Temperate
Amman Jordan 32 North Temperate
Amsterdam Netherlands 52 North Temperate

Using the CASE-OPERAND Form
You can also construct a CASE expression by using the CASE-OPERAND form, as in

the following example. This example selects states and assigns them to a region based
on the value of the Continent column:

proc sql outobs=12;
title ’Assigning Regions to Continents’;
select Name, Continent,

case Continent
when ’North America’ then ’Continental U.S.’
when ’Oceania’ then ’Pacific Islands’
else ’None’

end as Region
from sql.unitedstates;

Note: When you use the CASE-OPERAND form of the CASE expression, the
conditions must all be equality tests; that is, they cannot use comparison operators or
other types of operators, as are used in “Using a Simple CASE Expression” on page 22. �

Output 2.13 Using a CASE Expression in the CASE-OPERAND Form

Assigning Regions to Continents

Name Continent Region

--

Alabama North America Continental U.S.

Alaska North America Continental U.S.

Arizona North America Continental U.S.

Arkansas North America Continental U.S.

California North America Continental U.S.

Colorado North America Continental U.S.

Connecticut North America Continental U.S.

Delaware North America Continental U.S.

District of Columbia North America Continental U.S.

Florida North America Continental U.S.

Georgia North America Continental U.S.

Hawaii Oceania Pacific Islands

24 Replacing Missing Values � Chapter 2

Replacing Missing Values
The COALESCE function enables you to replace missing values in a column with a

new value that you specify. For every row that the query processes, the COALESCE
function checks each of its arguments until it finds a nonmissing value, then returns
that value. If all of the arguments are missing values, then the COALESCE function
returns a missing value. For example, the following query replaces missing values in
the LowPoint column in the SQL.CONTINENTS table with the words Not Available:

proc sql;
title ’Continental Low Points’;
select Name, coalesce(LowPoint, ’Not Available’) as LowPoint

from sql.continents;

Output 2.14 Using the COALESCE Function to Replace Missing Values

Continental Low Points

Name LowPoint
--
Africa Lake Assal
Antarctica Not Available
Asia Dead Sea
Australia Lake Eyre
Central America and Caribbean Not Available
Europe Caspian Sea
North America Death Valley
Oceania Not Available
South America Valdes Peninsula

The following CASE expression shows another way to perform the same replacement
of missing values; however, the COALESCE function requires fewer lines of code to
obtain the same results:

proc sql;
title ’Continental Low Points’;
select Name, case

when LowPoint is missing then ’Not Available’
else Lowpoint

end as LowPoint
from sql.continents;

Specifying Column Attributes
You can specify the following column attributes, which determine how SAS data is

displayed:
� FORMAT=
� INFORMAT=
� LABEL=
� LENGTH=

If you do not specify these attributes, then PROC SQL uses attributes that are already
saved in the table or, if no attributes are saved, then it uses the default attributes.

Retrieving Data from a Single Table � Sorting by Column 25

The following example assigns a label of State to the Name column and a format of
COMMA10. to the Area column:

proc sql outobs=12;
title ’Areas of U.S. States in Square Miles’;
select Name label=’State’, Area format=comma10.

from sql.unitedstates;

Note: Using the LABEL= keyword is optional. For example, the following two select
clauses are the same:

select Name label=’State’, Area format=comma10.

select Name ’State’, Area format=comma10.

�

Output 2.15 Specifying Column Attributes

Areas of U.S. States in Square Miles

State Area

Alabama 52,423
Alaska 656,400
Arizona 114,000
Arkansas 53,200
California 163,700
Colorado 104,100
Connecticut 5,500
Delaware 2,500
District of Columbia 100
Florida 65,800
Georgia 59,400
Hawaii 10,900

Sorting Data

You can sort query results with an ORDER BY clause by specifying any of the
columns in the table, including unselected or calculated columns.

Sorting by Column

The following example selects countries and their populations from the
SQL.COUNTRIES table and orders the results by population:

proc sql outobs=12;
title ’Country Populations’;
select Name, Population format=comma10.

from sql.countries
order by Population;

26 Sorting by Multiple Columns � Chapter 2

Note: When you use an ORDER BY clause, you change the order of the output but
not the order of the rows that are stored in the table. �

Note: The PROC SQL default sort order is ascending. �

Output 2.16 Sorting by Column

Country Populations

Name Population

Vatican City 1,010
Tuvalu 10,099
Nauru 10,099
Turks and Caicos Islands 12,119
Leeward Islands 12,119
Cayman Islands 23,228
San Marino 24,238
Liechtenstein 30,297
Gibraltar 30,297
Monaco 31,307
Saint Kitts and Nevis 41,406
Marshall Islands 54,535

Sorting by Multiple Columns
You can sort by more than one column by specifying the column names, separated by

commas, in the ORDER BY clause. The following example sorts the SQL.COUNTRIES
table by two columns, Continent and Name:

proc sql outobs=12;
title ’Countries, Sorted by Continent and Name’;
select Name, Continent

from sql.countries
order by Continent, Name;

Output 2.17 Sorting by Multiple Columns

Countries, Sorted by Continent and Name

Name Continent
--
Bermuda
Iceland
Kalaallit Nunaat
Algeria Africa
Angola Africa
Benin Africa
Botswana Africa
Burkina Faso Africa
Burundi Africa
Cameroon Africa
Cape Verde Africa
Central African Republic Africa

Retrieving Data from a Single Table � Sorting by Calculated Column 27

Note: The results list countries without continents first because PROC SQL sorts
missing values first in an ascending sort. �

Specifying a Sort Order
To order the results, specify ASC for ascending or DESC for descending. You can

specify a sort order for each column in the ORDER BY clause.
When you specify multiple columns in the ORDER BY clause, the first column

determines the primary row order of the results. Subsequent columns determine the
order of rows that have the same value for the primary sort. The following example
sorts the SQL.FEATURES table by feature type and name:

proc sql outobs=12;
title ’World Topographical Features’;
select Name, Type

from sql.features
order by Type desc, Name;

Note: The ASC keyword is optional because the PROC SQL default sort order is
ascending. �

Output 2.18 Specifying a Sort Order

World Topographical Features

Name Type

Angel Falls Waterfall
Niagara Falls Waterfall
Tugela Falls Waterfall
Yosemite Waterfall
Andaman Sea
Baltic Sea
Bering Sea
Black Sea
Caribbean Sea
Gulf of Mexico Sea
Hudson Bay Sea
Mediterranean Sea

Sorting by Calculated Column
You can sort by a calculated column by specifying its alias in the ORDER BY clause.

The following example calculates population densities and then performs a sort on the
calculated Density column:

proc sql outobs=12;
title ’World Population Densities per Square Mile’;
select Name, Population format=comma12., Area format=comma8.,

Population/Area as Density format=comma10.
from sql.countries
order by Density desc;

28 Sorting by Column Position � Chapter 2

Output 2.19 Sorting by Calculated Column

World Population Densities per Square Mile

Name Population Area Density

Hong Kong 5,857,414 400 14,644
Singapore 2,887,301 200 14,437
Luxembourg 405,980 100 4,060
Malta 370,633 100 3,706
Maldives 254,495 100 2,545
Bangladesh 126,387,850 57,300 2,206
Bahrain 591,800 300 1,973
Taiwan 21,509,839 14,000 1,536
Channel Islands 146,436 100 1,464
Barbados 258,534 200 1,293
Korea, South 45,529,277 38,300 1,189
Mauritius 1,128,057 1,000 1,128

Sorting by Column Position
You can sort by any column within the SELECT clause by specifying its numerical

position. By specifying a position instead of a name, you can sort by a calculated
column that has no alias. The following example does not assign an alias to the
calculated density column. Instead, the column position of 4 in the ORDER BY clause
refers to the position of the calculated column in the SELECT clause:

proc sql outobs=12;
title ’World Population Densities per Square Mile’;
select Name, Population format=comma12., Area format=comma8.,

Population/Area format=comma10. label=’Density’
from sql.countries
order by 4 desc;

Note: PROC SQL uses a label, if one has been assigned, as a heading for a column
that does not have an alias. �

Output 2.20 Sorting by Column Position

World Population Densities per Square Mile

Name Population Area Density

Hong Kong 5,857,414 400 14,644
Singapore 2,887,301 200 14,437
Luxembourg 405,980 100 4,060
Malta 370,633 100 3,706
Maldives 254,495 100 2,545
Bangladesh 126,387,850 57,300 2,206
Bahrain 591,800 300 1,973
Taiwan 21,509,839 14,000 1,536
Channel Islands 146,436 100 1,464
Barbados 258,534 200 1,293
Korea, South 45,529,277 38,300 1,189
Mauritius 1,128,057 1,000 1,128

Retrieving Data from a Single Table � Specifying a Different Sorting Sequence 29

Sorting by Unselected Columns
You can sort query results by columns that are not included in the query. For

example, the following query returns all the rows in the SQL.COUNTRIES table and
sorts them by population, even though the Population column is not included in the
query:

proc sql outobs=12;
title ’Countries, Sorted by Population’;
select Name, Continent

from sql.countries
order by Population;

Output 2.21 Sorting by Unselected Columns

Countries, Sorted by Population

Name Continent
--
Vatican City Europe
Tuvalu Oceania
Nauru Oceania
Turks and Caicos Islands Central America and Caribbean
Leeward Islands Central America and Caribbean
Cayman Islands Central America and Caribbean
San Marino Europe
Liechtenstein Europe
Gibraltar Europe
Monaco Europe
Saint Kitts and Nevis Central America and Caribbean
Marshall Islands Oceania

Specifying a Different Sorting Sequence
SORTSEQ= is a PROC SQL statement option that specifies the sorting sequence for

PROC SQL to use when a query contains an ORDER BY clause. Use this option only if
you want to use a sorting sequence other than your operating environment’s default
sorting sequence. Possible values include ASCII, EBCDIC, and some languages other
than English. For example, in an operating environment that supports the EBCDIC
sorting sequence, you could use the following option in the PROC SQL statement to set
the sorting sequence to EBCDIC:

proc sql sortseq=ebcdic;

Note: SORTSEQ= affects only the ORDER BY clause. It does not override your
operating environment’s default comparison operations for the WHERE clause. �

Operating Environment Information: See the SAS documentation for your operating
environment for more information about the default and other sorting sequences for
your operating environment. �

30 Sorting Columns That Contain Missing Values � Chapter 2

Sorting Columns That Contain Missing Values
PROC SQL sorts nulls, or missing values, before character or numeric data; therefore,

when you specify ascending order, missing values appear first in the query results.
The following example sorts the rows in the CONTINENTS table by the LowPoint

column:

proc sql;
title ’Continents, Sorted by Low Point’;
select Name, LowPoint

from sql.continents
order by LowPoint;

Because three continents have a missing value in the LowPoint column, those
continents appear first in the output. Note that because the query does not specify a
secondary sort, rows that have the same value in the LowPoint column, such as the
first three rows of output, are not displayed in any particular order. In general, if you
do not explicitly specify a sort order, then PROC SQL output is not guaranteed to be in
any particular order.

Output 2.22 Sorting Columns That Contain Missing Values

Continents, Sorted by Low Point

Name LowPoint
--
Central America and Caribbean
Antarctica
Oceania
Europe Caspian Sea
Asia Dead Sea
North America Death Valley
Africa Lake Assal
Australia Lake Eyre
South America Valdes Peninsula

Retrieving Rows That Satisfy a Condition

The WHERE clause enables you to retrieve only rows from a table that satisfy a
condition. WHERE clauses can contain any of the columns in a table, including
unselected columns.

Using a Simple WHERE Clause
The following example uses a WHERE clause to find all countries that are in the

continent of Europe and their populations:

proc sql outobs=12;
title ’Countries in Europe’;
select Name, Population format=comma10.

from sql.countries
where Continent = ’Europe’;

Retrieving Data from a Single Table � Retrieving Rows Based on a Comparison 31

Output 2.23 Using a Simple WHERE Clause

Countries in Europe

Name Population

Albania 3,407,400
Andorra 64,634
Austria 8,033,746
Belarus 10,508,000
Belgium 10,162,614
Bosnia and Herzegovina 4,697,040
Bulgaria 8,887,111
Channel Islands 146,436
Croatia 4,744,505
Czech Republic 10,511,029
Denmark 5,239,356
England 49,293,170

Retrieving Rows Based on a Comparison
You can use comparison operators in a WHERE clause to select different subsets of

data. The following table lists the comparison operators that you can use:

Table 2.2 Comparison Operators

Symbol Mnemonic
Equivalent

Definition Example

= EQ equal to where Name =
’Asia’;

^= or ~= or = or <> NE not equal to where Name ne
’Africa’;

> GT greater than where Area >
10000;

< LT less than where Depth <
5000;

>= GE greater than or equal
to

where Statehood
>= ’01jan1860’d;

<= LE less than or equal to where Population
<= 5000000;

The following example subsets the SQL.UNITEDSTATES table by including only
states with populations greater than 5,000,000 people:

proc sql;
title ’States with Populations over 5,000,000’;
select Name, Population format=comma10.

from sql.unitedstates
where Population gt 5000000
order by Population desc;

32 Retrieving Rows That Satisfy Multiple Conditions � Chapter 2

Output 2.24 Retrieving Rows Based on a Comparison

States with Populations over 5,000,000

Name Population

California 31,518,948
New York 18,377,334
Texas 18,209,994
Florida 13,814,408
Pennsylvania 12,167,566
Illinois 11,813,091
Ohio 11,200,790
Michigan 9,571,318
New Jersey 7,957,196
North Carolina 7,013,950
Georgia 6,985,572
Virginia 6,554,851
Massachusetts 6,071,816
Indiana 5,769,553
Washington 5,307,322
Missouri 5,285,610
Tennessee 5,149,273
Wisconsin 5,087,770
Maryland 5,014,048

Retrieving Rows That Satisfy Multiple Conditions
You can use logical, or Boolean, operators to construct a WHERE clause that contains

two or more expressions. The following table lists the logical operators that you can use:

Table 2.3 Logical (Boolean) Operators

Symbol Mnemonic Equivalent Definition Example

& AND specifies that both the
previous and following
conditions must be true

Continent = ’Asia’
and Population >
5000000

! or | or ¦ OR specifies that either the
previous or the following
condition must be true

Population <
1000000 or
Population >
5000000

^ or ~ or NOT specifies that the
following condition must
be false

Continent <>
’Africa’

The following example uses two expressions to include only countries that are in
Africa and that have a population greater than 20,000,000 people:

proc sql;
title ’Countries in Africa with Populations over 20,000,000’;
select Name, Population format=comma10.

from sql.countries
where Continent = ’Africa’ and Population gt 20000000
order by Population desc;

Retrieving Data from a Single Table � Using Other Conditional Operators 33

Output 2.25 Retrieving Rows That Satisfy Multiple Conditions

Countries in Africa with Populations over 20,000,000

Name Population

Nigeria 99,062,003
Egypt 59,912,259
Ethiopia 59,291,170
South Africa 44,365,873
Congo, Democratic Republic of 43,106,529
Sudan 29,711,229
Morocco 28,841,705
Kenya 28,520,558
Tanzania 28,263,033
Algeria 28,171,132
Uganda 20,055,584

Note: You can use parentheses to improve the readability of WHERE clauses that
contain multiple, or compound, expressions, such as the following:

where (Continent = ’Africa’ and Population gt 2000000) or
(Continent = ’Asia’ and Population gt 1000000)

�

Using Other Conditional Operators
You can use many different conditional operators in a WHERE clause. The following

table lists other operators that you can use:

Table 2.4 Conditional Operators

Operator Definition Example

ANY specifies that at least one
of a set of values obtained
from a subquery must
satisfy a given condition

where Population > any (select
Population from sql.countries)

ALL specifies that all of the
values obtained from a
subquery must satisfy a
given condition

where Population > all (select
Population from sql.countries)

BETWEEN-AND tests for values within an
inclusive range

where Population between 1000000
and 5000000

CONTAINS tests for values that
contain a specified string

where Continent contains
’America’;

EXISTS tests for the existence of a
set of values obtained
from a subquery

where exists (select * from
sql.oilprod);

34 Using Other Conditional Operators � Chapter 2

Operator Definition Example

IN tests for values that match
one of a list of values

where Name in (’Africa’,
’Asia’);

IS NULL or IS MISSING tests for missing values where Population is missing;

LIKE tests for values that
match a specified pattern1

where Continent like ’A%’;

=* tests for values that sound
like a specified value

where Name =* ’Tiland’;

1 You can use a percent symbol (%) to match any number of characters. You can use an underscore (_) to
match one arbitrary character.

Note: All of these operators can be prefixed with the NOT operator to form a
negative condition. �

Using the IN Operator
The IN operator enables you to include values within a list that you supply. The

following example uses the IN operator to include only the mountains and waterfalls in
the SQL.FEATURES table:

proc sql outobs=12;
title ’World Mountains and Waterfalls’;
select Name, Type, Height format=comma10.

from sql.features
where Type in (’Mountain’, ’Waterfall’)
order by Height;

Output 2.26 Using the IN Operator

World Mountains and Waterfalls

Name Type Height

Niagara Falls Waterfall 193
Yosemite Waterfall 2,425
Tugela Falls Waterfall 3,110
Angel Falls Waterfall 3,212
Kosciusko Mountain 7,310
Pico Duarte Mountain 10,417
Cook Mountain 12,349
Matterhorn Mountain 14,690
Wilhelm Mountain 14,793
Mont Blanc Mountain 15,771
Ararat Mountain 16,804
Vinson Massif Mountain 16,864

Using the IS MISSING Operator
The IS MISSING operator enables you to identify rows that contain columns with

missing values. The following example selects countries that are not located on a
continent; that is, these countries have a missing value in the Continent column:

Retrieving Data from a Single Table � Using Other Conditional Operators 35

proc sql;
title ’Countries with Missing Continents’;
select Name, Continent

from sql.countries
where Continent is missing;

Note: The IS NULL operator is the same as, and interchangeable with, the IS
MISSING operator. �

Output 2.27 Using the IS MISSING Operator

Countries with Missing Continents

Name Continent
--
Bermuda
Iceland
Kalaallit Nunaat

Using the BETWEEN-AND Operators
To select rows based on a range of values, you can use the BETWEEN-AND operators.

This example selects countries that have latitudes within five degrees of the Equator:

proc sql outobs=12;
title ’Equatorial Cities of the World’;
select City, Country, Latitude

from sql.worldcitycoords
where Latitude between -5 and 5;

Note: In the tables used in these examples, latitude values that are south of the
Equator are negative. Longitude values that are west of the Prime Meridian are also
negative. �

Note: Because the BETWEEN-AND operators are inclusive, the values that you
specify in the BETWEEN-AND expression are included in the results. �

36 Using Other Conditional Operators � Chapter 2

Output 2.28 Using the BETWEEN-AND Operators

Equatorial Cities of the World

City Country Latitude
--
Belem Brazil -1
Fortaleza Brazil -4
Bogota Colombia 4
Cali Colombia 3
Brazzaville Congo -4
Quito Ecuador 0
Cayenne French Guiana 5
Accra Ghana 5
Medan Indonesia 3
Palembang Indonesia -3
Nairobi Kenya -1
Kuala Lumpur Malaysia 4

Using the LIKE Operator

The LIKE operator enables you to select rows based on pattern matching. For
example, the following query returns all countries in the SQL.COUNTRIES table that
begin with the letter Z and are any number of characters long, or end with the letter a
and are five characters long:

proc sql;
title1 ’Country Names that Begin with the Letter "Z"’;
title2 ’or Are 5 Characters Long and End with the Letter "a"’;
select Name

from sql.countries
where Name like ’Z%’ or Name like ’____a’;

Output 2.29 Using the LIKE Operator

Country Names that Begin with the Letter "Z"
or Are 5 Characters Long and End with the Letter "a"

Name

China
Ghana
India
Kenya
Libya
Malta
Syria
Tonga
Zambia
Zimbabwe

The percent sign (%) and underscore (_) are wild card characters. For more
information about pattern matching with the LIKE comparison operator, see the “SQL
Procedure” chapter in the Base SAS Procedures Guide.

Retrieving Data from a Single Table � Using a WHERE Clause with Missing Values 37

Using Truncated String Comparison Operators
Truncated string comparison operators are used to compare two strings. They differ

from conventional comparison operators in that, before executing the comparison,
PROC SQL truncates the longer string to be the same length as the shorter string. The
truncation is performed internally; neither operand is permanently changed. The
following table lists the truncated comparison operators:

Table 2.5 Truncated String Comparison Operators

Symbol Definition Example

EQT equal to truncated strings where Name eqt ’Aust’;

GTT greater than truncated strings where Name gtt ’Bah’;

LTT less than truncated strings where Name ltt ’An’;

GET greater than or equal to truncated strings where Country get ’United A’;

LET less than or equal to truncated strings where Lastname let ’Smith’;

NET not equal to truncated strings where Style net ’TWO’;

The following example returns a list of U.S. states that have ’New ’at the beginning
of their names:

proc sql;
title ’"New" U.S. States’;
select Name

from sql.unitedstates
where Name eqt ’New ’;

Output 2.30 Using a Truncated String Comparison Operator

"New" U.S. States

Name

New Hampshire
New Jersey
New Mexico
New York

Using a WHERE Clause with Missing Values
If a column that you specify in a WHERE clause contains missing values, then a

query might provide unexpected results. For example, the following query returns all
features from the SQL.FEATURES table that have a depth of less than 500 feet:

/* incorrect output */

proc sql outobs=12;
title ’World Features with a Depth of Less than 500 Feet’;

38 Using a WHERE Clause with Missing Values � Chapter 2

select Name, Depth
from sql.features
where Depth lt 500
order by Depth;

Output 2.31 Using a WHERE Clause with Missing Values (Incorrect Output)

World Features with a Depth of Less than 500 Feet

Name Depth

Kalahari .
Nile .
Citlaltepec .
Lena .
Mont Blanc .
Borneo .
Rub al Khali .
Amur .
Yosemite .
Cook .
Mackenzie-Peace .
Mekong .

However, because PROC SQL treats missing values as smaller than nonmissing values,
features that have no depth listed are also included in the results. To avoid this
problem, you could adjust the WHERE expression to check for missing values and
exclude them from the query results, as follows:

/* corrected output */

proc sql outobs=12;
title ’World Features with a Depth of Less than 500 Feet’;
select Name, Depth

from sql.features
where Depth lt 500 and Depth is not missing
order by Depth;

Output 2.32 Using a WHERE Clause with Missing Values (Corrected Output)

World Features with a Depth of Less than 500 Feet

Name Depth

Baltic 180
Aral Sea 222
Victoria 264
Hudson Bay 305
North 308

Retrieving Data from a Single Table � Using Aggregate Functions 39

Summarizing Data
You can use an aggregate function (or summary function) to produce a statistical

summary of data in a table. The aggregate function instructs PROC SQL in how to
combine data in one or more columns. If you specify one column as the argument to an
aggregate function, then the values in that column are calculated. If you specify
multiple arguments, then the arguments or columns that are listed are calculated.

When you use an aggregate function, PROC SQL applies the function to the entire
table, unless you use a GROUP BY clause. You can use aggregate functions in the
SELECT or HAVING clauses.

Note: See “Grouping Data” on page 45 for information about producing summaries
of individual groups of data within a table. �

Using Aggregate Functions
The following table lists the aggregate functions that you can use:

Table 2.6 Aggregate Functions

Function Definition

AVG, MEAN mean or average of values

COUNT, FREQ, N number of nonmissing values

CSS corrected sum of squares

CV coefficient of variation (percent)

MAX largest value

MIN smallest value

NMISS number of missing values

PRT
probability of a greater absolute value of
Student’s t

RANGE range of values

STD standard deviation

STDERR standard error of the mean

SUM sum of values

SUMWGT sum of the WEIGHT variable values1

T
Student’s t value for testing the hypothesis that
the population mean is zero

USS uncorrected sum of squares

VAR variance

1 In the SQL procedure, each row has a weight of 1.

Note: You can use most other SAS functions in PROC SQL, but they are not treated
as aggregate functions. �

40 Summarizing Data with a WHERE Clause � Chapter 2

Summarizing Data with a WHERE Clause
You can use aggregate, or summary functions, by using a WHERE clause. For a

complete list of the aggregate functions that you can use, see Table 2.6 on page 39.

Using the MEAN Function with a WHERE Clause
This example uses the MEAN function to find the annual mean temperature for each

country in the SQL.WORLDTEMPS table. The WHERE clause returns countries with a
mean temperature that is greater than 75 degrees.

proc sql outobs=12;
title ’Mean Temperatures for World Cities’;
select City, Country, mean(AvgHigh, AvgLow)

as MeanTemp
from sql.worldtemps
where calculated MeanTemp gt 75
order by MeanTemp desc;

Note: You must use the CALCULATED keyword to reference the calculated
column. �

Output 2.33 Using the MEAN Function with a WHERE Clause

Mean Temperatures for World Cities

City Country MeanTemp

Lagos Nigeria 82.5
Manila Philippines 82
Bangkok Thailand 82
Singapore Singapore 81
Bombay India 79
Kingston Jamaica 78
San Juan Puerto Rico 78
Calcutta India 76.5
Havana Cuba 76.5
Nassau Bahamas 76.5

Displaying Sums
The following example uses the SUM function to return the total oil reserves for all

countries in the SQL.OILRSRVS table:

proc sql;
title ’World Oil Reserves’;
select sum(Barrels) format=comma18. as TotalBarrels

from sql.oilrsrvs;

Note: The SUM function produces a single row of output for the requested sum
because no nonaggregate value appears in the SELECT clause. �

Retrieving Data from a Single Table � Remerging Summary Statistics 41

Output 2.34 Displaying Sums

World Oil Reserves

TotalBarrels

878,300,000,000

Combining Data from Multiple Rows into a Single Row
In the previous example, PROC SQL combined information from multiple rows of

data into a single row of output. Specifically, the world oil reserves for each country were
combined to form a total for all countries. Combining, or rolling up, of rows occurs when

� the SELECT clause contains only columns that are specified within an aggregate
function

� the WHERE clause, if there is one, contains only columns that are specified in the
SELECT clause.

Remerging Summary Statistics
The following example uses the MAX function to find the largest population in the

SQL.COUNTRIES table and displays it in a column called MaxPopulation. Aggregate
functions, such as the MAX function, can cause the same calculation to repeat for every
row. This occurs whenever PROC SQL remerges data. Remerging occurs whenever any
of the following conditions exist

� The SELECT clause references a column that contains an aggregate function that
is not listed in a GROUP BY clause.

� The SELECT clause references a column that contains an aggregate function and
other column(s) that are not listed in the GROUP BY clause.

� One or more columns or column expressions that are listed in a HAVING clause
are not included in a subquery or a GROUP BY clause.

In this example, PROC SQL writes the population of China, which is the largest
population in the table:

proc sql outobs=12;
title ’Largest Country Populations’;
select Name, Population format=comma20.,

max(Population) as MaxPopulation format=comma20.
from sql.countries
order by Population desc;

42 Remerging Summary Statistics � Chapter 2

Output 2.35 Using Aggregate Functions

Largest Country Populations

Name Population MaxPopulation

China 1,202,215,077 1,202,215,077
India 929,009,120 1,202,215,077
United States 263,294,808 1,202,215,077
Indonesia 202,393,859 1,202,215,077
Brazil 160,310,357 1,202,215,077
Russia 151,089,979 1,202,215,077
Bangladesh 126,387,850 1,202,215,077
Japan 126,345,434 1,202,215,077
Pakistan 123,062,252 1,202,215,077
Nigeria 99,062,003 1,202,215,077
Mexico 93,114,708 1,202,215,077
Germany 81,890,690 1,202,215,077

In some cases, you might need to use an aggregate function so that you can use its
results in another calculation. To do this, you need only to construct one query for
PROC SQL to automatically perform both calculations. This type of operation also
causes PROC SQL to remerge the data.

For example, if you want to find the percentage of the total world population that
resides in each country, then you construct a single query that

� obtains the total world population by using the SUM function
� divides each country’s population by the total world population.

PROC SQL runs an internal query to find the sum and then runs another internal
query to divide each country’s population by the sum.

proc sql outobs=12;
title ’Percentage of World Population in Countries’;
select Name, Population format=comma14.,

(Population / sum(Population) * 100) as Percentage
format=comma8.2

from sql.countries
order by Percentage desc;

Note: When a query remerges data, PROC SQL displays a note in the log to
indicate that data remerging has occurred. �

Retrieving Data from a Single Table � Using Aggregate Functions with Unique Values 43

Output 2.36 Remerging Summary Statistics

Percentage of World Population in Countries

Name Population Percentage

China 1,202,215,077 20.88
India 929,009,120 16.13
United States 263,294,808 4.57
Indonesia 202,393,859 3.52
Brazil 160,310,357 2.78
Russia 151,089,979 2.62
Bangladesh 126,387,850 2.20
Japan 126,345,434 2.19
Pakistan 123,062,252 2.14
Nigeria 99,062,003 1.72
Mexico 93,114,708 1.62
Germany 81,890,690 1.42

Using Aggregate Functions with Unique Values
You can use DISTINCT with an aggregate function to cause the function to use only

unique values from a column.

Counting Unique Values
The following query returns the number of distinct, nonmissing continents in the

SQL.COUNTRIES table:

proc sql;
title ’Number of Continents in the COUNTRIES Table’;
select count(distinct Continent) as Count

from sql.countries;

Output 2.37 Using DISTINCT with the COUNT Function

Number of Continents in the COUNTRIES Table

Count

8

Note: You cannot use select count(distinct *) to count distinct rows in a table.
This code generates an error because PROC SQL does not know which duplicate column
values to eliminate. �

Counting Nonmissing Values
Compare the previous example with the following query, which does not use the

DISTINCT keyword. This query counts every nonmissing occurrence of a continent in
the SQL.COUNTRIES table, including duplicate values:

44 Summarizing Data with Missing Values � Chapter 2

proc sql;
title ’Countries for Which a Continent is Listed’;
select count(Continent) as Count

from sql.countries;

Output 2.38 Effect of Not Using DISTINCT with the COUNT Function

Countries for Which a Continent is Listed

Count

206

Counting All Rows
In the previous two examples, countries that have a missing value in the Continent

column are ignored by the COUNT function. To obtain a count of all rows in the table,
including countries that are not on a continent, you can use the following code in the
SELECT clause:

proc sql;
title ’Number of Countries in the SQL.COUNTRIES Table’;
select count(*) as Number

from sql.countries;

Output 2.39 Using the COUNT Function to Count All Rows in a Table

Number of Countries in the SQL.COUNTRIES Table

Number

209

Summarizing Data with Missing Values
When you use an aggregate function with data that contains missing values, the

results might not provide the information that you expect because many aggregate
functions ignore missing values.

Finding Errors Caused by Missing Values
The AVG function returns the average of only the nonmissing values. The following

query calculates the average length of three features in the SQL.FEATURES table:
Angel Falls and the Amazon and Nile rivers:

/* incorrect output */

proc sql;
title ’Average Length of Angel Falls, Amazon and Nile Rivers’;

Retrieving Data from a Single Table � Grouping Data 45

select Name, Length, avg(Length) as AvgLength
from sql.features
where Name in (’Angel Falls’, ’Amazon’, ’Nile’);

Output 2.40 Finding Errors Caused by Missing Values (Incorrect Output)

Average Length of Angel Falls, Amazon and Nile Rivers

Name Length AvgLength

Amazon 4000 4072.5
Angel Falls . 4072.5
Nile 4145 4072.5

Because no length is stored for Angel Falls, the average includes only the Amazon
and Nile rivers. The average is therefore incorrect.

Compare the result from the previous example with the following query, which
includes a CASE expression to handle missing values:

/* corrected output */

proc sql;
title ’Average Length of Angel Falls, Amazon and Nile Rivers’;
select Name, Length, case

when Length is missing then 0
else Length

end as NewLength,
avg(calculated NewLength) as AvgLength

from sql.features
where Name in (’Angel Falls’, ’Amazon’, ’Nile’);

Output 2.41 Finding Errors Caused by Missing Values (Corrected Output)

Average Length of Angel Falls, Amazon and Nile Rivers

Name Length NewLength AvgLength

Amazon 4000 4000 2715
Angel Falls . 0 2715
Nile 4145 4145 2715

Grouping Data
The GROUP BY clause groups data by a specified column or columns. When you use

a GROUP BY clause, you also use an aggregate function in the SELECT clause or in a
HAVING clause to instruct PROC SQL in how to summarize the data for each group.
PROC SQL calculates the aggregate function separately for each group.

46 Grouping by One Column � Chapter 2

Grouping by One Column
The following example sums the populations of all countries to find the total

population of each continent:

proc sql;
title ’Total Populations of World Continents’;
select Continent, sum(Population) format=comma14. as TotalPopulation

from sql.countries
where Continent is not missing
group by Continent;

Note: Countries for which a continent is not listed are excluded by the WHERE
clause. �

Output 2.42 Grouping by One Column

Total Populations of World Continents

Total
Continent Population

Africa 710,529,592
Asia 3,381,858,879
Australia 18,255,944
Central America and Caribbean 66,815,930
Europe 872,192,202
North America 384,801,818
Oceania 5,342,368
South America 317,568,801

Grouping without Summarizing
When you use a GROUP BY clause without an aggregate function, PROC SQL treats

the GROUP BY clause as if it were an ORDER BY clause and displays a message in the
log that informs you that this has happened. The following example attempts to group
high and low temperature information for each city in the SQL.WORLDTEMPS table
by country:

proc sql outobs=12;
title ’High and Low Temperatures’;
select City, Country, AvgHigh, AvgLow

from sql.worldtemps
group by Country;

The output and log show that PROC SQL transforms the GROUP BY clause into an
ORDER BY clause.

Retrieving Data from a Single Table � Grouping by Multiple Columns 47

Output 2.43 Grouping without Aggregate Functions

High and Low Temperatures

City Country AvgHigh AvgLow

Algiers Algeria 90 45
Buenos Aires Argentina 87 48
Sydney Australia 79 44
Vienna Austria 76 28
Nassau Bahamas 88 65
Hamilton Bermuda 85 59
Sao Paulo Brazil 81 53
Rio de Janeiro Brazil 85 64
Quebec Canada 76 5
Montreal Canada 77 8
Toronto Canada 80 17
Beijing China 86 17

Output 2.44 Grouping without Aggregate Functions (Partial Log)

WARNING: A GROUP BY clause has been transformed into an ORDER BY clause because
neither the SELECT clause nor the optional HAVING clause of the
associated table-expression referenced a summary function.

Grouping by Multiple Columns
To group by multiple columns, separate the column names with commas within the

GROUP BY clause. You can use aggregate functions with any of the columns that you
select. The following example groups by both Location and Type, producing total square
miles for the deserts and lakes in each location in the SQL.FEATURES table:

proc sql;
title ’Total Square Miles of Deserts and Lakes’;
select Location, Type, sum(Area) as TotalArea format=comma16.

from sql.features
where type in (’Desert’, ’Lake’)
group by Location, Type;

48 Grouping and Sorting Data � Chapter 2

Output 2.45 Grouping by Multiple Columns

Total Square Miles of Deserts and Lakes

Location Type TotalArea
--
Africa Desert 3,725,000
Africa Lake 50,958
Asia Lake 25,300
Australia Desert 300,000
Canada Lake 12,275
China Desert 500,000
Europe - Asia Lake 143,550
North America Desert 140,000
North America Lake 77,200
Russia Lake 11,780
Saudi Arabia Desert 250,000

Grouping and Sorting Data
You can order grouped results with an ORDER BY clause. The following example

takes the previous example and adds an ORDER BY clause to change the order of the
Location column from ascending order to descending order:

proc sql;
title ’Total Square Miles of Deserts and Lakes’;
select Location, Type, sum(Area) as TotalArea format=comma16.

from sql.features
where type in (’Desert’, ’Lake’)
group by Location, Type
order by Location desc;

Output 2.46 Grouping with an ORDER BY Clause

Total Square Miles of Deserts and Lakes

Location Type TotalArea
--
Saudi Arabia Desert 250,000
Russia Lake 11,780
North America Lake 77,200
North America Desert 140,000
Europe - Asia Lake 143,550
China Desert 500,000
Canada Lake 12,275
Australia Desert 300,000
Asia Lake 25,300
Africa Desert 3,725,000
Africa Lake 50,958

Grouping with Missing Values
When a column contains missing values, PROC SQL treats the missing values as a

single group. This can sometimes provide unexpected results.

Retrieving Data from a Single Table � Grouping with Missing Values 49

Finding Grouping Errors Caused by Missing Values
In this example, because the SQL.COUNTRIES table contains some missing values

in the Continent column, the missing values combine to form a single group that has
the total area of the countries that have a missing value in the Continent column:

/* incorrect output */

proc sql outobs=12;
title ’Areas of World Continents’;
select Name format=$25.,

Continent,
sum(Area) format=comma12. as TotalArea

from sql.countries
group by Continent
order by Continent, Name;

The output is incorrect because Bermuda, Iceland, and Kalaallit Nunaat are not
actually part of the same continent; however, PROC SQL treats them that way because
they all have a missing character value in the Continent column.

Output 2.47 Finding Grouping Errors Caused by Missing Values (Incorrect Output)

Areas of World Continents

Name Continent TotalArea

Bermuda 876,800
Iceland 876,800
Kalaallit Nunaat 876,800
Algeria Africa 11,299,595
Angola Africa 11,299,595
Benin Africa 11,299,595
Botswana Africa 11,299,595
Burkina Faso Africa 11,299,595
Burundi Africa 11,299,595
Cameroon Africa 11,299,595
Cape Verde Africa 11,299,595
Central African Republic Africa 11,299,595

To correct the query from the previous example, you can write a WHERE clause to
exclude the missing values from the results:

/* corrected output */

proc sql outobs=12;
title ’Areas of World Continents’;
select Name format=$25.,

Continent,
sum(Area) format=comma12. as TotalArea

from sql.countries
where Continent is not missing
group by Continent
order by Continent, Name;

50 Filtering Grouped Data � Chapter 2

Output 2.48 Adjusting the Query to Avoid Errors Due to Missing Values (Corrected Output)

Areas of World Continents

Name Continent TotalArea

Algeria Africa 11,299,595
Angola Africa 11,299,595
Benin Africa 11,299,595
Botswana Africa 11,299,595
Burkina Faso Africa 11,299,595
Burundi Africa 11,299,595
Cameroon Africa 11,299,595
Cape Verde Africa 11,299,595
Central African Republic Africa 11,299,595
Chad Africa 11,299,595
Comoros Africa 11,299,595
Congo Africa 11,299,595

Note: Aggregate functions, such as the SUM function, can cause the same
calculation to repeat for every row. This occurs whenever PROC SQL remerges data.
See “Remerging Summary Statistics” on page 41 for more information about
remerging. �

Filtering Grouped Data
You can use a HAVING clause with a GROUP BY clause to filter grouped data. The

HAVING clause affects groups in a way that is similar to the way in which a WHERE
clause affects individual rows. When you use a HAVING clause, PROC SQL displays
only the groups that satisfy the HAVING expression.

Using a Simple HAVING Clause
The following example groups the features in the SQL.FEATURES table by type and

then displays only the numbers of islands, oceans, and seas:

proc sql;
title ’Numbers of Islands, Oceans, and Seas’;
select Type, count(*) as Number

from sql.features
group by Type
having Type in (’Island’, ’Ocean’, ’Sea’)
order by Type;

Retrieving Data from a Single Table � Using HAVING with Aggregate Functions 51

Output 2.49 Using a Simple HAVING Clause

Numbers of Islands, Oceans, and Seas

Type Number

Island 6
Ocean 4
Sea 13

Choosing Between HAVING and WHERE
The differences between the HAVING clause and the WHERE clause are shown in

the following table. Because you use the HAVING clause when you work with groups of
data, queries that contain a HAVING clause usually also contain the following:

� a GROUP BY clause

� an aggregate function.

Note: When you use a HAVING clause without a GROUP BY clause, PROC SQL
treats the HAVING clause as if it were a WHERE clause and provides a message in the
log that informs you that this occurred. �

Table 2.7 Differences between the HAVING Clause and WHERE Clause

A HAVING clause... A WHERE clause...

is typically used to specify condition(s) for
including or excluding groups of rows from a
table.

is used to specify conditions for including or
excluding individual rows from a table.

must follow the GROUP BY clause in a query, if
used with a GROUP BY clause.

must precede the GROUP BY clause in a query,
if used with a GROUP BY clause.

is affected by a GROUP BY clause; when there
is no GROUP BY clause, the HAVING clause is
treated like a WHERE clause.

is not affected by a GROUP BY clause.

is processed after the GROUP BY clause and
any aggregate functions.

is processed before a GROUP BY clause, if there
is one, and before any aggregate functions.

Using HAVING with Aggregate Functions
The following query returns the populations of all continents that have more than 15

countries:

proc sql;
title ’Total Populations of Continents with More than 15 Countries’;
select Continent,

sum(Population) as TotalPopulation format=comma16.,
count(*) as Count

from sql.countries
group by Continent
having count(*) gt 15
order by Continent;

52 Validating a Query � Chapter 2

The HAVING expression contains the COUNT function, which counts the number of
rows within each group.

Output 2.50 Using HAVING with the COUNT Function

Total Populations of Continents with More than 15 Countries

Continent TotalPopulation Count
--
Africa 710,529,592 53
Asia 3,381,858,879 48
Central America and Caribbean 66,815,930 25
Europe 813,481,724 51

Validating a Query
The VALIDATE statement enables you to check the syntax of a query for correctness

without submitting it to PROC SQL. PROC SQL displays a message in the log to
indicate whether the syntax is correct.

proc sql;
validate

select Name, Statehood
from sql.unitedstates
where Statehood lt ’01Jan1800’d;

Output 2.51 Validating a Query (Partial Log)

3 proc sql;
4 validate
5 select Name, Statehood
6 from sql.unitedstates
7 where Statehood lt ’01Jan1800’d;
NOTE: PROC SQL statement has valid syntax.

The following example shows an invalid query and the corresponding log message:

proc sql;
validate

select Name, Statehood
from sql.unitedstates
where lt ’01Jan1800’d;

Retrieving Data from a Single Table � Validating a Query 53

Output 2.52 Validating an Invalid Query (Partial Log)

3 proc sql;
4 validate
5 select Name, Statehood
6 from sql.unitedstates
7 where lt ’01Jan1800’d;

22
76

ERROR 22-322: Syntax error, expecting one of the following: !, !!, &, *, **,
+, -, /, <, <=, <>, =, >, >=, ?, AND, CONTAINS, EQ, GE, GROUP,
GT, HAVING, LE, LIKE, LT, NE, OR, ORDER, ^=, |, ||, ~=.

ERROR 76-322: Syntax error, statement will be ignored.

NOTE: The SAS System stopped processing this step because of errors.

54

55

C H A P T E R

3
Retrieving Data from Multiple
Tables

Introduction 56
Selecting Data from More Than One Table by Using Joins 56

Inner Joins 57

Using Table Aliases 58

Specifying the Order of Join Output 59

Creating Inner Joins Using INNER JOIN Keywords 59
Joining Tables Using Comparison Operators 59

The Effects of Null Values on Joins 60

Creating Multicolumn Joins 62

Selecting Data from More Than Two Tables 63

Showing Relationships within a Single Table Using Self-Joins 64

Outer Joins 65
Including Nonmatching Rows with the Left Outer Join 65

Including Nonmatching Rows with the Right Outer Join 66

Selecting All Rows with the Full Outer Join 67

Specialty Joins 68

Including All Combinations of Rows with the Cross Join 68
Including All Rows with the Union Join 69

Matching Rows with a Natural Join 69

Using the Coalesce Function in Joins 70

Comparing DATA Step Match-Merges with PROC SQL Joins 71

When All of the Values Match 71
When Only Some of the Values Match 72

When the Position of the Values Is Important 73

Using Subqueries to Select Data 74

Single-Value Subqueries 75

Multiple-Value Subqueries 75

Correlated Subqueries 76
Testing for the Existence of a Group of Values 77

Multiple Levels of Subquery Nesting 78

Combining a Join with a Subquery 79

When to Use Joins and Subqueries 80

Combining Queries with Set Operators 81
Working with Two or More Query Results 81

Producing Unique Rows from Both Queries (UNION) 82

Producing Rows That Are in Only the First Query Result (EXCEPT) 83

Producing Rows That Belong to Both Query Results (INTERSECT) 84

Concatenating Query Results (OUTER UNION) 85
Producing Rows from the First Query or the Second Query 86

56 Introduction � Chapter 3

Introduction
This chapter shows you how to
� select data from more than one table by joining the tables together
� use subqueries to select data from one table based on data values from another

table
� combine the results of more than one query by using set operators.

Note: Unless otherwise noted, the PROC SQL operations that are shown in this
chapter apply to views as well as tables. For more information about views, see
Chapter 4, “Creating and Updating Tables and Views,” on page 89. �

Selecting Data from More Than One Table by Using Joins
The data that you need for a report could be located in more than one table. In order

to select the data from the tables, join the tables in a query. Joining tables enables you
to select data from multiple tables as if the data were contained in one table. Joins do
not alter the original tables.

The most basic type of join is simply two tables that are listed in the FROM clause of
a SELECT statement. The following query joins the two tables that are shown in
Output 3.1 and creates Output 3.2.

proc sql;
title ’Table One and Table Two’;
select *

from one, two;

Output 3.1 Table One and Table Two

Table One

X Y

1 2
2 3

Table Two

X Z

2 5
3 6
4 9

Retrieving Data from Multiple Tables � Inner Joins 57

Output 3.2 Cartesian Product of Table One and Table Two

Table One and Table Two

X Y X Z

1 2 2 5
1 2 3 6
1 2 4 9
2 3 2 5
2 3 3 6
2 3 4 9

Joining tables in this way returns the Cartesian product of the tables. Each row from
the first table is combined with every row from the second table. When you run this
query, the following message is written to the SAS log:

Output 3.3 Cartesian Product Log Message

NOTE: The execution of this query involves performing one or more Cartesian
product joins that can not be optimized.

The Cartesian product of large tables can be huge. Typically, you want a subset of
the Cartesian product. You specify the subset by declaring the join type.

There are two types of joins:

� Inner Joins return a result table for all the rows in a table that have one or more
matching rows in the other table or tables that are listed in the FROM clause.

� Outer Joins are inner joins that are augmented with rows that did not match with
any row from the other table in the join. There are three kinds of outer joins: left,
right, and full.

Inner Joins

An inner join returns only the subset of rows from the first table that matches rows
from the second table. You can specify the columns that you want to be compared for
matching values in a WHERE clause.

The following code adds a WHERE clause to the previous query. The WHERE clause
specifies that only rows whose values in column X of Table One match values in column
X of Table Two should appear in the output. Compare this query’s output to Output 3.2.

proc sql;
select * from one, two

where one.x=two.x;

58 Inner Joins � Chapter 3

Output 3.4 Table One and Table Two Joined

Table One and Table Two

X Y X Z

2 3 2 5

The output contains only one row because only one value in column X matches from
each table. In an inner join, only the matching rows are selected. Outer joins can
return nonmatching rows; they are covered in “Outer Joins” on page 65.

Note that the column names in the WHERE clause are prefixed by their table
names. This is known as qualifying the column names, and it is necessary when you
specify columns that have the same name from more than one table. Qualifying the
column name avoids creating an ambiguous column reference.

Using Table Aliases
A table alias is a temporary, alternate name for a table. You specify table aliases in

the FROM clause. Table aliases are used in joins to qualify column names and can
make a query easier to read by abbreviating table names.

The following example compares the oil production of countries to their oil reserves
by joining the OILPROD and OILRSRVS tables on their Country columns. Because the
Country columns are common to both tables, they are qualified with their table aliases.
You could also qualify the columns by prefixing the column names with the table names.

Note: The AS keyword is optional. �

proc sql outobs=6;
title ’Oil Production/Reserves of Countries’;
select * from sql.oilprod as p, sql.oilrsrvs as r

where p.country = r.country;

Output 3.5 Abbreviating Column Names by Using Table Aliases

Oil Production/Reserves of Countries

Barrels
Country PerDay Country Barrels

Algeria 1,400,000 Algeria 9,200,000,000
Canada 2,500,000 Canada 7,000,000,000
China 3,000,000 China 25,000,000,000
Egypt 900,000 Egypt 4,000,000,000
Indonesia 1,500,000 Indonesia 5,000,000,000
Iran 4,000,000 Iran 90,000,000,000

Note that each table’s Country column is displayed. Typically, once you have
determined that a join is functioning correctly, you include just one of the matching
columns in the SELECT clause.

Retrieving Data from Multiple Tables � Inner Joins 59

Specifying the Order of Join Output
You can order the output of joined tables by one or more columns from either table.

The next example’s output is ordered in descending order by the BarrelsPerDay column.
It is not necessary to qualify BarrelsPerDay, because the column exists only in the
OILPROD table.

proc sql outobs=6;
title ’Oil Production/Reserves of Countries’;
select p.country, barrelsperday ’Production’, barrels ’Reserves’

from sql.oilprod p, sql.oilrsrvs r
where p.country = r.country
order by barrelsperday desc;

Output 3.6 Ordering the Output of Joined Tables

Oil Production/Reserves of Countries

Country Production Reserves
--
Saudi Arabia 9,000,000 260,000,000,000
United States of America 8,000,000 30,000,000,000
Iran 4,000,000 90,000,000,000
Norway 3,500,000 11,000,000,000
Mexico 3,400,000 50,000,000,000
China 3,000,000 25,000,000,000

Creating Inner Joins Using INNER JOIN Keywords
The INNER JOIN keywords can be used to join tables. The ON clause replaces the

WHERE clause for specifying columns to join. PROC SQL provides these keywords
primarily for compatibility with the other joins (OUTER, RIGHT, and LEFT JOIN).
Using INNER JOIN with an ON clause provides the same functionality as listing tables
in the FROM clause and specifying join columns with a WHERE clause.

This code produces the same output as the previous code but uses the INNER JOIN
construction.

proc sql ;
select p.country, barrelsperday ’Production’, barrels ’Reserves’

from sql.oilprod p inner join sql.oilrsrvs r
on p.country = r.country

order by barrelsperday desc;

Joining Tables Using Comparison Operators
Tables can be joined by using comparison operators other than the equal sign (=) in

the WHERE clause (for a list of comparison operators, see “Retrieving Rows Based on a
Comparison” on page 31). In this example, all U.S. cities in the USCITYCOORDS table
are selected that are south of Cairo, Egypt. The compound WHERE clause specifies the
city of Cairo in the WORLDCITYCOORDS table and joins USCITYCOORDS and
WORLDCITYCOORDS on their Latitude columns, using a less-than (lt) operator.

proc sql;
title ’US Cities South of Cairo, Egypt’;
select us.City, us.State, us.Latitude, world.city, world.latitude

from sql.worldcitycoords world, sql.uscitycoords us

60 Inner Joins � Chapter 3

where world.city = ’Cairo’ and
us.latitude lt world.latitude;

Output 3.7 Using Comparison Operators to Join Tables

US Cities South of Cairo, Egypt

City State Latitude City Latitude

Honolulu HI 21 Cairo 30
Key West FL 24 Cairo 30
Miami FL 26 Cairo 30
San Antonio TX 29 Cairo 30
Tampa FL 28 Cairo 30

When you run this query, the following message is written to the SAS log:

Output 3.8 Comparison Query Log Message

NOTE: The execution of this query involves performing one or more Cartesian
product joins that can not be optimized.

Recall that you see this message when you run a query that joins tables without
specifying matching columns in a WHERE clause. PROC SQL also displays this
message whenever tables are joined by using an inequality operator.

The Effects of Null Values on Joins
Most database products treat nulls as distinct entities and do not match them in

joins. PROC SQL treats nulls as missing values and as matches for joins. Any null will
match with any other null of the same type (character or numeric) in a join.

The following example joins Table One and Table Two on column B. There are null
values in column B of both tables. Notice in the output that the null value in row c of
Table One matches all the null values in Table Two. This is probably not the intended
result for the join.

proc sql;
title ’One and Two Joined’;
select one.a ’One’, one.b, two.a ’Two’, two.b

from one, two
where one.b=two.b;

Retrieving Data from Multiple Tables � Inner Joins 61

Output 3.9 Joining Tables That Contain Null Values

Table One

a b

a 1
b 2
c .
d 4

Table Two

a b

a 1
b 2
c .
d 4
e .
f .

One and Two Joined

One b Two b

a 1 a 1
b 2 b 2
c . c .
d 4 d 4
c . e .
c . f .

In order to specify only the nonmissing values for the join, use the IS NOT MISSING
operator:

proc sql;
select one.a ’One’, one.b, two.a ’Two’, two.b

from one, two
where one.b=two.b and

one.b is not missing;

Output 3.10 Results of Adding IS NOT MISSING to Joining Tables That Contain Null Values

One and Two Joined

One b Two b

a 1 a 1
b 2 b 2
d 4 d 4

62 Inner Joins � Chapter 3

Creating Multicolumn Joins
When a row is distinguished by a combination of values in more than one column,

use all the necessary columns in the join. For example, a city name could exist in more
than one country. To select the correct city, you must specify both the city and country
columns in the joining query’s WHERE clause.

This example displays the latitude and longitude of capital cities by joining the
COUNTRIES table with the WORLDCITYCOORDS table. To minimize the number of
rows in the example output, the first part of the WHERE expression selects capitals
with names that begin with the letter L from the COUNTRIES table.

proc sql;
title ’Coordinates of Capital Cities’;
select Capital format=$12., Name format=$12.,

City format=$12., Country format=$12.,
Latitude, Longitude

from sql.countries, sql.worldcitycoords
where Capital like ’L%’ and

Capital = City;

London occurs once as a capital city in the COUNTRIES table. However, in
WORLDCITYCOORDS, London is found twice: as a city in England and again as a city
in Canada. Specifying only Capital = City in the WHERE expression yields the
following incorrect output:

Output 3.11 Selecting Capital City Coordinates (incorrect output)

Coordinates of Capital Cities

Capital Name City Country Latitude Longitude

La Paz Bolivia La Paz Bolivia -16 -69
London England London Canada 43 -81
Lima Peru Lima Peru -13 -77
Lisbon Portugal Lisbon Portugal 39 -10
London England London England 51 0

Notice in the output that the inner join incorrectly matches London, England, to both
London, Canada, and London, England. By also joining the country name columns
together (COUNTRIES.Name to WORLDCITYCOORDS.Country), the rows match
correctly.

proc sql;
title ’Coordinates of Capital Cities’;
select Capital format=$12., Name format=$12.,

City format=$12., Country format=$12.,
latitude, longitude

from sql.countries, sql.worldcitycoords
where Capital like ’L%’ and

Capital = City and
Name = Country;

Retrieving Data from Multiple Tables � Inner Joins 63

Output 3.12 Selecting Capital City Coordinates (correct output)

Coordinates of Capital Cities

Capital Name City Country Latitude Longitude

La Paz Bolivia La Paz Bolivia -16 -69
Lima Peru Lima Peru -13 -77
Lisbon Portugal Lisbon Portugal 39 -10
London England London England 51 0

Selecting Data from More Than Two Tables
The data that you need could be located in more than two tables. For example, if you

want to show the coordinates of the capitals of the states in the United States, then you
need to join the UNITEDSTATES table, which contains the state capitals, with the
USCITYCOORDS table, which contains the coordinates of cities in the United States.
Because cities must be joined along with their states for an accurate join (similarly to
the previous example), you must join the tables on both the city and state columns of
the tables.

Joining the cities, by joining the UNITEDSTATES.Capital column to the
USCITYCOORDS.City column, is straightforward. However, in the UNITEDSTATES
table the Name column contains the full state name, while in USCITYCOORDS the
states are specified by their postal code. It is therefore impossible to directly join the
two tables on their state columns. To solve this problem, it is necessary to use the
POSTALCODES table, which contains both the state names and their postal codes, as
an intermediate table to make the correct relationship between UNITEDSTATES and
USCITYCOORDS. The correct solution joins the UNITEDSTATES.Name column to the
POSTALCODES.Name column (matching the full state names), and the
POSTALCODES.Code column to the USCITYCOORDS.State column (matching the
state postal codes).

title ’Coordinates of State Capitals’;
proc sql outobs=10;

select us.Capital format=$15., us.Name ’State’ format=$15.,
pc.Code, c.Latitude, c.Longitude

from sql.unitedstates us, sql.postalcodes pc,
sql.uscitycoords c

where us.Capital = c.City and
us.Name = pc.Name and
pc.Code = c.State;

64 Inner Joins � Chapter 3

Output 3.13 Selecting Data from More Than Two Tables

Coordinates of State Capitals

Capital State Code Latitude Longitude

Albany New York NY 43 -74
Annapolis Maryland MD 39 -77
Atlanta Georgia GA 34 -84
Augusta Maine ME 44 -70
Austin Texas TX 30 -98
Baton Rouge Louisiana LA 31 -91
Bismarck North Dakota ND 47 -101
Boise Idaho ID 43 -116
Boston Massachusetts MA 42 -72
Carson City Nevada NV 39 -120

Showing Relationships within a Single Table Using Self-Joins
When you need to show comparative relationships between values in a table, it is

sometimes necessary to join columns within the same table. Joining a table to itself is
called a self-join, or reflexive join. You can think of a self-join as PROC SQL making an
internal copy of a table and joining the table to its copy.

For example, the following code uses a self-join to select cities that have average
yearly high temperatures equal to the average yearly low temperatures of other cities.

proc sql;
title "Cities’ High Temps = Cities’ Low Temps";
select High.City format $12., High.Country format $12.,

High.AvgHigh, ’ | ’,
Low.City format $12., Low.Country format $12.,
Low.AvgLow

from sql.worldtemps High, sql.worldtemps Low
where High.AvgHigh = Low.AvgLow and

High.city ne Low.city and
High.country ne Low.country;

Notice that the WORLDTEMPS table is assigned two aliases, High and Low.
Conceptually, this makes a copy of the table so that a join may be made between the
table and its copy. The WHERE clause selects those rows that have high temperature
equal to low temperature.

The WHERE clause also prevents a city from being joined to itself (City ne City
and Country ne Country), although, in this case, it is highly unlikely that the high
temperature would be equal to the low temperature for the same city.

Retrieving Data from Multiple Tables � Outer Joins 65

Output 3.14 Joining a Table to Itself (Self-Join)

Cities’ High Temps = Cities’ Low Temps

City Country AvgHigh City Country AvgLow

Amsterdam Netherlands 70 | San Juan Puerto Rico 70
Auckland New Zealand 75 | Lagos Nigeria 75
Auckland New Zealand 75 | Manila Philippines 75
Berlin Germany 75 | Lagos Nigeria 75
Berlin Germany 75 | Manila Philippines 75
Bogota Colombia 69 | Bangkok Thailand 69
Cape Town South Africa 70 | San Juan Puerto Rico 70
Copenhagen Denmark 73 | Singapore Singapore 73
Dublin Ireland 68 | Bombay India 68
Glasgow Scotland 65 | Nassau Bahamas 65
London England 73 | Singapore Singapore 73
Oslo Norway 73 | Singapore Singapore 73
Reykjavik Iceland 57 | Caracas Venezuela 57
Stockholm Sweden 70 | San Juan Puerto Rico 70

Outer Joins
Outer joins are inner joins that are augmented with rows from one table that do not

match any row from the other table in the join. The resulting output includes rows that
match and rows that do not match from the join’s source tables. Nonmatching rows
have null values in the columns from the unmatched table. Use the ON clause instead
of the WHERE clause to specify the column or columns on which you are joining the
tables. However, you can continue to use the WHERE clause to subset the query result.

Including Nonmatching Rows with the Left Outer Join

A left outer join lists matching rows and rows from the left-hand table (the first
table listed in the FROM clause) that do not match any row in the right-hand table. A
left join is specified with the keywords LEFT JOIN and ON.

For example, to list the coordinates of the capitals of international cities, join the
COUNTRIES table, which contains capitals, with the WORLDCITYCOORDS table,
which contains cities’ coordinates, by using a left join. The left join lists all capitals,
regardless of whether the cities exist in WORLDCITYCOORDS. Using an inner join
would list only capital cities for which there is a matching city in
WORLDCITYCOORDS.

proc sql outobs=10;
title ’Coordinates of Capital Cities’;
select Capital format=$20., Name ’Country’ format=$20.,

Latitude, Longitude
from sql.countries a left join sql.worldcitycoords b

on a.Capital = b.City and
a.Name = b.Country

order by Capital;

66 Outer Joins � Chapter 3

Output 3.15 Left Join of COUNTRIES and WORLDCITYCOORDS

Coordinates of Capital Cities

Capital Country Latitude Longitude

Channel Islands . .
Abu Dhabi United Arab Emirates . .
Abuja Nigeria . .
Accra Ghana 5 0
Addis Ababa Ethiopia 9 39
Algiers Algeria 37 3
Almaty Kazakhstan . .
Amman Jordan 32 36
Amsterdam Netherlands 52 5
Andorra la Vella Andorra . .

Including Nonmatching Rows with the Right Outer Join

A right join, specified with the keywords RIGHT JOIN and ON, is the opposite of a
left join: nonmatching rows from the right-hand table (the second table listed in the
FROM clause) are included with all matching rows in the output. This example
reverses the join of the last example; it uses a right join to select all the cities from the
WORLDCITYCOORDS table and displays the population only if the city is the capital
of a country (that is, if the city exists in the COUNTRIES table).

proc sql outobs=10;
title ’Populations of Capitals Only’;
select City format=$20., Country ’Country’ format=$20.,

Population
from sql.countries right join sql.worldcitycoords

on Capital = City and
Name = Country

order by City;

Retrieving Data from Multiple Tables � Outer Joins 67

Output 3.16 Right Join of COUNTRIES and WORLDCITYCOORDS

Populations of Capitals Only

City Country Population
--
Abadan Iran .
Acapulco Mexico .
Accra Ghana 17395511
Adana Turkey .
Addis Ababa Ethiopia 59291170
Adelaide Australia .
Aden Yemen .
Ahmenabad India .
Algiers Algeria 28171132
Alice Springs Australia .

Selecting All Rows with the Full Outer Join

A full outer join, specified with the keywords FULL JOIN and ON, selects all
matching and nonmatching rows. This example displays the first ten matching and
nonmatching rows from the City and Capital columns of WORLDCITYCOORDS and
COUNTRIES. Note that the pound sign (#) is used as a line split character in the labels.

proc sql outobs=10;
title ’Populations and/or Coordinates of World Cities’;
select City ’#City#(WORLDCITYCOORDS)’ format=$20.,

Capital ’#Capital#(COUNTRIES)’ format=$20.,
Population, Latitude, Longitude

from sql.countries full join sql.worldcitycoords
on Capital = City and

Name = Country;

Output 3.17 Full Outer Join of COUNTRIES and WORLDCITYCOORDS

Populations and/or Coordinates of World Cities

City Capital
(WORLDCITYCOORDS) (COUNTRIES) Population Latitude Longitude

146436 . .
Abadan . 30 48

Abu Dhabi 2818628 . .
Abuja 99062003 . .

Acapulco . 17 -100
Accra Accra 17395511 5 0
Adana . 37 35
Addis Ababa Addis Ababa 59291170 9 39
Adelaide . -35 138
Aden . 13 45

68 Specialty Joins � Chapter 3

Specialty Joins
Three types of joins—cross joins, union joins, and natural joins—are special cases of

the standard join types.

Including All Combinations of Rows with the Cross Join

A cross join is a Cartesian product; it returns the product of two tables. Like a
Cartesian product, a cross join’s output can be limited by a WHERE clause.

This example shows a cross join of the tables One and Two:

Output 3.18 Tables One and Two

Table One

X Y

1 2
2 3

Table Two

W Z

2 5
3 6
4 9

proc sql;
select *

from one cross join two;

Output 3.19 Cross Join

The SAS System

X Y W Z

1 2 2 5
1 2 3 6
1 2 4 9
2 3 2 5
2 3 3 6
2 3 4 9

Like a conventional Cartesian product, a cross join causes a note regarding Cartesian
products in the SAS log.

Retrieving Data from Multiple Tables � Specialty Joins 69

Including All Rows with the Union Join
A union join combines two tables without attempting to match rows. All columns and

rows from both tables are included. Combining tables with a union join is similar to
combining them with the OUTER UNION set operator (see “Combining Queries with
Set Operators” on page 81). A union join’s output can be limited by a WHERE clause.

This example shows a union join of the same One and Two tables that were used
earlier to demonstrate a cross join:

proc sql;
select *

from one union join two;

Output 3.20 Union Join

X Y W Z

. 2 5

. 3 6

. 4 9
1 2 .
2 3 .

Matching Rows with a Natural Join
A natural join automatically selects columns from each table to use in determining

matching rows. With a natural join, PROC SQL identifies columns in each table that
have the same name and type; rows in which the values of these columns are equal are
returned as matching rows. The ON clause is implied.

This example produces the same results as the example in “Specifying the Order of
Join Output” on page 59:

proc sql outobs=6;
title ’Oil Production/Reserves of Countries’;
select country, barrelsperday ’Production’, barrels ’Reserve’

from sql.oilprod natural join sql.oilrsrvs
order by barrelsperday desc;

Output 3.21 Natural Inner Join of OILPROD and OILRSRVS

Oil Production/Reserves of Countries

Country Production Reserve

Saudi Arabia 9,000,000 260,000,000,000
United States of America 8,000,000 30,000,000,000
Iran 4,000,000 90,000,000,000
Norway 3,500,000 11,000,000,000
Mexico 3,400,000 50,000,000,000
China 3,000,000 25,000,000,000

70 Using the Coalesce Function in Joins � Chapter 3

The advantage of using a natural join is that the coding is streamlined. The ON
clause is implied, and you do not need to use table aliases to qualify column names that
are common to both tables. These two queries return the same results:

proc sql;
select a.W, a.X, Y, Z
from table1 a left join table2 b
on a.W=b.W and a.X=b.X
order by a.W;

proc sql;
select W, X, Y, Z
from table1 natural left join table2
order by W;

If you specify a natural join on tables that do not have at least one column with a
common name and type, then the result is a Cartesian product. You can use a WHERE
clause to limit the output.

Because the natural join makes certain assumptions about what you want to
accomplish, you should know your data thoroughly before using it. You could get
unexpected or incorrect results if, for example, you are expecting two tables to have
only one column in common when they actually have two. You can use the FEEDBACK
option to see exactly how PROC SQL is implementing your query. See “Using PROC
SQL Options to Create and Debug Queries” on page 112 for more information about the
FEEDBACK option.

A natural join assumes that you want to base the join on equal values of all pairs of
common columns. To base the join on inequalities or other comparison operators, use
standard inner or outer join syntax.

Using the Coalesce Function in Joins
As you can see from the previous examples, the nonmatching rows in outer joins

contain missing values. By using the COALESCE function, you can overlay columns so
that only the row from the table that contains data is listed. Recall that COALESCE
takes a list of columns as its arguments and returns the first nonmissing value that it
encounters.

This example adds the COALESCE function to the previous example to overlay the
COUNTRIES.Capital, WORLDCITYCOORDS.City, and COUNTRIES.Name columns.
COUNTRIES.Name is supplied as an argument to COALESCE because some islands do
not have capitals.

proc sql outobs=10;
title ’Populations and/or Coordinates of World Cities’;
select coalesce(Capital, City,Name)format=$20. ’City’,

coalesce(Name, Country) format=$20. ’Country’,
Population, Latitude, Longitude

from sql.countries full join sql.worldcitycoords
on Capital = City and
Name = Country;

Retrieving Data from Multiple Tables � Comparing DATA Step Match-Merges with PROC SQL Joins 71

Output 3.22 Using COALESCE in Full Outer Join of COUNTRIES and WORLDCITYCOORDS

Populations and/or Coordinates of World Cities

City Country Population Latitude Longitude

Channel Islands Channel Islands 146436 . .
Abadan Iran . 30 48
Abu Dhabi United Arab Emirates 2818628 . .
Abuja Nigeria 99062003 . .
Acapulco Mexico . 17 -100
Accra Ghana 17395511 5 0
Adana Turkey . 37 35
Addis Ababa Ethiopia 59291170 9 39
Adelaide Australia . -35 138
Aden Yemen . 13 45

COALESCE can be used in both inner and outer joins. For more information about
COALESCE, see “Replacing Missing Values” on page 24.

Comparing DATA Step Match-Merges with PROC SQL Joins
Many SAS users are familiar with using a DATA step to merge data sets. This

section compares merges to joins. DATA step match-merges and PROC SQL joins can
produce the same results. However, a significant difference between a match-merge and
a join is that you do not have to sort the tables before you join them.

When All of the Values Match
When all of the values match in the BY variable and there are no duplicate BY

variables, you can use an inner join to produce the same result as a match-merge. To
demonstrate this result, here are two tables that have the column Flight in common.
The values of Flight are the same in both tables:

FLTSUPER FLTDEST

Flight Supervisor Flight Destination

145 Kang 145 Brussels
150 Miller 150 Paris
155 Evanko 155 Honolulu

FLTSUPER and FLTDEST are already sorted by the matching column Flight. A
DATA step merge produces Output 3.23.

data merged;
merge FltSuper FltDest;
by Flight;

run;

proc print data=merged noobs;
title ’Table MERGED’;

run;

72 Comparing DATA Step Match-Merges with PROC SQL Joins � Chapter 3

Output 3.23 Merged Tables When All the Values Match

Table MERGED

Flight Supervisor Destination

145 Kang Brussels
150 Miller Paris
155 Evanko Honolulu

With PROC SQL, presorting the data is not necessary. The following PROC SQL join
gives the same result as that shown in Output 3.23.

proc sql;
title ’Table MERGED’;
select s.flight, Supervisor, Destination

from fltsuper s, fltdest d
where s.Flight=d.Flight;

When Only Some of the Values Match
When only some of the values match in the BY variable, you can use an outer join to

produce the same result as a match-merge. To demonstrate this result, here are two
tables that have the column Flight in common. The values of Flight are not the same in
both tables:

FLTSUPER FLTDEST

Flight Supervisor Flight Destination

145 Kang 145 Brussels
150 Miller 150 Paris
155 Evanko 165 Seattle
157 Lei

A DATA step merge produces Output 3.24:

data merged;
merge fltsuper fltdest;
by flight;

run;
proc print data=merged noobs;

title ’Table MERGED’;
run;

Retrieving Data from Multiple Tables � Comparing DATA Step Match-Merges with PROC SQL Joins 73

Output 3.24 Merged Tables When Some of the Values Match

Table MERGED

Flight Supervisor Destination

145 Kang Brussels
150 Miller Paris
155 Evanko
157 Lei
165 Seattle

To get the same result with PROC SQL, use an outer join so that the query result
will contain the nonmatching rows from the two tables. In addition, use the
COALESCE function to overlay the Flight columns from both tables. The following
PROC SQL join gives the same result as that shown in Output 3.24:

proc sql;
select coalesce(s.Flight,d.Flight) as Flight, Supervisor, Destination

from fltsuper s full join fltdest d
on s.Flight=d.Flight;

When the Position of the Values Is Important
When you want to merge two tables and the position of the values is important, you

might need to use a DATA step merge. To demonstrate this idea, here are two tables to
consider:

FLTSUPER FLTDEST

Flight Supervisor Flight Destination

145 Kang 145 Brussels
145 Ramirez 145 Edmonton
150 Miller 150 Paris
150 Picard 150 Madrid
155 Evanko 165 Seattle
157 Lei

For Flight 145, Kang matches with Brussels and Ramirez matches with Edmonton.
Because the DATA step merges data based on the position of values in BY groups, the
values of Supervisor and Destination match appropriately. A DATA step merge
produces Output 3.25:

data merged;
merge fltsuper fltdest;
by flight;

run;
proc print data=merged noobs;

title ’Table MERGED’;
run;

74 Using Subqueries to Select Data � Chapter 3

Output 3.25 Match-Merge of the FLTSUPER and FLTDEST Tables

Table MERGED

Flight Supervisor Destination

145 Kang Brussels
145 Ramirez Edmonton
150 Miller Paris
150 Picard Madrid
155 Evanko
157 Lei
165 Seattle

PROC SQL does not process joins according to the position of values in BY groups.
Instead, PROC SQL processes data only according to the data values. Here is the result
of an inner join for FLTSUPER and FLTDEST:

proc sql;
title ’Table JOINED’;
select *

from fltsuper s, fltdest d
where s.Flight=d.Flight;

Output 3.26 PROC SQL Join of the FLTSUPER and FLTDEST Tables

Table JOINED

Flight Supervisor Flight Destination

145 Kang 145 Brussels
145 Kang 145 Edmonton
145 Ramirez 145 Brussels
145 Ramirez 145 Edmonton
150 Miller 150 Paris
150 Miller 150 Madrid
150 Picard 150 Paris
150 Picard 150 Madrid

PROC SQL builds the Cartesian product and then lists the rows that meet the
WHERE clause condition. The WHERE clause returns two rows for each supervisor,
one row for each destination. Because Flight has duplicate values and there is no other
matching column, there is no way to associate Kang only with Brussels, Ramirez only
with Edmonton, and so on.

For more information about DATA step match-merges, see SAS Language Reference:
Dictionary.

Using Subqueries to Select Data

While a table join combines multiple tables into a new table, a subquery (enclosed in
parentheses) selects rows from one table based on values in another table. A subquery,
or inner query, is a query-expression that is nested as part of another query-expression.

Retrieving Data from Multiple Tables � Multiple-Value Subqueries 75

Depending on the clause that contains it, a subquery can return a single value or
multiple values. Subqueries are most often used in the WHERE and the HAVING
expressions.

Single-Value Subqueries

A single-value subquery returns a single row and column. It can be used in a
WHERE or HAVING clause with a comparison operator. The subquery must return
only one value, or else the query fails and an error message is printed to the log.

This query uses a subquery in its WHERE clause to select U.S. states that have a
population greater than Belgium. The subquery is evaluated first, and then it returns
the population of Belgium to the outer query.

proc sql;
title ’U.S. States with Population Greater than Belgium’;
select Name ’State’ , population format=comma10.

from sql.unitedstates
where population gt

(select population from sql.countries
where name = "Belgium");

Internally, this is what the query looks like after the subquery has executed:

proc sql;
title ’U.S. States with Population Greater than Belgium’;
select Name ’State’, population format=comma10.

from sql.unitedstates
where population gt 10162614;

The outer query lists the states whose populations are greater than the population of
Belgium.

Output 3.27 Single-Value Subquery

U.S. States with Population Greater than Belgium

State Population

California 31,518,948
Florida 13,814,408
Illinois 11,813,091
New York 18,377,334
Ohio 11,200,790
Pennsylvania 12,167,566
Texas 18,209,994

Multiple-Value Subqueries

A multiple-value subquery can return more than one value from one column. It is
used in a WHERE or HAVING expression that contains IN or a comparison operator
that is modified by ANY or ALL. This example displays the populations of oil-producing
countries. The subquery first returns all countries that are found in the OILPROD

76 Correlated Subqueries � Chapter 3

table. The outer query then matches countries in the COUNTRIES table to the results
of the subquery.

proc sql outobs=5;
title ’Populations of Major Oil Producing Countries’;
select name ’Country’, Population format=comma15.

from sql.countries
where Name in

(select Country from sql.oilprod);

Output 3.28 Multiple-Value Subquery Using IN

Populations of Major Oil Producing Countries

Country Population
--
Algeria 28,171,132
Canada 28,392,302
China 1,202,215,077
Egypt 59,912,259
Indonesia 202,393,859

If you use the NOT IN operator in this query, then the query result will contain all
the countries that are not contained in the OILPROD table.

proc sql outobs=5;
title ’Populations of NonMajor Oil Producing Countries’;
select name ’Country’, Population format=comma15.

from sql.countries
where Name not in

(select Country from sql.oilprod);

Output 3.29 Multiple-Value Subquery Using NOT IN

Populations of NonMajor Oil Producing Countries

Country Population
--
Afghanistan 17,070,323
Albania 3,407,400
Andorra 64,634
Angola 9,901,050
Antigua and Barbuda 65,644

Correlated Subqueries
The previous subqueries have been simple subqueries that are self-contained and

that execute independently of the outer query. A correlated subquery requires a value
or values to be passed to it by the outer query. After the subquery runs, it passes the
results back to the outer query. Correlated subqueries can return single or multiple
values.

Retrieving Data from Multiple Tables � Testing for the Existence of a Group of Values 77

This example selects all major oil reserves of countries on the continent of Africa.

proc sql;
title ’Oil Reserves of Countries in Africa’;
select * from sql.oilrsrvs o

where ’Africa’ =
(select Continent from sql.countries c

where c.Name = o.Country);

The outer query selects the first row from the OILRSRVS table and then passes the
value of the Country column, Algeria, to the subquery. At this point, the subquery
internally looks like this:

(select Continent from sql.countries c
where c.Name = ’Algeria’);

The subquery selects that country from the COUNTRIES table. The subquery then
passes the country’s continent back to the WHERE clause in the outer query. If the
continent is Africa, then the country is selected and displayed. The outer query then
selects each subsequent row from the OILRSRVS table and passes the individual values
of Country to the subquery. The subquery returns the appropriate values of Continent
to the outer query for comparison in its WHERE clause.

Note that the WHERE clause uses an = (equal) operator. You can use an = if the
subquery returns only a single value. However, if the subquery returns multiple values,
then you must use IN or a comparison operator with ANY or ALL. For detailed
information about the operators that are available for use with subqueries, see the
section about the SQL procedure in the Base SAS Procedures Guide.

Output 3.30 Correlated Subquery

Oil Reserves of Countries in Africa

Country Barrels

Algeria 9,200,000,000
Egypt 4,000,000,000
Gabon 1,000,000,000
Libya 30,000,000,000
Nigeria 16,000,000,000

Testing for the Existence of a Group of Values
The EXISTS condition tests for the existence of a set of values. An EXISTS condition

is true if any rows are produced by the subquery, and it is false if no rows are produced.
Conversely, the NOT EXISTS condition is true when a subquery produces an empty
table.

This example produces the same result as Output 3.30. EXISTS checks for the
existence of countries that have oil reserves on the continent of Africa. Note that the
WHERE clause in the subquery now contains the condition Continent = ’Africa’
that was in the outer query in the previous example.

proc sql;
title ’Oil Reserves of Countries in Africa’;
select * from sql.oilrsrvs o

where exists

78 Multiple Levels of Subquery Nesting � Chapter 3

(select Continent from sql.countries c
where o.Country = c.Name and

Continent = ’Africa’);

Output 3.31 Testing for the Existence of a Group of Values

Oil Reserves of Countries in Africa

Country Barrels

Algeria 9,200,000,000
Egypt 4,000,000,000
Gabon 1,000,000,000
Libya 30,000,000,000
Nigeria 16,000,000,000

Multiple Levels of Subquery Nesting
Subqueries can be nested so that the innermost subquery returns a value or values

to be used by the next outer query. Then, that subquery’s value(s) are used by the next
outer query, and so on. Evaluation always begins with the innermost subquery and
works outward.

This example lists cities in Africa that are in countries with major oil reserves.
u The innermost query is evaluated first. It returns countries that are located on

the continent of Africa.
v The outer subquery is evaluated. It returns a subset of African countries that

have major oil reserves by comparing the list of countries that was returned by the
inner subquery against the countries in OILRSRVS.

w Finally, the WHERE clause in the outer query lists the coordinates of the cities
that exist in the WORLDCITYCOORDS table whose countries match the results of
the outer subquery.

proc sql;
title ’Coordinates of African Cities with Major Oil Reserves’;
select * from sql.worldcitycoords

w where country in
v (select Country from sql.oilrsrvs o

where o.Country in =
u (select Name from sql.countries c
where c.Continent=’Africa’));

Retrieving Data from Multiple Tables � Combining a Join with a Subquery 79

Output 3.32 Multiple Levels of Subquery Nesting

Coordinates of African Cities with Major Oil Reserves

City Country Latitude Longitude

Algiers Algeria 37 3
Cairo Egypt 30 31
Benghazi Libya 33 21
Lagos Nigeria 6 3

Combining a Join with a Subquery
You can combine joins and subqueries in a single query. Suppose that you want to

find the city nearest to each city in the USCITYCOORDS table. The query must first
select a city A, compute the distance from city A to every other city, and finally select
the city with the minimum distance from city A. This can be done by joining the
USCITYCOORDS table to itself (self-join) and then determining the closest distance
between cities by using another self-join in a subquery.

This is the formula to determine the distance between coordinates:

SQRT(((Latitude2−Latitude1)**2) + ((Longitude2−Longitude1)**2))

Although the results of this formula are not exactly accurate because of the
distortions caused by the curvature of the earth, they are accurate enough for this
example to determine if one city is closer than another.

proc sql outobs=10;
title ’Neighboring Cities’;
select a.City format=$10., a.State,

a.Latitude ’Lat’, a.Longitude ’Long’,
b.City format=$10., b.State,
b.Latitude ’Lat’, b.Longitude ’Long’,
sqrt(((b.latitude-a.latitude)**2) +

((b.longitude-a.longitude)**2)) as dist format=6.1
from sql.uscitycoords a, sql.uscitycoords b
where a.city ne b.city and

calculated dist =
(select min(sqrt(((d.latitude-c.latitude)**2) +

((d.longitude-c.longitude)**2)))
from sql.uscitycoords c, sql.uscitycoords d
where c.city = a.city and

c.state = a.state and
d.city ne c.city)

order by a.city;

80 When to Use Joins and Subqueries � Chapter 3

Output 3.33 Combining a Join with a Subquery

Neighboring Cities

City State Lat Long City State Lat Long dist
--
Albany NY 43 -74 Hartford CT 42 -73 1.4
Albuquerqu NM 36 -106 Santa Fe NM 36 -106 0.0
Amarillo TX 35 -102 Carlsbad NM 32 -104 3.6
Anchorage AK 61 -150 Nome AK 64 -165 15.3
Annapolis MD 39 -77 Washington DC 39 -77 0.0
Atlanta GA 34 -84 Knoxville TN 36 -84 2.0
Augusta ME 44 -70 Portland ME 44 -70 0.0
Austin TX 30 -98 San Antoni TX 29 -98 1.0
Baker OR 45 -118 Lewiston ID 46 -117 1.4
Baltimore MD 39 -76 Dover DE 39 -76 0.0

The outer query joins the table to itself and determines the distance between the first
city A1 in table A and city B2 (the first city that is not equal to city A1) in Table B.
PROC SQL then runs the subquery. The subquery does another self-join and calculates
the minimum distance between city A1 and all other cities in the table other than city
A1. The outer query tests to see if the distance between cities A1 and B2 is equal to the
minimum distance that was calculated by the subquery. If they are equal, then a row
that contains cities A1 and B2 with their coordinates and distance is written.

When to Use Joins and Subqueries
Use a join or a subquery any time that you reference information from multiple

tables. Joins and subqueries are often used together in the same query. In many cases,
you can solve a data retrieval problem by using a join, a subquery, or both. Here are
some guidelines for using joins and queries.

� If your report needs data that is from more than one table, then you must perform
a join. Whenever multiple tables (or views) are listed in the FROM clause, those
tables become joined.

� If you need to combine related information from different rows within a table, then
you can join the table with itself.

� Use subqueries when the result that you want requires more than one query and
each subquery provides a subset of the table involved in the query.

� If a membership question is asked, then a subquery is usually used. If the query
requires a NOT EXISTS condition, then you must use a subquery because NOT
EXISTS operates only in a subquery; the same principle holds true for the EXISTS
condition.

� Many queries can be formulated as joins or subqueries. Although the PROC SQL
query optimizer changes some subqueries to joins, a join is generally more efficient
to process.

Retrieving Data from Multiple Tables � Working with Two or More Query Results 81

Combining Queries with Set Operators

Working with Two or More Query Results
PROC SQL can combine the results of two or more queries in various ways by using

the following set operators:

UNION produces all unique rows from both queries.

EXCEPT produces rows that are part of the first query only.

INTERSECT produces rows that are common to both query results.

OUTER UNION concatenates the query results.

The operator is used between the two queries, for example:

select columns from table
set-operator
select columns from table;

Place a semicolon after the last SELECT statement only. Set operators combine
columns from two queries based on their position in the referenced tables without
regard to the individual column names. Columns in the same relative position in the
two queries must have the same data types. The column names of the tables in the first
query become the column names of the output table. For information about using set
operators with more than two query results, see the section about the SQL procedure in
the Base SAS Procedures Guide. The following optional keywords give you more control
over set operations:

ALL
does not suppress duplicate rows. When the keyword ALL is specified, PROC SQL
does not make a second pass through the data to eliminate duplicate rows. Thus,
using ALL is more efficient than not using it. ALL is not necessary with the
OUTER UNION operator.

CORRESPONDING (CORR)
overlays columns that have the same name in both tables. When used with
EXCEPT, INTERSECT, and UNION, CORR suppresses columns that are not in
both tables.

Each set operator is described and used in an example based on the following two
tables.

Output 3.34 Tables Used in Set Operation Examples

Table A

x y

1 one
2 two
2 two
3 three

82 Producing Unique Rows from Both Queries (UNION) � Chapter 3

Table B

x z

1 one
2 two
4 four

Whereas join operations combine tables horizontally, set operations combine tables
vertically. Therefore, the set diagrams that are included in each section are displayed
vertically.

Producing Unique Rows from Both Queries (UNION)

The UNION operator combines two query results. It produces all the unique rows
that result from both queries; that is, it returns a row if it occurs in the first table, the
second, or both. UNION does not return duplicate rows. If a row occurs more than
once, then only one occurrence is returned.

proc sql;
title ’A UNION B’;
select * from sql.a
union
select * from sql.b;

Output 3.35 Producing Unique Rows from Both Queries (UNION)

A UNION B

x y

1 one
2 two
3 three
4 four

You can use the ALL keyword to request that duplicate rows remain in the output.

proc sql;
title ’A UNION ALL B’;
select * from sql.a
union all
select * from sql.b;

Retrieving Data from Multiple Tables � Producing Rows That Are in Only the First Query Result (EXCEPT) 83

Output 3.36 Producing Rows from Both Queries (UNION ALL)

A UNION ALL B

x y

1 one
2 two
2 two
3 three
1 one
2 two
4 four

Producing Rows That Are in Only the First Query Result (EXCEPT)

The EXCEPT operator returns rows that result from the first query but not from the
second query. In this example, the row that contains the values 3 and three exists in
the first query (table A) only and is returned by EXCEPT.

proc sql;
title ’A EXCEPT B’;
select * from sql.a
except
select * from sql.b;

Output 3.37 Producing Rows That Are in Only the First Query Result (EXCEPT)

A EXCEPT B

x y

3 three

Note that the duplicated row in Table A containing the values 2 and two does not
appear in the output. EXCEPT does not return duplicate rows that are unmatched by
rows in the second query. Adding ALL keeps any duplicate rows that do not occur in
the second query.

proc sql;
title ’A EXCEPT ALL B’;

84 Producing Rows That Belong to Both Query Results (INTERSECT) � Chapter 3

select * from sql.a
except all
select * from sql.b;

Output 3.38 Producing Rows That Are in Only the First Query Result (EXCEPT ALL)

A EXCEPT ALL B

x y

2 two
3 three

Producing Rows That Belong to Both Query Results (INTERSECT)

The INTERSECT operator returns rows from the first query that also occur in the
second.

proc sql;
title ’A INTERSECT B’;
select * from sql.a
intersect
select * from sql.b;

Output 3.39 Producing Rows That Belong to Both Query Results (INTERSECT)

A INTERSECT B

x y

1 one
2 two

The output of an INTERSECT ALL operation contains the rows produced by the first
query that are matched one-to-one with a row produced by the second query. In this
example, the output of INTERSECT ALL is the same as INTERSECT.

Retrieving Data from Multiple Tables � Concatenating Query Results (OUTER UNION) 85

Concatenating Query Results (OUTER UNION)

The OUTER UNION operator concatenates the results of the queries. This example
concatenates tables A and B.

proc sql;
title ’A OUTER UNION B’;
select * from sql.a
outer union
select * from sql.b;

Output 3.40 Concatenating the Query Results (OUTER UNION)

A OUTER UNION B

x y x z

1 one .
2 two .
2 two .
3 three .
. 1 one
. 2 two
. 4 four

Notice that OUTER UNION does not overlay columns from the two tables. To
overlay columns in the same position, use the CORRESPONDING keyword.

proc sql;
title ’A OUTER UNION CORR B’;
select * from sql.a
outer union corr
select * from sql.b;

86 Producing Rows from the First Query or the Second Query � Chapter 3

Output 3.41 Concatenating the Query Results (OUTER UNION CORR)

A OUTER UNION CORR B

x y z

1 one
2 two
2 two
3 three
1 one
2 two
4 four

Producing Rows from the First Query or the Second Query

There is no keyword in PROC SQL that returns unique rows from the first and second
table, but not rows that occur in both. Here is one way you can simulate this operation:

(query1 except query2)
union
(query2 except query1)

This example shows how to use this operation.

proc sql;
title ’A EXCLUSIVE UNION B’;
(select * from sql.a

except
select * from sql.b)

union
(select * from sql.b

except
select * from sql.a);

Output 3.42 Producing Rows from the First Query or the Second Query

A EXCLUSIVE UNION B

x y

3 three
4 four

Retrieving Data from Multiple Tables � Producing Rows from the First Query or the Second Query 87

The first EXCEPT returns one unique row from the first table (table A) only. The
second EXCEPT returns one unique row from the second table (table B) only. The
middle UNION combines the two results. Thus, this query returns the row from the
first table that is not in the second table, as well as the row from the second table that
is not in the first table.

88

89

C H A P T E R

4
Creating and Updating Tables
and Views

Introduction 90
Creating Tables 90

Creating Tables from Column Definitions 90

Creating Tables from a Query Result 91

Creating Tables Like an Existing Table 92

Copying an Existing Table 93
Using Data Set Options 93

Inserting Rows into Tables 93

Inserting Rows with the SET Clause 93

Inserting Rows with the VALUES Clause 94

Inserting Rows with a Query 95

Updating Data Values in a Table 96
Updating All Rows in a Column with the Same Expression 96

Updating Rows in a Column with Different Expressions 97

Handling Update Errors 98

Deleting Rows 98

Altering Columns 99
Adding a Column 99

Modifying a Column 100

Deleting a Column 101

Creating an Index 102

Using PROC SQL to Create Indexes 102
Tips for Creating Indexes 102

Deleting Indexes 103

Deleting a Table 103

Using SQL Procedure Tables in SAS Software 103

Creating and Using Integrity Constraints in a Table 103

Creating and Using PROC SQL Views 105
Creating Views 106

Describing a View 106

Updating a View 107

Embedding a Libname in a View 107

Deleting a View 108
Specifying In-Line Views 108

Tips for Using SQL Procedure Views 109

Using SQL Procedure Views in SAS Software 109

90 Introduction � Chapter 4

Introduction
This chapter shows you how to
� create a table
� update tables
� alter existing tables
� delete a table
� create indexes
� use integrity constraints in table creation
� create views.

Creating Tables
The CREATE TABLE statement enables you to create tables without rows from

column definitions or to create tables from a query result. You can also use CREATE
TABLE to copy an existing table.

Creating Tables from Column Definitions
You can create a new table without rows by using the CREATE TABLE statement to

define the columns and their attributes. You can specify a column’s name, type, length,
informat, format, and label.

The following CREATE TABLE statement creates the NEWSTATES table:

proc sql;
create table sql.newstates

(state char(2), /* 2--character column for */
/* state abbreviation */

date num /* column for date of entry into the US */
informat=date9. /* with an informat */
format=date9., /* and format of DATE9. */

population num); /* column for population */

The table NEWSTATES has 3 columns and 0 rows. The char(2) modifier is used to
change the length for State.

Use the DESCRIBE TABLE statement to verify that the table exists and to see the
column attributes. The following DESCRIBE TABLE statement writes a CREATE
TABLE statement to the SAS log:

proc sql;
describe table sql.newstates;

Creating and Updating Tables and Views � Creating Tables from a Query Result 91

Output 4.1 Table Created from Column Definitions

1 proc sql;
2 describe table sql.newstates;
NOTE: SQL table SQL.NEWSTATES was created like:

create table SQL.NEWSTATES(bufsize=8192)
(
state char(2),
date num format=DATE9. informat=DATE9.,
population num

);

DESCRIBE TABLE writes a CREATE TABLE statement to the SAS log even if you
did not create the table with the CREATE TABLE statement. You can also use the
CONTENTS statement in the DATASETS procedure to get a description of
NEWSTATES.

Creating Tables from a Query Result
To create a PROC SQL table from a query result, use a CREATE TABLE statement,

and place it before the SELECT statement. When a table is created this way, its data is
derived from the table or view that is referenced in the query’s FROM clause. The new
table’s column names are as specified in the query’s SELECT clause list. The column
attributes (the type, length, informat, and format) are the same as those of the selected
source columns.

The following CREATE TABLE statement creates the DENSITIES table from the
COUNTRIES table. The newly created table is not displayed in SAS output unless you
query the table. Note the use of the OUTOBS option, which limits the size of the
DENSITIES table to 10 rows.

proc sql outobs=10;
title ’Densities of Countries’;
create table sql.densities as

select Name ’Country’ format $15.,
Population format=comma10.0,
Area as SquareMiles,
Population/Area format=6.2 as Density

from sql.countries;

select * from sql.densities;

92 Creating Tables Like an Existing Table � Chapter 4

Output 4.2 Table Created from a Query Result

Densities of Countries

Country Population SquareMiles Density

Afghanistan 17,070,323 251825 67.79
Albania 3,407,400 11100 306.97
Algeria 28,171,132 919595 30.63
Andorra 64,634 200 323.17
Angola 9,901,050 481300 20.57
Antigua and Bar 65,644 171 383.88
Argentina 34,248,705 1073518 31.90
Armenia 3,556,864 11500 309.29
Australia 18,255,944 2966200 6.15
Austria 8,033,746 32400 247.96

The following DESCRIBE TABLE statement writes a CREATE TABLE statement to
the SAS log:

proc sql;
describe table sql.densities;

Output 4.3 SAS Log for DESCRIBE TABLE Statement for DENSITIES

NOTE: SQL table SQL.DENSITIES was created like:

create table SQL.DENSITIES(bufsize=8192)
(
Name char(35) format=$15. informat=$35. label=’Country’,
Population num format=COMMA10. informat=BEST8. label=’Population’,
SquareMiles num format=BEST8. informat=BEST8. label=’SquareMiles’,
Density num format=6.2
);

In this form of the CREATE TABLE statement, assigning an alias to a column
renames the column, while assigning a label does not. In this example, the Area column
has been renamed to SquareMiles, and the calculated column has been named Densities.
However, the Name column retains its name, and its display label is Country.

Creating Tables Like an Existing Table
To create an empty table that has the same columns and attributes as an existing

table or view, use the LIKE clause in the CREATE TABLE statement. In the following
example, the CREATE TABLE statement creates the NEWCOUNTRIES table with 6
columns and 0 rows and with the same column attributes as those in COUNTRIES. The
DESCRIBE TABLE statement writes a CREATE TABLE statement to the SAS log:

proc sql;
create table sql.newcountries

like sql.countries;

describe table sql.newcountries;

Creating and Updating Tables and Views � Inserting Rows with the SET Clause 93

Output 4.4 SAS Log for DESCRIBE TABLE Statement for NEWCOUNTRIES

NOTE: SQL table SQL.NEWCOUNTRIES was created like:

create table SQL.NEWCOUNTRIES(bufsize=16384)
(
Name char(35) format=$35. informat=$35.,
Capital char(35) format=$35. informat=$35. label=’Capital’,
Population num format=BEST8. informat=BEST8. label=’Population’,
Area num format=BEST8. informat=BEST8.,
Continent char(35) format=$35. informat=$35. label=’Continent’,
UNDate num format=YEAR4.

);

Copying an Existing Table
A quick way to copy a table using PROC SQL is to use the CREATE TABLE

statement with a query that returns an entire table. This example creates
COUNTRIES1, which contains a copy of all the columns and rows that are in
COUNTRIES:

create table countries1 as
select * from sql.countries;

Using Data Set Options
You can use SAS data set options in the CREATE TABLE statement. The following

CREATE TABLE statement creates COUNTRIES2 from COUNTRIES. The DROP=
option deletes the UNDate column, and UNDate does not become part of COUNTRIES2:

create table countries2 as
select * from sql.countries(drop=UNDate);

Inserting Rows into Tables

Use the INSERT statement to insert data values into tables. The INSERT statement
first adds a new row to an existing table, then inserts the values that you specify into
the row. You specify values by using a SET clause or VALUES clause. You can also
insert the rows resulting from a query.

Under most conditions, you can insert data into tables through PROC SQL and
SAS/ACCESS views. See “Updating a View” on page 107.

Inserting Rows with the SET Clause
With the SET clause, you assign values to columns by name. The columns can

appear in any order in the SET clause. The following INSERT statement uses multiple
SET clauses to add two rows to NEWCOUNTRIES:

proc sql;
insert into sql.newcountries

94 Inserting Rows with the VALUES Clause � Chapter 4

set name=’Bangladesh’,
capital=’Dhaka’,
population=126391060

set name=’Japan’,
capital=’Tokyo’,
population=126352003;

title "World’s Largest Countries";
select name format=$20.,

capital format=$15.,
population format=comma15.0

from sql.newcountries;

Output 4.5 Rows Inserted with the SET Clause

World’s Largest Countries

Name Capital Population
--
Brazil Brasilia 160,310,357
China Beijing 1,202,215,077
India New Delhi 929,009,120
Indonesia Jakarta 202,393,859
Russia Moscow 151,089,979
United States Washington 263,294,808
Bangladesh Dhaka 126,391,060
Japan Tokyo 126,352,003

Note the following features of SET clauses:
� As with other SQL clauses, use commas to separate columns. In addition, you

must use a semicolon after the last SET clause only.
� If you omit data for a column, then the value in that column is a missing value.
� To specify that a value is missing, use a blank in single quotation marks for

character values and a period for numeric values.

Inserting Rows with the VALUES Clause
With the VALUES clause, you assign values to a column by position. The following

INSERT statement uses multiple VALUES clauses to add rows to NEWCOUNTRIES.
Recall that NEWCOUNTRIES has six columns, so it is necessary to specify a value or
an appropriate missing value for all six columns. See the results of the DESCRIBE
TABLE statement in “Creating Tables Like an Existing Table” on page 92 for
information about the columns of NEWCOUNTRIES.

proc sql;
insert into sql.newcountries

values (’Pakistan’, ’Islamabad’, 123060000, ., ’ ’, .)
values (’Nigeria’, ’Lagos’, 99062000, ., ’ ’, .);

title "World’s Largest Countries";
select name format=$20.,

capital format=$15.,
population format=comma15.0

from sql.newcountries;

Creating and Updating Tables and Views � Inserting Rows with a Query 95

Output 4.6 Rows Inserted with the Values Clause

World’s Largest Countries

Name Capital Population
--
Brazil Brasilia 160,310,357
China Beijing 1,202,215,077
India New Delhi 929,009,120
Indonesia Jakarta 202,393,859
Russia Moscow 151,089,979
United States Washington 263,294,808
Pakistan Islamabad 123,060,000
Nigeria Lagos 99,062,000

Note the following features of VALUES clauses:
� As with other SQL clauses, use commas to separate columns. In addition, you

must use a semicolon after the last VALUES clause only.
� If you omit data for a column without indicating a missing value, then you receive

an error message and the row is not inserted.
� To specify that a value is missing, use a space in single quotation marks for

character values and a period for numeric values.

Inserting Rows with a Query
You can insert the rows from a query result into a table. The following query returns

rows for large countries (over 130 million in population) from the COUNTRIES table.
The INSERT statement adds the data to the empty table NEWCOUNTRIES, which was
created earlier in “Creating Tables Like an Existing Table” on page 92:

proc sql;
create table sql.newcountries

like sql.countries;

proc sql;
title "World’s Largest Countries";
insert into sql.newcountries
select * from sql.countries

where population ge 130000000;

select name format=$20.,
capital format=$15.,
population format=comma15.0

from sql.newcountries;

96 Updating Data Values in a Table � Chapter 4

Output 4.7 Rows Inserted with a Query

World’s Largest Countries

Name Capital Population
--
Brazil Brasilia 160,310,357
China Beijing 1,202,215,077
India New Delhi 929,009,120
Indonesia Jakarta 202,393,859
Russia Moscow 151,089,979
United States Washington 263,294,808

If your query does not return data for every column, then you receive an error
message, and the row is not inserted. For more information about how PROC SQL
handles errors during data insertions, see “Handling Update Errors” on page 98.

Updating Data Values in a Table
You can use the UPDATE statement to modify data values in tables and in the tables

that underlie PROC SQL and SAS/ACCESS views. For more information about
updating views, see “Updating a View” on page 107. The UPDATE statement updates
data in existing columns; it does not create new columns. To add new columns, see
“Altering Columns” on page 99 and “Creating New Columns” on page 18. The examples
in this section update the original NEWCOUNTRIES table.

Updating All Rows in a Column with the Same Expression
The following UPDATE statement increases all populations in the NEWCOUNTRIES

table by five percent:

proc sql;
update sql.newcountries

set population=population*1.05;
title "Updated Population Values";
select name format=$20.,

capital format=$15.,
population format=comma15.0

from sql.newcountries;

Creating and Updating Tables and Views � Updating Rows in a Column with Different Expressions 97

Output 4.8 Updating a Column for All Rows

Updated Population Values

Name Capital Population
--
Brazil Brasilia 168,325,875
China Beijing 1,262,325,831
India New Delhi 975,459,576
Indonesia Jakarta 212,513,552
Russia Moscow 158,644,478
United States Washington 276,459,548

Updating Rows in a Column with Different Expressions
If you want to update some, but not all, of a column’s values, then use a WHERE

expression in the UPDATE statement. You can use multiple UPDATE statements, each
with a different expression. However, each UPDATE statement can have only one
WHERE clause. The following UPDATE statements result in different population
increases for different countries in the NEWCOUNRTRIES table.

proc sql;
update sql.newcountries

set population=population*1.05
where name like ’B%’;

update sql.newcountries
set population=population*1.07

where name in (’China’, ’Russia’);

title "Selectively Updated Population Values";
select name format=$20.,

capital format=$15.,
population format=comma15.0

from sql.newcountries;

Output 4.9 Selectively Updating a Column

Selectively Updated Population Values

Name Capital Population
--
Brazil Brasilia 168,325,875
China Beijing 1,286,370,132
India New Delhi 929,009,120
Indonesia Jakarta 202,393,859
Russia Moscow 161,666,278
United States Washington 263,294,808

You can accomplish the same result with a CASE expression:

update sql.newcountries
set population=population*

98 Handling Update Errors � Chapter 4

case when name like ’B%’ then 1.05
when name in (’China’, ’Russia’) then 1.07
else 1

end;

If the WHEN clause is true, then the corresponding THEN clause returns a value that
the SET clause then uses to complete its expression. In this example, when Name
starts with the letter B, the SET expression becomes population=population*1.05.

CAUTION:
Make sure that you specify the ELSE clause. If you omit the ELSE clause, then each
row that is not described in one of the WHEN clauses receives a missing value for
the column that you are updating. This happens because the CASE expression
supplies a missing value to the SET clause, and the Population column is multiplied
by a missing value, which produces a missing value. �

Handling Update Errors
While you are updating or inserting rows in a table, you may receive an error message

that the update or insert cannot be performed. By using the UNDO_POLICY option,
you can control whether the changes that have already been made will be permanent.

The UNDO _POLICY option in the PROC SQL and RESET statements determines
how PROC SQL handles the rows that have been inserted or updated by the current
INSERT or UPDATE statement up to the point of error.

UNDO_POLICY=REQUIRED
is the default. It undoes all updates or inserts up to the point of error.

UNDO_POLICY=NONE
does not undo any updates or inserts.

UNDO_POLICY=OPTIONAL
undoes any updates or inserts that it can undo reliably.

Deleting Rows
The DELETE statement deletes one or more rows in a table or in a table that

underlies a PROC SQL or SAS/ACCESS view. For more information about deleting
rows from views, see “Updating a View” on page 107. The following DELETE statement
deletes the names of countries that begin with the letter R:

proc sql;
delete

from sql.newcountries
where name like ’R%’;

A note in the SAS log tells you how many rows were deleted.

Output 4.10 SAS Log for DELETE statement

NOTE: 1 row was deleted from SQL.NEWCOUNTRIES.

Creating and Updating Tables and Views � Adding a Column 99

Note: For PROC SQL tables, SAS deletes the data in the rows but retains the space
in the table. �

CAUTION:
If you use the DELETE statement without a WHERE clause, then all rows are deleted. �

Altering Columns
The ALTER TABLE statement adds, modifies, and deletes columns in existing tables.

You can use the ALTER TABLE statement with tables only; it does not work with
views. A note appears in the SAS log that describes how you have modified the table.

Adding a Column
The ADD clause adds a new column to an existing table. You must specify the column

name and data type. You can also specify a length (LENGTH=), format (FORMAT=),
informat (INFORMAT=), and a label (LABEL=). The following ALTER TABLE
statement adds the numeric data column Density to the NEWCOUNTRIES table:

proc sql;
alter table sql.newcountries

add density num label=’Population Density’ format=6.2;

title "Population Density Table";
select name format=$20.,

capital format=$15.,
population format=comma15.0,
density

from sql.newcountries;

Output 4.11 Adding a New Column

Population Density Table

Population
Name Capital Population Density
--
Brazil Brasilia 160,310,357 .
China Beijing 1,202,215,077 .
India New Delhi 929,009,120 .
Indonesia Jakarta 202,393,859 .
Russia Moscow 151,089,979 .
United States Washington 263,294,808 .

The new column is added to NEWCOUNTRIES, but it has no data values. The
following UPDATE statement changes the missing values for Density from missing to
the appropriate population densities for each country:

proc sql;
update sql.newcountries

set density=population/area;

100 Modifying a Column � Chapter 4

title "Population Density Table";
select name format=$20.,

capital format=$15.,
population format=comma15.0,
density

from sql.newcountries;

Output 4.12 Filling in the New Column’s Values

Population Density Table

Population
Name Capital Population Density
--
Brazil Brasilia 160,310,357 48.78
China Beijing 1,202,215,077 325.27
India New Delhi 929,009,120 759.86
Indonesia Jakarta 202,393,859 273.10
Russia Moscow 151,089,979 22.92
United States Washington 263,294,808 69.52

For more information about how to change data values, see “Updating Data Values in
a Table” on page 96.

You can accomplish the same update by using an arithmetic expression to create the
Population Density column as you recreate the table:

proc sql;
create table sql.newcountries as
select *, population/area as density

label=’Population Density’
format=6.2

from sql.newcountries;

See “Calculating Values” on page 19 for another example of creating columns with
arithmetic expressions.

Modifying a Column
You can use the MODIFY clause to change the width, informat, format, and label of a

column. To change a column’s name, use the RENAME= data set option. You cannot
change a column’s data type by using the MODIFY clause.

The following MODIFY clause permanently changes the format for the Population
column:

proc sql;
title "World’s Largest Countries";
alter table sql.newcountries

modify population format=comma15.;
select name, population from sql.newcountries;

Creating and Updating Tables and Views � Deleting a Column 101

Output 4.13 Modifying a Column Format

World’s Largest Countries

Name Population
--
Brazil 160,310,357
China 1,202,215,077
India 929,009,120
Indonesia 202,393,859
Russia 151,089,979
United States 263,294,808

You may have to change a column’s width (and format) before you can update the
column. For example, before you can prefix a long text string to Name, you must
change the width and format of Name from 35 to 60. The following statements modify
and update the Name column:

proc sql;
title "World’s Largest Countries";
alter table sql.newcountries

modify name char(60) format=$60.;
update sql.newcountries

set name=’The United Nations member country is ’||name;

select name from sql.newcountries;

Output 4.14 Changing a Column’s Width

World’s Largest Countries

Name
--
The United Nations member country is Brazil
The United Nations member country is China
The United Nations member country is India
The United Nations member country is Indonesia
The United Nations member country is Russia
The United Nations member country is United States

Deleting a Column
The DROP clause deletes columns from tables. The following DROP clause deletes

UNDate from NEWCOUNTRIES:

proc sql;
alter table sql.newcountries

drop undate;

102 Creating an Index � Chapter 4

Creating an Index

An index is a file that is associated with a table. The index enables access to rows by
index value. Indexes can provide quick access to small subsets of data, and they can
enhance table joins. You can create indexes, but you cannot instruct PROC SQL to use
an index. PROC SQL determines whether it is efficient to use the index.

Some columns may not be appropriate for an index. In general, create indexes for
columns that have many unique values or are columns that you use regularly in joins.

Using PROC SQL to Create Indexes
You can create a simple index, which applies to one column only. The name of a

simple index must be the same as the name of the column that it indexes. Specify the
column name in parentheses after the table name. The following CREATE INDEX
statement creates an index for the Area column in NEWCOUNTRIES:

proc sql;
create index area

on sql.newcountries(area);

You can also create a composite index, which applies to two or more columns. The
following CREATE INDEX statement creates the index Places for the Name and
Continent columns in NEWCOUNTRIES:

proc sql;
create index places

on sql.newcountries(name, continent);

To ensure that each value of the indexed column (or each combination of values of
the columns in a composite index) is unique, use the UNIQUE keyword:

proc sql;
create unique index places

on sql.newcountries(name, continent);

Using the UNIQUE keyword causes SAS to reject any change to a table that would
cause more than one row to have the same index value.

Tips for Creating Indexes

� The name of the composite index cannot be the same as the name of one of the
columns in the table.

� If you use two columns to access data regularly, such as a first name column and a
last name column from an employee database, then you should create a composite
index for the columns.

� Keep the number of indexes to a minimum to reduce disk space and update costs.

� Use indexes for queries that retrieve a relatively small number of rows (less than
15%).

� In general, indexing a small table does not result in a performance gain.

� In general, indexing on a column with a small number (less than 6 or 7) of distinct
values does not result in a performance gain.

Creating and Updating Tables and Views � Creating and Using Integrity Constraints in a Table 103

� You can use the same column in a simple index and in a composite index.
However, for tables that have a primary key integrity constraint, do not create
more than one index that is based on the same column as the primary key.

Deleting Indexes
To delete an index from a table, use the DROP INDEX statement. The following

DROP INDEX statement deletes the index Places from NEWCOUNTRIES:

proc sql;
drop index places from sql.newcountries;

Deleting a Table
To delete a PROC SQL table, use the DROP TABLE statement:

proc sql;
drop table sql.newcountries;

Using SQL Procedure Tables in SAS Software
Because PROC SQL tables are SAS data files, you can use them as input to a DATA

step or to other SAS procedures. For example, the following PROC MEANS step
calculates the mean for Area for all countries in COUNTRIES:

proc means data=sql.countries mean maxdec=2;
title "Mean Area for All Countries";
var area;

run;

Output 4.15 Using a PROC SQL Table in PROC MEANS

Mean Area for All Countries

The MEANS Procedure

Analysis Variable : Area

Mean

250249.01

Creating and Using Integrity Constraints in a Table
Integrity constraints are rules that you specify to guarantee the accuracy,

completeness, or consistency of data in tables. All integrity constraints are enforced
when you insert, delete, or alter data values in the columns of a table for which integrity

104 Creating and Using Integrity Constraints in a Table � Chapter 4

constraints have been defined. Before a constraint is added to a table that contains
existing data, all the data is checked to determine that it satisfies the constraints.

You can use general integrity constraints to verify that data in a column is
� nonmissing
� unique
� both nonmissing and unique
� within a specified set or range of values.

You can also apply referential integrity constraints to link the values in a specified
column (called a primary key) of one table to values of a specified column in another
table. When linked to a primary key, a column in the second table is called a foreign key.

When you define referential constraints, you can also choose what action occurs when
a value in the primary key is updated or deleted.

� You can prevent the primary key value from being updated or deleted when
matching values exist in the foreign key. This is the default.

� You can allow updates and deletions to the primary key values. By default, any
affected foreign key values are changed to missing values. However, you can
specify the CASCADE option to update foreign key values instead. Currently, the
CASCADE option does not apply to deletions.

You can choose separate actions for updates and for deletions.

Note: Integrity constraints cannot be defined for views. �

The following example creates integrity constraints for a table, MYSTATES, and
another table, USPOSTAL. The constraints are as follows:

� state name must be unique and nonmissing in both tables
� population must be greater than 0
� continent must be either North America or Oceania.

proc sql;
create table sql.mystates

(state char(15),
population num,
continent char(15),

/* contraint specifications */
constraint prim_key primary key(state),
constraint population check(population gt 0),
constraint continent check(continent in (’North America’, ’Oceania’)));

create table sql.uspostal
(name char(15),
code char(2) not null, /* constraint specified as */

/* a column attribute */

constraint for_key foreign key(name) /* links NAME to the */
references sql.mystates /* primary key in MYSTATES */

on delete restrict /* forbids deletions to STATE */
/* unless there is no */
/* matching NAME value */

on update set null); /* allows updates to STATE, */

Creating and Updating Tables and Views � Creating and Using PROC SQL Views 105

/* changes matching NAME */
/* values to missing */

The DESCRIBE TABLE statement displays the integrity constraints in the SAS log
as part of the table description. The DESCRIBE TABLE CONSTRAINTS statement
writes only the constraint specifications to the SAS log.

proc sql;
describe table sql.mystates;
describe table constraints sql.uspostal;

Output 4.16 SAS Log Showing Integrity Constraints

NOTE: SQL table SQL.MYSTATES was created like:

create table SQL.MYSTATES(bufsize=8192)
(
state char(15),
population num,
continent char(15)

);
create unique index state on SQL.MYSTATES(state);

-----Alphabetic List of Integrity Constraints-----

Integrity Where On On
Constraint Type Variables Clause Reference Delete Update

-49 continent Check continent in

(’North
America’,
’Oceania’)

-48 population Check population>0
-47 prim_key Primary Key state

for_key Referential name SQL. Restrict Set Null
USPOSTAL

NOTE: SQL table SQL.USPOSTAL (bufsize=8192) has the following integrity
constraint(s):

-----Alphabetic List of Integrity Constraints-----

Integrity On On
Constraint Type Variables Reference Delete Update

1 _NM0001_ Not Null code
2 for_key Foreign Key name SQL.MYSTATES Restrict Set Null

Integrity constraints cannot be used in views. For more information about integrity
constraints, see SAS Language Reference: Concepts.

Creating and Using PROC SQL Views

A PROC SQL view contains a stored query that is executed when you use the view in
a SAS procedure or DATA step. Views are useful because they

106 Creating Views � Chapter 4

� often save space, because a view is frequently quite small compared with the data
that it accesses.

� prevent users from continually submitting queries to omit unwanted columns or
rows.

� shield sensitive or confidential columns from users while enabling the same users
to view other columns in the same table.

� ensure that input data sets are always current, because data is derived from
tables at execution time.

� hide complex joins or queries from users.

Creating Views
To create a PROC SQL view, use the CREATE VIEW statement, as shown in the

following example:

proc sql;
title ’Current Population Information for Continents’;
create view sql.newcontinents as
select continent,

sum(population) as totpop format=comma15. label=’Total Population’,
sum(area) as totarea format=comma15. label=’Total Area’

from sql.countries
group by continent;

select * from sql.newcontinents;

Output 4.17 An SQL Procedure View

Current Population Information for Continents

Total
Continent Population Total Area

384,772 876,800
Africa 710,529,592 11,299,595
Asia 3,381,858,879 12,198,325
Australia 18,255,944 2,966,200
Central America and Caribbean 66,815,930 291,463
Europe 813,335,288 9,167,084
North America 384,801,818 8,393,092
Oceania 5,342,368 129,600
South America 317,568,801 6,885,418

Note: In this example, each column has a name. If you are planning to use a view
in a procedure that requires variable names, then you must supply column aliases that
you can reference as variable names in other procedures. For more information, see
“Using SQL Procedure Views in SAS Software” on page 109. �

Describing a View
The DESCRIBE VIEW statement writes a description of the PROC SQL view to the

SAS log. The following SAS log describes the view NEWCONTINENTS, which is
created in “Creating Views” on page 106:

Creating and Updating Tables and Views � Embedding a Libname in a View 107

proc sql;
describe view sql.newcontinents;

Output 4.18 SAS Log from DESCRIBE VIEW Statement

NOTE: SQL view SQL.NEWCONTINENTS is defined as:

select continent, SUM(population) as totpop label=’Total Population’
format=COMMA15.0, SUM(area) as totarea label=’Total Area’ format=COMMA15.0

from SQL.COUNTRIES
group by continent;

Updating a View
You can update data through a PROC SQL and SAS/ACCESS view with the INSERT,

DELETE, and UPDATE statements, under the following conditions.
� You can update only a single table through a view. The underlying table cannot be

joined to another table or linked to another table with a set operator. The view
cannot contain a subquery.

� If the view accesses a DBMS table, then you must have been granted the
appropriate authorization by the external database management system (for
example, ORACLE). You must have installed the SAS/ACCESS software for your
DBMS. See the SAS/ACCESS documentation for your DBMS for more information
about SAS/ACCESS views.

� You can update a column in a view by using the column’s alias, but you cannot
update a derived column, that is, a column that is produced by an expression. In
the following example, you can update SquareMiles, but not Density:

proc sql;
create view mycountries as

select Name,
area as SquareMiles,
population/area as Density

from sql.countries;

� You can update a view that contains a WHERE clause. The WHERE clause can be
in the UPDATE clause or in the view. You cannot update a view that contains any
other clause, such as ORDER BY, HAVING, and so forth.

Embedding a Libname in a View
You can embed a SAS LIBNAME statement or a SAS/ACCESS LIBNAME statement

in a view by using the USING LIBNAME clause. When PROC SQL executes the view,
the stored query assigns the libref. For SAS/ACCESS libnames, PROC SQL establishes
a connection to a DBMS. The scope of the libref is local to the view and does not conflict
with any identically named librefs in the SAS session. When the query finishes, the
libref is disassociated. The connection to the DBMS is terminated and all data in the
library becomes unavailable.

The advantage of embedded libnames is that you can store engine-host options and
DBMS connection information, such as passwords, in the view. That, in turn, means
that you do not have to remember and reenter that information when you want to use
the libref.

108 Deleting a View � Chapter 4

Note: The USING LIBNAME clause must be the last clause in the SELECT
statement. Multiple clauses can be specified, separated by commas. �

In the following example, the libname OILINFO is assigned and a connection is
made to an ORACLE database:

proc sql;
create view sql.view1 as

select *
from oilinfo.reserves as newreserves
using libname oilinfo oracle

user=username
pass=password
path=’dbms-path’;

For more information about the SAS/ACCESS LIBNAME statement, see the SAS/
ACCESS documentation for your DBMS.

The following example embeds a SAS LIBNAME statement in a view:

proc sql;
create view sql.view2 as

select *
from oil.reserves
using libname oil ’SAS-data-library’;

Deleting a View
To delete a view, use the DROP VIEW statement:

proc sql;
drop view sql.newcontinents;

Specifying In-Line Views
In some cases, you may want to use a query in a FROM clause instead of a table or

view. You could create a view and refer to it in your FROM clause, but that process
involves two steps. To save the extra step, specify the view in-line, enclosed in
parentheses, in the FROM clause.

An in-line view is a query that appears in the FROM clause. An in-line view
produces a table internally that the outer query uses to select data. Unlike views that
are created with the CREATE VIEW statement, in-line views are not assigned names
and cannot be referenced in other queries or SAS procedures as if they were tables. An
in-line view can be referenced only in the query in which it is defined.

In the following query, the populations of all Caribbean and Central American
countries are summed in an in-line query. The WHERE clause compares the sum with
the populations of individual countries. Only countries that have a population greater
than the sum of Caribbean and Central American populations are displayed.

proc sql;
title ’Countries With Population GT Caribbean Countries’;
select w.Name, w.Population format=comma15., c.TotCarib

from (select sum(population) as TotCarib format=comma15.
from sql.countries

where continent = ’Central America and Caribbean’) as c,
sql.countries as w

where w.population gt c.TotCarib;

Creating and Updating Tables and Views � Using SQL Procedure Views in SAS Software 109

Output 4.19 Using an In-Line View

Countries With Population GT Caribbean Countries

Name Population TotCarib

Bangladesh 126,387,850 66,815,930
Brazil 160,310,357 66,815,930
China 1,202,215,077 66,815,930
Germany 81,890,690 66,815,930
India 929,009,120 66,815,930
Indonesia 202,393,859 66,815,930
Japan 126,345,434 66,815,930
Mexico 93,114,708 66,815,930
Nigeria 99,062,003 66,815,930
Pakistan 123,062,252 66,815,930
Philippines 70,500,039 66,815,930
Russia 151,089,979 66,815,930
United States 263,294,808 66,815,930
Vietnam 73,827,657 66,815,930

Tips for Using SQL Procedure Views

� Avoid using an ORDER BY clause in a view. If you specify an ORDER BY clause,
then the data must be sorted each time that the view is referenced.

� If data is used many times in one program or in multiple programs, then it is more
efficient to create a table rather than a view. If a view is referenced often in one
program, then the data must be accessed at each reference.

� If the view resides in the same SAS data library as the contributing table(s), then
specify a one-level name in the FROM clause. The default for the libref for the
FROM clause’s table or tables is the libref of the library that contains the view.
This prevents you from having to change the view if you assign a different libref to
the SAS data library that contains the view and its contributing table or tables.
This tip is used in the view that is described in “Creating Views” on page 106.

� Avoid creating views that are based on tables whose structure may change. A view
is no longer valid when it references a nonexistent column.

Using SQL Procedure Views in SAS Software
You can use PROC SQL views as input to a DATA step or to other SAS procedures.

The syntax for using a PROC SQL view in SAS is the same as that for a PROC SQL
table. For an example, see “Using SQL Procedure Tables in SAS Software” on page 103.

110

111

C H A P T E R

5
Programming with the SQL
Procedure

Introduction 111
Using PROC SQL Options to Create and Debug Queries 112

Restricting Row Processing with the INOBS= and OUTOBS= Options 112

Limiting Iterations with the LOOPS= Option 112

Checking Syntax with the NOEXEC Option and the VALIDATE Statement 113

Expanding SELECT * with the FEEDBACK Option 113
Timing PROC SQL with the STIMER Option 114

Resetting PROC SQL Options with the RESET Statement 115

Improving Query Performance 115

Using Indexes to Improve Performance 115

Using the Keyword ALL in Set Operations 116

Omitting the ORDER BY Clause When Creating Tables and Views 116
Using In-Line Views versus Temporary Tables 116

Comparing Subqueries with Joins 116

Using WHERE Expressions with Joins 117

Accessing SAS System Information Using DICTIONARY Tables 117

Using DICTIONARY.TABLES 119
Using DICTIONARY.COLUMNS 119

Tips for Using DICTIONARY Tables 120

Using PROC SQL with the SAS Macro Facility 120

Creating Macro Variables in PROC SQL 121

Creating Macro Variables from the First Row of a Query Result 121
Creating a Macro Variable from the Result of an Aggregate Function 122

Creating Multiple Macro Variables 122

Concatenating Values in Macro Variables 123

Defining Macros to Create Tables 124

Using the PROC SQL Automatic Macro Variables 126

Formatting PROC SQL Output Using the REPORT Procedure 127
Accessing a DBMS with SAS/ACCESS Software 128

Using Libname Engines 129

Querying a DBMS Table 129

Creating a PROC SQL View of a DBMS Table 130

Displaying DBMS Data with the PROC SQL Pass-Through Facility 131
Using the Output Delivery System (ODS) with PROC SQL 132

Introduction
This section shows you
� the PROC SQL options that are most useful in creating and debugging queries
� ways to improve query performance

112 Using PROC SQL Options to Create and Debug Queries � Chapter 5

� what dictionary tables are and how they can be useful in gathering information
about the elements of SAS

� how to use PROC SQL with the SAS macro facility
� how to use PROC SQL with the REPORT procedure
� how to access DBMSs by using SAS/ACCESS software
� how to format PROC SQL output by using the SAS Output Delivery System (ODS).

Using PROC SQL Options to Create and Debug Queries
PROC SQL supports options that can give you greater control over PROC SQL while

you are developing a query:

� The INOBS=, OUTOBS=, and LOOPS= options reduce query execution time by
limiting the number of rows and number of iterations that PROC SQL processes.

� The EXEC and VALIDATE statements enable you to quickly check the syntax of a
query.

� The FEEDBACK option displays the columns that are represented by a SELECT *
statement.

� The PROC SQL STIMER option records and displays query execution time.

You can set an option initially in the PROC SQL statement and then use the RESET
statement to change the same option’s setting without ending the current PROC SQL
step.

Here are the PROC SQL options that are most useful when you are writing and
debugging queries.

Restricting Row Processing with the INOBS= and OUTOBS= Options
When you are developing queries against large tables, you can reduce the amount of

time that it takes for the queries to run by reducing the number of rows that PROC
SQL processes. Subsetting the tables with WHERE statements is one way to do this.
Using the INOBS= and the OUTOBS= options are other ways.

The INOBS= option restricts the number of rows that PROC SQL takes as input
from any single source. For example, if you specify INOBS=10, then PROC SQL uses
only 10 rows from any table or view that is specified in a FROM clause. If you specify
INOBS=10 and join two tables without using a WHERE clause, then the resulting table
(Cartesian product) contains a maximum of 100 rows. The INOBS= option is similar to
the SAS system option OBS=.

The OUTOBS= option restricts the number of rows that PROC SQL displays or
writes to a table. For example, if you specify OUTOBS=10 and insert values into a
table by using a query, then PROC SQL inserts a maximum of 10 rows into the
resulting table. OUTOBS= is similar to the SAS data set option OBS=.

In a simple query, there might be no apparent difference between using INOBS or
OUTOBS. Other times, however, it is important to choose the correct option. For
example, taking the average of a column with INOBS=10 returns an average of only 10
values from that column.

Limiting Iterations with the LOOPS= Option
The LOOPS= option restricts PROC SQL to the number of iterations that are

specified in this option through its inner loop. By setting a limit, you can prevent

Programming with the SQL Procedure � Expanding SELECT * with the FEEDBACK Option 113

queries from consuming excessive computer resources. For example, joining three large
tables without meeting the join-matching conditions could create a huge internal table
that would be inefficient to process. Use the LOOPS= option to prevent this from
happening.

You can use the number of iterations that are reported in the SQLOOPS macro
variable (after each PROC SQL statement is executed) to gauge an appropriate value
for the LOOPS= option. For more information, see “Using the PROC SQL Automatic
Macro Variables” on page 126.

If you use the PROMPT option with the INOBS=, OUTOBS=, or LOOPS= options,
then you are prompted to stop or continue processing when the limits set by these
options are reached.

Checking Syntax with the NOEXEC Option and the VALIDATE Statement
To check the syntax of a PROC SQL step without actually executing it, use the

NOEXEC option or the VALIDATE statement. Both the NOEXEC option and the
VALIDATE statement work essentially the same way. The NOEXEC option can be used
once in the PROC SQL statement, and the syntax of all queries in that PROC SQL step
will be checked for accuracy without executing them. The VALIDATE statement must
be specified before each SELECT statement in order for that statement to be checked
for accuracy without executing. If the syntax is valid, then a message is written to the
SAS log to that effect; if the syntax is invalid, then an error message is displayed. The
automatic macro variable SQLRC contains an error code that indicates the validity of
the syntax. For an example of the VALIDATE statement used in PROC SQL, see
“Validating a Query” on page 52. For an example of using the VALIDATE statement in
a SAS/AF application, see “Using the PROC SQL Automatic Macro Variables” on page
126.

Note: There is an interaction between the PROC SQL EXEC and ERRORSTOP
options when SAS is running in a batch or noninteractive session. For more
information, see the section about the SQL procedure in Base SAS Procedures Guide. �

Expanding SELECT * with the FEEDBACK Option
The FEEDBACK option expands a SELECT * (ALL) statement into the list of

columns it represents. Any PROC SQL view is expanded into the underlying query, and
all expressions are enclosed in parentheses to indicate their order of evaluation. The
FEEDBACK option also displays the resolved values of macros and macro variables.

For example, the following query is expanded in the SAS log:

proc sql feedback;
select * from sql.countries;

Output 5.1 Expanded SELECT * Statement

NOTE: Statement transforms to:

select COUNTRIES.Name, COUNTRIES.Capital, COUNTRIES.Population,
COUNTRIES.Area, COUNTRIES.Continent, COUNTRIES.UNDate

from SQL.COUNTRIES;

114 Timing PROC SQL with the STIMER Option � Chapter 5

Timing PROC SQL with the STIMER Option
Certain operations can be accomplished in more than one way. For example, there is

often a join equivalent to a subquery. Although factors such as readability and
maintenance come into consideration, generally you will choose the query that runs
fastest. The SAS system option STIMER shows you the cumulative time for an entire
procedure. The PROC SQL STIMER option shows you how fast the individual
statements in a PROC SQL step are running. This enables you to optimize your query.

Note: For the PROC SQL STIMER option to work, the SAS system option STIMER
must also be specified. �

This example compares the execution times of two queries. Both queries list the
names and populations of states in the UNITEDSTATES table that have a larger
population than Belgium. The first query does this with a join, the second with a
subquery. Output 5.2 shows the STIMER results from the SAS log.

proc sql stimer ;
select us.name, us.population

from sql.unitedstates as us, sql.countries as w
where us.population gt w.population and

w.name = ’Belgium’;

select Name, population
from sql.unitedstates
where population gt

(select population from sql.countries
where name = ’Belgium’);

Output 5.2 Comparing Run Times of Two Queries

4 proc sql stimer ;
NOTE: SQL Statement used:

real time 0.00 seconds
cpu time 0.01 seconds

5 select us.name, us.population
6 from sql.unitedstates as us, sql.countries as w
7 where us.population gt w.population and
8 w.name = ’Belgium’;
NOTE: The execution of this query involves performing one or more Cartesian

product joins that can not be optimized.
NOTE: SQL Statement used:

real time 0.10 seconds
cpu time 0.05 seconds

9
10 select Name, population
11 from sql.unitedstates
12 where population gt
13 (select population from sql.countries
14 where name = ’Belgium’);
NOTE: SQL Statement used:

real time 0.09 seconds
cpu time 0.09 seconds

Programming with the SQL Procedure � Using Indexes to Improve Performance 115

Compare the CPU time of the first query (that uses a join), 0.05 seconds, with 0.09
seconds for the second query (that uses a subquery). Although there are many factors
that influence the run times of queries, in general a join runs faster than an equivalent
subquery.

Resetting PROC SQL Options with the RESET Statement
Use the RESET statement to add, drop, or change the options in the PROC SQL

statement. You can list the options in any order in the PROC SQL and RESET
statements. Options stay in effect until they are reset.

This example first uses the NOPRINT option to prevent the SELECT statement from
displaying its result table in SAS output. It then resets the NOPRINT option to PRINT
(the default) and adds the NUMBER option, which displays the row number in the
result table.

proc sql noprint;
title ’Countries with Population Under 20,000’;
select Name, Population from sql.countries;

reset print number;
select Name, Population from sql.countries

where population lt 20000;

Output 5.3 Resetting PROC SQL Options with the RESET Statement

Countries with Population Under 20,000

Row Name Population

1 Leeward Islands 12119
2 Nauru 10099
3 Turks and Caicos Islands 12119
4 Tuvalu 10099
5 Vatican City 1010

Improving Query Performance
There are several ways to improve query performance. Some of them include
� using indexes and composite indexes
� using the keyword ALL in set operations when you know that there are no

duplicate rows or when it does not matter if you have duplicate rows in the result
table

� omitting the ORDER BY clause when you create tables and views
� using in-line views instead of temporary tables (or vice versa)
� using joins instead of subqueries
� using WHERE expressions to limit the size of result tables created with joins.

Using Indexes to Improve Performance
Indexes are created with the CREATE INDEX statement in the SQL procedure or

alternatively with the MODIFY and INDEX CREATE statements in the DATASETS

116 Using the Keyword ALL in Set Operations � Chapter 5

procedure. Indexes are stored in specialized members of a SAS data library and have a
SAS member type of INDEX. The values that are stored in an index are automatically
updated if you make a change to the underlying data.

Indexes can improve the performance of certain classes of retrievals. For example, if
an indexed column is compared to a constant value in a WHERE expression, then the
index will likely improve the query’s performance. Indexing the column that is specified
in a correlated reference to an outer table also improves a subquery’s (and hence,
query’s) performance. Composite indexes can improve the performance of queries that
compare the columns that are named in the composite index with constant values that
are linked by using the AND operator. For example, if you have a compound index on
the columns CITY and STATE and the WHERE expression is specified as WHERE
CITY=’xxx’ AND STATE=’yy’, then the index can be used to select that subset of rows
more efficiently. Indexes can also benefit queries that have a WHERE clause of the form

... where var1 in (select item1 from table1) ...

The values of VAR1 from the outer query are looked up in the inner query by means of
the index. An index can improve the processing of a table join, if the columns that
participate in the join are indexed in one of the tables. This optimization can be done
for equijoin queries only, that is, when the WHERE expression specifies that
table1.X=table2.Y.

Using the Keyword ALL in Set Operations
Set operators such as UNION, OUTER UNION, EXCEPT, and INTERSECT can be

used to combine queries. Specifying the optional ALL keyword prevents the final
process that eliminates duplicate rows from the result table. You should use the ALL
form when you know that there are no duplicate rows or when it does not matter if the
duplicate rows remain in the result table.

Omitting the ORDER BY Clause When Creating Tables and Views
If you specify the ORDER BY clause when a table or view is created, then the data is

always displayed in that order unless you specify another ORDER BY clause in a query
that references that table or view. As with any kind of sorting procedure, using ORDER
BY when retrieving data has certain performance costs, especially on large tables. If
the order of your output is not important for your results, then your queries will
typically run faster without an ORDER BY clause.

Using In-Line Views versus Temporary Tables
It is often helpful when you are exploring a problem to break a query down into

several steps and create temporary tables to hold the intermediate results. After you
have worked through the problem, combining the queries into one query using in-line
views can be more efficient. However, under certain circumstances it is more efficient to
use temporary tables. You should try both methods to determine which is more efficient
for your case.

Comparing Subqueries with Joins
Many subqueries can also be expressed as joins. In general, a join is processed at

least as efficiently as the subquery. PROC SQL stores the result values for each unique

Programming with the SQL Procedure � Accessing SAS System Information Using DICTIONARY Tables 117

set of correlation columns temporarily, thereby eliminating the need to calculate the
subquery more than once.

Using WHERE Expressions with Joins
When joining tables, you should specify a WHERE expression. Joins without

WHERE expressions are often time-consuming to evaluate because of the multiplier
effect of the Cartesian product. For example, joining two tables of 1,000 rows each,
without specifying a WHERE expression or an ON clause, produces a result table with
one million rows.

The SQL procedure executes and obtains the correct results on unbalanced WHERE
expressions (or ON join expressions) in an equijoin, as shown here, but handles them
inefficiently.

where table1.columnA-table2.columnB=0

It is more efficient to rewrite this clause to balance the expression so that columns from
each table are on alternate sides of the equals condition.

where table1.columnA=table2.columnB

The SQL procedure processes joins that do not have an equijoin condition in a
sequential fashion, evaluating each row against the WHERE expression: that is, joins
without an equijoin condition are not evaluated using sort-merge or index-lookup
techniques. Evaluating left and right outer joins is generally comparable to, or only
slightly slower than, a standard inner join. A full outer join usually requires two passes
over both tables in the join, although the SQL procedure tries to store as much data as
possible in buffers; thus for small tables, an outer join may be processed with only one
physical read of the data.

Accessing SAS System Information Using DICTIONARY Tables
DICTIONARY tables are special read-only PROC SQL tables. They retrieve

information about all the SAS data libraries, SAS data sets, SAS system options, and
external files that are associated with the current SAS session.

PROC SQL automatically assigns the DICTIONARY libref. To get information from
DICTIONARY tables, specify DICTIONARY.table-name in the FROM clause.

DICTIONARY.table-name is valid in PROC SQL only. However, SAS provides PROC
SQL views, based on the DICTIONARY tables, that can be used in other SAS
procedures and in the DATA step. These views are stored in the SASHELP library and
are commonly called “SASHELP views.”

The following table lists some of the DICTIONARY tables and the names of their
corresponding views. For a complete list, see the “SQL Procedure” chapter in the Base
SAS Procedures Guide.

Table Name Contains Information About View Name

DICTIONARY.CATALOGS SAS catalogs and their entries SASHELP.VCATALG

DICTIONARY.COLUMNS columns (or variables) and their
attributes

SASHELP.VCOLUMN

DICTIONARY.DICTIONARIES all DICTIONARY tables SASHELP.VDCTNRY

DICTIONARY.EXTFILES filerefs and external storage
locations of the external files

SASHELP.VEXTFL

118 Accessing SAS System Information Using DICTIONARY Tables � Chapter 5

Table Name Contains Information About View Name

DICTIONARY.INDEXES indexes that exist for SAS data
sets

SASHELP.VINDEX

DICTIONARY.MEMBERS SAS files SASHELP.VMEMBER

DICTIONARY.OPTIONS current settings of SAS system
options

SASHELP.VOPTION

DICTIONARY.STYLES ODS styles SASHELP.VSTYLE

DICTIONARY.TABLES SAS data files and views SASHELP.VTABLE

DICTIONARY.VIEWS SAS data views SASHELP.VVIEW

To see how each DICTIONARY table is defined, submit a DESCRIBE TABLE
statement. This example shows the definition of DICTIONARY.TABLES.

proc sql;
describe table dictionary.tables;

The results are written to the SAS log.

Output 5.4 Definition of DICTIONARY.TABLES

NOTE: SQL table DICTIONARY.TABLES was created like:

create table DICTIONARY.TABLES
(
libname char(8) label=’Library Name’,
memname char(32) label=’Member Name’,
memtype char(8) label=’Member Type’,
memlabel char(256) label=’Dataset Label’,
typemem char(8) label=’Dataset Type’,
crdate num format=DATETIME informat=DATETIME label=’Date Created’,
modate num format=DATETIME informat=DATETIME label=’Date Modified’,
nobs num label=’Number of Observations’,
obslen num label=’Observation Length’,
nvar num label=’Number of Variables’,
protect char(3) label=’Type of Password Protection’,
compress char(8) label=’Compression Routine’,
encrypt char(8) label=’Encryption’,
npage num label=’Number of Pages’,
pcompress num label=’Percent Compression’,
reuse char(3) label=’Reuse Space’,
bufsize num label=’Bufsize’,
delobs num label=’Number of Deleted Observations’,
indxtype char(9) label=’Type of Indexes’
);

Similarly, you can use the DESCRIBE VIEW statement to see how the SASHELP
views are constructed:

proc sql;
describe view sashelp.vtable;

Programming with the SQL Procedure � Using DICTIONARY.COLUMNS 119

Output 5.5 Description of SASHELP.VTABLE

NOTE: SQL view SASHELP.VTABLE is defined as:

select *
from DICTIONARY.TABLES;

Using DICTIONARY.TABLES
After you know how a DICTIONARY table is defined, you can use its column names

in SELECT clauses and subsetting WHERE clauses to get more specific information.
The following query retrieves information about permanent tables and views that
appear in this document:

proc sql;
title ’All Tables and Views in the SQL Library’;
select libname, memname, memtype, nobs

from dictionary.tables
where libname=’SQL’;

Output 5.6 Tables and Views Used in This document

All Tables and Views in the SQL Library

Library Member Number of
Name Member Name Type Observations
--
SQL A DATA 4
SQL B DATA 3
SQL CITYREPORT DATA 132
SQL CONTINENTS DATA 9
SQL COUNTRIES DATA 209
SQL DENSITIES DATA 10
SQL FEATURES DATA 76
SQL MYSTATES DATA 0
SQL NEWCONTINENTS VIEW .
SQL NEWCOUNTRIES DATA 6
SQL NEWSTATES DATA 0
SQL OILPROD DATA 31
SQL OILRSRVS DATA 26
SQL POSTALCODES DATA 59
SQL STATECODES DATA 51
SQL UNITEDSTATES DATA 57
SQL USCITYCOORDS DATA 132
SQL WORLDCITYCOORDS DATA 222
SQL WORLDTEMPS DATA 59

Using DICTIONARY.COLUMNS
DICTIONARY tables are useful when you want to find specific columns to include in

reports. The following query shows which of the tables that are used in this document
contain the Country column:

proc sql;
title ’All Tables that Contain the Country Column’;

120 Tips for Using DICTIONARY Tables � Chapter 5

select libname, memname, name
from dictionary.columns
where name=’Country’ and

libname=’SQL’;

Output 5.7 Using DICTONARY.COLUMNS to Locate Specific Columns

All Tables that Contain the Country Column

Library
Name Member Name Column Name
--
SQL OILPROD Country
SQL OILRSRVS Country
SQL WORLDCITYCOORDS Country
SQL WORLDTEMPS Country

Tips for Using DICTIONARY Tables
� You cannot use data set options with DICTIONARY tables.

� The DICTIONARY.DICTIONARIES table contains information about each column
in all DICTIONARY tables.

� Many character values (such as member names and libnames) are stored as
all-uppercase characters; you should design your queries accordingly.

� Because DICTIONARY tables are read-only objects, you cannot insert rows or
columns, alter column attributes, or add integrity constraints to them.

� For DICTIONARY.TABLES and SASHELP.VTABLE, if a table is read-protected
with a password, then the only information that is listed for that table is the
library name, member name, member type, and type of password protection. All
other information is set to missing.

� When querying a DICTIONARY table, SAS launches a discovery process that
gathers information that is pertinent to that table. Depending on the
DICTIONARY table that is being queried, this discovery process can search
libraries, open tables, and execute views. Unlike other SAS procedures and the
DATA step, PROC SQL can mitigate this process by optimizing the query before
the discovery process is launched. Therefore, although it is possible to access
DICTIONARY table information with SAS procedures or the DATA step by using
the SASHELP views, it is often more efficient to use PROC SQL instead.

� SAS does not maintain DICTIONARY table information between queries. Each
query of a DICTIONARY table launches a new discovery process. Therefore, if you
are querying the same DICTIONARY table several times in a row, then you can get
even better performance by creating a temporary SAS data set (by using the DATA
step SET statement or PROC SQL CREATE TABLE AS statement) that includes
the information that you want and running your query against that data set.

Using PROC SQL with the SAS Macro Facility

The macro facility is a programming tool that you can use to extend and customize
SAS software. It reduces the amount of text that you must type to perform common or

Programming with the SQL Procedure � Creating Macro Variables in PROC SQL 121

repeated tasks. The macro facility can improve the efficiency and usefulness of your
SQL programs.

The macro facility allows you to assign a name to character strings or groups of SAS
programming statements. From that point on, you can work with the names rather
than with the text itself. For more information about the SAS macro facility, see SAS
Macro Language: Reference.

Macro variables provide an efficient way to replace text strings in SAS code. The
macro variables that you create and name are called user-defined macro variables.
Those that are defined by SAS are called automatic macro variables. PROC SQL
produces three automatic macro variables (SQLOBS, SQLRC, and SQLOOPS) to help
you troubleshoot your programs. For more information about these automatic macro
variables, see “Using the PROC SQL Automatic Macro Variables” on page 126.

Creating Macro Variables in PROC SQL
Other software vendors’ SQL products allow the embedding of SQL into another

language. References to variables (columns) of that language are termed host-variable
references. They are differentiated from references to columns in tables by names that
are prefixed with a colon. The host-variable stores the values of the object-items that
are listed in the SELECT clause.

The only host language that is currently available in SAS is the macro language,
which is part of Base SAS software. When a calculation is performed on a column’s
value, its result can be stored, using :macro-variable, in the macro facility. The result
can then be referenced by that name in another PROC SQL query or SAS procedure.
Host-variable stores the values of the object-items that are listed in the SELECT
clause. Host-variable can be used only in the outer query of a SELECT statement, not
in a subquery. Host-variable cannot be used in a CREATE statement.

If the query produces more than one row of output, then the macro variable will
contain only the value from the first row. If the query has no rows in its output, then
the macro variable is not modified, or if the macro variable does not exist yet, it is not
created. The PROC SQL macro variable SQLOBS contains the number of rows that are
produced by the query.

Creating Macro Variables from the First Row of a Query Result
If you specify a single macro variable in the INTO clause, then PROC SQL assigns

the variable the value from the first row only of the appropriate column in the SELECT
list. In this example, &country1 is assigned the value from the first row of the Country
column, and &barrels1 is assigned the value from the first row of the Barrels column.
The NOPRINT option prevents PROC SQL from displaying the results of the query.
The %PUT statement writes the contents of the macro variables to the SAS log.

proc sql noprint;
select country, barrels

into :country1, :barrels1
from sql.oilrsrvs;

%put &country1 &barrels1;

122 Creating Macro Variables in PROC SQL � Chapter 5

Output 5.8 Creating Macro Variables from the First Row of a Query Result

4 proc sql noprint;
5 select country, barrels
6 into :country1, :barrels1
7 from sql.oilrsrvs;
8
9 %put &country1 &barrels1;
Algeria 9,200,000,000
NOTE: PROCEDURE SQL used:

real time 0.12 seconds

Creating a Macro Variable from the Result of an Aggregate Function
A useful feature of macro variables is that they enable you to display data values in

SAS titles. The following example prints a subset of the WORLDTEMPS table and lists
the highest temperature in Canada in the title:

proc sql outobs=12;
reset noprint;
select max(AvgHigh)

into :maxtemp
from sql.worldtemps
where country = ’Canada’;

reset print;
title "The Highest Temperature in Canada: &maxtemp";
select city, AvgHigh format 4.1

from sql.worldtemps
where country = ’Canada’;

Note: You must use double quotation marks in the TITLE statement to resolve the
reference to the macro variable. �

Output 5.9 Including a Macro Variable Reference in the Title

The Highest Temperature in Canada: 80

Avg
City High

Montreal 77.0
Quebec 76.0
Toronto 80.0

Creating Multiple Macro Variables
You can create one new macro variable per row from the result of a SELECT

statement. Use the keywords THROUGH, THRU, or a hyphen (-) in an INTO clause to
create a range of macro variables. This example assigns values to macro variables from
the first four rows of the Name column and the first three rows of the Population
column. The %PUT statements write the results to the SAS log.

proc sql noprint;
select name, Population

into :country1 - :country4, :pop1 - :pop3

Programming with the SQL Procedure � Concatenating Values in Macro Variables 123

from sql.countries;

%put &country1 &pop1;
%put &country2 &pop2;
%put &country3 &pop3;
%put &country4;

Output 5.10 Creating Multiple Macro Variables

4 proc sql noprint;
5 select name, Population
6 into :country1 - :country4, :pop1 - :pop3
7 from sql.countries;
8
9 %put &country1 &pop1;
Afghanistan 17070323
10 %put &country2 &pop2;
Albania 3407400
11 %put &country3 &pop3;
Algeria 28171132
12 %put &country4;
Andorra

Concatenating Values in Macro Variables
You can concatenate the values of one column into one macro variable. This form is

useful for building a list of variables or constants. Use the SEPARATED BY keywords
to specify a character to delimit the values in the macro variable.

This example assigns the first five values from the Name column of the COUNTRIES
table to the &countries macro variable. The INOBS option restricts PROC SQL to using
the first five rows of the COUNTRIES table. A comma and a space are used to delimit
the values in the macro variable.

proc sql noprint inobs=5;
select Name

into :countries separated by ’, ’
from sql.countries;

%put &countries;

Output 5.11 Concatenating Values in Macro Variables

4 proc sql noprint inobs=5;
5 select Name
6 into :countries separated by ’, ’
7 from sql.countries;
WARNING: Only 5 records were read from SQL.COUNTRIES due to INOBS= option.
8
9 %put &countries;
Afghanistan, Albania, Algeria, Andorra, Angola

124 Defining Macros to Create Tables � Chapter 5

The leading and trailing blanks are trimmed from the values before the macro
variables are created. If you do not want the blanks to be trimmed, then add NOTRIM
to the INTO clause. Here is the previous example with NOTRIM added.

proc sql noprint inobs=5;
select Name

into :countries separated by ’,’ NOTRIM
from sql.countries;

%put &countries;

Output 5.12 Concatenating Values in Macro Variables—Blanks Not Removed

1 proc sql noprint inobs=5;
2 select Name
3 into :countries separated by ’,’ NOTRIM
4 from sql.countries;
WARNING: Only 5 records were read from SQL.COUNTRIES due to INOBS= option.
5
6 %put &countries;
Afghanistan ,Albania ,Algeria

,Andorra ,Angola

Defining Macros to Create Tables

Macros are useful as interfaces for table creation. You can use the SAS macro facility
to help you create new tables and add rows to existing tables.

The following example creates a table that lists people to serve as referees for
reviews of academic papers. No more than three people per subject are allowed in a
table. The macro that is defined in this example checks the count of referees before it
inserts a new referee’s name into the table. The macro has two parameters: the
referee’s name and the subject matter of the academic paper.

proc sql;
create table sql.referee

(Name char(15),
Subject char(15));

/* define the macro */
%macro addref(name,subject);
%local count;

/* are there three referees in the table? */
reset noprint;

select count(*)
into :count
from sql.referee
where subject="&subject";

%if &count ge 3 %then %do;
reset print;
title "ERROR: &name not inserted for subject -- &subject..";
title2 " There are 3 referees already.";

Programming with the SQL Procedure � Defining Macros to Create Tables 125

select * from sql.referee where subject="&subject";
reset noprint;
%end;

%else %do;
insert into sql.referee(name,subject) values("&name","&subject");
%put NOTE: &name has been added for subject -- &subject..;
%end;

%mend;

Submit the %ADDREF() macro with its two parameters to add referee names to the
table. Each time you submit the macro, a message is written to the SAS log.

%addref(Conner,sailing);
%addref(Fay,sailing);
%addref(Einstein,relativity);
%addref(Smythe,sailing);
%addref(Naish,sailing);

Output 5.13 Defining Macros to Create Tables

34 %addref(Conner,sailing);
NOTE: 1 row was inserted into SQL.REFEREE.

NOTE: Conner has been added for subject - sailing.
35 %addref(Fay,sailing);
NOTE: 1 row was inserted into SQL.REFEREE.

NOTE: Fay has been added for subject - sailing.
36 %addref(Einstein,relativity);
NOTE: 1 row was inserted into SQL.REFEREE.

NOTE: Einstein has been added for subject - relativity.
37 %addref(Smythe,sailing);
NOTE: 1 row was inserted into SQL.REFEREE.

NOTE: Smythe has been added for subject - sailing.
38 %addref(Naish,sailing);

The output has a row added with each execution of the %ADDREF() macro. When
the table contains three referee names, it is displayed in SAS output with the message
that it can accept no more referees.

Output 5.14 Result Table and Message Created with SAS Macro Language Interface

ERROR: Naish not inserted for subject - sailing.
There are 3 referees already.

Name Subject

Conner sailing
Fay sailing
Smythe sailing

126 Using the PROC SQL Automatic Macro Variables � Chapter 5

Using the PROC SQL Automatic Macro Variables
PROC SQL assigns values to three automatic macro variables after it executes each

statement. You can use these macro variables to test your SQL programs and to
determine whether to continue processing.

SQLOBS
contains the number of rows that were processed by an SQL procedure statement,
for example, the number of rows that were formatted and displayed in SAS output
by a SELECT statement or the number of rows that were deleted by a DELETE
statement.

SQLOOPS
contains the number of iterations that the inner loop of PROC SQL processes. The
number of iterations increases proportionally with the complexity of the query. See
“Limiting Iterations with the LOOPS= Option” on page 112 for details.

SQLRC
contains a status value that indicates the success of the PROC SQL statement.
For a complete list of the values that this macro returns, see the Base SAS
Procedures Guide.

Users of SAS/AF software can access these automatic macro variables in SAS
Component Language programs by using the SYMGET function.The following example
uses the VALIDATE statement in a SAS/AF software application to check the syntax of
a block of code. Before it issues the CREATE VIEW statement, the application checks
that the view is accessible.

submit sql immediate;
validate &viewdef;

end submit;

if symget(’SQLRC’) gt 4 then
do;

... the view is not valid ...
end;

else do;
submit sql immediate;

create view &viewname as &viewdef;
end submit;

end;

The following example retrieves the data from the COUNTRIES table, but does not
display it because the NOPRINT option is specified in the PROC SQL statement. The
%PUT macro language statement displays the three automatic macro variable values in
the SAS log. For more information about the %PUT statement and the SAS macro
facility, see SAS Macro Language: Reference.

proc sql noprint;
select * from sql.countries;

%put SQLOBS=*&sqlobs* SQLOOPS=*&sqloops* SQLRC=*&sqlrc*;

Output 5.15 Using the PROC SQL Automatic Macro Variables

SQLOBS=*1* SQLOOPS=*11* SQLRC=*0*

Programming with the SQL Procedure � Formatting PROC SQL Output Using the REPORT Procedure 127

Notice that the value of SQLOBS is 1. When the NOPRINT option is used and no
table or macro variables are created, SQLOBS returns a value of 1 because only one
row is processed.

Note: You can use the _AUTOMATIC_ option in the %PUT statement to list the
values of all automatic macro variables. The list depends on the SAS products that are
installed at your site. �

Formatting PROC SQL Output Using the REPORT Procedure
SQL provides limited output formatting capabilities. Some SQL vendors add output

formatting statements to their products to address these limitations. SAS has reporting
tools that enhance the appearance of PROC SQL output.

For example, SQL cannot display the first occurrence only of a repeating value in a
column in its output. The following example lists cities in the USCITYCOORDS table.
Notice the repeating values in the State column.

proc sql outobs=10;
title ’US Cities’;
select State, City, latitude, Longitude

from sql.uscitycoords
order by state;

Output 5.16 USCITYCOORDS Table Showing Repeating State Values

US Cities

State City Latitude Longitude
--
AK Sitka 57 -135
AK Anchorage 61 -150
AK Nome 64 -165
AK Juneau 58 -134
AL Mobile 31 -88
AL Montgomery 32 -86
AL Birmingham 33 -87
AR Hot Springs 34 -93
AR Little Rock 35 -92
AZ Flagstaff 35 -112

The following code uses PROC REPORT to format the output so that the state codes
appear only once for each state group. A WHERE clause subsets the data so that the
report lists the coordinates of cities in Pacific Rim states only. For complete information
about PROC REPORT, see the Base SAS Procedures Guide.

proc sql noprint;
create table sql.cityreport as
select *

from sql.uscitycoords
group by state;

proc report data=sql.cityreport
headline
headskip;

128 Accessing a DBMS with SAS/ACCESS Software � Chapter 5

title ’Coordinates of U.S. Cities in Pacific Rim States’;
column state city (’Coordinates’ latitude longitude);
define state / order format=$2. width=5 ’State’;
define city / order format=$15. width=15 ’City’;
define latitude / display format=4. width=8 ’Latitude’;
define longitude / display format=4. width=9 ’Longitude’;
where state=’AK’ or

state=’HI’ or
state=’WA’ or
state=’OR’ or
state=’CA’;

run;

Output 5.17 PROC REPORT Output Showing the First Occurrence Only of Each State Value

Coordinates of U.S. Cities in Pacific Rim States

Coordinates
State City Latitude Longitude

AK Anchorage 61 -150
Juneau 58 -134
Nome 64 -165
Sitka 57 -135

CA El Centro 32 -115
Fresno 37 -120
Long Beach 34 -118
Los Angeles 34 -118
Oakland 38 -122
Sacramento 38 -121
San Diego 33 -117
San Francisco 38 -122
San Jose 37 -122

HI Honolulu 21 -158
OR Baker 45 -118

Eugene 44 -124
Klamath Falls 42 -122
Portland 45 -123
Salem 45 -123

WA Olympia 47 -123
Seattle 47 -122
Spokane 48 -117

Accessing a DBMS with SAS/ACCESS Software

SAS/ACCESS software for relational databases provides an interface between SAS
software and data in other vendors’ database management systems. SAS/ACCESS
software provides dynamic access to DBMS data through the SAS/ACCESS LIBNAME
statement and the PROC SQL Pass-Through Facility. The LIBNAME statement
enables you to assign SAS librefs to DBMS objects such as schemas and databases. The
Pass-Through Facility enables you to interact with a DBMS by using its SQL syntax
without leaving your SAS session.

It is generally recommended that you use the SAS/ACCESS LIBNAME statement to
access your DBMS data because doing so is usually the fastest and most direct method
of accessing DBMS data. The LIBNAME statement offers the following advantages:

Programming with the SQL Procedure � Using Libname Engines 129

� Significantly fewer lines of SAS code are required to perform operations in your
DBMS. For example, a single LIBNAME statement establishes a connection to
your DBMS, enables you to specify how your data is processed, and enables you to
easily browse your DBMS tables in SAS.

� You do not need to know your DBMS’s SQL language to access and manipulate
your DBMS data. You can use SAS procedures, such as PROC SQL, or DATA step
programming on any libref that references DBMS data. You can read, insert,
update, delete, and append data, as well as create and drop DBMS tables by using
normal SAS syntax.

� The LIBNAME statement provides more control over DBMS operations such as
locking, spooling, and data type conversion through the many LIBNAME options
and data set options.

� The LIBNAME engine optimizes the processing of joins and WHERE clauses by
passing these operations directly to the DBMS to take advantage of the indexing
and other processing capabilities of your DBMS.

An exception to this recommendation occurs when you need to use SQL that does not
conform to the ANSI standard. The SAS/ACCESS LIBNAME statement accepts only
ANSI standard SQL, but the PROC SQL Pass-Through Facility accepts all the
extensions to SQL that are provided by your DBMS. Another advantage of this access
method is that Pass-Through Facility statements enable the DBMS to optimize queries
when the queries have summary functions (such as AVG and COUNT), GROUP BY
clauses, or columns that were created by expressions (such as the COMPUTED
function).

Examples of both of these methods of interacting with DBMS data are presented
below. See SAS/ACCESS for Relational Databases: Reference for comprehensive
information about SAS/ACCESS software.

Using Libname Engines
Use the LIBNAME statement to read from and write to a DBMS object as if it were a

SAS data set. After connecting to a DBMS table or by view using the LIBNAME
statement, you can use PROC SQL to interact with the DBMS data.

Querying a DBMS Table

This example uses the SQL procedure to query the ORACLE table PAYROLL. The
PROC SQL query retrieves all job codes and provides a total salary amount for each job
code.

libname mydblib oracle user=user-id password=password
path=path-name schema=schema-name;

proc sql;
select jobcode label=’Jobcode’,

sum(salary) as total
label=’Total for Group’
format=dollar11.2

from mydblib.payroll
group by jobcode;

quit;

130 Using Libname Engines � Chapter 5

Output 5.18 Output from Querying a DBMS Table

Total for
Jobcode Group

BCK $232,148.00
FA1 $253,433.00
FA2 $447,790.00
FA3 $230,537.00
ME1 $228,002.00
ME2 $498,076.00
ME3 $296,875.00
NA1 $210,161.00
NA2 $157,149.00
PT1 $543,264.00
PT2 $879,252.00
PT3 $21,009.00
SCP $128,162.00
TA1 $249,492.00
TA2 $671,499.00
TA3 $476,155.00

Creating a PROC SQL View of a DBMS Table
PROC SQL views are stored query expressions that read data values from their

underlying files, which can include SAS/ACCESS views of DBMS data. While DATA
step views of DBMS data can only be used to read the data, PROC SQL views of DBMS
data can be used to update the underlying data if the following conditions are met:

� the PROC SQL view is based on only one DBMS table (or on a DBMS view that is
based on only one DBMS table)

� the PROC SQL view has no calculated fields.

The following example uses the LIBNAME statement to connect to an ORACLE
database, create a temporary PROC SQL view of the ORACLE table SCHEDULE, and
print the view by using the PRINT procedure. The LIBNAME engine optimizes the
processing of joins and WHERE clauses by passing these operations directly to the
DBMS to take advantage of DBMS indexing and processing capabilities.

libname mydblib oracle user=user-id password=password
proc sql;

create view LON as
select flight, dates, idnum

from mydblib.schedule
where dest=’LON’;

quit;

proc print data=work.LON noobs;
run;

Programming with the SQL Procedure � Displaying DBMS Data with the PROC SQL Pass-Through Facility 131

Output 5.19 Output from the PRINT Procedure

FLIGHT DATES IDNUM

219 04MAR1998:00:00:00 1739
219 04MAR1998:00:00:00 1478
219 04MAR1998:00:00:00 1130
219 04MAR1998:00:00:00 1125
219 04MAR1998:00:00:00 1983
219 04MAR1998:00:00:00 1332
219 05MAR1998:00:00:00 1428
219 05MAR1998:00:00:00 1442
219 05MAR1998:00:00:00 1422
219 05MAR1998:00:00:00 1413
219 05MAR1998:00:00:00 1574
219 05MAR1998:00:00:00 1332
219 06MAR1998:00:00:00 1106
219 06MAR1998:00:00:00 1118
219 06MAR1998:00:00:00 1425
219 06MAR1998:00:00:00 1434
219 06MAR1998:00:00:00 1555
219 06MAR1998:00:00:00 1332

Displaying DBMS Data with the PROC SQL Pass-Through Facility

Use the PROC SQL Pass-Through Facility when you want to interact with DBMS
data by using SQL syntax that is specific to your DBMS.

In this example, SAS/ACCESS connects to an ORACLE database by using the alias
ora2, selects all rows in the STAFF table, and displays the first 15 rows of data by
using PROC SQL.

proc sql outobs=15;
connect to oracle as ora2 (user=user-id password=password);
select * from connection to ora2 (select lname, fname, state from staff);
disconnect from ora2;

quit;

Output 5.20 Output from the Pass-Through Facility Example

LNAME FNAME STATE

ADAMS GERALD CT
ALIBRANDI MARIA CT
ALHERTANI ABDULLAH NY
ALVAREZ MERCEDES NY
ALVAREZ CARLOS NJ
BAREFOOT JOSEPH NJ
BAUCOM WALTER NY
BANADYGA JUSTIN CT
BLALOCK RALPH NY
BALLETTI MARIE NY
BOWDEN EARL CT
BRANCACCIO JOSEPH NY
BREUHAUS JEREMY NY
BRADY CHRISTINE CT
BREWCZAK JAKOB CT

132 Using the Output Delivery System (ODS) with PROC SQL � Chapter 5

Using the Output Delivery System (ODS) with PROC SQL
The Output Delivery System (ODS) enables you to produce the output from PROC

SQL in a variety of different formats, such as PostScript, HTML, or list output. ODS
defines the structure of the raw output from SAS procedures and from the SAS DATA
step. The combination of data with a definition of its output structure is called an
output object. Output objects can be sent to any of the various ODS destinations, which
include listing, HTML, output, and printer. When new destinations are added to ODS,
they will automatically become available to PROC SQL, to all other SAS procedures
that support ODS, and to the DATA step. For more information about ODS, see SAS
Output Delivery System: User’s Guide.

The following example opens the HTML destination and specifies ODSOUT.HTM as
the file that will contain the HTML output. The output from the PROC SQL procedure
is sent to ODSOUT.HTM.

Note: This example uses filenames that may not be valid in all operating
environments. To run the example successfully in your operating environment, you may
need to change the file specifications. �

Note: Some browsers require an extension of HTM or HTML on the filename. �

ods html body=’odsout.htm’;
proc sql outobs=12;

title ’U.S. Cities with Their States and Coordinates’;
select *

from sql.uscitycoords;
ods html close;

Display 5.1 ODS HTML Output

133

C H A P T E R

6
Practical Problem-Solving with
PROC SQL

Overview 134
Computing a Weighted Average 134

Problem 134

Background Information 134

Solution 135

How It Works 136
Comparing Tables 136

Problem 136

Background Information 136

Solution 137

How It Works 138

Overlaying Missing Data Values 138
Problem 138

Background Information 138

Solution 139

How It Works 139

Computing Percentages within Subtotals 140
Problem 140

Background Information 140

Solution 140

How It Works 141

Counting Duplicate Rows in a Table 141
Problem 141

Background Information 141

Solution 142

How It Works 142

Expanding Hierarchical Data in a Table 143

Problem 143
Background Information 143

Solution 143

How It Works 144

Summarizing Data in Multiple Columns 144

Problem 144
Background Information 145

Solution 145

How It Works 145

Creating a Summary Report 146

Problem 146
Background Information 146

Solution 146

How It Works 147

134 Overview � Chapter 6

Creating a Customized Sort Order 148
Problem 148

Background Information 148

Solution 149

How It Works 149

Conditionally Updating a Table 150
Problem 150

Background Information 150

Solution 151

How It Works 152

Updating a Table with Values from Another Table 153

Problem 153
Background Information 153

Solution 153

How It Works 154

Creating and Using Macro Variables 154

Problem 154
Background Information 154

Solution 155

How It Works 157

Using PROC SQL Tables in Other SAS Procedures 157

Problem 157
Background Information 157

Solution 157

How It Works 159

Overview
This section shows you examples of solutions that PROC SQL can provide. Each

example includes a statement of the problem to solve, background information that you
must know to solve the problem, the PROC SQL solution code, and an explanation of
how the solution works.

Computing a Weighted Average

Problem
You want to compute a weighted average of a column of values.

Background Information
There is one input table, called Sample, that contains the following data:

Practical Problem-Solving with PROC SQL � Solution 135

Output 6.1 Sample Input Table for Weighted Averages

Sample Data for Weighted Average

Obs Value Weight Gender

1 2893.35 9.0868 F
2 56.13 26.2171 M
3 901.43 -4.0605 F
4 2942.68 -5.6557 M
5 621.16 24.3306 F
6 361.50 13.8971 M
7 2575.09 29.3734 F
8 2157.07 7.0687 M
9 690.73 -40.1271 F
10 2085.80 24.4795 M

Note that some of the weights are negative.

Solution
Use the following PROC SQL code to obtain weighted averages that are shown in the

following output:

proc sql;
title ’Weighted Averages from Sample Data’;
select Gender, sum(Value*Weight)/sum(Weight) as WeightedAverage

from (select Gender, Value,
case

when Weight gt 0 then Weight
else 0

end as Weight
from Sample)

group by Gender;

Output 6.2 PROC SQL Output for Weighted Averages

Weighted Averages from Sample Data

Weighted
Gender Average

F 1864.026
M 1015.91

136 How It Works � Chapter 6

How It Works
This solution uses an in-line view to create a temporary table that eliminates the

negative data values in the Weight column. The in-line view is a query that
� selects the Gender and Value columns.
� uses a CASE expression to select the value from the Weight column. If Weight is

greater than zero, then it is retrieved; if Weight is less than zero, then a value of
zero is used in place of the Weight value.

(select Gender, Value,
case

when Weight>0 then Weight
else 0

end as Weight
from Sample)

The first, or outer, SELECT statement in the query
� selects the Gender column
� constructs a weighted average from the results that were retrieved by the in-line

view.

The weighted average is the sum of the products of Value and Weight divided by the
sum of the Weights.

select Gender, sum(Value*Weight)/sum(Weight) as WeightedAverage

Finally, the query uses a GROUP BY clause to combine the data so that the
calculation is performed for each gender.

group by Gender;

Comparing Tables

Problem
You have two copies of a table. One of the copies has been updated. You want to see

which rows have been changed.

Background Information
There are two tables, the OLDSTAFF table and NEWSTAFF table. The NEWSTAFF

table is a copy of OLDSTAFF. Changes have been made to NEWSTAFF. You want to
find out what changes have been made.

Practical Problem-Solving with PROC SQL � Solution 137

Output 6.3 Sample Input Tables for Table Comparison

Old Staff Table

id Last First Middle Phone Location
--
5463 Olsen Mary K. 661-0012 R2342
6574 Hogan Terence H. 661-3243 R4456
7896 Bridges Georgina W. 661-8897 S2988
4352 Anson Sanford 661-4432 S3412
5674 Leach Archie G. 661-4328 S3533
7902 Wilson Fran R. 661-8332 R4454
0001 Singleton Adam O. 661-0980 R4457
9786 Thompson Jack 661-6781 R2343

New Staff Table

id Last First Middle Phone Location
--
5463 Olsen Mary K. 661-0012 R2342
6574 Hogan Terence H. 661-3243 R4456
7896 Bridges Georgina W. 661-2231 S2987
4352 Anson Sanford 661-4432 S3412
5674 Leach Archie G. 661-4328 S3533
7902 Wilson Fran R. 661-8332 R4454
0001 Singleton Adam O. 661-0980 R4457
9786 Thompson John C. 661-6781 R2343
2123 Chen Bill W. 661-8099 R4432

Solution
To display only the rows that have changed in the new version of the table, use the

EXCEPT set operator between two SELECT statements.

proc sql;
title ’Updated Rows’;
select * from newstaff
except
select * from oldstaff;

Output 6.4 Rows That Have Changed

Updated Rows

id Last First Middle Phone Location
--
2123 Chen Bill W. 661-8099 R4432
7896 Bridges Georgina W. 661-2231 S2987
9786 Thompson John C. 661-6781 R2343

138 How It Works � Chapter 6

How It Works
The EXCEPT operator returns rows from the first query that are not part of the

second query. In this example, the EXCEPT operator displays only the rows that have
been added or changed in the NEWSTAFF table.

Note: Any rows that were deleted from OLDSTAFF will not appear. �

Overlaying Missing Data Values

Problem
You are forming teams for a new league by analyzing the averages of bowlers when

they were members of other bowling leagues. When possible you will use each bowler’s
most recent league average. However, if a bowler was not in a league last year, then
you will use the bowler’s average from the prior year.

Background Information
There are two tables, LEAGUE1 and LEAGUE2, that contain bowling averages for

last year and the prior year respectively. The structure of the tables is not identical
because the data was compiled by two different secretaries. However, the tables do
contain essentially the same type of data.

Output 6.5 Sample Input Tables for Overlaying Missing Values

Bowling Averages from League1

Fullname Bowler AvgScore

Alexander Delarge 4224 164
John T Chance 4425 .
Jack T Colton 4264 .

1412 141
Andrew Shepherd 4189 185

Bowling Averages from League2

FirstName LastName AMFNo AvgScore
--
Alex Delarge 4224 156
Mickey Raymond 1412 .

4264 174
Jack Chance 4425 .
Patrick O’Malley 4118 164

Practical Problem-Solving with PROC SQL � How It Works 139

Solution
The following PROC SQL code combines the information from two tables, LEAGUE1

and LEAGUE2. The program uses all the values from the LEAGUE1 table, if available,
and replaces any missing values with the corresponding values from the LEAGUE2
table. The results are shown in the following output.

options nodate nonumber linesize=80 pagesize=60;

proc sql;
title "Averages from Last Year’s League When Possible";
title2 "Supplemented when Available from Prior Year’s League";
select coalesce(lastyr.fullname,trim(prioryr.firstname)

||’ ’||prioryr.lastname)as Name format=$26.,
coalesce(lastyr.bowler,prioryr.amfno)as Bowler,
coalesce(lastyr.avgscore,prioryr.avgscore)as Average format=8.

from league1 as lastyr full join league2 as prioryr
on lastyr.bowler=prioryr.amfno

order by Bowler;

Output 6.6 PROC SQL Output for Overlaying Missing Values

Averages from Last Year’s League When Possible
Supplemented when Available from Prior Year’s League

Name Bowler Average
--
Mickey Raymond 1412 141
Patrick O’Malley 4118 164
Andrew Shepherd 4189 185
Alexander Delarge 4224 164
Jack T Colton 4264 174
John T Chance 4425 .

How It Works
This solution uses a full join to obtain all rows from LEAGUE1 as well as all rows

from LEAGUE2. The program uses the COALESCE function on each column so that,
whenever possible, there is a value for each column of a row. Using the COALESCE
function on a parenthesized list of expressions returns the first nonmissing value that is
found. For each row, the following code returns the AvgScore column from LEAGUE1
for Average:

coalesce(lastyr.avgscore,prioryr.avgscore) as Average format=8.

If this value of AvgScore is missing, then COALESCE returns the AvgScore column
from LEAGUE2 for Average. If this value of AvgScore is missing, then COALESCE
returns a missing value for Average.

140 Computing Percentages within Subtotals � Chapter 6

In the case of the Name column, the COALESCE function returns the value of
FullName from LEAGUE1 if it exists. If not, then the value is obtained from
LEAGUE2 by using both the TRIM function and concatenation operators to combine
the first name and last name columns:

trim(prioryr.firstname)||’ ’||prioryr.lastname

Finally, the table is ordered by Bowler. The Bowler column is the result of the
COALESCE function.

coalesce(lastyr.bowler,prioryr.amfno)as Bowler

Because the value is obtained from either table, you cannot confidently order the output
by either the value of Bowler in LEAGUE1 or the value of AMFNo in LEAGUE 2, but
only by the value that results from the COALESCE function.

Computing Percentages within Subtotals

Problem
You want to analyze answers to a survey question to determine how each state

responded. Then you want to compute the percentage of each answer that a given state
contributed. For example, what percentage of all NO responses came from North
Carolina?

Background Information
There is one input table, called SURVEY, that contains the following data (the first

ten rows are shown):

Output 6.7 Input Table for Computing Subtotal Percentages (Partial Output)

Sample Data for Subtotal Percentages

Obs State Answer

1 NY YES
2 NY YES
3 NY YES
4 NY YES
5 NY YES
6 NY YES
7 NY NO
8 NY NO
9 NY NO

10 NC YES

Solution
Use the following PROC SQL code to compute the subtotal percentages:

Practical Problem-Solving with PROC SQL � Background Information 141

proc sql;
title1 ’Survey Responses’;
select survey.Answer, State, count(State) as Count,

calculated Count/Subtotal as Percent format=percent8.2
from survey,

(select Answer, count(*) as Subtotal from survey
group by Answer) as survey2

where survey.Answer=survey2.Answer
group by survey.Answer, State;

quit;

Output 6.8 PROC SQL Output That Computes Percentages within Subtotals

Survey Responses

Answer State Count Percent

NO NC 24 38.71%
NO NY 3 4.84%
NO PA 18 29.03%
NO VA 17 27.42%
YES NC 20 37.04%
YES NY 6 11.11%
YES PA 9 16.67%
YES VA 19 35.19%

How It Works
This solution uses a subquery to calculate the subtotal counts for each answer. The

code joins the result of the subquery with the original table and then uses the
calculated state count as the numerator and the subtotal from the subquery as the
denominator for the percentage calculation.

The query uses a GROUP BY clause to combine the data so that the calculation is
performed for State within each answer.

group by survey.Answer, State;

Counting Duplicate Rows in a Table

Problem
You want to count the number of duplicate rows in a table and generate an output

column that shows how many times each row occurs.

Background Information
There is one input table, called DUPLICATES, that contains the following data:

142 Solution � Chapter 6

Output 6.9 Sample Input Table for Counting Duplicates

Sample Data for Counting Duplicates

First
Obs LastName Name City State

1 Smith John Richmond Virginia
2 Johnson Mary Miami Florida
3 Smith John Richmond Virginia
4 Reed Sam Portland Oregon
5 Davis Karen Chicago Illinois
6 Davis Karen Chicago Illinois
7 Thompson Jennifer Houston Texas
8 Smith John Richmond Virginia
9 Johnson Mary Miami Florida

Solution
Use the following PROC SQL code to count the duplicate rows:

proc sql;
title ’Duplicate Rows in DUPLICATES Table’;
select *, count(*) as Count

from Duplicates
group by LastName, FirstName, City, State
having count(*) > 1;

Output 6.10 PROC SQL Output for Counting Duplicates

Duplicate Rows in DUPLICATES Table

LastName FirstName City State Count

Davis Karen Chicago Illinois 2
Johnson Mary Miami Florida 2
Smith John Richmond Virginia 3

How It Works
This solution uses a query that
� selects all columns
� counts all rows
� groups all of the rows in the Duplicates table by matching rows
� excludes the rows that have no duplicates.

Note: You must include all of the columns in your table in the GROUP BY clause to
find exact duplicates. �

Practical Problem-Solving with PROC SQL � Solution 143

Expanding Hierarchical Data in a Table

Problem
You want to generate an output column that shows a hierarchical relationship among

rows in a table.

Background Information
There is one input table, called EMPLOYEES, that contains the following data:

Output 6.11 Sample Input Table for Expanding a Hierarchy

Sample Data for Expanding a Hierarchy

First
Obs ID LastName Name Supervisor

1 1001 Smith John 1002
2 1002 Johnson Mary None
3 1003 Reed Sam None
4 1004 Davis Karen 1003
5 1005 Thompson Jennifer 1002
6 1006 Peterson George 1002
7 1007 Jones Sue 1003
8 1008 Murphy Janice 1003
9 1009 Garcia Joe 1002

You want to create output that shows the full name and ID number of each employee
who has a supervisor, along with the full name and ID number of that employee’s
supervisor.

Solution
Use the following PROC SQL code to expand the data:

proc sql;
title ’Expanded Employee and Supervisor Data’;
select A.ID label="Employee ID",

trim(A.FirstName)||’ ’||A.LastName label="Employee Name",
B.ID label="Supervisor ID",
trim(B.FirstName)||’ ’||B.LastName label="Supervisor Name"

from Employees A, Employees B
where A.Supervisor=B.ID and A.Supervisor is not missing;

144 How It Works � Chapter 6

Output 6.12 PROC SQL Output for Expanding a Hierarchy

Expanded Employee and Supervisor Data

Employee Supervisor
ID Employee Name ID Supervisor Name
--
1001 John Smith 1002 Mary Johnson
1005 Jennifer Thompson 1002 Mary Johnson
1006 George Peterson 1002 Mary Johnson
1009 Joe Garcia 1002 Mary Johnson
1004 Karen Davis 1003 Sam Reed
1007 Sue Jones 1003 Sam Reed
1008 Janice Murphy 1003 Sam Reed

How It Works
This solution uses a self-join (reflexive join) to match employees and their

supervisors. The SELECT clause assigns aliases of A and B to two instances of the
same table and retrieves data from each instance. From instance A, the SELECT clause

� selects the ID column and assigns it a label of Employee ID
� selects and concatenates the FirstName and LastName columns into one output

column and assigns it a label of Employee Name.

From instance B, the SELECT clause
� selects the ID column and assigns it a label of Supervisor ID
� selects and concatenates the FirstName and LastName columns into one output

column and assigns it a label of Supervisor Name.

In both concatenations, the SELECT clause uses the TRIM function to remove trailing
spaces from the data in the FirstName column, then concatenates the data with a
single space and the data in the LastName column to produce a single character value
for each full name.

trim(A.FirstName)||’ ’||A.LastName label="Employee Name"

When PROC SQL applies the WHERE clause, the two table instances are joined.
The WHERE clause conditions restrict the output to only those rows in table A that
have a supervisor ID that matches an employee ID in table B. This operation provides a
supervisor ID and full name for each employee in the original table, except for those
who do not have a supervisor.

where A.Supervisor=B.ID and A.Supervisor is not missing;

Note: Although there are no missing values in the Employees table, you should
check for and exclude missing values from your results to avoid unexpected results. For
example, if there were an employee with a blank supervisor ID number and an employee
with a blank ID, then they would produce an erroneous match in the results. �

Summarizing Data in Multiple Columns

Problem
You want to produce a grand total of multiple columns in a table.

Practical Problem-Solving with PROC SQL � How It Works 145

Background Information
There is one input table, called SALES, that contains the following data:

Output 6.13 Sample Input Table for Summarizing Data from Multiple Columns

Sample Data for Summarizing Data from Multiple Columns

Obs Salesperson January February March

1 Smith 1000 650 800
2 Johnson 0 900 900
3 Reed 1200 700 850
4 Davis 1050 900 1000
5 Thompson 750 850 1000
6 Peterson 900 600 500
7 Jones 800 900 1200
8 Murphy 700 800 700
9 Garcia 400 1200 1150

You want to create output that shows the total sales for each month and the total
sales for all three months.

Solution
Use the following PROC SQL code to produce the monthly totals and grand total:

proc sql;
title ’Total First Quarter Sales’;
select sum(January) as JanTotal,

sum(February) as FebTotal,
sum(March) as MarTotal,
sum(calculated JanTotal, calculated FebTotal,

calculated MarTotal) as GrandTotal format=dollar10.
from Sales;

Output 6.14 PROC SQL Output for Summarizing Data from Multiple Columns

Total First Quarter Sales

JanTotal FebTotal MarTotal GrandTotal
--

6800 7500 8100 $22,400

How It Works
Recall that when you specify one column as the argument to an aggregate function,

the values in that column are calculated. When you specify multiple columns, the
values in each row of the columns are calculated. This solution uses the SUM function

146 Creating a Summary Report � Chapter 6

to calculate the sum of each month’s sales, then uses the SUM function a second time to
total the monthly sums into one grand total.

sum(calculated JanTotal, calculated FebTotal,
calculated MarTotal) as GrandTotal format=dollar10.

An alternative way to code the grand total calculation is to use nested functions:

sum(sum(January), sum(February), sum(March))
as GrandTotal format=dollar10.

Creating a Summary Report

Problem
You have a table that contains detailed sales information. You want to produce a

summary report from the detail table.

Background Information
There is one input table, called SALES, that contains detailed sales information.

There is one record for each sale for the first quarter that shows the site, product,
invoice number, invoice amount, and invoice date.

Output 6.15 Sample Input Table for Creating a Summary Report

Sample Data to Create Summary Sales Report

Invoice
Site Product Invoice Amount InvoiceDate

V1009 VID010 V7679 598.5 980126
V1019 VID010 V7688 598.5 980126
V1032 VID005 V7771 1070 980309
V1043 VID014 V7780 1070 980309
V421 VID003 V7831 2000 980330
V421 VID010 V7832 750 980330
V570 VID003 V7762 2000 980302
V659 VID003 V7730 1000 980223
V783 VID003 V7815 750 980323
V985 VID003 V7733 2500 980223
V966 VID001 V5020 1167 980215
V98 VID003 V7750 2000 980223

You want to use this table to create a summary report that shows the sales for each
product for each month of the quarter.

Solution
Use the following PROC SQL code to create a column for each month of the quarter,

and use the summary function SUM in combination with the GROUP BY statement to
accumulate the monthly sales for each product:

Practical Problem-Solving with PROC SQL � How It Works 147

proc sql;
title ’First Quarter Sales by Product’;
select Product,

sum(Jan) label=’Jan’,
sum(Feb) label=’Feb’,
sum(Mar) label=’Mar’

from (select Product,
case

when substr(InvoiceDate,3,2)=’01’ then
InvoiceAmount end as Jan,

case
when substr(InvoiceDate,3,2)=’02’ then

InvoiceAmount end as Feb,
case

when substr(InvoiceDate,3,2)=’03’ then
InvoiceAmount end as Mar

from work.sales)
group by Product;

Output 6.16 PROC SQL Output for a Summary Report

First Quarter Sales by Product

Product Jan Feb Mar

VID001 . 1167 .
VID003 . 5500 4750
VID005 . . 1070
VID010 1197 . 750
VID014 . . 1070

Note: Missing values in the matrix indicate that no sales occurred for that given
product in that month. �

How It Works
This solution uses an in-line view to create three temporary columns, Jan, Feb, and

Mar, based on the month part of the invoice date column. The in-line view is a query
that

� selects the product column
� uses a CASE expression to assign the value of invoice amount to one of three

columns, Jan, Feb, or Mar, depending upon the value of the month part of the
invoice date column.

case
when substr(InvoiceDate,3,2)=’01’ then

InvoiceAmount end as Jan,
case

when substr(InvoiceSate,3,2)=’02’ then
InvoiceAmount end as Feb,

148 Creating a Customized Sort Order � Chapter 6

case
when substr(InvoiceDate,3,2)=’03’ then

InvoiceAmount end as Mar

The first, or outer, SELECT statement in the query
� selects the product
� uses the summary function SUM to accumulate the Jan, Feb, and Mar amounts
� uses the GROUP BY statement to produce a line in the table for each product.

Notice that dates are stored in the input table as strings. If the dates were stored as
SAS dates, then the CASE expression could be written as follows:

case
when month(InvoiceDate)=1 then

InvoiceAmount end as Jan,
case

when month(InvoiceDate)=2 then
InvoiceAmount end as Feb,

case
when month(InvoiceDate)=3 then

InvoiceAmount end as Mar

Creating a Customized Sort Order

Problem
You want to sort data in a logical, but not alphabetical, sequence.

Background Information
There is one input table, called CHORES, that contains the following data:

Output 6.17 Sample Input Data for a Customized Sort

Garden Chores

Project Hours Season

weeding 48 summer
pruning 12 winter
mowing 36 summer
mulching 17 fall
raking 24 fall
raking 16 spring
planting 8 spring
planting 8 fall
sweeping 3 winter
edging 16 summer
seeding 6 spring
tilling 12 spring
aerating 6 spring
feeding 7 summer
rolling 4 winter

Practical Problem-Solving with PROC SQL � How It Works 149

You want to reorder this chore list so that all the chores are grouped by season,
starting with spring and progressing through the year. Simply ordering by Season
makes the list appear in alphabetical sequence: fall, spring, summer, winter.

Solution
Use the following PROC SQL code to create a new column, Sorter, that will have

values of 1 through 4 for the seasons spring through winter. Use the new column to
order the query, but do not select it to appear:

options nodate nonumber linesize=80 pagesize=60;

proc sql;
title ’Garden Chores by Season in Logical Order’;
select Project, Hours, Season

from (select Project, Hours, Season,
case

when Season = ’spring’ then 1
when Season = ’summer’ then 2
when Season = ’fall’ then 3
when Season = ’winter’ then 4
else .

end as Sorter
from chores)

order by Sorter;

Output 6.18 PROC SQL Output for a Customized Sort Sequence

Garden Chores by Season in Logical Order

Project Hours Season

tilling 12 spring
raking 16 spring
planting 8 spring
seeding 6 spring
aerating 6 spring
mowing 36 summer
feeding 7 summer
edging 16 summer
weeding 48 summer
raking 24 fall
mulching 17 fall
planting 8 fall
rolling 4 winter
pruning 12 winter
sweeping 3 winter

How It Works
This solution uses an in-line view to create a temporary column that can be used as

an ORDER BY column. The in-line view is a query that

� selects the Project, Hours, and Season columns

150 Conditionally Updating a Table � Chapter 6

� uses a CASE expression to remap the seasons to the new column Sorter: spring to
1, summer to 2, fall to 3, and winter to 4.

(select project, hours, season,
case

when season = ’spring’ then 1
when season = ’summer’ then 2
when season = ’fall’ then 3
when season = ’winter’ then 4
else .

end as sorter
from chores)

The first, or outer, SELECT statement in the query

� selects the Project, Hours and Season columns

� orders rows by the values that were assigned to the seasons in the Sorter column
that was created with the in-line view.

Notice that the Sorter column is not included in the SELECT statement. That causes
a note to be written to the log indicating that you have used a column in an ORDER BY
statement that does not appear in the SELECT statement. In this case, that is exactly
what you wanted to do.

Conditionally Updating a Table

Problem
You want to update values in a column of a table, based on the values of several

other columns in the table.

Background Information
There is one table, called INCENTIVES, that contains information on sales data.

There is one record for each salesperson that includes a department code, a base pay
rate, and sales of two products, gadgets and whatnots.

Output 6.19 Sample Input Data to Conditionally Change a Table

Sales Data for Incentives Program

Name Department Payrate Gadgets Whatnots
--
Lao Che M2 8 10193 1105
Jack Colton U2 6 9994 2710
Mickey Raymond M1 12 6103 1930
Dean Proffit M2 11 3000 1999
Antoinette Lily E1 20 2203 4610
Sydney Wade E2 15 4205 3010
Alan Traherne U2 4 5020 3000
Elizabeth Bennett E1 16 17003 3003

Practical Problem-Solving with PROC SQL � Solution 151

You want to update the table by increasing each salesperson’s payrate (based on the
total sales of gadgets and whatnots) and taking into consideration some factors that are
based on department code.

Specifically, anyone who sells over 10,000 gadgets merits an extra $5 per hour.
Anyone selling between 5,000 and 10,000 gadgets also merits an incentive pay, but E
Department salespersons are expected to be better sellers than those in the other
departments, so their gadget sales incentive is $2 per hour compared to $3 per hour for
those in other departments. Good sales of whatnots also entitle sellers to added
incentive pay. The algorithm for whatnot sales is that the top level (level 1 in each
department) salespersons merit an extra $.50 per hour for whatnot sales over 2,000,
and level 2 salespersons merit an extra $1 per hour for sales over 2,000.

Solution
Use the following PROC SQL code to create a new value for the Payrate column.

Actually Payrate is updated twice for each row, once based on sales of gadgets, and
again based on sales of whatnots:

proc sql;
update incentives
set payrate = case

when gadgets > 10000 then
payrate + 5.00

when gadgets > 5000 then
case

when department in (’E1’, ’E2’) then
payrate + 2.00

else payrate + 3.00
end

else payrate
end;

update incentives
set payrate = case

when whatnots > 2000 then
case

when department in (’E2’, ’M2’, ’U2’) then
payrate + 1.00

else payrate + 0.50
end

else payrate
end;

title ’Adjusted Payrates Based on Sales of Gadgets and Whatnots’;
select * from incentives;

152 How It Works � Chapter 6

Output 6.20 PROC SQL Output for Conditionally Updating a Table

Adjusted Payrates Based on Sales of Gadgets and Whatnots

Name Department Payrate Gadgets Whatnots
--
Lao Che M2 13 10193 1105
Jack Colton U2 10 9994 2710
Mickey Raymond M1 15 6103 1930
Dean Proffit M2 11 3000 1999
Antoinette Lily E1 20.5 2203 4610
Sydney Wade E2 16 4205 3010
Alan Traherne U2 8 5020 3000
Elizabeth Bennett E1 21.5 17003 3003

How It Works
This solution performs consecutive updates to the payrate column of the incentive

table. The first update uses a nested case expression, first determining a bracket that is
based on the amount of gadget sales: greater than 10,000 calls for an incentive of $5,
between 5,000 and 10,000 requires an additional comparison. That is accomplished
with a nested case expression that checks department code to choose between a $2 and
$3 incentive.

update incentives
set payrate = case

when gadgets > 10000 then
payrate + 5.00

when gadgets > 5000 then
case

when department in (’E1’, ’E2’) then
payrate + 2.00

else payrate + 3.00
end

else payrate
end;

The second update is similar, though simpler. All sales of whatnots over 2,000 merit
an incentive, either $.50 or $1 depending on the department level, that again is
accomplished by means of a nested case expression.

update incentives
set payrate = case

when whatnots > 2000 then
case

when department in (’E2’, ’M2’, ’U2’) then
payrate + 1.00

else payrate + 0.50
end

else payrate
end;

Practical Problem-Solving with PROC SQL � Solution 153

Updating a Table with Values from Another Table

Problem
You want to update the SQL.UNITEDSTATES table with updated population data.

Background Information
The SQL.NEWPOP table contains updated population data for some of the U.S.

states.

Output 6.21 Table with Updated Population Data

Updated U.S. Population Data

state Population

Texas 20,851,820
Georgia 8,186,453
Washington 5,894,121
Arizona 5,130,632
Alabama 4,447,100
Oklahoma 3,450,654
Connecticut 3,405,565
Iowa 2,926,324
West Virginia 1,808,344
Idaho 1,293,953
Maine 1,274,923
New Hampshire 1,235,786
North Dakota 642,200
Alaska 626,932

Solution
Use the following PROC SQL code to update the population information for each

state in the SQL.UNITEDSTATES table:

proc sql;
title ’UNITEDSTATES’;
update sql.unitedstates as u

set population=(select population from sql.newpop as n
where u.name=n.state)

where u.name in (select state from sql.newpop);
select Name format=$17., Capital format=$15.,

Population, Area, Continent format=$13., Statehood format=date9.
from sql.unitedstates;

154 How It Works � Chapter 6

Output 6.22 SQL.UNITEDSTATES with Updated Population Data (Partial Output)

UNITEDSTATES

Name Capital Population Area Continent Statehood
--
Alabama Montgomery 4447100 52423 North America 14DEC1819
Alaska Juneau 626932 656400 North America 03JAN1959
Arizona Phoenix 5130632 114000 North America 14FEB1912
Arkansas Little Rock 2447996 53200 North America 15JUN1836
California Sacramento 31518948 163700 North America 09SEP1850
Colorado Denver 3601298 104100 North America 01AUG1876
Connecticut Hartford 3405565 5500 North America 09JAN1788
Delaware Dover 707232 2500 North America 07DEC1787
District of Colum Washington 612907 100 North America 21FEB1871
Florida Tallahassee 13814408 65800 North America 03MAR1845

How It Works
The UPDATE statement updates values in the SQL.UNITEDSTATES table (here

with the alias U). For each row in the SQL.UNITEDSTATES table, the in-line view in
the SET clause returns a single value. For rows that have a corresponding row in
SQL.NEWPOP, this value is the value of the Population column from SQL.NEWPOP.
For rows that do not have a corresponding row in SQL.NEWPOP, this value is missing.
In both cases, the returned value is assigned to the Population column.

The WHERE clause ensures that only the rows in SQL.UNITEDSTATES that have a
corresponding row in SQL.NEWPOP are updated, by checking each value of Name
against the list of state names that is returned from the in-line view. Without the
WHERE clause, rows that do not have a corresponding row in SQL.NEWPOP would
have their Population values updated to missing.

Creating and Using Macro Variables

Problem
You want to create a separate data set for each unique value of a column.

Background Information
The SQL.FEATURES data set contains information on various geographical features

around the world.

Practical Problem-Solving with PROC SQL � Solution 155

Output 6.23 FEATURES (Partial Output)

FEATURES

Name Type Location Area Height Depth Length
--
Aconcagua Mountain Argentina . 22834 . .
Amazon River South America . . . 4000
Amur River Asia . . . 2700
Andaman Sea 218100 . 3667 .
Angel Falls Waterfall Venezuela . 3212 . .
Annapurna Mountain Nepal . 26504 . .
Aral Sea Lake Asia 25300 . 222 .
Ararat Mountain Turkey . 16804 . .
Arctic Ocean 5105700 . 17880 .
Atlantic Ocean 33420000 . 28374 .

Solution
To create a separate data set for each type of feature, you could go through the data

set manually to determine all the unique values of Type, and then write a separate
DATA step for each type (or a single DATA step with multiple OUTPUT statements).
This approach is labor-intensive, error-prone, and impractical for large data sets. The
following PROC SQL code counts the unique values of Type and puts each value in a
separate macro variable. The SAS macro that follows the PROC SQL code uses these
macro variables to create a SAS data set for each value. You do not need to know
beforehand how many unique values there are or what the values are.

proc sql noprint;
select count(distinct type)

into :n
from sql.features;

select distinct type
into :type1 - :type%left(&n)
from sql.features;

quit;

%macro makeds;
%do i=1 %to &n;

data &&type&i (drop=type);
set sql.features;
if type="&&type&i";

run;
%end;

%mend makeds;
%makeds;

156 Solution � Chapter 6

Output 6.24 Log

240 proc sql noprint;

241 select count(distinct type)

242 into :n

243 from sql.features;

244 select distinct type

245 into :type1 - :type%left(&n)

246 from sql.features;

247 quit;

NOTE: PROCEDURE SQL used (Total process time):

real time 0.04 seconds

cpu time 0.03 seconds

248

249 %macro makeds;

250 %do i=1 %to &n;

251 data &&type&i (drop=type);

252 set sql.features;

253 if type="&&type&i";

254 run;

255 %end;

256 %mend makeds;

257 %makeds;

NOTE: There were 74 observations read from the data set SQL.FEATURES.

NOTE: The data set WORK.DESERT has 7 observations and 6 variables.

NOTE: DATA statement used (Total process time):

real time 1.14 seconds

cpu time 0.41 seconds

NOTE: There were 74 observations read from the data set SQL.FEATURES.

NOTE: The data set WORK.ISLAND has 6 observations and 6 variables.

NOTE: DATA statement used (Total process time):

real time 0.02 seconds

cpu time 0.00 seconds

NOTE: There were 74 observations read from the data set SQL.FEATURES.

NOTE: The data set WORK.LAKE has 10 observations and 6 variables.

NOTE: DATA statement used (Total process time):

real time 0.01 seconds

cpu time 0.01 seconds

NOTE: There were 74 observations read from the data set SQL.FEATURES.

NOTE: The data set WORK.MOUNTAIN has 18 observations and 6 variables.

NOTE: DATA statement used (Total process time):

real time 0.02 seconds

cpu time 0.01 seconds

NOTE: There were 74 observations read from the data set SQL.FEATURES.

NOTE: The data set WORK.OCEAN has 4 observations and 6 variables.

NOTE: DATA statement used (Total process time):

real time 0.01 seconds

cpu time 0.01 seconds

NOTE: There were 74 observations read from the data set SQL.FEATURES.

NOTE: The data set WORK.RIVER has 12 observations and 6 variables.

NOTE: DATA statement used (Total process time):

real time 0.02 seconds

cpu time 0.02 seconds

NOTE: There were 74 observations read from the data set SQL.FEATURES.

NOTE: The data set WORK.SEA has 13 observations and 6 variables.

NOTE: DATA statement used (Total process time):

real time 0.03 seconds

cpu time 0.02 seconds

NOTE: There were 74 observations read from the data set SQL.FEATURES.

NOTE: The data set WORK.WATERFALL has 4 observations and 6 variables.

NOTE: DATA statement used (Total process time):

real time 0.02 seconds

cpu time 0.02 seconds

Practical Problem-Solving with PROC SQL � Solution 157

How It Works
This solution uses the INTO clause to store values in macro variables. The first

SELECT statement counts the unique variables and stores the result in macro variable
N. The second SELECT statement creates a range of macro variables, one for each
unique value, and stores each unique value in one of the macro variables. Note the use
of the %LEFT function, which trims leading blanks from the value of the N macro
variable.

The MAKEDS macro uses all the macro variables that were created in the PROC
SQL step. The macro uses a %DO loop to execute a DATA step for each unique value,
writing rows that contain a given value of Type to a SAS data set of the same name.
The Type variable is dropped from the output data sets.

For more information about SAS macros, see SAS Macro Language: Reference.

Using PROC SQL Tables in Other SAS Procedures

Problem
You want to show the average high temperatures in degrees Celsius for European

countries on a map.

Background Information
The SQL.WORLDTEMPS table has average high and low temperatures for various

cities around the world.

Output 6.25 WORLDTEMPS (Partial Output)

WORLDTEMPS

City Country AvgHigh AvgLow

Algiers Algeria 90 45
Amsterdam Netherlands 70 33
Athens Greece 89 41
Auckland New Zealand 75 44
Bangkok Thailand 95 69
Beijing China 86 17
Belgrade Yugoslavia 80 29
Berlin Germany 75 25
Bogota Colombia 69 43
Bombay India 90 68

Solution
Use the following PROC SQL and PROC GMAP code to produce the map. You must

license SAS/GRAPH software to use PROC GMAP.

158 Solution � Chapter 6

options fmtsearch=(sashelp.mapfmts);

proc sql;
create table extremetemps as
select country, round((mean(avgHigh)-32)/1.8) as High,

input(put(country,$glcsmn.), best.) as ID
from sql.worldtemps
where calculated id is not missing and country in

(select name from sql.countries where continent=’Europe’)
group by country;

quit;

proc gmap map=maps.europe data=extremetemps all;
id id;
block high / levels=3;
title ’Average High Temperatures for European Countries’;
title2 ’Degrees Celsius’

run;
quit;

Practical Problem-Solving with PROC SQL � How It Works 159

Figure 6.1 PROC GMAP Output

How It Works
The SAS system option FMTSEARCH= tells SAS to search in the

SASHELP.MAPFMTS catalog for map-related formats. In the PROC SQL step, a
temporary table is created with Country, High, and ID columns. The calculation
round((mean(avgHigh)-32)/1.8) does the following:

160 How It Works � Chapter 6

1 For countries that are represented by more than one city, the mean of the cities’
average high temperatures is used for that country.

2 That value is converted from degrees Fahrenheit to degrees Celsius.

3 The result is rounded to the nearest degree.

The PUT function uses the $GLCSMN. format to convert the country name to a
country code. The INPUT function converts this country code, which is returned by the
PUT function as a character value, into a numeric value that can be understood by the
GMAP procedure. See SAS Language Reference: Dictionary for details about the PUT
and INPUT functions.

The WHERE clause limits the output to European countries by checking the value of
the Country column against the list of European countries that is returned by the
in-line view. Also, rows with missing values of ID are eliminated. Missing ID values
could be produced if the $GLCSMN. format does not recognize the country name.

The GROUP BY clause is required so that the mean temperature can be calculated
for each country rather than for the entire table.

The PROC GMAP step uses the ID variable to identify each country and places a
block representing the High value on each country on the map. The ALL option ensures
that countries (such as the United Kingdom in this example) that do not have High
values are also drawn on the map. In the BLOCK statement, the LEVELS= option
specifies how many response levels are used in the graph. For more information about
the GMAP procedure, see SAS/GRAPH Reference, Volumes 1 and 2.

161

A P P E N D I X

1
Recommended Reading

Recommended Reading 161

Recommended Reading

Here is the recommended reading list for this title:
� Base SAS Procedures Guide
� Cody’s Data Cleaning Techniques Using SAS Software

� Combining and Modifying SAS Data Sets: Examples
� SAS/GRAPH Reference, Volumes 1 and 2
� SAS Language Reference: Concepts

� SAS Language Reference: Dictionary
� SAS Macro Language: Reference

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/publishing
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=57198

162

163

Glossary

calculated column
in a query, a column that does not exist in any of the tables that are being queried,
but which is created as a result of a column expression.

Cartesian product
a type of join that matches each row from each joined table to each row from all other
joined tables. See cross join, join.

column
in relational databases, a vertical component of a table. Each column has a unique
name, contains data of a specific type, and has certain attributes. A column is
analogous to a variable in SAS terminology.

column alias
a temporary, alternate name for a column in the SQL procedure. Aliases are
optionally specified in the SELECT clause to name or rename columns. An alias is
one word. See also column.

column expression
a set of operators and operands that, when evaluated, results in a single data value.
The resulting data value can be either a character value or a numeric value.

composite index
an index that locates observations in a SAS data set by the values of two or more key
variables. See also index, simple index.

condition
in PROC SQL, the part of the WHERE clause that contains the search criteria. In
the condition, you specify which rows are to be retrieved.

cross join
a type of join that returns the product of joined tables. A cross join is functionally the
same as a Cartesian product. See Cartesian product, join.

distinct
a keyword that causes the SQL procedure to remove duplicate rows from the output.

equijoin
a kind of join in the SQL procedure. When two tables are joined, for example, the
value of a column in the first table must equal the value of the column in the second
table in an SQL expression. See also join.

164 Glossary

group
in the SQL procedure, a set of rows that all have the same combination of values for
the columns that are specified in a GROUP BY clause.

in-line view
a query-expression that is nested in the SQL procedure’s FROM clause. It can take a
table alias but cannot be named permanently. It can be referenced only in the query
(or statement) in which it is defined.

index
in SAS software, a component of a SAS data set that contains the data values of a
key variable or variables, paired with a location identifier for the observation that
contains the value. The value/identifier pairs are ordered in a structure that enables
SAS to search by a value of a variable. See also composite index, simple index.

inner join
See join.

integrity constraints
a set of data validation rules that you can specify in order to restrict the data values
that can be stored for a variable in a SAS data file. Integrity constraints help you
preserve the validity and consistency of your data.

join
to combine data from two or more tables into a single result table.

join
in the SQL procedure, the combination of data from two or more tables (or from two
or more SAS data views) to produce a single result table. A conventional join, which
is often called an inner join, returns a result table for all the rows in one table that
have one or more matching rows in the other table(s), as specified by the sql-
expression. See also outer join.

join criteria
The set of parameters that determine how tables are to be joined. Join criteria are
usually specified in a WHERE expression or in an SQL ON clause. See also join,
outer join, inner join.

missing value
in SAS, a term that describes the contents of a variable that contains no data for a
particular row or observation. By default, SAS prints or displays a missing numeric
value as a single period, and it prints or displays a missing character value as a blank
space. In the SQL procedure, a missing value is equivalent to an SQL NULL value.

natural join
a type of join that returns selected rows from tables in which one or more columns in
each table has the same name and the same data type and contains the same value.
See join.

outer join
in the SQL procedure, an inner join that is augmented with rows that do not match
with any row from the other table(s) in the join. Outer joins are of three kinds: left,
right, and full. See also join.

PROC SQL view
a SAS data set (of type VIEW) that is created by the SQL procedure. A PROC SQL
view contains no data. Instead, it stores information that enables it to read data
values from other files, which can include SAS data files, SAS/ACCESS views, DATA
step views, or other PROC SQL views. A PROC SQL view’s output can be either a
subset or a superset of one or more files. See also view.

Glossary 165

query
a set of instructions that requests particular information from one or more data
sources.

query-expression (query)
in PROC SQL, one or more table-expressions that can be linked with set operators.
The primary purpose of a query-expression is to retrieve data from tables, PROC
SQL views, or SAS/ACCESS views. In PROC SQL, the SELECT statement is
contained in a query-expression.

row
in relational database management systems, the horizontal component of a table. It
is analogous to a SAS observation.

SAS data file
a SAS data set that contains data values as well as descriptor information that is
associated with the data. The descriptor information includes information such as
the data types and lengths of the variables, as well as which engine was used to
create the data. A PROC SQL table is a SAS data file. SAS data files are of member
type DATA. See also SAS data set, SAS data view.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS data view
a type of SAS data set that retrieves data values from other files. A SAS data view
contains only descriptor information such as the data types and lengths of the
variables (columns), plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors’ file
formats. SAS data views are of member type VIEW. See also SAS data set.

simple index
an index that uses the values of only one variable to locate observations. See also
composite index, index.

SQL (Structured Query Language)
a standardized, high-level query language that is used in relational database
management systems to create and manipulate database management system
objects. SAS implements SQL through the SQL procedure.

Structured Query Language
See SQL (Structured Query Language).

table
in the SQL procedure, a SAS data file. See also SAS data file.

union join
a type of join that returns all rows with their respective values from each input table.
Columns that do not exist in one table will have null (missing) values for those rows
in the result table. See join.

view
a definition of a virtual data set. The definition is named and stored for later use. A
view contains no data; it merely describes or defines data that is stored elsewhere.
SAS data views can be created by the ACCESS and SQL procedures.

166 Glossary

WHERE clause
in the SQL procedure, the keyword WHERE followed by one or more WHERE
expressions.

WHERE expression
a type of SAS expression that specifies a condition for selecting observations for
processing by a DATA step or a PROC step. WHERE expressions can contain special
operators that are not available in other SAS expressions. WHERE expressions can
appear in a WHERE statement, a WHERE= data set option, a WHERE clause, or a
WHERE command.

Index 167

Index

A
aggregate functions 39

creating macro variables from result of 122
HAVING clause with 51
table of 39
unique values with 43

ALL keyword
set operators and 116

automatic macro variables 121
SQL procedure 126

B
BETWEEN-AND operators 35
Boolean operators 32

C
calculated columns 19

assigning column alias to 20
referring to by alias 21
sorting by 27

Cartesian product 57
cross joins 68

CASE expression 22
CASE-OPERAND form 23

CASE-OPERAND form 23
COALESCE function 24

in joins 70
column alias 20

assigning to calculated columns 20
referring to calculated columns 21

column attributes
list of 17
specifying 24

column definitions
creating tables from 90

column headers
suppressing 19

column names
qualifying 58

columns 2
adding 99
altering 99
assigning values conditionally 21
calculating values 19
creating 18

deleting 101
DICTIONARY.COLUMNS 119
finding for reports 119
grouping by multiple columns 47
grouping by one column 46
list of, with attributes 17
modifying 100
multicolumn joins 62
renaming 100
replacing missing values 24
selecting 14
selecting all columns 14
selecting specific columns 15
sorting, with missing values 30
sorting by 25
sorting by column position 28
sorting by multiple columns 26
sorting by unselected columns 29
summarizing data, in multiple columns 144
unique values 16

comparison operators 31
inner joins with 59
truncated string 37

concatenating
query results 85

conditional operators 33
correlated subqueries 76
counting

all rows 44
duplicate rows 141
nonmissing values 43
unique values 43

CREATE INDEX statement 102
cross joins 68

D
data files

See tables
data set options

creating tables with 93
DATA step

vs. SQL procedure 3
DBMS access 128
DBMS data

displaying with SQL Procedure Pass-Through
Facility 131

DBMS tables 2
PROC SQL views of 130

querying 129
debugging queries 112
DICTIONARY tables 117

DICTIONARY.COLUMNS 119
DICTIONARY.TABLES 119
tips for 120

DICTIONARY.COLUMNS 119
DICTIONARY.TABLES 119

E
errors

update errors 98
example tables 4
EXCEPT operator 81, 83
EXISTS condition 77

F
FEEDBACK option

expanding SELECT* statement with 113
fields

See columns
files

See tables
filtering grouped data 50

HAVING clause 50
HAVING clause vs. WHERE clause 51
HAVING clause with aggregate functions 51

foreign key 104
FROM clause 12
full outer joins 67

G
general integrity constraints 104
GROUP BY clause 13
grouping data 45

by multiple columns 47
by one column 46
filtering grouped data 50
missing values in data 48
sorting and 48
without summarizing 46

168 Index

H
HAVING clause 13

aggregate functions with 51
filtering grouped data 50
vs. WHERE clause 51

hierarchical data
expanding in tables 143

host-variable references 121

I
in-line views 108

vs. temporary tables 116
IN operator 34
indexes

creating 102
deleting 103
query performance and 115

INNER JOIN keywords 59
inner joins 57

comparison operators for 59
creating with INNER JOIN keywords 59
data from multiple tables 63
multicolumn joins 62
null values and 60
order of output 59
reflexive joins 64
self-joins 64
showing relationships within a table 64
table aliases 58

INOBS= option
restricting row processing 112

inserting rows 93
with queries 95
with SET clause 93
with VALUES clause 94

integrity constraints 103
INTERSECT operator 81, 84
IS MISSING operator 34
IS NOT MISSING operator 61
iterations

limiting 112

J
joins 56

Cartesian product 57
COALESCE function in 70
comparing with subqueries 116
cross joins 68
inner joins 57
natural joins 69
outer joins 65
reducing size of results 117
union joins 69
vs. match-merges 71
vs. subqueries 79
when to use 80
WHERE expressions with 117

L
left outer joins 65
libname engines

accessing DBMS data 129
querying DBMS tables 129

libnames
embedding in PROC SQL views 107

LIKE operator 36
logical operators 32
LOOPS= option

limiting iterations 112

M
macro facility

SQL procedure with 120
macro variables 121

concatenating values in 123
creating 154
creating from aggregate function results 122
creating from query results 121
creating in SQL procedure 121
creating multiple 122

macros
defining, to create tables 124

match-merges
vs. joins 71

MEAN function
summarizing data 40

missing values 3
grouping data containing 48
overlaying 138
replacing in columns 24
sorting columns with 30
summarizing data with 44
WHERE clause with 37

multicolumn joins 62

N
natural joins 69
nested subqueries 78
NOEXEC option

syntax checking with 113
null values 3

inner joins and 60

O
observations

See rows
ODS (Output Delivery System)

SQL procedure with 132
ORDER BY clause 13

omitting 116
query performance and 116

outer joins 65
full outer joins 67
left outer joins 65
right outer joins 66

OUTER UNION operator 81, 85

OUTOBS= option
restricting row processing 112

output
adding text to 18
formatting with REPORT procedure 127

overlaying missing values 138

P
percentages

within subtotals 140
performance

queries 115
primary key 104
PROC SQL views 2, 105

creating 106
deleting 108
describing 106
embedding libnames in 107
in-line views 108
in SAS 109
of DBMS tables 130
tips for 109
updating 107

programming
with SQL procedure 111

Q
qualifying column names 58
queries 2

ALL keyword in set operations 116
breaking into steps 116
combining, with set operators 81
creating with SQL procedure 112
DBMS tables 129
debugging 112
duplicate rows and performance 116
in-line views vs. temporary tables 116
indexes and 115
inserting rows with 95
limiting iterations 112
performance improvement 115
restricting row processing 112
subqueries 74
validating 52

query results 2
concatenating 85
creating macro variables from 121
creating tables from 91
deleting duplicate rows 16

R
records

See rows
referential integrity constraints 104
reflexive joins 64
relational theory 1
relations 1
remerging summary statistics 41
renaming columns 100

Index 169

REPORT procedure
formatting SQL output 127

RESET statement
resetting SQL procedure options 115

resetting options 115
retrieving rows 30

based on comparison 31
multiple conditions 32
rows that satisfy a condition 30
simple WHERE clause 30

right outer joins 66
rows 2

See also retrieving rows
counting 44
counting duplicates 141
deleting 98
deleting duplicates 16
duplicates 116
inserting 93
inserting with queries 95
inserting with SET clause 93
inserting with VALUES clause 94
restricting row processing 112

S
SAS/ACCESS LIBNAME statement

accessing DBMS data 128
SAS data files

See tables
SELECT * statement

expanding with FEEDBACK option 113
SELECT clause 12
SELECT statement, SQL procedure 12

FROM clause 12
GROUP BY clause 13
HAVING clause 13
ORDER BY clause 13
ordering clauses 14
SELECT clause 12
WHERE clause 13

self-joins 64
SET clause

inserting rows with 93
set operators

ALL keyword 116
combining queries 81

sort order 27
creating 148

sorting data 25
by calculated column 27
by column 25
by column position 28
by multiple columns 26
by unselected columns 29
columns with missing values 30
grouping and 48
sort order 27
sorting sequence 29

sorting sequence 29
SQL 1
SQL procedure 1

automatic macro variables 126

creating macro variables 121
creating queries 112
cumulative time for 114
debugging queries 112
example tables 4
formatting output 127
macro facility with 120
ODS with 132
programming with 111
resetting options 115
syntax checking 113
terminology 2
timing individual statements 114
vs. DATA step 3

SQL Procedure Pass-Through Facility
displaying DBMS data 131

SQLOBS macro variable 126
SQLOOPS macro variable 113, 126
SQLRC macro variable 126
statistical summaries 39
STIMER option

timing SQL procedure 114
Structured Query Language

See SQL
subqueries 74

comparing with joins 116
correlated subqueries 76
multiple nesting levels 78
multiple-value 75
single-value 75
testing for a group of values 77
vs. joins 79
when to use 80

subtotals
percentages within 140

summarizing data 39
aggregate functions 39
combining data from multiple rows 41
displaying sums 40
in multiple columns 144
missing values in data 44
remerging summary statistics 41
WHERE clause for 40

summary functions 39
summary reports

creating 146
sums

displaying 40
syntax checking 113

T
table aliases 58
tables 2

altering columns 99
Cartesian product 57
comparing 136
copying existing tables 93
counting duplicate rows 141
creating 90
creating with macros 124
creating without rows 90

deleting 103
deleting rows 98
example tables 4
expanding hierarchical data 143
inserting rows 93
integrity constraints 103
joining a table to itself 64
modifying columns 100
selecting all columns 14
selecting columns 14
selecting specific columns 15
SQL tables in other procedures 157
SQL tables in SAS 103
structure of 17
temporary tables vs. in-line views 116
update errors 98
updating conditionally 150
updating values 96
updating with values from another table 153

temporary tables
vs. in-line views 116

truncated string comparison operators 37

U
union joins 69
UNION operator 81, 82
unique values

aggregate functions with 43
counting 43
counting all rows 44
counting nonmissing values 43

updating tables 96
conditionally 150
errors 98
values from another table 153

user-defined macro variables 121

V
VALIDATE statement

syntax checking with 113
validating queries 52
VALUES clause

inserting rows wtih 94
variables

See columns
views

See PROC SQL views

W
weighted averages 134
WHERE clause 13

MEAN function with 40
missing values with 37
retrieving rows conditionally 30
summarizing data 40
vs. HAVING clause 51

WHERE expressions
joins with 117

Your Turn

If you have comments or suggestions about SAS 9.1 SQL Procedure User’s Guide,
please send them to us on a photocopy of this page or send us electronic mail.

For comments about this book, please return the photocopy to
SAS Publishing
SAS Campus Drive
Cary, NC 27513
email: yourturn@sas.com

For suggestions about the software, please return the photocopy to
SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
email: suggest@sas.com

	Table of Contents
	Contents

	Introduction to the SQL Procedure
	What Is SQL?
	What Is the SQL Procedure?
	Terminology
	Tables
	Queries
	Views
	Null Values

	Comparing PROC SQL with the SAS DATA Step
	Notes about the Example Tables

	Retrieving Data from a Single Table
	Overview of the SELECT Statement
	Selecting Columns in a Table
	Selecting All Columns in a Table
	Selecting Specific Columns in a Table
	Eliminating Duplicate Rows from the Query Results
	Determining the Structure of a Table

	Creating New Columns
	Adding Text to Output
	Calculating Values
	Assigning a Column Alias
	Referring to a Calculated Column by Alias
	Assigning Values Conditionally
	Replacing Missing Values
	Specifying Column Attributes

	Sorting Data
	Sorting by Column
	Sorting by Multiple Columns
	Specifying a Sort Order
	Sorting by Calculated Column
	Sorting by Column Position
	Sorting by Unselected Columns
	Specifying a Different Sorting Sequence
	Sorting Columns That Contain Missing Values

	Retrieving Rows That Satisfy a Condition
	Using a Simple WHERE Clause
	Retrieving Rows Based on a Comparison
	Retrieving Rows That Satisfy Multiple Conditions
	Using Other Conditional Operators
	Using Truncated String Comparison Operators
	Using a WHERE Clause with Missing Values

	Summarizing Data
	Using Aggregate Functions
	Summarizing Data with a WHERE Clause
	Displaying Sums
	Combining Data from Multiple Rows into a Single Row
	Remerging Summary Statistics
	Using Aggregate Functions with Unique Values
	Summarizing Data with Missing Values

	Grouping Data
	Grouping by One Column
	Grouping without Summarizing
	Grouping by Multiple Columns
	Grouping and Sorting Data
	Grouping with Missing Values

	Filtering Grouped Data
	Using a Simple HAVING Clause
	Choosing Between HAVING and WHERE
	Using HAVING with Aggregate Functions

	Validating a Query

	Retrieving Data from Multiple Tables
	Introduction
	Selecting Data from More Than One Table by Using Joins
	Inner Joins
	Outer Joins
	Specialty Joins
	Using the Coalesce Function in Joins
	Comparing DATA Step Match-Merges with PROC SQL Joins

	Using Subqueries to Select Data
	Single-Value Subqueries
	Multiple-Value Subqueries
	Correlated Subqueries
	Testing for the Existence of a Group of Values
	Multiple Levels of Subquery Nesting
	Combining a Join with a Subquery

	When to Use Joins and Subqueries
	Combining Queries with Set Operators
	Working with Two or More Query Results
	Producing Unique Rows from Both Queries (UNION)
	Producing Rows That Are in Only the First Query Result (EXCEPT)
	Producing Rows That Belong to Both Query Results (INTERSECT)
	Concatenating Query Results (OUTER UNION)
	Producing Rows from the First Query or the Second Query

	Creating and Updating Tables and Views
	Introduction
	Creating Tables
	Creating Tables from Column Definitions
	Creating Tables from a Query Result
	Creating Tables Like an Existing Table
	Copying an Existing Table
	Using Data Set Options

	Inserting Rows into Tables
	Inserting Rows with the SET Clause
	Inserting Rows with the VALUES Clause
	Inserting Rows with a Query

	Updating Data Values in a Table
	Updating All Rows in a Column with the Same Expression
	Updating Rows in a Column with Different Expressions
	Handling Update Errors

	Deleting Rows
	Altering Columns
	Adding a Column
	Modifying a Column
	Deleting a Column

	Creating an Index
	Using PROC SQL to Create Indexes
	Tips for Creating Indexes
	Deleting Indexes

	Deleting a Table
	Using SQL Procedure Tables in SAS Software
	Creating and Using Integrity Constraints in a Table
	Creating and Using PROC SQL Views
	Creating Views
	Describing a View
	Updating a View
	Embedding a Libname in a View
	Deleting a View
	Specifying In-Line Views
	Tips for Using SQL Procedure Views
	Using SQL Procedure Views in SAS Software

	Programming with the SQL Procedure
	Introduction
	Using PROC SQL Options to Create and Debug Queries
	Restricting Row Processing with the INOBS= and OUTOBS= Options
	Limiting Iterations with the LOOPS= Option
	Checking Syntax with the NOEXEC Option and the VALIDATE Statement
	Expanding SELECT * with the FEEDBACK Option
	Timing PROC SQL with the STIMER Option
	Resetting PROC SQL Options with the RESET Statement

	Improving Query Performance
	Using Indexes to Improve Performance
	Using the Keyword ALL in Set Operations
	Omitting the ORDER BY Clause When Creating Tables and Views
	Using In-Line Views versus Temporary Tables
	Comparing Subqueries with Joins
	Using WHERE Expressions with Joins

	Accessing SAS System Information Using DICTIONARY Tables
	Using DICTIONARY.TABLES
	Using DICTIONARY.COLUMNS
	Tips for Using DICTIONARY Tables

	Using PROC SQL with the SAS Macro Facility
	Creating Macro Variables in PROC SQL
	Concatenating Values in Macro Variables
	Defining Macros to Create Tables
	Using the PROC SQL Automatic Macro Variables

	Formatting PROC SQL Output Using the REPORT Procedure
	Accessing a DBMS with SAS/ACCESS Software
	Using Libname Engines
	Displaying DBMS Data with the PROC SQL Pass-Through Facility

	Using the Output Delivery System (ODS) with PROC SQL

	Practical Problem-Solving with PROC SQL
	Overview
	Computing a Weighted Average
	Problem
	Background Information
	Solution
	How It Works

	Comparing Tables
	Problem
	Background Information
	Solution
	How It Works

	Overlaying Missing Data Values
	Problem
	Background Information
	Solution
	How It Works

	Computing Percentages within Subtotals
	Problem
	Background Information
	Solution
	How It Works

	Counting Duplicate Rows in a Table
	Problem
	Background Information
	Solution
	How It Works

	Expanding Hierarchical Data in a Table
	Problem
	Background Information
	Solution
	How It Works

	Summarizing Data in Multiple Columns
	Problem
	Background Information
	Solution
	How It Works

	Creating a Summary Report
	Problem
	Background Information
	Solution
	How It Works

	Creating a Customized Sort Order
	Problem
	Background Information
	Solution
	How It Works

	Conditionally Updating a Table
	Problem
	Background Information
	Solution
	How It Works

	Updating a Table with Values from Another Table
	Problem
	Background Information
	Solution
	How It Works

	Creating and Using Macro Variables
	Problem
	Background Information
	Solution
	How It Works

	Using PROC SQL Tables in Other SAS Procedures
	Problem
	Background Information
	Solution
	How It Works

	Recommended Reading
	Recommended Reading

	Glossary
	Index

