
Base SAS®

9.1 Procedures Guide

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
Base SAS ® 9.1 Procedures Guide. Cary, NC: SAS Institute Inc.

Base SAS® 9.1 Procedures Guide
Copyright © 2004 by SAS Institute Inc., Cary, NC, USA
ISBN 1-59047-204-7
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New xi

Overview xi

Details xi

P A R T 1 Concepts 1

Chapter 1 � Choosing the Right Procedure 3
Functional Categories of Base SAS Procedures 3

Report-Writing Procedures 4

Statistical Procedures 6

Utility Procedures 7

Brief Descriptions of Base SAS Procedures 10

Chapter 2 � Fundamental Concepts for Using Base SAS Procedures 15
Language Concepts 16

Procedure Concepts 19

Output Delivery System 32

Chapter 3 � Statements with the Same Function in Multiple Procedures 57
Overview 57

Statements 58

P A R T 2 Procedures 71

Chapter 4 � The APPEND Procedure 75
Overview: APPEND Procedure 75

Syntax: APPEND Procedure 75

Chapter 5 � The CALENDAR Procedure 77
Overview: CALENDAR Procedure 79

Syntax: CALENDAR Procedure 84

Concepts: CALENDAR Procedure 101

Results: CALENDAR Procedure 112

Examples: CALENDAR Procedure 114

Chapter 6 � The CATALOG Procedure 153
Overview: CATALOG Procedure 153

Syntax: CATALOG Procedure 154

Concepts: CATALOG Procedure 165

Results: CATALOG Procedure 169

Examples: CATALOG Procedure 170

Chapter 7 � The CHART Procedure 179

iv

Overview: CHART Procedure 179

Syntax: CHART Procedure 184

Concepts: CHART Procedure 197

Results: CHART Procedure 197

Examples: CHART Procedure 198

References 213

Chapter 8 � The CIMPORT Procedure 215
Overview: CIMPORT Procedure 215

Syntax: CIMPORT Procedure 216

Results: CIMPORT Procedure 221

Examples: CIMPORT Procedure 222

Chapter 9 � The COMPARE Procedure 225
Overview: COMPARE Procedure 226

Syntax: COMPARE Procedure 229

Concepts: COMPARE Procedure 240

Results: COMPARE Procedure 244

Examples: COMPARE Procedure 256

Chapter 10 � The CONTENTS Procedure 275
Overview: CONTENTS Procedure 275

Syntax: CONTENTS Procedure 275

Chapter 11 � The COPY Procedure 277
Overview: COPY Procedure 277

Syntax: COPY Procedure 277

Concepts: COPY Procedure 278

Example: COPY Procedure 279

Chapter 12 � The CORR Procedure 283
Information about the CORR Procedure 283

Chapter 13 � The CPORT Procedure 285
Overview: CPORT Procedure 285

Syntax: CPORT Procedure 286

Concepts: CPORT Procedure 294

Results: CPORT Procedure 294

Examples: CPORT Procedure 295

Chapter 14 � The CV2VIEW Procedure 301
Information about the CV2VIEW Procedure 301

Chapter 15 � The DATASETS Procedure 303
Overview: DATASETS Procedure 304

Syntax: DATASETS Procedure 307

Concepts: DATASETS Procedure 357

Results: DATASETS Procedure 363

v

Examples: DATASETS Procedure 376

Chapter 16 � The DBCSTAB Procedure 393
Information about the DBCSTAB Procedure 393

Chapter 17 � The DISPLAY Procedure 395
Overview: DISPLAY Procedure 395

Syntax: DISPLAY Procedure 395

Example: DISPLAY Procedure 396

Chapter 18 � The DOCUMENT Procedure 399
Information about the DOCUMENT Procedure 399

Chapter 19 � The EXPLODE Procedure 401
Information about the EXPLODE Procedure 401

Chapter 20 � The EXPORT Procedure 403
Overview: EXPORT Procedure 403

Syntax: EXPORT Procedure 404

Examples: EXPORT Procedure 411

Chapter 21 � The FONTREG Procedure 419
Overview: FONTREG Procedure 419

Syntax: FONTREG Procedure 419

Concepts: FONTREG Procedure 423

Examples: FONTREG Procedure 425

Chapter 22 � The FORMAT Procedure 429
Overview: FORMAT Procedure 430

Syntax: FORMAT Procedure 431

Informat and Format Options 451

Specifying Values or Ranges 453

Concepts: FORMAT Procedure 455

Results: FORMAT Procedure 458

Examples: FORMAT Procedure 463

Chapter 23 � The FORMS Procedure 485
Information about the FORMS Procedure 485

Chapter 24 � The FREQ Procedure 487
Information about the FREQ Procedure 487

Chapter 25 � The FSLIST Procedure 489
Overview: FSLIST Procedure 489

Syntax: FSLIST Procedure 489

Using the FSLIST Window 494

Chapter 26 � The IMPORT Procedure 501
Overview: IMPORT Procedure 501

vi

Syntax: IMPORT Procedure 502

Examples: IMPORT Procedure 514

Chapter 27 � The MEANS Procedure 523
Overview: MEANS Procedure 524

Syntax: MEANS Procedure 526

Concepts: MEANS Procedure 550

Statistical Computations: MEANS Procedure 553

Results: MEANS Procedure 556

Examples: MEANS Procedure 558

References 587

Chapter 28 � The MIGRATE Procedure 589
Information about the MIGRATE Procedure 589

Chapter 29 � The OPTIONS Procedure 591
Overview: OPTIONS Procedure 591

Syntax: OPTIONS Procedure 595

Results: OPTIONS Procedure 596

Examples: OPTIONS Procedure 597

Chapter 30 � The OPTLOAD Procedure 601
Overview: OPTLOAD Procedure 601

Syntax: OPTLOAD Procedure 601

Chapter 31 � The OPTSAVE Procedure 603
Overview: OPTSAVE Procedure 603

Syntax: OPTSAVE Procedure 603

Chapter 32 � The PLOT Procedure 605
Overview: PLOT Procedure 606

Syntax: PLOT Procedure 608

Concepts: PLOT Procedure 624

Results: PLOT Procedure 629

Examples: PLOT Procedure 631

Chapter 33 � The PMENU Procedure 665
Overview: PMENU Procedure 665

Syntax: PMENU Procedure 666

Concepts: PMENU Procedure 679

Examples: PMENU Procedure 682

Chapter 34 � The PRINT Procedure 703
Overview: PRINT Procedure 703

Syntax: PRINT Procedure 705

Results: Print Procedure 720

Examples: PRINT Procedure 723

vii

Chapter 35 � The PRINTTO Procedure 771
Overview: PRINTTO Procedure 771

Syntax: PRINTTO Procedure 772

Concepts: PRINTTO Procedure 775

Examples: PRINTTO Procedure 776

Chapter 36 � The PROTO Procedure 787
Information about the PROTO Procedure 787

Chapter 37 � The PRTDEF Procedure 789
Overview: PRTDEF Procedure 789

Syntax: PRTDEF Procedure 789

Input Data Set: PRTDEF Procedure 791

Examples: PRTDEF Procedure 796

Chapter 38 � The PRTEXP Procedure 803
Overview: PRTEXP Procedure 803

Syntax: PRTEXP Procedure 803

Concepts: PRTEXP Procedure 805

Examples: PRTEXP Procedure 805

Chapter 39 � The PWENCODE Procedure 807
Overview: PWENCODE Procedure 807

Syntax: PWENCODE Procedure 807

Concepts: PWENCODE Procedure 808

Examples: PWENCODE Procedure 809

Chapter 40 � The RANK Procedure 813
Overview: RANK Procedure 813

Syntax: RANK Procedure 815

Concepts: RANK Procedure 820

Results: RANK Procedure 821

Examples: RANK Procedure 822

References 829

Chapter 41 � The REGISTRY Procedure 831
Overview: REGISTRY Procedure 831

Syntax: REGISTRY Procedure 831

Creating Registry Files with the REGISTRY Procedure 836

Examples: REGISTRY Procedure 839

Chapter 42 � The REPORT Procedure 845
Overview: REPORT Procedure 847

Concepts: REPORT Procedure 852

Syntax: REPORT Procedure 869

REPORT Procedure Windows 912

How PROC REPORT Builds a Report 936

viii

Examples: REPORT Procedure 948

Chapter 43 � The SORT Procedure 1003
Overview: SORT Procedure 1003

Syntax: SORT Procedure 1005

Concepts: SORT Procedure 1013

Integrity Constraints: SORT Procedure 1015

Results: SORT Procedure 1016

Examples: SORT Procedure 1016

Chapter 44 � The SQL Procedure 1027
Overview: SQL Procedure 1029

Syntax: SQL Procedure 1031

SQL Procedure Component Dictionary 1071

Concepts: SQL Procedure 1114

PROC SQL and the ANSI Standard 1122

Examples: SQL Procedure 1125

Chapter 45 � The STANDARD Procedure 1163
Overview: STANDARD Procedure 1163

Syntax: STANDARD Procedure 1165

Results: STANDARD Procedure 1170

Statistical Computations: STANDARD Procedure 1171

Examples: STANDARD Procedure 1171

Chapter 46 � The SUMMARY Procedure 1177
Overview: SUMMARY Procedure 1177

Syntax: SUMMARY Procedure 1177

Chapter 47 � The TABULATE Procedure 1179
Overview: TABULATE Procedure 1180

Terminology: TABULATE Procedure 1183

Syntax: TABULATE Procedure 1186

Concepts: TABULATE Procedure 1213

Results: TABULATE Procedure 1222

Examples: TABULATE Procedure 1232

References 1283

Chapter 48 � The TEMPLATE Procedure 1285
Information about the TEMPLATE Procedure 1285

Chapter 49 � The TIMEPLOT Procedure 1287
Overview: TIMEPLOT Procedure 1287

Syntax: TIMEPLOT Procedure 1289

Results: TIMEPLOT Procedure 1297

Examples: TIMEPLOT Procedure 1299

Chapter 50 � The TRANSPOSE Procedure 1311

ix

Overview: TRANSPOSE Procedure 1311
Syntax: TRANSPOSE Procedure 1314
Results: TRANSPOSE Procedure 1320
Examples: TRANSPOSE Procedure 1321

Chapter 51 � The TRANTAB Procedure 1333
Information about the TRANTAB Procedure 1333

Chapter 52 � The UNIVARIATE Procedure 1335
Information about the UNIVARIATE Procedure 1335

P A R T 3 Appendices 1337

Appendix 1 � SAS Elementary Statistics Procedures 1339
Overview 1339
Keywords and Formulas 1340
Statistical Background 1348
References 1373

Appendix 2 � Operating Environment-Specific Procedures 1375
Descriptions of Operating Environment-Specific Procedures 1375

Appendix 3 � Raw Data and DATA Steps 1377
Overview 1377
CENSUS 1377
CHARITY 1378
CUSTOMER_RESPONSE 1380
DJIA 1383
EDUCATION 1384
EMPDATA 1385
ENERGY 1387
GROC 1388
MATCH_11 1388
PROCLIB.DELAY 1390
PROCLIB.EMP95 1391
PROCLIB.EMP96 1392
PROCLIB.INTERNAT 1393
PROCLIB.LAKES 1393
PROCLIB.MARCH 1394
PROCLIB.PAYLIST2 1395
PROCLIB.PAYROLL 1395
PROCLIB.PAYROLL2 1398
PROCLIB.SCHEDULE 1399
PROCLIB.STAFF 1402
PROCLIB.SUPERV 1405
RADIO 1405

Appendix 4 � Recommended Reading 1419
Recommended Reading 1419

Index 1421

x

xi

What’s New

Overview
New and enhanced Base SAS procedures in 9 and 9.1
� improve ODS formatting
� enable import and export of Microsoft Excel 2002 spreadsheets and Microsoft

Access 2002 tables
� support long format and informat names
� list and compare SAS registries
� support parallel sorting operations
� improve statistical processing
� improve printer definitions.

A list of ODS table names is now provided for each procedure that supports ODS.
You can use these names to reference the table when using the Output Delivery System
(ODS) to select tables and create output data sets.

Note:
� This section describes the features of Base SAS procedures that are new or

enhanced since SAS 8.2.
� z/OS is the successor to the OS/390 operating system. SAS 9.1 is supported on

both OS/390 and z/OS operating systems and, throughout this document, any
reference to z/OS also applies to OS/390, unless otherwise stated.

�

Details

The CONTENTS Procedure
The new look for output from the CONTENTS procedure and the CONTENTS

statement in PROC DATASETS provides a better format for the Output Delivery

xii What’s New

System (ODS). PROC CONTENTS output now displays the data representation of a file
by reporting the native platform for each file, rather than just telling you whether the
data representation is native or foreign. Also, PROC CONTENTS output now provides
the encoding value, whether a character variable is transcoded if required, and whether
the data set is part of a generation group. A new example was added that shows how to
get PROC CONTENTS output into an ODS output data set for processing.

The ORDER= option was added to the CONTENTS statement to enable you to print
a list of variables in alphabetical order even if they include mixed-case names.

The COPY Procedure
The following options are new or enhanced in the COPY procedure and the COPY

statement in PROC DATASETS:
� The FORCE option enables you to use the MOVE option for a SAS data set that

has an audit trail.
� The CLONE option now copies the data representation and encoding data set

attributes.

The CORR Procedure
The CORR procedure has the following new features:
� The FISHER option in the PROC CORR statement requests confidence limits and

p–values for Pearson and Spearman correlation coefficients based on Fisher’s z
transformation. With the FISHER option, you can specify an alpha value and a
null hypothesis value. You can also specify the type of confidence limit (upper,
lower, or two-sided) and whether the bias adjustment is to be used for the
confidence limits.

� The PLOTS=MATRIX option in the PROC CORR statement uses ODS graphics to
produce either a rectangular matrix plot (if you also specify a WITH statement) or
a symmetric matrix plot (if you do not specify a WITH statement) for variables.

� The PLOTS=SCATTER option in the PROC CORR statement uses ODS graphics
to produce scatter plots for variables. By default, the scatter plot also includes a
95% prediction ellipse. You can use the ELLIPSE= option with the
PLOTS=SCATTER option to include prediction ellipses for new observations,
confidence ellipses for the mean, or no ellipses.

The DATASETS Procedure
Directory listings from the DATASETS procedure provide a new look for its output,

which improves the format for the Output Delivery System (ODS).
The following statements are enhanced in the DATASETS procedure:
� The AUDIT statement provides the AUDIT_ALL= option in order to specify

whether logging can be suspended and whether audit settings can be changed. In
addition, the LOG option in the AUDIT statement now enables you to control the
logging of administrative events to the audit file with ADMIN_IMAGE=.

� The ICCREATE statement now enables you to create overlapping constraints.
This means that variables in a SAS data set are part of both a primary key
definition and a foreign key definition.

� The MODIFY statement provides the CORRECTENCODING= option to change
the encoding indicator, which is stamped in the file’s descriptor information, in
order to match the actual encoding of the file’s data.

What’s New xiii

The DOCUMENT Procedure
The new DOCUMENT procedure enables you to customize or modify your output

hierarchy and replay your output to different destinations without rerunning the PROC
or DATA step. For complete information, see SAS Output Delivery System: User’s Guide.

The EXPORT Procedure
The EXPORT procedure now enables you to

� export to Microsoft Excel 2002 spreadsheets and Microsoft Access 2002 tables. The
new data sources are available for the Windows operating environment on 32-bit
platforms if your site has a license for SAS/ACCESS Interface to PC File Formats.

� specify SAS data set options in the DATA= argument when you are exporting to
all data sources except for delimited, comma-separated, and tab-delimited external
files. For example, if the data set that you are exporting has an assigned
password, use the ALTER=, PW=, READ=, or WRITE= data set option. To export
only data that meets a specified condition, use the WHERE= data set option.

� identify a specific spreadsheet in a workbook by specifying the SHEET= option.
Exporting to multiple sheets is available for Microsoft Excel 97, 2000, and 2002
spreadsheets for the Windows operating environment on 32-bit platforms if your
site has a license for the SAS/ACCESS Interface to PC File Formats.

The FCMP Procedure (Experimental)
The new FCMP procedure enables you to create, test, and store SAS functions and

subroutines for use by other SAS procedures.
For more information about the FCMP procedure, go to http://support.sas.com/

documentation/onlinedoc. Select Base SAS from the Product-Specific Documentation
list.

The FONTREG Procedure
The new FONTREG procedure enables you to add system fonts to the SAS registry.

The FORMAT Procedure
� The maximum length for character format names is now 31. The maximum length

for numeric format names is now 32.

� The maximum length for character informat names is now 30. The maximum
length for numeric informat names is now 31.

The FREQ Procedure
In the PROC FREQ statement, the new NLEVELS option displays a table that shows

the number of levels for each variable that is named in the TABLES statement(s).
The WEIGHT statement now has the ZEROS option to include observations with zero

weight values. The frequency and crosstabulation tables will display any levels that
correspond to observations with 0 weights. PROC FREQ includes levels with 0 weights

xiv What’s New

in the chi-square goodness-of-fit test for one-way tables, in the binomial computations
for one-way tables, and in the computation of kappa statistics for two-way tables.

The following new options are available in the TABLES statement:
� The CONTENTS= option enables you to specify the text for the HTML contents

file links to crosstabulation tables.
� The BDT option enables you to request Tarone’s adjustment in the Breslow-Day

test for homogeneity of odds ratios when you use the CMH option to compute the
Breslow-Day test for stratified 2�2 tables.

� The NOWARN option suppresses the log warning message that the asymptotic
chi-square test might not be valid when more than 20% of the table cells have
expected frequencies less than 5.

� The CROSSLIST option displays crosstabulation tables in ODS column format.
This option creates a table that has a table definition that you can customize with
the TEMPLATE procedure.

Additionally, the FREQ procedure now produces exact confidence limits for the
common odds ratio and related tests.

The IMPORT Procedure
The IMPORT procedure now enables you to
� import Microsoft Excel 2002 spreadsheets and Microsoft Access 2002 tables. The

new data sources are available for the Windows operating environment on 32-bit
platforms if your site has a license for SAS/ACCESS Interface to PC File Formats.

� specify SAS data set options in the OUT= argument when you are importing from
all data sources except for delimited, comma-separated, and tab-delimited external
files. For example, in order to assign a password for a resulting SAS data set, use
the ALTER=, PW=, READ=, or WRITE= data set option. To import only data that
meets a specified condition, use the WHERE= data set option.

The MEANS and SUMMARY Procedures
The new THREADS|NOTHREADS option enables or prevents the activation of

multi-threaded processing.
When you format class variables with user-defined formats that are created with the

MULTILABEL and NOTSORTED options, specifying the MLF, PRELOADFMT, and
ORDER=DATA options together in the CLASS statement now orders the procedure
output according to the label order in the format definition.

The MIGRATE Procedure
The new MIGRATE procedure is available specifically for migrating a SAS data

library from a previous release to the most recent release. For migration, PROC
MIGRATE offers benefits that PROC COPY does not. For PROC MIGRATE
documentation, see the Migration Community at http://support.sas.com/rnd/
migration.

The PROTO Procedure
The PROTO procedure, which has been available in SAS Risk Dimensions software,

is now a Base SAS procedure. The PROTO procedure enables you to register, in batch,

What’s New xv

external functions that are written in the C or C++ programming languages for use in
SAS programs and C-language structures and types. For PROC PROTO documentation,
go to http://support.sas.com/documentation/onlinedoc. Select Base SAS from
the Product-Specific Documentation list.

The PRTDEF Procedure
There are 15 new variables to control the default printer settings.

The PRTEXP Procedure
The new PRTEXP procedure enables you to write attributes, which are used by

PROC PRTDEF to define a printer, either to a SAS data set or to the SAS log. With
this capability you can replicate and modify those attributes easily.

The PWENCODE Procedure
The new PWENCODE procedure enables you to encode a password. You can use the

encoded password in place of plain-text passwords in SAS programs that access
relational database management systems (RDBMSs) and SAS servers (such as the SAS
Metadata Server).

The REGISTRY Procedure
The REGISTRY procedure has three new options:
� The LISTREG option lists the contents of the registry in the log.
� The COMPAREREG1 and COMPAREREG2 options are used together to compare

two registries. The results appear in the log.

The REPORT Procedure
The REPORT procedure has the following new features:
� The new THREADS|NOTHREADS option enables or prevents the activation of

multi-threaded processing.
� Numeric class variables that do not have a format assigned to them are

automatically formatted with the BEST12. format.
� PROC REPORT now writes the value _PAGE_ for the _BREAK_ variable in the

output data set for observations that are derived from a COMPUTE BEFORE
PAGE or COMPUTE AFTER _PAGE_ statement.

The SORT Procedure
The SORT procedure has the following new options:
� The DATECOPY option copies to the output data set the SAS internal date and

time when the input data set was created, and the SAS internal date and time
when it was last modified prior to the sort.

� The DUPOUT= option specifies an output data set that contains duplicate
observations.

xvi What’s New

� The OVERWRITE option deletes the input data set before the replacement output
data set is populated with observations.

� The THREADS|NOTHREADS option enables or prevents the activation of
multi-threaded sorting.

The SQL Procedure
The SQL procedure has the following new features:

� The PROC SQL statement now has a THREADS | NOTHREADS option.
THREADS enables PROC SQL to take advantage of the new parallel processing
capabilities in SAS when performing sorting operations.

� There are new DICTIONARY tables, new columns in existing DICTIONARY
tables, and SASHELP views of the new tables. For DICTIONARY.TABLES and
SASHELP.VTABLE, if a table is read-protected with a password, the only
information that is listed for that table is the library name, member name, member
type, and type of password protection; all other information is set to missing.

� You can now reference a permanent SAS data set by its physical filename.

� When using the INTO clause to assign values to a range of macro variables, you
can now specify leading zeroes in the macro variable names.

� PROC SQL now supports TRANSCODE=YES|NO as a column modifier.

The SYLK Procedure (Experimental)
The new SYLK procedure enables you to read an external SYLK-formatted

spreadsheet into SAS, including data, formulas, and formats. You can also use PROC
SYLK as a batch spreadsheet, using programming statements to manipulate data,
perform calculations, generate summaries, and format the output.

For more information about the SYLK procedure, go to http://support.sas.com/
documentation/onlinedoc. Select Base SAS from the Product-Specific Documentation
list.

The TABULATE Procedure
The TABULATE procedure has the following new features:

� The new THREADS|NOTHREADS option enables or prevents the activation of
multi-threaded processing.

� Available statistics include upper and lower confidence limits, skewness, and
kurtosis. PROC TABULATE now supports the ALPHA= option, which enables you
to specify a confidence level.

� Numeric class variables that do not have a format assigned to them are
automatically formatted with the BEST12. format.

� The new FORMAT_PRECEDENCE and STYLE_PRECEDENCE options in the
TABLE statement enable you to specify which formats and styles (defined for the
column, row, or page dimensions) are applied.

Additionally, when you format class variables with user-defined formats that are
created with the MULTILABEL and NOTSORTED options, specifying the MLF,
PRELOADFMT, and ORDER=DATA options together in the CLASS statement now
orders the procedure output according to the label order in the format definition.

What’s New xvii

The TEMPLATE Procedure
The TEMPLATE procedure now enables you to customize or create your own markup

language for your output. For complete information, see SAS Output Delivery System:
User’s Guide.

The TIMEPLOT Procedure
The TIMEPLOT procedure now supports the SPLIT= option, which enables you to

specify a character at which labels will be split into multiple lines.

The UNIVARIATE Procedure
The UNIVARIATE procedure has the following new features:

� The LOWER= and NOUPPER= suboptions in the KERNEL option in the
HISTOGRAM statement specify the lower and upper bounds for fitted kernel
density curves.

� The FRONTREF option in the HISTOGRAM statement draws reference lines in
front of the histogram bars instead of behind them.

xviii What’s New

1

P A R T1

Concepts

Chapter 1.Choosing the Right Procedure 3

Chapter 2.Fundamental Concepts for Using Base SAS Procedures 15

Chapter 3.Statements with the Same Function in Multiple
Procedures 57

2

3

C H A P T E R

1
Choosing the Right Procedure

Functional Categories of Base SAS Procedures 3
Report Writing 3

Statistics 3

Utilities 4

Report-Writing Procedures 4

Statistical Procedures 6
Available Statistical Procedures 6

Efficiency Issues 7

Quantiles 7

Computing Statistics for Groups of Observations 7

Additional Information about the Statistical Procedures 7

Utility Procedures 7
Brief Descriptions of Base SAS Procedures 10

Functional Categories of Base SAS Procedures

Report Writing
These procedures display useful information, such as data listings (detail reports),

summary reports, calendars, letters, labels, multipanel reports, and graphical reports:

CALENDAR PLOT SUMMARY*

CHART* PRINT TABULATE*

FREQ* REPORT* TIMEPLOT

MEANS* SQL*

* These procedures produce reports and compute statistics.

Statistics
These procedures compute elementary statistical measures that include descriptive

statistics based on moments, quantiles, confidence intervals, frequency counts,

4 Utilities � Chapter 1

cross-tabulations, correlations, and distribution tests. They also rank and standardize
data:

CHART RANK SUMMARY

CORR REPORT TABULATE

FREQ SQL UNIVARIATE

MEANS STANDARD

Utilities
These procedures perform basic utility operations. They create, edit, sort, and

transpose data sets, create and restore transport data sets, create user-defined formats,
and provide basic file maintenance such as to copy, append, and compare data sets:

APPEND EXPORT PWENCODE

BMDP* FONTREG PRTEXP

CATALOG FORMAT REGISTRY

CIMPORT FSLIST RELEASE*

COMPARE IMPORT SORT

CONTENTS OPTIONS SOURCE*

CONVERT* OPTLOAD SQL

COPY OPTSAVE TAPECOPY*

CPORT PDS* TAPELABEL*

CV2VIEW@ PDSCOPY* TEMPLATE+

DATASETS PMENU TRANSPOSE

DBCSTAB# PRINTTO TRANTAB#

DOCUMENT+ PRTDEF

* See the SAS documentation for your operating environment for a description of these procedures.
+ See SAS Output Delivery System: User’s Guide for a description of these procedures.
@ See SAS/ACCESS for Relational Databases: Reference for a description of this procedure.
See SAS National Language Support (NLS): User’s Guide for a description of these procedures.

Report-Writing Procedures
Table 1.1 on page 5 lists report-writing procedures according to the type of report.

Choosing the Right Procedure � Report-Writing Procedures 5

Table 1.1 Report-Writing Procedures by Task

To produce… Use this procedure… Which…

Detail reports PRINT produces data listings quickly; can supply titles,
footnotes, and column sums.

REPORT offers more control and customization than PROC
PRINT; can produce both column and row sums; has
DATA step computation abilities.

SQL combines Structured Query Language and SAS
features such as formats; can manipulate data and
create a SAS data set in the same step that creates the
report; can produce column and row statistics; does not
offer as much control over output as PROC PRINT and
PROC REPORT.

Summary reports MEANS or
SUMMARY

computes descriptive statistics for numeric variables;
can produce a printed report and create an output data
set.

PRINT produces only one summary report: can sum the BY
variables.

REPORT combines features of the PRINT, MEANS, and
TABULATE procedures with features of the DATA step
in a single report writing tool that can produce a
variety of reports; can also create an output data set.

SQL computes descriptive statistics for one or more SAS
data sets or DBMS tables; can produce a printed
report or create a SAS data set.

TABULATE produces descriptive statistics in a tabular format; can
produce stub-and-banner reports (multidimensional
tables with descriptive statistics); can also create an
output data set.

Miscellaneous highly formatted reports

Calendars CALENDAR produces schedule and summary calendars; can
schedule tasks around nonwork periods and holidays,
weekly work schedules, and daily work shifts.

Multipanel reports
(telephone book listings)

REPORT produces multipanel reports.

Low-resolution graphical reports*

CHART produces bar charts, histograms, block charts, pie
charts, and star charts that display frequencies and
other statistics.

PLOT produces scatter diagrams that plot one variable
against another.

TIMEPLOT produces plots of one or more variables over time
intervals.

* These reports quickly produce a simple graphical picture of the data. To produce high-resolution graphical
reports, use SAS/GRAPH software.

6 Statistical Procedures � Chapter 1

Statistical Procedures

Available Statistical Procedures
Table 1.2 on page 6 lists statistical procedures according to task. Table A1.1 on page

1341 lists the most common statistics and the procedures that compute them.

Table 1.2 Elementary Statistical Procedures by Task

To produce… Use this procedure… Which…

Descriptive statistics CORR computes simple descriptive statistics.

MEANS or
SUMMARY

computes descriptive statistics; can produce printed output
and output data sets. By default, PROC MEANS produces
printed output and PROC SUMMARY creates an output
data set.

REPORT computes most of the same statistics as PROC TABULATE;
allows customization of format.

SQL computes descriptive statistics for data in one or more
DBMS tables; can produce a printed report or create a SAS
data set.

TABULATE produces tabular reports for descriptive statistics; can
create an output data set.

UNIVARIATE computes the broadest set of descriptive statistics; can
create an output data set.

Frequency and
cross-tabulation tables

FREQ produces one-way to n-way tables; reports frequency counts;
computes chi-square tests; computes tests and measures of
association and agreement for two-way to n-way
cross-tabulation tables; can compute exact tests and
asymptotic tests; can create output data sets.

TABULATE produces one-way and two-way cross-tabulation tables; can
create an output data set.

UNIVARIATE produces one-way frequency tables.

Correlation analysis CORR computes Pearson’s, Spearman’s, and Kendall’s correlations
and partial correlations; also computes Hoeffding’s D and
Cronbach’s coefficient alpha.

Distribution analysis UNIVARIATE computes tests for location and tests for normality.

FREQ computes a test for the binomial proportion for one-way
tables; computes a goodness-of-fit test for one-way tables;
computes a chi-square test of equal distribution for two-way
tables.

Robust estimation UNIVARIATE computes robust estimates of scale, trimmed means, and
Winsorized means.

Data transformation

Computing ranks RANK computes ranks for one or more numeric variables across
the observations of a SAS data set and creates an output
data set; can produce normal scores or other rank scores.

Choosing the Right Procedure � Utility Procedures 7

To produce… Use this procedure… Which…

Standardizing data STANDARD creates an output data set that contains variables that are
standardized to a given mean and standard deviation.

Low-resolution graphics*

CHART produces a graphical report that can show one of the
following statistics for the chart variable: frequency counts,
percentages, cumulative frequencies, cumulative
percentages, totals, or averages.

UNIVARIATE produces descriptive plots such as stem and leaf, box plot,
and normal probability plot.

* To produce high-resolution graphical reports, use SAS/GRAPH software.

Efficiency Issues

Quantiles
For a large sample size n, the calculation of quantiles, including the median, requires

computing time proportional to nlog(n). Therefore, a procedure, such as UNIVARIATE,
that automatically calculates quantiles may require more time than other data
summarization procedures. Furthermore, because data is held in memory, the procedure
also requires more storage space to perform the computations. By default, the report
procedures PROC MEANS, PROC SUMMARY, and PROC TABULATE require less
memory because they do not automatically compute quantiles. These procedures also
provide an option to use a new fixed-memory quantiles estimation method that is
usually less memory intense. See “Quantiles” on page 555 for more information.

Computing Statistics for Groups of Observations
To compute statistics for several groups of observations, you can use any of the

previous procedures with a BY statement to specify BY-group variables. However,
BY-group processing requires that you previously sort or index the data set, which for
very large data sets may require substantial computer resources. A more efficient way
to compute statistics within groups without sorting is to use a CLASS statement with
one of the following procedures: MEANS, SUMMARY, or TABULATE.

Additional Information about the Statistical Procedures
Appendix 1, “SAS Elementary Statistics Procedures,” on page 1339 lists standard

keywords, statistical notation, and formulas for the statistics that base SAS procedures
compute frequently. The individual statistical procedures discuss the statistical
concepts that are useful to interpret the output of a procedure.

Utility Procedures

Table 1.3 on page 8 groups utility procedures according to task.

8 Utility Procedures � Chapter 1

Table 1.3 Utility Procedures by Task

To perform these utility
tasks… Use this procedure… Which…

Supply information COMPARE compares the contents of two SAS data sets.

CONTENTS describes the contents of a SAS data library or specific
library members.

OPTIONS lists the current values of all SAS system options.

SQL supplies information through dictionary tables on an
individual SAS data set as well as all SAS files active in
the current SAS session. Dictionary tables can also
provide information about macros, titles, indexes,
external files, or SAS system options.

Manage SAS system options OPTIONS lists the current values of all SAS system options.

OPTLOAD reads SAS system option settings that are stored in the
SAS registry or a SAS data set.

OPTSAVE saves SAS system option settings to the SAS registry or a
SAS data set.

Affect printing and Output
Delivery System output

DOCUMENT+ manipulates procedure output that is stored in ODS
documents.

FONTREG adds system fonts to the SAS registry.

FORMAT creates user-defined formats to display and print data.

PRINTTO routes procedure output to a file, a SAS catalog entry, or
a printer; can also redirect the SAS log to a file.

PRTDEF creates printer definitions.

PRTEXP exports printer definition attributes to a SAS data set.

TEMPLATE+ customizes ODS output.

Create, browse, and edit
data

FSLIST browses external files such as files that contain SAS
source lines or SAS procedure output.

SQL creates SAS data sets using Structured Query Language
and SAS features.

Transform data DBCSTAB# produces conversion tables for the double-byte character
sets that SAS supports.

FORMAT creates user-defined informats to read data and
user-defined formats to display data.

SORT sorts SAS data sets by one or more variables.

SQL sorts SAS data sets by one or more variables.

TRANSPOSE transforms SAS data sets so that observations become
variables and variables become observations.

TRANTAB# creates, edits, and displays customized translation tables.

Manage SAS files APPEND appends one SAS data set to the end of another.

BMDP* invokes a BMDP program to analyze data in a SAS data
set.

Choosing the Right Procedure � Utility Procedures 9

To perform these utility
tasks… Use this procedure… Which…

CATALOG manages SAS catalog entries.

CIMPORT restores a transport sequential file that PROC CPORT
creates (usually under another operating environment) to
its original form as a SAS catalog, a SAS data set, or a
SAS library.

CONVERT* converts BMDP system files, OSIRIS system files, and
SPSS portable files to SAS data sets.

COPY copies a SAS data library or specific members of the
library.

CPORT converts a SAS catalog, a SAS data set, or a SAS library
to a transport sequential file that PROC CIMPORT can
restore (usually under another operating environment) to
its original form.

CV2VIEW@ converts SAS/ACCESS view descriptors to PROC SQL
views.

DATASETS manages SAS files.

EXPORT reads data from a SAS data set and writes them to an
external data source.

IMPORT reads data from an external data source and writes them
to a SAS data set.

PDS* lists, deletes, and renames the members of a partitioned
data set.

PDSCOPY* copies partitioned data sets from disk to tape, disk to
disk, tape to tape, or tape to disk.

REGISTRY imports registry information to the USER portion of the
SAS registry.

RELEASE* releases unused space at the end of a disk data set under
the z/OS environment.

SOURCE* provides an easy way to back up and process source
library data sets.

SQL concatenates SAS data sets.

TAPECOPY* copies an entire tape volume or files from one or more
tape volumes to one output tape volume.

TAPELABEL* lists the label information of an IBM standard-labeled
tape volume under the z/OS environment.

Control windows PMENU creates customized pull-down menus for SAS applications.

Miscellaneous PWENCODE encodes passwords for use in SAS programs.

* See the SAS documentation for your operating environment for a description of these procedures.
+ See SAS Output Delivery System: User’s Guide for a description of these procedures.
@ See SAS/ACCESS for Relational Databases: Reference for a description of this procedure.
See SAS National Language Support (NLS): User’s Guide for a description of these procedures.

10 Brief Descriptions of Base SAS Procedures � Chapter 1

Brief Descriptions of Base SAS Procedures

APPEND procedure
adds observations from one SAS data set to the end of another SAS data set.

BMDP procedure
invokes a BMDP program to analyze data in a SAS data set. See the SAS
documentation for your operating environment for more information.

CALENDAR procedure
displays data from a SAS data set in a monthly calendar format. PROC
CALENDAR can display holidays in the month, schedule tasks, and process data
for multiple calendars with work schedules that vary.

CATALOG procedure
manages entries in SAS catalogs. PROC CATALOG is an interactive,
nonwindowing procedure that enables you to display the contents of a catalog,
copy an entire catalog or specific entries in a catalog, and rename, exchange, or
delete entries in a catalog.

CHART procedure
produces vertical and horizontal bar charts, block charts, pie charts, and star
charts. These charts provide a quick visual representation of the values of a single
variable or several variables. PROC CHART can also display a statistic associated
with the values.

CIMPORT procedure
restores a transport file created by the CPORT procedure to its original form (a
SAS data library, catalog, or data set) in the format appropriate to the operating
environment. Coupled with the CPORT procedure, PROC CIMPORT enables you
to move SAS data libraries, catalogs, and data sets from one operating
environment to another.

COMPARE procedure
compares the contents of two SAS data sets. You can also use PROC COMPARE to
compare the values of different variables within a single data set. PROC
COMPARE produces a variety of reports on the comparisons that it performs.

CONTENTS procedure
prints descriptions of the contents of one or more files in a SAS data library.

CONVERT procedure
converts BMDP system files, OSIRIS system files, and SPSS portable files to SAS
data sets. See the SAS documentation for your operating environment for more
information.

COPY procedure
copies an entire SAS data library or specific members of the library. You can limit
processing to specific types of library members.

CORR procedure
computes Pearson product-moment and weighted product-moment correlation
coefficients between variables and descriptive statistics for these variables. In
addition, PROC CORR can compute three nonparametric measures of association
(Spearman’s rank-order correlation, Kendall’s tau-b, and Hoeffding’s measure of
dependence, D), partial correlations (Pearson’s partial correlation, Spearman’s
partial rank-order correlation, and Kendall’s partial tau-b), and Cronbach’s
coefficient alpha.

Choosing the Right Procedure � Brief Descriptions of Base SAS Procedures 11

CPORT procedure
writes SAS data libraries, data sets, and catalogs in a special format called a
transport file. Coupled with the CIMPORT procedure, PROC CPORT enables you
to move SAS libraries, data sets, and catalogs from one operating environment to
another.

CV2VIEW procedure
converts SAS/ACCESS view descriptors to PROC SQL views. Starting in SAS
System 9, conversion of SAS/ACCESS view descriptors to PROC SQL views is
recommended because PROC SQL views are platform independent and enable you
to use the LIBNAME statement. See SAS/ACCESS for Relational Databases:
Reference for details.

DATASETS procedure
lists, copies, renames, and deletes SAS files and SAS generation groups, manages
indexes, and appends SAS data sets in a SAS data library. The procedure provides
all the capabilities of the APPEND, CONTENTS, and COPY procedures. You can
also modify variables within data sets, manage data set attributes, such as labels
and passwords, or create and delete integrity constraints.

DBCSTAB procedure
produces conversion tables for the double-byte character sets that SAS supports.

DOCUMENT procedure
manipulates procedure output that is stored in ODS documents. PROC
DOCUMENT enables a user to browse and edit output objects and hierarchies,
and to replay them to any supported ODS output format. See SAS Output Delivery
System: User’s Guide for details.

EXPORT procedure
reads data from a SAS data set and writes it to an external data source.

FONTREG procedure
adds system fonts to the SAS registry.

FORMAT procedure
creates user-defined informats and formats for character or numeric variables.
PROC FORMAT also prints the contents of a format library, creates a control data
set to write other informats or formats, and reads a control data set to create
informats or formats.

FREQ procedure
produces one-way to n-way frequency tables and reports frequency counts. PROC
FREQ can compute chi-square tests for one-way to n-way tables, tests and
measures of association and of agreement for two-way to n-way cross-tabulation
tables, risks and risk difference for 2�2 tables, trends tests, and
Cochran-Mantel-Haenszel statistics. You can also create output data sets.

FSLIST procedure
displays the contents of an external file or copies text from an external file to the
SAS Text Editor.

IMPORT procedure
reads data from an external data source and writes them to a SAS data set.

MEANS procedure
computes descriptive statistics for numeric variables across all observations and
within groups of observations. You can also create an output data set that contains
specific statistics and identifies minimum and maximum values for groups of
observations.

12 Brief Descriptions of Base SAS Procedures � Chapter 1

OPTIONS procedure
lists the current values of all SAS system options.

OPTLOAD procedure
reads SAS system option settings from the SAS registry or a SAS data set, and
puts them into effect.

OPTSAVE procedure
saves SAS system option settings to the SAS registry or a SAS data set.

PDS procedure
lists, deletes, and renames the members of a partitioned data set. See the SAS
documentation for your operating environment for more information.

PDSCOPY procedure
copies partitioned data sets from disk to tape, disk to disk, tape to tape, or tape to
disk. See the SAS documentation for your operating environment for more
information.

PLOT procedure
produces scatter plots that graph one variable against another. The coordinates of
each point on the plot correspond to the two variables’ values in one or more
observations of the input data set.

PMENU procedure
defines menus that you can use in DATA step windows, macro windows, and
SAS/AF windows, or in any SAS application that enables you to specify customized
menus.

PRINT procedure
prints the observations in a SAS data set, using all or some of the variables.
PROC PRINT can also print totals and subtotals for numeric variables.

PRINTTO procedure
defines destinations for SAS procedure output and the SAS log.

PRTDEF procedure
creates printer definitions for individual SAS users or all SAS users.

PRTEXP procedure
exports printer definition attributes to a SAS data set so that they can be easily
replicated and modified.

PWENCODE procedure
encodes passwords for use in SAS programs.

RANK procedure
computes ranks for one or more numeric variables across the observations of a
SAS data set. The ranks are written to a new SAS data set. Alternatively, PROC
RANK produces normal scores or other rank scores.

REGISTRY procedure
imports registry information into the USER portion of the SAS registry.

RELEASE procedure
releases unused space at the end of a disk data set in the z/OS environment. See
the SAS documentation for this operating environment for more information.

REPORT procedure
combines features of the PRINT, MEANS, and TABULATE procedures with
features of the DATA step in a single report-writing tool that can produce both
detail and summary reports.

Choosing the Right Procedure � Brief Descriptions of Base SAS Procedures 13

SORT procedure
sorts observations in a SAS data set by one or more variables. PROC SORT stores
the resulting sorted observations in a new SAS data set or replaces the original
data set.

SOURCE procedure
provides an easy way to back up and process source library data sets. See the SAS
documentation for your operating environment for more information.

SQL procedure
implements a subset of the Structured Query Language (SQL) for use in SAS. SQL
is a standardized, widely used language that retrieves and updates data in SAS
data sets, SQL views, and DBMS tables, as well as views based on those tables.
PROC SQL can also create tables and views, summaries, statistics, and reports
and perform utility functions such as sorting and concatenating.

STANDARD procedure
standardizes some or all of the variables in a SAS data set to a given mean and
standard deviation and produces a new SAS data set that contains the
standardized values.

SUMMARY procedure
computes descriptive statistics for the variables in a SAS data across all
observations and within groups of observations and outputs the results to a new
SAS data set.

TABULATE procedure
displays descriptive statistics in tabular form. The value in each table cell is
calculated from the variables and statistics that define the pages, rows, and
columns of the table. The statistic associated with each cell is calculated on values
from all observations in that category. You can write the results to a SAS data set.

TAPECOPY procedure
copies an entire tape volume or files from one or more tape volumes to one output
tape volume. See the SAS documentation for your operating environment for more
information.

TAPELABEL procedure
lists the label information of an IBM standard-labeled tape volume under the z/OS
environment. See the SAS documentation for this operating environment for more
information.

TEMPLATE procedure
customizes ODS output for an entire SAS job or a single ODS output object. See
SAS Output Delivery System: User’s Guide for details.

TIMEPLOT procedure
produces plots of one or more variables over time intervals.

TRANSPOSE procedure
transposes a data set that changes observations into variables and vice versa.

TRANTAB procedure
creates, edits, and displays customized translation tables.

UNIVARIATE procedure
computes descriptive statistics (including quantiles), confidence intervals, and
robust estimates for numeric variables. Provides detail on the distribution of
numeric variables, which include tests for normality, plots to illustrate the
distribution, frequency tables, and tests of location.

14

15

C H A P T E R

2
Fundamental Concepts for Using
Base SAS Procedures

Language Concepts 16
Temporary and Permanent SAS Data Sets 16

Naming SAS Data Sets 16

USER Data Library 17

SAS System Options 17

Data Set Options 18
Global Statements 18

Procedure Concepts 19

Input Data Sets 19

RUN-Group Processing 19

Creating Titles That Contain BY-Group Information 20

BY-Group Processing 20
Suppressing the Default BY Line 20

Inserting BY-Group Information into a Title 20

Example: Inserting a Value from Each BY Variable into the Title 21

Example: Inserting the Name of a BY Variable into a Title 22

Example: Inserting the Complete BY Line into a Title 23
Error Processing of BY-Group Specifications 24

Shortcuts for Specifying Lists of Variable Names 24

Formatted Values 25

Using Formatted Values 25

Example: Printing the Formatted Values for a Data Set 25
Example: Grouping or Classifying Formatted Data 27

Example: Temporarily Associating a Format with a Variable 28

Example: Temporarily Dissociating a Format from a Variable 29

Formats and BY-Group Processing 30

Formats and Error Checking 30

Processing All the Data Sets in a Library 30
Operating Environment-Specific Procedures 30

Statistic Descriptions 31

Computational Requirements for Statistics 32

Output Delivery System 32

What Is the Output Delivery System? 32
Gallery of ODS Samples 33

Introduction to the ODS Samples 33

Listing Output 33

PostScript Output 35

HTML Output 35
RTF Output 36

PDF Output 37

XML Output 38

16 Language Concepts � Chapter 2

Commonly Used ODS Terminology 40
How Does ODS Work? 41

Components of SAS Output 41

Features of ODS 42

What Are the ODS Destinations? 43

Overview of ODS Destination Categories 43
Definition of Destination-Independent Input 43

The SAS Formatted Destinations 44

The Third-Party Formatted Destinations 45

What Controls the Formatting Features of Third-Party Formats? 46

ODS Destinations and System Resources 47

What Are Table Definitions, Table Elements, and Table Attributes? 47
What Are Style Definitions, Style Elements, and Style Attributes? 47

What Style Definitions Are Shipped with SAS Software? 48

How Do I Use Style Definitions with Base SAS Procedures? 48

Changing SAS Registry Settings for ODS 49

Overview of ODS and the SAS Registry 49
Changing Your Default HTML Version Setting 50

Changing ODS Destination Default Settings 51

Customized ODS Output 51

SAS Output 51

Selection and Exclusion Lists 52
How Does ODS Determine the Destinations for an Output Object? 52

Customized Output for an Output Object 53

Summary of ODS 54

Language Concepts

Temporary and Permanent SAS Data Sets

Naming SAS Data Sets

SAS data sets can have a one-level name or a two-level name. Typically, names of
temporary SAS data sets have only one level and are stored in the WORK data library.
The WORK data library is defined automatically at the beginning of the SAS session
and is automatically deleted at the end of the SAS session. Procedures assume that SAS
data sets that are specified with a one-level name are to be read from or written to the
WORK data library, unless you specify a USER data library (see “USER Data Library”
on page 17). For example, the following PROC PRINT steps are equivalent. The second
PROC PRINT step assumes that the DEBATE data set is in the WORK data library:

proc print data=work.debate;
run;

proc print data=debate;
run;

Fundamental Concepts for Using Base SAS Procedures � SAS System Options 17

The SAS system options WORK=, WORKINIT, and WORKTERM affect how you
work with temporary and permanent libraries. See SAS Language Reference:
Dictionary for complete documentation.

Typically, two-level names represent permanent SAS data sets. A two-level name
takes the form libref.SAS-data-set. The libref is a name that is temporarily associated
with a SAS data library. A SAS data library is an external storage location that stores
SAS data sets in your operating environment. A LIBNAME statement associates the
libref with the SAS data library. In the following PROC PRINT step, PROCLIB is the
libref and EMP is the SAS data set within the library:

libname proclib ’SAS-data-library’;
proc print data=proclib.emp;
run;

USER Data Library
You can use one-level names for permanent SAS data sets by specifying a USER data

library. You can assign a USER data library with a LIBNAME statement or with the
SAS system option USER=. After you specify a USER data library, the procedure
assumes that data sets with one-level names are in the USER data library instead of
the WORK data library. For example, the following PROC PRINT step assumes that
DEBATE is in the USER data library:

options user=’SAS-data-library’;
proc print data=debate;
run;

Note: If you have a USER data library defined, then you can still use the WORK
data library by specifying WORK.SAS-data-set.

SAS System Options
Some SAS system option settings affect procedure output. The following are the SAS

system options that you are most likely to use with SAS procedures:

BYLINE|NOBYLINE

DATE|NODATE

DETAILS|NODETAILS

FMTERR|NOFMTERR

FORMCHAR=

FORMDLIM=

LABEL|NOLABEL

LINESIZE=

NUMBER|NONUMBER

PAGENO=

PAGESIZE=

REPLACE|NOREPLACE

SOURCE|NOSOURCE

For a complete description of SAS system options, see SAS Language Reference:
Dictionary.

18 Data Set Options � Chapter 2

Data Set Options
Most of the procedures that read data sets or create output data sets accept data set

options. SAS data set options appear in parentheses after the data set specification.
Here is an example:

proc print data=stocks(obs=25 pw=green);

The individual procedure chapters contain reminders that you can use data set
options where it is appropriate.

SAS data set options are

ALTER= OBS=

BUFNO= OBSBUF=

BUFSIZE= OUTREP=

CNTLLEV= POINTOBS=

COMPRESS= PW=

DLDMGACTION= PWREQ=

DROP= READ=

ENCODING= RENAME=

ENCRYPT= REPEMPTY=

FILECLOSE= REPLACE=

FIRSTOBS= REUSE=

GENMAX= SORTEDBY=

GENNUM= SORTSEQ=

IDXNAME= SPILL=

IDXWHERE= TOBSNO=

IN= TYPE=

INDEX= WHERE=

KEEP= WHEREUP=

LABEL= WRITE=

For a complete description of SAS data set options, see SAS Language Reference:
Dictionary.

Global Statements
You can use these global statements anywhere in SAS programs except after a

DATALINES, CARDS, or PARMCARDS statement:

comment ODS

DM OPTIONS

ENDSAS PAGE

Fundamental Concepts for Using Base SAS Procedures � RUN-Group Processing 19

FILENAME RUN

FOOTNOTE %RUN

%INCLUDE SASFILE

LIBNAME SKIP

%LIST TITLE

LOCK X

For information about all but the ODS statement, refer to SAS Language Reference:
Dictionary. For information about the ODS statement, refer to “Output Delivery
System” on page 32 and to SAS Output Delivery System: User’s Guide.

Procedure Concepts

Input Data Sets
Many base procedures require an input SAS data set. You specify the input SAS data

set by using the DATA= option in the procedure statement, as in this example:

proc print data=emp;

If you omit the DATA= option, the procedure uses the value of the SAS system option
LAST=. The default of _LAST_= is the most recently created SAS data set in the
current SAS job or session. _LAST_= is described in detail in SAS Language Reference:
Dictionary.

RUN-Group Processing
RUN-group processing enables you to submit a PROC step with a RUN statement

without ending the procedure. You can continue to use the procedure without issuing
another PROC statement. To end the procedure, use a RUN CANCEL or a QUIT
statement. Several base SAS procedures support RUN-group processing:

CATALOG

DATASETS

PLOT

PMENU

TRANTAB

See the section on the individual procedure for more information.

Note: PROC SQL executes each query automatically. Neither the RUN nor RUN
CANCEL statement has any effect. �

20 Creating Titles That Contain BY-Group Information � Chapter 2

Creating Titles That Contain BY-Group Information

BY-Group Processing
BY-group processing uses a BY statement to process observations that are ordered,

grouped, or indexed according to the values of one or more variables. By default, when
you use BY-group processing in a procedure step, a BY line identifies each group. This
section explains how to create titles that serve as customized BY lines.

Suppressing the Default BY Line
When you insert BY-group processing information into a title, you usually want to

eliminate the default BY line. To suppress it, use the SAS system option NOBYLINE.

Note: You must use the NOBYLINE option if you insert BY-group information into
titles for the following base SAS procedures:

MEANS

PRINT

STANDARD

SUMMARY

If you use the BY statement with the NOBYLINE option, then these procedures always
start a new page for each BY group. This behavior prevents multiple BY groups from
appearing on a single page and ensures that the information in the titles matches the
report on the pages. �

Inserting BY-Group Information into a Title
The general form for inserting BY-group information into a title is

#BY-specification<.suffix>

BY-specification
is one of the following:

BYVALn | BYVAL(BY-variable)
places the value of the specified BY variable in the title. You specify the BY
variable with one of the following:

n
is the nth BY variable in the BY statement.

BY-variable
is the name of the BY variable whose value you want to insert in the
title.

BYVARn | BYVAR(BY-variable)
places the label or the name (if no label exists) of the specified BY variable in
the title. You designate the BY variable with one of the following:

n
is the nth BY variable in the BY statement.

BY-variable
is the name of the BY variable whose name you want to insert in the
title.

Fundamental Concepts for Using Base SAS Procedures � Creating Titles That Contain BY-Group Information 21

BYLINE
inserts the complete default BY line into the title.

suffix
supplies text to place immediately after the BY-group information that you insert
in the title. No space appears between the BY-group information and the suffix.

Example: Inserting a Value from Each BY Variable into the Title
This example

1 creates a data set, GROC, that contains data for stores from four regions. Each
store has four departments. See “GROC” on page 1388 for the DATA step that
creates the data set.

2 sorts the data by Region and Department.

3 uses the SAS system option NOBYLINE to suppress the BY line that normally
appears in output that is produced with BY-group processing.

4 uses PROC CHART to chart sales by Region and Department. In the first TITLE
statement, #BYVAL2 inserts the value of the second BY variable, Department, into
the title. In the second TITLE statement, #BYVAL(Region) inserts the value of
Region into the title. The first period after Region indicates that a suffix follows.
The second period is the suffix.

5 uses the SAS system option BYLINE to return to the creation of the default BY
line with BY-group processing.

data groc; u

input Region $9. Manager $ Department $ Sales;
datalines;

Southeast Hayes Paper 250
Southeast Hayes Produce 100
Southeast Hayes Canned 120
Southeast Hayes Meat 80
...more lines of data...
Northeast Fuller Paper 200
Northeast Fuller Produce 300
Northeast Fuller Canned 420
Northeast Fuller Meat 125
;

proc sort data=groc; v

by region department;
run;
options nobyline nodate pageno=1

linesize=64 pagesize=20; w

proc chart data=groc; x

by region department;
vbar manager / type=sum sumvar=sales;
title1 ’This chart shows #byval2 sales’;
title2 ’in the #byval(region)..’;

run;
options byline; y

22 Creating Titles That Contain BY-Group Information � Chapter 2

This partial output shows two BY groups with customized BY lines:

This chart shows Canned sales 1
in the Northwest.

Sales Sum

400 + ***** *****
| ***** *****

300 + ***** *****
| ***** ***** *****

200 + ***** ***** *****
| ***** ***** *****

100 + ***** ***** *****
***** ***** *****

Aikmann Duncan Jeffreys

Manager

This chart shows Meat sales 2
in the Northwest.

Sales Sum

75 + ***** *****
| ***** *****

60 + ***** *****
| ***** *****

45 + ***** *****
| ***** *****

30 + ***** ***** *****
| ***** ***** *****

15 + ***** ***** *****
***** ***** *****

Aikmann Duncan Jeffreys

Manager

Example: Inserting the Name of a BY Variable into a Title
This example inserts the name of a BY variable and the value of a BY variable into

the title. The program

1 uses the SAS system option NOBYLINE to suppress the BY line that normally
appears in output that is produced with BY-group processing.

2 uses PROC CHART to chart sales by Region. In the first TITLE statement,
#BYVAR(Region) inserts the name of the variable Region into the title. (If Region
had a label, #BYVAR would use the label instead of the name.) The suffix al is
appended to the label. In the second TITLE statement, #BYVAL1 inserts the value
of the first BY variable, Region, into the title.

3 uses the SAS system option BYLINE to return to the creation of the default BY
line with BY-group processing.

options nobyline nodate pageno=1
linesize=64 pagesize=20; u

proc chart data=groc; v

by region;

Fundamental Concepts for Using Base SAS Procedures � Creating Titles That Contain BY-Group Information 23

vbar manager / type=mean sumvar=sales;
title1 ’#byvar(region).al Analysis’;
title2 ’for the #byval1’;

run;
options byline; w

This partial output shows one BY group with a customized BY line:

Regional Analysis 1
for the Northwest

Sales Mean

300 + *****
| *****

200 + ***** *****
100 + ***** ***** *****

***** ***** *****

Aikmann Duncan Jeffreys

Manager

Example: Inserting the Complete BY Line into a Title
This example inserts the complete BY line into the title. The program
1 uses the SAS system option NOBYLINE to suppress the BY line that normally

appears in output that is produced with BY-group processing.
2 uses PROC CHART to chart sales by Region and Department. In the TITLE

statement, #BYLINE inserts the complete BY line into the title.
3 uses the SAS system option BYLINE to return to the creation of the default BY

line with BY-group processing.

options nobyline nodate pageno=1
linesize=64 pagesize=20; u

proc chart data=groc; v

by region department;
vbar manager / type=sum sumvar=sales;
title ’Information for #byline’;

run;
options byline; w

24 Shortcuts for Specifying Lists of Variable Names � Chapter 2

This partial output shows two BY groups with customized BY lines:

Information for Region=Northwest Department=Canned 1

Sales Sum

400 + ***** *****
| ***** *****

300 + ***** *****
| ***** ***** *****

200 + ***** ***** *****
| ***** ***** *****

100 + ***** ***** *****
***** ***** *****

Aikmann Duncan Jeffreys

Manager

Information for Region=Northwest Department=Meat 2

Sales Sum

75 + ***** *****
| ***** *****

60 + ***** *****
| ***** *****

45 + ***** *****
| ***** *****

30 + ***** ***** *****
| ***** ***** *****

15 + ***** ***** *****
***** ***** *****

Aikmann Duncan Jeffreys

Manager

Error Processing of BY-Group Specifications
SAS does not issue error or warning messages for incorrect #BYVAL, #BYVAR, or

#BYLINE specifications. Instead, the text of the item simply becomes part of the title.

Shortcuts for Specifying Lists of Variable Names
Several statements in procedures allow multiple variable names. You can use these

shortcut notations instead of specifying each variable name:

Notation Meaning

x1-xn specifies variables X1 through Xn. The numbers must be
consecutive.

x: specifies all variables that begin with the letter X.

x--a specifies all variables between X and A, inclusive. This
notation uses the position of the variables in the data set.

x-numeric-a specifies all numeric variables between X and A, inclusive.
This notation uses the position of the variables in the data set.

Fundamental Concepts for Using Base SAS Procedures � Formatted Values 25

Notation Meaning

x-character-a specifies all character variables between X and A, inclusive.
This notation uses the position of the variables in the data set.

numeric specifies all numeric variables.

character specifies all character variables.

all specifies all variables.

Note: You cannot use shortcuts to list variable names in the INDEX CREATE
statement in PROC DATASETS. �

See SAS Language Reference: Concepts for complete documentation.

Formatted Values

Using Formatted Values
Typically, when you print or group variable values, base SAS procedures use the

formatted values. This section contains examples of how base procedures use formatted
values.

Example: Printing the Formatted Values for a Data Set
The following example prints the formatted values of the data set

PROCLIB.PAYROLL. (See “PROCLIB.PAYROLL” on page 1395 for the DATA step that
creates this data set.) In PROCLIB.PAYROLL, the variable Jobcode indicates the job
and level of the employee. For example, TA1 indicates that the employee is at the
beginning level for a ticket agent.

libname proclib ’SAS-data-library’;

options nodate pageno=1
linesize=64 pagesize=40;

proc print data=proclib.payroll(obs=10)
noobs;

title ’PROCLIB.PAYROLL’;
title2 ’First 10 Observations Only’;

run;

26 Formatted Values � Chapter 2

This is a partial printing of PROCLIB.PAYROLL:

PROCLIB.PAYROLL 1
First 10 Observations Only

Id
Number Gender Jobcode Salary Birth Hired

1919 M TA2 34376 12SEP60 04JUN87
1653 F ME2 35108 15OCT64 09AUG90
1400 M ME1 29769 05NOV67 16OCT90
1350 F FA3 32886 31AUG65 29JUL90
1401 M TA3 38822 13DEC50 17NOV85
1499 M ME3 43025 26APR54 07JUN80
1101 M SCP 18723 06JUN62 01OCT90
1333 M PT2 88606 30MAR61 10FEB81
1402 M TA2 32615 17JAN63 02DEC90
1479 F TA3 38785 22DEC68 05OCT89

The following PROC FORMAT step creates the format $JOBFMT., which assigns
descriptive names for each job:

proc format;
value $jobfmt

’FA1’=’Flight Attendant Trainee’
’FA2’=’Junior Flight Attendant’
’FA3’=’Senior Flight Attendant’
’ME1’=’Mechanic Trainee’
’ME2’=’Junior Mechanic’
’ME3’=’Senior Mechanic’
’PT1’=’Pilot Trainee’
’PT2’=’Junior Pilot’
’PT3’=’Senior Pilot’
’TA1’=’Ticket Agent Trainee’
’TA2’=’Junior Ticket Agent’
’TA3’=’Senior Ticket Agent’
’NA1’=’Junior Navigator’
’NA2’=’Senior Navigator’
’BCK’=’Baggage Checker’
’SCP’=’Skycap’;

run;

The FORMAT statement in this PROC MEANS step temporarily associates the
$JOBFMT. format with the variable Jobcode:

options nodate pageno=1
linesize=64 pagesize=60;

proc means data=proclib.payroll mean max;
class jobcode;
var salary;
format jobcode $jobfmt.;
title ’Summary Statistics for’;
title2 ’Each Job Code’;

run;

Fundamental Concepts for Using Base SAS Procedures � Formatted Values 27

PROC MEANS produces this output, which uses the $JOBFMT. format:

Summary Statistics for 1
Each Job Code

The MEANS Procedure

Analysis Variable : Salary

N
Jobcode Obs Mean Maximum

Baggage Checker 9 25794.22 26896.00

Flight Attendant Trainee 11 23039.36 23979.00

Junior Flight Attendant 16 27986.88 28978.00

Senior Flight Attendant 7 32933.86 33419.00

Mechanic Trainee 8 28500.25 29769.00

Junior Mechanic 14 35576.86 36925.00

Senior Mechanic 7 42410.71 43900.00

Junior Navigator 5 42032.20 43433.00

Senior Navigator 3 52383.00 53798.00

Pilot Trainee 8 67908.00 71349.00

Junior Pilot 10 87925.20 91908.00

Senior Pilot 2 10504.50 11379.00

Skycap 7 18308.86 18833.00

Ticket Agent Trainee 9 27721.33 28880.00

Junior Ticket Agent 20 33574.95 34803.00

Senior Ticket Agent 12 39679.58 40899.00

Note: Because formats are character strings, formats for numeric variables are
ignored when the values of the numeric variables are needed for mathematical
calculations. �

Example: Grouping or Classifying Formatted Data
If you use a formatted variable to group or classify data, then the procedure uses the

formatted values. The following example creates and assigns a format, $CODEFMT.,
that groups the levels of each job code into one category. PROC MEANS calculates
statistics based on the groupings of the $CODEFMT. format.

proc format;
value $codefmt

’FA1’,’FA2’,’FA3’=’Flight Attendant’
’ME1’,’ME2’,’ME3’=’Mechanic’
’PT1’,’PT2’,’PT3’=’Pilot’
’TA1’,’TA2’,’TA3’=’Ticket Agent’

’NA1’,’NA2’=’Navigator’
’BCK’=’Baggage Checker’

28 Formatted Values � Chapter 2

’SCP’=’Skycap’;
run;

options nodate pageno=1
linesize=64 pagesize=40;

proc means data=proclib.payroll mean max;
class jobcode;
var salary;
format jobcode $codefmt.;
title ’Summary Statistics for Job Codes’;
title2 ’(Using a Format that Groups the Job Codes)’;

run;

PROC MEANS produces this output:

Summary Statistics for Job Codes 1
(Using a Format that Groups the Job Codes)

The MEANS Procedure

Analysis Variable : Salary

N
Jobcode Obs Mean Maximum

Baggage Checker 9 25794.22 26896.00

Flight Attendant 34 27404.71 33419.00

Mechanic 29 35274.24 43900.00

Navigator 8 45913.75 53798.00

Pilot 20 72176.25 91908.00

Skycap 7 18308.86 18833.00

Ticket Agent 41 34076.73 40899.00

Example: Temporarily Associating a Format with a Variable
If you want to associate a format with a variable temporarily, then you can use the

FORMAT statement. For example, the following PROC PRINT step associates the
DOLLAR8. format with the variable Salary for the duration of this PROC PRINT step
only:

options nodate pageno=1
linesize=64 pagesize=40;

proc print data=proclib.payroll(obs=10)
noobs;

format salary dollar8.;
title ’Temporarily Associating a Format’;
title2 ’with the Variable Salary’;

run;

Fundamental Concepts for Using Base SAS Procedures � Formatted Values 29

PROC PRINT produces this output:

Temporarily Associating a Format 1
with the Variable Salary

Id
Number Gender Jobcode Salary Birth Hired

1919 M TA2 $34,376 12SEP60 04JUN87
1653 F ME2 $35,108 15OCT64 09AUG90
1400 M ME1 $29,769 05NOV67 16OCT90
1350 F FA3 $32,886 31AUG65 29JUL90
1401 M TA3 $38,822 13DEC50 17NOV85
1499 M ME3 $43,025 26APR54 07JUN80
1101 M SCP $18,723 06JUN62 01OCT90
1333 M PT2 $88,606 30MAR61 10FEB81
1402 M TA2 $32,615 17JAN63 02DEC90
1479 F TA3 $38,785 22DEC68 05OCT89

Example: Temporarily Dissociating a Format from a Variable
If a variable has a permanent format that you do not want a procedure to use, then

temporarily dissociate the format from the variable by using a FORMAT statement.
In this example, the FORMAT statement in the DATA step permanently associates

the $YRFMT. variable with the variable Year. Thus, when you use the variable in a
PROC step, the procedure uses the formatted values. The PROC MEANS step, however,
contains a FORMAT statement that dissociates the $YRFMT. format from Year for this
PROC MEANS step only. PROC MEANS uses the stored value for Year in the output.

proc format;
value $yrfmt ’1’=’Freshman’

’2’=’Sophomore’
’3’=’Junior’
’4’=’Senior’;

run;
data debate;

input Name $ Gender $ Year $ GPA @@;
format year $yrfmt.;
datalines;

Capiccio m 1 3.598 Tucker m 1 3.901
Bagwell f 2 3.722 Berry m 2 3.198
Metcalf m 2 3.342 Gold f 3 3.609
Gray f 3 3.177 Syme f 3 3.883
Baglione f 4 4.000 Carr m 4 3.750
Hall m 4 3.574 Lewis m 4 3.421
;

options nodate pageno=1
linesize=64 pagesize=40;

proc means data=debate mean maxdec=2;
class year;
format year;
title ’Average GPA’;

run;

30 Processing All the Data Sets in a Library � Chapter 2

PROC MEANS produces this output, which does not use the YRFMT. format:

Average GPA 1

The MEANS Procedure

Analysis Variable : GPA

N
Year Obs Mean

1 2 3.75

2 3 3.42

3 3 3.56

4 4 3.69

Formats and BY-Group Processing
When a procedure processes a data set, it checks to see if a format is assigned to the

BY variable. If it is, then the procedure adds observations to the current BY groups
until the formatted value changes. If nonconsecutive internal values of the BY
variable(s) have the same formatted value, then the values are grouped into different
BY groups. This results in two BY groups with the same formatted value. Further, if
different and consecutive internal values of the BY variable(s) have the same formatted
value, then they are included in the same BY group.

Formats and Error Checking
If SAS cannot find a format, then it stops processing and prints an error message in

the SAS log. You can suppress this behavior with the SAS system option NOFMTERR.
If you use NOFMTERR, and SAS cannot find the format, then SAS uses a default
format and continues processing. Typically, for the default, SAS uses the BESTw.
format for numeric variables and the $w. format for character variables.

Note: To ensure that SAS can find user-written formats, use the SAS system option
FMTSEARCH=. How to store formats is described in “Storing Informats and Formats”
on page 456. �

Processing All the Data Sets in a Library
You can use the SAS Macro Facility to run the same procedure on every data set in a

library. The macro facility is part of base SAS software.
Example 9 on page 767 shows how to print all the data sets in a library. You can use

the same macro definition to perform any procedure on all the data sets in a library.
Simply replace the PROC PRINT piece of the program with the appropriate procedure
code.

Operating Environment-Specific Procedures
Several base SAS procedures are specific to one operating environment or one

release. Appendix 2, “Operating Environment-Specific Procedures,” on page 1375
contains a table with additional information. These procedures are described in more
detail in the SAS documentation for operating environments.

Fundamental Concepts for Using Base SAS Procedures � Statistic Descriptions 31

Statistic Descriptions

Table 2.1 on page 31 identifies common descriptive statistics that are available in
several Base SAS procedures. See “Keywords and Formulas” on page 1340 for more
detailed information about available statistics and theoretical information.

Table 2.1 Common Descriptive Statistics That Base Procedures Calculate

Statistic Description Procedures

confidence intervals FREQ, MEANS/SUMMARY, TABULATE, UNIVARIATE

CSS corrected sum of
squares

CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

CV coefficient of variation MEANS/SUMMARY, REPORT, SQL, TABULATE,
UNIVARIATE

goodness-of-fit tests FREQ, UNIVARIATE

KURTOSIS kurtosis MEANS/SUMMARY, TABULATE, UNIVARIATE

MAX largest (maximum)
value

CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

MEAN mean CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

MEDIAN median (50th percentile) CORR (for nonparametric correlation measures),
MEANS/SUMMARY, TABULATE, UNIVARIATE

MIN smallest (minimum)
value

CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

MODE most frequent value (if
not unique, the
smallest mode is used)

UNIVARIATE

N number of observations
on which calculations
are based

CORR, FREQ, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

NMISS number of missing
values

FREQ, MEANS/SUMMARY, REPORT, SQL, TABULATE,
UNIVARIATE

NOBS number of observations MEANS/SUMMARY, UNIVARIATE

PCTN the percentage of a cell
or row frequency to a
total frequency

REPORT, TABULATE

PCTSUM the percentage of a cell
or row sum to a total
sum

REPORT, TABULATE

Pearson correlation CORR

percentiles FREQ, MEANS/SUMMARY, REPORT, TABULATE,
UNIVARIATE

RANGE range CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

32 Computational Requirements for Statistics � Chapter 2

Statistic Description Procedures

robust statistics trimmed means,
Winsorized means

UNIVARIATE

SKEWNESS skewness MEANS/SUMMARY, TABULATE, UNIVARIATE

Spearman correlation CORR

STD standard deviation CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

STDERR the standard error of
the mean

MEANS/SUMMARY, REPORT, SQL, TABULATE,
UNIVARIATE

SUM sum CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

SUMWGT sum of weights CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

tests of location UNIVARIATE

USS uncorrected sum of
squares

CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

VAR variance CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

Computational Requirements for Statistics
The following requirements are computational requirements for the statistics that

are listed in Table 2.1 on page 31. They do not describe recommended sample sizes.

� N and NMISS do not require any nonmissing observations.

� SUM, MEAN, MAX, MIN, RANGE, USS, and CSS require at least one nonmissing
observation.

� VAR, STD, STDERR, and CV require at least two observations.

� CV requires that MEAN is not equal to zero.

Statistics are reported as missing if they cannot be computed.

Output Delivery System

What Is the Output Delivery System?
The Output Delivery System (ODS) gives you greater flexibility in generating,

storing, and reproducing SAS procedure and DATA step output, with a wide range of
formatting options. ODS provides formatting functionality that is not available from
individual procedures or from the DATA step alone. ODS overcomes these limitations
and enables you to format your output more easily.

Prior to Version 7, most SAS procedures generated output that was designed for a
traditional line-printer. This type of output has limitations that prevents you from
getting the most value from your results:

Fundamental Concepts for Using Base SAS Procedures � Gallery of ODS Samples 33

� Traditional SAS output is limited to monospace fonts. With today’s desktop
document editors and publishing systems, you need more versatility in printed
output.

� Some commonly used procedures do not produce output data sets. Prior to ODS, if
you wanted to use output from one of these procedures as input to another
procedure, then you relied on PROC PRINTTO and the DATA step to retrieve
results.

Gallery of ODS Samples

Introduction to the ODS Samples
This section shows you samples of the different kinds of formatted output that you

can produce with ODS. The input file contains sales records for TruBlend Coffee
Makers, a company that distributes coffee machines.

Listing Output
Traditional SAS output is Listing output. You do not need to change your SAS

programs to create listing output. By default, you continue to create this kind of output
even if you also create a type of output that contains more formatting.

34 Gallery of ODS Samples � Chapter 2

Output 2.1 Listing Output

Average Quarterly Sales Amount by Each Sales Representative 1

--------------------------------- Quarter=1 ----------------------------------

The MEANS Procedure

Analysis Variable : AmountSold

N
SalesRep Obs N Mean Std Dev Minimum Maximum
__
Garcia 8 8 14752.5 22806.1 495.0 63333.7

Hollingsworth 5 5 11926.9 12165.2 774.3 31899.1

Jensen 5 5 10015.7 8009.5 3406.7 20904.8
__

Average Quarterly Sales Amount by Each Sales Representative 2

--------------------------------- Quarter=2 ----------------------------------

The MEANS Procedure

Analysis Variable : AmountSold

N
SalesRep Obs N Mean Std Dev Minimum Maximum
__
Garcia 6 6 18143.3 20439.6 1238.8 53113.6

Hollingsworth 6 6 16026.8 14355.0 1237.5 34686.4

Jensen 6 6 12455.1 12713.7 1393.7 34376.7
__

Average Quarterly Sales Amount by Each Sales Representative 3

--------------------------------- Quarter=3 ----------------------------------

The MEANS Procedure

Analysis Variable : AmountSold

N
SalesRep Obs N Mean Std Dev Minimum Maximum
__
Garcia 21 21 10729.8 11457.0 2787.3 38712.5

Hollingsworth 15 15 7313.6 7280.4 1485.0 30970.0

Jensen 21 21 10585.3 7361.7 2227.5 27129.7
__

Average Quarterly Sales Amount by Each Sales Representative 4

--------------------------------- Quarter=4 ----------------------------------

The MEANS Procedure

Analysis Variable : AmountSold

N
SalesRep Obs N Mean Std Dev Minimum Maximum
__
Garcia 5 5 11973.0 10971.8 3716.4 30970.0

Hollingsworth 6 6 13624.4 12624.6 5419.8 38093.1

Jensen 6 6 19010.4 15441.0 1703.4 38836.4
__

Fundamental Concepts for Using Base SAS Procedures � Gallery of ODS Samples 35

PostScript Output
With ODS, you can produce output in PostScript format.

Display 2.1 PostScript Output Viewed with Ghostview

HTML Output
With ODS, you can produce output in HTML (Hypertext Markup Language.) You can

browse these files with Internet Explorer, Netscape, or any other browser that fully
supports the HTML 3.2 tagset.

Note: To create HTML 4.0 tagsets, use the ODS HTML4 statement. In SAS 9, the
ODS HTML statement generates HTML 3.2 tagsets. In future releases of SAS, the ODS
HTML statement will support the most current HTML tagsets available. �

36 Gallery of ODS Samples � Chapter 2

Display 2.2 HTML Output Viewed with Microsoft Internet Explorer

RTF Output
With ODS, you can produce RTF (Rich Text Format) output which is used with

Microsoft Word.

Fundamental Concepts for Using Base SAS Procedures � Gallery of ODS Samples 37

Display 2.3 RTF Output Viewed with Microsoft Word

PDF Output
With ODS, you can produce output in PDF (Portable Document Format), which can

be viewed with the Adobe Acrobat Reader.

38 Gallery of ODS Samples � Chapter 2

Display 2.4 PDF Output Viewed with Adobe Acrobat Reader

XML Output
With ODS, you can produce output that is tagged with XML (Extensible Markup

Language) tags.

Fundamental Concepts for Using Base SAS Procedures � Gallery of ODS Samples 39

Output 2.2 XML Output file

<?xml version="1.0" encoding="windows-1252"?>

<odsxml>

<head>

<meta operator="user"/>

</head>

<body>

<proc name="Print">

<label name="IDX"/>

<title class="SystemTitle" toc-level="1">US Census of Population and Housing</title>

<branch name="Print" label="The Print Procedure" class="ContentProcName" toc-level="1">

<leaf name="Print" label="Data Set SASHELP.CLASS" class="ContentItem" toc-level="2">

<output name="Print" label="Data Set SASHELP.CLASS" clabel="Data Set SASHELP.CLASS">

<output-object type="table" class="Table">

<style>

<border spacing="1" padding="7" rules="groups" frame="box"/>

</style>

<colspecs columns="6">

<colgroup>

<colspec name="1" width="2" align="right" type="int"/>

</colgroup>

<colgroup>

<colspec name="2" width="7" type="string"/>

<colspec name="3" width="1" type="string"/>

<colspec name="4" width="2" align="decimal" type="double"/>

<colspec name="5" width="4" align="decimal" type="double"/>

<colspec name="6" width="5" align="decimal" type="double"/>

</colgroup>

</colspecs>

<output-head>

<row>

<header type="string" class="Header" row="1" column="1">

<value>Obs</value>

</header>

<header type="string" class="Header" row="1" column="2">

<value>Name</value>

</header>

<header type="string" class="Header" row="1" column="3">

<value>Sex</value>

</header>

<header type="string" class="Header" row="1" column="4">

<value>Age</value>

</header>

<header type="string" class="Header" row="1" column="5">

<value>Height</value>

</header>

<header type="string" class="Header" row="1" column="6">

<value>Weight</value>

</header>

</row>

</output-head>

<output-body>

<row>

<header type="double" class="RowHeader" row="2" column="1">

<value> 1</value>

</header>

<data type="string" class="Data" row="2" column="2">

<value>Alfred</value>

</data>

... more xml tagged output...

<

/odsxml>

40 Commonly Used ODS Terminology � Chapter 2

Commonly Used ODS Terminology

data component
is a form, similar to a SAS data set, that contains the results (numbers and
characters) of a DATA step or PROC step that supports ODS.

table definition
is a set of instructions that describes how to format the data. This description
includes but is not limited to

� the order of the columns

� text and order of column headings

� formats for data

� font sizes and font faces.

output object
is an object that contains both the results of a DATA step or PROC step and
information about how to format the results. An output object has a name, label,
and path. For example, the Basic Statistical Measurement table generated from
the UNIVARIATE procedure is an output object. It contains the data component
and formatted presentation of the mean, median, mode, standard deviation,
variance, range, and interquartile range.

Note: Although many output objects include formatting instructions, not all of
them do. In some cases the output object consists of only the data component. �

ODS destinations
are designations that produce specific types of output. ODS supports a number of
destinations, including the following:

LISTING
produces traditional SAS output (monospace format).

Markup Languages
produce SAS output that is formatted using one of many different markup
languages such as HTML (Hypertext Markup Language), XML (Extensible
Markup Language), and LaTeX that you can access with a web browser. SAS
supplies many markup languages for you to use ranging from DOCBOOK to
TROFF. You can specify a markup language that SAS supplies or create one
of your own and store it as a user-defined markup language.

DOCUMENT
produces a hierarchy of output objects that enables you to produce multiple
ODS output formats without rerunning a PROC or DATA step and gives you
more control over the structure of the output.

OUTPUT
produces a SAS data set.

Printer Family
produces output that is formatted for a high-resolution printer such as a
PostScript (PS), PDF, or PCL file.

RTF
produces output that is formatted for use with Microsoft Word.

Fundamental Concepts for Using Base SAS Procedures � How Does ODS Work? 41

ODS output
ODS output consists of formatted output from any of the ODS destinations. For
example, the OUTPUT destination produces SAS data sets; the LISTING
destination produces listing output; the HTML destination produces output that is
formatted in Hypertext Markup Language.

How Does ODS Work?

Components of SAS Output
The PROC or DATA step supplies raw data and the name of the table definition that

contains the formatting instructions, and ODS formats the output. You can use the
Output Delivery System to format output from individual procedures and from the
DATA step in many different forms other than the default SAS listing output.

The following figure shows how SAS produces ODS output.

Figure 2.1 ODS Processing: What Goes in and What Comes Out

ODS Processing: What Goes In and What Comes Out

Table
Definition

Data
Component

Output
Object

DOCUMENT LISTING OUTPUT HTML MARKUP PRINTER RTF

SAS Formatted Destinations Third-Party Formatted Destinations

Document
Output

Listing
Output

SAS
Data Set

HTML3.2
Output

SAS
TAGSETS*

User-defined
TAGSETS

RTF
Output

MS
Windows
Printers

PS PCL PDF

ODS
Destinations

ODS
Outputs

+

42 How Does ODS Work? � Chapter 2

* List of Tagsets that SAS Supplies and Supports

Table 2.2 * List of Tagsets that SAS Supplies and Supports

CHTML HTML4 SASIOXML SASXMOH

CSVALL HTMLCSS SASREPORT SASXMOIM

DEFAULT IMODE SASXML SASXMOR

DOCBOOK PHTML SASXMOG WML

EVENT_MAP

* List of Tagsets that SAS Supplies but Does Not Support

Table 2.3 Additional Tagsets that SAS Supplies but Does Not Support

COLORLATEX LATEX SHORT_MAP TPL_STYLE_MAP

CSV LATEX2 STYLE_DISPLAY TROFF

CSVBYLINE NAMEDHTML STYLE_POPUP WMLOLIST

GRAPH ODSSTYLE TEXT_MAP

GTABLEAPPLET PYX TPL_STYLE_LIST

CAUTION:
These tagsets are experimental tagsets. Do not use these tagsets in production jobs. �

Features of ODS
ODS is designed to overcome the limitations of traditional SAS output and to make it

easy to access and create the new formatting options. ODS provides a method of
delivering output in a variety of formats, and makes the formatted output easy to access.

Important features of ODS include the following:
� ODS combines raw data with one or more table definitions to produce one or more

output objects. These objects can be sent to any or all ODS destinations. You
control the specific type of output from ODS by selecting an ODS destination. The
currently available ODS destinations can produce

� traditional monospace output
� an output data set
� an ODS document that contains a hierarchy file of the output objects
� output that is formatted for a high-resolution printer such as PostScript and

PDF
� output that is formatted in various markup languages such as HTML
� RTF output that is formatted for use with Microsoft Word.

� ODS provides table definitions that define the structure of the output from SAS
procedures and from the DATA step. You can customize the output by modifying
these definitions, or by creating your own.

� ODS provides a way for you to choose individual output objects to send to ODS
destinations. For example, PROC UNIVARIATE produces five output objects. You
can easily create HTML output, an output data set, traditional listing output, or
printer output from any or all of these output objects. You can send different
output objects to different destinations.

Fundamental Concepts for Using Base SAS Procedures � What Are the ODS Destinations? 43

� In the SAS windowing environment, ODS stores a link to each output object in the
Results folder in the Results window.

� Because formatting is now centralized in ODS, the addition of a new ODS
destination does not affect any procedures or the DATA step. As future
destinations are added to ODS, they will automatically become available to the
DATA step and all procedures that support ODS.

� With ODS, you can produce output for numerous destinations from a single source,
but you do not need to maintain separate sources for each destination. This
feature saves you time and system resources by enabling you to produce multiple
kinds of output with a single run of your procedure or data query.

What Are the ODS Destinations?

Overview of ODS Destination Categories
ODS enables you to produce SAS procedure and DATA step output to many different

destinations. ODS destinations are organized into two categories.

SAS Formatted
destinations

produce output that is controlled and interpreted by SAS, such as a
SAS data set, SAS output listing, or an ODS document.

Third-Party
Formatted
destinations

produce output which enables you to apply styles, markup
languages, or enables you to print to physical printers using page
description languages. For example, you can produce output in
PostScript, HTML, XML, or a style or markup language that you
created.

The following table lists the ODS destination categories, the destination that each
category includes, and the formatted output that results from each destination.

Table 2.4 Destination Category Table

Category Destinations Results

SAS Formatted DOCUMENT ODS document

LISTING SAS output listing

OUTPUT SAS data set

Third-Party Formatted HTML HTML file for online viewing

MARKUP markup language tagsets

PRINTER printable output in one of three
different formats: PCL, PDF,
or PS (PostScript)

RTF output written in Rich Text
Format for use with Microsoft
Word 2000

As future destinations are added to ODS, they automatically will become available to
the DATA step and to all procedures that support ODS.

Definition of Destination-Independent Input
Destination-independent input means that one destination can support a feature

even though another destination does not support it. In this case, the request is ignored

44 What Are the ODS Destinations? � Chapter 2

by the destination that does not support it. Otherwise, ODS would support a small
subset of features that are only common to all destinations. If this was true, then it
would be difficult to move your reports from one output format to another output
format. ODS provides many output formatting options, so that you can use the
appropriate format for the output that you want. It is best to use the appropriate
destination suited for your purpose.

The SAS Formatted Destinations
The SAS formatted destinations create SAS entities such as a SAS data set, a SAS

output listing, or an ODS document. The statements in the ODS SAS Formatted
category create the SAS entities.

The three SAS formatted destinations are:

DOCUMENT Destination
The DOCUMENT destination enables you to restructure, navigate, and replay
your data in different ways and to different destinations as you like without
needing to rerun your analysis or repeat your database query. The DOCUMENT
destination makes your entire output stream available in "raw" form and
accessible to you to customize. The output is kept in the original internal
representation as a data component plus a table definition. When the output is in
a DOCUMENT form, it is possible to rearrange, restructure, and reformat without
rerunning your analysis. Unlike other ODS destinations, the DOCUMENT
destination has a GUI interface. However, everything that you can do through the
GUI, you can also do with batch commands using the ODS DOCUMENT
statement and the DOCUMENT procedure.

Prior to SAS 9, each procedure or DATA step produced output that was sent to
each destination that you specified. While you could always send your output to as
many destinations as you wanted, you needed to rerun your procedure or data
query if you decided to use a destination that you had not originally designated.
The DOCUMENT destination eliminates the need to rerun procedures or repeat
data queries by enabling you to store your output objects and replay them to
different destinations.

LISTING Destination
The LISTING destination produces output that looks the same as the traditional
SAS output. The LISTING destination is the default destination that opens when
you start your SAS session. Thus ODS is always being used, even when you do not
explicitly invoke ODS.

The LISTING destination enables you to produce traditional SAS output with
the same look and presentation as it had in previous versions of SAS.

Because most procedures share some of the same table definitions, the output is
more consistent. For example, if you have two different procedures producing an
ANOVA table, they will both produce it in the same way because each procedure
uses the same template to describe the table. However, there are four procedures
that do not use a default table definition to produce their output: PRINT
procedure, REPORT procedure, TABULATE procedure, and FREQ procedure’s
n-way tables. These procedures use the structure that you specified in your
program code to define their tables.

OUTPUT Destination
The OUTPUT destination produces SAS output data sets. Because ODS already
knows the logical structure of the data and its native form, ODS can output a SAS
data set that represents exactly the same resulting data set that the procedure
worked with internally. The output data sets can be used for further analysis, or
for sophisticated reports in which you want to combine similar statistics across

Fundamental Concepts for Using Base SAS Procedures � What Are the ODS Destinations? 45

different data sets into a single table. You can easily access and process your
output data sets using all of the SAS data set features. For example, you can
access your output data using variable names and perform WHERE-expression
processing just as you would process data from any other SAS data set.

The Third-Party Formatted Destinations
The third-party formatted destinations enable you to apply styles to the output

objects that are used by applications other than SAS. For example, these destinations
support attributes such as "font" and "color."

Note: For a list of style elements and valid values, see the style elements table in
the SAS Output Delivery System: User’s Guide. �

The four categories of third-party formatted destinations are:

� HTML (Hypertext Markup Language)

The HTML destination produces HTML 3.2-compatible output. You can,
however, produce (HTML 4 stylesheet) output using the HTML4 tagsets.

The HTML destination can create some or all of the following:

� an HTML file (called the body file) that contains the results from the
procedure

� a table of contents that links to the body file

� a table of pages that links to the body file
� a frame that displays the table of contents, the table of pages, and the body

file.

The body file is required with all ODS HTML output. If you do not want to link
to your output, then you do not have to create a table of contents, a table of pages,
or a frame file. However, if your output is very large, you might want to create a
table of contents and a table of pages for easier reading and transversing through
your file.

The HTML destination is intended only for on-line use, not for printing. To
print hard-copies of the output objects, use the PRINTER destination.

� Markup Languages (MARKUP) Family

Just as table definitions describe how to lay out a table, and style attributes
describe the style of the output, tagsets describe how to produce a markup
language output. You can use a tagset that SAS supplies or you can create your
own using the TEMPLATE procedure. Like table definitions and style attributes,
tagsets enable you to modify your markup language output. For example, each
variety of XML can be specified as a new tagset. SAS supplies you with a
collection of XML tagsets and enables you to produce a customized variety of XML.
The important point is that you can implement a tagset that SAS supplies or a
customized tagset that you created without having to wait for the next release of
SAS. With the addition of modifying and creating your own tagsets by using PROC
TEMPLATE, now you have greater flexibility in customizing your output.

Because the MARKUP destination is so flexible, you can use either the SAS
tagsets or a tagset that you created. For a complete listing of the markup
language tagsets that SAS supplies, see the section on listing tagset names in the
SAS Output Delivery System: User’s Guide. To learn how to define your own
tagsets, see the section on methods to create your own tagsets in the SAS Output
Delivery System: User’s Guide.

The MARKUP destination cannot replace ODS PRINTER or ODS RTF
destinations because it cannot do text measurement. Therefore, it cannot produce

46 What Are the ODS Destinations? � Chapter 2

output for a page description language or a hybrid language like RTF which
requires all of the text to be measured and placed at a specific position on the page.

� PRINTER Family

The PRINTER destination produces output for
� printing to physical printers such as Windows printers under Windows, PCL,

and PostScript printers on other operating systems
� producing portable PostScript, PCL, and PDF files.

The PRINTER destinations produce ODS output that contain page description
languages: they describe precise positions where each line of text, each rule, and
each graphical element are to be placed on the page. In general, you cannot edit or
alter these formats. Therefore, the output from ODS PRINTER is intended to be
the final form of the report.

� Rich Text Format (RTF)

RTF produces output for Microsoft Word. While there are other applications
that can read RTF files, the RTF output might not work successfully with them.

The RTF destination enables you to view and edit the RTF output. ODS does
not define the “vertical measurement," meaning that SAS does not determine the
optimal place to position each item on the page. For example, page breaks are not
always fixed, so when you edit your text, you do not want your RTF output tables
to split at inappropriate places. Your tables can remain whole and intact on one
page or can have logical breaks where you specified.

However, because Microsoft Word needs to know the widths of table columns
and it cannot adjust tables if they are too wide for the page, ODS measures the
width of the text and tables (horizontal measurement). Therefore, all the column
widths can be set properly by SAS and the table can be divided into panels if it is
too wide to fit on a single page.

In short, when producing RTF output for input to Microsoft Word, SAS
determines the horizontal measurement and Microsoft Word controls the vertical
measurement. Because Microsoft Word can determine how much room there is on
the page, your tables will display consistently as you specified even after you
modified your RTF file.

What Controls the Formatting Features of Third-Party Formats?
All of the formatting features that control the appearance of the third-party

formatted destinations beyond what the LISTING destination can do are controlled by
two mechanisms:

� ODS statement options
� ODS style attributes

The ODS statement options control three features:
1 Features that are specific to a given destination, such as stylesheets for HTML.
2 Features that are global to the document, such as AUTHOR and table of contents

generation.
3 Features that we expect users to change on each document, such as the output file

name.

The ODS style attributes control the way that individual elements are created.
Attributes are aspects of a given style, such as type face, weight, font size, and color.
The values of the attributes collectively determine the appearance of each part of the
document to which the style is applied. With style attributes, it is unnecessary to insert

Fundamental Concepts for Using Base SAS Procedures � What Are Style Definitions, Style Elements, and Style Attributes? 47

destination-specific code (such as raw HTML) into the document. Each output
destination will interpret the attributes that are necessary to generate the presentation
of the document. Because not all destinations are the same, not all attributes can be
interpreted by all destinations. Style attributes that are incompatible with a selected
destination are ignored. For example, PostScript does not support active links, so the
URL= attribute is ignored when producing PostScript output.

ODS Destinations and System Resources
ODS destinations can be open or closed. You open and close a destination with the

appropriate ODS statement. When a destination is open, ODS sends the output objects
to it. An open destination uses system resources even if you use the selection and
exclusion features of ODS to select or exclude all objects from the destination.
Therefore, to conserve resources, close unnecessary destinations. For more information
about using each destination, see the topic on ODS statements in the SAS Output
Delivery System: User’s Guide.

By default, the LISTING destination is open and all other destinations are closed.
Consequently, if you do nothing, your SAS programs run and produce listing output
looking just as they did in previous releases of SAS before ODS was available.

What Are Table Definitions, Table Elements, and Table Attributes?
A table definition describes how to generate the output for a tabular output object.

(Most ODS output is tabular.) A table definition determines the order of column
headers and the order of variables, as well the overall look of the output object that
uses it. For information about customizing the table definition, see the topic on the
TEMPLATE procedure in the SAS Output Delivery System: User’s Guide.

In addition to the parts of the table definition that order the headers and columns,
each table definition contains or references table elements. A table element is a
collection of table attributes that apply to a particular header, footer, or column.
Typically, a table attribute specifies something about the data rather than about its
presentation. For example, FORMAT specifies the SAS format, such as the number of
decimal places. However, some table attributes describe presentation aspects of the
data, such as how many blank characters to place between columns.

Note: The attributes of table definitions that control the presentation of the data
have no effect on output objects that go to the LISTING or OUTPUT destination.
However, the attributes that control the structure of the table and the data values do
affect listing output. �

For information on table attributes, see the section on table attributes in the SAS
Output Delivery System: User’s Guide.

What Are Style Definitions, Style Elements, and Style Attributes?
To customize the output at the level of your entire output stream in a SAS session,

you specify a style definition. A style definition describes how to generate the
presentation aspects (color, font face, font size, and so on) of the entire SAS output. A
style definition determines the overall look of the documents that use it.

Each style definition is composed of style elements. A style element is a collection of
style attributes that apply to a particular part of the output. For example, a style
element may contain instructions for the presentation of column headers, or for the
presentation of the data inside the cells. Style elements may also specify default colors
and fonts for output that uses the style definition.

48 What Are Style Definitions, Style Elements, and Style Attributes? � Chapter 2

Each style attribute specifies a value for one aspect of the presentation. For example,
the BACKGROUND= attribute specifies the color for the background of an HTML table
or for a colored table in printed output. The FONT_STYLE= attribute specifies whether
to use a Roman or an italic font. For information on style attributes, see the section on
style attributes in the SAS Output Delivery System: User’s Guide.

Note: Because style definitions control the presentation of the data, they have no
effect on output objects that go to the LISTING or OUTPUT destination. �

What Style Definitions Are Shipped with SAS Software?
Base SAS software is shipped with many style definitions. To see a list of these

styles, you can view them in the SAS Explorer Window, use the TEMPLATE procedure,
or use the SQL procedure.

� SAS Explorer Window:
To display a list of the available styles using the SAS Explorer Window, follow

these steps:
1 From any window in an interactive SAS session, select

View � Results

2 In the Results window, select

View � Templates

3 In the Templates window, select and open Sashelp.tmplmst.
4 Select and open the Styles folder, which contains a list of available style

definitions. If you want to view the underlying SAS code for a style
definition, then select the style and open it.

Operating Environment Information: For information on navigating in the
Explorer window without a mouse, see the section on “Window Controls and
General Navigation” in the SAS documentation for your operating
environment. �

� TEMPLATE Procedure:
You can also display a list of the available styles by submitting the following

PROC TEMPLATE statements:

proc template;
list styles;

run;

� SQL Procedure:
You can also display a list of the available styles by submitting the following

PROC SQL statements:

proc sql;
select * from styles.style-name;

The style–name is the name of any style from the template store (for example,
styles.default or styles.beige).

For more information on how ODS destinations use styles and how you can
customize styles, see the section on the DEFINE STYLE statement in the SAS Output
Delivery System: User’s Guide.

How Do I Use Style Definitions with Base SAS Procedures?
� Most Base SAS Procedures

Fundamental Concepts for Using Base SAS Procedures � Changing SAS Registry Settings for ODS 49

Most Base SAS procedures that support ODS use one or more table definitions
to produce output objects. These table definitions include definitions for table
elements: columns, headers, and footers. Each table element can specify the use of
one or more style elements for various parts of the output. These style elements
cannot be specified within the syntax of the procedure, but you can use customized
styles for the ODS destinations that you use. For more information about
customizing tables and styles, see the TEMPLATE procedure in the SAS Output
Delivery System: User’s Guide.

� The PRINT, REPORT and TABULATE Procedures
The PRINT, REPORT and TABULATE procedures provide a way for you to

access table elements from the procedure step itself. Accessing the table elements
enables you to do such things as specify background colors for specific cells, change
the font face for column headers, and more. The PRINT, REPORT, and
TABULATE procedures provide a way for you to customize the markup language
and printed output directly from the procedure statements that create the report.
For more information about customizing the styles for these procedures, see the
Base SAS Procedures Guide.

Changing SAS Registry Settings for ODS

Overview of ODS and the SAS Registry
The SAS registry is the central storage area for configuration data that ODS uses.

This configuration data is stored in a hierarchical form, which works in a similar
manner to the way directory-based file structures work under UNIX, Windows, VMS,
and the z/OS UNIX system. However, the SAS registry uses keys and subkeys as the
basis for its structure, instead of using directories and subdirectories, like similar file
systems in DOS or UNIX. A key is a word or a text string that refers to a particular
aspect of SAS. Each key may be a place holder without values or subkeys associated
with it, or it may have many subkeys with associated values. For example, the ODS key
has DESTINATIONS, GUI, ICONS, and PREFERENCES subkeys. A subkey is a key
inside another key. For example, PRINTER is a subkey of the DESTINATIONS subkey.

Display 2.5 SAS Registry of ODS Subkeys

50 Changing SAS Registry Settings for ODS � Chapter 2

Changing Your Default HTML Version Setting

By default, the SAS registry is configured to generate HTML4 output when you
specify the ODS HTML statement. To permanently change the default HTML version,
you can change the setting of the HTML version in the SAS registry.

CAUTION:
If you make a mistake when you modify the SAS registry, then your system might become
unstable or unusable. You will not be warned if an entry is incorrect. Incorrect entries
can cause errors, and can even prevent you from bringing up a SAS session. For
more information about how to configure the SAS registry, see the SAS registry
section in SAS Language Reference: Concepts. �

To change the default setting of the HTML version in the SAS registry:

1 Select

Solutions � Accessories � Registry Editor

or
Issue the command REGEDIT.

2 Select

ODS � Default HMTL Version

3 Select

Edit � Modify

or
Click the right mouse button and select MODIFY. The Edit String Value window
appears.

4 Type the HTML version in the Value Data text box and select OK.

Display 2.6 SAS Registry Showing HTML Version Setting

Fundamental Concepts for Using Base SAS Procedures � Customized ODS Output 51

Changing ODS Destination Default Settings
ODS destination subkeys are stored in the SAS registry. To change the values for

these destinations subkeys:

1 Select

ODS � Destinations

2 Select a destination subkey

3 Select a subkey in the Contents of window

4 Select

Edit � Modify

or
Click the right mouse button and select MODIFY.

5 Type in the Value Data entry into the Edit Value String or Edit Signed Integer
Value window and select OK.

Display 2.7 Registry Editor Window

Customized ODS Output

SAS Output
By default, ODS output is formatted according to instructions that a PROC step or

DATA step defines. However, ODS provides ways for you to customize the output. You
can customize the output for an entire SAS job, or you can customize the output for a
single output object.

52 Customized ODS Output � Chapter 2

Selection and Exclusion Lists
You can specify which output objects that you want to produce by selecting or

excluding them in a list. For each ODS destination, ODS maintains either a selection
list or an exclusion list. A selection list is a list of output objects that are sent to the
destination. An exclusion list is a list of output objects that are excluded from the
destination. ODS also maintains an overall selection list or an overall exclusion list. You
can use these lists to control which output objects go to the specified ODS destinations.

To see the contents of the lists use the ODS SHOW statement. The lists are written
to the SAS log. The following table shows the default lists:

Table 2.5 Default List for Each ODS Destination

ODS Destination Default List

OUTPUT EXCLUDE ALL

All others SELECT ALL

How Does ODS Determine the Destinations for an Output Object?
To specify an output object, you need to know which output objects your SAS

program produces. The ODS TRACE statement writes to the SAS log a trace record
that includes the path, the label, and other information about each output object that is
produced. For more information, about the ODS TRACE statement see SAS Output
Delivery System: User’s Guide. You can specify an output object as any of the following:

� a full path. For example,

Univariate.City_Pop_90.TestsForLocation

is the full path of the output object.

� a partial path. A partial path consists of any part of the full path that begins
immediately after a period (.) and continues to the end of the full path. For
example, if the full path is

Univariate.City_Pop_90.TestsForLocation

then the partial paths are:

City_Pop_90.TestsForLocation
TestsForLocation

� a label that is enclosed in quotation marks.

For example,

"Tests For Location"

� a label path. For example, the label path for the output object is

"The UNIVARIATE Procedure"."CityPop_90"."Tests For Location"

Note: The trace record shows the label path only if you specify the LABEL
option in the ODS TRACE statement. �

� a partial label path. A partial label path consists of any part of the label that
begins immediately after a period (.) and continues to the end of the label. For
example, if the label path is

"The UNIVARIATE Procedure"."CityPop_90"."Tests For Location"

Fundamental Concepts for Using Base SAS Procedures � Customized ODS Output 53

then the partial label paths are:

"CityPop_90"."Tests For Location"
"Tests For Location"

� a mixture of labels and paths.

� any of the partial path specifications, followed by a pound sign (#) and a number.
For example, TestsForLocation#3 refers to the third output object that is named
TestsForLocation.

As each output object is produced, ODS uses the selection and exclusion lists to
determine which destination or destinations the output object will be sent to. The
following figure illustrates this process:

Figure 2.2 Directing an Output Object to a Destination

For each destination, ODS first asks if the list for that destination includes the object. If it does
not, ODS does not send the output object to that destination. If the list for that destination does
include the object, ODS reads the overall list. If the overall list includes the object, ODS sends
it to the destination. If the overall list does not include the object, ODS does not send it to the
destination.

Does the destination list
include the output object

to the destination?

Does the overall list
include the object ?

ODS doesn't pass the
object to the destination

ODS passes the object
to the destination

yes

no

yes
no

Note: Although you can maintain a selection list for one destination and an
exclusion list for another, it is easier to understand the results if you maintain the same
types of lists for all the destinations where you route output. �

Customized Output for an Output Object
For a procedure, the name of the table definition that is used for an output object

comes from the procedure code. The DATA step uses a default table definition unless
you specify an alternative with the TEMPLATE= suboption in the ODS option in the
FILE statement. For more information, see the section on the TEMPLATE= suboption
in the SAS Output Delivery System: User’s Guide.

To find out which table definitions a procedure or the DATA step uses for the output
objects, you must look at a trace record. To produce a trace record in your SAS log,
submit the following SAS statements:

54 Summary of ODS � Chapter 2

ods trace on;
your-proc-or-DATA-step
ods trace off;

Remember that not all procedures use table definitions. If you produce a trace record
for one of these procedures, no definition appears in the trace record. Conversely, some
procedures use multiple table definitions to produce their output. If you produce a trace
record for one of these procedures, more than one definition appears in the trace record.

The trace record refers to the table definition as a template. For a detailed
explanation of the trace record, see the section on the ODS TRACE statement in the
SAS Output Delivery System: User’s Guide.

You can use PROC TEMPLATE to modify an entire table definition. When a
procedure or DATA step uses a table definition, it uses the elements that are defined or
referenced in its table definition. In general, you cannot directly specify a table element
for your procedure or DATA step to use without modifying the definition itself.

Note: Three Base SAS procedures, PROC PRINT, PROC REPORT and PROC
TABULATE, do provide a way for you to access table elements from the procedure step
itself. Accessing the table elements enables you to customize your report. For more
information about these procedures, see the Base SAS Procedures Guide �

Summary of ODS
In the past, the term “output” has generally referred to the outcome of a SAS

procedure and DATA step. With the advent of the Output Delivery System, “output”
takes on a much broader meaning. ODS is designed to optimize output from SAS
procedures and the DATA step. It provides a wide range of formatting options and
greater flexibility in generating, storing, and reproducing SAS output.

Important features of ODS include the following:

� ODS combines raw data with one or more table definitions to produce one or more
output objects. An output object tells ODS how to format the results of a procedure
or DATA step.

� ODS provides table definitions that define the structure of the output from SAS
procedures and from the DATA step. You can customize the output by modifying
these definitions, or by creating your own definitions.

� ODS provides a way for you to choose individual output objects to send to ODS
destinations.

� ODS stores a link to each output object in the Results folder for easy retrieval and
access.

� As future destinations are added to ODS, they will automatically become available
to the DATA step and all procedures that support ODS.

One of the main goals of ODS is to enable you to produce output for numerous
destinations from a single source, without requiring separate sources for each
destination. ODS supports many destinations:

DOCUMENT
enables you to capture output objects from single run of the analysis and produce
multiple reports in various formats whenever you want without re-running your
SAS programs.

LISTING
produces output that looks the same as the traditional SAS output.

Fundamental Concepts for Using Base SAS Procedures � Summary of ODS 55

HTML
produces output for online viewing.

MARKUP
produces output for markup language tagsets.

OUTPUT
produces SAS output data sets, thereby eliminating the need to parse PROC
PRINTTO output.

PRINTER
produces presentation-ready printed reports.

RTF
produces output suitable for Microsoft Word reports.

By default, ODS output is formatted according to instructions that the procedure or
DATA step defines. However, ODS provides ways for you to customize the presentation
of your output. You can customize the presentation of your SAS output, or you can
customize the look of a single output object. ODS gives you greater flexibility in
generating, storing, and reproducing SAS procedure and DATA step output with a wide
range of formatting options.

56

57

C H A P T E R

3
Statements with the Same
Function in Multiple Procedures

Overview 57
Statements 58

BY 58

FREQ 61

QUIT 63

WEIGHT 63
WHERE 68

Overview

Several statements are available and have the same function in a number of base
SAS procedures. Some of the statements are fully documented in SAS Language
Reference: Dictionary, and others are documented in this section. The following list
shows you where to find more information about each statement:

ATTRIB
affects the procedure output and the output data set. The ATTRIB statement does
not permanently alter the variables in the input data set. The LENGTH= option
has no effect. See SAS Language Reference: Dictionary for complete
documentation.

BY
orders the output according to the BY groups. See “BY” on page 58.

FORMAT
affects the procedure output and the output data set. The FORMAT statement does
not permanently alter the variables in the input data set. The DEFAULT= option
is not valid. See SAS Language Reference: Dictionary for complete documentation.

FREQ
treats observations as if they appear multiple times in the input data set. See
“FREQ” on page 61.

LABEL
affects the procedure output and the output data set. The LABEL statement does
not permanently alter the variables in the input data set except when it is used
with the MODIFY statement in PROC DATASETS. See SAS Language Reference:
Dictionary for complete documentation.

QUIT
executes any statements that have not executed and ends the procedure. See
“QUIT” on page 63.

58 Statements � Chapter 3

WEIGHT
specifies weights for analysis variables in the statistical calculations. See
“WEIGHT” on page 63.

WHERE
subsets the input data set by specifying certain conditions that each observation
must meet before it is available for processing. See “WHERE” on page 68.

Statements

BY

Orders the output according to the BY groups.

See also: “Creating Titles That Contain BY-Group Information” on page 20

BY <DESCENDING> variable-1
<… <DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, then the observations in the data set must either be sorted by all the
variables that you specify, or they must be indexed appropriately. Variables in a BY
statement are called BY variables.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, then the procedure treats each contiguous set as a separate BY
group.

Note: You cannot use the NOTSORTED option in a PROC SORT step. �

Statements with the Same Function in Multiple Procedures � BY 59

Note: You cannot use the GROUPFORMAT option, which is available in the BY
statement in a DATA step, in a BY statement in any PROC step. �

BY-Group Processing
Procedures create output for each BY group. For example, the elementary statistics

procedures and the scoring procedures perform separate analyses for each BY group.
The reporting procedures produce a report for each BY group.

Note: All base SAS procedures except PROC PRINT process BY groups
independently. PROC PRINT can report the number of observations in each BY group
as well as the number of observations in all BY groups. Similarly, PROC PRINT can
sum numeric variables in each BY group and across all BY groups. �

You can use only one BY statement in each PROC step. When you use a BY
statement, the procedure expects an input data set that is sorted by the order of the BY
variables or one that has an appropriate index. If your input data set does not meet
these criteria, then an error occurs. Either sort it with the SORT procedure or create an
appropriate index on the BY variables.

Depending on the order of your data, you may need to use the NOTSORTED or
DESCENDING option in the BY statement in the PROC step.

For more information on
� the BY statement, see SAS Language Reference: Dictionary.
� PROC SORT, see Chapter 43, “The SORT Procedure,” on page 1003.
� creating indexes, see “INDEX CREATE Statement” on page 345.

Formatting BY-Variable Values
When a procedure is submitted with a BY statement, the following actions are taken

with respect to processing of BY groups:
1 The procedure determines whether the data is sorted by the internal

(unformatted) values of the BY variable(s).
2 The procedure determines whether a format has been applied to the BY

variable(s). If the BY variable is numeric and has no user-applied format, then the
BEST12. format is applied for the purpose of BY-group processing.

3 The procedure continues adding observations to the current BY group until both
the internal and the formatted values of the BY variable(s) change.

This process can have unexpected results if, for instance, nonconsecutive internal BY
values share the same formatted value. In this case, the formatted value is represented
in different BY groups. Alternatively, if different consecutive internal BY values share
the same formatted value, then these observations are grouped into the same BY group.

60 BY � Chapter 3

Base SAS Procedures That Support the BY Statement

CALENDAR REPORT (nonwindowing environment only)

CHART SORT (required)

COMPARE STANDARD

CORR SUMMARY

FREQ TABULATE

MEANS TIMEPLOT

PLOT TRANSPOSE

PRINT UNIVARIATE

RANK

Note: In the SORT procedure, the BY statement specifies how to sort the data. With
the other procedures, the BY statement specifies how the data are currently sorted. �

Example
This example uses a BY statement in a PROC PRINT step. There is output for each

value of the BY variable, Year. The DEBATE data set is created in “Example:
Temporarily Dissociating a Format from a Variable” on page 29.

options nodate pageno=1 linesize=64
pagesize=40;

proc print data=debate noobs;
by year;
title ’Printing of Team Members’;
title2 ’by Year’;

run;

Statements with the Same Function in Multiple Procedures � FREQ 61

Printing of Team Members 1
by Year

------------------------ Year=Freshman -------------------------

Name Gender GPA

Capiccio m 3.598
Tucker m 3.901

------------------------ Year=Sophomore ------------------------

Name Gender GPA

Bagwell f 3.722
Berry m 3.198
Metcalf m 3.342

------------------------- Year=Junior --------------------------

Name Gender GPA

Gold f 3.609
Gray f 3.177
Syme f 3.883

------------------------- Year=Senior --------------------------

Name Gender GPA

Baglione f 4.000
Carr m 3.750
Hall m 3.574
Lewis m 3.421

FREQ

Treats observations as if they appear multiple times in the input data set.

Tip: You can use a WEIGHT statement and a FREQ statement in the same step of any
procedure that supports both statements.

FREQ variable;

Required Arguments

variable
specifies a numeric variable whose value represents the frequency of the observation.
If you use the FREQ statement, then the procedure assumes that each observation

62 FREQ � Chapter 3

represents n observations, where n is the value of variable. If variable is not an
integer, then SAS truncates it. If variable is less than 1 or is missing, then the
procedure does not use that observation to calculate statistics. If a FREQ statement
does not appear, then each observation has a default frequency of 1.

The sum of the frequency variable represents the total number of observations.

Procedures That Support the FREQ Statement

� CORR

� MEANS/SUMMARY

� REPORT

� STANDARD

� TABULATE

� UNIVARIATE

Example
The data in this example represent a ship’s course and speed (in nautical miles per

hour), recorded every hour. The frequency variable, Hours, represents the number of
hours that the ship maintained the same course and speed. Each of the following PROC
MEANS steps calculates average course and speed. The different results demonstrate
the effect of using Hours as a frequency variable.

The following PROC MEANS step does not use a frequency variable:

options nodate pageno=1 linesize=64 pagesize=40;

data track;
input Course Speed Hours @@;
datalines;

30 4 8 50 7 20
75 10 30 30 8 10
80 9 22 20 8 25
83 11 6 20 6 20
;

proc means data=track maxdec=2 n mean;
var course speed;
title ’Average Course and Speed’;

run;

Without a frequency variable, each observation has a frequency of 1, and the total
number of observations is 8.

Average Course and Speed 1

The MEANS Procedure

Variable N Mean

Course 8 48.50
Speed 8 7.88

Statements with the Same Function in Multiple Procedures � WEIGHT 63

The second PROC MEANS step uses Hours as a frequency variable:

proc means data=track maxdec=2 n mean;
var course speed;
freq hours;
title ’Average Course and Speed’;

run;

When you use Hours as a frequency variable, the frequency of each observation is the
value of Hours, and the total number of observations is 141 (the sum of the values of
the frequency variable).

Average Course and Speed 1

The MEANS Procedure

Variable N Mean
--
Course 141 49.28
Speed 141 8.06
--

QUIT

Executes any statements that have not executed and ends the procedure.

QUIT;

Procedures That Support the QUIT Statement

� CATALOG

� DATASETS

� PLOT

� PMENU

� SQL

WEIGHT

Specifies weights for analysis variables in the statistical calculations.

Tip: You can use a WEIGHT statement and a FREQ statement in the same step of any
procedure that supports both statements.

WEIGHT variable;

64 WEIGHT � Chapter 3

Required Arguments

variable
specifies a numeric variable whose values weight the values of the analysis variables.
The values of the variable do not have to be integers. The behavior of the procedure
when it encounters a nonpositive weight variable value is as follows:

Weight value … The procedure …

0 counts the observation in the total number of observations

less than 0 converts the weight value to zero and counts the observation in
the total number of observations

missing excludes the observation from the analysis

Different behavior for nonpositive values is discussed in the WEIGHT statement
syntax under the individual procedure.

Prior to Version 7 of SAS, no base SAS procedure excluded the observations with
missing weights from the analysis. Most SAS/STAT procedures, such as PROC GLM,
have always excluded not only missing weights but also negative and zero weights
from the analysis. You can achieve this same behavior in a base SAS procedure that
supports the WEIGHT statement by using the EXCLNPWGT option in the PROC
statement.

The procedure substitutes the value of the WEIGHT variable for ��, which
appears in “Keywords and Formulas” on page 1340.

Procedures That Support the WEIGHT Statement

� CORR

� FREQ

� MEANS/SUMMARY

� REPORT

� STANDARD

� TABULATE

� UNIVARIATE

Note: In PROC FREQ, the value of the variable in the WEIGHT statement
represents the frequency of occurrence for each observation. See the PROC FREQ
documentation in Volume 3 of this book for more information. �

Calculating Weighted Statistics
The procedures that support the WEIGHT statement also support the VARDEF=

option, which lets you specify a divisor to use in the calculation of the variance and
standard deviation.

By using a WEIGHT statement to compute moments, you assume that the ith
observation has a variance that is equal to �����. When you specify VARDEF=DF (the
default), the computed variance is a weighted least squares estimate of ��. Similarly,
the computed standard deviation is an estimate of �. Note that the computed variance

Statements with the Same Function in Multiple Procedures � WEIGHT 65

is not an estimate of the variance of the ith observation, because this variance involves
the observation’s weight which varies from observation to observation.

If the values of your variable are counts that represent the number of occurrences of
each observation, then use this variable in the FREQ statement rather than in the
WEIGHT statement. In this case, because the values are counts, they should be
integers. (The FREQ statement truncates any noninteger values.) The variance that is
computed with a FREQ variable is an estimate of the common variance, ��, of the
observations.

Note: If your data come from a stratified sample where the weights �� represent
the strata weights, then neither the WEIGHT statement nor the FREQ statement
provides appropriate stratified estimates of the mean, variance, or variance of the
mean. To perform the appropriate analysis, consider using PROC SURVEYMEANS,
which is a SAS/STAT procedure that is documented in the SAS/STAT User’s Guide. �

Weighted Statistics Example
As an example of the WEIGHT statement, suppose 20 people are asked to estimate

the size of an object 30 cm wide. Each person is placed at a different distance from the
object. As the distance from the object increases, the estimates should become less
precise.

The SAS data set SIZE contains the estimate (ObjectSize) in centimeters at each
distance (Distance) in meters and the precision (Precision) for each estimate. Notice
that the largest deviation (an overestimate by 20 cm) came at the greatest distance (7.5
meters from the object). As a measure of precision, 1/Distance, gives more weight to
estimates that were made closer to the object and less weight to estimates that were
made at greater distances.

The following statements create the data set SIZE:

options nodate pageno=1 linesize=64 pagesize=60;

data size;
input Distance ObjectSize @@;
Precision=1/distance;
datalines;

1.5 30 1.5 20 1.5 30 1.5 25
3 43 3 33 3 25 3 30
4.5 25 4.5 36 4.5 48 4.5 33
6 43 6 36 6 23 6 48
7.5 30 7.5 25 7.5 50 7.5 38
;

The following PROC MEANS step computes the average estimate of the object size
while ignoring the weights. Without a WEIGHT variable, PROC MEANS uses the
default weight of 1 for every observation. Thus, the estimates of object size at all
distances are given equal weight. The average estimate of the object size exceeds the
actual size by 3.55 cm.

proc means data=size maxdec=3 n mean var stddev;
var objectsize;
title1 ’Unweighted Analysis of the SIZE Data Set’;

run;

66 WEIGHT � Chapter 3

Unweighted Analysis of the SIZE Data Set 1

The MEANS Procedure

Analysis Variable : ObjectSize

N Mean Variance Std Dev
--
20 33.550 80.892 8.994
--

The next two PROC MEANS steps use the precision measure (Precision) in the
WEIGHT statement and show the effect of using different values of the VARDEF=
option. The first PROC step creates an output data set that contains the variance and
standard deviation. If you reduce the weighting of the estimates that are made at
greater distances, the weighted average estimate of the object size is closer to the actual
size.

proc means data=size maxdec=3 n mean var stddev;
weight precision;
var objectsize;
output out=wtstats var=Est_SigmaSq std=Est_Sigma;
title1 ’Weighted Analysis Using Default VARDEF=DF’;

run;

proc means data=size maxdec=3 n mean var std
vardef=weight;

weight precision;
var objectsize;
title1 ’Weighted Analysis Using VARDEF=WEIGHT’;

run;

In the first PROC MEANS step, the variance is an estimate of ��, where the
variance of the ith observation is assumed to be ��� ���� � ����� and �� is the weight
for the ith observation. In the second PROC MEANS step, the computed variance is an
estimate of ��� ���� ����, where � is the average weight. For large n, this is an
approximate estimate of the variance of an observation with average weight.

Weighted Analysis Using Default VARDEF=DF 1

The MEANS Procedure

Analysis Variable : ObjectSize

N Mean Variance Std Dev
--
20 31.088 20.678 4.547
--

Statements with the Same Function in Multiple Procedures � WEIGHT 67

Weighted Analysis Using VARDEF=WEIGHT 2

The MEANS Procedure

Analysis Variable : ObjectSize

N Mean Variance Std Dev
--
20 31.088 64.525 8.033
--

The following statements create and print a data set with the weighted variance and
weighted standard deviation of each observation. The DATA step combines the output
data set that contains the variance and the standard deviation from the weighted
analysis with the original data set. The variance of each observation is computed by
dividing Est_SigmaSq, the estimate of �� from the weighted analysis when
VARDEF=DF, by each observation’s weight (Precision). The standard deviation of each
observation is computed by dividing Est_Sigma, the estimate of � from the weighted
analysis when VARDEF=DF, by the square root of each observation’s weight (Precision).

data wtsize(drop=_freq_ _type_);
set size;
if _n_=1 then set wtstats;
Est_VarObs=est_sigmasq/precision;
Est_StdObs=est_sigma/sqrt(precision);

proc print data=wtsize noobs;
title ’Weighted Statistics’;
by distance;
format est_varobs est_stdobs

est_sigmasq est_sigma precision 6.3;
run;

68 WHERE � Chapter 3

Weighted Statistics 4

------------------------- Distance=1.5 -------------------------

Object Est_ Est_ Est_ Est_
Size Precision SigmaSq Sigma VarObs StdObs

30 0.667 20.678 4.547 31.017 5.569
20 0.667 20.678 4.547 31.017 5.569
30 0.667 20.678 4.547 31.017 5.569
25 0.667 20.678 4.547 31.017 5.569

-------------------------- Distance=3 --------------------------

Object Est_ Est_ Est_ Est_
Size Precision SigmaSq Sigma VarObs StdObs

43 0.333 20.678 4.547 62.035 7.876
33 0.333 20.678 4.547 62.035 7.876
25 0.333 20.678 4.547 62.035 7.876
30 0.333 20.678 4.547 62.035 7.876

------------------------- Distance=4.5 -------------------------

Object Est_ Est_ Est_ Est_
Size Precision SigmaSq Sigma VarObs StdObs

25 0.222 20.678 4.547 93.052 9.646
36 0.222 20.678 4.547 93.052 9.646
48 0.222 20.678 4.547 93.052 9.646
33 0.222 20.678 4.547 93.052 9.646

-------------------------- Distance=6 --------------------------

Object Est_ Est_ Est_ Est_
Size Precision SigmaSq Sigma VarObs StdObs

43 0.167 20.678 4.547 124.07 11.139
36 0.167 20.678 4.547 124.07 11.139
23 0.167 20.678 4.547 124.07 11.139
48 0.167 20.678 4.547 124.07 11.139

------------------------- Distance=7.5 -------------------------

Object Est_ Est_ Est_ Est_
Size Precision SigmaSq Sigma VarObs StdObs

30 0.133 20.678 4.547 155.09 12.453
25 0.133 20.678 4.547 155.09 12.453
50 0.133 20.678 4.547 155.09 12.453
38 0.133 20.678 4.547 155.09 12.453

WHERE
Subsets the input data set by specifying certain conditions that each observation must meet before
it is available for processing.

WHERE where-expression;

Statements with the Same Function in Multiple Procedures � WHERE 69

Required Arguments

where-expression
is a valid arithmetic or logical expression that generally consists of a sequence of
operands and operators. See SAS Language Reference: Dictionary for more
information on where processing.

Procedures That Support the WHERE Statement
You can use the WHERE statement with any of the following base SAS procedures

that read a SAS data set:

CALENDAR RANK

CHART REPORT

COMPARE SORT

CORR SQL

DATASETS (APPEND statement) STANDARD

FREQ TABULATE

MEANS/SUMMARY TIMEPLOT

PLOT TRANSPOSE

PRINT UNIVARIATE

Details

� The CALENDAR and COMPARE procedures and the APPEND statement in
PROC DATASETS accept more than one input data set. See the documentation for
the specific procedure for more information.

� To subset the output data set, use the WHERE= data set option:

proc report data=debate nowd
out=onlyfr(where=(year=’1’));

run;

For more information on WHERE=, see SAS Language Reference: Dictionary.

Example
In this example, PROC PRINT prints only those observations that meet the condition

of the WHERE expression. The DEBATE data set is created in “Example: Temporarily
Dissociating a Format from a Variable” on page 29.

options nodate pageno=1 linesize=64
pagesize=40;

proc print data=debate noobs;
where gpa>3.5;
title ’Team Members with a GPA’;
title2 ’Greater than 3.5’;

70 WHERE � Chapter 3

run;

Team Members with a GPA 1
Greater than 3.5

Name Gender Year GPA

Capiccio m Freshman 3.598
Tucker m Freshman 3.901
Bagwell f Sophomore 3.722
Gold f Junior 3.609
Syme f Junior 3.883
Baglione f Senior 4.000
Carr m Senior 3.750
Hall m Senior 3.574

71

P A R T2

Procedures

Chapter 4.The APPEND Procedure 75

Chapter 5.The CALENDAR Procedure 77

Chapter 6.The CATALOG Procedure 153

Chapter 7.The CHART Procedure 179

Chapter 8.The CIMPORT Procedure 215

Chapter 9.The COMPARE Procedure 225

Chapter 10.The CONTENTS Procedure 275

Chapter 11.The COPY Procedure 277

Chapter 12.The CORR Procedure 283

Chapter 13.The CPORT Procedure 285

Chapter 14.The CV2VIEW Procedure 301

Chapter 15.The DATASETS Procedure 303

Chapter 16.The DBCSTAB Procedure 393

Chapter 17.The DISPLAY Procedure 395

Chapter 18.The DOCUMENT Procedure 399

Chapter 19.The EXPLODE Procedure 401

72

Chapter 20.The EXPORT Procedure 403

Chapter 21.The FONTREG Procedure 419

Chapter 22.The FORMAT Procedure 429

Chapter 23.The FORMS Procedure 485

Chapter 24.The FREQ Procedure 487

Chapter 25.The FSLIST Procedure 489

Chapter 26.The IMPORT Procedure 501

Chapter 27.The MEANS Procedure 523

Chapter 28.The MIGRATE Procedure 589

Chapter 29.The OPTIONS Procedure 591

Chapter 30.The OPTLOAD Procedure 601

Chapter 31.The OPTSAVE Procedure 603

Chapter 32.The PLOT Procedure 605

Chapter 33.The PMENU Procedure 665

Chapter 34.The PRINT Procedure 703

Chapter 35.The PRINTTO Procedure 771

Chapter 36.The PROTO Procedure 787

Chapter 37.The PRTDEF Procedure 789

Chapter 38.The PRTEXP Procedure 803

Chapter 39.The PWENCODE Procedure 807

Chapter 40.The RANK Procedure 813

Chapter 41.The REGISTRY Procedure 831

Chapter 42.The REPORT Procedure 845

Chapter 43.The SORT Procedure 1003

Chapter 44.The SQL Procedure 1027

73

P A R T2

Procedures

Chapter 45.The STANDARD Procedure 1163

Chapter 46.The SUMMARY Procedure 1177

Chapter 47.The TABULATE Procedure 1179

Chapter 48.The TEMPLATE Procedure 1285

Chapter 49.The TIMEPLOT Procedure 1287

Chapter 50.The TRANSPOSE Procedure 1311

Chapter 51.The TRANTAB Procedure 1333

Chapter 52.The UNIVARIATE Procedure 1335

74

75

C H A P T E R

4
The APPEND Procedure

Overview: APPEND Procedure 75
Syntax: APPEND Procedure 75

Overview: APPEND Procedure
The APPEND procedure adds the observations from one SAS data set to the end of

another SAS data set.
Generally, the APPEND procedure functions the same as the APPEND statement in

the DATASETS procedure. The only difference between the APPEND procedure and
the APPEND statement in PROC DATASETS is the default for libref in the BASE= and
DATA= arguments. For PROC APPEND, the default is either WORK or USER. For the
APPEND statement, the default is the libref of the procedure input library.

Syntax: APPEND Procedure
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 57 for
details. You can also use any global statements. See “Global Statements” on page 18 for
a list.

Reminder: You can use data set options with the BASE= and DATA= options. See “Data
Set Options” on page 18 for a list.
Reminder: Complete documentation for the APPEND statement and the APPEND
procedure is in “APPEND Statement” on page 313 .

PROC APPEND BASE=< libref.>SAS-data-set <DATA=< libref.>SAS-data-set>
<FORCE> <APPENDVER=V6>;

76

77

C H A P T E R

5
The CALENDAR Procedure

Overview: CALENDAR Procedure 79
What Does the CALENDAR Procedure Do? 79

What Types of Calendars Can PROC CALENDAR Produce? 79

Advanced Scheduling and Project Management Tasks 83

Syntax: CALENDAR Procedure 84

PROC CALENDAR Statement 85
BY Statement 91

CALID Statement 92

DUR Statement 93

FIN Statement 94

HOLIDUR Statement 95

HOLIFIN Statement 95
HOLISTART Statement 96

HOLIVAR Statement 97

MEAN Statement 97

OUTDUR Statement 98

OUTFIN Statement 98
OUTSTART Statement 99

START Statement 99

SUM Statement 100

VAR Statement 101

Concepts: CALENDAR Procedure 101
Type of Calendars 101

Schedule Calendar 102

Definition 102

Required Statements 102

Examples 102

Summary Calendar 102
Definition 102

Required Statements 103

Multiple Events on a Single Day 103

Examples 103

The Default Calendars 103
Description 103

When You Unexpectedly Produce a Default Calendar 103

Examples 104

Calendars and Multiple Calendars 104

Definitions 104
Why Create Multiple Calendars 104

How to Identify Multiple Calendars 104

Using Holidays or Calendar Data Sets with Multiple Calendars 105

78 Contents � Chapter 5

Types of Reports That Contain Multiple Calendars 105
How to Identify Calendars with the CALID Statement and the Special Variable _CAL_ 106

When You Use Holidays or Calendar Data Sets 106

Examples 106

Input Data Sets 106

Activities Data Set 107
Purpose 107

Requirements and Restrictions 107

Structure 107

Multiple Activities per Day in Summary Calendars 107

Examples 108

Holidays Data Set 108
Purpose 108

Structure 108

No Sorting Needed 108

Using SAS Date Versus SAS Datetime Values 108

Create a Generic Holidays Data Set 109
Holidays and Nonwork Periods 109

Examples 109

Calendar Data Set 109

Purpose 109

Structure 109
Using Default Workshifts Instead of a Workdays Data Set 110

Examples 110

Workdays Data Set 110

Purpose 110

Use Default Work Shifts or Create Your Own? 110

Structure 111
How Missing Values Are Treated 111

Examples 111

Missing Values in Input Data Sets 111

Results: CALENDAR Procedure 112

What Affects the Quantity of PROC CALENDAR Output 112
How Size Affects the Format of PROC CALENDAR Output 112

What Affects the Lines That Show Activity Duration 113

Customizing the Calendar Appearance 113

Portability of ODS Output with PROC CALENDAR 113

Examples: CALENDAR Procedure 114
Example 1: Schedule Calendar with Holidays: 5-Day Default 114

Example 2: Schedule Calendar Containing Multiple Calendars 118

Example 3: Multiple Schedule Calendars with Atypical Workshifts (Separated Output) 122

Example 4: Multiple Schedule Calendars with Atypical Workshifts (Combined and Mixed
Output) 127

Example 5: Schedule Calendar, Blank or with Holidays 134
Example 6: Calculating a Schedule Based on Completion of Predecessor Tasks 137

Example 7: Summary Calendar with MEAN Values By Observation 143

Example 8: Multiple Summary Calendars with Atypical Workshifts (Separated Output) 147

The CALENDAR Procedure � What Types of Calendars Can PROC CALENDAR Produce? 79

Overview: CALENDAR Procedure

What Does the CALENDAR Procedure Do?
The CALENDAR procedure displays data from a SAS data set in a monthly calendar

format. You can produce a schedule calendar, which schedules events around holidays
and nonwork periods, or you can produce a summary calendar, which summarizes data
and displays only one-day events and holidays. When you use PROC CALENDAR you
can

� schedule work around holidays and other nonwork periods
� display holidays
� process data about multiple calendars in a single step and print them in a

separate, mixed, or combined format
� apply different holidays, weekly work schedules, and daily work shifts to multiple

calendars in a single PROC step
� produce a mean and a sum for variables based on either the number of days in a

month or the number of observations.

PROC CALENDAR also contains features that are specifically designed to work with
PROC CPM in SAS/OR software, a project management scheduling tool.

What Types of Calendars Can PROC CALENDAR Produce?

Simple Schedule Calendar
Output 5.1 illustrates the simplest kind of schedule calendar that you can produce.

This calendar output displays activities that are planned by a banking executive. The
following statements produce Output 5.1.

options nodate pageno=1 linesize=132 pagesize=60;

proc calendar data=allacty;
start date;
dur long;

run;

For the activities data set shown that is in this calendar, see Example 1 on page 114.

80 What Types of Calendars Can PROC CALENDAR Produce? � Chapter 5

Output 5.1 Simple Schedule Calendar

This calendar uses one of the two default calendars, the 24-hour-day, 7-day-week calendar.

The SAS System 1

| |

| July 1996 |

| |

|---|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| | 1 | 2 | 3 | 4 | 5 | 6 |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | |+=Interview/JW==+| | | |

| |+Dist. Mtg./All=+|+====Mgrs. Meeting/District 6=====+| |+VIP Banquet/JW=+| |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 7 | 8 | 9 | 10 | 11 | 12 | 13 |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | |+Planning Counci+|+=Seminar/White=+| |

| |+==================Trade Show/Knox==================+|+====Mgrs. Meeting/District 7=====+| |

| |+================================Sales Drive/District 6=================================+| |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 14 | 15 | 16 | 17 | 18 | 19 | 20 |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | |+NewsLetter Dead+|+Co. Picnic/All=+| |

| | |+==Dentist/JW===+|+Bank Meeting/1s+|+Planning Counci+|+=Seminar/White=+| |

| |+================================Sales Drive/District 7=================================+| |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 21 | 22 | 23 | 24 | 25 | 26 | 27 |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | |+=Birthday/Mary=+|+======Close Sale/WYGIX Co.=======+| |

| |+===============Inventors Show/Melvin===============+|+Planning Counci+| | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 28 | 29 | 30 | 31 | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

Advanced Schedule Calendar
Output 5.2 is an advanced schedule calendar produced by PROC CALENDAR. The

statements that create this calendar
� schedule activities around holidays
� identify separate calendars
� print multiple calendars in the same report
� apply different holidays to different calendars
� apply different work patterns to different calendars.

The CALENDAR Procedure � What Types of Calendars Can PROC CALENDAR Produce? 81

For an explanation of the program that produces this calendar, see Example 4 on
page 127.

Output 5.2 Advanced Schedule Calendar

Well Drilling Work Schedule: Combined Calendars 1

--

| |

| July 1996 |

| |

|--|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

----------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | | 1 | 2 | 3 | 4 | 5 | 6 |

|.........|................|................|................|................|................|................|................|

| CAL1 | | | | |**Independence**|+Assemble Tank/>| |

| | | | | | |+Lay Power Line>| |

| | |+==============Drill Well/$1,000.00==============>| |<Drill Well/$1,+| |

|.........|................|................|................|................|................|................|................|

| CAL2 | | | |+=======================Excavate/$3,500.00========================>|

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

|.........|................|................|................|................|................|................|................|

| CAL1 | |+===================Build Pump House/$2,000.00====================+| | |

| | |<=====================Assemble Tank/$1,000.00=====================+| | |

| | |<===Lay Power Line/$2,000.00====+| |+===Pour Foundation/$1,500.00===>| |

|.........|................|................|................|................|................|................|................|

| CAL2 | |<Excavate/$3,50>|****Vacation****|<Excavate/$3,50+| | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 14 | 15 | 16 | 17 | 18 | 19 | 20 |

|.........|................|................|................|................|................|................|................|

| CAL1 | |+===============================Install Pump/$500.00===============================+| |

| | |<===========Pour Foundation/$1,500.00============+| |+Install Pipe/$>| |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

|.........|................|................|................|................|................|................|................|

| CAL1 | |+==============================Erect Tower/$2,500.00===============================>| |

| | |<====Install Pipe/$1,000.00=====+| | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 28 | 29 | 30 | 31 | | | |

|.........|................|................|................|................|................|................|................|

| CAL1 | |<Erect Tower/$2+| | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

--

Simple Summary Calendar

Output 5.3 shows a simple summary calendar that displays the number of meals
served daily in a hospital cafeteria:

options nodate pageno=1 linesize=132 pagesize=60;

proc calendar data=meals;
start date;

82 What Types of Calendars Can PROC CALENDAR Produce? � Chapter 5

sum brkfst lunch dinner;
mean brkfst lunch dinner;

run;

In a summary calendar, each piece of information for a given day is the value of a
variable for that day. The variables can be either numeric or character, and you can
format them as necessary. You can use the SUM and MEAN options to calculate sums
and means for any numeric variables. These statistics appear in a box below the
calendar, as shown in Output 5.3. The data set that is shown in this calendar is created
in Example 7 on page 143.

The CALENDAR Procedure � Advanced Scheduling and Project Management Tasks 83

Output 5.3 Simple Summary Calendar

The SAS System 1

--

| |

| December 1996 |

| |

|--|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|--------------+--------------+--------------+--------------+--------------+--------------+--------------|

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |

| | | | | | | |

| | 123 | 188 | 123 | 200 | 176 | |

| | 234 | 188 | 183 | 267 | 165 | |

| | 238 | 198 | 176 | 243 | 177 | |

|--------------+--------------+--------------+--------------+--------------+--------------+--------------|

| 8 | 9 | 10 | 11 | 12 | 13 | 14 |

| | | | | | | |

| | 178 | 165 | 187 | 176 | 187 | |

| | 198 | 176 | 176 | 187 | 187 | |

| | 187 | 187 | 231 | 222 | 123 | |

|--------------+--------------+--------------+--------------+--------------+--------------+--------------|

| 15 | 16 | 17 | 18 | 19 | 20 | 21 |

| | | | | | | |

| | 176 | 156 | 198 | 178 | 165 | |

| | 165 | . | 143 | 198 | 176 | |

| | 177 | 167 | 167 | 187 | 187 | |

|--------------+--------------+--------------+--------------+--------------+--------------+--------------|

| 22 | 23 | 24 | 25 | 26 | 27 | 28 |

| | | | | | | |

| | 187 | | | | | |

| | 187 | | | | | |

| | 123 | | | | | |

|--------------+--------------+--------------+--------------+--------------+--------------+--------------|

| 29 | 30 | 31 | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

--

--

| | Sum | Mean |

| | | |

| Brkfst | 2763 | 172.688 |

| Lunch | 2830 | 188.667 |

| Dinner | 2990 | 186.875 |

--

Advanced Scheduling and Project Management Tasks
For more complex scheduling tasks, consider using the CPM procedure in SAS/OR

software. PROC CALENDAR requires that you specify the starting date of each
activity. When the beginning of one task depends on the completion of others and a
date slips in a schedule, recalculating the schedule can be time-consuming. Instead of
manually recalculating dates, you can use PROC CPM to calculate dates for project
activities based on an initial starting date, activity durations, and which tasks are
identified as successors to others. For an example, see Example 6 on page 137.

84 Syntax: CALENDAR Procedure � Chapter 5

Syntax: CALENDAR Procedure
Required: You must use a START statement.
Required: For schedule calendars, you must also use a DUR or a FIN statement.
Tip: If you use a DUR or FIN statement, then PROC CALENDAR produces a schedule
calendar.
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
ODS Table Name: Calendar
Reminder: You can use the FORMAT, LABEL, and WHERE statements as well as any
global statements.

PROC CALENDAR <option(s)>;
START variable;
BY <DESCENDING> variable-1

<…<DESCENDING> variable-n>
<NOTSORTED>;

CALID variable
</ OUTPUT=COMBINE|MIX|SEPARATE>;

DUR variable;
FIN variable;
HOLISTART variable;

HOLIDUR variable;
HOLIFIN variable;
HOLIVAR variable;

MEAN variable(s) </ FORMAT=format-name>;
OUTSTART day-of-week;

OUTDUR number-of-days;
OUTFIN day-of-week;

SUM variable(s) </ FORMAT=format-name>;
VAR variable(s);

The following table lists the statements and options available in the CALENDAR
procedure according to function.

To do this Use this statement

Create summary calendar MEAN

SUM

Create schedule calendar DUR or FIN

Create multiple calendars CALID

Specify holidays HOLISTART

HOLIDUR

HOLIFIN

HOLIVAR

The CALENDAR Procedure � PROC CALENDAR Statement 85

To do this Use this statement

Control display OUTSTART

OUTDUR

OUTFIN

Specify grouping BY

CALID

PROC CALENDAR Statement
PROC CALENDAR <option(s)>;

To do this Use this option

Specify data sets containing

weekly work schedules CALEDATA=

activities DATA=

holidays HOLIDATA=

unique shift patterns WORKDATA=

Control printing

display all months, even if no activities exist FILL

define characters used for outlines, dividers, and so on FORMCHAR=

specify the type of heading for months HEADER=

display month and weekday names in local language
(experimental)

LOCALE

specify how to show missing values MISSING

suppress the display of Saturdays and Sundays WEEKDAYS

Specify time or duration

specify that START and FIN variables are in DATETIME format DATETIME

specify the number of hours in a standard work day DAYLENGTH=

specify the units of the DUR and HOLIDUR variables INTERVAL=

Control summary information

identify variables in the calendar LEGEND

specify the type of mean to calculate MEANTYPE=

Options

86 PROC CALENDAR Statement � Chapter 5

CALEDATA=SAS-data-set
specifies the calendar data set, a SAS data set that contains weekly work schedules
for multiple calendars.
Default: If you omit the CALEDATA= option, then PROC CALENDAR uses a

default work schedule, as described in “The Default Calendars” on page 103.
Tip: A calendar data set is useful if you are using multiple calendars or a

nonstandard work schedule.
See also: “Calendar Data Set” on page 109
Featured in: Example 3 on page 122

DATA=SAS-data-set
specifies the activities data set, a SAS data set that contains starting dates for all
activities and variables to display for each activity. Activities must be sorted or
indexed by starting date.
Default: If you omit the DATA= option, then the most recently created SAS data set

is used.
See also: “Activities Data Set” on page 107
Featured in: All examples. See “Examples: CALENDAR Procedure” on page 114

DATETIME
specifies that START and FIN variables contain values in DATETIME. format.
Default: If you omit the DATETIME option, then PROC CALENDAR assumes that

the START and FIN values are in the DATE. format.
Featured in: Example 3 on page 122

DAYLENGTH=hours
gives the number of hours in a standard working day. The hour value must be a SAS
TIME value.
Default: 24 if INTERVAL=DAY (the default), 8 if INTERVAL=WORKDAY.
Restriction: DAYLENGTH= applies only to schedule calendars.
Interaction: If you specify the DAYLENGTH= option and the calendar data set

contains a D_LENGTH variable, then PROC CALENDAR uses the DAYLENGTH=
value only when the D_LENGTH value is missing.

Interaction: When INTERVAL=DAY and you have no CALEDATA= data set,
specifying a DAYLENGTH= value has no effect.

Tip: The DAYLENGTH= option is useful when you use the DUR statement and
your work schedule contains days of varying lengths, for example, a 5 half-day
work week. In a work week with varying day lengths, you need to set a standard
day length to use in calculating duration times. For example, an activity with a
duration of 3.0 workdays lasts 24 hours if DAYLENGTH=8:00 or 30 hours if
DAYLENGTH=10:00.

Tip: Instead of specifying the DAYLENGTH= option, you can specify the length of
the working day by using a D_LENGTH variable in the CALEDATA= data set. If
you use this method, then you can specify different standard day lengths for
different calendars.

See also: “Calendar Data Set” on page 109 for more information on setting the
length of the standard workday

FILL
displays all months between the first and last activity, start and finish dates
inclusive, including months that contain no activities.
Default: If you do not specify FILL, then PROC CALENDAR prints only months

that contain activities. (Months that contain only holidays are not printed.)

The CALENDAR Procedure � PROC CALENDAR Statement 87

Featured in: Example 5 on page 134

FORMCHAR <(position(s))>=’formatting-character(s)’
defines the characters to use for constructing the outlines and dividers for the cells in
the calendar as well as all identifying markers (such as asterisks and arrows) used to
indicate holidays or continuation of activities in PROC CALENDAR output.

position(s)
identifies the position of one or more characters in the SAS formatting-character
string. A space or a comma separates the positions.
Default: Omitting (position(s)) is the same as specifying all 20 possible system

formatting characters, in order.
Range: PROC CALENDAR uses 17 of the 20 formatting characters that SAS

provides. Table 5.1 on page 87 shows the formatting characters that PROC
CALENDAR uses. Figure 5.1 on page 88 illustrates their use in PROC
CALENDAR output.

formatting-character(s)
lists the characters to use for the specified positions. PROC CALENDAR assigns
characters in formatting-character(s) to position(s), in the order that they are listed.
For instance, the following option assigns an asterisk (*) to the twelfth position,
assigns a single dash (-) to the thirteenth, and does not alter remaining characters:

formchar(12 13)=’*-’

These new settings change the activity line from this:

+=================ACTIVITY===============+

to this:

------------------ACTIVITY--------------

Interaction: The SAS system option FORMCHAR= specifies the default formatting
characters. The SAS system option defines the entire string of formatting
characters. The FORMCHAR= option in a procedure can redefine selected
characters.

Tip: You can use any character in formatting-characters, including hexadecimal
characters. If you use hexadecimal characters, then you must put an x after the
closing quotation mark. For instance, the following option assigns the hexadecimal
character 2D to the third formatting character, the hexadecimal character 7C to
the seventh character, and does not alter the remaining characters:

formchar(3,7)=’2D7C’x

See also: For information on which hexadecimal codes to use for which characters,
consult the documentation for your hardware.

Table 5.1 Formatting Characters Used by PROC CALENDAR

Position Default Used to draw

1 | vertical bar

2 - horizontal bar

3 - cell: upper left corner

4 - cell: upper middle intersection

88 PROC CALENDAR Statement � Chapter 5

Position Default Used to draw

5 - cell: upper right corner

6 | cell: middle left cell side

7 + cell: middle middle intersection

8 | cell: middle right cell side

9 - cell: lower left corner

10 - cell: lower middle intersection

11 - cell: lower right corner

12 + activity start and finish

13 = activity line

16 / activity separator

18 < activity continuation from

19 > activity continuation to

20 * holiday marker

Figure 5.1 Formatting Characters in PROC CALENDAR Output

The CALENDAR Procedure � PROC CALENDAR Statement 89

HEADER=SMALL | MEDIUM | LARGE
specifies the type of heading to use in printing the name of the month.

SMALL
prints the month and year on one line.

MEDIUM
prints the month and year in a box four lines high.

LARGE
prints the month seven lines high using asterisks (*). The year is included if space
is available.

Default: MEDIUM

HOLIDATA=SAS-data-set
specifies the holidays data set, a SAS data set that contains the holidays you want to
display in the output. One variable must contain the holiday names and another
must contain the starting dates for each holiday. PROC CALENDAR marks holidays
in the calendar output with asterisks (*) when space permits.
Interaction: Displaying holidays on a calendar requires a holidays data set and a

HOLISTART statement. A HOLIVAR statement is recommended for naming
holidays. HOLIDUR is required if any holiday lasts longer than one day.

Tip: The holidays data set does not require sorting.
See also: “Holidays Data Set” on page 108
Featured in: All examples. See “Examples: CALENDAR Procedure” on page 114

INTERVAL=DAY | WORKDAY
specifies the units of the DUR and HOLIDUR variables to one of two default
daylengths:

DAY
specifies the values of the DUR and HOLIDUR variables in units of 24-hour days
and specifies the default 7-day calendar. For instance, a DUR value of 3.0 is
treated as 72 hours. The default calendar work schedule consists of seven working
days, all starting at 00:00 with a length of 24:00.

WORKDAY
specifies the values of the DUR and HOLIDUR variables in units of 8-hour days
and specifies that the default calendar contains five days a week, Monday through
Friday, all starting at 09:00 with a length of 08:00. When WORKDAY is specified,
PROC CALENDAR treats the values of the DUR and HOLIDUR variables in units
of working days, as defined in the DAYLENGTH= option, the CALEDATA= data
set, or the default calendar. For example, if the working day is 8 hours long, then
a DUR value of 3.0 is treated as 24 hours.

Default: DAY
Interaction: In the absence of a CALEDATA= data set, PROC CALENDAR uses

the work schedule defined in a default calendar.
Interaction: The WEEKDAYS option automatically sets the INTERVAL= value to

WORKDAY.
See also: “Calendars and Multiple Calendars” on page 104 and “Calendar Data Set”

on page 109 for more information on the INTERVAL= option and the specification
of working days; “The Default Calendars” on page 103

Featured in: Example 5 on page 134

LEGEND
prints the names of the variables whose values appear in the calendar. This
identifying text, or legend box, appears at the bottom of the page for each month if

90 PROC CALENDAR Statement � Chapter 5

space permits; otherwise, it is printed on the following page. PROC CALENDAR
identifies each variable by name or by label if one exists. The order of variables in
the legend matches their order in the calendar.

Restriction: LEGEND applies only to summary calendars.

Interaction: If you use the SUM and MEAN statements, then the legend box also
contains SUM and MEAN values.

Featured in: Example 8 on page 147

LOCALE (Experimental)
prints the names of months and weekdays in the language that is indicated by the
value of the LOCALE= SAS system option. The LOCALE option in PROC
CALENDAR does not change the starting day of the week.

Default: If LOCALE is not specified, then names of months and weekdays are
printed in English.

CAUTION:
LOCALE is an experimental option that is available in SAS 9.1. Do not use this option
in production jobs. �

MEANTYPE=NOBS | NDAYS
specifies the type of mean to calculate for each month.

NOBS
calculates the mean over the number of observations displayed in the month.

NDAYS
calculates the mean over the number of days displayed in the month.

Default: NOBS

Restriction: MEANTYPE= applies only to summary calendars.

Interaction: Normally, PROC CALENDAR displays all days for each month.
However, it may omit some days if you use the OUTSTART statement with the
OUTDUR or OUTFIN statement.

Featured in: Example 7 on page 143

MISSING
determines how missing values are treated, based on the type of calendar.

Summary Calendar
If there is a day without an activity scheduled, then PROC CALENDAR prints the
values of variables for that day by using the SAS or user-defined that is format
specified for missing values.

Default: If you omit MISSING, then days without activities contain no values.

Schedule Calendar
variables with missing values appear in the label of an activity, using the format
specified for missing values.

Default: If you do not specify MISSING, then PROC CALENDAR ignores missing
values in labeling activities.

See also: “Missing Values in Input Data Sets” on page 111 for more information on
missing values

WEEKDAYS
suppresses the display of Saturdays and Sundays in the output. It also specifies that
the value of the INTERVAL= option is WORKDAY.

Default: If you omit WEEKDAYS, then the calendar displays all seven days.

The CALENDAR Procedure � BY Statement 91

Tip: The WEEKDAYS option is an alternative to using the combination of
INTERVAL=WORKDAY and the OUTSTART and OUTFIN statements, as shown
here:

Example Code 5.1 Illustration of Formatting Characters in PROC CALENDAR Output

proc calendar weekdays;
start date;

run;

proc calendar interval=workday;
start date;
outstart monday;
outfin friday;

run;

Featured in: Example 1 on page 114

WORKDATA=SAS-data-set
specifies the workdays data set, a SAS data set that defines the work pattern during
a standard working day. Each numeric variable in the workdays data set denotes a
unique workshift pattern during one working day.

Tip: The workdays data set is useful in conjunction with the calendar data set.

See also: “Workdays Data Set” on page 110 and “Calendar Data Set” on page 109

Featured in: Example 3 on page 122

BY Statement

Processes activities separately for each BY group, producing a separate calendar for each value of
the BY variable.

Calendar type: Summary and schedule

Main discussion: “BY” on page 58

See also: “CALID Statement” on page 92

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable, but the observations in the data set must be sorted by all the
variables that you specify or have an appropriate index. Variables in a BY statement
are called BY variables.

92 CALID Statement � Chapter 5

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, for example, chronological order.

Showing Multiple Calendars in Related Groups
When you use the CALID statement, you can process activities that apply to

different calendars, indicated by the value of the CALID variable. Because you can
specify only one CALID variable, however, you can create only one level of grouping.
For example, if you want a calendar report to show the activities of several departments
within a company, then you can identify each department with the value of the CALID
variable and produce calendar output that shows the calendars for all departments.

When you use a BY statement, however, you can further divide activities into related
groups. For example, you can print calendar output that groups departmental
calendars by division. The observations for activities must contain a variable that
identifies which department an activity belongs to and a variable that identifies the
division that a department resides in. Specify the variable that identifies the
department with the CALID statement. Specify the variable that identifies the division
with the BY statement.

CALID Statement

Processes activities in groups defined by the values of a calendar identifier variable.

Calendar type: Summary and schedule

Tip: Useful for producing multiple schedule calendars and for use with SAS/OR
software.

See also: “Calendar Data Set” on page 109

Featured in: Example 2 on page 118, Example 3 on page 122, and Example 6 on page 137

CALID variable
</ OUTPUT=COMBINE|MIX|SEPARATE>;

Required Arguments

variable
a character or numeric variable that identifies which calendar an observation
contains data for.

Requirement: If you specify the CALID variable, then both the activities and
holidays data sets must contain this variable. If either of these data sets does not
contain the CALID variable, then a default calendar is used.

The CALENDAR Procedure � DUR Statement 93

Interaction: SAS/OR software uses this variable to identify which calendar an
observation contains data for.

Tip: You do not need to use a CALID statement to create this variable. You can
include the default variable _CALID_ in the input data sets.

See also: “Calendar Data Set” on page 109

Options

OUTPUT=COMBINE|MIX|SEPARATE
controls the amount of space required to display output for multiple calendars.

COMBINE
produces one page for each month that contains activities and subdivides each day
by the CALID value.

Restriction: The input data must be sorted by or indexed on the START variable.

Featured in: Example 2 on page 118 and Example 4 on page 127

MIX
produces one page for each month that contains activities and does not identify
activities by the CALID value.

Restriction: The input data must be sorted by or indexed on the START variable.

Tip: MIX requires the least space for output.

Featured in: Example 4 on page 127

SEPARATE
produces a separate page for each value of the CALID variable.

Restriction: The input data must be sorted by the CALID variable and then by
the START variable or must contain an appropriate composite index.

Featured in: Example 3 on page 122 and Example 8 on page 147

Default: COMBINE

DUR Statement

Specifies the variable that contains the duration of each activity.

Alias: DURATION

Calendar type: Schedule

Interaction: If you use both a DUR and a FIN statement, then DUR is ignored.

Tip: To produce a schedule calendar, you must use either a DUR or FIN statement.

Featured in: All schedule calendars (see “Examples: CALENDAR Procedure” on page 114)

DUR variable;

94 FIN Statement � Chapter 5

Required Arguments

variable
contains the duration of each activity in a schedule calendar.
Range: The duration may be a real or integral value.
Restriction: This variable must be in the activities data set.
See also: For more information on activity durations, see “Activities Data Set” on

page 107 and “Calendar Data Set” on page 109

Duration

� Duration is measured inclusively from the start of the activity (as given in the
START variable). In the output, any activity that lasts part of a day is displayed
as lasting a full day.

� The INTERVAL= option in a PROC CALENDAR statement automatically sets the
unit of the duration variable, depending on its own value as follows:

If INTERVAL= … Then the default length of the duration unit is …

DAY (the default) 24 hours

WORKDAY 8 hours

� You can override the default length of a duration unit by using
� the DAYLENGTH= option
� a D_LENGTH variable in the CALEDATA= data set.

FIN Statement

Specifies the variable in the activities data set that contains the finishing date of each activity.

Alias: FINISH
Calendar type: Schedule
Interaction: If you use both a FIN and a DUR statement, then FIN is used.
Tip: To produce a schedule calendar, you must use either a FIN or DUR statement.
Featured in: Example 6 on page 137

FIN variable;

Required Arguments

variable
contains the finishing date of each activity.
Restriction: The values of variable must be either SAS date or datetime values.

The CALENDAR Procedure � HOLIFIN Statement 95

Restriction: If the FIN variable contains datetime values, then you must specify
the DATETIME option in the PROC CALENDAR statement.

Restriction: Both the START and FIN variables must have matching formats. For
example, if one contains datetime values, then so must the other.

HOLIDUR Statement
Specifies the variable in the holidays data set that contains the duration of each holiday for a
schedule calendar.

Alias: HOLIDURATION
Calendar type: Schedule
Default: If you do not use a HOLIDUR or HOLIFIN statement, then all holidays last
one day.
Restriction: Cannot use with a HOLIFIN statement.
Featured in: Example 1 on page 114 through Example 5 on page 134

HOLIDUR variable;

Required Arguments

variable
contains the duration of each holiday.
Range: The duration may be a real or integral value.
Restriction: This variable must be in the holidays data set.
Featured in: Example 3 on page 122 and Example 8 on page 147

Holiday Duration

� If you use both the HOLIFIN and HOLIDUR statements, then PROC CALENDAR
uses the HOLIFIN variable value to define each holiday’s duration.

� Set the unit of the holiday duration variable in the same way that you set the unit
of the duration variable; use either the INTERVAL= and DAYLENGTH= options
or the CALEDATA= data set.

� Duration is measured inclusively from the start of the holiday (as given in the
HOLISTART variable). In the output, any holiday lasting at least half a day
appears as lasting a full day.

HOLIFIN Statement
Specifies the variable in the holidays data set that contains the finishing date of each holiday.

Alias: HOLIFINISH
Calendar type: Schedule
Default: If you do not use a HOLIFIN or HOLIDUR statement, then all holidays last
one day.

96 HOLISTART Statement � Chapter 5

HOLIFIN variable;

Required Arguments

variable
contains the finishing date of each holiday.

Restriction: This variable must be in the holidays data set.

Restriction: Values of variable must be in either SAS date or datetime values.

Restriction: If the HOLIFIN variable contains datetime values, then you must
specify the DATETIME option in the PROC CALENDAR statement.

Holiday Duration
If you use both the HOLIFIN and the HOLIDUR statements, then PROC

CALENDAR uses only the HOLIFIN variable.

HOLISTART Statement

Specifies a variable in the holidays data set that contains the starting date of each holiday.

Alias: HOLISTA, HOLIDAY

Calendar type: Summary and schedule

Requirement: When you use a holidays data set, HOLISTART is required.

Featured in: Example 1 on page 114 through Example 5 on page 134

HOLISTART variable;

Required Arguments

variable
contains the starting date of each holiday.

Restriction: Values of variable must be in either SAS date or datetime values.

Restriction: If the HOLISTART variable contains datetime values, then specify the
DATETIME option in the PROC CALENDAR statement.

Details

� The holidays data set need not be sorted.

� All holidays last only one day, unless you use a HOLIFIN or HOLIDUR statement.

� If two or more holidays occur on the same day, then PROC CALENDAR uses only
the first observation.

The CALENDAR Procedure � MEAN Statement 97

HOLIVAR Statement

Specifies a variable in the holidays data set whose values are used to label the holidays.

Alias: HOLIVARIABLE, HOLINAME
Calendar type: Summary and schedule
Default: If you do not use a HOLIVAR statement, then PROC CALENDAR uses the
word DATE to identify holidays.
Featured in: Example 1 on page 114 through Example 5 on page 134

HOLIVAR variable;

Required Arguments

variable
a variable whose values are used to label the holidays. Typically, this variable
contains the names of the holidays.
Range: character or numeric.
Restriction: This variable must be in the holidays data set.
Tip: You can format the HOLIVAR variable as you like.

MEAN Statement

Specifies numeric variables in the activities data set for which mean values are to be calculated
for each month.

Calendar type: Summary
Tip: You can use multiple MEAN statements.
Featured in: Example 7 on page 143

MEAN variable(s) </ FORMAT=format-name>;

Required Arguments

variable(s)
numeric variable for which mean values are calculated for each month.
Restriction: This variable must be in the activities data set.

98 OUTDUR Statement � Chapter 5

Options

FORMAT=format-name
names a SAS or user-defined format to be used in displaying the means requested.
Alias: F=
Default: BEST. format
Featured in: Example 7 on page 143

What Is Displayed and How

� The means appear at the bottom of the summary calendar page, if there is room;
otherwise they appear on the following page.

� The means appear in the LEGEND box if you specify the LEGEND option.
� PROC CALENDAR automatically displays variables named in a MEAN statement

in the calendar output, even if the variables are not named in the VAR statement.

OUTDUR Statement

Specifies in days the length of the week to be displayed.

Alias: OUTDURATION
Requirement: The OUTSTART statement is required.

OUTDUR number-of-days;

Required Arguments

number-of-days
an integer that expresses the length in days of the week to be displayed.

Length of Week
Use either the OUTDUR or OUTFIN statement to supply the procedure with

information about the length of the week to display. If you use both, then PROC
CALENDAR ignores the OUTDUR statement.

OUTFIN Statement

Specifies the last day of the week to display in the calendar.

Alias: OUTFINISH
Requirement: The OUTSTART statement is required.
Featured in: Example 3 on page 122 and Example 8 on page 147

The CALENDAR Procedure � START Statement 99

OUTFIN day-of-week;

Required Arguments

day-of-week
the name of the last day of the week to display. For example,

outfin friday;

Length of Week
Use either the OUTFIN or OUTDUR statement to supply the procedure with

information about the length of the week to display. If you use both, then PROC
CALENDAR uses only the OUTFIN statement.

OUTSTART Statement

Specifies the starting day of the week to display in the calendar.

Alias: OUTSTA
Default: If you do not use OUTSTART, then each calendar week begins with Sunday.
Featured in: Example 3 on page 122 and Example 8 on page 147

OUTSTART day-of-week;

Required Arguments

day-of-week
the name of the starting day of the week for each week in the calendar. For example,

outstart monday;

Interaction with OUTDUR and OUTFIN
By default, a calendar displays all seven days in a week. Use OUTDUR or OUTFIN,

in conjunction with OUTSTART, to control how many days are displayed and which day
starts the week.

START Statement

Specifies the variable in the activities data set that contains the starting date of each activity.

Alias: STA, DATE, ID
Required: START is required for both summary and schedule calendars.
Featured in: All examples

100 SUM Statement � Chapter 5

START variable;

Required Arguments

variable
contains the starting date of each activity.
Restriction: This variable must be in the activities data set.
Restriction: Values of variable must be in either SAS date or datetime values.
Restriction: If you use datetime values, then specify the DATETIME option in the

PROC CALENDAR statement.
Restriction: Both the START and FIN variables must have matching formats. For

example, if one contains datetime values, then so must the other.

SUM Statement

Specifies numeric variables in the activities data set to total for each month.

Calendar type: Summary
Tip: To apply different formats to variables that are being summed, use multiple SUM
statements.
Featured in: Example 7 on page 143 and Example 8 on page 147

SUM variable(s) </ FORMAT=format-name>;

Required Arguments

variable(s)
specifies one or more numeric variables to total for each month.
Restriction: This variable must be in the activities data set.

Options

FORMAT=format-name
names a SAS or user-defined format to use in displaying the sums requested.
Alias: F=
Default: BEST. format
Featured in: Example 7 on page 143 and Example 8 on page 147

What Is Displayed and How

� The sum appears at the bottom of the calendar page, if there is room; otherwise, it
appears on the following page.

The CALENDAR Procedure � Type of Calendars 101

� The sum appears in the LEGEND box if you specify the LEGEND option.

� PROC CALENDAR automatically displays variables named in a SUM statement
in the calendar output, even if the variables are not named in the VAR statement.

VAR Statement

Specifies the variables that you want to display for each activity.

Alias: VARIABLE

VAR variable(s);

Required Arguments

variable(s)
specifies one or more variables that you want to display in the calendar.

Range: The values of variable can be either character or numeric.

Restriction: These variables must be in the activities data set.

Tip: You can apply a format to this variable.

Details

When VAR Is Not Used
If you do not use a VAR statement, then the procedure displays all variables in the
activities data set in the order in which they occur in the data set, except for the BY,
CALID, START, DUR, and FIN variables. However, not all variables are displayed if
the LINESIZE= and PAGESIZE= settings do not allow enough space in the calendar.

Display of Variables

� PROC CALENDAR displays variables in the order that they appear in the VAR
statement. Not all variables are displayed, however, if the LINESIZE= and
PAGESIZE= settings do not allow enough space in the calendar.

� PROC CALENDAR also displays any variable named in a SUM or MEAN
statement for each activity in the calendar output, even if you do not name that
variable in a VAR statement.

Concepts: CALENDAR Procedure

Type of Calendars
PROC CALENDAR can produce two kinds of calendars: schedule and summary.

102 Schedule Calendar � Chapter 5

Use a … if you want to … and can accept this
restriction

schedule calendar schedule activities around holidays
and nonwork periods

cannot calculate sums and
means

schedule calendar schedule activities that last more than
one day

summary calendar calculate sums and means activities can last only one
day

Note: PROC CALENDAR produces a summary calendar if you do not use a DUR or
FIN statement in the PROC step. �

Schedule Calendar

Definition
A report in calendar format that shows when activities and holidays start and end.

Required Statements
You must supply a START statement and either a DUR or FIN statement.

Use this statement … to specify a variable whose value indicates the …

START starting date of an activity

DUR* duration of an activity

FIN* ending date of an activity

* Choose one of these. If you do not use a DUR or FIN statement, then PROC CALENDAR
assumes that you want to create a summary calendar report.

Examples
See “Simple Schedule Calendar” on page 79, “Advanced Schedule Calendar” on page

80, as well as Example 1 on page 114, Example 2 on page 118, Example 3 on page 122,
Example 4 on page 127, Example 5 on page 134, and Example 6 on page 137

Summary Calendar

Definition
A report in calendar format that displays activities and holidays that last only one

day and that can provide summary information in the form of sums and means.

The CALENDAR Procedure � The Default Calendars 103

Required Statements
You must supply a START statement. This statement identifies the variable in the

activities data set that contains an activity’s starting date.

Multiple Events on a Single Day
A summary calendar report can display only one activity on a given date. Therefore,

if more than one activity has the same START value, then only the last observation
that was read is used. In such situations, you might find PROC SUMMARY useful in
collapsing your data set to contain one activity per starting date.

Examples
See “Simple Summary Calendar” on page 81, Example 7 on page 143, and Example 8

on page 147

The Default Calendars

Description
PROC CALENDAR provides two default calendars for simple applications. You can

produce calendars without having to specify detailed workshifts and weekly work
patterns if your application can use one of two simple work patterns. Consider using a
default calendar if

� your application uses a 5-day work week with 8-hour days or a 7-day work week
with 24-hour days. See Table 5.2 on page 103.

� you want to print all activities on the same calendar.

� you do not need to identify separate calendars.

Table 5.2 Default Calendar Settings and Examples

If scheduled work days are Then set
INTERVAL=

By default
DAYLENGTH=

So work periods are Shown in
Example

7 (M-Sun) DAY 24 24-hour days 2

5 (M-F) WORKDAY 8 8-hour days 1

When You Unexpectedly Produce a Default Calendar
If you want to produce a specialized calendar but do not provide all the necessary

information, then PROC CALENDAR attempts to produce a default calendar. These
errors cause PROC CALENDAR to produce a calendar with default features:

� If the activities data set does not contain a CALID variable, then PROC
CALENDAR produces a default calendar.

� If both the holidays and calendar data sets do not contain a CALID variable, then
PROC CALENDAR produces a default calendar even if the activities data set
contains a CALID variable.

� If the activities and calendar data sets contain the CALID variable, but the
holidays data set does not, then the default holidays are used.

104 Calendars and Multiple Calendars � Chapter 5

Examples
See the 7-day default calendar in Output 5.1 and the 5-day default calendar in

Example 1 on page 114

Calendars and Multiple Calendars

Definitions

calendar
a logical entity that represents a weekly work pattern, which consists of weekly
work schedules and daily shifts. PROC CALENDAR contains two default work
patterns: 5-day week with an 8-hour day or a 7-day week with a 24-hour day. You
can also define your own work patterns by using CALENDAR and WORKDAYS
data sets.

calendar report
a report in calendar format that displays activities, holidays, and nonwork periods.
A calendar report can contain multiple calendars in one of three formats

separate
Each identified calendar prints on separate output pages.

combined
All identified calendars print on the same output pages and each is identified.

mixed
All identified calendars print on the same output pages but are not identified
as belonging to separate calendars.

multiple calendar
a logical entity that represents multiple weekly work patterns.

Why Create Multiple Calendars
Create a multiple calendar if you want to print a calendar report that shows

activities that follow different work schedules or different weekly work patterns. For
example, a construction project report might need to use different work schedules and
weekly work patterns for work crews on different parts of the project.

Another use for multiple calendars is to identify activities so that you can choose to
print them in the same calendar report. For example, if you identify activities as
belonging to separate departments within a division, then you can choose to print a
calendar report that shows all departmental activities on the same calendar.

Finally, using multiple calendars, you can produce separate calendar reports for each
calendar in a single step. For example, if activities are identified by department, then
you can produce a calendar report that prints the activities of each department on
separate pages.

How to Identify Multiple Calendars
Because PROC CALENDAR can process only one data set of each type (activities,

holidays, calendar, workdays) in a single PROC step, you must be able to identify for
PROC CALENDAR which calendar an activity, holiday, or weekly work pattern belongs

The CALENDAR Procedure � Calendars and Multiple Calendars 105

to. Use the CALID statement to specify the variable whose values identify the
appropriate calendar. This variable can be numeric or character.

You can use the special variable name _CAL_ or you can use another variable name.
PROC CALENDAR automatically looks for a variable named _CAL_ in the holiday and
calendar data sets, even when the activities data set uses a variable with another name
as the CALID variable. Therefore, if you use the name _CAL_ in your holiday and
calendar data sets, then you can more easily reuse these data sets in different calendar
applications.

Using Holidays or Calendar Data Sets with Multiple Calendars
When using a holidays or calendar data set with multiple calendars, PROC

CALENDAR treats the variable values in the following way:

� Every value of the CALID variable that appears in either the holidays or calendar
data sets defines a calendar.

� If a CALID value appears in the HOLIDATA= data set but not in the
CALEDATA= data set, then the work schedule of the default calendar is used.

� If a CALID value appears in the CALEDATA= data set but not in the
HOLIDATA= data set, then the holidays of the default calendar are used.

� If a CALID value does not appear in either the HOLIDATA= or CALEDATA= data
set, then the work schedule and holidays of the default calendar are used.

� If the CALID variable is not found in the holiday or calendar data set, then PROC
CALENDAR looks for the default variable _CAL_ instead. If neither the CALID
variable nor a _CAL_ variable appears in a data set, then the observations in that
data set are applied to a default calendar.

Types of Reports That Contain Multiple Calendars
Because you can associate different observations with different calendars, you can

print a calendar report that shows activities that follow different work schedules or
different work shifts or that contain different holidays. You can

� print separate calendars on the same page and identify each one.

� print separate calendars on the same page without identifying them.

� print separate pages for each identified calendar.

As an example, consider a calendar that shows the activities of all departments
within a division. Each department can have its own calendar identification value and,
if necessary, can have individual weekly work patterns, daily work shifts, and holidays.

If you place activities that are associated with different calendars in the same
activities data sets, then you use PROC CALENDAR to produce calendar reports that
print

� the schedule and events for each department on a separate pages (separate output)

� the schedule and events for the entire division, each identified by department
(combined output)

� the schedule and events for the entire division, but not identified by department
(mixed output).

The multiple-calendar feature was added specifically to enable PROC CALENDAR to
process the output of PROC CPM in SAS/OR software, a project management tool. See
Example 6 on page 137.

106 Input Data Sets � Chapter 5

How to Identify Calendars with the CALID Statement and the Special
Variable _CAL_

To identify multiple calendars, you must use the CALID statement to specify the
variable whose values identify which calendar an event belongs with. This variable can
be numeric or character.

You can use the special variable name _CAL_ or you can use another variable name.
PROC CALENDAR automatically looks for a variable named _CAL_ in the holiday and
calendar data sets, even when the activities data set uses a variable with another name
as the CALID variable. Therefore, if you use the name _CAL_ in your holiday and
calendar data sets, then you can more easily reuse these data sets in different calendar
applications.

When You Use Holidays or Calendar Data Sets

When you use a holidays or calendar data set with multiple calendars, PROC
CALENDAR treats the variable values in the following way:

� Every value of the CALID variable that appears in either the holidays or calendar
data sets defines a calendar.

� If a CALID value appears in the HOLIDATA= data set but not in the
CALEDATA= data set, then the work schedule of the default calendar is used.

� If a CALID value appears in the CALEDATA= data set but not in the
HOLIDATA= data set, then the holidays of the default calendar are used.

� If a CALID value does not appear in either the HOLIDATA= or CALEDATA= data
set, then the work schedule and holidays of the default calendar are used.

� If the CALID variable is not found in the holiday or calendar data sets, then
PROC CALENDAR looks for the default variable _CAL_ instead. If neither the
CALID variable nor a _CAL_ variable appears in a data set, then the observations
in that data set are applied to a default calendar.

Examples

Example 2 on page 118, Example 3 on page 122, Example 4 on page 127, and
Example 8 on page 147

Input Data Sets
You may need several data sets to produce a calendar, depending on the complexity

of your application. PROC CALENDAR can process one of each of four data sets. See
Table 5.3 on page 106.

Table 5.3 Four Possible Input Data Sets for PROC CALENDAR

Data Set Description Specify with the …

activities Each observation contains information
about a single activity.

DATA= option

holidays Each observation contains information
about a holiday

HOLIDATA= option

The CALENDAR Procedure � Activities Data Set 107

Data Set Description Specify with the …

calendar Each observation defines one weekly
work schedule.

CALEDATA= option

workdays Each variable represents one daily
schedule of alternating work and
nonwork periods.

WORKDATA= option

Activities Data Set

Purpose
The activities data set, specified with the DATA= option, contains information about

the activities to be scheduled by PROC CALENDAR. Each observation describes a
single activity.

Requirements and Restrictions

� An activities data set is required. (If you do not specify an activities data set with
the DATA= option, then PROC CALENDAR uses the _LAST_ data set.)

� Only one activities data set is allowed.
� The activities data set must always be sorted or indexed by the START variable.
� If you use a CALID (calendar identifier) variable and want to produce output that

shows multiple calendars on separate pages, then the activities data set must be
sorted by or indexed on the CALID variable and then the START variable.

� If you use a BY statement, then the activities data set must be sorted by or
indexed on the BY variables.

Structure
Each observation in the activities data set contains information about one activity.

One variable must contain the starting date. If you are producing a schedule calendar,
then another variable must contain either the activity duration or finishing date. Other
variables can contain additional information about an activity.

If a variable contains an
activity’s …

Then specify it with the … For this type of
calendar…

starting date START statement Schedule

Summary

duration DUR statement Schedule

finishing date FIN statement Schedule

Multiple Activities per Day in Summary Calendars
A summary calendar can display only one activity on a given date. Therefore, if more

than one activity has the same START value, then only the last observation that is read

108 Holidays Data Set � Chapter 5

is used. In such situations, you might find PROC SUMMARY useful to collapse your
data set to contain one activity per starting date.

Examples
Every example in the Examples section uses an activities data set.

Holidays Data Set

Purpose
You can use a holidays data set, specified with the HOLIDATA= option, to

� identify holidays on your calendar output

� identify days that are not available for scheduling work. (In a schedule calendar,
PROC CALENDAR does not schedule activities on these days.)

Structure
Each observation in the holidays data set must contain at least the holiday starting

date. A holiday lasts only one day unless a duration or finishing date is specified.
Supplying a holiday name is recommended, though not required. If you do not specify
which variable contains the holiday name, then PROC CALENDAR uses the word DATE
to identify each holiday.

If a variable contains a holiday’s … Then specify it with this statement …

starting date HOLISTART

name HOLIVAR

duration HOLIDUR

finishing date HOLIFIN

No Sorting Needed
You do not need to sort or index the holidays data set.

Using SAS Date Versus SAS Datetime Values
PROC CALENDAR calculates time using SAS datetime values. Even when your data

is in DATE. format, the procedure automatically calculates time in minutes and
seconds. Therefore, if you specify only date values, then PROC CALENDAR prints
messages similar to the following ones to the SAS log:

NOTE: All holidays are assumed to start at the
time/date specified for the holiday variable
and last one DTWRKDAY.

WARNING: The units of calculation are SAS datetime

The CALENDAR Procedure � Calendar Data Set 109

values while all the holiday variables are
not. All holidays are converted to SAS
datetime values.

Create a Generic Holidays Data Set
If you have many applications that require PROC CALENDAR output, then consider

creating a generic holidays data set that contains standard holidays. You can begin
with the generic holidays and add observations that contain holidays or nonwork events
specific to an application.

Holidays and Nonwork Periods
Do not schedule holidays during nonwork periods. Holidays that are defined in the

HOLIDATA= data set cannot occur during any nonwork periods that are defined in the
work schedule. For example, you cannot schedule Sunday as a vacation day if the work
week is defined as Monday through Friday. When such a conflict occurs, the holiday is
rescheduled to the next available working period following the nonwork day.

Examples
Every example in the Examples section uses a holidays data set.

Calendar Data Set

Purpose
You can use a calendar data set, specified with the CALEDATA= option, to specify

work schedules for different calendars.

Structure
Each observation in the calendar data set defines one weekly work schedule. The

data set created in the DATA step shown below defines weekly work schedules for two
calendars, CALONE and CALTWO.

data cale;
input _sun_ $ _mon_ $ _tue_ $ _wed_ $ _thu_ $ /

fri $ _sat_ $ _cal_ $ d_length time6.;
datalines;

holiday workday workday workday workday
workday holiday calone 8:00
holiday shift1 shift1 shift1 shift1
shift2 holiday caltwo 9:00
;

The variables in this calendar data set consist of

SUN through _SAT_
the name of each day of the week that appears in the calendar. The values of
these variables contain the name of workshifts. Valid values for workshifts are

� WORKDAY (the default workshift)
� HOLIDAY (a nonwork period)
� names of variables in the WORKDATA= data set (in this example, SHIFT1

and SHIFT2).

110 Workdays Data Set � Chapter 5

CAL
the CALID (calendar identifier) variable. The values of this variable identify
different calendars. If this variable is not present, then the first observation in
this data set defines the work schedule that is applied to all calendars in the
activities data set.

If the CALID variable contains a missing value, then the character or numeric
value for the default calendar (DEFAULT or 0) is used. See “The Default Calendars”
on page 103 for further details.

D_LENGTH
the daylength identifier variable. Values of D_LENGTH indicate the length of the
standard workday to be used in calendar calculations. You can set the workday
length either by placing this variable in your calendar data set or by using the
DAYLENGTH= option.

Missing values for this variable default to the number of hours specified in the
DAYLENGTH= option; if the DAYLENGTH= option is not used, the day length
defaults to 24 hours if INTERVAL=DAY, or 8 hours if INTERVAL=WORKDAY.

Using Default Workshifts Instead of a Workdays Data Set

You can use a calendar data set with or without a workdays data set. Without a
workdays data set, WORKDAY in the calendar data set is equal to one of two standard
workdays, depending on the setting of the INTERVAL= option:

If INTERVAL= Then the work-shift begins at … And the day length is …

DAY 00:00 24 hours

WORKDAY 9:00 8 hours

You can reset the length of the standard workday with the DAYLENGTH= option or
a D_LENGTH variable in the calendar data set. You can define other work shifts in a
workdays data set.

Examples

Example 3 on page 122, Example 4 on page 127, and Example 7 on page 143 feature
a calendar data set.

Workdays Data Set

Purpose

You can use a workdays data set, specified with the WORKDATA= option, to define
the daily workshifts named in a CALEDATA= data set.

Use Default Work Shifts or Create Your Own?

You do not need a workdays data set if your application can use one of two default
work shifts:

The CALENDAR Procedure � Missing Values in Input Data Sets 111

If INTERVAL= Then the work-shift begins at … And the day length is …

DAY 00:00 24 hours

WORKDAY 9:00 8 hours

See the INTERVAL= option on page 89.

Structure

Each variable in the workdays data set contains one daily schedule of alternating
work and nonwork periods. For example, this DATA step creates a data set that
contains specifications for two work shifts:

data work;
input shift1 time6. shift2 time6.;
datalines;

7:00 7:00
12:00 11:00
13:00 .
17:00 .
;

The variable SHIFT1 specifies a 10-hour workday, with one nonwork period (a lunch
hour); the variable SHIFT2 specifies a 4-hour workday with no nonwork periods.

How Missing Values Are Treated

The missing values default to 00:00 in the first observation and to 24:00 in all other
observations. Two consecutive values of 24:00 define a zero-length time period, which is
ignored.

Examples

See Example 3 on page 122

Missing Values in Input Data Sets
Table 5.4 on page 111 summarizes the treatment of missing values for variables in

the data sets used by PROC CALENDAR.

Table 5.4 Treatment of Missing Values in PROC CALENDAR

Data set Variable Treatment of missing values

Activities (DATA=) CALID default calendar value is used

START observation is not used

DUR 1.0 is used

FIN START value + daylength is used

112 Results: CALENDAR Procedure � Chapter 5

Data set Variable Treatment of missing values

VAR if a summary calendar or the MISSING option is
specified, then the missing value is used; otherwise, no
value is used

SUM, MEAN 0

Calendar (CALEDATA=) CALID default calendar value is used

SUN through _SAT_ corresponding shift for default calendar is used

D_LENGTH if available, DAYLENGTH= value is used; otherwise, if
INTERVAL=DAY, 24:00 is used; otherwise 8:00 is used

SUM, MEAN 0

Holiday (HOLIDATA=) CALID all holidays apply to all calendars

HOLISTART observation is not used

HOLIDUR if available, HOLIFIN value is used instead of
HOLIDUR value; otherwise 1.0 is used

HOLIFIN if available, HOLIDUR value is used instead of HOLIFIN
value; otherwise, HOLISTART value + day length is used

HOLIVAR no value is used

Workdays (WORKDATA=) any for the first observation, 00:00 is used; otherwise, 24:00
is used

Results: CALENDAR Procedure

What Affects the Quantity of PROC CALENDAR Output
The quantity of printed calendar output depends on
� the range of dates in the activities data set
� whether the FILL option is specified
� the BY statement
� the CALID statement.

PROC CALENDAR always prints one calendar for every month that contains any
activities. If you specify the FILL option, then the procedure prints every month
between the first and last activities, including months that contain no activities. Using
the BY statement prints one set of output for each BY value. Using the CALID
statement with OUTPUT=SEPARATE prints one set of output for each value of the
CALID variable.

How Size Affects the Format of PROC CALENDAR Output
PROC CALENDAR always attempts to fit the calendar within a single page, as

defined by the SAS system options PAGESIZE= and LINESIZE=. If the PAGESIZE=
and LINESIZE= values do not allow sufficient room, then PROC CALENDAR might
print the legend box on a separate page. If necessary, PROC CALENDAR truncates or

The CALENDAR Procedure � Portability of ODS Output with PROC CALENDAR 113

omits values to make the output fit the page and prints messages to that effect in the
SAS log.

What Affects the Lines That Show Activity Duration
In a schedule calendar, the duration of an activity is shown by a continuous line

through each day of the activity. Values of variables for each activity are printed on the
same line, separated by slashes (/). Each activity begins and ends with a plus sign (+).
If an activity continues from one week to the next, then PROC CALENDAR displays
arrows (< >) at the points of continuation.

The length of the activity lines depends on the amount of horizontal space available.
You can increase this by specifying

� a larger linesize with the LINESIZE= option in the OPTIONS statement
� the WEEKDAYS option to suppress the printing of Saturday and Sunday, which

provides more space for Monday through Friday.

Customizing the Calendar Appearance
PROC CALENDAR uses 17 of the 20 SAS formatting characters to construct the

outline of the calendar and to print activity lines and to indicate holidays. You can use
the FORMCHAR= option to customize the appearance of your PROC CALENDAR
output by substituting your own characters for the default. See Table 5.1 on page 87
and Figure 5.1 on page 88.

If your printer supports an extended character set (one that includes graphics
characters in addition to the regular alphanumeric characters), then you can greatly
improve the appearance of your output by using the FORMCHAR= option to redefine
formatting characters with hexadecimal characters. For information on which
hexadecimal codes to use for which characters, consult the documentation for your
hardware. For an example of assigning hexadecimal values, see FORMCHAR= on page
87.

Portability of ODS Output with PROC CALENDAR
Under certain circumstances, using PROC CALENDAR with the Output Delivery

System produces files that are not portable. If the SAS system option FORMCHAR= in
your SAS session uses nonstandard line-drawing characters, then the output might
include strange characters instead of lines in operating environments in which the SAS
Monospace font is not installed. To avoid this problem, specify the following OPTIONS
statement before executing PROC CALENDAR:

options formchar="|----|+|---+=|-/\<>*";

114 Examples: CALENDAR Procedure � Chapter 5

Examples: CALENDAR Procedure

Example 1: Schedule Calendar with Holidays: 5-Day Default

Procedure features:
PROC CALENDAR statement options:

DATA=
HOLIDATA=
WEEKDAYS

DUR statement
HOLISTART statement
HOLIVAR statement
HOLIDUR statement
START statement

Other features:
PROC SORT statement
BY statement
5-day default calendar

This example
� creates a schedule calendar
� uses one of the two default work patterns: 8-hour day, 5-day week
� schedules activities around holidays
� displays a 5-day week

Program

Create the activities data set. ALLACTY contains both personal and business activities
information for a bank president.

data allacty;
input date : date7. event $ 9-36 who $ 37-48 long;
datalines;

01JUL96 Dist. Mtg. All 1
17JUL96 Bank Meeting 1st Natl 1
02JUL96 Mgrs. Meeting District 6 2
11JUL96 Mgrs. Meeting District 7 2
03JUL96 Interview JW 1
08JUL96 Sales Drive District 6 5
15JUL96 Sales Drive District 7 5
08JUL96 Trade Show Knox 3

The CALENDAR Procedure � Program 115

22JUL96 Inventors Show Melvin 3
11JUL96 Planning Council Group II 1
18JUL96 Planning Council Group III 1
25JUL96 Planning Council Group IV 1
12JUL96 Seminar White 1
19JUL96 Seminar White 1
18JUL96 NewsLetter Deadline All 1
05JUL96 VIP Banquet JW 1
19JUL96 Co. Picnic All 1
16JUL96 Dentist JW 1
24JUL96 Birthday Mary 1
25JUL96 Close Sale WYGIX Co. 2
;

Create the holidays data set.

data hol;
input date : date7. holiday $ 11-25 holilong @27;
datalines;

05jul96 Vacation 3
04jul96 Independence 1
;

Sort the activities data set by the variable that contains the starting date. You are not
required to sort the holidays data set.

proc sort data=allacty;
by date;

run;

Set LINESIZE= appropriately. If the line size is not long enough to print the variable values,
then PROC CALENDAR either truncates the values or produces no calendar output.

options nodate pageno=1 linesize=132 pagesize=60;

Create the schedule calendar. DATA= identifies the activities data set; HOLIDATA= identifies
the holidays data set. WEEKDAYS specifies that a week consists of five eight-hour work days.

proc calendar data=allacty holidata=hol weekdays;

Specify an activity start date variable and an activity duration variable. The START
statement specifies the variable in the activities data set that contains the starting date of the
activities; DUR specifies the variable that contains the duration of each activity. Creating a
schedule calendar requires START and DUR.

start date;
dur long;

116 Program � Chapter 5

Retrieve holiday information. The HOLISTART, HOLIVAR, and HOLIDUR statements
specify the variables in the holidays data set that contain the start date, name, and duration of
each holiday, respectively. When you use a holidays data set, HOLISTART is required. Because
at least one holiday lasts more than one day, HOLIDUR is required.

holistart date;
holivar holiday;
holidur holilong;

Specify the titles.

title1 ’Summer Planning Calendar: Julia Cho’;
title2 ’President, Community Bank’;

run;

The CALENDAR Procedure � Output 117

Output

Output 5.4 Schedule Calendar: 5-Day Week with Holidays

Summer Planning Calendar: Julia Cho 1

President, Community Bank

| |

| July 1996 |

| |

|---|

| Monday | Tuesday | Wednesday | Thursday | Friday |

|-------------------------+-------------------------+-------------------------+-------------------------+-------------------------|

| 1 | 2 | 3 | 4 | 5 |

| | | |******Independence*******|********Vacation*********|

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | |+=====Interview/JW======+| | |

|+====Dist. Mtg./All=====+|+============Mgrs. Meeting/District 6=============+| | |

|-------------------------+-------------------------+-------------------------+-------------------------+-------------------------|

| 8 | 9 | 10 | 11 | 12 |

|********Vacation*********|********Vacation*********| | | |

| | | | | |

| | | | | |

| | | |+Planning Council/Group +|+=====Seminar/White=====+|

| | |+==============================Trade Show/Knox==============================+|

| | |+==========================Sales Drive/District 6===========================>|

| | |+====VIP Banquet/JW=====+|+============Mgrs. Meeting/District 7=============+|

|-------------------------+-------------------------+-------------------------+-------------------------+-------------------------|

| 15 | 16 | 17 | 18 | 19 |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| |+======Dentist/JW=======+| |+NewsLetter Deadline/All+|+====Co. Picnic/All=====+|

|+==Sales Drive/District 7===+|

|<=============Sales Drive/District 6==============+|+=Bank Meeting/1st Natl=+|+Planning Council/Group +|+=====Seminar/White=====+|

|-------------------------+-------------------------+-------------------------+-------------------------+-------------------------|

| 22 | 23 | 24 | 25 | 26 |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | |+=====Birthday/Mary=====+|+==============Close Sale/WYGIX Co.===============+|

|+===========================Inventors Show/Melvin===========================+|+Planning Council/Group +| |

|-------------------------+-------------------------+-------------------------+-------------------------+-------------------------|

| 29 | 30 | 31 | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

118 Example 2: Schedule Calendar Containing Multiple Calendars � Chapter 5

Example 2: Schedule Calendar Containing Multiple Calendars
Procedure features:

CALID statement:
CAL variable
OUTPUT=COMBINE option

DUR statement
24-hour day, 7-day week

This example builds on Example 1 by identifying activities as belonging to one of two
calendars, business or personal. This example

� produces a schedule calendar report
� prints two calendars on the same output page
� schedules activities around holidays
� uses one of the two default work patterns: 24-hour day, 7-day week
� identifies activities and holidays by calendar name.

Program

Create the activities data set and identify separate calendars. ALLACTY2 contains both
personal and business activities for a bank president. The _CAL_ variable identifies which
calendar an event belongs to.

data allacty2;
input date:date7. happen $ 10-34 who $ 35-47 _CAL_ $ long;
datalines;

01JUL96 Dist. Mtg. All CAL1 1
02JUL96 Mgrs. Meeting District 6 CAL1 2
03JUL96 Interview JW CAL1 1
05JUL96 VIP Banquet JW CAL1 1
06JUL96 Beach trip family CAL2 2
08JUL96 Sales Drive District 6 CAL1 5
08JUL96 Trade Show Knox CAL1 3
09JUL96 Orthodontist Meagan CAL2 1
11JUL96 Mgrs. Meeting District 7 CAL1 2
11JUL96 Planning Council Group II CAL1 1
12JUL96 Seminar White CAL1 1
14JUL96 Co. Picnic All CAL1 1
14JUL96 Business trip Fred CAL2 2
15JUL96 Sales Drive District 7 CAL1 5
16JUL96 Dentist JW CAL1 1
17JUL96 Bank Meeting 1st Natl CAL1 1
17JUL96 Real estate agent Family CAL2 1
18JUL96 NewsLetter Deadline All CAL1 1
18JUL96 Planning Council Group III CAL1 1
19JUL96 Seminar White CAL1 1
22JUL96 Inventors Show Melvin CAL1 3
24JUL96 Birthday Mary CAL1 1

The CALENDAR Procedure � Program 119

25JUL96 Planning Council Group IV CAL1 1
25JUL96 Close Sale WYGIX Co. CAL1 2
27JUL96 Ballgame Family CAL2 1
;

Create the holidays data set and identify which calendar a holiday affects. The _CAL_
variable identifies which calendar a holiday belongs to.

data vac;
input hdate:date7. holiday $ 11-25 _CAL_ $;
datalines;

29JUL96 vacation CAL2
04JUL96 Independence CAL1
;

Sort the activities data set by the variable that contains the starting date. When
creating a calendar with combined output, you sort only by the activity starting date, not by the
CALID variable. You are not required to sort the holidays data set.

proc sort data=allacty2;
by date;

run;

Set LINESIZE= appropriately. If the linesize is not long enough to print the variable values,
then PROC CALENDAR either truncates the values or produces no calendar output.

options nodate pageno=1 pagesize=60 linesize=132;

Create the schedule calendar. DATA= identifies the activities data set; HOLIDATA=
identifies the holidays data set. By default, the output calendar displays a 7-day week.

proc calendar data=allacty2 holidata=vac;

Combine all events and holidays on a single calendar. The CALID statement specifies the
variable that identifies which calendar an event belongs to. OUTPUT=COMBINE places all
events and holidays on the same calendar.

calid _CAL_ / output=combine;

Specify an activity start date variable and an activity duration variable. The START
statement specifies the variable in the activities data set that contains the starting date of the
activities; DUR specifies the variable that contains the duration of each activity. Creating a
schedule calendar requires START and DUR.

start date ;
dur long;

120 Program � Chapter 5

Retrieve holiday information. The HOLISTART and HOLIVAR statements specify the
variables in the holidays data set that contain the start date and name of each holiday,
respectively. HOLISTART is required when you use a holidays data set.

holistart hdate;
holivar holiday;

Specify the titles.

title1 ’Summer Planning Calendar: Julia Cho’;
title2 ’President, Community Bank’;
title3 ’Work and Home Schedule’;

run;

The CALENDAR Procedure � Output 121

Output

Output 5.5 Schedule Calendar Containing Multiple Calendars

Summer Planning Calendar: Julia Cho 1

President, Community Bank

Work and Home Schedule

--

| |

| July 1996 |

| |

|--|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

----------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | | 1 | 2 | 3 | 4 | 5 | 6 |

|.........|................|................|................|................|................|................|................|

| CAL2 | | | | | | |+Beach trip/fam>|

|.........|................|................|................|................|................|................|................|

| CAL1 | | | |+=Interview/JW=+|**Independence**| | |

| | |+Dist. Mtg./All+|+===Mgrs. Meeting/District 6====+| |+VIP Banquet/JW+| |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

|.........|................|................|................|................|................|................|................|

| CAL2 |<Beach trip/fam+| |+Orthodontist/M+| | | | |

|.........|................|................|................|................|................|................|................|

| CAL1 | | | | |+Planning Counc+|+Seminar/White=+| |

| | |+================Trade Show/Knox=================+|+===Mgrs. Meeting/District 7====+| |

| | |+==============================Sales Drive/District 6==============================+| |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 14 | 15 | 16 | 17 | 18 | 19 | 20 |

|.........|................|................|................|................|................|................|................|

| CAL2 |+======Business trip/Fred=======+| |+Real estate ag+| | | |

|.........|................|................|................|................|................|................|................|

| CAL1 | | | | |+Planning Counc+| | |

| | | |+==Dentist/JW==+|+Bank Meeting/1+|+NewsLetter Dea+|+Seminar/White=+| |

| |+Co. Picnic/All+|+==============================Sales Drive/District 7==============================+| |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

|.........|................|................|................|................|................|................|................|

| CAL2 | | | | | | |+Ballgame/Famil+|

|.........|................|................|................|................|................|................|................|

| CAL1 | | | |+Birthday/Mary=+|+=====Close Sale/WYGIX Co.======+| |

| | |+=============Inventors Show/Melvin==============+|+Planning Counc+| | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 28 | 29 | 30 | 31 | | | |

|.........|................|................|................|................|................|................|................|

| CAL2 | |****vacation****| | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

--

122 Example 3: Multiple Schedule Calendars with Atypical Workshifts (Separated Output) � Chapter 5

Example 3: Multiple Schedule Calendars with Atypical Workshifts
(Separated Output)

Procedure features:
PROC CALENDAR statement options:

CALEDATA=
DATETIME
WORKDATA=

CALID statement:
CAL variable
OUTPUT=SEPARATE option

DUR statement
OUTSTART statement
OUTFIN statement

This example
� produces separate output pages for each calendar in a single PROC step
� schedules activities around holidays
� displays an 8-hour day, 5 1/2-day week
� uses separate work patterns and holidays for each calendar.

Producing Different Output for Multiple Calendars
This example and Example 4 on page 127 use the same input data for multiple

calendars to produce different output. The only differences in these programs are how
the activities data set is sorted and how the OUTPUT= option is set.

To print … Sort the activities data set
by …

And set
OUTPUT= to

See Example

Separate pages for each
calendar

calendar id and starting
date

SEPARATE 3, 8

All activities on the same
page and identify each
calendar

starting date COMBINE 4, 2

All activities on the same
page and NOT identify each
calendar

starting date MIX 4

Program

Specify a library so that you can permanently store the activities data set.

libname well ’SAS-data-library’;

The CALENDAR Procedure � Program 123

Create the activities data set and identify separate calendars. WELL.ACT is a
permanent SAS data set that contains activities for a well construction project. The _CAL_
variable identifies the calendar that an activity belongs to.

data well.act;
input task & $16. dur : 5. date : datetime16. _cal_ $ cost;
datalines;

Drill Well 3.50 01JUL96:12:00:00 CAL1 1000
Lay Power Line 3.00 04JUL96:12:00:00 CAL1 2000
Assemble Tank 4.00 05JUL96:08:00:00 CAL1 1000
Build Pump House 3.00 08JUL96:12:00:00 CAL1 2000
Pour Foundation 4.00 11JUL96:08:00:00 CAL1 1500
Install Pump 4.00 15JUL96:14:00:00 CAL1 500
Install Pipe 2.00 19JUL96:08:00:00 CAL1 1000
Erect Tower 6.00 20JUL96:08:00:00 CAL1 2500
Deliver Material 2.00 01JUL96:12:00:00 CAL2 500
Excavate 4.75 03JUL96:08:00:00 CAL2 3500
;

Create the holidays data set. The _CAL_ variable identifies the calendar that a holiday
belongs to.

data well.hol;
input date date. holiday $ 11-25 _cal_ $;
datalines;

09JUL96 Vacation CAL2
04JUL96 Independence CAL1
;

Create the calendar data set. Each observation defines the workshifts for an entire week.
The _CAL_ variable identifies to which calendar the workshifts apply. CAL1 uses the default
8-hour workshifts for Monday through Friday. CAL2 uses a half day on Saturday and the
default 8-hour workshift for Monday through Friday.

data well.cal;
input _sun_ $ _sat_ $ _mon_ $ _tue_ $ _wed_ $ _thu_ $

fri $ _cal_ $;
datalines;

Holiday Holiday Workday Workday Workday Workday Workday CAL1
Holiday Halfday Workday Workday Workday Workday Workday CAL2
;

Create the workdays data set. This data set defines the daily workshifts that are named in
the calendar data set. Each variable (not observation) contains one daily schedule of alternating
work and nonwork periods. The HALFDAY workshift lasts 4 hours.

data well.wor;
input halfday time5.;
datalines;

124 Program � Chapter 5

08:00
12:00
;

Sort the activities data set by the variables that contain the calendar identification
and the starting date, respectively. You are not required to sort the holidays data set.

proc sort data=well.act;
by _cal_ date;

run;

Set LINESIZE= appropriately. If the linesize is not long enough to print the variable values,
then PROC CALENDAR either truncates the values or produces no calendar output.

options nodate pageno=1 linesize=132 pagesize=60;

Create the schedule calendar. DATA= identifies the activities data set; HOLIDATA=
identifies the holidays data set; CALEDATA= identifies the calendar data set; WORKDATA=
identifies the workdays data set. DATETIME specifies that the variable specified with the
START statement contains values in SAS datetime format.

proc calendar data=well.act
holidata=well.hol
caledata=well.cal
workdata=well.wor
datetime;

Print each calendar on a separate page. The CALID statement specifies that the _CAL_
variable identifies calendars. OUTPUT=SEPARATE prints information for each calendar on
separate pages.

calid _cal_ / output=separate;

Specify an activity start date variable and an activity duration variable. The START
statement specifies the variable in the activities data set that contains the activity starting
date; DUR specifies the variable that contains the activity duration. START and DUR are
required for a schedule calendar.

start date;
dur dur;

Retrieve holiday information. HOLISTART and HOLIVAR specify the variables in the
holidays data set that contain the start date and name of each holiday, respectively.
HOLISTART is required when you use a holidays data set.

holistart date;
holivar holiday;

The CALENDAR Procedure � Program 125

Customize the calendar appearance. OUTSTART and OUTFIN specify that the calendar
display a 6-day week, Monday through Saturday.

outstart Monday;
outfin Saturday;

Specify the title and format the Cost variable.

title1 ’Well Drilling Work Schedule: Separate Calendars’;
format cost dollar9.2;

run;

126 Output � Chapter 5

Output

Output 5.6 Separate Output for Multiple Schedule Calendars

Well Drilling Work Schedule: Separate Calendars 1

.. _cal_=CAL1 ..

| |

| July 1996 |

| |

|---|

| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 1 | 2 | 3 | 4 | 5 | 6 |

| | | |****Independence****| | |

| | | | | | |

| | | | | | |

| | | | |+Assemble Tank/$1,0>| |

| | | | |+Lay Power Line/$2,>| |

|+====================Drill Well/$1,000.00====================>| |<Drill Well/$1,000.+| |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 8 | 9 | 10 | 11 | 12 | 13 |

| | | | | | |

| | | | | | |

| | | | | | |

|+===========================Build Pump House/$2,000.00============================+| | |

|<=============================Assemble Tank/$1,000.00=============================+| | |

|<=======Lay Power Line/$2,000.00========+| |+=======Pour Foundation/$1,500.00=======>| |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 15 | 16 | 17 | 18 | 19 | 20 |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|+===Install Pump/$500.00===+| |

|<=================Pour Foundation/$1,500.00==================+| |+Install Pipe/$1,00>| |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 22 | 23 | 24 | 25 | 26 | 27 |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|+==Erect Tower/$2,500.00===>| |

|<========Install Pipe/$1,000.00=========+| | | | |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 29 | 30 | 31 | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|<Erect Tower/$2,500+| | | | | |

The CALENDAR Procedure � Example 4: Multiple Schedule Calendars with Atypical Workshifts (Combined and Mixed Output) 127

Well Drilling Work Schedule: Separate Calendars 2

.. _cal_=CAL2 ..

| |

| July 1996 |

| |

|---|

| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 1 | 2 | 3 | 4 | 5 | 6 |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | |+===============================Excavate/$3,500.00================================>|

|+==================Deliver Material/$500.00==================+| | | |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 8 | 9 | 10 | 11 | 12 | 13 |

| |******Vacation******| | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|<Excavate/$3,500.00>| |<Excavate/$3,500.00+| | | |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 15 | 16 | 17 | 18 | 19 | 20 |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 22 | 23 | 24 | 25 | 26 | 27 |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 29 | 30 | 31 | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

Example 4: Multiple Schedule Calendars with Atypical Workshifts
(Combined and Mixed Output)

Procedure features:
PROC CALENDAR statement options:

CALEDATA=
DATETIME
WORKDATA=

CALID statement:
CAL variable

128 Two Programs and Two Pieces of Output � Chapter 5

OUTPUT=COMBINE option
OUTPUT=MIXED option

DUR statement
OUTSTART statement
OUTFIN statement

Data sets:
WELL.ACT on page 123, WELL.HOL on page 123, WELL.CAL on page 123,

WEL.WOR on page 123.

This example
� produces a schedule calendar
� schedules activities around holidays
� uses separate work patterns and holidays for each calendar
� uses an 8-hour day, 5 1/2-day work week
� displays and identifies multiple calendars on each calendar page (combined output)
� displays but does not identify multiple calendars on each calendar page (mixed

output).

Two Programs and Two Pieces of Output
This example creates both combined and mixed output. Producing combined or

mixed calendar output requires only one change to a PROC CALENDAR step: the
setting of the OUTPUT= option in the CALID statement. Combined output is produced
first, then mixed output.

Producing Different Output for Multiple Calendars
This example and Example 3 on page 122 use the same input data for multiple

calendars to produce different output. The only differences in these programs are how
the activities data set is sorted and how the OUTPUT= option is set.

To print … Sort the activities data set
by …

And set
OUTPUT= to

See Example

Separate pages for each
calendar

calendar id and starting
date

SEPARATE 3, 8

All activities on the same
page and identify each
calendar

starting date COMBINE 4, 2

All activities on the same
page and NOT identify each
calendar

starting date MIX 4

The CALENDAR Procedure � Program for Combined Calendars 129

Program for Combined Calendars

Specify the SAS data library where the activities data set is stored.

libname well ’SAS-data-library’;

Sort the activities data set by the variable that contains the starting date. Do not sort
by the CALID variable when producing combined calendar output.

proc sort data=well.act;
by date;

run;

Set PAGESIZE= and LINESIZE= appropriately. When you combine calendars, check the
value of PAGESIZE= to ensure that there is enough room to print the activities from multiple
calendars. If LINESIZE= is too small for the variable values to print, then PROC CALENDAR
either truncates the values or produces no calendar output.

options nodate pageno=1 linesize=132 pagesize=60;

Create the schedule calendar. DATA= identifies the activities data set; HOLIDATA=
identifies the holidays data set; CALEDATA= identifies the calendar data set; WORKDATA=
identifies the workdays data set. DATETIME specifies that the variable specified with the
START statement contains values in SAS datetime format.

proc calendar data=well.act
holidata=well.hol
caledata=well.cal
workdata=well.wor
datetime;

Combine all events and holidays on a single calendar. The CALID statement specifies
that the _CAL_ variable identifies the calendars. OUTPUT=COMBINE prints multiple
calendars on the same page and identifies each calendar.

calid _cal_ / output=combine;

Specify an activity start date variable and an activity duration variable. The START
statement specifies the variable in the activities data set that contains the starting date of the
activities; DUR specifies the variable that contains the duration of each activity. START and
DUR are required for a schedule calendar.

start date;
dur dur;

130 Program for Combined Calendars � Chapter 5

Retrieve holiday information. HOLISTART and HOLIVAR specify the variables in the
holidays data set that contain the start date and name of each holiday, respectively.
HOLISTART is required when you use a holidays data set.

holistart date;
holivar holiday;

Specify the title and format the Cost variable.

title1 ’Well Drilling Work Schedule: Combined Calendars’;
format cost dollar9.2;

run;

The CALENDAR Procedure � Output for Combined Calendars 131

Output for Combined Calendars

Output 5.7 Multiple Schedule Calendars with Atypical Workshifts (Combined Output)

Well Drilling Work Schedule: Combined Calendars 1

--

| |

| July 1996 |

| |

|--|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

----------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | | 1 | 2 | 3 | 4 | 5 | 6 |

|.........|................|................|................|................|................|................|................|

| CAL1 | | | | |**Independence**|+Assemble Tank/>| |

| | | | | | |+Lay Power Line>| |

| | |+==============Drill Well/$1,000.00==============>| |<Drill Well/$1,+| |

|.........|................|................|................|................|................|................|................|

| CAL2 | | | |+=======================Excavate/$3,500.00========================>|

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

|.........|................|................|................|................|................|................|................|

| CAL1 | |+===================Build Pump House/$2,000.00====================+| | |

| | |<=====================Assemble Tank/$1,000.00=====================+| | |

| | |<===Lay Power Line/$2,000.00====+| |+===Pour Foundation/$1,500.00===>| |

|.........|................|................|................|................|................|................|................|

| CAL2 | |<Excavate/$3,50>|****Vacation****|<Excavate/$3,50+| | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 14 | 15 | 16 | 17 | 18 | 19 | 20 |

|.........|................|................|................|................|................|................|................|

| CAL1 | |+===============================Install Pump/$500.00===============================+| |

| | |<===========Pour Foundation/$1,500.00============+| |+Install Pipe/$>| |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

|.........|................|................|................|................|................|................|................|

| CAL1 | |+==============================Erect Tower/$2,500.00===============================>| |

| | |<====Install Pipe/$1,000.00=====+| | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 28 | 29 | 30 | 31 | | | |

|.........|................|................|................|................|................|................|................|

| CAL1 | |<Erect Tower/$2+| | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

--

132 Program for Mixed Calendars � Chapter 5

Program for Mixed Calendars
To produce mixed output instead of combined, use the same program and change the

setting of the OUTPUT= option to OUTPUT=MIX:

proc calendar data=well.act
holidata=well.hol
caledata=well.cal
workdata=well.wor
datetime;

calid _cal_ / output=mix;
start date;
dur dur;
holistart date;
holivar holiday;
outstart Monday;
outfin Saturday;
title1 ’Well Drilling Work Schedule: Mixed Calendars’;
format cost dollar9.2;

run;

The CALENDAR Procedure � Output for Mixed Calendars 133

Output for Mixed Calendars

Output 5.8 Multiple Schedule Calendar with Atypical Workshifts (Mixed Output)

Well Drilling Work Schedule: Mixed Calendars 1

| |

| July 1996 |

| |

|---|

| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 1 | 2 | 3 | 4 | 5 | 6 |

| | | | | | |

| | | | | | |

| | | | |+Assemble Tank/$1,0>| |

| | |+===============================Excavate/$3,500.00================================>|

|+==================Deliver Material/$500.00==================+|****Independence****|+Lay Power Line/$2,>| |

|+====================Drill Well/$1,000.00====================>|****Independence****|<Drill Well/$1,000.+| |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 8 | 9 | 10 | 11 | 12 | 13 |

| | | | | | |

| | | | | | |

|+===========================Build Pump House/$2,000.00============================+| | |

|<=============================Assemble Tank/$1,000.00=============================+| | |

|<=======Lay Power Line/$2,000.00========+| | | | |

|<Excavate/$3,500.00>|******Vacation******|<Excavate/$3,500.00+|+=======Pour Foundation/$1,500.00=======>| |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 15 | 16 | 17 | 18 | 19 | 20 |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|+===Install Pump/$500.00===+| |

|<=================Pour Foundation/$1,500.00==================+| |+Install Pipe/$1,00>| |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 22 | 23 | 24 | 25 | 26 | 27 |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|+==Erect Tower/$2,500.00===>| |

|<========Install Pipe/$1,000.00=========+| | | | |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 29 | 30 | 31 | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|<Erect Tower/$2,500+| | | | | |

134 Example 5: Schedule Calendar, Blank or with Holidays � Chapter 5

Example 5: Schedule Calendar, Blank or with Holidays

Procedure features:
PROC CALENDAR statement options:

FILL
HOLIDATA=
INTERVAL=WORKDAY

DUR statement

HOLIDUR statement

HOLISTART statement

HOLIVAR statement

This example produces a schedule calendar that displays only holidays. You can use
this same code to produce a set of blank calendars by removing the HOLIDATA= option
and the HOLISTART, HOLIVAR, and HOLIDUR statements from the PROC
CALENDAR step.

Program

Create the activities data set. Specify one activity in the first month and one in the last, each
with a duration of 0. PROC CALENDAR does not print activities with zero durations in the
output.

data acts;
input sta : date7. act $ 11-30 dur;
datalines;

01JAN97 Start 0
31DEC97 Finish 0
;

Create the holidays data set.

data holidays;
input sta : date7. act $ 11-30 dur;
datalines;

01JAN97 New Year’s 1
28MAR97 Good Friday 1
30MAY97 Memorial Day 1
04JUL97 Independence Day 1
01SEP97 Labor Day 1
27NOV97 Thanksgiving 2
25DEC97 Christmas Break 5
;

The CALENDAR Procedure � Program 135

Set PAGESIZE= and LINESIZE= appropriately. To create larger boxes for each day in the
calendar output, increase the value of PAGESIZE=.

options nodate pageno=1 linesize=132 pagesize=30;

Create the calendar. DATA= identifies the activities data set; HOLIDATA= identifies the
holidays data set. FILL displays all months, even those with no activities. By default, only
months with activities appear in the report. INTERVAL=WORKDAY specifies that activities and
holidays are measured in 8-hour days and that PROC CALENDAR schedules activities only
Monday through Friday.

proc calendar data=acts holidata=holidays fill interval=workday;

Specify an activity start date variable and an activity duration variable. The START
statement specifies the variable in the activities data set that contains the starting date of the
activities; DUR specifies the variable that contains the duration of each activity. Creating a
schedule calendar requires START and DUR.

start sta;
dur dur;

Retrieve holiday information. The HOLISTART, HOLIVAR, and HOLIDUR statements
specify the variables in the holidays data set that contain the start date, name, and duration of
each holiday, respectively. When you use a holidays data set, HOLISTART is required. Because
at least one holiday lasts more than one day, HOLIDUR (or HOLIFIN) is required.

holistart sta;
holivar act;
holidur dur;

Specify the title.

title1 ’Calendar of Holidays Only’;
run;

136 Output � Chapter 5

Output

Output 5.9 Schedule Calendars with Holidays Only (Partial Output).

Without INTERVAL=WORKDAY, the 5-day Christmas break would be scheduled through the weekend.

Calendar of Holidays Only 1

| |

| January 1997 |

| |

|---|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| | | | 1 | 2 | 3 | 4 |

| | | |***New Year’s****| | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 5 | 6 | 7 | 8 | 9 | 10 | 11 |

| | | | | | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 12 | 13 | 14 | 15 | 16 | 17 | 18 |

| | | | | | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 19 | 20 | 21 | 22 | 23 | 24 | 25 |

| | | | | | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 26 | 27 | 28 | 29 | 30 | 31 | |

| | | | | | | |

Calendar of Holidays Only 2

| |

| February 1997 |

| |

|---|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| | | | | | | 1 |

| | | | | | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 2 | 3 | 4 | 5 | 6 | 7 | 8 |

| | | | | | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 9 | 10 | 11 | 12 | 13 | 14 | 15 |

| | | | | | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 16 | 17 | 18 | 19 | 20 | 21 | 22 |

| | | | | | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 23 | 24 | 25 | 26 | 27 | 28 | |

| | | | | | | |

The CALENDAR Procedure � Automating Your Scheduling Task with SAS/OR Software 137

Calendar of Holidays Only 12

| |

| December 1997 |

| |

|---|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| | 1 | 2 | 3 | 4 | 5 | 6 |

| | | | | | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 7 | 8 | 9 | 10 | 11 | 12 | 13 |

| | | | | | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 14 | 15 | 16 | 17 | 18 | 19 | 20 |

| | | | | | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 21 | 22 | 23 | 24 | 25 | 26 | 27 |

| | | | |*Christmas Break*|*Christmas Break*| |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 28 | 29 | 30 | 31 | | | |

| |*Christmas Break*|*Christmas Break*|*Christmas Break*| | | |

Example 6: Calculating a Schedule Based on Completion of Predecessor
Tasks

Procedure features:
PROC CALENDAR statement
CALID statement
FIN statement
VAR statement

Other features:
PROC CPM step
PROC SORT step

Automating Your Scheduling Task with SAS/OR Software
When changes occur to a schedule, you have to adjust the activity starting dates

manually if you use PROC CALENDAR to produce a schedule calendar. Alternatively,
you can use PROC CPM in SAS/OR software to reschedule work when dates change.
Even more important, you can provide only an initial starting date for a project and let
PROC CPM calculate starting dates for activities, based on identified successor tasks,
that is, tasks that cannot begin until their predecessors end.

In order to use PROC CPM, you must
1 create an activities data set that contains activities with durations. (You can

indicate nonwork days, weekly work schedules, and workshifts with holidays,
calendar, and workshift data sets.)

2 indicate which activities are successors to others (precedence relationships).

3 define resource limitations if you want them considered in the schedule.
4 provide an initial starting date.

138 Highlights of This Example � Chapter 5

PROC CPM can process your data to generate a data set that contains the start and
end dates for each activity. PROC CPM schedules the activities, based on the duration
information, weekly work patterns, workshifts, as well as holidays and nonwork days
that interrupt the schedule. You can generate several views of the schedule that is
computed by PROC CPM, from a simple listing of start and finish dates to a calendar, a
Gantt chart, or a network diagram.

Highlights of This Example
This example
� calculates a project schedule containing multiple calendars (PROC CPM)
� produces a listing of the PROC CPM output data set (PROC PRINT)
� displays the schedule in calendar format (PROC CALENDAR).

This example features PROC CPM’s ability to calculate a schedule that
� is based on an initial starting date
� applies different non-work periods to different calendars, such as personal

vacation days to each employee’s schedule
� includes milestones (activities with a duration of 0).

See Also
This example introduces users of PROC CALENDAR to more advanced SAS

scheduling tools. For an introduction to project management tasks and tools and
several examples, see Project Management Using the SAS System. For more examples,
see SAS/OR Software: Project Management Examples. For complete reference
documentation, see SAS/OR User’s Guide: Project Management.

Program

Set appropriate options. If the linesize is not long enough to print the variable values, then
PROC CALENDAR either truncates the values or produces no calendar output. A longer
linesize also makes it easier to view a listing of a PROC CPM output data set.

options nodate pageno=1 linesize=132 pagesize=60;

Create the activities data set and identify separate calendars. This data identifies two
calendars: the professor’s (the value of _CAL_ is Prof.) and the student’s (the value of _CAL_ is
Student). The Succ1 variable identifies which activity cannot begin until the current one ends.
For example Analyze Exp 1 cannot begin until Run Exp 1 is completed. The DAYS value of 0
for JOBNUM 3, 6, and 8 indicates that these are milestones.

data grant;
input jobnum Task $ 4-22 Days Succ1 $ 27-45 aldate : date7. altype $

cal $;
format aldate date7.;
datalines;

1 Run Exp 1 11 Analyze Exp 1 . . Student
2 Analyze Exp 1 5 Send Report 1 . . Prof.
3 Send Report 1 0 Run Exp 2 . . Prof.

The CALENDAR Procedure � Program 139

4 Run Exp 2 11 Analyze Exp 2 . . Student
5 Analyze Exp 2 4 Send Report 2 . . Prof.
6 Send Report 2 0 Write Final Report . . Prof.
7 Write Final Report 4 Send Final Report . . Prof.
8 Send Final Report 0 . . Student
9 Site Visit 1 18jul96 ms Prof.
;

Create the holidays data set and identify which calendar a nonwork day belongs to.
The two holidays are listed twice, once for the professor’s calendar and once for the student’s.
Because each person is associated with a separate calendar, PROC CPM can apply the personal
vacation days to the appropriate calendars.

data nowork;
format holista date7. holifin date7.;
input holista : date7. holifin : date7. name $ 17-32 _cal_ $;
datalines;

04jul96 04jul96 Independence Day Prof.
02sep96 02sep96 Labor Day Prof.
04jul96 04jul96 Independence Day Student
02sep96 02sep96 Labor Day Student
15jul96 16jul96 PROF Vacation Prof.
15aug96 16aug96 STUDENT Vacation Student
;

Calculate the schedule with PROC CPM. PROC CPM uses information supplied in the
activities and holidays data sets to calculate start and finish dates for each activity. The DATE=
option supplies the starting date of the project. The CALID statement is not required, even
though this example includes two calendars, because the calendar identification variable has the
special name _CAL_.

proc cpm data=grant
date=’01jul96’d
interval=weekday
out=gcpm1
holidata=nowork;

activity task;
successor succ1;
duration days;
calid _cal_;
id task;
aligndate aldate;
aligntype altype;
holiday holista / holifin=holifin;

run;

140 Program � Chapter 5

Print the output data set that was created with PROC CPM. This step is not required.
PROC PRINT is a useful way to view the calculations produced by PROC CPM. See Output 5.10.

proc print data=gcpm1;
title ’Data Set GCPM1, Created with PROC CPM’;

run;

Sort GCPM1 by the variable that contains the activity start dates before using it with
PROC CALENDAR.

proc sort data=gcpm1;
by e_start;

run;

Create the schedule calendar. GCPM1 is the activity data set. PROC CALENDAR uses the
S_START and S_FINISH dates, calculated by PROC CPM, to print the schedule. The VAR
statement selects only the variable TASK to display on the calendar output. See Output 5.11.

proc calendar data=gcpm1
holidata=nowork
interval=workday;

start e_start;
fin e_finish;
calid _cal_ / output=combine;
holistart holista;
holifin holifin;
holivar name;
var task;
title ’Schedule for Experiment X-15’;
title2 ’Professor and Student Schedule’;

run;

The CALENDAR Procedure � Output 141

Output

Output 5.10 The Data Set GCPM1

PROC PRINT displays the observations in GCPM1, showing the scheduling calculations created by PROC CPM.

Data Set GCPM1, Created with PROC CPM 1

Obs Task Succ1 Days _cal_ E_START E_FINISH L_START L_FINISH T_FLOAT F_FLOAT

1 Run Exp 1 Analyze Exp 1 11 Student 01JUL96 16JUL96 01JUL96 16JUL96 0 0

2 Analyze Exp 1 Send Report 1 5 Prof. 17JUL96 23JUL96 17JUL96 23JUL96 0 0

3 Send Report 1 Run Exp 2 0 Prof. 24JUL96 24JUL96 24JUL96 24JUL96 0 0

4 Run Exp 2 Analyze Exp 2 11 Student 24JUL96 07AUG96 24JUL96 07AUG96 0 0

5 Analyze Exp 2 Send Report 2 4 Prof. 08AUG96 13AUG96 08AUG96 13AUG96 0 0

6 Send Report 2 Write Final Report 0 Prof. 14AUG96 14AUG96 14AUG96 14AUG96 0 0

7 Write Final Report Send Final Report 4 Prof. 14AUG96 19AUG96 14AUG96 19AUG96 0 0

8 Send Final Report 0 Student 20AUG96 20AUG96 20AUG96 20AUG96 0 0

9 Site Visit 1 Prof. 18JUL96 18JUL96 18JUL96 18JUL96 0 0

142 Output � Chapter 5

Output 5.11 Schedule Calendar Based on Output from PROC CPM

PROC CALENDAR created this schedule calendar by using the S_START and S_FINISH dates that were
calculated by PROC CPM. The activities on July 24th and August 14th, because they are milestones, do not
delay the start of a successor activity. Note that Site Visit occurs on July 18, the same day that Analyze Exp 1
occurs. To prevent this overallocation of resources, you can use resource constrained scheduling, available
in SAS/OR software.

Schedule for Experiment X-15 2

Professor and Student Schedule

--

| |

| July 1996 |

| |

|--|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

----------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | | 1 | 2 | 3 | 4 | 5 | 6 |

|.........|................|................|................|................|................|................|................|

| PROF. | | | | |Independence Day| | |

|.........|................|................|................|................|................|................|................|

| STUDENT | |+===================Run Exp 1====================>|Independence Day|<==Run Exp 1===>| |

| | | | | | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

|.........|................|................|................|................|................|................|................|

| STUDENT | |<====================================Run Exp 1=====================================>| |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 14 | 15 | 16 | 17 | 18 | 19 | 20 |

|.........|................|................|................|................|................|................|................|

| PROF. | |*PROF Vacation**|*PROF Vacation**| |+==Site Visit==+| | |

| | | | |+=================Analyze Exp 1==================>| |

|.........|................|................|................|................|................|................|................|

| STUDENT | |<===========Run Exp 1===========+| | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

|.........|................|................|................|................|................|................|................|

| PROF. | |<=========Analyze Exp 1=========+|+Send Report 1=+| | | |

|.........|................|................|................|................|................|................|................|

| STUDENT | | | |+===================Run Exp 2====================>| |

| | | | | | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 28 | 29 | 30 | 31 | | | |

|.........|................|................|................|................|................|................|................|

| STUDENT | |<===================Run Exp 2====================>| | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

--

The CALENDAR Procedure � Example 7: Summary Calendar with MEAN Values By Observation 143

Schedule for Experiment X-15 3

Professor and Student Schedule

--

| |

| August 1996 |

| |

|--|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

----------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | | | | | 1 | 2 | 3 |

|.........|................|................|................|................|................|................|................|

| STUDENT | | | | |<===========Run Exp 2===========>| |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

|.........|................|................|................|................|................|................|................|

| PROF. | | | | |+=========Analyze Exp 2=========>| |

|.........|................|................|................|................|................|................|................|

| STUDENT | |<===================Run Exp 2====================+| | | |

| | | | | | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 11 | 12 | 13 | 14 | 15 | 16 | 17 |

|.........|................|................|................|................|................|................|................|

| PROF. | | | |+===============Write Final Report===============>| |

| | |<=========Analyze Exp 2=========+|+Send Report 2=+| | | |

|.........|................|................|................|................|................|................|................|

| STUDENT | | | | |STUDENT Vacation|STUDENT Vacation| |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 18 | 19 | 20 | 21 | 22 | 23 | 24 |

|.........|................|................|................|................|................|................|................|

| PROF. | |<Write Final Re+| | | | | |

|.........|................|................|................|................|................|................|................|

| STUDENT | | |+Send Final Rep+| | | | |

| | | | | | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 25 | 26 | 27 | 28 | 29 | 30 | 31 |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

--

Example 7: Summary Calendar with MEAN Values By Observation

Procedure features:
CALID statement:

CAL variable
OUTPUT=SEPARATE option

FORMAT statement
LABEL statement

144 MEAN Values by Number of Days � Chapter 5

MEAN statement
SUM statement

Other features:
PROC FORMAT:

PICTURE statement

This example
� produces a summary calendar
� displays holidays
� produces sum and mean values by business day (observation) for three variables
� prints a legend and uses variable labels
� uses picture formats to display values.

MEAN Values by Number of Days
To produce MEAN values based on the number of days in the calendar month, use

MEANTYPE=NDAYS. By default, MEANTYPE=NOBS, which calculates the MEAN
values according to the number of days for which data exists.

Program

Create the activities data set. MEALS records how many meals were served for breakfast,
lunch, and dinner on the days that the cafeteria was open for business.

data meals;
input date : date7. Brkfst Lunch Dinner;
datalines;

02Dec96 123 234 238
03Dec96 188 188 198
04Dec96 123 183 176
05Dec96 200 267 243
06Dec96 176 165 177
09Dec96 178 198 187
10Dec96 165 176 187
11Dec96 187 176 231
12Dec96 176 187 222
13Dec96 187 187 123
16Dec96 176 165 177
17Dec96 156 . 167
18Dec96 198 143 167
19Dec96 178 198 187
20Dec96 165 176 187
23Dec96 187 187 123
;

Create the holidays data set.

data closed;
input date date. holiday $ 11-25;

The CALENDAR Procedure � Program 145

datalines;
26DEC96 Repairs
27DEC96 Repairs
30DEC96 Repairs
31DEC96 Repairs
24DEC96 Christmas Eve
25DEC96 Christmas
;

Sort the activities data set by the activity starting date. You are not required to sort the
holidays data set.

proc sort data=meals;
by date;

run;

Create picture formats for the variables that indicate how many meals were served.

proc format;
picture bfmt other = ’000 Brkfst’;
picture lfmt other = ’000 Lunch ’;
picture dfmt other = ’000 Dinner’;

run;

Set PAGESIZE= and LINESIZE= appropriately. The legend box prints on the next page if
PAGESIZE= is not set large enough. LINESIZE= controls the width of the cells in the calendar.

options nodate pageno=1 linesize=132 pagesize=60;

Create the summary calendar. DATA= identifies the activities data set; HOLIDATA=
identifies the holidays data set. The START statement specifies the variable in the activities
data set that contains the activity starting date; START is required.

proc calendar data=meals holidata=closed;
start date;

Retrieve holiday information. The HOLISTART and HOLIVAR statements specify the
variables in the holidays data set that contain the start date and the name of each holiday,
respectively. HOLISTART is required when you use a holidays data set.

holistart date;
holiname holiday;

146 Program � Chapter 5

Calculate, label, and format the sum and mean values. The SUM and MEAN statements
calculate sum and mean values for three variables and print them with the specified format.
The LABEL statement prints a legend and uses labels instead of variable names. The FORMAT
statement associates picture formats with three variables.

sum brkfst lunch dinner / format=4.0;
mean brkfst lunch dinner / format=6.2;
label brkfst = ’Breakfasts Served’

lunch = ’ Lunches Served’
dinner = ’ Dinners Served’;

format brkfst bfmt.
lunch lfmt.
dinner dfmt.;

Specify the titles.

title ’Meals Served in Company Cafeteria’;
title2 ’Mean Number by Business Day’;

run;

The CALENDAR Procedure � Example 8: Multiple Summary Calendars with Atypical Workshifts (Separated Output) 147

Output

Output 5.12 Summary Calendar with MEAN Values by Observation

Meals Served in Company Cafeteria 1

Mean Number by Business Day

--

| |

| December 1996 |

| |

|--|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|------------+------------+------------+------------+------------+------------+------------|

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |

| | | | | | | |

| | 123 Brkfst | 188 Brkfst | 123 Brkfst | 200 Brkfst | 176 Brkfst | |

| | 234 Lunch | 188 Lunch | 183 Lunch | 267 Lunch | 165 Lunch | |

| | 238 Dinner | 198 Dinner | 176 Dinner | 243 Dinner | 177 Dinner | |

|------------+------------+------------+------------+------------+------------+------------|

| 8 | 9 | 10 | 11 | 12 | 13 | 14 |

| | | | | | | |

| | 178 Brkfst | 165 Brkfst | 187 Brkfst | 176 Brkfst | 187 Brkfst | |

| | 198 Lunch | 176 Lunch | 176 Lunch | 187 Lunch | 187 Lunch | |

| | 187 Dinner | 187 Dinner | 231 Dinner | 222 Dinner | 123 Dinner | |

|------------+------------+------------+------------+------------+------------+------------|

| 15 | 16 | 17 | 18 | 19 | 20 | 21 |

| | | | | | | |

| | 176 Brkfst | 156 Brkfst | 198 Brkfst | 178 Brkfst | 165 Brkfst | |

| | 165 Lunch | . | 143 Lunch | 198 Lunch | 176 Lunch | |

| | 177 Dinner | 167 Dinner | 167 Dinner | 187 Dinner | 187 Dinner | |

|------------+------------+------------+------------+------------+------------+------------|

| 22 | 23 | 24 | 25 | 26 | 27 | 28 |

| | |Christmas Ev|*Christmas**|**Repairs***|**Repairs***| |

| | 187 Brkfst | | | | | |

| | 187 Lunch | | | | | |

| | 123 Dinner | | | | | |

|------------+------------+------------+------------+------------+------------+------------|

| 29 | 30 | 31 | | | | |

| |**Repairs***|**Repairs***| | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

--

| | Sum | Mean |

| | | |

| Breakfasts Served | 2763 | 172.69 |

| Lunches Served | 2830 | 188.67 |

| Dinners Served | 2990 | 186.88 |

Example 8: Multiple Summary Calendars with Atypical Workshifts
(Separated Output)

Procedure features:
PROC CALENDAR statement options:

DATETIME

148 Producing Different Output for Multiple Calendars � Chapter 5

LEGEND

CALID statement:

CAL variable
OUTPUT=SEPARATE option

OUTSTART statement

OUTFIN statement

SUM statement

Data sets:
WELL.ACT on page 123 and WELL.HOL on page 123.

This example

� produces a summary calendar for multiple calendars in a single PROC step

� prints the calendars on separate pages

� displays holidays

� uses separate work patterns, work shifts, and holidays for each calendar

Producing Different Output for Multiple Calendars
This example produces separate output for multiple calendars. To produce combined

or mixed output for this data, you need to change only two things:

� how the activities data set is sorted

� how the OUTPUT= option is set.

To print … Sort the activities data set
by …

And set
OUTPUT= to

See Example

Separate pages for each
calendar

calendar id and starting
date

SEPARATE 3, 8

All activities on the same
page and identify each
calendar

starting date COMBINE 4, 2

All activities on the same
page and NOT identify each
calendar

starting date MIX 4

Program

Specify the SAS data library where the activities data set is stored.

libname well ’SAS-data-library’;
run;

The CALENDAR Procedure � Program 149

Sort the activities data set by the variables containing the calendar identification and
the starting date, respectively.

proc sort data=well.act;
by _cal_ date;

run;

Set PAGESIZE= and LINESIZE= appropriately. The legend box prints on the next page if
PAGESIZE= is not set large enough. LINESIZE= controls the width of the boxes.

options nodate pageno=1 linesize=132 pagesize=60;

Create the summary calendar. DATA= identifies the activities data set; HOLIDATA=
identifies the holidays data set; CALDATA= identifies the calendar data set; WORKDATA=
identifies the workdays data set. DATETIME specifies that the variable specified with the
START statement contains a SAS datetime value. LEGEND prints text that identifies the
variables.

proc calendar data=well.act
holidata=well.hol
datetime legend;

Print each calendar on a separate page. The CALID statement specifies that the _CAL_
variable identifies calendars. OUTPUT=SEPARATE prints information for each calendar on
separate pages.

calid _cal_ / output=separate;

Specify an activity start date variable and retrieve holiday information. The START
statement specifies the variable in the activities data set that contains the activity starting
date. The HOLISTART and HOLIVAR statements specify the variables in the holidays data set
that contain the start date and name of each holiday, respectively. These statements are
required when you use a holidays data set.

start date;
holistart date;
holivar holiday;

Calculate sum values. The SUM statement totals the COST variable for all observations in
each calendar.

sum cost / format=dollar10.2;

Display a 6-day week. OUTSTART and OUTFIN specify that the calendar display a 6-day
week, Monday through Saturday.

outstart Monday;
outfin Saturday;

150 Output � Chapter 5

Specify the titles and format the Cost variable.

title ’Well Drilling Cost Summary’;
title2 ’Separate Calendars’;
format cost dollar10.2;

run;

Output

Output 5.13 Separated Output for Multiple Summary Calendars

Well Drilling Cost Summary 1

Separate Calendars

.. _cal_=CAL1 ..

| |

| July 1996 |

| |

|---|

| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|------------------+------------------+------------------+------------------+------------------+------------------|

| 1 | 2 | 3 | 4 | 5 | 6 |

| | | |***Independence***| | |

| Drill Well | | | Lay Power Line | Assemble Tank | |

| 3.5 | | | 3 | 4 | |

| $1,000.00 | | | $2,000.00 | $1,000.00 | |

|------------------+------------------+------------------+------------------+------------------+------------------|

| 8 | 9 | 10 | 11 | 12 | 13 |

| | | | | | |

| Build Pump House | | | Pour Foundation | | |

| 3 | | | 4 | | |

| $2,000.00 | | | $1,500.00 | | |

|------------------+------------------+------------------+------------------+------------------+------------------|

| 15 | 16 | 17 | 18 | 19 | 20 |

| | | | | | |

| Install Pump | | | | Install Pipe | Erect Tower |

| 4 | | | | 2 | 6 |

| $500.00 | | | | $1,000.00 | $2,500.00 |

|------------------+------------------+------------------+------------------+------------------+------------------|

| 22 | 23 | 24 | 25 | 26 | 27 |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|------------------+------------------+------------------+------------------+------------------+------------------|

| 29 | 30 | 31 | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| Legend | Sum |

| | |

| task | |

| dur | |

| cost | $11,500.00 |

The CALENDAR Procedure � Output 151

Well Drilling Cost Summary 2

Separate Calendars

.. _cal_=CAL2 ..

| |

| July 1996 |

| |

|---|

| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|------------------+------------------+------------------+------------------+------------------+------------------|

| 1 | 2 | 3 | 4 | 5 | 6 |

| | | | | | |

| Deliver Material | | Excavate | | | |

| 2 | | 4.75 | | | |

| $500.00 | | $3,500.00 | | | |

|------------------+------------------+------------------+------------------+------------------+------------------|

| 8 | 9 | 10 | 11 | 12 | 13 |

| |*****Vacation*****| | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|------------------+------------------+------------------+------------------+------------------+------------------|

| 15 | 16 | 17 | 18 | 19 | 20 |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|------------------+------------------+------------------+------------------+------------------+------------------|

| 22 | 23 | 24 | 25 | 26 | 27 |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|------------------+------------------+------------------+------------------+------------------+------------------|

| 29 | 30 | 31 | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| Legend | Sum |

| | |

| task | |

| dur | |

| cost | $4,000.00 |

152

153

C H A P T E R

6
The CATALOG Procedure

Overview: CATALOG Procedure 153
Syntax: CATALOG Procedure 154

PROC CATALOG Statement 155

CHANGE Statement 157

CONTENTS Statement 157

COPY Statement 158
DELETE Statement 160

EXCHANGE Statement 161

EXCLUDE Statement 162

MODIFY Statement 163

SAVE Statement 164

SELECT Statement 165
Concepts: CATALOG Procedure 165

Interactive Processing with RUN Groups 165

Definition 165

How to End a PROC CATALOG Step 166

Error Handling and RUN Groups 166
Specifying an Entry Type 166

Four Ways to Supply an Entry Type 166

Why Use the ENTRYTYPE= Option? 167

Avoid a Common Error 167

The ENTRYTYPE= Option 167
Catalog Concatenation 168

Restrictions 168

Results: CATALOG Procedure 169

Examples: CATALOG Procedure 170

Example 1: Copying, Deleting, and Moving Catalog Entries from Multiple Catalogs 170

Example 2: Displaying Contents, Changing Names, and Changing a Description 174
Example 3: Using the FORCE Option with the KILL Option 176

Overview: CATALOG Procedure
The CATALOG procedure manages entries in SAS catalogs. PROC CATALOG is an

interactive, statement-driven procedure that enables you to
� create a listing of the contents of a catalog
� copy a catalog or selected entries within a catalog
� rename, exchange, or delete entries within a catalog
� change the name of a catalog entry
� modify, by changing or deleting, the description of a catalog entry.

154 Syntax: CATALOG Procedure � Chapter 6

For more information on SAS data libraries and catalogs, refer to SAS Language
Reference: Concepts.

To learn how to use the SAS windowing environment to manage entries in a SAS
catalog, see the SAS online Help for the SAS Explorer window. You may prefer to use
the Explorer window instead of using PROC CATALOG. The window can do most of
what the procedure does.

Syntax: CATALOG Procedure
Tip: Supports RUN-group processing.

Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.

ODS Table Name: See: “Results: CATALOG Procedure” on page 169

Reminder: You can perform similar functions with the SAS Explorer window and with
dictionary tables in the SQL procedure. For information on the Explorer window, see
the online Help. For information on PROC SQL, see Chapter 44, “The SQL Procedure,”
on page 1027.

See: CATALOG Procedure in the documentation for your operating environment.

PROC CATALOG CATALOG=<libref.>catalog <ENTRYTYPE=etype> <FORCE>
<KILL>;

CONTENTS <OUT=SAS-data-set> <FILE=fileref>;

COPY OUT=<libref.>catalog <options>;
SELECT entry(s) </ ENTRYTYPE=etype>;
EXCLUDE entry(s) </ ENTRYTYPE=etype>;

CHANGE old-name-1=new-name-1
<…old-name-n=new-name-n>
</ ENTRYTYPE=etype>;

EXCHANGE name-1=other-name-1
<…name-n=other-name-n>
</ ENTRYTYPE=etype>;

DELETE entry(s) </ ENTRYTYPE=etype>;

MODIFY entry (DESCRIPTION=<<’>entry-description<’>>)</ ENTRYTYPE=etype>;

SAVE entry(s) </ ENTRYTYPE=etype>;

To do this Use this statement

Copy entries from one SAS catalog to another

Copy or move all entries COPY (with MOVE option)

Copy entries to a new catalog (overwriting the catalog
if it already exists)

COPY (with NEW option)

Copy only selected entries COPY, SELECT

Copy all except the entries specified COPY, EXCLUDE

Delete entries from a SAS catalog

The CATALOG Procedure � PROC CATALOG Statement 155

To do this Use this statement

Delete all entries PROC CATALOG (with KILL option)

Delete all entries in catalog opened by another
resource environment

PROC CATALOG (with FORCE and
KILL options)

Delete all except the entries specified SAVE

Alter names and descriptions

Change the names of catalog entries CHANGE

Switch the names of two catalog entries EXCHANGE

Change the description of a catalog entry MODIFY

Print

Print the contents of a catalog CONTENTS

PROC CATALOG Statement

PROC CATALOG CATALOG=<libref.>catalog <ENTRYTYPE=etype> <FORCE>
<KILL>;

To do this Use this option

Restrict processing to one entry type ENTRYTYPE=

Delete all catalog entries KILL

Force certain statements to execute on a catalog opened by
another resource environment

FORCE

Required Arguments

CATALOG=<libref.>catalog
specifies the SAS catalog to process.

Alias: CAT=, C=

Default: If ENTRYTYPE= is not specified, PROC CATALOG processes all entries in
the catalog.

156 PROC CATALOG Statement � Chapter 6

Options

ENTRYTYPE=etype
restricts processing of the current PROC CATALOG step to one entry type.

Alias: ET=

Default: If you omit ENTRYTYPE=, PROC CATALOG processes all entries in a
catalog.

Interaction: The specified entry type applies to any one-level entry names used in a
subordinate statement. You cannot override this specification in a subordinate
statement.

Interaction: ENTRYTYPE= does not restrict the effects of the KILL option.

Tip: In order to process multiple entry types in a single PROC CATALOG step, use
ENTRYTYPE= in a subordinate statement, not in the PROC CATALOG statement.

See also: “Specifying an Entry Type” on page 166.

Featured in: Example 1 on page 170 and Example 2 on page 174

FORCE
forces statements to execute on a catalog that is opened by another resource
environment.

Some CATALOG statements require exclusive access to the catalog that they
operate on if the statement can radically change the contents of a catalog. If
exclusive access cannot be obtained, then the action fails. The statements and the
catalogs that are affected by FORCE are

KILL affects the specified catalog

COPY affects the OUT= catalog

COPY MOVE affects the IN= and the OUT= catalogs

SAVE affects the specified catalog.

Tip: Use FORCE to execute the statement, even if exclusive access cannot be
obtained.

Featured in: Example 3 on page 176

KILL
deletes all entries in a SAS catalog.

Interaction: The KILL option deletes all catalog entries even when ENTRYTYPE=
is specified.

Interaction: The SAVE statement has no effect because the KILL option deletes all
entries in a SAS catalog before any other statements are processed.

Tip: KILL deletes all entries but does not remove an empty catalog from the SAS
data library. You must use another method, such as PROC DATASETS or the DIR
window to delete an empty SAS catalog.

Featured in: Example 3 on page 176

CAUTION:
Do not attempt to limit the effects of the KILL option. This option deletes all entries in a
SAS catalog before any option or other statement takes effect. �

The CATALOG Procedure � CONTENTS Statement 157

CHANGE Statement

Renames one or more catalog entries.

Tip: You can change multiple names in a single CHANGE statement or use multiple
CHANGE statements.

Featured in: Example 2 on page 174

CHANGE old-name-1=new-name-1
<…old-name-n=new-name-n>
</ ENTRYTYPE=etype>;

Required Arguments

old-name=new-name
specifies the current name of a catalog entry and the new name you want to assign to
it. Specify any valid SAS name.

Restriction: You must designate the type of the entry, either with the name
(ename.etype) or with the ENTRYTYPE= option.

Options

ENTRYTYPE=etype
restricts processing to one entry type.

See: “The ENTRYTYPE= Option” on page 167

See also: “Specifying an Entry Type” on page 166

CONTENTS Statement

Lists the contents of a catalog in the procedure output or writes a list of the contents to a SAS
data set, an external file, or both.

Featured in: Example 2 on page 174

CONTENTS <OUT=SAS-data-set> <FILE=fileref>;

Without Options
The output is sent to the procedure output.

158 COPY Statement � Chapter 6

Options

Note: The ENTRYTYPE= (ET=) option is not available for the CONTENTS
statement. �

CATALOG=<libref.>catalog
specifies the SAS catalog to process.
Alias: CAT=, C=
Default: None

FILE=fileref
sends the contents to an external file, identified with a SAS fileref.
Interaction: If fileref has not been previously assigned to a file, then the file is

created and named according to operating environment-dependent rules for
external files.

OUT=SAS-data-set
sends the contents to a SAS data set. When the statement executes, a message on
the SAS log reports that a data set has been created. The data set contains six
variables in this order:

LIBNAME the libref

MEMNAME the catalog name

NAME the names of entries

TYPE the types of entries

DESC the descriptions of entries

DATE the dates entries were last modified.

COPY Statement

Copies some or all of the entries in one catalog to another catalog.

Restriction: A COPY statement’s effect ends at a RUN statement or at the beginning of a
statement other than the SELECT or EXCLUDE statement.
Tip: Use SELECT or EXCLUDE statements, but not both, after the COPY statement to
limit which entries are copied.
Tip: You can copy entries from multiple catalogs in a single PROC step, not just the one
specified in the PROC CATALOG statement.
Tip: The ENTRYTYPE= option does not require a forward slash (/) in this statement.
Featured in: Example 1 on page 170

COPY OUT=<libref.>catalog <options>;

The CATALOG Procedure � COPY Statement 159

To do this Use this option

Restrict processing to one type of entry ENTRYTYPE=

Copy from a different catalog in the same step IN=

Move (copy and then delete) a catalog entry MOVE

Copy entries to a new catalog (overwriting the catalog if it
already exists)

NEW

Protect several types of SAS/AF entries from being edited with
PROC BUILD

NOEDIT

Not copy source lines from a PROGRAM, FRAME, or SCL entry NOSOURCE

Required Arguments

OUT=<libref.>catalog
names the catalog to which entries are copied.

Options

ENTRYTYPE=etype
restricts processing to one entry type for the current COPY statement and any
subsequent SELECT or EXCLUDE statements.
See: “The ENTRYTYPE= Option” on page 167
See also: “Specifying an Entry Type” on page 166

IN=<libref.>catalog
specifies the catalog to copy.
Interaction: The IN= option overrides a CATALOG= argument that was specified

in the PROC CATALOG statement.
Featured in: Example 1 on page 170

MOVE
deletes the original catalog or entries after the new copy is made.
Interaction: When MOVE removes all entries from a catalog, the procedure deletes

the catalog from the library.

NEW
overwrites the destination (specified by OUT=) if it already exists. If you omit NEW,
PROC CATALOG updates the destination. For information about using the NEW
option with concatenated catalogs, see “Catalog Concatenation” on page 168.

160 DELETE Statement � Chapter 6

NOEDIT
prevents the copied version of the following SAS/AF entry types from being edited by
the BUILD procedure:

CBT PROGRAM

FRAME SCL

HELP SYSTEM

MENU

Restriction: If you specify the NOEDIT option for an entry that is not one of these
types, it is ignored.

Tip: When creating SAS/AF applications for other users, use NOEDIT to protect the
application by preventing certain catalog entries from being altered.

Featured in: Example 1 on page 170

NOSOURCE
omits copying the source lines when you copy a SAS/AF PROGRAM, FRAME, or SCL
entry.

Alias: NOSRC

Restriction: If you specify this option for an entry other than a PROGRAM,
FRAME, or SCL entry, it is ignored.

DELETE Statement

Deletes entries from a SAS catalog.

Tip: Use DELETE to delete only a few entries; use SAVE when it is more convenient to
specify which entries not to delete.

Tip: You can specify multiple entries. You can also use multiple DELETE statements.

See also: “SAVE Statement” on page 164

Featured in: Example 1 on page 170

DELETE entry(s) </ ENTRYTYPE=etype>;

Required Arguments

entry(s)
specifies the name of one or more SAS catalog entries.

Restriction: You must designate the type of the entry, either with the name
(ename.etype) or with the ENTRYTYPE= option.

The CATALOG Procedure � EXCHANGE Statement 161

Options

ENTRYTYPE=etype
restricts processing to one entry type.
See: “The ENTRYTYPE= Option” on page 167
See also: “Specifying an Entry Type” on page 166

EXCHANGE Statement

Switches the name of two catalog entries.

Restriction: The catalog entries must be of the same type.

EXCHANGE name-1=other-name-1
<…name-n=other-name-n>
</ ENTRYTYPE=etype>;

Required Arguments

name=other-name
specifies two catalog entry names that the procedure will switch.
Interaction: You can specify only the entry name without the entry type if you use

the ENTRYTYPE= option on either the PROC CATALOG statement or the
EXCHANGE statement.

See also: “Specifying an Entry Type” on page 166

Options

ENTRYTYPE=etype
restricts processing to one entry type.
See: “The ENTRYTYPE= Option” on page 167
See also: “Specifying an Entry Type” on page 166

162 EXCLUDE Statement � Chapter 6

EXCLUDE Statement

Specifies entries that the COPY statement does not copy.

Restriction: Requires the COPY statement.
Restriction: Do not use the EXCLUDE statement with the SELECT statement.
Tip: You can specify multiple entries in a single EXCLUDE statement.
Tip: You can use multiple EXCLUDE statements with a single COPY statement within
a RUN group.
See also: “COPY Statement” on page 158 and “SELECT Statement” on page 165
Featured in: Example 1 on page 170

EXCLUDE entry(s) </ ENTRYTYPE=etype>;

Required Arguments

entry(s)
specifies the name of one or more SAS catalog entries.
Restriction: You must designate the type of the entry, either when you specify the

name (ename.etype) or with the ENTRYTYPE= option.
See also: “Specifying an Entry Type” on page 166

Options

ENTRYTYPE=etype
restricts processing to one entry type.
See: “The ENTRYTYPE= Option” on page 167
See also: “Specifying an Entry Type” on page 166

The CATALOG Procedure � MODIFY Statement 163

MODIFY Statement

Changes the description of a catalog entry.

Featured in: Example 2 on page 174

MODIFY entry (DESCRIPTION=<<’>entry-description<’>>) </ ENTRYTYPE=etype>;

Required Arguments

entry
specifies the name of one SAS catalog entry. Optionally, you can specify the entry
type with the name.
Restriction: You must designate the type of the entry, either when you specify the

name (ename.etype) or with the ENTRYTYPE= option.
See also: “Specifying an Entry Type” on page 166

DESCRIPTION=<<’>entry-description<’>>
changes the description of a catalog entry by replacing it with a new description, up
to 256 characters long, or by removing it altogether. Optionally, you can enclose the
description in single or double quotes.
Alias: DESC
Tip: Use DESCRIPTION= with no text to remove the current description.

164 SAVE Statement � Chapter 6

Options

ENTRYTYPE=etype
restricts processing to one entry type.
See: “The ENTRYTYPE= Option” on page 167
See also: “Specifying an Entry Type” on page 166

SAVE Statement

Specify entries not to delete from a SAS catalog.

Restriction: Cannot limit the effects of the KILL option.
Tip: Use SAVE to delete all but a few entries in a catalog. Use DELETE when it is
more convenient to specify which entries to delete.
Tip: You can specify multiple entries and use multiple SAVE statements.
See also: “DELETE Statement” on page 160

SAVE entry(s) </ ENTRYTYPE=etype>;

Required Arguments

entry(s)
specifies the name of one or more SAS catalog entries.
Restriction: You must designate the type of the entry, either with the name

(ename.etype) or with the ENTRYTYPE= option.

Options

ENTRYTYPE=etype
restricts processing to one entry type.
See: “The ENTRYTYPE= Option” on page 167
See also: “Specifying an Entry Type” on page 166

The CATALOG Procedure � Interactive Processing with RUN Groups 165

SELECT Statement

Specifies entries that the COPY statement will copy.

Restriction: Requires the COPY statement.
Restriction: Cannot be used with an EXCLUDE statement.
Tip: You can specify multiple entries in a single SELECT statement.
Tip: You can use multiple SELECT statements with a single COPY statement within a
RUN group.
See also: “COPY Statement” on page 158 and “EXCLUDE Statement” on page 162
Featured in: Example 1 on page 170

SELECT entry(s) </ ENTRYTYPE=etype>;

Required Arguments

entry(s)
specifies the name of one or more SAS catalog entries.
Restriction: You must designate the type of the entry, either when you specify the

name (ename.etype) or with the ENTRYTYPE= option.

Options

ENTRYTYPE=etype
restricts processing to one entry type.
See: “The ENTRYTYPE= Option” on page 167.
See also: “Specifying an Entry Type” on page 166.

Concepts: CATALOG Procedure

Interactive Processing with RUN Groups

Definition
The CATALOG procedure is interactive. Once you submit a PROC CATALOG

statement, you can continue to submit and execute statements or groups of statements
without repeating the PROC CATALOG statement.

A set of procedure statements ending with a RUN statement is called a RUN group.
The changes specified in a given group of statements take effect when a RUN statement
is encountered.

166 Specifying an Entry Type � Chapter 6

How to End a PROC CATALOG Step

In the DATA step and most SAS procedures, a RUN statement is a step boundary
and ends the step. A simple RUN statement does not, however, end an interactive
procedure. To terminate a PROC CATALOG step, you can

� submit a QUIT statement

� submit a RUN statement with the CANCEL option

� submit another DATA or PROC statement

� end your SAS session.

Note: When you enter a QUIT, DATA, or PROC statement, any statements following
the last RUN group execute before the CATALOG procedure terminates. If you enter a
RUN statement with the CANCEL option, however, the remaining statements do not
execute before the procedure ends. �

See Example 2 on page 174.

Error Handling and RUN Groups

Error handling is based in part on the division of statements into RUN groups. If a
syntax error is encountered, none of the statements in the current RUN group execute,
and execution proceeds to the next RUN group.

For example, the following statements contain a misspelled DELETE statement:

proc catalog catalog=misc entrytype=help;
copy out=drink;

select coffee tea;
del juices; /* INCORRECT!!! */
exchange glass=plastic;

run;
change calstats=nutri;

run;

Because the DELETE statement is incorrectly specified as DEL, no statements in
that RUN group execute, except the PROC CATALOG statement itself. The CHANGE
statement does execute, however, because it is in a different RUN group.

CAUTION:
Be careful when setting up batch jobs in which one RUN group’s statements depend on the
effects of a previous RUN group, especially when deleting and renaming entries. �

Specifying an Entry Type

Four Ways to Supply an Entry Type

There is no default entry type, so if you do not supply one, PROC CATALOG
generates an error. You can supply an entry type in one of four ways. See Table 6.1 on
page 167.

The CATALOG Procedure � Specifying an Entry Type 167

Table 6.1 Supplying an Entry Type

You can supply an entry
type with… Example

the entry name delete
test1.program

test1.log test2.log;

ET= in parentheses delete
test1 (et=program);

ET= after a slash1 delete test1 (et=program)
test1 test2 / et=log;

ENTRYTYPE= without a
slash2

proc catalog catalog=mycat et=log;
delete test1 test2;

1 in a subordinate statement
2 in the PROC CATALOG or the COPY statement

Note: All statements, except the CONTENTS statement, accept the ENTRYTYPE=
(alias ET=) option. �

Why Use the ENTRYTYPE= Option?
ENTRYTYPE= can save keystrokes when you are processing multiple entries of the

same type.
To create a default for entry type for all statements in the current step, use

ENTRYTYPE= in the PROC CATALOG statement. To set the default for only the
current statement, use ENTRYTYPE= in a subordinate statement.

If many entries are of one type, but a few are of other types, you can use
ENTRYTYPE= to specify a default and then override that for individual entries with
(ENTRYTYPE=) in parentheses after those entries.

Avoid a Common Error
You cannot specify the ENTRYTYPE= option in both the PROC CATALOG statement

and a subordinate statement. For example, these statements generate an error and do
not delete any entries because the ENTRYTYPE= specifications contradict each other:

/* THIS IS INCORRECT CODE. */
proc catalog cat=sample et=help;

delete a b c / et=program;
run;

The ENTRYTYPE= Option
The ENTRYTYPE= option is available in every statement in the CATALOG

procedure except CONTENTS.

ENTRYTYPE=etype
not in parentheses, sets a default entry type for the entire PROC step when used
in the PROC CATALOG statement. In all other statements, this option sets a
default entry type for the current statement.
Alias: ET=
Default: If you omit ENTRYTYPE=, PROC CATALOG processes all entries in the

catalog.

168 Catalog Concatenation � Chapter 6

Interaction: If you specify ENTRYTYPE= in the PROC CATALOG statement, do
not specify either ENTRYTYPE= or (ENTRYTYPE=) in a subordinate statement.

Interaction: (ENTRYTYPE=etype) in parentheses immediately following an entry
name overrides ENTRYTYPE= in that same statement.

Tip: On all statements except the PROC CATALOG and COPY statements, this
option follows a slash.

Tip: To process multiple entry types in a single PROC CATALOG step, use
ENTRYTYPE= in a subordinate statement, not in the PROC CATALOG
statement.

See also: “Specifying an Entry Type” on page 166.
Featured in: Example 1 on page 170

(ENTRYTYPE=etype)
in parentheses, identifies the type of the entry just preceding it.
Alias: (ET=)
Restriction: (ENTRYTYPE=etype) immediately following an entry name in a

subordinate statement cannot override an ENTRYTYPE= option in the PROC
CATALOG statement. It generates a syntax error.

Interaction: (ENTRYTYPE=etype) immediately following an entry name
overrides ENTRYTYPE= in that same statement.

Tip: This form is useful mainly for specifying exceptions to an ENTRYTYPE=
option used in a subordinate statement. The following statement deletes
A.HELP, B.FORMAT, and C.HELP:

delete a b (et=format) c / et=help;

Tip: For the CHANGE and EXCHANGE statements, specify (ENTRYTYPE=) in
parentheses only once for each pair of names following the second name in the
pair. For example,

change old1=new1 (et=log)
old1=new2 (et=help);

See also: “Specifying an Entry Type” on page 166
Featured in: Example 1 on page 170 and Example 2 on page 174

Catalog Concatenation
The CATALOG procedure supports both implicit and explicit concatenation of

catalogs. All statements and options that can be used on single (unconcatenated)
catalogs can be used on catalog concatenations.

Restrictions
When you use the CATALOG procedure to copy concatenated catalogs and you use

the NEW option, the following rules apply:
1 If the input catalog is a concatenation and if the output catalog exists in any level

of the input concatenation, the copy is not allowed.
2 If the output catalog is a concatenation and if the input catalog exists in the first

level of the output concatenation, the copy is not allowed.

The CATALOG Procedure � Results: CATALOG Procedure 169

For example, the following code demonstrates these two rules, and the copy fails:

libname first ’path-name1’;
libname second ’path-name2’;
/* create concat.x */
libname concat (first second);

/* fails rule #1 */
proc catalog c=concat.x;

copy out=first.x new;
run;
quit;

/* fails rule #2 */
proc catalog c=first.x;

copy out=concat.x new;
run;
quit;

In summary, the following table shows when copies are allowed. In the table, A and
B are libraries, and each contains catalog X. Catalog C is an implicit concatenation of A
and B, and catalog D is an implicit concatenation of B and A.

Input catalog Output catalog Copy allowed?

C.X B.X No

C.X D.X No

D.X C.X No

A.X A.X No

A.X B.X Yes

B.X A.X Yes

C.X A.X No

B.X C.X Yes

A.X C.X No

Results: CATALOG Procedure
The CATALOG procedure produces output when the CONTENTS statement is

executed without options. The procedure output is assigned a name. You can use this
name to reference the table when using the Output Delivery System (ODS) to select
tables and create output data sets. For more information, see SAS Output Delivery
System: User’s Guide.

170 Examples: CATALOG Procedure � Chapter 6

Table 6.2 ODS Tables Produced by the CATALOG Procedure

Table Name The CATALOG procedure generates this table:

Catalog_Random when the catalog is in a random-access data library.

Catalog_Sequential when the catalog is in a sequential data library.

Examples: CATALOG Procedure

Example 1: Copying, Deleting, and Moving Catalog Entries from Multiple
Catalogs

Procedure features:
PROC CATALOG statement:

CATALOG= argument

COPY statement options:

IN=
MOVE
NOEDIT

DELETE statement options:

ENTRYTYPE= or ET=

EXCLUDE statement options:

ENTRYTYPE= or ET=
(ENTRYTYPE=) or (ET=)

QUIT statement

RUN statement

SELECT statement options:

ENTRYTYPE= or ET=

This example

� copies entries by excluding a few entries

� copies entries by specifying a few entries

� protects entries from being edited

� moves entries

� deletes entries

� processes entries from multiple catalogs

� processes entries in multiple run groups.

The CATALOG Procedure � Program 171

Input Catalogs
The SAS catalog PERM.SAMPLE contains the following entries:

DEFAULT FORM Default form for printing
FSLETTER FORM Standard form for letters (HP Laserjet)
LOAN FRAME Loan analysis application
LOAN HELP Information about the application
BUILD KEYS Function Key Definitions
LOAN KEYS Custom key definitions for application
CREDIT LOG credit application log
TEST1 LOG Inventory program
TEST2 LOG Inventory program
TEST3 LOG Inventory program
LOAN PMENU Custom menu definitions for applicaticm
CREDIT PROGRAM credit application pgm
TEST1 PROGRAM testing budget applic.
TEST2 PROGRAM testing budget applic.
TEST3 PROGRAM testing budget applic.
LOAN SCL SCL code for loan analysis application
PASSIST SLIST User profile
PRTINFO KPRINTER Printing Parameters

The SAS catalog PERM.FORMATS contains the following entries:

REVENUE FORMAT FORMAT:MAXLEN=16,16,12
DEPT FORMATC FORMAT:MAXLEN=1,1,14

Program

Set the SAS system options. Write the source code to the log by specifying the SOURCE SAS
system option.

options nodate pageno=1 linesize=80 pagesize=60 source;

Assign a library reference to a SAS data library. The LIBNAME statement assigns the
libref PERM to the SAS data library that contains a permanent SAS catalog.

libname perm ’SAS-data-library’;

Delete two entries from the PERM.SAMPLE catalog.

proc catalog cat=perm.sample;
delete credit.program credit.log;

run;

Copy all entries in the PERM.SAMPLE catalog to the WORK.TCATALL catalog.

copy out=tcatall;
run;

172 Program � Chapter 6

Copy everything except three LOG entries and PASSIST.SLIST from PERM.SAMPLE
to WORK.TESTCAT. The EXCLUDE statement specifies which entries not to copy. ET=
specifies a default type. (ET=) specifies an exception to the default type.

copy out=testcat;
exclude test1 test2 test3 passist (et=slist) / et=log;

run;

Move three LOG entries from PERM.SAMPLE to WORK.LOGCAT. The SELECT
statement specifies which entries to move. ET= restricts processing to LOG entries.

copy out=logcat move;
select test1 test2 test3 / et=log;

run;

Copy five SAS/AF software entries from PERM.SAMPLE to PERM.FINANCE. The
NOEDIT option protects these entries in PERM.FINANCE from further editing with PROC
BUILD.

copy out=perm.finance noedit;
select loan.frame loan.help loan.keys loan.pmenu;

run;

Copy two formats from PERM.FORMATS to PERM.FINANCE. The IN= option enables
you to copy from a different catalog than the one specified in the PROC CATALOG statement.
Note the entry types for numeric and character formats: REVENUE.FORMAT is a numeric
format and DEPT.FORMATC is a character format. The COPY and SELECT statements execute
before the QUIT statement ends the PROC CATALOG step.

copy in=perm.formats out=perm.finance;
select revenue.format dept.formatc;

quit;

The CATALOG Procedure � Log 173

Log

1 libname perm ’SAS-data-library’;
NOTE: Directory for library PERM contains files of mixed engine types.
NOTE: Libref PERM was successfully assigned as follows:

Engine: V9
Physical Name: ’SAS-data-library’

2 options nodate pageno=1 linesize=80 pagesize=60 source;
3 proc catalog cat=perm.sample;
4 delete credit.program credit.log;
5 run;
NOTE: Deleting entry CREDIT.PROGRAM in catalog PERM.SAMPLE.
NOTE: Deleting entry CREDIT.LOG in catalog PERM.SAMPLE.
6 copy out=tcatall;
7 run;
NOTE: Copying entry DEFAULT.FORM from catalog PERM.SAMPLE to catalog

WORK.TCATALL.
NOTE: Copying entry FSLETTER.FORM from catalog PERM.SAMPLE to catalog

WORK.TCATALL.
NOTE: Copying entry LOAN.FRAME from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry LOAN.HELP from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry BUILD.KEYS from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry LOAN.KEYS from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry TEST1.LOG from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry TEST2.LOG from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry TEST3.LOG from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry LOAN.PMENU from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry TEST1.PROGRAM from catalog PERM.SAMPLE to catalog

WORK.TCATALL.
NOTE: Copying entry TEST2.PROGRAM from catalog PERM.SAMPLE to catalog

WORK.TCATALL.
NOTE: Copying entry TEST3.PROGRAM from catalog PERM.SAMPLE to catalog

WORK.TCATALL.
NOTE: Copying entry LOAN.SCL from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry PASSIST.SLIST from catalog PERM.SAMPLE to catalog

WORK.TCATALL.
NOTE: Copying entry PRTINFO.XPRINTER from catalog PERM.SAMPLE to catalog

WORK.TCATALL.

174 Example 2: Displaying Contents, Changing Names, and Changing a Description � Chapter 6

8 copy out=testcat;
9 exclude test1 test2 test3 passist (et=slist) / et=log;
10 run;
NOTE: Copying entry DEFAULT.FORM from catalog PERM.SAMPLE to catalog

WORK.TESTCAT.
NOTE: Copying entry FSLETTER.FORM from catalog PERM.SAMPLE to catalog

WORK.TESTCAT.
NOTE: Copying entry LOAN.FRAME from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry LOAN.HELP from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry BUILD.KEYS from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry LOAN.KEYS from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry LOAN.PMENU from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry TEST1.PROGRAM from catalog PERM.SAMPLE to catalog

WORK.TESTCAT.
NOTE: Copying entry TEST2.PROGRAM from catalog PERM.SAMPLE to catalog

WORK.TESTCAT.
NOTE: Copying entry TEST3.PROGRAM from catalog PERM.SAMPLE to catalog

WORK.TESTCAT.
NOTE: Copying entry LOAN.SCL from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry PRTINFO.XPRINTER from catalog PERM.SAMPLE to catalog

WORK.TESTCAT.
11 copy out=logcat move;
12 select test1 test2 test3 / et=log;
13 run;
NOTE: Moving entry TEST1.LOG from catalog PERM.SAMPLE to catalog WORK.LOGCAT.
NOTE: Moving entry TEST2.LOG from catalog PERM.SAMPLE to catalog WORK.LOGCAT.
NOTE: Moving entry TEST3.LOG from catalog PERM.SAMPLE to catalog WORK.LOGCAT.
14 copy out=perm.finance noedit;
15 select loan.frame loan.help loan.keys loan.pmenu;
16 run;
NOTE: Copying entry LOAN.FRAME from catalog PERM.SAMPLE to catalog PERM.FINANCE.
NOTE: Copying entry LOAN.HELP from catalog PERM.SAMPLE to catalog PERM.FINANCE.
NOTE: Copying entry LOAN.KEYS from catalog PERM.SAMPLE to catalog PERM.FINANCE.
NOTE: Copying entry LOAN.PMENU from catalog PERM.SAMPLE to catalog PERM.FINANCE.
17 copy in=perm.formats out=perm.finance;
18 select revenue.format dept.formatc;
19 quit;
NOTE: Copying entry REVENUE.FORMAT from catalog PERM.FORMATS to catalog

PERM.FINANCE.
NOTE: Copying entry DEPT.FORMATC from catalog PERM.FORMATS to catalog

PERM.FINANCE.

Example 2: Displaying Contents, Changing Names, and Changing a
Description

Procedure features:
PROC CATALOG statement
CHANGE statement options:

(ENTRYTYPE=) or (ET=)
CONTENTS statement options:

FILE=
MODIFY statement
RUN statement
QUIT statement

The CATALOG Procedure � Program 175

This example
� lists the entries in a catalog and routes the output to a file
� changes entry names
� changes entry descriptions
� processes entries in multiple run groups.

Program

Set the SAS system options. The system option SOURCE writes the source code to the log.

options nodate pageno=1 linesize=80 pagesize=60 source;

Assign a library reference. The LIBNAME statement assigns a libref to the SAS data library
that contains a permanent SAS catalog.

libname perm ’SAS-data-library’;

List the entries in a catalog and route the output to a file. The CONTENTS statement
creates a listing of the contents of the SAS catalog PERM.FINANCE and routes the output to a
file.

proc catalog catalog=perm.finance;
contents;

title1 ’Contents of PERM.FINANCE before changes are made’;
run;

Change entry names. The CHANGE statement changes the name of an entry that contains a
user-written character format. (ET=) specifies the entry type.

change dept=deptcode (et=formatc);
run;

Process entries in multiple run groups. The MODIFY statement changes the description of
an entry. The CONTENTS statement creates a listing of the contents of PERM.FINANCE after
all the changes have been applied. QUIT ends the procedure.

modify loan.frame (description=’Loan analysis app. - ver1’);
contents;

title1 ’Contents of PERM.FINANCE after changes are made’;
run;
quit;

176 Output � Chapter 6

Output

Contents of PERM.FINANCE before changes are made 1

Contents of Catalog PERM.FINANCE

Name Type Create Date Modified Date Description
$$
1 REVENUE FORMAT 16OCT1996:13:48:11 16OCT1996:13:48:11 FORMAT:MAXLEN=16,16,12
2 DEPT FORMATC 30OCT1996:13:40:42 30OCT1996:13:40:42 FORMAT:MAXLEN=1,1,14
3 LOAN FRAME 30OCT1996:13:40:43 30OCT1996:13:40:43 Loan analysis

application
4 LOAN HELP 16OCT1996:13:48:10 16OCT1996:13:48:10 Information about

the application
5 LOAN KEYS 16OCT1996:13:48:10 16OCT1996:13:48:10 Custom key definitions

for application
6 LOAN PMENU 16OCT1996:13:48:10 16OCT1996:13:48:10 Custom menu

definitions for
application

7 LOAN SCL 16OCT1996:13:48:10 16OCT1996:13:48:10 SCL code for loan
analysis application

Contents of PERM.FINANCE after changes are made 2

Contents of Catalog PERM.FINANCE

Name Type Create Date Modified Date Description
$$
1 REVENUE FORMAT 16OCT1996:13:48:11 16OCT1996:13:48:11 FORMAT:MAXLEN=

16,16,12
2 DEPTCODE FORMATC 30OCT1996:13:40:42 30OCT1996:13:40:42 FORMAT:MAXLEN=1,1,14
3 LOAN FRAME 30OCT1996:13:40:43 11FEB2002:13:20:50 Loan analysis

app. - ver1
4 LOAN HELP 16OCT1996:13:48:10 16OCT1996:13:48:10 Information about

the application
5 LOAN KEYS 16OCT1996:13:48:10 16OCT1996:13:48:10 Custom key

definitions for
application

6 LOAN PMENU 16OCT1996:13:48:10 16OCT1996:13:48:10 Custom menu
definitions for
application

7 LOAN SCL 16OCT1996:13:48:10 16OCT1996:13:48:10 SCL code for loan
analysis application

Example 3: Using the FORCE Option with the KILL Option

Procedure features:
PROC CATALOG statement:

CATALOG= argument
KILL option
FORCE option

QUIT statement

RUN statement

The CATALOG Procedure � Add the FORCE Option to the PROC CATALOG Statement 177

This example
� creates a resource environment
� tries to delete all catalog entries by using the KILL option but receives an error
� specifies the FORCE option to successfully delete all catalog entries by using the

KILL option.

Program

Start a process (resource environment) by opening the catalog entry MATT in the
WORK.SASMACR catalog.

%macro matt;
%put &syscc;
%mend matt;

Specify the KILL option to delete all catalog entries in WORK.SASMACR. Since there is
a resource environment (process using the catalog), KILL will not work and an error is sent to
the log.

proc catalog c=work.sasmacr kill;
run;
quit;

Log
ERROR: You cannot open WORK.SASMACR.CATALOG for update access because

WORK.SASMACR.CATALOG is in use by you in resource environment
Line Mode Process.

WARNING: Command CATALOG not processed because of errors noted above.
NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE CATALOG used (Total process time):

real time 0.04 seconds
cpu time 0.03 seconds

Add the FORCE Option to the PROC CATALOG Statement

Add the FORCE option to the KILL option to delete the catalog entries.

proc catalog c=work.sasmacr kill force;
run;
quit;

178 Log � Chapter 6

Log
NOTE: Deleting entry MATT.MACRO in catalog WORK.SASMACR.

179

C H A P T E R

7
The CHART Procedure

Overview: CHART Procedure 179
What Does the CHART Procedure Do? 179

What Types of Charts Can PROC CHART Create? 180

Syntax: CHART Procedure 184

PROC CHART Statement 185

BLOCK Statement 187
BY Statement 188

HBAR Statement 189

PIE Statement 189

STAR Statement 190

VBAR Statement 191

Customizing All Types of Charts 191
Concepts: CHART Procedure 197

Results: CHART Procedure 197

Missing Values 197

ODS Table Names 198

Portability of ODS Output with PROC CHART 198
Examples: CHART Procedure 198

Example 1: Producing a Simple Frequency Count 198

Example 2: Producing a Percentage Bar Chart 201

Example 3: Subdividing the Bars into Categories 203

Example 4: Producing Side-by-Side Bar Charts 206
Example 5: Producing a Horizontal Bar Chart for a Subset of the Data 209

Example 6: Producing Block Charts for BY Groups 210

References 213

Overview: CHART Procedure

What Does the CHART Procedure Do?

The CHART procedure produces vertical and horizontal bar charts, block charts, pie
charts, and star charts. These types of charts graphically display values of a variable or
a statistic associated with those values. The charted variable can be numeric or
character.

PROC CHART is a useful tool that lets you visualize data quickly, but if you need to
produce presentation-quality graphics that include color and various fonts, then use
SAS/GRAPH software. The GCHART procedure in SAS/GRAPH software produces the

180 What Types of Charts Can PROC CHART Create? � Chapter 7

same types of charts as PROC CHART does. In addition, PROC GCHART can produce
donut charts.

What Types of Charts Can PROC CHART Create?

Bar Charts

Horizontal and vertical bar charts display the magnitude of data with bars, each of
which represents a category of data. The length or height of the bars represents the
value of the chart statistic for each category.

Output 7.1 shows a vertical bar chart that displays the number of responses for the
five categories from the survey data. The following statements produce the output:

options nodate pageno=1 linesize=80
pagesize=30;

proc chart data=survey;
vbar response / sumvar=count

midpoints=’Always’ ’Usually’
’Sometimes’ ’Rarely’ ’Never’;

run;

Output 7.1 Vertical Bar Chart

The SAS System 1

Count Sum

200 + *****
| *****
| *****
| *****
| *****

150 + *****
| *****
| *****
| ***** *****
| ***** ***** *****

100 + ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****

50 + ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
***** ***** ***** ***** *****

Always Usually Sometimes Rarely Never

Response

Output 7.2 shows the same data presented in a horizontal bar chart. The two types
of bar charts have essentially the same characteristics, except that horizontal bar
charts by default display a table of statistic values to the right of the bars. The
following statements produce the output:

The CHART Procedure � What Types of Charts Can PROC CHART Create? 181

options nodate pageno=1 linesize=80
pagesize=60;

proc chart data=survey;
hbar response / sumvar=count

midpoints=’Always’ ’Usually’
’Sometimes’ ’Rarely’ ’Never’;

run;

Output 7.2 Horizontal Bar Chart

The SAS System 1

Response Count
Sum

|
Always |********************* 106.0000

|
Usually |** 202.0000

|
Sometimes |************************ 119.0000

|
Rarely |******************* 97.0000

|
Never |********* 44.0000

|
----+---+---+---+---+---+---+---+---+---+

20 40 60 80 100 120 140 160 180 200

Count Sum

Block Charts
Block charts display the relative magnitude of data by using blocks of varying height,

each set in a square that represents a category of data. Output 7.3 shows the number
of each survey response in the form of a block chart.

options nodate pageno=1 linesize=80
pagesize=30;

proc chart data=survey;
block response / sumvar=count

midpoints=’Always’ ’Usually’
’Sometimes’ ’Rarely’ ’Never’;

run;

182 What Types of Charts Can PROC CHART Create? � Chapter 7

Output 7.3 Block Chart

The SAS System 1

Sum of Count by Response

/_ /|

|**| |
|**| |
|**| | ___

___ |**| | /_ /| ___
/_ /| |**| | |**| | /_ /|

-|**| |--------|**| |--------|**| |--------|**| |---------------------
/ |**| | / |**| | / |**| | / |**| | / ___ /

/ |**| | / |**| | / |**| | / |**| | / /_ /| /
/ |**| | / |**| | / |**| | / |**| | / |**| | /

/ |**|/ / |**|/ / |**|/ / |**|/ / |**|/ /
/ / / / / /

/ 106 / 202 / 119 / 97 / 44 /
/-------------/-------------/-------------/-------------/-------------/

Always Usually Sometimes Rarely Never

Response

Pie Charts
Pie charts represent the relative contribution of parts to the whole by displaying data

as wedge-shaped slices of a circle. Each slice represents a category of the data. Output
7.4 shows the survey results divided by response into five pie slices. The following
statements produce the output:

options nodate pageno=1 linesize=80
pagesize=35;

proc chart data=survey;
pie response / sumvar=count;

run;

The CHART Procedure � What Types of Charts Can PROC CHART Create? 183

Output 7.4 Pie Chart

The SAS System 1

Sum of Count by Response

Never

Rarely **** . ****
** . . **

** . 44 . **
* .7.75%. * Always

** 97 . .. **
** 17.08% . . **
* 106 *

* 18.66% *
* *
* . . *
* +*
* 119 *
* 20.95% .. *

Sometimes * . *
* . *
** . 202 **

* .. 35.56% *
* . *

** . **
** **

**** ****
*********** Usually

Star Charts
With PROC CHART, you can produce star charts that show group frequencies, totals,

or mean values. A star chart is similar to a vertical bar chart, but the bars on a star
chart radiate from a center point, like spokes in a wheel. Star charts are commonly used
for cyclical data, such as measures taken every month or day or hour, or for data like
these in which the categories have an inherent order (“always” meaning more frequent
than “usually” which means more frequent than “sometimes”). Output 7.5 shows the
survey data displayed in a star chart. The following statements produce the output:

options nodate pageno=1 linesize=80
pagesize=60;

proc chart data=survey;
star response / sumvar=count;

run;

184 Syntax: CHART Procedure � Chapter 7

Output 7.5 Star Chart

The SAS System 1

Center = 0 Sum of Count by Response Outside = 202

Never
************* 44

***** *****
*** ***

*** ***
** **

* *
Rarely ** **

97 * *
** **
* *

* *
** **
* *...... *

***. **
* *
* *
* *
* . .+..............* * Always
* * 106
* *
* *
** **

* *
** *. .. . **

* *
* *

* *
* *

Sometimes ** **
119 * *

** . . . **
*** ***

*** ***
***** *.***

************* Usually
202

Syntax: CHART Procedure
Requirement: You must use at least one of the chart-producing statements.
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
ODS Table Names: See: “ODS Table Names” on page 198
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 57 for
details. You can also use any global statements. See “Global Statements” on page 18 for
a list.

The CHART Procedure � PROC CHART Statement 185

PROC CHART <option(s)>;
BLOCK variable(s) </ option(s)>;
BY <DESCENDING> variable-1

<…<DESCENDING> variable-n>
<NOTSORTED>;

HBAR variable(s) </ option(s)>;
PIE variable(s) </ option(s)>;
STAR variable(s) </ option(s)>;
VBAR variable(s) </ option(s)>;

PROC CHART Statement

PROC CHART <option(s)>;

Options

DATA=SAS-data-set
identifies the input SAS data set.
Main discussion: “Input Data Sets” on page 19
Restriction: You cannot use PROC CHART with an engine that supports

concurrent access if another user is updating the data set at the same time.

FORMCHAR <(position(s))>=’formatting-character(s)’
defines the characters to use for constructing the horizontal and vertical axes,
reference lines, and other structural parts of a chart. It also defines the symbols to
use to create the bars, blocks, or sections in the output.

position(s)
identifies the position of one or more characters in the SAS formatting-character
string. A space or a comma separates the positions.
Default: Omitting (position(s)), is the same as specifying all 20 possible SAS

formatting characters, in order.
Range: PROC CHART uses 6 of the 20 formatting characters that SAS provides.

Table 7.1 on page 186 shows the formatting characters that PROC CHART uses.
Figure 7.1 on page 186 illustrates the use of formatting characters commonly
used in PROC CHART.

formatting-character(s)
lists the characters to use for the specified positions. PROC CHART assigns
characters in formatting-character(s) to position(s), in the order that they are
listed. For instance, the following option assigns the asterisk (*) to the second
formatting character, the pound sign (#) to the seventh character, and does not
alter the remaining characters:

formchar(2,7)=’*#’

Interaction: The SAS system option FORMCHAR= specifies the default formatting
characters. The system option defines the entire string of formatting characters.
The FORMCHAR= option in a procedure can redefine selected characters.

186 PROC CHART Statement � Chapter 7

Tip: You can use any character in formatting-characters, including hexadecimal
characters. If you use hexadecimal characters, then you must put an x after the
closing quotation mark. For instance the following option assigns the hexadecimal
character 2D to the second formatting character, the hexadecimal character 7C to
the seventh character, and does not alter the remaining characters:

formchar(2,7)=’2D7C’x

See also: For information on which hexadecimal codes to use for which characters,
consult the documentation for your hardware.

Table 7.1 Formatting Characters Used by PROC CHART

Position … Default Used to draw

1 | Vertical axes in bar charts, the sides of the blocks in block charts, and
reference lines in horizontal bar charts. In side-by-side bar charts, the first
and second formatting characters appear around each value of the group
variable (below the chart) to indicate the width of each group.

2 - Horizontal axes in bar charts, the horizontal lines that separate the blocks
in a block chart, and reference lines in vertical bar charts. In side-by-side
bar charts, the first and second formatting characters appear around each
value of the group variable (below the chart) to indicate the width of each
group.

7 + Tick marks in bar charts and the centers in pie and star charts.

9 - Intersection of axes in bar charts.

16 / Ends of blocks and the diagonal lines that separate blocks in a block chart.

20 * Circles in pie and star charts.

Figure 7.1 Formatting Characters Commonly Used in PROC CHART Output

 Mean Yearly Pie Sales Grouped by Flavor 1
 within Bakery Location

Pies_Sold Mean

400 +
 | *** ***
300 +--***-------***---------***-------***------------------------------------
 | *** *** *** *** ***
200 +--***--***--***---------***--***--***---------***-------***--------------
 | *** *** *** *** *** *** *** ***
100 +--***--***--***---------***--***--***---------***--***--***--------------
 | *** *** *** *** *** *** *** *** *** *** *** ***
 --

 a b c r a b c r a b c r Flavor

 p l h h p l h h p l h h

 p u e u p u e u p u e u

 l e r b l e r b l e r b

 e b r a e b r a e b r a

 e y r e y r e y r

 r b r b r b

 r r r

 |----- Clyde ----| |------ Oak -----| |---- Samford ---| Bakery

9

1 2

7

1 2

2

LPI=value

The CHART Procedure � BLOCK Statement 187

specifies the proportions of PIE and STAR charts. The value is determined by

������ ��� ���	 � �
����� ��� ���	 � ��

For example, if you have a printer with 8 lines per inch and 12 columns per inch,
then specify LPI=6.6667.

Default: 6

BLOCK Statement

Produces a block chart.

Featured in: Example 6 on page 210

BLOCK variable(s) </ option(s)>;

Required Arguments

variable(s)
specifies the variables for which PROC CHART produces a block chart, one chart for
each variable.

Options
The options available on the BLOCK, HBAR, PIE, STAR, and VBAR statements are

documented in “Customizing All Types of Charts” on page 191.

Statement Results
Because each block chart must fit on one output page, you may have to adjust the

SAS system options LINESIZE= and PAGESIZE= if you have a large number of charted
values for the BLOCK variable and for the variable specified in the GROUP= option.

Table 7.2 on page 187 shows the maximum number of charted values of BLOCK
variables for selected LINESIZE= (LS=) specifications that can fit on a 66-line page.

Table 7.2 Maximum Number of Bars of BLOCK Variables

GROUP= Value LS= 132 LS= 120 LS= 105 LS= 90 LS= 76 LS= 64

0,1 9 8 7 6 5 4

2 8 8 7 6 5 4

3 8 7 6 5 4 3

4 7 7 6 5 4 3

5,6 7 6 5 4 3 2

188 BY Statement � Chapter 7

If the value of any GROUP= level is longer than three characters, then the maximum
number of charted values for the BLOCK variable that can fit might be reduced by one.
BLOCK level values truncate to 12 characters. If you exceed these limits, then PROC
CHART produces a horizontal bar chart instead.

BY Statement

Produces a separate chart for each BY group.

Main discussion: “BY” on page 58
Featured in: Example 6 on page 210

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, then the observations in the data set must either be sorted by all the
variables that you specify, or they must be indexed appropriately. Variables in a BY
statement are called BY variables.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, then the procedure treats each contiguous set as a separate BY
group.

The CHART Procedure � PIE Statement 189

HBAR Statement
Produces a horizontal bar chart.

Tip: HBAR charts can print either the name or the label of the chart variable.
Featured in: Example 5 on page 209

HBAR variable(s) </ option(s)>;

Required Argument

variable(s)
specifies the variables for which PROC CHART produces a horizontal bar chart, one
chart for each variable.

Options
The options available on the BLOCK, HBAR, PIE, STAR, and VBAR statements are

documented in “Customizing All Types of Charts” on page 191.

Statement Results
Each chart occupies one or more output pages, depending on the number of bars;

each bar occupies one line, by default.
By default, for horizontal bar charts of TYPE=FREQ, CFREQ, PCT, or CPCT, PROC

CHART prints the following statistics: frequency, cumulative frequency, percentage,
and cumulative percentage. If you use one or more of the statistics options, then PROC
CHART prints only the statistics that you request, plus the frequency.

PIE Statement
Produces a pie chart.

PIE variable(s) </ option(s)>;

Required Argument

variable(s)
specifies the variables for which PROC CHART produces a pie chart, one chart for
each variable.

Options
The options available on the BLOCK, HBAR, PIE, STAR, and VBAR statements are

documented in “Customizing All Types of Charts” on page 191.

190 STAR Statement � Chapter 7

Statement Results
PROC CHART determines the number of slices for the pie in the same way that it

determines the number of bars for vertical bar charts. Any slices of the pie accounting
for less than three print positions are grouped together into an "OTHER" category.

The pie’s size is determined only by the SAS system options LINESIZE= and
PAGESIZE=. By default, the pie looks elliptical if your printer does not print 6 lines per
inch and 10 columns per inch. To make a circular pie chart on a printer that does not
print 6 lines and 10 columns per inch, use the LPI= option on the PROC CHART
statement. See the description of LPI= on page 186 for the formula that gives you the
proper LPI= value for your printer.

If you try to create a PIE chart for a variable with more than 50 levels, then PROC
CHART produces a horizontal bar chart instead.

STAR Statement

Produces a star chart.

STAR variable(s) </ option(s)>;

Required Argument

variable(s)
specifies the variables for which PROC CHART produces a star chart, one chart for
each variable.

Options
The options available on the BLOCK, HBAR, PIE, STAR, and VBAR statements are

documented in “Customizing All Types of Charts” on page 191.

Statement Results
The number of points in the star is determined in the same way as the number of

bars for vertical bar charts.
If all the data values are positive, then the center of the star represents zero and the

outside circle represents the maximum value. If any data values are negative, then the
center represents the minimum. See the description of the AXIS= option on page 193
for more information about how to specify maximum and minimum values. For
information about how to specify the proportion of the chart, see the description of the
LPI= option on page 186.

If you try to create a star chart for a variable with more than 24 levels, then PROC
CHART produces a horizontal bar chart instead.

The CHART Procedure � Customizing All Types of Charts 191

VBAR Statement

Produces a vertical bar chart.

Featured in: Example 1 on page 198, Example 2 on page 201, Example 3 on page 203,
Example 4 on page 206

VBAR variable(s) </ option(s)>;

Required Argument

variable(s)
specifies the variables for which PROC CHART produces a vertical bar chart, one
chart for each variable.

Options
The options available on the BLOCK, HBAR, PIE, STAR, and VBAR statements are

documented in “Customizing All Types of Charts” on page 191.

Statement Results
PROC CHART prints one page per chart. Along the vertical axis, PROC CHART

describes the chart frequency, the cumulative frequency, the chart percentage, the
cumulative percentage, the sum, or the mean. At the bottom of each bar, PROC CHART
prints a value according to the value of the TYPE= option, if specified. For character
variables or discrete numeric variables, this value is the actual value represented by
the bar. For continuous numeric variables, the value gives the midpoint of the interval
represented by the bar.

PROC CHART can automatically scale the vertical axis, determine the bar width,
and choose spacing between the bars. However, by using options, you can choose bar
intervals and the number of bars, include missing values in the chart, produce
side-by-side charts, and subdivide the bars. If the number of characters per line
(LINESIZE=) is not sufficient to display all vertical bars, then PROC CHART produces
a horizontal bar chart instead.

Customizing All Types of Charts

Many options in PROC CHART are valid in more than one statement. This section
describes the options that you can use on the chart-producing statements.

To do this Use this option

Specify that numeric variables are discrete DISCRETE

Specify a frequency variable FREQ=

Specify that missing values are valid levels MISSING

192 Customizing All Types of Charts � Chapter 7

To do this Use this option

Specify the variable for which values or means are displayed SUMVAR=

Specify the statistic represented in the chart TYPE=

Specify groupings

Group the bars in side-by-side charts GROUP=

Specify that group percentages sum to 100 G100

Group the bars in side-by-side charts GROUP=

Specify the number of bars for continuous variables LEVELS=

Define ranges for continuous variables MIDPOINTS=

Divide the bars into categories SUBGROUP=

Compute statistics

Compute the cumulative frequency for each bar CFREQ

Compute the cumulative percentage for each bar CPERCENT

Compute the frequency for each bar FREQ

Compute the mean of the observations for each bar MEAN

Compute the percentage of total observations for each bar PERCENT

Compute the total number of observations for each bar SUM

Control output format

Print the bars in ascending order of size ASCENDING

Specify the values for the response axis AXIS=

Print the bars in descending order of size DESCENDING

Specify extra space between groups of bars GSPACE=

Suppress the default header line NOHEADER

Allow no space between vertical bars NOSPACE

Suppress the statistics NOSTATS

Suppress the subgroup legend or symbol table NOSYMBOL

Suppress the bars with zero frequency NOZEROS

Draw reference lines REF=

Specify the spaces between bars SPACE=

Specify the symbols within bars or blocks SYMBOL=

Specify the width of bars WIDTH=

Options

ASCENDING
prints the bars and any associated statistics in ascending order of size within groups.
Alias: ASC
Restriction: Available only on the HBAR and VBAR statements

The CHART Procedure � Customizing All Types of Charts 193

AXIS=value-expression
specifies the values for the response axis, where value-expression is a list of
individual values, each separated by a space, or a range with a uniform interval for
the values. For example, the following range specifies tick marks on a bar chart from
0 to 100 at intervals of 10:

hbar x / axis=0 to 100 by 10;

Restriction: Not available on the PIE statement
Restriction: Values must be uniformly spaced, even if you specify them individually.
Restriction: For frequency charts, values must be integers.
Interaction: For BLOCK charts, AXIS= sets the scale of the tallest block. To set

the scale, PROC CHART uses the maximum value from the AXIS= list. If no value
is greater than 0, then PROC CHART ignores the AXIS= option.

Interaction: For HBAR and VBAR charts, AXIS= determines tick marks on the
response axis. If the AXIS= specification contains only one value, then the value
determines the minimum tick mark if the value is less than 0, or determines the
maximum tick mark if the value is greater than 0.

Interaction: For STAR charts, a single AXIS= value sets the minimum (the center
of the chart) if the value is less than zero, or sets the maximum (the outside circle)
if the value is greater than zero. If the AXIS= specification contains more than one
value, then PROC CHART uses the minimum and maximum values from the list.

Interaction: If you use AXIS= and the BY statement, then PROC CHART produces
uniform axes over BY groups.

CAUTION:
Values in value-expression override the range of the data. For example, if the data
range is 1 to 10 and you specify a range of 3 to 5, then only the data in the range 3
to 5 appears on the chart. Values out of range produce a warning message in the
SAS log. �

CFREQ
prints the cumulative frequency.
Restriction: Available only on the HBAR statement

CPERCENT
prints the cumulative percentages.
Restriction: Available only on the HBAR statement

DESCENDING
prints the bars and any associated statistics in descending order of size within groups.
Alias: DESC
Restriction: Available only on the HBAR and VBAR statements

DISCRETE
specifies that a numeric chart variable is discrete rather than continuous. Without
DISCRETE, PROC CHART assumes that all numeric variables are continuous and
automatically chooses intervals for them unless you use MIDPOINTS= or LEVELS=.

FREQ
prints the frequency of each bar to the side of the chart.
Restriction: Available only on the HBAR statement

FREQ=variable
specifies a data set variable that represents a frequency count for each observation.
Normally, each observation contributes a value of one to the frequency counts. With
FREQ=, each observation contributes its value of the FREQ= value.

194 Customizing All Types of Charts � Chapter 7

Restriction: If the FREQ= values are not integers, then PROC CHART truncates
them.

Interaction: If you use SUMVAR=, then PROC CHART multiplies the sums by the
FREQ= value.

GROUP=variable
produces side-by-side charts, with each chart representing the observations that have
a common value for the GROUP= variable. The GROUP= variable can be character
or numeric and is assumed to be discrete. For example, the following statement
produces a frequency bar chart for men and women in each department:

vbar gender / group=dept;

Missing values for a GROUP= variable are treated as valid levels.
Restriction: Available only on the BLOCK, HBAR, and VBAR statements
Featured in: Example 4 on page 206, Example 5 on page 209, Example 6 on page

210

GSPACE=n
specifies the amount of extra space between groups of bars. Use GSPACE=0 to leave
no extra space between adjacent groups of bars.
Restriction: Available only on the HBAR and VBAR statements
Interaction: PROC CHART ignores GSPACE= if you omit GROUP=

G100
specifies that the sum of percentages for each group equals 100. By default, PROC
CHART uses 100 percent as the total sum. For example, if you produce a bar chart
that separates males and females into three age categories, then the six bars, by
default, add to 100 percent; however, with G100, the three bars for females add to
100 percent, and the three bars for males add to 100 percent.
Restriction: Available only on the BLOCK, HBAR, and VBAR statements
Interaction: PROC CHART ignores G100 if you omit GROUP=.

LEVELS=number-of-midpoints
specifies the number of bars that represent each chart variable when the variables
are continuous.

MEAN
prints the mean of the observations represented by each bar.
Restriction: Available only on the HBAR statement and only when you use

SUMVAR= and TYPE=
Restriction: Not available when TYPE=CFREQ, CPERCENT, FREQ, or PERCENT

MIDPOINTS=midpoint-specification | OLD
defines the range of values that each bar, block, or section represents by specifying
the range midpoints.

The value for MIDPOINTS= is one of the following:

midpoint-specification
specifies midpoints, either individually, or across a range at a uniform interval.
For example, the following statement produces a chart with five bars; the first bar
represents the range of values of X with a midpoint of 10, the second bar
represents the range with a midpoint of 20, and so on:

vbar x / midpoints=10 20 30 40 50;

Here is an example of a midpoint specification for a character variable:

vbar x / midpoints=’JAN’ ’FEB’ ’MAR’;

The CHART Procedure � Customizing All Types of Charts 195

Here is an example of specifying midpoints across a range at a uniform interval:

vbar x / midpoints=10 to 100 by 5;

OLD
specifies an algorithm that PROC CHART used in previous versions of SAS to
choose midpoints for continuous variables. The old algorithm was based on the
work of Nelder (1976). The current algorithm that PROC CHART uses if you omit
OLD is based on the work of Terrell and Scott (1985).

Default: Without MIDPOINTS=, PROC CHART displays the values in the SAS
System’s normal sorted order.

Restriction: When the VBAR variables are numeric, the midpoints must be given
in ascending order.

MISSING
specifies that missing values are valid levels for the chart variable.

NOHEADER
suppresses the default header line printed at the top of a chart.

Alias: NOHEADING

Restriction: Available only on the BLOCK, PIE, and STAR statements

Featured in: Example 6 on page 210

NOSTATS
suppresses the statistics on a horizontal bar chart.

Alias: NOSTAT

Restriction: Available only on the HBAR statement

NOSYMBOL
suppresses printing of the subgroup symbol or legend table.

Alias: NOLEGEND

Restriction: Available only on the BLOCK, HBAR, and VBAR statements

Interaction: PROC CHART ignores NOSYMBOL if you omit SUBGROUP=.

NOZEROS
suppresses any bar with zero frequency.

Restriction: Available only on the HBAR and VBAR statements

PERCENT
prints the percentages of observations having a given value for the chart variable.

Restriction: Available only on the HBAR statement

REF=value(s)
draws reference lines on the response axis at the specified positions.

Restriction: Available only on the HBAR and VBAR statements

Tip: The REF= values should correspond to values of the TYPE= statistic.

Featured in: Example 4 on page 206

SPACE=n
specifies the amount of space between individual bars.

Restriction: Available only on the HBAR and VBAR statements

Tip: Use SPACE=0 to leave no space between adjacent bars.

Tip: Use the GSPACE= option to specify the amount of space between the bars
within each group.

196 Customizing All Types of Charts � Chapter 7

SUBGROUP=variable
subdivides each bar or block into characters that show the contribution of the values
of variable to that bar or block. PROC CHART uses the first character of each value
to fill in the portion of the bar or block that corresponds to that value, unless more
than one value begins with the same first character. In that case, PROC CHART
uses the letters A, B, C, and so on to fill in the bars or blocks. If the variable is
formatted, then PROC CHART uses the first character of the formatted value.

The characters used in the chart and the values that they represent are given in a
legend at the bottom of the chart. The subgroup symbols are ordered A through Z
and 0 through 9 with the characters in ascending order.

PROC CHART calculates the height of a bar or block for each subgroup
individually and then rounds the percentage of the total bar up or down. So the total
height of the bar may be higher or lower than the same bar without the
SUBGROUP= option.
Restriction: Available only on the BLOCK, HBAR, and VBAR statements
Interaction: If you use both TYPE=MEAN and SUBGROUP=, then PROC CHART

first calculates the mean for each variable that is listed in the SUMVAR= option,
then subdivides the bar into the percentages that each subgroup contributes.

Featured in: Example 3 on page 203

SUM
prints the total number of observations that each bar represents.
Restriction: Available only on the HBAR statement and only when you use both

SUMVAR= and TYPE=
Restriction: Not available when TYPE=CFREQ, CPERCENT, FREQ, or PERCENT

SUMVAR=variable
specifies the variable for which either values or means (depending on the value of
TYPE=) PROC CHART displays in the chart.
Interaction: If you use SUMVAR= and you use TYPE= with a value other than

MEAN or SUM, then TYPE=SUM overrides the specified TYPE= value.
Tip: Both HBAR and VBAR charts can print labels for SUMVAR= variables if you

use a LABEL statement.
Featured in: Example 3 on page 203, Example 4 on page 206, Example 5 on page

209, Example 6 on page 210

SYMBOL=character(s)
specifies the character or characters that PROC CHART uses in the bars or blocks of
the chart when you do not use the SUBGROUP= option.
Default: asterisk (*)
Restriction: Available only on the BLOCK, HBAR, and VBAR statements
Interaction: If the SAS system option OVP is in effect and if your printing device

supports overprinting, then you can specify up to three characters to produce
overprinted charts.

Featured in: Example 6 on page 210

TYPE=statistic
specifies what the bars or sections in the chart represent. The statistic is one of the
following:

CFREQ
specifies that each bar, block, or section represent the cumulative frequency.

CPERCENT
specifies that each bar, block, or section represent the cumulative percentage.

The CHART Procedure � Missing Values 197

Alias: CPCT

FREQ
specifies that each bar, block, or section represent the frequency with which a
value or range occurs for the chart variable in the data.

MEAN
specifies that each bar, block, or section represent the mean of the SUMVAR=
variable across all observations that belong to that bar, block, or section.
Interaction: With TYPE=MEAN, you can only compute MEAN and FREQ

statistics.
Featured in: Example 4 on page 206

PERCENT
specifies that each bar, block, or section represent the percentage of observations
that have a given value or that fall into a given range of the chart variable.
Alias: PCT
Featured in: Example 2 on page 201

SUM
specifies that each bar, block, or section represent the sum of the SUMVAR=
variable for the observations that correspond to each bar, block, or section.
Default: FREQ (unless you use SUMVAR=, which causes a default of SUM)
Interaction: With TYPE=SUM, you can only compute SUM and FREQ statistics.

WIDTH=n
specifies the width of the bars on bar charts.
Restriction: Available only on the HBAR and VBAR statements

Concepts: CHART Procedure
The following are variable characteristics for the CHART procedure:
� Character variables and formats cannot exceed a length of 16.
� For continuous numeric variables, PROC CHART automatically selects display

intervals, although you can explicitly define interval midpoints.
� For character variables and discrete numeric variables, which contain several

distinct values rather than a continuous range, the data values themselves define
the intervals.

Results: CHART Procedure

Missing Values
PROC CHART follows these rules when handling missing values:
� Missing values are not considered as valid levels for the chart variable when you

use the MISSING option.
� Missing values for a GROUP= or SUBGROUP= variable are treated as valid levels.
� PROC CHART ignores missing values for the FREQ= option and the SUMVAR=

option.

198 ODS Table Names � Chapter 7

� If the value of the FREQ= variable is missing, zero, or negative, then the
observation is excluded from the calculation of the chart statistic.

� If the value of the SUMVAR= variable is missing, then the observation is excluded
from the calculation of the chart statistic.

ODS Table Names
The CHART procedure assigns a name to each table that it creates. You can use

these names to reference the table when using the Output Delivery System (ODS) to
select tables and create output data sets. For more information, see SAS Output
Delivery System: User’s Guide.

Table 7.3 ODS Tables Produced by the CHART Procedure

Name Description Statement Used

BLOCK A block chart BLOCK

HBAR A horizontal bar chart HBAR

PIE A pie chart PIE

STAR A star chart STAR

VBAR A vertical bar chart VBAR

Portability of ODS Output with PROC CHART
Under certain circumstances, using PROC CHART with the Output Delivery System

produces files that are not portable. If the SAS system option FORMCHAR= in your
SAS session uses nonstandard line-drawing characters, then the output might include
strange characters instead of lines in operating environments in which the SAS
Monospace font is not installed. To avoid this problem, specify the following OPTIONS
statement before executing PROC CHART:

options formchar="|----|+|---+=|-/\<>*";

Examples: CHART Procedure

Example 1: Producing a Simple Frequency Count

Procedure features:
VBAR statement

This example produces a vertical bar chart that shows a frequency count for the
values of the chart variable.

The CHART Procedure � Program 199

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the SHIRTS data set. SHIRTS contains the sizes of a particular shirt that is sold
during a week at a clothing store, with one observation for each shirt that is sold.

data shirts;
input Size $ @@;
datalines;

medium large
large large
large medium
medium small
small medium
medium large
small medium
large large
large small
medium medium
medium medium
medium large
small small
;

Create a vertical bar chart with frequency counts. The VBAR statement produces a
vertical bar chart for the frequency counts of the Size values.

proc chart data=shirts;
vbar size;

Specify the title.

title ’Number of Each Shirt Size Sold’;
run;

200 Output � Chapter 7

Output

The frequency chart shows the store’s sales of the shirt for the week: 9
large shirts, 11 medium shirts, and 6 small shirts.

Number of Each Shirt Size Sold 1

Frequency

11 + *****
| *****
| *****
| *****

10 + *****
| *****
| *****
| *****

9 + ***** *****
| ***** *****
| ***** *****
| ***** *****

8 + ***** *****
| ***** *****
| ***** *****
| ***** *****

7 + ***** *****
| ***** *****
| ***** *****
| ***** *****

6 + ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****

5 + ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****

4 + ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****

3 + ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****

2 + ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****

1 + ***** ***** *****
| ***** ***** *****
| ***** ***** *****
***** ***** *****

large medium small

Size

The CHART Procedure � Program 201

Example 2: Producing a Percentage Bar Chart

Procedure features:
VBAR statement option:

TYPE=
Data set: SHIRTS on page 199

This example produces a vertical bar chart. The chart statistic is the percentage for
each category of the total number of shirts sold.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create a vertical bar chart with percentages. The VBAR statement produces a vertical bar
chart. TYPE= specifies percentage as the chart statistic for the variable Size.

proc chart data=shirts;
vbar size / type=percent;

Specify the title.

title ’Percentage of Total Sales for Each Shirt Size’;
run;

202 Output � Chapter 7

Output

The chart shows the percentage of total sales for each shirt size. Of all
the shirts sold, about 42.3 percent were medium, 34.6 were large, and
23.1 were small.

Percentage of Total Sales for Each Shirt Size 1

Percentage

| *****
| *****

40 + *****
| *****
| *****
| *****
| *****

35 + ***** *****
| ***** *****
| ***** *****
| ***** *****
| ***** *****

30 + ***** *****
| ***** *****
| ***** *****
| ***** *****
| ***** *****

25 + ***** *****
| ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****

20 + ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****

15 + ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****

10 + ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****

5 + ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****
***** ***** *****

large medium small

Size

The CHART Procedure � Program 203

Example 3: Subdividing the Bars into Categories

Procedure features:
VBAR statement options:

SUBGROUP=
SUMVAR=

This example
� produces a vertical bar chart for categories of one variable with bar lengths that

represent the values of another variable.
� subdivides each bar into categories based on the values of a third variable.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the PIESALES data set. PIESALES contains the number of each flavor of pie that is
sold for two years at three bakeries that are owned by the same company. One bakery is on
Samford Avenue, one on Oak Street, and one on Clyde Drive.

data piesales;
input Bakery $ Flavor $ Year Pies_Sold;
datalines;

Samford apple 1995 234
Samford apple 1996 288
Samford blueberry 1995 103
Samford blueberry 1996 143
Samford cherry 1995 173
Samford cherry 1996 195
Samford rhubarb 1995 26
Samford rhubarb 1996 28
Oak apple 1995 319
Oak apple 1996 371
Oak blueberry 1995 174
Oak blueberry 1996 206
Oak cherry 1995 246
Oak cherry 1996 311
Oak rhubarb 1995 51
Oak rhubarb 1996 56
Clyde apple 1995 313
Clyde apple 1996 415
Clyde blueberry 1995 177
Clyde blueberry 1996 201

204 Program � Chapter 7

Clyde cherry 1995 250
Clyde cherry 1996 328
Clyde rhubarb 1995 60
Clyde rhubarb 1996 59
;

Create a vertical bar chart with the bars that are subdivided into categories. The
VBAR statement produces a vertical bar chart with one bar for each pie flavor. SUBGROUP=
divides each bar into sales for each bakery.

proc chart data=piesales;
vbar flavor / subgroup=bakery

Specify the bar length variable. SUMVAR= specifies Pies_Sold as the variable whose values
are represented by the lengths of the bars.

sumvar=pies_sold;

Specify the title.

title ’Pie Sales by Flavor Subdivided by Bakery Location’;
run;

The CHART Procedure � Output 205

Output

The bar that represents the sales of apple pies, for example, shows 1,940 total pies across both
years and all three bakeries. The symbol for the Samford Avenue bakery represents the 522
pies at the top, the symbol for the Oak Street bakery represents the 690 pies in the middle, and
the symbol for the Clyde Drive bakery represents the 728 pies at the bottom of the bar for apple
pies. By default, the labels along the horizontal axis are truncated to eight characters.

Pie Sales by Flavor Subdivided by Bakery Location 1

Pies_Sold Sum

| SSSSS
| SSSSS
| SSSSS

1800 + SSSSS
| SSSSS
| SSSSS
| SSSSS

1600 + SSSSS
| SSSSS
| SSSSS SSSSS
| OOOOO SSSSS

1400 + OOOOO SSSSS
| OOOOO SSSSS
| OOOOO SSSSS
| OOOOO SSSSS

1200 + OOOOO SSSSS
| OOOOO OOOOO
| OOOOO OOOOO
| OOOOO SSSSS OOOOO

1000 + OOOOO SSSSS OOOOO
| OOOOO SSSSS OOOOO
| OOOOO SSSSS OOOOO
| OOOOO SSSSS OOOOO

800 + OOOOO OOOOO OOOOO
| CCCCC OOOOO OOOOO
| CCCCC OOOOO OOOOO
| CCCCC OOOOO OOOOO

600 + CCCCC OOOOO CCCCC
| CCCCC OOOOO CCCCC
| CCCCC OOOOO CCCCC
| CCCCC OOOOO CCCCC

400 + CCCCC CCCCC CCCCC
| CCCCC CCCCC CCCCC
| CCCCC CCCCC CCCCC
| CCCCC CCCCC CCCCC SSSSS

200 + CCCCC CCCCC CCCCC OOOOO
| CCCCC CCCCC CCCCC OOOOO
| CCCCC CCCCC CCCCC CCCCC
CCCCC CCCCC CCCCC CCCCC

apple blueberr cherry rhubarb

Flavor

Symbol Bakery Symbol Bakery Symbol Bakery

C Clyde O Oak S Samford

206 Example 4: Producing Side-by-Side Bar Charts � Chapter 7

Example 4: Producing Side-by-Side Bar Charts

Procedure features:
VBAR statement options:

GROUP=
REF=
SUMVAR=
TYPE=

Data set: PIESALES“Program” on page 203

This example
� charts the mean values of a variable for the categories of another variable
� creates side-by-side bar charts for the categories of a third variable
� draws reference lines across the charts.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create a side-by-side vertical bar chart. The VBAR statement produces a side-by-side
vertical bar chart to compare the sales across values of Bakery, specified by GROUP=. Each
Bakery group contains a bar for each Flavor value.

proc chart data=piesales;
vbar flavor / group=bakery

The CHART Procedure � Program 207

Create reference lines. REF= draws reference lines to mark pie sales at 100, 200, and 300.

ref=100 200 300

Specify the bar length variable. SUMVAR= specifies Pies_Sold as the variable that is
represented by the lengths of the bars.

sumvar=pies_sold

Specify the statistical variable. TYPE= averages the sales for 1995 and 1996 for each
combination of bakery and flavor.

type=mean;

Specify the titles.

title ’Mean Yearly Pie Sales Grouped by Flavor’;
title2 ’within Bakery Location’;

run;

208 Output � Chapter 7

Output

The side-by-side bar charts compare the sales of apple pies, for example, across bakeries. The
mean for the Clyde Drive bakery is 364, the mean for the Oak Street bakery is 345, and the
mean for the Samford Avenue bakery is 261.

Mean Yearly Pie Sales Grouped by Flavor 1
within Bakery Location

Pies_Sold Mean

| ***
350 + *** ***

| *** ***
| *** ***
| *** ***
| *** ***

300 +--***-------------------***--
| *** *** ***
| *** *** *** ***
| *** *** *** ***
| *** *** *** *** ***

250 + *** *** *** *** ***
| *** *** *** *** ***
| *** *** *** *** ***
| *** *** *** *** ***
| *** *** *** *** ***

200 +--***-------***---------***-------***---------***------------------------
| *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** ***

150 + *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** *** ***

100 +--***--***--***---------***--***--***---------***--***--***--------------
| *** *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** *** *** ***

50 + *** *** *** *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** *** *** *** *** ***
*** *** *** *** *** *** *** *** *** *** *** ***

a b c r a b c r a b c r Flavor
p l h h p l h h p l h h
p u e u p u e u p u e u
l e r b l e r b l e r b
e b r a e b r a e b r a

e y r e y r e y r
r b r b r b
r r r

|----- Clyde ----| |------ Oak -----| |---- Samford ---| Bakery

The CHART Procedure � Program 209

Example 5: Producing a Horizontal Bar Chart for a Subset of the Data
Procedure features:

HBAR statement options:
GROUP=
SUMVAR=

Other features:
WHERE= data set option

Data set: PIESALES“Program” on page 203

This example
� produces horizontal bar charts only for observations with a common value
� charts the values of a variable for the categories of another variable
� creates side-by-side bar charts for the categories of a third variable.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the variable value limitation for the horizontal bar chart. WHERE= limits the
chart to only the 1995 sales totals.

proc chart data=piesales(where=(year=1995));

Create a side-by-side horizontal bar chart. The HBAR statement produces a side-by-side
horizontal bar chart to compare sales across values of Flavor, specified by GROUP=. Each
Flavor group contains a bar for each Bakery value.

hbar bakery / group=flavor

Specify the bar length variable. SUMVAR= specifies Pies_Sold as the variable whose values
are represented by the lengths of the bars.

sumvar=pies_sold;

Specify the title.

title ’1995 Pie Sales for Each Bakery According to Flavor’;
run;

210 Output � Chapter 7

Output

1995 Pie Sales for Each Bakery According to Flavor 1

Flavor Bakery Pies_Sold
Sum

|
apple Clyde |** 313.0000

Oak |*** 319.0000
Samford |******************************* 234.0000

|
blueberr Clyde |************************ 177.0000

Oak |*********************** 174.0000
Samford |************** 103.0000

|
cherry Clyde |********************************* 250.0000

Oak |********************************* 246.0000
Samford |*********************** 173.0000

|
rhubarb Clyde |******** 60.0000

Oak |******* 51.0000
Samford |*** 26.0000

|
----+---+---+---+---+---+---+---+---+---+---

30 60 90 120 150 180 210 240 270 300

Pies_Sold Sum

Example 6: Producing Block Charts for BY Groups

Procedure features:
BLOCK statement options:

GROUP=
NOHEADER=
SUMVAR=
SYMBOL=

BY statement
Other features:

PROC SORT
SAS system options:

NOBYLINE
OVP

TITLE statement:
#BYVAL specification

Data set: PIESALES“Program” on page 203

This example
� sorts the data set

The CHART Procedure � Program 211

� produces a block chart for each BY group

� organizes the blocks into a three-dimensional chart

� prints BY group-specific titles.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Sort the input data set PIESALES. PROC SORT sorts PIESALES by year. Sorting is
required to produce a separate chart for each year.

proc sort data=piesales out=sorted_piesales;
by year;

run;

Suppress BY lines and allow overprinted characters in the block charts. NOBYLINE
suppresses the usual BY lines in the output. OVP allows overprinted characters in the charts.

options nobyline ovp;

Specify the BY group for multiple block charts. The BY statement produces one chart for
1995 sales and one for 1996 sales.

proc chart data=sorted_piesales;
by year;

Create a block chart. The BLOCK statement produces a block chart for each year. Each chart
contains a grid (Bakery values along the bottom, Flavor values along the side) of cells that
contain the blocks.

block bakery / group=flavor

Specify the bar length variable. SUMVAR= specifies Pies_Sold as the variable whose values
are represented by the lengths of the blocks.

sumvar=pies_sold

212 Output � Chapter 7

Suppress the default header line. NOHEADER suppresses the default header line.

noheader

Specify the block symbols. SYMBOL= specifies the symbols in the blocks.

symbol=’OX’;

Specify the titles. The #BYVAL specification inserts the year into the second line of the title.

title ’Pie Sales for Each Bakery and Flavor’;
title2 ’#byval(year)’;

run;

Reset the printing of the default BY line. The SAS system option BYLINE resets the
printing of the default BY line.

options byline;

Output

Flavor

Bakery

The CHART Procedure � References 213

Flavor

Bakery

References

Nelder, J.A. (1976), “A Simple Algorithm for Scaling Graphs,” Applied Statistics,
Volume 25, Number 1, London: The Royal Statistical Society.

Terrell, G.R. and Scott, D.W. (1985), “Oversmoothed Nonparametric Density
Estimates,” Journal of the American Statistical Association, 80, 389, 209–214.

214

215

C H A P T E R

8
The CIMPORT Procedure

Overview: CIMPORT Procedure 215
What Does the CIMPORT Procedure Do? 215

General File Transport Process 215

Syntax: CIMPORT Procedure 216

PROC CIMPORT Statement 216

EXCLUDE Statement 219
SELECT Statement 220

Results: CIMPORT Procedure 221

Examples: CIMPORT Procedure 222

Example 1: Importing an Entire Data Library 222

Example 2: Importing Individual Catalog Entries 223

Example 3: Importing a Single Indexed SAS Data Set 224

Overview: CIMPORT Procedure

What Does the CIMPORT Procedure Do?
The CIMPORT procedure imports a transport file that was created (exported) by the

CPORT procedure. PROC CIMPORT restores the transport file to its original form as a
SAS catalog, SAS data set, or SAS data library. Transport files are sequential files that
each contain a SAS data library, a SAS catalog, or a SAS data set in transport format.
The transport format that PROC CPORT writes is the same for all environments and
for many releases of SAS.

PROC CIMPORT can read only transport files that PROC CPORT creates. For
information on the transport files that the transport engine creates, see the section on
SAS files in SAS Language Reference: Concepts.

PROC CIMPORT also converts SAS files, which means that it changes the format of
a SAS file from the format appropriate for one version of SAS to the format appropriate
for another version. For example, you can use PROC CPORT and PROC CIMPORT to
move files from earlier releases of SAS to more recent releases. In such cases, PROC
CIMPORT automatically converts the contents of the transport file as it imports it.

PROC CIMPORT produces no output, but it does write notes to the SAS log.

General File Transport Process
To export and import files, follow these steps:

1 Use PROC CPORT to export the SAS files that you want to transport.

216 Syntax: CIMPORT Procedure � Chapter 8

2 If you are changing operating environments, move the transport file to the new
machine by using either communications software or a magnetic medium.

Note: If you use communications software to move the transport file, be sure that
it treats the transport file as a binary file and that it modifies neither the
attributes nor the contents of the file. �

3 Use PROC CIMPORT to translate the transport file into the format appropriate
for the new operating environment or release.

Syntax: CIMPORT Procedure
See: CIMPORT Procedure in the documentation for your operating environment.

PROC CIMPORT destination=libref | <libref.>member-name <option(s)>;
EXCLUDE SAS file(s) | catalog entry(s)</ MEMTYPE=mtype></

ENTRYTYPE=entry-type>;
SELECT SAS file(s) | catalog entry(s)</ MEMTYPE=mtype></

ENTRYTYPE=entry-type>;

PROC CIMPORT Statement

PROC CIMPORT destination=libref | <libref.> member-name<option(s)>;

To do this Use this option

Identify the input transport file

Specify a previously defined fileref or the filename of the
transport file to read

INFILE=

Read the input transport file from a tape TAPE

Select files to import

Exclude specified entry types from the import process EET=

Specify entry types to import ET=

Control the contents of the transport file

Import a SAS file without changing the created and modified
date and time

DATECOPY

Specify whether to extend by 1 byte the length of short
numerics (less than 8 bytes) when you import them

EXTENDSN=

Specify that only data sets, only catalogs, or both, be moved
when a library is imported

MEMTYPE=

The CIMPORT Procedure � PROC CIMPORT Statement 217

To do this Use this option

Enable access to a locked catalog FORCE

Create a new catalog for the imported transport file, and delete
any existing catalog with the same name

NEW

Import SAS/AF PROGRAM and SCL entries without edit
capability

NOEDIT

Suppress the importing of source code for SAS/AF entries that
contain compiled SCL code

NOSRC

Required Arguments

destination=libref | < libref. >member-name
identifies the type of file to import and specifies the specific catalog, SAS data set, or
SAS data library to import.

destination
identifies the file or files in the transport file as a single catalog, as a single SAS
data set, or as the members of a SAS data library. The destination argument can
be one of the following:

CATALOG | CAT | C

DATA | DS | D

LIBRARY | LIB | L

libref | <libref. > member-name
specifies the specific catalog, SAS data set, or SAS data library as the destination
of the transport file. If the destination argument is CATALOG or DATA, you can
specify both a libref and a member name. If the libref is omitted, PROC CIMPORT
uses the default library as the libref, which is usually the WORK library. If the
destination argument is LIBRARY, specify only a libref.

Options

DATECOPY
copies the SAS internal date and time when the SAS file was created and the date
and time when it was last modified to the resulting destination file. Note that the
operating environment date and time are not preserved.

Restriction: DATECOPY can be used only when the destination file uses the V8 or
V9 engine.

Tip: You can alter the file creation date and time with the DTC= option on the
MODIFY statement“MODIFY Statement” on page 348 in a PROC DATASETS step.

EET=(etype(s))
excludes specified entry types from the import process. If the etype is a single entry
type, then you can omit the parentheses. Separate multiple values with spaces.

Interaction: You cannot specify both the EET= option and the ET= option in the
same PROC CIMPORT step.

218 PROC CIMPORT Statement � Chapter 8

ET=(etype(s))
specifies the entry types to import. If the etype is a single entry type, then you can
omit the parentheses. Separate multiple values with spaces.

Interaction: You cannot specify both the EET= option and the ET= option in the
same PROC CIMPORT step.

EXTENDSN=YES | NO
specifies whether to extend by 1 byte the length of short numerics (fewer than 8
bytes) when you import them. You can avoid a loss of precision when you transport a
short numeric in IBM format to IEEE format if you extend its length. You cannot
extend the length of an 8-byte short numeric.

Default: YES

Restriction: This option applies only to data sets.

Tip: Do not store fractions as short numerics.

FORCE
enables access to a locked catalog. By default, PROC CIMPORT locks the catalog
that it is updating to prevent other users from accessing the catalog while it is being
updated. The FORCE option overrides this lock, which allows other users to access
the catalog while it is being imported, or allows you to import a catalog that is
currently being accessed by other users.

CAUTION:
The FORCE option can lead to unpredictable results. The FORCE option allows
multiple users to access the same catalog entry simultaneously. �

INFILE=fileref | ’filename’
specifies a previously defined fileref or the filename of the transport file to read. If
you omit the INFILE= option, then PROC CIMPORT attempts to read from a
transport file with the fileref SASCAT. If a fileref SASCAT does not exist, then PROC
CIMPORT attempts to read from a file named SASCAT.DAT.

Alias: FILE=

Featured in: Example 1 on page 222.

MEMTYPE=mtype
specifies that only data sets, only catalogs, or both, be moved when a SAS library is
imported. Values for mtype can be

ALL
both catalogs and data sets

CATALOG | CAT
catalogs

DATA | DS
SAS data sets

NEW
creates a new catalog to contain the contents of the imported transport file when the
destination you specify has the same name as an existing catalog. NEW deletes any
existing catalog with the same name as the one you specify as a destination for the
import. If you do not specify NEW, and the destination you specify has the same
name as an existing catalog, PROC CIMPORT appends the imported transport file to
the existing catalog.

NOEDIT
imports SAS/AF PROGRAM and SCL entries without edit capability.

The CIMPORT Procedure � EXCLUDE Statement 219

You obtain the same results if you create a new catalog to contain SCL code by
using the MERGE statement with the NOEDIT option in the BUILD procedure of
SAS/AF software.

Note: The NOEDIT option affects only SAS/AF PROGRAM and SCL entries. It
does not affect FSEDIT SCREEN and FSVIEW FORMULA entries. �
Alias: NEDIT

NOSRC
suppresses the importing of source code for SAS/AF entries that contain compiled
SCL code.

You obtain the same results if you create a new catalog to contain SCL code by
using the MERGE statement with the NOSOURCE option in the BUILD procedure
of SAS/AF software.
Alias: NSRC
Interaction: PROC CIMPORT ignores the NOSRC option if you use it with an

entry type other than FRAME, PROGRAM, or SCL.

TAPE
reads the input transport file from a tape.
Default: PROC CIMPORT reads from disk.

EXCLUDE Statement

Excludes specified files or entries from the import process.

Tip: There is no limit to the number of EXCLUDE statements you can use in one
invocation of PROC CIMPORT.
Interaction: You can use either EXCLUDE statements or SELECT statements in a PROC
CIMPORT step, but not both.

EXCLUDE SAS file(s) | catalog entry(s)</ MEMTYPE=mtype></ ENTRYTYPE=
entry-type>;

Required Arguments

SAS file(s) | catalog entry(s)
specifies either the name(s) of one or more SAS files or the name(s) of one or more
catalog entries to be excluded from the import process. Specify SAS filenames if you
import a data library; specify catalog entry names if you import an individual SAS
catalog. Separate multiple filenames or entry names with a space. You can use
shortcuts to list many like-named files in the EXCLUDE statement. For more
information, see “Shortcuts for Specifying Lists of Variable Names” on page 24.

220 SELECT Statement � Chapter 8

Options

ENTRYTYPE=entry-type
specifies a single entry type for the catalog entry(s) listed in the EXCLUDE
statement. See SAS Language Reference: Concepts for a complete list of catalog entry
types.
Restriction: ENTRYTYPE= is valid only when you import an individual SAS

catalog.
Alias: ETYPE=, ET=

MEMTYPE=mtype
specifies a single member type for the SAS file(s) listed in the EXCLUDE statement.
Values for mtype can be

ALL
both catalogs and data sets

CATALOG
catalogs

DATA
SAS data sets.
You can also specify the MEMTYPE= option, enclosed in parentheses, immediately

after the name of a file. In parentheses, MEMTYPE= identifies the type of the
filename that just precedes it. When you use this form of the option, it overrides the
MEMTYPE= option that follows the slash in the EXCLUDE statement, but it must
match the MEMTYPE= option in the PROC CIMPORT statement.
Restriction: MEMTYPE= is valid only when you import a SAS data library.
Alias: MTYPE=, MT=
Default: ALL

SELECT Statement

Specifies individual files or entries to import.

Tip: There is no limit to the number of SELECT statements you can use in one
invocation of PROC CIMPORT.
Interaction: You can use either EXCLUDE statements or SELECT statements in a PROC
CIMPORT step, but not both.
Featured in: Example 2 on page 223

SELECT SAS file(s) | catalog entry(s)</ MEMTYPE=mtype></
ENTRYTYPE=entry-type>;

The CIMPORT Procedure � Results: CIMPORT Procedure 221

Required Arguments

SAS file(s) | catalog entry(s)
specifies either the name(s) of one or more SAS files or the name(s) of one or more
catalog entries to import. Specify SAS filenames if you import a data library; specify
catalog entry names if you import an individual SAS catalog. Separate multiple
filenames or entry names with a space. You can use shortcuts to list many
like-named files in the SELECT statement. For more information, see “Shortcuts for
Specifying Lists of Variable Names” on page 24.

Options

ENTRYTYPE=entry-type
specifies a single entry type for the catalog entry(s) listed in the SELECT statement.
See SAS Language Reference: Concepts for a complete list of catalog entry types.

Restriction: ENTRYTYPE= is valid only when you import an individual SAS
catalog.

Alias: ETYPE=, ET=

MEMTYPE=mtype
specifies a single member type for the SAS file(s) listed in the SELECT statement.
Valid values are CATALOG or CAT, DATA, or ALL.

You can also specify the MEMTYPE= option, enclosed in parentheses, immediately
after the name of a file. In parentheses, MEMTYPE= identifies the type of the
filename that just precedes it. When you use this form of the option, it overrides the
MEMTYPE= option that follows the slash in the SELECT statement, but it must
match the MEMTYPE= option in the PROC CIMPORT statement.

Restriction: MEMTYPE= is valid only when you import a SAS data library.

Alias: MTYPE=, MT=

Default: ALL

Results: CIMPORT Procedure
A common problem when you create or import a transport file under the z/OS

environment is a failure to specify the correct Data Control Block (DCB) characteristics.
When you reference a transport file you must specify the following DCB characteristics:

LRECL: 80

BLKSIZE: 8000

RECFM: FB

Note: A BLKSIZE value of less than 8000 may be more efficient for your storage
device in some cases. The BLKSIZE value must be an exact multiple of the LRECL
value. �

Another common problem can occur if you use communications software to move files
from another environment to z/OS. In some cases, the transport file does not have the
proper DCB characteristics when it arrives on z/OS. If the communications software
does not allow you to specify file characteristics, try the following approach for z/OS:

1 Create a file under z/OS with the correct DCB characteristics and initialize the file.

222 Examples: CIMPORT Procedure � Chapter 8

2 Move the transport file from the other environment to the newly created file under
z/OS using binary transfer.

Examples: CIMPORT Procedure

Example 1: Importing an Entire Data Library

Procedure features:
PROC CIMPORT statement option:

INFILE=

This example shows how to use PROC CIMPORT to read from disk a transport file,
named TRANFILE, that PROC CPORT created from a SAS data library in another
operating environment. The transport file was moved to the new operating environment
by means of communications software or magnetic medium. PROC CIMPORT imports
the transport file to a SAS data library, called NEWLIB, in the new operating
environment.

Program

Specify the library name and filename. The LIBNAME statement specifies a libname for
the new SAS data library. The FILENAME statement specifies the filename of the transport file
that PROC CPORT created and enables you to specify any operating environment options for
file characteristics.

libname newlib ’SAS-data-library’;
filename tranfile ’transport-file’

host-option(s)-for-file-characteristics;

Import the SAS data library in the NEWLIB library. PROC CIMPORT imports the SAS
data library into the library named NEWLIB.

proc cimport library=newlib infile=tranfile;
run;

The CIMPORT Procedure � Program 223

SAS Log

NOTE: Proc CIMPORT begins to create/update catalog NEWLIB.FINANCE
NOTE: Entry LOAN.FRAME has been imported.
NOTE: Entry LOAN.HELP has been imported.
NOTE: Entry LOAN.KEYS has been imported.
NOTE: Entry LOAN.PMENU has been imported.
NOTE: Entry LOAN.SCL has been imported.
NOTE: Total number of entries processed in catalog NEWLIB.FINANCE: 5

NOTE: Proc CIMPORT begins to create/update catalog NEWLIB.FORMATS
NOTE: Entry REVENUE.FORMAT has been imported.
NOTE: Entry DEPT.FORMATC has been imported.
NOTE: Total number of entries processed in catalog NEWLIB.FORMATS: 2

Example 2: Importing Individual Catalog Entries

Procedure features:
PROC CIMPORT statement options:

INFILE=
SELECT statement

This example shows how to use PROC CIMPORT to import the individual catalog
entries LOAN.PMENU and LOAN.SCL from the transport file TRANS2, which was
created from a single SAS catalog.

Program

Specify the library name, filename, and operating environment options. The LIBNAME
statement specifies a libname for the new SAS data library. The FILENAME statement specifies
the filename of the transport file that PROC CPORT created and enables you to specify any
operating environment options for file characteristics.

libname newlib ’SAS-data-library’;
filename trans2 ’transport-file’

host-option(s)-for-file-characteristics;

Import the specified catalog entries to the new SAS catalog. PROC CIMPORT imports
the individual catalog entries from the TRANS2 transport file and stores them in a new SAS
catalog called NEWLIB.FINANCE. The SELECT statement selects only the two specified
entries from the transport file to be imported into the new catalog.

proc cimport catalog=newlib.finance infile=trans2;
select loan.pmenu loan.scl;

run;

224 SAS Log � Chapter 8

SAS Log

NOTE: Proc CIMPORT begins to create/update catalog NEWLIB.FINANCE
NOTE: Entry LOAN.PMENU has been imported.
NOTE: Entry LOAN.SCL has been imported.
NOTE: Total number of entries processed in catalog NEWLIB.FINANCE: 2

Example 3: Importing a Single Indexed SAS Data Set
Procedure features:

PROC CIMPORT statement option:
INFILE=

This example shows how to use PROC CIMPORT to import an indexed SAS data set
from a transport file that was created by PROC CPORT from a single SAS data set.

Program

Specify the library name, filename, and operating environment options. The LIBNAME
statement specifies a libname for the new SAS data library. The FILENAME statement specifies
the filename of the transport file that PROC CPORT created and enables you to specify any
operating environment options for file characteristics.

libname newdata ’SAS-data-library’;
filename trans3 ’transport-file’

host-option(s)-for-file-characteristics;

Import the SAS data set. PROC CIMPORT imports the single SAS data set that you identify
with the DATA= specification in the PROC CIMPORT statement. PROC CPORT exported the
data set NEWDATA.TIMES in the transport file TRANS3.

proc cimport data=newdata.times infile=trans3;
run;

SAS Log

NOTE: Proc CIMPORT begins to create/update data set NEWDATA.TIMES
NOTE: The data set index x is defined.
NOTE: Data set contains 2 variables and 2 observations.

Logical record length is 16

225

C H A P T E R

9
The COMPARE Procedure

Overview: COMPARE Procedure 226
What Does the COMPARE Procedure Do? 226

What Information Does PROC COMPARE Provide? 226

How Can PROC COMPARE Output Be Customized? 227

Syntax: COMPARE Procedure 229

PROC COMPARE Statement 229
BY Statement 236

ID Statement 237

VAR Statement 239

WITH Statement 239

Concepts: COMPARE Procedure 240

Comparisons Using PROC COMPARE 240
A Comparison by Position of Observations 240

A Comparison with an ID Variable 241

The Equality Criterion 242

Using the CRITERION= Option 242

Definition of Difference and Percent Difference 244
How PROC COMPARE Handles Variable Formats 244

Results: COMPARE Procedure 244

Results Reporting 244

SAS Log 244

Macro Return Codes (SYSINFO) 244
Procedure Output 246

Procedure Output Overview 246

Data Set Summary 246

Variables Summary 246

Observation Summary 247

Values Comparison Summary 248
Value Comparison Results 249

Table of Summary Statistics 250

Comparison Results for Observations (Using the TRANSPOSE Option) 252

ODS Table Names 253

Output Data Set (OUT=) 254
Output Statistics Data Set (OUTSTATS=) 255

Examples: COMPARE Procedure 256

Example 1: Producing a Complete Report of the Differences 256

Example 2: Comparing Variables in Different Data Sets 261

Example 3: Comparing a Variable Multiple Times 263
Example 4: Comparing Variables That Are in the Same Data Set 264

Example 5: Comparing Observations with an ID Variable 266

Example 6: Comparing Values of Observations Using an Output Data Set (OUT=) 270

226 Overview: COMPARE Procedure � Chapter 9

Example 7: Creating an Output Data Set of Statistics (OUTSTATS=) 273

Overview: COMPARE Procedure

What Does the COMPARE Procedure Do?
The COMPARE procedure compares the contents of two SAS data sets, selected

variables in different data sets, or variables within the same data set.
PROC COMPARE compares two data sets: the base data set and the comparison

data set. The procedure determines matching variables and matching observations.
Matching variables are variables with the same name or variables that you explicitly
pair by using the VAR and WITH statements. Matching variables must be of the same
type. Matching observations are observations that have the same values for all ID
variables that you specify or, if you do not use the ID statement, that occur in the same
position in the data sets. If you match observations by ID variables, then both data sets
must be sorted by all ID variables.

What Information Does PROC COMPARE Provide?
PROC COMPARE generates the following information about the two data sets that

are being compared:
� whether matching variables have different values
� whether one data set has more observations than the other
� what variables the two data sets have in common

� how many variables are in one data set but not in the other
� whether matching variables have different formats, labels, or types.
� a comparison of the values of matching observations.

Further, PROC COMPARE creates two kinds of output data sets that give detailed
information about the differences between observations of variables it is comparing.

The following example compares the data sets PROCLIB.ONE and PROCLIB.TWO,
which contain similar data about students:

data proclib.one(label=’First Data Set’);
input student year $ state $ gr1 gr2;
label year=’Year of Birth’;
format gr1 4.1;
datalines;

1000 1970 NC 85 87
1042 1971 MD 92 92
1095 1969 PA 78 72
1187 1970 MA 87 94
;

data proclib.two(label=’Second Data Set’);
input student $ year $ state $ gr1

gr2 major $;
label state=’Home State’;
format gr1 5.2;
datalines;

The COMPARE Procedure � How Can PROC COMPARE Output Be Customized? 227

1000 1970 NC 84 87 Math
1042 1971 MA 92 92 History
1095 1969 PA 79 73 Physics
1187 1970 MD 87 74 Dance
1204 1971 NC 82 96 French
;

How Can PROC COMPARE Output Be Customized?
PROC COMPARE produces lengthy output. You can use one or more options to

determine the kinds of comparisons to make and the degree of detail in the report. For
example, in the following PROC COMPARE step, the NOVALUES option suppresses
the part of the output that shows the differences in the values of matching variables:

proc compare base=proclib.one
compare=proclib.two novalues;

run;

Output 9.1 Comparison of Two Data Sets

The SAS System 1

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Data Set Summary

Dataset Created Modified NVar NObs Label

PROCLIB.ONE 13MAY98:15:01:42 13MAY98:15:01:42 5 4 First Data Set
PROCLIB.TWO 13MAY98:15:01:44 13MAY98:15:01:44 6 5 Second Data Set

Variables Summary

Number of Variables in Common: 5.
Number of Variables in PROCLIB.TWO but not in PROCLIB.ONE: 1.
Number of Variables with Conflicting Types: 1.
Number of Variables with Differing Attributes: 3.

Listing of Common Variables with Conflicting Types

Variable Dataset Type Length

student PROCLIB.ONE Num 8
PROCLIB.TWO Char 8

Listing of Common Variables with Differing Attributes

Variable Dataset Type Length Format Label

year PROCLIB.ONE Char 8 Year of Birth
PROCLIB.TWO Char 8

state PROCLIB.ONE Char 8
PROCLIB.TWO Char 8 Home State

228 How Can PROC COMPARE Output Be Customized? � Chapter 9

The SAS System 2

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Listing of Common Variables with Differing Attributes

Variable Dataset Type Length Format Label

gr1 PROCLIB.ONE Num 8 4.1
PROCLIB.TWO Num 8 5.2

Observation Summary

Observation Base Compare

First Obs 1 1
First Unequal 1 1
Last Unequal 4 4
Last Match 4 4
Last Obs . 5

Number of Observations in Common: 4.
Number of Observations in PROCLIB.TWO but not in PROCLIB.ONE: 1.
Total Number of Observations Read from PROCLIB.ONE: 4.
Total Number of Observations Read from PROCLIB.TWO: 5.

Number of Observations with Some Compared Variables Unequal: 4.
Number of Observations with All Compared Variables Equal: 0.

The SAS System 3

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Values Comparison Summary

Number of Variables Compared with All Observations Equal: 1.
Number of Variables Compared with Some Observations Unequal: 3.
Total Number of Values which Compare Unequal: 6.
Maximum Difference: 20.

Variables with Unequal Values

Variable Type Len Compare Label Ndif MaxDif

state CHAR 8 Home State 2
gr1 NUM 8 2 1.000
gr2 NUM 8 2 20.000

“Procedure Output” on page 246 shows the default output for these two data sets.
Example 1 on page 256 shows the complete output for these two data sets.

The COMPARE Procedure � PROC COMPARE Statement 229

Syntax: COMPARE Procedure
Restriction: You must use the VAR statement when you use the WITH statement.
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
ODS Table Names: See: “ODS Table Names” on page 253
Reminder: You can use the LABEL, ATTRIB, FORMAT, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 57 for
details. You can also use any global statements. See “Global Statements” on page 18 for
a list.

PROC COMPARE <option(s)>;
BY <DESCENDING> variable-1

<…<DESCENDING> variable-n>
<NOTSORTED>;

ID <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

VAR variable(s);
WITH variable(s);

To do this Use this statement

Produce a separate comparison for each BY group BY

Identify variables to use to match observations ID

Restrict the comparison to values of specific variables VAR

Compare variables of different names WITH and VAR

Compare two variables in the same data set WITH and VAR

PROC COMPARE Statement
Restriction: If you omit COMPARE=, then you must use the WITH and VAR statements.
Restriction: PROC COMPARE reports errors differently if one or both of the compared
data sets are not RADIX addressable. Version 6 compressed files are not RADIX
addressable, while, beginning with Version 7, compressed files are RADIX addressable.
(The integrity of the data is not compromised; the procedure simply numbers the
observations differently.)
Reminder: You can use data set options with the BASE= and COMPARE= options.

PROC COMPARE <option(s)>;

230 PROC COMPARE Statement � Chapter 9

To do this Use this option

Specify the data sets to compare

Specify the base data set BASE=

Specify the comparison data set COMPARE=

Control the output data set

Create an output data set OUT=

Write an observation for each observation in the BASE=
and COMPARE= data sets

OUTALL

Write an observation for each observation in the BASE=
data set

OUTBASE

Write an observation for each observation in the
COMPARE= data set

OUTCOMP

Write an observation that contains the differences for
each pair of matching observations

OUTDIF

Suppress the writing of observations when all values
are equal

OUTNOEQUAL

Write an observation that contains the percent
differences for each pair of matching observations

OUTPERCENT

Create an output data set that contains summary statistics OUTSTATS=

Specify how the values are compared

Specify the criterion for judging the equality of numeric
values

CRITERION=

Specify the method for judging the equality of numeric
values

METHOD=

Judge missing values equal to any value NOMISSBASE and NOMISSCOMP

Control the details in the default report

Include the values for all matching observations ALLOBS

Print a table of summary statistics for all pairs of
matching variables

ALLSTATS and STATS

Include in the report the values and differences for all
matching variables

ALLVARS

Print only a short comparison summary BRIEFSUMMARY

Change the report for numbers between 0 and 1 FUZZ=

Restrict the number of differences to print MAXPRINT=

Suppress the print of creation and last-modified dates NODATE

Suppress all printed output NOPRINT

Suppress the summary reports NOSUMMARY

Suppress the value comparison results. NOVALUES

Produce a complete listing of values and differences PRINTALL

The COMPARE Procedure � PROC COMPARE Statement 231

To do this Use this option

Print the value differences by observation, not by
variable

TRANSPOSE

Control the listing of variables and observations

List all variables and observations found in only one
data set

LISTALL

List all variables and observations found only in the
base data set

LISTBASE

List all observations found only in the base data set LISTBASEOBS

List all variables found only in the base data set LISTBASEVAR

List all variables and observations found only in the
comparison data set

LISTCOMP

List all observations found only in the comparison data
set

LISTCOMPOBS

List all variables found only in the comparison data set LISTCOMPVAR

List variables whose values are judged equal LISTEQUALVAR

List all observations found in only one data set LISTOBS

List all variables found in only one data set LISTVAR

Options

ALLOBS
includes in the report of value comparison results the values and, for numeric
variables, the differences for all matching observations, even if they are judged equal.

Default: If you omit ALLOBS, then PROC COMPARE prints values only for
observations that are judged unequal.

Interaction: When used with the TRANSPOSE option, ALLOBS invokes the
ALLVARS option and displays the values for all matching observations and
variables.

ALLSTATS
prints a table of summary statistics for all pairs of matching variables.

See also: “Table of Summary Statistics” on page 250 for information on the
statistics produced

ALLVARS
includes in the report of value comparison results the values and, for numeric
variables, the differences for all pairs of matching variables, even if they are judged
equal.

Default: If you omit ALLVARS, then PROC COMPARE prints values only for
variables that are judged unequal.

Interaction: When used with the TRANSPOSE option, ALLVARS displays unequal
values in context with the values for other matching variables. If you omit the
TRANSPOSE option, then ALLVARS invokes the ALLOBS option and displays the
values for all matching observations and variables.

232 PROC COMPARE Statement � Chapter 9

BASE=SAS-data-set
specifies the data set to use as the base data set.
Alias: DATA=
Default: the most recently created SAS data set
Tip: You can use the WHERE= data set option with the BASE= option to limit the

observations that are available for comparison.

BRIEFSUMMARY
produces a short comparison summary and suppresses the four default summary
reports (data set summary report, variables summary report, observation summary
report, and values comparison summary report).
Alias: BRIEF
Tip: By default, a listing of value differences accompanies the summary reports. To

suppress this listing, use the NOVALUES option.
Featured in: Example 4 on page 264

COMPARE=SAS-data-set
specifies the data set to use as the comparison data set.
Aliases: COMP=, C=

Default: If you omit COMPARE=, then the comparison data set is the same as the
base data set, and PROC COMPARE compares variables within the data set.

Restriction: If you omit COMPARE=, then you must use the WITH statement.
Tip: You can use the WHERE= data set option with COMPARE= to limit the

observations that are available for comparison.

CRITERION= �
specifies the criterion for judging the equality of numeric values. Normally, the value
of � (gamma) is positive, in which case the number itself becomes the equality
criterion. If you use a negative value for �, then PROC COMPARE uses an equality
criterion proportional to the precision of the computer on which SAS is running.
Default: 0.00001
See also: “The Equality Criterion” on page 242 for more information

ERROR
displays an error message in the SAS log when differences are found.
Interaction: This option overrides the WARNING option.

FUZZ=number
alters the values comparison results for numbers less than number. PROC
COMPARE prints

� 0 for any variable value that is less than number

� a blank for difference or percent difference if it is less than number

� 0 for any summary statistic that is less than number.

Default 0
Range: 0 - 1
Tip: A report that contains many trivial differences is easier to read in this form.

LISTALL
lists all variables and observations that are found in only one data set.
Alias LIST

Interaction: using LISTALL is equivalent to using the following four options:
LISTBASEOBS, LISTCOMPOBS, LISTBASEVAR, and LISTCOMPVAR.

The COMPARE Procedure � PROC COMPARE Statement 233

LISTBASE
lists all observations and variables that are found in the base data set but not in the
comparison data set.
Interaction: Using LISTBASE is equivalent to using the LISTBASEOBS and

LISTBASEVAR options.

LISTBASEOBS
lists all observations that are found in the base data set but not in the comparison
data set.

LISTBASEVAR
lists all variables that are found in the base data set but not in the comparison data
set.

LISTCOMP
lists all observations and variables that are found in the comparison data set but not
in the base data set.
Interaction: Using LISTCOMP is equivalent to using the LISTCOMPOBS and

LISTCOMPVAR options.

LISTCOMPOBS
lists all observations that are found in the comparison data set but not in the base
data set.

LISTCOMPVAR
lists all variables that are found in the comparison data set but not in the base data
set.

LISTEQUALVAR
prints a list of variables whose values are judged equal at all observations in addition
to the default list of variables whose values are judged unequal.

LISTOBS
lists all observations that are found in only one data set.
Interaction: Using LISTOBS is equivalent to using the LISTBASEOBS and

LISTCOMPOBS options.

LISTVAR
lists all variables that are found in only one data set.
Interaction: Using LISTVAR is equivalent to using both the LISTBASEVAR and

LISTCOMPVAR options.

MAXPRINT=total | (per-variable, total)
specifies the maximum number of differences to print, where

total
is the maximum total number of differences to print. The default value is 500
unless you use the ALLOBS option (or both the ALLVAR and TRANSPOSE
options), in which case the default is 32000.

per-variable
is the maximum number of differences to print for each variable within a BY
group. The default value is 50 unless you use the ALLOBS option (or both the
ALLVAR and TRANSPOSE options), in which case the default is 1000.
The MAXPRINT= option prevents the output from becoming extremely large when

data sets differ greatly.

METHOD=ABSOLUTE | EXACT | PERCENT | RELATIVE<(�)>
specifies the method for judging the equality of numeric values. The constant �

(delta) is a number between 0 and 1 that specifies a value to add to the denominator
when calculating the equality measure. By default, � is 0.

234 PROC COMPARE Statement � Chapter 9

Unless you use the CRITERION= option, the default method is EXACT. If you use
the CRITERION= option, then the default method is RELATIVE(�), where � (phi) is
a small number that depends on the numerical precision of the computer on which
SAS is running and on the value of CRITERION=.
See also: “The Equality Criterion” on page 242

NODATE
suppresses the display in the data set summary report of the creation dates and the
last modified dates of the base and comparison data sets.

NOMISSBASE
judges a missing value in the base data set equal to any value. (By default, a missing
value is equal only to a missing value of the same kind, that is .=., .^=.A, .A=.A,
.A^=.B, and so on.)

You can use this option to determine the changes that would be made to the
observations in the comparison data set if it were used as the master data set and
the base data set were used as the transaction data set in a DATA step UPDATE
statement. For information on the UPDATE statement, see the chapter on SAS
language statements in SAS Language Reference: Dictionary.

NOMISSCOMP
judges a missing value in the comparison data set equal to any value. (By default, a
missing value is equal only to a missing value of the same kind, that is .=., .^=.A,
.A=.A, .A^=.B, and so on.)

You can use this option to determine the changes that would be made to the
observations in the base data set if it were used as the master data set and the
comparison data set were used as the transaction data set in a DATA step UPDATE
statement. For information on the UPDATE statement, see the chapter on SAS
language statements in SAS Language Reference: Dictionary.

NOMISSING
judges missing values in both the base and comparison data sets equal to any value.
By default, a missing value is only equal to a missing value of the same kind, that is
.=., .^=.A, .A=.A, .A^=.B, and so on.
Alias: NOMISS
Interaction: Using NOMISSING is equivalent to using both NOMISSBASE and

NOMISSCOMP.

NOPRINT
suppresses all printed output.
Tip: You may want to use this option when you are creating one or more output

data sets.
Featured in: Example 6 on page 270

NOSUMMARY
suppresses the data set, variable, observation, and values comparison summary
reports.
Tips: NOSUMMARY produces no output if there are no differences in the matching

values.
Featured in: Example 2 on page 261

NOTE
displays notes in the SAS log that describe the results of the comparison, whether or
not differences were found.

NOVALUES
suppresses the report of the value comparison results.

The COMPARE Procedure � PROC COMPARE Statement 235

Featured in: “Overview: COMPARE Procedure” on page 226

OUT=SAS-data-set
names the output data set. If SAS-data-set does not exist, then PROC COMPARE
creates it. SAS-data-set contains the differences between matching variables.
See also: “Output Data Set (OUT=)” on page 254
Featured in: Example 6 on page 270

OUTALL
writes an observation to the output data set for each observation in the base data set
and for each observation in the comparison data set. The option also writes
observations to the output data set that contains the differences and percent
differences between the values in matching observations.
Tip: Using OUTALL is equivalent to using the following four options: OUTBASE,

OUTCOMP, OUTDIF, and OUTPERCENT.
See also: “Output Data Set (OUT=)” on page 254

OUTBASE
writes an observation to the output data set for each observation in the base data set,
creating observations in which _TYPE_=BASE.
See also: “Output Data Set (OUT=)” on page 254
Featured in: Example 6 on page 270

OUTCOMP
writes an observation to the output data set for each observation in the comparison
data set, creating observations in which _TYPE_=COMP.
See also: “Output Data Set (OUT=)” on page 254
Featured in: Example 6 on page 270

OUTDIF
writes an observation to the output data set for each pair of matching observations.
The values in the observation include values for the differences between the values
in the pair of observations. The value of _TYPE_ in each observation is DIF.
Default: The OUTDIF option is the default unless you specify the OUTBASE,

OUTCOMP, or OUTPERCENT option. If you use any of these options, then you
must explicitly specify the OUTDIF option to create _TYPE_=DIF observations in
the output data set.

See also: “Output Data Set (OUT=)” on page 254
Featured in: Example 6 on page 270

OUTNOEQUAL
suppresses the writing of an observation to the output data set when all values in
the observation are judged equal. In addition, in observations containing values for
some variables judged equal and others judged unequal, the OUTNOEQUAL option
uses the special missing value ".E" to represent differences and percent differences
for variables judged equal.
See also: “Output Data Set (OUT=)” on page 254
Featured in: Example 6 on page 270

OUTPERCENT
writes an observation to the output data set for each pair of matching observations.
The values in the observation include values for the percent differences between the
values in the pair of observations. The value of _TYPE_ in each observation is
PERCENT.
See also: “Output Data Set (OUT=)” on page 254

236 BY Statement � Chapter 9

OUTSTATS=SAS-data-set
writes summary statistics for all pairs of matching variables to the specified
SAS-data-set.
Tip: If you want to print a table of statistics in the procedure output, then use the

STATS, ALLSTATS, or PRINTALL option.
See also: “Output Statistics Data Set (OUTSTATS=)” on page 255 and “Table of

Summary Statistics” on page 250.
Featured in: Example 7 on page 273

PRINTALL
invokes the following options: ALLVARS, ALLOBS, ALLSTATS, LISTALL, and
WARNING.
Featured in: Example 1 on page 256

STATS
prints a table of summary statistics for all pairs of matching numeric variables that
are judged unequal.
See also: “Table of Summary Statistics” on page 250 for information on the

statistics produced.

TRANSPOSE
prints the reports of value differences by observation instead of by variable.
Interaction: If you also use the NOVALUES option, then the TRANSPOSE option

lists only the names of the variables whose values are judged unequal for each
observation, not the values and differences.

See also: “Comparison Results for Observations (Using the TRANSPOSE Option)”
on page 252.

WARNING
displays a warning message in the SAS log when differences are found.
Interaction: The ERROR option overrides the WARNING option.

BY Statement

Produces a separate comparison for each BY group.

Main discussion: “BY” on page 58

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, then the observations in the data set must be sorted by all the variables
that you specify. Variables in a BY statement are called BY variables.

The COMPARE Procedure � ID Statement 237

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, for example, chronological order.
The requirement for ordering observations according to the values of BY variables is

suspended for BY-group processing when you use the NOTSORTED option. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, then the procedure treats each contiguous set as a separate BY
group.

BY Processing with PROC COMPARE
To use a BY statement with PROC COMPARE, you must sort both the base and

comparison data sets by the BY variables. The nature of the comparison depends on
whether all BY variables are in the comparison data set and, if they are, whether their
attributes match those of the BY variables in the base data set. The following table
shows how PROC COMPARE behaves under different circumstances:

Condition Behavior of PROC COMPARE

All BY variables are in the comparison
data set and all attributes match exactly

Compares corresponding BY groups

None of the BY variables are in the
comparison data set

Compares each BY group in the base data set with
the entire comparison data set

Some BY variables are not in the
comparison data set

Writes an error message to the SAS log and
terminates

Some BY variables have different types in
the two data sets

Writes an error message to the SAS log and
terminates

ID Statement

Lists variables to use to match observations.

See also: “A Comparison with an ID Variable” on page 241

Featured in: Example 5 on page 266

ID <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

238 ID Statement � Chapter 9

Required Arguments

variable
specifies the variable that the procedure uses to match observations. You can specify
more than one variable, but the data set must be sorted by the variable or variables
you specify. These variables are ID variables. ID variables also identify observations
on the printed reports and in the output data set.

Options

DESCENDING
specifies that the data set is sorted in descending order by the variable that
immediately follows the word DESCENDING in the ID statement.

If you use the DESCENDING option, then you must sort the data sets. SAS does
not use an index to process an ID statement with the DESCENDING option.
Further, the use of DESCENDING for ID variables must correspond to the use of the
DESCENDING option in the BY statement in the PROC SORT step that was used to
sort the data sets.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The data are grouped in another way, for example, chronological order.
See also: “Comparing Unsorted Data” on page 238

Requirements for ID Variables

� ID variables must be in the BASE= data set or PROC COMPARE stops processing.
� If an ID variable is not in the COMPARE= data set, then PROC COMPARE writes

a warning message to the SAS log and does not use that variable to match
observations in the comparison data set (but does write it to the OUT= data set).

� ID variables must be of the same type in both data sets.
� You should sort both data sets by the common ID variables (within the BY

variables, if any) unless you specify the NOTSORTED option.

Comparing Unsorted Data
If you do not want to sort the data set by the ID variables, then you can use the

NOTSORTED option. When you specify the NOTSORTED option, or if the ID
statement is omitted, PROC COMPARE matches the observations one-to-one. That is,
PROC COMPARE matches the first observation in the base data set with the first
observation in the comparison data set, the second with the second, and so on. If you
use NOTSORTED, and the ID values of corresponding observations are not the same,
then PROC COMPARE prints an error message and stops processing.

If the data sets are not sorted by the common ID variables and if you do not specify
the NOTSORTED option, then PROC COMPARE writes a warning message to the SAS
log and continues to process the data sets as if you had specified NOTSORTED.

Avoiding Duplicate ID Values
The observations in each data set should be uniquely labeled by the values of the ID

variables. If PROC COMPARE finds two successive observations with the same ID
values in a data set, then it

The COMPARE Procedure � WITH Statement 239

� prints the warning Duplicate Observations for the first occurrence for that data
set

� prints the total number of duplicate observations found in the data set in the
observation summary report

� uses the first observation with the duplicate value for the comparison.

When the data sets are not sorted, PROC COMPARE detects only those duplicate
observations that occur in succession.

VAR Statement

Restricts the comparison of the values of variables to those named in the VAR statement.

Featured in: Example 2 on page 261, Example 3 on page 263, and Example 4 on page 264

VAR variable(s);

Required Arguments

variable(s)
one or more variables that appear in the BASE= and COMPARE= data sets or only
in the BASE= data set.

Details

� If you do not use the VAR statement, then PROC COMPARE compares the values
of all matching variables except those appearing in BY and ID statements.

� If a variable in the VAR statement does not exist in the COMPARE= data set, then
PROC COMPARE writes a warning message to the SAS log and ignores the
variable.

� If a variable in the VAR statement does not exist in the BASE= data set, then
PROC COMPARE stops processing and writes an error message to the SAS log.

� The VAR statement restricts only the comparison of values of matching variables.
PROC COMPARE still reports on the total number of matching variables and
compares their attributes. However, it produces neither error nor warning
messages about these variables.

WITH Statement

Compares variables in the base data set with variables that have different names in the
comparison data set, and compares different variables that are in the same data set.

Restriction: You must use the VAR statement when you use the WITH statement.

Featured in: Example 2 on page 261, Example 3 on page 263, and Example 4 on page 264

240 Concepts: COMPARE Procedure � Chapter 9

WITH variable(s);

Required Arguments

variable(s)
one or more variables to compare with variables in the VAR statement.

Comparing Selected Variables
If you want to compare variables in the base data set with variables that have

different names in the comparison data set, then specify the names of the variables in
the base data set in the VAR statement and specify the names of the matching
variables in the WITH statement. The first variable that you list in the WITH
statement corresponds to the first variable that you list in the VAR statement, the
second with the second, and so on. If the WITH statement list is shorter than the VAR
statement list, then PROC COMPARE assumes that the extra variables in the VAR
statement have the same names in the comparison data set as they do in the base data
set. If the WITH statement list is longer than the VAR statement list, then PROC
COMPARE ignores the extra variables.

A variable name can appear any number of times in the VAR statement or the WITH
statement. By selecting VAR and WITH statement lists, you can compare the variables
in any permutation.

If you omit the COMPARE= option in the PROC COMPARE statement, then you
must use the WITH statement. In this case, PROC COMPARE compares the values of
variables with different names in the BASE= data set.

Concepts: COMPARE Procedure

Comparisons Using PROC COMPARE
PROC COMPARE first compares the following:
� data set attributes (set by the data set options TYPE= and LABEL=).
� variables. PROC COMPARE checks each variable in one data set to determine

whether it matches a variable in the other data set.
� attributes (type, length, labels, formats, and informats) of matching variables.
� observations. PROC COMPARE checks each observation in one data set to

determine whether it matches an observation in the other data set. PROC
COMPARE either matches observations by their position in the data sets or by the
values of the ID variable.

After making these comparisons, PROC COMPARE compares the values in the parts
of the data sets that match. PROC COMPARE either compares the data by the position
of observations or by the values of an ID variable.

A Comparison by Position of Observations
Figure 9.1 on page 241 shows two data sets. The data inside the shaded boxes shows

the part of the data sets that the procedure compares. Assume that variables with the
same names have the same type.

The COMPARE Procedure � A Comparison with an ID Variable 241

Figure 9.1 Comparison by the Positions of Observations

Data Set ONE

IDNUM NAME GENDER GPA

2998 Bagwell f 3.722

9866 Metcalf m 3.342

2118 Gray f 3.177

3847 Baglione f 4.000

2342 Hall m 3.574

Data Set TWO

IDNUM NAME GENDER GPA YEAR

2998 Bagwell f 3.722 2

9866 Metcalf m 3.342 2

2118 Gray f 3.177 3

3847 Baglione f 4.000 4

2342 Hall m 3.574 4

7565 Gold f 3.609 2

1755 Syme f 3.883 3

When you use PROC COMPARE to compare data set TWO with data set ONE, the
procedure compares the first observation in data set ONE with the first observation in
data set TWO, and it compares the second observation in the first data set with the
second observation in the second data set, and so on. In each observation that it
compares, the procedure compares the values of the IDNUM, NAME, GENDER, and
GPA.

The procedure does not report on the values of the last two observations or the
variable YEAR in data set TWO because there is nothing to compare them with in data
set ONE.

A Comparison with an ID Variable
In a simple comparison, PROC COMPARE uses the observation number to determine

which observations to compare. When you use an ID variable, PROC COMPARE uses
the values of the ID variable to determine which observations to compare. ID variables
should have unique values and must have the same type.

For the two data sets shown in Figure 9.2 on page 242, assume that IDNUM is an ID
variable and that IDNUM has the same type in both data sets. The procedure compares
the observations that have the same value for IDNUM. The data inside the shaded
boxes shows the part of the data sets that the procedure compares.

242 The Equality Criterion � Chapter 9

Figure 9.2 Comparison by the Value of the ID Variable

Data Set ONE

IDNUM NAME GENDER GPA

2998 Bagwell f 3.722

9866 Metcalf m 3.342

2118 Gray f 3.177

3847 Baglione f 4.000

2342 Hall m 3.574

Data Set TWO

IDNUM NAME GENDER GPA YEAR

2998 Bagwell f 3.722 2

9866 Metcalf m 3.342 2

2118 Gray f 3.177 3

3847 Baglione f 4.000 4

2342 Hall m 3.574 4

7565 Gold f 3.609 2

1755 Syme f 3.883 3

The data sets contain three matching variables: NAME, GENDER, and GPA. They
also contain five matching observations: the observations with values of 2998, 9866,
2118, 3847, and 2342 for IDNUM.

Data Set TWO contains two observations (IDNUM=7565 and IDNUM=1755) for
which data set ONE contains no matching observations. Similarly, no variable in data
set ONE matches the variable YEAR in data set TWO.

See Example 5 on page 266 for an example that uses an ID variable.

The Equality Criterion

Using the CRITERION= Option
The COMPARE procedure judges numeric values unequal if the magnitude of their

difference, as measured according to the METHOD= option, is greater than the value of
the CRITERION= option. PROC COMPARE provides four methods for applying
CRITERION=:

� The EXACT method tests for exact equality.

� The ABSOLUTE method compares the absolute difference to the value specified by
CRITERION=.

� The RELATIVE method compares the absolute relative difference to the value
specified by CRITERION=.

� The PERCENT method compares the absolute percent difference to the value
specified by CRITERION=.

For a numeric variable compared, let x be its value in the base data set and let y be
its value in the comparison data set. If both x and y are nonmissing, then the values

The COMPARE Procedure � The Equality Criterion 243

are judged unequal according to the value of METHOD= and the value of CRITERION=
(�) as follows:

� If METHOD=EXACT, then the values are unequal if y does not equal x.
� If METHOD=ABSOLUTE, then the values are unequal if

��� �� � �� � �

� If METHOD=RELATIVE, then the values are unequal if

��� �� � �� � �������� � ������� �� � �� � �

The values are equal if x=y=0.
� If METHOD=PERCENT, then the values are unequal if

��� ���� �� � �� ���� ���� � � 	
� � �� �

or

� �� � 	
� � �

If x or y is missing, then the comparison depends on the NOMISSING option. If the
NOMISSING option is in effect, then a missing value will always be judged equal to
anything. Otherwise, a missing value is judged equal only to a missing value of the
same type (that is, .=., .^=.A, .A=.A, .A^=.B, and so on).

If the value that is specified for CRITERION= is negative, then the actual criterion
that is used is made equal to the absolute value of � times a very small number �
(epsilon) that depends on the numerical precision of the computer. This number � is
defined as the smallest positive floating-point value such that, using machine
arithmetic, 1−�<1<1+�. Round-off or truncation error in floating-point computations is
typically a few orders of magnitude larger than �. This means that CRITERION=−1000
often provides a reasonable test of the equality of computed results at the machine level
of precision.

The value � added to the denominator in the RELATIVE method is specified in
parentheses after the method name: METHOD=RELATIVE(�). If not specified in
METHOD=, then � defaults to 0. The value of � can be used to control the behavior of
the error measure when both x and y are very close to 0. If � is not given and x and y
are very close to 0, then any error produces a large relative error (in the limit, 2).

Specifying a value for � avoids this extreme sensitivity of the RELATIVE method for
small values. If you specify METHOD=RELATIVE(�) CRITERION=� when both x and y
are much smaller than � in absolute value, then the comparison is as if you had
specified METHOD=ABSOLUTE CRITERION=��. However, when either x or y is much
larger than � in absolute value, the comparison is like METHOD=RELATIVE
CRITERION=�. For moderate values of x and y, METHOD=RELATIVE(�)
CRITERION=� is, in effect, a compromise between METHOD=ABSOLUTE
CRITERION=� � and METHOD=RELATIVE CRITERION=�.

For character variables, if one value is longer than the other, then the shorter value
is padded with blanks for the comparison. Nonblank character values are judged equal
only if they agree at each character. If the NOMISSING option is in effect, then blank
character values are judged equal to anything.

244 How PROC COMPARE Handles Variable Formats � Chapter 9

Definition of Difference and Percent Difference
In the reports of value comparisons and in the OUT= data set, PROC COMPARE

displays difference and percent difference values for the numbers compared. These
quantities are defined using the value from the base data set as the reference value.
For a numeric variable compared, let x be its value in the base data set and let y be its
value in the comparison data set. If x and y are both nonmissing, then the difference
and percent difference are defined as follows:

Difference = � � �

Percent Difference = �� � �� �� � ��� ��� � �� �

Percent Difference = missing for � � � �

How PROC COMPARE Handles Variable Formats
PROC COMPARE compares unformatted values. If you have two matching variables

that are formatted differently, then PROC COMPARE lists the formats of the variables.

Results: COMPARE Procedure

Results Reporting
PROC COMPARE reports the results of its comparisons in the following ways:

� the SAS log

� return codes stored in the automatic macro SYSINFO

� procedure output

� output data sets.

SAS Log
When you use the WARNING, PRINTALL, or ERROR option, PROC COMPARE

writes a description of the differences to the SAS log.

Macro Return Codes (SYSINFO)
PROC COMPARE stores a return code in the automatic macro variable SYSINFO.

The value of the return code provides information about the result of the comparison.
By checking the value of SYSINFO after PROC COMPARE has run and before any
other step begins, SAS macros can use the results of a PROC COMPARE step to
determine what action to take or what parts of a SAS program to execute.

Table 9.1 on page 245 is a key for interpreting the SYSINFO return code from PROC
COMPARE. For each of the conditions listed, the associated value is added to the
return code if the condition is true. Thus, the SYSINFO return code is the sum of the
codes listed in Table 9.1 on page 245 for the applicable conditions:

The COMPARE Procedure � Macro Return Codes (SYSINFO) 245

Table 9.1 Macro Return Codes

Bit Condition Code Hex Description

1 DSLABEL 1 0001X Data set labels differ

2 DSTYPE 2 0002X Data set types differ

3 INFORMAT 4 0004X Variable has different informat

4 FORMAT 8 0008X Variable has different format

5 LENGTH 16 0010X Variable has different length

6 LABEL 32 0020X Variable has different label

7 BASEOBS 64 0040X Base data set has observation not in
comparison

8 COMPOBS 128 0080X Comparison data set has observation not in
base

9 BASEBY 256 0100X Base data set has BY group not in
comparison

10 COMPBY 512 0200X Comparison data set has BY group not in
base

11 BASEVAR 1024 0400X Base data set has variable not in
comparison

12 COMPVAR 2048 0800X Comparison data set has variable not in
base

13 VALUE 4096 1000X A value comparison was unequal

14 TYPE 8192 2000X Conflicting variable types

15 BYVAR 16384 4000X BY variables do not match

16 ERROR 32768 8000X Fatal error: comparison not done

These codes are ordered and scaled to enable a simple check of the degree to which
the data sets differ. For example, if you want to check that two data sets contain the
same variables, observations, and values, but you do not care about differences in
labels, formats, and so forth, then use the following statements:

proc compare base=SAS-data-set
compare=SAS-data-set;

run;

%if &sysinfo >= 64 %then
%do;

handle error;
%end;

You can examine individual bits in the SYSINFO value by using DATA step
bit-testing features to check for specific conditions. For example, to check for the
presence of observations in the base data set that are not in the comparison data set,
use the following statements:

proc compare base=SAS-data-set
compare=SAS-data-set;

run;

246 Procedure Output � Chapter 9

%let rc=&sysinfo;
data _null_;

if &rc=’1......’b then
put ’Observations in Base but not

in Comparison Data Set’;
run;

PROC COMPARE must run before you check SYSINFO and you must obtain the
SYSINFO value before another SAS step starts because every SAS step resets
SYSINFO.

Procedure Output

Procedure Output Overview
The following sections show and describe the default output of the two data sets

shown in “Overview: COMPARE Procedure” on page 226. Because PROC COMPARE
produces lengthy output, the output is presented in seven pieces.

Data Set Summary
This report lists the attributes of the data sets that are being compared. These

attributes include the following:
� the data set names
� the data set types, if any
� the data set labels, if any
� the dates created and last modified
� the number of variables in each data set
� the number of observations in each data set.

Output 9.2 shows the Data Set Summary.

Output 9.2 Partial Output

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Data Set Summary

Dataset Created Modified NVar NObs Label

PROCLIB.ONE 11SEP97:15:11:07 11SEP97:15:11:09 5 4 First Data Set
PROCLIB.TWO 11SEP97:15:11:10 11SEP97:15:11:10 6 5 Second Data Set

Variables Summary
This report compares the variables in the two data sets. The first part of the report

lists the following:

The COMPARE Procedure � Procedure Output 247

� the number of variables the data sets have in common
� the number of variables in the base data set that are not in the comparison data

set and vice versa
� the number of variables in both data sets that have different types
� the number of variables that differ on other attributes (length, label, format, or

informat)
� the number of BY, ID, VAR, and WITH variables specified for the comparison.

The second part of the report lists matching variables with different attributes and
shows how the attributes differ. (The COMPARE procedure omits variable labels if the
line size is too small for them.)

Output 9.3 shows the Variables Summary.

Output 9.3 Partial Output

Variables Summary

Number of Variables in Common: 5.
Number of Variables in PROCLIB.TWO but not in PROCLIB.ONE: 1.
Number of Variables with Conflicting Types: 1.
Number of Variables with Differing Attributes: 3.

Listing of Common Variables with Conflicting Types

Variable Dataset Type Length

student PROCLIB.ONE Num 8
PROCLIB.TWO Char 8

Listing of Common Variables with Differing Attributes

Variable Dataset Type Length Format Label

year PROCLIB.ONE Char 8 Year of Birth
PROCLIB.TWO Char 8

state PROCLIB.ONE Char 8
PROCLIB.TWO Char 8 Home State

gr1 PROCLIB.ONE Num 8 4.1
PROCLIB.TWO Num 8 5.2

Observation Summary
This report provides information about observations in the base and comparison data

sets. First of all, the report identifies the first and last observation in each data set, the
first and last matching observations, and the first and last differing observations. Then,
the report lists the following:

� the number of observations that the data sets have in common
� the number of observations in the base data set that are not in the comparison

data set and vice versa
� the total number of observations in each data set
� the number of matching observations for which PROC COMPARE judged some

variables unequal
� the number of matching observations for which PROC COMPARE judged all

variables equal.

248 Procedure Output � Chapter 9

Output 9.4 shows the Observation Summary.

Output 9.4 Partial Output

Observation Summary

Observation Base Compare

First Obs 1 1
First Unequal 1 1
Last Unequal 4 4
Last Match 4 4
Last Obs . 5

Number of Observations in Common: 4.
Number of Observations in PROCLIB.TWO but not in PROCLIB.ONE: 1.
Total Number of Observations Read from PROCLIB.ONE: 4.
Total Number of Observations Read from PROCLIB.TWO: 5.

Number of Observations with Some Compared Variables Unequal: 4.
Number of Observations with All Compared Variables Equal: 0.

Values Comparison Summary
This report first lists the following:
� the number of variables compared with all observations equal
� the number of variables compared with some observations unequal
� the number of variables with differences involving missing values, if any
� the total number of values judged unequal
� the maximum difference measure between unequal values for all pairs of matching

variables (for differences not involving missing values).

In addition, for the variables for which some matching observations have unequal
values, the report lists

� the name of the variable
� other variable attributes
� the number of times PROC COMPARE judged the variable unequal
� the maximum difference measure found between values (for differences not

involving missing values)
� the number of differences caused by comparison with missing values, if any.

Output 9.5 shows the Values Comparison Summary.

The COMPARE Procedure � Procedure Output 249

Output 9.5 Partial Output

Values Comparison Summary

Number of Variables Compared with All Observations Equal: 1.
Number of Variables Compared with Some Observations Unequal: 3.
Total Number of Values which Compare Unequal: 6.
Maximum Difference: 20.

Variables with Unequal Values

Variable Type Len Compare Label Ndif MaxDif

state CHAR 8 Home State 2
gr1 NUM 8 2 1.000
gr2 NUM 8 2 20.000

Value Comparison Results
This report consists of a table for each pair of matching variables judged unequal at

one or more observations. When comparing character values, PROC COMPARE
displays only the first 20 characters. When you use the TRANSPOSE option, it displays
only the first 12 characters. Each table shows

� the number of the observation or, if you use the ID statement, the values of the ID
variables

� the value of the variable in the base data set
� the value of the variable in the comparison data set
� the difference between these two values (numeric variables only)
� the percent difference between these two values (numeric variables only).

Output 9.6 shows the Value Comparison Results for Variables.

250 Procedure Output � Chapter 9

Output 9.6 Partial Output

Value Comparison Results for Variables

__
|| Home State
|| Base Value Compare Value

Obs || state state
________ || ________ ________

||
2 || MD MA
4 || MA MD

__

__
|| Base Compare

Obs || gr1 gr1 Diff. % Diff
________ || _________ _________ _________ _________

||
1 || 85.0 84.00 -1.0000 -1.1765
3 || 78.0 79.00 1.0000 1.2821

__

__
|| Base Compare

Obs || gr2 gr2 Diff. % Diff
________ || _________ _________ _________ _________

||
3 || 72.0000 73.0000 1.0000 1.3889
4 || 94.0000 74.0000 -20.0000 -21.2766

__

You can suppress the value comparison results with the NOVALUES option. If you
use both the NOVALUES and TRANSPOSE options, then PROC COMPARE lists for
each observation the names of the variables with values judged unequal but does not
display the values and differences.

Table of Summary Statistics

If you use the STATS, ALLSTATS, or PRINTALL option, then the Value Comparison
Results for Variables section contains summary statistics for the numeric variables that
are being compared. The STATS option generates these statistics for only the numeric
variables whose values are judged unequal. The ALLSTATS and PRINTALL options
generate these statistics for all numeric variables, even if all values are judged equal.

Note: In all cases PROC COMPARE calculates the summary statistics based on all
matching observations that do not contain missing values, not just on those containing
unequal values. �

Output 9.7 shows the following summary statistics for base data set values,
comparison data set values, differences, and percent differences:

N
the number of nonmissing values

MEAN
the mean, or average, of the values

STD
the standard deviation

The COMPARE Procedure � Procedure Output 251

MAX
the maximum value

MIN
the minimum value

STDERR
the standard error of the mean

T
the T ratio (MEAN/STDERR)

PROB> | T |
the probability of a greater absolute T value if the true population mean is 0.

NDIF
the number of matching observations judged unequal, and the percent of the
matching observations that were judged unequal.

DIFMEANS
the difference between the mean of the base values and the mean of the
comparison values. This line contains three numbers. The first is the mean
expressed as a percentage of the base values mean. The second is the mean
expressed as a percentage of the comparison values mean. The third is the
difference in the two means (the comparison mean minus the base mean).

R
the correlation of the base and comparison values for matching observations that
are nonmissing in both data sets.

RSQ
the square of the correlation of the base and comparison values for matching
observations that are nonmissing in both data sets.

Output 9.7 is from the ALLSTATS option using the two data sets shown in
“Overview”:

252 Procedure Output � Chapter 9

Output 9.7 Partial Output

Value Comparison Results for Variables

__
|| Base Compare

Obs || gr1 gr1 Diff. % Diff
________ || _________ _________ _________ _________

||
1 || 85.0 84.00 -1.0000 -1.1765
3 || 78.0 79.00 1.0000 1.2821

________ || _________ _________ _________ _________
||

N || 4 4 4 4
Mean || 85.5000 85.5000 0 0.0264
Std || 5.8023 5.4467 0.8165 1.0042
Max || 92.0000 92.0000 1.0000 1.2821
Min || 78.0000 79.0000 -1.0000 -1.1765

StdErr || 2.9011 2.7234 0.4082 0.5021
t || 29.4711 31.3951 0.0000 0.0526

Prob>|t| || <.0001 <.0001 1.0000 0.9614
||

Ndif || 2 50.000%
DifMeans || 0.000% 0.000% 0

r, rsq || 0.991 0.983
__

__
|| Base Compare

Obs || gr2 gr2 Diff. % Diff
________ || _________ _________ _________ _________

||
3 || 72.0000 73.0000 1.0000 1.3889
4 || 94.0000 74.0000 -20.0000 -21.2766

________ || _________ _________ _________ _________
||

N || 4 4 4 4
Mean || 86.2500 81.5000 -4.7500 -4.9719
Std || 9.9457 9.4692 10.1776 10.8895
Max || 94.0000 92.0000 1.0000 1.3889
Min || 72.0000 73.0000 -20.0000 -21.2766

StdErr || 4.9728 4.7346 5.0888 5.4447
t || 17.3442 17.2136 -0.9334 -0.9132

Prob>|t| || 0.0004 0.0004 0.4195 0.4285
||

Ndif || 2 50.000%
DifMeans || -5.507% -5.828% -4.7500

r, rsq || 0.451 0.204
__

Note: If you use a wide line size with PRINTALL, then PROC COMPARE prints the
value comparison result for character variables next to the result for numeric variables.
In that case, PROC COMPARE calculates only NDIF for the character variables. �

Comparison Results for Observations (Using the TRANSPOSE Option)
The TRANSPOSE option prints the comparison results by observation instead of by

variable. The comparison results precede the observation summary report. By default,
the source of the values for each row of the table is indicated by the following label:

_OBS_1=number-1 _OBS_2=number-2

The COMPARE Procedure � ODS Table Names 253

where number-1 is the number of the observation in the base data set for which the
value of the variable is shown, and number-2 is the number of the observation in the
comparison data set.

Output 9.8 shows the differences in PROCLIB.ONE and PROCLIB.TWO by
observation instead of by variable.

Output 9.8 Partial Output

Comparison Results for Observations

_OBS_1=1 _OBS_2=1:
Variable Base Value Compare Diff. % Diff

gr1 85.0 84.00 -1.000000 -1.176471

_OBS_1=2 _OBS_2=2:
Variable Base Value Compare

state MD MA

_OBS_1=3 _OBS_2=3:
Variable Base Value Compare Diff. % Diff

gr1 78.0 79.00 1.000000 1.282051
gr2 72.000000 73.000000 1.000000 1.388889

_OBS_1=4 _OBS_2=4:
Variable Base Value Compare Diff. % Diff

gr2 94.000000 74.000000 -20.000000 -21.276596
state MA MD

If you use an ID statement, then the identifying label has the following form:

ID-1=ID-value-1 ... ID-n=ID-value-n

where ID is the name of an ID variable and ID-value is the value of the ID variable.

Note: When you use the TRANSPOSE option, PROC COMPARE prints only the
first 12 characters of the value. �

ODS Table Names
The COMPARE procedure assigns a name to each table that it creates. You can use

these names to reference the table when using the Output Delivery System (ODS) to
select tables and create output data sets. For more information, see SAS Output
Delivery System: User’s Guide.

Table 9.2 ODS Tables Produced by the COMPARE Procedure

Table Name Description Generated...

CompareDatasets Information about the data set
or data sets

by default, unless
NOSUMMARY or NOVALUES
option is specified

CompareDetails (Comparison
Results for Observations)

A listing of observations that
the base data set and the
compare data set do not have
in common

if PRINTALL option is specified

254 Output Data Set (OUT=) � Chapter 9

Table Name Description Generated...

CompareDetails (ID variable
notes and warnings)

A listing of notes and warnings
concerning duplicate ID
variable values

if ID statement is specified and
duplicate ID variable values
exist in either data set

CompareDifferences A report of variable value
differences

by default unless NOVALUES
option is specified

CompareSummary Summary report of
observations, values, and
variables with unequal values

by default

CompareVariables A listing of differences in
variable types or attributes
between the base data set and
the compare data set

by default, unless the variables
are identical or the
NOSUMMARY option is
specified

Output Data Set (OUT=)
By default, the OUT= data set contains an observation for each pair of matching

observations. The OUT= data set contains the following variables from the data sets
you are comparing:

� all variables named in the BY statement
� all variables named in the ID statement

� all matching variables or, if you use the VAR statement, all variables listed in the
VAR statement.

In addition, the data set contains two variables created by PROC COMPARE to
identify the source of the values for the matching variables: _TYPE_ and _OBS_.

TYPE
is a character variable of length 8. Its value indicates the source of the values for
the matching (or VAR) variables in that observation. (For ID and BY variables,
which are not compared, the values are the values from the original data sets.)
TYPE has the label Type of Observation. The four possible values of this
variable are as follows:

BASE
The values in this observation are from an observation in the base data set.
PROC COMPARE writes this type of observation to the OUT= data set when
you specify the OUTBASE option.

COMPARE
The values in this observation are from an observation in the comparison
data set. PROC COMPARE writes this type of observation to the OUT= data
set when you specify the OUTCOMP option.

DIF
The values in this observation are the differences between the values in the
base and comparison data sets. For character variables, PROC COMPARE
uses a period (.) to represent equal characters and an X to represent unequal
characters. PROC COMPARE writes this type of observation to the OUT=
data set by default. However, if you request any other type of observation
with the OUTBASE, OUTCOMP, or OUTPERCENT option, then you must
specify the OUTDIF option to generate observations of this type in the OUT=
data set.

The COMPARE Procedure � Output Statistics Data Set (OUTSTATS=) 255

PERCENT
The values in this observation are the percent differences between the values
in the base and comparison data sets. For character variables the values in
observations of type PERCENT are the same as the values in observations of
type DIF.

OBS
is a numeric variable that contains a number further identifying the source of the
OUT= observations.

For observations with _TYPE_ equal to BASE, _OBS_ is the number of the
observation in the base data set from which the values of the VAR variables were
copied. Similarly, for observations with _TYPE_ equal to COMPARE, _OBS_ is the
number of the observation in the comparison data set from which the values of the
VAR variables were copied.

For observations with _TYPE_ equal to DIF or PERCENT, _OBS_ is a sequence
number that counts the matching observations in the BY group.

OBS has the label Observation Number.

The COMPARE procedure takes variable names and attributes for the OUT= data
set from the base data set except for the lengths of ID and VAR variables, for which it
uses the longer length regardless of which data set that length is from. This behavior
has two important repercussions:

� If you use the VAR and WITH statements, then the names of the variables in the
OUT= data set come from the VAR statement. Thus, observations with _TYPE_
equal to BASE contain the values of the VAR variables, while observations with
TYPE equal to COMPARE contain the values of the WITH variables.

� If you include a variable more than once in the VAR statement in order to compare
it with more than one variable, then PROC COMPARE can include only the first
comparison in the OUT= data set because each variable must have a unique name.
Other comparisons produce warning messages.

For an example of the OUT= option, see Example 6 on page 270.

Output Statistics Data Set (OUTSTATS=)
When you use the OUTSTATS= option, PROC COMPARE calculates the same

summary statistics as the ALLSTATS option for each pair of numeric variables
compared (see “Table of Summary Statistics” on page 250). The OUTSTATS= data set
contains an observation for each summary statistic for each pair of variables. The data
set also contains the BY variables used in the comparison and several variables created
by PROC COMPARE:

VAR
is a character variable that contains the name of the variable from the base data
set for which the statistic in the observation was calculated.

WITH
is a character variable that contains the name of the variable from the comparison
data set for which the statistic in the observation was calculated. The _WITH_
variable is not included in the OUTSTATS= data set unless you use the WITH
statement.

TYPE
is a character variable that contains the name of the statistic contained in the
observation. Values of the _TYPE_ variable are N, MEAN, STD, MIN, MAX, STDERR, T,
PROBT, NDIF, DIFMEANS, and R, RSQ.

256 Examples: COMPARE Procedure � Chapter 9

BASE
is a numeric variable that contains the value of the statistic calculated from the
values of the variable named by _VAR_ in the observations in the base data set
with matching observations in the comparison data set.

COMP
is a numeric variable that contains the value of the statistic calculated from the
values of the variable named by the _VAR_ variable (or by the _WITH_ variable if
you use the WITH statement) in the observations in the comparison data set with
matching observations in the base data set.

DIF
is a numeric variable that contains the value of the statistic calculated from the
differences of the values of the variable named by the _VAR_ variable in the base
data set and the matching variable (named by the _VAR_ or _WITH_ variable) in
the comparison data set.

PCTDIF
is a numeric variable that contains the value of the statistic calculated from the
percent differences of the values of the variable named by the _VAR_ variable in
the base data set and the matching variable (named by the _VAR_ or _WITH_
variable) in the comparison data set.

Note: For both types of output data sets, PROC COMPARE assigns one of the
following data set labels:

Comparison of base-SAS-data-set
with comparison-SAS-data-set

Comparison of variables in base-SAS-data-set

�

Labels are limited to 40 characters.
See Example 7 on page 273 for an example of an OUTSTATS= data set.

Examples: COMPARE Procedure

Example 1: Producing a Complete Report of the Differences
Procedure features:

PROC COMPARE statement options
BASE=
PRINTALL
COMPARE=

Data sets:
PROCLIB.ONE, PROCLIB.TWO on page 226

This example shows the most complete report that PROC COMPARE produces as
procedure output.

The COMPARE Procedure � Program 257

Program

Declare the PROCLIB SAS data library.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Create a complete report of the differences between two data sets. BASE= and
COMPARE= specify the data sets to compare. PRINTALL prints a full report of the differences.

proc compare base=proclib.one compare=proclib.two printall;
title ’Comparing Two Data Sets: Full Report’;

run;

258 Output � Chapter 9

Output

A > in the output marks information that is in the full report but not in the default report. The
additional information includes a listing of variables found in one data set but not the other, a
listing of observations found in one data set but not the other, a listing of variables with all
equal values, and summary statistics. For an explanation of the statistics, see “Table of
Summary Statistics” on page 250.

Comparing Two Data Sets: Full Report 1

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Data Set Summary

Dataset Created Modified NVar NObs Label

PROCLIB.ONE 11SEP97:16:19:59 11SEP97:16:20:01 5 4 First Data Set
PROCLIB.TWO 11SEP97:16:20:01 11SEP97:16:20:01 6 5 Second Data Set

Variables Summary

Number of Variables in Common: 5.
Number of Variables in PROCLIB.TWO but not in PROCLIB.ONE: 1.
Number of Variables with Conflicting Types: 1.
Number of Variables with Differing Attributes: 3.

Listing of Variables in PROCLIB.TWO but not in PROCLIB.ONE

Variable Type Length

> major Char 8

Listing of Common Variables with Conflicting Types

Variable Dataset Type Length

student PROCLIB.ONE Num 8
PROCLIB.TWO Char 8

The COMPARE Procedure � Output 259

Comparing Two Data Sets: Full Report 2

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Listing of Common Variables with Differing Attributes

Variable Dataset Type Length Format Label

year PROCLIB.ONE Char 8 Year of Birth
PROCLIB.TWO Char 8

state PROCLIB.ONE Char 8
PROCLIB.TWO Char 8 Home State

gr1 PROCLIB.ONE Num 8 4.1
PROCLIB.TWO Num 8 5.2

Comparison Results for Observations

> Observation 5 in PROCLIB.TWO not found in PROCLIB.ONE.

Observation Summary

Observation Base Compare

First Obs 1 1
First Unequal 1 1
Last Unequal 4 4
Last Match 4 4
Last Obs . 5

Number of Observations in Common: 4.
Number of Observations in PROCLIB.TWO but not in PROCLIB.ONE: 1.
Total Number of Observations Read from PROCLIB.ONE: 4.
Total Number of Observations Read from PROCLIB.TWO: 5.

Number of Observations with Some Compared Variables Unequal: 4.
Number of Observations with All Compared Variables Equal: 0.

Comparing Two Data Sets: Full Report 3

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Values Comparison Summary

Number of Variables Compared with All Observations Equal: 1.
Number of Variables Compared with Some Observations Unequal: 3.
Total Number of Values which Compare Unequal: 6.
Maximum Difference: 20.

Variables with All Equal Values

> Variable Type Len Label

year CHAR 8 Year of Birth

Variables with Unequal Values

Variable Type Len Compare Label Ndif MaxDif

state CHAR 8 Home State 2
gr1 NUM 8 2 1.000
gr2 NUM 8 2 20.000

260 Output � Chapter 9

Comparing Two Data Sets: Full Report 4

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Value Comparison Results for Variables

__
|| Year of Birth
|| Base Value Compare Value

Obs || year year
________ || ________ ________

||
1 || 1970 1970
2 || 1971 1971
3 || 1969 1969
4 || 1970 1970

__

__
|| Home State
|| Base Value Compare Value

Obs || state state
________ || ________ ________

||
1 || NC NC
2 || MD MA
3 || PA PA
4 || MA MD

__

Comparing Two Data Sets: Full Report 5

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Value Comparison Results for Variables

__
|| Base Compare

Obs || gr1 gr1 Diff. % Diff
________ || _________ _________ _________ _________

||
1 || 85.0 84.00 -1.0000 -1.1765
2 || 92.0 92.00 0 0
3 || 78.0 79.00 1.0000 1.2821
4 || 87.0 87.00 0 0

________ || _________ _________ _________ _________
> ||

N || 4 4 4 4
Mean || 85.5000 85.5000 0 0.0264
Std || 5.8023 5.4467 0.8165 1.0042
Max || 92.0000 92.0000 1.0000 1.2821
Min || 78.0000 79.0000 -1.0000 -1.1765

StdErr || 2.9011 2.7234 0.4082 0.5021
t || 29.4711 31.3951 0.0000 0.0526

Prob>|t| || <.0001 <.0001 1.0000 0.9614
||

Ndif || 2 50.000%
DifMeans || 0.000% 0.000% 0

r, rsq || 0.991 0.983
__

The COMPARE Procedure � Program 261

Comparing Two Data Sets: Full Report 6

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Value Comparison Results for Variables

__
|| Base Compare

Obs || gr2 gr2 Diff. % Diff
________ || _________ _________ _________ _________

||
1 || 87.0000 87.0000 0 0
2 || 92.0000 92.0000 0 0
3 || 72.0000 73.0000 1.0000 1.3889
4 || 94.0000 74.0000 -20.0000 -21.2766

________ || _________ _________ _________ _________
> ||

N || 4 4 4 4
Mean || 86.2500 81.5000 -4.7500 -4.9719
Std || 9.9457 9.4692 10.1776 10.8895
Max || 94.0000 92.0000 1.0000 1.3889
Min || 72.0000 73.0000 -20.0000 -21.2766

StdErr || 4.9728 4.7346 5.0888 5.4447
t || 17.3442 17.2136 -0.9334 -0.9132

Prob>|t| || 0.0004 0.0004 0.4195 0.4285
||

Ndif || 2 50.000%
DifMeans || -5.507% -5.828% -4.7500

r, rsq || 0.451 0.204
__

Example 2: Comparing Variables in Different Data Sets

Procedure features:
PROC COMPARE statement option

NOSUMMARY

VAR statement

WITH statement

Data sets:
PROCLIB.ONE, PROCLIB.TWO on page 226.

This example compares a variable from the base data set with a variable in the
comparison data set. All summary reports are suppressed.

Program

Declare the PROCLIB SAS data library.

libname proclib ’SAS-data-library’;

262 Output � Chapter 9

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Suppress all summary reports of the differences between two data sets. BASE=
specifies the base data set and COMPARE= specifies the comparison data set. NOSUMMARY
suppresses all summary reports.

proc compare base=proclib.one compare=proclib.two nosummary;

Specify one variable from the base data set to compare with one variable from the
comparison data set. The VAR and WITH statements specify the variables to compare. This
example compares GR1 from the base data set with GR2 from the comparison data set.

var gr1;
with gr2;
title ’Comparison of Variables in Different Data Sets’;

run;

Output

Comparison of Variables in Different Data Sets 1

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

NOTE: Data set PROCLIB.TWO contains 1 observations not in PROCLIB.ONE.
NOTE: Values of the following 1 variables compare unequal: gr1^=gr2

Value Comparison Results for Variables

__
|| Base Compare

Obs || gr1 gr2 Diff. % Diff
________ || _________ _________ _________ _________

||
1 || 85.0 87.0000 2.0000 2.3529
3 || 78.0 73.0000 -5.0000 -6.4103
4 || 87.0 74.0000 -13.0000 -14.9425

__

The COMPARE Procedure � Program 263

Example 3: Comparing a Variable Multiple Times

Procedure features:
VAR statement
WITH statement

Data sets:
PROCLIB.ONE, PROCLIB.TWO on page 226.

This example compares one variable from the base data set with two variables in the
comparison data set.

Program

Declare the PROCLIB SAS data library.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Suppress all summary reports of the differences between two data sets. BASE=
specifies the base data set and COMPARE= specifies the comparison data set. NOSUMMARY
suppresses all summary reports.

proc compare base=proclib.one compare=proclib.two nosummary;

Specify one variable from the base data set to compare with two variables from the
comparison data set. The VAR and WITH statements specify the variables to compare. This
example compares GR1 from the base data set with GR1 and GR2 from the comparison data set.

var gr1 gr1;
with gr1 gr2;
title ’Comparison of One Variable with Two Variables’;

run;

264 Output � Chapter 9

Output

The Value Comparison Results section shows the result of the comparison.

Comparison of One Variable with Two Variables 1

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

NOTE: Data set PROCLIB.TWO contains 1 observations not in PROCLIB.ONE.
NOTE: Values of the following 2 variables compare unequal: gr1^=gr1 gr1^=gr2

Value Comparison Results for Variables

__
|| Base Compare

Obs || gr1 gr1 Diff. % Diff
________ || _________ _________ _________ _________

||
1 || 85.0 84.00 -1.0000 -1.1765
3 || 78.0 79.00 1.0000 1.2821

__

__
|| Base Compare

Obs || gr1 gr2 Diff. % Diff
________ || _________ _________ _________ _________

||
1 || 85.0 87.0000 2.0000 2.3529
3 || 78.0 73.0000 -5.0000 -6.4103
4 || 87.0 74.0000 -13.0000 -14.9425

__

Example 4: Comparing Variables That Are in the Same Data Set

Procedure features:
PROC COMPARE statement options

ALLSTATS
BRIEFSUMMARY

VAR statement
WITH statement

Data set:
PROCLIB.ONE on page 226.

This example shows that PROC COMPARE can compare two variables that are in
the same data set.

The COMPARE Procedure � Program 265

Program

Declare the PROCLIB SAS data library.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Create a short summary report of the differences within one data set. ALLSTATS prints
summary statistics. BRIEFSUMMARY prints only a short comparison summary.

proc compare base=proclib.one allstats briefsummary;

Specify two variables from the base data set to compare. The VAR and WITH statements
specify the variables in the base data set to compare. This example compares GR1 with GR2.
Because there is no comparison data set, the variables GR1 and GR2 must be in the base data
set.

var gr1;
with gr2;
title ’Comparison of Variables in the Same Data Set’;

run;

266 Output � Chapter 9

Output

Comparison of Variables in the Same Data Set 1

COMPARE Procedure
Comparisons of variables in PROCLIB.ONE

(Method=EXACT)

NOTE: Values of the following 1 variables compare unequal: gr1^=gr2

Value Comparison Results for Variables

__
|| Base Compare

Obs || gr1 gr2 Diff. % Diff
________ || _________ _________ _________ _________

||
1 || 85.0 87.0000 2.0000 2.3529
3 || 78.0 72.0000 -6.0000 -7.6923
4 || 87.0 94.0000 7.0000 8.0460

________ || _________ _________ _________ _________
||

N || 4 4 4 4
Mean || 85.5000 86.2500 0.7500 0.6767
Std || 5.8023 9.9457 5.3774 6.5221
Max || 92.0000 94.0000 7.0000 8.0460
Min || 78.0000 72.0000 -6.0000 -7.6923

StdErr || 2.9011 4.9728 2.6887 3.2611
t || 29.4711 17.3442 0.2789 0.2075

Prob>|t| || <.0001 0.0004 0.7984 0.8489
||

Ndif || 3 75.000%
DifMeans || 0.877% 0.870% 0.7500

r, rsq || 0.898 0.807
__

Example 5: Comparing Observations with an ID Variable

Procedure features:
ID statement

In this example, PROC COMPARE compares only the observations that have
matching values for the ID variable.

The COMPARE Procedure � Program 267

Program

Declare the PROCLIB SAS data library.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Create the PROCLIB.EMP95 and PROCLIB.EMP96 data sets. PROCLIB.EMP95 and
PROCLIB.EMP96 contain employee data. IDNUM works well as an ID variable because it has
unique values. A DATA step on page 1391 creates PROCLIB.EMP95. A DATA step on page 1392
creates PROCLIB.EMP96.

data proclib.emp95;
input #1 idnum $4. @6 name $15.

#2 address $42.
#3 salary 6.;

datalines;
2388 James Schmidt
100 Apt. C Blount St. SW Raleigh NC 27693
92100
2457 Fred Williams
99 West Lane Garner NC 27509
33190
... more data lines...
3888 Kim Siu
5662 Magnolia Blvd Southeast Cary NC 27513
77558
;

data proclib.emp96;
input #1 idnum $4. @6 name $15.

#2 address $42.
#3 salary 6.;

datalines;
2388 James Schmidt
100 Apt. C Blount St. SW Raleigh NC 27693
92100
2457 Fred Williams
99 West Lane Garner NC 27509
33190
...more data lines...
6544 Roger Monday
3004 Crepe Myrtle Court Raleigh NC 27604
47007
;

268 Program � Chapter 9

Sort the data sets by the ID variable. Both data sets must be sorted by the variable that will
be used as the ID variable in the PROC COMPARE step. OUT= specifies the location of the
sorted data.

proc sort data=proclib.emp95 out=emp95_byidnum;

by idnum;
run;

proc sort data=proclib.emp96 out=emp96_byidnum;
by idnum;

run;

Create a summary report that compares observations with matching values for the ID
variable. The ID statement specifies IDNUM as the ID variable.

proc compare base=emp95_byidnum compare=emp96_byidnum;
id idnum;
title ’Comparing Observations that Have Matching IDNUMs’;

run;

The COMPARE Procedure � Output 269

Output

PROC COMPARE identifies specific observations by the value of IDNUM. In the
Value Comparison Results for Variables section, PROC COMPARE prints the
nonmatching addresses and nonmatching salaries. For salaries, PROC COMPARE computes the
numerical difference and the percent difference. Because ADDRESS is a character variable,
PROC COMPARE displays only the first 20 characters. For addresses where the observation
has an IDNUM of 0987, 2776, or 3888, the differences occur after the 20th character and the
differences do not appear in the output. The plus sign in the output indicates that the full value
is not shown. To see the entire value, create an output data set. See Example 6 on page 270.

Comparing Observations that Have Matching IDNUMs 1

COMPARE Procedure
Comparison of WORK.EMP95_BYIDNUM with WORK.EMP96_BYIDNUM

(Method=EXACT)

Data Set Summary

Dataset Created Modified NVar NObs

WORK.EMP95_BYIDNUM 13MAY98:16:03:36 13MAY98:16:03:36 4 10
WORK.EMP96_BYIDNUM 13MAY98:16:03:36 13MAY98:16:03:36 4 12

Variables Summary

Number of Variables in Common: 4.
Number of ID Variables: 1.

Observation Summary

Observation Base Compare ID

First Obs 1 1 idnum=0987
First Unequal 1 1 idnum=0987
Last Unequal 10 12 idnum=9857
Last Obs 10 12 idnum=9857

Number of Observations in Common: 10.
Number of Observations in WORK.EMP96_BYIDNUM but not in WORK.EMP95_BYIDNUM: 2.
Total Number of Observations Read from WORK.EMP95_BYIDNUM: 10.
Total Number of Observations Read from WORK.EMP96_BYIDNUM: 12.

Number of Observations with Some Compared Variables Unequal: 5.
Number of Observations with All Compared Variables Equal: 5.

Comparing Observations that Have Matching IDNUMs 2

COMPARE Procedure
Comparison of WORK.EMP95_BYIDNUM with WORK.EMP96_BYIDNUM

(Method=EXACT)

Values Comparison Summary

Number of Variables Compared with All Observations Equal: 1.
Number of Variables Compared with Some Observations Unequal: 2.
Total Number of Values which Compare Unequal: 8.
Maximum Difference: 2400.

270 Example 6: Comparing Values of Observations Using an Output Data Set (OUT=) � Chapter 9

Variables with Unequal Values

Variable Type Len Ndif MaxDif

address CHAR 42 4
salary NUM 8 4 2400

Value Comparison Results for Variables

|| Base Value Compare Value

idnum || address address
_____ || ___________________+ ___________________+

||
0987 || 2344 Persimmons Bran 2344 Persimmons Bran
2776 || 12988 Wellington Far 12988 Wellington Far
3888 || 5662 Magnolia Blvd S 5662 Magnolia Blvd S
9857 || 1000 Taft Ave. Morri 100 Taft Ave. Morris

Comparing Observations that Have Matching IDNUMs 3

COMPARE Procedure
Comparison of WORK.EMP95_BYIDNUM with WORK.EMP96_BYIDNUM

(Method=EXACT)

Value Comparison Results for Variables

|| Base Compare

idnum || salary salary Diff. % Diff
_____ || _________ _________ _________ _________

||
0987 || 44010 45110 1100 2.4994
3286 || 87734 89834 2100 2.3936
3888 || 77558 79958 2400 3.0945
9857 || 38756 40456 1700 4.3864

Example 6: Comparing Values of Observations Using an Output Data Set
(OUT=)

Procedure features:
PROC COMPARE statement options:

NOPRINT
OUT=
OUTBASE
OUTBASE
OUTCOMP
OUTDIF
OUTNOEQUAL

Other features: PRINT procedure
Data sets: PROCLIB.EMP95 and PROCLIB.EMP96 on page 267

This example creates and prints an output data set that shows the differences
between matching observations.

The COMPARE Procedure � Program 271

In Example 5 on page 266, the output does not show the differences past the 20th
character. The output data set in this example shows the full values. Further, it shows
the observations that occur in only one of the data sets.

Program

Declare the PROCLIB SAS data library.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=120 pagesize=40;

Sort the data sets by the ID variable. Both data sets must be sorted by the variable that will
be used as the ID variable in the PROC COMPARE step. OUT= specifies the location of the
sorted data.

proc sort data=proclib.emp95 out=emp95_byidnum;

by idnum;
run;

proc sort data=proclib.emp96 out=emp96_byidnum;
by idnum;

run;

Specify the data sets to compare. BASE= and COMPARE= specify the data sets to compare.

proc compare base=emp95_byidnum compare=emp96_byidnum

Create the output data set RESULT and include all unequal observations and their
differences. OUT= names and creates the output data set. NOPRINT suppresses the printing
of the procedure output. OUTNOEQUAL includes only observations that are judged unequal.
OUTBASE writes an observation to the output data set for each observation in the base data
set. OUTCOMP writes an observation to the output data set for each observation in the
comparison data set. OUTDIF writes an observation to the output data set that contains the
differences between the two observations.

out=result outnoequal outbase outcomp outdif
noprint;

272 Output � Chapter 9

Specify the ID variable. The ID statement specifies IDNUM as the ID variable.

id idnum;
run;

Print the output data set RESULT and use the BY and ID statements with the ID
variable. PROC PRINT prints the output data set. Using the BY and ID statements with the
same variable makes the output easy to read. See Chapter 34, “The PRINT Procedure,” on page
703 for more information on this technique.

proc print data=result noobs;
by idnum;
id idnum;
title ’The Output Data Set RESULT’;

run;

Output

The differences for character variables are noted with an X or a period (.). An X shows that the characters do
not match. A period shows that the characters do match. For numeric variables, an E means that there is no
difference. Otherwise, the numeric difference is shown. By default, the output data set shows that two
observations in the comparison data set have no matching observation in the base data set. You do not have to
use an option to make those observations appear in the output data set.

The Output Data Set RESULT 1

idnum _TYPE_ _OBS_ name address salary

0987 BASE 1 Dolly Lunford 2344 Persimmons Branch Apex NC 27505 44010

COMPARE 1 Dolly Lunford 2344 Persimmons Branch Trail Apex NC 27505 45110

DIF 1XXXXX.XXXXXXXXXXXXX 1100

2776 BASE 5 Robert Jones 12988 Wellington Farms Ave. Cary NC 27512 29025

COMPARE 5 Robert Jones 12988 Wellington Farms Ave. Cary NC 27511 29025

DIF 5X. E

3278 COMPARE 6 Mary Cravens 211 N. Cypress St. Cary NC 27512 35362

3286 BASE 6 Hoa Nguyen 2818 Long St. Cary NC 27513 87734

COMPARE 7 Hoa Nguyen 2818 Long St. Cary NC 27513 89834

DIF 6 2100

3888 BASE 7 Kim Siu 5662 Magnolia Blvd Southeast Cary NC 27513 77558

COMPARE 8 Kim Siu 5662 Magnolia Blvd Southwest Cary NC 27513 79958

DIF 7XX................ 2400

6544 COMPARE 9 Roger Monday 3004 Crepe Myrtle Court Raleigh NC 27604 47007

9857 BASE 10 Kathy Krupski 1000 Taft Ave. Morrisville NC 27508 38756

COMPARE 12 Kathy Krupski 100 Taft Ave. Morrisville NC 27508 40456

DIF 10XXXXXXXXXXXXXX.XXXXX.XXXXXXXXXXX....... 1700

The COMPARE Procedure � Program 273

Example 7: Creating an Output Data Set of Statistics (OUTSTATS=)
Procedure features:

PROC COMPARE statement options:
NOPRINT
OUTSTATS=

Data sets: PROCLIB.EMP95, PROCLIB.EMP96 on page 267

This example creates an output data set that contains summary statistics for the
numeric variables that are compared.

Program

Declare the PROCLIB SAS data library.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Sort the data sets by the ID variable. Both data sets must be sorted by the variable that will
be used as the ID variable in the PROC COMPARE step. OUT= specifies the location of the
sorted data.

proc sort data=proclib.emp95 out=emp95_byidnum;
by idnum;

run;

proc sort data=proclib.emp96 out=emp96_byidnum;
by idnum;

run;

Create the output data set of statistics and compare observations that have matching
values for the ID variable. BASE= and COMPARE= specify the data sets to compare.
OUTSTATS= creates the output data set DIFFSTAT. NOPRINT suppresses the procedure
output. The ID statement specifies IDNUM as the ID variable. PROC COMPARE uses the
values of IDNUM to match observations.

proc compare base=emp95_byidnum compare=emp96_byidnum
outstats=diffstat noprint;

id idnum;
run;

274 Output � Chapter 9

Print the output data set DIFFSTAT. PROC PRINT prints the output data set DIFFSTAT.

proc print data=diffstat noobs;
title ’The DIFFSTAT Data Set’;

run;

Output

The variables are described in “Output Statistics Data Set (OUTSTATS=)” on page 255.

The DIFFSTAT Data Set 1

VAR _TYPE_ _BASE_ _COMP_ _DIF_ _PCTDIF_

salary N 10.00 10.00 10.00 10.0000
salary MEAN 52359.00 53089.00 730.00 1.2374
salary STD 24143.84 24631.01 996.72 1.6826
salary MAX 92100.00 92100.00 2400.00 4.3864
salary MIN 29025.00 29025.00 0.00 0.0000
salary STDERR 7634.95 7789.01 315.19 0.5321
salary T 6.86 6.82 2.32 2.3255
salary PROBT 0.00 0.00 0.05 0.0451
salary NDIF 4.00 40.00 . .
salary DIFMEANS 1.39 1.38 730.00 .
salary R,RSQ 1.00 1.00 . .

275

C H A P T E R

10
The CONTENTS Procedure

Overview: CONTENTS Procedure 275
Syntax: CONTENTS Procedure 275

Overview: CONTENTS Procedure
The CONTENTS procedure shows the contents of a SAS data set and prints the

directory of the SAS data library.
Generally, the CONTENTS procedure functions the same as the CONTENTS

statement in the DATASETS procedure. The differences between the CONTENTS
procedure and the CONTENTS statement in PROC DATASETS are as follows:

� The default for libref in the DATA= option in PROC CONTENTS is either WORK
or USER. For the CONTENTS statement, the default is the libref of the procedure
input library.

� PROC CONTENTS can read sequential files. The CONTENTS statement cannot.

Syntax: CONTENTS Procedure
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
ODS Table Names: See: “ODS Table Names” on page 369
Reminder: You can use the ATTRIB, FORMAT, and LABEL statements. See Chapter 3,
“Statements with the Same Function in Multiple Procedures,” on page 57 for details.
You can also use any global statements. See “Global Statements” on page 18 for a list.
Reminder: You can use data set options with the DATA= and OUT= options. See “Data
Set Options” on page 18 for a list.
Reminder: Complete documentation for the CONTENTS statement and the CONTENTS
procedure is in “CONTENTS Statement” on page 323.
See: CONTENTS Procedure in the documentation for your operating environment.

PROC CONTENTS <option(s)>;

276 Syntax: CONTENTS Procedure � Chapter 10

To do this Use this option

Print centiles information for indexed variables CENTILES

Specify the input data set DATA=

Include information in the output about the
number of observations, number of variables, and
data set labels

DETAILS|NODETAILS

Print a list of the SAS files in the SAS data library DIRECTORY

Print the length of a variable’s informat or format FMTLEN

Restrict processing to one or more types of SAS file MEMTYPE=

Suppress the printing of individual files NODS

Suppress the printing of the output NOPRINT

Print a list of variables in alphabetical order even
if they include mixed case names

ORDER=IGNORECASE

Specify the output data set OUT=

Specify an output data set that contains
information about constraints

OUT2=

Print abbreviated output SHORT

Print a list of the variables by their logical position
in the data set

VARNUM

277

C H A P T E R

11
The COPY Procedure

Overview: COPY Procedure 277
Syntax: COPY Procedure 277

Concepts: COPY Procedure 278

Transporting SAS Data Sets between Hosts 278

Example: COPY Procedure 279

Example 1: Copying SAS Data Sets between Hosts 279

Overview: COPY Procedure
The COPY procedure copies one or more SAS files from a SAS data library.
Generally, the COPY procedure functions the same as the COPY statement in the

DATASETS procedure. The two differences are as follows:
� The IN= argument is required with PROC COPY. In the COPY statement, IN= is

optional. If IN= is omitted, the default value is the libref of the procedure input
library.

� PROC DATASETS cannot work with libraries that allow only sequential data
access.

Note: The MIGRATE procedure is available specifically for migrating a SAS data
library from a previous release to the most recent release. For migration, PROC
MIGRATE offers benefits that PROC COPY does not. For documentation on PROC
MIGRATE, see the Migration Community at http://support.sas.com/rnd/
migration. �

Syntax: COPY Procedure
Reminder: See Chapter 3, “Statements with the Same Function in Multiple Procedures,”
on page 57 for details. You can also use any global statements. See “Global Statements”
on page 18 for a list.
Reminder: Complete documentation for the COPY statement and the COPY procedure is
in “COPY Statement” on page 327.
Restriction: PROC COPY ignores explicit concatenations with catalogs. Use PROC
CATALOG COPY to copy concatenated catalogs.

278 Concepts: COPY Procedure � Chapter 11

PROC COPY OUT=libref-1 IN=libref-2
<CLONE|NOCLONE>
<CONSTRAINT=YES|NO>
<DATECOPY>
<INDEX=YES|NO>
<MEMTYPE=(mtype(s))>
<MOVE <ALTER=alter-password>>;

EXCLUDE SAS-file(s) </ MEMTYPE=mtype>;
SELECT SAS-file(s) </ <MEMTYPE=mtype>

<ALTER=alter-password>>;

Concepts: COPY Procedure

Transporting SAS Data Sets between Hosts
The COPY procedure, along with the XPORT engine and the XML engine, can create

and read transport files that can be moved from one host to another. PROC COPY can
create transport files only with SAS data sets, not with catalogs or other types of SAS
files.

Transporting is a three-step process:
1 Use PROC COPY to copy one or more SAS data sets to a file that is created with

either the transport (XPORT) engine or the XML engine. This file is referred to as
a transport file and is always a sequential file.

2 After the file is created, you can move it to another operating environment via
communications software, such as FTP, or tape. If you use communications
software, be sure to move the file in binary format to avoid any type of conversion.
If you are moving the file to a mainframe, the file must have certain attributes.
Consult the SAS documentation for your operating environment and the SAS
Technical Support Web page for more information.

3 After you have successfully moved the file to the receiving host, use PROC COPY
to copy the data sets from the transport file to a SAS data library.

For an example, see Example 1 on page 279.
For details on transporting files, see Moving and Accessing SAS Files across

Operating Environments.
The CPORT and CIMPORT procedures also provide a way to transport SAS files. For

information, see Chapter 8, “The CIMPORT Procedure,” on page 215 and Chapter 13,
“The CPORT Procedure,” on page 285.

The COPY Procedure � Program 279

Example: COPY Procedure

Example 1: Copying SAS Data Sets between Hosts

Features:
PROC COPY statement options:

IN=
MEMTYPE=
OUT=

Other features: XPORT engine

This example illustrates how to create a transport file on a host and read it on
another host.

In order for this example to work correctly, the transport file must have certain
characteristics, as described in the SAS documentation for your operating environment.
In addition, the transport file must be moved to the receiving operating system in
binary format.

Program

Assign library references. Assign a libref, such as SOURCE, to the SAS data library that
contains the SAS data set that you want to transport. Also, assign a libref to the transport file
and use the XPORT keyword to specify the XPORT engine.

libname source ’SAS-data-library-on-sending-host’;
libname xptout xport ’filename-on-sending-host’;

Copy the SAS data sets to the transport file. Use PROC COPY to copy the SAS data sets
from the IN= library to the transport file. MEMTYPE=DATA specifies that only SAS data sets
are copied. SELECT selects the data sets that you want to copy.

proc copy in=source out=xptout memtype=data;
select bonus budget salary;

run;

280 SAS Log � Chapter 11

SAS Log

SAS Log on Sending Host

1 libname source ’SAS-data-library-on-sending-host ’;
NOTE: Libref SOURCE was successfully assigned as follows:

Engine: V9
Physical Name: SAS-data-library-on-sending-host

2 libname xptout xport ’filename-on-sending-host’;
NOTE: Libref XPTOUT was successfully assigned as follows:

Engine: XPORT
Physical Name: filename-on-sending-host

3 proc copy in=source out=xptout memtype=data;
4 select bonus budget salary;
5 run;

NOTE: Copying SOURCE.BONUS to XPTOUT.BONUS (memtype=DATA).
NOTE: The data set XPTOUT.BONUS has 1 observations and 3 variables.
NOTE: Copying SOURCE.BUDGET to XPTOUT.BUDGET (memtype=DATA).
NOTE: The data set XPTOUT.BUDGET has 1 observations and 3 variables.
NOTE: Copying SOURCE.SALARY to XPTOUT.SALARY (memtype=DATA).
NOTE: The data set XPTOUT.SALARY has 1 observations and 3 variables.

Enable the procedure to read data from the transport file. The XPORT engine in the
LIBNAME statement enables the procedure to read the data from the transport file.

libname insource xport ’filename-on-receiving-host’;

Copy the SAS data sets to the receiving host. After you copy the files (for example, by using
FTP in binary mode to the Windows NT host), use PROC COPY to copy the SAS data sets to the
WORK data library on the receiving host.

proc copy in=insource out=work;
run;

The COPY Procedure � SAS Log 281

SAS Log on Receiving Host

1 libname insource xport ’filename-on-receiving-host’;
NOTE: Libref INSOURCE was successfully assigned as follows:

Engine: XPORT
Physical Name: filename-on-receiving-host

2 proc copy in=insource out=work;
3 run;
NOTE: Input library INSOURCE is sequential.
NOTE: Copying INSOURCE.BUDGET to WORK.BUDGET (memtype=DATA).
NOTE: BUFSIZE is not cloned when copying across different engines.

System Option for BUFSIZE was used.
NOTE: The data set WORK.BUDGET has 1 observations and 3 variables.
NOTE: Copying INSOURCE.BONUS to WORK.BONUS (memtype=DATA).
NOTE: BUFSIZE is not cloned when copying across different engines.

System Option for BUFSIZE was used.
NOTE: The data set WORK.BONUS has 1 observations and 3 variables.
NOTE: Copying INSOURCE.SALARY to WORK.SALARY (memtype=DATA).
NOTE: BUFSIZE is not cloned when copying across different engines.

System Option for BUFSIZE was used.
NOTE: The data set WORK.SALARY has 1 observations and 3 variables.

282

283

C H A P T E R

12
The CORR Procedure

Information about the CORR Procedure 283

Information about the CORR Procedure
See: The documentation for the CORR procedure has moved to Volume 3 of this book.

284

285

C H A P T E R

13
The CPORT Procedure

Overview: CPORT Procedure 285
What Does the CPORT Procedure Do? 285

General File Transport Process 286

Syntax: CPORT Procedure 286

PROC CPORT Statement 286

EXCLUDE Statement 292
SELECT Statement 293

TRANTAB Statement 294

Concepts: CPORT Procedure 294

Results: CPORT Procedure 294

Examples: CPORT Procedure 295

Example 1: Exporting Multiple Catalogs 295
Example 2: Exporting Individual Catalog Entries 296

Example 3: Exporting a Single SAS Data Set 296

Example 4: Applying a Translation Table 297

Example 5: Exporting Entries Based on Modification Date 298

Overview: CPORT Procedure

What Does the CPORT Procedure Do?
The CPORT procedure writes SAS data sets, SAS catalogs, or SAS data libraries to

sequential file formats (transport files). Use PROC CPORT with the CIMPORT
procedure to move files from one environment to another. Transport files are sequential
files that each contain a SAS data library, a SAS catalog, or a SAS data set in transport
format. The transport format that PROC CPORT writes is the same for all
environments and for many releases of SAS. In PROC CPORT, export means to put a
SAS data library, a SAS catalog, or a SAS data set into transport format. PROC
CPORT exports catalogs and data sets, either singly or as a SAS data library. PROC
CIMPORT restores (imports) the transport file to its original form as a SAS catalog,
SAS data set, or SAS data library.

Only PROC CIMPORT can read the transport files that PROC CPORT creates. For
information on the transport files that the transport engine creates, see the section on
SAS files in SAS Language Reference: Concepts.

PROC CPORT also converts SAS files, which means that it changes the format of a
SAS file from the format appropriate for one version of SAS to the format appropriate
for another version. For example, you can use PROC CPORT and PROC CIMPORT to
move files from earlier releases of SAS to more recent releases. In such cases, PROC
CIMPORT automatically converts the contents of the transport file as it imports it.

286 General File Transport Process � Chapter 13

PROC CPORT produces no output (other than the transport files), but it does write
notes to the SAS log.

General File Transport Process
To export and import files, follow these steps:
1 Use PROC CPORT to export the SAS files that you want to transport.
2 If you are changing operating environments, move the transport file to the new

machine by using either communications software or a magnetic medium.

Note: If you use communications software to move the transport file, be sure that
it treats the transport file as a binary file and that it modifies neither the
attributes nor the contents of the file. �

3 Use PROC CIMPORT to translate the transport file into the format appropriate
for the new operating environment or release.

Syntax: CPORT Procedure
See: CPORT Procedure in the documentation for your operating environment.

PROC CPORT source-type=libref | <libref.>member-name<option(s)>;
EXCLUDE SAS file(s) | catalog entry(s)</ MEMTYPE=mtype></

ENTRYTYPE=entry-type>;
SELECT SAS file(s) | catalog entry(s) </ MEMTYPE=mtype></

ENTRYTYPE=entry-type>;
TRANTAB NAME=translation-table-name

<option(s)>;

PROC CPORT Statement

PROC CPORT source-type=libref | <libref.>member-name<option(s)>;

To do this Use this option

Identify the transport file

Specify the transport file to write to FILE=

The CPORT Procedure � PROC CPORT Statement 287

To do this Use this option

Direct the output from PROC CPORT to a
tape

TAPE

Select files to export

Export copies of all data sets or catalog
entries that have a modification date equal to
or later than the date you specify

AFTER=

Exclude specified entry types from the
transport file

EET=

Include specified entry types in the transport
file

ET=

Specify whether to export all generations of a
data set

GENERATION=

Specify that only data sets, only catalogs, or
both, be moved when a library is exported

MEMTYPE=

Control the contents of the transport file

Suppress the conversion of displayed
character data to transport format

ASIS

Control the exportation of integrity
constraints

CONSTRAINT

Copy the created and modified date and time
to the transport file

DATECOPY

Control the exportation of indexes with
indexed SAS data sets

INDEX

Suppress the compression of binary zeros and
blanks in the transport file

NOCOMPRESS

Write all alphabetic characters to the
transport file in uppercase

OUTTYPE=
UPCASE

Translate specified characters from one
ASCII or EBCDIC value to another

TRANSLATE

Export SAS/AF PROGRAM and SCL entries without
edit capability when you import them

NOEDIT

Specify that exported catalog entries contain compiled
SCL code, but not the source code

NOSRC

Specify a libref associated with a SAS data library OUTLIB=

Required Arguments

source-type=libref | < libref.>member-name
identifies the type of file to export and specifies the catalog, SAS data set, or SAS
data library to export.

288 PROC CPORT Statement � Chapter 13

source-type
identifies the file(s) to export as a single catalog, as a single SAS data set, or as
the members of a SAS data library. The source-type argument can be one of the
following:

CATALOG | CAT | C
DATA | DS | D
LIBRARY | LIB | L

libref | <libref.>member-name
specifies the specific catalog, SAS data set, or SAS data library to export. If
source-type is CATALOG or DATA, you can specify both a libref and a member
name. If the libref is omitted, PROC CPORT uses the default library as the libref,
which is usually the WORK library. If the source-type argument is LIBRARY,
specify only a libref. If you specify a library, PROC CPORT exports only data sets
and catalogs from that library. You cannot export other types of files.

Options

AFTER=date
exports copies of all data sets or catalog entries that have a modification date later
than or equal to the date you specify. The modification date is the most recent date
when the contents of the data set or catalog entry changed. Specify date as a SAS
date literal or as a numeric SAS date value.
Tip: You can determine the modification date of a catalog entry by using the

CATALOG procedure.
Featured in: Example 5 on page 298.

ASIS
suppresses the conversion of displayed character data to transport format. Use this
option when you move files that contain DBCS (double-byte character set) data from
one operating environment to another if both operating environments use the same
type of DBCS data.
Interaction: The ASIS option invokes the NOCOMPRESS option.
Interaction: You cannot use both the ASIS option and the OUTTYPE= options in

the same PROC CPORT step.

CONSTRAINT=YES | NO
controls the exportation of integrity constraints that have been defined on a data set.
When you specify CONSTRAINT=YES, all types of integrity constraints are exported
for a library; only general integrity constraints are exported for a single data set.
When you specify CONTRAINT=NO, indexes created without integrity constraints
are ported, but neither integrity constraints nor any indexes created with integrity
constraints are ported. For more information on integrity constraints, see the section
on SAS files in SAS Language Reference: Concepts.
Alias: CON=
Default: YES
Interaction: You cannot specify both CONSTRAINT= and INDEX= in the same

PROC CPORT step.
Interaction: If you specify INDEX=NO, no integrity constraints are exported.

DATECOPY
copies the SAS internal date and time when the SAS file was created and the date
and time when it was last modified to the resulting transport file. Note that the
operating environment date and time are not preserved.

The CPORT Procedure � PROC CPORT Statement 289

Restriction: DATECOPY can be used only when the destination file uses the V8 or
V9 engine.

Tip: You can alter the file creation date and time with the DTC= option on the
MODIFY statement“MODIFY Statement” on page 348 in a PROC DATASETS step.

EET=(etype(s))
excludes specified entry types from the transport file. If etype is a single entry type,
then you can omit the parentheses. Separate multiple values with a space.
Interaction: You cannot use both the EET= option and the ET= option in the same

PROC CPORT step.

ET=(etype(s))
includes specified entry types in the transport file. If etype is a single entry type,
then you can omit the parentheses. Separate multiple values with a space.
Interaction: You cannot use both the EET= option and the ET= option in the same

PROC CPORT step.

FILE=fileref | ’filename’
specifies a previously defined fileref or the filename of the transport file to write to. If
you omit the FILE= option, then PROC CPORT writes to the fileref SASCAT, if
defined. If the fileref SASCAT is not defined, PROC CPORT writes to SASCAT.DAT
in the current directory.

Note: The behavior of PROC CPORT when SASCAT is undefined varies from one
operating environment to another. For details, see the SAS documentation for your
operating environment. �
Featured in: All examples.

GENERATION=YES | NO
specifies whether to export all generations of a SAS data set. To export only the base
generation of a data set, specify GENERATION=NO in the PROC CPORT statement.
To export a specific generation number, use the GENNUM= data set option when you
specify a data set in the PROC CPORT statement. For more information on
generation data sets, see SAS Language Reference: Concepts.

Note: PROC CIMPORT imports all generations of a data set that are present in
the transport file. It deletes any previous generation set with the same name and
replaces it with the imported generation set, even if the number of generations does
not match. �
Alias: GEN=
Default: YES for libraries; NO for single data sets

INDEX=YES | NO
specifies whether to export indexes with indexed SAS data sets.
Default: YES
Interaction: You cannot specify both INDEX= and CONSTRAINT= in the same

PROC CPORT step.
Interaction: If you specify INDEX=NO, no integrity constraints are exported.

290 PROC CPORT Statement � Chapter 13

INTYPE=DBCS-type
specifies the type of DBCS data stored in the SAS files to be exported. Double-byte
character set (DBCS) data uses up to two bytes for each character in the set.
DBCS-type must be one of the following values:

IBM | HITAC |
FACOM

for z/OS

IBM for VSE

DEC | SJIS for OpenVMS

PCIBM | SJIS for OS/2
Restriction The INTYPE= option is allowed only if SAS is built with Double-Byte

Character Set (DBCS) extensions. Because these extensions require significant
computing resources, there is a special distribution for those sites that require it.
An error is reported if this option is used at a site for which DBCS extensions are
not enabled.

Default: If the INTYPE= option is not used, the DBCS type defaults to the value of
the SAS system option DBCSTYPE=.

Interaction: Use the INTYPE= option in conjunction with the OUTTYPE= option to
change from one type of DBCS data to another.

Interaction: The INTYPE= option invokes the NOCOMRPESS option.
Interaction: You cannot use the INTYPE= option and the ASIS option in the same

PROC CPORT step.
Tip: You can set the value of the SAS system option DBCSTYPE= in your

configuration file.

MEMTYPE=mtype
restricts the type of SAS file that PROC CPORT writes to the transport file.
MEMTYPE= restricts processing to one member type. Values for mtype can be

ALL
both catalogs and data sets

CATALOG | CAT
catalogs

DATA | DS
SAS data sets

Alias: MT=
Default: ALL
Featured in: Example 1 on page 295.

NOCOMPRESS
suppresses the compression of binary zeros and blanks in the transport file.
Alias: NOCOMP
Default: By default, PROC CPORT compresses binary zeros and blanks to conserve

space.
Interaction: The ASIS, INTYPE=, and OUTTYPE= options invoke the

NOCOMPRESS option.

Note: Compression of the transport file does not alter the flag in each catalog and
data set that indicates whether the original file was compressed. �

NOEDIT

The CPORT Procedure � PROC CPORT Statement 291

exports SAS/AF PROGRAM and SCL entries without edit capability when you
import them.

The NOEDIT option produces the same results as when you create a new catalog
to contain SCL code by using the MERGE statement with the NOEDIT option in the
BUILD procedure of SAS/AF software.

Note: The NOEDIT option affects only SAS/AF PROGRAM and SCL entries. It
does not affect FSEDIT SCREEN or FSVIEW FORMULA entries. �
Alias: NEDIT

NOSRC
specifies that exported catalog entries contain compiled SCL code but not the source
code.

The NOSRC option produces the same results as when you create a new catalog to
contain SCL code by using the MERGE statement with the NOSOURCE option in
the BUILD procedure of SAS/AF software.
Alias: NSRC

OUTLIB=libref
specifies a libref associated with a SAS data library. If you specify the OUTLIB=
option, PROC CIMPORT is invoked automatically to re-create the input data library,
data set, or catalog in the specified library.
Alias: OUT=
Tip: Use the OUTLIB= option when you change SAS files from one DBCS type to

another within the same operating environment if you want to keep the original
data intact.

OUTTYPE=UPCASE
writes all displayed characters to the transport file and to the OUTLIB= file in
uppercase.
Interaction: The OUTTYPE= option invokes the NOCOMPRESS option.

TAPE
directs the output from PROC CPORT to a tape.
Default: The output from PROC CPORT is sent to disk.

TRANSLATE=(translation-list)
translates specified characters from one ASCII or EBCDIC value to another. Each
element of translation-list has the form

ASCII-value-1 TO ASCII-value-2
EBCDIC-value-1 TO EBCDIC-value-2
You can use hexadecimal or decimal representation for ASCII values. If you use

the hexadecimal representation, values must begin with a digit and end with an x.
Use a leading zero if the hexadecimal value begins with an alphabetic character.

For example, to translate all left brackets to left braces, specify the TRANSLATE=
option as follows (for ASCII characters):

translate=(5bx to 7bx)

The following example translates all left brackets to left braces and all right
brackets to right braces:

translate=(5bx to 7bx 5dx to 7dx)

292 EXCLUDE Statement � Chapter 13

EXCLUDE Statement

Excludes specified files or entries from the transport file.

Tip: There is no limit to the number of EXCLUDE statements you can use in one
invocation of PROC CPORT.
Interaction: You can use either EXCLUDE statements or SELECT statements in a PROC
CPORT step, but not both.

EXCLUDE SAS file(s) | catalog entry(s)</ MEMTYPE=mtype></
ENTRYTYPE=entry-type>;

Required Arguments

SAS file(s) | catalog entry(s)
specifies either the name(s) of one or more SAS files or the names of one or more
catalog entries to be excluded from the transport file. Specify SAS filenames when
you export a SAS data library; specify catalog entry names when you export an
individual SAS catalog. Separate multiple filenames or entry names with a space.
You can use shortcuts to list many like-named files in the EXCLUDE statement. For
more information, see “Shortcuts for Specifying Lists of Variable Names” on page 24.

Options

ENTRYTYPE=entry-type
specifies a single entry type for the catalog entries listed in the EXCLUDE statement.
See SAS Language Reference: Concepts for a complete list of catalog entry types.
Restriction: ENTRYTYPE= is valid only when you export an individual SAS

catalog.
Alias: ETYPE=, ET=

MEMTYPE=mtype
specifies a single member type for the SAS file(s) listed in the EXCLUDE statement.
Valid values are CATALOG or CAT, DATA, or ALL. If you do not specify the
MEMTYPE= option in the EXCLUDE statement, then processing is restricted to
those member types specified in the MEMTYPE= option in the PROC CPORT
statement.

You can also specify the MEMTYPE= option, enclosed in parentheses, immediately
after the name of a file. In parentheses, MEMTYPE= identifies the type of the file
name that just precedes it. When you use this form of the option, it overrides the
MEMTYPE= option that follows the slash in the EXCLUDE statement, but it must
match the MEMTYPE= option in the PROC CPORT statement:
Restriction: MEMTYPE= is valid only when you export a SAS data library.
Restriction: If you specify a member type for MEMTYPE= in the PROC CPORT

statement, it must agree with the member type that you specify for MEMTYPE=
in the EXCLUDE statement.

Alias: MTYPE=, MT=
Default: If you do not specify MEMTYPE= in the PROC CPORT statement or in

the EXCLUDE statement, the default is MEMTYPE=ALL.

The CPORT Procedure � SELECT Statement 293

SELECT Statement

Includes specified files or entries in the transport file.

Tip: There is no limit to the number of SELECT statements you can use in one
invocation of PROC CPORT.

Interaction: You can use either EXCLUDE statements or SELECT statements in a PROC
CPORT step, but not both.

Featured in: Example 2 on page 296

SELECT SAS file(s) | catalog entry(s)</ MEMTYPE=mtype> </
ENTRYTYPE=entry-type> ;

Required Arguments

SAS file(s) | catalog entry(s)
specifies either the name(s) of one or more SAS files or the names of one or more
catalog entries to be included in the transport file. Specify SAS filenames when you
export a SAS data library; specify catalog entry names when you export an
individual SAS catalog. Separate multiple filenames or entry names with a space.
You can use shortcuts to list many like-named files in the SELECT statement. For
more information, see “Shortcuts for Specifying Lists of Variable Names” on page 24.

Options

ENTRYTYPE=entry-type
specifies a single entry type for the catalog entries listed in the SELECT statement.
See SAS Language Reference: Concepts for a complete list of catalog entry types.

Restriction: ENTRYTYPE= is valid only when you export an individual SAS
catalog.

Alias: ETYPE=, ET=

MEMTYPE=mtype
specifies a single member type for the SAS file(s) listed in the SELECT statement.
Valid values are CATALOG or CAT, DATA, or ALL. If you do not specify the
MEMTYPE= option in the SELECT statement, then processing is restricted to those
member types specified in the MEMTYPE= option in the PROC CPORT statement.

You can also specify the MEMTYPE= option, enclosed in parentheses, immediately
after the name of a member. In parentheses, MEMTYPE= identifies the type of the
member name that just precedes it. When you use this form of the option, it
overrides the MEMTYPE= option that follows the slash in the SELECT statement,
but it must match the MEMTYPE= option in the PROC CPORT statement.

Restriction: MEMTYPE= is valid only when you export a SAS data library.

Restriction: If you specify a member type for MEMTYPE= in the PROC CPORT
statement, it must agree with the member type that you specify for MEMTYPE=
in the SELECT statement.

Alias: MTYPE=, MT=

294 TRANTAB Statement � Chapter 13

Default: If you do not specify MEMTYPE= in the PROC CPORT statement or in
the SELECT statement, the default is MEMTYPE=ALL.

TRANTAB Statement

Specifies translation tables for characters in catalog entries you export.

Tip: You can specify only one table for each TRANTAB statement, but there is no limit
to the number of TRANTAB statements you can use in one invocation of PROC CPORT.

Featured in: Example 4 on page 297.

See: The TRANTAB Statement for the CPORT Procedure and the UPLOAD and
DOWNLOAD Procedures in SAS National Language Support (NLS): User’s Guide

TRANTAB NAME=translation-table-name
<option(s)>;

Concepts: CPORT Procedure

For password-protected data sets, the password(s) are applied to the destination data
set when it is imported. If the data set is transported as part of a library, it is not
necessary to supply the password. If the data set is transported singly, you must supply
the read password. If you omit the password in the PROC CPORT step, SAS prompts
you for the password. If the target SAS engine does not support passwords, then the
import will fail. For example, the following SAS code transports a password-protected
data set called WORK.ONE:

proc cport data=one(read=hithere) file=’bin’;

Results: CPORT Procedure

A common problem when you create or import a transport file under the z/OS
environment is a failure to specify the correct Data Control Block (DCB) characteristics.
When you reference a transport file, you must specify the following DCB characteristics:

Another common problem can occur if you use communications software to move files
from another environment to z/OS. In some cases, the transport file does not have the
proper DCB characteristics when it arrives on z/OS. If the communications software
does not allow you to specify file characteristics, try the following approach for z/OS:

1 Create a file under z/OS with the correct DCB characteristics and initialize the file.

2 Move the transport file from the other environment to the newly created file under
z/OS using binary transfer.

The CPORT Procedure � SAS Log 295

Examples: CPORT Procedure

Example 1: Exporting Multiple Catalogs
Procedure features:

PROC CPORT statement options:
FILE=
MEMTYPE=

This example shows how to use PROC CPORT to export entries from all of the SAS
catalogs in the SAS data library you specify.

Program

Specify the library reference for the SAS data library that contains the source files to
be exported and the file reference to which the output transport file is written. The
LIBNAME statement assigns a libref for the SAS data library. The FILENAME statement
assigns a fileref and any operating environment options for file characteristics for the transport
file that PROC CPORT creates.

libname source ’SAS-data-library’;
filename tranfile ’transport-file’

host-option(s)-for-file-characteristics;

Create the transport file. The PROC CPORT step executes on the operating environment
where the source library is located. MEMTYPE=CATALOG writes all SAS catalogs in the source
library to the transport file.

proc cport library=source file=tranfile memtype=catalog;
run;

SAS Log

NOTE: Proc CPORT begins to transport catalog SOURCE.FINANCE
NOTE: The catalog has 5 entries and its maximum logical record length is 866.
NOTE: Entry LOAN.FRAME has been transported.
NOTE: Entry LOAN.HELP has been transported.
NOTE: Entry LOAN.KEYS has been transported.
NOTE: Entry LOAN.PMENU has been transported.
NOTE: Entry LOAN.SCL has been transported.

NOTE: Proc CPORT begins to transport catalog SOURCE.FORMATS
NOTE: The catalog has 2 entries and its maximum logical record length is 104.
NOTE: Entry REVENUE.FORMAT has been transported.
NOTE: Entry DEPT.FORMATC has been transported.

296 Example 2: Exporting Individual Catalog Entries � Chapter 13

Example 2: Exporting Individual Catalog Entries

Procedure features:
PROC CPORT statement options:

FILE=
SELECT statement

This example shows how to use PROC CPORT to export individual catalog entries,
rather than all of the entries in a catalog.

Program

Assign library references. The LIBNAME and FILENAME statements assign a libref for the
source library and a fileref for the transport file, respectively.

libname source ’SAS-data-library’;
filename tranfile ’transport-file’

host-option(s)-for-file-characteristics;

Write an entry to the transport file. SELECT writes only the LOAN.SCL entry to the
transport file for export.

proc cport catalog=source.finance file=tranfile;
select loan.scl;
run;

SAS Log

NOTE: Proc CPORT begins to transport catalog SOURCE.FINANCE
NOTE: The catalog has 5 entries and its maximum logical record length is 866.
NOTE: Entry LOAN.SCL has been transported.

Example 3: Exporting a Single SAS Data Set

Procedure features:
PROC CPORT statement option:

FILE=

This example shows how to use PROC CPORT to export a single SAS data set.

The CPORT Procedure � Program 297

Program

Assign library references. The LIBNAME and FILENAME statements assign a libref for the
source library and a fileref for the transport file, respectively.

libname source ’SAS-data-library’;
filename tranfile ’transport-file’

host-option(s)-for-file-characteristics;

Specify the type of file that you are exporting. The DATA= specification in the PROC
CPORT statement tells the procedure that you are exporting a SAS data set rather than a
library or a catalog.

proc cport data=source.times file=tranfile;
run;

SAS Log

NOTE: Proc CPORT begins to transport data set SOURCE.TIMES
NOTE: The data set contains 2 variables and 2 observations.

Logical record length is 16.
NOTE: Transporting data set index information.

Example 4: Applying a Translation Table

Procedure features:
PROC CPORT statement option:

FILE=
TRANTAB statement option:

TYPE=

This example shows how to apply a customized translation table to the transport file
before PROC CPORT exports it. For this example, assume that you have already
created a customized translation table called TTABLE1.

Program

Assign library references. The LIBNAME and FILENAME statements assign a libref for the
source library and a fileref for the transport file, respectively.

libname source ’SAS-data-library’;
filename tranfile ’transport-file’

host-option(s)-for-file-characteristics;

298 SAS Log � Chapter 13

Apply the translation specifics. The TRANTAB statement applies the translation that you
specify with the customized translation table TTABLE1. TYPE= limits the translation to
FORMAT entries.

proc cport catalog=source.formats file=tranfile;
trantab name=ttable1 type=(format);

run;

SAS Log

NOTE: Proc CPORT begins to transport catalog SOURCE.FORMATS
NOTE: The catalog has 2 entries and its maximum logical record length is 104.
NOTE: Entry REVENUE.FORMAT has been transported.
NOTE: Entry DEPT.FORMATC has been transported.

Example 5: Exporting Entries Based on Modification Date

Procedure features:
PROC CPORT statement options:

AFTER=
FILE=

This example shows how to use PROC CPORT to transport only the catalog entries
with modification dates equal to or later than the date you specify in the AFTER=
option.

Program

Assign library references. The LIBNAME and FILENAME statements assign a libref for the
source library and a fileref for the transport file, respectively.

libname source ’SAS-data-library’;
filename tranfile ’transport-file’

host-option(s)-for-file-characteristics;

The CPORT Procedure � SAS Log 299

Specify the catalog entries to be written to the transport file. AFTER= specifies that only
catalog entries with modification dates on or after September 9, 1996, should be written to the
transport file.

proc cport catalog=source.finance file=tranfile
after=’09sep1996’d;

run;

SAS Log

PROC CPORT writes messages to the SAS log to inform you that it began the export process for
all the entries in the specified catalog. However, PROC CPORT wrote only the entries
LOAN.FRAME and LOAN.HELP in the FINANCE catalog to the transport file because only
those two entries had a modification date equal to or later than September 9, 1996. That is, of
all the entries in the specified catalog, only two met the requirement of the AFTER= option.

NOTE: Proc CPORT begins to transport catalog SOURCE.FINANCE
NOTE: The catalog has 5 entries and its maximum logical record length is 866.
NOTE: Entry LOAN.FRAME has been transported.
NOTE: Entry LOAN.HELP has been transported.

300

301

C H A P T E R

14
The CV2VIEW Procedure

Information about the CV2VIEW Procedure 301

Information about the CV2VIEW Procedure
See: For complete documentation of the CV2VIEW procedure, see SAS/ACCESS for
Relational Databases: Reference.

302

303

C H A P T E R

15
The DATASETS Procedure

Overview: DATASETS Procedure 304
What Does the DATASETS Procedure Do? 304

Sample PROC DATASETS Output 305

Notes 306

Syntax: DATASETS Procedure 307

PROC DATASETS Statement 308
AGE Statement 312

APPEND Statement 313

AUDIT Statement 319

CHANGE Statement 322

CONTENTS Statement 323

COPY Statement 327
DELETE Statement 334

EXCHANGE Statement 338

EXCLUDE Statement 339

FORMAT Statement 339

IC CREATE Statement 340
IC DELETE Statement 343

IC REACTIVATE Statement 343

INDEX CENTILES 344

INDEX CREATE Statement 345

INDEX DELETE Statement 346
INFORMAT Statement 347

LABEL Statement 347

MODIFY Statement 348

RENAME Statement 352

REPAIR Statement 353

SAVE Statement 355
SELECT Statement 356

Concepts: DATASETS Procedure 357

Procedure Execution 357

Execution of Statements 357

RUN-Group Processing 357
Error Handling 358

Password Errors 359

Forcing a RUN Group with Errors to Execute 359

Ending the Procedure 359

Using Passwords with the DATASETS Procedure 359
Restricting Member Types for Processing 360

In the PROC DATASETS Statement 360

In Subordinate Statements 360

304 Overview: DATASETS Procedure � Chapter 15

Member Types 361
Restricting Processing for Generation Data Sets 362

Results: DATASETS Procedure 363

Directory Listing to the SAS Log 363

Directory Listing as SAS Output 364

Procedure Output 364
The CONTENTS Statement 364

Data Set Attributes 364

Engine and Operating Environment-Dependent Information 365

Alphabetic List of Variables and Attributes 366

Alphabetic List of Indexes and Attributes 367

Sort Information 367
PROC DATASETS and the Output Delivery System (ODS) 368

ODS Table Names 369

Output Data Sets 370

The CONTENTS Statement 370

The OUT= Data Set 370
The OUT2= Data Set 374

Examples: DATASETS Procedure 376

Example 1: Manipulating SAS Files 376

Example 2: Saving SAS Files from Deletion 380

Example 3: Modifying SAS Data Sets 381
Example 4: Describing a SAS Data Set 384

Example 5: Concatenating Two SAS Data Sets 386

Example 6: Aging SAS Data Sets 388

Example 7: PROC CONTENTS ODS Output 389

Overview: DATASETS Procedure

What Does the DATASETS Procedure Do?
The DATASETS procedure is a utility procedure that manages your SAS files. With

PROC DATASETS, you can

� copy SAS files from one SAS library to another

� rename SAS files

� repair SAS files

� delete SAS files

� list the SAS files that are contained in a SAS library

� list the attributes of a SAS data set, such as the date when the data was last
modified, whether the data is compressed, whether the data is indexed, and so on

� manipulate passwords on SAS files

� append SAS data sets

� modify attributes of SAS data sets and variables within the data sets

� create and delete indexes on SAS data sets

� create and manage audit files for SAS data sets

� create and delete integrity constraints on SAS data sets.

The DATASETS Procedure � Sample PROC DATASETS Output 305

Sample PROC DATASETS Output
The following DATASETS procedure
1 copies all data sets from the CONTROL library to the HEALTH library
2 lists the contents of the HEALTH library
3 deletes the SYNDROME data set from the HEALTH library
4 changes the name of the PRENAT data set to INFANT.

The SAS log is shown in Output 15.1.

libname control ’SAS-data-library-1’;
libname health ’SAS-data-library-2’;

proc datasets memtype=data;
copy in=control out=health;

run;

proc datasets library=health memtype=data details;
delete syndrome;
change prenat=infant;

run;
quit;

306 Notes � Chapter 15

Output 15.1 Log from PROC DATASETS

59 proc datasets library=health memtype=data details;

Directory

Libref HEALTH

Engine V9

Physical Name external-file

File Name external-file

Member Obs, Entries File

Name Type or Indexes Vars Label Size Last Modified

1 ALL DATA 23 17 13312 29JAN2002:08:06:46

2 BODYFAT DATA 1 2 5120 29JAN2002:08:06:46

3 CONFOUND DATA 8 4 5120 29JAN2002:08:06:46

4 CORONARY DATA 39 4 5120 29JAN2002:08:06:46

5 DRUG1 DATA 6 2 JAN95 Data 5120 29JAN2002:08:06:46

6 DRUG2 DATA 13 2 MAY95 Data 5120 29JAN2002:08:06:46

7 DRUG3 DATA 11 2 JUL95 Data 5120 29JAN2002:08:06:46

8 DRUG4 DATA 7 2 JAN92 Data 5120 29JAN2002:08:06:46

9 DRUG5 DATA 1 2 JUL92 Data 5120 29JAN2002:08:06:46

10 GROUP DATA 148 11 25600 29JAN2002:08:06:46

11 MLSCL DATA 32 4 Multiple Sclerosis Data 5120 29JAN2002:08:06:46

12 NAMES DATA 7 4 5120 29JAN2002:08:06:46

13 OXYGEN DATA 31 7 9216 29JAN2002:08:06:46

14 PERSONL DATA 148 11 25600 29JAN2002:08:06:46

15 PHARM DATA 6 3 Sugar Study 5120 29JAN2002:08:06:46

16 POINTS DATA 6 6 5120 29JAN2002:08:06:46

17 PRENAT DATA 149 6 17408 29JAN2002:08:06:46

18 RESULTS DATA 10 5 5120 29JAN2002:08:06:46

19 SLEEP DATA 108 6 9216 29JAN2002:08:06:46

20 SYNDROME DATA 46 8 9216 29JAN2002:08:06:46

21 TENSION DATA 4 3 5120 29JAN2002:08:06:46

22 TEST2 DATA 15 5 5120 29JAN2002:08:06:46

23 TRAIN DATA 7 2 5120 29JAN2002:08:06:47

24 VISION DATA 16 3 5120 29JAN2002:08:06:47

25 WEIGHT DATA 83 13 California Results 13312 29JAN2002:08:06:47

26 WGHT DATA 83 13 California Results 13312 29JAN2002:08:06:47

60 delete syndrome;

61 change prenat=infant;

62 run;

NOTE: Deleting HEALTH.SYNDROME (memtype=DATA).

NOTE: Changing the name HEALTH.PRENAT to HEALTH.INFANT (memtype=DATA).

63 quit;

Notes

� Although the DATASETS procedure can perform some operations on catalogs,
generally the CATALOG procedure is the best utility to use for managing catalogs.
For documentation of PROC CATALOG, see “Overview: CATALOG Procedure” on
page 153.

� The term member often appears as a synonym for SAS file. If you are unfamiliar
with SAS files and SAS libraries, refer to “SAS Files Concepts” in SAS Language
Reference: Concepts.

� PROC DATASETS cannot work with sequential data libraries.

The DATASETS Procedure � Syntax: DATASETS Procedure 307

Syntax: DATASETS Procedure
Tip: Supports RUN-group processing.
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
ODS Table Names: See: “ODS Table Names” on page 369
Reminder: See Chapter 3, “Statements with the Same Function in Multiple Procedures,”
on page 57 for details. You can also use any global statements. See “Global Statements”
on page 18 for a list.
See: DATASETS Procedure in the documentation for your operating environment.

PROC DATASETS <option(s)>;
AGE current-name related-SAS-file(s)

</ <ALTER=alter-password>
<MEMTYPE=mtype>>;

APPEND BASE=<libref.>SAS-data-set
<APPENDVER=V6>
<DATA=< libref.>SAS-data-set>
<FORCE>;

AUDIT SAS-file <(SAS-password)>;
INITIATE

<AUDIT_ALL=NO|YES>;
<LOG <ADMIN_IMAGE=YES|NO>
<BEFORE_IMAGE=YES|NO>
<DATA_IMAGE=YES|NO>
<ERROR_IMAGE=YES|NO>>;
<USER_VAR variable-1 <… variable-n>>;

AUDIT SAS-file <(<SAS-password> <GENNUM= integer>)>;
SUSPEND|RESUME|TERMINATE;

CHANGE old-name-1=new-name-1
<…old-name-n=new-name-n >
</ <ALTER=alter-password>
<GENNUM=ALL|integer>

<MEMTYPE=mtype>>;
CONTENTS<option(s)>;
COPY OUT=libref-1

<CLONE|NOCLONE>
<CONSTRAINT=YES|NO>
<DATECOPY>
<FORCE>
<IN=libref-2>
<INDEX=YES|NO>
<MEMTYPE=(mtype(s))>
<MOVE <ALTER=alter-password>>;

EXCLUDE SAS-file(s) < / MEMTYPE=mtype>;
SELECT SAS-file(s)

</ <ALTER=alter-password>
<MEMTYPE= mtype>>;

DELETE SAS-file(s)
</ <ALTER=alter-password>

308 PROC DATASETS Statement � Chapter 15

<GENNUM=ALL|HIST|REVERT|integer>
<MEMTYPE=mtype>>;

EXCHANGE name-1=other-name-1
<…name-n=other-name-n>
</ <ALTER=alter-password>
<MEMTYPE=mtype> >;

MODIFY SAS-file <(option(s))>
</ <CORRECTENCODING=encoding-value>
<DTC=SAS-date-time>
<GENNUM=integer>
<MEMTYPE=mtype>>;

FORMAT variable-list-1 <format-1>
<…variable-list-n <format-n>>;

IC CREATE <constraint-name=> constraint
<MESSAGE=’message-string’ <MSGTYPE=USER>>;

IC DELETE constraint-name(s)| _ALL_;
IC REACTIVATE foreign-key-name REFERENCES libref;
INDEX CENTILES index(s)

</ <REFRESH>
<UPDATECENTILES= ALWAYS|NEVER|integer>>;

INDEX CREATE index-specification(s)
</ <NOMISS>
<UNIQUE>
<UPDATECENTILES=ALWAYS|NEVER|integer>>;

INDEX DELETE index(s) | _ALL_;
INFORMAT variable-list-1 <informat-1>

<…variable-list-n <informat-n>>;
LABEL variable-1=<’label-1’|’ ’>

<…variable-n=< ’label-n’|’ ’ >>;
RENAME old-name-1=new-name-1

<…old-name-n=new-name-n>;
REPAIR SAS-file(s)

</ <ALTER=alter-password>
<GENNUM=integer>

<MEMTYPE=mtype>>;

SAVE SAS-file(s) </ MEMTYPE=mtype>;

PROC DATASETS Statement

PROC DATASETS <option(s)>;

To do this Use this option

Specify the procedure input library LIBRARY=

Provide alter access to any alter-protected SAS
file in the SAS data library

ALTER=

The DATASETS Procedure � PROC DATASETS Statement 309

To do this Use this option

Include information in the log about the number
of observations, number of variables, number of
indexes, and data set labels

DETAILS|NODETAILS

Force a RUN group to execute even when there
are errors

FORCE

Force an append operation FORCE

Restrict processing for generation data sets GENNUM=

Delete SAS files KILL

Restrict processing to a certain type of SAS file MEMTYPE=

Suppress the printing of the directory NOLIST

Suppress error processing NOWARN

Provide read, write, or alter access PW=

Provide read access READ=

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files in the SAS data library.
See also: “Using Passwords with the DATASETS Procedure” on page 359

DETAILS|NODETAILS
determines whether the following columns are written to the log:

Obs, Entries, or Indexes
gives the number of observations for SAS files of type AUDIT, DATA, and VIEW;
the number of entries for type CATALOG; and the number of files of type INDEX
that are associated with a data file, if any. If SAS cannot determine the number of
observations in a SAS data set, the value in this column is set to missing. For
example, in a very large data set, if the number of observations or deleted
observations exceeds the number that can be stored in a double-precision integer,
the count will show as missing. The value for type CATALOG is the total number
of entries. For other types, this column is blank.
Tip: The value for files of type INDEX includes both user-defined indexes and

indexes created by integrity constraints. To view index ownership and attribute
information, use PROC DATASETS with the CONTENTS statement and the
OUT2 option.

Vars
gives the number of variables for types AUDIT, DATA and VIEW. If SAS cannot
determine the number of variables in the SAS data set, the value in this column is
set to missing. For other types, this column is blank.

Label
contains the label associated with the SAS data set. This column prints a label
only for the type DATA.
The DETAILS option affects output only when a directory is specified and requires

read access to all read-protected SAS files in the SAS data library. If you do not

310 PROC DATASETS Statement � Chapter 15

supply the read password, the directory listing contains missing values for the
columns produced by the DETAILS option.
Default: If neither DETAILS or NODETAILS is specified, the default is the system

option setting. The default system option setting is NODETAILS.
Tip: If you are using the SAS windowing environment and specify the DETAILS

option for a library that contains read-protected SAS files, a requestor window
prompts you for each read password that you do not specify in the PROC
DATASETS statement. Therefore, you may want to assign the same read
password to all SAS files in the same SAS data library.

Featured in: Example 1 on page 376

FORCE
performs two separate actions:

� forces a RUN group to execute even if errors are present in one or more
statements in the RUN group. See “RUN-Group Processing” on page 357 for a
discussion of RUN-group processing and error handling.

� forces all APPEND statements to concatenate two data sets even when the
variables in the data sets are not exactly the same. The APPEND statement
drops the extra variables and issues a warning message. Without the FORCE
option, the procedure issues an error message and stops processing if you try to
perform an append operation with two SAS data sets whose variables are not
exactly the same. Refer to “APPEND Statement” on page 313 for more
information on the FORCE option.

GENNUM=ALL|HIST|REVERT|integer
restricts processing for generation data sets. Valid values are as follows:

ALL
for subordinate CHANGE and DELETE statements, refers to the base version and
all historical versions in a generation group.

HIST
for a subordinate DELETE statement, refers to all historical versions, but excludes
the base version in a generation group.

REVERT|0
for a subordinate DELETE statement, refers to the base version in a generation
group and changes the most current historical version, if it exists, to the base
version.

integer
for subordinate AUDIT, CHANGE, MODIFY, DELETE, and REPAIR statements,
refers to a specific version in a generation group. Specifying a positive number is
an absolute reference to a specific generation number that is appended to a data set
name; that is, gennum=2 specifies MYDATA#002. Specifying a negative number is
a relative reference to a historical version in relation to the base version, from the
youngest to the oldest; that is, gennum=-1 refers to the youngest historical version.

See also: “Restricting Processing for Generation Data Sets” on page 362
See also: “Understanding Generation Data Sets” in SAS Language Reference:

Concepts

KILL
deletes all SAS files in the SAS data library that are available for processing. The
MEMTYPE= option subsets the member types that the statement deletes.

CAUTION:
The KILL option deletes the SAS files immediately after you submit the statement. �

The DATASETS Procedure � PROC DATASETS Statement 311

LIBRARY=libref
names the library that the procedure processes. This library is the procedure input
library.
Aliases: DDNAME=, DD=, LIB=
Default: WORK or USER. See “Temporary and Permanent SAS Data Sets” on page

16 for more information on the WORK and USER libraries.
Restriction: A SAS library that is accessed via a sequential engine (such as a tape

format engine) cannot be specified as the value of the LIBRARY= option.
Featured in: Example 1 on page 376

MEMTYPE=(mtype(s))
restricts processing to one or more member types and restricts the listing of the data
library directory to SAS files of the specified member types. For example, the
following PROC DATASETS statement limits processing to SAS data sets in the
default data library and limits the directory listing in the SAS log to SAS files of
member type DATA:

proc datasets memtype=data;

Aliases: MTYPE=, MT=
Default: ALL
See also: “Restricting Member Types for Processing” on page 360

NODETAILS
See the description of DETAILS on page 309.

NOLIST
suppresses the printing of the directory of the SAS files in the SAS log.
Featured in: Example 3 on page 381

Note: If you specify the ODS RTF destination, PROC DATASETS output will go
to both the SAS log and the ODS output area. The NOLIST option will suppress
output to both. To see the output only in the SAS log, use the ODS EXCLUDE
statement by specifying the member directory as the exclusion. �

NOWARN
suppresses the error processing that occurs when a SAS file that is specified in a
SAVE, CHANGE, EXCHANGE, REPAIR, DELETE, or COPY statement or listed as
the first SAS file in an AGE statement is not in the procedure input library. When an
error occurs and the NOWARN option is in effect, PROC DATASETS continues
processing that RUN group. If NOWARN is not in effect, PROC DATASETS stops
processing that RUN group and issues a warning for all operations except DELETE,
for which it does not stop processing.

PW= password
provides the password for any protected SAS files in the SAS data library. PW= can
act as an alias for READ=, WRITE=, or ALTER=.
See also: “Using Passwords with the DATASETS Procedure” on page 359

READ=read-password
provides the read-password for any read-protected SAS files in the SAS data library.
See also: “Using Passwords with the DATASETS Procedure” on page 359

312 AGE Statement � Chapter 15

AGE Statement

Renames a group of related SAS files in a library.

Featured in: Example 6 on page 388

AGE current-name related-SAS-file(s)
</ <ALTER=alter-password>
<MEMTYPE=mtype>>;

Required Arguments

current-name
is a SAS file that the procedure renames. current-name receives the name of the first
name in related-SAS-file(s).

related-SAS-file(s)
is one or more SAS files in the SAS data library.

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files named in the AGE
statement. Because an AGE statement renames and deletes SAS files, you need alter
access to use the AGE statement. You can use the option either in parentheses after
the name of each SAS file or after a forward slash.

See also: “Using Passwords with the DATASETS Procedure” on page 359

MEMTYPE=mtype
restricts processing to one member type. All of the SAS files that you name in the
AGE statement must be the same member type. You can use the option either in
parentheses after the name of each SAS file or after a forward slash.

Aliases: MTYPE=, MT=

Default: If you do not specify MEMTYPE= in the PROC DATASETS statement, the
default is DATA.

See also: “Restricting Member Types for Processing” on page 360

Details

� The AGE statement renames current-name to the name of the first name in
related-SAS-file(s), renames the first name in related-SAS-file(s) to the second
name in related-SAS-file(s), and so on until it changes the name of the next-to-last
SAS file in related-SAS-file(s) to the last name in related-SAS-file(s). The AGE
statement then deletes the last file in related-SAS-file(s).

� If the first SAS file named in the AGE statement does not exist in the SAS data
library, PROC DATASETS stops processing the RUN group containing the AGE
statement and issues an error message. The AGE statement does not age any of

The DATASETS Procedure � APPEND Statement 313

the related-SAS-file(s). To override this behavior, use the NOWARN option in the
PROC DATASETS statement.

If one of the related-SAS-file(s) does not exist, the procedure prints a warning
message to the SAS log but continues to age the SAS files that it can.

� If you age a data set that has an index, the index continues to correspond to the
data set.

� You can age only entire generation groups. For example, if data sets A and B have
generation groups, then the following statement deletes generation group B and
ages (renames) generation group A to the name B:

age a b;

For example, suppose the generation group for data set A has 3 historical versions
and the generation group for data set B has 2 historical versions. Then aging A to
B has this effect:

Old Name Version New Name Version

A base B base

A 1 B 1

A 2 B 2

A 3 B 3

B base is deleted

B 1 is deleted

B 2 is deleted

APPEND Statement

Adds the observations from one SAS data set to the end of another SAS data set.

Reminder: You can use data set options with the BASE= and DATA= options. See “Data
Set Options” on page 18 for a list. You can also use any global statements as well. See
“Global Statements” on page 18.
Requirement: The BASE= data set must be a member of a SAS library that supports
update processing.
Default: If the BASE= data set is accessed through a SAS server and if no other user
has the data set open at the time the APPEND statement begins processing, the
BASE= data set defaults to CNTLLEV=MEMBER (member-level locking). When this
happens, no other user can update the file while the data set is processed.
Tip: If a failure occurs during processing, the data set is marked as damaged and is
reset to its pre-append condition at the next REPAIR statement. If the data set has an
index, the index is not updated with each observation but is updated once at the end.
(This is Version 7 and later behavior, as long as APPENDVER=V6 is not set.)
Featured in: Example 5 on page 386

APPEND BASE=< libref.>SAS-data-set
<APPENDVER=V6>

314 APPEND Statement � Chapter 15

<DATA=<libref.>SAS-data-set>
<FORCE>;

Required Arguments

BASE=<libref.> SAS-data-set
names the data set to which you want to add observations.

libref
specifies the library that contains the SAS data set. If you omit the libref, the
default is the libref for the procedure input library. If you are using PROC
APPEND, the default for libref is either WORK or USER.

SAS-data-set
names a SAS data set. If the APPEND statement cannot find an existing data set
with this name, it creates a new data set in the library. That is, you can use the
APPEND statement to create a data set by specifying a new data set name in the
BASE= argument.
The BASE= data set is the current SAS data set after all append operations

regardless of whether you are creating a new data set or appending to an existing
data set.
Alias: OUT=
Featured in: Example 5 on page 386

Options

APPENDVER=V6
uses the Version 6 behavior for appending observations to the BASE= data set, which
is to append one observation at a time. Beginning in Version 7, to improve
performance, the default behavior changed so that all observations are appended
after the data set is processed.
See also: “Appending to an Indexed Data Set — Fast-Append Method” on page 316

DATA=<libref.> SAS-data-set
names the SAS data set containing observations that you want to append to the end
of the SAS data set specified in the BASE= argument.

libref
specifies the library that contains the SAS data set. If you omit libref, the default
is the libref for the procedure input library. The DATA= data set can be from any
SAS data library, but you must use the two-level name if the data set resides in a
library other than the procedure input library.

SAS-data-set
names a SAS data set. If the APPEND statement cannot find an existing data set
with this name, it stops processing.

Alias: NEW=
Default: the most recently created SAS data set, from any SAS data library
See also: “Appending with Generation Groups” on page 318
Featured in: Example 5 on page 386

FORCE
forces the APPEND statement to concatenate data sets when the DATA= data set
contains variables that either

The DATASETS Procedure � APPEND Statement 315

� are not in the BASE= data set
� do not have the same type as the variables in the BASE= data set
� are longer than the variables in the BASE= data set.

See also: “Appending to Data Sets with Different Variables” on page 317
See also: “Appending to Data Sets That Contain Variables with Different

Attributes” on page 317
Featured in: Example 5 on page 386
Tip: You can use the GENNUM= data set option to append to or from a specific

version in a generation group. Here are some examples:

/* appends historical version to base A */
proc datasets;

append base=a
data=a (gennum=2);

/* appends current version of A to historical version */
proc datasets;

append base=a (gennum=1)
data=a;

Restricting the Observations That Are Appended
You can use the WHERE= data set option with the DATA= data set in order to

restrict the observations that are appended. Likewise, you can use the WHERE
statement in order to restrict the observations from the DATA= data set. The WHERE
statement has no effect on the BASE= data set. If you use the WHERE= data set option
with the BASE= data set, WHERE= has no effect.

CAUTION:
For an existing BASE= data set: If there is a WHERE statement on the BASE= data
set, it will take effect only if the WHEREUP= option is set to YES. �

CAUTION:
For the non-existent BASE= data set: If there is a WHERE statement on the
non-existent BASE= data set, regardless of the WHEREUP option setting, you use
the WHERE statement. �

Note: You cannot append a data set to itself by using the WHERE= data set
option. �

Choosing between the SET Statement and the APPEND Statement
If you use the SET statement in a DATA step to concatenate two data sets, SAS must

process all the observations in both data sets to create a new one. The APPEND
statement bypasses the processing of data in the original data set and adds new
observations directly to the end of the original data set. Using the APPEND statement
can be more efficient than using a SET statement if

� the BASE= data set is large
� all variables in the BASE= data set have the same length and type as the

variables in the DATA= data set and if all variables exist in both data sets.

Note: You can use the CONTENTS statement to see the variable lengths and
types. �

The APPEND statement is especially useful if you frequently add observations to a
SAS data set (for example, in production programs that are constantly appending data
to a journal-type data set).

316 APPEND Statement � Chapter 15

Appending Password-Protected SAS Data Sets
In order to use the APPEND statement, you need read access to the DATA= data set

and write access to the BASE= data set. To gain access, use the READ= and WRITE=
data set options in the APPEND statement the way you would use them in any other
SAS statement, which is in parentheses immediately after the data set name. When
you are appending password-protected data sets, use the following guidelines:

� If you do not give the read password for the DATA= data set in the APPEND
statement, by default the procedure looks for the read password for the DATA=
data set in the PROC DATASETS statement. However, the procedure does not
look for the write password for the BASE= data set in the PROC DATASETS
statement. Therefore, you must specify the write password for the BASE= data set
in the APPEND statement.

� If the BASE= data set is read-protected only, you must specify its read password in
the APPEND statement.

Appending to a Compressed Data Set
You can concatenate compressed SAS data sets. Either or both of the BASE= and

DATA= data sets can be compressed. If the BASE= data set allows the reuse of space
from deleted observations, the APPEND statement may insert the observations into the
middle of the BASE= data set to make use of available space.

For information on the COMPRESS= and REUSE= data set and system options, see
SAS Language Reference: Dictionary.

Appending to an Indexed Data Set — Fast-Append Method
Beginning with Version 7, the behavior of appending to an indexed data set changed

to improve performance.
� In Version 6, when you appended to an indexed data set, the index was updated

for each added observation. Index updates tend to be random; therefore, disk I/O
could have been high.

� Currently, SAS does not update the index until all observations are added to the
data set. After the append, SAS internally sorts the observations and inserts the
data into the index in sequential order, which reduces most of the disk I/O and
results in a faster append method.

The fast-append method is used by default when the following requirements are met;
otherwise, the Version 6 method is used:

� The BASE= data set is open for member-level locking. If CNTLLEV= is set to
record, then the fast-append code is not used.

� The BASE= data set does not contain referential integrity constraints.
� The BASE= data set is not accessed using the Cross Environment Data Access

(CEDA) facility.
� The BASE= data set is not using a WHERE= data set option.

To display information in the SAS log about the append method that is being used,
you can specify the MSGLEVEL= system option as follows:

options msglevel=i;

Either a message displays if the fast-append method is in use or a message or messages
display as to why the fast-append method is not in use.

The current append method initially adds observations to the BASE= data set
regardless of the restrictions that are determined by the index. For example, a variable
that has an index that was created with the UNIQUE option does not have its values

The DATASETS Procedure � APPEND Statement 317

validated for uniqueness until the index is updated. Then, if a nonunique value is
detected, the offending observation is deleted from the data set. This means that after
observations are appended, some of them may subsequently be deleted.

For a simple example, consider that the BASE= data set has ten observations
numbered from 1 to 10 with a UNIQUE index for the variable ID. You append a data
set that contains five observations numbered from 1 to 5, and observations 3 and 4 both
contain the same value for ID. The following occurs

1 After the observations are appended, the BASE= data set contains 15 observations
numbered from 1 to 15.

2 SAS updates the index for ID, validates the values, and determines that
observations 13 and 14 contain the same value for ID.

3 SAS deletes one of the observations from the BASE= data set, resulting in 14
observations that are numbered from 1 to 15. For example, observation 13 is
deleted. Note that you cannot predict which observation will be deleted, because
the internal sort may place either observation first. (In Version 6, you could
predict that observation 13 would be added and observation 14 would be rejected.)

If you do not want the current behavior (which could result in deleted observations)
or if you want to be able to predict which observations are appended, request the
Version 6 append method by specifying the APPENDVER=V6 option:

proc datasets;
append base=a data=b appendver=v6;

run;

Note: In Version 6, deleting the index and then recreating it after the append could
improve performance. The current method may eliminate the need to do that. However,
the performance depends on the nature of your data. �

Appending to Data Sets with Different Variables
If the DATA= data set contains variables that are not in the BASE= data set, use the

FORCE option in the APPEND statement to force the concatenation of the two data
sets. The APPEND statement drops the extra variables and issues a warning message.

If the BASE= data set contains a variable that is not in the DATA= data set, the
APPEND statement concatenates the data sets, but the observations from the DATA=
data set have a missing value for the variable that was not present in the DATA= data
set. The FORCE option is not necessary in this case.

Appending to Data Sets That Contain Variables with Different Attributes

� If a variable has different attributes in the BASE= data set than it does in the
DATA= data set, the attributes in the BASE= data set prevail.

� If formats in the DATA= data set are different from those in the BASE= data set,
then the formats in the BASE= data set are used. However, SAS does not convert
the data from the DATA= data set in order to be consistent with the formats in the
BASE= data set. The result could be data that appears to be incorrect. A warning
message is displayed in the SAS log. The following example illustrates appending
data by using different formats:

data format1;
input Date date9.;
format Date date9.;
datalines;

24sep1975

318 APPEND Statement � Chapter 15

22may1952
;

data format2;
input Date datetime20.;
format Date datetime20.;
datalines;

25aug1952:11:23:07.4
;

proc append base=format1 data=format2;
run;

The following messages are displayed in the SAS log.

Output 15.2 Warning Message in SAS Log

NOTE: Appending WORK.FORMAT2 to WORK.FORMAT1.
WARNING: Variable Date has format DATE9. on the BASE data set

and format DATETIME20. on the DATA data set. DATE9. used.
NOTE: There were 1 observations read from the data set WORK.FORMAT2.
NOTE: 1 observations added.
NOTE: The data set WORK.FORMAT1 has 3 observations and 1 variables.

� If the length of a variable is longer in the DATA= data set than in the BASE= data
set, or if the same variable is a character variable in one data set and a numeric
variable in the other, use the FORCE option. Using FORCE has these
consequences:

� The length of the variables in the BASE= data set takes precedence. SAS
truncates values from the DATA= data set to fit them into the length that is
specified in the BASE= data set.

� The type of the variables in the BASE= data set takes precedence. The
APPEND statement replaces values of the wrong type (all values for the
variable in the DATA= data set) with missing values.

Appending Data Sets That Contain Integrity Constraints
If the DATA= data set contains integrity constraints and the BASE= data set does

not exist, the APPEND statement copies the general constraints. Note that the
referential constraints are not copied. If the BASE= data set exists, the APPEND action
copies only observations.

Appending with Generation Groups
You can use the GENNUM= data set option to append to a specific version in a

generation group. Here are examples:

The DATASETS Procedure � AUDIT Statement 319

SAS Statements Result

proc datasets;
append base=a

data=b(gennum=2);

appends historical version B#002 to base A

proc datasets;
append base=a(gennum=2)

data=b(gennum=2);

appends historical version B#002 to
historical version A#002

Using the APPEND Procedure instead of the APPEND Statement
The only difference between the APPEND procedure and the APPEND statement in

PROC DATASETS, is the default for libref in the BASE= and DATA= arguments. For
PROC APPEND, the default is either WORK or USER. For the APPEND statement,
the default is the libref of the procedure input library.

System Failures
If a system failure or some other type of interruption occurs while the procedure is

executing, the append operation may not be successful; it is possible that not all,
perhaps none, of the observations will be added to the BASE= data set. In addition, the
BASE= data set may suffer damage. The APPEND operation performs an update in
place, which means that it does not make a copy of the original data set before it begins
to append observations. If you want to be able to restore the original observations, you
can initiate an audit trail for the base data file and select to store a before-update
image of the observations. Then you can write a DATA step to extract and reapply the
original observations to the data file. For information about initiating an audit trail,
see the PROC DATASETS “AUDIT Statement” on page 319.

AUDIT Statement

Initiates and controls event logging to an audit file as well as suspends, resumes, or terminates
event logging in an audit file.

See also: “Understanding an Audit Trail” in SAS Language Reference: Concepts

Tip: The AUDIT statement takes one of two forms, depending on whether you are
initiating the audit trail or suspending, resuming, or terminating event logging in an
audit file.

AUDIT SAS-file <(SAS-password)>;

INITIATE
<AUDIT_ALL=NO|YES>;

<LOG <ADMIN_IMAGE=YES|NO>
<BEFORE_IMAGE=YES|NO>
<DATA_IMAGE=YES|NO>
<ERROR_IMAGE=YES|NO>>;
<USER_VAR variable-1 <… variable-n>>;

320 AUDIT Statement � Chapter 15

AUDIT SAS-file <(<SAS-password> <GENNUM= integer>)>;
SUSPEND|RESUME|TERMINATE;

Required Arguments and Statements

SAS-file
specifies the SAS data file in the procedure input library that you want to audit.

INITIATE
creates an audit file that has the same name as the SAS data file and a data set type
of AUDIT. The audit file logs additions, deletions, and updates to the SAS data file.
You must initiate an audit trail before you can suspend, resume, or terminate it.

Options

SAS-password
specifies the password for the SAS data file, if one exists. The parentheses are
required.

GENNUM=integer
specifies that the SUSPEND, RESUME, or TERMINATE action be performed on the
audit trail of a generation file. You cannot initiate an audit trail on a generation file.
Valid values for GENNUM= are integer, which is a number that references a specific
version from a generation group. Specifying a positive number is an absolute
reference to a specific generation number that is appended to a data set’s name; that
is, gennum=2 specifies MYDATA#002. Specifying a negative number is a relative
reference to a historical version in relation to the base version, from the youngest to
the oldest; that is, gennum=-1 refers to the youngest historical version. Specifying 0,
which is the default, refers to the base version. The parentheses are required.

AUDIT_ALL=NO|YES
specifies whether logging can be suspended and audit settings can be changed.
AUDIT_ALL=YES specifies that all images are logged and cannot be suspended.
That is, you cannot use the LOG statement to turn off logging of particular images,
and you cannot suspend event logging by using the SUSPEND statement. To turn off
logging, you must use the TERMINATE statement, which terminates event logging
and deletes the audit file.
Default: NO

LOG
specifies the audit settings:

ADMIN_IMAGE=YES|NO
controls the logging of administrative events to the audit file (that is, the
SUSPEND and RESUME actions).

BEFORE_IMAGE=YES|NO
controls the storage of before-update record images.

DATA_IMAGE=YES|NO
controls the storage of added, deleted, and after-update record images.

ERROR_IMAGE=YES|NO
controls the storage of unsuccessful after-update record images.

Default: All images are logged by default; that is, all four are set to YES.

The DATASETS Procedure � AUDIT Statement 321

Tip: If you do not want to log a particular image, specify NO for the image type.
For example, the following code turns off logging the error images, but the
administrative, before, and data images continue to be logged:

log error_image=no;

USER_VAR variable-1 < … variable-n>
defines optional variables to be logged in the audit file with each update to an
observation. The syntax for defining variables is

USER_VAR variable-name-1 <$> <length> <LABEL=’variable-label’ >
<… variable-name-n <$> <length> <LABEL=’variable-label’ > >

where

variable-name
is a name for the variable.

$
indicates that the variable is a character variable.

length
specifies the length of the variable. If a length is not specified, the default is 8.

LABEL=’variable-label’
specifies a label for the variable.
You can define attributes such as format and informat for the user variables in the

data file by using the PROC DATASETS MODIFY statement.

SUSPEND
suspends event logging to the audit file, but does not delete the audit file.

RESUME
resumes event logging to the audit file, if it was suspended.

TERMINATE
terminates event logging and deletes the audit file.

Creating an Audit File
The following example creates the audit file MYLIB.MYFILE.AUDIT to log updates

to the data file MYLIB.MYFILE.DATA, storing all available record images:

proc datasets library=MyLib;
audit MyFile (alter=MyPassword);
initiate;

run;

The following example creates the same audit file but stores only error record images:

proc datasets library=MyLib;
audit MyFile (alter=MyPassword);
initiate

log data_image=NO before_image=NO;
run;

322 CHANGE Statement � Chapter 15

CHANGE Statement

Renames one or more SAS files in the same SAS data library.

Featured in: Example 1 on page 376

CHANGE old-name-1=new-name-1
<…old-name-n=new-name-n >
</ <ALTER=alter-password>
<GENNUM=ALL|integer>
<MEMTYPE=mtype>>;

Required Arguments

old-name=new-name
changes the name of a SAS file in the input data library. old-name must be the name
of an existing SAS file in the input data library.
Featured in: Example 1 on page 376

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files named in the CHANGE
statement. Because a CHANGE statement changes the names of SAS files, you need
alter access to use the CHANGE statement for new-name. You can use the option
either in parentheses after the name of each SAS file or after a forward slash.
See also: “Using Passwords with the DATASETS Procedure” on page 359

GENNUM=ALL|integer
restricts processing for generation data sets. You can use the option either in
parentheses after the name of each SAS file or after a forward slash. Valid values are

ALL | 0
refers to the base version and all historical versions of a generation group.

integer
refers to a specific version from a generation group. Specifying a positive number
is an absolute reference to a specific generation number that is appended to a data
set’s name; that is, gennum=2 specifies MYDATA#002. Specifying a negative
number is a relative reference to a historical version in relation to the base
version, from the youngest to the oldest; that is, gennum=-1 refers to the youngest
historical version.
For example, the following statements change the name of version A#003 to base B:

proc datasets;
change A=B / gennum=3;

proc datasets;
change A(gennum=3)=B;

The following CHANGE statement produces an error:

The DATASETS Procedure � CONTENTS Statement 323

proc datasets;
change A(gennum=3)=B(gennum=3);

See also: “Restricting Processing for Generation Data Sets” on page 362
See also: “Understanding Generation Data Sets” in SAS Language Reference:

Concepts

MEMTYPE=mtype
restricts processing to one member type. You can use the option either in
parentheses after the name of each SAS file or after a forward slash.
Aliases: MTYPE=, MT=
Default: If you do not specify MEMTYPE= in the PROC DATASETS statement, the

default is MEMTYPE=ALL.
See also: “Restricting Member Types for Processing” on page 360

Details

� The CHANGE statement changes names by the order that the old-names occur in
the directory listing, not in the order that you list the changes in the CHANGE
statement.

� If the old-name SAS file does not exist in the SAS data library, PROC DATASETS
stops processing the RUN group containing the CHANGE statement and issues an
error message. To override this behavior, use the NOWARN option in the PROC
DATASETS statement.

� If you change the name of a data set that has an index, the index continues to
correspond to the data set.

CONTENTS Statement

Describes the contents of one or more SAS data sets and prints the directory of the SAS data
library.

Reminder: You can use data set options with the DATA=, OUT=, and OUT2= options.
See “Data Set Options” on page 18 for a list. You can use any global statements as well.
See “Global Statements” on page 18.
Featured in: Example 4 on page 384

CONTENTS <option(s)>;

To do this Use this option

Specify the input data set DATA=

Specify the name for an output data set OUT=

Specify the name of an output data set to contain
information about indexes and integrity constraints

OUT2=

Include information in the output about the number
of observations, number of variables, number of
indexes, and data set labels

DETAILS|NODETAILS

324 CONTENTS Statement � Chapter 15

To do this Use this option

Print a list of the SAS files in the SAS data library DIRECTORY

Print the length of a variable’s informat or format FMTLEN

Restrict processing to one or more types of SAS files MEMTYPE=

Suppress the printing of individual files NODS

Suppress the printing of the output NOPRINT

Print a list of the variables by their position in the
data set. By default, the CONTENTS statement lists
the variables alphabetically.

VARNUM

Print a list of variables in alphabetical order even if
they include mixed-case names

ORDER=IGNORECASE

Print abbreviated output SHORT

Print centiles information for indexed variables CENTILES

Options

CENTILES
prints centiles information for indexed variables.

The following additional fields are printed in the default report of PROC
CONTENTS when the CENTILES option is selected and an index exists on the data
set. Note that the additional fields depend on whether the index is simple or complex.

number of the index on the data set.

Index name of the index.

Update Centiles percent of the data values that must be changed before the
CENTILES for the indexed variables are automatically updated.

Current Update
Percent

percent of index updated since CENTILES were refreshed.

of Unique
Values

number of unique indexed values.

Variables names of the variables used to make up the index. Centile
information is listed below the variables.

DATA=SAS-file-specification
specifies an entire library or a specific SAS data set within a library.
SAS-file-specification can take one of the following forms:

<libref.>SAS-data-set
names one SAS data set to process. The default for libref is the libref of the
procedure input library. For example, to obtain the contents of the SAS data set
HTWT from the procedure input library, use the following CONTENTS statement:

contents data=HtWt;

To obtain the contents of a specific version from a generation group, use the
GENNUM= data set option as shown in the following CONTENTS statement:

contents data=HtWt(gennum=3);

The DATASETS Procedure � CONTENTS Statement 325

<libref.>_ALL_
gives you information about all SAS data sets that have the type or types specified
by the MEMTYPE= option. libref refers to the SAS data library. The default for
libref is the libref of the procedure input library.

� If you are using the _ALL_ keyword, you need read access to all
read-protected SAS data sets in the SAS data library.

� DATA=_ALL_ automatically prints a listing of the SAS files that are
contained in the SAS library. Note that for SAS views, all librefs that are
associated with the views must be assigned in the current session in order for
them to be processed for the listing.

Default: most recently created data set in your job or session, from any SAS data
library.

Tip: If you specify a read-protected data set in the DATA= option but do not give
the read password, by default the procedure looks in the PROC DATASETS
statement for the read password. However, if you do not specify the DATA= option
and the default data set (last one created in the session) is read protected, the
procedure does not look in the PROC DATASETS statement for the read password.

Featured in: Example 4 on page 384

DETAILS|NODETAILS
DETAILS includes these additional columns of information in the output, but only if
DIRECTORY is also specified.

Default: If neither DETAILS or NODETAILS is specified, the defaults are as
follows: for the CONTENTS procedure, the default is the system option setting,
which is NODETAILS; for the CONTENTS statement, the default is whatever is
specified on the PROC DATASETS statement, which also defaults to the system
option setting.

See also: description of the additional columns in “Options” in “PROC DATASETS
Statement” on page 308

DIRECTORY
prints a list of all SAS files in the specified SAS data library. If DETAILS is also
specified, using DIRECTORY causes the additional columns described in
DETAILS|NODETAILS on page 309 to be printed.

FMTLEN
prints the length of the informat or format. If you do not specify a length for the
informat or format when you associate it with a variable, the length does not appear
in the output of the CONTENTS statement unless you use the FMTLEN option. The
length also appears in the FORMATL or INFORML variable in the output data set.

MEMTYPE=(mtype(s))
restricts processing to one or more member types. The CONTENTS statement
produces output only for member types DATA, VIEW, and ALL, which includes DATA
and VIEW.

MEMTYPE= in the CONTENTS statement differs from MEMTYPE= in most of
the other statements in the DATASETS procedure in the following ways:

� A slash does not precede the option.

� You cannot enclose the MEMTYPE= option in parentheses to limit its effect to
only the SAS file immediately preceding it.

MEMTYPE= results in a directory of the library in which the DATA= member is
located. However, MEMTYPE= does not limit the types of members whose contents
are displayed unless the _ALL_ keyword is used in the DATA= option. For example,

326 CONTENTS Statement � Chapter 15

the following statements produce the contents of only the SAS data sets with the
member type DATA:

proc datasets memtype=data;
contents data=_all_;

run;

Aliases: MT=, MTYPE=
Default: DATA

NODS
suppresses printing the contents of individual files when you specify _ALL_ in the
DATA= option. The CONTENTS statement prints only the SAS data library
directory. You cannot use the NODS option when you specify only one SAS data set
in the DATA= option.

NODETAILS
See the description of DETAILS|NODETAILS on page 325.

NOPRINT
suppresses printing the output of the CONTENTS statement.

ORDER= IGNORECASE | VARNUM

IGNORECASE prints a list of variables in alphabetical order even if they include
mixed-case names.

VARNUM is the same as the VARNUM option. See VARNUM.

OUT=SAS-data-set
names an output SAS data set.
Tip: OUT= does not suppress the printed output from the statement. If you want to

suppress the printed output, you must use the NOPRINT option.
See: “The OUT= Data Set” on page 370 for a description of the variables in the

OUT= data set.
See also: Example 7 on page 389 for an example of how to get the CONTENTS

output into an ODS data set for processing.

OUT2=SAS-data-set
names the output data set to contain information about indexes and integrity
constraints.
Tip: If UPDATECENTILES was not specified in the index definition, then the

default value of 5 is used in the RECREATE variable of the OUT2 data set.
Tip: OUT2= does not suppress the printed output from the statement. To suppress

the printed output, use the NOPRINT option.
See also: “The OUT2= Data Set” on page 374 for a description of the variables in

the OUT2= data set.

SHORT
prints only the list of variable names, the index information, and the sort
information for the SAS data set.

VARNUM
prints a list of the variable names in the order of their logical position in the data
set. By default, the CONTENTS statement lists the variables alphabetically. The
physical position of the variable in the data set is engine-dependent.

Details
The CONTENTS statement prints an alphabetical listing of the variables by default,

except for variables in the form of a numbered range list. Numbered range lists, such

The DATASETS Procedure � COPY Statement 327

as x1–x100, are printed in incrementing order, that is, x1–x100. For more information,
see “Alphabetic List of Variables and Attributes” on page 366.

Requesting CONTENTS Output for a Password-Protected File with Integrity
Constraints

For a SAS data file with defined referential integrity constraints that is also password
protected, some SAS requests require that both files be open in order to process the
request. If both files are password protected, then both passwords must be provided.

For example, suppose you want to execute the CONTENTS procedure for a data file
with a primary key that is referenced by a foreign key. You must provide the password
for the primary key data file as well as the password for the referential data file,
because in order to obtain the information for the CONTENTS output for the primary
key data file, SAS must open both files.

For an example, see “Understanding Integrity Constraints” in SAS Language
Reference: Concepts.

Using the CONTENTS Procedure instead of the CONTENTS Statement

The only difference between the CONTENTS procedure and the CONTENTS
statement in PROC DATASETS is the default for libref in the DATA= option. For
PROC CONTENTS, the default is either WORK or USER. For the CONTENTS
statement, the default is the libref of the procedure input library.

COPY Statement

Copies all or some of the SAS files in a SAS library.

Featured in: Example 1 on page 376

COPY OUT=libref-1
<CLONE|NOCLONE>
<CONSTRAINT=YES|NO>
<DATECOPY>
<FORCE>
<IN=libref-2>
<INDEX=YES|NO>
<MEMTYPE=(mtype(s))>
<MOVE <ALTER=alter-password>> ;

Required Arguments

OUT=libref-1
names the SAS library to copy SAS files to.

Aliases: OUTLIB= and OUTDD=

Featured in: Example 1 on page 376

328 COPY Statement � Chapter 15

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files that you are moving
from one data library to another. Because the MOVE option deletes the SAS file from
the original data library, you need alter access to move the SAS file.
See also: “Using Passwords with the DATASETS Procedure” on page 359

CLONE|NOCLONE
specifies whether to copy the following data set attributes:

� size of input/output buffers
� whether the data set is compressed
� whether free space is reused
� data representation of input data set, library, or operating environment
� encoding value.

These attributes are specified with data set options, SAS system options, and
LIBNAME statement options:

� BUFSIZE= value for the size of the input/output buffers
� COMPRESS= value for whether the data set is compressed
� REUSE= value for whether free space is reused
� OUTREP= value for data representation
� ENCODING= or INENCODING= for encoding value.

For the BUFSIZE= attribute, the following table summarizes how the COPY
statement works:

Table 15.1 CLONE and the Buffer Page Size Attribute

If you use… the COPY statement…

CLONE uses the BUFSIZE= value from the input data set for the output data
set.

NOCLONE uses the current setting of the SAS system option BUFSIZE= for the
output data set.

neither determines the type of access method, sequential or random, used by
the engine for the input data set and the engine for the output data
set. If both engines use the same type of access, the COPY statement
uses the BUFSIZE= value from the input data set for the output data
set. If the engines do not use the same type of access, the COPY
statement uses the setting of SAS system option BUFSIZE= for the
output data set.

For the COMPRESS= and REUSE= attributes, the following table summarizes
how the COPY statement works:

The DATASETS Procedure � COPY Statement 329

Table 15.2 CLONE and the Compression and Reuse Space Attributes

If you use… the COPY statement…

CLONE uses the values from the input data set for the output data set. If the
engine for the input data set does not support the compression and
reuse space attributes, then the COPY statement uses the current
setting of the corresponding SAS system option.

NOCLONE uses the current setting of the SAS system options COMPRESS= and
REUSE= for the output data set.

neither defaults to CLONE.

For the OUTREP= attribute, the following table summarizes how the COPY
statement works:

Table 15.3 CLONE and the Data Representation Attribute

If you use… the COPY statement…

CLONE results in a copy with the data representation of the input data set.

NOCLONE results in a copy with the data representation of the operating
environment or, if specified, the value of the OUTREP= option in the
LIBNAME statement for the library.

neither default is CLONE.

Data representation is the format in which data is represented on a computer
architecture or in an operating environment. For example, on an IBM PC, character
data is represented by its ASCII encoding and byte-swapped integers. Native data
representation refers to an environment for which the data representation compares
with the CPU that is accessing the file. For example, a file in Windows data
representation is native to the Windows operating environment.

For the ENCODING= attribute, the following table summarizes how the COPY
statement works.

Table 15.4 CLONE and the Encoding Attribute

If you use… the COPY statement…

CLONE results in a copy that uses the encoding of the input data set or, if
specified, the value of the INENCODING= option in the LIBNAME
statement for the input library.

NOCLONE results in a copy that uses the encoding of the current session
encoding or, if specified, the value of the OUTENCODING= option in
the LIBNAME statement for the output library.

neither default is CLONE.

All data that is stored, transmitted, or processed by a computer is in an encoding.
An encoding maps each character to a unique numeric representation. An encoding
is a combination of a character set with an encoding method. A character set is the
repertoire of characters and symbols that are used by a language or group of
languages. An encoding method is the set of rules that are used to assign the
numbers to the set of characters that will be used in a encoding.

330 COPY Statement � Chapter 15

CONSTRAINT=YES|NO
specifies whether to copy all integrity constraints when copying a data set.
Default: NO
Tip: For data sets with integrity constraints that have a foreign key, the COPY

statement copies the general and referential constraints if CONSTRAINT=YES is
specified and the entire library is copied. If you use the SELECT or EXCLUDE
statement to copy the data sets, then the referential integrity constraints are not
copied. For more information, see “Understanding Integrity Constraints” in SAS
Language Reference: Concepts.

DATECOPY
copies the SAS internal date and time when the SAS file was created and the date
and time when it was last modified to the resulting copy of the file. Note that the
operating environment date and time are not preserved.
Restriction: DATECOPY cannot be used with encrypted files or catalogs.
Restriction: DATECOPY can be used only when the resulting SAS file uses the V8

or V9 engine.
Tip: You can alter the file creation date and time with the DTC= option on the

MODIFY statement. See “MODIFY Statement” on page 348.
Tip: If the file that you are copying has attributes that require additional

processing, the last modified date is changed to the current date. For example,
when you copy a data set that has an index, the index must be rebuilt, and this
changes the last modified date to the current date. Other attributes that require
additional processing and that could affect the last modified date include integrity
constraints and a sort indicator.

FORCE
allows you to use the MOVE option for a SAS data set on which an audit trail exists.

Note: The AUDIT file is not moved with the audited data set. �

IN=libref-2
names the SAS library containing SAS files to copy.
Aliases: INLIB= and INDD=
Default: the libref of the procedure input library

To copy only selected members, use the SELECT or EXCLUDE statements.

INDEX=YES|NO
specifies whether to copy all indexes for a data set when copying the data set to
another SAS data library.
Default: YES

MEMTYPE=(mtype(s))
restricts processing to one or more member types.
Aliases: MT=, MTYPE=
Default: If you omit MEMTYPE= in the PROC DATASETS statement, the default

is MEMTYPE=ALL.
See also: “Specifying Member Types When Copying or Moving SAS Files” on page

331
See also: “Member Types” on page 361
Featured in: Example 1 on page 376

MOVE
moves SAS files from the input data library (named with the IN= option) to the
output data library (named with the OUT= option) and deletes the original files from
the input data library.

The DATASETS Procedure � COPY Statement 331

Restriction: The MOVE option can be used to delete a member of a SAS library
only if the IN= engine supports the deletion of tables. A tape format engine does
not support table deletion. If you use a tape format engine, SAS suppresses the
MOVE operation and prints a warning.

Featured in: Example 1 on page 376

NOCLONE
See the description of CLONE.

Copying an Entire Library
To copy an entire SAS data library, simply specify an input data library and an output

data library following the COPY statement. For example, the following statements copy
all the SAS files in the SOURCE data library into the DEST data library:

proc datasets library=source;
copy out=dest;

run;

Copying Selected SAS Files
To copy selected SAS files, use a SELECT or EXCLUDE statement. For more

discussion of using the COPY statement with a SELECT or an EXCLUDE statement,
see “Specifying Member Types When Copying or Moving SAS Files” on page 331 and
see Example 1 on page 376 for an example. Also, see “EXCLUDE Statement” on page
339 and “SELECT Statement” on page 356.

You can also select or exclude an abbreviated list of members. For example, the
following statement selects members TABS, TEST1, TEST2, and TEST3:

select tabs test1-test3;

Also, you can select a group of members whose names begin with the same letter or
letters by entering the common letters followed by a colon (:). For example, you can
select the four members in the previous example and all other members having names
that begin with the letter T by specifying the following statement:

select t:;

You specify members to exclude in the same way that you specify those to select.
That is, you can list individual member names, use an abbreviated list, or specify a
common letter or letters followed by a colon (:). For example, the following statement
excludes the members STATS, TEAMS1, TEAMS2, TEAMS3, TEAMS4 and all the
members that begin with the letters RBI from the copy operation:

exclude stats teams1-teams4 rbi:;

Note that the MEMTYPE= option affects which types of members are available to be
selected or excluded.

When a SELECT or EXCLUDE statement is used with CONSTRAINT=YES, only the
general integrity constraints on the data sets are copied. Any referential integrity
constraints are not copied. For more information, see “Understanding Integrity
Constraints” in SAS Language Reference: Concepts.

Specifying Member Types When Copying or Moving SAS Files
The MEMTYPE= option in the COPY statement differs from the MEMTYPE= option

in other statements in the procedure in several ways:

� A slash does not precede the option.

332 COPY Statement � Chapter 15

� You cannot limit its effect to the member immediately preceding it by enclosing
the MEMTYPE= option in parentheses.

� The SELECT and EXCLUDE statements and the IN= option (in the COPY
statement) affect the behavior of the MEMTYPE= option in the COPY statement
according to the following rules:

1 MEMTYPE= in a SELECT or EXCLUDE statement takes precedence over
the MEMTYPE= option in the COPY statement. The following statements
copy only VISION.CATALOG and NUTR.DATA from the default data library
to the DEST data library; the MEMTYPE= value in the first SELECT
statement overrides the MEMTYPE= value in the COPY statement.

proc datasets;
copy out=dest memtype=data;

select vision(memtype=catalog) nutr;
run;

2 If you do not use the IN= option, or you use it to specify the library that
happens to be the procedure input library, the value of the MEMTYPE=
option in the PROC DATASETS statement limits the types of SAS files that
are available for processing. The procedure uses the order of precedence
described in rule 1 to further subset the types available for copying. The
following statements do not copy any members from the default data library
to the DEST data library; instead, the procedure issues an error message
because the MEMTYPE= value specified in the SELECT statement is not one
of the values of the MEMTYPE= option in the PROC DATASETS statement.

/* This step fails! */
proc datasets memtype=(data program);

copy out=dest;
select apples / memtype=catalog;

run;

3 If you specify an input data library in the IN= option other than the
procedure input library, the MEMTYPE= option in the PROC DATASETS
statement has no effect on the copy operation. Because no subsetting has yet
occurred, the procedure uses the order of precedence described in rule 1 to
subset the types available for copying. The following statements successfully
copy BODYFAT.DATA to the DEST data library because the SOURCE library
specified in the IN= option in the COPY statement is not effected by the
MEMTYPE= option in the PROC DATASETS statement.

proc datasets library=work memtype=catalog;
copy in=source out=dest;

select bodyfat / memtype=data;
run;

Copying Password-Protected SAS Files
You can copy a password-protected SAS file without specifying the password. In

addition, because the password continues to correspond to the SAS file, you must know
the password in order to access and manipulate the SAS file after you copy it.

Copying Data Sets with Long Variable Names
If the VALIDVARNAME=V6 system option is set and the data set has long variable

names, the long variable names are truncated, unique variables names are generated,
and the copy succeeds. The same is true for index names. If VALIDVARNAME=ANY or

The DATASETS Procedure � COPY Statement 333

MIXEDCASE, the copy fails with an error if the OUT= engine does not support long
variable names.

When a variable name is truncated, the variable name is shortened to eight bytes. If
this name has already been defined in the data set, the name is shortened and a digit is
added, starting with the number 2. The process of truncation and adding a digit
continues until the variable name is unique. For example, a variable named
LONGVARNAME becomes LONGVARN, provided that a variable with that name does
not already exist in the data set. In that case, the variable name becomes LONGVAR2.

CAUTION:
Truncated variable names can collide with names already defined in the input data set.
This is possible when the variable name that is already defined is exactly eight bytes
long and ends in a digit. In that case, the truncated name is defined in the output
data set and the name from the input data set is changed. For example,

options validvarname=mixedcase;
data test;

lonvar10=’aLongVariableName’;
retain longvar1-longvar5 0;

run;

options validvarname=v6;
proc copy in=work out=sasuser;

select test;
run;

In this example, LONGVAR10 is truncated to LONVAR1 and placed in the output
data set. Next, the original LONGVAR1 is copied. Its name is no longer unique and
so it is renamed LONGVAR2. The other variables in the input data set are also
renamed according to the renaming algorithm. �

Using the COPY Procedure instead of the COPY Statement
Generally, the COPY procedure functions the same as the COPY statement in the

DATASETS procedure. The differences are
� The IN= argument is required with PROC COPY. In the COPY statement, IN= is

optional. If omitted, the default value is the libref of the procedure input library.
� PROC DATASETS cannot work with libraries that allow only sequential data

access.
� The COPY statement honors the NOWARN option but PROC COPY does not.

Copying Generation Groups
You can use the COPY statement to copy an entire generation group. However, you

cannot copy a specific version in a generation group.

Transporting SAS Data Sets between Hosts
You use the COPY procedure, along with the XPORT engine, to transport SAS data

sets between hosts. See Moving and Accessing SAS Files for more information and an
example.

334 DELETE Statement � Chapter 15

DELETE Statement

Deletes SAS files from a SAS data library.

Featured in: Example 1 on page 376

DELETE SAS-file(s)
</ <ALTER=alter-password>
<GENNUM=ALL|HIST|REVERT|integer>

<MEMTYPE=mtype>>;

Required Arguments

SAS-file(s)
specifies one or more SAS files that you want to delete.

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files that you want to delete.
You can use the option either in parentheses after the name of each SAS file or after
a forward slash.
See also: “Using Passwords with the DATASETS Procedure” on page 359

GENNUM=ALL|HIST|REVERT|integer
restricts processing for generation data sets. You can use the option either in
parentheses after the name of each SAS file or after a forward slash. Valid values are

ALL
refers to the base version and all historical versions in a generation group.

HIST
refers to all historical versions, but excludes the base version in a generation group.

REVERT|0
deletes the base version and changes the most current historical version, if it
exists, to the base version.

integer
is a number that references a specific version from a generation group. Specifying
a positive number is an absolute reference to a specific generation number that is
appended to a data set’s name; that is, gennum=2 specifies MYDATA#002.
Specifying a negative number is a relative reference to a historical version in
relation to the base version, from the youngest to the oldest; that is, gennum=-1
refers to the youngest historical version.

See also: “Restricting Processing for Generation Data Sets” on page 362
See also: “Understanding Generation Data Sets” in SAS Language Reference:

Concepts

MEMTYPE=mtype
restricts processing to one member type. You can use the option either in
parentheses after the name of each SAS file or after a forward slash.

The DATASETS Procedure � DELETE Statement 335

Aliases: MT=, MTYPE=
Default: DATA
See also: “Restricting Member Types for Processing” on page 360
Featured in: Example 1 on page 376

Details

� SAS immediately deletes SAS files when the RUN group executes. You do not
have an opportunity to verify the delete operation before it begins.

� If you attempt to delete a SAS file that does not exist in the procedure input
library, PROC DATASETS issues a message and continues processing. If
NOWARN is used, no message is issued.

� When you use the DELETE statement to delete a data set that has indexes
associated with it, the statement also deletes the indexes.

� You cannot use the DELETE statement to delete a data file that has a foreign key
integrity constraint or a primary key with foreign key references. For data files
that have foreign keys, you must remove the foreign keys before you delete the
data file. For data files that have primary keys with foreign key references, you
must remove the foreign keys that reference the primary key before you delete the
data file.

Working with Generation Groups
When you are working with generation groups, you can use the DELETE statement to
� delete the base version and all historical versions
� delete the base version and rename the youngest historical version to the base

version
� delete an absolute version
� delete a relative version
� delete all historical versions and leave the base version.

Deleting the Base Version and All Historical Versions
The following statements delete the base version and all historical versions where the
data set name is A:

proc datasets;
delete A(gennum=all);

proc datasets;
delete A / gennum=all;

proc datasets gennum=all;
delete A;

336 DELETE Statement � Chapter 15

The following statements delete the base version and all historical versions where
the data set name begins with the letter A:

proc datasets;
delete A:(gennum=all);

proc datasets;
delete A: / gennum=all;

proc datasets gennum=all;
delete A:;

Deleting the Base Version and Renaming the Youngest Historical Version to the Base
Version
The following statements delete the base version and rename the youngest historical
version to the base version, where the data set name is A:

proc datasets;
delete A(gennum=revert);

proc datasets;
delete A / gennum=revert;

proc datasets gennum=revert;
delete A;

The following statements delete the base version and rename the youngest historical
version to the base version, where the data set name begins with the letter A:

proc datasets;
delete A:(gennum=revert);

proc datasets;
delete A: / gennum=revert;

proc datasets gennum=revert;
delete A:;

Deleting a Version with an Absolute Number
The following statements use an absolute number to delete the first historical version:

proc datasets;
delete A(gennum=1);

proc datasets;
delete A / gennum=1;

proc datasets gennum=1;
delete A;

The following statements delete a specific historical version, where the data set name
begins with the letter A:

proc datasets;
delete A:(gennum=1);

proc datasets;
delete A: / gennum=1;

The DATASETS Procedure � DELETE Statement 337

proc datasets gennum=1;
delete A:;

Deleting a Version with a Relative Number
The following statements use a relative number to delete the youngest historical
version, where the data set name is A:

proc datasets;
delete A(gennum=-1);

proc datasets;
delete A / gennum=-1;

proc datasets gennum=-1;
delete A;

The following statements use a relative number to delete the youngest historical
version, where the data set name begins with the letter A:

proc datasets;
delete A:(gennum=-1);

proc datasets;
delete A: / gennum=-1;

proc datasets gennum=-1;
delete A:;

Deleting All Historical Versions and Leaving the Base Version
The following statements delete all historical versions and leave the base version,
where the data set name is A:

proc datasets;
delete A(gennum=hist);

proc datasets;
delete A / gennum=hist;

proc datasets gennum=hist;
delete A;

The following statements delete all historical versions and leave the base version,
where the data set name begins with the letter A:

proc datasets;
delete A:(gennum=hist);

proc datasets;
delete A: / gennum=hist;

proc datasets gennum=hist;
delete A:;

338 EXCHANGE Statement � Chapter 15

EXCHANGE Statement

Exchanges the names of two SAS files in a SAS library.

Featured in: Example 1 on page 376

EXCHANGE name-1=other-name-1
<…name-n=other-name-n>
</ <ALTER=alter-password>
<MEMTYPE=mtype>>;

Required Arguments

name=other-name
exchanges the names of SAS files in the procedure input library. Both name and
other-name must already exist in the procedure input library.

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files whose names you want
to exchange. You can use the option either in parentheses after the name of each
SAS file or after a forward slash.
See also: “Using Passwords with the DATASETS Procedure” on page 359

MEMTYPE=mtype
restricts processing to one member type. You can only exchange the names of SAS
files of the same type. You can use the option either in parentheses after the name of
each SAS file or after a forward slash.
Default: If you do not specify MEMTYPE= in the PROC DATASETS statement, the

default is ALL.
See also: “Restricting Member Types for Processing” on page 360

Details

� When you exchange more than one pair of names in one EXCHANGE statement,
PROC DATASETS performs the exchanges in the order that the names of the SAS
files occur in the directory listing, not in the order that you list the exchanges in
the EXCHANGE statement.

� If the name SAS file does not exist in the SAS data library, PROC DATASETS
stops processing the RUN group that contains the EXCHANGE statement and
issues an error message. To override this behavior, specify the NOWARN option in
the PROC DATASETS statement.

� The EXCHANGE statement also exchanges the associated indexes so that they
correspond with the new name.

� The EXCHANGE statement only allows two existing generation groups to
exchange names. You cannot exchange a specific generation number with either an
existing base version or another generation number.

The DATASETS Procedure � FORMAT Statement 339

EXCLUDE Statement

Excludes SAS files from copying.

Restriction: Must follow a COPY statement

Restriction: Cannot appear in the same COPY step with a SELECT statement

Featured in: Example 1 on page 376

EXCLUDE SAS-file(s) </ MEMTYPE=mtype>;

Required Arguments

SAS-file(s)
specifies one or more SAS files to exclude from the copy operation. All SAS files you
name in the EXCLUDE statement must be in the library that is specified in the IN=
option in the COPY statement. If the SAS files are generation groups, the EXCLUDE
statement allows only selection of the base versions.

Options

MEMTYPE=mtype
restricts processing to one member type. You can use the option either in
parentheses after the name of each SAS file or after a forward slash.

Aliases: MTYPE=, MT=

Default: If you do not specify MEMTYPE= in the PROC DATASETS statement, the
COPY statement, or in the EXCLUDE statement, the default is MEMTYPE=ALL.

See also: “Restricting Member Types for Processing” on page 360

See also: “Specifying Member Types When Copying or Moving SAS Files” on page
331

Excluding Many Like-Named Files
You can use shortcuts for listing many SAS files in the EXCLUDE statement. For

more information, see “Shortcuts for Specifying Lists of Variable Names” on page 24.

FORMAT Statement

Permanently assigns, changes, and removes variable formats in the SAS data set specified in the
MODIFY statement.

Restriction: Must appear in a MODIFY RUN group

Featured in: Example 3 on page 381

340 IC CREATE Statement � Chapter 15

FORMAT variable-list-1 <format-1>
<…variable-list-n <format-n>>;

Required Arguments

variable-list
specifies one or more variables whose format you want to assign, change, or remove.
If you want to disassociate a format with a variable, list the variable last in the list
with no format following. For example:

format x1-x3 4.1 time hhmm2.2 age;

Options

format
specifies a format to apply to the variable or variables listed before it. If you do not
specify a format, the FORMAT statement removes any format associated with the
variables in variable-list.

Note: You can use shortcut methods for specifying variables, such as the keywords
_NUMERIC, _CHARACTER_, and _ALL_. See “Shortcuts for Specifying Lists of
Variable Names” on page 24 for more information. �

IC CREATE Statement

Creates an integrity constraint.

Restriction: Must be in a MODIFY RUN group
See also: “Understanding Integrity Constraints” in SAS Language Reference: Concepts

IC CREATE <constraint-name=> constraint <MESSAGE=’message-string’
<MSGTYPE=USER>>;

Required Arguments

constraint
is the type of constraint. Valid values are as follows:

NOT NULL (variable)
specifies that variable does not contain a SAS missing value, including special
missing values.

UNIQUE (variables)
specifies that the values of variables must be unique. This constraint is identical
to DISTINCT.

DISTINCT (variables)
specifies that the values of variables must be unique. This constraint is identical
to UNIQUE.

The DATASETS Procedure � IC CREATE Statement 341

CHECK (WHERE-expression)
limits the data values of variables to a specific set, range, or list of values. This is
accomplished with a WHERE expression.

PRIMARY KEY (variables)
specifies a primary key, that is, a set of variables that do not contain missing
values and whose values are unique.

Interaction: A primary key affects the values of an individual data file until it
has a foreign key referencing it.

Requirement: When defining overlapping primary key and foreign key
constraints, which means that variables in a data file are part of both a primary
key and a foreign key definition, if you use exactly the same variables, then the
variables must be defined in a different order.

FOREIGN KEY (variables) REFERENCES table-name
<ON DELETE referential-action> <ON UPDATE referential-action>

specifies a foreign key, that is, a set of variables whose values are linked to the
values of the primary key variables in another data file. The referential actions
are enforced when updates are made to the values of a primary key variable that
is referenced by a foreign key.

There are three types of referential actions: RESTRICT, SET NULL, and
CASCADE:

For a RESTRICT referential action,

a delete operation
deletes the primary key row, but only if no foreign key values match the deleted
value.

an update operation
updates the primary key value, but only if no foreign key values match the
current value to be updated.
For a SET NULL referential action,

a delete operation
deletes the primary key row and sets the corresponding foreign key values to
NULL.

an update operation
modifies the primary key value and sets all matching foreign key values to
NULL.
For a CASCADE referential action,

an update operation
modifies the primary key value, and additionally modifies any matching foreign
key values to the same value. CASCADE is not supported for delete operations.

Default: RESTRICT is the default action if no referential action is specified.

Interaction: Before it will enforce a SET NULL or CASCADE referential action,
SAS checks to see if there are other foreign keys that reference the primary key
and that specify RESTRICT for the intended operation. If RESTRICT is specified,
or if the constraint reverts to the default values, then RESTRICT is enforced for all
foreign keys, unless no foreign key values match the values to updated or deleted.

Requirement: When defining overlapping primary key and foreign key constraints,
which means that variables in a data file are part of both a primary key and a
foreign key definition,

� if you use exactly the same variables, then the variables must be defined in a
different order.

342 IC CREATE Statement � Chapter 15

� the foreign key’s update and delete referential actions must both be
RESTRICT.

Options

<constraint-name=>
is an optional name for the constraint. The name must be a valid SAS name. When
you do not supply a constraint name, a default name is generated. This default
constraint name has the following form

Default name Constraint type

NMxxxx Not Null

UNxxxx Unique

CKxxxx Check

PKxxxx Primary key

FKxxxx Foreign key

where xxxx is a counter beginning at 0001.

Note: The names PRIMARY, FOREIGN, MESSAGE, UNIQUE, DISTINCT,
CHECK, and NOT cannot be used as values for constraint-name. �

<MESSAGE=’message-string’ <MSGTYPE=USER>>
message-string is the text of an error message to be written to the log when the data
fails the constraint. For example,

ic create not null(socsec)
message=’Invalid Social Security number’;

Length: The maximum length of the message is 250 characters.

<MSGTYPE=USER> controls the format of the integrity constraint error message.
By default when the MESSAGE= option is specified, the message you define is
inserted into the SAS error message for the constraint, separated by a space.
MSGTYPE=USER suppresses the SAS portion of the message.

The following examples show how to create integrity constraints:

ic create a = not null(x);
ic create Unique_D = unique(d);
ic create Distinct_DE = distinct(d e);
ic create E_less_D = check(where=(e < d or d = 99));
ic create primkey = primary key(a b);
ic create forkey = foreign key (a b) references table-name

on update cascade on delete set null;
ic create not null (x);

Note that for a referential constraint to be established, the foreign key must specify the
same number of variables as the primary key, in the same order, and the variables
must be of the same type (character/numeric) and length.

The DATASETS Procedure � IC REACTIVATE Statement 343

IC DELETE Statement

Deletes an integrity constraint.

Restriction: Must be in a MODIFY RUN group
See also: “Understanding Integrity Constraints” in SAS Language Reference: Concepts

IC DELETE constraint-name(s) | _ALL_;

Arguments

constraint-name(s)
names one or more constraints to delete. For example, to delete the constraints
Unique_D and Unique_E, use this statement:

ic delete Unique_D Unique_E;

ALL
deletes all constraints for the SAS data file specified in the preceding MODIFY
statement.

IC REACTIVATE Statement

Reactivates a foreign key integrity constraint that is inactive.

Restriction: Must be in a MODIFY RUN group
See also: “Understanding Integrity Constraints” in SAS Language Reference: Concepts

IC REACTIVATE foreign-key-name REFERENCES libref;

Arguments

foreign-key-name
is the name of the foreign key to reactivate.

libref
refers to the SAS library containing the data set that contains the primary key that
is referenced by the foreign key.

344 INDEX CENTILES � Chapter 15

For example, suppose that you have the foreign key FKEY defined in data set
MYLIB.MYOWN and that FKEY is linked to a primary key in data set
MAINLIB.MAIN. If the integrity constraint is inactivated by a copy or move operation,
you can reactivate the integrity constraint by using the following code:

proc datasets library=mylib;
modify myown;
ic reactivate fkey references mainlib;

run;

INDEX CENTILES

Updates centiles statistics for indexed variables.

Restriction: Must be in a MODIFY RUN group
See also: “Understanding SAS Indexes” in SAS Language Reference: Concepts

INDEX CENTILES index(s)
</ <REFRESH>
<UPDATECENTILES= ALWAYS|NEVER|integer>>;

Required Arguments

index(s)
names one or more indexes.

Options

REFRESH
updates centiles immediately, regardless of the value of UPDATECENTILES.

UPDATECENTILES=ALWAYS|NEVER|integer
specifies when centiles are to be updated. It is not practical to update centiles after
every data set update. Therefore, you can specify as the value of
UPDATECENTILES the percent of the data values that can be changed before
centiles for the indexed variables are updated.

Valid values for UPDATECENTILES are

ALWAYS|0
updates centiles when the data set is closed if any changes have been made to the
data set index.

NEVER|101
does not update centiles.

integer
is the percent of values for the indexed variable that can be updated before
centiles are refreshed.
Alias: UPDCEN
Default 5 (percent)

The DATASETS Procedure � INDEX CREATE Statement 345

INDEX CREATE Statement

Creates simple or composite indexes for the SAS data set specified in the MODIFY statement.

Restriction: Must be in a MODIFY RUN group
See also: "Understanding SAS Indexes" in SAS Language Reference: Concepts
Featured in: Example 3 on page 381

INDEX CREATE index-specification(s)
</ <NOMISS>
<UNIQUE>
<UPDATECENTILES= ALWAYS|NEVER|integer>>;

Required Arguments

index-specification(s)
can be one or both of the following forms:

variable
creates a simple index on the specified variable.

index=(variables)
creates a composite index. The name you specify for index is the name of the
composite index. It must be a valid SAS name and cannot be the same as any
variable name or any other composite index name. You must specify at least two
variables.

Note: The index name must follow the same rules as a SAS variable name,
including avoiding the use of reserved names for automatic variables, such as _N_,
and special variable list names, such as _ALL_. For more information, refer to “Rules
for Words and Names in the SAS Language” in SAS Language Reference: Concepts. �

Options

NOMISS
excludes from the index all observations with missing values for all index variables.

When you create an index with the NOMISS option, SAS uses the index only for
WHERE processing and only when missing values fail to satisfy the WHERE
expression. For example, if you use the following WHERE statement, SAS does not
use the index, because missing values satisfy the WHERE expression:

where dept ne ’01’;

Refer to SAS Language Reference: Concepts.

Note: BY-group processing ignores indexes that are created with the NOMISS
option. �
Featured in: Example 3 on page 381

UNIQUE
specifies that the combination of values of the index variables must be unique. If you
specify UNIQUE and multiple observations have the same values for the index
variables, the index is not created.

346 INDEX DELETE Statement � Chapter 15

Featured in: Example 3 on page 381

UPDATECENTILES=ALWAYS|NEVER|integer
specifies when centiles are to be updated. It is not practical to update centiles after
every data set update. Therefore, you can specify the percent of the data values that
can be changed before centiles for the indexed variables are updated. Valid values for
UPDATECENTILES are as follows:

ALWAYS|0
updates centiles when the data set is closed if any changes have been made to the
data set index.

NEVER|101
does not update centiles.

integer
specifies the percent of values for the indexed variable that can be updated before
centiles are refreshed.

Alias: UPDCEN
Default: 5% (percent)

INDEX DELETE Statement

Deletes one or more indexes associated with the SAS data set specified in the MODIFY statement.

Restriction: Must appear in a MODIFY RUN group

INDEX DELETE index(s) | _ALL_;

Required Arguments

index(s)
names one or more indexes to delete. The index(es) must be for variables in the SAS
data set that is named in the preceding MODIFY statement. You can delete both
simple and composite indexes.

ALL
deletes all indexes, except for indexes that are owned by an integrity constraint.
When an index is created, it is marked as owned by the user, by an integrity
constraint, or by both. If an index is owned by both a user and an integrity
constraint, the index is not deleted until both an IC DELETE statement and an
INDEX DELETE statement are processed.

Note: You can use the CONTENTS statement to produce a list of all indexes for a
data set. �

The DATASETS Procedure � LABEL Statement 347

INFORMAT Statement

Permanently assigns, changes, and removes variable informats in the data set specified in the
MODIFY statement.

Restriction: Must appear in a MODIFY RUN group

Featured in: Example 3 on page 381

INFORMAT variable-list-1 <informat-1>
<…variable-list-n <informat-n>>;

Required Arguments

variable-list
specifies one or more variables whose informats you want to assign, change, or
remove. If you want to disassociate an informat with a variable, list the variable last
in the list with no informat following. For example:

informat a b 2. x1-x3 4.1 c;

Options

informat
specifies an informat for the variables immediately preceding it in the statement. If
you do not specify an informat, the INFORMAT statement removes any existing
informats for the variables in variable-list.

Note: You can use shortcut methods for specifying variables, such as the keywords
_NUMERIC, _CHARACTER_, and _ALL_. See “Shortcuts for Specifying Lists of
Variable Names” on page 24 for more information. �

LABEL Statement

Assigns, changes, and removes variable labels for the SAS data set specified in the MODIFY
statement.

Restriction: Must appear in a MODIFY RUN group

Featured in: Example 3 on page 381

LABEL variable-1=<’label-1’|’ ’>
<…variable-n=< ’label-n’|’ ’ >>;

348 MODIFY Statement � Chapter 15

Required Arguments

variable=<’label’>
assigns a label to a variable. If a single quotation mark appears in the label, write it
as two single quotation marks in the LABEL statement. Specifying variable= or
variable=’ ’removes the current label.

Range: 1-256 characters

MODIFY Statement

Changes the attributes of a SAS file and, through the use of subordinate statements, the attributes
of variables in the SAS file.

Featured in: Example 3 on page 381

MODIFY SAS-file <(option(s))>
</ <CORRECTENCODING=encoding-value>
<DTC=SAS-date-time>
<GENNUM=integer>
<MEMTYPE=mtype>>;

To do this Use this option

Restrict processing to a certain type of SAS file MEMTYPE=

Specify attributes

Change the character-set encoding CORRECTENCODING=

Specify a creation date and time DTC=

Assign or change a data set label LABEL=

Specify how the data are currently sorted SORTEDBY=

Assign or change a special data set type TYPE=

Modify passwords

Modify an alter password ALTER=

Modify a read, write, or alter password PW=

Modify a read password READ=

Modify a write password WRITE=

Modify generation groups

Modify the maximum number of versions for a
generation group

GENMAX=

Modify a historical version GENNUM=

The DATASETS Procedure � MODIFY Statement 349

Required Arguments

SAS-file
specifies a SAS file that exists in the procedure input library.

Options

ALTER=password-modification
assigns, changes, or removes an alter password for the SAS file named in the
MODIFY statement. password-modification is one of the following:

� new-password

� old-password / new-password
� / new-password

� old-password /
� /

See also: “Manipulating Passwords” on page 351

CORRECTENCODING=encoding-value
enables you to change the encoding indicator, which is recorded in the file’s
descriptor information, in order to match the actual encoding of the file’s data.
See: The CORRECTENCODING= Option on the MODIFY Statement of the

DATASETS Procedure in SAS National Language Support (NLS): User’s Guide

DTC=SAS-date-time
specifies a date and time to substitute for the date and time stamp placed on a SAS
file at the time of creation. You cannot use this option in parentheses after the name
of each SAS file; you must specify DTC= after a forward slash. For example:

modify mydata / dtc=’03MAR00:12:01:00’dt;

Tip: Use DTC= to alter a SAS file’s creation date and time prior to using the
DATECOPY option in the CIMPORT procedure, COPY procedure, CPORT
procedure, SORT procedure, and the COPY statement in the DATASETS
procedure.

Restriction: A SAS file’s creation date and time cannot be set later than the date
and time the file was actually created.

Restriction: DTC= cannot be used with encrypted files or sequential files.
Restriction: DTC= can be used only when the resulting SAS file uses the V8 or V9

engine.

GENMAX=number-of-generations
specifies the maximum number of versions. You can use this option either in
parentheses after the name of each SAS file or after a forward slash.
Range: 0 to 1,000
Default: 0

GENNUM=integer
restricts processing for generation data sets. You can specify GENNUM= either in
parentheses after the name of each SAS file or after a forward slash. Valid value is
integer, which is a number that references a specific version from a generation group.
Specifying a positive number is an absolute reference to a specific generation number
that is appended to a data set’s name; that is, gennum=2 specifies MYDATA#002.

350 MODIFY Statement � Chapter 15

Specifying a negative number is a relative reference to a historical version in relation
to the base version, from the youngest to the oldest; that is, gennum=-1 refers to the
youngest historical version. Specifying 0, which is the default, refers to the base
version.
See also: “Understanding Generation Data Sets” in SAS Language Reference:

Concepts

LABEL=’data-set-label’ | ’’
assigns, changes, or removes a data set label for the SAS data set named in the
MODIFY statement. If a single quotation mark appears in the label, write it as two
single quotation marks. LABEL= or LABEL=’ ’removes the current label.
Range: 1-40 characters
Featured in: Example 3 on page 381

MEMTYPE=mtype
restricts processing to one member type. You cannot specify MEMTYPE= in
parentheses after the name of each SAS file; you must specify MEMTYPE= after a
forward slash.
Aliases: MTYPE= and MT=
Default: If you do not specify the MEMTYPE= option in the PROC DATASETS

statement or in the MODIFY statement, the default is MEMTYPE=DATA.

PW=password-modification
assigns, changes, or removes a read, write, or alter password for the SAS file named
in the MODIFY statement. password-modification is one of the following:

� new-password
� old-password / new-password

� / new-password
� old-password /
� /

See also: “Manipulating Passwords” on page 351

READ=password-modification
assigns, changes, or removes a read password for the SAS file named in the MODIFY
statement. password-modification is one of the following:

� new-password
� old-password / new-password
� / new-password
� old-password /
� /

See also: “Manipulating Passwords” on page 351
Featured in: Example 3 on page 381

SORTEDBY=sort-information
specifies how the data are currently sorted. SAS stores the sort information with the
file but does not verify that the data are sorted the way you indicate.
sort-information can be one of the following:

by-clause </ collate-name>
indicates how the data are currently sorted. Values for by-clause are the variables
and options you can use in a BY statement in a PROC SORT step. collate-name
names the collating sequence used for the sort. By default, the collating sequence
is that of your host operating environment.

The DATASETS Procedure � MODIFY Statement 351

NULL
removes any existing sort information.

Restriction: The data must be sorted in the order that you specify. If the data is
not in the specified order, SAS will not sort it for you.

Featured in: Example 3 on page 381

TYPE=special-type
assigns or changes the special data set type of a SAS data set. SAS does not verify

� the SAS data set type you specify in the TYPE= option (except to check if it has
a length of eight or fewer characters).

� that the SAS data set’s structure is appropriate for the type you have
designated.

Note: Do not confuse the TYPE= option with the MEMTYPE= option. The
TYPE= option specifies a type of special SAS data set. The MEMTYPE= option
specifies one or more types of SAS files in a SAS data library. �
Tip: Most SAS data sets have no special type. However, certain SAS procedures,

like the CORR procedure, can create a number of special SAS data sets. In
addition, SAS/STAT software and SAS/EIS software support special data set types.

WRITE=password-modification
assigns, changes, or removes a write password for the SAS file named in the
MODIFY statement. password-modification is one of the following:

� new-password

� old-password / new-password

� / new-password

� old-password /
� /

See also: “Manipulating Passwords” on page 351

Manipulating Passwords
In order to assign, change, or remove a password, you must specify the password for

the highest level of protection that currently exists on that file.

Assigning Passwords

/* assigns a password to an unprotected file */
modify colors (pw=green);

/* assigns an alter password to an already read-protected SAS data set */
modify colors (read=green alter=red);

Changing Passwords

/* changes the write password from YELLOW to BROWN */
modify cars (write=yellow/brown);

/* uses alter access to change unknown read password to BLUE */
modify colors (read=/blue alter=red);

352 RENAME Statement � Chapter 15

Removing Passwords

/* removes the alter password RED from STATES */
modify states (alter=red/);

/* uses alter access to remove the read password */
modify zoology (read=green/ alter=red);

/* uses PW= as an alias for either WRITE= or ALTER= to remove unknown
read password */

modify biology (read=/ pw=red);

Working with Generation Groups

Changing the Number of Generations

/* changes the number of generations on data set A to 99 */
modify A (genmax=99);

Removing Passwords

/* removes the alter password RED from STATES#002 */
modify states (alter=red/) / gennum=2;

RENAME Statement

Renames variables in the SAS data set specified in the MODIFY statement.

Restriction: Must appear in a MODIFY RUN group

Featured in: Example 3 on page 381

RENAME old-name-1=new-name-1
<…old-name-n=new-name-n>;

Required Arguments

old-name=new-name
changes the name of a variable in the data set specified in the MODIFY statement.
old-name must be a variable that already exists in the data set. new-name cannot be
the name of a variable that already exists in the data set or the name of an index,
and the new name must be a valid SAS name. See “Rules for SAS Variable Names”
in SAS Language Reference: Concepts.

The DATASETS Procedure � REPAIR Statement 353

Details

� If old-name does not exist in the SAS data set or new-name already exists, PROC
DATASETS stops processing the RUN group containing the RENAME statement
and issues an error message.

� When you use the RENAME statement to change the name of a variable for which
there is a simple index, the statement also renames the index.

� If the variable that you are renaming is used in a composite index, the composite
index automatically references the new variable name. However, if you attempt to
rename a variable to a name that has already been used for a composite index, you
receive an error message.

REPAIR Statement

Attempts to restore damaged SAS data sets or catalogs to a usable condition.

REPAIR SAS-file(s)
</ <ALTER=alter-password>
<GENNUM=integer>

<MEMTYPE=mtype>>;

Required Arguments

SAS-file(s)
specifies one or more SAS data sets or catalogs in the procedure input library.

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files that are named in the
REPAIR statement. You can use the option either in parentheses after the name of
each SAS file or after a forward slash.

See also: “Using Passwords with the DATASETS Procedure” on page 359

GENNUM=integer
restricts processing for generation data sets. You can use the option either in
parentheses after the name of each SAS file or after a forward slash. Valid value is
integer, which is a number that references a specific version from a generation group.
Specifying a positive number is an absolute reference to a specific generation number
that is appended to a data set’s name; that is, gennum=2 specifies MYDATA#002.
Specifying a negative number is a relative reference to a historical version in relation
to the base version, from the youngest to the oldest; that is, gennum=-1 refers to the
youngest historical version. Specifying 0, which is the default, refers to the base
version.

See also: “Restricting Processing for Generation Data Sets” on page 362

See also: “Understanding Generation Data Sets” in SAS Language Reference:
Concepts

354 REPAIR Statement � Chapter 15

MEMTYPE=mtype
restricts processing to one member type.
Aliases: MT=, MTYPE=
Default: If you do not specify the MEMTYPE= option in the PROC DATASETS

statement or in the REPAIR statement, the default is MEMTYPE=ALL.
See also: “Restricting Member Types for Processing” on page 360

Details
The most common situations that require the REPAIR statement are as follows:
� A system failure occurs while you are updating a SAS data set or catalog.
� The device on which a SAS data set or an associated index resides is damaged. In

this case, you can restore the damaged data set or index from a backup device, but
the data set and index no longer match.

� The disk that stores the SAS data set or catalog becomes full before the file is
completely written to disk. You may need to free some disk space. PROC
DATASETS requires free space when repairing SAS data sets with indexes and
when repairing SAS catalogs.

� An I/O error occurs while you are writing a SAS data set or catalog entry.

When you use the REPAIR statement for SAS data sets, it recreates all indexes for
the data set. It also attempts to restore the data set to a usable condition, but the
restored data set may not include the last several updates that occurred before the
system failed. You cannot use the REPAIR statement to recreate indexes that were
destroyed by using the FORCE option in a PROC SORT step.

When you use the REPAIR statement for a catalog, you receive a message stating
whether the REPAIR statement restored the entry. If the entire catalog is potentially
damaged, the REPAIR statement attempts to restore all the entries in the catalog. If
only a single entry is potentially damaged, for example when a single entry is being
updated and a disk-full condition occurs, on most systems only the entry that is open
when the problem occurs is potentially damaged. In this case, the REPAIR statement
attempts to repair only that entry. Some entries within the restored catalog may not
include the last updates that occurred before a system crash or an I/O error. The
REPAIR statement issues warning messages for entries that may have truncated data.

To repair a damaged catalog, the version of SAS that you use must be able to update
the catalog. Whether a SAS version can update a catalog (or just read it) is determined
by the SAS version that created the catalog:

� A damaged Version 6 catalog can be repaired with Version 6 only.
� A damaged Version 8 catalog can be repaired with either Version 8 or SAS System

9, but not with Version 6.
� A damaged SAS System 9 catalog can be repaired with SAS System 9 only.

If the REPAIR operation is not successful, try to restore the SAS data set or catalog
from your system’s backup files.

If you issue a REPAIR statement for a SAS file that does not exist in the specified
library, PROC DATASETS stops processing the run group that contains the REPAIR
statement, and issues an error message. To override this behavior and continue
processing, use the NOWARN option in the PROC DATASETS statement.

If you are using Cross-Environment Data Access (CEDA) to process a damaged
foreign SAS data set, CEDA cannot repair it. CEDA does not support update processing,
which is required in order to repair a damaged data set. To repair the foreign file, you
must move it back to its native environment. Note that observations may be lost during
the repair process. For more information about CEDA, refer to “Processing Data Using
Cross-Environment Data Access” in SAS Language Reference: Concepts.

The DATASETS Procedure � SAVE Statement 355

SAVE Statement

Deletes all the SAS files in a library except the ones listed in the SAVE statement.

Featured in: Example 2 on page 380

SAVE SAS-file(s) </ MEMTYPE=mtype>;

Required Arguments

SAS-file(s)
specifies one or more SAS files that you do not want to delete from the SAS data
library.

Options

MEMTYPE=mtype
restricts processing to one member type. You can use the option either in
parentheses after the name of each SAS file or after a forward slash.

Aliases: MTYPE= and MT=

Default: If you do not specify the MEMTYPE= option in the PROC DATASETS
statement or in the SAVE statement, the default is MEMTYPE=ALL.

See also: “Restricting Member Types for Processing” on page 360

Featured in: Example 2 on page 380

Details

� If one of the SAS files in SAS-file does not exist in the procedure input library,
PROC DATASETS stops processing the RUN group containing the SAVE
statement and issues an error message. To override this behavior, specify the
NOWARN option in the PROC DATASETS statement.

� When the SAVE statement deletes SAS data sets, it also deletes any indexes
associated with those data sets.

CAUTION:
SAS immediately deletes libraries and library members when you submit a RUN
group. You are not asked to verify the delete operation before it begins. Because
the SAVE statement deletes many SAS files in one operation, be sure that you
understand how the MEMTYPE= option affects which types of SAS files are
saved and which types are deleted. �

� When you use the SAVE statement with generation groups, the SAVE statement
treats the base version and all historical versions as a unit. You cannot save a
specific version.

356 SELECT Statement � Chapter 15

SELECT Statement

Selects SAS files for copying.

Restriction: Must follow a COPY statement

Restriction: Cannot appear with an EXCLUDE statement in the same COPY step

Featured in: Example 1 on page 376

SELECT SAS-file(s)
</ <ALTER=alter-password>
<MEMTYPE= mtype>>;

Required Arguments

SAS-file(s)
specifies one or more SAS files that you want to copy. All of the SAS files that you
name must be in the data library that is referenced by the libref named in the IN=
option in the COPY statement. If the SAS files have generation groups, the SELECT
statement allows only selection of the base versions.

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files that you are moving
from one data library to another. Because you are moving and thus deleting a SAS
file from a SAS data library, you need alter access. You can use the option either in
parentheses after the name of each SAS file or after a forward slash.

See also: “Using Passwords with the DATASETS Procedure” on page 359

MEMTYPE=mtype
restricts processing to one member type. You can use the option either in
parentheses after the name of each SAS file or after a forward slash.

Aliases: MTYPE= and MT=

Default: If you do not specify the MEMTYPE= option in the PROC DATASETS
statement, in the COPY statement, or in the SELECT statement, the default is
MEMTYPE=ALL.

See also: “Specifying Member Types When Copying or Moving SAS Files” on page
331

See also: “Restricting Member Types for Processing” on page 360

Featured in: Example 1 on page 376

Selecting Many Like-Named Files
You can use shortcuts for listing many SAS files in the SELECT statement. For more

information, see “Shortcuts for Specifying Lists of Variable Names” on page 24.

The DATASETS Procedure � Procedure Execution 357

Concepts: DATASETS Procedure

Procedure Execution

Execution of Statements
When you start the DATASETS procedure, you specify the procedure input library in

the PROC DATASETS statement. If you omit a procedure input library, the procedure
processes the current default SAS data library (usually the WORK data library). To
specify a new procedure input library, issue the DATASETS procedure again.

Statements execute in the order they are written. For example, if you want to see
the contents of a data set, copy a data set, and then visually compare the contents of
the second data set with the first, the statements that perform those tasks must appear
in that order (that is, CONTENTS, COPY, CONTENTS).

RUN-Group Processing
PROC DATASETS supports RUN-group processing. RUN-group processing enables

you to submit RUN groups without ending the procedure.
The DATASETS procedure supports four types of RUN groups. Each RUN group is

defined by the statements that compose it and by what causes it to execute.
Some statements in PROC DATASETS act as implied RUN statements because they

cause the RUN group preceding them to execute.
The following list discusses what statements compose a RUN group and what causes

each RUN group to execute:

� The PROC DATASETS statement always executes immediately. No other
statement is necessary to cause the PROC DATASETS statement to execute.
Therefore, the PROC DATASETS statement alone is a RUN group.

� The MODIFY statement, and any of its subordinate statements, form a RUN
group. These RUN groups always execute immediately. No other statement is
necessary to cause a MODIFY RUN group to execute.

� The APPEND, CONTENTS, and COPY statements (including EXCLUDE and
SELECT, if present), form their own separate RUN groups. Every APPEND
statement forms a single-statement RUN group; every CONTENTS statement
forms a single-statement RUN group; and every COPY step forms a RUN group.
Any other statement in the procedure, except those that are subordinate to either
the COPY or MODIFY statement, causes the RUN group to execute.

� One or more of the following statements form a RUN group:
� AGE
� CHANGE
� DELETE

� EXCHANGE
� REPAIR
� SAVE

If any of these statements appear in sequence in the PROC step, the sequence
forms a RUN group. For example, if a REPAIR statement appears immediately
after a SAVE statement, the REPAIR statement does not force the SAVE

358 Procedure Execution � Chapter 15

statement to execute; it becomes part of the same RUN group. To execute the
RUN group, submit one of the following statements:

� PROC DATASETS

� APPEND

� CONTENTS

� COPY

� MODIFY

� QUIT

� RUN

� another DATA or PROC step.

SAS reads the program statements that are associated with one task until it reaches
a RUN statement or an implied RUN statement. It executes all of the preceding
statements immediately, then continues reading until it reaches another RUN
statement or implied RUN statement. To execute the last task, you must use a RUN
statement or a statement that stops the procedure.

The following PROC DATASETS step contains five RUN groups:

libname dest ’SAS-data-library’;
/* RUN group */

proc datasets;
/* RUN group */

change nutr=fatg;
delete bldtest;
exchange xray=chest;

/* RUN group */
copy out=dest;

select report;
/* RUN group */

modify bp;
label dias=’Taken at Noon’;
rename weight=bodyfat;
/* RUN group */

append base=tissue data=newtiss;
quit;

Note: If you are running in interactive line mode, you can receive messages that
statements have already executed before you submit a RUN statement. Plan your tasks
carefully if you are using this environment for running PROC DATASETS. �

Error Handling
Generally, if an error occurs in a statement, the RUN group containing the error does

not execute. RUN groups preceding or following the one containing the error execute
normally. The MODIFY RUN group is an exception. If a syntax error occurs in a
statement subordinate to the MODIFY statement, only the statement containing the
error fails. The other statements in the RUN group execute.

Note that if the first word of the statement (the statement name) is in error and the
procedure cannot recognize it, the procedure treats the statement as part of the
preceding RUN group.

The DATASETS Procedure � Using Passwords with the DATASETS Procedure 359

Password Errors

If there is an error involving an incorrect or omitted password in a statement, the
error affects only the statement containing the error. The other statements in the RUN
group execute.

Forcing a RUN Group with Errors to Execute

The FORCE option in the PROC DATASETS statement forces execution of the RUN
group even if one or more of the statements contain errors. Only the statements that
are error-free execute.

Ending the Procedure

To stop the DATASETS procedure, you must issue a QUIT statement, a RUN
CANCEL statement, a new PROC statement, or a DATA statement. Submitting a
QUIT statement executes any statements that have not executed. Submitting a RUN
CANCEL statement cancels any statements that have not executed.

Using Passwords with the DATASETS Procedure

Several statements in the DATASETS procedure support options that manipulate
passwords on SAS files. These options, ALTER=, PW=, READ=, and WRITE=, are also
data set options.* If you do not know how passwords affect SAS files, refer to SAS
Language Reference: Concepts.

When you are working with password-protected SAS files in the AGE, CHANGE,
DELETE, EXCHANGE, REPAIR, or SELECT statement, you can specify password
options in the PROC DATASETS statement or in the subordinate statement.

Note: The ALTER= option works slightly different for the COPY (when moving a
file) and MODIFY statements. Refer to “COPY Statement” on page 327 and “MODIFY
Statement” on page 348. �

SAS searches for passwords in the following order:

1 in parentheses after the name of the SAS file in a subordinate statement. When
used in parentheses, the option only refers to the name immediately preceding the
option. If you are working with more than one SAS file in a data library and each
SAS file has a different password, you must specify password options in
parentheses after individual names.

In the following statement, the ALTER= option provides the password RED for
the SAS file BONES only:

delete xplant bones(alter=red);

2 after a forward slash (/) in a subordinate statement. When you use a password
option following a slash, the option refers to all SAS files named in the statement
unless the same option appears in parentheses after the name of a SAS file. This
method is convenient when you are working with more than one SAS file and they
all have the same password.

* In the APPEND and CONTENTS statements, you use these options just as you use any SAS data set option, in parentheses
after the SAS data set name.

360 Restricting Member Types for Processing � Chapter 15

In the following statement, the ALTER= option in parentheses provides the
password RED for the SAS file CHEST, and the ALTER= option after the slash
provides the password BLUE for the SAS file VIRUS:

delete chest(alter=red) virus / alter=blue;

3 in the PROC DATASETS statement. Specifying the password in the PROC
DATASETS statement can be useful if all the SAS files you are working with in
the library have the same password. Do not specify the option in parentheses.

In the following PROC DATASETS step, the PW= option provides the password
RED for the SAS files INSULIN and ABNEG:

proc datasets pw=red;
delete insulin;
contents data=abneg;

run;

Note: For the password for a SAS file in a SELECT statement, SAS looks in
the COPY statement before it looks in the PROC DATASETS statement. �

Restricting Member Types for Processing

In the PROC DATASETS Statement
If you name a member type or several member types in the PROC DATASETS

statement, in most subsequent statements (except the CONTENTS and COPY
statements), you can name only a subset of the list of member types included in the
PROC DATASETS statement. The directory listing that the PROC DATASETS
statement writes to the SAS log includes only those SAS files of the type specified in the
MEMTYPE= option.

In Subordinate Statements
Use the MEMTYPE= option in the following subordinate statements to limit the

member types that are available for processing:

AGE

CHANGE

DELETE

EXCHANGE

EXCLUDE

REPAIR

SAVE

SELECT

Note: The MEMTYPE= option works slightly differently for the CONTENTS, COPY,
and MODIFY statements. Refer to “CONTENTS Statement” on page 323, “COPY
Statement” on page 327, and “MODIFY Statement” on page 348 for more information. �

The DATASETS Procedure � Restricting Member Types for Processing 361

The procedure searches for MEMTYPE= in the following order:
1 in parentheses immediately after the name of a SAS file. When used in

parentheses, the MEMTYPE= option refers only to the SAS file immediately
preceding the option. For example, the following statement deletes HOUSE.DATA,
LOT.CATALOG, and SALES.DATA because the default member type for the
DELETE statement is DATA. (Refer to Table 15.5 on page 362 for the default
types for each statement.)

delete house lot(memtype=catalog) sales;

2 after a slash (/) at the end of the statement. When used following a slash, the
MEMTYPE= option refers to all SAS files named in the statement unless the option
appears in parentheses after the name of a SAS file. For example, the following
statement deletes LOTPIX.CATALOG, REGIONS.DATA, and APPL.CATALOG:

delete lotpix regions(memtype=data) appl / memtype=catalog;

3 in the PROC DATASETS statement. For example, this DATASETS procedure
deletes APPL.CATALOG:

proc datasets memtype=catalog;
delete appl;

run;

Note: When you use the EXCLUDE and SELECT statements, the procedure
looks in the COPY statement for the MEMTYPE= option before it looks in the
PROC DATASETS statement. For more information, see “Specifying Member
Types When Copying or Moving SAS Files” on page 331. �

4 for the default value. If you do not specify a MEMTYPE= option in the subordinate
statement or in the PROC DATASETS statement, the default value for the
subordinate statement determines the member type available for processing.

Member Types
The following list gives the possible values for the MEMTYPE= option:

ACCESS
access descriptor files (created by SAS/ACCESS software)

ALL
all member types

CATALOG
SAS catalogs

DATA
SAS data files

FDB
financial database

MDDB
multidimensional database

PROGRAM
stored compiled SAS programs

VIEW
SAS views

362 Restricting Processing for Generation Data Sets � Chapter 15

Table 15.5 on page 362 shows the member types that you can use in each statement:

Table 15.5 Subordinate Statements and Appropriate Member Types

Statement Appropriate member types Default
member type

AGE ACCESS, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

DATA

CHANGE ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

ALL

CONTENTS ALL, DATA, VIEW DATA1

COPY ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

ALL

DELETE ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

DATA

EXCHANGE ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

ALL

EXCLUDE ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

ALL

MODIFY ACCESS, DATA, VIEW DATA

REPAIR ALL, CATALOG, DATA ALL2

SAVE ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

ALL

SELECT ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

ALL

1 When DATA=_ALL_ in the CONTENTS statement, the default is ALL. ALL includes only DATA and VIEW.
2 ALL includes only DATA and CATALOG.

Restricting Processing for Generation Data Sets
Several statements in the DATASETS procedure support the GENNUM= option to

restrict processing for generation data sets. GENNUM= is also a data set option.* If
you do not know how to request and use generation data sets, refer to “Generation Data
Sets” in SAS Language Reference: Concepts.

When you are working with a generation group for the AUDIT, CHANGE, DELETE,
MODIFY, and REPAIR statements, you can restrict processing in the PROC DATASETS
statement or in the subordinate statement to a specific version.

Note: The GENNUM= option works slightly different for the MODIFY statement.
See “MODIFY Statement” on page 348. �

Note: You cannot restrict processing to a specific version for the AGE, COPY,
EXCHANGE, and SAVE statements. These statements apply to the entire generation
group. �

* For the APPEND and CONTENTS statements, use GENNUM= just as you use any SAS data set option, in parentheses
after the SAS data set name.

The DATASETS Procedure � Directory Listing to the SAS Log 363

SAS searches for a generation specification in the following order:
1 in parentheses after the name of the SAS data set in a subordinate statement.

When used in parentheses, the option only refers to the name immediately
preceding the option. If you are working with more than one SAS data set in a
data library and you want a different generation version for each SAS data set,
you must specify GENNUM= in parentheses after individual names.

In the following statement, the GENNUM= option specifies the version of a
generation group for the SAS data set BONES only:

delete xplant bones (gennum=2);

2 after a forward slash (/) in a subordinate statement. When you use the
GENNUM= option following a slash, the option refers to all SAS data sets named
in the statement unless the same option appears in parentheses after the name of
a SAS data set. This method is convenient when you are working with more than
one file and you want the same version for all files.

In the following statement, the GENNUM= option in parentheses specifies the
generation version for SAS data set CHEST, and the GENNUM= option after the
slash specifies the generation version for SAS data set VIRUS:

delete chest (gennum=2) virus / gennum=1;

3 in the PROC DATASETS statement. Specifying the generation version in the
PROC DATASETS statement can be useful if you want the same version for all of
the SAS data sets you are working with in the library. Do not specify the option in
parentheses.

In the following PROC DATASETS step, the GENNUM= option specifies the
generation version for the SAS files INSULIN and ABNEG:

proc datasets gennum=2;
delete insulin;
contents data=abneg;

run;

Note: For the generation version for a SAS file in a SELECT statement, SAS
looks in the COPY statement before it looks in the PROC DATASETS statement. �

Results: DATASETS Procedure

Directory Listing to the SAS Log
The PROC DATASETS statement lists the SAS files in the procedure input library

unless the NOLIST option is specified. The NOLIST option prevents the creation of the
procedure results that go to the log. If you specify the MEMTYPE= option, only
specified types are listed. If you specify the DETAILS option, PROC DATASETS prints
these additional columns of information: Obs, Entries or Indexes, Vars, and Label.

364 Directory Listing as SAS Output � Chapter 15

Directory Listing as SAS Output
The CONTENTS statement lists the directory of the procedure input library if you

use the DIRECTORY option or specify DATA=_ALL_.
If you want only a directory, use the NODS option and the _ALL_ keyword in the

DATA= option. The NODS option suppresses the description of the SAS data sets; only
the directory appears in the output.

Note: The CONTENTS statement does not put a directory in an output data set. If
you try to create an output data set using the NODS option, you receive an empty
output data set. Use the SQL procedure to create a SAS data set that contains
information about a SAS data library. �

Note: If you specify the ODS RTF destination, the PROC DATASETS output will go
to both the SAS log and the ODS output area. The NOLIST option will suppress output
to both. To see the output only in the SAS log, use the ODS EXCLUDE statement by
specifying the member directory as the exclusion. �

Procedure Output

The CONTENTS Statement
The only statement in PROC DATASETS that produces procedure output is the

CONTENTS statement. This section shows the output from the CONTENTS statement
for the GROUP data set, which is shown in Output 15.3.

Only the items in the output that require explanation are discussed.

Data Set Attributes
Here are descriptions of selected fields shown in Output 15.3:

Member Type
is the type of library member (DATA or VIEW).

Protection
indicates whether the SAS data set is READ, WRITE, or ALTER password
protected.

Data Set Type
names the special data set type (such as CORR, COV, SSPC, EST, or FACTOR), if
any.

Observations
is the total number of observations currently in the file. Note that for a very large
data set, if the number of observations exceeds the number that can be stored in a
double-precision integer, the count will show as missing.

Deleted Observations
is the number of observations marked for deletion. These observations are not
included in the total number of observations, shown in the Observations field.
Note that for a very large data set, if the number of deleted observations exceeds
the number that can be stored in a double-precision integer, the count will show as
missing.

The DATASETS Procedure � Procedure Output 365

Compressed
indicates whether the data set is compressed. If the data set is compressed, the
output includes an additional item, Reuse Space (with a value of YES or NO),
that indicates whether to reuse space that is made available when observations
are deleted.

Sorted
indicates whether the data set is sorted. If you sort the data set with PROC SORT,
PROC SQL, or specify sort information with the SORTEDBY= data set option, a
value of YES appears here, and there is an additional section to the output. See
“Sort Information” on page 367 for details.

Data Representation
is the format in which data is represented on a computer architecture or in an
operating environment. For example, on an IBM PC, character data is represented
by its ASCII encoding and byte-swapped integers. Native data representation
refers to an environment for which the data representation compares with the
CPU that is accessing the file. For example, a file that is in Windows data
representation is native to the Windows operating environment.

Encoding
is the encoding value. Encoding is a set of characters (letters, logograms, digits,
punctuation, symbols, control characters, and so on) that have been mapped to
numeric values (called code points) that can be used by computers. The code
points are assigned to the characters in the character set when you apply an
encoding method.

Output 15.3 Data Set Attributes for the GROUP Data Set

The SAS System 1

The DATASETS Procedure

Data Set Name HEALTH.GROUP Observations 148
Member Type DATA Variables 11
Engine V9 Indexes 1
Created Wednesday, February Observation Length 96

05, 2003 02:20:56
Last Modified Wednesday, February Deleted Observations 0

05, 2003 02:20:56
Protection READ Compressed NO
Data Set Type Sorted YES
Label Test Subjects
Data Representation WINDOWS_32
Encoding wlatin1 Western (Windows)

Engine and Operating Environment-Dependent Information
The CONTENTS statement produces operating environment-specific and

engine-specific information. This information differs depending on the operating
environment. The following output is from the Windows operating environment.

366 Procedure Output � Chapter 15

Output 15.4 Engine and Operating Environment Dependent Information Section of CONTENTS Output

Engine/Host Dependent Information

Data Set Page Size 8192
Number of Data Set Pages 4
First Data Page 1
Max Obs per Page 84
Obs in First Data Page 62
Index File Page Size 4096
Number of Index File Pages 2
Number of Data Set Repairs 0
File Name c:\Myfiles\health\group.sas7bdat
Release Created 9.0101B0
Host Created XP_PRO

Alphabetic List of Variables and Attributes
Here are descriptions of selected columns in Output 15.5:

#
is the logical position of each variable in the observation. This is the number that
is assigned to the variable when it is defined.

Variable
is the name of each variable. By default, variables appear alphabetically.

Note: Variable names are sorted such that X1, X2, and X10 appear in that
order and not in the true collating sequence of X1, X10, and X2. Variable names
that contain an underscore and digits may appear in a nonstandard sort order.
For example, P25 and P75 appear before P2_5. �

Type
specifies the type of variable: character or numeric.

Len
specifies the variable’s length, which is the number of bytes used to store each of a
variable’s values in a SAS data set.

Transcode
specifies whether a character variable is transcoded. If the attribute is NO, then
transcoding is suppressed. By default, character variables are transcoded when
required. For information on transcoding, see SAS National Language Support
(NLS): User’s Guide.

Note: If none of the variables in the SAS data set has a format, informat, or label
associated with it, or if none of the variables are set to no transcoding, then the column
for that attribute does not display. �

The DATASETS Procedure � Procedure Output 367

Output 15.5 Variable Attributes Section

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label Transcode

9 BIRTH Num 8 DATE7. DATE7. YES
4 CITY Char 15 $. $. NO
3 FNAME Char 15 $. $. NO

10 HIRED Num 8 DATE7. DATE7. YES
11 HPHONE Char 12 $. $. YES

1 IDNUM Char 4 $. $. YES
7 JOBCODE Char 3 $. $. YES
2 LNAME Char 15 $. $. YES
8 SALARY Num 8 COMMA8. current salary excluding bonus YES
6 SEX Char 1 $. $. YES
5 STATE Char 2 $. $. YES

Alphabetic List of Indexes and Attributes
The section shown in Output 15.6 appears only if the data set has indexes associated

with it.

#
indicates the number of each index. The indexes are numbered sequentially as
they are defined.

Index
displays the name of each index. For simple indexes, the name of the index is the
same as a variable in the data set.

Unique Option
indicates whether the index must have unique values. If the column contains YES,
the combination of values of the index variables is unique for each observation.

Nomiss Option
indicates whether the index excludes missing values for all index variables. If the
column contains YES, the index does not contain observations with missing values
for all index variables.

of Unique Values
gives the number of unique values in the index.

Variables
names the variables in a composite index.

Output 15.6 Index Attributes Section

Alphabetic List of Indexes and Attributes

of
Unique NoMiss Unique

Index Option Option Values Variables

1 vital YES YES 148 BIRTH SALARY

Sort Information
The section shown in Output 15.7 appears only if the Sorted field has a value of YES.

368 PROC DATASETS and the Output Delivery System (ODS) � Chapter 15

Sortedby
indicates how the data are currently sorted. This field contains either the
variables and options you use in the BY statement in PROC SORT, the column
name in PROC SQL, or the values you specify in the SORTEDBY= option.

Validated
indicates whether PROC SORT or PROC SQL sorted the data. If PROC SORT or
PROC SQL sorted the data set, the value is YES. If you assigned the sort
information with the SORTEDBY= data set option, the value is NO.

Character Set
is the character set used to sort the data. The value for this field can be ASCII,
EBCDIC, or PASCII.

Collating Sequence
is the collating sequence used to sort the data set. This field does not appear if you
do not specify a specific collating sequence that is different from the character set.
(not shown)

Sort Option
indicates whether PROC SORT used the NODUPKEY or NODUPREC option
when sorting the data set. This field does not appear if you did not use one of
these options in a PROC SORT statement. (not shown)

Output 15.7 Sort Information Section

The SAS System 2

The DATASETS Procedure

Sort Information

Sortedby LNAME
Validated NO
Character Set ANSI

PROC DATASETS and the Output Delivery System (ODS)
Most SAS procedures send their messages to the SAS log and their procedure results

to the output. PROC DATASETS is unique because it sends procedure results to both
the SAS log and the procedure output file. When the interface to ODS was created, it
was decided that all procedure results (from both the log and the procedure output file)
should be available to ODS. In order to implement this feature and maintain
compatibility with earlier releases, the interface to ODS had to be slightly different
from the usual interface.

By default, the PROC DATASETS statement itself produces two output objects:
Members and Directory. These objects are routed to the SAS log. The CONTENTS
statement produces three output objects by default: Attributes, EngineHost, and
Variables. (The use of various options adds other output objects.) These objects are
routed to the procedure output file. If you open an ODS destination (such as HTML,
RTF, or PRINTER), all of these objects are, by default, routed to that destination.

You can use ODS SELECT and ODS EXCLUDE statements to control which objects
go to which destination, just as you can for any other procedure. However, because of
the unique interface between PROC DATASETS and ODS, when you use the keyword

The DATASETS Procedure � ODS Table Names 369

LISTING in an ODS SELECT or ODS EXCLUDE statement, you affect both the log
and the listing.

ODS Table Names
PROC DATASETS and PROC CONTENTS assign a name to each table they create.

You can use these names to reference the table when using the Output Delivery System
(ODS) to select tables and create output data sets. For more information, see SAS
Output Delivery System: User’s Guide.

PROC CONTENTS generates the same ODS tables as PROC DATASETS with the
CONTENTS statement.

Table 15.6 ODS Tables Produced by the DATASETS Procedure without the
CONTENTS Statement

ODS Table Description Table is generated:

Directory General library information unless you specify the NOLIST option.

Members Library member
information

unless you specify the NOLIST option.

Table 15.7 ODS Table Names Produced by PROC CONTENTS and PROC DATASETS with the
CONTENTS Statement

ODS Table Description Table is generated:

Attributes Data set attributes unless you specify the SHORT option.

Directory General library information if you specify DATA=<libref.>_ALL_ or the
DIRECTORY option.*

EngineHost Engine and operating
environment information

unless you specify the SHORT option.

IntegrityConstraints A detailed listing of integrity
constraints

if the data set has integrtiy constraints and you do
not specify the SHORT option.

IntegrityConstraintsShort A concise listing of integrity
constraints

if the data set has integrity constraints and you
specify the SHORT option

Indexes A detailed listing of indexes if the data set is indexed and you do not specify the
SHORT option.

IndexesShort A concise listing of indexes if the data set is indexed and you specify the SHORT
option.

Members Library member information if you specify DATA=<libref.>_ALL_ or the
DIRECTORY option.*

Position A detailed listing of variables by
logical position in the data set

if you specify the VARNUM option and you do not
specify the SHORT option.

PositionShort A concise listing of variables by
logical position in the data set

if you specify the VARNUM option and the SHORT
option.

Sortedby Detailed sort information if the data set is sorted and you do not specify the
SHORT option.

SortedbyShort Concise Sort information if the data set is sorted and you specify the SHORT
option.

370 Output Data Sets � Chapter 15

ODS Table Description Table is generated:

Variables A detailed listing of variables in
alphabetical order

unless you specify the SHORT option.

VariablesShort A concise listing of variables in
alphabetical order

if you specify the SHORT option.

* For PROC DATASETS, if both the NOLIST option and either the DIRECTORY option or DATA=<libref.>_ALL_
are specified, then the NOLIST option is ignored.

Output Data Sets

The CONTENTS Statement
The CONTENTS statement is the only statement in the DATASETS procedure that

generates output data sets.

The OUT= Data Set
The OUT= option in the CONTENTS statement creates an output data set. Each

variable in each DATA= data set has one observation in the OUT= data set. These are
the variables in the output data set:

CHARSET
the character set used to sort the data set. The value is ASCII, EBCDIC, or
PASCII. A blank appears if the data set does not have sort information stored with
it.

COLLATE
the collating sequence used to sort the data set. A blank appears if the sort
information for the input data set does not include a collating sequence.

COMPRESS
indicates whether the data set is compressed.

CRDATE
date the data set was created.

DELOBS
number of observations marked for deletion in the data set. (Observations can be
marked for deletion but not actually deleted when you use the FSEDIT procedure
of SAS/FSP software.)

ENCRYPT
indicates whether the data set is encrypted.

ENGINE
name of the method used to read from and write to the data set.

FLAGS
indicates whether an SQL view is protected (P) or contributes (C) to a derived
variable.

P indicates the variable is protected. The value of the variable
can be displayed but not updated.

C indicates whether the variable contributes to a derived variable.

The DATASETS Procedure � Output Data Sets 371

The value of FLAG is blank if P or C does not apply to an SQL view or if it is a
data set view.

FORMAT
variable format. The value of FORMAT is a blank if you do not associate a format
with the variable.

FORMATD
number of decimals you specify when you associate the format with the variable.
The value of FORMATD is 0 if you do not specify decimals in the format.

FORMATL
format length. If you specify a length for the format when you associate the format
with a variable, the length you specify is the value of FORMATL. If you do not
specify a length for the format when you associate the format with a variable, the
value of FORMATL is the default length of the format if you use the FMTLEN
option and 0 if you do not use the FMTLEN option.

GENMAX
maximum number of versions for the generation group.

GENNEXT
the next generation number for a generation group.

GENNUM
the version number.

IDXCOUNT
number of indexes for the data set.

IDXUSAGE
use of the variable in indexes. Possible values are

NONE
the variable is not part of an index.

SIMPLE
the variable has a simple index. No other variables are included in the index.

COMPOSITE
the variable is part of a composite index.

BOTH
the variable has a simple index and is part of a composite index.

INFORMAT
variable informat. The value is a blank if you do not associate an informat with
the variable.

INFORMD
number of decimals you specify when you associate the informat with the variable.
The value is 0 if you do not specify decimals when you associate the informat with
the variable.

INFORML
informat length. If you specify a length for the informat when you associate the
informat with a variable, the length you specify is the value of INFORML. If you
do not specify a length for the informat when you associate the informat with a
variable, the value of INFORML is the default length of the informat if you use
the FMTLEN option and 0 if you do not use the FMTLEN option.

JUST
justification (0=left, 1=right).

372 Output Data Sets � Chapter 15

LABEL
variable label (blank if none given).

LENGTH
variable length.

LIBNAME
libref used for the data library.

MEMLABEL
label for this SAS data set (blank if no label).

MEMNAME
SAS data set that contains the variable.

MEMTYPE
library member type (DATA or VIEW).

MODATE
date the data set was last modified.

NAME
variable name.

NOBS
number of observations in the data set.

NODUPKEY
indicates whether the NODUPKEY option was used in a PROC SORT statement
to sort the input data set.

NODUPREC
indicates whether the NODUPREC option was used in a PROC SORT statement
to sort the input data set.

NPOS
physical position of the first character of the variable in the data set.

POINTOBS
indicates if the data set can be addressed by observation.

PROTECT
the first letter of the level of protection. The value for PROTECT is one or more of
the following:

A indicates the data set is alter-protected.

R indicates the data set is read-protected.

W indicates the data set is write-protected.

REUSE
indicates whether the space made available when observations are deleted from a
compressed data set should be reused. If the data set is not compressed, the
REUSE variable has a value of NO.

SORTED
the value depends on the sorting characteristics of the input data set. Possible
values are

. (period) for not sorted.

0 for sorted but not validated.

1 for sorted and validated.

The DATASETS Procedure � Output Data Sets 373

SORTEDBY
the value depends on that variable’s role in the sort. Possible values are

. (period)
if the variable was not used to sort the input data set.

n
where n is an integer that denotes the position of that variable in the sort. A
negative value of n indicates that the data set is sorted by the descending
order of that variable.

TYPE
type of the variable (1=numeric, 2=character).

TYPEMEM
special data set type (blank if no TYPE= value is specified).

VARNUM
variable number in the data set. Variables are numbered in the order they appear.

The output data set is sorted by the variables LIBNAME and MEMNAME.

Note: The variable names are sorted so that the values X1, X2, and X10 are listed
in that order, not in the true collating sequence of X1, X10, X2. Therefore, if you want
to use a BY statement on MEMNAME in subsequent steps, run a PROC SORT step on
the output data set first or use the NOTSORTED option in the BY statement. �

The following is an example of an output data set created from the GROUP data set,
which is shown in Example 4 on page 384 and in “Procedure Output” on page 364.

Output 15.8 The Data Set HEALTH.GRPOUT

An Example of an Output Data Set 1

OBS LIBNAME MEMNAME MEMLABEL TYPEMEM NAME TYPE LENGTH VARNUM

1 HEALTH GROUP Test Subjects BIRTH 1 8 9
2 HEALTH GROUP Test Subjects CITY 2 15 4
3 HEALTH GROUP Test Subjects FNAME 2 15 3
4 HEALTH GROUP Test Subjects HIRED 1 8 10
5 HEALTH GROUP Test Subjects HPHONE 2 12 11
6 HEALTH GROUP Test Subjects IDNUM 2 4 1
7 HEALTH GROUP Test Subjects JOBCODE 2 3 7
8 HEALTH GROUP Test Subjects LNAME 2 15 2
9 HEALTH GROUP Test Subjects SALARY 1 8 8

10 HEALTH GROUP Test Subjects SEX 2 1 6
11 HEALTH GROUP Test Subjects STATE 2 2 5

OBS LABEL FORMAT FORMATL FORMATD INFORMAT INFORML

1 DATE 7 0 DATE 7
2 $ 0 0 $ 0
3 $ 0 0 $ 0
4 DATE 7 0 DATE 7
5 $ 0 0 $ 0
6 $ 0 0 $ 0
7 $ 0 0 $ 0
8 $ 0 0 $ 0
9 current salary excluding bonus COMMA 8 0 0

10 $ 0 0 $ 0
11 $ 0 0 $ 0

374 Output Data Sets � Chapter 15

An Example of an Output Data Set 2

Obs INFORMD JUST NPOS NOBS ENGINE CRDATE MODATE DELOBS

1 0 1 8 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0
2 0 0 58 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0
3 0 0 43 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0
4 0 1 16 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0
5 0 0 79 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0
6 0 0 24 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0
7 0 0 76 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0
8 0 0 28 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0
9 0 1 0 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0

10 0 0 75 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0
11 0 0 73 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0

OBS IDXUSAGE MEMTYPE IDXCOUNT PROTECT FLAGS COMPRESS REUSE SORTED SORTEDBY

1 COMPOSITE DATA 1 R-- --- NO NO 0 .
2 NONE DATA 1 R-- --- NO NO 0 .
3 NONE DATA 1 R-- --- NO NO 0 .
4 NONE DATA 1 R-- --- NO NO 0 .
5 NONE DATA 1 R-- --- NO NO 0 .
6 NONE DATA 1 R-- --- NO NO 0 .
7 NONE DATA 1 R-- --- NO NO 0 .
8 NONE DATA 1 R-- --- NO NO 0 1
9 COMPOSITE DATA 1 R-- --- NO NO 0 .

10 NONE DATA 1 R-- --- NO NO 0 .
11 NONE DATA 1 R-- --- NO NO 0 .

An Example of an Output Data Set 3

OBS CHARSET COLLATE NODUPKEY NODUPREC ENCRYPT POINTOBS GENMAX GENNUM GENNEXT

1 ANSI NO NO NO YES 0 . .
2 ANSI NO NO NO YES 0 . .
3 ANSI NO NO NO YES 0 . .
4 ANSI NO NO NO YES 0 . .
5 ANSI NO NO NO YES 0 . .
6 ANSI NO NO NO YES 0 . .
7 ANSI NO NO NO YES 0 . .
8 ANSI NO NO NO YES 0 . .
9 ANSI NO NO NO YES 0 . .

10 ANSI NO NO NO YES 0 . .
11 ANSI NO NO NO YES 0 . .

Note: For information about how to get the CONTENTS output into an ODS data
set for processing, see Example 7 on page 389. �

The OUT2= Data Set

The OUT2= option in the CONTENTS statement creates an output data set that
contains information about indexes and integrity constraints. These are the variables in
the output data set:

IC_OWN
contains YES if the index is owned by the integrity constraint.

INACTIVE
contains YES if the integrity constraint is inactive.

The DATASETS Procedure � Output Data Sets 375

LIBNAME
libref used for the data library.

MEMNAME
SAS data set that contains the variable.

MG
the value of MESSAGE=, if it is used, in the IC CREATE statement.

MSGTYPE
the value will be blank unless an integrity constraint is violated and you specified
a message.

NAME
the name of the index or integrity constraint.

NOMISS
contains YES if the NOMISS option is defined for the index.

NUMVALS
the number of distinct values in the index (displayed for centiles).

NUMVARS
the number of variables involved in the index or integrity constraint.

ONDELETE
for a foreign key integrity constraint, contains RESTRICT or SET NULL if
applicable (the ON DELETE option in the IC CREATE statement).

ONUPDATE
for a foreign key integrity constraint, contains RESTRICT or SET NULL if
applicable (the ON UPDATE option in the IC CREATE statement).

RECREATE
the SAS statement necessary to recreate the index or integrity constraint.

REFERENCE
for a foreign key integrity constraint, contains the name of the referenced data set.

TYPE
the type. For an index, the value is “Index” while for an integrity constraint, the
value is the type of integrity constraint (Not Null, Check, Primary Key, etc.).

UNIQUE
contains YES if the UNIQUE option is defined for the index.

UPERC
the percentage of the index that has been updated since the last refresh (displayed
for centiles).

UPERCMX
the percentage of the index update that triggers a refresh (displayed for centiles).

WHERE
for a check integrity constraint, contains the WHERE statement.

376 Examples: DATASETS Procedure � Chapter 15

Examples: DATASETS Procedure

Example 1: Manipulating SAS Files

Procedure features:
PROC DATASETS statement options:

DETAILS
LIBRARY=

CHANGE statement
COPY statement options:

MEMTYPE
MOVE
OUT=

DELETE statement option:
MEMTYPE=

EXCHANGE statement
EXCLUDE statement
SELECT statement option:

MEMTYPE=

This example
� changes the names of SAS files
� copies SAS files between SAS data libraries
� deletes SAS files
� selects SAS files to copy
� exchanges the names of SAS files
� excludes SAS files from a copy operation.

Program

Write the programming statements to the SAS log. The SOURCE system option
accomplishes this.

options pagesize=60 linesize=80 nodate pageno=1 source;

libname dest1 ’SAS-data-library-1’;
libname dest2 ’SAS-data-library-2’;
libname health ’SAS-data-library-3’;

The DATASETS Procedure � Program 377

Specify the procedure input library, and add more details to the directory. DETAILS
prints these additional columns in the directory: Obs, Entries or Indexes, Vars, and
Label. All member types are available for processing because the MEMTYPE= option does not
appear in the PROC DATASETS statement.

proc datasets library=health details;

Delete two files in the library, and modify the names of a SAS data set and a catalog.
The DELETE statement deletes the TENSION data set and the A2 catalog. MT=CATALOG
applies only to A2 and is necessary because the default member type for the DELETE statement
is DATA. The CHANGE statement changes the name of the A1 catalog to POSTDRUG. The
EXCHANGE statement exchanges the names of the WEIGHT and BODYFAT data sets.
MEMTYPE= is not necessary in the CHANGE or EXCHANGE statement because the default is
MEMTYPE=ALL for each statement.

delete tension a2(mt=catalog);
change a1=postdrug;
exchange weight=bodyfat;

Restrict processing to one member type and delete and move data views.
MEMTYPE=VIEW restricts processing to SAS data views. MOVE specifies that all SAS data
views named in the SELECT statements in this step be deleted from the HEALTH data library
and moved to the DEST1 data library.

copy out=dest1 move memtype=view;

Move the SAS data view SPDATA from the HEALTH data library to the DEST1 data
library.

select spdata;

Move the catalogs to another data library. The SELECT statement specifies that the
catalogs ETEST1 through ETEST5 be moved from the HEALTH data library to the DEST1 data
library. MEMTYPE=CATALOG overrides the MEMTYPE=VIEW option in the COPY statement.

select etest1-etest5 / memtype=catalog;

Exclude all files with a specified criteria from processing. The EXCLUDE statement
excludes from the COPY operation all SAS files that begin with the letter D and the other SAS
files listed. All remaining SAS files in the HEALTH data library are copied to the DEST2 data
library.

copy out=dest2;
exclude d: mlscl oxygen test2 vision weight;

quit;

378 SAS Log � Chapter 15

SAS Log

1 options pagesize=60 linesize=80 nodate pageno=1 source;
2 libname dest1 ’c:\Myfiles\dest1’;
NOTE: Libref DEST1 was successfully assigned as follows:

Engine: V9
Physical Name: c:\Myfiles\dest1

3 libname dest2 ’c:\Myfiles\dest2’;
NOTE: Libref DEST2 was successfully assigned as follows:

Engine: V9
Physical Name: c:\Myfiles\dest2

4 libname health ’c:\Myfiles\health’;
NOTE: Libref HEALTH was successfully assigned as follows:

Engine: V9
Physical Name: c:\Myfiles\health

5 proc datasets library=health details;
Directory

Libref HEALTH
Engine V9
Physical Name c:\Myfiles\health
File Name c:\Myfiles\health

Member Obs, Entries File
Name Type or Indexes Vars Label Size Last Modified

1 A1 CATALOG 23 62464 19FEB2002:14:41:15
2 A2 CATALOG 1 17408 19FEB2002:14:41:15
3 ALL DATA 23 17 13312 19FEB2002:14:41:19
4 BODYFAT DATA 1 2 5120 19FEB2002:14:41:19
5 CONFOUND DATA 8 4 5120 19FEB2002:14:41:19
6 CORONARY DATA 39 4 5120 19FEB2002:14:41:20
7 DRUG1 DATA 6 2 JAN95 5120 19FEB2002:14:41:20

Data
8 DRUG2 DATA 13 2 MAY95 5120 19FEB2002:14:41:20

Data
9 DRUG3 DATA 11 2 JUL95 5120 19FEB2002:14:41:20

Data
10 DRUG4 DATA 7 2 JAN92 5120 19FEB2002:14:41:20

Data
11 DRUG5 DATA 1 2 JUL92 5120 19FEB2002:14:41:20

Data
12 ETEST1 CATALOG 1 17408 19FEB2002:14:41:20
13 ETEST2 CATALOG 1 17408 19FEB2002:14:41:20
14 ETEST3 CATALOG 1 17408 19FEB2002:14:41:20
15 ETEST4 CATALOG 1 17408 19FEB2002:14:41:20
16 ETEST5 CATALOG 1 17408 19FEB2002:14:41:20
17 ETESTS CATALOG 1 17408 19FEB2002:14:41:21
18 FORMATS CATALOG 6 17408 19FEB2002:14:41:21
19 GROUP DATA 148 11 25600 19FEB2002:14:41:21
20 INFANT DATA 149 6 17408 05FEB2002:12:52:30
21 MLSCL DATA 32 4 Multiple 5120 19FEB2002:14:41:21

Sclerosi
s Data

22 NAMES DATA 7 4 5120 19FEB2002:14:41:21
23 OXYGEN DATA 31 7 9216 19FEB2002:14:41:21
24 PERSONL DATA 148 11 25600 19FEB2002:14:41:21
25 PHARM DATA 6 3 Sugar 5120 19FEB2002:14:41:21

Study
26 POINTS DATA 6 6 5120 19FEB2002:14:41:21
27 PRENAT DATA 149 6 17408 19FEB2002:14:41:22
28 RESULTS DATA 10 5 5120 19FEB2002:14:41:22
29 SLEEP DATA 108 6 9216 19FEB2002:14:41:22
30 SPDATA VIEW . 2 5120 19FEB2002:14:41:29
31 SYNDROME DATA 46 8 9216 19FEB2002:14:41:22
32 TENSION DATA 4 3 5120 19FEB2002:14:41:22
33 TEST2 DATA 15 5 5120 19FEB2002:14:41:22
34 TRAIN DATA 7 2 5120 19FEB2002:14:41:22
35 VISION DATA 16 3 5120 19FEB2002:14:41:22
36 WEIGHT DATA 83 13 Californ 13312 19FEB2002:14:41:22

ia
Results

The DATASETS Procedure � SAS Log 379

37 WGHT DATA 83 13 Californ 13312 19FEB2002:14:41:23
ia
Results

6 delete tension a2(mt=catalog);
7 change a1=postdrug;
8 exchange weight=bodyfat;
NOTE: Deleting HEALTH.TENSION (memtype=DATA).
NOTE: Deleting HEALTH.A2 (memtype=CATALOG).
NOTE: Changing the name HEALTH.A1 to HEALTH.POSTDRUG (memtype=CATALOG).
NOTE: Exchanging the names HEALTH.WEIGHT and HEALTH.BODYFAT (memtype=DATA).
9 copy out=dest1 move memtype=view;
10 select spdata;
11 select etest1-etest5 / memtype=catalog;
NOTE: Moving HEALTH.SPDATA to DEST1.SPDATA (memtype=VIEW).
NOTE: Moving HEALTH.ETEST1 to DEST1.ETEST1 (memtype=CATALOG).
NOTE: Moving HEALTH.ETEST2 to DEST1.ETEST2 (memtype=CATALOG).
NOTE: Moving HEALTH.ETEST3 to DEST1.ETEST3 (memtype=CATALOG).
NOTE: Moving HEALTH.ETEST4 to DEST1.ETEST4 (memtype=CATALOG).
NOTE: Moving HEALTH.ETEST5 to DEST1.ETEST5 (memtype=CATALOG).
12 copy out=dest2;
13 exclude d: mlscl oxygen test2 vision weight;
14 quit;

NOTE: Copying HEALTH.ALL to DEST2.ALL (memtype=DATA).
NOTE: There were 23 observations read from the data set HEALTH.ALL.
NOTE: The data set DEST2.ALL has 23 observations and 17 variables.
NOTE: Copying HEALTH.BODYFAT to DEST2.BODYFAT (memtype=DATA).
NOTE: There were 83 observations read from the data set HEALTH.BODYFAT.
NOTE: The data set DEST2.BODYFAT has 83 observations and 13 variables.
NOTE: Copying HEALTH.CONFOUND to DEST2.CONFOUND (memtype=DATA).
NOTE: There were 8 observations read from the data set HEALTH.CONFOUND.
NOTE: The data set DEST2.CONFOUND has 8 observations and 4 variables.
NOTE: Copying HEALTH.CORONARY to DEST2.CORONARY (memtype=DATA).
NOTE: There were 39 observations read from the data set HEALTH.CORONARY.
NOTE: The data set DEST2.CORONARY has 39 observations and 4 variables.
NOTE: Copying HEALTH.ETESTS to DEST2.ETESTS (memtype=CATALOG).
NOTE: Copying HEALTH.FORMATS to DEST2.FORMATS (memtype=CATALOG).
NOTE: Copying HEALTH.GROUP to DEST2.GROUP (memtype=DATA).
NOTE: There were 148 observations read from the data set HEALTH.GROUP.
NOTE: The data set DEST2.GROUP has 148 observations and 11 variables.
NOTE: Copying HEALTH.INFANT to DEST2.INFANT (memtype=DATA).
NOTE: There were 149 observations read from the data set HEALTH.INFANT.
NOTE: The data set DEST2.INFANT has 149 observations and 6 variables.
NOTE: Copying HEALTH.NAMES to DEST2.NAMES (memtype=DATA).
NOTE: There were 7 observations read from the data set HEALTH.NAMES.
NOTE: The data set DEST2.NAMES has 7 observations and 4 variables.
NOTE: Copying HEALTH.PERSONL to DEST2.PERSONL (memtype=DATA).
NOTE: There were 148 observations read from the data set HEALTH.PERSONL.
NOTE: The data set DEST2.PERSONL has 148 observations and 11 variables.
NOTE: Copying HEALTH.PHARM to DEST2.PHARM (memtype=DATA).
NOTE: There were 6 observations read from the data set HEALTH.PHARM.
NOTE: The data set DEST2.PHARM has 6 observations and 3 variables.
NOTE: Copying HEALTH.POINTS to DEST2.POINTS (memtype=DATA).
NOTE: There were 6 observations read from the data set HEALTH.POINTS.
NOTE: The data set DEST2.POINTS has 6 observations and 6 variables.
NOTE: Copying HEALTH.POSTDRUG to DEST2.POSTDRUG (memtype=CATALOG).
NOTE: Copying HEALTH.PRENAT to DEST2.PRENAT (memtype=DATA).
NOTE: There were 149 observations read from the data set HEALTH.PRENAT.
NOTE: The data set DEST2.PRENAT has 149 observations and 6 variables.
NOTE: Copying HEALTH.RESULTS to DEST2.RESULTS (memtype=DATA).
NOTE: There were 10 observations read from the data set HEALTH.RESULTS.
NOTE: The data set DEST2.RESULTS has 10 observations and 5 variables.
NOTE: Copying HEALTH.SLEEP to DEST2.SLEEP (memtype=DATA).
NOTE: There were 108 observations read from the data set HEALTH.SLEEP.
NOTE: The data set DEST2.SLEEP has 108 observations and 6 variables.
NOTE: Copying HEALTH.SYNDROME to DEST2.SYNDROME (memtype=DATA).
NOTE: There were 46 observations read from the data set HEALTH.SYNDROME.
NOTE: The data set DEST2.SYNDROME has 46 observations and 8 variables.
NOTE: Copying HEALTH.TRAIN to DEST2.TRAIN (memtype=DATA).
NOTE: There were 7 observations read from the data set HEALTH.TRAIN.
NOTE: The data set DEST2.TRAIN has 7 observations and 2 variables.
NOTE: Copying HEALTH.WGHT to DEST2.WGHT (memtype=DATA).
NOTE: There were 83 observations read from the data set HEALTH.WGHT.
NOTE: The data set DEST2.WGHT has 83 observations and 13 variables.

380 Example 2: Saving SAS Files from Deletion � Chapter 15

Example 2: Saving SAS Files from Deletion

Procedure features:
SAVE statement option:

MEMTYPE=

This example uses the SAVE statement to save some SAS files from deletion and to
delete other SAS files.

Program

Write the programming statements to the SAS log. SAS option SOURCE writes all
programming statements to the log.

options pagesize=40 linesize=80 nodate pageno=1 source;

libname elder ’SAS-data-library’;

Specify the procedure input library to process.

proc datasets lib=elder;

Save the data sets CHRONIC, AGING, and CLINICS, and delete all other SAS files (of
all types) in the ELDER library. MEMTYPE=DATA is necessary because the ELDER library
has a catalog named CLINICS and a data set named CLINICS.

save chronic aging clinics / memtype=data;
run;

The DATASETS Procedure � Example 3: Modifying SAS Data Sets 381

SAS Log

41 options pagesize=40 linesize=80 nodate pageno=1 source;
42 libname elder ’c:\Myfiles\elder’;
NOTE: Libref ELDER was successfully assigned as follows:

Engine: V9
Physical Name: c:\Myfiles\elder

43 proc datasets lib=elder;
Directory

Libref ELDER
Engine V9
Physical Name c:\Myfiles\elder
File Name c:\Myfiles\elder

Member File
Name Type Size Last Modified

1 AGING DATA 5120 06FEB2003:08:51:21
2 ALCOHOL DATA 5120 06FEB2003:08:51:21
3 BACKPAIN DATA 5120 06FEB2003:08:51:21
4 CHRONIC DATA 5120 06FEB2003:08:51:21
5 CLINICS CATALOG 17408 06FEB2003:08:51:21
6 CLINICS DATA 5120 06FEB2003:08:51:21
7 DISEASE DATA 5120 06FEB2003:08:51:21
8 GROWTH DATA 5120 06FEB2003:08:51:21
9 HOSPITAL CATALOG 17408 06FEB2003:08:51:21

44 save chronic aging clinics / memtype=data;
45 run;

NOTE: Saving ELDER.CHRONIC (memtype=DATA).
NOTE: Saving ELDER.AGING (memtype=DATA).
NOTE: Saving ELDER.CLINICS (memtype=DATA).
NOTE: Deleting ELDER.ALCOHOL (memtype=DATA).
NOTE: Deleting ELDER.BACKPAIN (memtype=DATA).
NOTE: Deleting ELDER.CLINICS (memtype=CATALOG).
NOTE: Deleting ELDER.DISEASE (memtype=DATA).
NOTE: Deleting ELDER.GROWTH (memtype=DATA).
NOTE: Deleting ELDER.HOSPITAL (memtype=CATALOG).

Example 3: Modifying SAS Data Sets

Procedure features:
PROC DATASETS statement option:

NOLIST
FORMAT statement
INDEX CREATE statement options:

NOMISS
UNIQUE

INFORMAT statement
LABEL statement

382 Program � Chapter 15

MODIFY statement options:

LABEL=
READ=
SORTEDBY=

RENAME statement

This example modifies two SAS data sets using the MODIFY statement and
statements subordinate to it. Example 4 on page 384 shows the modifications to the
GROUP data set.

Tasks include

� modifying SAS files

� labeling a SAS data set

� adding a READ password to a SAS data set

� indicating how a SAS data set is currently sorted

� creating an index for a SAS data set

� assigning informats and formats to variables in a SAS data set

� renaming variables in a SAS data set

� labeling variables in a SAS data set.

Program

Write the programming statements to the SAS log. SAS option SOURCE writes the
programming statements to the log.

options pagesize=40 linesize=80 nodate pageno=1 source;

libname health ’SAS-data-library’;

Specify HEALTH as the procedure input library to process. NOLIST suppresses the
directory listing for the HEALTH data library.

proc datasets library=health nolist;

Add a label to a data set, assign a READ password, and specify how to sort the data.
LABEL= adds a data set label to the data set GROUP. READ= assigns GREEN as the read
password. The password appears as Xs in the SAS log. SAS issues a warning message if you
specify a level of password protection on a SAS file that does not include alter protection.
SORTEDBY= specifies how the data is sorted.

modify group (label=’Test Subjects’ read=green sortedby=lname);

The DATASETS Procedure � SAS Log 383

Create the composite index VITAL on the variables BIRTH and SALARY for the
GROUP data set. NOMISS excludes all observations that have missing values for BIRTH and
SALARY from the index. UNIQUE specifies that the index is created only if each observation
has a unique combination of values for BIRTH and SALARY.

index create vital=(birth salary) / nomiss unique;

Assign an informat and format, respectively, to the BIRTH variable.

informat birth date7.;
format birth date7.;

Assign a label to the variable SALARY.

label salary=’current salary excluding bonus’;

Rename a variable, and assign a label. Modify the data set OXYGEN by renaming the
variable OXYGEN to INTAKE and assigning a label to the variable INTAKE.

modify oxygen;
rename oxygen=intake;
label intake=’Intake Measurement’;

quit;

SAS Log

6 options pagesize=40 linesize=80 nodate pageno=1 source;
7 libname health ’c:\Myfiles\health’;
NOTE: Libref HEALTH was successfully assigned as follows:

Engine: V9
Physical Name: c:\Myfiles\health

8 proc datasets library=health nolist;
9 modify group (label=’Test Subjects’ read=XXXXX sortedby=lname);
WARNING: The file HEALTH.GROUP.DATA is not ALTER protected. It could be

deleted or replaced without knowing the password.
10 index create vital=(birth salary) / nomiss unique;
NOTE: Composite index vital has been defined.
11 informat birth date7.;
12 format birth date7.;
13 label salary=’current salary excluding bonus’;
14 modify oxygen;
15 rename oxygen=intake;
NOTE: Renaming variable oxygen to intake.
16 label intake=’Intake Measurement’;
17 quit;

NOTE: MODIFY was successful for HEALTH.OXYGEN.DATA.
NOTE: PROCEDURE DATASETS used (Total process time):

real time 16.96 seconds
cpu time 0.73 seconds

384 Example 4: Describing a SAS Data Set � Chapter 15

Example 4: Describing a SAS Data Set

Procedure features:
CONTENTS statement option:

DATA=
Other features:

SAS data set option:
READ=

This example shows the output from the CONTENTS statement for the GROUP data
set. The output shows the modifications made to the GROUP data set in Example 3 on
page 381.

Program

options pagesize=40 linesize=132 nodate pageno=1;

libname health ’SAS-data-library’;

Specify HEALTH as the procedure input library, and suppress the directory listing.

proc datasets library=health nolist;

Create the output data set GRPOUT from the data set GROUP. Specify GROUP as the
data set to describe, give read access to the GROUP data set, and create the output data set
GRPOUT, which appears in “The OUT= Data Set” on page 370.

contents data=group (read=green) out=grpout;
title ’The Contents of the GROUP Data Set’;

run;

The DATASETS Procedure � Output 385

Output

Output 15.9 The Contents of the GROUP Data Set

The Contents of the GROUP Data Set 1

The DATASETS Procedure

Data Set Name HEALTH.GROUP Observations 148

Member Type DATA Variables 11

Engine V9 Indexes 1

Created Wednesday, February 05, 2003 02:20:56 Observation Length 96

Last Modified Thursday, February 06, 2003 09:07:54 Deleted Observations 0

Protection READ Compressed NO

Data Set Type Sorted YES

Label Test Subjects

Data Representation WINDOWS_32

Encoding wlatin1 Western (Windows)

Engine/Host Dependent Information

Data Set Page Size 8192

Number of Data Set Pages 4

First Data Page 1

Max Obs per Page 84

Obs in First Data Page 62

Index File Page Size 4096

Number of Index File Pages 2

Number of Data Set Repairs 0

File Name c:\Myfiles\health\group.sas7bdat

Release Created 9.0101B0

Host Created XP_PRO

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label

9 BIRTH Num 8 DATE7. DATE7.

4 CITY Char 15 $. $.

3 FNAME Char 15 $. $.

10 HIRED Num 8 DATE7. DATE7.

11 HPHONE Char 12 $. $.

386 Example 5: Concatenating Two SAS Data Sets � Chapter 15

The Contents of the GROUP Data Set 2

The DATASETS Procedure

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label

1 IDNUM Char 4 $. $.

7 JOBCODE Char 3 $. $.

2 LNAME Char 15 $. $.

8 SALARY Num 8 COMMA8. current salary excluding bonus

6 SEX Char 1 $. $.

5 STATE Char 2 $. $.

Alphabetic List of Indexes and Attributes

of

Unique NoMiss Unique

Index Option Option Values Variables

1 vital YES YES 148 BIRTH SALARY

Sort Information

Sortedby LNAME

Validated NO

Character Set ANSI

Example 5: Concatenating Two SAS Data Sets

Procedure features:
APPEND statement options:

BASE=
DATA=
FORCE=

This example appends one data set to the end of another data set.

The DATASETS Procedure � Program 387

Input Data Sets

The BASE= data set, EXP.RESULTS.

The EXP.RESULTS Data Set 1

ID TREAT INITWT WT3MOS AGE

1 Other 166.28 146.98 35
2 Other 214.42 210.22 54
3 Other 172.46 159.42 33
5 Other 175.41 160.66 37
6 Other 173.13 169.40 20
7 Other 181.25 170.94 30

10 Other 239.83 214.48 48
11 Other 175.32 162.66 51
12 Other 227.01 211.06 29
13 Other 274.82 251.82 31

The data set EXP.SUR contains the variable WT6MOS, but the EXP.RESULTS data set does not.

The EXP.SUR Data Set 2

id treat initwt wt3mos wt6mos age

14 surgery 203.60 169.78 143.88 38
17 surgery 171.52 150.33 123.18 42
18 surgery 207.46 155.22 . 41

Program

options pagesize=40 linesize=64 nodate pageno=1;

libname exp ’SAS-data-library’;

Suppress the printing of the EXP library. LIBRARY= specifies EXP as the procedure input
library. NOLIST suppresses the directory listing for the EXP library.

proc datasets library=exp nolist;

388 Output � Chapter 15

Append the data set EXP.SUR to the EXP.RESULTS data set. The APPEND statement
appends the data set EXP.SUR to the data set EXP.RESULTS. FORCE causes the APPEND
statement to carry out the append operation even though EXP.SUR has a variable that
EXP.RESULTS does not. APPEND does not add the WT6MOS variable to EXP.RESULTS.

append base=exp.results data=exp.sur force;
run;

Print the data set.

proc print data=exp.results noobs;
title ’The EXP.RESULTS Data Set’;

run;

Output

Output 15.10

The EXP.RESULTS Data Set 1

ID TREAT INITWT WT3MOS AGE

1 Other 166.28 146.98 35
2 Other 214.42 210.22 54
3 Other 172.46 159.42 33
5 Other 175.41 160.66 37
6 Other 173.13 169.40 20
7 Other 181.25 170.94 30

10 Other 239.83 214.48 48
11 Other 175.32 162.66 51
12 Other 227.01 211.06 29
13 Other 274.82 251.82 31
14 surgery 203.60 169.78 38
17 surgery 171.52 150.33 42
18 surgery 207.46 155.22 41

Example 6: Aging SAS Data Sets

Procedure features:
AGE statement

This example shows how the AGE statement ages SAS files.

The DATASETS Procedure � Example 7: PROC CONTENTS ODS Output 389

Program

Write the programming statements to the SAS log. SAS option SOURCE writes the
programming statements to the log.

options pagesize=40 linesize=80 nodate pageno=1 source;

libname daily ’SAS-data-library’;

Specify DAILY as the procedure input library and suppress the directory listing.

proc datasets library=daily nolist;

Delete the last SAS file in the list, DAY7, and then age (or rename) DAY6 to DAY7,
DAY5 to DAY6, and so on, until it ages TODAY to DAY1.

age today day1-day7;
run;

SAS Log

6 options pagesize=40 linesize=80 nodate pageno=1 source;
7
8 proc datasets library=daily nolist;
9
10 age today day1-day7;
11 run;
NOTE: Deleting DAILY.DAY7 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY6 to DAILY.DAY7 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY5 to DAILY.DAY6 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY4 to DAILY.DAY5 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY3 to DAILY.DAY4 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY2 to DAILY.DAY3 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY1 to DAILY.DAY2 (memtype=DATA).
NOTE: Ageing the name DAILY.TODAY to DAILY.DAY1 (memtype=DATA).

Example 7: PROC CONTENTS ODS Output

Procedures features:
CONTENTS Statement

The example shows how to get PROC CONTENTS output into an ODS output data
set for processing.

390 Program � Chapter 15

Program
title1 "PROC CONTENTS ODS Output";

options nodate nonumber nocenter formdlim=’-’;

data a;
x=1;

run;

Use the ODS OUTPUT statement to specify data sets to which CONTENTS data will be
directed.

ods output attributes=atr
variables=var
enginehost=eng;

Temporarily suppress output to the lst.

ods listing close;

proc contents data=a;
run;

Resume output to the lst.

ods listing;

title2 "all Attributes data";

proc print data=atr noobs;
run;

title2 "all Variables data";

proc print data=var noobs;
run;

title2 "all EngineHost data";

proc print data=eng noobs;
run;

Select specific data from ODS output.

ods output attributes=atr1(keep=member cvalue1 label1
where=(attribute in (’Data Representation’,’Encoding’))
rename=(label1=attribute cvalue1=value))
attributes=atr2(keep=member cvalue2 label2
where=(attribute in (’Observations’, ’Variables’))
rename=(label2=attribute cvalue2=value));

The DATASETS Procedure � Program 391

ods listing close;

proc contents data=a;
run;

ods listing;

data final;
set atr1 atr2;

run;

title2 "example of post-processing of ODS output data";

proc print data=final noobs;
run;

ods listing close;

Output 15.11 PROC CONTENTS ODS Output

PROC CONTENTS ODS Output
all Attributes data

Member Label1 cValue1

WORK.A Data Set Name WORK.A
WORK.A Member Type DATA
WORK.A Engine V9
WORK.A Created Thursday, October 10, 2002 00:56:03
WORK.A Last Modified Thursday, October 10, 2002 00:56:03
WORK.A Protection
WORK.A Data Set Type
WORK.A Label
WORK.A Data Representation WINDOWS_32
WORK.A Encoding wlatin1 Western (Windows)

c
nValue1 Label2 Value2 nValue2

. Observations 1 1.000000

. Variables 1 1.000000

. Indexes 0 0
1349873763 Observation Length 8 8.000000
1349873763 Deleted Observations 0 0

. Compressed NO .

. Sorted NO .

. 0

. 0

. 0

PROC CONTENTS ODS Output
all Variables data

Member Num Variable Type Len Pos

WORK.A 1 x Num 8 0

392 Program � Chapter 15

PROC CONTENTS ODS Output
all EngineHost data

Member Label1

WORK.A Data Set Page Size
WORK.A Number of Data Set Pages
WORK.A First Data Page
WORK.A Max Obs per Page
WORK.A Obs in First Data Page
WORK.A Number of Data Set Repairs
WORK.A File Name
WORK.A Release Created
WORK.A Host Created

cValue1 nValue1

4096 4096.000000
1 1.000000
1 1.000000
501 501.000000
1 1.000000
0 0
C:\DOCUME~1\userid\LOCALS~1\Temp\SAS Temporary Files_TD3084\a.sas7bdat .
9.0101B0 .
XP_PRO .

PROC CONTENTS ODS Output
example of post-processing of ODS output data

Member attribute value

WORK.A Data Representation WINDOWS_32
WORK.A Encoding wlatin1 Western (Windows)
WORK.A Observations 1
WORK.A Variables 1

For more information on the SAS Output Delivery System, see SAS Output Delivery
System: User’s Guide.

393

C H A P T E R

16
The DBCSTAB Procedure

Information about the DBCSTAB Procedure 393

Information about the DBCSTAB Procedure
See: For documentation of the DBCSTAB procedure, see SAS National Language
Support (NLS): User’s Guide.

394

395

C H A P T E R

17
The DISPLAY Procedure

Overview: DISPLAY Procedure 395
Syntax: DISPLAY Procedure 395

PROC DISPLAY Statement 395

Example: DISPLAY Procedure 396

Example 1: Executing a SAS/AF Application 396

Overview: DISPLAY Procedure

The DISPLAY procedure executes SAS/AF applications. These applications are
composed of a variety of entries that are stored in a SAS catalog and that have been
built with the BUILD procedure in SAS/AF software. For complete documentation on
building SAS/AF applications, see SAS Guide to Applications Development.

You can use the DISPLAY procedure to execute an application that runs in NODMS
batch mode. Be aware that any SAS programming statements that you submit with the
DISPLAY procedure through the SUBMIT block in SCL are not submitted for
processing until PROC DISPLAY has executed.

If you use the SAS windowing environment, you can use the AF command to execute
an application. SUBMIT blocks execute immediately when you use the AF command.
You can use the AFA command to execute multiple applications concurrently.

Syntax: DISPLAY Procedure

PROC DISPLAY CATALOG=libref.catalog.entry.type <BATCH>;

PROC DISPLAY Statement
Featured in: Example 1 on page 396

PROC DISPLAY CATALOG=libref.catalog.entry.type <BATCH>;

396 Example: DISPLAY Procedure � Chapter 17

Required Argument

CATALOG=libref.catalog.entry.type
specifies a four-level name for the catalog entry.

libref
specifies the SAS data library where the catalog is stored.

catalog
specifies the name of the catalog.

entry
specifies the name of the entry.

type
specifies the entry’s type, which is one of the following. For details, see the
description of catalog entry types in the BUILD procedure in online help.

CBT
FRAME
HELP
MENU
PROGRAM
SCL

Options

BATCH
runs PROGRAM and SCL entries in batch mode. If a PROGRAM entry contains a
display, then it will not run, and you will receive the following error message:

ERROR: Cannot allocate window.

Restriction: PROC DISPLAY cannot pass arguments to a PROGRAM, a FRAME,
or an SCL entry.

Example: DISPLAY Procedure

Example 1: Executing a SAS/AF Application
Procedure features:

PROC DISPLAY statement:
CATALOG = argument

Suppose that your company has developed a SAS/AF application that compiles
statistics from an invoice database. Further, suppose that this application is stored in
the SASUSER data library, as a FRAME entry in a catalog named
INVOICES.WIDGETS. You can execute this application using the following SAS code:

The DISPLAY Procedure � Program 397

Program

proc display catalog=sasuser.invoices.widgets.frame;
run;

398

399

C H A P T E R

18
The DOCUMENT Procedure

Information about the DOCUMENT Procedure 399

Information about the DOCUMENT Procedure
See: For complete documentation of the DOCUMENT procedure, see SAS Output
Delivery System: User’s Guide.

400

401

C H A P T E R

19
The EXPLODE Procedure

Information about the EXPLODE Procedure 401

Information about the EXPLODE Procedure
See: For documentation of the EXPLODE procedure, go to http://support.sas.com/
documentation/onlinedoc. Select Base SAS from the Product-Specific Documentation
list.

402

403

C H A P T E R

20
The EXPORT Procedure

Overview: EXPORT Procedure 403
Syntax: EXPORT Procedure 404

PROC EXPORT Statement 404

Data Source Statements 408

Examples: EXPORT Procedure 411

Example 1: Exporting a Delimited External File 411
Example 2: Exporting a Subset of Observations to an Excel Spreadsheet 414

Example 3: Exporting to a Specific Spreadsheet in an Excel Workbook 415

Example 4: Exporting a Microsoft Access Table 415

Example 5: Exporting a Specific Spreadsheet in an Excel Workbook on a PC Server 416

Overview: EXPORT Procedure

The EXPORT procedure reads data from a SAS data set and writes it to an external
data source. External data sources can include Microsoft Access Database, Excel files,
Lotus spreadsheets, and delimited external files (in which columns of data values are
separated by a delimiter such as a blank, comma, or tab).

When you execute PROC EXPORT, the procedure reads the input data set and writes
the data to the external data source. PROC EXPORT exports the data by one of the
following methods:

� generated DATA step code

� generated SAS/ACCESS code

� translation engines.

You control the results with options and statements that are specific to the output data
source. PROC EXPORT produces the specified output file and writes information about
the export to the SAS log. In the log, you see the DATA step or the SAS/ACCESS code
that is generated by PROC EXPORT. If a translation engine is used, then no code is
submitted.

Note: To export data, you can also use the Export Wizard, which is a windowing tool
that guides you through the steps to export a SAS data set. You can request the Export
Wizard to generate EXPORT procedure statements, which you can save to a file for
subsequent use. To invoke the Export Wizard, from the SAS windowing environment
select

File � Export Data

�

404 Syntax: EXPORT Procedure � Chapter 20

Syntax: EXPORT Procedure
Restriction: PROC EXPORT is available for the following operating environments:

� OpenVMS Alpha
� UNIX
� Microsoft Windows.

PROC EXPORT DATA=<libref.>SAS-data-set <(SAS-data-set-options)>
OUTFILE="filename" | OUTTABLE="tablename"
<DBMS=identifier> <REPLACE>;

<data-source-statement(s);>

PROC EXPORT Statement
Featured in: All examples

PROC EXPORT DATA=<libref.>SAS-data-set <(SAS-data-set-options)>
OUTFILE="filename" | OUTTABLE="tablename"
<DBMS=identifier> <REPLACE>;

Required Arguments

DATA=<libref.>SAS-data-set
identifies the input SAS data set with either a one- or two-level SAS name (library
and member name). If you specify a one-level name, by default, PROC EXPORT uses
either the USER library (if assigned) or the WORK library (if USER not assigned).
Default: If you do not specify a SAS data set, PROC EXPORT uses the most

recently created SAS data set, which SAS keeps track of with the system variable
LAST. However, in order to be certain that PROC EXPORT uses the correct
data set, you should identify the SAS data set.

Restriction: PROC EXPORT can export data only if the format of the data is
supported by the data source or the amount of data is within the limitations of the
data source. For example, some data sources have a maximum number of rows or
columns, and some data sources cannot support SAS user-defined formats and
informats. If the data that you want to export exceeds the limits of the data
source, PROC EXPORT may not be able to export it correctly. When incompatible
formats are encountered, the procedure formats the data to the best of its ability.

Restriction: PROC EXPORT does not support writing labels as column names.
However, SAS does support column names up to 32 characters.

Featured in: All examples

(SAS-data-set-options)
specifies SAS data set options. For example, if the data set that you are exporting
has an assigned password, you can use the ALTER=, PW=, READ=, or WRITE= data

The EXPORT Procedure � PROC EXPORT Statement 405

set option, or to export only data that meets a specified condition, you can use the
WHERE= data set option. For information about SAS data set options, see “Data Set
Options” in SAS Language Reference: Dictionary.
Restriction: You cannot specify data set options when exporting delimited,

comma-separated, or tab-delimited external files.
Featured in: Example 2 on page 414

OUTFILE="filename"
specifies the complete path and filename or a fileref for the output PC file,
spreadsheet, or delimited external file. If you specify a fileref or if the complete path
and filename does not include special characters (such as the backslash in a path),
lowercase characters, or spaces, you can omit the quotation marks. A fileref is a SAS
name that is associated with the physical location of the output file. To assign a
fileref, use the FILENAME statement. For more information about PC file formats,
see SAS/ACCESS for PC Files: Reference.
Featured in Example 1 on page 411, Example 2 on page 414, and Example 3 on

page 415
Restriction: PROC EXPORT does not support device types or access methods for

the FILENAME statement except for DISK. For example, PROC EXPORT does
not support the TEMP device type, which creates a temporary external file.

Restriction: For client/server applications: When running SAS/ACCESS software
on UNIX to access data that is stored on a PC server, you must specify the full
path and filename of the file that you want to import. The use of a fileref is not
supported.

OUTTABLE="tablename"
specifies the table name of the output DBMS table. If the name does not include
special characters (such as question marks), lowercase characters, or spaces, you can
omit the quotation marks. Note that the DBMS table name may be case sensitive.
Requirement: When you export a DBMS table, you must specify the DBMS= option.
Featured in: Example 4 on page 415

Options

DBMS=identifier
specifies the type of data to export. To export a DBMS table, you must specify
DBMS= by using a valid database identifier. For example, DBMS=ACCESS specifies
to export a table into a Microsoft Access 2000 or 2002 database. To export PC files,
spreadsheets, and delimited external files, you do not have to specify DBMS= if the
filename that is specified in OUTFILE= contains a valid extension so that PROC
EXPORT can recognize the type of data. For example, PROC EXPORT recognizes the
filename ACCOUNTS.WK1 as a Lotus 1-2-3 Release 2 spreadsheet and the filename
MYDATA.CSV as an external file that contains comma-separated data values;
therefore, a DBMS= specification is not necessary.

The following values are valid for the DBMS= option:

Identifier Output Data Source Extension Host
Availability

Version
of File
Created

ACCESS Microsoft Access 2000 or 2002 table .mdb Microsoft
Windows *

2000

ACCESS97 Microsoft Access 97 table .mdb Microsoft
Windows *

97

406 PROC EXPORT Statement � Chapter 20

Identifier Output Data Source Extension Host
Availability

Version
of File
Created

ACCESS2000 Microsoft Access 2000 table .mdb Microsoft
Windows *

2000

ACCESS2002 Microsoft Access 2002 table .mdb Microsoft
Windows *

2000

ACCESSCS Microsoft Access table .mdb UNIX 2000**

CSV delimited file (comma-separated values) .csv OpenVMS
Alpha,
UNIX,
Microsoft
Windows

DBF dBASE 5.0, IV, III+, and III files .dbf UNIX,
Microsoft
Windows

5.0

DLM delimited file (default delimiter is a
blank)

.* OpenVMS
Alpha,
UNIX,
Microsoft
Windows

EXCEL Excel 97 or 2000 or 2002 spreadsheet .xls Microsoft
Windows *

97

EXCEL4 Excel 4.0 spreadsheet .xls Microsoft
Windows

4.0

EXCEL5 Excel 5.0 or 7.0 (95) spreadsheet .xls Microsoft
Windows

5.0

EXCEL97 Excel 97 spreadsheet .xls Microsoft
Windows *

97

EXCEL2000 Excel 2000 spreadsheet .xls Microsoft
Windows *

97

EXCEL2002 Excel 2002 spreadsheet .xls Microsoft
Windows *

97

EXCELCS Excel spreadsheet .xls UNIX 97**

JMP JMP table .jmp UNIX,
Microsoft
Windows

PCFS Files on PC server .* UNIX

TAB delimited file (tab-delimited values) .txt OpenVMS
Alpha,
UNIX,
Microsoft
Windows

WK1 Lotus 1-2-3 Release 2 spreadsheet .wk1 Microsoft
Windows

The EXPORT Procedure � PROC EXPORT Statement 407

Identifier Output Data Source Extension Host
Availability

Version
of File
Created

WK3 Lotus 1-2-3 Release 3 spreadsheet .wk3 Microsoft
Windows

WK4 Lotus 1-2-3 Release 4 and 5 spreadsheet .wk4 Microsoft
Windows

* Not available for Microsoft Windows 64-Bit Edition.** Value listed here is the
default value. The real version of file loaded depends on the version of the existing
file or the value specified for VERSION= statement.
Restriction: The availability of an output data source depends on

� the operating environment, and in some cases the platform, as specified in
the previous table.

� whether your site has a license to the SAS/ACCESS software for PC file
formats. If you do not have a license, only delimited files are available.

Featured in: Example 1 on page 411 and Example 4 on page 415
When you specify a value for DBMS=, consider the following for specific data

sources:
� To export to an existing Microsoft Access database, PROC EXPORT can write to

Access 97, Access 2000, or Access 2002 regardless of your specification. For
example, if you specify DBMS=ACCESS2000 and the database is in Access 97
format, PROC EXPORT exports the table, and the database remains in Access
97 format. However, if you specify OUTFILE= for an Access database that does
not exist, a new database is created using the format specified in DBMS=. For
example to create a new Access database, specifying DBMS=ACCESS (which
defaults to Access 2000 or 2002 format) creates an MDB file that can be read by
Access 2000 or Access 2002, not by Access 97.

The following table lists the DBMS= specifications and indicates which
version of Microsoft Access can open the resulting database:

Specification Access 2002 Access 2000 Access 97

ACCESS yes yes no

ACCESS2002 yes yes no

ACCESS2000 yes yes no

ACCESS97 yes yes yes

� To export a Microsoft Excel spreadsheet, PROC EXPORT creates an XLS file for
the version specified. The following table lists the DBMS= specifications and
indicates which version of Microsoft Excel can open the resulting spreadsheet:

Specification Excel 2002 Excel 2000 Excel 97 Excel 5.0 Excel 4.0

EXCEL yes yes yes no no

EXCEL2002 yes yes yes no no

EXCEL2000 yes yes yes no no

408 Data Source Statements � Chapter 20

Specification Excel 2002 Excel 2000 Excel 97 Excel 5.0 Excel 4.0

EXCEL97 yes yes yes no no

EXCEL5 yes yes yes yes no

EXCEL4 yes yes yes yes yes

Note: Later versions of Excel can open and update files in earlier formats. �

� When exporting a SAS data set to a dBASE file (DBF), if the data set contains
missing values (for either character or numeric values), the missing values are
translated to blanks.

� When exporting a SAS data set to a dBASE file (DBF), values for a character
variable that are longer than 255 characters are truncated in the resulting
dBASE file because of dBASE limitations.

REPLACE
overwrites an existing file. Note that for a Microsoft Access database or an Excel
workbook, REPLACE overwrites the target table or spreadsheet. If you do not
specify REPLACE, PROC EXPORT does not overwrite an existing file.

Featured in: Example 2 on page 414 and Example 4 on page 415

Data Source Statements

PROC EXPORT provides a variety of statements that are specific to the output data
source.

Statements for PC Files, Spreadsheets, or Delimited Files
The following statement is available when you export delimited external files:

DELIMITER=’char’ | ’nn’x;
specifies the delimiter to separate columns of data in the output file. You can
specify the delimiter as a single character or as a hexadecimal value. For example,
if you want columns of data to be separated by an ampersand, specify
DELIMITER=’&’. If you do not specify DELIMITER=, PROC EXPORT assumes
that the delimiter is a blank. You can replace the equal sign with a blank.

Interaction: You do not have to specify DELIMITER= if you specify DBMS=CSV,
DBMS=TAB, or if the output filename has an extension of .CSV or .TXT.

Featured in: Example 1 on page 411

SHEET=spreadsheet-name;
identifies a particular spreadsheet name to load into a workbook. You use this
statement for Microsoft Excel 97, 2000, or 2002 only. If the SHEET= statement is
not specified, PROC EXPORT uses the SAS data set name as the spreadsheet
name to load the data.

The EXPORT Procedure � Data Source Statements 409

For Excel data access, a spreadsheet name is treated as a special case of a range
name with a dollar sign ($) appended. For example, if you export a table and
specify sheet=Invoice, you will see a range (table) name INVOICE and another
range (table) name ’INVOICES$’ created. Excel appends a dollar sign ($) to a
spreadsheet name in order to distinguish it from the corresponding range name.

Note: You should not append the dollar sign ($) when you specify the
spreadsheet name. For example, SHEET= ’Invoice$’ is not allowed. �

You should avoid using special characters for spreadsheet names when
exporting a table to an Excel file. Special characters such as a space or a hyphen
are replaced with an underscore. For example, if you export a table and specify
sheet=’Sheet Number 1’, PROC EXPORT creates the range names
Sheet_Number_1 and Sheet_Number_1$.

Featured in: Example 3 on page 415

Statements for DBMS Tables
The following statements are available to establish a connection to the DBMS when

you are exporting to a DBMS table:

DATABASE="database";
specifies the complete path and filename of the database to contain the specified
DBMS table. If the database name does not contain lowercase characters, special
characters, or national characters ($, #, or @), you can omit the quotation marks.
You can replace the equal sign with a blank.

Note: A default may be configured in the DBMS client software; SAS does not
generate a default value. �

Featured in: Example 4 on page 415

DBPWD="database-password";
specifies a password that allows access to a database. You can replace the equal
sign with a blank.

PWD="password";
specifies the user password used by the DBMS to validate a specific userid. If the
password does not contain lowercase characters, special characters, or national
characters, you can omit the quotation marks. You can replace the equal sign with
a blank.

Note: The DBMS client software may default to the userid and password that
was used to log in to the operating environment; SAS does not generate a default
value. �

UID="userid";
identifies the user to the DBMS. If the userid does not contain lowercase
characters, special characters, or national characters, you can omit the quotation
marks. You can replace the equal sign with a blank.

Note: The DBMS client software may default to the userid and password that
were used to log in to the operating environment; SAS does not generate a default
value. �

WGDB="workgroup-database-name";
specifies the workgroup (security) database name that contains the USERID and
PWD data for the DBMS. If the workgroup database name does not contain
lowercase characters, special characters, or national characters, you can omit the
quotation marks. You can replace the equal sign with a blank.

410 Data Source Statements � Chapter 20

Note: A default workgroup database may be used by the DBMS; SAS does not
generate a default value. �

Security Levels for Microsoft Access Tables
Microsoft Access tables have the following levels of security, for which specific
combinations of security statements must be used:

None
Do not specify DBPWD=, PWD=, UID=, or WGDB=.

Password
Specify only DBPWD=.

User-level
Specify only PWD=, UID=, and WGDB=.

Full
Specify DBPWD=, PWD=, UID=, and WGDB=.

Each statement has a default value; however, you may find it necessary to provide a
value for each statement explicitly.

Statement for Client/Server Model
The following statements are available to establish a connection from SAS running on
UNIX to a PC server when you are exporting a table to Microsoft Access database or
Excel workbook:

SERVER="PC-server-name";
specifies the name of the PC server. You must bring up the listener on the PC
server before you can establish a connection to it. You can configure the service
name, port number, maximum number of connections allowed, and use of data
encryption on your PC server. This is a required statement. Refer to your PC
server administrator for the information that is needed.

Alias: SERVER_NAME=

SERVICE="service-name";
specifies the service name that is defined on your service file for your client and
server machines. This statement and the PORT= statement should not be used in
the same procedure. Note that this service name needs to be defined on both your
UNIX machine and your PC server.

Alias: SERVER_NAME=, SERVICE_NAME=

PORT=port-number;
specifies the number of the port that is listening on the PC server. The valid value
is between 1 and 32767. This statement and the SERVICE= statement should not
be used in the same procedure.

Alias: PORT_NUMBER=

VERSION="file-version";
specifies the version of the file that you want to create with if the file does not
exist on your PC server yet. The default version is data-source specific. For
Microsoft Access database, the valid values are ’2002’, ’2000’ and ’97’, and its
default value is ’2000’. For Microsoft Excel workbook, the valid values are ’2002’,
’2000’, ’97’, ’95’ and ’5’, and its default value is ’97’.

Note: Always quote the version value. �

Note: If the file already exists in the PC Server, then this value can be
ignored. �

The EXPORT Procedure � Example 1: Exporting a Delimited External File 411

Examples: EXPORT Procedure

Example 1: Exporting a Delimited External File

Procedure features:
PROC EXPORT statement arguments:

DATA=
DBMS=
OUTFILE=

Data source statement:
DELIMITER=

This example exports the following SAS data set named SASHELP.CLASS and
creates a delimited external file:

Output 20.1 PROC PRINT of SASHELP.CLASS

The SAS System 1

Obs Name Sex Age Height Weight

1 Alfred M 14 69 112.5
2 Alice F 13 56.5 84
3 Barbara F 13 65.3 98
4 Carol F 14 62.8 102.5
5 Henry M 14 63.5 102.5
6 James M 12 57.3 83
7 Jane F 12 59.8 84.5
8 Janet F 15 62.5 112.5
9 Jeffrey M 13 62.5 84

10 John M 12 59 99.5
11 Joyce F 11 51.3 50.5
12 Judy F 14 64.3 90
13 Louise F 12 56.3 77
14 Mary F 15 66.5 112
15 Philip M 16 72 150
16 Robert M 12 64.8 128
17 Ronald M 15 67 133
18 Thomas M 11 57.5 85
19 William M 15 66.5 112

412 Program � Chapter 20

Program

Identify the input SAS data set, specify the output filename, and specify the type of
file. Note that the filename does not contain an extension. DBMS=DLM specifies that the
output file is a delimited external file.

proc export data=sashelp.class
outfile=’c:\myfiles\class’
dbms=dlm;

Specify the delimiter. The DELIMITER= option specifies that an & (ampersand) will delimit
data fields in the output file. The delimiter separates the columns of data in the output file.

delimiter=’&’;
run;

SAS Log
The SAS log displays the following information about the successful export. Notice

the generated SAS DATA step.

The EXPORT Procedure � SAS Log 413

47 /**
48 * PRODUCT: SAS
49 * VERSION: 9.00
50 * CREATOR: External File Interface
51 * DATE: 07FEB02
52 * DESC: Generated SAS Datastep Code
53 * TEMPLATE SOURCE: (None Specified.)
54 ***/
55 data _null_;
56 set SASHELP.CLASS end=EFIEOD;
57 %let _EFIERR_ = 0; /* set the ERROR detection macro variable */
58 %let _EFIREC_ = 0; /* clear export record count macro variable */
59 file ’c:\myfiles\class’ delimiter=’&’ DSD DROPOVER
59 ! lrecl=32767;
60 format Name $8. ;
61 format Sex $1. ;
62 format Age best12. ;
63 format Height best12. ;
64 format Weight best12. ;
65 if _n_ = 1 then /* write column names */
66 do;
67 put
68 ’Name’
69 ’&’
70 ’Sex’
71 ’&’
72 ’Age’
73 ’&’
74 ’Height’
75 ’&’
76 ’Weight’
77 ;
78 end;
79 do;
80 EFIOUT + 1;
81 put Name $ @;
82 put Sex $ @;
83 put Age @;
84 put Height @;
85 put Weight ;
86 ;
87 end;
88 if _ERROR_ then call symput(’_EFIERR_’,1); /* set ERROR detection
88 ! macro variable */
89 If EFIEOD then
90 call symput(’_EFIREC_’,EFIOUT);
91 run;

NOTE: Numeric values have been converted to character
values at the places given by: (Line):(Column).
88:44 90:31

NOTE: The file ’c:\myfiles\class’ is:
File Name=c:\myfiles\class,
RECFM=V,LRECL=32767

NOTE: 20 records were written to the file ’c:\myfiles\class’.
The minimum record length was 17.
The maximum record length was 26.

NOTE: There were 19 observations read from the data set SASHELP.CLASS.
NOTE: DATA statement used (Total process time):

real time 0.13 seconds
cpu time 0.05 seconds

19 records created in c:\myfiles\class from SASHELP.CLASS
.

NOTE: c:\myfiles\class was successfully created.

414 Output � Chapter 20

Output
The external file produced by PROC EXPORT follows.

Name&Sex&Age&Height&Weight
Alfred&M&14&69&112.5
Alice&F&13&56.5&84
Barbara&F&13&65.3&98
Carol&F&14&62.8&102.5
Henry&M&14&63.5&102.5
James&M&12&57.3&83
Jane&F&12&59.8&84.5
Janet&F&15&62.5&112.5
Jeffrey&M&13&62.5&84
John&M&12&59&99.5
Joyce&F&11&51.3&50.5
Judy&F&14&64.3&90
Louise&F&12&56.3&77
Mary&F&15&66.5&112
Philip&M&16&72&150
Robert&M&12&64.8&128
Ronald&M&15&67&133
Thomas&M&11&57.5&85
William&M&15&66.5&112

Example 2: Exporting a Subset of Observations to an Excel Spreadsheet

Procedure features:
PROC EXPORT statement arguments:

DATA=
DBMS=
OUTFILE=
REPLACE

This example exports the SAS data set SASHELP.CLASS, shown in Output 20.1.
PROC EXPORT creates an Excel file named Femalelist.xsl, and by default, creates a
spreadsheet named Class. Since the SHEET= data source statement is not specified,
PROC EXPORT uses the name of the SAS data set as the spreadsheet name. The
WHERE= SAS data set option is specified in order to export a subset of the
observations, which results in the spreadsheet containing only the female students.

Program

Identify the input SAS data set, request a subset of the observations, specify the
output data source, specify the output file, and overwrite the target spreadsheet if it
exists. The output file is an Excel 2000 spreadsheet.

proc export data=sashelp.class (where=(sex=’F’))
outfile=’c:\myfiles\Femalelist.xls’

The EXPORT Procedure � Example 4: Exporting a Microsoft Access Table 415

dbms=excel
replace;

run;

Example 3: Exporting to a Specific Spreadsheet in an Excel Workbook
Procedure features:

PROC EXPORT statement arguments:
DATA=
DBMS=
OUTFILE=

Data Source Statement:
SHEET=

This example exports a SAS data set named MYFILES.GRADES1 and creates an
Excel 2000 workbook named Grades.xsl. MYFILES.GRADES1 becomes one spreadsheet
in the workbook named Grades1.

Program

Identify the input SAS data set, specify the output data source, and specify the output
file.

proc export data=myfiles.grades1
dbms=excel2000
outfile=’c:\Myfiles\Grades.xls’;

Identify a particular spreadsheet to write to in a workbook.

sheet=Grades1;
run;

Example 4: Exporting a Microsoft Access Table
Procedure features:

PROC EXPORT statement arguments:
DATA=
DBMS=
OUTTABLE=
REPLACE

Data Source Statement:
DATABASE=

This example exports a SAS data set named SASUSER.CUST, the first five
observations of which follow, and creates a Microsoft Access 97 table. The security level

416 Program � Chapter 20

for this Access table is none, so it is not necessary to specify any of the database
security statements.

Obs Name Street Zipcode

1 David Taylor 124 Oxbow Street 72511
2 Theo Barnes 2412 McAllen Avenue 72513
3 Lydia Stirog 12550 Overton Place 72516
4 Anton Niroles 486 Gypsum Street 72511
5 Cheryl Gaspar 36 E. Broadway 72515

Program

Identify the input SAS data set, specify the output DBMS table name and the output
data source, and overwrite the output file if it exists. The output file is a Microsoft Access
97 table. The option REPLACE overwrites an existing file. If you do not specify REPLACE,
PROC EXPORT does not overwrite an existing file.

proc export data=sasuser.cust
outtable="customers"
dbms=access97
replace;

Specify the path and filename of the database to contain the table.

database="c:\myfiles\mydatabase.mdb";
run;

Example 5: Exporting a Specific Spreadsheet in an Excel Workbook on a PC
Server

Procedure features:
PROC EXPORT statement arguments:

DATA=
DBMS=
OUTFILE=

Data Source Statement:

SHEET=
SERVER=
PORT=
VERSION=

This example exports a SAS data set named SASHELP.CLASS and creates an Excel
2000 workbook named demo.xls. SASHELP.CLASS becomes one spreadsheet named
’Class’ in the workbook named demo.xls.

The EXPORT Procedure � Program 417

Program

proc export data=sashelp.class
dbms=excelcs
outfile=’c:\Myfiles\demo.xls’;
sheet=’Class’;
server=’sales’;
port= 4632;
version=’2000’;

run;

418

419

C H A P T E R

21
The FONTREG Procedure

Overview: FONTREG Procedure 419
Syntax: FONTREG Procedure 419

PROC FONTREG Statement 420

FONTFILE Statement 421

FONTPATH Statement 421

TRUETYPE Statement 422
TYPE1 Statement (Experimental) 422

Concepts: FONTREG Procedure 423

Supported Font Types and Font Naming Conventions 423

Removing Fonts from the SAS Registry 424

Modifying SAS/GRAPH Device Drivers to Use System Fonts 425

Examples: FONTREG Procedure 425
Example 1: Adding a Single Font File 425

Example 2: Adding All Font Files from Multiple Directories 426

Example 3: Replacing Existing TrueType Font Files from a Directory 427

Overview: FONTREG Procedure

The FONTREG procedure enables you to update the SAS registry to include system
fonts, which can then be used in SAS output. PROC FONTREG uses FreeType
technology to recognize and incorporate various types of font definitions. Fonts of any
type that can be incorporated and used by SAS are known collectively in this
documentation as FreeType fonts.

Note: Including a system font in the SAS registry means that SAS knows where to
find the font file. The font file is not actually used until the font is called for in a SAS
program. Therefore, do not move or delete font files after you have included the fonts in
the SAS registry. �

Syntax: FONTREG Procedure
Interaction: If no statements are specified, then PROC FONTREG searches for TrueType
font files in the directory that is indicated in the FONTSLOC= SAS system option.

Tip: If more than one statement is specified, then the statements are executed in the
order in which they appear. You can use the same statement more than once in a single
PROC FONTREG step.

See FONTREG Procedure in SAS Companion for z/OS

420 PROC FONTREG Statement � Chapter 21

PROC FONTREG <option(s)>;
FONTFILE ’file’ <…’file’>;

FONTPATH ’directory’ <…’directory’>;
TRUETYPE ’directory’ <…’directory’>;

TYPE1 ’directory’ <…’directory’>;

Operating Environment Information: For z/OS sites that do not use the hierarchical
file system (HFS), only the FONTFILE statement is supported. See “FONTREG
Procedure” in SAS Companion for z/OS for details. �

PROC FONTREG Statement

PROC FONTREG <option(s)>;

Options

MODE=ADD | REPLACE | ALL
specifies how to handle new and existing fonts in the SAS registry:

ADD
add fonts that do not already exist in the SAS registry. Do not modify existing
fonts.

REPLACE
replace fonts that already exist in the SAS registry. Do not add new fonts.

ALL
add new fonts that do not already exist in the SAS registry and replace fonts that
already exist in the SAS registry.

Default: ADD
Featured in: Example 3 on page 427

MSGLEVEL=VERBOSE | NORMAL | TERSE | NONE
specifies the level of detail to include in the SAS log:

VERBOSE
SAS log messages include which fonts were added, which fonts were not added,
and which fonts were not understood, as well as a summary that indicates the
number of fonts that were added, not added, and not understood.

NORMAL
SAS log messages include which fonts were added, and a summary that indicates
the number of fonts that were added, not added, and not understood.

TERSE
SAS log messages include only the summary that indicates the number of fonts
that were added, not added, and not understood.

NONE
No messages are written to the SAS log, except for errors (if encountered).

The FONTREG Procedure � FONTPATH Statement 421

Default: TERSE
Featured in: Example 2 on page 426

NOUPDATE
specifies that the procedure should run without actually updating the SAS registry.
This option enables you to test the procedure on the specified fonts before modifying
the SAS registry.

USESASHELP
specifies that the SAS registry in the SASHELP library should be updated. You must
have write access to the SASHELP library in order to use this option. If the
USESASHELP option is not specified, then the SAS registry in the SASUSER library
is updated.

FONTFILE Statement

Specifies one or more font files to be processed.

Featured in: Example 1 on page 425

FONTFILE ’file’ <…’file’>;

Argument

file
is the complete pathname to a font file. If the file is recognized as a valid font file,
then the file is processed. Each pathname must be enclosed in quotation marks. If
you specify more than one pathname, then you must separate the pathnames with a
space.

FONTPATH Statement

Specifies one or more directories to be searched for valid font files to process.

Featured in: Example 2 on page 426

FONTPATH ’directory’ <…’directory’>;

422 TRUETYPE Statement � Chapter 21

Argument

directory
specifies a directory to search. All files that are recognized as valid font files are
processed. Each directory must be enclosed in quotation marks. If you specify more
than one directory, then you must separate the directories with a space.

TRUETYPE Statement

Specifies one or more directories to be searched for TrueType font files.

Featured in: Example 3 on page 427

TRUETYPE ’directory’ <…’directory’>;

Argument

directory
specifies a directory to search. Only files that are recognized as valid TrueType font
files are processed. Each directory must be enclosed in quotation marks. If you
specify more than one directory, then you must separate the directories with a space.

TYPE1 Statement (Experimental)

Specifies one or more directories to be searched for valid Type 1 font files.

TYPE1 ’directory’ <…’directory’>;

CAUTION:
TYPE1 is an experimental statement that is available in SAS 9.1. Do not use this
statement in production jobs. �

Argument

directory
specifies a directory to search. Only files that are recognized as valid Type 1 font files
are processed. Each directory must be enclosed in quotation marks. If you specify
more than one directory, then you must separate the directories with a space.

The FONTREG Procedure � Supported Font Types and Font Naming Conventions 423

Concepts: FONTREG Procedure

Supported Font Types and Font Naming Conventions
When a font is added to the SAS registry, the font name is prefixed with a

three-character tag, enclosed in angle brackets (< >), that indicates the font type. For
example, if you add the TrueType font Arial to the SAS registry, then the name in the
registry is <ttf> Arial. This naming convention enables you to add and distinguish
between fonts that have the same name but are of different types. When you specify a
font in a SAS program (for example, in the TEMPLATE procedure or in the STYLE=
option in the REPORT procedure), use the tag to distinguish between fonts that have
the same name:

proc report data=grocery nowd
style(header)=[font_face=’<ttf> Palatino Linotype’];

run;

If you do not include a tag in your font specification, then SAS searches the registry
for fonts with that name. If more than one font with that name is encountered, then
SAS uses the one that has the highest rank in the following table.

Table 21.1 Supported Font Types

Rank Type Tag File extension(s)

1 TrueType <ttf> .ttf

2 Type1 <at1> .pfa

.pfb

3 PFR <pfr> .pfr

CAUTION:
Support for the Type1 and PFR font types is experimental in SAS 9.1. Do not use these
fonts in production jobs. �

Note: SAS does not support nonscalable FreeType fonts of any type. Even if they
are recognized as valid FreeType fonts, they will not be added to the SAS registry. �

Font files that are not produced by major vendors can be unreliable, and in some
cases SAS might not be able to use them.

The following SAS output methods and device drivers can use FreeType fonts:

� SAS/GRAPH GIF, GIF733, GIFANIM

� SAS/GRAPH JPEG

� SAS/GRAPH PNG

� SAS/GRAPH SASEMF

� SAS/GRAPH SASWMF

� SAS/GRAPH TIFFP, TIFFB

� Universal Printing GIF

� Universal Printing PCL

� Universal Printing PDF.

424 Removing Fonts from the SAS Registry � Chapter 21

Removing Fonts from the SAS Registry
There are two ways to remove a font from the SAS registry:
� by using the SAS Registry Editor
� by using the REGISTRY procedure.

To remove a font by using the SAS Registry Editor, select

Solutions � Accessories � Registry Editor

(Alternatively, you can type regedit in the command window or Command ===>
prompt.)

Display 21.1 SAS Registry Editor

In the left pane of the Registry Editor window, navigate to the
[CORE\PRINTING\FREETYPE\FONTS] key. Select the font that you want to delete,
and use one of these methods to delete it:

� Right-click the font name and select Delete.

� Select the Delete button .
� Select

Edit � Delete � Key

To delete a font by using PROC REGISTRY, submit a program similar to the
following example. This example removes the <ttf> Arial font.

/* Write the key name for the font to an external file */
proc registry export=’external-filename’

startat=’core\printing\freetype\fonts\<ttf> Arial’;
run;

/* Remove the "<ttf> Arial" font from the SAS registry */
proc registry uninstall=’external-filename’ fullstatus;
run;

For more information about PROC REGISTRY, see Chapter 41, “The REGISTRY
Procedure,” on page 831.

The FONTREG Procedure � Example 1: Adding a Single Font File 425

Modifying SAS/GRAPH Device Drivers to Use System Fonts
To access FreeType fonts with the SAS/GRAPH device drivers, the CHARREC field of

the device driver entry must be modified from its default value of DMS Font to any
FreeType font. It is recommended that you use the <ttf> SAS Monospace font for this
purpose, because it is shipped with SAS and is always available in the SAS registry.
Changing the CHARREC value in this way enables you to use any FreeType font in
your SAS/GRAPH programs.

Here is an example that shows how to modify the CHARREC field:

/* Assign a location for the personal devices catalog */
libname gdevice0 ’.’;

/* Create a new GIF device driver, FTGIF, */
/* that will recognize FreeType fonts */
proc gdevice nofs c=gdevice0.devices;

copy GIF from=sashelp.devices newname=FTGIF;
mod FTGIF charrec=(0, 1, 1, ’<ttf> SAS Monospace’, ’Y’);

end;

The following device drivers can be modified to recognize FreeType fonts:
� GIF, GIF733, GIFANIM
� JPEG
� PNG
� TIFFP, TIFFB.

The SASWMF and SASEMF device drivers do not require this change.
For more information about SAS/GRAPH device drivers and the GDEVICE

procedure, see SAS/GRAPH Reference, Volumes 1 and 2.

Examples: FONTREG Procedure

Example 1: Adding a Single Font File

Procedure features: FONTFILE statement

This example shows how to add a single font file to the SAS registry.

426 Program � Chapter 21

Program

Specify a font file to add. The FONTFILE statement specifies the complete path to a single
font file.

proc fontreg;
fontfile ’your-font-file’;

run;

Log

NOTE: PROCEDURE PRINTTO used (Total process time):
real time 0.03 seconds
cpu time 0.00 seconds

20 proc fontreg;
21 fontfile ’your-font-file’;
22 run;
SUMMARY:

Files processed: 1
Unusable files: 0
Files identified as fonts: 1
Fonts that were processed: 1
Fonts replaced in the SAS registry: 0
Fonts added to the SAS registry: 1
Fonts that could not be used: 0

NOTE: PROCEDURE FONTREG used (Total process time):
real time 0.17 seconds
cpu time 0.03 seconds

Example 2: Adding All Font Files from Multiple Directories

Procedure features:
MSGLEVEL= option
FONTPATH statement

This example shows how to add all valid font files from two different directories and
how to write detailed information to the SAS log.

Program

Write complete details to the SAS log. The MSGLEVEL=VERBOSE option writes complete
details about what fonts were added, what fonts were not added, and what font files were not
understood.

proc fontreg msglevel=verbose;

The FONTREG Procedure � Example 3: Replacing Existing TrueType Font Files from a Directory 427

Specify the directories to search for valid fonts. You can specify more than one directory in
the FONTPATH statement. Each directory must be enclosed in quotation marks. If you specify
more than one directory, then you must separate the directories with a space.

fontpath ’your-font-directory-1’ ’your-font-directory-2’;
run;

Log (Partial)

NOTE: PROCEDURE PRINTTO used (Total process time):
real time 0.03 seconds
cpu time 0.00 seconds

34 proc fontreg msglevel=verbose;
35 fontpath ’your-font-directory-1’
36 ’your-font-directory-2’;
37 run;

ERROR: FreeType base module FT_New_Face -- unknown file format.
WARNING: A problem was encountered with file

your-font-directory-2\SCRIPT.FON.

NOTE: The font Albertus Extra Bold (Style: Regular, Weight: Bold) has been
added to the SAS Registry at [CORE\PRINTING\FREETYPE\FONTS\<ttf>
Albertus Extra Bold]. Since it is a TRUETYPE font, it must be
referenced as <ttf> Albertus Extra Bold in SAS. The font resides in
file
your-font-directory-1\albr85w.ttf.

. . . more log entries . . .

SUMMARY:
Files processed: 138
Unusable files: 4
Files identified as fonts: 134
Fonts that were processed: 134
Fonts replaced in the SAS registry: 0
Fonts added to the SAS registry: 127
Fonts that could not be used: 7

NOTE: PROCEDURE FONTREG used (Total process time):
real time 7.11 seconds
cpu time 3.80 seconds

Example 3: Replacing Existing TrueType Font Files from a Directory

Procedure features:
MODE= option
TRUETYPE statement

This example reads all the TrueType Fonts in the specified directory and replaces
those that already exist in the SAS registry.

428 Program � Chapter 21

Program

Replace existing fonts only. The MODE=REPLACE option limits the action of the procedure
to replacing fonts that are already defined in the SAS registry. New fonts will not be added.

proc fontreg mode=replace;

Specify a directory that contains TrueType font files. Files in the directory that are not
recognized as being TrueType font files are ignored.

truetype ’your-font-directory’;
run;

Log

53 proc fontreg mode=replace;
54 truetype ’your-font-directory’;
55 run;
SUMMARY:

Files processed: 49
Unusable files: 4
Files identified as fonts: 45
Fonts that were processed: 39
Fonts replaced in the SAS registry: 39
Fonts added to the SAS registry: 0
Fonts that could not be used: 0

NOTE: PROCEDURE FONTREG used (Total process time):
real time 1.39 seconds
cpu time 0.63 seconds

See Also

� The GDEVICE procedure in SAS/GRAPH Reference, Volumes 1 and 2
� The FONTSLOC and SYSPRINTFONT SAS system options in SAS Language

Reference: Dictionary

� http://www.freetype.org for more information about the FreeType project.

429

C H A P T E R

22
The FORMAT Procedure

Overview: FORMAT Procedure 430
What Does the FORMAT Procedure Do? 430

What Are Formats and Informats? 430

How Are Formats and Informats Associated with a Variable? 430

Syntax: FORMAT Procedure 431

PROC FORMAT Statement 432
EXCLUDE Statement 434

INVALUE Statement 435

PICTURE Statement 438

SELECT Statement 447

VALUE Statement 448

Informat and Format Options 451
Specifying Values or Ranges 453

Concepts: FORMAT Procedure 455

Associating Informats and Formats with Variables 455

Methods of Associating Informats and Formats with Variables 455

Tips 455
See Also 456

Storing Informats and Formats 456

Format Catalogs 456

Temporary Informats and Formats 456

Permanent Informats and Formats 456
Accessing Permanent Informats and Formats 457

Missing Formats and Informats 457

Results: FORMAT Procedure 458

Output Control Data Set 458

Input Control Data Set 460

Procedure Output 461
Examples: FORMAT Procedure 463

Example 1: Creating a Picture Format 464

Example 2: Creating a Format for Character Values 466

Example 3: Writing a Format for Dates Using a Standard SAS Format 468

Example 4: Converting Raw Character Data to Numeric Values 470
Example 5: Creating a Format from a Data Set 472

Example 6: Printing the Description of Informats and Formats 477

Example 7: Retrieving a Permanent Format 478

Example 8: Writing Ranges for Character Strings 480

Example 9: Filling a Picture Format 483

430 Overview: FORMAT Procedure � Chapter 22

Overview: FORMAT Procedure

What Does the FORMAT Procedure Do?
The FORMAT procedure enables you to define your own informats and formats for

variables. In addition, you can print the parts of a catalog that contain informats or
formats, store descriptions of informats or formats in a SAS data set, and use a SAS
data set to create informats or formats.

What Are Formats and Informats?
Informats determine how raw data values are read and stored. Formats determine

how variable values are printed. For simplicity, this section uses the terminology the
informat converts and the format prints.

Informats and formats tell the SAS System the data’s type (character or numeric)
and form (such as how many bytes it occupies; decimal placement for numbers; how to
handle leading, trailing, or embedded blanks and zeros; and so forth). The SAS System
provides informats and formats for reading and writing variables. For a thorough
description of informats and formats that SAS provides, see the sections on formats and
informats in SAS Language Reference: Dictionary.

With informats, you can
� convert a number to a character string (for example, convert 1 to YES)
� convert a character string to a different character string (for example, convert

’YES’ to ’OUI’)
� convert a character string to a number (for example, convert YES to 1)
� convert a number to another number (for example, convert 0 through 9 to 1, 10

through 100 to 2, and so forth.

With formats, you can
� print numeric values as character values (for example, print 1 as MALE and 2 as

FEMALE)
� print one character string as a different character string (for example, print YES as

OUI)
� print numeric values using a template (for example, print 9458763450 as

945-876-3450).

How Are Formats and Informats Associated with a Variable?
The following figure summarizes what occurs when you associate an informat and

format with a variable. The COMMAw.d informat and the DOLLARw.d format are
provided by SAS.

The FORMAT Procedure � Syntax: FORMAT Procedure 431

Display 22.1 Associating an Informat and a Format with a Variable

raw data value $1,544.32

converted value 1544.32

printed value $1,544.32

read with
COMMA9.2
informat

printed using
DOLLAR9.2
format

In the figure, SAS reads the raw data value that contains the dollar sign and comma.
The COMMA9.2 informat ignores the dollar sign and comma and converts the value to
1544.32. The DOLLAR9.2 format prints the value, adding the dollar sign and comma.
For more information about associating informats and formats with variables, see
“Associating Informats and Formats with Variables” on page 455.

Syntax: FORMAT Procedure
Restriction: You cannot use a SELECT statement and an EXCLUDE statement within
the same PROC FORMAT step.

Reminder: You can also use appropriate global statements with this procedure. See
“Global Statements” on page 18 for a list.

See: FORMAT Procedure in the documentation for your operating environment.

PROC FORMAT <option(s)>;

EXCLUDE entry(s);

INVALUE <$>name <(informat-option(s))>
value-range-set(s);

PICTURE name <(format-option(s))>
value-range-set-1 <(picture-1-option(s))>
<…value-range-set-n <(picture-n-option(s))>>;

SELECT entry(s);

VALUE <$>name <(format-option(s))>
value-range-set(s);

432 PROC FORMAT Statement � Chapter 22

To do this Use this statement

Exclude catalog entries from processing by the FMTLIB and
CNTLOUT= options

EXCLUDE

Create an informat for reading and converting raw data values INVALUE

Create a template for printing numbers PICTURE

Select catalog entries from processing by the FMTLIB and
CNTLOUT= options

SELECT

Create a format that specifies character strings to use to print
variable values

VALUE

PROC FORMAT Statement
Reminder: You can use data set options with the CNTLIN= and CNTLOUT= data set
options. See Section 2, "Fundamental Concepts for Using Base SAS Procedures," for a
list.

PROC FORMAT <option(s)>;

To do this Use this option

Specify a SAS data set from which PROC FORMAT builds
informats or formats

CNTLIN=

Create a SAS data set that stores information about informats or
formats

CNTLOUT=

Print information about informats or formats FMTLIB

Specify a SAS library or catalog that will contain the informats or
formats that you are creating in the PROC FORMAT step

LIBRARY=

Specify the number of characters of the informatted or formatted
value that appear in PROC FORMAT output

MAXLABLEN=

Specify the number of characters of the start and end values that
appear in the PROC FORMAT output

MAXSELEN=

Prevent a new informat or format from replacing an existing one
of the same name

NOREPLACE

Print information about each format and informat on a separate
page1

PAGE

1 Used in conjunction with FMTLIB. If PAGE is specified, FMTLIB is invoked (or assumed).

The FORMAT Procedure � PROC FORMAT Statement 433

Options

CNTLIN=input-control-SAS-data-set
specifies a SAS data set from which PROC FORMAT builds informats and formats.
CNTLIN= builds formats and informats without using a VALUE, PICTURE, or
INVALUE statement. If you specify a one-level name, then the procedure searches
only the default data library (either the WORK data library or USER data library)
for the data set, regardless of whether you specify the LIBRARY= option.

Note: LIBRARY= can point to either a data library or a catalog. If only a libref is
specified, a catalog name of FORMATS is assumed. �
Tip: A common source for an input control data set is the output from the

CNTLOUT= option of another PROC FORMAT step.
See also: “Input Control Data Set” on page 460
Featured in: Example 5 on page 472

CNTLOUT=output-control-SAS-data-set
creates a SAS data set that stores information about informats and formats that are
contained in the catalog specified in the LIBRARY= option.

Note: LIBRARY= can point to either a data library or a catalog. If only a libref is
specified, then a catalog name of FORMATS is assumed. �

If you are creating an informat or format in the same step that the CNTLOUT=
option appears, then the informat or format that you are creating is included in the
CNTLOUT= data set.

If you specify a one-level name, then the procedure stores the data set in the
default data library (either the WORK data library or the USER data library),
regardless of whether you specify the LIBRARY= option.
Tip: You can use an output control data set as an input control data set in

subsequent PROC FORMAT steps.
See also: “Output Control Data Set” on page 458

FMTLIB
prints information about all the informats and formats in the catalog that is specified
in the LIBRARY= option. To get information only about specific informats or formats,
subset the catalog using the SELECT or EXCLUDE statement.
Interaction: The PAGE option invokes FMTLIB.
Tip: If your output from FMTLIB is not formatted correctly, then try increasing the

value of the LINESIZE= system option.
Tip: If you use the SELECT or EXCLUDE statement and omit the FMTLIB and

CNTLOUT= options, then the procedure invokes the FMTLIB option and you
receive FMTLIB option output.

Featured in: Example 6 on page 477

LIBRARY=libref<.catalog>
specifies a catalog to contain informats or formats that you are creating in the current
PROC FORMAT step. The procedure stores these informats and formats in the
catalog that you specify so that you can use them in subsequent SAS sessions or jobs.

Note: LIBRARY= can point to either a data library or a catalog. If only a libref is
specified, then a catalog name of FORMATS is assumed. �
Alias: LIB=
Default: If you omit the LIBRARY= option, then formats and informats are stored

in the WORK.FORMATS catalog. If you specify the LIBRARY= option but do not

434 EXCLUDE Statement � Chapter 22

specify a name for catalog, then formats and informats are stored in the
libref.FORMATS catalog.

Tip: SAS automatically searches LIBRARY.FORMATS. You might want to use the
LIBRARY libref for your format catalog. You can control the order in which SAS
searches for format catalogs with the FMTSEARCH= system option. For further
information about FMTSEARCH=, see the section on SAS system options in SAS
Language Reference: Dictionary.

See also: “Storing Informats and Formats” on page 456

Featured in: Example 1 on page 464

MAXLABLEN=number-of-characters
specifies the number of characters in the informatted or formatted value that you
want to appear in the CNTLOUT= data set or in the output of the FMTLIB option.
The FMTLIB option prints a maximum of 40 characters for the informatted or
formatted value.

MAXSELEN=number-of-characters
specifies the number of characters in the start and end values that you want to
appear in the CNTLOUT= data set or in the output of the FMTLIB option. The
FMTLIB option prints a maximum of 16 characters for start and end values.

NOREPLACE
prevents a new informat or format that you are creating from replacing an existing
informat or format of the same name. If you omit NOREPLACE, then the procedure
warns you that the informat or format already exists and replaces it.

Note: You can have a format and an informat of the same name. �

PAGE
prints information about each format and informat (that is, each entry) in the catalog
on a separate page.

Tip: The PAGE option activates the FMTLIB option.

EXCLUDE Statement

Excludes entries from processing by the FMTLIB and CNTLOUT= options.

Restriction: Only one EXCLUDE statement can appear in a PROC FORMAT step.

Restriction: You cannot use a SELECT statement and an EXCLUDE statement within
the same PROC FORMAT step.

EXCLUDE entry(s);

Required Arguments

entry(s)
specifies one or more catalog entries to exclude from processing. Catalog entry names
are the same as the name of the informat or format that they store. Because
informats and formats can have the same name, and because character and numeric
informats or formats can have the same name, you must use certain prefixes when

The FORMAT Procedure � INVALUE Statement 435

specifying informats and formats in the EXCLUDE statement. Follow these rules
when specifying entries in the EXCLUDE statement:

� Precede names of entries that contain character formats with a dollar sign ($).
� Precede names of entries that contain character informats with an at sign and a

dollar sign (for example, @$entry-name).
� Precede names of entries that contain numeric informats with an at sign (@).
� Specify names of entries that contain numeric formats without a prefix.

Shortcuts to Specifying Names
You can use the colon (:) and hyphen (-) wildcard characters to exclude entries. For

example, the following EXCLUDE statement excludes all formats or informats that
begin with the letter a.

exclude a:;

In addition, the following EXCLUDE statement excludes all formats or informats
that occur alphabetically between apple and pear, inclusive:

exclude apple-pear;

FMTLIB Output
If you use the EXCLUDE statement without either FMTLIB or CNTLOUT= in the

PROC FORMAT statement, then the procedure invokes FMTLIB.

INVALUE Statement
Creates an informat for reading and converting raw data values.

Featured in: Example 4 on page 470.
See also: The section on informats in SAS Language Reference: Dictionary for
documentation on informats supplied by SAS.

INVALUE <$>name <(informat-option(s))>
<value-range-set(s)>;

To do this Use this option

Specify the default length of the informat DEFAULT=

Specify a fuzz factor for matching values to a range FUZZ=

Specify a maximum length for the informat MAX=

Specify a minimum length for the informat MIN=

Store values or ranges in the order that you define them NOTSORTED

Left-justify all input strings before they are compared to ranges JUST

Uppercase all input strings before they are compared to ranges UPCASE

436 INVALUE Statement � Chapter 22

Required Arguments

name
names the informat that you are creating.

Requirement: The name must be a valid SAS name. A numeric informat name can
be up to 31 characters in length; a character informat name can be up to 30
characters in length and cannot end in a number. If you are creating a character
informat, then use a dollar sign ($) as the first character; this is why a character
informat is limited to 30 characters.

Restriction: A user-defined informat name cannot be the same as an informat
name that is supplied by SAS.

Interaction: The maximum length of an informat name is controlled by the
VALIDFMTNAME= SAS system option. See SAS Language Reference: Dictionary
for details on VALIDFMTNAME=.

Tip: Refer to the informat later by using the name followed by a period. However,
do not use a period after the informat name in the INVALUE statement.

Tip: When SAS prints messages that refer to a user-written informat, the name is
prefixed by an at sign (@). When the informat is stored, the at sign is prefixed to
the name that you specify for the informat; this is why the name is limited to 31
or 30 characters. You need to use the at sign only when you are using the name in
an EXCLUDE or SELECT statement; do not prefix the name with an at sign when
you are associating the informat with a variable.

Options
The following options are common to the INVALUE, PICTURE, and VALUE

statements and are described in “Informat and Format Options” on page 451:

DEFAULT=length

FUZZ= fuzz-factor

MAX=length

MIN=length

NOTSORTED

In addition, you can use the following options:

JUST
left-justifies all input strings before they are compared to the ranges.

UPCASE
converts all raw data values to uppercase before they are compared to the possible
ranges. If you use UPCASE, then make sure the values or ranges you specify are in
uppercase.

value-range-set(s)
specifies raw data and values that the raw data will become. The value-range-set(s)
can be one or more of the following:

value-or-range-1 <…, value-or-range-n>=informatted-value|[existing-informat]
The informat converts the raw data to the values of informatted-value on the right

side of the equal sign.

informatted-value
is the value you want the raw data in value-or-range to become. Use one of the
following forms for informatted-value:

The FORMAT Procedure � INVALUE Statement 437

’character-string’
is a character string up to 32,767 characters long. Typically, character-string
becomes the value of a character variable when you use the informat to convert
raw data. Use character-string for informatted-value only when you are creating
a character informat. If you omit the single or double quotation marks around
character-string, then the INVALUE statement assumes that the quotation
marks are there.

For hexadecimal literals, you can use up to 32,767 typed characters, or up to
16,382 represented characters at 2 hexadecimal characters per represented
character.

number
is a number that becomes the informatted value. Typically, number becomes the
value of a numeric variable when you use the informat to convert raw data. Use
number for informatted-value when you are creating a numeric informat. The
maximum for number depends on the host operating environment.

ERROR
treats data values in the designated range as invalid data. SAS assigns a
missing value to the variable, prints the data line in the SAS log, and issues a
warning message.

SAME
prevents the informat from converting the raw data as any other value. For
example, the following GROUP. informat converts values 01 through 20 and
assigns the numbers 1 through 20 as the result. All other values are assigned a
missing value.

invalue group 01-20= _same_
other= .;

existing-informat
is an informat that is supplied by SAS or a user-defined informat. The informat
you are creating uses the existing informat to convert the raw data that match
value-or-range on the left side of the equals sign. If you use an existing informat,
then enclose the informat name in square brackets (for example, [date9.]) or with
parentheses and vertical bars, for example, (|date9.|). Do not enclose the name of
the existing informat in single quotation marks.

value-or-range
See “Specifying Values or Ranges” on page 453.
Consider the following examples:
� The $GENDER. character informat converts the raw data values F and M to

character values ’1’ and ’2’:

invalue $gender ’F’=’1’
’M’=’2’;

The dollar sign prefix indicates that the informat converts character data.
� When you are creating numeric informats, you can specify character strings or

numbers for value-or-range. For example, the TRIAL. informat converts any
character string that sorts between A and M to the number 1 and any character
string that sorts between N and Z to the number 2. The informat treats the
unquoted range 1–3000 as a numeric range, which includes all numeric values
between 1 and 3000:

invalue trial ’A’-’M’=1
’N’-’Z’=2

1-3000=3;

438 PICTURE Statement � Chapter 22

If you use a numeric informat to convert character strings that do not
correspond to any values or ranges, then you receive an error message.

� The CHECK. informat uses _ERROR_ and _SAME_ to convert values of 1
through 4 and 99. All other values are invalid:

invalue check 1-4=_same_
99=.

other=_error_;

PICTURE Statement

Creates a template for printing numbers.

Featured in: Example 1 on page 464 and Example 9 on page 483
See also: The section on formats in SAS Language Reference: Dictionary for
documentation on formats supplied by SAS.

PICTURE name <(format-option(s))>
<value-range-set-1 <(picture-1-option(s))>
<…value-range-set-n <(picture-n-option(s))>>>;

To do this Use this option

Control the attributes of the format

Specify that you can use directives in the picture as a template
to format date, time, or datetime values

DATATYPE=

Specify the default length of the format DEFAULT=

Specify the separator character for the fractional part of a
number

DECSEP=

Specify the three-digit separator character for a number DIG3SEP=

Specify a fuzz factor for matching values to a range FUZZ=

Specify a maximum length for the format MAX=

Specify a minimum length for the format MIN=

Specify multiple pictures for a given value or range and for
overlapping ranges

MULTILABEL

Store values or ranges in the order that you define them NOTSORTED

Round the value to the nearest integer before formatting ROUND

Control the attributes of each picture in the format

Specify a character that completes the formatted value FILL=

Specify a number to multiply the variable’s value by before it
is formatted

MULTIPLIER=

The FORMAT Procedure � PICTURE Statement 439

To do this Use this option

Specify that numbers are message characters rather than digit
selectors

NOEDIT

Specify a character prefix for the formatted value PREFIX=

Required Arguments

name
names the format you are creating.

Requirement: The name must be a valid SAS name. A numeric format name can
be up to 32 characters in length; a character format name can be up to 31
characters in length, not ending in a number. If you are creating a character
format, then use a dollar sign ($) as the first character, which is why a character
informat is limited to 30 characters.

Restriction: A user-defined format cannot be the name of a format supplied by SAS.

Interaction: The maximum length of a format name is controlled by the
VALIDFMTNAME= SAS system option. See SAS Language Reference: Dictionary
for details on VALIDFMTNAME=.

Tip: Refer to the format later by using the name followed by a period. However, do
not put a period after the format name in the VALUE statement.

Options
The following options are common to the INVALUE, PICTURE, and VALUE

statements and are described in “Informat and Format Options” on page 451:

DEFAULT= length

FUZZ=fuzz-factor

MAX=length

MIN=length

NOTSORTED

In addition, you can use the following arguments:

DATATYPE=DATE | TIME | DATETIME
specifies that you can use directives in the picture as a template to format date, time,
or datetime values. See the definition and list of directives on page 442.

Tip: If you format a numeric missing value, then the resulting label will be ERROR.
Adding a clause to your program that checks for missing values can eliminate the
ERROR label.

DECSEP=’character’
specifies the separator character for the fractional part of a number.

Default: . (a decimal point)

DIG3SEP=’character’
specifies the three-digit separator character for a number.

Default: , (a comma)

440 PICTURE Statement � Chapter 22

FILL=’character’
specifies a character that completes the formatted value. If the number of significant
digits is less than the length of the format, then the format must complete, or fill, the
formatted value:

� The format uses character to fill the formatted value if you specify zeros as digit
selectors.

� The format uses zeros to fill the formatted value if you specify nonzero digit
selectors. The FILL= option has no effect.

If the picture includes other characters, such as a comma, which appear to the left
of the digit selector that maps to the last significant digit placed, then the characters
are replaced by the fill character or leading zeros.
Default: ’ ’ (a blank)
Interaction: If you use the FILL= and PREFIX= options in the same picture, then

the format places the prefix and then the fill characters.
Featured in: Example 9 on page 483

MULTILABEL
allows the assignment of multiple labels or external values to internal values. The
following PICTURE statements show the two uses of the MULTILABEL option. In
each case, number formats are assigned as labels. The first PICTURE statement
assigns multiple labels to a single internal value. Multiple labels may also be
assigned to a single range of internal values. The second PICTURE statement
assigns labels to overlapping ranges of internal values. The MULTILABEL option
allows the assignment of multiple labels to the overlapped internal values.

picture abc (multilabel)
1000=’9,999’
1000=’9999’;

picture overlap (multilabel)
/* without decimals */
0-999=’999’
1000-9999=’9,999’

/* with decimals */
0-9=’9.999’
10-99=’99.99’
100-999=’999.9’;

Only multilabel-enabled procedures such as PROC MEANS, PROC SUMMARY, and
PROC TABULATE can use multiple labels. All other procedures and the DATA step
recognize only the primary label. The primary label for a given entry is the external
value that is assigned to the first internal value or range of internal values that
matches or contains the entry when all internal values are ordered sequentially. For
example, in the first PICTURE statement, the primary label for 1000 is 1,000
because the format 9,999 is the first external value that is assigned to 1000. The
secondary label for 1000 is 1000, based on the 9999 format.

In the second PICTURE statement, the primary label for 5 is 5.000 based on the
9.999 format that is assigned to the range 0–9 because 0–9 is sequentially the first
range of internal values containing 5. The secondary label for 5 is 005 because the
range 0–999 occurs in sequence after the range 0–9. Consider carefully when you
assign multiple labels to an internal value. Unless you use the NOTSORTED option
when you assign variables, the SAS System stores the variables in sorted order. This
may produce unexpected results when variables with the MULTILABEL format are
processed. For example, in the second PICTURE statement, the primary label for 15

The FORMAT Procedure � PICTURE Statement 441

is 015, and the secondary label for 15 is 15.00 because the range 0–999 occurs in
sequence before the range 10–99. If you want the primary label for 15 to use the
99.99 format, then you might want to change the range 10–99 to 0–99 in the
PICTURE statement. The range 0–99 occurs in sequence before the range 0–999 and
will produce the desired result.

MULTIPLIER=n
specifies a number that the variable’s value is to be multiplied by before it is
formatted. For example, the following PICTURE statement creates the MILLION.
format, which formats the variable value 1600000 as $1.6M:

picture million low-high=’00.0M’
(prefix=’$’ mult=.00001);

Alias: MULT=

Default: 10n , where n is the number of digits after the first decimal point in the
picture. For example, suppose your data contains a value 123.456 and you want to
print it using a picture of ’999.999’. The format multiplies 123.456 by 103 to obtain
a value of 123456, which results in a formatted value of 123.456.

Example: Example 1 on page 464

NOEDIT
specifies that numbers are message characters rather than digit selectors; that is, the
format prints the numbers as they appear in the picture. For example, the following
PICTURE statement creates the MILES. format, which formats any variable value
greater than 1000 as >1000 miles:

picture miles 1-1000=’0000’
1000<-high=’>1000 miles’(noedit);

PREFIX=’prefix’
specifies a character prefix to place in front of the value’s first significant digit. You
must use zero digit selectors or the prefix will not be used.

The picture must be wide enough to contain both the value and the prefix. If the
picture is not wide enough to contain both the value and the prefix, then the format
truncates or omits the prefix. Typical uses for PREFIX= are printing leading
currency symbols and minus signs. For example, the PAY. format prints the variable
value 25500 as $25,500.00:

picture pay low-high=’000,009.99’
(prefix=’$’);

Default: no prefix

Interaction: If you use the FILL= and PREFIX= options in the same picture, then
the format places the prefix and then the fill characters.

Featured in: Example 1 on page 464 and Example 9 on page 483

ROUND
rounds the value to the nearest integer before formatting. Without the ROUND
option, the format multiplies the variable value by the multiplier, truncates the
decimal portion (if any), and prints the result according to the template that you
define. With the ROUND option, the format multiplies the variable value by the
multiplier, rounds that result to the nearest integer, and then formats the value
according to the template. Note that if the FUZZ= option is also specified, the
rounding takes place after SAS has used the fuzz factor to determine which range
the value belongs to.

Tip: Note that the ROUND option rounds a value of .5 to the next highest integer.

442 PICTURE Statement � Chapter 22

value-range-set
specifies one or more variable values and a template for printing those values. The
value-range-set is the following:

value-or-range-1 <…, value-or-range-n>=’picture’

picture
specifies a template for formatting values of numeric variables. The picture is a
sequence of characters in single quotation marks. The maximum length for a
picture is 40 characters. Pictures are specified with three types of characters: digit
selectors, message characters, and directives. You can have a maximum of 16 digit
selectors in a picture.

Digit selectors are numeric characters (0 through 9) that define positions for
numeric values. A picture format with nonzero digit selectors prints any leading
zeros in variable values; picture digit selectors of 0 do not print leading zeros in
variable values. If the picture format contains digit selectors, then a digit selector
must be the first character in the picture.

Note: This chapter uses 9’s as nonzero digit selectors. �
Message characters are nonnumeric characters that print as specified in the

picture. The following PICTURE statement contains both digit selectors (99) and
message characters (illegal day value). Because the DAYS. format has nonzero
digit selectors, values are printed with leading zeros. The special range OTHER
prints the message characters for any values that do not fall into the specified
range (1 through 31).

picture days 01-31=’99’
other=’99-illegal day value’;

For example, the values 02 and 67 print as

02
67-illegal day value

Directives are special characters that you can use in the picture to format date,
time, or datetime values.
Restriction: You can only use directives when you specify the DATATYPE= option

in the PICTURE statement.
The permitted directives are

%a Locale’s abbreviated weekday name

%A Locale’s full weekday name

%b Locale’s abbreviated month name

%B Locale’s full month name

%d Day of the month as a decimal number (1–31), with no leading
zero

%H Hour (24-hour clock) as a decimal number (0–23), with no
leading zero

%I Hour (12-hour clock) as a decimal number (1–12), with no
leading zero

%j Day of the year as a decimal number (1–366), with no leading
zero

%m Month as a decimal number (1–12), with no leading zero

%M Minute as a decimal number (0–59), with no leading zero

The FORMAT Procedure � PICTURE Statement 443

%p Locale’s equivalent of either AM or PM

%S Second as a decimal number (0–59), with no leading zero

%U Week number of the year (Sunday as the first day of the week)
as a decimal number (0,53), with no leading zero

%w Weekday as a decimal number (1= Sunday, 7=Saturday)

%y Year without century as a decimal number (0–99), with no
leading zero

%Y Year with century as a decimal number

%% %
Any directive that generates numbers can produce a leading zero, if desired, by

adding a 0 before the directive. This applies to %d, %H, %I, %j, %m, %M, %S, %U,
and %y. For example, if you specify %y in the picture, then 2001 would be
formatted as ’1’, but if you specify %0y, then 2001 would be formatted as ’01’.
Tip: Add code to your program to direct how you want missing values to be

displayed.

value-or-range
See “Specifying Values or Ranges” on page 453.

Building a Picture Format: Step by Step
This section shows how to write a picture format for formatting numbers with

leading zeros. In the SAMPLE data set, the default printing of the variable Amount
has leading zeros on numbers between 1 and −1:

options nodate pageno=1 linesize=64 pagesize=60;

data sample;
input Amount;
datalines;

-2.051
-.05
-.017

0
.093
.54
.556

6.6
14.63
;

proc print data=sample;
title ’Default Printing of the Variable Amount’;

run;

444 PICTURE Statement � Chapter 22

Default Printing of the Variable Amount 1

Obs Amount

1 -2.051
2 -0.050
3 -0.017
4 0.000
5 0.093
6 0.540
7 0.556
8 6.600
9 14.630

The following PROC FORMAT step uses the ROUND format option and creates the
NOZEROS. format, which eliminates leading zeros in the formatted values:

libname library ’SAS-data-library’;

proc format library=library;
picture nozeros (round)

low - -1 = ’00.00’
(prefix=’-’)

-1 <-< 0 = ’99’
(prefix=’-.’ mult=100)

0 -< 1 = ’99’
(prefix=’.’ mult=100)

1 - high = ’00.00’;
run;

The following table explains how one value from each range is formatted. Figure 22.1
on page 446 provides an illustration of each step. The circled numbers in the figure
correspond to the step numbers in the table.

Table 22.1 Building a Picture Format

Step Rule In this example

1 Determine into which range the value falls and
use that picture.

In the second range, the exclusion operator <
appears on both sides of the hyphen and excludes −1
and 0 from the range.

2 Take the absolute value of the numeric value. Because the absolute value is used, you need a
separate range and picture for the negative
numbers in order to prefix the minus sign.

The FORMAT Procedure � PICTURE Statement 445

Step Rule In this example

3 Multiply the number by the MULT= value. If
you do not specify the MULT= option, then the
PICTURE statement uses the default. The
default is 10

n
, where n is the number of digit

selectors to the right of the decimal1 in the
picture. (Step 6 discusses digit selectors further.)

Specifying a MULT= value is necessary for numbers
between 0 and 1 and numbers between 0 and −1
because no decimal appears in the pictures for those
ranges. Because MULT= defaults to 1, truncation of
the significant digits results without a MULT=
value specified. (Truncation is explained in the next
step.) For the two ranges that do not have MULT=
values specified, the MULT= value defaults to 100
because the corresponding picture has two digit
selectors to the right of the decimal. After the
MULT= value is applied, all significant digits are
moved to the left of the decimal.

4 Truncate the number after the decimal. If the
ROUND option is in effect, then the format
rounds the number after the decimal to the next
highest integer if the number after the decimal
is greater than or equal to .5.

Because the example uses MULT= values that
ensured that all of the significant digits were moved
to the left of the decimal, no significant digits are
lost. The zeros are truncated.

5 Turn the number into a character string. If the
number is shorter than the picture, then the
length of the character string is equal to the
number of digit selectors in the picture. Pad the
character string with leading zeros. (The results
are equivalent to using the Zw. format. Zw. is
explained in the section on SAS formats in SAS
Language Reference: Dictionary.

The numbers 205, 5, and 660 become the character
strings 0205, 05, and 0660, respectively. Because
each picture is longer than the numbers, the format
adds a leading zero to each value. The format does
not add leading zeros to the number 55 because the
corresponding picture only has two digit selectors.

446 PICTURE Statement � Chapter 22

Step Rule In this example

6 Apply the character string to the picture. The
format only maps the rightmost n characters in
the character string, where n is the number of
digit selectors in the picture. Thus, it is
important to make sure that the picture has
enough digit selectors to accommodate the
characters in the string. After the format takes
the rightmost n characters, it then maps those
characters to the picture from left to right.
Choosing a zero or nonzero digit selector is
important if the character string contains
leading zeros. If one of the leading zeros in the
character string maps to a nonzero digit
selector, then it and all subsequent leading zeros
become part of the formatted value. If all of the
leading zeros map to zero digit selectors, then
none of the leading zeros become part of the
formatted value; the format replaces the leading
zeros in the character string with blanks.2

The leading zero is dropped from each of the
character strings 0205 and 0660 because the
leading zero maps to a zero digit selector in the
picture.

7 Prefix any characters that are specified in the
PREFIX= option. You need the PREFIX= option
because when a picture contains any digit
selectors, the picture must begin with a digit
selector. Thus, you cannot begin your picture
with a decimal point, minus sign, or any other
character that is not a digit selector.

The PREFIX= option reclaims the decimal point and
the negative sign, as shown with the formatted
values -.05 and .55.

1 A decimal in a PREFIX= option is not part of the picture.
2 You can use the FILL= option to specify a character other than a blank to become part of the formatted value.

Figure 22.1 Formatting One Value in Each Range

The FORMAT Procedure � SELECT Statement 447

The following PROC PRINT step associates the NOZEROS. format with the
AMOUNT variable in SAMPLE. The output shows the result of rounding.

proc print data=sample noobs;
format amount nozeros.;
title ’Formatting the Variable Amount’;
title2 ’with the NOZEROS. Format’;

run;

Formatting the Variable Amount 1
with the NOZEROS. Format

Amount

-2.05
-.05
-.02

.00

.09

.54

.56
6.60

14.63

CAUTION:
The picture must be wide enough for the prefix and the numbers. In this example, if the
value −45.00 were formatted with NOZEROS. then the result would be 45.00 because
it falls into the first range, low - −1, and the picture for that range is not wide
enough to accommodate the prefixed minus sign and the number. �

Specifying No Picture
This PICTURE statement creates a picture-name format that has no picture:

picture picture-name;

Using this format has the effect of applying the default SAS format to the values.

SELECT Statement

Selects entries from processing by the FMTLIB and CNTLOUT= options.

Restriction: Only one SELECT statement can appear in a PROC FORMAT step.

Restriction: You cannot use a SELECT statement and an EXCLUDE statement within
the same PROC FORMAT step.

Featured in: Example 6 on page 477.

SELECT entry(s);

448 VALUE Statement � Chapter 22

Required Arguments

entry(s)
specifies one or more catalog entries for processing. Catalog entry names are the
same as the name of the informat or format that they store. Because informats and
formats can have the same name, and because character and numeric informats or
formats can have the same name, you must use certain prefixes when specifying
informats and formats in the SELECT statement. Follow these rules when specifying
entries in the SELECT statement:

� Precede names of entries that contain character formats with a dollar sign ($).
� Precede names of entries that contain character informats with an at sign and a

dollar sign, for example, @$entry-name.
� Precede names of entries that contain numeric informats with an at sign (@).
� Specify names of entries that contain numeric formats without a prefix.

Shortcuts to Specifying Names
You can use the colon (:) and hyphen (-) wildcard characters to select entries. For

example, the following SELECT statement selects all formats or informats that begin
with the letter a.

select a:;

In addition, the following SELECT statement selects all formats or informats that
occur alphabetically between apple and pear, inclusive:

select apple-pear;

FMTLIB Output
If you use the SELECT statement without either FMTLIB or CNTLOUT= in the

PROC FORMAT statement, then the procedure invokes FMTLIB.

VALUE Statement

Creates a format that specifies character strings to use to print variable values.

Featured in: Example 2 on page 466.
See also: The chapter about formats in SAS Language Reference: Dictionary for
documentation about SAS formats.

VALUE <$>name <(format-option(s))>
<value-range-set(s)>;

To do this Use this option

Specify the default length of the format DEFAULT=

Specify a fuzz factor for matching values to a range FUZZ=

Specify a maximum length for the format MAX=

The FORMAT Procedure � VALUE Statement 449

To do this Use this option

Specify a minimum length for the format MIN=

Specify multiple values for a given range, or for overlapping ranges MULTILABEL

Store values or ranges in the order that you define them NOTSORTED

Required Arguments

name
names the format that you are creating.
Requirement: The name must be a valid SAS name. A numeric format name can

be up to 32 characters in length. A character format name can be up to 31
characters in length and cannot end in a number. If you are creating a character
format, then use a dollar sign ($) as the first character.

Restriction: The name of a user-defined format cannot be the same as the name of
a format that is supplied by SAS.

Interaction: The maximum length of a format name is controlled by the
VALIDFMTNAME= SAS system option. See SAS Language Reference: Dictionary
for details about VALIDFMTNAME=.

Tip: Refer to the format later by using the name followed by a period. However, do
not use a period after the format name in the VALUE statement.

Options
The following options are common to the INVALUE, PICTURE, and VALUE

statements and are described in “Informat and Format Options” on page 451:
DEFAULT=length
FUZZ= fuzz-factor
MAX=length
MIN=length
NOTSORTED

In addition, you can use the following options:

MULTILABEL
allows the assignment of multiple labels or external values to internal values. The
following VALUE statements show the two uses of the MULTILABEL option. The
first VALUE statement assigns multiple labels to a single internal value. Multiple
labels may also be assigned to a single range of internal values. The second VALUE
statement assigns labels to overlapping ranges of internal values. The MULTILABEL
option allows the assignment of multiple labels to the overlapped internal values.

value one (multilabel)
1=’ONE’
1=’UNO’
1=’UN’

value agefmt (multilabel)
15-29=’below 30 years’

450 VALUE Statement � Chapter 22

30-50=’between 30 and 50’
51-high=’over 50 years’
15-19=’15 to 19’
20-25=’20 to 25’
25-39=’25 to 39’
40-55=’40 to 55’
56-high=’56 and above’;

Only multilabel-enabled procedures such as PROC MEANS, PROC SUMMARY, and
PROC TABULATE can use multiple labels. All other procedures and the data step
recognize only the primary label. The primary label for a given entry is the external
value that is assigned to the first internal value or range of internal values that
matches or contains the entry when all internal values are ordered sequentially. For
example, in the first VALUE statement, the primary label for 1 is ONE because ONE
is the first external value that is assigned to 1. The secondary labels for 1 are UNO
and UN. In the second VALUE statement, the primary label for 33 is 25 to 39
because the range 25–39 is sequentially the first range of internal values that
contains 33. The secondary label for 33 is between 30 and 50 because the range
30–50 occurs in sequence after the range 25–39.

value-range-set(s)
specifies one or more variable values and a character string or an existing format.
The value-range-set(s) can be one or more of the following:

value-or-range-1 <…, value-or-range-n>=’formatted-value’|[existing-format]
The variable values on the left side of the equals sign print as the character string

on the right side of the equals sign.

formatted-value
specifies a character string that becomes the printed value of the variable value
that appears on the left side of the equals sign. Formatted values are always
character strings, regardless of whether you are creating a character or numeric
format.

Formatted values can be up to 32,767 characters. For hexadecimal literals, you
can use up to 32,767 typed characters, or up to 16,382 represented characters at 2
hexadecimal characters per represented character. Some procedures, however, use
only the first 8 or 16 characters of a formatted value.
Requirement: You must enclose a formatted value in single or double quotation

marks. The following example shows a formatted value that is enclosed in
double quotation marks.

value $ score
M=Male "(pass)"
F=Female "(pass)";

Requirement: If a formatted value contains a single quotation mark, then enclose
the value in double quotation marks:

value sect 1="Smith’s class"
2="Leung’s class";

Tip: Formatting numeric variables does not preclude the use of those variables in
arithmetic operations. SAS uses stored values for arithmetic operations.

existing-format
specifies a format supplied by SAS or an existing user-defined format. The format
you are creating uses the existing format to convert the raw data that match
value-or-range on the left side of the equals sign.

If you use an existing format, then enclose the format name in square brackets
(for example, [date9.]) or with parentheses and vertical bars, for example,

The FORMAT Procedure � Informat and Format Options 451

(|date9.|). Do not enclose the name of the existing format in single quotation
marks.

Using an existing format can be thought of as nesting formats. A nested level of
one means that if you are creating the format A with the format B as a formatted
value, then the procedure has to use only one existing format to create A.

Tip: Avoid nesting formats more than one level. The resource requirements can
increase dramatically with each additional level.

value-or-range
For details on how to specify value-or-range, see “Specifying Values or Ranges” on
page 453.
Consider the following examples:

� The $STATE. character format prints the postal code for selected states:

value $state ’Delaware’=’DE’
’Florida’=’FL’

’Ohio’=’OH’;

The variable value Delaware prints as DE, the variable value Florida prints
as FL, and the variable value Ohio prints as OH. Note that the $STATE. format
begins with a dollar sign.

Note: Range specifications are case sensitive. In the $STATE. format above,
the value OHIO would not match any of the specified ranges. If you are not
certain what case the data values are in, then one solution is to use the
UPCASE function on the data values and specify all uppercase characters for
the ranges. �

� The numeric format ANSWER.writes the values 1 and 2 as yes and no:

value answer 1=’yes’
2=’no’;

Specifying No Ranges
This VALUE statement creates a format-name format that has no ranges:

value format-name;

Using this format has the effect of applying the default SAS format to the values.

Informat and Format Options

This section discusses options that are valid in the INVALUE, PICTURE, and
VALUE statements. These options appear in parentheses after the informat or format
name. They affect the entire informat or format that you are creating.

DEFAULT=length
specifies the default length of the informat or format. The value for DEFAULT=
becomes the length of the informat or format if you do not give a specific length
when you associate the informat or format with a variable.

The default length of a format is the length of the longest formatted value.
The default length of an informat depends on whether the informat is character

or numeric. The default length of character informats is the length of the longest
informatted value. The default of a numeric informat is 12 if you have numeric
data to the left of the equals sign. If you have a quoted string to the left of the
equals sign, then the default length is the length of the longest string.

452 Informat and Format Options � Chapter 22

FUZZ=fuzz-factor
specifies a fuzz factor for matching values to a range. If a number does not match
or fall in a range exactly but comes within fuzz-factor, then the format considers it
a match. For example, the following VALUE statement creates the LEVELS.
format, which uses a fuzz factor of .2:

value levels (fuzz=.2) 1=’A’
2=’B’
3=’C’;

FUZZ=.2 means that if a variable value falls within .2 of a value on either end
of the range, then the format uses the corresponding formatted value to print the
variable value. So the LEVELS. format formats the value 2.1 as B.

If a variable value matches one value or range without the fuzz factor, and also
matches another value or range with the fuzz factor, then the format assigns the
variable value to the value or range that it matched without the fuzz factor.
Default: 1E−12 for numeric formats and 0 for character formats.
Tip: Specify FUZZ=0 to save storage space when you use the VALUE statement

to create numeric formats.
Tip: A value that is excluded from a range using the < operator does not receive

the formatted value, even if it falls into the range when you use the fuzz factor.

MAX=length
specifies a maximum length for the informat or format. When you associate the
format with a variable, you cannot specify a width greater than the MAX= value.
Default: 40
Range: 1–40

MIN=length
specifies a minimum length for the informat or format.
Default: 1
Range: 1–40

NOTSORTED
stores values or ranges for informats or formats in the order in which you define
them. If you do not specify NOTSORTED, then values or ranges are stored in
sorted order by default, and SAS uses a binary searching algorithm to locate the
range that a particular value falls into. If you specify NOTSORTED, then SAS
searches each range in the order in which you define them until a match is found.

Use NOTSORTED if
� you know the likelihood of certain ranges occurring, and you want your

informat or format to search those ranges first to save processing time.
� you want to preserve the order that you define ranges when you print a

description of the informat or format using the FMTLIB option.
� you want to preserve the order that you define ranges when you use the

ORDER=DATA option and the PRELOADFMT option to analyze class
variables in PROC MEANS, PROC SUMMARY, or PROC TABULATE.

Do not use NOTSORTED if the distribution of values is uniform or unknown, or
if the number of values is relatively small. The binary searching algorithm that
SAS uses when NOTSORTED is not specified optimizes the performance of the
search under these conditions.

Note: SAS automatically sets the NOTSORTED option when you use the
CPORT and the CIMPORT procedures to transport informats or formats between

The FORMAT Procedure � Specifying Values or Ranges 453

operating environments with different standard collating sequences. This
automatic setting of NOTSORTED can occur when you transport informats or
formats between ASCII and EBCDIC operating environments. If this situation is
undesirable, then do the following:

1 Use the CNTLOUT= option in the PROC FORMAT statement to create an
output control data set.

2 Use the CPORT procedure to create a transport file for the control data set.

3 Use the CIMPORT procedure in the target operating environment to import
the transport file.

4 In the target operating environment, use PROC FORMAT with the CNTLIN=
option to build the formats and informats from the imported control data set.

�

Specifying Values or Ranges
As the syntax of the INVALUE, PICTURE, and VALUE statements indicates, you

must specify values as value-range-sets. On the left side of the equals sign you specify
the values that you want to convert to other values. On the right side of the equals
sign, you specify the values that you want the values on the left side to become. This
section discusses the different forms that you can use for value-or-range, which
represents the values on the left side of the equals sign. For details about how to
specify values for the right side of the equals sign, see the “Required Arguments”
section for the appropriate statement.

The INVALUE, PICTURE, and VALUE statements accept numeric values on the left
side of the equals sign. INVALUE and VALUE also accept character strings on the left
side of the equals sign.

As the syntax shows, you can have multiple occurrences of value-or-range in each
value-range-set, with commas separating the occurrences. Each occurrence of
value-or-range is either one of the following:

value
a single value, such as 12 or ’CA’. For character formats and informats, enclose
the character values in single quotation marks. If you omit the quotation marks
around value, then PROC FORMAT assumes the quotation marks to be there.

You can use the keyword OTHER as a single value. OTHER matches all values
that do not match any other value or range.

range
a list of values, for example, 12–68 or ’A’-’Z’. For ranges with character strings,
be sure to enclose each string in single quotation marks. For example, if you want
a range that includes character strings from A to Z, then specify the range as
’A’-’Z’, with single quotation marks around the A and around the Z.

If you specify ’A-Z’, then the procedure interprets it as a three-character string
with A as the first character, a hyphen (-) as the second character, and a Z as the
third character.

If you omit the quotation marks, then the procedure assumes quotation marks
around each string. For example, if you specify the range abc-zzz, then the
procedure interprets it as ’abc’-’zzz’.

454 Specifying Values or Ranges � Chapter 22

You can use LOW or HIGH as one value in a range, and you can use the range
LOW-HIGH to encompass all values. For example, these are valid ranges:

low-’ZZ’
35-high
low-high

You can use the less than (<) symbol to exclude values from ranges. If you are
excluding the first value in a range, then put the < after the value. If you are
excluding the last value in a range, then put the < before the value. For example,
the following range does not include 0:

0<-100

Likewise, the following range does not include 100:

0-<100

If a value at the high end of one range also appears at the low end of another
range, and you do not use the < noninclusion notation, then PROC FORMAT
assigns the value to the first range. For example, in the following ranges, the
value AJ is part of the first range:

’AA’-’AJ’=1 ’AJ’-’AZ’=2

In this example, to include the value AJ in the second range, use the noninclusive
notation on the first range:

’AA’-<’AJ’=1 ’AJ’-’AZ’=2

If you overlap values in ranges, then PROC FORMAT returns an error message
unless, for the VALUE statement, the MULTILABEL option is specified. For
example, the following ranges will cause an error:

’AA’-’AK’=1 ’AJ’-’AZ=2

Each value-or-range can be up to 32,767 characters. If value-or-range has more than
32,767 characters, then the procedure truncates the value after it processes the first
32,767 characters.

Note: You do not have to account for every value on the left side of the equals sign.
Those values are converted using the default informat or format. For example, the
following VALUE statement creates the TEMP. format, which prints all occurrences of
98.6 as NORMAL:

value temp 98.6=’NORMAL’;

If the value were 96.9, then the printed result would be 96.9. �

The FORMAT Procedure � Associating Informats and Formats with Variables 455

Concepts: FORMAT Procedure

Associating Informats and Formats with Variables

Methods of Associating Informats and Formats with Variables
Table 22.2 on page 455 summarizes the different methods for associating informats

and formats with variables.

Table 22.2 Associating Informats and Formats with Variables

Step Informats Formats

In a DATA step Use the ATTRIB or INFORMAT statement
to permanently associate an informat with
a variable. Use the INPUT function or
INPUT statement to associate the informat
with the variable only for the duration of
the DATA step.

Use the ATTRIB or FORMAT statement to
permanently associate a format with a
variable. Use the PUT function or PUT
statement to associate the format with the
variable only for the duration of the DATA
step.

In a PROC step The ATTRIB and INFORMAT statements
are valid in base SAS procedures. However,
in base SAS software, typically you do not
assign informats in PROC steps because the
data has already been read into SAS
variables.

Use the ATTRIB statement or the FORMAT
statement to associate formats with
variables. If you use either statement in a
procedure that produces an output data set,
then the format is permanently associated
with the variable in the output data set. If
you use either statement in a procedure that
does not produce an output data set or
modify an existing data set, the statement
associates the format with the variable only
for the duration of the PROC step.

Tips

� Do not confuse the FORMAT statement with the FORMAT procedure. The
FORMAT and INFORMAT statements associate an existing format or informat
(either standard SAS or user-defined) with one or more variables. PROC FORMAT
creates user-defined formats or informats. Assigning your own format or informat
to a variable is a two-step process: creating the format or informat with the
FORMAT procedure, and then assigning the format or informat with the
FORMAT, INFORMAT, or ATTRIB statement.

� It is often useful to assign informats in the FSEDIT procedure in SAS/FSP
software and in the BUILD procedure in SAS/AF software.

456 Storing Informats and Formats � Chapter 22

See Also

� For complete documentation on the ATTRIB, INFORMAT, and FORMAT
statements, see the section on statements in SAS Language Reference: Dictionary.

� For complete documentation on the INPUT and PUT functions, see the section on
functions in SAS Language Reference: Dictionary.

� See “Formatted Values” on page 25 for more information and examples of using
formats in base SAS procedures.

Storing Informats and Formats

Format Catalogs
PROC FORMAT stores user-defined informats and formats as entries in SAS

catalogs.* You use the LIBRARY= option in the PROC FORMAT statement to specify
the catalog. If you omit the LIBRARY= option, then formats and informats are stored
in the WORK.FORMATS catalog. If you specify LIBRARY=libref but do not specify a
catalog name, then formats and informats are stored in the libref.FORMATS catalog.
Note that this use of a one-level name differs from the use of a one-level name
elsewhere in SAS. With the LIBRARY= option, a one-level name indicates a library;
elsewhere in SAS, a one-level name indicates a file in the WORK library.

The name of the catalog entry is the name of the format or informat. The entry types
are

� FORMAT for numeric formats
� FORMATC for character formats
� INFMT for numeric informats
� INFMTC for character informats.

Temporary Informats and Formats
Informats and formats are temporary when they are stored in a catalog in the

WORK library. If you omit the LIBRARY= option, then PROC FORMAT stores the
informats and formats in the temporary catalog WORK.FORMATS. You can retrieve
temporary informats and formats only in the same SAS session or job in which they are
created. To retrieve a temporary format or informat, simply include the name of the
format or informat in the appropriate SAS statement. SAS automatically looks for the
format or informat in the WORK.FORMATS catalog.

Permanent Informats and Formats
If you want to use a format or informat that is created in one SAS job or session in a

subsequent job or session, then you must permanently store the format or informat in a
SAS catalog.

You permanently store informats and formats by using the LIBRARY= option in the
PROC FORMAT statement. See the discussion of the LIBRARY= option in “PROC
FORMAT Statement” on page 432.

* Catalogs are a type of SAS file and reside in a SAS data library. If you are unfamiliar with the types of SAS files or the SAS
data library structure, then see the section on SAS files in SAS Language Reference: Concepts.

The FORMAT Procedure � Storing Informats and Formats 457

Accessing Permanent Informats and Formats
After you have permanently stored an informat or format, you can use it in later SAS

sessions or jobs. If you associate permanent informats or formats with variables in a
later SAS session or job, then SAS must be able to access the informats and formats.
Thus, you must use a LIBNAME statement to assign a libref to the library that stores
the catalog that stores the informats or formats.

SAS uses one of two methods when searching for user-defined formats and informats:
� By default, SAS always searches a library that is referenced by the LIBRARY

libref for a FORMATS catalog. If you have only one format catalog, then you
should do the following:

1 Assign the LIBRARY libref to a SAS data library in the SAS session in which
you are running the PROC FORMAT step.

2 Specify LIBRARY=LIBRARY in the PROC FORMAT statement. PROC
FORMAT will store the informats and formats that are defined in that step
in the LIBRARY.FORMATS catalog.

3 In the SAS program that uses your user-defined formats and informats,
include a LIBNAME statement to assign the LIBRARY libref to the library
that contains the permanent format catalog.

� If you have more than one format catalog, or if the format catalog is named
something other than FORMATS, then you should do the following:

1 Assign a libref to a SAS data library in the SAS session in which you are
running the PROC FORMAT step.

2 Specify LIBRARY=libref or LIBRARY=libref.catalog in the PROC FORMAT
step, where libref is the libref that you assigned in step 1.

3 In the SAS program that uses your user-defined formats and informats, use
the FMTSEARCH= option in an OPTIONS statement, and include libref or
libref.catalog in the list of format catalogs.

The syntax for specifying a list of format catalogs to search is

OPTIONS FMTSEARCH=(catalog-specification-1<… catalog-specification-n>);

where each catalog-specification can be libref or libref.catalog. If only libref is specified,
then SAS assumes that the catalog name is FORMATS.

When searching for a format or informat, SAS always searches in WORK.FORMATS
first, and then LIBRARY.FORMATS, unless one of them appears in the FMTSEARCH=
list. SAS searches the catalogs in the FMTSEARCH= list in the order that they are
listed until the format or informat is found.

For further information on FMTSEARCH=, see the section on SAS system options in
SAS Language Reference: Dictionary. For an example that uses the LIBRARY= and
FMTSEARCH= options together, see Example 8 on page 480.

Missing Formats and Informats
If you reference an informat or format that SAS cannot find, then you receive an

error message and processing stops unless the SAS system option NOFMTERR is in
effect. When NOFMTERR is in effect, SAS uses the w. or $w. default format to print
values for variables with formats that it cannot find. For example, to use NOFMTERR,
use this OPTIONS statement:

options nofmterr;

Refer to the section on SAS system options in SAS Language Reference: Dictionary
for more information on NOFMTERR.

458 Results: FORMAT Procedure � Chapter 22

Results: FORMAT Procedure

Output Control Data Set
The output control data set contains information that describes informats or formats.

Output control data sets have a number of uses. For example, an output control data
set can be edited with a DATA step to programmatically change value ranges or can be
subset with a DATA step to create new formats and informats. Additionally, you can
move formats and informats from one operating environment to another by creating an
output control data set, using the CPORT procedure to create a transfer file of the data
set, and then using the CIMPORT and FORMAT procedures in the target operating
environment to create the formats and informats there.

You create an output control data set with the CNTLOUT= option in the PROC
FORMAT statement. You use output control data sets, or a set of observations from an
output control data set, as an input control data set in a subsequent PROC FORMAT
step with the CNTLIN= option.

Output control data sets contain an observation for every value or range in each of
the informats or formats in the LIBRARY= catalog. The data set consists of variables
that give either global information about each format and informat created in the
PROC FORMAT step or specific information about each range and value.

The variables in the output control data set are

DEFAULT
a numeric variable that indicates the default length for format or informat

END
a character variable that gives the range’s ending value

EEXCL
a character variable that indicates whether the range’s ending value is excluded.
Values are

Y the range’s ending value is excluded

N the range’s ending value is not excluded

FILL
for picture formats, a numeric variable whose value is the value of the FILL=
option

FMTNAME
a character variable whose value is the format or informat name

FUZZ
a numeric variable whose value is the value of the FUZZ= option

HLO
a character variable that contains range information about the format or informat
in the form of eight different letters that can appear in any combination. Values
are

F standard SAS format or informat used for formatted value or
informatted value

H range’s ending value is HIGH

I numeric informat range (informat defined with unquoted
numeric range)

The FORMAT Procedure � Output Control Data Set 459

L range’s starting value is LOW

N format or informat has no ranges, including no OTHER= range

O range is OTHER

M MULTILABEL option is in effect

R ROUND option is in effect

S NOTSORTED option is in effect

LABEL
a character variable whose value is the informatted or formatted value or the
name of an existing informat or format

LENGTH
a numeric variable whose value is the value of the LENGTH= option

MAX
a numeric variable whose value is the value of the MAX= option

MIN
a numeric variable whose value is the value of the MIN= option

MULT
a numeric variable whose value is the value of the MULT= option

NOEDIT
for picture formats, a numeric variable whose value indicates whether the
NOEDIT option is in effect. Values are

1 NOEDIT option is in effect

0 NOEDIT option is not in effect

PREFIX
for picture formats, a character variable whose value is the value of the PREFIX=
option

SEXCL
a character variable that indicates whether the range’s starting value is excluded.
Values are

Y the range’s starting value is excluded

N the range’s starting value is not excluded

START
a character variable that gives the range’s starting value

TYPE
a character variable that indicates the type of format. Possible values are

C character format

I numeric informat

J character informat

N numeric format (excluding pictures)

P picture format

Output 22.1 shows an output control data set that contains information on all the
informats and formats created in “Examples: FORMAT Procedure” on page 463.

460 Input Control Data Set � Chapter 22

Output 22.1 Output Control Data Set for PROC FORMAT Examples

An Output Control Data Set 1

D L

F D D A A

M E L P N D I T N

T S L F E R O S E E G A G

N T A A N F E M F E T E E C 3 T U

O A A E B M M U G U F U I D Y X X H S S Y A

b M R N E I A L T Z I L L I P C C L E E P G

s E T D L N X T H Z X T L T E L L O P P E E

1 BENEFIT LOW 7304 WORDDATE20. 1 40 20 20 1E-12 0.00 0 N N N LF

2 BENEFIT 7305 HIGH ** Not Eligible ** 1 40 20 20 1E-12 0.00 0 N N N H

3 NOZEROS LOW -1 00.00 1 40 5 5 1E-12 - 100.00 0 P N N L . ,

4 NOZEROS -1 0 99 1 40 5 5 1E-12 -. 100.00 0 P Y Y . ,

5 NOZEROS 0 1 99 1 40 5 5 1E-12 . 100.00 0 P N Y . ,

6 NOZEROS 1 HIGH 00.00 1 40 5 5 1E-12 100.00 0 P N N H . ,

7 PTSFRMT 0 3 0% 1 40 3 3 1E-12 0.00 0 N N N

8 PTSFRMT 4 6 3% 1 40 3 3 1E-12 0.00 0 N N N

9 PTSFRMT 7 8 6% 1 40 3 3 1E-12 0.00 0 N N N

10 PTSFRMT 9 10 8% 1 40 3 3 1E-12 0.00 0 N N N

11 PTSFRMT 11 HIGH 10% 1 40 3 3 1E-12 0.00 0 N N N H

12 USCURR LOW HIGH 000,000 1 40 7 7 1E-12 $ 1.61 0 P N N LH . ,

13 CITY BR1 BR1 Birmingham UK 1 40 14 14 0 0.00 0 C N N

14 CITY BR2 BR2 Plymouth UK 1 40 14 14 0 0.00 0 C N N

15 CITY BR3 BR3 York UK 1 40 14 14 0 0.00 0 C N N

16 CITY US1 US1 Denver USA 1 40 14 14 0 0.00 0 C N N

17 CITY US2 US2 Miami USA 1 40 14 14 0 0.00 0 C N N

18 CITY **OTHER** **OTHER** INCORRECT CODE 1 40 14 14 0 0.00 0 C N N O

19 EVAL C C 1 1 40 1 1 0 0.00 0 I N N

20 EVAL E E 2 1 40 1 1 0 0.00 0 I N N

21 EVAL N N 0 1 40 1 1 0 0.00 0 I N N

22 EVAL O O 4 1 40 1 1 0 0.00 0 I N N

23 EVAL S S 3 1 40 1 1 0 0.00 0 I N N

You can use the SELECT or EXCLUDE statement to control which formats and
informats are represented in the output control data set. For details, see “SELECT
Statement” on page 447 and “EXCLUDE Statement” on page 434.

Input Control Data Set
You specify an input control data set with the CNTLIN= option in the PROC

FORMAT statement. The FORMAT procedure uses the data in the input control data
set to construct informats and formats. Thus, you can create informats and formats
without writing INVALUE, PICTURE, or VALUE statements.

The input control data set must have these characteristics:

� For both numeric and character formats, the data set must contain the variables
FMTNAME, START, and LABEL, which are described in “Output Control Data
Set” on page 458. The remaining variables are not always required.

� If you are creating a character format or informat, then you must either begin the
format or informat name with a dollar sign ($) or specify a TYPE variable with the
value C.

� If you are creating a PICTURE statement format, then you must specify a TYPE
variable with the value P.

The FORMAT Procedure � Procedure Output 461

� If you are creating a format with ranges of input values, then you must specify the
END variable. If range values are to be noninclusive, then the variables SEXCL
and EEXCL must each have a value of Y. Inclusion is the default.

You can create more than one format from an input control data set if the
observations for each format are grouped together.

You can use a VALUE, INVALUE, or PICTURE statement in the same PROC
FORMAT step with the CNTLIN= option. If the VALUE, INVALUE, or PICTURE
statement is creating the same informat or format that the CNTLIN= option is
creating, then the VALUE, INVALUE, or PICTURE statement creates the informat or
format and the CNTLIN= data set is not used. You can, however, create an informat or
format with VALUE, INVALUE, or PICTURE and create a different informat or format
with CNTLIN= in the same PROC FORMAT step.

For an example featuring an input control data set, see Example 5 on page 472.

Procedure Output
The FORMAT procedure prints output only when you specify the FMTLIB option or

the PAGE option in the PROC FORMAT statement. The printed output is a table for
each format or informat entry in the catalog that is specified in the LIBRARY= option.
The output also contains global information and the specifics of each value or range
that is defined for the format or informat. You can use the SELECT or EXCLUDE
statement to control which formats and informats are represented in the FMTLIB
output. For details, see “SELECT Statement” on page 447 and “EXCLUDE Statement”
on page 434. For an example, see Example 6 on page 477.

The FMTLIB output shown in Output 22.2 contains a description of the NOZEROS.
format, which is created in “Building a Picture Format: Step by Step” on page 443, and
the EVAL. informat, which is created in Example 4 on page 470.

462 Procedure Output � Chapter 22

Output 22.2 Output from PROC FORMAT with the FMTLIB Option

FMTLIB Output for the NOZEROS. Format and the 1
EVAL. Informat

--
| FORMAT NAME: NOZEROS LENGTH: 5 NUMBER OF VALUES: 4 |
MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 5 FUZZ: STD
START
----------------+----------------+--
LOW
-1< 0<99 P-. F M100
0
1
--

--
| INFORMAT NAME: @EVAL LENGTH: 1 NUMBER OF VALUES: 5 |
MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 1 FUZZ: 0
START
----------------+----------------+--
C
E
N
O
S
--

The fields are described below in the order they appear in the output, from left to right:

INFORMAT NAME
FORMAT NAME

the name of the informat or format. Informat names begin with an at-sign (@).

LENGTH
the length of the informat or format. PROC FORMAT determines the length in the
following ways:

� For character informats, the value for LENGTH is the length of the longest
raw data value on the left side of the equals sign.

� For numeric informats

� LENGTH is 12 if all values on the left side of the equals sign are
numeric.

� LENGTH is the same as the longest raw data value on the left side of
the equal sign.

� For formats, the value for LENGTH is the length of the longest value on the
right side of the equal sign.

In the output for @EVAL., the length is 1 because 1 is the length of the longest
raw data value on the left side of the equals sign.

In the output for NOZEROS., the LENGTH is 5 because the longest picture is 5
characters.

NUMBER OF VALUES
the number of values or ranges associated with the informat or format.
NOZEROS. has 4 ranges, EVAL. has 5.

The FORMAT Procedure � Examples: FORMAT Procedure 463

MIN LENGTH
the minimum length of the informat or format. The value for MIN LENGTH is 1
unless you specify a different minimum length with the MIN= option.

MAX LENGTH
the maximum length of the informat or format. The value for MAX LENGTH is 40
unless you specify a different maximum length with the MAX= option.

DEFAULT LENGTH
the length of the longest value in the INVALUE or LABEL field, or the value of
the DEFAULT= option.

FUZZ
the fuzz factor. For informats, FUZZ always is 0. For formats, the value for this
field is STD if you do not use the FUZZ= option. STD signifies the default fuzz
value.

START
the beginning value of a range. FMTLIB prints only the first 16 characters of a
value in the START and END columns.

END
the ending value of a range. The exclusion sign (<) appears after the values in
START and END, if the value is excluded from the range.

INVALUE
LABEL

INVALUE appears only for informats and contains the informatted values.
LABEL appears only for formats and contains either the formatted value or
picture. The SAS release number and the date on which the format or informat
was created are in parentheses after INVALUE or LABEL.

For picture formats, such as NOZEROS., the LABEL section contains the
PREFIX=, FILL=, and MULT= values. To note these values, FMTLIB prints the
letters P, F, and M to represent each option, followed by the value. For example, in
the LABEL section, P-. indicates that the prefix value is a dash followed by a
period.

FMTLIB prints only 40 characters in the LABEL column.

Examples: FORMAT Procedure
Several examples in this section use the PROCLIB.STAFF data set. In addition,

many of the informats and formats that are created in these examples are stored in
LIBRARY.FORMATS. The output data set shown in “Output Control Data Set” on page
458 contains a description of these informats and the formats.

libname proclib ’SAS-data-library’;

Create the data set PROCLIB.STAFF. The INPUT statement assigns the names Name,
IdNumber, Salary, Site, and HireDate to the variables that appear after the DATALINES
statement. The FORMAT statement assigns the standard SAS format DATE7. to the variable
HireDate.

data proclib.staff;
input Name & $16. IdNumber $ Salary

464 Example 1: Creating a Picture Format � Chapter 22

Site $ HireDate date7.;
format hiredate date7.;
datalines;

Capalleti, Jimmy 2355 21163 BR1 30JAN79
Chen, Len 5889 20976 BR1 18JUN76
Davis, Brad 3878 19571 BR2 20MAR84
Leung, Brenda 4409 34321 BR2 18SEP74
Martinez, Maria 3985 49056 US2 10JAN93
Orfali, Philip 0740 50092 US2 16FEB83
Patel, Mary 2398 35182 BR3 02FEB90
Smith, Robert 5162 40100 BR5 15APR86
Sorrell, Joseph 4421 38760 US1 19JUN93
Zook, Carla 7385 22988 BR3 18DEC91
;

The variables are about a small subset of employees who work for a corporation that
has sites in the U.S. and Britain. The data contain the name, identification number,
salary (in British pounds), location, and date of hire for each employee.

Example 1: Creating a Picture Format

Procedure features:
PROC FORMAT statement options:

LIBRARY=

PICTURE statement options:

MULT=
PREFIX=

LIBRARY libref

LOW and HIGH keywords

Data set:
PROCLIB.STAFF on page 463.

This example uses a PICTURE statement to create a format that prints the values
for the variable Salary in the data set PROCLIB.STAFF in U.S. dollars.

Program

Assign two SAS library references (PROCLIB and LIBRARY). Assigning a library
reference LIBRARY is useful in this case because if you use PROC FORMAT, then SAS
automatically searches for informats and formats in any library that is referenced with the
LIBRARY libref.

libname proclib ’SAS-data-library-1 ’;
libname library ’SAS-data-library-2’;

The FORMAT Procedure � Program 465

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Specify that user-defined formats will be stored in the catalog LIBRARY.FORMATS.
The LIBRARY= option specifies a SAS catalog that will contain the formats or informats that
you create with PROC FORMAT. When you create the library named LIBRARY, SAS
automatically creates a catalog named FORMATS inside LIBRARY.

proc format library=library;

Define the USCurrency. picture format. The PICTURE statement creates a template for
printing numbers. LOW-HIGH ensures that all values are included in the range. The MULT=
statement option specifies that each value is multiplied by 1.61. The PREFIX= statement adds a
US dollar sign to any number that you format. The picture contains six digit selectors, five for
the salary and one for the dollar sign prefix.

picture uscurrency low-high=’000,000’ (mult=1.61 prefix=’$’);
run;

Print the PROCLIB.STAFF data set. The NOOBS option suppresses the printing of
observation numbers. The LABEL option uses variable labels instead of variable names for
column headings.

proc print data=proclib.staff noobs label;

Specify a label and format for the Salary variable. The LABEL statement substitutes the
specific label for the variable in the report. In this case, “Salary in US Dollars” is substituted for
the variable Salary for this print job only. The FORMAT statement associates the USCurrency.
format with the variable name Salary for the duration of this procedure step.

label salary=’Salary in U.S. Dollars’;
format salary uscurrency.;

Specify the title.

title ’PROCLIB.STAFF with a Format for the Variable Salary’;
run;

466 Output � Chapter 22

Output

PROCLIB.STAFF with a Format for the Variable Salary 1

Salary in
Id U.S. Hire

Name Number Dollars Site Date

Capalleti, Jimmy 2355 $34,072 BR1 30JAN79
Chen, Len 5889 $33,771 BR1 18JUN76
Davis, Brad 3878 $31,509 BR2 20MAR84
Leung, Brenda 4409 $55,256 BR2 18SEP74
Martinez, Maria 3985 $78,980 US2 10JAN93
Orfali, Philip 0740 $80,648 US2 16FEB83
Patel, Mary 2398 $56,643 BR3 02FEB90
Smith, Robert 5162 $64,561 BR5 15APR86
Sorrell, Joseph 4421 $62,403 US1 19JUN93
Zook, Carla 7385 $37,010 BR3 18DEC91

Example 2: Creating a Format for Character Values
Procedure features:

VALUE statement
OTHER keyword

Data set:
PROCLIB.STAFF on page 463.

Format: USCurrency. on page 465

This example uses a VALUE statement to create a character format that prints a
value of a character variable as a different character string.

Program

Assign two SAS library references (PROCLIB and LIBRARY). Assigning a library
reference LIBRARY is useful in this case because if you use PROC FORMAT, then SAS
automatically searches for informats and formats in any library that is referenced with the
LIBRARY libref.

libname proclib ’SAS-data-library-1’;
libname library ’SAS-data-library-2’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

The FORMAT Procedure � Program 467

Create the catalog named LIBRARY.FORMATS, where the user-defined formats will be
stored. The LIBRARY= option specifies a permanent storage location for the formats that you
create. It also creates a catalog named FORMAT in the specified library. If you do not use
LIBRARY=, then SAS temporarily stores formats and informats that you create in a catalog
named WORK.FORMATS.

proc format library=library;

Define the $CITY. format. The special codes BR1, BR2, and so on, are converted to the names
of the corresponding cities. The keyword OTHER specifies that values in the data set that do
not match any of the listed city code values are converted to the value INCORRECT CODE.

value $city ’BR1’=’Birmingham UK’
’BR2’=’Plymouth UK’
’BR3’=’York UK’
’US1’=’Denver USA’
’US2’=’Miami USA’
other=’INCORRECT CODE’;

run;

Print the PROCLIB.STAFF data set. The NOOBS option suppresses the printing of
observation numbers. The LABEL option uses variable labels instead of variable names for
column headings.

proc print data=proclib.staff noobs label;

Specify a label for the Salary variable. The LABEL statement substitutes the label “Salary
in U.S. Dollars” for the name SALARY.

label salary=’Salary in U.S. Dollars’;

Specify formats for Salary and Site. The FORMAT statement temporarily associates the
USCurrency. format (created in Example 1 on page 464) with the variable SALARY and also
temporarily associates the format $CITY. with the variable SITE.

format salary uscurrency. site $city.;

Specify the titles.

title ’PROCLIB.STAFF with a Format for the Variables’;
title2 ’Salary and Site’;

run;

468 Output � Chapter 22

Output

PROCLIB.STAFF with a Format for the Variables 1
Salary and Site

Salary in
Id U.S. Hire

Name Number Dollars Site Date

Capalleti, Jimmy 2355 $34,072 Birmingham UK 30JAN79
Chen, Len 5889 $33,771 Birmingham UK 18JUN76
Davis, Brad 3878 $31,509 Plymouth UK 20MAR84
Leung, Brenda 4409 $55,256 Plymouth UK 18SEP74
Martinez, Maria 3985 $78,980 Miami USA 10JAN93
Orfali, Philip 0740 $80,648 Miami USA 16FEB83
Patel, Mary 2398 $56,643 York UK 02FEB90
Smith, Robert 5162 $64,561 INCORRECT CODE 15APR86
Sorrell, Joseph 4421 $62,403 Denver USA 19JUN93
Zook, Carla 7385 $37,010 York UK 18DEC91

Example 3: Writing a Format for Dates Using a Standard SAS Format

Procedure features:
VALUE statement:

HIGH keyword
Data set:

PROCLIB.STAFF on page 463.
Formats:

USCurrency. on page 465 and $CITY. on page 467.

This example uses an existing format that is supplied by SAS as a formatted value.
Tasks include
� creating a numeric format
� nesting formats
� writing a format using a standard SAS format
� formatting dates.

Program
This program defines a format called BENEFIT, which differentiates between

employees hired on or before 31DEC1979. The purpose of this program is to indicate
any employees who are eligible to receive a benefit, based on a hire date on or prior to
December 31, 1979. All other employees with a later hire date are listed as ineligible
for the benefit.

The FORMAT Procedure � Program 469

Assign two SAS library references (PROCLIB and LIBRARY). Assigning a library
reference LIBRARY is useful in this case because if you use PROC FORMAT, then SAS
automatically searches for informats and formats in any library that is referenced with the
LIBRARY libref.

libname proclib ’SAS-data-library-1’;
libname library ’SAS-data-library-2’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Store the BENEFIT. format in the catalog LIBRARY.FORMATS. The LIBRARY= option
specifies the permanent storage location LIBRARY for the formats that you create. If you do not
use LIBRARY=, then SAS temporarily stores formats and informats that you create in a catalog
named WORK.FORMATS.

proc format library=library;

Define the first range in the BENEFIT. format. This first range differentiates between the
employees who were hired on or before 31DEC1979 and those who were hired after that date.
The keyword LOW and the SAS date constant ’31DEC1979’D create the first range, which
includes all date values that occur on or before December 31, 1979. For values that fall into this
range, SAS applies the WORDDATEw. format.*

value benefit low-’31DEC1979’d=[worddate20.]

Define the second range in the BENEFIT. format. The second range consists of all dates on
or after January 1, 1980. The SAS date constant ’01JAN1980’D and the keyword HIGH specify
the range. Values that fall into this range receive ** Not Eligible ** as a formatted value.

’01JAN1980’d-high=’ ** Not Eligible **’;
run;

Print the data set PROCLIB.STAFF. The NOOBS option suppresses the printing of
observation numbers. The LABEL option uses variable labels instead of variable names for
column headings.

proc print data=proclib.staff noobs label;

* For more information about SAS date constants, see the section on dates, times, and intervals in SAS Language Reference:
Concepts. For complete documentation on WORDDATEw., see the section on formats in SAS Language Reference: Dictionary.

470 Output � Chapter 22

Specify a label for the Salary variable. The LABEL statement substitutes the label “Salary
in U.S. Dollars” for the name SALARY.

label salary=’Salary in U.S. Dollars’;

Specify formats for Salary, Site, and Hiredate. The FORMAT statement associates the
USCurrency. format (created in Example 1 on page 464) with SALARY, the $CITY. format
(created in Example 2 on page 466) with SITE, and the BENEFIT. format with HIREDATE.

format salary uscurrency. site $city. hiredate benefit.;

Specify the titles.

title ’PROCLIB.STAFF with a Format for the Variables’;
title2 ’Salary, Site, and HireDate’;

run;

Output

PROCLIB.STAFF with a Format for the Variables 1
Salary, Site, and HireDate

Salary in
Id U.S.

Name Number Dollars Site HireDate

Capalleti, Jimmy 2355 $34,072 Birmingham UK January 30, 1979
Chen, Len 5889 $33,771 Birmingham UK June 18, 1976
Davis, Brad 3878 $31,509 Plymouth UK ** Not Eligible **
Leung, Brenda 4409 $55,256 Plymouth UK September 18, 1974
Martinez, Maria 3985 $78,980 Miami USA ** Not Eligible **
Orfali, Philip 0740 $80,648 Miami USA ** Not Eligible **
Patel, Mary 2398 $56,643 York UK ** Not Eligible **
Smith, Robert 5162 $64,561 INCORRECT CODE ** Not Eligible **
Sorrell, Joseph 4421 $62,403 Denver USA ** Not Eligible **
Zook, Carla 7385 $37,010 York UK ** Not Eligible **

Example 4: Converting Raw Character Data to Numeric Values
Procedure feature:

INVALUE statement

This example uses an INVALUE statement to create a numeric informat that
converts numeric and character raw data to numeric data.

Program
This program converts quarterly employee evaluation grades, which are alphabetic,

into numeric values so that reports can be generated that sum the grades up as points.

The FORMAT Procedure � Program 471

Set up two SAS library references, one named PROCLIB and the other named
LIBRARY.

libname proclib ’SAS-data-library-1’;
libname library ’SAS-data-library-2’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=64 pagesize=40;

Store the Evaluation. informat in the catalog LIBRARY.FORMATS.

proc format library=library;

Create the numeric informat Evaluation. The INVALUE statement converts the specified
values. The letters O (Outstanding), S (Superior), E (Excellent), C (Commendable), and N (None)
correspond to the numbers 4, 3, 2, 1, and 0, respectively.

invalue evaluation ’O’=4
’S’=3
’E’=2
’C’=1
’N’=0;

run;

Create the PROCLIB.POINTS data set. The instream data, which immediately follows the
DATALINES statement, contains a unique identification number (EmployeeId) and bonus
evaluations for each employee for each quarter of the year (Q1–Q4). Some of the bonus
evaluation values that are listed in the data lines are numbers; others are character values.
Where character values are listed in the data lines, the Evaluation. informat converts the value
O to 4, the value S to 3, and so on. The raw data values 0 through 4 are read as themselves
because they are not referenced in the definition of the informat. Converting the letter values to
numbers makes it possible to calculate the total number of bonus points for each employee for
the year. TotalPoints is the total number of bonus points.

data proclib.points;
input EmployeeId $ (Q1-Q4) (evaluation.,+1);
TotalPoints=sum(of q1-q4);
datalines;

2355 S O O S
5889 2 2 2 2
3878 C E E E
4409 0 1 1 1
3985 3 3 3 2
0740 S E E S
2398 E E C C

472 Output � Chapter 22

5162 C C C E
4421 3 2 2 2
7385 C C C N
;

Print the PROCLIB.POINTS data set. The NOOBS option suppresses the printing of
observation numbers.

proc print data=proclib.points noobs;

Specify the title.

title ’The PROCLIB.POINTS Data Set’;
run;

Output

The PROCLIB.POINTS Data Set 1

Employee Total
Id Q1 Q2 Q3 Q4 Points

2355 3 4 4 3 14
5889 2 2 2 2 8
3878 1 2 2 2 7
4409 0 1 1 1 3
3985 3 3 3 2 11
0740 3 2 2 3 10
2398 2 2 1 1 6
5162 1 1 1 2 5
4421 3 2 2 2 9
7385 1 1 1 0 3

Example 5: Creating a Format from a Data Set

Procedure features:
PROC FORMAT statement option:

CNTLIN=
Input control data set

Data set:
WORK.POINTS, created from data lines in the sample code.

The FORMAT Procedure � Program 473

This example shows how to create a format from a SAS data set.
Tasks include
� creating a format from an input control data set
� creating an input control data set from an existing SAS data set.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create a temporary data set named scale. The first two variables in the data lines, called
BEGIN and END, will be used to specify a range in the format. The third variable in the data
lines, called AMOUNT, contains a percentage that will be used as the formatted value in the
format. Note that all three variables are character variables as required for PROC FORMAT
input control data sets.

data scale;
input begin $ 1-2 end $ 5-8 amount $ 10-12;
datalines;

0 3 0%
4 6 3%
7 8 6%
9 10 8%
11 16 10%
;

Create the input control data set CTRL and set the length of the LABEL variable. The
LENGTH statement ensures that the LABEL variable is long enough to accommodate the label
ERROR.

data ctrl;
length label $ 11;

Rename variables and create an end-of-file flag. The data set CTRL is derived from
WORK.SCALE. RENAME= renames BEGIN and AMOUNT as START and LABEL,
respectively. The END= option creates the variable LAST, whose value is set to 1 when the last
observation is processed.

set scale(rename=(begin=start amount=label)) end=last;

474 Program � Chapter 22

Create the variables FMTNAME and TYPE with fixed values. The RETAIN statement is
more efficient than an assignment statement in this case. RETAIN retains the value of
FMTNAME and TYPE in the program data vector and eliminates the need for the value to be
written on every iteration of the DATA step. FMTNAME specifies the name PercentageFormat,
which is the format that the input control data set creates. The TYPE variable specifies that the
input control data set will create a numeric format.

retain fmtname ’PercentageFormat’ type ’n’;

Write the observation to the output data set.

output;

Create an “other” category. Because the only valid values for this application are 0–16, any
other value (such as missing) should be indicated as an error to the user. The IF statement
executes only after the DATA step has processed the last observation from the input data set.
When IF executes, HLO receives a value of O to indicate that the range is OTHER, and LABEL
receives a value of ***ERROR***. The OUTPUT statement writes these values as the last
observation in the data set. HLO has missing values for all other observations.

if last then do;
hlo=’O’;
label=’***ERROR***’;
output;

end;
run;

Print the control data set, CTRL. The NOOBS option suppresses the printing of observation
numbers.

proc print data=ctrl noobs;

Specify the title.

title ’The CTRL Data Set’;
run;

The FORMAT Procedure � Program 475

Note that although the last observation contains values for START and END, these values are ignored because
of the O value in the HLO variable.

The CTRL Data Set 1

label start end fmtname type hlo

0% 0 3 PercentageFormat n

3% 4 6 PercentageFormat n

6% 7 8 PercentageFormat n

8% 9 10 PercentageFormat n

10% 11 16 PercentageFormat n

ERROR 11 16 PercentageFormat n O

Store the created format in the catalog WORK.FORMATS and specify the source for
the format. The CNTLIN= option specifies that the data set CTRL is the source for the format
PTSFRMT.

proc format library=work cntlin=ctrl;
run;

Create the numeric informat Evaluation. The INVALUE statement converts the specified
values. The letters O (Outstanding), S (Superior), E (Excellent), C (Commendable), and N (None)
correspond to the numbers 4, 3, 2, 1, and 0, respectively.

proc format;
invalue evaluation ’O’=4

’S’=3
’E’=2
’C’=1
’N’=0;

run;

Create the WORK.POINTS data set. The instream data, which immediately follows the
DATALINES statement, contains a unique identification number (EmployeeId) and bonus
evaluations for each employee for each quarter of the year (Q1–Q4). Some of the bonus
evaluation values that are listed in the data lines are numbers; others are character values.
Where character values are listed in the data lines, the Evaluation. informat converts the value
O to 4, the value S to 3, and so on. The raw data values 0 through 4 are read as themselves
because they are not referenced in the definition of the informat. Converting the letter values to
numbers makes it possible to calculate the total number of bonus points for each employee for
the year. TotalPoints is the total number of bonus points. The addition operator is used instead
of the SUM function so that any missing value will result in a missing value for TotalPoints.

data points;
input EmployeeId $ (Q1-Q4) (evaluation.,+1);
TotalPoints=q1+q2+q3+q4;
datalines;

2355 S O O S
5889 2 . 2 2

476 Output � Chapter 22

3878 C E E E
4409 0 1 1 1
3985 3 3 3 2
0740 S E E S
2398 E E C
5162 C C C E
4421 3 2 2 2
7385 C C C N
;

Generate a report for WORK.POINTS and associate the PTSFRMT. format with the
TotalPoints variable. The DEFINE statement performs the association. The column that
contains the formatted values of TotalPoints is using the alias Pctage. Using an alias enables
you to print a variable twice, once with a format and once with the default format. See Chapter
42, “The REPORT Procedure,” on page 845 for more information about PROC REPORT.

proc report data=work.points nowd headskip split=’#’;
column employeeid totalpoints totalpoints=Pctage;
define employeeid / right;
define totalpoints / ’Total#Points’ right;
define pctage / format=PercentageFormat12. ’Percentage’ left;
title ’The Percentage of Salary for Calculating Bonus’;

run;

Output

Output 22.3

The Percentage of Salary for Calculating Bonus 1

Employee Total

Id Points Percentage

2355 14 10%

5889 . ***ERROR***

3878 7 6%

4409 3 0%

3985 11 10%

0740 10 8%

2398 . ***ERROR***

5162 5 3%

4421 9 8%

7385 3 0%

The FORMAT Procedure � Program 477

Example 6: Printing the Description of Informats and Formats
Procedure features:

PROC FORMAT statement option:
FMTLIB

SELECT statement
Format:

NOZEROS on page 444.
Informat:

Evaluation. on page 471

This example illustrates how to print a description of an informat and a format. The
description shows the values that are input and output.

Program

Set up a SAS library reference named LIBRARY.

libname library ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Print a description of Evaluation. and NOZEROS. The FMTLIB option prints information
about the formats and informats in the catalog that the LIBRARY= option specifies.
LIBRARY=LIBRARY points to the LIBRARY.FORMATS catalog.

proc format library=library fmtlib;

Select an informat and a format. The SELECT statement selects EVAL and NOZEROS,
which were created in previous examples. The at sign (@) in front of EVAL indicates that EVAL.
is an informat.

select @evaluation nozeros;

Specify the titles.

title ’FMTLIB Output for the NOZEROS. Format and the’;
title2 ’Evaluation. Informat’;

run;

478 Output � Chapter 22

Output

The output is described in “Procedure Output” on page 461.

FMTLIB Output for the NOZEROS. Format and the 1
Evaluation. Informat

--
| FORMAT NAME: NOZEROS LENGTH: 5 NUMBER OF VALUES: 4 |
MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 5 FUZZ: STD
START
----------------+----------------+--
LOW
-1< 0<99 P-. F M100
0
1
--

--
| INFORMAT NAME: @EVALUATION LENGTH: 1 |
MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 1 FUZZ: 0
START
----------------+----------------+--
C
E
N
O
S
--

Example 7: Retrieving a Permanent Format

Procedure features:
PROC FORMAT statement options:

LIBRARY=
Other features:

FMTSEARCH= system option
Data sets:

SAMPLE on page 443.

This example uses the LIBRARY= option and the FMTSEARCH= system option to
store and retrieve a format stored in a catalog other than WORK.FORMATS or
LIBRARY.FORMATS.

The FORMAT Procedure � Program 479

Program

Set up a SAS library reference named PROCLIB.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=64 pagesize=60;

Store the NOZEROS. format in the PROCLIB.FORMATS catalog.

proc format library=proclib;

Create the NOZEROS. format. The PICTURE statement defines the picture format
NOZEROS. See “Building a Picture Format: Step by Step” on page 443.

picture nozeros
low - -1 = ’00.00’ (prefix=’-’)

-1 <-< 0 = ’99’ (prefix=’-.’ mult=100)
0 -< 1 = ’99’ (prefix=’.’ mult=100)
1 - high = ’00.00’;

run;

Add the PROCLIB.FORMATS catalog to the search path that SAS uses to find
user-defined formats. The FMTSEARCH= system option defines the search path. The
FMTSEARCH= system option requires only a libref. FMTSEARCH= assumes that the catalog
name is FORMATS if no catalog name appears. Without the FMTSEARCH= option, SAS would
not find the NOZEROS. format.*

options fmtsearch=(proclib);

Print the SAMPLE data set. The FORMAT statement associates the NOZEROS. format with
the Amount variable.

proc print data=sample;
format amount nozeros.;

* For complete documentation on the FMTSEARCH= system option, see the section on SAS system options in SAS Language
Reference: Dictionary.

480 Output � Chapter 22

Specify the titles.

title1 ’Retrieving the NOZEROS. Format from PROCLIB.FORMATS’;
title2 ’The SAMPLE Data Set’;

run;

Output

Retrieving the NOZEROS. Format from PROCLIB.FORMATS 1
The SAMPLE Data Set

Obs Amount

1 -2.05
2 -.05
3 -.01
4 .00
5 .09
6 .54
7 .55
8 6.60
9 14.63

Example 8: Writing Ranges for Character Strings

Data sets:
PROCLIB.STAFF on page 463.

This example creates a format and shows how to use ranges with character strings.

Program

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

The FORMAT Procedure � Program 481

Create the TRAIN data set from the PROCLIB.STAFF data set. PROCLIB.STAFF was
created in “Examples: FORMAT Procedure” on page 463.

data train;
set proclib.staff(keep=name idnumber);

run;

Print the data set TRAIN without a format. The NOOBS option suppresses the printing of
observation numbers.

proc print data=train noobs;

Specify the title.

title ’The TRAIN Data Set without a Format’;
run;

The TRAIN Data Set without a Format 1

Id
Name Number

Capalleti, Jimmy 2355
Chen, Len 5889
Davis, Brad 3878
Leung, Brenda 4409
Martinez, Maria 3985
Orfali, Philip 0740
Patel, Mary 2398
Smith, Robert 5162
Sorrell, Joseph 4421
Zook, Carla 7385

Store the format in WORK.FORMATS. Because the LIBRARY= option does not appear, the
format is stored in WORK.FORMATS and is available only for the current SAS session.

proc format;

Create the $SkillTest. format. The $SKILL. format prints each employee’s identification
number and the skills test that they have been assigned. Employees must take either TEST A,
TEST B, or TEST C, depending on their last name. The exclusion operator (<) excludes the last
value in the range. Thus, the first range includes employees whose last name begins with any
letter from A through D, and the second range includes employees whose last name begins with
any letter from E through M. The tilde (~) in the last range is necessary to include an entire
string that begins with the letter Z.

value $skilltest ’a’-<’e’,’A’-<’E’=’Test A’
’e’-<’m’,’E’-<’M’=’Test B’
’m’-’z~’,’M’-’Z~’=’Test C’;

run;

482 Output � Chapter 22

Generate a report of the TRAIN data set. The FORMAT= option in the DEFINE statement
associates $SkillTest. with the NAME variable. The column that contains the formatted values
of NAME is using the alias Test. Using an alias enables you to print a variable twice, once with
a format and once with the default format. See Chapter 42, “The REPORT Procedure,” on page
845for more information about PROC REPORT.

proc report data=train nowd headskip;
column name name=test idnumber;
define test / display format=$skilltest. ’Test’;
define idnumber / center;
title ’Test Assignment for Each Employee’;

run;

Output

Test Assignment for Each Employee 1

Name Test IdNumber

Capalleti, Jimmy Test A 2355
Chen, Len Test A 5889
Davis, Brad Test A 3878
Leung, Brenda Test B 4409
Martinez, Maria Test C 3985
Orfali, Philip Test C 0740
Patel, Mary Test C 2398
Smith, Robert Test C 5162
Sorrell, Joseph Test C 4421
Zook, Carla Test C 7385

The FORMAT Procedure � Program 483

Example 9: Filling a Picture Format

Procedure features:
PICTURE statement options:

FILL=
PREFIX=

This example

� prefixes the formatted value with a specified character

� fills the leading blanks with a specified character

� shows the interaction between the FILL= and PREFIX= options.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=64 pagesize=40;

Create the PAY data set. The PAY data set contains the monthly salary for each employee.

data pay;
input Name $ MonthlySalary;
datalines;

Liu 1259.45
Lars 1289.33
Kim 1439.02
Wendy 1675.21
Alex 1623.73
;

Define the SALARY. picture format and specify how the picture will be filled. When
FILL= and PREFIX= PICTURE statement options appear in the same picture, the format
places the prefix and then the fill characters. The SALARY. format fills the picture with the fill
character because the picture has zeros as digit selectors. The leftmost comma in the picture is
replaced by the fill character.

proc format;
picture salary low-high=’00,000,000.00’ (fill=’*’ prefix=’$’);

run;

484 Output � Chapter 22

Print the PAY data set. The NOOBS option suppresses the printing of observation numbers.
The FORMAT statement temporarily associates the SALARY. format with the variable
MonthlySalary.

proc print data=pay noobs;
format monthlysalary salary.;

Specify the title.

title ’Printing Salaries for a Check’;
run;

Output

Printing Salaries for a Check 1

Name MonthlySalary

Liu ****$1,259.45
Lars ****$1,289.33
Kim ****$1,439.02
Wendy ****$1,675.21
Alex ****$1,623.73

See Also
FMTSEARCH= System option
VALIDFMTNAME= System option
FORMAT Statement

485

C H A P T E R

23
The FORMS Procedure

Information about the FORMS Procedure 485

Information about the FORMS Procedure
See: For documentation of the FORMS procedure, go to http://support.sas.com/
documentation/onlinedoc. Select Base SAS from the Product-Specific Documentation
list.

486

487

C H A P T E R

24
The FREQ Procedure

Information about the FREQ Procedure 487

Information about the FREQ Procedure
See: The documentation for the FREQ procedure has moved to Volume 3 of this book.

488

489

C H A P T E R

25
The FSLIST Procedure

Overview: FSLIST Procedure 489
Syntax: FSLIST Procedure 489

Statement Descriptions 490

PROC FSLIST Statement 490

FSLIST Command 492

Using the FSLIST Window 494
General Information about the FSLIST Window 494

FSLIST Window Commands 494

Global Commands 494

Scrolling Commands 494

Searching Commands 496

Display Commands 498
Other Commands 499

Overview: FSLIST Procedure
The FSLIST procedure enables you to browse external files that are not SAS data

sets within a SAS session. Because the files are displayed in an interactive window, the
procedure provides a highly convenient mechanism for examining file contents. In
addition, you can copy text from the FSLIST window into any window that uses the
SAS Text Editor.

Syntax: FSLIST Procedure
PROC FSLIST

FILEREF=file-specification|UNIT=nn <option(s)>;

� You must specify either the FILEREF= or the UNIT= argument with the PROC
FSLIST statement.

� Option(s) can be one or more of the following:

CAPS|NOCAPS

CC|FORTCC|NOCC
HSCROLL=HALF|PAGE|n

NOBORDER

490 Statement Descriptions � Chapter 25

NUM|NONUM
OVP|NOOVP

Statement Descriptions

The only statement that the FSLIST procedure supports is the PROC FSLIST
statement, which starts the procedure.

Requirements
You must specify an external file for PROC FSLIST to browse.

FSLIST Command
The FSLIST procedure can also be initiated by entering the following command on

the command line of any SAS window:

FSLIST <*|?| file-specification <carriage-control-option <overprinting-option>>>

where carriage-control-option can be CC, FORTCC, or NOCC and overprinting-option
can be OVP or NOOVP.

Note: OVP is ignored if NOCC is in effect. �

PROC FSLIST Statement

The PROC FSLIST statement initiates the FSLIST procedure and specifies the
external file to browse. Statement options enable you to modify the default behavior of
the procedure.

PROC FSLIST Statement Requirements
The PROC FSLIST statement must include one of the following arguments that

specifies the external file to browse.

FILEREF=file-specification
DDNAME=file-specification
DD=file-specification

specifies the external file to browse. file-specification can be one of the following:

’external-file’
is the complete operating environment file specification (called the fully qualified
pathname under some operating environments) for the external file. You must
enclose the name in quotation marks.

fileref
is a fileref that has been previously assigned to the external file. You can use the
FILENAME statement to associate a fileref with an actual filename. For
information about the FILENAME statement, see the section on statements in
SAS Language Reference: Dictionary.

The FSLIST Procedure � PROC FSLIST Statement 491

UNIT=nn
defines the FORTRAN-style logical unit number of the external file to browse. This
option is useful when the file to browse has a fileref of the form FTnnF001, where nn
is the logical unit number that is specified in the UNIT= argument. For example, you
can specify

proc fslist unit=20;

instead of

proc fslist fileref=ft20f001;

PROC FSLIST Statement Options
The following options can be used with the PROC FSLIST statement:

CAPS | NOCAPS
controls how search strings for the FIND command are treated:

CAPS converts search strings into uppercase unless they are enclosed in
quotation marks. For example, with this option in effect, the
command

find nc

locates occurrences of NC, but not nc. To locate lowercase
characters, enclose the search string in quotation marks:

find ’nc’

NOCAPS does not perform a translation; the FIND command locates only
those text strings that exactly match the search string.

The default is NOCAPS. You can use the CAPS command in the FSLIST window to
change the behavior of the procedure while you are browsing a file.

CC | FORTCC | NOCC
indicates whether carriage-control characters are used to format the display. You can
specify one of the following values for this option:

CC uses the native carriage-control characters of the operating
environment.

FORTCC uses FORTRAN-style carriage control. The first column of each
line in the external file is not displayed; the character in this
column is interpreted as a carriage-control code. The FSLIST
procedure recognizes the following carriage-control characters:

+ skip zero lines and print (overprint)

blank skip one line and print (single space)

0 skip two lines and print (double space)

- skip three lines and print (triple space)

1 go to new page and print.

NOCC treats carriage-control characters as regular text.

If the FSLIST procedure can determine from the file’s attributes that the file
contains carriage-control information, then that carriage-control information is used
to format the displayed text (the CC option is the default). Otherwise, the entire
contents of the file are treated as text (the NOCC option the default).

492 FSLIST Command � Chapter 25

Note: Under some operating environments, FORTRAN-style carriage control is
the native carriage control. For these environments, the FORTCC and CC options
produce the same behavior. �

HSCROLL=n|HALF|PAGE
indicates the default horizontal scroll amount for the LEFT and RIGHT commands.
The following values are valid:

n sets the default scroll amount to n columns.

HALF sets the default scroll amount to half the window width.

PAGE sets the default scroll amount to the full window width.
The default is HSCROLL=HALF. You can use the HSCROLL command in the

FSLIST window to change the default scroll amount.

NOBORDER
suppresses the sides and bottom of the FSLIST window’s border. When this option is
used, text can appear in the columns and row that are normally occupied by the
border.

NUM | NONUM
controls the display of line sequence numbers in files that have a record length of 80
and contain sequence numbers in columns 73 through 80. NUM displays the line
sequence numbers; NONUM suppresses them. The default is NONUM.

OVP| NOOVP
indicates whether the carriage-control code for overprinting is honored:

OVP causes the procedure to honor the overprint code and print the
current line over the previous line when the code is encountered.

NOOVP causes the procedure to ignore the overprint code and print each
line from the file on a separate line of the display.

The default is NOOVP. The OVP option is ignored if the NOCC option is in effect.

FSLIST Command

The FSLIST command provides a handy way to initiate an FSLIST session from any
SAS window. The command enables you to use either a fileref or a filename to specify
the file to browse. It also enables you to specify how carriage-control information is
interpreted.

FSLIST Command Syntax

The general form of the FSLIST command is

FSLIST <*|?| file-specification <carriage-control-option <overprinting-option>>>

where carriage-control-option can be CC, FORTCC, or NOCC and overprinting-option
can be OVP or NOOVP.

Note: OVP is ignored if NOCC is in effect. �

The FSLIST Procedure � FSLIST Command 493

FSLIST Command Arguments
You can specify one of the following arguments with the FSLIST command:

*
opens a dialog window in which you can specify the name of the file to browse, along
with various FSLIST procedure options. In the dialog window, you can specify either
a physical filename, a fileref, or a directory name. If you specify a directory name,
then a selection list of the files in the directory appears, from which you can choose
the desired file.

?
opens a selection window from which you can choose the external file to browse. The
selection list in the window includes all external files that are identified in the
current SAS session (all files with defined filerefs).

Note: Only filerefs that are defined within the current SAS session appear in the
selection list. Under some operating environments, it is possible to allocate filerefs
outside of SAS. Such filerefs do not appear in the selection list that is displayed by
the FSLIST command. �

To select a file, position the cursor on the corresponding fileref and press ENTER.

Note: The selection window is not opened if no filerefs have been defined in the
current SAS session. Instead, an error message is printed, instructing you to enter a
filename with the FSLIST command. �

file-specification
identifies the external file to browse. file-specification can be one of the following:

’external-file’
the complete operating environment file specification (called the fully qualified
pathname under some operating environments) for the external file. You must
enclose the name in quotation marks.

If the specified file is not found, then a selection window opens that shows all
available filerefs.

fileref
a fileref that is currently assigned to an external file. If you specify a fileref that is
not currently defined, then a selection window opens that shows all available
filerefs. An error message in the selection window indicates that the specified
fileref is not defined.

If you do not specify any of these three arguments, then a selection window opens
that enables you to select an external filename.

FSLIST Command Options
If you use a file-specification with the FSLIST command, then you can also use the

following options. These options are not valid with the ? argument, or when no
argument is used:

CC | FORTCC | NOCC
indicates whether carriage-control characters are used to format the display. You can
specify one of the following values for this option:

CC uses the native carriage-control characters of the operating
environment.

FORTCC uses FORTRAN-style carriage control. See the discussion of the
PROC FSLIST statement’s FORTCC option on page 491 for
details.

494 Using the FSLIST Window � Chapter 25

NOCC treats carriage-control characters as regular text.
If the FSLIST procedure can determine from the file’s attributes that the file

contains carriage-control information, then that carriage-control information is used
to format the displayed text (the CC option is the default). Otherwise, the entire
contents of the file are treated as text (the NOCC option is the default).

OVP | NOOVP
indicates whether the carriage-control code for overprinting is honored. OVP causes
the overprint code to be honored; NOOVP causes it to be ignored. The default is
NOOVP. The OVP option is ignored if NOCC is in effect.

Using the FSLIST Window

General Information about the FSLIST Window
The FSLIST window displays files for browsing only. You cannot edit files in the

FSLIST window. However, you can copy text from the FSLIST window into a paste
buffer by doing one of the following, depending on your operating environment:

� use a mouse to select text, and select Copy from the Edit menu
� use the global MARK and STORE commands.

Depending on your operating environment, this text can then be pasted into any SAS
window that uses the SAS text editor, including the FSLETTER window in SAS/FSP
software, or into any other application that allows pasting of text.

You can use commands in the command window or command line to control the
FSLIST window.

FSLIST Window Commands

Global Commands
In the FSLIST window, you can use any of the global commands that are described in

the “Global Commands” chapter in SAS/FSP Procedures Guide.

Scrolling Commands
n

scrolls the window so that line n of text is at the top of the window. Type the
desired line number in the command window or on the command line and press
ENTER. If n is greater than the number of lines in the file, then the last few lines
of the file are displayed at the top of the window.

BACKWARD <n|HALF|PAGE|MAX>
scrolls vertically toward the first line of the file. The following scroll amounts can
be specified:

n
scrolls upward by the specified number of lines.

HALF
scrolls upward by half the number of lines in the window.

The FSLIST Procedure � FSLIST Window Commands 495

PAGE
scrolls upward by the number of lines in the window.

MAX
scrolls upward until the first line of the file is displayed.

If the scroll amount is not explicitly specified, then the window is scrolled by the
amount that was specified in the most recent VSCROLL command. The default
VSCROLL amount is PAGE.

BOTTOM
scrolls downward until the last line of the file is displayed.

FORWARD <n|HALF|PAGE|MAX>
scrolls vertically toward the end of the file. The following scroll amounts can be
specified:

n
scrolls downward by the specified number of lines.

HALF
scrolls downward by half the number of lines in the window.

PAGE
scrolls downward by the number of lines in the window.

MAX
scrolls downward until the first line of the file is displayed.

If the scroll amount is not explicitly specified, then the window is scrolled by the
amount that was specified in the most recent VSCROLL command. The default
VSCROLL amount is PAGE. Regardless of the scroll amount, this command does
not scroll beyond the last line of the file.

HSCROLL <n|HALF|PAGE>
sets the default horizontal scrolling amount for the LEFT and RIGHT commands.
The following scroll amounts can be specified:

n
sets the default scroll amount to the specified number of columns.

HALF
sets the default scroll amount to half the number of columns in the window.

PAGE
sets the default scroll amount to the number of columns in the window.

The default HSCROLL amount is HALF.

LEFT <n|HALF|PAGE|MAX>
scrolls horizontally toward the left margin of the text. This command is ignored
unless the file width is greater than the window width. The following scroll
amounts can be specified:

n
scrolls left by the specified number of columns.

HALF
scrolls left by half the number of columns in the window.

PAGE
scrolls left by the number of columns in the window.

496 FSLIST Window Commands � Chapter 25

MAX
scrolls left until the left margin of the text is displayed at the left edge of the
window.

If the scroll amount is not explicitly specified, then the window is scrolled by the
amount that was specified in the most recent HSCROLL command. The default
HSCROLL amount is HALF. Regardless of the scroll amount, this command does
not scroll beyond the left margin of the text.

RIGHT <n|HALF|PAGE|MAX>
scrolls horizontally toward the right margin of the text. This command is ignored
unless the file width is greater than the window width. The following scroll
amounts can be specified:

n
scrolls right by the specified number of columns.

HALF
scrolls right by half the number of columns in the window.

PAGE
scrolls right by the number of columns in the window.

MAX
scrolls right until the right margin of the text is displayed at the left edge of
the window.

If the scroll amount is not explicitly specified, then the window is scrolled by the
amount that was specified in the most recent HSCROLL command. The default
HSCROLL amount is HALF. Regardless of the scroll amount, this command does
not scroll beyond the right margin of the text.

TOP
scrolls upward until the first line of text from the file is displayed.

VSCROLL <n|HALF|PAGE>
sets the default vertical scrolling amount for the FORWARD and BACKWARD
commands. The following scroll amounts can be specified:

n
sets the default scroll amount to the specified number of lines.

HALF
sets the default scroll amount to half the number of lines in the window.

PAGE
sets the default scroll amount to the number of lines in the window.

The default VSCROLL amount is PAGE.

Searching Commands

BFIND <search-string <PREFIX|SUFFIX|WORD>>
locates the previous occurrence of the specified string in the file, starting at the
current cursor position and proceeding backward toward the beginning of the file.
The search-string value must be enclosed in quotation marks if it contains
embedded blanks.

If a FIND command has previously been issued, then you can use the BFIND
command without arguments to repeat the search in the opposite direction.

The FSLIST Procedure � FSLIST Window Commands 497

The CAPS option on the PROC FSLIST statement and the CAPS ON command
cause search strings to be converted to uppercase for the purposes of the search,
unless the strings are enclosed in quotation marks. See the discussion of the FIND
command for details.

By default, the BFIND command locates any occurrence of the specified string,
even where the string is embedded in other strings. You can use any one of the
following options to alter the command’s behavior:

PREFIX
causes the search string to match the text string only when the text string
occurs at the beginning of a word.

SUFFIX
causes the search string to match the text string only when the text string
occurs at the end of a word.

WORD
causes the search string to match the text string only when the text string is
a distinct word.

You can use the RFIND command to repeat the most recent BFIND command.

CAPS <ON|OFF>
controls how the FIND, BFIND, and RFIND commands locate matches for a
search string. By default, the FIND, BFIND, and RFIND commands locate only
those text strings that exactly match the search string as it was entered. When
you issue the CAPS command, the FIND, BFIND, and RFIND commands convert
search strings into uppercase for the purposes of searching (displayed text is not
affected), unless the strings are enclosed in quotation marks. Strings in quotation
marks are not affected.

For example, after you issue a CAPS ON command, both of the following
commands locate occurrences of NC but not occurrences of nc:

find NC
find nc

If you omit the ON or OFF argument, then the CAPS command acts as a toggle,
turning the attribute on if it was off or off if it was on.

FIND search-string <NEXT|FIRST|LAST|PREV|ALL>
<PREFIX|SUFFIX|WORD>

locates an occurrence of the specified search-string in the file. The search-string
must be enclosed in quotation marks if it contains embedded blanks.

The text in the search-string must match the text in the file in terms of both
characters and case. For example, the command

find raleigh

will locate not the text Raleigh in the file. You must instead use

find Raleigh

498 FSLIST Window Commands � Chapter 25

When the CAPS option is used with the PROC FSLIST statement or when a
CAPS ON command is issued in the window, the search string is converted to
uppercase for the purposes of the search, unless the string is enclosed in quotation
marks. In that case, the command

find raleigh

will locate only the text RALEIGH in the file. You must instead use the command

find ’Raleigh’

to locate the text Raleigh.
You can modify the behavior of the FIND command by adding any one of the

following options:

ALL
reports the total number of occurrences of the string in the file in the
window’s message line and moves the cursor to the first occurrence.

FIRST
moves the cursor to the first occurrence of the string in the file.

LAST
moves the cursor to the last occurrence of the string in the file.

NEXT
moves the cursor to the next occurrence of the string in the file.

PREV
moves the cursor to the previous occurrence of the string in the file.

The default option is NEXT.
By default, the FIND command locates any occurrence of the specified string,

even where the string is embedded in other strings. You can use any one of the
following options to alter the command’s behavior:

PREFIX
causes the search string to match the text string only when the text string
occurs at the beginning of a word.

SUFFIX
causes the search string to match the text string only when the text string
occurs at the end of a word.

WORD
causes the search string to match the text string only when the text string is
a distinct word.

After you issue a FIND command, you can use the RFIND command to repeat the
search for the next occurrence of the string, or you can use the BFIND command
to repeat the search for the previous occurrence.

RFIND
repeats the most recent FIND command, starting at the current cursor position
and proceeding forward toward the end of the file.

Display Commands

COLUMN <ON|OFF>
displays a column ruler below the message line in the FSLIST window. The ruler
is helpful when you need to determine the column in which a particular character

The FSLIST Procedure � FSLIST Window Commands 499

is located. If you omit the ON or OFF specification, then the COLUMN command
acts as a toggle, turning the ruler on if it was off and off if it was on.

HEX <ON|OFF>
controls the special hexadecimal display format of the FSLIST window. When the
hexadecimal format is turned on, each line of characters from the file occupies
three lines of the display. The first is the line displayed as characters; the next two
lines of the display show the hexadecimal value of the operating environment’s
character codes for the characters in the line of text. The hexadecimal values are
displayed vertically, with the most significant byte on top. If you omit the ON or
OFF specification, then the HEX command acts as a toggle, turning the
hexadecimal format on if it was off and off if it was on.

NUMS <ON|OFF>
controls whether line numbers are shown at the left side of the window. By
default, line numbers are not displayed. If line numbers are turned on, then they
remain at the left side of the display when text in the window is scrolled right and
left. If you omit the ON or OFF argument, then the NUMS command acts as a
toggle, turning line numbering on if it was off or off if it was on.

Other Commands

BROWSE fileref|’actual-filename’ <CC|FORTCC|NOCC <OVP|NOOVP>>
closes the current file and displays the specified file in the FSVIEW window. You
can specify either a fileref previously associated with a file or an actual filename
enclosed in quotation marks. The BROWSE command also accepts the same
carriage-control options as the FSLIST command. See “FSLIST Command
Options” on page 493 for details.

END
closes the FSLIST window and ends the FSLIST session.

HELP <command>
opens a Help window that provides information about the FSLIST procedure and
about the commands available in the FSLIST window. To get information about a
specific FSLIST window command, follow the HELP command with the name of
the desired command.

KEYS
opens the KEYS window for browsing and editing function key definitions for the
FSLIST window. The default key definitions for the FSLIST window are stored in
the FSLIST.KEYS entry in the SASHELP.FSP catalog.

If you change any key definitions in the KEYS window, then a new
FSLIST.KEYS entry is created in your personal PROFILE catalog
(SASUSER.PROFILE, or WORK.PROFILE if the SASUSER library is not
allocated).

When the FSLIST procedure is initiated, it looks for function key definitions
first in the FSLIST.KEYS entry in your personal PROFILE catalog. If that entry
does not exist, then the default entry in the SASHELP.FSP catalog is used.

500

501

C H A P T E R

26
The IMPORT Procedure

Overview: IMPORT Procedure 501
Syntax: IMPORT Procedure 502

PROC IMPORT Statement 502

Data Source Statements 506

Examples: IMPORT Procedure 514

Example 1: Importing a Delimited External File 514
Example 2: Importing a Specific Spreadsheet from an Excel Workbook 517

Example 3: Importing a Subset of Records from an Excel Spreadsheet 518

Example 4: Importing a Microsoft Access Table 519

Example 5: Importing a Specific Spreadsheet from an Excel Workbook on a PC Server 521

Overview: IMPORT Procedure

The IMPORT procedure reads data from an external data source and writes it to a
SAS data set. External data sources can include Microsoft Access Database, Excel files,
Lotus spreadsheets, and delimited external files (in which columns of data values are
separated by a delimiter such as a blank, comma, or tab).

When you execute PROC IMPORT, the procedure reads the input file and writes the
data to a SAS data set. The SAS variable definitions are based on the input records.
PROC IMPORT imports the data by one of the following methods:

� generated DATA step code

� generated SAS/ACCESS code

� translation engines.

You control the results with statements and options that are specific to the input data
source. PROC IMPORT generates the specified output SAS data set and writes
information regarding the import to the SAS log. In the log, you see the DATA step or
the SAS/ACCESS code that is generated by PROC IMPORT. If a translation engine is
used, then no code is submitted.

Note: To import data, you can also use the Import Wizard, which is a windowing
tool that guides you through the steps to import an external data source. You can
request the Import Wizard to generate IMPORT procedure statements, which you can
save to a file for subsequent use. To invoke the Import Wizard, from the SAS
windowing environment select

File � Import Data

�

502 Syntax: IMPORT Procedure � Chapter 26

Syntax: IMPORT Procedure
Restriction: PROC IMPORT is available for the following operating environments:

� OpenVMS Alpha
� UNIX
� Microsoft Windows.

PROC IMPORT
DATAFILE="filename" | TABLE="tablename"
OUT=<libref.>SAS-data-set <(SAS-data-set-options)>
<DBMS=identifier><REPLACE> ;

<data-source-statement(s);>

PROC IMPORT Statement
Featured in: All examples

PROC IMPORT
DATAFILE="filename" | TABLE="tablename"
OUT=<libref.>SAS-data-set <(SAS-data-set-options)>
<DBMS=identifier><REPLACE> ;

Required Arguments

DATAFILE="filename"
specifies the complete path and filename or a fileref for the input PC file,
spreadsheet, or delimited external file. If you specify a fileref or if the complete path
and filename does not include special characters (such as the backslash in a path),
lowercase characters, or spaces, you can omit the quotation marks. A fileref is a SAS
name that is associated with the physical location of the output file. To assign a
fileref, use the FILENAME statement. For more information about PC file formats,
see SAS/ACCESS for PC Files: Reference.
Featured in: Example 1 on page 514, Example 2 on page 517, and Example 3 on

page 518
Restriction: PROC IMPORT does not support device types or access methods for

the FILENAME statement except for DISK. For example, PROC IMPORT does not
support the TEMP device type, which creates a temporary external file.

Restriction: For client/server applications: When running SAS/ACCESS software
on UNIX to access data that is stored on a PC server, you must specify the full
path and filename of the file that you want to import. The use of a fileref is not
supported.

Interaction: For some input data sources like a Microsoft Excel spreadsheet, in
order to determine the data type (numeric or character) for a column, the first

The IMPORT Procedure � PROC IMPORT Statement 503

eight rows of data are scanned and the most prevalent type of data is used. If
most of the data in the first eight rows is missing, SAS defaults to the character
data type; any subsequent numeric data for that column becomes missing as well.
Mixed data can also create missing values. For example, if the first eight rows
contain mostly character data, SAS assigns the column as a character data type;
any subsequent numeric data for that column becomes missing.

Restriction: PROC IMPORT can import data only if the data type is supported by
SAS. SAS supports numeric and character types of data but not, for example,
binary objects. If the data that you want to import is a type not supported by SAS,
PROC IMPORT may not be able to import it correctly. In many cases, the
procedure attempts to convert the data to the best of its ability; however, for some
types, this is not possible.

Tip: For information about how SAS converts data types, see the specific
information for the data source that you are importing in SAS/ACCESS for PC
Files: Reference. For example, see the chapter “Understanding XLS Essentials” for
a table that lists XLS data types and the resulting SAS variable data type and
formats.

Tip: For a DBF file, if the file was created by Microsoft Visual FoxPro, the file must
be exported by Visual FoxPro into an appropriate dBASE format in order to import
the file to SAS.

TABLE="tablename"
specifies the table name of the input DBMS table. If the name does not include
special characters (such as question marks), lowercase characters, or spaces, you can
omit the quotation marks. Note that the DBMS table name may be case sensitive.
Requirement: When you import a DBMS table, you must specify the DBMS=

option.
Featured in: Example 4 on page 519

OUT=<libref.>SAS-data-set
identifies the output SAS data set with either a one- or two-level SAS name (library
and member name). If the specified SAS data set does not exist, PROC IMPORT
creates it. If you specify a one-level name, by default PROC IMPORT uses either the
USER library (if assigned) or the WORK library (if USER not assigned).
Featured in: All examples

(SAS-data-set-options)
specifies SAS data set options. For example, to assign a password to the resulting
SAS data set, you can use the ALTER=, PW=, READ=, or WRITE= data set option,
or to import only data that meets a specified condition, you can use the WHERE=
data set option. For information about all SAS data set options, see “Data Set
Options” in SAS Language Reference: Dictionary.
Restriction: You cannot specify data set options when importing delimited,

comma-separated, or tab-delimited external files.
Featured in: Example 3 on page 518

Options

DBMS=identifier
specifies the type of data to import. To import a DBMS table, you must specify
DBMS= using a valid database identifier. For example, DBMS=ACCESS specifies to
import a Microsoft Access 2000 or 2002 table. To import PC files, spreadsheets, and
delimited external files, you do not have to specify DBMS= if the filename that is

504 PROC IMPORT Statement � Chapter 26

specified by DATAFILE= contains a valid extension so that PROC IMPORT can
recognize the type of data. For example, PROC IMPORT recognizes the filename
ACCOUNTS.WK1 as a Lotus 1-2-3 Release 2 spreadsheet and the filename
MYDATA.CSV as a delimited external file that contains comma-separated data
values; therefore, a DBMS= specification is not necessary.

The following values are valid for the DBMS= option:

Identifier Input Data Source Extension Host
Availability

ACCESS Microsoft Access 2000 or 2002 table .mdb Microsoft
Windows *

ACCESS97 Microsoft Access 97 table .mdb Microsoft
Windows *

ACCESS2000 Microsoft Access 2000 table .mdb Microsoft
Windows *

ACCESS2002 Microsoft Access 2002 table .mdb Microsoft
Windows *

ACCESSCS Microsoft Access table .mdb UNIX

CSV delimited file (comma-separated values) .csv OpenVMS
Alpha, UNIX,
Microsoft
Windows

DBF dBASE 5.0, IV, III+, and III files .dbf UNIX,
Microsoft
Windows

DLM delimited file (default delimiter is a blank) .* OpenVMS
Alpha, UNIX,
Microsoft
Windows

EXCEL Excel 2000 or 2002 spreadsheet .xls Microsoft
Windows *

EXCEL4 Excel 4.0 spreadsheet .xls Microsoft
Windows

EXCEL5 Excel 5.0 or 7.0 (95) spreadsheet .xls Microsoft
Windows

EXCEL97 Excel 97 or 7.0 (95) spreadsheet .xls Microsoft
Windows *

EXCEL2000 Excel 2000 spreadsheet .xls Microsoft
Windows *

EXCELCS Excel spreadsheet .xls UNIX

JMP JMP table .jmp UNIX,
Microsoft
Windows

PCFS Files on PC server .* UNIX

The IMPORT Procedure � PROC IMPORT Statement 505

Identifier Input Data Source Extension Host
Availability

TAB delimited file (tab-delimited values) .txt OpenVMS
Alpha, UNIX,
Microsoft
Windows

WK1 Lotus 1-2-3 Release 2 spreadsheet .wk1 Microsoft
Windows

WK3 Lotus 1-2-3 Release 3 spreadsheet .wk3 Microsoft
Windows

WK4 Lotus 1-2-3 Release 4 or 5 spreadsheet .wk4 Microsoft
Windows

* Not available for Microsoft Windows 64-Bit Edition.

Restriction: The availability of an input data source depends on

� the operating environment, and in some cases the platform, as specified in
the previous table.

� whether your site has a license to the SAS/ACCESS software for PC file
formats. If you do not have a license, only delimited files are supported.

Featured in: Example 1 on page 514 and Example 4 on page 519

When you specify a value for DBMS=, consider the following:

� To import a Microsoft Access table, PROC IMPORT can distinguish whether the
table is in Access 97, 2000, or 2002 format regardless of your specification. For
example, if you specify DBMS=ACCESS and the table is an Access 97 table,
PROC IMPORT will import the file.

� To import a Microsoft Excel spreadsheet, PROC IMPORT can distinguish some
versions regardless of your specification. For example, if you specify
DBMS=EXCEL and the spreadsheet is an Excel 97 spreadsheet, PROC
IMPORT can import the file. However, if you specify DBMS=EXCEL4 and the
spreadsheet is an Excel 2000 spreadsheet, PROC IMPORT cannot import the
file. The following table lists the spreadsheets and whether PROC IMPORT can
distinguish them based on the DBMS= specification:

Specification Excel 2002 Excel 2000 Excel 97 Excel 5.0 Excel 4.0

EXCEL yes yes yes yes yes

EXCEL2002 yes yes yes yes yes

EXCEL2000 yes yes yes yes yes

EXCEL97 yes yes yes yes yes

EXCEL5 no no no yes yes

EXCEL4 no no no yes yes

Note: Although Excel 4.0 and Excel 5.0 spreadsheets are often
interchangeable, it is recommended that you specify the exact version. �

506 Data Source Statements � Chapter 26

REPLACE
overwrites an existing SAS data set. If you do not specify REPLACE, PROC
IMPORT does not overwrite an existing data set.
Featured in: Example 1 on page 514

Data Source Statements
Featured in: All examples

PROC IMPORT provides a variety of statements that are specific to the input data
source.

Statements for PC Files, Spreadsheets, or Delimited External Files
The following table lists the statements that are available to import PC files,

spreadsheets, and delimited external files, and it denotes which statements are valid for
a specific data source. For example, Excel spreadsheets have optional statements to
indicate whether column names are in the first row of data or which sheet and range of
data to import, while a dBASE file (DBF) does not. For more information about PC file
formats, see SAS/ACCESS for PC Files: Reference.

Data Source Supported Syntax Valid Values Default Value

CSV/TAB GETNAMES=

DATAROW=

GUESSING ROWS=

YES | NO

1 to 32767

1 to 32767

YES

2

none

DLM GETNAMES=

DATAROW=

GUESSINGROWS=

YES | NO

1 to 32767

1 to 32767

YES

2

none

JMP

DBF GETDELETED= YES | NO NO

WK1 / WK3 / WK4 GETNAMES=

RANGE=

SHEET=

YES | NO

Range Name or
Absolute Range Value,
such as ’A1...C4’

Sheet Name

YES

EXCEL4 / EXCEL5 GETNAMES=

RANGE=

SHEET=

YES | NO

Range Name or
Absolute Range Value,
such as ’A1...C4’

Sheet Name

YES

The IMPORT Procedure � Data Source Statements 507

Data Source Supported Syntax Valid Values Default Value

EXCEL

EXCEL97

EXCEL2000

EXCEL2002

GETNAMES=

RANGE=

SHEET=

MIXED=

SCANTEXT=

SCANTIME=

USEDATE=

TEXTSIZE=

DBSASLABEL=

YES | NO

Range Name or
Absolute Range Value,
such as ’A1...C4’

Sheet Name

YES | NO

YES | NO

YES | NO

YES | NO

1 to 32767

COMPAT | NONE

YES

NO

YES

YES

YES

1024

COMPAT

EXCELCS VERSION=

SERVER=

SERVICE=

PORT=

RANGE=

SHEET=

SCANTEXT=

SCANTIME=

USEDATE=

TEXTSIZE=

DBSASLABEL=

’5’ | ’95’ | ’97’ | ’2000’
| ’2002’

Server Name

Service Name

1 to 32767

Range Name or
Absolute Range Value,
such as ’A1...C4’

Sheet Name

YES | NO

YES | NO

YES | NO

1 to 32767

COMPAT | NONE

97

YES

YES

YES

1024

COMPAT

DATAROW=n;
starts reading data from row number n in the external file.

Default:

1 when GETNAMES=NO

2 when GETNAMES=YES (default for GETNAMES=)
Interaction: When GETNAMES=YES, DATAROW= must be equal to or greater

than 2. When GETNAMES=NO, DATAROW must be equal to or greater than 1.

DBSASLABEL=COMPAT | NONE;
When DBSASLABEL=COMPAT, the data source’s column names are saved as the
corresponding SAS label names. This is the default value.

WHEN DBSASLABEL=NONE, the data source’s column names are not saved
as SAS label names. SAS label names are left as nulls.

Featured in: Example 1 on page 514

DELIMITER=’char’ | ’nn’x;
for a delimited external file, specifies the delimiter that separates columns of data
in the input file. You can specify the delimiter as a single character or as a
hexadecimal value. For example, if columns of data are separated by an

508 Data Source Statements � Chapter 26

ampersand, specify DELIMITER=’&’. If you do not specify DELIMITER=, PROC
IMPORT assumes that the delimiter is the blank. You can replace the equal sign
with a blank.

GETDELETED=YES | NO;
for a dBASE file (DBF), indicates whether to write records to the SAS data set
that are marked for deletion but have not been purged. You can replace the equal
sign with a blank.

GETNAMES=YES | NO;
for spreadsheets and delimited external files, determines whether to generate SAS
variable names from the column names in the input file’s first row of data. You
can replace the equal sign with a blank.

If you specify GETNAMES=NO or if the column names are not valid SAS
names, PROC IMPORT uses default variable names. For example, for a delimited
file, PROC IMPORT uses VAR1, VAR2, VAR3, and so on.

Note that if a column name contains special characters that are not valid in a
SAS name, such as a blank, SAS converts the character to an underscore. For
example, the column name Occupancy Code would become the variable name
Occupancy_Code.

GUESSING ROWS=1 to 3276;
scans data for its data type from row 1 to the row number that is specified.

Note: This number should be greater than the value that is specified for
DATAROW=. �

MIXED=YES | NO;
converts numeric data values into character data values for a column that contains
mixed data types. This option is valid only while importing data from Excel. The
default is NO, which means that numeric data will be imported as missing values
in a character column. If MIXED=YES, then the engine will assign a SAS
character type for the column and convert all numeric data values to character
data values. This option is valid only while reading (importing) data into SAS.

PORT=1 to 3276;
scans data for its data type from row 1 to the row number that is specified.

Note: This number should be greater than the value that is specified for
DATAROW=. �

TEXTSIZE=1 to 32767
specifies the field length that is allowed for importing Microsoft Excel 97, 2000, or
2002 Memo fields.

RANGE="range-name | absolute-range";
subsets a spreadsheet by identifying the rectangular set of cells to import from the
specified spreadsheet. The syntax for range-name and absolute-range is native to
the file being read. You can replace the equal sign with a blank.

range-name is a name that has been assigned to represent a range, such as
a range of cells within the spreadsheet.

Limitation: SAS supports range names up to 32 characters. If
a range name exceeds 32 characters, SAS will notify you
that the name is invalid.

Tip: For Microsoft Excel, range names do not contain special
characters such as spaces or hyphens.

The IMPORT Procedure � Data Source Statements 509

absolute-range identifies the top left cell that begins the range and the bottom
right cell that ends the range. For Excel 4.0, 5.0, and 7.0 (95),
the beginning and ending cells are separated by two periods;
that is, C9..F12 specifies a cell range that begins at cell C9,
ends at cell F12, and includes all the cells in between. For
Excel 97, 2000, and 2002, the beginning and ending cells are
separated by a colon – that is, C9:F12.

Tip: For Excel 97, 2000, and 2002, you can include the
spreadsheet name with an absolute range, such as
range="North B$a1:d3". If you do not include the
spreadsheet name, PROC IMPORT uses the first sheet in the
workbook or the spreadsheet name specified with SHEET=.

Default: The entire spreadsheet is selected.

Interaction: For Excel 97, 2000, and 2002 spreadsheets, when RANGE= is
specified, a spreadsheet name specified with SHEET= is ignored when the
conflict occurs.

SCANTEXT=YES | NO;
scans the length of text data for a data source column and uses the length of the
longest string data that it finds as the SAS column width. However, if the
maximum length that it finds is greater than what is specified in the TEXTSIZE=
option, then the smaller value that is specified in TEXTSIZE= will be applied as
the SAS variable width.

SCANTIME=YES | NO;
scans all row values for a DATETIME data type field and automatically
determines the TIME data type if only time values (that is, no date or datetime
values) exist in the column.

SERVER="PC-server-name";
specifies the name of the PC server. You must bring up the listener on the PC
server before you can establish a connection to it. You can configure the service
name, port number, maximum number of connections allowed, and use of data
encryption on your PC server. This is a required statement. Refer to your PC
server administrator for the information that is needed. Alias: SERVER_NAME=.

SERVICE="service-name";
specifies the service name that is defined on your service file for your client and
server machines. This statement and the PORT= statement should not be used in
the same procedure. Note that this service name must be defined on both your
UNIX machine and your PC server. Alias: SERVER_NAME=, SERVICE_NAME=.

SHEET=spreadsheet-name;
identifies a particular spreadsheet in a group of spreadsheets. Use this statement
with spreadsheets that support multiple spreadsheets within a single file. The
naming convention for the spreadsheet name is native to the file being read.

Featured in: Example 2 on page 517

Default: The default depends on the type of spreadsheet. For Excel 4.0 and 5.0,
PROC IMPORT reads the first spreadsheet in the file. For Excel 97 and later,
PROC IMPORT reads the first spreadsheet from an ascending sort of the
spreadsheet names. To be certain that PROC IMPORT reads the desired
spreadsheet, you should identify the spreadsheet by specifying SHEET=.

Limitation: SAS supports spreadsheet names up to 31 characters. With the $
appended, the maximum length of a spreadsheet name is 32 characters.

510 Data Source Statements � Chapter 26

USEDATE=YES | NO;
If USEDATE=YES, then DATE. format is used for date/time columns in the data
source table while importing data from Excel workbook. If USEDATE=NO, then
DATETIME. format is used for date/time.

VERSION="file-version";
specifies the version of file that you want to create with if the file does not exist on
your PC server yet. The default version is data-source specific. For Microsoft Excel
workbook, the valid values are ’2002’, ’2000’, ’97’, ’95’ and ’5’, and its default value
is ’97’.

Note: Always quote the version value. �

Note: If the file already exists in the PC server, then this value can be
ignored. �

The IMPORT Procedure � Data Source Statements 511

Statements for DBMS Tables

The following data source statements are available to establish a connection to the
DBMS when you import a DBMS table.

Data Source Supported Syntax Valid Values Default Value

ACCESS

ACCESS97

ACCESS2000

ACCESS2002

DATABASE=

DBPWD=

UID=

PWD=

WGDB=

SCANMEMO=

SCANTIME=

USEDATE=

MEMOSIZE=

DBSASLABEL=

The complete path and
filename for the MS
ACCESS database file.

Database password

User ID

User password

The complete path and
filename for the
Workgroup
Administration file.

YES | NO

YES | NO

YES | NO

1 to 32767

COMPAT | NONE

YES

YES

NO

1024

COMPAT

ACCESSCS VERSION=

SERVER=

SERVICE=

PORT=

DATABASE=

DBPWD=

UID=

PWD=

WGDB=

SCANMEMO=

SCANTIME=

USEDATE=

MEMOSIZE=

DBSASLABEL=

’97’ | ’2000’ | ’2002’

Server Name

Service Name

1 to 32767

The complete path and
filename for the MS
ACCESS database file.

Database password

User ID

User password

The complete path and
file name for the
Workgroup
Administration file.

YES | NO

YES | NO

YES | NO

1 to 32767

COMPAT | NONE

’2000’

YES

YES

YES

1024

COMPAT

DATABASE="database";
specifies the complete path and filename of the database that contains the
specified DBMS table. If the database name does not contain lowercase characters,
special characters, or national characters ($, #, or @), you can omit the quotation
marks. You can replace the equal sign with a blank.

512 Data Source Statements � Chapter 26

Note: A default may be configured in the DBMS client software; however, SAS
does not generate a default value. �

DBPWD="database password";
specifies a password that allows access to a database. You can replace the equal
sign with a blank.

DBSASLABEL=COMPAT | NONE;
When DBSASLABEL=COMPAT, the data source’s column names are saved as the
corresponding SAS label names. This is the default value.

WHEN DBSASLABEL=NONE, the data source’s column names are not saved
as SAS label names. SAS label names are left as nulls.
Featured in: Example 1 on page 514

MEMOSIZE="field-length";
specifies the field length for importing Microsoft Access Memo fields.

Range:

Default:

Tip:

1 to 32,767

1024

To prevent Memo
fields from being
imported, you can
specify
MEMOSIZE=0

Range: 1 - 32,767 Default: 1024 Tip: To prevent Memo fields from being
imported, you can specify MEMOSIZE=0.

PORT=1 to 3276;
scans data for its data type from row 1 to the row number that is specified.

Note: This number should be greater than the value that is specified for
DATAROW=. �

PWD="password";
specifies the user password used by the DBMS to validate a specific userid. If the
password does not contain lowercase characters, special characters, or national
characters, you can omit the quotation marks. You can replace the equal sign with
a blank.

Note: The DBMS client software may default to the userid and password that
were used to log in to the operating environment; SAS does not generate a default
value. �

SCANMEMO=YES | NO;
scans the length of data for memo fields and uses the length of the longest string
data that it finds as the SAS column width. However, if the maximum length that
it finds is greater than what is specified in the MEMOSIZE= option, then the
smaller value that is specified in MEMOSIZE= will be applied as the SAS variable
width.

SCANTIME=YES | NO;
scans all row values for a DATETIME data type field and automatically
determines the TIME data type if only time values (that is, no date or datetime
values) exist in the column.

The IMPORT Procedure � Data Source Statements 513

SERVER="PC-server-name";
specifies the name of the PC server. You must bring up the listener on the PC
server before you can establish a connection to it. You can configure the service
name, port number, maximum number of connections allowed, and use of data
encryption on your PC server. This is a required statement. Refer to your PC
server administrator for the information that is needed. Alias: SERVER_NAME=.

SERVICE="service-name";
specifies the service name that is defined on your service file for your client and
server machines. This statement and the PORT= statement should not be used in
the same procedure. Note that this service name must be defined on both your
UNIX machine and your PC server. Alias: SERVER_NAME=.

UID= "user-id";
identifies the user to the DBMS. If the userid does not contain lowercase
characters, special characters, or national characters, you can omit the quotation
marks. You can replace the equal sign with a blank.

Note: The DBMS client software may default to the userid and password that
were used to log in to the operating environment; SAS does not generate a default
value. �

WGDB= "workgroup-database-name" ;
specifies the workgroup (security) database name that contains the USERID and
PWD data for the DBMS. If the workgroup database name does not contain
lowercase characters, special characters, or national characters, you can omit the
quotation marks. You can replace the equal sign with a blank.

Note: A default workgroup database may be used by the DBMS; SAS does not
generate a default value. �

USEDATE=YES | NO;
If USEDATE=YES, then DATE. format is used for date/time columns in the data
source table while importing data from Excel workbook. If USEDATE=NO, then
DATETIME. format is used for date/time.

VERSION="file-version";
specifies the version of file that you want to create with if the file does not exist on
your PC server yet. The default version is data-source specific. For Microsoft Excel
workbook, the valid values are ’2002’, ’2000’, ’97’, ’95’ and ’5’, and its default value
is ’97’.

Note: Always quote the version value. �

Note: If the file already exists in the PC Server, this value can be ignored. �

Security Levels for Microsoft Access Tables
Microsoft Access tables have the following levels of security, for which specific
combinations of security statements must be used:

None
Do not specify DBPWD=, PWD=, UID=, or WGDB=.

Password
Specify only DBPWD=.

User-level
Specify only PWD=, UID=, and WGDB=.

514 Examples: IMPORT Procedure � Chapter 26

Full
Specify DBPWD=, PWD=, UID=, and WGDB=.

Each statement has a default value; however, you may find it necessary to provide a
value for each statement explicitly.

Examples: IMPORT Procedure

Example 1: Importing a Delimited External File

Procedure features:
PROC IMPORT statement arguments:

DATAFILE=
OUT=
DBMS=
REPLACE

Data source statements:
DELIMITER=
GETNAMES=

Other features:
PRINT procedure

This example imports the following delimited external file and creates a temporary
SAS data set named WORK.MYDATA:

Region&State&Month&Expenses&Revenue
Southern&GA&JAN2001&2000&8000
Southern&GA&FEB2001&1200&6000
Southern&FL&FEB2001&8500&11000
Northern&NY&FEB2001&3000&4000
Northern&NY&MAR2001&6000&5000
Southern&FL&MAR2001&9800&13500
Northern&MA&MAR2001&1500&1000

Program

Specify the input file.

proc import datafile="C:\My Documents\myfiles\delimiter.txt"

The IMPORT Procedure � Program 515

Identify the output SAS data set.

out=mydata

Specify that the input file is a delimited external file.

dbms=dlm

Overwrite the data set if it exists.

replace;

Specify the delimiter. The DELIMITER= option specifies that an & (ampersand) delimits data
fields in the input file. The delimiter separates the columns of data in the input file.

delimiter=’&’;

Generate the variable names from the first row of data in the input file.

getnames=yes;
run;

Print the WORK.MYDATA data set. PROC PRINT produces a simple listing.

options nodate ps=60 ls=80;

proc print data=mydata;
run;

516 SAS Log � Chapter 26

SAS Log
The SAS log displays information about the successful import. For this example,

PROC IMPORT generates a SAS DATA step, as shown in the partial log that follows.

/**
79 * PRODUCT: SAS
80 * VERSION: 9.00
81 * CREATOR: External File Interface
82 * DATE: 24JAN02
83 * DESC: Generated SAS Datastep Code
84 * TEMPLATE SOURCE: (None Specified.)
85 ***/
86 data MYDATA ;
87 %let _EFIERR_ = 0; /* set the ERROR detection macro variable */
88 infile ’C:\My Documents\myfiles\delimiter.txt’ delimiter = ’&’ MISSOVER
88 ! DSD lrecl=32767 firstobs=2 ;
89 informat Region $8. ;
90 informat State $2. ;
91 informat Month $7. ;
92 informat Expenses best32. ;
93 informat Revenue best32. ;
94 format Region $8. ;
95 format State $2. ;
96 format Month $7. ;
97 format Expenses best12. ;
98 format Revenue best12. ;
99 input
100 Region $
101 State $
102 Month $
103 Expenses
104 Revenue
105 ;
106 if _ERROR_ then call symput(’_EFIERR_’,1); /* set ERROR detection
106! macro variable */
107 run;

NOTE: Numeric values have been converted to character
values at the places given by: (Line):(Column).
106:44

NOTE: The infile ’C:\My Documents\myfiles\delimiter.txt’ is:
File Name=C:\My Documents\myfiles\delimiter.txt,
RECFM=V,LRECL=32767

NOTE: 7 records were read from the infile ’C:\My
Documents\myfiles\delimiter.txt’.
The minimum record length was 29.
The maximum record length was 31.

NOTE: The data set WORK.MYDATA has 7 observations and 5 variables.
NOTE: DATA statement used (Total process time):

real time 0.04 seconds
cpu time 0.05 seconds

7 rows created in MYDATA from C:\My
Documents\myfiles\delimiter.txt.

NOTE: .MYDATA was successfully created.

The IMPORT Procedure � Program 517

Output
This output lists the output data set, MYDATA, created by PROC IMPORT from the

delimited external file.

The SAS System

Obs Region State Month Expenses Revenue

1 Southern GA JAN2001 2000 8000
2 Southern GA FEB2001 1200 6000
3 Southern FL FEB2001 8500 11000
4 Northern NY FEB2001 3000 4000
5 Northern NY MAR2001 6000 5000
6 Southern FL MAR2001 9800 13500
7 Northern MA MAR2001 1500 1000

Example 2: Importing a Specific Spreadsheet from an Excel Workbook

Procedure features:
PROC IMPORT statement arguments:

DATAFILE=
OUT=

Data source statements:
SHEET=
GETNAMES=

Other features:
PRINT procedure option:

OBS=

This example imports a specific spreadsheet from an Excel workbook, which contains
multiple spreadsheets, and creates a new, permanent SAS data set named
SASUSER.ACCOUNTS.

Program

Specify the input file. The filename contains the extension .XLS, which PROC IMPORT
recognizes as identifying an Excel 2000 spreadsheet.

proc import datafile="c:\myfiles\Accounts.xls"

518 Output � Chapter 26

Identify the output SAS data set.

out=sasuser.accounts;

Import only the sheet PRICES that is contained in the file ACCOUNTS.XLS.

sheet=’Prices’;

Do not generate the variable names from the input file. PROC IMPORT will use default
variable names.

getnames=no;
run;

Print the SASUSER.ACCOUNTS data set. PROC PRINT produces a simple listing. The
OBS= data set option limits the output to the first 10 observations.

proc print data=sasuser.accounts(obs=10);
run;

Output

The following output displays the first 10 observations of the output data set,
SASUSER.ACCOUNTS:

The SAS System 1

OBS F1 F2 F3

1 Dharamsala Tea 10 boxes x 20 bags 18.00
2 Tibetan Barley Beer 24 - 12 oz bottles 19.00
3 Licorice Syrup 12 - 550 ml bottles 10.00
4 Chef Anton’s Cajun Seasoning 48 - 6 oz jars 22.00
5 Chef Anton’s Gumbo Mix 36 boxes 21.35
6 Grandma’s Boysenberry Spread 12 - 8 oz jars 25.00
7 Uncle Bob’s Organic Dried Pears 12 - 1 lb pkgs. 30.00
8 Northwoods Cranberry Sauce 12 - 12 oz jars 40.00
9 Mishi Kobe Beef 18 - 500 g pkgss. 97.00

10 Fish Roe 12 - 200 ml jars 31.00

Example 3: Importing a Subset of Records from an Excel Spreadsheet

Procedure features:
PROC IMPORT statement arguments:

DATAFILE=
OUT=

The IMPORT Procedure � Example 4: Importing a Microsoft Access Table 519

This example imports a subset of an Excel spreadsheet and creates a temporary SAS
data set. The WHERE= SAS data set option is specified in order to import only a subset
of records from the Excel spreadsheet.

Program

Specify the input file.

proc import datafile=’c:\Myfiles\Class.xls’

Identify the output SAS data set, and request that only a subset of the records be
imported.

out=work.femaleclass (where=(sex=’F’));
run;

Print the new SAS data set. PROC PRINT produces a simple listing.

proc print data=work.femaleclass;
run;

Output
The following output displays the output SAS data set, WORK.FEMALECLASS:

The SAS System 1

Obs Name Sex Age Height Weight

1 Alice F 13 56.5 84.0
2 Barbara F 13 65.3 98.0
3 Carol F 14 62.8 102.5
4 Jane F 12 59.8 84.5
5 Janet F 15 62.5 112.5
6 Joyce F 11 51.3 50.5
7 Judy F 14 64.3 90.0
8 Louise F 12 56.3 77.0
9 Mary F 15 66.5 112.0

Example 4: Importing a Microsoft Access Table

Procedure features:
PROC IMPORT statement arguments:

TABLE=
OUT=
DBMS=

Data source Statements:
DATABASE=
PWD=
UID=
WGDB=

520 Program � Chapter 26

This example imports a Microsoft Access 97 table and creates a permanent SAS data
set named SASUSER.CUST. The Access table has user-level security, so it is necessary
to specify values for the PWD=, UID=, and WGDB= statements.

Program

Specify the input DBMS table name.

proc import table="customers"

Identify the output SAS data set.

out=sasuser.cust

Specify that the input file is a Microsoft Access 97 table.

dbms=access97;

Identify the user ID to the DBMS.

uid="userid";

Specify the DBMS password to access the table.

pwd="mypassword";

Specify the path and filename of the database that contains the table.

database="c:\myfiles\east.mdb";

Specify the workgroup (security) database name that contains the user ID and
password data for the Microsoft Access table.

wgdb="c:\winnt\system32\security.mdb";

Print the SASUSER.CUST data set. PROC PRINT produces a simple listing. The OBS= data
set option limits the output to the first five observations.

proc print data=sasuser.cust(obs=5);
run;

The IMPORT Procedure � Example 5: Importing a Specific Spreadsheet from an Excel Workbook on a PC Server 521

Output
The following output displays the first five observations of the output data set,

SASUSER.CUST.

The SAS System 1

Obs Name Street Zipcode

1 David Taylor 124 Oxbow Street 72511
2 Theo Barnes 2412 McAllen Avenue 72513
3 Lydia Stirog 12550 Overton Place 72516
4 Anton Niroles 486 Gypsum Street 72511
5 Cheryl Gaspar 36 E. Broadway 72515

Example 5: Importing a Specific Spreadsheet from an Excel Workbook on a
PC Server

Procedure features:
PROC IMPORT statement arguments:

DATAFILE=
OUT=

Data Source Statements:
SERVER=
SERVICE=
SHEET=
GETNAMES=

Other features:
PRINT procedure option:

OBS=

522 Program � Chapter 26

This example imports a specific spreadsheet from an Excel workbook on a PC server,
which contains multiple spreadsheets, and creates a new, permanent SAS data set
named WORK.PRICES.

Program

proc import dbms=excelcs
datafile="c:\myfiles\Invoice.xls"
out=work.prices;

server=’Sales’;
service=’pcfiles’;
sheet=’Prices’;
getnames=yes;
usedate=no;

run;

proc print data=work.prices(obs=10);
run;

523

C H A P T E R

27
The MEANS Procedure

Overview: MEANS Procedure 524
What Does the MEANS Procedure Do? 524

What Types of Output Does PROC MEANS Produce? 524

Syntax: MEANS Procedure 526

PROC MEANS Statement 527

BY Statement 535
CLASS Statement 536

FREQ Statement 539

ID Statement 540

OUTPUT Statement 540

TYPES Statement 546

VAR Statement 547
WAYS Statement 548

WEIGHT Statement 549

Concepts: MEANS Procedure 550

Using Class Variables 550

Using TYPES and WAYS Statements 550
Ordering the Class Values 551

Computational Resources 552

Statistical Computations: MEANS Procedure 553

Computation of Moment Statistics 553

Confidence Limits 553
Student’s t Test 554

Quantiles 555

Results: MEANS Procedure 556

Missing Values 556

Column Width for the Output 556

The N Obs Statistic 556
Output Data Set 557

Examples: MEANS Procedure 558

Example 1: Computing Specific Descriptive Statistics 558

Example 2: Computing Descriptive Statistics with Class Variables 560

Example 3: Using the BY Statement with Class Variables 562
Example 4: Using a CLASSDATA= Data Set with Class Variables 564

Example 5: Using Multilabel Value Formats with Class Variables 567

Example 6: Using Preloaded Formats with Class Variables 570

Example 7: Computing a Confidence Limit for the Mean 573

Example 8: Computing Output Statistics 575
Example 9: Computing Different Output Statistics for Several Variables 577

Example 10: Computing Output Statistics with Missing Class Variable Values 578

Example 11: Identifying an Extreme Value with the Output Statistics 580

524 Overview: MEANS Procedure � Chapter 27

Example 12: Identifying the Top Three Extreme Values with the Output Statistics 583
References 587

Overview: MEANS Procedure

What Does the MEANS Procedure Do?
The MEANS procedure provides data summarization tools to compute descriptive

statistics for variables across all observations and within groups of observations. For
example, PROC MEANS

� calculates descriptive statistics based on moments

� estimates quantiles, which includes the median

� calculates confidence limits for the mean

� identifies extreme values

� performs a t test.

By default, PROC MEANS displays output. You can also use the OUTPUT statement to
store the statistics in a SAS data set.

PROC MEANS and PROC SUMMARY are very similar; see Chapter 46, “The
SUMMARY Procedure,” on page 1177 for an explanation of the differences.

What Types of Output Does PROC MEANS Produce?

PROC MEANS Default Output

Output 27.1 shows the default output that PROC MEANS displays. The data set
that PROC MEANS analyzes contains the integers 1 through 10. The output reports
the number of observations, the mean, the standard deviation, the minimum value, and
the maximum value. The statements that produce the output follow:

proc means data=OnetoTen;
run;

Output 27.1 The Default Descriptive Statistics

The SAS System 1

The MEANS Procedure

Analysis Variable : Integer

N Mean Std Dev Minimum Maximum
--
10 5.5000000 3.0276504 1.0000000 10.0000000
--

The MEANS Procedure � What Types of Output Does PROC MEANS Produce? 525

PROC MEANS Customized Output

Output 27.2 shows the results of a more extensive analysis of two variables,
MoneyRaised and HoursVolunteered. The analysis data set contains information about
the amount of money raised and the number of hours volunteered by high-school
students for a local charity. PROC MEANS uses six combinations of two categorical
variables to compute the number of observations, the mean, and the range. The first
variable, School, has two values and the other variable, Year, has three values. For an
explanation of the program that produces the output, see Example 11 on page 580.

Output 27.2 Specified Statistics for Class Levels and Identification of Maximum Values

Summary of Volunteer Work by School and Year 1

The MEANS Procedure

N
School Year Obs Variable N Mean Range

Kennedy 1992 15 MoneyRaised 15 29.0800000 39.7500000

HoursVolunteered 15 22.1333333 30.0000000

1993 20 MoneyRaised 20 28.5660000 23.5600000
HoursVolunteered 20 19.2000000 20.0000000

1994 18 MoneyRaised 18 31.5794444 65.4400000
HoursVolunteered 18 24.2777778 15.0000000

Monroe 1992 16 MoneyRaised 16 28.5450000 48.2700000
HoursVolunteered 16 18.8125000 38.0000000

1993 12 MoneyRaised 12 28.0500000 52.4600000
HoursVolunteered 12 15.8333333 21.0000000

1994 28 MoneyRaised 28 29.4100000 73.5300000
HoursVolunteered 28 19.1428571 26.0000000

Best Results: Most Money Raised and Most Hours Worked 2

Most Most Money Hours
Obs School Year _TYPE_ _FREQ_ Cash Time Raised Volunteered

1 . 0 109 Willard Tonya 78.65 40
2 1992 1 31 Tonya Tonya 55.16 40
3 1993 1 32 Cameron Amy 65.44 31
4 1994 1 46 Willard L.T. 78.65 33
5 Kennedy . 2 53 Luther Jay 72.22 35
6 Monroe . 2 56 Willard Tonya 78.65 40
7 Kennedy 1992 3 15 Thelma Jay 52.63 35
8 Kennedy 1993 3 20 Bill Amy 42.23 31
9 Kennedy 1994 3 18 Luther Che-Min 72.22 33

10 Monroe 1992 3 16 Tonya Tonya 55.16 40
11 Monroe 1993 3 12 Cameron Myrtle 65.44 26
12 Monroe 1994 3 28 Willard L.T. 78.65 33

In addition to the report, the program also creates an output data set (located on
page 2 of the output) that identifies the students who raised the most money and who
volunteered the most time over all the combinations of School and Year and within the
combinations of School and Year:

526 Syntax: MEANS Procedure � Chapter 27

� The first observation in the data set shows the students with the maximum values
overall for MoneyRaised and HoursVolunteered.

� Observations 2 through 4 show the students with the maximum values for each
year, regardless of school.

� Observations 5 and 6 show the students with the maximum values for each school,
regardless of year.

� Observations 7 through 12 show the students with the maximum values for each
school-year combination.

Syntax: MEANS Procedure
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
ODS Table Name: Summary
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 57 for
details. You can also use any global statements. See “Global Statements” on page 18 for
a list.

PROC MEANS <option(s)> <statistic-keyword(s)>;
BY <DESCENDING> variable-1 <… <DESCENDING> variable-n><NOTSORTED>;
CLASS variable(s) </ option(s)>;
FREQ variable;
ID variable(s);
OUTPUT <OUT=SAS-data-set> <output-statistic-specification(s)>

<id-group-specification(s)> <maximum-id-specification(s)>
<minimum-id-specification(s)> </ option(s)> ;

TYPES request(s);
VAR variable(s) < / WEIGHT=weight-variable>;
WAYS list;
WEIGHT variable;

To do this Use this statement

Calculate separate statistics for each BY group BY

Identify variables whose values define subgroups for the analysis CLASS

Identify a variable whose values represent the frequency of each
observation

FREQ

Include additional identification variables in the output data set ID

Create an output data set that contains specified statistics and
identification variables

OUTPUT

Identify specific combinations of class variables to use to subdivide
the data

TYPES

Identify the analysis variables and their order in the results VAR

The MEANS Procedure � PROC MEANS Statement 527

To do this Use this statement

Specify the number of ways to make unique combinations of class
variables

WAYS

Identify a variable whose values weight each observation in the
statistical calculations

WEIGHT

PROC MEANS Statement
See also: Chapter 46, “The SUMMARY Procedure,” on page 1177

PROC MEANS <option(s)> <statistic-keyword(s)>;

To do this Use this option

Specify the input data set DATA=

Disable floating point exception recovery NOTRAP

Specify the amount of memory to use for data summarization with
class variables

SUMSIZE=

Override the SAS system option THREADS | NOTHREADS THREADS | NOTHREADS

Control the classification levels

Specify a secondary data set that contains the combinations of
class variables to analyze

CLASSDATA=

Create all possible combinations of class variable values COMPLETETYPES

Exclude from the analysis all combinations of class variable
values that are not in the CLASSDATA= data set

EXCLUSIVE

Use missing values as valid values to create combinations of
class variables

MISSING

Control the statistical analysis

Specify the confidence level for the confidence limits ALPHA=

Exclude observations with nonpositive weights from the
analysis

EXCLNPWGTS

Specify the sample size to use for the P2 quantile estimation
method

QMARKERS=

Specify the quantile estimation method QMETHOD=

Specify the mathematical definition used to compute quantiles QNTLDEF=

Select the statistics statistic-keyword

Specify the variance divisor VARDEF=

Control the output

528 PROC MEANS Statement � Chapter 27

To do this Use this option

Specify the field width for the statistics FW=

Specify the number of decimal places for the statistics MAXDEC=

Suppress reporting the total number of observations for each
unique combination of the class variables

NONOBS

Suppress all displayed output NOPRINT

Order the values of the class variables according to the
specified order

ORDER=

Display the output PRINT

Display the analysis for all requested combinations of class
variables

PRINTALLTYPES

Display the values of the ID variables PRINTIDVARS

Control the output data set

Specify that the _TYPE_ variable contain character values. CHARTYPE

Order the output data set by descending _TYPE_ value DESCENDTYPES

Select ID variables based on minimum values IDMIN

Limit the output statistics to the observations with the highest
TYPE value

NWAY

Options

ALPHA=value
specifies the confidence level to compute the confidence limits for the mean. The
percentage for the confidence limits is (1−value)�100. For example, ALPHA=.05
results in a 95% confidence limit.

Default: .05
Range: between 0 and 1

Interaction: To compute confidence limits specify the statistic-keyword CLM,
LCLM, or UCLM.

See also: “Confidence Limits” on page 553

Featured in: Example 7 on page 573

CHARTYPE
specifies that the _TYPE_ variable in the output data set is a character
representation of the binary value of _TYPE_. The length of the variable equals the
number of class variables.

Main discussion: “Output Data Set” on page 557
Interaction: When you specify more than 32 class variables, _TYPE_ automatically

becomes a character variable.

Featured in: Example 10 on page 578

CLASSDATA=SAS-data-set
specifies a data set that contains the combinations of values of the class variables
that must be present in the output. Any combinations of values of the class variables

The MEANS Procedure � PROC MEANS Statement 529

that occur in the CLASSDATA= data set but not in the input data set appear in the
output and have a frequency of zero.
Restriction: The CLASSDATA= data set must contain all class variables. Their

data type and format must match the corresponding class variables in the input
data set.

Interaction: If you use the EXCLUSIVE option, then PROC MEANS excludes any
observation in the input data set whose combination of class variables is not in the
CLASSDATA= data set.

Tip: Use the CLASSDATA= data set to filter or to supplement the input data set.
Featured in: Example 4 on page 564

COMPLETETYPES
creates all possible combinations of class variables even if the combination does not
occur in the input data set.
Interaction: The PRELOADFMT option in the CLASS statement ensures that

PROC MEANS writes all user-defined format ranges or values for the
combinations of class variables to the output, even when a frequency is zero.

Tip: Using COMPLETETYPES does not increase the memory requirements.
Featured in: Example 6 on page 570

DATA=SAS-data-set
identifies the input SAS data set.
Main discussion: “Input Data Sets” on page 19

DESCENDTYPES
orders observations in the output data set by descending _TYPE_ value.
Alias: DESCENDING | DESCEND
Interaction: Descending has no effect if you specify NWAY.
Tip: Use DESCENDTYPES to make the overall total (_TYPE_=0) the last

observation in each BY group.
See also: “Output Data Set” on page 557
Featured in: Example 9 on page 577

EXCLNPWGTS
excludes observations with nonpositive weight values (zero or negative) from the
analysis. By default, PROC MEANS treats observations with negative weights like
those with zero weights and counts them in the total number of observations.
Alias: EXCLNPWGT
See also: WEIGHT= on page 548 and “WEIGHT Statement” on page 549

EXCLUSIVE
excludes from the analysis all combinations of the class variables that are not found
in the CLASSDATA= data set.
Requirement: If a CLASSDATA= data set is not specified, then this option is

ignored.
Featured in: Example 4 on page 564

FW=field-width
specifies the field width to display the statistics in printed or displayed output. FW=
has no effect on statistics that are saved in an output data set.
Default: 12
Tip: If PROC MEANS truncates column labels in the output, then increase the field

width.

530 PROC MEANS Statement � Chapter 27

Featured in: Example 1 on page 558, Example 4 on page 564, and Example 5 on
page 567

IDMIN
specifies that the output data set contain the minimum value of the ID variables.
Interaction: Specify PRINTIDVARS to display the value of the ID variables in the

output.

See also: “ID Statement” on page 540

MAXDEC=number
specifies the maximum number of decimal places to display the statistics in the
printed or displayed output. MAXDEC= has no effect on statistics that are saved in
an output data set.

Default: BEST. width for columnar format, typically about 7.
Range: 0-8

Featured in: Example 2 on page 560 and Example 4 on page 564

MISSING
considers missing values as valid values to create the combinations of class variables.
Special missing values that represent numeric values (the letters A through Z and
the underscore (_) character) are each considered as a separate value.

Default: If you omit MISSING, then PROC MEANS excludes the observations with
a missing class variable value from the analysis.

See also: SAS Language Reference: Concepts for a discussion of missing values that
have special meaning.

Featured in: Example 6 on page 570

NONOBS
suppresses the column that displays the total number of observations for each unique
combination of the values of the class variables. This column corresponds to the
FREQ variable in the output data set.

See also: “The N Obs Statistic” on page 556

Featured in: Example 5 on page 567 and Example 6 on page 570

NOPRINT
See PRINT | NOPRINT on page 531.

NOTHREADS
See THREADS | NOTHREADS on page 534.

NOTRAP
disables floating point exception (FPE) recovery during data processing. By default,
PROC MEANS traps these errors and sets the statistic to missing.

In operating environments where the overhead of FPE recovery is significant,
NOTRAP can improve performance. Note that normal SAS FPE handling is still in
effect so that PROC MEANS terminates in the case of math exceptions.

NWAY
specifies that the output data set contain only statistics for the observations with the
highest _TYPE_ and _WAY_ values. When you specify class variables, this
corresponds to the combination of all class variables.

Interaction: If you specify a TYPES statement or a WAYS statement, then PROC
MEANS ignores this option.

See also: “Output Data Set” on page 557

Featured in: Example 10 on page 578

The MEANS Procedure � PROC MEANS Statement 531

ORDER=DATA | FORMATTED | FREQ | UNFORMATTED
specifies the sort order to create the unique combinations for the values of the class
variables in the output, where

DATA
orders values according to their order in the input data set.

Interaction: If you use PRELOADFMT in the CLASS statement, then the order
for the values of each class variable matches the order that PROC FORMAT
uses to store the values of the associated user-defined format. If you use the
CLASSDATA= option, then PROC MEANS uses the order of the unique values
of each class variable in the CLASSDATA= data set to order the output levels.
If you use both options, then PROC MEANS first uses the user-defined formats
to order the output. If you omit EXCLUSIVE, then PROC MEANS appends
after the user-defined format and the CLASSDATA= values the unique values of
the class variables in the input data set based on the order in which they are
encountered.

Tip: By default, PROC FORMAT stores a format definition in sorted order. Use
the NOTSORTED option to store the values or ranges of a user defined format
in the order that you define them.

FORMATTED
orders values by their ascending formatted values. This order depends on your
operating environment.

Alias: FMT | EXTERNAL

FREQ
orders values by descending frequency count so that levels with the most
observations are listed first.

Interaction: For multiway combinations of the class variables, PROC MEANS
determines the order of a class variable combination from the individual class
variable frequencies.

Interaction: Use the ASCENDING option in the CLASS statement to order
values by ascending frequency count.

UNFORMATTED
orders values by their unformatted values, which yields the same order as PROC
SORT. This order depends on your operating environment.

Alias: UNFMT | INTERNAL

Default: UNFORMATTED

See also: “Ordering the Class Values” on page 551

PCTLDEF=
See QNTLDEF= on page 532.

PRINT | NOPRINT
specifies whether PROC MEANS displays the statistical analysis. NOPRINT
suppresses all the output.

Default: PRINT

Tip: Use NOPRINT when you want to create only an OUT= output data set.

Featured in: For an example of NOPRINT, see Example 8 on page 575 and
Example 12 on page 583

532 PROC MEANS Statement � Chapter 27

PRINTALLTYPES
displays all requested combinations of class variables (all _TYPE_ values) in the
printed or displayed output. Normally, PROC MEANS shows only the NWAY type.

Alias: PRINTALL

Interaction: If you use the NWAY option, the TYPES statement, or the WAYS
statement, then PROC MEANS ignores this option.

Featured in: Example 4 on page 564

PRINTIDVARS
displays the values of the ID variables in printed or displayed output.

Alias: PRINTIDS

Interaction: Specify IDMIN to display the minimum value of the ID variables.

See also: “ID Statement” on page 540

QMARKERS=number
specifies the default number of markers to use for the P2 quantile estimation method.
The number of markers controls the size of fixed memory space.

Default: The default value depends on which quantiles you request. For the median
(P50), number is 7. For the quartiles (P25 and P50), number is 25. For the
quantiles P1, P5, P10, P90, P95, or P99, number is 105. If you request several
quantiles, then PROC MEANS uses the largest value of number.

Range: an odd integer greater than 3

Tip: Increase the number of markers above the defaults settings to improve the
accuracy of the estimate; reduce the number of markers to conserve memory and
computing time.

Main Discussion: “Quantiles” on page 555

QMETHOD=OS|P2|HIST
specifies the method that PROC MEANS uses to process the input data when it
computes quantiles. If the number of observations is less than or equal to the
QMARKERS= value and QNTLDEF=5, then both methods produce the same results.

OS
uses order statistics. This is the same method that PROC UNIVARIATE uses.

Note: This technique can be very memory-intensive. �

P2|HIST
uses the P2 method to approximate the quantile.

Default: OS

Restriction: When QMETHOD=P2, PROC MEANS will not compute weighted
quantiles.

Tip: When QMETHOD=P2, reliable estimations of some quantiles (P1,P5,P95,P99)
may not be possible for some data sets.

Main Discussion: “Quantiles” on page 555

QNTLDEF=1|2|3|4|5
specifies the mathematical definition that PROC MEANS uses to calculate quantiles
when QMETHOD=OS. To use QMETHOD=P2, you must use QNTLDEF=5.

Default: 5

Alias: PCTLDEF=

Main discussion: “Quantile and Related Statistics” on page 1345

The MEANS Procedure � PROC MEANS Statement 533

statistic-keyword(s)
specifies which statistics to compute and the order to display them in the output.
The available keywords in the PROC statement are

Descriptive statistic keywords

CLM RANGE

CSS SKEWNESS|SKEW

CV STDDEV|STD

KURTOSIS|KURT STDERR

LCLM SUM

MAX SUMWGT

MEAN UCLM

MIN USS

N VAR

NMISS

Quantile statistic keywords

MEDIAN|P50 Q3|P75

P1 P90

P5 P95

P10 P99

Q1|P25 QRANGE

Hypothesis testing keywords

PROBT T

Default: N, MEAN, STD, MIN, and MAX

Requirement: To compute standard error, confidence limits for the mean, and the
Student’s t-test, you must use the default value of the VARDEF= option, which is
DF. To compute skewness or kurtosis, you must use VARDEF=N or VARDEF=DF.

Tip: Use CLM or both LCLM and UCLM to compute a two-sided confidence limit
for the mean. Use only LCLM or UCLM, to compute a one-sided confidence limit.

Main discussion: The definitions of the keywords and the formulas for the
associated statistics are listed in “Keywords and Formulas” on page 1340.

Featured in: Example 1 on page 558 and Example 3 on page 562

SUMSIZE=value
specifies the amount of memory that is available for data summarization when you
use class variables. value may be one of the following:

n|nK| nM| nG
specifies the amount of memory available in bytes, kilobytes, megabytes, or
gigabytes, respectively. If n is 0, then PROC MEANS use the value of the SAS
system option SUMSIZE=.

MAXIMUM|MAX
specifies the maximum amount of memory that is available.

534 PROC MEANS Statement � Chapter 27

Default: The value of the SUMSIZE= system option.
Tip: For best results, do not make SUMSIZE= larger than the amount of physical

memory that is available for the PROC step. If additional space is needed, then
PROC MEANS uses utility files.

See also: The SAS system option SUMSIZE= in SAS Language Reference:
Dictionary.

Main discussion: “Computational Resources” on page 552

THREADS | NOTHREADS
enables or disables parallel processing of the input data set. This option overrides
the SAS system option THREADS | NOTHREADS. See SAS Language Reference:
Concepts for more information about parallel processing.
Default: value of SAS system option THREADS | NOTHREADS.
Interaction: PROC MEANS honors the SAS system option THREADS except when

a BY statement is specified or the value of the SAS system option CPUCOUNT is
less than 2. You can use THREADS in the PROC MEANS statement to force
PROC MEANS to use parallel processing in these situations.

VARDEF=divisor
specifies the divisor to use in the calculation of the variance and standard deviation.
Table 27.1 on page 534 shows the possible values for divisor and associated divisors.

Table 27.1 Possible Values for VARDEF=

Value Divisor Formula for Divisor

DF degrees of freedom n − 1

N number of observations n

WDF sum of weights minus one (�i wi) − 1

WEIGHT | WGT sum of weights �i wi

The procedure computes the variance as �����������, where ��� is the corrected
sums of squares and equals

�
�	� � ��

�. When you weight the analysis variables,
��� equals

�
�� ��� � ���

�, where �� is the weighted mean.
Default: DF
Requirement: To compute the standard error of the mean, confidence limits for the

mean, or the Student’s t-test, use the default value of VARDEF=.
Tip: When you use the WEIGHT statement and VARDEF=DF, the variance is an

estimate of ��, where the variance of the ith observation is ��� ���� � ����� and
�� is the weight for the ith observation. This yields an estimate of the variance of
an observation with unit weight.

Tip: When you use the WEIGHT statement and VARDEF=WGT, the computed
variance is asymptotically (for large n) an estimate of ����, where � is the
average weight. This yields an asymptotic estimate of the variance of an
observation with average weight.

See also: “Weighted Statistics Example” on page 65
Main discussion: “Keywords and Formulas” on page 1340

The MEANS Procedure � BY Statement 535

BY Statement

Produces separate statistics for each BY group.

Main discussion: “BY” on page 58

See also: “Comparison of the BY and CLASS Statements” on page 539

Featured in: Example 3 on page 562

BY <DESCENDING> variable-1 <…<DESCENDING> variable-n> <NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you omit the NOTSORTED option in the BY statement,
then the observations in the data set either must be sorted by all the variables that
you specify or must be indexed appropriately. Variables in a BY statement are called
BY variables.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are sorted in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, then the procedure treats each contiguous set as a separate BY
group.

Using the BY Statement with the SAS System Option NOBYLINE

If you use the BY statement with the SAS system option NOBYLINE, which
suppresses the BY line that normally appears in output that is produced with BY-group
processing, then PROC MEANS always starts a new page for each BY group. This
behavior ensures that if you create customized BY lines by putting BY-group
information in the title and suppressing the default BY lines with NOBYLINE, then the
information in the titles matches the report on the pages. (See “Creating Titles That
Contain BY-Group Information” on page 20 and “Suppressing the Default BY Line” on
page 20.)

536 CLASS Statement � Chapter 27

CLASS Statement

Specifies the variables whose values define the subgroup combinations for the analysis.

Tip: You can use multiple CLASS statements.
Tip: Some CLASS statement options are also available in the PROC MEANS
statement. They affect all CLASS variables. Options that you specify in a CLASS
statement apply only to the variables in that CLASS statement.
See also: For information about how the CLASS statement groups formatted values, see
“Formatted Values” on page 25.
Featured in: Example 2 on page 560, Example 4 on page 564, Example 5 on page 567,
Example 6 on page 570, and Example 10 on page 578

CLASS variable(s) </ options>;

Required Arguments

variable(s)
specifies one or more variables that the procedure uses to group the data. Variables
in a CLASS statement are referred to as class variables. Class variables are numeric
or character. Class variables can have continuous values, but they typically have a
few discrete values that define levels of the variable. You do not have to sort the data
by class variables.
Interaction: Use the TYPES statement or the WAYS statement to control which

class variables that PROC MEANS uses to group the data.
Tip: To reduce the number of class variable levels, use a FORMAT statement to

combine variable values. When a format combines several internal values into one
formatted value, PROC MEANS outputs the lowest internal value.

See also: “Using Class Variables” on page 550

Options

ASCENDING
specifies to sort the class variable levels in ascending order.
Alias: ASCEND
Interaction: PROC MEANS issues a warning message if you specify both

ASCENDING and DESCENDING and ignores both options.
Featured in: Example 10 on page 578

DESCENDING
specifies to sort the class variable levels in descending order.
Alias: DESCEND
Interaction: PROC MEANS issues a warning message if you specify both

ASCENDING and DESCENDING and ignores both options.

EXCLUSIVE
excludes from the analysis all combinations of the class variables that are not found
in the preloaded range of user-defined formats.

The MEANS Procedure � CLASS Statement 537

Requirement: You must specify PRELOADFMT to preload the class variable
formats.

Featured in: Example 6 on page 570

GROUPINTERNAL
specifies not to apply formats to the class variables when PROC MEANS groups the
values to create combinations of class variables.

Interaction: If you specify the PRELOADFMT option, then PROC MEANS ignores
the GROUPINTERNAL option and uses the formatted values.

Interaction: If you specify the ORDER=FORMATTED option, then PROC MEANS
ignores the GROUPINTERNAL option and uses the formatted values.

Tip: This option saves computer resources when the numeric class variables contain
discrete values.

See also: “Computer Resources” on page 539

MISSING
considers missing values as valid values for the class variable levels. Special missing
values that represent numeric values (the letters A through Z and the underscore (_)
character) are each considered as a separate value.

Default: If you omit MISSING, then PROC MEANS excludes the observations with
a missing class variable value from the analysis.

See also: SAS Language Reference: Concepts for a discussion of missing values with
special meanings.

Featured in: Example 10 on page 578

MLF
enables PROC MEANS to use the primary and secondary format labels for a given
range or overlapping ranges to create subgroup combinations when a multilabel
format is assigned to a class variable.
Requirement: You must use PROC FORMAT and the MULTILABEL option in the

VALUE statement to create a multilabel format.

Interaction: If you use the OUTPUT statement with MLF, then the class variable
contains a character string that corresponds to the formatted value. Because the
formatted value becomes the internal value, the length of this variable is the
number of characters in the longest format label.

Interaction: Using MLF with ORDER=FREQ may not produce the order that you
expect for the formatted values.

Tip: If you omit MLF, then PROC MEANS uses the primary format labels, which
corresponds to using the first external format value, to determine the subgroup
combinations.

See also: The MULTILABEL option in the VALUE statement of the FORMAT
procedure on page 440.

Featured in: Example 5 on page 567

Note: When the formatted values overlap, one internal class variable value maps
to more than one class variable subgroup combination. Therefore, the sum of the N
statistics for all subgroups is greater than the number of observations in the data set
(the overall N statistic). �

ORDER=DATA | FORMATTED | FREQ | UNFORMATTED
specifies the order to group the levels of the class variables in the output, where

DATA
orders values according to their order in the input data set.

538 CLASS Statement � Chapter 27

Interaction: If you use PRELOADFMT, then the order of the values of each class
variable matches the order that PROC FORMAT uses to store the values of the
associated user-defined format. If you use the CLASSDATA= option in the
PROC statement, then PROC MEANS uses the order of the unique values of
each class variable in the CLASSDATA= data set to order the output levels. If
you use both options, then PROC MEANS first uses the user-defined formats to
order the output. If you omit EXCLUSIVE in the PROC statement, then PROC
MEANS appends after the user-defined format and the CLASSDATA= values
the unique values of the class variables in the input data set based on the order
in which they are encountered.

Tip: By default, PROC FORMAT stores a format definition in sorted order. Use
the NOTSORTED option to store the values or ranges of a user defined format
in the order that you define them.

Featured in: Example 10 on page 578

FORMATTED
orders values by their ascending formatted values. This order depends on your
operating environment. If no format has been assigned to a class variable, then
the default format, BEST12., is used.
Alias: FMT | EXTERNAL
Featured in: Example 5 on page 567

FREQ
orders values by descending frequency count so that levels with the most
observations are listed first.
Interaction: For multiway combinations of the class variables, PROC MEANS

determines the order of a level from the individual class variable frequencies.
Interaction: Use the ASCENDING option to order values by ascending frequency

count.
Featured in: Example 5 on page 567

UNFORMATTED
orders values by their unformatted values, which yields the same order as PROC
SORT. This order depends on your operating environment. This sort sequence is
particularly useful for displaying dates chronologically.
Alias: UNFMT | INTERNAL

Default: UNFORMATTED
Tip: By default, all orders except FREQ are ascending. For descending orders, use

the DESCENDING option.
See also: “Ordering the Class Values” on page 551

PRELOADFMT
specifies that all formats are preloaded for the class variables.
Requirement: PRELOADFMT has no effect unless you specify either

COMPLETETYPES, EXCLUSIVE, or ORDER=DATA and you assign formats to
the class variables.

Interaction: To limit PROC MEANS output to the combinations of formatted class
variable values present in the input data set, use the EXCLUSIVE option in the
CLASS statement.

Interaction: To include all ranges and values of the user-defined formats in the
output, even when the frequency is zero, use COMPLETETYPES in the PROC
statement.

Featured in: Example 6 on page 570

The MEANS Procedure � FREQ Statement 539

Comparison of the BY and CLASS Statements
Using the BY statement is similar to using the CLASS statement and the NWAY

option in that PROC MEANS summarizes each BY group as an independent subset of
the input data. Therefore, no overall summarization of the input data is available.
However, unlike the CLASS statement, the BY statement requires that you previously
sort BY variables.

When you use the NWAY option, PROC MEANS might encounter insufficient
memory for the summarization of all the class variables. You can move some class
variables to the BY statement. For maximum benefit, move class variables to the BY
statement that are already sorted or that have the greatest number of unique values.

You can use the CLASS and BY statements together to analyze the data by the levels
of class variables within BY groups. See Example 3 on page 562.

How PROC MEANS Handles Missing Values for Class Variables
By default, if an observation contains a missing value for any class variable, then

PROC MEANS excludes that observation from the analysis. If you specify the
MISSING option in the PROC statement, then the procedure considers missing values
as valid levels for the combination of class variables.

Specifying the MISSING option in the CLASS statement allows you to control the
acceptance of missing values for individual class variables.

Computer Resources
The total of unique class values that PROC MEANS allows depends on the amount of

computer memory that is available. See “Computational Resources” on page 552 for
more information.

The GROUPINTERNAL option can improve computer performance because the
grouping process is based on the internal values of the class variables. If a numeric
class variable is not assigned a format and you do not specify GROUPINTERNAL, then
PROC MEANS uses the default format, BEST12., to format numeric values as
character strings. Then PROC MEANS groups these numeric variables by their
character values, which takes additional time and computer memory.

FREQ Statement

Specifies a numeric variable that contains the frequency of each observation.

Main discussion: “FREQ” on page 61

FREQ variable;

Required Arguments

variable
specifies a numeric variable whose value represents the frequency of the observation.
If you use the FREQ statement, then the procedure assumes that each observation
represents n observations, where n is the value of variable. If n is not an integer,

540 ID Statement � Chapter 27

then SAS truncates it. If n is less than 1 or is missing, then the procedure does not
use that observation to calculate statistics.

The sum of the frequency variable represents the total number of observations.

Note: The FREQ variable does not affect how PROC MEANS identifies multiple
extremes when you use the IDGROUP syntax in the OUTPUT statement. �

ID Statement
Includes additional variables in the output data set.

See Also: Discussion of id-group-specification in “OUTPUT Statement” on page 540.

ID variable(s);

Required Arguments

variable(s)
identifies one or more variables from the input data set whose maximum values for
groups of observations PROC MEANS includes in the output data set.
Interaction: Use IDMIN in the PROC statement to include the minimum value of

the ID variables in the output data set.
Tip: Use the PRINTIDVARS option in the PROC statement to include the value of

the ID variable in the displayed output.

Selecting the Values of the ID Variables
When you specify only one variable in the ID statement, the value of the ID variable

for a given observation is the maximum (minimum) value found in the corresponding
group of observations in the input data set. When you specify multiple variables in the
ID statement, PROC MEANS selects the maximum value by processing the variables in
the ID statement in the order that you list them. PROC MEANS determines which
observation to use from all the ID variables by comparing the values of the first ID
variable. If more than one observation contains the same maximum (minimum) ID
value, then PROC MEANS uses the second and subsequent ID variable values as
“tiebreakers.” In any case, all ID values are taken from the same observation for any
given BY group or classification level within a type.

See “Sorting Orders for Character Variables” on page 1014 for information on how
PROC MEANS compares character values to determine the maximum value.

OUTPUT Statement
Writes statistics to a new SAS data set.

Tip: You can use multiple OUTPUT statements to create several OUT= data sets.
Featured in: Example 8 on page 575, Example 9 on page 577, Example 10 on page 578,
Example 11 on page 580, and Example 12 on page 583

The MEANS Procedure � OUTPUT Statement 541

OUTPUT <OUT=SAS-data-set> <output-statistic-specification(s)>
<id-group-specification(s)> <maximum-id-specification(s)>
<minimum-id-specification(s)> </ option(s)>;

Options

OUT=SAS-data-set
names the new output data set. If SAS-data-set does not exist, then PROC MEANS
creates it. If you omit OUT=, then the data set is named DATAn, where n is the
smallest integer that makes the name unique.

Default: DATAn

Tip: You can use data set options with the OUT= option. See “Data Set Options” on
page 18 for a list.

output-statistic-specification(s)
specifies the statistics to store in the OUT= data set and names one or more
variables that contain the statistics. The form of the output-statistic-specification is

statistic-keyword<(variable-list)>=<name(s)>

where

statistic-keyword
specifies which statistic to store in the output data set. The available statistic
keywords are

Descriptive statistics keyword

CSS RANGE

CV SKEWNESS|SKEW

KURTOSIS|KURT STDDEV |STD

LCLM STDERR

MAX SUM

MEAN SUMWGT

MIN UCLM

N USS

NMISS VAR

Quantile statistics keyword

MEDIAN|P50 Q3|P75

P1 P90

P5 P95

P10 P99

Q1|P25 QRANGE

Hypothesis testing keyword

PROBT T

542 OUTPUT Statement � Chapter 27

By default the statistics in the output data set automatically inherit the
analysis variable’s format, informat, and label. However, statistics computed for
N, NMISS, SUMWGT, USS, CSS, VAR, CV, T, PROBT, SKEWNESS, and
KURTOSIS will not inherit the analysis variable’s format because this format may
be invalid for these statistics (for example, dollar or datetime formats).

Restriction: If you omit variable and name(s), then PROC MEANS allows the
statistic-keyword only once in a single OUTPUT statement, unless you also use
the AUTONAME option.

Featured in: Example 8 on page 575, Example 9 on page 577, Example 11 on
page 580, and Example 12 on page 583

variable-list
specifies the names of one or more numeric analysis variables whose statistics you
want to store in the output data set.

Default: all numeric analysis variables

name(s)
specifies one or more names for the variables in output data set that will contain
the analysis variable statistics. The first name contains the statistic for the first
analysis variable; the second name contains the statistic for the second analysis
variable; and so on.

Default: the analysis variable name. If you specify AUTONAME, then the default
is the combination of the analysis variable name and the statistic-keyword.

Interaction: If you specify variable-list, then PROC MEANS uses the order in
which you specify the analysis variables to store the statistics in the output
data set variables.

Featured in: Example 8 on page 575

Default: If you use the CLASS statement and an OUTPUT statement without an
output-statistic-specification, then the output data set contains five observations
for each combination of class variables: the value of N, MIN, MAX, MEAN, and
STD. If you use the WEIGHT statement or the WEIGHT option in the VAR
statement, then the output data set also contains an observation with the sum of
weights (SUMWGT) for each combination of class variables.

Tip: Use the AUTONAME option to have PROC MEANS generate unique names
for multiple variables and statistics.

id-group-specification
combines the features and extends the ID statement, the IDMIN option in the PROC
statement, and the MAXID and MINID options in the OUTPUT statement to create
an OUT= data set that identifies multiple extreme values. The form of the
id-group-specification is

IDGROUP (<MIN|MAX (variable-list-1) <…MIN|MAX (variable-list-n)>>
<<MISSING> <OBS> <LAST>> OUT <[n]>
(id-variable-list)=<name(s)>)

MIN|MAX(variable-list)
specifies the selection criteria to determine the extreme values of one or more
input data set variables specified in variable-list. Use MIN to determine the
minimum extreme value and MAX to determine the maximum extreme value.

When you specify multiple selection variables, the ordering of observations for
the selection of n extremes is done the same way that PROC SORT sorts data with
multiple BY variables. PROC MEANS concatenates the variable values into a
single key. The MAX(variable-list) selection criterion is similar to using PROC
SORT and the DESCENDING option in the BY statement.

The MEANS Procedure � OUTPUT Statement 543

Default: If you do not specify MIN or MAX, then PROC MEANS uses the
observation number as the selection criterion to output observations.

Restriction: If you specify criteria that are contradictory, then PROC MEANS
uses only the first selection criterion.

Interaction: When multiple observations contain the same extreme values in all
the MIN or MAX variables, PROC MEANS uses the observation number to
resolve which observation to write to the output. By default, PROC MEANS
uses the first observation to resolve any ties. However, if you specify the LAST
option, then PROC MEANS uses the last observation to resolve any ties.

LAST
specifies that the OUT= data set contains values from the last observation (or the
last n observations, if n is specified). If you do not specify LAST, then the OUT=
data set contains values from the first observation (or the first n observations, if n
is specified). The OUT= data set might contain several observations because in
addition to the value of the last (first) observation, the OUT= data set contains
values from the last (first) observation of each subgroup level that is defined by
combinations of class variable values.
Interaction: When you specify MIN or MAX and when multiple observations

contain the same extreme values, PROC MEANS uses the observation number
to resolve which observation to save to the OUT= data set. If you specify LAST,
then PROC MEANS uses the later observations to resolve any ties. If you do
not specify LAST, then PROC MEANS uses the earlier observations to resolve
any ties.

MISSING
specifies that missing values be used in selection criteria.
Alias: MISS

OBS
includes an _OBS_ variable in the OUT= data set that contains the number of the
observation in the input data set where the extreme value was found.
Interaction: If you use WHERE processing, then the value of _OBS_ might not

correspond to the location of the observation in the input data set.
Interaction: If you use [n] to write multiple extreme values to the output, then

PROC MEANS creates n _OBS_ variables and uses the suffix n to create the
variable names, where n is a sequential integer from 1 to n.

[n]
specifies the number of extreme values for each variable in id-variable-list to
include in the OUT= data set. PROC MEANS creates n new variables and uses the
suffix _n to create the variable names, where n is a sequential integer from 1 to n.

By default, PROC MEANS determines one extreme value for each level of each
requested type. If n is greater than one, then n extremes are output for each level
of each type. When n is greater than one and you request extreme value selection,
the time complexity is �� � �� ���

�
��, where � is the number of types

requested and � is the number of observations in the input data set. By
comparison, to group the entire data set, the time complexity is ��� ���

�
��.

Default: 1
Range: an integer between 1 and 100
Example: To output two minimum extreme values for each variable, use

idgroup(min(x) out[2](x y z)=MinX MinY MinZ);

The OUT= data set contains the variables MinX_1, MinX_2, MinY_1, MinY_2,
MinZ_1, and MinZ_2.

544 OUTPUT Statement � Chapter 27

(id-variable-list)
identifies one or more input data set variables whose values PROC MEANS
includes in the OUT= data set. PROC MEANS determines which observations to
output by the selection criteria that you specify (MIN, MAX, and LAST).

name(s)
specifies one or more names for variables in the OUT= data set.

Default: If you omit name, then PROC MEANS uses the names of variables in the
id-variable-list.

Tip: Use the AUTONAME option to automatically resolve naming conflicts.

Alias: IDGRP

Requirement: You must specify the MIN|MAX selection criteria first and
OUT(id-variable-list)= after the suboptions MISSING, OBS, and LAST.

Tip: You can use id-group-specification to mimic the behavior of the ID statement
and a maximum-id-specification or minimum-id-specification in the OUTPUT
statement.

Tip: When you want the output data set to contain extreme values along with other
id variables, it is more efficient to include them in the id-variable-list than to
request separate statistics. For example, the statement

output idgrp(max(x) out(x a b)=);

is more efficient than the statement

output idgrp(max(x) out(a b)=) max(x)=;

Featured in: Example 8 on page 575 and Example 12 on page 583

CAUTION:
The IDGROUP syntax allows you to create output variables with the same name. When
this happens, only the first variable appears in the output data set. Use the
AUTONAME option to automatically resolve these naming conflicts. �

Note: If you specify fewer new variable names than the combination of analysis
variables and identification variables, then the remaining output variables use the
corresponding names of the ID variables as soon as PROC MEANS exhausts the list
of new variable names. �

maximum-id-specification(s)
specifies that one or more identification variables be associated with the maximum
values of the analysis variables. The form of the maximum-id-specification is

MAXID <(variable-1 <(id-variable-list-1)> <…variable-n
<(id-variable-list-n)>>)> = name(s)

variable
identifies the numeric analysis variable whose maximum values PROC MEANS
determines. PROC MEANS may determine several maximum values for a variable
because, in addition to the overall maximum value, subgroup levels, which are
defined by combinations of class variables values, also have maximum values.

Tip: If you use an ID statement and omit variable, then PROC MEANS uses all
analysis variables.

id-variable-list
identifies one or more variables whose values identify the observations with the
maximum values of the analysis variable.

Default: the ID statement variables

The MEANS Procedure � OUTPUT Statement 545

name(s)
specifies the names for new variables that contain the values of the identification
variable associated with the maximum value of each analysis variable.

Tip: If you use an ID statement, and omit variable and id-variable, then PROC
MEANS associates all ID statement variables with each analysis variable. Thus,
for each analysis variable, the number of variables that are created in the output
data set equals the number of variables that you specify in the ID statement.

Tip: Use the AUTONAME option to automatically resolve naming conflicts.
Limitation: If multiple observations contain the maximum value within a class

level, then PROC MEANS saves the value of the ID variable for only the first of
those observations in the output data set.

Featured in: Example 11 on page 580

CAUTION:
The MAXID syntax allows you to create output variables with the same name. When
this happens, only the first variable appears in the output data set. Use the
AUTONAME option to automatically resolve these naming conflicts. �

Note: If you specify fewer new variable names than the combination of analysis
variables and identification variables, then the remaining output variables use the
corresponding names of the ID variables as soon as PROC MEANS exhausts the list
of new variable names. �

minid-specification
See the description of maximum-id-specification on page 544. This option behaves in
exactly the same way, except that PROC MEANS determines the minimum values
instead of the maximum values. The form of the minid-specification is

MINID<(variable-1 <(id-variable-list-1)> <…variable-n
<(id-variable-list-n)>>)> = name(s)

AUTOLABEL
specifies that PROC MEANS appends the statistic name to the end of the variable
label. If an analysis variable has no label, then PROC MEANS creates a label by
appending the statistic name to the analysis variable name.
Featured in: Example 12 on page 583

AUTONAME
specifies that PROC MEANS creates a unique variable name for an output statistic
when you do not explicitly assign the variable name in the OUTPUT statement. This
is accomplished by appending the statistic-keyword to the end of the input variable
name from which the statistic was derived. For example, the statement

output min(x)=/autoname;

produces the x_Min variable in the output data set.
AUTONAME activates the SAS internal mechanism to automatically resolve

conflicts in the variable names in the output data set. Duplicate variables will not
generate errors. As a result, the statement

output min(x)= min(x)=/autoname;

produces two variables, x_Min and x_Min2, in the output data set.
Featured in: Example 12 on page 583

KEEPLEN
specifies that statistics in the output data set inherit the length of the analysis
variable that PROC MEANS uses to derive them.

546 TYPES Statement � Chapter 27

CAUTION:
You permanently lose numeric precision when the length of the analysis variable causes
PROC MEANS to truncate or round the value of the statistic. However, the precision of
the statistic will match that of the input. �

LEVELS
includes a variable named _LEVEL_ in the output data set. This variable contains a
value from 1 to n that indicates a unique combination of the values of class variables
(the values of _TYPE_ variable).
Main discussion: “Output Data Set” on page 557
Featured in: Example 8 on page 575

NOINHERIT
specifies that the variables in the output data set that contain statistics do not
inherit the attributes (label and format) of the analysis variables which are used to
derive them.
Tip: By default, the output data set includes an output variable for each analysis

variable and for five observations that contain N, MIN, MAX, MEAN, and
STDDEV. Unless you specify NOINHERIT, this variable inherits the format of the
analysis variable, which may be invalid for the N statistic (for example, datetime
formats).

WAYS
includes a variable named _WAY_ in the output data set. This variable contains a
value from 1 to the maximum number of class variables that indicates how many
class variables PROC MEANS combines to create the TYPE value.
Main discussion: “Output Data Set” on page 557
See also: “WAYS Statement” on page 548
Featured in: Example 8 on page 575

TYPES Statement

Identifies which of the possible combinations of class variables to generate.

Main discussion: “Output Data Set” on page 557
Requirement: CLASS statement
Featured in: Example 2 on page 560, Example 5 on page 567, and Example 12 on page
583

TYPES request(s);

Required Arguments

request(s)
specifies which of the �

� combinations of class variables PROC MEANS uses to
create the types, where � is the number of class variables. A request is composed of
one class variable name, several class variable names separated by asterisks, or ().

The MEANS Procedure � VAR Statement 547

To request class variable combinations quickly, use a grouping syntax by placing
parentheses around several variables and joining other variables or variable
combinations. For example, the following statements illustrate grouping syntax:

Request Equivalent to

types A*(B C); types A*B A*C;

types (A B)*(C D); types A*C A*D B*C B*D;

types (A B C)*D; types A*D B*D C*D;

Interaction The CLASSDATA= option places constraints on the NWAY type. PROC
MEANS generates all other types as if derived from the resulting NWAY type.

Tip: Use () to request the overall total (_TYPE_=0).
Tip: If you do not need all types in the output data set, then use the TYPES

statement to specify particular subtypes rather than applying a WHERE clause to
the data set. Doing so saves time and computer memory.

Order of Analyses in the Output
The analyses are written to the output in order of increasing values of the _TYPE_

variable, which is calculated by PROC MEANS. The _TYPE_ variable has a unique
value for each combination of class variables; the values are determined by how you
specify the CLASS statement, not the TYPES statement. Therefore, if you specify

class A B C;
types (A B)*C;

then the B*C analysis (_TYPE_=3) is written first, followed by the A*C analysis
(_TYPE_=5). However, if you specify

class B A C;
types (A B)*C;

then the A*C analysis comes first.
The _TYPE_ variable is calculated even if no output data set is requested. For more

information about the _TYPE_ variable, see “Output Data Set” on page 557.

VAR Statement

Identifies the analysis variables and their order in the output.

Default: If you omit the VAR statement, then PROC MEANS analyzes all numeric
variables that are not listed in the other statements. When all variables are character
variables, PROC MEANS produces a simple count of observations.
Tip: You can use multiple VAR statements.
See also: Chapter 46, “The SUMMARY Procedure,” on page 1177
Featured in: Example 1 on page 558

VAR variable(s) </ WEIGHT=weight-variable>;

548 WAYS Statement � Chapter 27

Required Arguments

variable(s)
identifies the analysis variables and specifies their order in the results.

Option

WEIGHT=weight-variable
specifies a numeric variable whose values weight the values of the variables that are
specified in the VAR statement. The variable does not have to be an integer. If the
value of the weight variable is

Weight value… PROC MEANS…

0 counts the observation in the total number of observations

less than 0 converts the value to zero and counts the observation in the total
number of observations

missing excludes the observation

To exclude observations that contain negative and zero weights from the analysis,
use EXCLNPWGT. Note that most SAS/STAT procedures, such as PROC GLM,
exclude negative and zero weights by default.

The weight variable does not change how the procedure determines the range,
extreme values, or number of missing values.

Restriction: To compute weighted quantiles, use QMETHOD=OS in the PROC
statement.

Restriction: Skewness and kurtosis are not available with the WEIGHT option.

Tip: When you use the WEIGHT option, consider which value of the VARDEF=
option is appropriate. See the discussion of VARDEF= on page 534.

Tip: Use the WEIGHT option in multiple VAR statements to specify different
weights for the analysis variables.

Note: Prior to Version 7 of SAS, the procedure did not exclude the observations
with missing weights from the count of observations. �

WAYS Statement

Specifies the number of ways to make unique combinations of class variables.

Tip: Use the TYPES statement to specify additional combinations of class variables.

Featured in: Example 6 on page 570

WAYS list;

The MEANS Procedure � WEIGHT Statement 549

Required Arguments

list
specifies one or more integers that define the number of class variables to combine to
form all the unique combinations of class variables. For example, you can specify 2
for all possible pairs and 3 for all possible triples. The list can be specified in the
following ways:

m
m1 m2 … mn
m1,m2,…,mn
m TO n <BY increment>
m1,m2, TO m3 <BY increment>, m4

Range: 0 to maximum number of class variables
Example: To create the two-way types for the classification variables A, B, and C,

use

class A B C ;
ways 2;

This WAYS statement is equivalent to specifying a*b, a*c, and b*c in the TYPES
statement.

See also: WAYS option on page 546

WEIGHT Statement

Specifies weights for observations in the statistical calculations.

See also: For information on how to calculate weighted statistics and for an example
that uses the WEIGHT statement, see “WEIGHT” on page 63

WEIGHT variable;

Required Arguments

variable
specifies a numeric variable whose values weight the values of the analysis variables.
The values of the variable do not have to be integers. If the value of the weight
variable is

Weight value… PROC MEANS…

0 counts the observation in the total number of observations

less than 0 converts the value to zero and counts the observation in the
total number of observations

missing excludes the observation

550 Concepts: MEANS Procedure � Chapter 27

To exclude observations that contain negative and zero weights from the analysis,
use EXCLNPWGT. Note that most SAS/STAT procedures, such as PROC GLM,
exclude negative and zero weights by default.

Restriction: To compute weighted quantiles, use QMETHOD=OS in the PROC
statement.

Restriction: Skewness and kurtosis are not available with the WEIGHT statement.

Interaction: If you use the WEIGHT= option in a VAR statement to specify a
weight variable, then PROC MEANS uses this variable instead to weight those
VAR statement variables.

Tip: When you use the WEIGHT statement, consider which value of the VARDEF=
option is appropriate. See the discussion of VARDEF= on page 534 and the
calculation of weighted statistics in “Keywords and Formulas” on page 1340 for
more information.

Note: Prior to Version 7 of SAS, the procedure did not exclude the observations
with missing weights from the count of observations. �

CAUTION:
Single extreme weight values can cause inaccurate results. When one (and only one)
weight value is many orders of magnitude larger than the other weight values (for
example, 49 weight values of 1 and one weight value of 1�1014), certain statistics
might not be within acceptable accuracy limits. The affected statistics are those that
are based on the second moment (such as standard deviation, corrected sum of
squares, variance, and standard error of the mean). Under certain circumstances, no
warning is written to the SAS log. �

Concepts: MEANS Procedure

Using Class Variables

Using TYPES and WAYS Statements

The TYPES statement controls which of the available class variables PROC MEANS
uses to subgroup the data. The unique combinations of these active class variable
values that occur together in any single observation of the input data set determine the
data subgroups. Each subgroup that PROC MEANS generates for a given type is called
a level of that type. Note that for all types, the inactive class variables can still affect
the total observation count of the rejection of observations with missing values.

When you use a WAYS statement, PROC MEANS generates types that correspond to
every possible unique combination of n class variables chosen from the complete set of
class variables. For example

proc means;
class a b c d e;
ways 2 3;
run;

The MEANS Procedure � Using Class Variables 551

is equivalent to

proc means;
class a b c d e;
types a*b a*c a*d a*e b*c b*d b*e c*d c*e d*e

a*b*c a*b*d a*b*e a*c*d a*c*e a*d*e
b*c*d b*c*e c*d*e;

run;

If you omit the TYPES statement and the WAYS statement, then PROC MEANS uses
all class variables to subgroup the data (the NWAY type) for displayed output and
computes all types (��) for the output data set.

Ordering the Class Values

PROC MEANS determines the order of each class variable in any type by examining
the order of that class variable in the corresponding one-way type. You see the effect of
this behavior in the options ORDER=DATA or ORDER=FREQ. When PROC MEANS
subdivides the input data set into subsets, the classification process does not apply the
options ORDER=DATA or ORDER=FREQ independently for each subgroup. Instead,
one frequency and data order is established for all output based on an nonsubdivided
view of the entire data set. For example, consider the following statements:

data pets;
input Pet $ Gender $;
datalines;

dog m
dog f
dog f
dog f
cat m
cat m
cat f
;

proc means data=pets order=freq;
class pet gender;

run;

The statements produce this output.

The SAS System 1

The MEANS Procedure

N
Pet Gender Obs

dog f 3

m 1

cat f 1

m 2

552 Computational Resources � Chapter 27

In the example, PROC MEANS does not list male cats before female cats. Instead, it
determines the order of gender for all types over the entire data set. PROC MEANS
found more observations for female pets (f=4, m=3).

Computational Resources
PROC MEANS employs the same memory allocation scheme across all operating

environments. When class variables are involved, PROC MEANS must keep a copy of
each unique value of each class variable in memory. You can estimate the memory
requirements to group the class variable by calculating

��� ���� ��� ���� ���� ��� � ������� ���� ���

where

��� is the number of unique values for the class variable

��� is the combined unformatted and formatted length of ��

� is some constant on the order of 32 bytes (64 for 64-bit architectures).

When you use the GROUPINTERNAL option in the CLASS statement, ��� is simply
the unformatted length of ��.

Each unique combination of class variables, ��� ��� , for a given type forms a level in
that type (see “TYPES Statement” on page 546). You can estimate the maximum
potential space requirements for all levels of a given type, when all combinations
actually exist in the data (a complete type), by calculating

� ���� ���� � ��� ����

where

� is a constant based on the number of variables analyzed and the
number of statistics calculated (unless you request QMETHOD=OS
to compute the quantiles).

��������� are the number of unique levels for the active class variables of the
given type.

Clearly, the memory requirements of the levels overwhelm those of the class variables.
For this reason, PROC MEANS may open one or more utility files and write the levels
of one or more types to disk. These types are either the primary types that PROC
MEANS built during the input data scan or the derived types.

If PROC MEANS must write partially complete primary types to disk while it
processes input data, then one or more merge passes may be required to combine type
levels in memory with those on disk. In addition, if you use an order other than DATA
for any class variable, then PROC MEANS groups the completed types on disk. For this
reason, the peak disk space requirements can be more than twice the memory
requirements for a given type.

When PROC MEANS uses a temporary work file, you will receive the following note
in the SAS log:

Processing on disk occurred during summarization.
Peak disk usage was approximately nnn Mbytes.
Adjusting SUMSIZE may improve performance.

The MEANS Procedure � Confidence Limits 553

In most cases processing ends normally.
When you specify class variables in a CLASS statement, the amount of

data-dependent memory that PROC MEANS uses before it writes to a utility file is
controlled by the SAS system option and PROC option SUMSIZE=. Like the system
option SORTSIZE=, SUMSIZE= sets the memory threshold where disk-based
operations begin. For best results, set SUMSIZE= to less than the amount of real
memory that is likely to be available for the task. For efficiency reasons, PROC
MEANS may internally round up the value of SUMSIZE=. SUMSIZE= has no effect
unless you specify class variables.

As an alternative, you can set the SAS system option REALMEMSIZE= in the same
way that you would set SUMSIZE=. The value of REALMEMSIZE= indicates the
amount of real (as opposed to virtual) memory that SAS can expect to allocate. PROC
MEANS determines how much data-dependent memory to use before writing to utility
files by calculating the lesser of these two values:

� the value of REALMEMSIZE=

� 0.8*(M-U), where M is the value of MEMSIZE= and U is the amount of memory
that is already in use.

Operating Environment Information: The REALMEMSIZE= SAS system option is not
available in all operating environments. For details, see the SAS Companion for your
operating environment. �

If PROC MEANS reports that there is insufficient memory, then increase SUMSIZE=
(or REALMEMSIZE=). A SUMSIZE= (or REALMEMSIZE=) value that is greater than
MEMSIZE= will have no effect. Therefore, you might also need to increase MEMSIZE=.
If PROC MEANS reports insufficient disk space, then increase the WORK space
allocation. See the SAS documentation for your operating environment for more
information on how to adjust your computation resource parameters.

Another way to enhance performance is by carefully applying the TYPES or WAYS
statement, limiting the computations to only those combinations of class variables that
you are interested in. In particular, significant resource savings can be achieved by not
requesting the combination of all class variables.

Statistical Computations: MEANS Procedure

Computation of Moment Statistics
PROC MEANS uses single-pass algorithms to compute the moment statistics (such

as mean, variance, skewness, and kurtosis). See “Keywords and Formulas” on page
1340 for the statistical formulas.

The computational details for confidence limits, hypothesis test statistics, and
quantile statistics follow.

Confidence Limits
With the keywords CLM, LCLM, and UCLM, you can compute confidence limits for

the mean. A confidence limit is a range, constructed around the value of a sample
statistic, that contains the corresponding true population value with given probability
(ALPHA=) in repeated sampling.

554 Student’s t Test � Chapter 27

A two-sided ��� ��� ��% confidence interval for the mean has upper and lower
limits

�� ������������
��
�

where � is
�

�
���

�
��� � ��� and ������������ is the (�� ���) critical value of the

Student’s t statistics with � � � degrees of freedom.
A one-sided ��� ��� ��% confidence interval is computed as

�� ����������
��
�

�upper�

�� ����������
��
�

�lower�

A two-sided ��� ��� ��% confidence interval for the standard deviation has lower
and upper limits

�

�
�� �

��
�����������

� �

�
�� �

��
���������

where ��
����������� and ��

��������� are the ��� ���� and ��� critical values of the

chi-square statistic with �� � degrees of freedom. A one-sided ��� �� � ��%
confidence interval is computed by replacing ��� with �.

A ��� �� � ��% confidence interval for the variance has upper and lower limits that
are equal to the squares of the corresponding upper and lower limits for the standard
deviation.

When you use the WEIGHT statement or WEIGHT= in a VAR statement and the
default value of VARDEF=, which is DF, the ��� ��� ��% confidence interval for the
weighted mean has upper and lower limits

�� � ��������
���
��
���

	�

where �� is the weighted mean, �� is the weighted standard deviation, 	� is the
weight for
�� observation, and �������� is the �� � ���� critical value for the
Student’s t distribution with �� � degrees of freedom.

Student’s t Test
PROC MEANS calculates the t statistic as

� �
�� ��
��
�
�

The MEANS Procedure � Quantiles 555

where � is the sample mean, � is the number of nonmissing values for a variable, and �
is the sample standard deviation. Under the null hypothesis, the population mean
equals ��. When the data values are approximately normally distributed, the
probability under the null hypothesis of a t statistic as extreme as, or more extreme
than, the observed value (the p-value) is obtained from the t distribution with �� �

degrees of freedom. For large �, the t statistic is asymptotically equivalent to a z test.
When you use the WEIGHT statement or WEIGHT= in a VAR statement and the

default value of VARDEF=, which is DF, the Student’s t statistic is calculated as

�� �
�� � ��

���

�
��
���

��

where �� is the weighted mean, �� is the weighted standard deviation, and �� is the
weight for ��	 observation. The �� statistic is treated as having a Student’s t
distribution with �� � degrees of freedom. If you specify the EXCLNPWGT option in
the PROC statement, then � is the number of nonmissing observations when the value
of the WEIGHT variable is positive. By default, � is the number of nonmissing
observations for the WEIGHT variable.

Quantiles
The options QMETHOD=, QNTLDEF=, and QMARKERS= determine how PROC

MEANS calculates quantiles. QNTLDEF= deals with the mathematical definition of a
quantile. See “Quantile and Related Statistics” on page 1345. QMETHOD= deals with
the mechanics of how PROC MEANS handles the input data. The two methods are

OS
reads all data into memory and sorts it by unique value.

P2
accumulates all data into a fixed sample size that is used to approximate the
quantile.

If data set A has 100 unique values for a numeric variable X and data set B has 1000
unique values for numeric variable X, then QMETHOD=OS for data set B will take 10
times as much memory as it does for data set A. If QMETHOD=P2, then both data sets
A and B will require the same memory space to generate quantiles.

The QMETHOD=P2 technique is based on the piecewise-parabolic (P2) algorithm
invented by Jain and Chlamtac (1985). P2 is a one-pass algorithm to determine
quantiles for a large data set. It requires a fixed amount of memory for each variable
for each level within the type. However, using simulation studies, reliable estimations
of some quantiles (P1, P5, P95, P99) may not be possible for some data sets such as
those with heavily tailed or skewed distributions.

If the number of observations is less than the QMARKERS= value, then
QMETHOD=P2 produces the same results as QMETHOD=OS when QNTLDEF=5. To
compute weighted quantiles, you must use QMETHOD=OS.

556 Results: MEANS Procedure � Chapter 27

Results: MEANS Procedure

Missing Values
PROC MEANS excludes missing values for the analysis variables before calculating

statistics. Each analysis variable is treated individually; a missing value for an
observation in one variable does not affect the calculations for other variables. The
statements handle missing values as follows:

� If a class variable has a missing value for an observation, then PROC MEANS
excludes that observation from the analysis unless you use the MISSING option in
the PROC statement or CLASS statement.

� If a BY or ID variable value is missing, then PROC MEANS treats it like any
other BY or ID variable value. The missing values form a separate BY group.

� If a FREQ variable value is missing or nonpositive, then PROC MEANS excludes
the observation from the analysis.

� If a WEIGHT variable value is missing, then PROC MEANS excludes the
observation from the analysis.

PROC MEANS tabulates the number of the missing values. Before the number of
missing values are tabulated, PROC MEANS excludes observations with frequencies
that are nonpositive when you use the FREQ statement and observations with weights
that are missing or nonpositive (when you use the EXCLNPWGT option) when you use
the WEIGHT statement. To report this information in the procedure output use the
NMISS statistical keyword in the PROC statement.

Column Width for the Output
You control the column width for the displayed statistics with the FW= option in the

PROC statement. Unless you assign a format to a numeric class or an ID variable,
PROC MEANS uses the value of the FW= option. When you assign a format to a
numeric class or an ID variable, PROC MEANS determines the column width directly
from the format. If you use the PRELOADFMT option in the CLASS statement, then
PROC MEANS determines the column width for a class variable from the assigned
format.

The N Obs Statistic
By default when you use a CLASS statement, PROC MEANS displays an additional

statistic called N Obs. This statistic reports the total number of observations or the
sum of the observations of the FREQ variable that PROC MEANS processes for each
class level. PROC MEANS might omit observations from this total because of missing
values in one or more class variables or because of the effect of the EXCLUSIVE option
when you use it with the PRELOADFMT option or the CLASSDATA= option. Because
of this and the exclusion of observations when the WEIGHT variable contains missing
values, there is not always a direct relationship between N Obs, N, and NMISS.

In the output data set, the value of N Obs is stored in the _FREQ_ variable. Use the
NONOBS option in the PROC statement to suppress this information in the displayed
output.

The MEANS Procedure � Output Data Set 557

Output Data Set
PROC MEANS can create one or more output data sets. The procedure does not

print the output data set. Use PROC PRINT, PROC REPORT, or another SAS reporting
tool to display the output data set.

Note: By default the statistics in the output data set automatically inherit the
analysis variable’s format and label. However, statistics computed for N, NMISS,
SUMWGT, USS, CSS, VAR, CV, T, PROBT, SKEWNESS, and KURTOSIS do not inherit
the analysis variable’s format because this format may be invalid for these statistics.
Use the NOINHERIT option in the OUTPUT statement to prevent the other statistics
from inheriting the format and label attributes. �

The output data set can contain these variables:

� the variables specified in the BY statement.

� the variables specified in the ID statement.

� the variables specified in the CLASS statement.

� the variable _TYPE_ that contains information about the class variables. By
default _TYPE_ is a numeric variable. If you specify CHARTYPE in the PROC
statement, then _TYPE_ is a character variable. When you use more than 32 class
variables, _TYPE_ is automatically a character variable.

� the variable _FREQ_ that contains the number of observations that a given output
level represents.

� the variables requested in the OUTPUT statement that contain the output
statistics and extreme values.

� the variable _STAT_ that contains the names of the default statistics if you omit
statistic keywords.

� the variable _LEVEL_ if you specify the LEVEL option.

� the variable _WAY_ if you specify the WAYS option.

The value of _TYPE_ indicates which combination of the class variables PROC
MEANS uses to compute the statistics. The character value of _TYPE_ is a series of
zeros and ones, where each value of one indicates an active class variable in the type.
For example, with three class variables, PROC MEANS represents type 1 as 001, type 5
as 101, and so on.

Usually, the output data set contains one observation per level per type. However, if
you omit statistical keywords in the OUTPUT statement, then the output data set
contains five observations per level (six if you specify a WEIGHT variable). Therefore,
the total number of observations in the output data set is equal to the sum of the levels
for all the types you request multiplied by 1, 5, or 6, whichever is applicable.

If you omit the CLASS statement (_TYPE_= 0), then there is always exactly one level
of output per BY group. If you use a CLASS statement, then the number of levels for
each type that you request has an upper bound equal to the number of observations in
the input data set. By default, PROC MEANS generates all possible types. In this case
the total number of levels for each BY group has an upper bound equal to

� �

�
�
�
� �

�
� �� �

where � is the number of class variables and � is the number of observations for the
given BY group in the input data set and � is 1, 5, or 6.

558 Examples: MEANS Procedure � Chapter 27

PROC MEANS determines the actual number of levels for a given type from the
number of unique combinations of each active class variable. A single level is composed
of all input observations whose formatted class values match.

Figure 27.1 on page 558 shows the values of _TYPE_ and the number of observations
in the data set when you specify one, two, and three class variables.

Figure 27.1 The Effect of Class Variables on the OUTPUT Data Set

Character binary
equivalent of
TYPE
(CHARTYPE
option)

A ,B ,C=CLASS a, b, c,=number of levels of A, B, C,
variables respectively

on
e

CLASS
 v

ar
ia

bl
e

th
re

e
CLASS

 v
ar

ia
bl

es

tw
o

CLASS
 v

ar
ia

bl
es

Number of observations Total number of
Subgroup of this _TYPE_ and _WAY_ observations

C B A _WAY_ _TYPE_ defined by in the data set in the data set

0 0 0 0 0 Total 1

0 0 1 1 1 A a 1+a

0 1 0 1 2 B b

0 1 1 2 3 A*B a*b 1+a+b+a*b

1 0 0 1 4 C c

1 0 1 2 5 A*C a*c

1 1 0 2 6 B*C b*c 1+a+b+a*b+c

1 1 1 3 7 A*B*C a*b*c +a*c+b*c+a*b*c

Examples: MEANS Procedure

Example 1: Computing Specific Descriptive Statistics
Procedure features:

PROC MEANS statement options:
statistic keywords
FW=

VAR statement

This example
� specifies the analysis variables
� computes the statistics for the specified keywords and displays them in order
� specifies the field width of the statistics.

The MEANS Procedure � Program 559

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the CAKE data set. CAKE contains data from a cake-baking contest: each
participant’s last name, age, score for presentation, score for taste, cake flavor, and number of
cake layers. The number of cake layers is missing for two observations. The cake flavor is
missing for another observation.

data cake;
input LastName $ 1-12 Age 13-14 PresentScore 16-17

TasteScore 19-20 Flavor $ 23-32 Layers 34 ;
datalines;

Orlando 27 93 80 Vanilla 1
Ramey 32 84 72 Rum 2
Goldston 46 68 75 Vanilla 1
Roe 38 79 73 Vanilla 2
Larsen 23 77 84 Chocolate .
Davis 51 86 91 Spice 3
Strickland 19 82 79 Chocolate 1
Nguyen 57 77 84 Vanilla .
Hildenbrand 33 81 83 Chocolate 1
Byron 62 72 87 Vanilla 2
Sanders 26 56 79 Chocolate 1
Jaeger 43 66 74 1
Davis 28 69 75 Chocolate 2
Conrad 69 85 94 Vanilla 1
Walters 55 67 72 Chocolate 2
Rossburger 28 78 81 Spice 2
Matthew 42 81 92 Chocolate 2
Becker 36 62 83 Spice 2
Anderson 27 87 85 Chocolate 1
Merritt 62 73 84 Chocolate 1
;

Specify the analyses and the analysis options. The statistic keywords specify the statistics
and their order in the output. FW= uses a field width of eight to display the statistics.

proc means data=cake n mean max min range std fw=8;

Specify the analysis variables. The VAR statement specifies that PROC MEANS calculate
statistics on the PresentScore and TasteScore variables.

var PresentScore TasteScore;

560 Output � Chapter 27

Specify the title.

title ’Summary of Presentation and Taste Scores’;
run;

Output

PROC MEANS lists PresentScore first because this is the first variable that is specified in the
VAR statement. A field width of eight truncates the statistics to four decimal places.

Summary of Presentation and Taste Scores 1

The MEANS Procedure

Variable N Mean Maximum Minimum Range Std Dev
--
PresentScore 20 76.1500 93.0000 56.0000 37.0000 9.3768
TasteScore 20 81.3500 94.0000 72.0000 22.0000 6.6116
--

Example 2: Computing Descriptive Statistics with Class Variables

Procedure features:
PROC MEANS statement option:

MAXDEC=
CLASS statement
TYPES statement

This example

� analyzes the data for the two-way combination of class variables and across all
observations

� limits the number of decimal places for the displayed statistics.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

The MEANS Procedure � Program 561

Create the GRADE data set. GRADE contains each student’s last name, gender, status of
either undergraduate (1) or graduate (2), expected year of graduation, class section (A or B),
final exam score, and final grade for the course.

data grade;
input Name $ 1-8 Gender $ 11 Status $13 Year $ 15-16

Section $ 18 Score 20-21 FinalGrade 23-24;
datalines;

Abbott F 2 97 A 90 87
Branford M 1 98 A 92 97
Crandell M 2 98 B 81 71
Dennison M 1 97 A 85 72
Edgar F 1 98 B 89 80
Faust M 1 97 B 78 73
Greeley F 2 97 A 82 91
Hart F 1 98 B 84 80
Isley M 2 97 A 88 86
Jasper M 1 97 B 91 93
;

Generate the default statistics and specify the analysis options. Because no statistics are
specified in the PROC MEANS statement, all default statistics (N, MEAN, STD, MIN, MAX) are
generated. MAXDEC= limits the displayed statistics to three decimal places.

proc means data=grade maxdec=3;

Specify the analysis variable. The VAR statement specifies that PROC MEANS calculate
statistics on the Score variable.

var Score;

Specify subgroups for the analysis. The CLASS statement separates the analysis into
subgroups. Each combination of unique values for Status and Year represents a subgroup.

class Status Year;

Specify which subgroups to analyze. The TYPES statement requests that the analysis be
performed on all the observations in the GRADE data set as well as the two-way combination
of Status and Year, which results in four subgroups (because Status and Year each have two
unique values).

types () status*year;

Specify the title.

title ’Final Exam Grades for Student Status and Year of Graduation’;
run;

562 Output � Chapter 27

Output

PROC MEANS displays the default statistics for all the observations (_TYPE_=0) and the four
class levels of the Status and Year combination (Status=1, Year=97; Status=1, Year=98;
Status=2, Year=97; Status=2, Year=98).

Final Exam Grades for Student Status and Year of Graduation 1

The MEANS Procedure

Analysis Variable : Score

N
Obs N Mean Std Dev Minimum Maximum

10 10 86.000 4.714 78.000 92.000

Analysis Variable : Score

N
Status Year Obs N Mean Std Dev Minimum Maximum

1 97 3 3 84.667 6.506 78.000 91.000

98 3 3 88.333 4.041 84.000 92.000

2 97 3 3 86.667 4.163 82.000 90.000

98 1 1 81.000 . 81.000 81.000

Example 3: Using the BY Statement with Class Variables

Procedure features:
PROC MEANS statement option:

statistic keywords

BY statement

CLASS statement

Other features:
SORT procedure

Data set: GRADE on page 561

This example

� separates the analysis for the combination of class variables within BY values

� shows the sort order requirement for the BY statement

� calculates the minimum, maximum, and median.

The MEANS Procedure � Program 563

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Sort the GRADE data set. PROC SORT sorts the observations by the variable Section.
Sorting is required in order to use Section as a BY variable in the PROC MEANS step.

proc sort data=Grade out=GradeBySection;
by section;

run;

Specify the analyses. The statistic keywords specify the statistics and their order in the
output.

proc means data=GradeBySection min max median;

Divide the data set into BY groups. The BY statement produces a separate analysis for each
value of Section.

by Section;

Specify the analysis variable. The VAR statement specifies that PROC MEANS calculate
statistics on the Score variable.

var Score;

Specify subgroups for the analysis. The CLASS statement separates the analysis by the
values of Status and Year. Because there is no TYPES statement in this program, analyses are
performed for each subgroup, within each BY group.

class Status Year;

Specify the titles.

title1 ’Final Exam Scores for Student Status and Year of Graduation’;
title2 ’ Within Each Section’;

run;

564 Output � Chapter 27

Output

Final Exam Scores for Student Status and Year of Graduation 1
Within Each Section

---------------------------------- Section=A -----------------------------------

The MEANS Procedure

Analysis Variable : Score

N
Status Year Obs Minimum Maximum Median

1 97 1 85.0000000 85.0000000 85.0000000

98 1 92.0000000 92.0000000 92.0000000

2 97 3 82.0000000 90.0000000 88.0000000

---------------------------------- Section=B -----------------------------------

Analysis Variable : Score

N
Status Year Obs Minimum Maximum Median

1 97 2 78.0000000 91.0000000 84.5000000

98 2 84.0000000 89.0000000 86.5000000

2 98 1 81.0000000 81.0000000 81.0000000

Example 4: Using a CLASSDATA= Data Set with Class Variables
Procedure features:

PROC MEANS statement options:
CLASSDATA=
EXCLUSIVE
FW=
MAXDEC=
PRINTALLTYPES

CLASS statement
Data set: CAKE on page 559

This example
� specifies the field width and decimal places of the displayed statistics
� uses only the values in CLASSDATA= data set as the levels of the combinations of

class variables
� calculates the range, median, minimum, and maximum
� displays all combinations of the class variables in the analysis.

The MEANS Procedure � Program 565

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the CAKETYPE data set. CAKETYPE contains the cake flavors and number of layers
that must occur in the PROC MEANS output.

data caketype;
input Flavor $ 1-10 Layers 12;
datalines;

Vanilla 1
Vanilla 2
Vanilla 3
Chocolate 1
Chocolate 2
Chocolate 3
;

Specify the analyses and the analysis options. The FW= option uses a field width of seven
and the MAXDEC= option uses zero decimal places to display the statistics. CLASSDATA= and
EXCLUSIVE restrict the class levels to the values that are in the CAKETYPE data set.
PRINTALLTYPES displays all combinations of class variables in the output.

proc means data=cake range median min max fw=7 maxdec=0
classdata=caketype exclusive printalltypes;

Specify the analysis variable. The VAR statement specifies that PROC MEANS calculate
statistics on the TasteScore variable.

var TasteScore;

Specify subgroups for analysis. The CLASS statement separates the analysis by the values
of Flavor and Layers. Note that these variables, and only these variables, must appear in the
CAKETYPE data set.

class flavor layers;

Specify the title.

title ’Taste Score For Number of Layers and Cake Flavor’;
run;

566 Output � Chapter 27

Output

PROC MEANS calculates statistics for the 13 chocolate and vanilla cakes. Because the
CLASSDATA= data set contains 3 as the value of Layers, PROC MEANS uses 3 as a class value
even though the frequency is zero.

Taste Score For Number of Layers and Cake Flavor 1

The MEANS Procedure

Analysis Variable : TasteScore

N
Obs Range Median Minimum Maximum

13 22 80 72 94

Analysis Variable : TasteScore

N
Layers Obs Range Median Minimum Maximum

--
1 8 19 82 75 94

2 5 20 75 72 92

3 0
--

Analysis Variable : TasteScore

N
Flavor Obs Range Median Minimum Maximum

Chocolate 8 20 81 72 92

Vanilla 5 21 80 73 94

Analysis Variable : TasteScore

N
Flavor Layers Obs Range Median Minimum Maximum
--
Chocolate 1 5 6 83 79 85

2 3 20 75 72 92

3 0

Vanilla 1 3 19 80 75 94

2 2 14 80 73 87

3 0
--

The MEANS Procedure � Program 567

Example 5: Using Multilabel Value Formats with Class Variables

Procedure features:
PROC MEANS statement options:

statistic keywords
FW=
NONOBS

CLASS statement options:
MLF
ORDER=

TYPES statement
Other features

FORMAT procedure
FORMAT statement

Data set: CAKE on page 559

This example
� computes the statistics for the specified keywords and displays them in order
� specifies the field width of the statistics
� suppresses the column with the total number of observations
� analyzes the data for the one-way combination of cake flavor and the two-way

combination of cake flavor and participant’s age
� assigns user-defined formats to the class variables
� uses multilabel formats as the levels of class variables
� orders the levels of the cake flavors by the descending frequency count and orders

the levels of age by the ascending formatted values.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=64;

Create the $FLVRFMT. and AGEFMT. formats. PROC FORMAT creates user-defined
formats to categorize the cake flavors and ages of the participants. MULTILABEL creates a
multilabel format for Age. A multilabel format is one in which multiple labels can be assigned to
the same value, in this case because of overlapping ranges. Each value is represented in the
output for each range in which it occurs.

proc format;
value $flvrfmt

’Chocolate’=’Chocolate’
’Vanilla’=’Vanilla’

568 Program � Chapter 27

’Rum’,’Spice’=’Other Flavor’;
value agefmt (multilabel)

15 - 29=’below 30 years’
30 - 50=’between 30 and 50’
51 - high=’over 50 years’
15 - 19=’15 to 19’
20 - 25=’20 to 25’
25 - 39=’25 to 39’
40 - 55=’40 to 55’
56 - high=’56 and above’;

run;

Specify the analyses and the analysis options. FW= uses a field width of six to display the
statistics. The statistic keywords specify the statistics and their order in the output. NONOBS
suppresses the N Obs column.

proc means data=cake fw=6 n min max median nonobs;

Specify subgroups for the analysis. The CLASS statements separate the analysis by values
of Flavor and Age. ORDER=FREQ orders the levels of Flavor by descending frequency count.
ORDER=FMT orders the levels of Age by ascending formatted values. MLF specifies that
multilabel value formats be used for Age.

class flavor/order=freq;
class age /mlf order=fmt;

Specify which subgroups to analyze. The TYPES statement requests the analysis for the
one-way combination of Flavor and the two-way combination of Flavor and Age.

types flavor flavor*age;

Specify the analysis variable. The VAR statement specifies that PROC MEANS calculate
statistics on the TasteScore variable.

var TasteScore;

Format the output. The FORMAT statement assigns user-defined formats to the Age and
Flavor variables for this analysis.

format age agefmt. flavor $flvrfmt.;

Specify the title.

title ’Taste Score for Cake Flavors and Participant’’s Age’;
run;

The MEANS Procedure � Output 569

Output

The one-way combination of class variables appears before the two-way combination. A field
width of six truncates the statistics to four decimal places. For the two-way combination of Age
and Flavor, the total number of observations is greater than the one-way combination of Flavor.
This situation arises because of the multilabel format for age, which maps one internal value to
more than one formatted value.

The order of the levels of Flavor is based on the frequency count for each level. The order of the
levels of Age is based on the order of the user-defined formats.

Taste Score for Cake Flavors and Participant’s Age 1
The MEANS Procedure

Analysis Variable : TasteScore

Flavor N Min Max Median
--
Chocolate 9 72.00 92.00 83.00

Vanilla 6 73.00 94.00 82.00

Other Flavor 4 72.00 91.00 82.00
--

Analysis Variable : TasteScore

Flavor Age N Min Max Median

Chocolate 15 to 19 1 79.00 79.00 79.00

20 to 25 1 84.00 84.00 84.00

25 to 39 4 75.00 85.00 81.00

40 to 55 2 72.00 92.00 82.00

56 and above 1 84.00 84.00 84.00

below 30 years 5 75.00 85.00 79.00

between 30 and 50 2 83.00 92.00 87.50

over 50 years 2 72.00 84.00 78.00

Vanilla 25 to 39 2 73.00 80.00 76.50

40 to 55 1 75.00 75.00 75.00

56 and above 3 84.00 94.00 87.00

below 30 years 1 80.00 80.00 80.00

between 30 and 50 2 73.00 75.00 74.00

over 50 years 3 84.00 94.00 87.00

Other Flavor 25 to 39 3 72.00 83.00 81.00

40 to 55 1 91.00 91.00 91.00

below 30 years 1 81.00 81.00 81.00

between 30 and 50 2 72.00 83.00 77.50

over 50 years 1 91.00 91.00 91.00

570 Example 6: Using Preloaded Formats with Class Variables � Chapter 27

Example 6: Using Preloaded Formats with Class Variables
Procedure features:

PROC MEANS statement options:
COMPLETETYPES
FW=
MISSING
NONOBS

CLASS statement options:
EXCLUSIVE
ORDER=
PRELOADFMT

WAYS statement
Other features

FORMAT procedure
FORMAT statement

Data set: CAKE on page 559

This example
� specifies the field width of the statistics
� suppresses the column with the total number of observations
� includes all possible combinations of class variables values in the analysis even if

the frequency is zero
� considers missing values as valid class levels
� analyzes the one-way and two-way combinations of class variables
� assigns user-defined formats to the class variables
� uses only the preloaded range of user-defined formats as the levels of class

variables
� orders the results by the value of the formatted data.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=64;

Create the LAYERFMT. and $FLVRFMT. formats. PROC FORMAT creates user-defined
formats to categorize the number of cake layers and the cake flavors. NOTSORTED keeps
$FLVRFMT unsorted to preserve the original order of the format values.

proc format;
value layerfmt 1=’single layer’

2-3=’multi-layer’

The MEANS Procedure � Program 571

.=’unknown’;
value $flvrfmt (notsorted)

’Vanilla’=’Vanilla’
’Orange’,’Lemon’=’Citrus’
’Spice’=’Spice’
’Rum’,’Mint’,’Almond’=’Other Flavor’;

run;

Generate the default statistics and specify the analysis options. FW= uses a field width of
seven to display the statistics. COMPLETETYPES includes class levels with a frequency of zero.
MISSING considers missing values valid values for all class variables. NONOBS suppresses the
N Obs column. Because no specific analyses are requested, all default analyses are performed.

proc means data=cake fw=7 completetypes missing nonobs;

Specify subgroups for the analysis. The CLASS statement separates the analysis by values
of Flavor and Layers. PRELOADFMT and EXCLUSIVE restrict the levels to the preloaded
values of the user-defined formats. ORDER=DATA orders the levels of Flavor and Layer by
formatted data values.

class flavor layers/preloadfmt exclusive order=data;

Specify which subgroups to analyze. The WAYS statement requests one-way and two-way
combinations of class variables.

ways 1 2;

Specify the analysis variable. The VAR statement specifies that PROC MEANS calculate
statistics on the TasteScore variable.

var TasteScore;

Format the output. The FORMAT statement assigns user-defined formats to the Flavor and
Layers variables for this analysis.

format layers layerfmt. flavor $flvrfmt.;

Specify the title.

title ’Taste Score For Number of Layers and Cake Flavors’;
run;

572 Output � Chapter 27

Output

The one-way combination of class variables appears before the two-way combination. PROC
MEANS reports only the level values that are listed in the preloaded range of user-defined
formats even when the frequency of observations is zero (in this case, citrus). PROC MEANS
rejects entire observations based on the exclusion of any single class value in a given
observation. Therefore, when the number of layers is unknown, statistics are calculated for only
one observation. The other observation is excluded because the flavor chocolate was not
included in the preloaded user-defined format for Flavor.

The order of the levels is based on the order of the user-defined formats. PROC FORMAT
automatically sorted the Layers format and did not sort the Flavor format.

Taste Score For Number of Layers and Cake Flavors 1
The MEANS Procedure

Analysis Variable : TasteScore

Layers N Mean Std Dev Minimum Maximum
--
unknown 1 84.000 . 84.000 84.000
single layer 3 83.000 9.849 75.000 94.000
multi-layer 6 81.167 7.548 72.000 91.000
--

Analysis Variable : TasteScore

Flavor N Mean Std Dev Minimum Maximum
--
Vanilla 6 82.167 7.834 73.000 94.000
Citrus 0
Spice 3 85.000 5.292 81.000 91.000
Other Flavor 1 72.000 . 72.000 72.000
--

Analysis Variable : TasteScore

Flavor Layers N Mean Std Dev Minimum Maximum
--
Vanilla unknown 1 84.000 . 84.000 84.000

single layer 3 83.000 9.849 75.000 94.000

multi-layer 2 80.000 9.899 73.000 87.000

Citrus unknown 0

single layer 0

multi-layer 0

Spice unknown 0

single layer 0

multi-layer 3 85.000 5.292 81.000 91.000

Other Flavor unknown 0

single layer 0

multi-layer 1 72.000 . 72.000 72.000

The MEANS Procedure � Program 573

Example 7: Computing a Confidence Limit for the Mean

Procedure features:
PROC MEANS statement options:

ALPHA=
FW=
MAXDEC=

CLASS statement

This example

� specifies the field width and number of decimal places of the statistics

� computes a two-sided 90 percent confidence limit for the mean values of
MoneyRaised and HoursVolunteered for the three years of data.

If this data is representative of a larger population of volunteers, then the confidence
limits provide ranges of likely values for the true population means.

Program

Create the CHARITY data set. CHARITY contains information about high-school students’
volunteer work for a charity. The variables give the name of the high school, the year of the
fund-raiser, the first name of each student, the amount of money each student raised, and the
number of hours each student volunteered. A DATA step on page 1378 creates this data set.

data charity;
input School $ 1-7 Year 9-12 Name $ 14-20 MoneyRaised 22-26

HoursVolunteered 28-29;
datalines;

Monroe 1992 Allison 31.65 19
Monroe 1992 Barry 23.76 16
Monroe 1992 Candace 21.11 5

. . . more data lines . . .

Kennedy 1994 Sid 27.45 25
Kennedy 1994 Will 28.88 21
Kennedy 1994 Morty 34.44 25
;

Specify the analyses and the analysis options. FW= uses a field width of eight and
MAXDEC= uses two decimal places to display the statistics. ALPHA=0.1 specifies a 90%
confidence limit, and the CLM keyword requests two-sided confidence limits. MEAN and STD
request the mean and the standard deviation, respectively.

proc means data=charity fw=8 maxdec=2 alpha=0.1 clm mean std;

574 Output � Chapter 27

Specify subgroups for the analysis. The CLASS statement separates the analysis by values
of Year.

class Year;

Specify the analysis variables. The VAR statement specifies that PROC MEANS calculate
statistics on the MoneyRaised and HoursVolunteered variables.

var MoneyRaised HoursVolunteered;

Specify the titles.

title ’Confidence Limits for Fund Raising Statistics’;
title2 ’1992-94’;

run;

Output

PROC MEANS displays the lower and upper confidence limits for both variables for each year.

Confidence Limits for Fund Raising Statistics 1
1992-94

The MEANS Procedure

N Lower 90% Upper 90%
Year Obs Variable CL for Mean CL for Mean Mean Std Dev

1992 31 MoneyRaised 25.21 32.40 28.80 11.79

HoursVolunteered 17.67 23.17 20.42 9.01

1993 32 MoneyRaised 25.17 31.58 28.37 10.69
HoursVolunteered 15.86 20.02 17.94 6.94

1994 46 MoneyRaised 26.73 33.78 30.26 14.23
HoursVolunteered 19.68 22.63 21.15 5.96

The MEANS Procedure � Program 575

Example 8: Computing Output Statistics

Procedure features:
PROC MEANS statement option:

NOPRINT

CLASS statement

OUTPUT statement options

statistic keywords
IDGROUP
LEVELS
WAYS

Other features:
PRINT procedure

Data set: GRADE on page 561

This example

� suppresses the display of PROC MEANS output

� stores the average final grade in a new variable

� stores the name of the student with the best final exam scores in a new variable

� stores the number of class variables are that are combined in the _WAY_ variable

� stores the value of the class level in the _LEVEL_ variable

� displays the output data set.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the analysis options. NOPRINT suppresses the display of all PROC MEANS output.

proc means data=Grade noprint;

Specify subgroups for the analysis. The CLASS statement separates the analysis by values
of Status and Year.

class Status Year;

576 Output � Chapter 27

Specify the analysis variable. The VAR statement specifies that PROC MEANS calculate
statistics on the FinalGrade variable.

var FinalGrade;

Specify the output data set options. The OUTPUT statement creates the SUMSTAT data
set and writes the mean value for the final grade to the new variable AverageGrade. IDGROUP
writes the name of the student with the top exam score to the variable BestScore and the
observation number that contained the top score. WAYS and LEVELS write information on how
the class variables are combined.

output out=sumstat mean=AverageGrade
idgroup (max(score) obs out (name)=BestScore)
/ ways levels;

run;

Print the output data set WORK.SUMSTAT. The NOOBS option suppresses the observation
numbers.

proc print data=sumstat noobs;
title1 ’Average Undergraduate and Graduate Course Grades’;
title2 ’For Two Years’;

run;

Output

The first observation contains the average course grade and the name of the student with the
highest exam score over the two-year period. The next four observations contain values for each
class variable value. The remaining four observations contain values for the Year and Status
combination. The variables _WAY_, _TYPE_, and _LEVEL_ show how PROC MEANS created
the class variable combinations. The variable _OBS_ contains the observation number in the
GRADE data set that contained the highest exam score.

Average Undergraduate and Graduate Course Grades 1
For Two Years

Average Best
Status Year _WAY_ _TYPE_ _LEVEL_ _FREQ_ Grade Score _OBS_

0 0 1 10 83.0000 Branford 2
97 1 1 1 6 83.6667 Jasper 10
98 1 1 2 4 82.0000 Branford 2

1 1 2 1 6 82.5000 Branford 2
2 1 2 2 4 83.7500 Abbott 1
1 97 2 3 1 3 79.3333 Jasper 10
1 98 2 3 2 3 85.6667 Branford 2
2 97 2 3 3 3 88.0000 Abbott 1
2 98 2 3 4 1 71.0000 Crandell 3

The MEANS Procedure � Program 577

Example 9: Computing Different Output Statistics for Several Variables

Procedure features:
PROC MEANS statement options:

DESCEND
NOPRINT

CLASS statement
OUTPUT statement options:

statistic keywords

Other features:
PRINT procedure
WHERE= data set option

Data set: GRADE on page 561

This example

� suppresses the display of PROC MEANS output

� stores the statistics for the class level and combinations of class variables that are
specified by WHERE= in the output data set

� orders observations in the output data set by descending _TYPE_ value

� stores the mean exam scores and mean final grades without assigning new
variables names

� stores the median final grade in a new variable

� displays the output data set.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the analysis options. NOPRINT suppresses the display of all PROC MEANS output.
DESCEND orders the observations in the OUT= data set by descending _TYPE_ value.

proc means data=Grade noprint descend;

Specify subgroups for the analysis. The CLASS statement separates the analysis by values
of Status and Year.

class Status Year;

578 Output � Chapter 27

Specify the analysis variables. The VAR statement specifies that PROC MEANS calculate
statistics on the Score and FinalGrade variables.

var Score FinalGrade;

Specify the output data set options. The OUTPUT statement writes the mean for Score and
FinalGrade to variables of the same name. The median final grade is written to the variable
MedianGrade. The WHERE= data set option restricts the observations in SUMDATA. One
observation contains overall statistics (_TYPE_=0). The remainder must have a status of 1.

output out=Sumdata (where=(status=’1’ or _type_=0))
mean= median(finalgrade)=MedianGrade;

run;

Print the output data set WORK.SUMDATA.

proc print data=Sumdata;
title ’Exam and Course Grades for Undergraduates Only’;
title2 ’and for All Students’;

run;

Output

The first three observations contain statistics for the class variable levels with a status of 1.
The last observation contains the statistics for all the observations (no subgroup). Score
contains the mean test score and FinalGrade contains the mean final grade.

Exam and Course Grades for Undergraduates Only 1
and for All Students

Final Median
Obs Status Year _TYPE_ _FREQ_ Score Grade Grade

1 1 97 3 3 84.6667 79.3333 73
2 1 98 3 3 88.3333 85.6667 80
3 1 2 6 86.5000 82.5000 80
4 0 10 86.0000 83.0000 83

Example 10: Computing Output Statistics with Missing Class Variable Values

Procedure features:
PROC MEANS statement options:

CHARTYPE
NOPRINT
NWAY

CLASS statement options:

The MEANS Procedure � Program 579

ASCENDING
MISSING
ORDER=

OUTPUT statement

Other features:
PRINT procedure

Data set: CAKE on page 559

This example

� suppresses the display of PROC MEANS output

� considers missing values as valid level values for only one class variable

� orders observations in the output data set by the ascending frequency for a single
class variable

� stores observations for only the highest _TYPE_ value

� stores _TYPE_ as binary character values

� stores the maximum taste score in a new variable

� displays the output data set.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the analysis options. NWAY prints observations with the highest _TYPE_ value.
NOPRINT suppresses the display of all PROC MEANS output.

proc means data=cake nway noprint;

Specify subgroups for the analysis. The CLASS statements separate the analysis by Flavor
and Layers. ORDER=FREQ and ASCENDING order the levels of Flavor by ascending
frequency. MISSING uses missing values of Layers as a valid class level value.

class flavor /order=freq ascending;
class layers /missing;

Specify the analysis variable. The VAR statement specifies that PROC MEANS calculate
statistics on the TasteScore variable.

var TasteScore;

580 Output � Chapter 27

Specify the output data set options. The OUTPUT statement creates the CAKESTAT data
set and outputs the maximum value for the taste score to the new variable HighScore.

output out=cakestat max=HighScore;
run;

Print the output data set WORK.CAKESTAT.

proc print data=cakestat;
title ’Maximum Taste Score for Flavor and Cake Layers’;

run;

Output

The CAKESTAT output data set contains only observations for the combination of both class
variables, Flavor and Layers. Therefore, the value of _TYPE_ is 3 for all observations. The
observations are ordered by ascending frequency of Flavor. The missing value in Layers is a
valid value for this class variable. PROC MEANS excludes the observation with the missing
flavor because it is an invalid value for Flavor.

Maximum Taste Score for Flavor and Cake Layers 1

High
Obs Flavor Layers _TYPE_ _FREQ_ Score

1 Rum 2 3 1 72
2 Spice 2 3 2 83
3 Spice 3 3 1 91
4 Vanilla . 3 1 84
5 Vanilla 1 3 3 94
6 Vanilla 2 3 2 87
7 Chocolate . 3 1 84
8 Chocolate 1 3 5 85
9 Chocolate 2 3 3 92

Example 11: Identifying an Extreme Value with the Output Statistics

Procedure features:
CLASS statement
OUTPUT statement options:

statistic keyword
MAXID

Other features:
PRINT procedure

Data set: CHARITY on page 573

The MEANS Procedure � Program 581

This example

� identifies the observations with maximum values for two variables

� creates new variables for the maximum values

� displays the output data set.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the analyses. The statistic keywords specify the statistics and their order in the
output. CHARTYPE writes the _TYPE_ values as binary characters in the output data set

proc means data=Charity n mean range chartype;

Specify subgroups for the analysis. The CLASS statement separates the analysis by School
and Year.

class School Year;

Specify the analysis variables. The VAR statement specifies that PROC MEANS calculate
statistics on the MoneyRaised and HoursVolunteered variables.

var MoneyRaised HoursVolunteered;

Specify the output data set options. The OUTPUT statement writes the new variables,
MostCash and MostTime, which contain the names of the students who collected the most
money and volunteered the most time, respectively, to the PRIZE data set.

output out=Prize maxid(MoneyRaised(name)
HoursVolunteered(name))= MostCash MostTime
max= ;

Specify the title.

title ’Summary of Volunteer Work by School and Year’;
run;

582 Output � Chapter 27

Print the WORK.PRIZE output data set.

proc print data=Prize;
title ’Best Results: Most Money Raised and Most Hours Worked’;

run;

Output

The first page of output shows the output from PROC MEANS with the statistics for six class
levels: one for Monroe High for the years 1992, 1993, and 1994; and one for Kennedy High for
the same three years.

Summary of Volunteer Work by School and Year 1

The MEANS Procedure

N
School Year Obs Variable N Mean Range

Kennedy 1992 15 MoneyRaised 15 29.0800000 39.7500000

HoursVolunteered 15 22.1333333 30.0000000

1993 20 MoneyRaised 20 28.5660000 23.5600000
HoursVolunteered 20 19.2000000 20.0000000

1994 18 MoneyRaised 18 31.5794444 65.4400000
HoursVolunteered 18 24.2777778 15.0000000

Monroe 1992 16 MoneyRaised 16 28.5450000 48.2700000
HoursVolunteered 16 18.8125000 38.0000000

1993 12 MoneyRaised 12 28.0500000 52.4600000
HoursVolunteered 12 15.8333333 21.0000000

1994 28 MoneyRaised 28 29.4100000 73.5300000
HoursVolunteered 28 19.1428571 26.0000000

The MEANS Procedure � Example 12: Identifying the Top Three Extreme Values with the Output Statistics 583

The output from PROC PRINT shows the maximum MoneyRaised and HoursVolunteered values
and the names of the students who are responsible for them. The first observation contains the
overall results, the next three contain the results by year, the next two contain the results by
school, and the final six contain the results by School and Year.

Best Results: Most Money Raised and Most Hours Worked 2

Most Most Money Hours
Obs School Year _TYPE_ _FREQ_ Cash Time Raised Volunteered

1 . 00 109 Willard Tonya 78.65 40
2 1992 01 31 Tonya Tonya 55.16 40
3 1993 01 32 Cameron Amy 65.44 31
4 1994 01 46 Willard L.T. 78.65 33
5 Kennedy . 10 53 Luther Jay 72.22 35
6 Monroe . 10 56 Willard Tonya 78.65 40
7 Kennedy 1992 11 15 Thelma Jay 52.63 35
8 Kennedy 1993 11 20 Bill Amy 42.23 31
9 Kennedy 1994 11 18 Luther Che-Min 72.22 33

10 Monroe 1992 11 16 Tonya Tonya 55.16 40
11 Monroe 1993 11 12 Cameron Myrtle 65.44 26
12 Monroe 1994 11 28 Willard L.T. 78.65 33

Example 12: Identifying the Top Three Extreme Values with the Output
Statistics

Procedure features:
PROC MEANS statement option:

NOPRINT
CLASS statement
OUTPUT statement options:

statistic keywords
AUTOLABEL
AUTONAME
IDGROUP

TYPES statement
Other features:

FORMAT procedure
FORMAT statement
PRINT procedure
RENAME = data set option

Data set: CHARITY on page 573

This example
� suppresses the display of PROC MEANS output
� analyzes the data for the one-way combination of the class variables and across all

observations

584 Program � Chapter 27

� stores the total and average amount of money raised in new variables
� stores in new variables the top three amounts of money raised, the names of the

three students who raised the money, the years when it occurred, and the schools
the students attended

� automatically resolves conflicts in the variable names when names are assigned to
the new variables in the output data set

� appends the statistic name to the label of the variables in the output data set that
contain statistics that were computed for the analysis variable.

� assigns a format to the analysis variable so that the statistics that are computed
from this variable inherit the attribute in the output data set

� renames the _FREQ_ variable in the output data set
� displays the output data set and its contents.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the YRFMT. and $SCHFMT. formats. PROC FORMAT creates user-defined formats
that assign the value of All to the missing levels of the class variables.

proc format;
value yrFmt . = " All";
value $schFmt ’ ’ = "All ";

run;

Generate the default statistics and specify the analysis options. NOPRINT suppresses
the display of all PROC MEANS output.

proc means data=Charity noprint;

Specify subgroups for the analysis. The CLASS statement separates the analysis by values
of School and Year.

class School Year;

Specify which subgroups to analyze. The TYPES statement requests the analysis across all
the observations and for each one-way combination of School and Year.

types () school year;

The MEANS Procedure � Program 585

Specify the analysis variable. The VAR statement specifies that PROC MEANS calculate
statistics on the MoneyRaised variable.

var MoneyRaised;

Specify the output data set options. The OUTPUT statement creates the TOP3LIST data
set. RENAME= renames the _FREQ_ variable that contains frequency count for each class level.
SUM= and MEAN= specify that the sum and mean of the analysis variable (MoneyRaised) are
written to the output data set. IDGROUP writes 12 variables that contain the top three
amounts of money raised and the three corresponding students, schools, and years.
AUTOLABEL appends the analysis variable name to the label for the output variables that
contain the sum and mean. AUTONAME resolves naming conflicts for these variables.

output out=top3list(rename=(_freq_=NumberStudents))sum= mean=
idgroup(max(moneyraised) out[3] (moneyraised name

school year)=)/autolabel autoname;

Format the output. The LABEL statement assigns a label to the analysis variable
MoneyRaised. The FORMAT statement assigns user-defined formats to the Year and School
variables and a SAS dollar format to the MoneyRaised variable.

label MoneyRaised=’Amount Raised’;
format year yrfmt. school $schfmt.

moneyraised dollar8.2;
run;

Print the output data set WORK.TOP3LIST.

proc print data=top3list;
title1 ’School Fund Raising Report’;
title2 ’Top Three Students’;

run;

Display information about the TOP3LIST data set. PROC DATASETS displays the contents
of the TOP3LIST data set. NOLIST suppresses the directory listing for the WORK data library.

proc datasets library=work nolist;
contents data=top3list;
title1 ’Contents of the PROC MEANS Output Data Set’;

run;

586 Output � Chapter 27

Output

The output from PROC PRINT shows the top three values of MoneyRaised, the names of the
students who raised these amounts, the schools the students attended, and the years when the
money was raised. The first observation contains the overall results, the next three contain the
results by year, and the final two contain the results by school. The missing class levels for
School and Year are replaced with the value ALL.

The labels for the variables that contain statistics that were computed from MoneyRaised
include the statistic name at the end of the label.

School Fund Raising Report 1
Top Three Students

Money Money
Number Raised_ Raised_ Money Money Money

Obs School Year _TYPE_ Students Sum Mean Raised_1 Raised_2 Raised_3

1 All All 0 109 $3192.75 $29.29 $78.65 $72.22 $65.44
2 All 1992 1 31 $892.92 $28.80 $55.16 $53.76 $52.63
3 All 1993 1 32 $907.92 $28.37 $65.44 $47.33 $42.23
4 All 1994 1 46 $1391.91 $30.26 $78.65 $72.22 $56.87
5 Kennedy All 2 53 $1575.95 $29.73 $72.22 $52.63 $43.89
6 Monroe All 2 56 $1616.80 $28.87 $78.65 $65.44 $56.87

Obs Name_1 Name_2 Name_3 School_1 School_2 School_3 Year_1 Year_2 Year_3

1 Willard Luther Cameron Monroe Kennedy Monroe 1994 1994 1993
2 Tonya Edward Thelma Monroe Monroe Kennedy 1992 1992 1992
3 Cameron Myrtle Bill Monroe Monroe Kennedy 1993 1993 1993
4 Willard Luther L.T. Monroe Kennedy Monroe 1994 1994 1994
5 Luther Thelma Jenny Kennedy Kennedy Kennedy 1994 1992 1992
6 Willard Cameron L.T. Monroe Monroe Monroe 1994 1993 1994

The MEANS Procedure � References 587

Contents of the PROC MEANS Output Data Set 2

The DATASETS Procedure

Data Set Name WORK.TOP3LIST Observations 6
Member Type DATA Variables 18
Engine V9 Indexes 0
Created 18:59 Thursday, March 14, 2002 Observation Length 144
Last Modified 18:59 Thursday, March 14, 2002 Deleted Observations 0
Protection Compressed NO
Data Set Type Sorted NO
Label
Data Representation WINDOWS
Encoding wlatin1 Western (Windows)

Engine/Host Dependent Information

Data Set Page Size 12288
Number of Data Set Pages 1
First Data Page 1
Max Obs per Page 85
Obs in First Data Page 6
Number of Data Set Repairs 0
File Name filename
Release Created 9.0000B0
Host Created WIN_PRO

Alphabetic List of Variables and Attributes

Variable Type Len Format Label

7 MoneyRaised_1 Num 8 DOLLAR8.2 Amount Raised
8 MoneyRaised_2 Num 8 DOLLAR8.2 Amount Raised
9 MoneyRaised_3 Num 8 DOLLAR8.2 Amount Raised
6 MoneyRaised_Mean Num 8 DOLLAR8.2 Amount Raised_Mean
5 MoneyRaised_Sum Num 8 DOLLAR8.2 Amount Raised_Sum

10 Name_1 Char 7
11 Name_2 Char 7
12 Name_3 Char 7

4 NumberStudents Num 8
1 School Char 7 $SCHFMT.

13 School_1 Char 7 $SCHFMT.
14 School_2 Char 7 $SCHFMT.
15 School_3 Char 7 $SCHFMT.

2 Year Num 8 YRFMT.
16 Year_1 Num 8 YRFMT.
17 Year_2 Num 8 YRFMT.
18 Year_3 Num 8 YRFMT.

3 _TYPE_ Num 8

See the TEMPLATE procedure in SAS Output Delivery System: User’s Guide for an
example of how to create a custom table definition for this output data set.

References

Jain R. and Chlamtac I., (1985) “The P2 Algorithm for Dynamic Calculation of
Quantiles and Histograms Without Sorting Observations,” Communications of the
Association of Computing Machinery, 28:10.

588

589

C H A P T E R

28
The MIGRATE Procedure

Information about the MIGRATE Procedure 589

Information about the MIGRATE Procedure
See: The MIGRATE procedure is available specifically for migrating a SAS data library
from a previous release to the most recent release. For complete information about
PROC MIGRATE, see the Migration Community at http://support.sas.com/rnd/
migration.

590

591

C H A P T E R

29
The OPTIONS Procedure

Overview: OPTIONS Procedure 591
What Does the OPTIONS Procedure Do? 591

What Types of Output Does PROC OPTIONS Produce? 591

Displaying the Settings of a Group of Options 593

Syntax: OPTIONS Procedure 595

PROC OPTIONS Statement 595
Results: OPTIONS Procedure 596

Examples: OPTIONS Procedure 597

Example 1: Producing the Short Form of the Options Listing 597

Example 2: Displaying the Setting of a Single Option 598

Overview: OPTIONS Procedure

What Does the OPTIONS Procedure Do?
The OPTIONS procedure lists the current settings of SAS system options. The

results are displayed in the SAS log.
SAS system options control how the SAS System formats output, handles files,

processes data sets, interacts with the operating environment, and does other tasks
that are not specific to a single SAS program or data set. You can change the settings of
SAS system options

� in the SAS command

� in a configuration or autoexec file

� in the SAS OPTIONS statement

� by using the OPTLOAD and OPTSAVE procedures

� through the SAS System Options window

� in other ways, depending on your operating environment. See the companion for
your operating environment for details.

For information about SAS system options, see the section on SAS system options in
SAS Language Reference: Dictionary.

What Types of Output Does PROC OPTIONS Produce?
The log that results from running PROC OPTIONS can show both the portable and

host system options, their settings, and short descriptions.

592 What Types of Output Does PROC OPTIONS Produce? � Chapter 29

The following example shows a partial log that displays the settings of portable
options.

proc options;
run;

Output 29.1 Log Showing a Partial Listing of SAS System Options

Portable Options:

APPLETLOC=(system-specific pathname)
Location of Java applets

ARMAGENT= ARM Agent to use to collect ARM records
ARMLOC=ARMLOC.LOG Identify location where ARM records are to be written
ARMSUBSYS=(ARM_NONE)

Enable/Disable ARMing of SAS subsystems
NOASYNCHIO Do not enable asynchronous input/output
AUTOSAVELOC= Identifies the location where program editor contents are

auto saved
NOAUTOSIGNON SAS/CONNECT remote submit will not automatically attempt

to SIGNON
NOBATCH Do not use the batch set of default values for SAS system

options
BINDING=DEFAULT Controls the binding edge for duplexed output
BOTTOMMARGIN=0.000

Bottom margin for printed output
BUFNO=1 Number of buffers for each SAS data set
BUFSIZE=0 Size of buffer for page of SAS data set
BYERR Set the error flag if a null data set is input to the SORT

procedure
BYLINE Print the by-line at the beginning of each by-group
BYSORTED Require SAS data set observations to be sorted for BY

processing
NOCAPS Do not translate source input to uppercase
NOCARDIMAGE Do not process SAS source and data lines as 80-byte records
CATCACHE=0 Number of SAS catalogs to keep in cache memory
CBUFNO=0 Number of buffers to use for each SAS catalog
CENTER Center SAS procedure output
NOCHARCODE Do not use character combinations as substitute for

special characters not on the keyboard
CLEANUP Attempt recovery from out-of-resources condition
NOCMDMAC Do not support command-style macros
CPMLIB= Identify previously compiled libraries of CMP subroutines

to use when linking
CMPOPT=(NOEXTRAMATH NOMISSCHECK NOPRECISE NOGUARDCHECK)

Enable SAS compiler performance optimizations
NOCOLLATE Do not collate multiple copies of printed output
COLORPRINTING Print in color if printer supports color
COMAMID=TCP Specifies the communication access method to be used for

SAS distributed products
COMPRESS=NO Specifies whether to compress observations in output SAS

data sets

To view the setting of a particular option, you can use the option parameter on PROC
OPTIONS. The following example shows a log that PROC OPTIONS produces for a
single SAS system option.

options pagesize=60;
proc options option=pagesize;
run;

The OPTIONS Procedure � Displaying the Settings of a Group of Options 593

Output 29.2 The Setting of a Single SAS System Option

25 options pagesize=60;
26 proc options option=pagesize;
27 run;

SAS (r) Proprietary Software Release XXX

PAGESIZE=60 Number of lines printed per page of output

Displaying the Settings of a Group of Options

You can display the settings of a group of SAS system options that have a specific
functionality, such as error handling, by using the GROUP= option.

proc options group=errorhandling;
run;

Output 29.3 Sample Output Using the GROUP= Option

6 proc options group=errorhandling;
7 run;

SAS (r) Proprietary Software Release XXX

BYERR Set the error flag if a null data set is input to the SORT
procedure

CLEANUP Attempt recovery from out-of-resources condition
NODMSSYNCHK Do not enable syntax check, in windowing mode, for a

submitted statement block
DSNFERR Generate error when SAS data set not found condition occurs
NOERRORABEND Do not abend on error conditions
NOERRORBYABEND Do not abend on By-group error condition
ERRORCHECK=NORMAL Level of special error processing to be performed
ERRORS=20 Maximum number of observations for which complete error

messages are printed
FMTERR Treat missing format or informat as an error
QUOTELENMAX Enable warning for quoted string length max
VNFERR Treat variable not found on _NULL_ SAS data set as an error

The following table lists the values that are available when you use the GROUP=
option with PROC OPTIONS.

Values for Use with GROUP=

COMMUNICATIONS GRAPHICS MACRO

DATAQUALITY HELP MEMORY

EMAIL INPUTCONTROL META

ENVDISPLAY INSTALL ODSPRINT

ENVFILES LANGUAGECONTROL PERFORMANCE

594 Displaying the Settings of a Group of Options � Chapter 29

Values for Use with GROUP=

ERRORHANDLING LISTCONTROL SASFILES

EXECMODES LOG_LISTCONTROL SORT

EXTFILES LOGCONTROL

The following table lists operating environment–specific values that might be
available when you use the GROUP= option with PROC OPTIONS.

Possible Operating Environment–Specific Values for Use with GROUP=

ADABAS IDMS ORACLE

DATACOM IMS REXX

DB2 ISPF

Operating Environment Information: Refer to the SAS documentation for your
operating environment for more information about these host-specific options. �

The OPTIONS Procedure � PROC OPTIONS Statement 595

Syntax: OPTIONS Procedure
See: OPTIONS procedure in the documentation for your operating environment.

PROC OPTIONS <option(s)>;

PROC OPTIONS Statement

PROC OPTIONS <option(s)>;

To do this Use this option

Choose the format of the listing

Specify the long form LONG

Specify the short form SHORT

Display the option’s description, type and group

Display the option’s value and scope

DEFINE

VALUE

Restrict the number of options displayed

Display options belonging to a group GROUP=

Display host options only HOST

Display portable options only NOHOST | PORT

Display a single option OPTION=

Options

DEFINE
displays the short description of the option, the option group, and the option type. It
displays information about when the option can be set, whether an option can be
restricted, and whether the PROC OPTSAVE will save the option.

Interaction: This option has no effect when SHORT is specified.

GROUP=group-name
displays the options in the group specified by group-name. For more information on
options groups, see “Displaying the Settings of a Group of Options” on page 593.

HOST | NOHOST
displays only host options (HOST) or displays only portable options (NOHOST).

Alias: PORTABLE is an alias for NOHOST.

596 Results: OPTIONS Procedure � Chapter 29

LONG | SHORT
specifies the format for displaying the settings of the SAS system options. LONG
lists each option on a separate line with a description; SHORT produces a
compressed listing without the descriptions.
Default: LONG
Featured in: Example 1 on page 597

NOHOST | PORT
See HOST | NOHOST on page 595.

OPTION=option-name
displays a short description and the value (if any) of the option specified by
option-name. DEFINE and VALUE provide additional information about the option.

option-name
specifies the option to use as input to the procedure.

Requirement: If a SAS system option uses an equals sign, such as PAGESIZE=, do
not include the equals sign when specifying the option to OPTION=.

Featured in: Example 2 on page 598

SHORT
See LONG | SHORT.

VALUE
displays the option value and scope, as well as how the value was set.
Interaction: This option has no effect when SHORT is specified.

Note: SAS options that are passwords, such as EMAILPW and METAPASS,
return the value xxxxxxxx and not the actual password. �

Results: OPTIONS Procedure

SAS writes the options list to the SAS log. SAS system options of the form option |
NOoption are listed as either option or NOoption, depending on the current setting, but
they are always sorted by the positive form. For example, NOCAPS would be listed
under the Cs.

Operating Environment Information: PROC OPTIONS produces additional
information that is specific to the environment under which you are running the SAS
System. Refer to the SAS documentation for your operating environment for more
information about this and for descriptions of host-specific options. �

The OPTIONS Procedure � Program 597

Examples: OPTIONS Procedure

Example 1: Producing the Short Form of the Options Listing

Procedure features:
PROC OPTIONS statement option:

SHORT

This example shows how to generate the short form of the listing of SAS system
option settings. Compare this short form with the long form that is shown in
“Overview: OPTIONS Procedure” on page 591.

Program

List all options and their settings. SHORT lists the SAS system options and their settings
without any descriptions.

proc options short;
run;

598 Log (partial) � Chapter 29

Log (partial)

1 proc options short;
2 run;

SAS (r) Proprietary Software Release XXX

Portable Options:

APPLETLOC=(system-specific pathname) ARMAGENT= ARMLOC=ARMLOC.LOG ARMSUBSYS=
(ARM_NONE) NOASYNCHIO AUTOSAVELOC= NOAUTOSIGNON NOBATCH BINDING=DEFAULT
BOTTOMMARGIN=0.000 IN BUFNO=1 BUFSIZE=0 BYERR BYLINE BYSORTED NOCAPS
NOCARDIMAGE CATCACHE=0 CBUFNO=0 CENTER NOCHARCODE CLEANUP NOCMDMACCMPLIB=
CMPOPT=(NOEXTRAMATH NOMISSCHECK NOPRECISE NOGUARDCHECK) NOCOLLATE COLORPRINTING
COMAMID=TCP COMPRESS=NO CONNECTPERSIST CONNECTREMOTE= CONNECTSTATUS CONNECTWAIT
CONSOLELOG= COPIES=1 CPUCOUNT=1 CPUID DATASTMTCHK=COREKEYWORDS DATE DATESTYLE=MDY
DBSLICEPARM=(THREADED_APPS, 2) DBSRVTP=NONE NODETAILS DEVICE= DFLANG=ENGLISH
DKRICOND=ERROR DKROCOND=WARN DLDMGACTION=REPAIR NODMR DMS NODMSEXP DMSLOGSIZE=99999
DMSOUTSIZE=99999 NODMSSYNCHK DQLOCALE= DQSETUPLOC= DSNFERR NODTRESET NODUPLEX
NOECHOAUTO EMAILAUTHPROTOCOL=NONE EMAILHOST=LOCALHOST EMAILID= EMAILPORT=25 EMAILPW=
ENGINE=V9 NOERRORABEND NOERRORBYABEND ERRORCHECK=NORMAL ERRORS=20 NOEXPLORER
FIRSTOBS=1 FMTERR FMTSEARCH=(WORK LIBRARY) FONTSLOC=(system-specific pathname)
FORMCHAR=£$<>\^_{|}~+=|-/\<>* FORMDLIM= FORMS=DEFAULT GISMAPS= GWINDOW HELPENCMD
HELPINDEX=(/help/common.hlp/index.txt /help/common.hlp/keywords.htm common.hhk)
HELPTOC=(/help/helpnav.hlp/config.txt /help/common.hlp/toc.htm common.hhc)
IBUFSIZE=0 NOIMPLMAC INITCMD= INITSTMT= INVALIDDATA=. LABEL LEFTMARGIN=0.000 IN
LINESIZE=97 LOGPARM= MACRO MAPS=(system-specific pathname) NOMAUTOLOCDISPLAY
MAUTOSOURCE MAXSEGRATIO=75 MCOMPILENOTE=NONE MERGENOBY=NOWARN MERROR
METAAUTORESOURCES= METACONNECT= METAENCRYPTALG=NONE METAENCRYPTLEVEL=EVERYTHING
METAID= METAPASS= METAPORT=0 METAPROFILE= METAPROTOCOL=BRIDGE METAREPOSITORY=Default
METASERVER= METAUSER= NOMFILE MINDELIMITER= MINPARTSIZE=0 MISSING=. NOMLOGIC
NOMLOGICNEST NOMPRINT NOMPRINTNEST NOMRECALL MSGLEVEL=N NOMSTORED MSYMTABMAX=4194304
NOMULTENVAPPL MVARSIZE=4096 NONETENCRYPT NETENCRYPTALGORITHM= NETENCRYPTKEYLEN=0
NETMAC NEWS= NOTES NUMBER NOOBJECTSERVER OBS=9223372036854775807 ORIENTATION=PORTRAIT
NOOVP NOPAGEBREAKINITIAL PAGENO=1 PAGESIZE=55 PAPERDEST= PAPERSIZE=LETTER
PAPERSOURCE= PAPERTYPE=PLAIN PARM= PARMCARDS=FT15F001 PRINTERPATH= NOPRINTINIT
PRINTMSGLIST QUOTELENMAX REPLACE REUSE=NO RIGHTMARGIN=0.000 IN NORSASUSER S=0
S2=0 SASAUTOS=(system-specific pathname) SASCMD= SASFRSCR=
SASHELP=(system-specific pathname) SASMSTORE= SASSCRIPT=
SASUSER=(system-specific pathname) SEQ=8 SERROR NOSETINIT SIGNONWAIT SKIP=0
SOLUTIONS SORTDUP=PHYSICAL SORTEQUALS SORTSEQ= SORTSIZE=2097152 SOURCE NOSOURCE2
SPDEINDEXSORTSIZE=33554432 SPDEMAXTHREADS=0 SPDESORTSIZE=33554432 SPDEUTILLOC=
SPDEWHEVAL=COST NOSPOOL NOSSLCLIENTAUTH NOSSLCRLCHECK STARTLIB SUMSIZE=0
NOSYMBOLGEN SYNCHIO SYNTAXCHECK SYSPARM= SYSPRINTFONT= NOSYSRPUTSYNC TBUFSIZE=0
TCPPORTFIRST=0 TCPPORTLAST=0 TERMINAL TERMSTMT= TEXTURELOC=\\dntsrc\sas\m901\ods\misc
THREADS TOOLSMENU TOPMARGIN=0.000 IN TRAINLOC= TRANTAB= UNIVERSALPRINT USER= UTILLOC=
UUIDCOUNT=100 UUIDGENDHOST= V6CREATEUPDATE=NOTE VALIDFMTNAME=LONG VALIDVARNAME=V7
VIEWMENU VNFERR WORK=(system-specific pathname) WORKINIT WORKTERM YEARCUTOFF=1920

LAST=_NULL_

Example 2: Displaying the Setting of a Single Option

Procedure features:
PROC OPTIONS statement option:

OPTION=
DEFINE
VALUE

The OPTIONS Procedure � Program 599

This example shows how to display the setting of a single SAS system option. The
log shows the current setting of the SAS system option CENTER. The DEFINE and
VALUE options display additional information.

Program

Set the CENTER SAS system option.OPTION=CENTER displays option value information.
DEFINE and VALUE display additional information.

proc options option=center define value;
run;

Output 29.4 Log Output from Specifying the CENTER Option

29 proc options option=center define value;
30 run;

SAS (r) Proprietary Software Release XXX

Option Value Information For SAS Option CENTER
Option Value: CENTER
Option Scope: Default
How option value set: Shipped Default

Option Definition Information for SAS Option CENTER
Group= LISTCONTROL
Group Description: Procedure output and display settings
Description: Center SAS procedure output
Type: The option value is of type BOOLEAN
When Can Set: Startup or anytime during the SAS Session
Restricted: Your Site Administrator can restrict modification of this
option.
Optsave: Proc Optsave or command Dmoptsave will save this option.

600

601

C H A P T E R

30
The OPTLOAD Procedure

Overview: OPTLOAD Procedure 601
What Does the OPTLOAD Procedure Do? 601

Syntax: OPTLOAD Procedure 601

PROC OPTLOAD Statement 602

Overview: OPTLOAD Procedure

What Does the OPTLOAD Procedure Do?
The OPTLOAD procedure reads SAS system option settings that are stored in the

SAS registry or a SAS data set and puts them into effect.
You can load SAS system option settings from a SAS data set or registry key by using
� the DMOPTLOAD command from a command line in the SAS windowing

environment. For example, DMOPTLOAD key= “core\options”.
� the PROC OPTLOAD statement.

When an option is restricted by the site administrator, and the option value that is
being set by PROC OPTLOAD differs from the option value that was established by the
site administrator, SAS issues a Warning message to the log.

Some SAS options will not be saved with PROC OPTSAVE and therefore cannot be
loaded with OPTLOAD. The following is a list of these options:

� ARMAGENT system option
� ARMLOC system option
� ARMSUBSYS system option
� AWSDEF system option (for Windows only)
� FONTALIAS system option (for Windows only)
� SORTMSG system option (for z/OS only)
� STIMER system option
� TCPSEC system option
� all SAS system options that can be specified only during startup
� all SAS system options that identify a password.

Syntax: OPTLOAD Procedure
PROC OPTLOAD <options>;

602 PROC OPTLOAD Statement � Chapter 30

PROC OPTLOAD Statement

PROC OPTLOAD <options>;

To do this Use this option

Load SAS system option settings from an existing registry key KEY=

Load SAS system option settings from an existing data set DATA=

Options

DATA=libref.dataset
specifies the library and data set name from where SAS system option settings are
loaded. The SAS variable OPTNAME contains the character value of the SAS system
option name, and the SAS variable OPTVALUE contains the character value of the
SAS system option setting.
Requirement: The SAS library and data set must exist.
Default: If you omit the DATA= option and the KEY= option, the procedure will use

the default SAS library and data set. The default library is where the current user
profile resides. Unless you specify a library, the default library is SASUSER. If
SASUSER is being used by another active SAS session, then the temporary
WORK library is the default location from which the data set is loaded. The
default data set name is MYOPTS.

KEY=“SAS registry key”
specifies the location in the SAS registry of stored SAS system option settings. The
registry is retained in SASUSER. If SASUSER is not available, then the temporary
WORK library is used. For example, KEY="OPTIONS".
Requirement: “SAS registry key” must be an existing SAS registry key.
Requirement: You must use quotation marks around the “SAS registry key” name.

Separate the names in a sequence of key names with a backslash (\). For
example, KEY=“CORE\OPTIONS”.

603

C H A P T E R

31
The OPTSAVE Procedure

Overview: OPTSAVE Procedure 603
What Does the OPTSAVE Procedure Do? 603

Syntax: OPTSAVE Procedure 603

PROC OPTSAVE Statement 604

Overview: OPTSAVE Procedure

What Does the OPTSAVE Procedure Do?
PROC OPTSAVE saves the current SAS system option settings in the SAS registry

or in a SAS data set.
SAS system options can be saved across SAS sessions. You can save the settings of

the SAS system options in a SAS data set or registry key by using

� the DMOPTSAVE command from a command line in the SAS windowing
environment. Use the command like this: DMOPTSAVE <save-location>.

� the PROC OPTSAVE statement.

Some SAS options will not be saved with PROC OPTSAVE. The following is a list of
these options:

� ARMAGENT system option

� ARMLOC system option

� ARMSUBSYS system option

� AWSDEF system option

� FONTALIAS system option

� SORTMSG system option

� STIMER system option

� TPSEC system option

� All SAS system options that can be specified only during startup

� All SAS system options that identify a password.

Syntax: OPTSAVE Procedure
Tip: The only statement that is used with the OPTSAVE procedure is the PROC
statement.

604 PROC OPTSAVE Statement � Chapter 31

PROC OPTSAVE <options>;

PROC OPTSAVE Statement

PROC OPTSAVE <options >;

To do this Use this option

Save SAS system option settings to a registry key KEY=

Save SAS system option settings to a SAS data set OUT=

Options

KEY=“SAS registry key”
specifies the location in the SAS registry of stored SAS system option settings. The
registry is retained in SASUSER. If SASUSER is not available, then the temporary
WORK library is used. For example, KEY="OPTIONS".

Restriction: “SAS registry key” names cannot span multiple lines.

Requirement: Separate the names in a sequence of key names with a backslash
(\). Individual key names can contain any character except a backslash.

Requirement: The length of a key name cannot exceed 255 characters (including
the backslashes).

Requirement: You must use quotation marks around the “SAS registry key” name.

Tip: To specify a subkey, enter multiple key names starting with the root key.

Caution: If the key already exists, it will be overwritten. If the specified key does
not already exist in the current SAS registry, then the key is automatically created
when option settings are saved in the SAS registry.

OUT=libref.dataset
specifies the names of the library and data set where SAS system option settings are
saved. The SAS variable OPTNAME contains the character value of the SAS system
option name. The SAS variable OPTVALUE contains the character value of the SAS
system option setting.

Caution: If the data set already exists, it will be overwritten.

Default: If you omit the OUT= and the KEY= options, the procedure will use the
default SAS library and data set. The default SAS library is where the current
user profile resides. Unless you specify a SAS library, the default library is
SASUSER. If SASUSER is in use by another active SAS session, then the
temporary WORK library is the default location where the data set is saved. The
default data set name is MYOPTS.

605

C H A P T E R

32
The PLOT Procedure

Overview: PLOT Procedure 606
Syntax: PLOT Procedure 608

PROC PLOT Statement 609

BY Statement 612

PLOT Statement 613

Concepts: PLOT Procedure 624
RUN Groups 624

Generating Data with Program Statements 625

Labeling Plot Points with Values of a Variable 625

Pointer Symbols 625

Understanding Penalties 626

Changing Penalties 627
Collision States 628

Reference Lines 628

Hidden Label Characters 628

Overlaying Label Plots 628

Computational Resources Used for Label Plots 628
Time 629

Memory 629

Results: PLOT Procedure 629

Scale of the Axes 629

Printed Output 629
ODS Table Names 629

Portability of ODS Output with PROC PLOT 630

Missing Values 630

Hidden Observations 630

Examples: PLOT Procedure 631

Example 1: Specifying a Plotting Symbol 631
Example 2: Controlling the Horizontal Axis and Adding a Reference Line 632

Example 3: Overlaying Two Plots 634

Example 4: Producing Multiple Plots per Page 636

Example 5: Plotting Data on a Logarithmic Scale 639

Example 6: Plotting Date Values on an Axis 640
Example 7: Producing a Contour Plot 642

Example 8: Plotting BY Groups 646

Example 9: Adding Labels to a Plot 649

Example 10: Excluding Observations That Have Missing Values 652

Example 11: Adjusting Labels on a Plot with the PLACEMENT= Option 654
Example 12: Adjusting Labeling on a Plot with a Macro 658

Example 13: Changing a Default Penalty 661

606 Overview: PLOT Procedure � Chapter 32

Overview: PLOT Procedure
The PLOT procedure plots the values of two variables for each observation in an

input SAS data set. The coordinates of each point on the plot correspond to the two
variables’ values in one or more observations of the input data set.

Output 32.1 is a simple plot of the high values of the Dow Jones Industrial Average
(DJIA) between 1954 and 1994. PROC PLOT determines the plotting symbol and the
scales for the axes. These are the statements that produce the output:

options nodate pageno=1 linesize=64
pagesize=25;

proc plot data=djia;
plot high*year;
title ’High Values of the Dow Jones’;
title2 ’Industrial Average’;
title3 ’from 1954 to 1994’;

run;

Output 32.1 A Simple Plot

High Values of the Dow Jones 1
Industrial Average
from 1954 to 1994

Plot of High*Year. Legend: A = 1 obs, B = 2 obs, etc.

4000 + A
| A
| AA

High | A
| A A
| A

2000 + A
| A
| AA
| AAAAAAAAAAAAAAAAAAA
| AAAAAAAA
| AA

0 +
---+---------+---------+---------+---------+---------+--

1950 1960 1970 1980 1990 2000

Year

You can also overlay two plots, as shown in Output 32.2. One plot shows the high
values of the DJIA; the other plot shows the low values. The plot also shows that you
can specify plotting symbols and put a box around a plot. The statements that produce
Output 32.2 are shown in Example 3 on page 634.

The PLOT Procedure � Overview: PLOT Procedure 607

Output 32.2 Plotting Two Sets of Values at Once

Plot of Highs and Lows 1
for the Dow Jones Industrial Average

Plot of High*Year. Symbol used is ’*’.
Plot of Low*Year. Symbol used is ’o’.

---+---------+---------+---------+---------+---------+---
4000 + * +

| * |
| * o |
| *oo |

High | * |
| * * |
| o |
| *oo |

2000 + * o +
| o |
| *o |
| **o |
| ****** ************oo |
| *****oooooo*o o oooooooo |
| *****oooo o |
| o |

0 + +
---+---------+---------+---------+---------+---------+---

1950 1960 1970 1980 1990 2000

Year

NOTE: 7 obs hidden.

PROC PLOT can also label points on a plot with the values of a variable, as shown in
Output 32.3. The plotted data represents population density and crime rates for
selected U.S. states. The SAS code that produces Output 32.3 is shown in Example 11
on page 654.

608 Syntax: PLOT Procedure � Chapter 32

Output 32.3 Labeling Points on a Plot

A Plot of Population Density and Crime Rates 1

Plot of Density*CrimeRate$State. Symbol is value of State.

---+------------+------------+------------+------------+------------+------------+------------+---

Density | |

500 + +

| |

| Maryland |

| M |

| |

| |

| |

| |

| Delaware |

| D |

| Pennsylvania Ohio |

| P O |

250 + +

| Illinois |

| I Florida |

| F |

| North Carolina California |

| New South C |

| West Hampshire Alabama N Carolina |

| Virginia N T S G Georgia |

| W Mississippi A Tennessee Washington Texas |

| M Vermont V M Missouri Oklahoma W T |

| South Arkansas A M Minnesota O Oregon |

| Dakota I Idaho Nevada O |

0 + S N North Dakota N +

---+------------+------------+------------+------------+------------+------------+------------+---

2000 3000 4000 5000 6000 7000 8000 9000

CrimeRate

Syntax: PLOT Procedure
Requirement: At least one PLOT statement is required.
Tip: Supports RUN-group processing
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
ODS Table Names: See: “ODS Table Names” on page 629
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 57 for
details. You can also use any global statements. See “Global Statements” on page 18 for
a list.

PROC PLOT <option(s)>;
BY <DESCENDING> variable-1

<…<DESCENDING> variable-n>
<NOTSORTED>;

PLOT plot-request(s) </ option(s)>;

The PLOT Procedure � PROC PLOT Statement 609

To do this Use this statement

Produce a separate plot for each BY group BY

Describe the plots you want PLOT

PROC PLOT Statement
Reminder: You can use data set options with the DATA= option. See “Data Set Options”
on page 18 for a list.

PROC PLOT <option(s)>;

To do this Use this option

Specify the input data set DATA=

Control the axes

Include missing character variable values MISSING

Exclude observations with missing values NOMISS

Uniformly scale axes across BY groups UNIFORM

Control the appearance of the plot

Specify the characters that construct the borders
of the plot

FORMCHAR=

Suppress the legend at the top of the plot NOLEGEND

Specify the aspect ratio of the characters on the
output device

VTOH=

Control the size of the plot

Specify the percentage of the available
horizontal space for each plot

HPERCENT=

Specify the percentage of the available vertical
space for each plot

VPERCENT=

Options

DATA=SAS-data-set
specifies the input SAS data set.

Main discussion: See Chapter 2, "Fundamental Concepts for Using Base SAS
Procedures."

610 PROC PLOT Statement � Chapter 32

FORMCHAR <(position(s))>=’formatting-character(s)’
defines the characters to use for constructing the borders of the plot.

position(s)
identifies the position of one or more characters in the SAS formatting-character
string. A space or a comma separates the positions.

Default: Omitting (position(s)) is the same as specifying all twenty possible SAS
formatting characters, in order.

Range: PROC PLOT uses formatting characters 1, 2, 3, 5, 7, 9, and 11. The
following table shows the formatting characters that PROC PLOT uses.

Position Default Used to draw

1 | vertical separators

2 - horizontal separators

3 5 9 1 1 - corners

7 + intersection of vertical
and horizontal separators

formatting-character(s)
lists the characters to use for the specified positions. PROC PLOT assigns
characters in formatting-character(s) to position(s), in the order that they are
listed. For instance, the following option assigns the asterisk (*) to the third
formatting character, the pound sign (#) to the seventh character, and does not
alter the remaining characters:

formchar(3,7)=’*#’

Interaction: The SAS system option FORMCHAR= specifies the default formatting
characters. The system option defines the entire string of formatting characters.
The FORMCHAR= option in a procedure can redefine selected characters.

Tip: You can use any character in formatting-characters, including hexadecimal
characters. If you use hexadecimal characters, then you must put an x after the
closing quotation mark. For instance, the following option assigns the hexadecimal
character 2D to the third formatting character, the hexadecimal character 7C to
the seventh character, and does not alter the remaining characters:

formchar(3,7)=’2D7C’x

Tip: Specifying all blanks for formatting-character(s) produces plots with no
borders, for example

formchar (1,2,7)=’’

HPERCENT=percent(s)
specifies one or more percentages of the available horizontal space to use for each
plot. HPERCENT= enables you to put multiple plots on one page. PROC PLOT tries
to fit as many plots as possible on a page. After using each of the percent(s), PROC
PLOT cycles back to the beginning of the list. A zero in the list forces PROC PLOT to
go to a new page even if it could fit the next plot on the same page.

hpercent=33
prints three plots per page horizontally; each plot is one-third of a page wide.

The PLOT Procedure � PROC PLOT Statement 611

hpercent=50 25 25
prints three plots per page; the first is twice as wide as the other two.

hpercent=33 0
produces plots that are one-third of a page wide,; each plot is on a separate page.

hpercent=300
produces plots three pages wide.
At the beginning of every BY group and after each RUN statement, PROC PLOT

returns to the beginning of the percent(s) and starts printing a new page.

Alias: HPCT=

Default: 100

Featured in: Example 4 on page 636

MISSING
includes missing character variable values in the construction of the axes. It has no
effect on numeric variables.

Interaction: overrides the NOMISS option for character variables

NOLEGEND
suppresses the legend at the top of each plot. The legend lists the names of the
variables being plotted and the plotting symbols used in the plot.

NOMISS
excludes observations for which either variable is missing from the calculation of the
axes. Normally, PROC PLOT draws an axis based on all the values of the variable
being plotted, including points for which the other variable is missing.

Interaction: The HAXIS= option overrides the effect of NOMISS on the horizontal
axis. The VAXIS= option overrides the effect on the vertical axis.

Interaction: NOMISS is overridden by MISSING for character variables.

Featured in: Example 10 on page 652

UNIFORM
uniformly scales axes across BY groups. Uniform scaling enables you to directly
compare the plots for different values of the BY variables.
Restriction: You cannot use PROC PLOT with the UNIFORM option with an

engine that supports concurrent access if another user is updating the data set at
the same time.

VPERCENT=percent(s)
specifies one or more percentages of the available vertical space to use for each plot.
If you use a percentage greater than 100, then PROC PLOT prints sections of the
plot on successive pages.

Alias: VPCT=
Default: 100

Featured in: Example 4 on page 636

See also: HPERCENT= on page 610

VTOH=aspect-ratio
specifies the aspect ratio (vertical to horizontal) of the characters on the output
device. aspect-ratio is a positive real number. If you use the VTOH= option, then
PROC PLOT spaces tick marks so that the distance between horizontal tick marks is
nearly equal to the distance between vertical tick marks. For example, if characters
are twice as high as they are wide, then specify VTOH=2.

Minimum: 0

612 BY Statement � Chapter 32

Interaction: VTOH= has no effect if you use the HSPACE= and the VSPACE=
options in the PLOT statement.

See also: HAXIS= on page 616 for a way to equate axes so that the given distance
represents the same data range on both axes.

BY Statement

Produces a separate plot and starts a new page for each BY group.

Main discussion: “BY” on page 58
Featured in: Example 8 on page 646

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, then the observations in the data set must either be sorted by all the
variables that you specify or be indexed appropriately. Variables in a BY statement
are called BY variables.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The data is grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, then the procedure treats each contiguous set as a separate BY
group.

The PLOT Procedure � PLOT Statement 613

PLOT Statement
Requests the plots to be produced by PROC PLOT.

Tip: You can use multiple PLOT statements.

PLOT plot-request(s) </ option(s)>;

To do this Use this option

Control the axes

Specify the tick-mark values HAXIS= and VAXIS=

Expand the axis HEXPAND and VEXPAND

Specify the number of print positions HPOS=

and

VPOS=

Reverse the order of the values HREVERSE and VREVERSE

Specify the number of print positions between
tick marks

HSPACE= and VSPACE=

Assign a value of zero to the first tick mark HZERO

and

VZERO

Specify reference lines

Draw a line perpendicular to the specified
values on the axis

HREF=

and

VREF=

Specify a character to use to draw the reference
line

HREFCHAR= and VREFCHAR=

Put a box around the plot BOX

Overlay plots OVERLAY

Produce a contour plot

Draw a contour plot CONTOUR

Specify the plotting symbol for one contour level Scontour-level=

Specify the plotting symbol for multiple contour
levels

SLIST=

Label points on a plot

List the penalty and the placement state of the
points

LIST=

Force the labels away from the origin OUTWARD=

Change default penalties PENALTIES=

Specify locations for the placement of the labels PLACEMENT=

614 PLOT Statement � Chapter 32

To do this Use this option

Specify a split character for the label SPLIT=

List all placement states in effect STATES

Required Arguments

plot-request(s)
specifies the variables (vertical and horizontal) to plot and the plotting symbol to use
to mark the points on the plot.

Each form of plot-request(s) supports a label variable. A label variable is preceded
by a dollar sign ($) and specifies a variable whose values label the points on the plot.
For example,

plot y*x $ label-variable

plot y*x=’*’ $ label-variable

See “Labeling Plot Points with Values of a Variable” on page 625 for more
information. In addition, see Example 9 on page 649 and all the examples that follow
it.

The plot-request(s) can be one or more of the following:

vertical*horizontal <$ label-variable>
specifies the variable to plot on the vertical axis and the variable to plot on the
horizontal axis.

For example, the following statement requests a plot of Y by X:

plot y*x;

Y appears on the vertical axis, X on the horizontal axis.
This form of the plot request uses the default method of choosing a plotting

symbol to mark plot points. When a point on the plot represents the values of one
observation in the data set, PROC PLOT puts the character A at that point. When
a point represents the values of two observations, the character B appears. When
a point represents values of three observations, the character C appears, and so on
through the alphabet. The character Z is used for the occurrence of 26 or more
observations at the same printing position.

vertical*horizontal=’character’ <$ label-variable>
specifies the variables to plot on the vertical and horizontal axes and specifies a
plotting symbol to mark each point on the plot. A single character is used to
represent values from one or more observations.

For example, the following statement requests a plot of Y by X, with each point
on the plot represented by a plus sign (+):

plot y*x=’+’;

vertical*horizontal=variable <$ label-variable>
specifies the variables to plot on the vertical and horizontal axes and specifies a
variable whose values are to mark each point on the plot. The variable can be
either numeric or character. The first (left-most) nonblank character in the
formatted value of the variable is used as the plotting symbol (even if more than
one value starts with the same letter). When more than one observation maps to
the same plotting position, the value from the first observation marks the point.

The PLOT Procedure � PLOT Statement 615

For example, in the following statement GENDER is a character variable with
values of FEMALE and MALE; the values F and M mark each observation on the plot.

plot height*weight=gender;

Specifying Variable Lists in Plot Requests
You can use SAS variable lists in plot requests. For example, the following are valid

plot requests:

Plot request What is plotted

(a - - d) a*b a*c a*d b*c b*d
c*d

(x1 - x4) x1*x2
x1*x3 x1*x4 x2*x3
x2*x4 x3*x4

(_numeric_) All combinations of numeric variables

y*(x1 - x4) y*x1
y*x2 y*x4 y*x4

If both the vertical and horizontal specifications request more than one variable and
if a variable appears in both lists, then it will not be plotted against itself. For example,
the following statement does not plot B*B and C*C:

plot (a b c)*(b c d);

Specifying Combinations of Variables
The operator in request is either an asterisk (*) or a colon (:). An asterisk combines

the variables in the lists to produce all possible combinations of x and y variables. For
example, the following plot requests are equivalent:

plot (y1-y2) * (x1-x2);

plot y1*x1 y1*x2 y2*x1 y2*x2;

A colon combines the variables pairwise. Thus, the first variables of each list
combine to request a plot, as do the second, third, and so on. For example, the following
plot requests are equivalent:

plot (y1-y2) : (x1-x2);

plot y1*x1 y2*x2;

Options

BOX
draws a border around the entire plot, rather than just on the left side and bottom.
Featured in: Example 3 on page 634

CONTOUR<=number-of-levels>
draws a contour plot using plotting symbols with varying degrees of shading where
number-of-levels is the number of levels for dividing the range of variable. The plot

616 PLOT Statement � Chapter 32

request must be of the form vertical*horizontal=variable where variable is a numeric
variable in the data set. The intensity of shading is determined by the values of this
variable.

When you use CONTOUR, PROC PLOT does not plot observations with missing
values for variable.

Overprinting, if it is enabled by the OVP system option, is used to produce the
shading. Otherwise, single characters varying in darkness are used. The CONTOUR
option is most effective when the plot is dense.
Default: 10
Range: 1-10
Featured in: Example 7 on page 642

HAXIS=axis-specification
specifies the tick-mark values for the horizontal axis.

� For numeric values, axis-specification is either an explicit list of values, a BY
increment, or a combination of both:

n <…n>

BY increment

n TO n BY increment

The values must be in either ascending or descending order. Use a negative
value for increment to specify descending order. The specified values are spaced
evenly along the horizontal axis even if the values are not uniformly
distributed. Numeric values can be specified in the following ways:

HAXIS= value Comments

10 to 100 by 5 Values appear in increments of 5, starting
at 10 and ending at 100.

by 5 Values are incremented by 5. PROC PLOT
determines the minimum and maximum
values for the tick marks.

10 100 1000 10000 Values are not uniformly distributed. This
specification produces a logarithmic plot. If
PROC PLOT cannot determine the function
implied by the axis specification, it uses
simple linear interpolation between the
points. To determine whether PROC PLOT
correctly interpolates a function, you can
use the DATA step to generate data that
determines the function and see whether it
appears linear when plotted. See Example 5
on page 639 for an example.

1 2 10 to 100
by 5

A combination of the previous specifications.

� For character variables, axis-specification is a list of unique values that are
enclosed in quotation marks:

’value-1’ <…’value-n’>

The PLOT Procedure � PLOT Statement 617

For example,

haxis=’Paris’ ’London’ ’Tokyo’

The character strings are case-sensitive. If a character variable has an
associated format, then axis-specification must specify the formatted value. The
values can appear in any order.

� For axis variables that contain date-time values, axis-specification is either an
explicit list of values or a starting and an ending value with an increment
specified:

’date-time-value’i <…’date-time-value’i>

’date-time-value’i TO <…’date-time-value’i>
<BY increment>

’date-time-value’i
any SAS date, time, or datetime value described for the SAS functions
INTCK and INTNX. The suffix i is one of the following:

D date

T time

DT datetime

increment
one of the valid arguments for the INTCK or INTNX functions: For dates,
increment can be one of the following:

DAY
WEEK
MONTH
QTR
YEAR
For datetimes, increment can be one of the following:
DTDAY
DTWEEK
DTMONTH
DTQTR
DTYEAR
For times, increment can be one of the following:
HOUR
MINUTE
SECOND
For example,

haxis=’01JAN95’d to ’01JAN96’d
by month

haxis=’01JAN95’d to ’01JAN96’d
by qtr

Note: You must use a FORMAT statement to print the tick-mark values
in an understandable form. �

Interaction: You can use the HAXIS= and VAXIS= options with the VTOH= option
to equate axes. If your data is suitable, then use HAXIS=BY n and VAXIS=BY n

618 PLOT Statement � Chapter 32

with the same value for n and specify a value for the VTOH= option. The number
of columns that separate the horizontal tick marks is nearly equal to the number
of lines that separate the vertical tick marks times the value of the VTOH= option.
In some cases, PROC PLOT cannot simultaneously use all three values and
changes one or more of the values.

Featured in: Example 2 on page 632, Example 5 on page 639, and Example 6 on
page 640

HEXPAND
expands the horizontal axis to minimize the margins at the sides of the plot and to
maximize the distance between tick marks, if possible.

HEXPAND causes PROC PLOT to ignore information about the spacing of the
data. Plots produced with this option waste less space but may obscure the nature of
the relationship between the variables.

HPOS=axis-length
specifies the number of print positions on the horizontal axis. The maximum value of
axis-length that allows a plot to fit on one page is three positions less than the value
of the LINESIZE= system option because there must be space for the procedure to
print information next to the vertical axis. The exact maximum depends on the
number of characters that are in the vertical variable’s values. If axis-length is too
large to fit on a line, then PROC PLOT ignores the option.

HREF=value-specification
draws lines on the plot perpendicular to the specified values on the horizontal axis.
PROC PLOT includes the values you specify with the HREF= option on the
horizontal axis unless you specify otherwise with the HAXIS= option.

For the syntax for value-specification, see HAXIS= on page 616.
Featured in: Example 8 on page 646

HREFCHAR=’character’
specifies the character to use to draw the horizontal reference line.
Default: vertical bar (|)
See also: FORMCHAR= option on page 610 and HREF= on page 618

HREVERSE
reverses the order of the values on the horizontal axis.

HSPACE=n
specifies that a tick mark will occur on the horizontal axis at every nth print
position, where n is the value of HSPACE=.

HZERO
assigns a value of zero to the first tick mark on the horizontal axis.
Interaction: PROC PLOT ignores HZERO if the horizontal variable has negative

values or if the HAXIS= option specifies a range that does not begin with zero.

LIST<=penalty-value>
lists the horizontal and vertical axis values, the penalty, and the placement state of
all points plotted with a penalty greater than or equal to penalty-value. If no plotted
points have a penalty greater than or equal to penalty-value, then no list is printed.
Tip: LIST is equivalent to LIST=0.
See also: “Understanding Penalties” on page 626
Featured in: Example 11 on page 654

OUTWARD=’character’
tries to force the point labels outward, away from the origin of the plot, by protecting
positions next to symbols that match character that are in the direction of the origin

The PLOT Procedure � PLOT Statement 619

(0,0). The algorithm tries to avoid putting the labels in the protected positions, so
they usually move outward.

Tip: This option is useful only when you are labeling points with the values of a
variable.

OVERLAY
overlays all plots that are specified in the PLOT statement on one set of axes. The
variable names, or variable labels if they exist, from the first plot are used to label
the axes. Unless you use the HAXIS= or the VAXIS= option, PROC PLOT
automatically scales the axes in the way that best fits all the variables.

When the SAS system option OVP is in effect and overprinting is allowed, the
plots are superimposed; otherwise, when NOOVP is in effect, PROC PLOT uses the
plotting symbol from the first plot to represent points that appear in more than one
plot. In such a case, the output includes a message telling you how many
observations are hidden.

Featured in: Example 3 on page 634

PENALTIES<(index-list)>=penalty-list
changes the default penalties. The index-list provides the positions of the penalties in
the list of penalties. The penalty-list contains the values that you are specifying for
the penalties that are indicated in the index-list. The index-list and the penalty-list
can contain one or more integers. In addition, both index-list and penalty-list accept
the form:

value TO value

See also: “Understanding Penalties” on page 626

Featured in: Example 13 on page 661

PLACEMENT=(expression(s))
controls the placement of labels by specifying possible locations of the labels relative
to their coordinates. Each expression consists of a list of one or more suboptions (H=,
L=, S=, or V=) that are joined by an asterisk (*) or a colon (:). PROC PLOT uses the
asterisk and colon to expand each expression into combinations of values for the four
possible suboptions. The asterisk creates every possible combination of values in the
expression list. A colon creates only pairwise combinations. The colon takes
precedence over the asterisk. With the colon, if one list is shorter than the other,
then the values in the shorter list are reused as necessary.

Use the following suboptions to control the placement:

H=integer(s)
specifies the number of horizontal spaces (columns) to shift the label relative to
the starting position. Both positive and negative integers are valid. Positive
integers shift the label to the right; negative integers shift it to the left. For
example, you can use the H= suboption in the following way:

place=(h=0 1 -1 2 -2)

You can use the keywords BY ALT in this list. BY ALT produces a series of
numbers whose signs alternate between positive and negative and whose absolute
values change by one after each pair. For instance, the following PLACE=
specifications are equivalent:

place=(h=0 -1 to -3 by alt)

place=(h=0 -1 1 -2 2 -3 3)

620 PLOT Statement � Chapter 32

If the series includes zero, then the zero appears twice. For example, the
following PLACE= options are equivalent:

place=(h= 0 to 2 by alt)

place=(h=0 0 1 -1 2 -2)

Default: H=0

Range: −500 to 500

L=integer(s)
specifies the number of lines onto which the label may be split.

Default: L=1

Range: 1-200

S=start-position(s)
specifies where to start printing the label. The value for start-position can be one
or more of the following:

CENTER
the procedure centers the label around the plotting symbol.

RIGHT
the label starts at the plotting symbol location and continues to the right.

LEFT
the label starts to the left of the plotting symbol and ends at the plotting symbol
location.

Default: CENTER

V=integer(s)
specifies the number of vertical spaces (lines) to shift the label relative to the
starting position. V= behaves the same as the H= suboption, described earlier.
A new expression begins when a suboption is not preceded by an operator.

Parentheses around each expression are optional. They make it easier to recognize
individual expressions in the list. However, the entire expression list must be in
parentheses, as shown in the following example. Table 32.1 on page 621 shows how
this expression is expanded and describes each placement state.

place=((v=1)
(s=right left : h=2 -2)
(v=-1)
(h=0 1 to 2 by alt * v=1 -1)
(l=1 to 3 * v=1 to 2 by alt *

h=0 1 to 2 by alt))

Each combination of values is a placement state. The procedure uses the
placement states in the order in which they appear in the placement states list, so
specify your most preferred placements first. For each label, the procedure tries all
states, then uses the first state that places the label with minimum penalty. When
all labels are initially placed, the procedure cycles through the plot multiple times,
systematically refining the placements. The refinement step tries to both minimize
the penalties and to use placements nearer to the beginning of the states list.
However, PROC PLOT uses a heuristic approach for placements, so the procedure
does not always find the best set of placements.

Alias: PLACE=

Defaults: There are two defaults for the PLACE= option. If you are using a blank
as the plotting symbol, then the default placement state is PLACE=(S=CENTER :

The PLOT Procedure � PLOT Statement 621

V=0 : H=0 : L=1), which centers the label. If you are using anything other than a
blank, then the default is PLACE=((S=RIGHT LEFT : H=2 −2) (V=1 −1 * H=0 1 -1
2 -2)). The default for labels placed with symbols includes multiple positions
around the plotting symbol so the procedure has flexibility when placing labels on
a crowded plot.

Tip: Use the STATES option to print a list of placement states.
See also: “Labeling Plot Points with Values of a Variable” on page 625
Featured in: Example 11 on page 654 and Example 12 on page 658

Table 32.1 Expanding an Expression List into Placement States

Expression Placement state Meaning

(V=1) S=CENTER L=1 H=0 V=1 Center the label, relative to the
point, on the line above the
point. Use one line for the label.

(S=RIGHT LEFT : H=2 −2) S=RIGHT L=1 H=2 V=0 Begin the label in the second
column to the right of the point.
Use one line for the label.

S=LEFT L=1 H=−2 V=0 End the label in the second
column to the left of the point.
Use one line for the label.

(V=−1) S=CENTER L=1 H=0 V=− 1 Center the label, relative to the
point, on the line below the
point. Use one line for the label.

(H=0 1 to 2 BY ALT * V=1 −1) S=CENTER L=1 H=0 V=1 Center the label, relative to the
point, on the line above the
point.

S=CENTER L=1 H=0 V=−1 Center the label, relative to the
point, on the line below the
point.

S=CENTER L=1 H=1 V=1 From center, shift the label one
column to the right on the line
above the point.

S=CENTER L=1 H=1 V=−1 From center, shift the label one
column to the right on the line
below the point.

S=CENTER L=1 H=−1 V=1 From center, shift the label one
column to the left on the line
above the point.

S=CENTER L=1 H=− 1 V=−1 From center, shift the label one
column to the left on the line
below the point.

S=CENTER L=1 H=2 V=1
S=CENTER L=1 H=2 V=−1

From center, shift the labels two
columns to the right, first on
the line above the point, then
on the line below.

622 PLOT Statement � Chapter 32

Expression Placement state Meaning

S=CENTER L=1 H=−2 V=1

S=CENTER L=1 H=−2 V=−1

From center, shift the labels two
columns to the left, first on the
line above the point, then on
the line below.

(L=1 to 3 * V=1 to 2 BY ALT * H=0 1 to
2 BY ALT)

S=CENTER L=1 H=0 V=1 Center the label, relative to the
point, on the line above the
point. Use one line for the label.

S=CENTER L=1 H=1 V=1
S=CENTER L=1 H=−1 V=1
S=CENTER L=1 H=2 V=1
S=CENTER L=1 H=−2 V=1

From center, shift the label one
or two columns to the right or
left on the line above the point.
Use one line for the label.

S=CENTER L=1 H=0 V=−1 Center the label, relative to the
point, on the line below the
point. Use one line for the label.

S=CENTER L=1 H=1 V=−1
S=CENTER L=1 H=−1 V=−1
S=CENTER L=1 H=2 V=−1
S=CENTER L=1 H=−2 V=−1

From center, shift the label one
or two columns to the right and
the left on the line below the
point.

.

.

. Use the same horizontal shifts
on the line two lines above the
point and on the line two lines
below the point.

S=CENTER L=1 H=− 2 V=−2

S=CENTER L=2 H=0 V=1 Repeat the whole process
splitting the label over two
lines. Then repeat it splitting
the label over three lines.

.

.

.

S=CENTER L=3 H=− 2 V=−2

Scontour-level=’character-list’
specifies the plotting symbol to use for a single contour level. When PROC PLOT
produces contour plots, it automatically chooses the symbols to use for each level of
intensity. You can use the S= option to override these symbols and specify your own.
You can include up to three characters in character-list. If overprinting is not
allowed, then PROC PLOT uses only the first character.

For example, to specify three levels of shading for the Z variable, use the following
statement:

plot y*x=z /
contour=3 s1=’A’ s2=’+’ s3=’X0A’;

The PLOT Procedure � PLOT Statement 623

You can also specify the plotting symbols as hexadecimal constants:

plot y*x=z /
contour=3 s1=’7A’x s2=’7F’x s3=’A6’x;

This feature was designed especially for printers where the hexadecimal constants
can represent grey-scale fill characters.

Range: 1 to the highest contour level (determined by the CONTOUR option).

See also: SLIST= and CONTOUR

SLIST=’character-list-1’ <…’character-list-n’>
specifies plotting symbols for multiple contour levels. Each character-list specifies the
plotting symbol for one contour level: the first character-list for the first level, the
second character-list for the second level, and so on. For example:

plot y*x=z /
contour=5 slist=’.’ ’:’ ’!’ ’=’ ’+O’;

Default: If you omit a plotting symbol for each contour level, then PROC PLOT
uses the default symbols:

slist=’.’ ’,’ ’-’ ’=’ ’+’ ’O’ ’X’
’W’ ’*’ ’#’

Restriction: If you use the SLIST= option, then it must be listed last in the PLOT
statement.

See also: Scontour-level= and CONTOUR=

SPLIT=’split-character’
when labeling plot points, specifies where to split the label when the label spans two
or more lines. The label is split onto the number of lines that is specified in the L=
suboption to the PLACEMENT= option. If you specify a split character, then the
procedure always splits the label on each occurrence of that character, even if it
cannot find a suitable placement. If you specify L=2 or more but do not specify a split
character, then the procedure tries to split the label on blanks or punctuation but
will split words if necessary.

PROC PLOT shifts split labels as a block, not as individual fragments (a fragment
is the part of the split label that is contained on one line). For example, to force This
is a label to split after the a , change it to This is a*label and specify
SPLIT=’*’ .

See also: “Labeling Plot Points with Values of a Variable” on page 625

STATES
lists all the placement states in effect. STATES prints the placement states in the
order that you specify them in the PLACE= option.

VAXIS=axis-specification
specifies tick mark values for the vertical axis. VAXIS= follows the same rules as
theHAXIS= option on page 616.

Featured in: Example 7 on page 642 and Example 12 on page 658

VEXPAND
expands the vertical axis to minimize the margins above and below the plot and to
maximize the space between vertical tick marks, if possible.

See also: HEXPAND on page 618

VPOS=axis-length
specifies the number of print positions on the vertical axis. The maximum value for
axis-length that allows a plot to fit on one page is 8 lines less than the value of the

624 Concepts: PLOT Procedure � Chapter 32

SAS system option PAGESIZE= because you must allow room for the procedure to
print information under the horizontal axis. The exact maximum depends on the
titles that are used, whether or not plots are overlaid, and whether or not CONTOUR
is specified. If the value of axis-length specifies a plot that cannot fit on one page,
then the plot spans multiple pages.
See also: HPOS= on page 618

VREF=value-specification
draws lines on the plot perpendicular to the specified values on the vertical axis.
PROC PLOT includes the values you specify with the VREF= option on the vertical
axis unless you specify otherwise with the VAXIS= option. For the syntax for
value-specification, see HAXIS= on page 616.
Featured in: Example 2 on page 632

VREFCHAR=’character’
specifies the character to use to draw the vertical reference lines.
Default: horizontal bar (-)
See also: FORMCHAR= option on page 610, HREFCHAR= on page 618, and

VREF= on page 624

VREVERSE
reverses the order of the values on the vertical axis.

VSPACE=n
specifies that a tick mark will occur on the vertical axis at every nth print position,
where n is the value of VSPACE=.

VZERO
assigns a value of zero to the first tick mark on the vertical axis.
Interaction: PROC PLOT ignores the VZERO option if the vertical variable has

negative values or if the VAXIS= option specifies a range that does not begin with
zero.

Concepts: PLOT Procedure

RUN Groups
PROC PLOT is an interactive procedure. It remains active after a RUN statement is

executed. Usually, SAS terminates a procedure after executing a RUN statement.
When you start the PLOT procedure, you can continue to submit any valid statements
without resubmitting the PROC PLOT statement. Thus, you can easily experiment with
changing labels, values of tick marks, and so forth. Any options submitted in the PROC
PLOT statement remain in effect until you submit another PROC PLOT statement.

When you submit a RUN statement, PROC PLOT executes all the statements
submitted since the last PROC PLOT or RUN statement. Each group of statements is
called a RUN group. With each RUN group, PROC PLOT begins a new page and begins
with the first item in the VPERCENT= and HPERCENT= lists, if any.

To terminate the procedure, submit a QUIT statement, a DATA statement, or a
PROC statement. Like the RUN statement, each of these statements completes a RUN
group. If you do not want to execute the statements in the RUN group, then use the
RUN CANCEL statement, which terminates the procedure immediately.

The PLOT Procedure � Labeling Plot Points with Values of a Variable 625

You can use the BY statement interactively. The BY statement remains in effect
until you submit another BY statement or terminate the procedure.

See Example 11 on page 654 for an example of using RUN group processing with
PROC PLOT.

Generating Data with Program Statements
When you generate data to be plotted, a good rule is to generate fewer observations

than the number of positions on the horizontal axis. PROC PLOT then uses the
increment of the horizontal variable as the interval between tick marks.

Because PROC PLOT prints one character for each observation, using SAS program
statements to generate the data set for PROC PLOT can enhance the effectiveness of
continuous plots. For example, suppose that you want to generate data in order to plot
the following equation, for x ranging from 0 to 100:

� � ���� � �����

You can submit these statements:

options linesize=80;
data generate;

do x=0 to 100 by 2;
y=2.54+3.83*x;
output;

end;
run;
proc plot data=generate;

plot y*x;
run;

If the plot is printed with a LINESIZE= value of 80, then about 75 positions are
available on the horizontal axis for the X values. Thus, 2 is a good increment: 51
observations are generated, which is fewer than the 75 available positions on the
horizontal axis.

However, if the plot is printed with a LINESIZE= value of 132, then an increment of
2 produces a plot in which the plotting symbols have space between them. For a
smoother line, a better increment is 1, because 101 observations are generated.

Labeling Plot Points with Values of a Variable

Pointer Symbols

When you are using a label variable and do not specify a plotting symbol or if the
value of the variable you use as the plotting symbol is null (’00’x), PROC PLOT uses
pointer symbols as plotting symbols. Pointer symbols associate a point with its label by
pointing in the general direction of the label placement. PROC PLOT uses four
different pointer symbols based on the value of the S= and V= suboptions in the
PLACEMENT= option. The table below shows the pointer symbols:

626 Labeling Plot Points with Values of a Variable � Chapter 32

S= V= Symbol

LEFT any <

RIGHT any >

CENTER >0

C

ˆ

ENTER <=0 v

If you are using pointer symbols and multiple points coincide, then PROC PLOT uses
the number of points as the plotting symbol if the number of points is between 2 and 9.
If the number of points is more than 9, then the procedure uses an asterisk (*).

Note: Because of character set differences among operating environments, the
pointer symbol for S=CENTER and V>0 may differ from the one shown here. �

Understanding Penalties
PROC PLOT assesses the quality of placements with penalties. If all labels are

plotted with zero penalty, then no labels collide and all labels are near their symbols.
When it is not possible to place all labels with zero penalty, PROC PLOT tries to
minimize the total penalty. Table 32.2 on page 626 gives a description of the penalty,
the default value of the penalty, the index that you use to reference the penalty, and the
range of values that you can specify if you change the penalties. Each penalty is
described in more detail in Table 32.3 on page 627.

Table 32.2 Penalties Table

Penalty Default penalty Index Range

not placing a blank 1 1 0-500

bad split, no split character specified 1 2 0-500

bad split with split character 50 3 0-500

free horizontal shift, fhs 2 4 0-500

free vertical shift, fvs 1 5 0-500

vertical shift weight, vsw 2 6 0-500

vertical/horizontal shift denominator, vhsd 5 7 1-500

collision state 500 8 0-10,000

(reserved for future use) 9-14

not placing the first character 11 15 0-500

not placing the second character 10 16 0-500

not placing the third character 8 17 0-500

not placing the fourth character 5 18 0-500

not placing the fifth through 200th character 2 19-214 0-500

Table 32.3 on page 627 contains the index values from Table 32.2 on page 626 with a
description of the corresponding penalty.

The PLOT Procedure � Labeling Plot Points with Values of a Variable 627

Table 32.3 Index Values for Penalties

1 a nonblank character in the plot collides with an embedded blank in a label, or there is not a blank or a
plot boundary before or after each label fragment.

2 a split occurs on a nonblank or nonpunctuation character when you do not specify a split character.

3 a label is placed with a different number of lines than the L= suboption specifies, when you specify a
split character.

4-7 a label is placed far away from the corresponding point. PROC PLOT calculates the penalty according to
this (integer arithmetic) formula:

������� � � ������ � ��� ������� � � ��������� � � �� ��� ��	 ����	

Notice that penalties 4 through 7 are actually just components of the formula used to determine the
penalty. Changing the penalty for a free horizontal or free vertical shift to a large value such as 500 has
the effect of removing any penalty for a large horizontal or vertical shift. Example 6 on page 640
illustrates a case in which removing the horizontal shift penalty is useful.

8 a label may collide with its own plotting symbol. If the plotting symbol is blank, then a collision state
cannot occur. See “Collision States” on page 628 for more information.

15-214 a label character does not appear in the plot. By default, the penalty for not printing the first character
is greater than the penalty for not printing the second character, and so on. By default, the penalty for
not printing the fifth and subsequent characters is the same.

Note: Labels can share characters without penalty. �

Changing Penalties
You can change the default penalties with the PENALTIES= option in the PLOT

statement. Because PROC PLOT considers penalties when it places labels, changing
the default penalties can change the placement of the labels. For example, if you have
labels that all begin with the same two-letter prefix, then you might want to increase
the default penalty for not printing the third, fourth, and fifth characters to 11, 10, and
8 and decrease the penalties for not printing the first and second characters to 2. The
following PENALTIES= option accomplishes this change:

penalties(15 to 20)=2 2 11 10 8 2

This example extends the penalty list. The twentieth penalty of 2 is the penalty for
not printing the sixth through 200th character. When the last index i is greater than
18, the last penalty is used for the (i − 14)th character and beyond.

You can also extend the penalty list by just specifying the starting index. For
example, the following PENALTIES= option is equivalent to the one above:

penalties(15)=2 2 11 10 8 2

628 Labeling Plot Points with Values of a Variable � Chapter 32

Collision States
Collision states are placement states that may cause a label to collide with its own

plotting symbol. PROC PLOT usually avoids using collision states because of the large
default penalty of 500 that is associated with them. PROC PLOT does not consider the
actual length or splitting of any particular label when determining if a placement state
is a collision state. The following are the rules that PROC PLOT uses to determine
collision states:

� When S=CENTER, placement states that do not shift the label up or down
sufficiently so that all of the label is shifted onto completely different lines from
the symbol are collision states.

� When S=RIGHT, placement states that shift the label zero or more positions to the
left without first shifting the label up or down onto completely different lines from
the symbol are collision states.

� When S=LEFT, placement states that shift the label zero or more positions to the
right without first shifting the label up or down onto completely different lines
from the symbol are collision states.

Note: A collision state cannot occur if you do not use a plotting symbol. �

Reference Lines
PROC PLOT places labels and computes penalties before placing reference lines on a

plot. The procedure does not attempt to avoid rows and columns that contain reference
lines.

Hidden Label Characters
In addition to the number of hidden observations and hidden plotting symbols, PROC

PLOT prints the number of hidden label characters. Label characters can be hidden by
plotting symbols or other label characters.

Overlaying Label Plots
When you overlay a label plot and a nonlabel plot, PROC PLOT tries to avoid

collisions between the labels and the characters of the nonlabel plot. When a label
character collides with a character in a nonlabel plot, PROC PLOT adds the usual
penalty to the penalty sum.

When you overlay two or more label plots, all label plots are treated as a single plot
in avoiding collisions and computing hidden character counts. Labels of different plots
never overprint, even with the OVP system option in effect.

Computational Resources Used for Label Plots
This section uses the following variables to discuss how much time and memory

PROC PLOT uses to construct label plots:

n number of points with labels

len constant length of labels

s number of label pieces, or fragments

p number of placement states specified in the PLACE= option.

The PLOT Procedure � ODS Table Names 629

Time
For a given plot size, the time that is required to construct the plot is roughly

proportional to �� ���. The amount of time required to split the labels is roughly
proportional to ��

�. Generally, the more placement states that you specify, the more
time that PROC PLOT needs to place the labels. However, increasing the number of
horizontal and vertical shifts gives PROC PLOT more flexibility to avoid collisions,
often resulting in less time used to place labels.

Memory
PROC PLOT uses 24p bytes of memory for the internal placement state list. PROC

PLOT uses � ��� � ����� �� �� � ��� �� � ���� bytes for the internal list of labels.
PROC PLOT buildsall plots in memory; each printing position uses one byte of memory.
If you run out of memory, then request fewer plots in each PLOT statement and put a
RUN statement after each PLOT statement.

Results: PLOT Procedure

Scale of the Axes
Normally, PROC PLOT looks at the minimum difference between each pair of the five

lowest ordered values of each variable (the delta) and ensures that there is no more
than one of these intervals per print position on the final scaled axis, if possible. If
there is not enough room for this interval arrangement, and if PROC PLOT guesses
that the data was artificially generated, then it puts a fixed number of deltas in each
print position. Otherwise, PROC PLOT ignores the value.

Printed Output
Each plot uses one full page unless the plot’s size is changed by the VPOS= and

HPOS= options in the PLOT statement, the VPERCENT= or HPERCENT= options in
the PROC PLOT statement, or the PAGESIZE= and LINESIZE= system options. Titles,
legends, and variable labels are printed at the top of each page. Each axis is labeled
with the variable’s name or, if it exists, the variable’s label.

Normally, PROC PLOT begins a new plot on a new page. However, the VPERCENT=
and HPERCENT= options enable you to print more than one plot on a page.
VPERCENT= and HPERCENT= are described earlier in “PROC PLOT Statement” on
page 609.

PROC PLOT always begins a new page after a RUN statement and at the beginning
of a BY group.

ODS Table Names
The PLOT procedure assigns a name to each table that it creates. You can use these

names to reference the table when using the Output Delivery System (ODS) to select
tables and create output data sets. For more information, see SAS Output Delivery
System: User’s Guide.

630 Portability of ODS Output with PROC PLOT � Chapter 32

Table 32.4 ODS Tables Produced by the PLOT Procedure

Table Name Description The PLOT procedure generates
the table:

Plot A single plot when you do not specify the
OVERLAY option.

Overlaid Two or more plots on a single
set of axes

when you specify the
OVERLAY option.

Portability of ODS Output with PROC PLOT
Under certain circumstances, using PROC PLOT with the Output Delivery System

produces files that are not portable. If the SAS system option FORMCHAR= in your
SAS session uses nonstandard line-drawing characters, then the output might include
strange characters instead of lines in operating environments in which the SAS
Monospace font is not installed. To avoid this problem, specify the following OPTIONS
statement before executing PROC PLOT:

options formchar="|----|+|---+=|-/\<>*";

Missing Values
If values of either of the plotting variables are missing, then PROC PLOT does not

include the observation in the plot. However, in a plot of Y*X, values of X with
corresponding missing values of Y are included in scaling the X axis, unless the
NOMISS option is specified in the PROC PLOT statement.

Hidden Observations
By default, PROC PLOT uses different plotting symbols (A, B, C, and so on) to

represent observations whose values coincide on a plot. However, if you specify your
own plotting symbol or if you use the OVERLAY option, then you may not be able to
recognize coinciding values.

If you specify a plotting symbol, then PROC PLOT uses the same symbol regardless
of the number of observations whose values coincide. If you use the OVERLAY option
and overprinting is not in effect, then PROC PLOT uses the symbol from the first plot
request. In both cases, the output includes a message telling you how many
observations are hidden.

The PLOT Procedure � Program 631

Examples: PLOT Procedure

Example 1: Specifying a Plotting Symbol

Procedure features:
PLOT statement

plotting symbol in plot request

This example expands on Output 32.1 by specifying a different plotting symbol.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. NUMBER enables printing of the page number. PAGENO= specifies the starting
page number. LINESIZE= specifies the output line length, and PAGESIZE= specifies the
number of lines on an output page.

options nodate number pageno=1 linesize=80 pagesize=35;

Create the DJIA data set. DJIA contains the high and low closing marks for the Dow Jones
Industrial Average from 1954 to 1994. A DATA step on page 1383 creates this data set.

data djia;
input Year @7 HighDate date7. High @24 LowDate date7. Low;
format highdate lowdate date7.;
datalines;

1954 31DEC54 404.39 11JAN54 279.87
1955 30DEC55 488.40 17JAN55 388.20
...more data lines...
1993 29DEC93 3794.33 20JAN93 3241.95
1994 31JAN94 3978.36 04APR94 3593.35
;

Create the plot. The plot request plots the values of High on the vertical axis and the values of
Year on the horizontal axis. It also specifies an asterisk as the plotting symbol.

proc plot data=djia;
plot high*year=’*’;

632 Output � Chapter 32

Specify the titles.

title ’High Values of the Dow Jones Industrial Average’;
title2 ’from 1954 to 1994’;

run;

Output

PROC PLOT determines the tick marks and the scale of both axes.

High Values of the Dow Jones Industrial Average 1
from 1954 to 1994

Plot of High*Year. Symbol used is ’*’.

High |
|

4000 + *
| *
|
| *
| *

3000 + *
| * *
|
|
| *

2000 + *
|
| *
|
| **

1000 + ***** *** *** ***
| **** * ** *
| *****
| **
|

0 +
|
---+---------+---------+---------+---------+---------+--

1950 1960 1970 1980 1990 2000

Year

Example 2: Controlling the Horizontal Axis and Adding a Reference Line

Procedure features:
PLOT statement options:

HAXIS=
VREF=

Data set: DJIA on page 631

The PLOT Procedure � Program 633

This example specifies values for the horizontal axis and draws a reference line from
the vertical axis.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=35;

Create the plot. The plot request plots the values of High on the vertical axis and the values of
Year on the horizontal axis. It also specifies an asterisk as the plotting symbol.

proc plot data=djia;
plot high*year=’*’

Customize the horizontal axis and draw a reference line. HAXIS= specifies that the
horizontal axis will show the values 1950 to 1995 in five-year increments. VREF= draws a
reference line that extends from the value 3000 on the vertical axis.

/ haxis=1950 to 1995 by 5 vref=3000;

Specify the titles.

title ’High Values of Dow Jones Industrial Average’;
title2 ’from 1954 to 1994’;

run;

634 Output � Chapter 32

Output

High Values of Dow Jones Industrial Average 1
from 1954 to 1994

Plot of High*Year. Symbol used is ’*’.

High |
|

4000 + *
| *
|
| *
| *

3000 +--*---------
| * *
|
|
| *

2000 + *
|
| *
|
| **

1000 + * ** ** ** * ** * * **
| ** ** * * * *
| ** ** *
| * *
|

0 +
|
-+-------+-------+-------+-------+-------+-------+-------+-------+-------+-

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995

Year

Example 3: Overlaying Two Plots
Procedure features:

PLOT statement options
BOX
OVERLAY

Data set: DJIA on page 631

This example overlays two plots and puts a box around the plot.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=64 pagesize=30;

The PLOT Procedure � Output 635

Create the plot.The first plot request plots High on the vertical axis, plots Year on the
horizontal axis, and specifies an asterisk as a plotting symbol. The second plot request plots
Low on the vertical axis, plots Year on the horizontal axis, and specifies an ’o ’ as a plotting
symbol. OVERLAY superimposes the second plot onto the first. BOX draws a box around the
plot. OVERLAY and BOX apply to both plot requests.

proc plot data=djia;
plot high*year=’*’

low*year=’o’ / overlay box;

Specify the titles.

title ’Plot of Highs and Lows’;
title2 ’for the Dow Jones Industrial Average’;

run;

Output

Plot of Highs and Lows 1
for the Dow Jones Industrial Average

Plot of High*Year. Symbol used is ’*’.
Plot of Low*Year. Symbol used is ’o’.

---+---------+---------+---------+---------+---------+---
4000 + * +

| * |
| * o |
| *oo |

High | * |
| * * |
| o |
| *oo |

2000 + * o +
| o |
| *o |
| **o |
| ****** ************oo |
| *****oooooo*o o oooooooo |
| *****oooo o |
| o |

0 + +
---+---------+---------+---------+---------+---------+---

1950 1960 1970 1980 1990 2000

Year

NOTE: 7 obs hidden.

636 Example 4: Producing Multiple Plots per Page � Chapter 32

Example 4: Producing Multiple Plots per Page

Procedure features:
PROC PLOT statement options

HPERCENT=
VPERCENT=

Data set: DJIA on page 631

This example puts three plots on one page of output.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=120 pagesize=60;

Specify the plot sizes. VPERCENT= specifies that 50% of the vertical space on the page of
output is used for each plot. HPERCENT= specifies that 50% of the horizontal space is used for
each plot.

proc plot data=djia vpercent=50 hpercent=50;

Create the first plot. This plot request plots the values of High on the vertical axis and the
values of Year on the horizontal axis. It also specifies an asterisk as the plotting symbol.

plot high*year=’*’;

Create the second plot.This plot request plots the values of Low on the vertical axis and the
values of Year on the horizontal axis. It also specifies an asterisk as the plotting symbol.

plot low*year=’o’;

The PLOT Procedure � Program 637

Create the third plot. The first plot request plots High on the vertical axis, plots Year on the
horizontal axis, and specifies an asterisk as a plotting symbol. The second plot request plots
Low on the vertical axis, plots Year on the horizontal axis, and specifies an ’o ’ as a plotting
symbol. OVERLAY superimposes the second plot onto the first. BOX draws a box around the
plot. OVERLAY and BOX apply to both plot requests.

plot high*year=’*’ low*year=’o’ / overlay box;

Specify the titles.

title ’Plots of the Dow Jones Industrial Average’;
title2 ’from 1954 to 1994’;

run;

638 Output � Chapter 32

Output

Plots of the Dow Jones Industrial Average 1

from 1954 to 1994

Plot of High*Year. Symbol used is ’*’. Plot of Low*Year. Symbol used is ’o’.

4000 + * 4000 +

| * |

| | o

| * | o

High | * Low | o

| ** |

| * |

| | oo

| * | o

2000 + * 2000 +

| | oo

| * | o

| ** |

| ** * *** | ooo

| ******** ** *** | o oo ooo oo o o

| ****** | ooo oo o oo oo o o o

| **** | oooo o

| | o

0 + 0 +

-+---------+---------+---------+---------+---------+- -+---------+---------+---------+---------+---------+-

1950 1960 1970 1980 1990 2000 1950 1960 1970 1980 1990 2000

Year Year

Plot of High*Year. Symbol used is ’*’.

Plot of Low*Year. Symbol used is ’o’.

-+---------+---------+---------+---------+---------+-

4000 + * +

| * |

| * o |

| *oo |

High | * |

| * * |

| o |

| *oo |

2000 + * o +

| o |

| *o |

| **o |

| ****** ************oo |

| *****oooooo*o o oooooooo |

| *****oooo o |

| o |

0 + +

-+---------+---------+---------+---------+---------+-

1950 1960 1970 1980 1990 2000

Year

NOTE: 7 obs hidden.

The PLOT Procedure � Program 639

Example 5: Plotting Data on a Logarithmic Scale

Procedure features:
PLOT statement option

HAXIS=

This example uses a DATA step to generate data. The PROC PLOT step shows two
plots of the same data: one plot without a horizontal axis specification and one plot
with a logarithmic scale specified for the horizontal axis.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Create the EQUA data set. EQUA contains values of X and Y. Each value of X is calculated as
10

Y
.

data equa;
do Y=1 to 3 by .1;

X=10**y;
output;

end;
run;

Specify the plot sizes. HPERCENT= makes room for two plots side-by-side by specifying that
50% of the horizontal space is used for each plot.

proc plot data=equa hpercent=50;

Create the plots. The plot requests plot Y on the vertical axis and X on the horizontal axis.
HAXIS= specifies a logarithmic scale for the horizontal axis for the second plot.

plot y*x;
plot y*x / haxis=10 100 1000;

Specify the titles.

title ’Two Plots with Different’;
title2 ’Horizontal Axis Specifications’;

run;

640 Output � Chapter 32

Output

Two Plots with Different 1
Horizontal Axis Specifications

Plot of Y*X. A=1, B=2, etc. Plot of Y*X. A=1, B=2, etc.

Y | Y |
| |

3.0 + A 3.0 + A
2.9 + A 2.9 + A
2.8 + A 2.8 + A
2.7 + A 2.7 + A
2.6 + A 2.6 + A
2.5 + A 2.5 + A
2.4 + A 2.4 + A
2.3 + A 2.3 + A
2.2 + A 2.2 + A
2.1 + A 2.1 + A
2.0 + A 2.0 + A
1.9 + A 1.9 + A
1.8 + A 1.8 + A
1.7 + A 1.7 + A
1.6 + A 1.6 + A
1.5 + A 1.5 + A
1.4 + A 1.4 + A
1.3 + A 1.3 + A
1.2 + A 1.2 + A
1.1 +A 1.1 + A
1.0 +A 1.0 +A

| |
-+---------------+---------------+ -+---------------+---------------+

0 500 1000 10 100 1000

X X

Example 6: Plotting Date Values on an Axis

Procedure features:
PLOT statement option

HAXIS=

This example shows how you can specify date values on an axis.

The PLOT Procedure � Program 641

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=120 pagesize=40;

Create the EMERGENCY_CALLS data set. EMERGENCY_CALLS contains the number of
telephone calls to an emergency help line for each date.

data emergency_calls;
input Date : date7. Calls @@;
label calls=’Number of Calls’;
datalines;

1APR94 134 11APR94 384 13FEB94 488
2MAR94 289 21MAR94 201 14MAR94 460
3JUN94 184 13JUN94 152 30APR94 356
4JAN94 179 14JAN94 128 16JUN94 480
5APR94 360 15APR94 350 24JUL94 388
6MAY94 245 15DEC94 150 17NOV94 328
7JUL94 280 16MAY94 240 25AUG94 280
8AUG94 494 17JUL94 499 26SEP94 394
9SEP94 309 18AUG94 248 23NOV94 590
19SEP94 356 24FEB94 201 29JUL94 330
10OCT94 222 25MAR94 183 30AUG94 321
11NOV94 294 26APR94 412 2DEC94 511
27MAY94 294 22DEC94 413 28JUN94 309
;

Create the plot. The plot request plots Calls on the vertical axis and Date on the horizontal
axis. HAXIS= uses a monthly time for the horizontal axis. The notation ’1JAN94’d is a date
constant. The value ’1JAN95’d ensures that the axis will have enough room for observations
from December.

proc plot data=emergency_calls;
plot calls*date / haxis=’1JAN94’d to ’1JAN95’d by month;

Format the DATE values. The FORMAT statement assigns the DATE7. format to Date.

format date date7.;

Specify the titles.

title ’Calls to City Emergency Services Number’;
title2 ’Sample of Days for 1994’;

run;

642 Output � Chapter 32

Output

PROC PLOT uses the variables’ labels on the axes.

Calls to City Emergency Services Number 1

Sample of Days for 1994

Plot of Calls*Date. Legend: A = 1 obs, B = 2 obs, etc.

|

|

600 + A

|

|

|

| A

N 500 + A A

u | A A

m | A

b |

e | A A

r 400 + A

| A A

o | A A A A

f | A

| A A

C 300 + A A A A

a | A A A

l |

l | A A A

s | A

200 + A A

| A A A

| A A

| A

| A

100 +

|

---+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--

01JAN94 01FEB94 01MAR94 01APR94 01MAY94 01JUN94 01JUL94 01AUG94 01SEP94 01OCT94 01NOV94 01DEC94 01JAN95

Date

Example 7: Producing a Contour Plot

Procedure features:
PLOT statement option

CONTOUR=

The PLOT Procedure � Program 643

This example shows how to represent the values of three variables with a
two-dimensional plot by setting one of the variables as the CONTOUR variable. The
variables X and Y appear on the axes, and Z is the contour variable. Program
statements are used to generate the observations for the plot, and the following
equation describes the contour surface:

� � ���� � ����� ������
�
� ��� � ������

�
� �������

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=64 pagesize=25;

Create the CONTOURS data set.

data contours;
format Z 5.1;
do X=0 to 400 by 5;

do Y=0 to 350 by 10;
z=46.2+.09*x-.0005*x**2+.1*y-.0005*y**2+.0004*x*y;
output;

end;
end;

run;

Print the CONTOURS data set. The OBS= data set option limits the printing to only the first
5 observations. NOOBS suppresses printing of the observation numbers.

proc print data=contours(obs=5) noobs;
title ’CONTOURS Data Set’;
title2 ’First 5 Observations Only’;

run;

644 Program � Chapter 32

CONTOURS contains observations with values of X that range from 0
to 400 by 5 and with values of Y that range from 0 to 350 by 10.

CONTOURS Data Set 1
First 5 Observations Only

Z X Y

46.2 0 0
47.2 0 10
48.0 0 20
48.8 0 30
49.4 0 40

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. NOOVP ensures
that overprinting is not used in the plot.

options nodate pageno=1 linesize=120 pagesize=60 noovp;

Create the plot. The plot request plots Y on the vertical axis, plots X on the horizontal axis,
and specifies Z as the contour variable. CONTOUR=10 specifies that the plot will divide the
values of Z into ten increments, and each increment will have a different plotting symbol.

proc plot data=contours;
plot y*x=z / contour=10;

Specify the title.

title ’A Contour Plot’;
run;

The PLOT Procedure � Output 645

Output

The shadings associated with the values of Z appear at the bottom of the plot. The plotting symbol # shows
where high values of Z occur.

A Contour Plot 1

Contour plot of Y*X.

Y |

|

350 + ======++++++OOOOOOOOXXXXXXXXXXXWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWXXXXXXXXXXXOOOOOOOO

340 + ====++++++OOOOOOOXXXXXXXXXXWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWXXXXXXXXXXOOOOOOO

330 + =++++++OOOOOOOXXXXXXXXXWWXXXXXXXXXOOOOO

320 + +++++OOOOOOOXXXXXXXXWWWWWWWWWWWWWW********************WWWWWWWWWWWWWWXXXXXXXXXOOOO

310 + +++OOOOOOXXXXXXXXWWWWWWWWWWWW*****************************WWWWWWWWWWWXXXXXXXXOOOO

300 + +OOOOOOXXXXXXXXWWWWWWWWWW***********************************WWWWWWWWWWXXXXXXXXOOO

290 + OOOOOXXXXXXXWWWWWWWWWW**WWWWWWWWWXXXXXXXOOO

280 + OOOXXXXXXXWWWWWWWWW********************####********************WWWWWWWWWXXXXXXXOO

270 + OXXXXXXXWWWWWWWWW**************##################***************WWWWWWWWXXXXXXXOO

260 + XXXXXXWWWWWWWW*************#########################************WWWWWWWWXXXXXXXOO

250 + XXXXWWWWWWWW************#############################************WWWWWWWWXXXXXXOO

240 + XXXWWWWWWW***********#################################***********WWWWWWWWXXXXXXOO

230 + XWWWWWWWW**********####################################**********WWWWWWWXXXXXXXOO

220 + WWWWWWW**********######################################**********WWWWWWWXXXXXXOOO

210 + WWWWWW*********##**********WWWWWWWXXXXXXOOO

200 + WWWWW*********###*********WWWWWWWXXXXXXOOOO

190 + WWW**********##*********WWWWWWWXXXXXXOOOO

180 + WW*********###*********WWWWWWWXXXXXXOOOOO

170 + W*********##*********WWWWWWWXXXXXXOOOOO

160 + W*********###*********WWWWWWWXXXXXXOOOOO+

150 + *********###*********WWWWWWWXXXXXXOOOOO++

140 + ********###*********WWWWWWWXXXXXXOOOOO+++

130 + ********##*********WWWWWWWXXXXXXOOOOO++++

120 + ********##**********WWWWWWWXXXXXXOOOOO+++++

110 + ********#######################################**********WWWWWWWXXXXXXOOOOO+++++=

100 + ********#####################################**********WWWWWWWXXXXXXOOOOOO+++++==

90 + ********###################################**********WWWWWWWWXXXXXXOOOOO+++++====

80 + *********################################***********WWWWWWWXXXXXXXOOOOO+++++====-

70 + **********############################************WWWWWWWWXXXXXXOOOOOO+++++====--

60 + ************######################**************WWWWWWWWXXXXXXXOOOOO+++++=====---

50 + ***************###############***************WWWWWWWWWXXXXXXXOOOOOO+++++====----’

40 + W**WWWWWWWWWXXXXXXXOOOOOO+++++=====----’’

30 + WW**************************************WWWWWWWWWWXXXXXXXOOOOOO+++++=====----’’’’

20 + WWWW********************************WWWWWWWWWWWXXXXXXXXOOOOOO++++++====-----’’’’.

10 + WWWWWW**************************WWWWWWWWWWWWWXXXXXXXXOOOOOO++++++=====----’’’’...

0 + WWWWWWWWWW*****************WWWWWWWWWWWWWWWXXXXXXXXOOOOOOO++++++=====----’’’’’....

|

---+---------+---------+---------+---------+---------+---------+---------+---------+--

0 50 100 150 200 250 300 350 400

X

Symbol z Symbol z Symbol z Symbol z Symbol z

..... 2.2 - 8.1 ----- 14.0 - 19.9 +++++ 25.8 - 31.7 XXXXX 37.6 - 43.5 ***** 49.4 - 55.4

’’’’’ 8.1 - 14.0 ===== 19.9 - 25.8 OOOOO 31.7 - 37.6 WWWWW 43.5 - 49.4 ##### 55.4 - 61.3

646 Example 8: Plotting BY Groups � Chapter 32

Example 8: Plotting BY Groups

Procedure features:
PLOT statement option

HREF=
Other features:

BY statement

This example shows BY group processing in PROC PLOT.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=35;

Create the EDUCATION data set. EDUCATION contains educational data* about some U.S.
states. DropoutRate is the percentage of high school dropouts. Expenditures is the dollar
amount the state spends on each pupil. MathScore is the score of eighth-grade students on a
standardized math test. Not all states participated in the math test. A DATA step on page 1384
creates this data set.

data education;
input State $14. +1 Code $ DropoutRate Expenditures MathScore

Region $;
label dropout=’Dropout Percentage - 1989’

expend=’Expenditure Per Pupil - 1989’
math=’8th Grade Math Exam - 1990’;

datalines;
Alabama AL 22.3 3197 252 SE
Alaska AK 35.8 7716 . W
...more data lines...
New York NY 35.0 . 261 NE
North Carolina NC 31.2 3874 250 SE
North Dakota ND 12.1 3952 281 MW
Ohio OH 24.4 4649 264 MW
;

* Source: U.S. Department of Education.

The PLOT Procedure � Program 647

Sort the EDUCATION data set. PROC SORT sorts EDUCATION by Region so that Region
can be used as the BY variable in PROC PLOT.

proc sort data=education;
by region;

run;

Create a separate plot for each BY group. The BY statement creates a separate plot for
each value of Region.

proc plot data=education;
by region;

Create the plot with a reference line. The plot request plots Expenditures on the vertical
axis, plots DropoutRate on the horizontal axis, and specifies an asterisk as the plotting symbol.
HREF= draws a reference line that extende from 28.6 on the horizontal axis. The reference line
represents the national average.

plot expenditures*dropoutrate=’*’ / href=28.6;

Specify the title.

title ’Plot of Dropout Rate and Expenditure Per Pupil’;
run;

648 Output � Chapter 32

Output

PROC PLOT produces a plot for each BY group. Only the plots for Midwest and Northeast
are shown.

Plot of Dropout Rate and Expenditure Per Pupil 1

---------------------------------- Region=MW -----------------------------------

Plot of Expenditures*DropoutRate. Symbol used is ’*’.

Expenditures | |
5500 + |

| |
| |
| |
| | *

5000 + |
| * |
| * |
| |
| * |

4500 + |
| * * |
| ** * |
| |
| |

4000 + * |
| |
| |
| |
| |

3500 + |
| |
---+------------+------------+------------+------------+--

10 15 20 25 30

Dropout Percentage - 1989

The PLOT Procedure � Program 649

Plot of Dropout Rate and Expenditure Per Pupil 2

---------------------------------- Region=NE -----------------------------------

Plot of Expenditures*DropoutRate. Symbol used is ’*’.

Expenditures | |
8000 + |

| |
| * |
| |
| |

7000 + |
| * |
| |
| |
| |

6000 + *|
| * |
| |
| *
| |

5000 + |
| * * |
| |
| |
| |

4000 + |
| |
---+------------+------------+------------+------------+--

15 20 25 30 35

Dropout Percentage - 1989

NOTE: 1 obs had missing values.

Example 9: Adding Labels to a Plot

Procedure features:
PLOT statement

label variable in plot request
Data set: EDUCATION on page 646

This example shows how to modify the plot request to label points on the plot with
the values of variables. This example adds labels to the plot shown in Example 8 on
page 646.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=35;

650 Program � Chapter 32

Sort the EDUCATION data set. PROC SORT sorts EDUCATION by Region so that Region
can be used as the BY variable in PROC PLOT.

proc sort data=education;
by region;

run;

Create a separate plot for each BY group. The BY statement creates a separate plot for
each value of Region.

proc plot data=education;
by region;

Create the plot with a reference line and a label for each data point. The plot request
plots Expenditures on the vertical axis, plots DropoutRate on the horizontal axis, and specifies
an asterisk as the plotting symbol. The label variable specification ($ state) in the PLOT
statement labels each point on the plot with the name of the corresponding state. HREF= draws
a reference line that extends from 28.6 on the horizontal axis. The reference line represents the
national average.

plot expenditures*dropoutrate=’*’ $ state / href=28.6;

Specify the title.

title ’Plot of Dropout Rate and Expenditure Per Pupil’;
run;

The PLOT Procedure � Output 651

Output

PROC PLOT produces a plot for each BY group. Only the plots for Midwest and Northeast are
shown.

Plot of Dropout Rate and Expenditure Per Pupil 1

---------------------------------- Region=MW -----------------------------------

Plot of Expenditures*DropoutRate$State. Symbol used is ’*’.

Expenditures | |
5500 + |

| |
| |
| |
| Michigan *

5000 + |
| * Illinois |
| * Minnesota |
| |
| * Ohio |

4500 + |
| * Nebraska * Kansas |
| Iowa ** Indiana * Missouri
| |
| |

4000 + * North Dakota |
| |
| |
| |
| |

3500 + |
| |
---+------------+------------+------------+------------+--

10 15 20 25 30

Dropout Percentage - 1989

652 Example 10: Excluding Observations That Have Missing Values � Chapter 32

Plot of Dropout Rate and Expenditure Per Pupil 2

---------------------------------- Region=NE -----------------------------------

Plot of Expenditures*DropoutRate$State. Symbol used is ’*’.

Expenditures | |
8000 + |

| |
| * New Jersey |
| |
| |

7000 + |
| * Connecticut |
| |
| |
| |

6000 + *|Massachusetts
| * Maryland
| |
| * Delaware
| |

5000 + |
| * Maine * New Hampshire
| |
| |
| |

4000 + |
| |
---+------------+------------+------------+------------+--

15 20 25 30 35

Dropout Percentage - 1989

NOTE: 1 obs had missing values.

Example 10: Excluding Observations That Have Missing Values

Procedure features:
PROC PLOT statement option

NOMISS

Data set: EDUCATION on page 646

This example shows how missing values affect the calculation of the axes.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=35;

The PLOT Procedure � Program 653

Sort the EDUCATION data set. PROC SORT sorts EDUCATION by Region so that Region
can be used as the BY variable in PROC PLOT.

proc sort data=education;
by region;

run;

Exclude data points with missing values. NOMISS excludes observations that have a
missing value for either of the axis variables.

proc plot data=education nomiss;

Create a separate plot for each BY group. The BY statement creates a separate plot for
each value of Region.

by region;

Create the plot with a reference line and a label for each data point. The plot request
plots Expenditures on the vertical axis, plots DropoutRate on the horizontal axis, and specifies
an asterisk as the plotting symbol. The label variable specification ($ state) in the PLOT
statement labels each point on the plot with the name of the corresponding state. HREF= draws
a reference line extending from 28.6 on the horizontal axis. The reference line represents the
national average.

plot expenditures*dropoutrate=’*’ $ state / href=28.6;

Specify the title.

title ’Plot of Dropout Rate and Expenditure Per Pupil’;
run;

654 Output � Chapter 32

Output

PROC PLOT produces a plot for each BY group. Only the plot for the Northeast is shown.
Because New York has a missing value for Expenditures, the observation is excluded and
PROC PLOT does not use the value 35 for DropoutRate to calculate the horizontal axis.
Compare the horizontal axis in this output with the horizontal axis in the plot for Northeast in
Example 9 on page 649.

Plot of Dropout Rate and Expenditure Per Pupil 1

---------------------------------- Region=NE -----------------------------------

Plot of Expenditures*DropoutRate$State. Symbol used is ’*’.

Expenditures | |
8000 + |

| |
| * New Jersey |
| |
| |

7000 + |
| * Connecticut |
| |
| |
| |

6000 + Massachusetts * |
| * Maryland |
| |
| Delaware *|
| |

5000 + |
| * Maine * New Hampshire
| |
| |
| |

4000 + |
| |
--+--------+--------+--------+--------+--------+--------+--------+-

16 18 20 22 24 26 28 30

Dropout Percentage - 1989

NOTE: 1 obs had missing values.

Example 11: Adjusting Labels on a Plot with the PLACEMENT= Option

Procedure features:
PLOT statement options

label variable in plot request
LIST=
PLACEMENT=

Other features:
RUN group processing

The PLOT Procedure � Program 655

This example illustrates the default placement of labels and how to adjust the
placement of labels on a crowded plot. The labels are values of variable in the data set.*

This example also shows RUN group processing in PROC PLOT.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=120 pagesize=37;

Create the CENSUS data set. CENSUS contains the variables CrimeRate and Density for
selected states. CrimeRate is the number of crimes per 100,000 people. Density is the population
density per square mile in the 1980 census. A DATA step on page 1377 creates this data set.

data census;
input Density CrimeRate State $ 14-27 PostalCode $ 29-30;
datalines;

263.3 4575.3 Ohio OH
62.1 7017.1 Washington WA

...more data lines...

111.6 4665.6 Tennessee TN
120.4 4649.9 North Carolina NC
;

Create the plot with a label for each data point. The plot request plots Density on the
vertical axis, CrimeRate on the horizontal axis, and uses the first letter of the value of State as
the plotting symbol. This makes it easier to match the symbol with its label. The label variable
specification ($ state) in the PLOT statement labels each point with the corresponding state
name.

proc plot data=census;
plot density*crimerate=state $ state /

Specify plot options. BOX draws a box around the plot. LIST= lists the labels that have
penalties greater than or equal to 1. HAXIS= and VAXIS= specify increments only. PROC PLOT
uses the data to determine the range for the axes.

box
list=1
haxis=by 1000
vaxis=by 250;

* Source: U.S. Bureau of the Census and the 1987 Uniform Crime Reports, FBI.

656 Program � Chapter 32

Specify the title.

title ’A Plot of Population Density and Crime Rates’;
run;

The labels Tennessee, South Carolina, Arkansas, Minnesota, and South Dakota have penalties. The
default placement states do not provide enough possibilities for PROC PLOT to avoid penalties given the
proximity of the points. Seven label characters are hidden.

A Plot of Population Density and Crime Rates 1

Plot of Density*CrimeRate$State. Symbol is value of State.

---+------------+------------+------------+------------+------------+------------+------------+---

Density | |

500 + +

| |

| |

| M Maryland |

| |

| |

| |

| |

| |

| D Delaware |

| |

| P Pennsylvania O Ohio |

250 + +

| |

| I Illinois |

| F Florida|

| |

| North Carolina C California |

| TennNssee Georgia |

| N New Hampshire T S South Garolina |

| W West Virginia A Alabama |

| Mississippi M Vermont V M Missouri Washington W T Texas |

| MinneAoArkMnsas O Oklahoma |

| North Dakota I Idaho O Oregon |

0 + S Nouth Dakota N Nevada +

---+------------+------------+------------+------------+------------+------------+------------+---

2000 3000 4000 5000 6000 7000 8000 9000

CrimeRate

NOTE: 7 label characters hidden.

A Plot of Population Density and Crime Rates 2

List of Point Locations, Penalties, and Placement States

Vertical Horizontal Starting Vertical Horizontal

Label Axis Axis Penalty Position Lines Shift Shift

Tennessee 111.60 4665.6 2 Center 1 1 -1

South Carolina 103.40 5161.9 2 Right 1 0 2

Arkansas 43.90 4245.2 6 Right 1 0 2

Minnesota 51.20 4615.8 7 Left 1 0 -2

South Dakota 9.10 2678.0 11 Right 1 0 2

The PLOT Procedure � Program 657

Request a second plot. Because PROC PLOT is interactive, the procedure is still running at
this point in the program. It is not necessary to restart the procedure to submit another plot
request. LIST=1 produces no output because there are no penalties of 1 or greater.

plot density*crimerate=state $ state /
box
list=1
haxis=by 1000
vaxis=by 250

Specify placement options. PLACEMENT= gives PROC PLOT more placement states to use
to place the labels. PLACEMENT= contains three expressions. The first expression specifies the
preferred positions for the label. The first expression resolves to placement states centered
above the plotting symbol, with the label on one or two lines. The second and third expressions
resolve to placement states that enable PROC PLOT to place the label in multiple positions
around the plotting symbol.

placement=((v=2 1 : l=2 1)
((l=2 2 1 : v=0 1 0) * (s=right left : h=2 -2))
(s=center right left * l=2 1 * v=0 1 -1 2 *

h=0 1 to 5 by alt));

Specify the title.

title ’A Plot of Population Density and Crime Rates’;
run;

658 Output � Chapter 32

Output

No collisions occur in the plot.

A Plot of Population Density and Crime Rates 3

Plot of Density*CrimeRate$State. Symbol is value of State.

---+------------+------------+------------+------------+------------+------------+------------+---

Density | |

500 + +

| |

| Maryland |

| M |

| |

| |

| |

| |

| Delaware |

| D |

| Pennsylvania Ohio |

| P O |

250 + +

| Illinois |

| I Florida |

| F |

| North Carolina California |

| New South C |

| West Hampshire Alabama N Carolina |

| Virginia N T S G Georgia |

| W Mississippi A Tennessee Washington Texas |

| M Vermont V M Missouri Oklahoma W T |

| South Arkansas A M Minnesota O Oregon |

| Dakota I Idaho Nevada O |

0 + S N North Dakota N +

---+------------+------------+------------+------------+------------+------------+------------+---

2000 3000 4000 5000 6000 7000 8000 9000

CrimeRate

Example 12: Adjusting Labeling on a Plot with a Macro

Procedure features:
PLOT statement options

label variable in plot request
PLACEMENT=

Data set: CENSUS on page 655

This example illustrates the default placement of labels and uses a macro to adjust
the placement of labels. The labels are values of a variable in the data set.

The PLOT Procedure � Program 659

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=120 pagesize=37;

Use conditional logic to determine placement. The %PLACE macro provides an alternative
to using the PLACEMENT= option. The higher the value of n, the more freedom PROC PLOT
has to place labels.

%macro place(n);
%if &n > 13 %then %let n = 13;

placement=(
%if &n <= 0 %then (s=center); %else (h=2 -2 : s=right left);
%if &n = 1 %then (v=1 * h=0 -1 to -2 by alt);
%else %if &n = 2 %then (v=1 -1 * h=0 -1 to -5 by alt);
%else %if &n > 2 %then (v=1 to 2 by alt * h=0 -1 to -10 by alt);
%if &n > 3 %then

(s=center right left * v=0 1 to %eval(&n - 2) by alt *
h=0 -1 to %eval(-3 * (&n - 2)) by alt *
l=1 to %eval(2 + (10 * &n - 35) / 30));)

%if &n > 4 %then penalty(7)=%eval((3 * &n) / 2);
%mend;

Create the plot. The plot request plots Density on the vertical axis, CrimeRate on the
horizontal axis, and uses the first letter of the value of State as the plotting symbol. The label
variable specification ($ state) in the PLOT statement t labels each point with the
corresponding state name.

proc plot data=census;
plot density*crimerate=state $ state /

Specify plot options. BOX draws a box around the plot. LIST= lists the labels that have
penalties greater than or equal to 1. HAXIS= and VAXIS= specify increments only. PROC PLOT
uses the data to determine the range for the axes. The PLACE macro determines the placement
of the labels.

box
list=1
haxis=by 1000
vaxis=by 250
%place(4);

660 Output � Chapter 32

Specify the title.

title ’A Plot of Population Density and Crime Rates’;
run;

Output

No collisions occur in the plot.

A Plot of Population Density and Crime Rates 1

Plot of Density*CrimeRate$State. Symbol is value of State.

---+------------+------------+------------+------------+------------+------------+------------+---

Density | |

500 + +

| |

| |

| M Maryland |

| |

| |

| |

| |

| |

| D Delaware |

| |

| P Pennsylvania O Ohio |

250 + +

| |

| I Illinois |

| F Florida|

| |

| North Carolina C California |

| N Tennessee |

| N New Hampshire T S G Georgia |

| W West Virginia Alabama A South Carolina |

| Mississippi M Vermont V M Missouri Washington W T Texas |

| Arkansas A M Minnesota O Oklahoma |

| South Dakota I Idaho O Oregon |

0 + S N North Dakota N Nevada +

---+------------+------------+------------+------------+------------+------------+------------+---

2000 3000 4000 5000 6000 7000 8000 9000

CrimeRate

The PLOT Procedure � Program 661

Example 13: Changing a Default Penalty

Procedure features:
PLOT statement option

PENALTIES=
Data set: CENSUS on page 655

This example demonstrates how changing a default penalty affects the placement of
labels. The goal is to produce a plot that has labels that do not detract from how the
points are scattered.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=120 pagesize=37;

Create the plot. The plot request plots Density on the vertical axis, CrimeRate on the
horizontal axis, and uses the first letter of the value of State as the plotting symbol. The label
variable specification ($ state) in the PLOT statement labels each point with the
corresponding state name.

proc plot data=census;
plot density*crimerate=state $ state /

662 Program � Chapter 32

Specify the placement. PLACEMENT= specifies that the preferred placement states are 100
columns to the left and the right of the point, on the same line with the point.

placement=(h=100 to 10 by alt * s=left right)

Change the default penalty. PENALTIES(4)= changes the default penalty for a free
horizontal shift to 500, which removes all penalties for a horizontal shift. LIST= shows how far
PROC PLOT shifted the labels away from their respective points.

penalties(4)=500 list=0

Customize the axes. HAXIS= creates a horizontal axis long enough to leave space for the
labels on the sides of the plot. VAXIS= specifies that the values on the vertical axis be in
increments of 100.

haxis=0 to 13000 by 1000
vaxis=by 100;

Specify the title.

title ’A Plot of Population Density and Crime Rates’;
run;

The PLOT Procedure � Output 663

Output

A Plot of Population Density and Crime Rates 1

Plot of Density*CrimeRate$State. Symbol is value of State.

Density |

500 +

|

|

|

| M Maryland

400 +

|

|

|

|

300 + D Delaware

|

| P O Pennsylvania Ohio

|

|

200 + I Illinois

|Florida F

| C California

|

| T North Carolina Tennessee

100 +Georgia N S G New Hampshire South Carolina

| W A M Alabama Missouri West Virginia

|Washington Texas M V M W T Vermont Minnesota Mississippi

|Oklahoma A O Arkansas

|Oregon I O Idaho

0 + S N N North Dakota South Dakota Nevada

---+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+--

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000

CrimeRate

NOTE: 1 obs hidden.

664 Output � Chapter 32

A Plot of Population Density and Crime Rates 2

List of Point Locations, Penalties, and Placement States

Vertical Horizontal Starting Vertical Horizontal

Label Axis Axis Penalty Position Lines Shift Shift

Maryland 428.70 5477.6 0 Right 1 0 55

Delaware 307.60 4938.8 0 Right 1 0 59

Pennsylvania 264.30 3163.2 0 Right 1 0 65

Ohio 263.30 4575.3 0 Right 1 0 66

Illinois 205.30 5416.5 0 Right 1 0 56

Florida 180.00 8503.2 0 Left 1 0 -64

California 151.40 6506.4 0 Right 1 0 45

Tennessee 111.60 4665.6 0 Right 1 0 61

North Carolina 120.40 4649.9 0 Right 1 0 46

New Hampshire 102.40 3371.7 0 Right 1 0 52

South Carolina 103.40 5161.9 0 Right 1 0 52

Georgia 94.10 5792.0 0 Left 1 0 -42

West Virginia 80.80 2190.7 0 Right 1 0 76

Alabama 76.60 4451.4 0 Right 1 0 41

Missouri 71.20 4707.5 0 Right 1 0 47

Mississippi 53.40 3438.6 0 Right 1 0 68

Vermont 55.20 4271.2 0 Right 1 0 44

Minnesota 51.20 4615.8 0 Right 1 0 49

Washington 62.10 7017.1 0 Left 1 0 -49

Texas 54.30 7722.4 0 Left 1 0 -49

Arkansas 43.90 4245.2 0 Right 1 0 65

Oklahoma 44.10 6025.6 0 Left 1 0 -43

Idaho 11.50 4156.3 0 Right 1 0 69

Oregon 27.40 6969.9 0 Left 1 0 -53

South Dakota 9.10 2678.0 0 Right 1 0 67

North Dakota 9.40 2833.0 0 Right 1 0 52

Nevada 7.30 6371.4 0 Right 1 0 50

665

C H A P T E R

33
The PMENU Procedure

Overview: PMENU Procedure 665
Syntax: PMENU Procedure 666

PROC PMENU Statement 667

CHECKBOX Statement 668

DIALOG Statement 668

ITEM Statement 670
MENU Statement 673

RADIOBOX Statement 675

RBUTTON Statement 675

SELECTION Statement 676

SEPARATOR Statement 677

SUBMENU Statement 677
TEXT Statement 678

Concepts: PMENU Procedure 679

Procedure Execution 679

Initiating the Procedure 679

Ending the Procedure 680
Steps for Building and Using PMENU Catalog Entries 680

Templates for Coding PROC PMENU Steps 681

Examples: PMENU Procedure 682

Example 1: Building a Menu Bar for an FSEDIT Application 682

Example 2: Collecting User Input in a Dialog Box 685
Example 3: Creating a Dialog Box to Search Multiple Variables 688

Example 4: Creating Menus for a DATA Step Window Application 694

Example 5: Associating Menus with a FRAME Application 700

Overview: PMENU Procedure
The PMENU procedure defines menus that can be used in DATA step windows,

macro windows, both SAS/AF and SAS/FSP windows, or in any SAS application that
enables you to specify customized menus.

Menus can replace the command line as a way to execute commands. To activate
menus, issue the PMENU command from any command line. Menus must be activated
in order for them to appear.

When menus are activated, each active window has a menu bar, which lists items
that you can select. Depending upon which item you select, SAS either processes a
command, displays a menu or a submenu, or requests that you complete information in
a dialog box. The dialog box is simply a box of questions or choices that require answers
before an action can be performed. The following figure illustrates features that you can
create with PROC PMENU.

666 Syntax: PMENU Procedure � Chapter 33

Figure 33.1 Menu Bar, Pull-Down Menu, and Dialog Box

Select a commodity:

File Edit Reports Help

Select a market:

Wheat

Corn

Oats

Farmville

Monticello

Plainview

Enter a year from 1950 to 1996:

Check here for double spacing:

OK Cancel

Menu bar
Dialog box

pull-down
menu

Reports

Farm

Industrial...

Manufacturing...

Note: A menu bar in some operating environments may appear as a popup menu or
may appear at the bottom of the window. �

The PMENU procedure produces no immediately visible output. It simply builds a
catalog entry of type PMENU that can be used later in an application.

Syntax: PMENU Procedure
Restriction: You must use at least one MENU statement followed by at least one ITEM
statement.
Tip: Supports RUN group processing
Reminder: You can also use appropriate global statements with this procedure. See
Chapter 2, “Fundamental Concepts for Using Base SAS Procedures,” on page 15 for a
list.
See: PMENU Procedure in the documentation for your operating environment.

PROC PMENU <CATALOG=< libref.>catalog>
<DESC ’entry-description’>;

MENU menu-bar;
ITEM command <option(s)>;
ITEM ’menu-item’ <option(s)>;

DIALOG dialog-box ’command-string
field-number-specification’;

CHECKBOX <ON> #line @column
’text-for-selection’
<COLOR=color> <SUBSTITUTE=’text-for-substitution’>;

RADIOBOX DEFAULT=button-number;
RBUTTON <NONE> #line @column

’text-for-selection’ <COLOR=color>
<SUBSTITUTE=’text-for-substitution’>;

TEXT #line @column field-description
<ATTR=attribute> <COLOR=color>;

The PMENU Procedure � PROC PMENU Statement 667

MENU pull-down-menu;
SELECTION selection ’command-string’;
SEPARATOR;
SUBMENU submenu-name SAS-file;

To do this Use this statement

Define choices a user can make in a dialog box CHECKBOX

Describe a dialog box that is associated with an item
in a pull-down menu

DIALOG

Identify an item to be listed in a menu bar or in a
pull-down menu

ITEM

Name the catalog entry or define a pull-down menu MENU

List and define mutually exclusive choices within a
dialog box

RADIOBOX and RBUTTON

Define a command that is submitted when an item is
selected

SELECTION

Draw a line between items in a pull-down menu SEPARATOR

Define a common submenu associated with an item SUBMENU

Specify text and the input fields for a dialog box TEXT

PROC PMENU Statement
Invokes the PMENU procedure and specifies where to store all PMENU catalog entries that are
created in the PROC PMENU step.

PROC PMENU <CATALOG=< libref.>catalog>
<DESC ’entry-description’>;

Options

CATALOG=<libref.>catalog
specifies the catalog in which you want to store PMENU entries.
Default: If you omit libref, then the PMENU entries are stored in a catalog in the

SASUSER data library. If you omit CATALOG=, then the entries are stored in the
SASUSER.PROFILE catalog.

Featured in: Example 1 on page 682

DESC ’entry-description’
provides a description for the PMENU catalog entries created in the step.
Default: Menu description

Note: These descriptions are displayed when you use the CATALOG window in
the windowing environment or the CONTENTS statement in the CATALOG
procedure. �

668 CHECKBOX Statement � Chapter 33

CHECKBOX Statement
Defines choices that a user can make within a dialog box.

Restriction: Must be used after a DIALOG statement.

CHECKBOX <ON> #line @column
’text-for-selection’
<COLOR=color> <SUBSTITUTE=’text-for-substitution’>;

Required Arguments

column
specifies the column in the dialog box where the check box and text are placed.

line
specifies the line in the dialog box where the check box and text are placed.

text-for-selection
defines the text that describes this check box. This text appears in the window and,
if the SUBSTITUTE= option is not used, is also inserted into the command in the
preceding DIALOG statement when the user selects the check box.

Options

COLOR=color
defines the color of the check box and the text that describes it.

ON
indicates that by default this check box is active. If you use this option, then you
must specify it immediately after the CHECKBOX keyword.

SUBSTITUTE=’text-for-substitution’
specifies the text that is to be inserted into the command in the DIALOG statement.

Check Boxes in a Dialog Box
Each CHECKBOX statement defines a single item that the user can select

independent of other selections. That is, if you define five choices with five CHECKBOX
statements, then the user can select any combination of these choices. When the user
selects choices, the text-for-selection values that are associated with the selections are
inserted into the command string of the previous DIALOG statement at field locations
prefixed by an ampersand (&).

DIALOG Statement
Describes a dialog box that is associated with an item on a pull-down menu.

Restriction: Must be followed by at least one TEXT statement.
Featured in: Example 2 on page 685, Example 3 on page 688, and Example 4 on page 694

The PMENU Procedure � DIALOG Statement 669

DIALOG dialog-box ’command-string
field-number-specification’;

Required Arguments

command-string
is the command or partial command that is executed when the item is selected. The
limit of the command-string that results after the substitutions are made is the
command-line limit for your operating environment. Typically, the command-line
limit is approximately 80 characters.

The limit for ’command-string field-number-specification’ is 200 characters.

Note: If you are using PROC PMENU to submit any command that is valid only
in the PROGRAM EDITOR window (such as the INCLUDE command), then you
must have the windowing environment running, and you must return control to the
PROGRAM EDITOR window. �

dialog-box
is the same name specified for the DIALOG= option in a previous ITEM statement.

field-number-specification
can be one or more of the following:

@1…@n

%1…%n

&1…&n
You can embed the field numbers, for example @1, %1, or &1, in the command

string and mix different types of field numbers within a command string. The
numeric portion of the field number corresponds to the relative position of TEXT,
RADIOBOX, and CHECKBOX statements, not to any actual number in these
statements.

@1…@n
are optional TEXT statement numbers that can add information to the command
before it is submitted. Numbers preceded by an at sign (@) correspond to TEXT
statements that use the LEN= option to define input fields.

%1…%n
are optional RADIOBOX statement numbers that can add information to the
command before it is submitted. Numbers preceded by a percent sign (%)
correspond to RADIOBOX statements following the DIALOG statement.

Note: Keep in mind that the numbers correspond to RADIOBOX statements,
not to RBUTTON statements. �

&1…&n
are optional CHECKBOX statement numbers that can add information to the
command before it is submitted. Numbers preceded by an ampersand (&)
correspond to CHECKBOX statements following the DIALOG statement.

Note: To specify a literal @ (at sign), % (percent sign), or & (ampersand) in the
command-string, use a double character: @@ (at signs), %% (percent signs), or &&
(ampersands). �

670 ITEM Statement � Chapter 33

Details

� You cannot control the placement of the dialog box. The dialog box is not
scrollable. The size and placement of the dialog box are determined by your
windowing environment.

� To use the DIALOG statement, specify an ITEM statement with the DIALOG=
option in the ITEM statement.

� The ITEM statement creates an entry in a menu bar or in a pull-down menu, and
the DIALOG= option specifies which DIALOG statement describes the dialog box.

� You can use CHECKBOX, RADIOBOX, and RBUTTON statements to define the
contents of the dialog box.

� Figure 33.2 on page 670 shows a typical dialog box. A dialog box can request
information in three ways:

� Fill in a field. Fields that accept text from a user are called text fields.
� Choose from a list of mutually exclusive choices. A group of selections of this

type is called a radio box, and each individual selection is called a radio
button.

� Indicate whether you want to select other independent choices. For example,
you could choose to use various options by selecting any or all of the listed
selections. A selection of this type is called a check box.

Figure 33.2 A Typical Dialog Box

Select a commodity: Select a market:

Wheat

Corn

Oats

Farmville

Monticello

Plainview

Enter a year from 1950 to 1996:

Check here for double spacing:

OK Cancel

Radio button

Text field

Check box

Push button

Radio box

Dialog boxes have two or more buttons, such as OK and Cancel, automatically
built into the box.* A button causes an action to occur.

ITEM Statement
Identifies an item to be listed in a menu bar or in a pull-down menu.

Featured in: Example 1 on page 682

* The actual names of the buttons vary in different windowing environments.

The PMENU Procedure � ITEM Statement 671

ITEM command <option(s)><action-options>;

ITEM ’menu-item’ <option(s)><action-options>;

To do this Use this option

Specify the action for the item

Associate the item with a dialog box DIALOG=

Associate the item with a pull-down menu MENU=

Associate the item with a command SELECTION=

Associate the item with a common submenu SUBMENU=

Specify help text for an item HELP=

Define a key that can be used instead of the
pull-down menu

ACCELERATE=

Indicate that the item is not an active choice in the
window

GRAY

Provide an ID number for an item ID=

Define a single character that can select the item MNEMONIC=

Place a check box or a radio button next to an item STATE=

Required Arguments

command
a single word that is a valid SAS command for the window in which the menu
appears. Commands that are more than one word, such as WHERE CLEAR, must be
enclosed in single quotation marks. The command appears in uppercase letters on
the menu bar.

If you want to control the case of a SAS command on the menu, then enclose the
command in single quotation marks. The case that you use then appears on the
menu.

menu-item
a word or text string, enclosed in quotation marks, that describes the action that
occurs when the user selects this item. A menu item should not begin with a percent
sign (%).

Options

ACCELERATE=name-of-key
defines a key sequence that can be used instead of selecting an item. When the user
presses the key sequence, it has the same effect as selecting the item from the menu
bar or pull-down menu.

Restriction: The functionality of this option is limited to only a few characters. For
details, see the SAS documentation for your operating environment.

672 ITEM Statement � Chapter 33

Restriction: This option is not available in all operating environments. If you
include this option and it is not available in your operating environment, then the
option is ignored.

action-option
is one of the following:

DIALOG=dialog-box
the name of an associated DIALOG statement, which displays a dialog box when
the user selects this item.
Featured in: Example 3 on page 688

MENU=pull-down-menu
the name of an associated MENU statement, which displays a pull-down menu
when the user selects this item.
Featured in: Example 1 on page 682

SELECTION=selection
the name of an associated SELECTION statement, which submits a command
when the user selects this item.
Featured in: Example 1 on page 682

SUBMENU=submenu
the name of an associated SUBMENU statement, which displays a pmenu entry
when the user selects this item.
Featured in: Example 1 on page 682
If no DIALOG=, MENU=, SELECTION=, or SUBMENU= option is specified, then

the command or menu-item text string is submitted as a command-line command
when the user selects the item.

GRAY
indicates that the item is not an active choice in this window. This option is useful
when you want to define standard lists of items for many windows, but not all items
are valid in all windows. When this option is set and the user selects the item, no
action occurs.

HELP=’help-text’
specifies text that is displayed when the user displays the menu item. For example,
if you use a mouse to pull down a menu, then position the mouse pointer over the
item and the text is displayed.
Restriction: This option is not available in all operating environments. If you

include this option and it is not available in your operating environment, then the
option is ignored.

Tip: The place where the text is displayed is operating environment-specific.

ID=integer
a value that is used as an identifier for an item in a pull-down menu. This identifier
is used within a SAS/AF application to selectively activate or deactivate items in a
menu or to set the state of an item as a check box or a radio button.
Minimum: 3001
Restriction: Integers from 0 to 3000 are reserved for operating environment and

SAS use.
Restriction: This option is not available in all operating environments. If you

include this option and it is not available in your operating environment, then the
option is ignored.

Tip: ID= is useful with the WINFO function in SAS Component Language.

The PMENU Procedure � MENU Statement 673

Tip: You can use the same ID for more than one item.

See also: STATE= option on page 673

MNEMONIC=character
underlines the first occurrence of character in the text string that appears on the
pull-down menu. The character must be in the text string.

The character is typically used in combination with another key, such as ALT.
When you use the key sequence, it has the same effect as putting your cursor on the
item. But it does not invoke the action that the item controls.

Restriction: This option is not available in all operating environments. If you
include this option and it is not available in your operating environment, then the
option is ignored.

STATE=CHECK|RADIO
provides the ability to place a check box or a radio button next to an item that has
been selected.

Tip: STATE= is used with the ID= option and the WINFO function in SAS
Component Language.

Restriction: This option is not available in all operating environments. If you
include this option and it is not available in your operating environment, then the
option is ignored.

Defining Items on the Menu Bar
You must use ITEM statements to name all the items that appear in a menu bar. You

also use the ITEM statement to name the items that appear in any pull-down menus.
The items that you specify in the ITEM statement can be commands that are issued
when the user selects the item, or they can be descriptions of other actions that are
performed by associated DIA0LOG, MENU, SELECTION, or SUBMENU statements.

All ITEM statements for a menu must be placed immediately after the MENU
statement and before any DIALOG, SELECTION, SUBMENU, or other MENU
statements. In some operating environments, you can insert SEPARATOR statements
between ITEM statements to produce lines separating groups of items in a pull-down
menu. See “SEPARATOR Statement” on page 677 for more information.

Note: If you specify a menu bar that is too long for the window, then it might be
truncated or wrapped to multiple lines. �

MENU Statement

Names the catalog entry that stores the menus or defines a pull-down menu.

Featured in: Example 1 on page 682

MENU menu-bar;

MENU pull-down-menu;

Required Arguments
One of the following arguments is required:

674 MENU Statement � Chapter 33

menu-bar
names the catalog entry that stores the menus.

pull-down-menu
names the pull-down menu that appears when the user selects an item in the menu
bar. The value of pull-down-menu must match the pull-down-menu name that is
specified in the MENU= option in a previous ITEM statement.

Defining Pull-Down Menus
When used to define a pull-down menu, the MENU statement must follow an ITEM

statement that specifies the MENU= option. Both the ITEM statement and the MENU
statement for the pull-down menu must be in the same RUN group as the MENU
statement that defines the menu bar for the PMENU catalog entry.

For both menu bars and pull-down menus, follow the MENU statement with ITEM
statements that define each of the items that appear on the menu. Group all ITEM
statements for a menu together. For example, the following PROC PMENU step creates
one catalog entry, WINDOWS, which produces a menu bar with two items, Primary
windows and Other windows. When you select one of these items, a pull-down menu is
displayed.

libname proclib ’SAS-data-library’;

proc pmenu cat=proclib.mycat;

/* create catalog entry */
menu windows;
item ’Primary windows’ menu=prime;
item ’Other windows’ menu=other;

/* create first pull-down menu */
menu prime;
item output;
item manager;
item log;
item pgm;

/* create second pull-down menu */
menu other;
item keys;
item help;
item pmenu;
item bye;

/* end of run group */
run;

The following figure shows the resulting menu selections.

The PMENU Procedure � RBUTTON Statement 675

Figure 33.3 Pull-Down Menu

Primary windows Other windows

OUTPUT
MANAGER
LOG
PGM

KEYS
HELP
PMENU
BYE

RADIOBOX Statement

Defines a box that contains mutually exclusive choices within a dialog box.

Restriction: Must be used after a DIALOG statement.
Restriction: Must be followed by one or more RBUTTON statements.
Featured in: Example 3 on page 688

RADIOBOX DEFAULT=button-number;

Required Arguments

DEFAULT=button-number
indicates which radio button is the default.
Default: 1

Details
The RADIOBOX statement indicates the beginning of a list of selections.

Immediately after the RADIOBOX statement, you must list an RBUTTON statement
for each of the selections the user can make. When the user makes a choice, the text
value that is associated with the selection is inserted into the command string of the
previous DIALOG statement at field locations prefixed by a percent sign (%).

RBUTTON Statement

Lists mutually exclusive choices within a dialog box.

Restriction: Must be used after a RADIOBOX statement.
Featured in: Example 3 on page 688

RBUTTON <NONE> #line @column
’text-for-selection’ <COLOR=color> <SUBSTITUTE=’text-for-substitution’>;

676 SELECTION Statement � Chapter 33

Required Arguments

column
specifies the column in the dialog box where the radio button and text are placed.

line
specifies the line in the dialog box where the radio button and text are placed.

text-for-selection
defines the text that appears in the dialog box and, if the SUBSTITUTE= option is
not used, defines the text that is inserted into the command in the preceding
DIALOG statement.

Note: Be careful not to overlap columns and lines when placing text and radio
buttons; if you overlap text and buttons, you will get an error message. Also, specify
space between other text and a radio button. �

Options

COLOR=color
defines the color of the radio button and the text that describes the button.

Restriction: This option is not available in all operating environments. If you
include this option and it is not available in your operating environment, then the
option is ignored.

NONE
defines a button that indicates none of the other choices. Defining this button
enables the user to ignore any of the other choices. No characters, including blanks,
are inserted into the DIALOG statement.

Restriction: If you use this option, then it must appear immediately after the
RBUTTON keyword.

SUBSTITUTE=’text-for-substitution’
specifies the text that is to be inserted into the command in the DIALOG statement.

Featured in: Example 3 on page 688

SELECTION Statement

Defines a command that is submitted when an item is selected.

Restriction: Must be used after an ITEM statement

Featured in: Example 1 on page 682 and Example 4 on page 694

SELECTION selection ’command-string’;

The PMENU Procedure � SUBMENU Statement 677

Required Arguments

selection
is the same name specified for the SELECTION= option in a previous ITEM
statement.

command-string
is a text string, enclosed in quotation marks, that is submitted as a command-line
command when the user selects this item. There is a limit of 200 characters for
command-string. However, the command-line limit of approximately 80 characters
cannot be exceeded. The command-line limit differs slightly for various operating
environments.

Details
You define the name of the item in the ITEM statement and specify the

SELECTION= option to associate the item with a subsequent SELECTION statement.
The SELECTION statement then defines the actual command that is submitted when
the user chooses the item in the menu bar or pull-down menu.

You are likely to use the SELECTION statement to define a command string. You
create a simple alias by using the ITEM statement, which invokes a longer command
string that is defined in the SELECTION statement. For example, you could include an
item in the menu bar that invokes a WINDOW statement to enable data entry. The
actual commands that are processed when the user selects this item are the commands
to include and submit the application.

Note: If you are using PROC PMENU to issue any command that is valid only in
the PROGRAM EDITOR window (such as the INCLUDE command), then you must
have the windowing environment running, and you must return control to the
PROGRAM EDITOR window. �

SEPARATOR Statement

Draws a line between items on a pull-down menu.

Restriction: Must be used after an ITEM statement.
Restriction: Not available in all operating environments.

SEPARATOR;

SUBMENU Statement

Specifies the SAS file that contains a common submenu associated with an item.

Featured in: Example 1 on page 682

SUBMENU submenu-name SAS-file;

678 TEXT Statement � Chapter 33

Required Arguments

submenu-name
specifies a name for the submenu statement. To associate a submenu with a menu
item, submenu-name must match the submenu name specified in the SUBMENU=
action-option in the ITEM statement.

SAS-file
specifies the name of the SAS file that contains the common submenu.

TEXT Statement

Specifies text and the input fields for a dialog box.

Restriction: Can be used only after a DIALOG statement.
Featured in: Example 2 on page 685

TEXT #line @column field-description
<ATTR=attribute> <COLOR=color>;

Required Arguments

column
specifies the starting column for the text or input field.

field-description
defines how the TEXT statement is used. The field-description can be one of the
following:

LEN=field-length
is the length of an input field in which the user can enter information. If the
LEN= argument is used, then the information entered in the field is inserted into
the command string of the previous DIALOG statement at field locations prefixed
by an at sign (@).
Featured in: Example 2 on page 685

’text’
is the text string that appears inside the dialog box at the location defined by line
and column.

line
specifies the line number for the text or input field.

The PMENU Procedure � Procedure Execution 679

Options

ATTR=attribute
defines the attribute for the text or input field. Valid attribute values are

� BLINK
� HIGHLIGH
� REV_VIDE
� UNDERLIN

Restriction: This option is not available in all operating environments. If you
include this option and it is not available in your operating environment, then the
option is ignored.

Restriction: Your hardware may not support all of these attributes.

COLOR=color
defines the color for the text or input field characters. These are the color values that
you can use:

BLACK BROWN

GRAY MAGENTA

PINK WHITE

BLUE CYAN

GREEN ORANGE

RED YELLOW

Restriction: This option is not available in all operating environments. If you
include this option and it is not available in your operating environment, then the
option is ignored.

Restriction: Your hardware may not support all of these colors.

Concepts: PMENU Procedure

Procedure Execution

Initiating the Procedure
You can define multiple menus by separating their definitions with RUN statements.

A group of statements that ends with a RUN statement is called a RUN group. You
must completely define a PMENU catalog entry before submitting a RUN statement.
You do not have to restart the procedure after a RUN statement.

You must include an initial MENU statement that defines the menu bar, and you
must include all ITEM statements and any SELECTION, MENU, SUBMENU, and

680 Steps for Building and Using PMENU Catalog Entries � Chapter 33

DIALOG statements as well as statements that are associated with the DIALOG
statement within the same RUN group. For example, the following statements define
two separate PMENU catalog entries. Both are stored in the same catalog, but each
PMENU catalog entry is independent of the other. In the example, both PMENU
catalog entries create menu bars that simply list windowing environment commands
the user can select and execute:

libname proclib ’SAS-data-library’;

proc pmenu catalog=proclib.mycat;
menu menu1;
item end;
item bye;

run;

menu menu2;
item end;
item pgm;
item log;
item output;

run;

When you submit these statements, you receive a message that says that the
PMENU entries have been created. To display one of these menu bars, you must
associate the PMENU catalog entry with a window and then activate the window with
the menus turned on, as described in “Steps for Building and Using PMENU Catalog
Entries” on page 680.

Ending the Procedure
Submit a QUIT, DATA, or new PROC statement to execute any statements that have

not executed and end the PMENU procedure. Submit a RUN CANCEL statement to
cancel any statements that have not executed and end the PMENU procedure.

Steps for Building and Using PMENU Catalog Entries
In most cases, building and using PMENU entries requires the following steps:
1 Use PROC PMENU to define the menu bars, pull-down menus and other features

that you want. Store the output of PROC PMENU in a SAS catalog.
2 Define a window using SAS/AF and SAS/FSP software, or the WINDOW or

%WINDOW statement in base SAS software.
3 Associate the PMENU catalog entry created in step 1 with a window by using one

of the following:
� the MENU= option in the WINDOW statement in base SAS software. See

“Associating a Menu with a Window” on page 697.
� the MENU= option in the %WINDOW statement in the macro facility.
� the Command Menu field in the GATTR window in PROGRAM entries in SAS/

AF software.
� the Keys, Pmenu, and Commands window in a FRAME entry in SAS/AF

software. See Example 5 on page 700.
� the PMENU function in SAS/AF and SAS/FSP software.
� the SETPMENU command in SAS/FSP software. See Example 1 on page 682.

4 Activate the window you have created. Make sure that the menus are turned on.

The PMENU Procedure � Templates for Coding PROC PMENU Steps 681

Templates for Coding PROC PMENU Steps
The following coding templates summarize how to use the statements in the PMENU

procedure. Refer to descriptions of the statements for more information:

� Build a simple menu bar. All items on the menu bar are windowing environment
commands:

proc pmenu;
menu menu-bar;
item command;
...more-ITEM-statements...

run;

� Create a menu bar with an item that produces a pull-down menu:

proc pmenu;
menu menu-bar;
item ’menu-item’ menu=pull-down-menu;
...more-ITEM-statements...
menu pull-down-menu;
...ITEM-statements-for-pull-down-menu...

run;

� Create a menu bar with an item that submits a command other than that which
appears on the menu bar:

proc pmenu;
menu menu-bar;
item ’menu-item’ selection=selection;
...more-ITEM-statements...
selection selection ’command-string’;

run;

� Create a menu bar with an item that opens a dialog box, which displays
information and requests text input:

proc pmenu;
menu menu-bar;
item ’menu-item’ menu=pull-down-menu;
...more-ITEM-statements...
menu pull-down-menu;

item ’menu-item’ dialog=dialog-box;
dialog dialog-box ’command @1’;

text #line @column ’text’;
text #line @column LEN=field-length;

run;

� Create a menu bar with an item that opens a dialog box, which permits one choice
from a list of possible values:

proc pmenu;
menu menu-bar;
item ’menu-item’ menu=pull-down-menu;
...more-ITEM-statements...
menu pull-down-menu;

item ’menu-item’ dialog=dialog-box;
dialog dialog-box ’command %1’;

text #line @column ’text’;

682 Examples: PMENU Procedure � Chapter 33

radiobox default=button-number;
rbutton #line @column

’text-for-selection’;
...more-RBUTTON-statements...

run;

� Create a menu bar with an item that opens a dialog box, which permits several
independent choices:

proc pmenu;
menu menu-bar;
item ’menu-item’ menu=pull-down-menu;
...more-ITEM-statements...
menu pull-down-menu;

item ’menu-item’ dialog=dialog-box;
dialog dialog-box ’command &1’;

text #line @column ’text’;
checkbox #line @column ’text’;
...more-CHECKBOX-statements...

run;

Examples: PMENU Procedure
The windows in these examples were produced in the UNIX environment and may

appear slightly different from the same windows in other operating environments.
You should know the operating environment-specific system options that can affect

how menus are displayed and merged with existing SAS menus. For details, see the
SAS documentation for your operating environment.

Example 1: Building a Menu Bar for an FSEDIT Application

Procedure features:
PROC PMENU statement option:

CATALOG=
ITEM statement options:

MENU=
SELECTION=
SUBMENU=

MENU statement
SELECTION statement
SUBMENU statement

This example creates a menu bar that can be used in an FSEDIT application to
replace the default menu bar. The selections available on these pull-down menus do not
enable end users to delete or duplicate observations.

The PMENU Procedure � Program 683

Program

Declare the PROCLIB library. The PROCLIB library is used to store menu definitions.

libname proclib ’SAS-data-library’;

Specify the catalog for storing menu definitions. Menu definitions will be stored in the
PROCLIB.MENUCAT catalog.

proc pmenu catalog=proclib.menucat;

Specify the name of the catalog entry. The MENU statement specifies PROJECT as the
name of the catalog entry. The menus are stored in the catalog entry
PROCLIB.MENUCAT.PROJECT.PMENU.

menu project;

Design the menu bar. The ITEM statements specify the items for the menu bar. The value of
the MENU= option is used in a subsequent MENU statement. The Edit item uses a common
predefined submenu; the menus for the other items are defined in this PROC step.

item ’File’ menu=f;
item ’Edit’ submenu=editmnu;
item ’Scroll’ menu=s;
item ’Help’ menu=h;

Design the File menu. This group of statements defines the selections available under File
on the menu bar. The first ITEM statement specifies Goback as the first selection under File.
The value of the SELECTION= option corresponds to the subsequent SELECTION statement,
which specifies END as the command that is issued for that selection. The second ITEM
statement specifies that the SAVE command is issued for that selection.

menu f;
item ’Goback’ selection=g;
item ’Save’;
selection g ’end’;

Add the EDITMNU submenu. The SUBMENU statement associates a predefined submenu
that is located in the SAS file SASHELP.CORE.EDIT with the Edit item on the menu bar. The
name of this SUBMENU statement is EDITMNU, which corresponds with the name in the
SUBMENU= action-option in the ITEM statement for the Edit item.

submenu editmnu sashelp.core.edit;

684 Associating a Menu Bar with an FSEDIT Session � Chapter 33

Design the Scroll menu. This group of statements defines the selections available under
Scroll on the menu bar.

menu s;
item ’Next Obs’ selection=n;
item ’Prev Obs’ selection=p;
item ’Top’;
item ’Bottom’;
selection n ’forward’;
selection p ’backward’;

Design the Help menu. This group of statements defines the selections available under Help
on the menu bar. The SETHELP command specifies a HELP entry that contains user-written
information for this FSEDIT application. The semicolon that appears after the HELP entry
name enables the HELP command to be included in the string. The HELP command invokes
the HELP entry.

menu h;
item ’Keys’;
item ’About this application’ selection=hlp;
selection hlp ’sethelp user.menucat.staffhlp.help;help’;

quit;

Associating a Menu Bar with an FSEDIT Session
The following SETPMENU command associates the customized menu bar with the

FSEDIT window.

setpmenu proclib.menucat.project.pmenu;pmenu on

You can also specify the menu bar on the command line in the FSEDIT session or by
issuing a CALL EXECCMD command in SAS Component Language (SCL).

See “Associating a Menu Bar with an FSEDIT Session” on page 691 for other
methods of associating the customized menu bar with the FSEDIT window.

The FSEDIT window shows the menu bar.

The PMENU Procedure � Program 685

Example 2: Collecting User Input in a Dialog Box

Procedure features:
DIALOG statement

TEXT statement option:

LEN=

This example adds a dialog box to the menus created in Example 1 on page 682. The
dialog box enables the user to use a WHERE clause to subset the SAS data set.

Tasks include

� collecting user input in a dialog box

� creating customized menus for an FSEDIT application.

Program

Declare the PROCLIB library. The PROCLIB library is used to store menu definitions.

libname proclib ’SAS-data-library’;

Specify the catalog for storing menu definitions. Menu definitions will be stored in the
PROCLIB.MENUCAT catalog.

proc pmenu catalog=proclib.menucat;

Specify the name of the catalog entry. The MENU statement specifies PROJECT as the
name of the catalog entry. The menus are stored in the catalog entry
PROCLIB.MENUCAT.PROJECT.PMENU.

menu project;

Design the menu bar. The ITEM statements specify the items for the menu bar. The value of
the MENU= option is used in a subsequent MENU statement.

item ’File’ menu=f;
item ’Edit’ menu=e;
item ’Scroll’ menu=s;
item ’Subset’ menu=sub;
item ’Help’ menu=h;

686 Program � Chapter 33

Design the File menu. This group of statements defines the selections under File on the
menu bar. The first ITEM statement specifies Goback as the first selection under File. The
value of the SELECTION= option corresponds to the subsequent SELECTION statement, which
specifies END as the command that is issued for that selection. The second ITEM statement
specifies that the SAVE command is issued for that selection.

menu f;
item ’Goback’ selection=g;
item ’Save’;
selection g ’end’;

Design the Edit menu. This group of statements defines the selections available under Edit
on the menu bar.

menu e;
item ’Cancel’;
item ’Add’;

Design the Scroll menu. This group of statements defines the selections available under
Scroll on the menu bar.

menu s;
item ’Next Obs’ selection=n;
item ’Prev Obs’ selection=p;
item ’Top’;
item ’Bottom’;
selection n ’forward’;
selection p ’backward’;

Design the Subset menu. This group of statements defines the selections available under
Subset on the menu bar. The value d1 in the DIALOG= option is used in the subsequent
DIALOG statement.

menu sub;
item ’Where’ dialog=d1;
item ’Where Clear’;

Design the Help menu. This group of statements defines the selections available under Help
on the menu bar. The SETHELP command specifies a HELP entry that contains user-written
information for this FSEDIT application. The semicolon enables the HELP command to be
included in the string. The HELP command invokes the HELP entry.

menu h;
item ’Keys’;
item ’About this application’ selection=hlp;
selection hlp ’sethelp proclib.menucat.staffhlp.help;help’;

The PMENU Procedure � Associating a Menu Bar with an FSEDIT Window 687

Design the dialog box. The DIALOG statement builds a WHERE command. The arguments
for the WHERE command are provided by user input into the text entry fields described by the
three TEXT statements. The @1 notation is a placeholder for user input in the text field. The
TEXT statements specify the text in the dialog box and the length of the input field.

dialog d1 ’where @1’;
text #2 @3 ’Enter a valid WHERE clause or UNDO’;
text #4 @3 ’WHERE ’;
text #4 @10 len=40;

quit;

Associating a Menu Bar with an FSEDIT Window
The following SETPMENU command associates the customized menu bar with the

FSEDIT window.

setpmenu proclib.menucat.project.pmenu;pmenu on

You can also specify the menu bar on the command line in the FSEDIT session or by
issuing a CALL EXECCMD command in SAS Component Language (SCL). Refer to
SAS Component Language: Reference for complete documentation on SCL.

See “Associating a Menu Bar with an FSEDIT Session” on page 691 for other
methods of associating the customized menu bar with the FSEDIT window.

This dialog box appears when the user chooses Subset and then Where.

688 Example 3: Creating a Dialog Box to Search Multiple Variables � Chapter 33

Example 3: Creating a Dialog Box to Search Multiple Variables

Procedure features:
DIALOG statement

SAS macro invocation
ITEM statement

DIALOG= option
RADIOBOX statement option:

DEFAULT=
RBUTTON statement option:

SUBSTITUTE=

Other features: SAS macro invocation

This example shows how to modify the menu bar in an FSEDIT session to enable a
search for one value across multiple variables. The example creates customized menus
to use in an FSEDIT session. The menu structure is the same as in the preceding
example, except for the WHERE dialog box.

When selected, the menu item invokes a macro. The user input becomes values for
macro parameters. The macro generates a WHERE command that expands to include
all the variables needed for the search.

Tasks include

� associating customized menus with an FSEDIT session

� searching multiple variables with a WHERE clause

� extending PROC PMENU functionality with a SAS macro.

Program

Declare the PROCLIB library. The PROCLIB library is used to store menu definitions.

libname proclib ’SAS-data-library’;

Specify the catalog for storing menu definitions. Menu definitions will be stored in the
PROCLIB.MENUCAT catalog.

proc pmenu catalog=proclib.menucat;

Specify the name of the catalog entry. The MENU statement specifies STAFF as the name
of the catalog entry. The menus are stored in the catalog entry
PROCLIB.MENUCAT.PROJECT.PMENU.

menu project;

The PMENU Procedure � Program 689

Design the menu bar. The ITEM statements specify the items for the menu bar. The value of
the MENU= option is used in a subsequent MENU statement.

item ’File’ menu=f;
item ’Edit’ menu=e;
item ’Scroll’ menu=s;
item ’Subset’ menu=sub;
item ’Help’ menu=h;

Design the File menu. This group of statements defines the selections under File on the
menu bar. The first ITEM statement specifies Goback as the first selection under File. The
value of the SELECTION= option corresponds to the subsequent SELECTION statement, which
specifies END as the command that is issued for that selection. The second ITEM statement
specifies that the SAVE command is issued for that selection.

menu f;
item ’Goback’ selection=g;
item ’Save’;
selection g ’end’;

Design the Edit menu. The ITEM statements define the selections under Edit on the menu
bar.

menu e;
item ’Cancel’;
item ’Add’;

Design the Scroll menu. This group of statements defines the selections under Scroll on the
menu bar. If the quoted string in the ITEM statement is not a valid command, then the
SELECTION= option corresponds to a subsequent SELECTION statement, which specifies a
valid command.

menu s;
item ’Next Obs’ selection=n;
item ’Prev Obs’ selection=p;
item ’Top’;
item ’Bottom’;
selection n ’forward’;
selection p ’backward’;

Design the Subset menu. This group of statements defines the selections under Subset on
the menu bar. The DIALOG= option names a dialog box that is defined in a subsequent
DIALOG statement.

menu sub;
item ’Where’ dialog=d1;
item ’Where Clear’;

690 Program � Chapter 33

Design the Help menu. This group of statements defines the selections under Help on the
menu bar. The SETHELP command specifies a HELP entry that contains user-written
information for this FSEDIT application. The semicolon that appears after the HELP entry
name enables the HELP command to be included in the string. The HELP command invokes
the HELP entry.

menu h;
item ’Keys’;
item ’About this application’ selection=hlp;
selection hlp ’sethelp proclib.menucat.staffhlp.help;help’;

Design the dialog box. WBUILD is a SAS macro. The double percent sign that precedes
WBUILD is necessary to prevent PROC PMENU from expecting a field number to follow. The
field numbers %1, %2, and %3 equate to the values that the user specified with the radio boxes.
The field number @1 equates to the search value that the user enters. See “How the WBUILD
Macro Works” on page 693.

dialog d1 ’%%wbuild(%1,%2,@1,%3)’;

Add a radio box for region selection. The TEXT statement specifies text for the dialog box
that appears on line 1 and begins in column 1. The RADIOBOX statement specifies that a radio
box will appear in the dialog box. DEFAULT= specifies that the first radio button (Northeast)
will be selected by default. The RBUTTON statements specify the mutually exclusive choices for
the radio buttons: Northeast, Northwest, Southeast, or Southwest. SUBSTITUTE= gives
the value that is substituted for the %1 in the DIALOG statement above if that radio button is
selected.

text #1 @1 ’Choose a region:’;
radiobox default=1;

rbutton #3 @5 ’Northeast’ substitute=’NE’;
rbutton #4 @5 ’Northwest’ substitute=’NW’;
rbutton #5 @5 ’Southeast’ substitute=’SE’;
rbutton #6 @5 ’Southwest’ substitute=’SW’;

Add a radio box for pollutant selection. The TEXT statement specifies text for the dialog
box that appears on line 8 (#8) and begins in column 1 (@1). The RADIOBOX statement
specifies that a radio box will appear in the dialog box. DEFAULT= specifies that the first radio
button (Pollutant A) will be selected by default. The RBUTTON statements specify the
mutually exclusive choices for the radio buttons: Pollutant A or Pollutant B.
SUBSTITUTE= gives the value that is substituted for the %2 in the preceding DIALOG
statement if that radio button is selected.

text #8 @1 ’Choose a contaminant:’;
radiobox default=1;

rbutton #10 @5 ’Pollutant A’ substitute=’pol_a,2’;
rbutton #11 @5 ’Pollutant B’ substitute=’pol_b,4’;

The PMENU Procedure � Associating a Menu Bar with an FSEDIT Session 691

Add an input field. The first TEXT statement specifies text for the dialog box that appears on
line 13 and begins in column 1. The second TEXT statement specifies an input field that is 6
bytes long that appears on line 13 and begins in column 25. The value that the user enters in
the field is substituted for the @1 in the preceding DIALOG statement.

text #13 @1 ’Enter Value for Search:’;
text #13 @25 len=6;

Add a radio box for comparison operator selection. The TEXT statement specifies text for
the dialog box that appears on line 15 and begins in column 1. The RADIOBOX statement
specifies that a radio box will appear in the dialog box. DEFAULT= specifies that the first radio
button (Greater Than or Equal To) will be selected by default. The RBUTTON statements
specify the mutually exclusive choices for the radio buttons. SUBSTITUTE= gives the value that
is substituted for the %3 in the preceding DIALOG statement if that radio button is selected.

text #15 @1 ’Choose a comparison criterion:’;
radiobox default=1;

rbutton #16 @5 ’Greater Than or Equal To’
substitute=’GE’;

rbutton #17 @5 ’Less Than or Equal To’
substitute=’LE’;

rbutton #18 @5 ’Equal To’ substitute=’EQ’;
quit;

This dialog box appears when the user selects Subset and then Where.

Associating a Menu Bar with an FSEDIT Session
The SAS data set PROCLIB.LAKES has data about several lakes. Two pollutants,

pollutant A and pollutant B, were tested at each lake. Tests were conducted for

692 Associating a Menu Bar with an FSEDIT Session � Chapter 33

pollutant A twice at each lake, and the results are recorded in the variables POL_A1
and POL_A2. Tests were conducted for pollutant B four times at each lake, and the
results are recorded in the variables POL_B1 - POL_B4. Each lake is located in one of
four regions. The following output lists the contents of PROCLIB.LAKES:

Output 33.1

PROCLIB.LAKES 1

region lake pol_a1 pol_a2 pol_b1 pol_b2 pol_b3 pol_b4

NE Carr 0.24 0.99 0.95 0.36 0.44 0.67
NE Duraleigh 0.34 0.01 0.48 0.58 0.12 0.56
NE Charlie 0.40 0.48 0.29 0.56 0.52 0.95
NE Farmer 0.60 0.65 0.25 0.20 0.30 0.64
NW Canyon 0.63 0.44 0.20 0.98 0.19 0.01
NW Morris 0.85 0.95 0.80 0.67 0.32 0.81
NW Golf 0.69 0.37 0.08 0.72 0.71 0.32
NW Falls 0.01 0.02 0.59 0.58 0.67 0.02
SE Pleasant 0.16 0.96 0.71 0.35 0.35 0.48
SE Juliette 0.82 0.35 0.09 0.03 0.59 0.90
SE Massey 1.01 0.77 0.45 0.32 0.55 0.66
SE Delta 0.84 1.05 0.90 0.09 0.64 0.03
SW Alumni 0.45 0.32 0.45 0.44 0.55 0.12
SW New Dam 0.80 0.70 0.31 0.98 1.00 0.22
SW Border 0.51 0.04 0.55 0.35 0.45 0.78
SW Red 0.22 0.09 0.02 0.10 0.32 0.01

A DATA step on page 1393 creates PROCLIB.LAKES.
The following statements initiate a PROC FSEDIT session for PROCLIB.LAKES:

proc fsedit data=proclib.lakes screen=proclib.lakes;
run;

To associate the customized menu bar menu with the FSEDIT session, do any one of
the following:

� enter a SETPMENU command on the command line. The command for this
example is

setpmenu proclib.menucat.project.pmenu

Turn on the menus by entering PMENU ON on the command line.
� enter the SETPMENU command in a Command window.
� include an SCL program with the FSEDIT session that uses the customized menus

and turns on the menus, for example:

fseinit:
call execcmd(’setpmenu proclib.menucat.project.pmenu;

pmenu on;’);
return;
init:
return;
main:
return;
term:
return;

The PMENU Procedure � How the WBUILD Macro Works 693

How the WBUILD Macro Works
Consider how you would learn whether any of the lakes in the Southwest region

tested for a value of .50 or greater for pollutant A. Without the customized menu item,
you would issue the following WHERE command in the FSEDIT window:

where region="SW" and (pol_a1 ge .50 or pol_a2 ge .50);

Using the custom menu item, you would select Southwest, Pollutant A, enter .50
as the value, and choose Greater Than or Equal To as the comparison criterion. Two
lakes, New Dam and Border, meet the criteria.

The WBUILD macro uses the four pieces of information from the dialog box to
generate a WHERE command:

� One of the values for region, either NE, NW, SE, or SW, becomes the value of the
macro parameter REGION.

� Either pol_a,2 or pol_b,4 become the values of the PREFIX and NUMVAR
macro parameters. The comma is part of the value that is passed to the WBUILD
macro and serves to delimit the two parameters, PREFIX and NUMVAR.

� The value that the user enters for the search becomes the value of the macro
parameter VALUE.

� The operator that the user chooses becomes the value of the macro parameter
OPERATOR.

To see how the macro works, again consider the following example, in which you
want to know if any of the lakes in the southwest tested for a value of .50 or greater for
pollutant A. The values of the macro parameters would be

REGION SW

PREFIX pol_a

NUMVAR 2

VALUE .50

OPERATOR GE

The first %IF statement checks to make sure that the user entered a value. If a
value has been entered, then the macro begins to generate the WHERE command.
First, the macro creates the beginning of the WHERE command:

where region="SW" and (

Next, the %DO loop executes. For pollutant A, it executes twice because
NUMVAR=2. In the macro definition, the period in &prefix.&i concatenates pol_a
with 1 and with 2. At each iteration of the loop, the macro resolves PREFIX,
OPERATOR, and VALUE, and it generates a part of the WHERE command. On the
first iteration, it generates pol_a1 GE .50

The %IF statement in the loop checks to see if the loop is working on its last
iteration. If it is not working, then the macro makes a compound WHERE command by
putting an OR between the individual clauses. The next part of the WHERE command
becomes OR pol_a2 GE .50

The loop ends after two executions for pollutant A, and the macro generates the end
of the WHERE command:

)

694 Example 4: Creating Menus for a DATA Step Window Application � Chapter 33

Results from the macro are placed on the command line. The following code is the
definition of the WBUILD macro. The underlined code shows the parts of the WHERE
command that are text strings that the macro does not resolve:

%macro wbuild(region,prefix,numvar,value,operator);
/* check to see if value is present */

%if &value ne %then %do;
where region="®ion" AND (

/* If the values are character, */
/* enclose &value in double quotation marks. */

%do i=1 %to &numvar;
&prefix.&i &operator &value

/* if not on last variable, */
/* generate ’OR’ */

%if &i ne &numvar %then %do;
OR

%end;
%end;

)
%end;

%mend wbuild;

Example 4: Creating Menus for a DATA Step Window Application

Procedure features:
DIALOG statement
SELECTION statement

Other features: FILENAME statement

This example defines an application that enables the user to enter human resources
data for various departments and to request reports from the data sets that are created
by the data entry.

The first part of the example describes the PROC PMENU step that creates the
menus. The subsequent sections describe how to use the menus in a DATA step window
application.

Tasks include
� associating customized menus with a DATA step window
� creating menus for a DATA step window
� submitting SAS code from a menu selection
� creating a pull-down menu selection that calls a dialog box.

Program

Declare the PROCLIB library. The PROCLIB library is used to store menu definitions.

libname proclib ’SAS-data-library’;

The PMENU Procedure � Program 695

Declare the DE and PRT filenames. The FILENAME statements define the external files in
which the programs to create the windows are stored.

filename de ’external-file’;
filename prt ’external-file’;

Specify the catalog for storing menu definitions. Menu definitions will be stored in the
PROCLIB.MENUCAT catalog.

proc pmenu catalog=proclib.menus;

Specify the name of the catalog entry. The MENU statement specifies SELECT as the name
of the catalog entry. The menus are stored in the catalog entry
PROCLIB.MENUS.SELECT.PMENU.

menu select;

Design the menu bar. The ITEM statements specify the three items on the menu bar. The
value of the MENU= option is used in a subsequent MENU statement.

item ’File’ menu=f;
item ’Data_Entry’ menu=deptsde;
item ’Print_Report’ menu=deptsprt;

Design the File menu. This group of statements defines the selections under File. The value
of the SELECTION= option is used in a subsequent SELECTION statement.

menu f;
item ’End this window’ selection=endwdw;
item ’End this SAS session’ selection=endsas;
selection endwdw ’end’;
selection endsas ’bye’;

Design the Data_Entry menu. This group of statements defines the selections under
Data_Entry on the menu bar. The ITEM statements specify that For Dept01 and For
Dept02 appear under Data_Entry. The value of the SELECTION= option equates to a
subsequent SELECTION statement, which contains the string of commands that are actually
submitted. The value of the DIALOG= option equates to a subsequent DIALOG statement,
which describes the dialog box that appears when this item is selected.

menu deptsde;
item ’For Dept01’ selection=de1;
item ’For Dept02’ selection=de2;
item ’Other Departments’ dialog=deother;

696 Program � Chapter 33

Specify commands under the Data_Entry menu. The commands in single quotation marks
are submitted when the user selects For Dept01 or For Dept02. The END command ends the
current window and returns to the PROGRAM EDITOR window so that further commands can
be submitted. The INCLUDE command includes the SAS statements that create the data entry
window. The CHANGE command modifies the DATA statement in the included program so that
it creates the correct data set. (See “Using a Data Entry Program” on page 698.) The SUBMIT
command submits the DATA step program.

selection de1 ’end;pgm;include de;change xx 01;submit’;
selection de2 ’end;pgm;include de;change xx 02;submit’;

Design the DEOTHER dialog box. The DIALOG statement defines the dialog box that
appears when the user selects Other Departments. The DIALOG statement modifies the
command string so that the name of the department that is entered by the user is used to
change deptxx in the SAS program that is included. (See “Using a Data Entry Program” on
page 698.) The first two TEXT statements specify text that appears in the dialog box. The third
TEXT statement specifies an input field. The name that is entered in this field is substituted for
the @1 in the DIALOG statement.

dialog deother ’end;pgm;include de;c deptxx @1;submit’;
text #1 @1 ’Enter department name’;
text #2 @3 ’in the form DEPT99:’;
text #2 @25 len=7;

Design the Print_Report menu. This group of statements defines the choices under the
Print_Report item. These ITEM statements specify that For Dept01 and For Dept02
appear in the pull-down menu. The value of the SELECTION= option equates to a subsequent
SELECTION statement, which contains the string of commands that are actually submitted.

menu deptsprt;
item ’For Dept01’ selection=prt1;
item ’For Dept02’ selection=prt2;
item ’Other Departments’ dialog=prother;

Specify commands for the Print_Report menu. The commands in single quotation marks
are submitted when the user selects For Dept01 or For Dept02. The END command ends the
current window and returns to the PROGRAM EDITOR window so that further commands can
be submitted. The INCLUDE command includes the SAS statements that print the report. (See
“Printing a Program” on page 699.) The CHANGE command modifies the PROC PRINT step in
the included program so that it prints the correct data set. The SUBMIT command submits the
PROC PRINT program.

selection prt1
’end;pgm;include prt;change xx 01 all;submit’;

selection prt2
’end;pgm;include prt;change xx 02 all;submit’;

The PMENU Procedure � Associating a Menu with a Window 697

Design the PROTHER dialog box. The DIALOG statement defines the dialog box that
appears when the user selects Other Departments. The DIALOG statement modifies the
command string so that the name of the department that is entered by the user is used to
change deptxx in the SAS program that is included. (See “Printing a Program” on page 699.)
The first two TEXT statements specify text that appears in the dialog box. The third TEXT
statement specifies an input field. The name entered in this field is substituted for the @1 in the
DIALOG statement.

dialog prother ’end;pgm;include prt;c deptxx @1 all;submit’;
text #1 @1 ’Enter department name’;
text #2 @3 ’in the form DEPT99:’;
text #2 @25 len=7;

End this RUN group.

run;

Specify a second catalog entry and menu bar. The MENU statement specifies ENTRDATA
as the name of the catalog entry that this RUN group is creating. File is the only item on the
menu bar. The selections available are End this window and End this SAS session.

menu entrdata;
item ’File’ menu=f;
menu f;

item ’End this window’ selection=endwdw;
item ’End this SAS session’ selection=endsas;
selection endwdw ’end’;
selection endsas ’bye’;

run;
quit;

Associating a Menu with a Window

The first group of statements defines the primary window for the application. These
statements are stored in the file that is referenced by the HRWDW fileref:

The WINDOW statement creates the HRSELECT window. MENU= associates the
PROCLIB.MENUS.SELECT.PMENU entry with this window.

data _null_;
window hrselect menu=proclib.menus.select
#4 @10 ’This application allows you to’
#6 @13 ’- Enter human resources data for’
#7 @15 ’one department at a time.’
#9 @13 ’- Print reports on human resources data for’
#10 @15 ’one department at a time.’
#12 @13 ’- End the application and return to the PGM window.’
#14 @13 ’- Exit from the SAS System.’
#19 @10 ’You must have the menus turned on.’;

698 Using a Data Entry Program � Chapter 33

The DISPLAY statement displays the window HRSELECT.

display hrselect;
run;

Primary window, HRSELECT.

Using a Data Entry Program
When the user selects Data_Entry from the menu bar in the HRSELECT window, a

pull-down menu is displayed. When the user selects one of the listed departments or
chooses to enter a different department, the following statements are invoked. These
statements are stored in the file that is referenced by the DE fileref.

The WINDOW statement creates the HRDATA window. MENU= associates the
PROCLIB.MENUS.ENTRDATA.PMENU entry with the window.

data proclib.deptxx;
window hrdata menu=proclib.menus.entrdata
#5 @10 ’Employee Number’
#8 @10 ’Salary’
#11 @10 ’Employee Name’
#5 @31 empno $4.
#8 @31 salary 10.
#11 @31 name $30.
#19 @10 ’Press ENTER to add the observation to the data set.’;

The PMENU Procedure � Printing a Program 699

The DISPLAY statement displays the HRDATA window.

display hrdata;
run;

The %INCLUDE statement recalls the statements in the file HRWDW. The statements in
HRWDW redisplay the primary window. See the HRSELECT window on page 698.

filename hrwdw ’external-file’;
%include hrwdw;
run;

The SELECTION and DIALOG statements in the PROC PMENU step modify the
DATA statement in this program so that the correct department name is used when the
data set is created. That is, if the user selects Other Departments and enters DEPT05,
then the DATA statement is changed by the command string in the DIALOG statement
to

data proclib.dept05;

Data entry window, HRDATA.

Printing a Program

When the user selects Print_Report from the menu bar, a pull-down menu is
displayed. When the user selects one of the listed departments or chooses to enter a
different department, the following statements are invoked. These statements are
stored in the external file referenced by the PRT fileref.

700 Example 5: Associating Menus with a FRAME Application � Chapter 33

PROC PRINTTO routes the output to an external file.

proc printto file=’external-file’ new;
run;

The xx’s are changed to the appropriate department number by the CHANGE command in the
SELECTION or DIALOG statement in the PROC PMENU step. PROC PRINT prints that data
set.

libname proclib ’SAS-data-library’;

proc print data=proclib.deptxx;
title ’Information for deptxx’;

run;

This PROC PRINTTO steps restores the default output destination. See Chapter 35, “The
PRINTTO Procedure,” on page 771 for documentation on PROC PRINTTO.

proc printto;
run;

The %INCLUDE statement recalls the statements in the file HRWDW. The statements in
HRWDW redisplay the primary window.

filename hrwdw ’external-file’;
%include hrwdw;
run;

Example 5: Associating Menus with a FRAME Application
Procedure features:

ITEM statement
MENU statement

Other features: SAS/AF software

This example creates menus for a FRAME entry and gives the steps necessary to
associate the menus with a FRAME entry from SAS/AF software.

Program

Declare the PROCLIB library. The PROCLIB library is used to store menu definitions.

libname proclib ’SAS-data-library’;

The PMENU Procedure � Program 701

Specify the catalog for storing menu definitions. Menu definitions will be stored in the
PROCLIB.MENUCAT catalog.

proc pmenu catalog=proclib.menucat;

Specify the name of the catalog entry. The MENU statement specifies FRAME as the name
of the catalog entry. The menus are stored in the catalog entry
PROCLIB.MENUS.FRAME.PMENU.

menu frame;

Design the menu bar. The ITEM statements specify the items in the menu bar. The value of
MENU= corresponds to a subsequent MENU statement.

item ’File’ menu=f;
item ’Help’ menu=h;

Design the File menu. The MENU statement equates to the MENU= option in a preceding
ITEM statement. The ITEM statements specify the selections that are available under File on
the menu bar.

menu f;
item ’Cancel’;
item ’End’;

Design the Help menu. The MENU statement equates to the MENU= option in a preceding
ITEM statement. The ITEM statements specify the selections that are available under Help on
the menu bar. The value of the SELECTION= option equates to a subsequent SELECTION
statement.

menu h;
item ’About the application’ selection=a;
item ’About the keys’ selection=k;

Specify commands for the Help menu. The SETHELP command specifies a HELP entry
that contains user-written information for this application. The semicolon that appears after the
HELP entry name enables the HELP command to be included in the string. The HELP
command invokes the HELP entry.

selection a ’sethelp proclib.menucat.app.help;help’;
selection k ’sethelp proclib.menucat.keys.help;help’;

run;
quit;

702 Steps to Associate Menus with a FRAME � Chapter 33

Steps to Associate Menus with a FRAME

1 In the BUILD environment for the FRAME entry, from the menu bar, select

View � Properties Window

2 In the Properties window, select the Value field for the pmenuEntry Attribute
Name. The Select An Entry window opens.

3 In the Select An Entry window, enter the name of the catalog entry that is
specified in the PROC PMENU step that creates the menus.

4 Test the FRAME as follows from the menu bar of the FRAME:

Build � Test

Notice that the menus are now associated with the FRAME.

Refer to Getting Started with the FRAME Entry: Developing Object-Oriented
Applications for more information on SAS programming with FRAME entries.

703

C H A P T E R

34
The PRINT Procedure

Overview: PRINT Procedure 703
What Does the PRINT Procedure Do? 703

Simple Listing Report 704

Customized Report 704

Syntax: PRINT Procedure 705

PROC PRINT Statement 707
BY Statement 715

ID Statement 716

PAGEBY Statement 717

SUM Statement 718

SUMBY Statement 719

VAR Statement 719
Results: Print Procedure 720

Procedure Output 720

Page Layout 720

Observations 720

Column Headings 722
Column Width 723

Examples: PRINT Procedure 723

Example 1: Selecting Variables to Print 723

Example 2: Customizing Text in Column Headers 727

Example 3: Creating Separate Sections of a Report for Groups of Observations 731
Example 4: Summing Numeric Variables with One BY Group 737

Example 5: Summing Numeric Variables with Multiple BY Variables 742

Example 6: Limiting the Number of Sums in a Report 748

Example 7: Controlling the Layout of a Report with Many Variables 754

Example 8: Creating a Customized Layout with BY Groups and ID Variables 761

Example 9: Printing All the Data Sets in a SAS Library 767

Overview: PRINT Procedure

What Does the PRINT Procedure Do?
The PRINT procedure prints the observations in a SAS data set, using all or some of

the variables. You can create a variety of reports ranging from a simple listing to a

704 Simple Listing Report � Chapter 34

highly customized report that groups the data and calculates totals and subtotals for
numeric variables.

Simple Listing Report
Output 34.1 illustrates the simplest kind of report that you can produce. The

statements that produce the output follow. Example 1 on page 723 creates the data set
EXPREV.

options nodate pageno=1 linesize=64 pagesize=60;

proc print data=exprev;
run;

Output 34.1 Simple Listing Report Produced with PROC PRINT

The SAS System 1

Obs Region State Month Expenses Revenues

1 Southern GA JAN95 2000 8000
2 Southern GA FEB95 1200 6000
3 Southern FL FEB95 8500 11000
4 Northern NY FEB95 3000 4000
5 Northern NY MAR95 6000 5000
6 Southern FL MAR95 9800 13500
7 Northern MA MAR95 1500 1000

Customized Report
The following HTML report is a customized report that is produced by PROC PRINT

using ODS. The statements that create this report
� create HTML output
� customize the appearance of the report
� customize the title and the column headings
� place dollar signs and commas in numeric output
� selectively include and control the order of variables in the report
� group the data by JobCode
� sum the values for Salary for each job code and for all job codes.

For an explanation of the program that produces this report, see “Program: Creating
an HTML Report with the STYLE Option” on page 765.

The PRINT Procedure � Syntax: PRINT Procedure 705

Display 34.1 Customized Report Produced by PROC PRINT Using ODS

Syntax: PRINT Procedure
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
ODS Table Name: Print
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 57 for
details. You can also use any global statements. See “Global Statements” on page 18 for
a list.

PROC PRINT <option(s)>;
BY <DESCENDING> variable-1 <…<DESCENDING> variable-n>

<NOTSORTED>;
PAGEBY BY-variable;
SUMBY BY-variable;

706 Syntax: PRINT Procedure � Chapter 34

ID variable(s) <option>;
SUM variable(s) <option>;
VAR variable(s) <option>;

To do this Use this statement

Produce a separate section of the report for each BY
group

BY

Identify observations by the formatted values of the
variables that you list instead of by observation
numbers

ID

Control page ejects that occur before a page is full PAGEBY

Limit the number of sums that appear in the report SUMBY

Total values of numeric variables SUM

Select variables that appear in the report and
determine their order

VAR

The PRINT Procedure � PROC PRINT Statement 707

PROC PRINT Statement

PROC PRINT <option(s)>;

To do this Use this option

Specify text for the HTML contents link to the output CONTENTS=

Specify the input data set DATA=

Control general format

Write a blank line between observations DOUBLE

Print the number of observations in the data set,
in BY groups, or both, and specify explanatory
text to print with the number

N=

Suppress the column in the output that
identifies each observation by number

NOOBS

Specify a column header for the column that
identifies each observation by number

OBS=

Round unformatted numeric values to two
decimal places

ROUND

Control page format

Format the rows on a page ROWS=

Use each variable’s formatted width as its
column width on all pages

WIDTH=UNIFORM

Control column format

Control the orientation of the column headings HEADING=

Use variables’ labels as column headings LABEL or SPLIT=

Specify the split character, which controls line
breaks in column headings

SPLIT=

Specify one or more style elements for the
Output Delivery System to use for different
parts of the report

STYLE

Determine the column width for each variable WIDTH=

Options

CONTENTS=link-text
specifies the text for the links in the HTML contents file to the output produced by
the PROC PRINT statement. For information on HTML output, see SAS Output
Delivery System: User’s Guide.
Restriction: CONTENTS= does not affect the HTML body file. It affects only the

HTML contents file.

708 PROC PRINT Statement � Chapter 34

DATA=SAS-data-set
specifies the SAS data set to print.

Main discussion: “Input Data Sets” on page 19

DOUBLE
writes a blank line between observations.
Alias: D

Restriction: This option has no effect on the HTML output.

Featured in: Example 1 on page 723

HEADING=direction
controls the orientation of the column headings, where direction is one of the
following:

HORIZONTAL
prints all column headings horizontally.

Alias: H

VERTICAL
prints all column headings vertically.

Alias: V
Default: Headings are either all horizontal or all vertical. If you omit HEADING=,

PROC PRINT determines the direction of the column headings as follows:

� If you do not use LABEL, spacing dictates whether column headings are
vertical or horizontal.

� If you use LABEL and at least one variable has a label, all headings are
horizontal.

LABEL
uses variables’ labels as column headings.

Alias: L

Default: If you omit LABEL, PROC PRINT uses the variable’s name as the column
heading even if the PROC PRINT step contains a LABEL statement. If a variable
does not have a label, PROC PRINT uses the variable’s name as the column
heading.

Interaction: By default, if you specify LABEL and at least one variable has a label,
PROC PRINT prints all column headings horizontally. Therefore, using LABEL
may increase the number of pages of output. (Use HEADING=VERTICAL in the
PROC PRINT statement to print vertical column headings.)

Interaction: PROC PRINT sometimes conserves space by splitting labels across
multiple lines. Use SPLIT= in the PROC PRINT statement to control where these
splits occur. You do not need to use LABEL if you use SPLIT=.

Tip: To create a blank column header for a variable, use this LABEL statement in
your PROC PRINT step:

label variable-name=’00’x;

See also: For information on using the LABEL statement to create temporary
labels in procedures see Chapter 3, “Statements with the Same Function in
Multiple Procedures,” on page 57.

For information on using the LABEL statement in a DATA step to create
permanent labels, see the section on statements in SAS Language Reference:
Dictionary.

Featured in: Example 3 on page 731

The PRINT Procedure � PROC PRINT Statement 709

Note: The SAS system option LABEL must be in effect in order for any procedure
to use labels. For more information see the section on system options in SAS
Language Reference: Dictionary �

N<=“string-1” <“string-2”>>
prints the number of observations in the data set, in BY groups, or both and specifies
explanatory text to print with the number.

If you use the N option … PROC PRINT …

with neither a BY nor a SUM statement prints the number of observations in the data set
at the end of the report and labels the number
with the value of string-1.

with a BY statement prints the number of observations in the BY group
at the end of each BY group and labels the number
with the value of string-1.

with a BY statement and a SUM statement prints the number of observations in the BY group
at the end of each BY group and prints the
number of observations in the data set at the end
of the report. The numbers for BY groups are
labeled with string-1; the number for the entire
data set is labeled with string-2.

Featured in: Example 2 on page 727 (alone)
Example 3 on page 731 (with a BY statement)
Example 4 on page 737 (with a BY statement and a SUM statement)

NOOBS
suppresses the observation number in the output.
Featured in: Example 3 on page 731

OBS=“column-header”
specifies a column header for the column that identifies each observation by number.
Tip: OBS= honors the split character (see the discussion of SPLIT= on page 710).
Featured in: Example 2 on page 727

ROUND
rounds unformatted numeric values to two decimal places. (Formatted values are
already rounded by the format to the specified number of decimal places.) For both
formatted and unformatted variables, PROC PRINT uses these rounded values to
calculate any sums in the report.

If you omit ROUND, PROC PRINT adds the actual values of the rows to obtain
the sum even though it displays the formatted (rounded) values. Any sums are also
rounded by the format, but they include only one rounding error, that of rounding the
sum of the actual values. The ROUND option, on the other hand, rounds values
before summing them, so there may be multiple rounding errors. The results without
ROUND are more accurate, but ROUND is useful for published reports where it is
important for the total to be the sum of the printed (rounded) values.

Be aware that the results from PROC PRINT with the ROUND option may differ
from the results of summing the same data with other methods such as PROC
MEANS or the DATA step. Consider a simple case in which

� the data set contains three values for X: .003, .004, and .009.
� X has a format of 5.2.

710 PROC PRINT Statement � Chapter 34

Depending on how you calculate the sum, you can get three different answers:
0.02, 0.01, and 0.016. The following figure shows the results of calculating the sum
with PROC PRINT (without and with the ROUND option) and PROC MEANS.

Figure 34.1 Three Methods of Summing Variables

OBS X

1 0.00
2 0.00
3 0.01

=====
0.02

PROC PRINT without PROC PRINT with
Actual Values the ROUND option the ROUND option PROC MEANS

.003

.004

.009
=====
.016

Analysis Variable : X

Sum

0.0160000

OBS X

1 0.00
2 0.00
3 0.01

=====
0.01

===

===

| |
| |
| |
| |
| |
| |
| |
| |
| |

| |
| |
| |
| |
| |
| |
| |
| |
| |

| |
| |
| |
| |
| |
| |
| |
| |
| |

Notice that the sum produced without the ROUND option (.02) is closer to the
actual result (0.16) than the sum produced with ROUND (0.01). However, the sum
produced with ROUND reflects the numbers displayed in the report.
Alias: R

CAUTION:
Do not use ROUND with PICTURE formats. ROUND is for use with numeric values.
SAS procedures treat variables that have picture formats as character variables.
Using ROUND with such variables may lead to unexpected results. �

ROWS=page-format
formats rows on a page. Currently, PAGE is the only value that you can use for
page-format:

PAGE
prints only one row of variables for each observation per page. When you use
ROWS=PAGE, PROC PRINT does not divide the page into sections; it prints as
many observations as possible on each page. If the observations do not fill the last
page of the output, PROC PRINT divides the last page into sections and prints all
the variables for the last few observations.

Restriction: Physical page size does not mean the same thing in HTML output as it
does in traditional procedure output. Therefore, HTML output from PROC PRINT
appears the same whether or not you use ROWS=.

Tip: The PAGE value can reduce the number of pages in the output if the data set
contains large numbers of variables and observations. However, if the data set
contains a large number of variables but few observations, the PAGE value can
increase the number of pages in the output.

See also: “Page Layout” on page 720 for discussion of the default layout.
Featured in: Example 7 on page 754

SPLIT=’split-character’
specifies the split character, which controls line breaks in column headers. It also
uses labels as column headers. PROC PRINT breaks a column heading when it
reaches the split character and continues the header on the next line. The split

The PRINT Procedure � PROC PRINT Statement 711

character is not part of the column heading although each occurrence of the split
character counts toward the 256-character maximum for a label.

Alias: S=

Interaction: You do not need to use both LABEL and SPLIT= because SPLIT=
implies the use of labels.

Interaction: The OBS= option honors the split character. (See the discussion of
OBS= on page 709.)

Featured in: Example 2 on page 727

Note: PROC PRINT does not split labels of BY variables in the heading preceding
each BY group even if you specify SPLIT=. Instead, PROC PRINT replaces the split
character with a blank. �

STYLE

<(location(s))>=<style-element-name><[style-attribute-specification(s)]>
specifies the style element to use for the specified locations in the report.

Note: You can use braces ({ and }) instead of square brackets ([and]). �

location
identifies the part of the report that the STYLE option affects. The following table
shows the available locations and the other statements in which you can specify
them.

Note: Style specifications in a statement other than the PROC PRINT
statement override the same style specification in the PROC PRINT statement.
However, style attributes that you specify in the PROC PRINT statement are
inherited, provided that you do not override the style with style specifications in
another statement. For instance, if you specify a blue background and a white
foreground for all column headers in the PROC PRINT statement, and you specify
a gray background for the column headers of a variable in the VAR statement, the
background for that particular column header is gray, and the foreground is white
(as specified in the PROC PRINT statement). �

Table 34.1 Specifying Locations in the STYLE Option

This location Affects this part of the report And can also be specified for
individual items in this
statement

BYLABEL the label for the BY variable
on the line containing the
SUM totals

none

DATA the cells of all columns VAR

ID

SUM

GRANDTOTAL the SUM line containing the
grand totals for the whole
report

SUM

HEADER all column headers VAR

ID

SUM

712 PROC PRINT Statement � Chapter 34

This location Affects this part of the report And can also be specified for
individual items in this
statement

N N= table and contents none

OBS the data in the OBS column none

OBSHEADER the header of the OBS
column

none

TABLE the structural part of the
report - that is, the
underlying table used to set
things like the width of the
border and the space
between cells

none

TOTAL the SUM line containing
totals for each BY group

SUM

For your convenience and for consistency with other procedures, the following
table shows aliases for the different locations.

Table 34.2 Aliases for Locations

Location Aliases

BYLABEL BYSUMLABEL

BYLBL

BYSUMLBL

DATA COLUMN

COL

GRANDTOTAL GRANDTOT

GRAND

GTOTAL

GTOT

HEADER HEAD

HDR

N none

OBS OBSDATA

OBSCOLUMN

OBSCOL

OBSHEADER OBSHEAD

OBSHDR

TABLE REPORT

TOTAL TOT

BYSUMLINE

BYLINE

BYSUM

The PRINT Procedure � PROC PRINT Statement 713

style-element-name
is the name of a style element that is part of a style definition that is registered
with the Output Delivery System. SAS provides some style definitions. Users can
create their own style definitions with PROC TEMPLATE.

When style elements are processed, more specific style elements override less
specific style elements.

Default: The following table shows the default style element for each location.

Table 34.3 The Default Style Element for Each Location in PROC PRINT

Location Default style element

BYLABEL Header

DATA Data (for all but ID statement)

RowHeader (for ID statement)

GRANDTOTAL Header

HEADER Header

N NoteContent

OBS RowHeader

OBSHEADER Header

TABLE Table

TOTAL Header

style-attribute-specification
describes the style attribute to change. Each style-attribute-specification has this
general form:

style-attribute-name=style-attribute-value
You can set these style attributes in the TABLE location:

BACKGROUND= FONT_WIDTH=*

BACKGROUNDIMAGE= FOREGROUND=*

BORDERCOLOR= FRAME=

BORDERCOLORDARK= HTMLCLASS=

BORDERCOLORLIGHT= JUST=

BORDERWIDTH= OUTPUTWIDTH=

CELLPADDING= POSTHTML=

CELLSPACING= POSTIMAGE=

FONT=* POSTTEXT=

FONT_FACE=* PREHTML=

FONT_SIZE=* PREIMAGE=

FONT_STYLE=* PRETEXT=

FONT_WEIGHT=* RULES=

714 PROC PRINT Statement � Chapter 34

*When you use these attributes, they affect only the text that is specified with the
PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To alter the
foreground color or the font for the text that appears in the table, you must set the
corresponding attribute in a location that affects the cells rather than the table.

You can set these style attributes in all locations other than TABLE:

ASIS= FONT_WIDTH=

BACKGROUND= HREFTARGET=

BACKGROUNDIMAGE= HTMLCLASS=

BORDERCOLOR= JUST=

BORDERCOLORDARK= NOBREAKSPACE=

BORDERCOLORLIGHT= POSTHTML=

BORDERWIDTH= POSTIMAGE=

CELLHEIGHT= POSTTEXT=

CELLWIDTH= PREHTML=

FLYOVER= PREIMAGE=

FONT= PRETEXT=

FONT_FACE= PROTECTSPECIALCHARS=

FONT_SIZE= TAGATTR=

FONT_STYLE= URL=

FONT_WEIGHT= VJUST=

For information about style attributes, see DEFINE STYLE statement in SAS
Output Delivery System: User’s Guide.

Restriction: This option affects all destinations except Listing and Output.

UNIFORM
See WIDTH=UNIFORM on page 715.

WIDTH=column-width
determines the column width for each variable. The value of column-width must be
one of the following:

FULL
uses a variable’s formatted width as the column width. If the variable does not
have a format that explicitly specifies a field width, PROC PRINT uses the default
width. For a character variable, the default width is the length of the variable.
For a numeric variable, the default width is 12. When you use WIDTH=FULL, the
column widths do not vary from page to page.

Tip: Using WIDTH=FULL can reduce execution time.

MINIMUM
uses for each variable the minimum column width that accommodates all values of
the variable.

Alias: MIN

The PRINT Procedure � BY Statement 715

UNIFORM
uses each variable’s formatted width as its column width on all pages. If the
variable does not have a format that explicitly specifies a field width, PROC
PRINT uses the widest data value as the column width. When you specify
WIDTH=UNIFORM, PROC PRINT normally needs to read the data set twice.
However, if all the variables in the data set have formats that explicitly specify a
field width (for example, BEST12. but not BEST.), PROC PRINT reads the data
set only once.

Alias: U

Tip: If the data set is large and you want a uniform report, you can save computer
resources by using formats that explicitly specify a field width so that PROC
PRINT reads the data only once.

Tip: WIDTH=UNIFORM is the same as UNIFORM.

Restriction: When not all variables have formats that explicitly specify a width,
you cannot use WIDTH=UNIFORM with an engine that supports concurrent
access if another user is updating the data set at the same time.

UNIFORMBY
formats all columns uniformly within a BY group, using each variable’s formatted
width as its column width. If the variable does not have a format that explicitly
specifies a field width, PROC PRINT uses the widest data value as the column
width.

Alias: UBY

Restriction: You cannot use UNIFORMBY with a sequential data set.

Default: If you omit WIDTH= and do not specify the UNIFORM option, PROC
PRINT individually constructs each page of output. The procedure analyzes the
data for a page and decides how best to display them. Therefore, column widths
may differ from one page to another.

Tip: Column width is affected not only by variable width but also by the length of
column headings. Long column headings may lessen the usefulness of WIDTH=.

See also: For a discussion of default column widths, see “Column Width” on page
723.

BY Statement

Produces a separate section of the report for each BY group.

Main discussion: “BY” on page 58

Featured in: Example 3 on page 731, Example 4 on page 737, Example 5 on page 742,
Example 6 on page 748, and Example 8 on page 761

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>

<NOTSORTED>;

716 ID Statement � Chapter 34

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables
that you specify, or they must be indexed appropriately. Variables in a BY statement
are called BY variables.

Options

DESCENDING
specifies that the data set is sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The data are grouped in another way, such as chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, the procedure treats each contiguous set as a separate BY group.

Using the BY Statement with an ID Statement
PROC PRINT uses a special layout if all BY variables appear in the same order at

the beginning of the ID statement. (See Example 8 on page 761.)

Using the BY Statement with the NOBYLINE Option
If you use the BY statement with the SAS system option NOBYLINE, which

suppresses the BY line that normally appears in output produced with BY-group
processing, PROC PRINT always starts a new page for each BY group. This behavior
ensures that if you create customized BY lines by putting BY-group information in the
title and suppressing the default BY lines with NOBYLINE, the information in the
titles matches the report on the pages.

ID Statement

Identifies observations by using the formatted values of the variables that you list instead of by
using observation numbers.

Featured in: Example 7 on page 754 and Example 8 on page 761

ID variable(s) </ STYLE <(location(s))>
=<style-element-name><[style-attribute-specification(s)]>>;

The PRINT Procedure � PAGEBY Statement 717

Required Arguments

variable(s)
specifies one or more variables to print instead of the observation number at the
beginning of each row of the report.

Restriction: If the ID variables occupy so much space that no room remains on the
line for at least one other variable, PROC PRINT writes a warning to the SAS log
and does not treat all ID variables as ID variables.

Interaction: If a variable in the ID statement also appears in the VAR statement,
the output contains two columns for that variable.

Options

STYLE <(location(s))>=<style-element-name><[style-attribute-specification(s)]>
specifies the style element to use for ID columns created with the ID statement. For
information about the arguments of this option and how it is used, see STYLE on
page 711 in the PROC PRINT statement.

Tip: To specify different style elements for different ID columns, use a separate ID
statement for each variable and add a different STYLE option to each ID
statement.

Using the BY Statement with an ID Statement
PROC PRINT uses a special layout if all BY variables appear in the same order at

the beginning of the ID statement. (See Example 8 on page 761.)

PAGEBY Statement

Controls page ejects that occur before a page is full.

Requirements: BY statement

Featured in: Example 3 on page 731

PAGEBY BY-variable;

Required Arguments

BY-variable
identifies a variable appearing in the BY statement in the PROC PRINT step. If the
value of the BY variable changes, or if the value of any BY variable that precedes it
in the BY statement changes, PROC PRINT begins printing a new page.

718 SUM Statement � Chapter 34

Interaction: If you use the BY statement with the SAS system option NOBYLINE,
which suppresses the BY line that normally appears in output produced with
BY-group processing, PROC PRINT always starts a new page for each BY group.
This behavior ensures that if you create customized BY lines by putting BY-group
information in the title and suppressing the default BY lines with NOBYLINE, the
information in the titles matches the report on the pages. (See “Creating Titles
That Contain BY-Group Information” on page 20.)

SUM Statement

Totals values of numeric variables.

Featured in: Example 4 on page 737, Example 5 on page 742, Example 6 on page 748,
and Example 8 on page 761

SUM variable(s) </ STYLE <(location(s))>
=<style-element-name><[style-attribute-specification(s)]>>;

Required Arguments

variable(s)
identifies the numeric variables to total in the report.

Option

STYLE <(location(s))>=<style-element-name><[style-attribute-specification(s)]>
specifies the style element to use for cells containing sums that are created with the
SUM statement. For information about the arguments of this option and how it is
used, see STYLE on page 711 in the PROC PRINT statement.

Tip: To specify different style elements for different cells reporting sums, use a
separate SUM statement for each variable and add a different STYLE option to
each SUM statement.

Tip: If the STYLE option is used in multiple SUM statements that affect the same
location, the STYLE option in the last SUM statement will be used.

Using the SUM and BY Statements Together
When you use a SUM statement and a BY statement with one BY variable, PROC

PRINT sums the SUM variables for each BY group that contains more than one
observation and totals them over all BY groups (see Example 4 on page 737).

When you use a SUM statement and a BY statement with multiple BY variables,
PROC PRINT sums the SUM variables for each BY group that contains more than one
observation, just as it does if you use only one BY variable. However, it provides sums
only for those BY variables whose values change when the BY group changes. (See
Example 5 on page 742.)

The PRINT Procedure � VAR Statement 719

Note: When the value of a BY variable changes, the SAS System considers that the
values of all variables listed after it in the BY statement also change. �

SUMBY Statement

Limits the number of sums that appear in the report.

Requirements: BY statement
Featured in: Example 6 on page 748

SUMBY BY-variable;

Required Arguments

BY-variable
identifies a variable that appears in the BY statement in the PROC PRINT step. If
the value of the BY variable changes, or if the value of any BY variable that precedes
it in the BY statement changes, PROC PRINT prints the sums of all variables listed
in the SUM statement.

What Variables Are Summed?
If you use a SUM statement, PROC PRINT subtotals only the SUM variables.

Otherwise, PROC PRINT subtotals all the numeric variables in the data set except
those listed in the ID and BY statements.

VAR Statement

Selects variables that appear in the report and determines their order.

Tip: If you omit the VAR statement, PROC PRINT prints all variables in the data set.
Featured in: Example 1 on page 723 and Example 8 on page 761

VAR variable(s) </ STYLE <(location(s))>
=<style-element-name><[style-attribute-specification(s)]>>;

720 Results: Print Procedure � Chapter 34

Required Arguments

variable(s)
identifies the variables to print. PROC PRINT prints the variables in the order that
you list them.
Interaction: In the PROC PRINT output, variables that are listed in the ID

statement precede variables that are listed in the VAR statement. If a variable in
the ID statement also appears in the VAR statement, the output contains two
columns for that variable.

Option

STYLE <(location(s))>=<style-element-name><[style-attribute-specification(s)]>
specifies the style element to use for all columns that are created by a VAR
statement. For information about the arguments of this option and how it is used,
see STYLE on page 711 in the PROC PRINT statement.
Tip: To specify different style elements for different columns, use a separate VAR

statement to create a column for each variable and add a different STYLE option
to each VAR statement.

Results: Print Procedure

Procedure Output
PROC PRINT always produces a printed report. You control the appearance of the

report with statements and options. See “Examples: PRINT Procedure ”on page 723 for
a sampling of the types of reports that the procedure produces.

Page Layout

Observations
By default, PROC PRINT uses an identical layout for all observations on a page of

output. First, it attempts to print observations on a single line (see Figure 34.2 on page
721).

The PRINT Procedure � Page Layout 721

Figure 34.2 Printing Observations on a Single Line

1
Obs Var_1 Var_2 Var_3

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

If PROC PRINT cannot fit all the variables on a single line, it splits the observations
into two or more sections and prints the observation number or the ID variables at the
beginning of each line. For example, in Figure 34.3 on page 721, PROC PRINT prints
the values for the first three variables in the first section of each page and the values
for the second three variables in the second section of each page.

Figure 34.3 Splitting Observations into Multiple Sections on One Page

2
Obs Var_1 Var_2 Var_3

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

Obs Var_4 Var_5 Var_6

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

1
Obs Var_1 Var_2 Var_3

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

Obs Var_4 Var_5 Var_6

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

If PROC PRINT cannot fit all the variables on one page, the procedure prints
subsequent pages with the same observations until it has printed all the variables. For
example, in Figure 34.4 on page 722, PROC PRINT uses the first two pages to print
values for the first three observations and the second two pages to print values for the
rest of the observations.

722 Page Layout � Chapter 34

Figure 34.4 Splitting Observations across Multiple Pages

2

Obs Var_7 Var_8 Var_9

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

Obs Var_10 Var_11 Var_12

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

1

Obs Var_1 Var_2 Var_3

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

Obs Var_4 Var_5 Var_6

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

4

Obs Var_7 Var_8 Var_9

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

Obs Var_10 Var_11 Var_12

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

3

Obs Var_1 Var_2 Var_3

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

Obs Var_4 Var_5 Var_6

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

Note: You can alter the page layout with the ROWS= option in the PROC PRINT
statement (see the discussion of ROWS= on page 710). �

Note: PROC PRINT may produce slightly different output if the data set is not
RADIX addressable. Version 6 compressed files are not RADIX addressable, while,
beginning with Version 7, compressed files are RADIX addressable. (The integrity of the
data is not compromised; the procedure simply numbers the observations differently.) �

Column Headings
By default, spacing dictates whether PROC PRINT prints column headings

horizontally or vertically. Figure 34.2 on page 721, Figure 34.3 on page 721, and Figure
34.4 on page 722 all illustrate horizontal headings. Figure 34.5 on page 722 illustrates
vertical headings.

Figure 34.5 Using Vertical Headings

1
V V V
a a a

O r r r
b – – –
s 1 2 3

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

Note: If you use LABEL and at least one variable has a label, PROC PRINT prints
all column headings horizontally unless you specify HEADING=VERTICAL. �

The PRINT Procedure � Example 1: Selecting Variables to Print 723

Column Width
By default, PROC PRINT uses a variable’s formatted width as the column width.

(The WIDTH= option overrides this default behavior.) If the variable does not have a
format that explicitly specifies a field width, PROC PRINT uses the widest data value
for that variable on that page as the column width.

If the formatted value of a character variable or the data width of an unformatted
character variable exceeds the linesize minus the length of all the ID variables, PROC
PRINT may truncate the value. Consider the following situation:

� The linesize is 80.
� IdNumber is a character variable with a length of 10. It is used as an ID variable.
� State is a character variable with a length of 2. It is used as an ID variable.
� Comment is a character variable with a length of 200.

When PROC PRINT prints these three variables on a line, it uses 14 print positions
for the two ID variables and the space after each one. This leaves 80–14, or 66, print
positions for COMMENT. Longer values of COMMENT are truncated.

WIDTH= controls the column width.

Note: Column width is affected not only by variable width but also by the length of
column headings. Long column headings may lessen the usefulness of WIDTH=. �

Examples: PRINT Procedure

Example 1: Selecting Variables to Print

Procedure features:
PROC PRINT statement options:

DOUBLE
STYLE

VAR statement
Other Features:

ODS HTML statement

This example
� selects three variables for the report
� uses variable labels as column headings
� double spaces between rows of the report.

724 Program: Creating a Listing Report � Chapter 34

Program: Creating a Listing Report

Set the SAS system options.

options nodate pageno=1 linesize=70 pagesize=60;

Create the input data set. EXPREV contains information about a company’s monthly
expenses and revenues for two regions of the United States.

data exprev;
input Region $ State $ Month monyy5.

Expenses Revenues;
format month monyy5.;
datalines;

Southern GA JAN95 2000 8000
Southern GA FEB95 1200 6000
Southern FL FEB95 8500 11000
Northern NY FEB95 3000 4000
Northern NY MAR95 6000 5000
Southern FL MAR95 9800 13500
Northern MA MAR95 1500 1000
;

Print the data set EXPREV. DOUBLE inserts a blank line between observations. (This option
has no effect on the HTML output.)

proc print data=exprev double;

Select the variables to include in the report. The VAR statement creates columns for
Month, State, and Expenses, in that order.

var month state expenses;

Specify a title. The TITLE statement specifies a title for the report.

title ’Monthly Expenses for Offices in Each State’;
run;

The PRINT Procedure � Program: Creating an HTML Report 725

Output: Listing

Output 34.2 Selecting Variables: Listing Output

By default, PROC PRINT identifies each observation by number under the column heading Obs.

Monthly Expenses for Offices in Each State 1

Obs Month State Expenses

1 JAN95 GA 2000

2 FEB95 GA 1200

3 FEB95 FL 8500

4 FEB95 NY 3000

5 MAR95 NY 6000

6 MAR95 FL 9800

7 MAR95 MA 1500

Program: Creating an HTML Report
You can easily create HTML output by adding ODS statements. In the following

example, ODS statements were added to produce HTML output.

options nodate pageno=1 linesize=70 pagesize=60;

Create HTML output and specify the file to store the output in. The ODS HTML
statement opens the HTML destination. FILE= specifies the external file that you want to
contain the HTML output.

ods html file=’your_file.html’;

proc print data=exprev double;

var month state expenses;
title ’Monthly Expenses for Offices in Each State’;

run;

Close the HTML destination. The ODS HTML CLOSE statement closes the HTML
destination.

ods html close;

726 Output: HTML � Chapter 34

Output: HTML

Display 34.2 Selecting Variables: Default HTML Output

Program: Creating an HTML Report with the STYLE Option
You can go a step further and add more formatting to your HTML output. The

following example uses the STYLE option to add shading to your HTML report.

options nodate pageno=1 linesize=70 pagesize=60;

ods html file=’your_file.html’;

Create stylized HTML output. The first STYLE option specifies that the column headers be
written in white italic font.

The second STYLE option specifies that SAS change the color of the background of the
observations column to red.

Proc Print data=exprev double
style(HEADER) = {font_style=italic foreground = white}
style(OBS) = {background=red};

var month state expenses;

title ’Monthly Expenses for Offices in Each State’;

run;

Close the HTML destination. The ODS HTML CLOSE statement closes the HTML
destination.

ods html close;

The PRINT Procedure � Program: Creating a Listing Report 727

Output: HTML Output with Styles

Display 34.3 Selecting Variables: HTML Output Using Styles

Example 2: Customizing Text in Column Headers

Procedure features:
PROC PRINT statement options:

N
OBS=
SPLIT=
STYLE

VAR statement option:
STYLE

Other features:
LABEL statement
ODS PDF statement

Data set: EXPREV on page 724

This example

� customizes and underlines the text in column headings for variables

� customizes the column header for the column that identifies observations by
number

� shows the number of observations in the report
� writes the values of Expenses with commas.

Program: Creating a Listing Report

options nodate pageno=1 linesize=70 pagesize=60;

728 Program: Creating a Listing Report � Chapter 34

Print the report and define the column headings. SPLIT= identifies the asterisk as the
character that starts a new line in column headers. The N option prints the number of
observations at the end of the report. OBS= specifies the column header for the column that
identifies each observation by number. The split character (*) starts a new line in the column
heading. Therefore, the equal signs (=) in the value of OBS= underline the column header.

proc print data=exprev split=’*’ n obs=’Observation*Number*===========’;

Select the variables to include in the report. The VAR statement creates columns for
Month, State, and Expenses, in that order.

var month state expenses;

Assign the variables’ labels as column headings. The LABEL statement associates a label
with each variable for the duration of the PROC PRINT step. When you use SPLIT= in the
PROC PRINT statement, the procedure uses labels for column headers. The split character (*)
starts a new line in the column heading. Therefore, the equal signs (=) in the labels underline
the column headers.

label month=’Month**=====’
state=’State**=====’
expenses=’Expenses**========’;

Specify a title for the report, and format any variable containing numbers. The
FORMAT statement assigns a format to use for Expenses in the report. The TITLE statement
specifies a title.

format expenses comma10.;
title ’Monthly Expenses for Offices in Each State’;

run;

The PRINT Procedure � Program: Creating a PDF Report 729

Output: Listing

Output 34.3 Customizing Text in Column Headers: Listing Output

Monthly Expenses for Offices in Each State 1

Observation Month State Expenses

Number

=========== ===== ===== ========

1 JAN95 GA 2,000

2 FEB95 GA 1,200

3 FEB95 FL 8,500

4 FEB95 NY 3,000

5 MAR95 NY 6,000

6 MAR95 FL 9,800

7 MAR95 MA 1,500

N = 7

Program: Creating a PDF Report
You can easily create PDF output by adding a few ODS statements. In the following

example, ODS statements were added to produce PDF output.

options nodate pageno=1 linesize=70 pagesize=60;

Create PDF output and specify the file to store the output in. The ODS PDF statement
opens the PDF destination and creates PDF output. The FILE= argument specifies your
external file that contains the PDF output.

ods pdf file=’your_file.pdf’;

proc print data=exprev split=’*’ n obs=’Observation*Number*===========’;
var month state expenses;
label month=’Month**=====’

state=’State**=====’
expenses=’Expenses**========’;

format expenses comma10.;

title ’Monthly Expenses for Offices in Each State’;
run;

Close the PDF destination. The ODS PDF CLOSE statement closes the PDF destination.

ods pdf close;

730 Output: PDF � Chapter 34

Output: PDF

Display 34.4 Customizing Text in Column Headers: Default PDF Output

Program: Creating a PDF Report with the STYLE Option
options nodate pageno=1 linesize=70 pagesize=60;

ods pdf file=’your_file.pdf’;

Create stylized PDF output. The first STYLE option specifies that the background color of
the cell containing the value for N be changed to blue and that the font style be changed to
italic. The second STYLE option specifies that the background color of the observation column,
the observation header, and the other variable’s headers be changed to white.

proc print data=exprev split=’*’ n obs=’Observation*Number*===========’
style(N) = {font_style=italic background= blue}
Style(HEADER OBS OBSHEADER) = {background=white};

Create stylized PDF output. The STYLE option changes the color of the cells containing
data to gray.

var month state expenses / style (DATA)= [background = gray] ;
label month=’Month**=====’

state=’State**=====’
expenses=’Expenses**========’;
format expenses comma10.;

The PRINT Procedure � Example 3: Creating Separate Sections of a Report for Groups of Observations 731

title ’Monthly Expenses for Offices in Each State’;
run;

Close the PDF destination. The ODS PDF CLOSE statement closes the PDF destination.

ods pdf close;

Output: PDF Report with Styles

Display 34.5 Customizing Text in Column Headers: PDF Output Using Styles

Example 3: Creating Separate Sections of a Report for Groups of
Observations

Procedure features:
PROC PRINT statement options:

LABEL
N=
NOOBS
STYLE

BY statement
PAGEBY statement

732 Program: Creating a Listing Report � Chapter 34

Other features:
SORT procedure
LABEL statement
ODS RTF statement

Data set: EXPREV on page 724

This example

� suppresses the printing of observation numbers at the beginning of each row

� presents the data for each state in a separate section of the report

� begins a new page for each region.

Program: Creating a Listing Report

options pagesize=60 pageno=1 nodate linesize=70;

Sort the EXPREV data set. PROC SORT sorts the observations by Region, State, and Month.

proc sort data=exprev;
by region state month;

run;

Print the report, specify the total number of observations in each BY group, and
suppress the printing of observation numbers. N= prints the number of observations in a
BY group at the end of that BY group. The explanatory text that the N= option provides
precedes the number. NOOBS suppresses the printing of observation numbers at the beginning
of the rows. LABEL uses variables’ labels as column headings.

proc print data=exprev n=’Number of observations for the state: ’
noobs label;

Specify the variables to include in the report. The VAR statement creates columns for
Month, Expenses, and Revenues, in that order.

var month expenses revenues;

Create a separate section for each region of the state and specify page breaks for each
BY group of Region. The BY statement produces a separate section of the report for each BY
group and prints a heading above each one. The PAGEBY statement starts a new page each
time the value of Region changes.

by region state;
pageby region;

The PRINT Procedure � Output: Listing 733

Establish the column headings. The LABEL statement associates a label with the variable
Region for the duration of the PROC PRINT step. When you use the LABEL option in the
PROC PRINT statement, the procedure uses labels for column headings.

label region=’Sales Region’;

Format the columns that contain numbers and specify a title. The FORMAT statement
assigns a format to Expenses and Revenues for this report. The TITLE statement specifies a
title.

format revenues expenses comma10.;
title ’Sales Figures Grouped by Region and State’;

run;

Output: Listing

Output 34.4 Creating Separate Sections of a Report for Groups of Observations: Listing Output

Sales Figures Grouped by Region and State 1

------------------- Sales Region=Northern State=MA -------------------

Month Expenses Revenues

MAR95 1,500 1,000

Number of observations for the state: 1

------------------- Sales Region=Northern State=NY -------------------

Month Expenses Revenues

FEB95 3,000 4,000
MAR95 6,000 5,000

Number of observations for the state: 2

734 Program: Creating an RTF Report � Chapter 34

Sales Figures Grouped by Region and State 2

------------------- Sales Region=Southern State=FL -------------------

Month Expenses Revenues

FEB95 8,500 11,000
MAR95 9,800 13,500

Number of observations for the state: 2

------------------- Sales Region=Southern State=GA -------------------

Month Expenses Revenues

JAN95 2,000 8,000
FEB95 1,200 6,000

Number of observations for the state: 2

Program: Creating an RTF Report

options pagesize=60 pageno=1 nodate linesize=70;

Create output for Microsoft Word and specify the file to store the output in. The ODS
RTF statement opens the RTF destination and creates output formatted for Microsoft Word. The
FILE= option specifies your external file that contains the RTF output. The STARTPAGE=NO
option specifies that no new pages be inserted within the PRINT procedure, even if new pages
are requested by the procedure code.

ods rtf startpage=no file=’your_file.rtf’;

proc sort data=exprev;
by region state month;
run;

proc print data=exprev n=’Number of observations for the state: ’
noobs label;
var month expenses revenues;
by region state;
pageby region;
label region=’Sales Region’;
format revenues expenses comma10.;

title ’Sales Figures Grouped by Region
and State’;
run;

Close the RTF destination. The ODS RTF CLOSE statement closes the RTF destination.

ods rtf close;

The PRINT Procedure � Program: Creating an RTF Report with the STYLE Option 735

Output: RTF

Display 34.6 Creating Separate Sections of a Report for Groups of Observations: Default RTF Output

Program: Creating an RTF Report with the STYLE Option
options pagesize=60 pageno=1 nodate linesize=70;

ods rtf file=’your_file.rtf’;

proc sort data=exprev;
by region state month;
run;

736 Program: Creating an RTF Report with the STYLE Option � Chapter 34

Create a stylized RTF report. The first STYLE option specifies that the background color
of the cell containing the number of observations be changed to gray.

The second STYLE option specifies that the background color of the column header for the
variable MONTH be changed to white.

The third STYLE option specifies that the background color of the column header for the
variable EXPENSES be changed to blue and the font color be changed to white.

The fourth STYLE option specifies that the background color of the column header for the
variable REVENUES be changed to gray.

proc print data=exprev n=’Number of observations for the state: ’
noobs label style(N) = {background=gray};

var month / style(HEADER) = [background = white];
var expenses / style(HEADER) = [background = blue foreground=white];
var revenues / style(HEADER) = [background = gray];

by region state;
pageby region;
label region=’Sales Region’;
format revenues expenses comma10.;

title ’Sales Figures Grouped by Region
and State’;
run;

ods rtf close;

The PRINT Procedure � Example 4: Summing Numeric Variables with One BY Group 737

Output: RTF with Styles

Display 34.7 Creating Separate Sections of a Report for Groups of Observations: RTF Output Using Styles

Example 4: Summing Numeric Variables with One BY Group
Procedure features:

PROC PRINT statement options:
N=

BY statement

738 Program: Creating a Listing Report � Chapter 34

SUM statement

Other features:
ODS MARKUP statement
SORT procedure
TITLE statement

#BYVAL specification
SAS system options:

BYLINE
NOBYLINE

Data set: EXPREV on page 724

This example

� sums expenses and revenues for each region and for all regions

� shows the number of observations in each BY group and in the whole report

� creates a customized title, containing the name of the region. This title replaces
the default BY line for each BY group.

Program: Creating a Listing Report

Start each BY group on a new page and suppress the printing of the default BY line.
The SAS system option NOBYLINE suppresses the printing of the default BY line. When you
use PROC PRINT with NOBYLINE, each BY group starts on a new page.

options nodate pageno=1 linesize=70 pagesize=60 nobyline;

Sort the data set. PROC SORT sorts the observations by Region.

proc sort data=exprev;
by region;

run;

Print the report, suppress the printing of observation numbers, and print the total
number of observations for the selected variables. NOOBS suppresses the printing of
observation numbers at the beginning of the rows. N= prints the number of observations in a
BY group at the end of that BY group and (because of the SUM statement) prints the number
of observations in the data set at the end of the report. The first piece of explanatory text that
N= provides precedes the number for each BY group. The second piece of explanatory text that
N= provides precedes the number for the entire data set.

proc print data=exprev noobs
n=’Number of observations for the state: ’

’Number of observations for the data set: ’;

The PRINT Procedure � Output: Listing 739

Sum the values for the selected variables. The SUM statement alone sums the values of
Expenses and Revenues for the entire data set. Because the PROC PRINT step contains a BY
statement, the SUM statement also sums the values of Expenses and Revenues for each region
that contains more than one observation.

sum expenses revenues;
by region;

Format the numeric values for a specified column. The FORMAT statement assigns the
COMMA10. format to Expenses and Revenues for this report.

format revenues expenses comma10.;

Specify and format a dynamic (or current) title. The TITLE statement specifies a title. The
#BYVAL specification places the current value of the BY variable Region in the title. Because
NOBYLINE is in effect, each BY group starts on a new page, and the title serves as a BY line.

title ’Revenue and Expense Totals for the
#byval(region) Region’;
run;

Generate the default BY line. The SAS system option BYLINE resets the printing of the
default BY line.

options byline;

Output: Listing

Output 34.5 Summing Numeric Variables with One BY Group: Listing Output

Revenue and Expense Totals for the Northern Region 1

State Month Expenses Revenues

NY FEB95 3,000 4,000
NY MAR95 6,000 5,000
MA MAR95 1,500 1,000
------ ---------- ----------
Region 10,500 10,000

Number of observations for the state: 3

740 Program: Creating an XML File � Chapter 34

Revenue and Expense Totals for the Southern Region 2

State Month Expenses Revenues

GA JAN95 2,000 8,000
GA FEB95 1,200 6,000
FL FEB95 8,500 11,000
FL MAR95 9,800 13,500
------ ---------- ----------
Region 21,500 38,500

========== ==========
32,000 48,500

Number of observations for the state: 4
Number of observations for the data set: 7

Program: Creating an XML File
The following example opens the MARKUP destination. The output file will contain

only XML tagging unless you have a browser that reads XML.

options nodate pageno=1 linesize=70 pagesize=60 nobyline;

Produce output that is tagged with Extensible Markup Language (XML) tags and
specify the file to store it in. The ODS MARKUP statement opens the MARKUP destination
and creates a file containing output that is tagged with XML tags. The FILE= argument
specifies your external file that contains the XML output.

ods markup file=’your_file.xml’;

proc sort data=exprev;
by region;

run;

proc print data=exprev noobs
n=’Number of observations for the state: ’

’Number of observations for the data set: ’;

sum expenses revenues;
by region;

format revenues expenses comma10.;

title ’Revenue and Expense Totals for the
#byval(region) Region’;
run;

options byline;

The PRINT Procedure � Output: XML file 741

Close the MARKUP destination. The ODS RTF CLOSE statement closes the MARKUP
destination.

ods markup close;

Output: XML file

Output 34.6 Summing Numeric Variables with One BY Group: Partial XML Output Viewed with a Text Editor

<?xml version="1.0" encoding="windows-1252"?>

<odsxml>

<head>

<meta operator="user"/>

</head>

<body>

<proc name="Print">

<label name="IDX"/>

<title class="SystemTitle" toc-level="1">Revenue and Expense Totals for the Northern Region</title>

<branch name="Print" label="The Print Procedure" class="ContentProcName" toc-level="1">

<bygroup>

<branch name="ByGroup1" label="ByGroup1" class="ByContentFolder" toc-level="2">

<leaf name="Print" label="Data Set WORK.EXPREV" class="ContentItem" toc-level="3">

<output name="Print" label="Data Set WORK.EXPREV" clabel="Data Set WORK.EXPREV">

<output-object type="table" class="Table">

<style>

<border spacing="1" padding="7" rules="groups" frame="box"/>

</style>

<colspecs columns="4">

<colgroup>

<colspec name="1" width="6" type="string"/>

<colspec name="2" width="5" type="string"/>

<colspec name="3" width="10" type="string"/>

<colspec name="4" width="10" type="string"/>

</colgroup>

... more lines of XML output ...

<row>

<data type="string" class="NoteContent" row="8" column="1" column-end="4">

<style>

</style>

<value>Number of observations for the state: 4
Number of observations for the data set: 7</value>

</data>

</row>

</output-body>

</output-object>

</output>

</leaf>

</bygroup>

</branch>

</branch>

</proc>

</body>

</odsxml>

742 Example 5: Summing Numeric Variables with Multiple BY Variables � Chapter 34

Example 5: Summing Numeric Variables with Multiple BY Variables

Procedure features:
BY statement
SUM statement

Other features: SORT procedure
Data set: EXPREV on page 724

This example
� sums expenses and revenues for

� each region
� each state with more than one row in the report
� all rows in the report.

� shows the number of observations in each BY group and in the whole report.

Program: Creating a Listing Report

options nodate pageno=1 linesize=70 pagesize=60;

Sort the data set. PROC SORT sorts the observations by Region and State.

proc sort data=exprev;
by region state;

run;

Print the report, suppress the printing of observation numbers, and print the total
number of observations for the selected variables. The N option prints the number of
observations in a BY group at the end of that BY group and prints the total number of
observations used in the report at the bottom of the report. NOOBS suppresses the printing of
observation numbers at the beginning of the rows.

proc print data=exprev n noobs;

Create a separate section of the report for each BY group, and sum the values for the
selected variables. The BY statement produces a separate section of the report for each BY
group. The SUM statement alone sums the values of Expenses and Revenues for the entire data
set. Because the program contains a BY statement, the SUM statement also sums the values of
Expenses and Revenues for each BY group that contains more than one observation.

by region state;
sum expenses revenues;

The PRINT Procedure � Program: Creating a Listing Report 743

Establish a label for a selected variable, format the values of specified variables, and
create a title. The LABEL statement associates a label with the variable Region for the
duration of the PROC PRINT step. The BY line at the beginning of each BY group uses the
label. The FORMAT statement assigns a format to the variables Expenses and Revenues for
this report. The TITLE statement specifies a title.

label region=’Sales Region’;
format revenues expenses comma10.;
title ’Revenue and Expense Totals for Each State and Region’;

run;

744 Output: Listing � Chapter 34

Output: Listing

Output 34.7 Summing Numeric Variables with Multiple BY Variables: Listing Output

The report uses default column headers (variable names) because neither the SPLIT= nor the
LABEL option is used. Nevertheless, the BY line at the top of each section of the report shows
the BY variables’ labels and their values. The name of a BY variable identifies the subtotals in
the report.

PROC PRINT sums Expenses and Revenues for each BY group that contains more than one
observation. However, sums are shown only for the BY variables whose values change from one
BY group to the next. For example, in the third BY group, where the sales region is Southern
and the state is FL, Expenses and Revenues are summed only for the state because the next BY
group is for the same region.

Revenue and Expense Totals for Each State and Region 1

------------------- Sales Region=Northern State=MA -------------------

Month Expenses Revenues

MAR95 1,500 1,000

N = 1

------------------- Sales Region=Northern State=NY -------------------

Month Expenses Revenues

FEB95 3,000 4,000
MAR95 6,000 5,000

------ ---------- ----------
State 9,000 9,000

Region 10,500 10,000

N = 2

------------------- Sales Region=Southern State=FL -------------------

Month Expenses Revenues

FEB95 8,500 11,000
MAR95 9,800 13,500

------ ---------- ----------
State 18,300 24,500

N = 2

------------------- Sales Region=Southern State=GA -------------------

Month Expenses Revenues

JAN95 2,000 8,000
FEB95 1,200 6,000

------ ---------- ----------
State 3,200 14,000

Region 21,500 38,500
========== ==========

32,000 48,500

N = 2
Total N = 7

The PRINT Procedure � Program: Creating an HTML Report 745

Program: Creating an HTML Report

options nodate pageno=1 linesize=70 pagesize=60;

Produce HTML output and specify the file to store the output in. The ODS HTML
statement opens the HTML destination and creates a file that contains HTML output. The
FILE= argument specifies your external file that contains the HTML output.

ods html file=’your_file.html’;

proc sort data=exprev;
by region state;

run;

proc print data=exprev n noobs;
by region state;
sum expenses revenues;

label region=’Sales Region’;
format revenues expenses comma10.;
title ’Revenue and Expense Totals for Each State and Region’;

run;

Close the HTML destination. The ODS HTML CLOSE statement closes the HTML
destination.

ods html close;

746 Output: HTML � Chapter 34

Output: HTML

Display 34.8 Summing Numeric Variables with Multiple BY Variables: Default HTML Output

Program: Creating an HTML Report with the STYLE Option
options nodate pageno=1 linesize=70 pagesize=60;

ods html file=’your_file.html’;

proc sort data=exprev;
by region state;

run;

proc print data=exprev n noobs;

The PRINT Procedure � Output: HTML with Styles 747

Create stylized HTML output. The STYLE option in the first SUM statement specifies that
the background color of the cell containing the grand total for the variable EXPENSES be
changed to white and the font color be changed to dark gray.

The STYLE option in the second SUM statement specifies that the background color of cells
containing totals for the variable REVENUES be changed to blue and the font color be changed
to white.

by region state;
sum expenses / style(GRANDTOTAL) = [background =white foreground=blue];
sum revenues / style(TOTAL) = [background =dark gray foreground=white];

label region=’Sales Region’;
format revenues expenses comma10.;
title ’Revenue and Expense Totals for Each State and Region’;

run;

ods html close;

Output: HTML with Styles

Display 34.9 Summing Numeric Variables with Multiple BY Variables: HTML Output Using Styles

748 Example 6: Limiting the Number of Sums in a Report � Chapter 34

Example 6: Limiting the Number of Sums in a Report

Features:
BY statement

SUM statement

SUMBY statement

Other features:
SORT procedure

LABEL statement

Data set: EXPREV on page 724

This example

� creates a separate section of the report for each combination of state and region

� sums expenses and revenues only for each region and for all regions, not for
individual states.

Program: Creating a Listing Report

options nodate pageno=1 linesize=70 pagesize=60;

Sort the data set. PROC SORT sorts the observations by Region and State.

proc sort data=exprev;
by region state;

run;

Print the report and remove the observation numbers. NOOBS suppresses the printing
of observation numbers at the beginning of the rows.

proc print data=exprev noobs;

Sum the values for each region. The SUM and BY statements work together to sum the
values of Revenues and Expenses for each BY group as well as for the whole report. The
SUMBY statement limits the subtotals to one for each region.

by region state;
sum revenues expenses;
sumby region;

The PRINT Procedure � Program: Creating a Listing Report 749

Assign labels to specific variables. The LABEL statement associates a label with the
variable Region for the duration of the PROC PRINT step. This label is used in the BY lines.

label region=’Sales Region’;

Assign a format to the necessary variables and specify a title. The FORMAT statement
assigns the COMMA10. format to Expenses and Revenues for this report.

format revenues expenses comma10.;
title ’Revenue and Expense Figures for Each Region’;

run;

750 Output: Listing � Chapter 34

Output: Listing

Output 34.8 Limiting the Number of Sums in a Report: Listing Output

The report uses default column headers (variable names) because neither the SPLIT= nor the
LABEL option is used. Nevertheless, the BY line at the top of each section of the report shows
the BY variables’ labels and their values. The name of a BY variable identifies the subtotals in
the report.

Revenue and Expense Figures for Each Region 1

------------------- Sales Region=Northern State=MA -------------------

Month Expenses Revenues

MAR95 1,500 1,000

------------------- Sales Region=Northern State=NY -------------------

Month Expenses Revenues

FEB95 3,000 4,000
MAR95 6,000 5,000

------ ---------- ----------
Region 10,500 10,000

------------------- Sales Region=Southern State=FL -------------------

Month Expenses Revenues

FEB95 8,500 11,000
MAR95 9,800 13,500

------------------- Sales Region=Southern State=GA -------------------

Month Expenses Revenues

JAN95 2,000 8,000
FEB95 1,200 6,000

------ ---------- ----------
Region 21,500 38,500

========== ==========
32,000 48,500

The PRINT Procedure � Program: Creating a PostScript file 751

Program: Creating a PostScript file

options nodate pageno=1 linesize=70 pagesize=60;

Produce PostScript output and specify the file to store the output in. The ODS PS
statement opens the PS destination and creates a file that contains PostScript output. The
FILE= argument specifies your external file that contains the PostScript output.

ods ps file=’your_file.ps’;

proc sort data=exprev;
by region state;

run;

proc print data=exprev noobs;

by region state;
sum revenues expenses;
sumby region;

label region=’Sales Region’;

format revenues expenses comma10.;
title ’Revenue and Expense Figures for Each Region’;

run;

Close the PS destination. The ODS PS CLOSE statement closes the PS destination.

ods ps close;

752 Output: PostScript � Chapter 34

Output: PostScript

Display 34.10 Limiting the Number of Sums in a Report: PostScript Output

Program: Creating a PostScript Report with the STYLE Option

options nodate pageno=1 linesize=70 pagesize=60;

ods ps file=’your_file.ps’;

proc sort data=exprev;
by region state;

run;

proc print data=exprev noobs;

by region state;

The PRINT Procedure � Program: Creating a PostScript Report with the STYLE Option 753

Create stylized PostScript output. The STYLE option in the first SUM statement specifies
that the background color of cells containing totals for the variable REVENUES be changed to
blue and the font color be changed to white.

The STYLE option in the second SUM statement specifies that the background color of the cell
containing the grand total for the EXPENSES variable be changed to white and the font color
be changed to dark gray.

sum revenues / style(TOTAL) = [background =blue foreground=white];
sum expenses / style(GRANDTOTAL) = [background =white foreground=dark gray];

label region=’Sales Region’;

format revenues expenses comma10.;
title ’Revenue and Expense Figures for Each Region’;

run;

ods ps close;

754 Output: PostScript with Styles � Chapter 34

Output: PostScript with Styles

Display 34.11 Limiting the Number of Sums in a Report: PostScript Output Using Styles

Example 7: Controlling the Layout of a Report with Many Variables

Procedure features:
PROC PRINT statement options:

ROWS=
ID statement options:

STYLE

Other features:
ODS RTF statement
SAS data set options:

OBS=

The PRINT Procedure � Program: Creating a Listing Report 755

This example shows two ways of printing a data set with a large number of
variables: one is the default, and the other uses ROWS=. For detailed explanations of
the layouts of these two reports, see the ROWS= option on page 710 and see “Page
Layout” on page 720.

These reports use a pagesize of 24 and a linesize of 64 to help illustrate the different
layouts.

Note: When the two reports are written as HTML output, they do not differ. �

Program: Creating a Listing Report

options nodate pageno=1 linesize=64 pagesize=24 ;

Create the EMPDATA data set. The data set EMPDATA contains personal and job-related
information about a company’s employees. A DATA step on page 1385 creates this data set.

data empdata;
input IdNumber $ 1-4 LastName $ 9-19 FirstName $ 20-29

City $ 30-42 State $ 43-44 /
Gender $ 1 JobCode $ 9-11 Salary 20-29 @30 Birth date9.
@43 Hired date9. HomePhone $ 54-65;

format birth hired date9.;
datalines;

1919 Adams Gerald Stamford CT
M TA2 34376 15SEP1948 07JUN1975 203/781-1255
1653 Alexander Susan Bridgeport CT
F ME2 35108 18OCT1952 12AUG1978 203/675-7715

. . . more lines of data . . .

1407 Grant Daniel Mt. Vernon NY
M PT1 68096 26MAR1957 21MAR1978 914/468-1616
1114 Green Janice New York NY
F TA2 32928 21SEP1957 30JUN1975 212/588-1092
;

Print only the first 12 observations in a data set. The OBS= data set option uses only the
first 12 observations to create the report. (This is just to conserve space here.) The ID statement
identifies observations with the formatted value of IdNumber rather than with the observation
number. This report is shown in Example 7 on page 754.

proc print data=empdata(obs=12);
id idnumber;
title ’Personnel Data’;

run;

756 Output: Listing � Chapter 34

Print a report that contains only one row of variables on each page. ROWS=PAGE
prints only one row of variables for each observation on a page. This report is shown in Example
7 on page 754.

proc print data=empdata(obs=12) rows=page;
id idnumber;
title ’Personnel Data’;

run;

Output: Listing

Output 34.9 Default Layout for a Report with Many Variables: Listing Output

In the traditional procedure output, each page of this report contains
values for all variables in each observation. In the HTML output, this
report is identical to the report that uses ROWS=PAGE.

Note that PROC PRINT automatically splits the variable names that
are used as column headers at a change in capitalization if the entire
name does not fit in the column. Compare, for example, the column
headers for LastName (which fits in the column) and FirstName (which
does not fit in the column).

Personnel Data 1

Id First
Number LastName Name City State Gender

1919 Adams Gerald Stamford CT M
1653 Alexander Susan Bridgeport CT F
1400 Apple Troy New York NY M
1350 Arthur Barbara New York NY F
1401 Avery Jerry Paterson NJ M
1499 Barefoot Joseph Princeton NJ M
1101 Baucom Walter New York NY M

Id Job
Number Code Salary Birth Hired HomePhone

1919 TA2 34376 15SEP48 07JUN75 203/781-1255
1653 ME2 35108 18OCT52 12AUG78 203/675-7715
1400 ME1 29769 08NOV55 19OCT78 212/586-0808
1350 FA3 32886 03SEP53 01AUG78 718/383-1549
1401 TA3 38822 16DEC38 20NOV73 201/732-8787
1499 ME3 43025 29APR42 10JUN68 201/812-5665
1101 SCP 18723 09JUN50 04OCT78 212/586-8060

The PRINT Procedure � Output: Listing 757

Personnel Data 2

Id First
Number LastName Name City State Gender

1333 Blair Justin Stamford CT M
1402 Blalock Ralph New York NY M
1479 Bostic Marie New York NY F
1403 Bowden Earl Bridgeport CT M
1739 Boyce Jonathan New York NY M

Id Job
Number Code Salary Birth Hired HomePhone

1333 PT2 88606 02APR49 13FEB69 203/781-1777
1402 TA2 32615 20JAN51 05DEC78 718/384-2849
1479 TA3 38785 25DEC56 08OCT77 718/384-8816
1403 ME1 28072 31JAN57 24DEC79 203/675-3434
1739 PT1 66517 28DEC52 30JAN79 212/587-1247

Output 34.10 Layout Produced by the ROWS=PAGE Option: Listing Output

Each page of this report contains values for only some of the variables
in each observation. However, each page contains values for more
observations than the default report does.

Personnel Data 1

Id First
Number LastName Name City State Gender

1919 Adams Gerald Stamford CT M
1653 Alexander Susan Bridgeport CT F
1400 Apple Troy New York NY M
1350 Arthur Barbara New York NY F
1401 Avery Jerry Paterson NJ M
1499 Barefoot Joseph Princeton NJ M
1101 Baucom Walter New York NY M
1333 Blair Justin Stamford CT M
1402 Blalock Ralph New York NY M
1479 Bostic Marie New York NY F
1403 Bowden Earl Bridgeport CT M
1739 Boyce Jonathan New York NY M

758 Program: Creating an RTF Report � Chapter 34

Personnel Data 2

Id Job
Number Code Salary Birth Hired HomePhone

1919 TA2 34376 15SEP48 07JUN75 203/781-1255
1653 ME2 35108 18OCT52 12AUG78 203/675-7715
1400 ME1 29769 08NOV55 19OCT78 212/586-0808
1350 FA3 32886 03SEP53 01AUG78 718/383-1549
1401 TA3 38822 16DEC38 20NOV73 201/732-8787
1499 ME3 43025 29APR42 10JUN68 201/812-5665
1101 SCP 18723 09JUN50 04OCT78 212/586-8060
1333 PT2 88606 02APR49 13FEB69 203/781-1777
1402 TA2 32615 20JAN51 05DEC78 718/384-2849
1479 TA3 38785 25DEC56 08OCT77 718/384-8816
1403 ME1 28072 31JAN57 24DEC79 203/675-3434
1739 PT1 66517 28DEC52 30JAN79 212/587-1247

Program: Creating an RTF Report

options nodate pageno=1 linesize=64 pagesize=24;

data empdata;
input IdNumber $ 1-4 LastName $ 9-19 FirstName $ 20-29

City $ 30-42 State $ 43-44 /
Gender $ 1 JobCode $ 9-11 Salary 20-29 @30 Birth date9.
@43 Hired date9. HomePhone $ 54-65;

format birth hired date9.;
datalines;

1919 Adams Gerald Stamford CT
M TA2 34376 15SEP1948 07JUN1975 203/781-1255
1653 Alexander Susan Bridgeport CT
F ME2 35108 18OCT1952 12AUG1978 203/675-7715

. . . more lines of data . . .

1407 Grant Daniel Mt. Vernon NY
M PT1 68096 26MAR1957 21MAR1978 914/468-1616
1114 Green Janice New York NY
F TA2 32928 21SEP1957 30JUN1975 212/588-1092
;

The PRINT Procedure � Program: Creating an RTF Report with the STYLE Option 759

Create output for Microsoft Word and specify the file to store the output in. The ODS
RTF statement opens the RTF destination and creates output formatted for Microsoft Word. The
FILE= argument specifies your external file that contains the RTF output.

ods rtf file=’your_file.rtf’;

proc print data=empdata(obs=12);
id idnumber;
title ’Personnel Data’;

run;

Close the RTF destination. The ODS RTF CLOSE statement closes the RTF destination.

ods rtf close;

Output: RTF

Display 34.12 Layout for a Report with Many Variables: RTF Output

Program: Creating an RTF Report with the STYLE Option

options nodate pageno=1 linesize=64 pagesize=24;

data empdata;
input IdNumber $ 1-4 LastName $ 9-19 FirstName $ 20-29

City $ 30-42 State $ 43-44 /
Gender $ 1 JobCode $ 9-11 Salary 20-29 @30 Birth date9.
@43 Hired date9. HomePhone $ 54-65;

format birth hired date9.;
datalines;

1919 Adams Gerald Stamford CT
M TA2 34376 15SEP1948 07JUN1975 203/781-1255
1653 Alexander Susan Bridgeport CT
F ME2 35108 18OCT1952 12AUG1978 203/675-7715

. . . more lines of data . . .

760 Output: RTF with Styles � Chapter 34

1407 Grant Daniel Mt. Vernon NY
M PT1 68096 26MAR1957 21MAR1978 914/468-1616
1114 Green Janice New York NY
F TA2 32928 21SEP1957 30JUN1975 212/588-1092
;

ods rtf file=’your_file.rtf’;

proc print data=empdata(obs=12);

Create stylized output for Microsoft Word.

id idnumber / style(DATA) =
{background = red foreground = white}
style(HEADER) =
{background = blue foreground = white};

title ’Personnel Data’;
run;

ods rtf close;

Output: RTF with Styles

Display 34.13 Layout for a Report with Many Variables: RTF Output Using Styles

The PRINT Procedure � Program: Creating a Listing Report 761

Example 8: Creating a Customized Layout with BY Groups and ID Variables

Procedure features:
BY statement

ID statement

SUM statement

VAR statement

Other features:
SORT procedure

Data set: EMPDATA on page 755

This customized report

� selects variables to include in the report and controls their order

� selects observations to include in the report

� groups the selected observations by JobCode

� sums the salaries for each job code and for all job codes

� displays numeric data with commas and dollar signs.

Program: Creating a Listing Report

Create and sort a temporary data set. PROC SORT creates a temporary data set in which
the observations are sorted by JobCode and Gender.

options nodate pageno=1 linesize=64 pagesize=60;
proc sort data=empdata out=tempemp;

by jobcode gender;
run;

Identify the character that starts a new line in column headers. SPLIT= identifies the
asterisk as the character that starts a new line in column headers.

proc print data=tempemp split=’*’;

Specify the variables to include in the report. The VAR statement and the ID statement
together select the variables to include in the report. The ID statement and the BY statement
produce the special format.

id jobcode;
by jobcode;
var gender salary;

762 Program: Creating a Listing Report � Chapter 34

Calculate the total value for each BY group. The SUM statement totals the values of
Salary for each BY group and for the whole report.

sum salary;

Assign labels to the appropriate variables. The LABEL statement associates a label with
each variable for the duration of the PROC PRINT step. When you use SPLIT= in the PROC
PRINT statement, the procedure uses labels for column headings.

label jobcode=’Job Code*========’
gender=’Gender*======’
salary=’Annual Salary*=============’;

Create formatted columns. The FORMAT statement assigns a format to Salary for this
report. The WHERE statement selects for the report only the observations for job codes that
contain the letters ’FA’ or ’ME’. The TITLE statements specify two titles.

format salary dollar11.2;
where jobcode contains ’FA’ or jobcode contains ’ME’;
title ’Expenses Incurred for’;
title2 ’Salaries for Flight Attendants and Mechanics’;

run;

The PRINT Procedure � Output: Listing 763

Output: Listing

Output 34.11 Creating a Customized Layout with BY Groups and ID Variables:
Listing Output

The ID and BY statements work together to produce this layout. The
ID variable is listed only once for each BY group. The BY lines are
suppressed. Instead, the value of the ID variable, JobCode, identifies
each BY group.

Expenses Incurred for 1
Salaries for Flight Attendants and Mechanics

Job Code Gender Annual Salary
======== ====== =============

FA1 F $23,177.00
F $22,454.00
M $22,268.00

-------- -------------
FA1 $67,899.00

FA2 F $28,888.00
F $27,787.00
M $28,572.00

-------- -------------
FA2 $85,247.00

FA3 F $32,886.00
F $33,419.00
M $32,217.00

-------- -------------
FA3 $98,522.00

ME1 M $29,769.00
M $28,072.00
M $28,619.00

-------- -------------
ME1 $86,460.00

ME2 F $35,108.00
F $34,929.00
M $35,345.00
M $36,925.00
M $35,090.00
M $35,185.00

-------- -------------
ME2 $212,582.00

ME3 M $43,025.00
=============

$593,735.00

764 Program: Creating an HTML Report � Chapter 34

Program: Creating an HTML Report

options nodate pageno=1 linesize=64 pagesize=60 obs=15;
proc sort data=empdata out=tempemp;

by jobcode gender;
run;

Produce HTML output and specify the file to store the output in. The ODS HTML
statement opens the HTML destination and creates a file that contains HTML output. The
FILE= argument specifies your external file that contains the HTML output.

ods html file=’your_file.html’;

proc print data=tempemp (obs=10) split=’*’;

id jobcode;
by jobcode;
var gender salary;

sum salary;

label jobcode=’Job Code*========’
gender=’Gender*======’
salary=’Annual Salary*=============’;

format salary dollar11.2;
where jobcode contains ’FA’ or jobcode contains ’ME’;
title ’Expenses Incurred for’;
title2 ’Salaries for Flight Attendants and Mechanics’;

run;

Close the HTML destination. The ODS HTML CLOSE statement closes the HTML
destination.

ods html close;

The PRINT Procedure � Program: Creating an HTML Report with the STYLE Option 765

Output: HTML

Display 34.14 Creating a Customized Layout with BY Groups and ID Variables: Default HTML Output

Program: Creating an HTML Report with the STYLE Option

options nodate pageno=1 linesize=64 pagesize=60 obs=15;
proc sort data=empdata out=tempemp;

by jobcode gender;
run;

ods html file=’your_file.html’;

Create stylized HTML output. The first STYLE option specifies that the font of the headers
be changed to italic. The second STYLE option specifies that the background of cells that
contain input data be changed to blue and the foreground of these cells be changed to white.

proc print data=tempemp (obs=10) split=’*’ style(HEADER) =
{font_style=italic}
style(DATA) =
{background=blue foreground = white};

id jobcode;
by jobcode;
var gender salary;

766 Program: Creating an HTML Report with the STYLE Option � Chapter 34

Create total values that are written in red. The STYLE option specifies that the color of the
foreground of the cell that contain the totals be changed to red.

sum salary / style(total)= [foreground=red];

label jobcode=’Job Code*========’
gender=’Gender*======’
salary=’Annual Salary*=============’;

format salary dollar11.2;
where jobcode contains ’FA’ or jobcode contains ’ME’;
title ’Expenses Incurred for’;
title2 ’Salaries for Flight Attendants and Mechanics’;

run;

ods html close;

The PRINT Procedure � Example 9: Printing All the Data Sets in a SAS Library 767

Output: HTML with Styles

Display 34.15 Creating a Customized Layout with BY Groups and ID Variables: HTML Output Using Styles

Example 9: Printing All the Data Sets in a SAS Library

Features:
Macro facility
DATASETS procedure
PRINT procedure

Data set: EXPREV on page 724 and LIST

This example prints all the data sets in a SAS library. You can use the same
programming logic with any procedure. Just replace the PROC PRINT step near the
end of the example with whatever procedure step you want to execute. The example
uses the macro language. For details about the macro language, see SAS Guide to
Macro Processing, Version 6, Second Edition.

768 Program � Chapter 34

Program

libname printlib ’SAS-data-library’
options nodate pageno=1 linesize=80 pagesize=60;

Copy the desired data sets from the WORK library to a permanent library. PROC
DATASETS copies two data sets from the WORK library to the PRINTLIB library in order to
limit the number of data sets available to the example.

proc datasets library=work memtype=data nolist;
copy out=printlib;

select list exprev;
run;

Create a macro and specify the parameters. The %MACRO statement creates the macro
PRINTALL. When you call the macro, you can pass one or two parameters to it. The first
parameter is the name of the library whose data set you want to print. The second parameter is
a library used by the macro. If you do not specify this parameter, the WORK library is the
default.

%macro printall(libname,worklib=work);

Create the local macro variables. The %LOCAL statement creates two local macro variables,
NUM and I, to use in a loop.

%local num i;

Produce an output data set. This PROC DATASETS step reads the library that you specify
as a parameter when you invoke the macro. The CONTENTS statement produces an output
data set called TEMP1 in WORKLIB. This data set contains an observation for each variable in
each data set in the library LIBNAME. By default, each observation includes the name of the
data set that the variable is included in as well as other information about the variable.
However, the KEEP= data set option writes only the name of the data set to TEMP1.

proc datasets library=&libname memtype=data nodetails;
contents out=&worklib..temp1(keep=memname) data=_all_ noprint;

run;

Specify the unique values in the data set, assign a macro variable to each one, and
assign DATA step information to a macro variable. This DATA step increments the value
of N each time it reads the last occurrence of a data set name (when IF LAST.MEMNAME is
true). The CALL SYMPUT statement uses the current value of N to create a macro variable for
each unique value of MEMNAME in the data set TEMP1. The TRIM function removes extra
blanks in the TITLE statement in the PROC PRINT step that follows.

data _null_;
set &worklib..temp1 end=final;

The PRINT Procedure � Output 769

by memname notsorted;
if last.memname;
n+1;
call symput(’ds’||left(put(n,8.)),trim(memname));

When it reads the last observation in the data set (when FINAL is true), the DATA step assigns
the value of N to the macro variable NUM. At this point in the program, the value of N is the
number of observations in the data set.

if final then call symput(’num’,put(n,8.));

Run the DATA step. The RUN statement is crucial. It forces the DATA step to run, thus
creating the macro variables that are used in the CALL SYMPUT statements before the %DO
loop, which uses them, executes.

run;

Print the data sets and end the macro. The %DO loop issues a PROC PRINT step for each
data set. The %MEND statement ends the macro.

%do i=1 %to #
proc print data=&libname..&&ds&i noobs;

title "Data Set &libname..&&ds&i";
run;

%end;
%mend printall;

Print all the data sets in the PRINTLIB library. This invocation of the PRINTALL macro
prints all the data sets in the library PRINTLIB.

options nodate pageno=1 linesize=70 pagesize=60;
%printall(printlib)

Output

Output 34.12 Printing All the Data Sets in a SAS Library: Listing Output

Data Set printlib.EXPREV 1

Region State Month Expenses Revenues

Northern MA MAR95 1500 1000
Northern NY FEB95 3000 4000
Northern NY MAR95 6000 5000
Southern FL FEB95 8500 11000
Southern FL MAR95 9800 13500
Southern GA JAN95 2000 8000
Southern GA FEB95 1200 6000

770 Output � Chapter 34

Data Set printlib.LIST 2

Name Street City State Zip

Gabrielli, Theresa 24 Ridgetop Rd. Westboro MA 01581
Clayton, Aria 314 Bridge St. Hanover NH 03755
Dix, Martin L. 4 Shepherd St. Norwich VT 05055
Slater, Emily C. 2009 Cherry St. York PA 17407
Ericson, Jane 211 Clancey Court Chapel Hill NC 27514
An, Ing 95 Willow Dr. Charlotte NC 28211
Jacobson, Becky 7 Lincoln St. Tallahassee FL 32312
Misiewicz, Jeremy 43-C Lakeview Apts. Madison WI 53704
Ahmadi, Hafez 5203 Marston Way Boulder CO 80302
Archuleta, Ruby Box 108 Milagro NM 87429

771

C H A P T E R

35
The PRINTTO Procedure

Overview: PRINTTO Procedure 771
Syntax: PRINTTO Procedure 772

PROC PRINTTO Statement 772

Concepts: PRINTTO Procedure 775

Page Numbering 775

Routing SAS Log or Procedure Output Directly to a Printer 775
Examples: PRINTTO Procedure 776

Example 1: Routing to External Files 776

Example 2: Routing to SAS Catalog Entries 779

Example 3: Using Procedure Output as an Input File 782

Example 4: Routing to a Printer 785

Overview: PRINTTO Procedure
The PRINTTO procedure defines destinations for SAS procedure output and for the

SAS log. By default, SAS procedure output and the SAS log are routed to the default
procedure output file and the default SAS log file for your method of operation. See
Table 35.1 on page 771. You can store the SAS log or procedure output in an external
file or in a SAS catalog entry. With additional programming, you can use SAS output as
input data within the same job.

Table 35.1 Default Destinations for SAS Log and Procedure Output

Method of running the SAS System SAS log destination Procedure output destination

windowing environment the LOG window the OUTPUT window

interactive line mode the display monitor (as
statements are entered)

the display monitor (as each step
executes)

noninteractive mode or batch mode depends on the host operating
system

depends on the operating
environment

Operating Environment Information: For information and examples specific to your
operating system or environment, see the appropriate SAS Companion or technical
report. �

772 Syntax: PRINTTO Procedure � Chapter 35

Syntax: PRINTTO Procedure
See: PRINTTO Procedure in the documentation for your operating environment.

PROC PRINTTO <option(s)>;

PROC PRINTTO Statement
Tip: To reset the destination for the SAS log and procedure output to the default, use
the PROC PRINTTO statement without options.
Tip: To route the SAS log and procedure output to the same file, specify the same file
with both the LOG= and PRINT= options.
Restriction: To route SAS log and procedure output directly to a printer, you must use a
FILENAME statement with the PROC PRINTTO statement. See Example 4 on page
785.

PROC PRINTTO <option(s)>;

To do this Use this option

provide a description for a SAS log or procedure output
stored in a SAS catalog entry

LABEL=

route the SAS log to a permanent external file or SAS
catalog entry

LOG=

combine the SAS log and procedure output into a single file LOG= and PRINT= with same
destination

replace the file instead of appending to it NEW

route procedure output to a permanent external file or SAS
catalog entry or printer.

PRINT=

Without Options

Using a PROC PRINTTO statement with no options
� closes any files opened by a PROC PRINTTO statement
� points both the SAS log and SAS procedure output to their default destinations.

Interaction: To close the appropriate file and to return only the SAS log or
procedure output to its default destination, use LOG=LOG or PRINT=PRINT.

Featured in: Example 1 on page 776 and Example 2 on page 779

The PRINTTO Procedure � PROC PRINTTO Statement 773

Options

LABEL=’description’
provides a description for a catalog entry that contains a SAS log or procedure output.
Range: 1 to 256 characters

Interaction: Use the LABEL= option only when you specify a catalog entry as the
value for the LOG= or the PRINT= option.

Featured in: Example 2 on page 779

LOG=LOG | file-specification | SAS-catalog-entry
routes the SAS log to one of three locations:

LOG
routes the SAS log to its default destination.

file-specification
routes the SAS log to an external file. file-specification can be one of the following:

’external-file’
the name of an external file specified in quotation marks.

log-filename
is an unquoted alphanumeric text string. SAS creates a log that uses
log-filename.log as the log filename.

Operating Environment Information: For more information about using
log-filename, see the documentation for your operating environment. �

fileref
a fileref previously assigned to an external file.

SAS-catalog-entry
routes the SAS log to a SAS catalog entry. By default, libref is SASUSER, catalog
is PROFILE, and type is LOG. Express SAS-catalog-entry in one of the following
ways:

libref.catalog.entry<.LOG>
a SAS catalog entry stored in the SAS data library and SAS catalog specified.

catalog.entry<.LOG>
a SAS catalog entry stored in the specified SAS catalog in the default SAS data
library SASUSER.

entry.LOG
a SAS catalog entry stored in the default SAS library and catalog:
SASUSER.PROFILE.

fileref
a fileref previously assigned to a SAS catalog entry. Search for "FILENAME,
CATALOG Access Method" in the SAS online documentation.

Default: LOG.
Tip: After routing the log to an external file or a catalog entry, you can specify LOG

to route the SAS log back to its default destination.
Tip: When routing the SAS log, include a RUN statement in the PROC PRINTTO

statement. If you omit the RUN statement, the first line of the following DATA or
PROC step is not routed to the new file. (This occurs because a statement does not
execute until a step boundary is crossed.)

774 PROC PRINTTO Statement � Chapter 35

Interaction: The SAS log and procedure output cannot be routed to the same
catalog entry at the same time.

Interaction: The NEW option replaces the existing contents of a file with the new
log. Otherwise, the new log is appended to the file.

Interaction: To route the SAS log and procedure output to the same file, specify the
same file with both the LOG= and PRINT= options.

Interaction: When routing the log to a SAS catalog entry, you can use the LABEL
option to provide a description for the entry in the catalog directory.

Featured in: Example 1 on page 776, Example 2 on page 779, and Example 3 on
page 782

NEW
clears any information that exists in a file and prepares the file to receive the SAS
log or procedure output.
Default: If you omit NEW, the new information is appended to the existing file.
Interaction: If you specify both LOG= and PRINT=, NEW applies to both.
Featured in: Example 1 on page 776, Example 2 on page 779, and Example 3 on

page 782

PRINT= PRINT | file-specification | SAS-catalog-entry
routes procedure output to one of three locations:

PRINT
routes procedure output to its default destination. After routing it to an external
file or a catalog entry, you can specify PRINT to route subsequent procedure
output to its default destination.

file-specification
routes procedure output to an external file. It is one of the following:

’external-file’
the name of an external file specified in quotation marks.

print-filename
is an unquoted alphanumeric text string. SAS creates a print file that uses
print-filename as the print filename.

Operating Environment Information: For more information about using
print-filename, see the documentation for your operating environment. �

fileref
a fileref previously assigned to an external file.

Operating Environment Information: See your operating environment
documentation for additional information about file-specification for the PRINT
option. �

SAS-catalog-entry
routes procedure output to a SAS catalog entry. By default, libref is SASUSER,
catalog is PROFILE, and type is OUTPUT. Express SAS-catalog-entry in one of the
following ways:

libref.catalog.entry<.OUTPUT>
a SAS catalog entry stored in the SAS data library and SAS catalog specified.

catalog.entry<.OUTPUT>
a SAS catalog entry stored in the specified SAS catalog in the default SAS data
library SASUSER.

The PRINTTO Procedure � Routing SAS Log or Procedure Output Directly to a Printer 775

entry.OUTPUT
a SAS catalog entry stored in the default SAS library and catalog:
SASUSER.PROFILE.

fileref
a fileref previously assigned to a SAS catalog entry. Search for "FILENAME,
CATALOG Access Method" in the SAS online documentation.

Aliases: FILE=, NAME=

Default: PRINT

Interaction: The procedure output and the SAS log cannot be routed to the same
catalog entry at the same time.

Interaction: The NEW option replaces the existing contents of a file with the new
procedure output. If you omit NEW, the new output is appended to the file.

Interaction: To route the SAS log and procedure output to the same file, specify the
same file with both the LOG= and PRINT= options.

Interaction: When routing procedure output to a SAS catalog entry, you can use
the LABEL option to provide a description for the entry in the catalog directory.

Featured in: Example 3 on page 782

UNIT=nn
routes the output to the file identified by the fileref FTnnF001, where nn is an
integer between 1 and 99.

Range: 1 to 99, integer only.

Tip: You can define this fileref yourself; however, some operating systems predefine
certain filerefs in this form.

Concepts: PRINTTO Procedure

Page Numbering
� When the SAS system option NUMBER is in effect, there is a single

page-numbering sequence for all output in the current job or session. When
NONUMBER is in effect, output pages are not numbered.

� You can specify the beginning page number for the output you are currently
producing by using the PAGENO= in an OPTIONS statement.

Routing SAS Log or Procedure Output Directly to a Printer
To route SAS log or procedure output directly to a printer, use a FILENAME

statement to associate a fileref with the printer name, and then use that fileref in the
LOG= or PRINT= option. For an example, see Example 4 on page 785.

For more information see the FILENAME statement in SAS Language Reference:
Dictionary.

Operating Environment Information: For examples of printer names, see the
documentation for your operating system. �

776 Examples: PRINTTO Procedure � Chapter 35

Examples: PRINTTO Procedure

Example 1: Routing to External Files

Procedure features:
PRINTTO statement:

Without options
Options:

LOG=
NEW
PRINT=

This example uses PROC PRINTTO to route the log and procedure output to an
external file and then reset both destinations to the default.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. The SOURCE
option writes lines of source code to the default destination for the SAS log.

options nodate pageno=1 linesize=80 pagesize=60 source;

Route the SAS log to an external file. PROC PRINTTO uses the LOG= option to route the
SAS log to an external file. By default, this log is appended to the current contents of log-file.

proc printto log=’log-file’;
run;

The PRINTTO Procedure � Log 777

Create the NUMBERS data set. The DATA step uses list input to create the NUMBERS data
set.

data numbers;
input x y z;
datalines;

14.2 25.2 96.8
10.8 51.6 96.8

9.5 34.2 138.2
8.8 27.6 83.2

11.5 49.4 287.0
6.3 42.0 170.7

;

Route the procedure output to an external file. PROC PRINTTO routes output to an
external file. Because NEW is specified, any output written to output-file will overwrite the
file’s current contents.

proc printto print=’output-file’ new;
run;

Print the NUMBERS data set. The PROC PRINT output is written to the specified external
file.

proc print data=numbers;
title ’Listing of NUMBERS Data Set’;

run;

Reset the SAS log and procedure output destinations to default. PROC PRINTTO routes
subsequent logs and procedure output to their default destinations and closes both of the
current files.

proc printto;
run;

Log

Output 35.1 Portion of Log Routed to the Default Destination

1 options nodate pageno=1 linesize=80 pagesize=60 source;
2 proc printto log=’log-file’;
3 run;

778 Output � Chapter 35

Output 35.2 Portion of Log Routed to an External File

5
6 data numbers;
7 input x y z;
8 datalines;

NOTE: The data set WORK.NUMBERS has 6 observations and 3 variables.
NOTE: DATA statement used:

real time 0.00 seconds
cpu time 0.00 seconds

15 ;
16 proc printto print=’output-file’ new;
16
17 run;

NOTE: PROCEDURE PRINTTO used:
real time 0.00 seconds
cpu time 0.00 seconds

18
19 proc print data=numbers;
20 title ’Listing of NUMBERS Data Set’;
21 run;

NOTE: The PROCEDURE PRINT printed page 1.
NOTE: PROCEDURE PRINT used:

real time 0.00 seconds
cpu time 0.00 seconds

22
23 proc printto;
24 run;

Output

Output 35.3 Procedure Output Routed to an External File

Listing of NUMBERS Data Set 1

OBS x y z

1 14.2 25.2 96.8
2 10.8 51.6 96.8
3 9.5 34.2 138.2
4 8.8 27.6 83.2
5 11.5 49.4 287.0
6 6.3 42.0 170.7

The PRINTTO Procedure � Program 779

Example 2: Routing to SAS Catalog Entries

Procedure features:
PRINTTO statement:

Without options
Options:

LABEL=
LOG=
NEW
PRINT=

This example uses PROC PRINTTO to route the SAS log and procedure output to a
SAS catalog entry and then to reset both destinations to the default.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60 source;

Assign a libname.

libname lib1 ’SAS-data-library’;

Route the SAS log to a SAS catalog entry. PROC PRINTTO routes the SAS log to a SAS
catalog entry named SASUSER.PROFILE.TEST.LOG. The PRINTTO procedure uses the default
libref and catalog SASUSER.PROFILE because only the entry name and type are specified.
LABEL= assigns a description for the catalog entry.

proc printto log=test.log label=’Inventory program’ new;
run;

Create the LIB1.INVENTORY data set. The DATA step creates a permanent SAS data set.

data lib1.inventry;
length Dept $ 4 Item $ 6 Season $ 6 Year 4;
input dept item season year @@;
datalines;

3070 20410 spring 1996 3070 20411 spring 1997
3070 20412 spring 1997 3070 20413 spring 1997
3070 20414 spring 1996 3070 20416 spring 1995

780 Program � Chapter 35

3071 20500 spring 1994 3071 20501 spring 1995
3071 20502 spring 1996 3071 20503 spring 1996
3071 20505 spring 1994 3071 20506 spring 1994
3071 20507 spring 1994 3071 20424 spring 1994
;

Route the procedure output to a SAS catalog entry. PROC PRINTTO routes procedure
output from the subsequent PROC REPORT step to the SAS catalog entry
LIB1.CAT1.INVENTRY.OUTPUT. LABEL= assigns a description for the catalog entry.

proc printto print=lib1.cat1.inventry.output
label=’Inventory program’ new;

run;

proc report data=lib1.inventry nowindows headskip;
column dept item season year;
title ’Current Inventory Listing’;

run;

Reset the SAS log and procedure output back to the default and close the file. PROC
PRINTTO closes the current files that were opened by the previous PROC PRINTTO step and
reroutes subsequent SAS logs and procedure output to their default destinations.

proc printto;
run;

The PRINTTO Procedure � Log 781

Log

Output 35.4 SAS Log Routed to SAS Catalog Entry SASUSER.PROFILE.TEST.LOG.

You can view this catalog entry in the BUILD window of the SAS Explorer.

8
9 data lib1.inventry;
10 length Dept $ 4 Item $ 6 Season $ 6 Year 4;
11 input dept item season year @@;
12 datalines;

NOTE: SAS went to a new line when INPUT statement reached past the end of a
line.

NOTE: The data set LIB1.INVENTRY has 14 observations and 4 variables.
NOTE: DATA statement used:

real time 0.00 seconds
cpu time 0.00 seconds

20 ;
21
22 proc printto print=lib1.cat1.inventry.output
23 label=’Inventory program’ new;
24 run;

NOTE: PROCEDURE PRINTTO used:
real time 0.00 seconds
cpu time 0.00 seconds

25
26 proc report data=lib1.inventry nowindows headskip;
27 column dept item season year;
28 title ’Current Inventory Listing’;
29 run;

NOTE: PROCEDURE REPORT used:
real time 0.00 seconds
cpu time 0.00 seconds

30
31 proc printto;
32 run;

782 Output � Chapter 35

Output

Output 35.5 Procedure Output Routed to SAS Catalog Entry LIB1.CAT1.INVENTRY.OUTPUT.

You can view this catalog entry in the BUILD window of the SAS Explorer.

Current Inventory Listing 1

Dept Item Season Year

3070 20410 spring 1996
3070 20411 spring 1997
3070 20412 spring 1997
3070 20413 spring 1997
3070 20414 spring 1996
3070 20416 spring 1995
3071 20500 spring 1994
3071 20501 spring 1995
3071 20502 spring 1996
3071 20503 spring 1996
3071 20505 spring 1994
3071 20506 spring 1994
3071 20507 spring 1994
3071 20424 spring 1994

Example 3: Using Procedure Output as an Input File

Procedure features:
PRINTTO statement:

Without options
Options:

LOG=
NEW
PRINT=

This example uses PROC PRINTTO to route procedure output to an external file and
then uses that file as input to a DATA step.

Generate random values for the variables. The DATA step uses the RANUNI function to
randomly generate values for the variables X and Y in the data set A.

data test;
do n=1 to 1000;

x=int(ranuni(77777)*7);
y=int(ranuni(77777)*5);
output;

end;
run;

The PRINTTO Procedure � Example 3: Using Procedure Output as an Input File 783

Assign a fileref and route procedure output to the file that is referenced. The
FILENAME statement assigns a fileref to an external file. PROC PRINTTO routes subsequent
procedure output to the file that is referenced by the fileref ROUTED. See Output 35.6.

filename routed ’output-filename’;

proc printto print=routed new;
run;

Produce the frequency counts. PROC FREQ computes frequency counts and a chi-square
analysis of the variables X and Y in the data set TEST. This output is routed to the file that is
referenced as ROUTED.

proc freq data=test;
tables x*y / chisq;

run;

Close the file. You must use another PROC PRINTTO to close the file that is referenced by
fileref ROUTED so that the following DATA step can read it. The step also routes subsequent
procedure output to the default destination. PRINT= causes the step to affect only procedure
output, not the SAS log.

proc printto print=print;
run;

Create the data set PROBTEST. The DATA step uses ROUTED, the file containing PROC
FREQ output, as an input file and creates the data set PROBTEST. This DATA step reads all
records in ROUTED but creates an observation only from a record that begins with Chi-Squa.

data probtest;
infile routed;
input word1 $ @;
if word1=’Chi-Squa’ then

do;
input df chisq prob;
keep chisq prob;
output;

end;
run;

Print the PROBTEST data set. PROC PRINT produces a simple listing of data set
PROBTEST. This output is routed to the default destination. See Output 35.7.

proc print data=probtest;
title ’Chi-Square Analysis for Table of X by Y’;

run;

784 Example 3: Using Procedure Output as an Input File � Chapter 35

Output 35.6 PROC FREQ Output Routed to the External File Referenced as ROUTED

The FREQ Procedure

Table of x by y

x y

Frequency|
Percent |
Row Pct |
Col Pct | 0| 1| 2| 3| 4| Total
---------+--------+--------+--------+--------+--------+

0 | 29 | 33 | 12 | 25 | 27 | 126
| 2.90 | 3.30 | 1.20 | 2.50 | 2.70 | 12.60
| 23.02 | 26.19 | 9.52 | 19.84 | 21.43 |
| 15.18 | 16.18 | 6.25 | 11.74 | 13.50 |

---------+--------+--------+--------+--------+--------+
1 | 23 | 26 | 29 | 20 | 19 | 117

| 2.30 | 2.60 | 2.90 | 2.00 | 1.90 | 11.70
| 19.66 | 22.22 | 24.79 | 17.09 | 16.24 |
| 12.04 | 12.75 | 15.10 | 9.39 | 9.50 |

---------+--------+--------+--------+--------+--------+
2 | 28 | 26 | 32 | 30 | 25 | 141

| 2.80 | 2.60 | 3.20 | 3.00 | 2.50 | 14.10
| 19.86 | 18.44 | 22.70 | 21.28 | 17.73 |
| 14.66 | 12.75 | 16.67 | 14.08 | 12.50 |

---------+--------+--------+--------+--------+--------+
3 | 26 | 24 | 36 | 32 | 45 | 163

| 2.60 | 2.40 | 3.60 | 3.20 | 4.50 | 16.30
| 15.95 | 14.72 | 22.09 | 19.63 | 27.61 |
| 13.61 | 11.76 | 18.75 | 15.02 | 22.50 |

---------+--------+--------+--------+--------+--------+
4 | 25 | 31 | 28 | 36 | 29 | 149

| 2.50 | 3.10 | 2.80 | 3.60 | 2.90 | 14.90
| 16.78 | 20.81 | 18.79 | 24.16 | 19.46 |
| 13.09 | 15.20 | 14.58 | 16.90 | 14.50 |

---------+--------+--------+--------+--------+--------+
5 | 32 | 29 | 26 | 33 | 27 | 147

| 3.20 | 2.90 | 2.60 | 3.30 | 2.70 | 14.70
| 21.77 | 19.73 | 17.69 | 22.45 | 18.37 |
| 16.75 | 14.22 | 13.54 | 15.49 | 13.50 |

---------+--------+--------+--------+--------+--------+
6 | 28 | 35 | 29 | 37 | 28 | 157

| 2.80 | 3.50 | 2.90 | 3.70 | 2.80 | 15.70
| 17.83 | 22.29 | 18.47 | 23.57 | 17.83 |
| 14.66 | 17.16 | 15.10 | 17.37 | 14.00 |

---------+--------+--------+--------+--------+--------+
Total 191 204 192 213 200 1000

19.10 20.40 19.20 21.30 20.00 100.00

2

The FREQ Procedure

Statistics for Table of x by y

Statistic DF Value Prob
--
Chi-Square 24 27.2971 0.2908
Likelihood Ratio Chi-Square 24 28.1830 0.2524
Mantel-Haenszel Chi-Square 1 0.6149 0.4330
Phi Coefficient 0.1652
Contingency Coefficient 0.1630
Cramer’s V 0.0826

Sample Size = 1000

The PRINTTO Procedure � Program 785

Output 35.7 PROC PRINT Output of Data Set PROBTEST, Routed to Default Destination

Chi-Square Analysis for Table of X by Y 3

Obs chisq prob

1 27.297 0.291

Example 4: Routing to a Printer

Procedure features:
PRINTTO statement:

Option:
PRINT= option

This example uses PROC PRINTTO to route procedure output directly to a printer.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Associate a fileref with the printer name. The FILENAME statement associates a fileref
with the printer name that you specify. If you want to associate a fileref with the default printer,
omit ’printer-name’.

filename your_fileref printer ’printer-name’;

Specify the file to route to the printer. The PRINT= option specifies the file that PROC
PRINTTO routes to the printer.

proc printto print=your_fileref;
run;

786

787

C H A P T E R

36
The PROTO Procedure

Information about the PROTO Procedure 787

Information about the PROTO Procedure
See: For documentation of the PROTO procedure, go to http://support.sas.com/
documentation/onlinedoc. Select Base SAS from the Product-Specific Documentation
list.

788

789

C H A P T E R

37
The PRTDEF Procedure

Overview: PRTDEF Procedure 789
Syntax: PRTDEF Procedure 789

PROC PRTDEF Statement 789

Input Data Set: PRTDEF Procedure 791

Summary of Valid Variables 791

Required Variables 792
Optional Variables 793

Examples: PRTDEF Procedure 796

Example 1: Defining Multiple Printer Definitions 796

Example 2: Creating a Ghostview Printer in SASUSER to Preview PostScript Printer Output in
SASUSER 797

Example 3: Creating a Single Printer Definition That Is Available to All Users 798
Example 4: Adding, Modifying, and Deleting Printer Definitions 799

Example 5: Deleting a Single Printer Definition 801

Overview: PRTDEF Procedure
The PRTDEF procedure creates printer definitions in batch mode either for an

individual user or for all SAS users at your site. Your system administrator can create
printer definitions in the SAS registry and make these printers available to all SAS
users at your site by using PROC PRTDEF with the USESASHELP option. An
individual user can create personal printer definitions in the SAS registry by using
PROC PRTDEF.

Syntax: PRTDEF Procedure
PROC PRTDEF <option(s)>;

PROC PRTDEF Statement

PROC PRTDEF <option(s)>;

790 PROC PRTDEF Statement � Chapter 37

To do this Use this option

Specify the input data set that contains the printer
attributes

DATA=

Specify that the default operation is to delete the printer
definitions from the registry

DELETE

Specify that the registry entries are being created for export
to a different host

FOREIGN

Specify that a list of printers that are created or replaced
will be written to the log

LIST

Specify that any printer name that already exists will be
modified by using the information in the printer attributes
data set

REPLACE

Specify whether the printer definitions are available to all
users or just the users running PROC PRTDEF

USESASHELP

Options

DATA=SAS-data-set
specifies the SAS input data set that contains the printer attributes.
Requirements: Printer attributes variables that must be specified are DEST,

DEVICE, MODEL, and NAME, except when the value of the variable OPCODE is
DELETE, in which case only the NAME variable is required.

DELETE
specifies that the default operation is to delete the printer definitions from the
registry.
Interaction: If both DELETE and REPLACE are specified, then DELETE is the

default operation.
Tip: If the user-defined printer definition is deleted, then the administrator-defined

printer may still appear if it exists in the SASHELP catalog.

FOREIGN
specifies that the registry entries are being created for export to a different host. As a
consequence, tests of any host-dependent items, such as the TRANTAB, are skipped.

LIST
specifies that a list of printers that are created or replaced will be written to the log.

REPLACE
specifies that the default operation is to modify existing printer definitions. Any
printer name that already exists will be modified by using the information in the
printer attributes data set. Any printer name that does not exist will be added.
Interaction: If both REPLACE and DELETE are specified, then a DELETE will be

performed.

USESASHELP
specifies that the printer definitions that are to be placed in the SASHELP library,
where they are available to all users.

If the USESASHELP option is not specified, then the printer definitions that are
placed in the current SASUSER library, where they are available to the local user
only.

The PRTDEF Procedure � Summary of Valid Variables 791

Restriction: To use the USESASHELP option, you must have permission to write
to the SASHELP catalog.

Operating Environment Information: You can create printer definitions with PROC
PRTDEF in the Windows operating environment. However, because Universal
Printing is turned off by default in Windows, these printer definitions do not appear
in the Print window.

If you want to use your printer definitions when Universal Printing is turned off,
then do one of the following:

� specify the printer definition as part of the PRINTERPATH system option
� from the Output Delivery System (ODS), issue the following code:

ODS PRINTER SAS PRINTER=myprinter;

where myprinter is the name of your printer definition.

�

Input Data Set: PRTDEF Procedure

Summary of Valid Variables
To create your printer definitions, you must create a SAS data set whose variables

contain the appropriate printer attributes. The following table lists and describes both
the required and the optional variables for this data set.

Variable Name Variable Description

Required

DEST Destination

DEVICE Device

MODEL Prototype

NAME Printer name

Optional

BOTTOM Default bottom margin

CHARSET Default font character set

DESC Description

FONTSIZE Point size of the default font

HOSTOPT Host options

LEFT Default left margin

LRECL Output buffer size

OPCODE Operation code

PAPERIN Paper source or input tray

PAPEROUT Paper destination or output tray

PAPERSIZ Paper size

792 Required Variables � Chapter 37

Variable Name Variable Description

PAPERTYP Paper type

PREVIEW Preview

PROTOCOL Protocol

RES Default printer resolution

RIGHT Default right margin

STYLE Default font style

TOP Default top margin

TRANTAB Translation table

TYPEFACE Default font

UNITS CM or IN units

VIEWER Viewer

WEIGHT Default font weight

Required Variables
To create or modify a printer, you must supply the NAME, MODEL, DEVICE, and

DEST variables. All the other variables use default values from the printer prototype
that is specified by the MODEL variable.

To delete a printer, specify only the required NAME variable.
The following variables are required in the input data set:

DEST specifies the output destination for the printer.

Operating Environment Information: DEST is case sensitive for
some devices. �

Restriction: DEST is limited to 1023 characters.

DEVICE specifies the type of I/O device to use when sending output to the
printer. Valid devices are listed in the Printer Definition wizard and
in the SAS Registry Editor.
Restriction: DEVICE is limited to 31 characters.

MODEL specifies the printer prototype to use when defining the printer.

For a valid list of prototypes or model descriptions, you can look in
the SAS Registry Editor under CORE\PRINTING\PROTOTYPES.
Tip: While in interactive mode, you can invoke the registry with

the REGEDIT command.
Tip: While in interactive mode, you can invoke the Print Setup

dialog (DMPRTSETUP) and press New to view the list that is
specified in the second window of the Printer Definition wizard.

Restriction: MODEL is limited to 127 characters.

NAME specifies the printer definition name that will be associated with the
rest of the attributes in the printer definition.

The name is unique within a given registry. If a new printer
definition contains a name that already exists, then the record will

The PRTDEF Procedure � Optional Variables 793

not be processed unless the REPLACE option has been specified or
unless the value of the OPCODE variable is Modify.
Restriction: NAME must have the following features:

� It is limited to 127 characters.
� It must have at least one nonblank character.
� It cannot contain a backslash.

Note: Leading and trailing blanks will be stripped from the
name. �

Optional Variables
The following variables are optional in the input data set:

BOTTOM
specifies the default bottom margin in the units that are specified by the UNITS
variable.

CHARSET
specifies the default font character set.
Restriction: The value must be one of the character set names in the typeface

that is specified by the TYPEFACE variable.
Restriction: CHARSET is limited to 31 characters.

DESC
specifies the description of the printer.
Restriction: The description can have a maximum of 1023 characters.
Default: DESC defaults to the prototype that is used to create the printer.

FONTSIZE
specifies the point size of the default font.

HOSTOPT
specifies any host options for the output destination. The host options are not case
sensitive.
Restriction: The host options can have a maximum of 1023 characters.

LEFT
specifies the default left margin in the units that are specified by the UNITS
variable.

LRECL
specifies the buffer size or record length to use when sending output to the printer.
Default: If LRECL is less than zero when modifying an existing printer, the

printer’s buffer size will be reset to that specified by the printer prototype.

OPCODE
is a character variable that specifies what action (Add, Delete, or Modify) to
perform on the printer definition.

Add
creates a new printer definition in the registry. If the REPLACE option has
been specified, then this operation will also modify an existing printer
definition.

Delete
removes an existing printer definition from the registry.

794 Optional Variables � Chapter 37

Restriction: This operation requires only the NAME variable to be defined.
The other variables are ignored.

Modify
changes an existing printer definition in the registry or adds a new one.

Tip: If a user modifies and saves new attributes on a printer in the SASHELP
library, then these modifications are stored in the SASUSER library. Values
that are specified by the user will override values that are set by the
administrator, but they will not replace them.

Restriction: OPTCODE is limited to 8 characters.

PAPERIN
specifies the default paper source or input tray.
Restriction: The value of PAPERIN must be one of the paper source names in

the printer prototype that is specified by the MODEL variable.
Restriction: PAPERIN is limited to 31 characters.

PAPEROUT
specifies the default paper destination or output tray.
Restriction: The value of PAPEROUT must be one of the paper destination

names in the printer prototype that is specified by the MODEL variable.
Restriction: PAPEROUT is limited to 31 characters.

PAPERSIZ
specifies the default paper source or input tray.
Restriction: The value of PAPERSIZ must be one of the paper size names listed

in the printer prototype that is specified by the MODEL variable.
Restriction: PAPERSIZ is limited to 31 characters.

PAPERTYP
specifies the default paper type.
Restriction: The value of PAPERTYP must be one of the paper source names

listed in the printer prototype that is specified by the MODEL variable.
Restriction: PAPERTYP is limited to 31 characters.

PREVIEW
specifies the printer application to use for print preview.
Restriction: PREVIEW is limited to 127 characters.

PROTOCOL
specifies the I/O protocol to use when sending output to the printer.

Operating Environment Information: On mainframe systems, the protocol
describes how to convert the output to a format that can be processed by a protocol
converter that connects the mainframe to an ASCII device. �

Restriction: PROTOCOL is limited to 31 characters.

RES
specifies the default printer resolution.
Restriction: The value of RES must be one of the resolution values available to

the printer prototype that is specified by the MODEL variable.
Restriction: RES is limited to 31 characters.

RIGHT
specifies the default right margin in the units that are specified by the UNITS
variable.

The PRTDEF Procedure � Optional Variables 795

STYLE
specifies the default font style.
Restriction: The value of STYLE must be one of the styles available to the

typeface that is specified by the TYPEFACE variable.
Restriction: STYLE is limited to 31 characters.

TOP
specifies the default top margin in the units that are specified by the UNITS
variable.

TRANTAB
specifies which translation table to use when sending output to the printer.

Operating Environment Information: The translation table is needed when an
EBCDIC host sends data to an ASCII device. �

Restriction: TRANTAB is limited to 8 characters.

TYPEFACE
specifies the typeface of the default font.
Restriction: The typeface must be one of the typeface names available to the

printer prototype that is specified by the MODEL variable.
Restriction: TYPEFACE is limited to 63 characters.

UNITS
specifies the units CM or IN that are used by margin variables.

VIEWER
specifies the host system command that is to be used during print previews. As a
result, PROC PRTDEF causes a preview printer to be created.

Preview printers are specialized printers that are used to display printer output
on the screen before printing.
Tip: The values of the PREVIEW, PROTOCOL, DEST, and HOSTOPT variables

are ignored when a value for VIEWER has been specified. Place %s where the
input filename would normally be in the viewer command. The %s can be used
as many times as needed.

Restriction: VIEWER is limited to 127 characters.

WEIGHT
specifies the default font weight.
Restriction: The value must be one of the valid weights for the typeface that is

specified by the TYPEFACE variable.

796 Examples: PRTDEF Procedure � Chapter 37

Examples: PRTDEF Procedure

Example 1: Defining Multiple Printer Definitions

Procedure features:
PROC PRTDEF statement options:

DATA=
USESASHELP

This example shows you how to set up various printers.

Program

Create the PRINTERS data set. The INPUT statement contains the names of the four
required variables. Each data line contains the information that is needed to produce a single
printer definition.

data printers;
input name $ 1-14 model $ 16-42 device $ 46-53 dest $ 57-70;
datalines;
Myprinter PostScript Level 1 (Color) PRINTER printer1
Laserjet PCL 5 PIPE lp -dprinter5
Color LaserJet PostScript Level 2 (Color) PIPE lp -dprinter2
;

Specify the input data set that contains the printer attributes, create the printer
definitions, and make the definitions available to all users. The DATA= option specifies
PRINTERS as the input data set that contains the printer attributes.

PROC PRTDEF creates the printer definitions for the SAS registry, and the USESASHELP
option specifies that the printer definitions will be available to all users.

proc prtdef data=printers usesashelp;
run;

The PRTDEF Procedure � Program 797

Example 2: Creating a Ghostview Printer in SASUSER to Preview PostScript
Printer Output in SASUSER

Procedure features:
PROC PRTDEF statement options:

DATA=
LIST
REPLACE

This example creates a Ghostview printer definition in the SASUSER library for
previewing PostScript output.

Program

Create the GSVIEW data set, and specify the printer name, printer description,
printer prototype, and commands to be used for print preview. The GSVIEW data set
contains the variables whose values contain the information that is needed to produce the
printer definitions.

The NAME variable specifies the printer name that will be associated with the rest of the
attributes in the printer definition data record.

The DESC variable specifies the description of the printer.

The MODEL variable specifies the printer prototype to use when defining this printer.

The VIEWER variable specifies the host system commands to be used for print preview.
GSVIEW must be installed on your system and the value for VIEWER must include the path
to find it. You must enclose the value in single quotation marks because of the %s. If you use
double quotation marks, SAS will assume that %s is a macro variable.

DEVICE and DEST are required variables, but no value is needed in this example. Therefore,
a “dummy” or blank value should be assigned.

data gsview;
name = "Ghostview";
desc = "Print Preview with Ghostview";
model= "PostScript Level 2 (Color)";
viewer = ’ghostview %s’;
device = "Dummy";
dest = " ";

798 Example 3: Creating a Single Printer Definition That Is Available to All Users � Chapter 37

Specify the input data set that contains the printer attributes, create the printer
definitions, write the printer definitions to the SAS log, and replace a printer
definition in the SAS registry. The DATA= option specifies GSVIEW as the input data set
that contains the printer attributes.

PROC PRTDEF creates the printer definitions.

The LIST option specifies that a list of printers that are created or replaced will be written to
the SAS log.

The REPLACE option specifies that a printer definition will replace a printer definition in the
registry if the name of the printer definition matches a name already in the registry. If the
printer definition names do not match, then the new printer definition is added to the registry.

proc prtdef data=gsview list replace;
run;

Example 3: Creating a Single Printer Definition That Is Available to All Users

Procedure features:
PROC PRTDEF statement option:

DATA=

This example creates a definition for a Tektronix Phaser 780 printer with a
Ghostview print previewer with the following specifications:

� bottom margin set to 1 inch
� font size set to 14 point
� paper size set to A4.

The PRTDEF Procedure � Example 4: Adding, Modifying, and Deleting Printer Definitions 799

Program

Create the TEK780 data set and supply appropriate information for the printer
destination. The TEK780 data set contains the variables whose values contain the information
that is needed to produce the printer definitions.

In the example, assignment statements are used to assign these variables.

The NAME variable specifies the printer name that will be associated with the rest of the
attributes in the printer definition data record.

The DESC variable specifies the description of the printer.

The MODEL variable specifies the printer prototype to use when defining this printer.

The DEVICE variable specifies the type of I/O device to use when sending output to the printer.

The DEST variable specifies the output destination for the printer.

The PREVIEW variable specifies which printer will be used for print preview.

The UNITS variable specifies whether the margin variables are measured in centimeters or
inches.

The BOTTOM variable specifies the default bottom margin in the units that are specified by the
UNITS variable.

The FONTSIZE variable specifies the point size of the default font.

The PAPERSIZ variable specifies the default paper size.

data tek780;
name = "Tek780";
desc = "Test Lab Phaser 780P";
model = "Tek Phaser 780 Plus";
device = "PRINTER";
dest = "testlab3";
preview = "Ghostview";
units = "cm";
bottom = 2.5;
fontsize = 14;
papersiz = "ISO A4";

run;

Create the TEK780 printer definition. The DATA= option specifies TEK780 as the input
data set.

proc prtdef data=tek780;
run;

Example 4: Adding, Modifying, and Deleting Printer Definitions

Procedure features:
PROC PRTDEF statement options:

DATA=
LIST

800 Program � Chapter 37

This example
� adds two printer definitions
� modifies a printer definition
� deletes two printer definitions.

Program

Create the PRINTERS data set and specify which actions to perform on the printer
definitions. The PRINTERS data set contains the variables whose values contain the
information that is needed to produce the printer definitions.

The MODEL variable specifies the printer prototype to use when defining this printer.

The DEVICE variable specifies the type of I/O device to use when sending output to the printer.

The DEST variable specifies the output destination for the printer.

The OPCODE variable specifies which action (add, delete, or modify) to perform on the printer
definition.

The first Add operation creates a new printer definition for Color PostScript in the SAS registry,
and the second Add operation creates a new printer definition for ColorPS in the SAS registry.

The Mod operation modifies the existing printer definition for LaserJet 5 in the registry.

The Del operation deletes the printer definitions for Gray PostScript and test from the registry.

The & specifies that two or more blanks separate character values. This allows the name and
model value to contain blanks.

data printers;
length name $ 80

model $ 80
device $ 8
dest $ 80
opcode $ 3
;

input opcode $& name $& model $& device $& dest $&;
datalines;
add Color PostScript PostScript Level 2 (Color) DISK sasprt.ps
mod LaserJet 5 PCL 5 DISK sasprt.pcl
del Gray PostScript PostScript Level 2 (Gray Scale) DISK sasprt.ps
del test PostScript Level 2 (Color) DISK sasprt.ps
add ColorPS PostScript Level 2 (Color) DISK sasprt.ps
;

Create multiple printer definitions and write them to the SAS log. The DATA= option
specifies the input data set PRINTERS that contains the printer attributes. PROC PRTDEF
creates five printer definitions, two of which have been deleted. The LIST option specifies that a
list of printers that are created or replaced will be written to the log.

proc prtdef data=printers library=sasuser list;
run;

The PRTDEF Procedure � Program 801

Example 5: Deleting a Single Printer Definition

Procedure features:
PROC PRTDEF statement option:

DELETE

This example shows you how to delete a printer from the registry.

Program

Create the DELETEPRT data set. The NAME variable contains the name of the printer to
delete.

data deleteprt;
name=’printer1’;
run;

Delete the printer definition from the registry and write the deleted printer to the log.

The DATA= option specifies DELETEPRT as the input data set.

PROC PRTDEF creates printer definitions for the SAS registry.

DELETE specifies that the printer is to be deleted.

LIST specifies to write the deleted printer to the log.

proc prtdef data=deleteprt delete list;
run;

802 See Also � Chapter 37

See Also

Procedures
Chapter 38, “The PRTEXP Procedure,” on page 803

803

C H A P T E R

38
The PRTEXP Procedure

Overview: PRTEXP Procedure 803
Syntax: PRTEXP Procedure 803

PROC PRTEXP Statement 804

EXCLUDE Statement 804

SELECT Statement 804

Concepts: PRTEXP Procedure 805
Examples: PRTEXP Procedure 805

Example 1: Writing Attributes to the SAS Log 805

Example 2: Writing Attributes to a SAS Data Set 806

Overview: PRTEXP Procedure
The PRTEXP procedure enables you to extract printer attributes from the SAS

registry for replication and modification. PROC PRTEXP then writes these attributes to
the SAS log or to a SAS data set. You can specify that PROC PRTEXP search for these
attributes in the SASHELP portion of the registry or the entire SAS registry.

Syntax: PRTEXP Procedure
Note: If neither the SELECT nor the EXCLUDE statement is used, then all of the
printers will be included in the output.

PROC PRTEXP<option(s)>;
<SELECT printer_1 …<printer_n>>;
<EXCLUDE printer_1 … <printer_n>>;

804 PROC PRTEXP Statement � Chapter 38

PROC PRTEXP Statement

PROC PRTEXP<option(s)>;

Options

USESASHELP
specifies that SAS search only the SASHELP portion of the registry for printer
definitions.
Default: The default is to search both the SASUSER and SASHELP portions of the

registry for printer definitions.

OUT=SAS-data-set
specifies the SAS data set to create that contains the printer definitions.

The data set that is specified by the OUT=SAS-data-set option is the same type of
data set that is specified by the DATA=SAS-data-set option in PROC PRTDEF to
define each printer.
Default: If OUT=SAS-data-set is not specified, then the data that is needed to

define each printer is written to the SAS log.

EXCLUDE Statement

The EXCLUDE statement will cause the output to contain information from all those printers that
are not listed.

EXCLUDE printer_1 … <printer_n>;

Required Arguments

printer_1 printer_n
specifies the printer(s) that you do not want the output to contain information about.

SELECT Statement

The SELECT statement will cause the output to contain information from only those printers that
are listed.

SELECT printer_1 … <printer_n>;

Required Arguments

printer_1 printer_n
specifies the printer(s) that you would like the output to contain information about.

The PRTEXP Procedure � Program 805

Concepts: PRTEXP Procedure
The PRTEXP procedure, along with the PRTDEF procedure, can replicate, modify,

and create printer definitions either for an individual user or for all SAS users at your
site. PROC PRTEXP can extract only the attributes that are used to create printer
definitions from the registry. If you write them to a SAS data set, then you can later
replicate and modify them. You can then use PROC PRTDEF to create the printer
definitions in the SAS registry from your input data set. For a complete discussion of
PROC PRTDEF and the variables and attributes that are used to create the printer
definitions, see “Input Data Set: PRTDEF Procedure” on page 791.

Examples: PRTEXP Procedure

Example 1: Writing Attributes to the SAS Log

Procedure Features:
PROC PRTEXP statement option:

SELECT statement
USESASHELP option

This example shows you how to write the attributes that are used to define a printer
to the SAS log.

Program

Specify the printer that you want information about, specify that only the SASHELP
portion of the registry be searched, and write the information to the SAS log. The
SELECT statement specifies that you want the attribute information that is used to define the
printer Postscript to be included in the output. The USESASHELP option specifies that only the
SASHELP registry is to be searched for Postscript’s printer definitions. The data that is needed
to define each printer is written to the SAS log because the OUT= option was not used to specify
a SAS data set.

proc prtexp usesashelp;
select postscript;
run;

806 Example 2: Writing Attributes to a SAS Data Set � Chapter 38

Example 2: Writing Attributes to a SAS Data Set

Procedure Features:
PROC PRTEXP statement option:

OUT= option
SELECT statement

This example shows you how to create a SAS data set that contains the data that
PROC PRTDEF would use to define the printers PCL4, PCL5, PCL5E, and PCLC.

Program

Specify the printers that you want information about and create the PRDVTER data
set. The SELECT statement specifies the printers PCL4, PCL5, PCL5E, and PCLC. The OUT=
option creates the SAS data set PRDVTER, which contains the same attributes that are used by
PROC PRTDEF to define the printers PCL4, PCL5, PCL5E, and PCLC. SAS will search both
the SASUSER and SASHELP registries, because USESASHELP was not specified.

proc prtexp out=PRDVTER;
select pcl4 pcl5 pcl5e pcl5c;
run;

See Also

Procedures
Chapter 37, “The PRTDEF Procedure,” on page 789

807

C H A P T E R

39
The PWENCODE Procedure

Overview: PWENCODE Procedure 807
Syntax: PWENCODE Procedure 807

PROC PWENCODE Statement 807

Concepts: PWENCODE Procedure 808

Using Encoded Passwords in SAS Programs 808

Encoding versus Encryption 808
Examples: PWENCODE Procedure 809

Example 1: Encoding a Password 809

Example 2: Using an Encoded Password in a SAS Program 809

Example 3: Saving an Encoded Password to the Paste Buffer 811

Overview: PWENCODE Procedure
The PWENCODE procedure enables you to encode passwords. Encoded passwords

can be used in place of plain-text passwords in SAS programs that access relational
database management systems (RDBMSs), SAS/SHARE servers, and SAS Integrated
Object Model (IOM) servers (such as the SAS Metadata Server).

Syntax: PWENCODE Procedure
PROC PWENCODE IN=’password’ <OUT=fileref> <METHOD=encoding-method>;

PROC PWENCODE Statement

PROC PWENCODE IN=’password’ <OUT=fileref> <METHOD=encoding-method>;

808 Concepts: PWENCODE Procedure � Chapter 39

Required Argument

IN=’password’
specifies the password to encode. password can have no more than 512 characters.
password can contain letters, numerals, spaces, and special characters. If password
contains embedded single or double quotation marks, then use the standard SAS
rules for quoting character constants (see “SAS Constants in Expressions” in SAS
Language Reference: Concepts for details).

Featured in: Example 1 on page 809, Example 2 on page 809, and Example 3 on
page 811

Options

OUT=fileref
specifies a fileref to which the output string is to be written. If the OUT= option is
not specified, then the output string is written to the SAS log.

Featured in: Example 2 on page 809 and Example 3 on page 811

METHOD=encoding-method
specifies the encoding method to use. Currently, sas001 is the only supported
encoding method and is the default if the METHOD= option is omitted.

Concepts: PWENCODE Procedure

Using Encoded Passwords in SAS Programs
When a password is encoded with PROC PWENCODE, the output string includes a

tag that identifies the string as having been encoded. An example of a tag is {sas001}.
The tag indicates the encoding method. SAS servers and SAS/ACCESS engines
recognize the tag and decode the string before using it. Encoding a password enables
you to write SAS programs without having to specify a password in plain text.

Note: SAS does not currently support encoded read, write, or alter passwords for
SAS data sets. �

Encoding versus Encryption
PROC PWENCODE uses encoding to disguise passwords. With encoding, one

character set is translated to another character set through some form of table lookup.
Encryption, by contrast, involves the transformation of data from one form to another
through the use of mathematical operations and, usually, a “key” value. Encryption is
generally more difficult to break than encoding. PROC PWENCODE is intended to
prevent casual, non-malicious viewing of passwords. You should not depend on PROC
PWENCODE for all your data security needs; a determined and knowledgeable attacker
can decode the encoded passwords.

The PWENCODE Procedure � Example 2: Using an Encoded Password in a SAS Program 809

Examples: PWENCODE Procedure

Example 1: Encoding a Password
Procedure features: IN= argument

This example shows a simple case of encoding a password and writing the encoded
password to the SAS log.

Program

Encode the password.

proc pwencode in=’my password’;
run;

Log

Output 39.1

6 proc pwencode in=’my password’;
7 run;

{sas001}bXkgcGFzc3dvcmQ=

NOTE: PROCEDURE PWENCODE used (Total process time):
real time 0.31 seconds
cpu time 0.08 seconds

Example 2: Using an Encoded Password in a SAS Program
Procedure features:

IN= argument
OUT= option

This example
� encodes a password and saves it to an external file
� reads the encoded password with a DATA step, stores it in a macro variable, and

uses it in a SAS/ACCESS LIBNAME statement.

810 Program 1: Encoding the Password � Chapter 39

Program 1: Encoding the Password

Declare a fileref.

filename pwfile ’external-filename’

Encode the password and write it to the external file. The OUT= option specifies which
external fileref the encoded password will be written to.

proc pwencode in=’mypass1’ out=pwfile;
run;

Program 2: Using the Encoded Password

Declare a fileref for the encoded-password file.

filename pwfile ’external-filename’;

Set the SYMBOLGEN SAS system option. The purpose of this step is to show that the
actual password cannot be revealed, even when the macro variable that contains the encoded
password is resolved in the SAS log. This step is not required in order for the program to work
properly. For more information about the SYMBOLGEN SAS system option, see SAS Macro
Language: Reference.

options symbolgen;

Read the file and store the encoded password in a macro variable. The DATA step stores
the encoded password in the macro variable DBPASS. For details about the INFILE and INPUT
statements, the $VARYING. informat, and the CALL SYMPUT routine, see SAS Language
Reference: Dictionary.

data _null_;
infile pwfile obs=1 length=l;
input @;
input @1 line $varying1024. l;
call symput(’dbpass’,substr(line,1,l));

run;

Use the encoded password to access a DBMS. You must use double quotation marks (“ ”) so
that the macro variable resolves properly.

libname x odbc dsn=SQLServer user=testuser password="&dbpass";

The PWENCODE Procedure � Program 811

Log

28 data _null_;
29 infile pwfile obs=1 length=l;
30 input @;
31 input @1 line $varying1024. l;
32 call symput(’dbpass’,substr(line,1,l));
33 run;

NOTE: The infile PWFILE is:
File Name=external-filename,
RECFM=V,LRECL=256

NOTE: 1 record was read from the infile PWFILE.
The minimum record length was 20.
The maximum record length was 20.

NOTE: DATA statement used (Total process time):
real time 3.94 seconds
cpu time 0.03 seconds

34 libname x odbc
SYMBOLGEN: Macro variable DBPASS resolves to {sas001}bXlwYXNzMQ==
34 ! dsn=SQLServer user=testuser password="&dbpass";
NOTE: Libref X was successfully assigned as follows:

Engine: ODBC
Physical Name: SQLServer

Example 3: Saving an Encoded Password to the Paste Buffer

Procedure features:
IN= argument

OUT= option

Other features:
FILENAME statement with CLIPBRD access method

This example saves an encoded password to the paste buffer. You can then paste the
encoded password into another SAS program or into the password field of an
authentication dialog box.

Program

Declare a fileref with the CLIPBRD access method. For more information about the
FILENAME statement with the CLIPBRD accedd method, see SAS Language Reference:
Dictionary.

filename clip clipbrd;

812 Program � Chapter 39

Encode the password and save it to the paste buffer. The OUT= option saves the encoded
password to the fileref that was declared in the previous statement.

proc pwencode in=’my password’ out=clip;
run;

813

C H A P T E R

40
The RANK Procedure

Overview: RANK Procedure 813
What Does the RANK Procedure Do? 813

Ranking Data 814

Syntax: RANK Procedure 815

PROC RANK Statement 816

BY Statement 818
RANKS Statement 819

VAR Statement 820

Concepts: RANK Procedure 820

Computer Resources 820

Statistical Applications 820

Results: RANK Procedure 821
Missing Values 821

Output Data Set 821

Examples: RANK Procedure 822

Example 1: Ranking Values of Multiple Variables 822

Example 2: Ranking Values within BY Groups 823
Example 3: Partitioning Observations into Groups Based on Ranks 826

References 829

Overview: RANK Procedure

What Does the RANK Procedure Do?
The RANK procedure computes ranks for one or more numeric variables across the

observations of a SAS data set and outputs the ranks to a new SAS data set. PROC
RANK by itself produces no printed output.

814 Ranking Data � Chapter 40

Ranking Data
Output 40.1 shows the results of ranking the values of one variable with a simple

PROC RANK step. In this example, the new ranking variable shows the order of finish
of five golfers over a four-day competition. The player with the lowest number of
strokes finishes in first place. The following statements produce the output:

proc rank data=golf out=rankings;
var strokes;
ranks Finish;

run;

proc print data=rankings;
run;

Output 40.1 Assignment of the Lowest Rank Value to the Lowest Variable Value

The SAS System 1

Obs Player Strokes Finish

1 Jack 279 2
2 Jerry 283 3
3 Mike 274 1
4 Randy 296 4
5 Tito 302 5

In Output 40.2, the candidates for city council are ranked by district according to
the number of votes that they received in the election and according to the number of
years that they have served in office.

This example shows how PROC RANK can
� reverse the order of the rankings so that the highest value receives the rank of 1,

the next highest value receives the rank of 2, and so on
� rank the observations separately by values of multiple variables
� rank the observations within BY groups
� handle tied values.

For an explanation of the program that produces this report, see Example 2 on page 823.

The RANK Procedure � Syntax: RANK Procedure 815

Output 40.2 Assignment of the Lowest Rank Value to the Highest Variable Value within Each BY Group

Results of City Council Election 1

---------------------------------- District=1 ----------------------------------

Vote Years
Obs Candidate Vote Years Rank Rank

1 Cardella 1689 8 1 1
2 Latham 1005 2 3 2
3 Smith 1406 0 2 3
4 Walker 846 0 4 3

N = 4

---------------------------------- District=2 ----------------------------------

Vote Years
Obs Candidate Vote Years Rank Rank

5 Hinkley 912 0 3 3
6 Kreitemeyer 1198 0 2 3
7 Lundell 2447 6 1 1
8 Thrash 912 2 3 2

N = 4

Syntax: RANK Procedure
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 57 for
details. You can also use any global statements. See “Global Statements” on page 18 for
a list.

PROC RANK <option(s)>;

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

VAR data-set-variables(s);

RANKS new-variables(s);

To do this Use this statement

Calculate a separate set of ranks for each BY group BY

Identify a variables that contain the ranks RANKS

Specify the variables to rank VAR

816 PROC RANK Statement � Chapter 40

PROC RANK Statement

PROC RANK <option(s)>;

To do this Use this option

Specify the input data set DATA=

Create an output data set OUT=

Specify the ranking method

Compute fractional ranks FRACTION or NPLUS1

Partition observations into groups GROUPS=

Compute normal scores NORMAL=

Compute percentages PERCENT

Compute Savage scores SAVAGE

Reverse the order of the rankings DESCENDING

Specify how to rank tied values TIES=

Note: You can specify only one ranking method in a single PROC RANK step. �

Options

DATA=SAS-data-set
specifies the input SAS data set.
Main discussion: “Input Data Sets” on page 19
Restriction: You cannot use PROC RANK with an engine that supports concurrent

access if another user is updating the data set at the same time.

DESCENDING
reverses the direction of the ranks. With DESCENDING, the largest value receives a
rank of 1, the next largest value receives a rank of 2, and so on. Otherwise, values
are ranked from smallest to largest.
Featured in: Example 1 on page 822 and Example 2 on page 823

FRACTION
computes fractional ranks by dividing each rank by the number of observations
having nonmissing values of the ranking variable.
Alias: F
Interaction: TIES=HIGH is the default with the FRACTION option. With

TIES=HIGH, fractional ranks are considered values of a right-continuous
empirical cumulative distribution function.

The RANK Procedure � PROC RANK Statement 817

See also: NPLUS1 option

GROUPS=number-of-groups
assigns group values ranging from 0 to number-of-groups minus 1. Common
specifications are GROUPS=100 for percentiles, GROUPS=10 for deciles, and
GROUPS=4 for quartiles. For example, GROUPS=4 partitions the original values
into four groups, with the smallest values receiving, by default, a quartile value of 0
and the largest values receiving a quartile value of 3.

The formula for calculating group values is

����� ����� � �� �� � ���

where FLOOR is the FLOOR function, rank is the value’s order rank, k is the value
of GROUPS=, and n is the number of observations having nonmissing values of the
ranking variable.

If the number of observations is evenly divisible by the number of groups, each
group has the same number of observations, provided there are no tied values at the
boundaries of the groups. Grouping observations by a variable that has many tied
values can result in unbalanced groups because PROC RANK always assigns
observations with the same value to the same group.

Tip: Use DESCENDING to reverse the order of the group values.

Featured in: Example 3 on page 826

NORMAL=BLOM | TUKEY | VW
computes normal scores from the ranks. The resulting variables appear normally
distributed. The formulas are

BLOM yi=�
−1(ri−3/8)/(n+1/4)

TUKEY yi=�
−1(ri−1/3)/(n+1/3)

VW yi=�
−1(ri)/(n+1)

where �−1 is the inverse cumulative normal (PROBIT) function, ri is the rank of the
ith observation, and n is the number of nonmissing observations for the ranking
variable.

VW stands for van der Waerden. With NORMAL=VW, you can use the scores for a
nonparametric location test. All three normal scores are approximations to the exact
expected order statistics for the normal distribution, also called normal scores. The
BLOM version appears to fit slightly better than the others (Blom 1958; Tukey 1962).

Interaction: If you specify the TIES= option, then PROC RANK computes the
normal score from the ranks based on non-tied values and applies the TIES=
specification to the resulting normal score.

NPLUS1
computes fractional ranks by dividing each rank by the denominator n+1, where n is
the number of observations having nonmissing values of the ranking variable.

Aliases: FN1, N1

Interaction: TIES=HIGH is the default with the NPLUS1 option.

See also: FRACTION option

OUT=SAS-data-set
names the output data set. If SAS-data-set does not exist, PROC RANK creates it. If
you omit OUT=, the data set is named using the DATAn naming convention.

818 BY Statement � Chapter 40

PERCENT
divides each rank by the number of observations that have nonmissing values of the
variable and multiplies the result by 100 to get a percentage.

Alias: P

Interaction: TIES=HIGH is the default with the PERCENT option.

Tip: You can use PERCENT to calculate cumulative percentages, but use
GROUPS=100 to compute percentiles.

SAVAGE
computes Savage (or exponential) scores from the ranks by the following formula
(Lehman 1998):

�� �

�
� �
��������

�
�

�

���
� �

TIES=HIGH | LOW | MEAN
specifies how to compute normal scores or ranks for tied data values.

HIGH
assigns the largest of the corresponding ranks (or largest of the normal scores
when NORMAL= is specified).

LOW
assigns the smallest of the corresponding ranks (or smallest of the normal scores
when NORMAL= is specified).

MEAN
assigns the mean of the corresponding rank (or mean of the normal scores when
NORMAL= is specified).

Default: MEAN (unless the FRACTION option or PERCENT option is in effect).

Interaction: If you specify the NORMAL= option, then the TIES= specification
applies to the normal score, not to the rank that is used to compute the normal
score.

Featured in: Example 1 on page 822 and Example 2 on page 823

BY Statement

Produces a separate set of ranks for each BY group.

Main discussion: “BY” on page 58

Featured in: Example 2 on page 823 and Example 3 on page 826

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

The RANK Procedure � RANKS Statement 819

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables
that you specify, or they must be indexed appropriately. Variables in a BY statement
are called BY variables.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, such as chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the
NOTSORTED option. In fact, the procedure does not use an index if you specify
NOTSORTED. The procedure defines a BY group as a set of contiguous observations
that have the same values for all BY variables. If observations with the same values
for the BY variables are not contiguous, the procedure treats each contiguous set as a
separate BY group.

RANKS Statement

Creates new variables for the rank values.

Requirement: If you use the RANKS statement, you must also use the VAR statement.

Default: If you omit the RANKS statement, the rank values replace the original variable
values in the output data set.

Featured in: Example 1 on page 822 and Example 2 on page 823

RANKS new-variables(s);

Required Arguments

new-variable(s)
specifies one or more new variables that contain the ranks for the variable(s) listed in
the VAR statement. The first variable listed in the RANKS statement contains the
ranks for the first variable listed in the VAR statement, the second variable listed in
the RANKS statement contains the ranks for the second variable listed in the VAR
statement, and so forth.

820 VAR Statement � Chapter 40

VAR Statement

Specifies the input variables.

Default: If you omit the VAR statement, PROC RANK computes ranks for all numeric
variables in the input data set.
Featured in: Example 1 on page 822, Example 2 on page 823, and Example 3 on page 826

VAR data-set-variables(s);

Required Arguments

data-set-variable(s)
specifies one or more variables for which ranks are computed.

Using the VAR Statement with the RANKS Statement
The VAR statement is required when you use the RANKS statement. Using these

statements together creates the ranking variables named in the RANKS statement that
correspond to the input variables specified in the VAR statement. If you omit the
RANKS statement, the rank values replace the original values in the output data set.

Concepts: RANK Procedure

Computer Resources
PROC RANK stores all values in memory of the variables for which it computes

ranks.

Statistical Applications
Ranks are useful for investigating the distribution of values for a variable. The ranks

divided by n or n+1 form values in the range 0 to 1, and these values estimate the
cumulative distribution function. You can apply inverse cumulative distribution
functions to these fractional ranks to obtain probability quantile scores, which you can
compare to the original values to judge the fit to the distribution. For example, if a set
of data has a normal distribution, the normal scores should be a linear function of the
original values, and a plot of scores versus original values should be a straight line.

Many nonparametric methods are based on analyzing ranks of a variable:
� A two-sample t-test applied to the ranks is equivalent to a Wilcoxon rank sum test

using the t approximation for the significance level. If you apply the t-test to the
normal scores rather than to the ranks, the test is equivalent to the van der
Waerden test. If you apply the t-test to median scores (GROUPS=2), the test is
equivalent to the median test.

The RANK Procedure � Output Data Set 821

� A one-way analysis of variance applied to ranks is equivalent to the
Kruskal-Wallis k-sample test; the F-test generated by the parametric procedure
applied to the ranks is often better than the �� approximation used by
Kruskal-Wallis. This test can be extended to other rank scores (Quade 1966).

� You can obtain a Friedman’s two-way analysis for block designs by ranking within
BY groups and then performing a main-effects analysis of variance on these ranks
(Conover 1998).

� You can investigate regression relationships by using rank transformations with a
method described by Iman and Conover (1979).

Results: RANK Procedure

Missing Values
Missing values are not ranked and are left missing when ranks or rank scores

replace the original values in the output data set.

Output Data Set
The RANK procedure creates a SAS data set containing the ranks or rank scores but

does not create any printed output. You can use PROC PRINT, PROC REPORT, or
another SAS reporting tool to print the output data set.

The output data set contains all the variables from the input data set plus the
variables named in the RANKS statement. If you omit the RANKS statement, the rank
values replace the original variable values in the output data set.

822 Examples: RANK Procedure � Chapter 40

Examples: RANK Procedure

Example 1: Ranking Values of Multiple Variables
Procedure features:

PROC RANK statement options:
DESCENDING
TIES=

RANKS statement
VAR statement

Other features:
PRINT procedure

This example
� reverses the order of the ranks so that the highest value receives the rank of 1
� assigns tied values the best possible rank
� creates ranking variables and prints them with the original variables.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

Create the CAKE data set. This data set contains each participant’s last name, score for
presentation, and score for taste in a cake-baking contest.

data cake;
input Name $ 1-10 Present 12-13 Taste 15-16;
datalines;

Davis 77 84
Orlando 93 80
Ramey 68 72
Roe 68 75
Sanders 56 79
Simms 68 77
Strickland 82 79
;

The RANK Procedure � Example 2: Ranking Values within BY Groups 823

Generate the ranks for the numeric variables in descending order and create the
output data set ORDER. DESCENDING reverses the order of the ranks so that the high
score receives the rank of 1. TIES=LOW gives tied values the best possible rank. OUT= creates
the output data set ORDER.

proc rank data=cake out=order descending ties=low;

Create two new variables that contain ranks. The VAR statement specifies the variables to
rank. The RANKS statement creates two new variables, PresentRank and TasteRank, that
contain the ranks for the variables Present and Taste, respectively.

var present taste;
ranks PresentRank TasteRank;

run;

Print the data set. PROC PRINT prints the ORDER data set. The TITLE statement specifies
a title.

proc print data=order;
title "Rankings of Participants’ Scores";

run;

Output

Rankings of Participants’ Scores 1

Present Taste
Obs Name Present Taste Rank Rank

1 Davis 77 84 3 1
2 Orlando 93 80 1 2
3 Ramey 68 72 4 7
4 Roe 68 75 4 6
5 Sanders 56 79 7 3
6 Simms 68 77 4 5
7 Strickland 82 79 2 3

Example 2: Ranking Values within BY Groups

Procedure features:
PROC RANK statement options:

DESCENDING
TIES=

BY statement
RANKS statement
VAR statement

824 Program � Chapter 40

Other features:
PRINT procedure

This example
� ranks observations separately within BY groups
� reverses the order of the ranks so that the highest value receives the rank of 1
� assigns tied values the best possible rank
� creates ranking variables and prints them with the original variables.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

Create the ELECT data set. This data set contains each candidate’s last name, district
number, vote total, and number of years’ experience on the city council.

data elect;
input Candidate $ 1-11 District 13 Vote 15-18 Years 20;
datalines;

Cardella 1 1689 8
Latham 1 1005 2
Smith 1 1406 0
Walker 1 846 0
Hinkley 2 912 0
Kreitemeyer 2 1198 0
Lundell 2 2447 6
Thrash 2 912 2
;

Generate the ranks for the numeric variables in descending order and create the
output data set RESULTS. DESCENDING reverses the order of the ranks so that the highest
vote total receives the rank of 1. TIES=LOW gives tied values the best possible rank. OUT=
creates the output data set RESULTS.

proc rank data=elect out=results ties=low descending;

Create a separate set of ranks for each BY group. The BY statement separates the
rankings by values of District.

by district;

The RANK Procedure � Output 825

Create two new variables that contain ranks. The VAR statement specifies the variables to
rank. The RANKS statement creates the new variables, VoteRank and YearsRank, that contain
the ranks for the variables Vote and Years, respectively.

var vote years;
ranks VoteRank YearsRank;

run;

Print the data set. PROC PRINT prints the RESULTS data set. The N option prints the
number of observations in each BY group. The TITLE statement specifies a title.

proc print data=results n;
by district;
title ’Results of City Council Election’;

run;

Output

In the second district, Hinkley and Thrash tied with 912 votes. They both receive a rank of 3
because TIES=LOW.

Results of City Council Election 1

---------------------------------- District=1 ----------------------------------

Vote Years
Obs Candidate Vote Years Rank Rank

1 Cardella 1689 8 1 1
2 Latham 1005 2 3 2
3 Smith 1406 0 2 3
4 Walker 846 0 4 3

N = 4

---------------------------------- District=2 ----------------------------------

Vote Years
Obs Candidate Vote Years Rank Rank

5 Hinkley 912 0 3 3
6 Kreitemeyer 1198 0 2 3
7 Lundell 2447 6 1 1
8 Thrash 912 2 3 2

N = 4

826 Example 3: Partitioning Observations into Groups Based on Ranks � Chapter 40

Example 3: Partitioning Observations into Groups Based on Ranks

Procedure features:
PROC RANK statement option:

GROUPS=
BY statement
VAR statement

Other features:
PRINT procedure
SORT procedure

This example
� partitions observations into groups on the basis of values of two input variables
� groups observations separately within BY groups

� replaces the original variable values with the group values.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

Create the SWIM data set. This data set contains swimmers’ first names and their times, in
seconds, for the backstroke and the freestyle. This example groups the swimmers into pairs,
within male and female classes, based on times for both strokes so that every swimmer is paired
with someone who has a similar time for each stroke.

data swim;
input Name $ 1-7 Gender $ 9 Back 11-14 Free 16-19;
datalines;

Andrea F 28.6 30.3
Carole F 32.9 24.0
Clayton M 27.0 21.9
Curtis M 29.0 22.6
Doug M 27.3 22.4
Ellen F 27.8 27.0
Jan F 31.3 31.2
Jimmy M 26.3 22.5
Karin F 34.6 26.2
Mick M 29.0 25.4
Richard M 29.7 30.2
Sam M 27.2 24.1

The RANK Procedure � Program 827

Susan F 35.1 36.1
;

Sort the SWIM data set and create the output data set PAIRS. PROC SORT sorts the
data set by Gender. This is required to obtain a separate set of ranks for each group. OUT=
creates the output data set PAIRS.

proc sort data=swim out=pairs;
by gender;

run;

Generate the ranks that are partitioned into three groups and create an output data
set. GROUPS=3 assigns one of three possible group values (0,1,2) to each swimmer for each
stroke. OUT= creates the output data set RANKPAIR.

proc rank data=pairs out=rankpair groups=3;

Create a separate set of ranks for each BY group. The BY statement separates the
rankings by Gender.

by gender;

Replace the original values of the variables with the rank values. The VAR statement
specifies that Back and Free are the variables to rank. With no RANKS statement, PROC
RANK replaces the original variable values with the group values in the output data set.

var back free;
run;

Print the data set. PROC PRINT prints the RANKPAIR data set. The N option prints the
number of observations in each BY group. The TITLE statement specifies a title.

proc print data=rankpair n;
by gender;
title ’Pairings of Swimmers for Backstroke and Freestyle’;

run;

828 Output � Chapter 40

Output

The group values pair up swimmers with similar times to work on each stroke. For example,
Andrea and Ellen work together on the backstroke because they have the fastest times in the
female class. The groups of male swimmers are unbalanced because there are seven male
swimmers; for each stroke, one group has three swimmers.

Pairings of Swimmers for Backstroke and Freestyle 1

----------------------------------- Gender=F -----------------------------------

Obs Name Back Free

1 Andrea 0 1
2 Carole 1 0
3 Ellen 0 1
4 Jan 1 2
5 Karin 2 0
6 Susan 2 2

N = 6

----------------------------------- Gender=M -----------------------------------

Obs Name Back Free

7 Clayton 0 0
8 Curtis 2 1
9 Doug 1 0

10 Jimmy 0 1
11 Mick 2 2
12 Richard 2 2
13 Sam 1 1

N = 7

The RANK Procedure � References 829

References

Blom, G. (1958), Statistical Estimates and Transformed Beta Variables, New York:
John Wiley & Sons, Inc.

Conover, W.J. (1998), Practical Nonparametric Statistics, Third Edition, New York:
John Wiley & Sons, Inc.

Conover, W.J. and Iman, R.L. (1976), “On Some Alternative Procedures Using Ranks
for the Analysis of Experimental Designs,” Communications in Statistics, A5, 14,
1348–1368.

Conover, W.J. and Iman, R.L. (1981), “Rank Transformations as a Bridge between
Parametric and Nonparametric Statistics,” The American Statistician, 35, 124–129.

Iman, R.L. and Conover, W.J. (1979), “The Use of the Rank Transform in Regression,”
Technometrics, 21, 499–509.

Lehman, E.L. (1998), Nonparametrics: Statistical Methods Based on Ranks, New
Jersey: Prentice Hall .

Quade, D. (1966), “On Analysis of Variance for the k-Sample Problem,” Annals of
Mathematical Statistics, 37, 1747–1758.

Tukey, John W. (1962), “The Future of Data Analysis,” Annals of Mathematical
Statistics, 33, 22.

830

831

C H A P T E R

41
The REGISTRY Procedure

Overview: REGISTRY Procedure 831
Syntax: REGISTRY Procedure 831

PROC REGISTRY Statement 832

Creating Registry Files with the REGISTRY Procedure 836

Structure of a Registry File 836

Specifying Key Names 836
Specifying Values for Keys 836

Sample Registry Entries 837

Examples: REGISTRY Procedure 839

Example 1: Importing a File to the Registry 839

Example 2: Listing and Exporting the Registry 840

Example 3: Comparing the Registry to an External File 841
Example 4: Comparing Registry Files 842

Overview: REGISTRY Procedure

The REGISTRY procedure maintains the SAS registry. The registry consists of two
parts. One part is stored in the SASHELP library, and the other part is stored in the
SASUSER library.

The REGISTRY procedure enables you to

� import registry files to populate the SASHELP and SASUSER registries

� export all or part of the registry to another file

� list the contents of the registry in the SAS log

� compare the contents of the registry to a file

� uninstall a registry file

� deliver detailed status information when a key or value will be overwritten or
uninstalled

� clear out entries in the SASUSER registry

� validate that the registry exists

� list diagnostic information.

Syntax: REGISTRY Procedure
PROC REGISTRY <option(s)>;

832 PROC REGISTRY Statement � Chapter 41

PROC REGISTRY Statement

PROC REGISTRY <option(s)>;

To do this Use this option

Erase the contents of the SASUSER registry CLEARSASUSER

Compare two registry files COMPAREREG1 and
COMPAREREG2

Compare the contents of a registry to a file COMPARETO

Enable registry debugging DEBUGON

Disable registry debugging DEBUGOFF

Write the contents of a registry to the specified file EXPORT=

Provide additional information in the SAS log about the
results of the IMPORT= and the UNINSTALL options

FULLSTATUS

Import the specified file to a registry IMPORT=

Write the contents of the registry to the SAS log. Used with
the STARTAT= option to list specific keys.

LIST

Write the contents of the SASHELP portion of the registry
to the SAS log

LISTHELP

Send the contents of a registry to the log LISTREG

Write the contents of the SASUSER portion of the registry
to the SAS log

LISTUSER

Start exporting or writing or comparing the contents of a
registry at the specified key

STARTAT=

Delete from the specified registry all the keys and values
that are in the specified file

UNINSTALL

Uppercase all incoming key names UPCASE

Perform the specified operation on the SASHELP portion of
the SAS registry

USESASHELP

Options

CLEARSASUSER
erases the content of the SASUSER portion of the SAS registry.

COMPAREREG1=’libname.registry-name-1’
specifies one of two registries to compare. The results appear in the SAS log.

The REGISTRY Procedure � PROC REGISTRY Statement 833

libname
is the name of the library in which the registry file resides.

registry-name-1
is the name of the first registry.

Requirement: Must be used with COMPAREREG2.

Interaction: To specify a single key and all of its subkeys, specify the STARTAT=
option.

Featured in: Example 4 on page 842

COMPAREREG2=’libname.registry-name-2’
specifies the second of two registries to compare. The results appear in the SAS log.

libname
is the name of the library in which the registry file resides.

registry-name-2
is the name of the second registry.

Requirement: Must be used with COMPAREREG1.

Featured in: Example 4 on page 842

COMPARETO=file-specification
compares the contents of a file that contains registry information to a registry. It
returns information about keys and values that it finds in the file that are not in the
registry. It reports as differences

� keys that are defined in the external file but not in the registry

� value names for a given key that are in the external file but not in the registry
� differences in the content of like-named values in like-named keys.

COMPARETO= does not report as differences any keys and values that are in the
registry but not in the file because the registry could easily be composed of pieces
from many different files.

file-specification is one of the following:

’external-file’
is the path and name of an external file that contains the registry information.

fileref
is a fileref that has been assigned to an external file.

Requirement: You must have previously associated the fileref with an external
file in a FILENAME statement, a FILENAME function, the Explorer window, or
an appropriate operating environment command.

Interaction: By default, PROC REGISTRY compares file-specification to the
SASUSER portion of the registry. To compare file-specification to the SASHELP
portion of the registry, specify the option USESASHELP.

Featured in: Example 3 on page 841

See also: For information about how to structure a file that contains registry
information, see “Creating Registry Files with the REGISTRY Procedure” on page
836.

DEBUGON
enables registry debugging by providing more descriptive log entries.

DEBUGOFF
disables registry debugging.

834 PROC REGISTRY Statement � Chapter 41

EXPORT=file-specification
writes the contents of a registry to the specified file, where

file-specification is one of the following:

’external-file’
is the name of an external file that contains the registry information.

fileref
is a fileref that has been assigned to an external file.
Requirement: You must have previously associated the fileref with an external

file in a FILENAME statement, a FILENAME function, the Explorer window, or
an appropriate operating environment command.

If file-specification already exists, then PROC REGISTRY overwrites it. Otherwise,
PROC REGISTRY creates the file.
Interaction: By default, EXPORT= writes the SASUSER portion of the registry to

the specified file. To write the SASHELP portion of the registry, specify the
USESASHELP option. You must have write permission to the SASHELP library
to use USESASHELP.

Interaction: To export a single key and all of its subkeys, specify the STARTAT=
option.

Featured in: Example 2 on page 840

FULLSTATUS
lists the keys, subkeys, and values that were added or deleted as a result of running
the IMPORT= and the UNINSTALL options.

IMPORT=file-specification
specifies the file to import into the SAS registry. PROC REGISTRY does not
overwrite the existing registry. Instead, it updates the existing registry with the
contents of the specified file.

Note: .sasxreg file extension is not required. �
file-specification is one of the following:

’external-file’
is the path and name of an external file that contains the registry information.

fileref
is a fileref that has been assigned to an external file.
Requirement: You must have previously associated the fileref with an external

file in a FILENAME statement, a FILENAME function, the Explorer window, or
an appropriate operating environment command.

Interaction: By default, IMPORT= imports the file to the SASUSER portion of the
SAS registry. To import the file to the SASHELP portion of the registry, specify
the USESASHELP option. You must have write permission to SASHELP to use
USESASHELP.

Interaction: To obtain additional information in the SAS log as you import a file,
use FULLSTATUS.

Featured in: Example 1 on page 839
See also: For information about how to structure a file that contains registry

information, see “Creating Registry Files with the REGISTRY Procedure” on page
836.

LIST
writes the contents of the entire SAS registry to the SAS log.

The REGISTRY Procedure � PROC REGISTRY Statement 835

Interaction: To write a single key and all of its subkeys, use the STARTAT= option.

LISTHELP
writes the contents of the SASHELP portion of the registry to the SAS log.

Interaction: To write a single key and all of its subkeys, use the STARTAT= option.

LISTREG=’libname.registry-name’
lists the contents of the specified registry in the log.

libname
is the name of the library in which the registry file resides.

registry-name
is the name of the registry.
Example:

proc registry listreg=’sashelp.regstry’;
run;

Interaction: To list a single key and all of its subkeys, use the STARTAT= option.

LISTUSER
writes the contents of the SASUSER portion of the registry to the SAS log.

Interaction: To write a single key and all of its subkeys, use the STARTAT= option.

Featured in: Example 2 on page 840

STARTAT=’key-name’
exports or writes the contents of a single key and all of its subkeys.

Interaction: USE STARTAT= with the EXPORT=, LIST, LISTHELP, LISTUSER,
COMPAREREG1=, COMPAREREG2= and the LISTREG option.

Featured in: Example 4 on page 842

UNINSTALL=file-specification
deletes from the specified registry all the keys and values that are in the specified file.

file-specification is one of the following:

’external-file’
is the name of an external file that contains the keys and values to delete.

fileref
is a fileref that has been assigned to an external file. To assign a fileref you can

� use the Explorer Window

� use the FILENAME statement. (For information about the FILENAME
statement, see the section on statements in SAS Language Reference:
Dictionary.)

Interaction: By default, UNINSTALL deletes the keys and values from the
SASUSER portion of the SAS registry. To delete the keys and values from the
SASHELP portion of the registry, specify the USESASHELP option. You must
have write permission to SASHELP to use this option.

Interaction: Use FULLSTATUS to obtain additional information in the SAS log as
you uninstall a registry.

See also: For information about how to structure a file that contains registry
information, see “Creating Registry Files with the REGISTRY Procedure” on page
836.

UPCASE
uppercases all incoming key names.

836 Creating Registry Files with the REGISTRY Procedure � Chapter 41

USESASHELP
performs the specified operation on the SASHELP portion of the SAS registry.

Interaction: Use USESASHELP with the IMPORT=, EXPORT=, COMPARETO, or
UNINSTALL option. To use USESASHELP with IMPORT= or UNINSTALL, you
must have write permission to SASHELP.

Creating Registry Files with the REGISTRY Procedure

Structure of a Registry File
You can create registry files with the SAS Registry Editor or with any text editor.
A registry file must have a particular structure. Each entry in the registry file

consists of a key name, followed on the next line by one or more values. The key name
identifies the key or subkey that you are defining. Any values that follow specify the
names or data to associate with the key.

Specifying Key Names
Key names are entered on a single line between square brackets ([and]). To specify

a subkey, enter multiple key names between the brackets, starting with the root key.
Separate the names in a sequence of key names with a backslash (\). The length of a
single key name or a sequence of key names cannot exceed 255 characters (including
the square brackets and the backslashes). Key names can contain any character except
the backslash.

Examples of valid key name sequences follow. These sequences are typical of the SAS
registry:

[CORE\EXPLORER\MENUS\ENTRIES\CLASS]

[CORE\EXPLORER\NEWMEMBER\CATALOG]

[CORE\EXPLORER\NEWENTRY\CLASS]

[CORE\EXPLORER\ICONS\ENTRIES\LOG]

Specifying Values for Keys
Enter each value on the line that follows the key name that it is associated with. You

can specify multiple values for each key, but each value must be on a separate line.
The general form of a value is

value-name=value-content

A value-name can be an at sign (@), which indicates the default value name, or it can
be any text string in double quotation marks. If the text string contains an ampersand
(&), then the character (either uppercase or lowercase) that follows the ampersand is a
shortcut for the value name. See “Sample Registry Entries” on page 837.

The entire text string cannot contain more than 255 characters (including quotation
marks and ampersands). It can contain any character except a backslash (\).

The REGISTRY Procedure � Sample Registry Entries 837

Value-content can be any of the following:
� the string double: followed by a numeric value.
� a string. You can put anything inside the quotes, including nothing ("").

Note: To include a backslash in the quoted string, use two adjacent backslashes.
To include a double quotation mark, use two adjacent double quotation marks. �

� the string hex: followed by any number of hexadecimal characters, up to the
255-character limit, separated by commas. If you extend the hexadecimal
characters beyond a single line, then end the line with a backslash to indicate that
the data continues on the next line. Hex values may also be referred to as “binary
values” in the Registry Editor.

� the string dword: followed by an unsigned long hexadecimal value.
� the string int: followed by a signed long integer value.
� the string uint: followed by an unsigned long integer value.

The following display shows how the different types of values that are described above
appear in the Registry Editor:

Display 41.1 Types of Registry Values, Displayed in the Registry Editor

The following list contains a sample of valid registry values:
� A double value=double:2.4E-44
� A string="my data"
� Binary data=hex: 01,00,76,63,62,6B
� Dword=dword:00010203
� Signed integer value=int:-123
� Unsigned integer value (decimal)=dword:0001E240

Sample Registry Entries
Registry entries can vary in content and appearance, depending on their purpose.

The following display shows a registry entry that contains default PostScript printer
settings.

838 Sample Registry Entries � Chapter 41

Display 41.2 Portion of a Registry Editor Showing Settings for a PostScript Printer

To see what the actual registry text file looks like, you can use PROC REGISTRY to
write the contents of the registry key to the SAS log, using the LISTUSER and
STARTAT= options:

Example Code 41.1 SAS code for sending a SASUSER registry entry to the log

proc registry
listuser
startat=’sasuser-registry-key-name’;

run;

Example Code 41.2 SAS code for sending a SASUSER registry entry to the log

proc registry
listuser
startat=’HKEY_SYSTEM_ROOT\CORE\PRINTING\PRINTERS\PostScript\DEFAULT SETTINGS’;

run;

For example, the list below begins at the
CORE\PRINTING\PRINTERS\PostScript\DEFAULT SETTINGS key.

The REGISTRY Procedure � Source File 839

Output 41.1 Log Output of a Registry Entry for a PostScript Printer

NOTE: Contents of SASUSER REGISTRY starting at subkey [CORE\
PRINTING\PRINTERS\PostScript\DEFAULT SETTINGS key]

Font Character Set="Western"
Font Size=double:12
Font Style="Regular"
Font Typeface="Courier"
Font Weight="Normal"
Margin Bottom=double:0.5
Margin Left=double:0.5
Margin Right=double:0.5
Margin Top=double:0.5
Margin Units="IN"
Paper Destination=""
Paper Size="Letter"
Paper Source=""
Paper Type=""
Resolution="300 DPI"

NOTE: PROCEDURE REGISTRY used (Total process time):
real time 0.03 seconds
cpu time 0.03 seconds

Examples: REGISTRY Procedure

Example 1: Importing a File to the Registry

Procedure features: IMPORT=

Other features: FILENAME statement

This example imports a file into the SASUSER portion of the SAS registry.

Source File
The following file contains examples of valid key name sequences in a registry file:

[HKEY_USER_ROOT\AllGoodPeopleComeToTheAidOfTheirCountry]
@="This is a string value"

"Value2"=""
"Value3"="C:\\This\\Is\\Another\\String\\Value"

840 Program � Chapter 41

Program

Assign a fileref to a file that contains valid text for the registry. The FILENAME
statement assigns the fileref SOURCE to the external file that contains the text to read into the
registry.

filename source ’external-file’;

Invoke PROC REGISTRY to import the file that contains input for the registry. PROC
REGISTRY reads the input file that is identified by the fileref SOURCE. IMPORT= writes to
the SASUSER portion of the SAS registry by default.

proc registry import=source;
run;

SAS Log

1 filename source ’external-file’;
2 proc registry
3 import=source;
4 run;
Parsing REG file and loading the registry please wait....
Registry IMPORT is now complete.

Example 2: Listing and Exporting the Registry
Procedure features:

EXPORT=
LISTUSER

This example lists the SASUSER portion of the SAS registry and exports it to an
external file.

Note: This is usually a very large file. To export a portion of the registry, use the
STARTAT= option. �

Program

Write the contents of the SASUSER portion of the registry to the SAS log. The
LISTUSER option causes PROC REGISTRY to write the entire SASUSER portion of the
registry to the log.

proc registry
listuser

The REGISTRY Procedure � Program 841

Export the registry to the specified file. The EXPORT= option writes a copy of the
SASUSER portion of the SAS registry to the external file.

export=’external-file’;
run;

SAS Log

1 proc registry listuser export=’external-file’;
2 run;
Starting to write out the registry file, please wait...
The export to file external-file is now complete.
Contents of SASUSER REGISTRY.
[HKEY_USER_ROOT]
[CORE]
[EXPLORER]
[CONFIGURATION]

Initialized= "True"
[FOLDERS]
[UNXHOST1]

Closed= "658"
Icon= "658"
Name= "Home Directory"
Open= "658"
Path= "~"

Example 3: Comparing the Registry to an External File

Procedure features: COMPARETO= option
Other features: FILENAME statement

This example compares the SASUSER portion of the SAS registry to an external file.
Comparisons such as this are useful if you want to know the difference between a
backup file that was saved with a .txt file extension and the current registry file.

Note: To compare the SASHELP portion of the registry with an external file, specify
the USESASHELP option. �

Program

Assign a fileref to the external file that contains the text to compare to the registry.
The FILENAME statement assigns the fileref TESTREG to the external file.

filename testreg ’external-file’;

842 SAS Log � Chapter 41

Compare the specified file to the SASUSER portion of the SAS registry. The
COMPARETO option compares the contents of a file to a registry. It returns information about
keys and values that it finds in the file that are not in the registry.

proc registry
compareto=testreg;

run;

SAS Log
This SAS log shows two differences between the SASUSER portion of the registry

and the specified external file. In the registry, the value of “Initialized” is “True”; in the
external file, it is “False”. In the registry, the value of “Icon” is “658”; in the external file
it is “343”.

1 filename testreg ’external-file’;
2 proc registry
3 compareto=testreg;
4 run;
Parsing REG file and comparing the registry please wait....
COMPARE DIFF: Value "Initialized" in
[HKEY_USER_ROOT\CORE\EXPLORER\CONFIGURATION]: REGISTRY TYPE=STRING, CURRENT
VALUE="True"
COMPARE DIFF: Value "Initialized" in
[HKEY_USER_ROOT\CORE\EXPLORER\CONFIGURATION]: FILE TYPE=STRING, FILE
VALUE="False"
COMPARE DIFF: Value "Icon" in
[HKEY_USER_ROOT\CORE\EXPLORER\FOLDERS\UNXHOST1]: REGISTRY TYPE=STRING,
CURRENT VALUE="658"
COMPARE DIFF: Value "Icon" in
[HKEY_USER_ROOT\CORE\EXPLORER\FOLDERS\UNXHOST1]: FILE TYPE=STRING, FILE
VALUE="343"
Registry COMPARE is now complete.
COMPARE: There were differences between the registry and the file.

Example 4: Comparing Registry Files

Procedure features
COMPAREREG1= and COMPAREREG2= options
STARTAT= option

This example uses the REGISTRY procedure options COMPAREREG1= and
COMPAREREG2= to specify two registry files for comparison.

Program

Declare the PROCLIB library. The PROCLIB library contains a registry file.

libname proclib ’SAS-data-library’;

The REGISTRY Procedure � SAS Log 843

Start PROC REGISTRY and specify the first registry file to be used in the comparison.

proc registry comparereg1=’sasuser.regstry’

Limit the comparison to the registry keys including and following the specified
registry key. The STARTAT= option limits the scope of the comparison to the EXPLORER
subkey under the CORE key. By default the comparison includes the entire contents of both
registries.

startat=’CORE\EXPLORER’

Specify the second registry file to be used in the comparison.

comparereg2=’proclib.regstry’;
run;

SAS Log

8 proc registry comparereg1=’sasuser.regstry’
9
10 startat=’CORE\EXPLORER’
11 comparereg2=’proclib.regstry’;
12 run;
NOTE: Comparing registry SASUSER.REGSTRY to registry PROCLIB.REGSTRY
NOTE: Diff in Key (CORE\EXPLORER\MENUS\FILES\SAS) Item (1;&Open)
SASUSER.REGSTRY Type: String len 17 data PGM;INCLUDE ’%s’;
PROCLIB.REGSTRY Type: String len 15 data WHOSTEDIT ’%s’;

NOTE: Diff in Key (CORE\EXPLORER\MENUS\FILES\SAS) Item (3;&Submit)
SASUSER.REGSTRY Type: String len 23 data PGM;INCLUDE ’%s’;SUBMIT
PROCLIB.REGSTRY Type: String len 21 data WHOSTEDIT ’%s’;SUBMIT

NOTE: Diff in Key (CORE\EXPLORER\MENUS\FILES\SAS) Item (4;&Remote Submit)
SASUSER.REGSTRY Type: String len 35 data SIGNCHECK;PGM;INCLUDE ’%s’;RSUBMIT;
PROCLIB.REGSTRY Type: String len 33 data SIGNCHECK;WHOSTEDIT ’%s’;RSUBMIT;

NOTE: Diff in Key (CORE\EXPLORER\MENUS\FILES\SAS) Item (@)
SASUSER.REGSTRY Type: String len 17 data PGM;INCLUDE ’%s’;
PROCLIB.REGSTRY Type: String len 15 data WHOSTEDIT ’%s’;

NOTE: Item (2;Open with &Program Editor) in key
(CORE\EXPLORER\MENUS\FILES\TXT) not found in registry PROCLIB.REGSTRY

NOTE: Diff in Key (CORE\EXPLORER\MENUS\FILES\TXT) Item (4;&Submit)
SASUSER.REGSTRY Type: String len 24 data PGM;INCLUDE ’%s’;SUBMIT;
PROCLIB.REGSTRY Type: String len 22 data WHOSTEDIT ’%s’;SUBMIT;

NOTE: Diff in Key (CORE\EXPLORER\MENUS\FILES\TXT) Item (5;&Remote Submit)
SASUSER.REGSTRY Type: String len 35 data SIGNCHECK;PGM;INCLUDE ’%s’;RSUBMIT;
PROCLIB.REGSTRY Type: String len 33 data SIGNCHECK;WHOSTEDIT ’%s’;RSUBMIT;

NOTE: PROCEDURE REGISTRY used (Total process time):
real time 0.07 seconds
cpu time 0.02 seconds

844 See Also � Chapter 41

See Also

SAS registry chapter in SAS Language Reference: Concepts

845

C H A P T E R

42
The REPORT Procedure

Overview: REPORT Procedure 847
What Does the REPORT Procedure Do? 847

What Types of Reports Can PROC REPORT Produce? 847

What Do the Various Types of Reports Look Like? 847

Concepts: REPORT Procedure 852

Laying Out a Report 852
Planning the Layout 852

Usage of Variables in a Report 853

Display Variables 853

Order Variables 853

Across Variables 854

Group Variables 854
Analysis Variables 855

Computed Variables 855

Interactions of Position and Usage 855

Statistics That Are Available in PROC REPORT 857

Using Compute Blocks 858
What Is a Compute Block? 858

The Purpose of Compute Blocks 858

The Contents of Compute Blocks 859

Four Ways to Reference Report Items in a Compute Block 859

Compute Block Processing 860
Using Break Lines 861

What Are Break Lines? 861

Creating Break Lines 861

Order of Break Lines 861

The Automatic Variable _BREAK_ 862

Using Compound Names 862
Using Style Elements in PROC REPORT 863

Using the STYLE= Option 863

Using a Format to Assign a Style Attribute Value 866

Controlling the Spacing between Rows 866

Printing a Report 867
Printing with ODS 867

Printing from the REPORT Window 867

Printing with a Form 867

Printing from the Output Window 867

Printing from Noninteractive or Batch Mode 867
Printing from Interactive Line Mode 868

Using PROC PRINTTO 868

Storing and Reusing a Report Definition 868

846 Contents � Chapter 42

Syntax: REPORT Procedure 869
PROC REPORT Statement 870

BREAK Statement 885

BY Statement 889

CALL DEFINE Statement 890

COLUMN Statement 893
COMPUTE Statement 895

DEFINE Statement 897

ENDCOMP Statement 906

FREQ Statement 906

LINE Statement 907

RBREAK Statement 908
WEIGHT Statement 912

REPORT Procedure Windows 912

BREAK 913

COMPUTE 916

COMPUTED VAR 916
DATA COLUMNS 917

DATA SELECTION 917

DEFINITION 918

DISPLAY PAGE 923

EXPLORE 924
FORMATS 925

LOAD REPORT 925

MESSAGES 926

PROFILE 926

PROMPTER 927

REPORT 928
ROPTIONS 928

SAVE DATA SET 933

SAVE DEFINITION 933

SOURCE 934

STATISTICS 934
WHERE 935

WHERE ALSO 935

How PROC REPORT Builds a Report 936

Sequence of Events 936

Construction of Summary Lines 937
Report-Building Examples 937

Building a Report That Uses Groups and a Report Summary 937

Building a Report That Uses Temporary Variables 941

Examples: REPORT Procedure 948

Example 1: Selecting Variables for a Report 948

Example 2: Ordering the Rows in a Report 951
Example 3: Using Aliases to Obtain Multiple Statistics for the Same Variable 954

Example 4: Consolidating Multiple Observations into One Row of a Report 957

Example 5: Creating a Column for Each Value of a Variable 960

Example 6: Displaying Multiple Statistics for One Variable 964

Example 7: Storing and Reusing a Report Definition 966
Example 8: Condensing a Report into Multiple Panels 968

Example 9: Writing a Customized Summary on Each Page 971

Example 10: Calculating Percentages 975

Example 11: How PROC REPORT Handles Missing Values 977

Example 12: Creating and Processing an Output Data Set 980

The REPORT Procedure � What Do the Various Types of Reports Look Like? 847

Example 13: Storing Computed Variables as Part of a Data Set 983
Example 14: Using a Format to Create Groups 986

Example 15: Specifying Style Elements for ODS Output in the PROC REPORT Statement 989

Example 16: Specifying Style Elements for ODS Output in Multiple Statements 994

Overview: REPORT Procedure

What Does the REPORT Procedure Do?
The REPORT procedure combines features of the PRINT, MEANS, and TABULATE

procedures with features of the DATA step in a single report-writing tool that can
produce a variety of reports. You can use PROC REPORT in three ways:

� in a windowing environment with a prompting facility that guides you as you
build a report.

� in a windowing environment without the prompting facility.
� in a nonwindowing environment. In this case, you submit a series of statements

with the PROC REPORT statement, just as you do in other SAS procedures. You
can submit these statements from the Program Editor with the NOWINDOWS
option in the PROC REPORT statement, or you can run SAS in batch,
noninteractive, or interactive line mode (see the information about running SAS in
SAS Language Reference: Concepts).

This documentation provides reference information about using PROC REPORT in a
windowing or nonwindowing environment. For task-oriented documentation for the
nonwindowing environment, see SAS Technical Report P-258, Using the REPORT
Procedure in a Nonwindowing Environment, Release 6.07.

What Types of Reports Can PROC REPORT Produce?
A detail report contains one row for every observation selected for the report. Each of

these rows is a detail row. A summary report consolidates data so that each row
represents multiple observations. Each of these rows is also called a detail row.

Both detail and summary reports can contain summary lines as well as detail rows.
A summary line summarizes numerical data for a set of detail rows or for all detail
rows. PROC REPORT provides both default and customized summaries (see “Using
Break Lines” on page 861).

This overview illustrates the kinds of reports that PROC REPORT can produce. The
statements that create the data sets and formats used in these reports are in Example
1 on page 948. The formats are stored in a permanent SAS data library. See
“Examples: REPORT Procedure” on page 948 for more reports and for the statements
that create them.

What Do the Various Types of Reports Look Like?
The data set that these reports use contains one day’s sales figures for eight stores in

a chain of grocery stores.
A simple PROC REPORT step produces a report similar to one produced by a simple

PROC PRINT step. Figure 42.1 on page 848 illustrates the simplest kind of report that
you can produce with PROC REPORT. The statements that produce the report follow.
The data set and formats that the program uses are created in Example 1 on page 948.

848 What Do the Various Types of Reports Look Like? � Chapter 42

Although the WHERE and FORMAT statements are not essential, here they limit the
amount of output and make the values easier to understand.

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=64 pagesize=60
fmtsearch=(proclib);

proc report data=grocery nowd;
where sector=’se’;
format sector $sctrfmt. manager $mgrfmt.

dept $deptfmt. sales dollar10.2;
run;

Figure 42.1 Simple Detail Report with a Detail Row for Each Observation

The SAS System 1

Sector Manager Department Sales
Southeast Smith Paper $50.00
Southeast Smith Meat/Dairy $100.00
Southeast Smith Canned $120.00
Southeast Smith Produce $80.00
Southeast Jones Paper $40.00
Southeast Jones Meat/Dairy $300.00
Southeast Jones Canned $220.00
Southeast Jones Produce $70.00

Detail row

The report in Figure 42.2 on page 849 uses the same observations as those in Figure
42.1 on page 848. However, the statements that produce this report

� order the rows by the values of Manager and Department
� create a default summary line for each value of Manager
� create a customized summary line for the whole report. A customized summary

lets you control the content and appearance of the summary information, but you
must write additional PROC REPORT statements to create one.

For an explanation of the program that produces this report, see Example 2 on page
951.

The REPORT Procedure � What Do the Various Types of Reports Look Like? 849

Figure 42.2 Ordered Detail Report with Default and Customized Summaries

Detail row

Customized summary
line for the whole report

Default summary
line for Manager

Sales for the Southeast Sector 1

Manager Department Sales

Jones Paper $40.00
Canned $220.00
Meat/Dairy $300.00
Produce $70.00

------- -------
Jones $630.00

Smith Paper $50.00
Canned $120.00
Meat/Dairy $100.00
Produce $80.00

------- -------
Smith $350.00

Total sales for these stores were: $980.00

The summary report in Figure 42.3 on page 849 contains one row for each store in
the northern sector. Each detail row represents four observations in the input data set,
one observation for each department. Information about individual departments does
not appear in this report. Instead, the value of Sales in each detail row is the sum of
the values of Sales in all four departments. In addition to consolidating multiple
observations into one row of the report, the statements that create this report

� customize the text of the column headers

� create default summary lines that total the sales for each sector of the city

� create a customized summary line that totals the sales for both sectors.

For an explanation of the program that produces this report, see Example 4 on page
957.

Figure 42.3 Summary Report with Default and Customized Summaries

Sales Figures for Northern Sectors 1

Sector Manager Sales
--------- ------- ----------

Northeast Alomar 786.00
Andrews 1,045.00

$1,831.00

Northwest Brown 598.00
Pelfrey 746.00
Reveiz 1,110.00

$2,454.00

Combined sales for the northern sectors were $4,285.00.

Detail row

Customized summary
line for the whole report

Default summary
line for Sector

850 What Do the Various Types of Reports Look Like? � Chapter 42

The summary report in Figure 42.4 on page 850 is similar to Figure 42.3 on page
849. The major difference is that it also includes information for individual
departments. Each selected value of Department forms a column in the report. In
addition, the statements that create this report

� compute and display a variable that is not in the input data set
� double-space the report
� put blank lines in some of the column headers.

For an explanation of the program that produces this report, see Example 5 on page 960.

Figure 42.4 Summary Report with a Column for Each Value of a Variable

Computed variable

Customized summary lines
for the whole report

Sales Figures for Perishables in Northern Sectors 1

______Department_______
Sector Manager Meat/Dairy Produce Perishable

Total
--

Northeast Alomar $190.00 $86.00 $276.00

Andrews $300.00 $125.00 $425.00

Northwest Brown $250.00 $73.00 $323.00

Pelfrey $205.00 $76.00 $281.00

Reveiz $600.00 $30.00 $630.00

| Combined sales for meat and dairy : $1,545.00 |
| Combined sales for produce : $390.00 |
| |
Combined sales for all perishables: $1,935.00

The customized report in Figure 42.5 on page 851 shows each manager’s store on a
separate page. Only the first two pages appear here. The statements that create this
report create

� a customized header for each page of the report
� a computed variable (Profit) that is not in the input data set
� a customized summary with text that is dependent on the total sales for that

manager’s store.

For an explanation of the program that produces this report, see Example 9 on page
971.

The REPORT Procedure � What Do the Various Types of Reports Look Like? 851

Figure 42.5 Customized Summary Report

Sales for Individual Stores 1

Northeast Sector
Store managed by Alomar

Department Sales Profit

Canned $420.00 $168.00
Meat/Dairy $190.00 $47.50
Paper $90.00 $36.00
Produce $86.00 $21.50

--------- ---------
$786.00 $196.50

Sales are in the target region.

Sales for Individual Stores 2

Northeast Sector
Store managed by Andrews

Department Sales Profit

Canned $420.00 $168.00
Meat/Dairy $300.00 $75.00
Paper $200.00 $80.00
Produce $125.00 $31.25

--------- ---------
$1,045.00 $261.25

Sales exceeded goal!

Computed variable

Customized summary line
for Manager

Detail row

Default summary line
for Manager

Computed variable

Customized summary line
for Manager

Detail row

Default summary line
for Manager

The report in Figure 42.6 on page 852 uses customized style elements to control
things like font faces, font sizes, and justification, as well as the width of the border of
the table and the width of the spacing between cells. This report was created by using
the HTML destination of the Output Delivery System (ODS) and the STYLE= option in
several statements in the procedure.

For an explanation of the program that produces this report, see Example 16 on page
994. For information on ODS, see “Output Delivery System” on page 32.

852 Concepts: REPORT Procedure � Chapter 42

Figure 42.6 HTML Output

Concepts: REPORT Procedure

Laying Out a Report

Planning the Layout
Report writing is simplified if you approach it with a clear understanding of what

you want the report to look like. The most important thing to determine is the layout of
the report. To design the layout, ask yourself the following kinds of questions:

� What do I want to display in each column of the report?

� In what order do I want the columns to appear?

� Do I want to display a column for each value of a particular variable?

� Do I want a row for every observation in the report, or do I want to consolidate
information for multiple observations into one row?

� In what order do I want the rows to appear?

The REPORT Procedure � Laying Out a Report 853

When you understand the layout of the report, use the COLUMN and DEFINE
statements in PROC REPORT to construct the layout.

The COLUMN statement lists the items that appear in the columns of the report,
describes the arrangement of the columns, and defines headers that span multiple
columns. A report item can be

� a data set variable
� a statistic calculated by the procedure
� a variable that you compute from other items in the report.

Omit the COLUMN statement if you want to include all variables in the input data
set in the same order as they occur in the data set.

Note: If you start PROC REPORT in the windowing environment without the
COLUMN statement, then the initial report includes only as many variables as will fit
on one page. �

The DEFINE statement (or, in the windowing environment, the DEFINITION
window) defines the characteristics of an item in the report. These characteristics
include how PROC REPORT uses the item in the report, the text of the column header,
and the format to use to display values.

Usage of Variables in a Report
Much of a report’s layout is determined by the usages that you specify for variables

in the DEFINE statements or DEFINITION windows. For data set variables, these
usages are

DISPLAY

ORDER

ACROSS

GROUP

ANALYSIS

A report can contain variables that are not in the input data set. These variables
must have a usage of COMPUTED.

Display Variables
A report that contains one or more display variables has a row for every observation

in the input data set. Display variables do not affect the order of the rows in the report.
If no order variables appear to the left of a display variable, then the order of the rows
in the report reflects the order of the observations in the data set. By default, PROC
REPORT treats all character variables as display variables.

Featured in: Example 1 on page 948

Order Variables
A report that contains one or more order variables has a row for every observation in

the input data set. If no display variable appears to the left of an order variable, then
PROC REPORT orders the detail rows according to the ascending, formatted values of
the order variable. You can change the default order with ORDER= and DESCENDING
in the DEFINE statement or with the DEFINITION window.

If the report contains multiple order variables, then PROC REPORT establishes the
order of the detail rows by sorting these variables from left to right in the report. PROC

854 Laying Out a Report � Chapter 42

REPORT does not repeat the value of an order variable from one row to the next if the
value does not change, unless an order variable to its left changes values.

Featured in: Example 2 on page 951

Across Variables
PROC REPORT creates a column for each value of an across variable. PROC

REPORT orders the columns by the ascending, formatted values of the across variable.
You can change the default order with ORDER= and DESCENDING in the DEFINE
statement or with the DEFINITION window. If no other variable helps define the
column (see “COLUMN Statement” on page 893), then PROC REPORT displays the N
statistic (the number of observations in the input data set that belong to that cell of the
report).

If you are familiar with procedures that use class variables, then you will see that
across variables are class variables that are used in the column dimension.

Featured in: Example 5 on page 960

Group Variables
If a report contains one or more group variables, then PROC REPORT tries to

consolidate into one row all observations from the data set that have a unique
combination of formatted values for all group variables.

When PROC REPORT creates groups, it orders the detail rows by the ascending,
formatted values of the group variable. You can change the default order with ORDER=
and DESCENDING in the DEFINE statement or with the DEFINITION window.

If the report contains multiple group variables, then the REPORT procedure
establishes the order of the detail rows by sorting these variables from left to right in the
report. PROC REPORT does not repeat the values of a group variable from one row to
the next if the value does not change, unless a group variable to its left changes values.

If you are familiar with procedures that use class variables, then you will see that
group variables are class variables that are used in the row dimension.

Note: You cannot always create groups. PROC REPORT cannot consolidate
observations into groups if the report contains any order variables or any display
variables that do not have one or more statistics associated with them (see “COLUMN
Statement” on page 893). In the windowing environment, if PROC REPORT cannot
immediately create groups, then the procedure changes all display and order variables
to group variables so that it can create the group variable that you requested. In the
nonwindowing environment, it returns to the SAS log a message that explains why it
could not create groups. Instead, it creates a detail report that displays group variables
the same way as it displays order variables. Even when PROC REPORT creates a
detail report, the variables that you define as group variables retain that usage in their
definitions. �

Featured in: Example 4 on page 957

The REPORT Procedure � Laying Out a Report 855

Analysis Variables
An analysis variable is a numeric variable that is used to calculate a statistic for all

the observations represented by a cell of the report. (Across variables, in combination
with group variables or order variables, determine which observations a cell
represents.) You associate a statistic with an analysis variable in the variable’s
definition or in the COLUMN statement. By default, PROC REPORT uses numeric
variables as analysis variables that are used to calculate the Sum statistic.

The value of an analysis variable depends on where it appears in the report:
� In a detail report, the value of an analysis variable in a detail row is the value of

the statistic associated with that variable calculated for a single observation.
Calculating a statistic for a single observation is not practical; however, using the
variable as an analysis variable enables you to create summary lines for sets of
observations or for all observations.

� In a summary report, the value displayed for an analysis variable is the value of
the statistic that you specify calculated for the set of observations represented by
that cell of the report.

� In a summary line for any report, the value of an analysis variable is the value of
the statistic that you specify calculated for all observations represented by that
cell of the summary line.

See also: “BREAK Statement” on page 885 and “RBREAK Statement” on page
908

Featured in: Example 2 on page 951, Example 3 on page 954, Example 4 on
page 957, and Example 5 on page 960

Note: Be careful when you use SAS dates in reports that contain summary lines.
SAS dates are numeric variables. Unless you explicitly define dates as some other kind
of variable, PROC REPORT summarizes them. �

Computed Variables
Computed variables are variables that you define for the report. They are not in the

input data set, and PROC REPORT does not add them to the input data set. However,
computed variables are included in an output data set if you create one.

In the windowing environment, you add a computed variable to a report from the
COMPUTED VAR window.

In the nonwindowing environment, you add a computed variable by
� including the computed variable in the COLUMN statement
� defining the variable’s usage as COMPUTED in the DEFINE statement
� computing the value of the variable in a compute block associated with the

variable.

Featured in: Example 5 on page 960, Example 10 on page 975, and Example 13
on page 983

Interactions of Position and Usage
The position and usage of each variable in the report determine the report’s structure

and content. PROC REPORT orders the detail rows of the report according to the

856 Laying Out a Report � Chapter 42

values of order and group variables, considered from left to right in the report.
Similarly, PROC REPORT orders columns for an across variable from left to right,
according to the values of the variable.

Several items can collectively define the contents of a column in a report. For
instance, in Figure 42.7 on page 856, the values that appear in the third and fourth
columns are collectively determined by Sales, an analysis variable, and by Department,
an across variable. You create this kind of report with the COLUMN statement or, in
the windowing environment, by placing report items above or below each other. This is
called stacking items in the report because each item generates a header, and the
headers are stacked one above the other.

Figure 42.7 Stacking Department and Sales

Sales Figures for Perishables in Northern Sectors

______Department_______
Sector Manager Meat/Dairy Produce Perishable

Total
--

Northeast Alomar $190.00 $86.00 $276.00

Andrews $300.00 $125.00 $425.00

Northwest Brown $250.00 $73.00 $323.00

Pelfrey $205.00 $76.00 $281.00

Reveiz $600.00 $30.00 $630.00

When you use multiple items to define the contents of a column, at most one of the
following can be in a column:

� a display variable with or without a statistic above or below it
� an analysis variable with or without a statistic above or below it
� an order variable
� a group variable
� a computed variable.

More than one of these items in a column creates a conflict for PROC REPORT about
which values to display.

Table 42.1 on page 857 shows which report items can share a column.

Note: You cannot stack order variables with other report items. �

The REPORT Procedure � Laying Out a Report 857

Table 42.1 Report Items That Can Share Columns

Display Analysis Order Group Computed Across Statistic

Display X* X

Analysis X X

Order

Group X

Computed
variable

X

Across X* X X X X

Statistic X X X

*When a display variable and an across variable share a column, the report must also contain another variable that is
not in the same column.

When a column is defined by stacked report items, PROC REPORT formats the
values in the column by using the format that is specified for the lowest report item in
the stack that does not have an ACROSS usage.

The following items can stand alone in a column:
� display variable
� analysis variable
� order variable
� group variable
� computed variable
� across variable
� N statistic.

Note: The values in a column that is occupied only by an across variable are
frequency counts. �

Statistics That Are Available in PROC REPORT

Descriptive statistic keywords

CSS PCTSUM

CV RANGE

MAX STDDEV|STD

MEAN STDERR

MIN SUM

N SUMWGT

NMISS USS

PCTN VAR

Quantile statistic keywords

MEDIAN|P50 Q3|P75

P1 P90

858 Using Compute Blocks � Chapter 42

P5 P95

P10 P99

Q1|P25 QRANGE

Hypothesis testing keyword

PROBT T

These statistics, the formulas that are used to calculate them, and their data
requirements are discussed in “Keywords and Formulas” on page 1340.

To compute standard error and the Student’s t-test you must use the default value of
VARDEF=, which is DF.

Every statistic except N must be associated with a variable. You associate a statistic
with a variable either by placing the statistic above or below a numeric display variable
or by specifying the statistic as a usage option in the DEFINE statement or in the
DEFINITION window for an analysis variable.

You can place N anywhere because it is the number of observations in the input data
set that contribute to the value in a cell of the report. The value of N does not depend
on a particular variable.

Note: If you use the MISSING option in the PROC REPORT statement, then N
includes observations with missing group, order, or across variables. �

Using Compute Blocks

What Is a Compute Block?
A compute block is one or more programming statements that appear either between

a COMPUTE and an ENDCOMP statement or in a COMPUTE window. PROC
REPORT executes these statements as it builds the report. A compute block can be
associated with a report item (a data set variable, a statistic, or a computed variable) or
with a location (at the top or bottom of the report; before or after a set of observations).
You create a compute block with the COMPUTE window or with the COMPUTE
statement. One form of the COMPUTE statement associates the compute block with a
report item. Another form associates the compute block with a location in the report
(see “Using Break Lines” on page 861).

Note: When you use the COMPUTE statement, you do not have to use a
corresponding BREAK or RBREAK statement. (See Example 2 on page 951, which uses
COMPUTE AFTER but does not use the RBREAK statement). Use these statements
only when you want to implement one or more BREAK statement or RBREAK
statement options (see Example 9 on page 971, which uses both COMPUTE AFTER
MANAGER and BREAK AFTER MANAGER. �

The Purpose of Compute Blocks
A compute block that is associated with a report item can
� define a variable that appears in a column of the report but is not in the input

data set
� define display attributes for a report item (see “CALL DEFINE Statement” on

page 890).

A compute block that is associated with a location can write a customized summary.

The REPORT Procedure � Using Compute Blocks 859

In addition, all compute blocks can use most SAS language elements to perform
calculations (see “The Contents of Compute Blocks” on page 859). A PROC REPORT
step can contain multiple compute blocks, but they cannot be nested.

The Contents of Compute Blocks
In the windowing environment, a compute block is in a COMPUTE window. In the

nonwindowing environment, a compute block begins with a COMPUTE statement and
ends with an ENDCOMP statement. Within a compute block, you can use these SAS
language elements:

� %INCLUDE statement
� these DATA step statements:

ARRAY IF-THEN/ELSE

assignment LENGTH

CALL RETURN

DO (all forms) SELECT

END sum

� comments
� null statements
� macro variables and macro invocations
� all DATA step functions.

For information about SAS language elements see the appropriate section in SAS
Language Reference: Dictionary.

Within a compute block, you can also use these PROC REPORT features:
� Compute blocks for a customized summary can contain one or more LINE

statements, which place customized text and formatted values in the summary.
(See “LINE Statement” on page 907.)

� Compute blocks for a report item can contain one or more CALL DEFINE
statements, which set attributes like color and format each time a value for the
item is placed in the report. (See “CALL DEFINE Statement” on page 890.)

� Any compute block can contain the automatic variable _BREAK_ (see “The
Automatic Variable _BREAK_” on page 862.

Four Ways to Reference Report Items in a Compute Block
A compute block can reference any report item that forms a column in the report

(whether or not the column is visible). You reference report items in a compute block in
one of four ways:

� by name.
� by a compound name that identifies both the variable and the name of the statistic

that you calculate with it. A compound name has this form

variable-name.statistic

� by an alias that you create in the COLUMN statement or in the DEFINITION
window.

860 Using Compute Blocks � Chapter 42

� by column number, in the form

’_Cn_’

where n is the number of the column (from left to right) in the report.

Note: Even though the columns that you define with NOPRINT and NOZERO do
not appear in the report, you must count them when you are referencing columns
by number. See the discussion of NOPRINT on page 902 and NOZERO on page
903. �

Note: Referencing variables that have missing values leads to missing values. If a
compute block references a variable that has a missing value, then PROC REPORT
displays that variable as a blank (for character variables) or as a period (for numeric
variables). �

The following table shows how to use each type of reference in a compute block.

If the variable that you
reference is this type… Then refer to it by… For example…

group name* Department

order name* Department

computed name* Department

display name* Department

display sharing a column with a
statistic

a compound name* Sales.sum

analysis a compound name* Sales.mean

any type sharing a column with an
across variable

column number ** ’_c3_’

*If the variable has an alias, then you must reference it with the alias.

**Even if the variable has an alias, you must reference it by column number.

Featured in: Example 3 on page 954, which references analysis variables by
their aliases; Example 5 on page 960, which references variables by column
number; and Example 10 on page 975, which references group variables and
computed variables by name.

Compute Block Processing
PROC REPORT processes compute blocks in two different ways.
� If a compute block is associated with a location, then PROC REPORT executes the

compute block only at that location. Because PROC REPORT calculates statistics
for groups before it actually constructs the rows of the report, statistics for sets of
detail rows are available before or after the rows are displayed, as are values for
any variables based on these statistics.

� If a compute block is associated with a report item, then PROC REPORT executes
the compute block on every row of the report when it comes to the column for that

The REPORT Procedure � Using Break Lines 861

item. The value of a computed variable in any row of a report is the last value
assigned to that variable during that execution of the DATA step statements in the
compute block. PROC REPORT assigns values to the columns in a row of a report
from left to right. Consequently, you cannot base the calculation of a computed
variable on any variable that appears to its right in the report.

Note: PROC REPORT recalculates computed variables at breaks. For details on
compute block processing see “How PROC REPORT Builds a Report” on page 936. �

Using Break Lines

What Are Break Lines?
Break lines are lines of text (including blanks) that appear at particular locations,

called breaks, in a report. A report can contain multiple breaks. Generally, break lines
are used to visually separate parts of a report, to summarize information, or both. They
can occur

� at the beginning or end of a report

� at the top or bottom of each page

� between sets of observations (whenever the value of a group or order variable
changes).

Break lines can contain

� text

� values calculated for either a set of rows or for the whole report.

Creating Break Lines
There are two ways to create break lines. The first way is simpler. It produces a

default summary. The second way is more flexible. It produces a customized summary
and provides a way to slightly modify a default summary. Default summaries and
customized summaries can appear at the same location in a report.

Default summaries are produced with the BREAK statement, the RBREAK
statement, or the BREAK window. You can use default summaries to visually separate
parts of the report, to summarize information for numeric variables, or both. Options
provide some control over the appearance of the break lines, but if you choose to
summarize numeric variables, then you have no control over the content and the
placement of the summary information. (A break line that summarizes information is a
summary line.)

Customized summaries are produced in a compute block. You can control both the
appearance and content of a customized summary, but you must write the code to do so.

Order of Break Lines
You control the order of the lines in a customized summary. However, PROC

REPORT controls the order of lines in a default summary and the placement of a
customized summary relative to a default summary. When a default summary contains
multiple break lines, the order in which the break lines appear is

1 overlining or double overlining (in traditional SAS monospace output only)

2 summary line

3 underlining or double underlining (in traditional SAS monospace output only)

862 Using Compound Names � Chapter 42

4 blank line
5 page break.

In traditional SAS monospace output only, if you define a customized summary for
the same location, then customized break lines appear after underlining or double
underlining.

The Automatic Variable _BREAK_
PROC REPORT automatically creates a variable called _BREAK_. This variable

contains
� a blank if the current line is not part of a break
� the value of the break variable if the current line is part of a break between sets of

observations
� the value _RBREAK_ if the current line is part of a break at the beginning or end of

the report
� the value _PAGE_ if the current line is part of a break at the beginning or end of a

page.

Using Compound Names
When you use a statistic in a report, you generally refer to it in compute blocks by a

compound name like Sales.sum. However, in different parts of the report, that same
name has different meanings. Consider the report in Output 42.1. The statements that
create the output follow. The user-defined formats that are used are created by a PROC
FORMAT step on page 949.

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=64
pagesize=60 fmtsearch=(proclib);

proc report data=grocery nowindows;
column sector manager sales;
define sector / group format=$sctrfmt.;
define sales / analysis sum

format=dollar9.2;
define manager / group format=$mgrfmt.;
break after sector / summarize skip ol;
rbreak after / summarize dol dul;
compute after;

sector=’Total:’;
endcomp;

run;

The REPORT Procedure � Using Style Elements in PROC REPORT 863

Output 42.1 Three Different Meanings of Sales.sum

The SAS System 1

Sector Manager Sales
Northeast Alomar $786.00 u

Andrews $1,045.00
--------- ---------
Northeast $1,831.00 v

Northwest Brown $598.00
Pelfrey $746.00
Reveiz $1,110.00

--------- ---------
Northwest $2,454.00

Southeast Jones $630.00
Smith $350.00

--------- ---------
Southeast $980.00

Southwest Adams $695.00
Taylor $353.00

--------- ---------
Southwest $1,048.00

========= =========
Total: $6,313.00 w
========= =========

Here Sales.sum has three different meanings:

u In detail rows, the value is the sales for one manager’s store in a sector of the city.
For example, the first detail row of the report shows that the sales for the store
that Alomar manages were $786.00.

v In the group summary lines, the value is the sales for all the stores in one sector.
For example, the first group summary line shows that sales for the Northeast
sector were $1,831.00.

w In the report summary line, the value $6,313.00 is the sales for all stores in the
city.

Note: Unless you use the NOALIAS option in the PROC REPORT statement, when
you refer in a compute block to a statistic that has an alias, you do not use a compound
name. Generally, you must use the alias. However, if the statistic shares a column with
an across variable, then you must reference it by column number (see “Four Ways to
Reference Report Items in a Compute Block” on page 859). �

Using Style Elements in PROC REPORT

Using the STYLE= Option
If you use the Output Delivery System to create HTML, RTF, or Printer output from

PROC REPORT, then you can use the STYLE= option to specify style elements for the
procedure to use in various parts of the report. Style elements determine presentation
attributes like font type, font weight, color, and so forth. For information about the
attributes that you can set for a style, see SAS Output Delivery System: User’s Guide.

864 Using Style Elements in PROC REPORT � Chapter 42

The general form of the STYLE= option is

STYLE<(location(s))>=<style-element-name><[style-attribute-specification(s)]>

Note: You can use braces ({ and }) instead of square brackets ([and]). �

location(s)
identifies the part of the report that the STYLE= option affects. The following
table shows what parts of a report are affected by values of location.

Table 42.2 Location Values

Location Value Part of Report Affected

CALLDEF Cells identified by a CALL DEFINE
statement

COLUMN Column cells

HEADER|HDR Column headers

LINES Lines generated by LINE statements

REPORT Report as a whole

SUMMARY Summary lines

The valid and default values for location vary by what statement the STYLE=
option appears in. Table 42.3 on page 864 shows valid and default values for
location for each statement. To specify more than one value of location in the same
STYLE= option, separate each value with a space.

style-element-name
is the name of a style element that is part of a style definition that is registered
with the Output Delivery System. SAS provides some style definitions. Users can
create their own style definitions with the TEMPLATE procedure (see SAS Output
Delivery System: User’s Guide for information about PROC TEMPLATE). The
following table shows the default style elements for each statement.

Table 42.3 Locations and Default Style Elements for Each Statement in PROC REPORT

Statement Valid Location Values Default Location
Value

Default Style
Element

PROC REPORT REPORT, COLUMN, HEADER|HDR,
SUMMARY, LINES, CALLDEF

REPORT Table

BREAK SUMMARY, LINES SUMMARY DataEmphasis

CALL DEFINE CALLDEF CALLDEF Data

COMPUTE LINES LINES NoteContent

DEFINE COLUMN, HEADER|HDR COLUMN and
HEADER

COLUMN: Data

HEADER: Header

RBREAK SUMMARY, LINES SUMMARY DataEmphasis

style-attribute-specification(s)
describes the style attribute to change. Each style-attribute-specification has this
general form:

style-attribute-name=style-attribute-value

The REPORT Procedure � Using Style Elements in PROC REPORT 865

To specify more than one style-attribute-specification, separate each one with a
space.

The following table shows valid values of style-attribute-name for the REPORT
location. Note that not all style attributes are valid in all destinations. See SAS
Output Delivery System: User’s Guide for more information on these style
attributes, their valid values, and their applicable destinations.

BACKGROUND= FONT_WIDTH=*

BACKGROUNDIMAGE= FOREGROUND=*

BORDERCOLOR= FRAME=

BORDERCOLORDARK= HTMLCLASS=

BORDERCOLORLIGHT= JUST=

BORDERWIDTH= OUTPUTWIDTH=

CELLPADDING= POSTHTML=

CELLSPACING= POSTIMAGE=

FONT=* POSTTEXT=

FONT_FACE=* PREHTML=

FONT_SIZE=* PREIMAGE=

FONT_STYLE=* PRETEXT=

FONT_WEIGHT=* RULES=

* When you use these attributes in this location, they affect only the text that is specified
with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To alter
the foreground color or the font for the text that appears in the table, you must set the
corresponding attribute in a location that affects the cells rather than the table.

The following table shows valid values of style-attribute-name for the CALLDEF,
COLUMN, HEADER, LINES, and SUMMARY locations. Note that not all style
attributes are valid in all destinations. See SAS Output Delivery System: User’s
Guide for more information on these style attributes, their valid values, and their
applicable destinations.

ASIS= FONT_WIDTH=

BACKGROUND= HREFTARGET=

BACKGROUNDIMAGE= HTMLCLASS=

BORDERCOLOR= JUST=

BORDERCOLORDARK= NOBREAKSPACE=

BORDERCOLORLIGHT= POSTHTML=

BORDERWIDTH= POSTIMAGE=

CELLHEIGHT= POSTTEXT=

CELLWIDTH= PREHTML=

FLYOVER= PREIMAGE=

FONT= PRETEXT=

866 Using Style Elements in PROC REPORT � Chapter 42

FONT_FACE= PROTECTSPECIALCHARS=

FONT_SIZE= TAGATTR=

FONT_STYLE= URL=

FONT_WEIGHT= VJUST=

Specifications in a statement other than the PROC REPORT statement override the
same specification in the PROC REPORT statement. However, any style attributes that
you specify in the PROC REPORT statement and do not override in another statement
are inherited. For instance, if you specify a blue background and a white foreground for
all column headings in the PROC REPORT statement, and you specify a gray
background for the column headings of a variable in the DEFINE statement, then the
background for that particular column heading is gray, and the foreground is white (as
specified in the PROC REPORT statement).

Using a Format to Assign a Style Attribute Value
You can use a format to assign a style attribute value. For example, the following

code assigns a red background color to cells in the Profit column for which the value is
negative, and a green background color where the values are positive:

proc format;
value proffmt low-<0=’red’

0-high=’green’;
run;
ods html body=’external-HTML-file’;
proc report data=profits nowd;

title ’Profits for Individual Stores’;
column Store Profit;
define Store / display ’Store’;
define Profit / display ’Profit’ style=[background=proffmt.];

run;
ods html close;

Controlling the Spacing between Rows
Users frequently need to “shrink” a report to fit more rows on a page. Shrinking a

report involves changing both the font size and the spacing between the rows. In order
to give maximum flexibility to the user, ODS uses the font size that is specified for the
REPORT location to calculate the spacing between the rows. Therefore, to shrink a
table, change the font size for both the REPORT location and the COLUMN location.
Here is an example:

proc report nowindows data=libref.data---set-name
style(report)=[font_size=8pt]
style(column)=[font=(Arial, 8pt)];

The REPORT Procedure � Printing a Report 867

Printing a Report

Printing with ODS
Printing reports with the Output Delivery System is much simpler and provides

more attractive output than the older methods of printing that are documented here.
For best results, use an output destination such as Printer or RTF. For details on these
destinations and on using the ODS statement, see SAS Output Delivery System: User’s
Guide.

Printing from the REPORT Window
By default, if you print from the REPORT window, then the report is routed directly

to your printer. If you want, you can specify a form to use for printing (see “Printing
with a Form” on page 867). Forms specify things like the type of printer that you are
using, text format, and page orientation.

Note: Forms are available only when you run SAS from a windowing environment. �

Operating Environment Information: Printing is implemented differently in different
operating environments. For information related to printing, consult SAS Language
Reference: Concepts. Additional information may be available in the SAS
documentation for your operating environment. �

Printing with a Form
To print with a form from the REPORT window:
1 Specify a form. You can specify a form with the FORMNAME command or, in

some cases, through the File menu.
2 Specify a print file if you want the output to go to a file instead of directly to the

printer. You can specify a print file with the PRTFILE command or, in some cases,
through the File menu.

3 Issue the PRINT or PRINT PAGE command from the command line or from the
File menu.

4 If you specified a print file, then do the following:

a Free the print file. You can free a file with the FREE command or, in some
cases, through Print utilities in the File menu. You cannot view or print
the file until you free it.

b Use operating environment commands to send the file to the printer.

Printing from the Output Window
If you are running PROC REPORT with the NOWINDOWS option, then the default

destination for the output is the Output window. Use the commands in the File menu
to print the report.

Printing from Noninteractive or Batch Mode
If you use noninteractive or batch mode, then SAS writes the output either to the

display or to external files, depending on the operating environment and on the SAS

868 Storing and Reusing a Report Definition � Chapter 42

options that you use. Refer to the SAS documentation for your operating environment
for information about how these files are named and where they are stored.

You can print the output file directly or use PROC PRINTTO to redirect the output to
another file. In either case, no form is used, but carriage control characters are written
if the destination is a print file.

Use operating environment commands to send the file to the printer.

Printing from Interactive Line Mode
If you use interactive line mode, then by default the output and log are displayed on

the screen immediately following the programming statements. Use PROC PRINTTO
to redirect the output to an external file. Then use operating environment commands to
send the file to the printer.

Using PROC PRINTTO
PROC PRINTTO defines destinations for the SAS output and the SAS log (see

Chapter 35, “The PRINTTO Procedure,” on page 771).
PROC PRINTTO does not use a form, but it does write carriage control characters if

you are writing to a print file.

Note: You need two PROC PRINTTO steps. The first PROC PRINTTO step
precedes the PROC REPORT step. It redirects the output to a file. The second PROC
PRINTTO step follows the PROC REPORT step. It reestablishes the default destination
and frees the output file. You cannot print the file until PROC PRINTTO frees it. �

Storing and Reusing a Report Definition
The OUTREPT= option in the PROC REPORT statement stores a report definition in

the specified catalog entry. If you are working in the nonwindowing environment, then
the definition is based on the PROC REPORT step that you submit. If you are in the
windowing environment, then the definition is based on the report that is in the
REPORT window when you end the procedure. SAS assigns an entry type of REPT to
the entry.

In the windowing environment, you can save the definition of the current report by
selecting

File � Save Report

A report definition may differ from the SAS program that creates the report (see the
discussion of OUTREPT= on page 879).

You can use a report definition to create an identically structured report for any SAS
data set that contains variables with the same names as the ones that are used in the
report definition. Use the REPORT= option in the PROC REPORT statement to load a
report definition when you start PROC REPORT. In the windowing environment, load a
report definition from the LOAD REPORT window by selecting

File � Open Report

The REPORT Procedure � Syntax: REPORT Procedure 869

Syntax: REPORT Procedure
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
ODS Table Name: Report
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 57 for
details. You can also use any global statements. See “Global Statements” on page 18 for
a list.

PROC REPORT <option(s)>;
BREAK location break-variable</ option(s)>;
BY <DESCENDING> variable-1

<…<DESCENDING> variable-n> <NOTSORTED>;
COLUMN column-specification(s);

COMPUTE location < target>
</ STYLE=<style-element-name>
<[style-attribute-specification(s)]>>;

LINE specification(s);
. . . select SAS language elements . . .
ENDCOMP;

COMPUTE report-item </ type-specification>;
CALL DEFINE (column-id, ’attribute-name’, value);
. . . select SAS language elements . . .
ENDCOMP;

DEFINE report-item / <usage>
<attribute(s)>
<option(s)>
<justification>
<COLOR=color>
<’column-header-1’ <…’column-header-n’>>
<style>;

FREQ variable;
RBREAK location </ option(s)>;
WEIGHT variable;

To do this Use this statement

Produce a default summary at a change in the
value of a group or order variable

BREAK

Create a separate report for each BY group BY

Set the value of an attribute for a particular
column in the current row

CALL DEFINE

Describe the arrangement of all columns and of
headers that span more than one column

COLUMN

870 PROC REPORT Statement � Chapter 42

To do this Use this statement

Specify one or more programming statements
that PROC REPORT executes as it builds the
report

COMPUTE and ENDCOMP

Describe how to use and display a report item DEFINE

Treat observations as if they appear multiple
times in the input data set

FREQ

Provide a subset of features of the PUT
statement for writing customized summaries

LINE

Produce a default summary at the beginning or
end of a report or at the beginning and end of
each BY group

RBREAK

Specify weights for analysis variables in the
statistical calculations

WEIGHT

PROC REPORT Statement

PROC REPORT <option(s)>;

To do this Use this option

Specify the input data set DATA=

Specify the output data set OUT=

Override the SAS system option THREADS
| NOTHREADS

THREADS | NOTHREADS

Select the windowing or the nonwindowing
environment

WINDOWS|NOWINDOWS

Use a report that was created before
compute blocks required aliases (before
Release 6.11)

NOALIAS

Control the statistical analysis

Specify the divisor to use in the
calculation of variances

VARDEF=

Specify the sample size to use for the
P2 quantile estimation method

QMARKERS=

Specify the quantile estimation method QMETHOD=

Specify the mathematical definition to
calculate quantiles

QNTLDEF=

Exclude observations with nonpositive
weight values from the analysis.

EXCLNPWGT

The REPORT Procedure � PROC REPORT Statement 871

To do this Use this option

Control classification levels

Create all possible combinations of the
across variable values

COMPLETECOLS|NOCOMPLETECOLS

Create all possible combinations of the
group variable values

COMPLETEROWS|NOCOMPLETEROWS

Control the layout of the report

Use formatting characters to add
line-drawing characters to the report

BOX*

Specify whether to center or left-justify
the report and summary text

CENTER|NOCENTER

Specify the default number of
characters for columns containing
computed variables or numeric data
set variables

COLWIDTH=*

Define the characters to use as
line-drawing characters in the report

FORMCHAR=*

Specify the length of a line of the report LS=*

Consider missing values as valid values
for group, order, or across variables

MISSING

Specify the number of panels on each
page of the report

PANELS=*

Specify the number of lines in a page
of the report

PS=

Specify the number of blank characters
between panels

PSPACE=*

Override options in the DEFINE
statement that suppress the display of
a column

SHOWALL

Specify the number of blank characters
between columns

SPACING=*

Display one value from each column of
the report, on consecutive lines if
necessary, before displaying another
value from the first column

WRAP

Customize column headers

Underline all column headers and the
spaces between them

HEADLINE*

Write a blank line beneath all column
headers

HEADSKIP*

Suppress column headers NOHEADER

Write name= in front of each value in
the report, where name= is the column
header for the value

NAMED

Specify the split character SPLIT=

872 PROC REPORT Statement � Chapter 42

To do this Use this option

Control ODS output

Specify one or more style elements (for
the Output Delivery System) to use for
different parts of the report

STYLE=

Specify text for the HTML or PDF
table of contents entry for the output

CONTENTS=

Store and retrieve report definitions, PROC REPORT statements, and your report profile

Write to the SAS log the PROC
REPORT code that creates the current
report

LIST

Suppress the building of the report NOEXEC

Store in the specified catalog the report
definition that is defined by the PROC
REPORT step that you submit

OUTREPT=

Identify the report profile to use PROFILE=

Specify the report definition to use REPORT=

Control the windowing environment

Display command lines rather than
menu bars in all REPORT windows

COMMAND

Identify the library and catalog
containing user-defined help for the
report

HELP=

Open the REPORT window and start
the PROMPT facility

PROMPT

* Traditional SAS monospace output only.

Options

BOX
uses formatting characters to add line-drawing characters to the report. These
characters

� surround each page of the report
� separate column headers from the body of the report
� separate rows and columns from each other
� separate values in a summary line from other values in the same columns
� separate a customized summary from the rest of the report.

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

Interaction: You cannot use BOX if you use WRAP in the PROC REPORT
statement or in the ROPTIONS window or if you use FLOW in any item definition.

See also: the discussion of FORMCHAR= on page 874
Featured in: Example 12 on page 980

The REPORT Procedure � PROC REPORT Statement 873

CENTER|NOCENTER
specifies whether to center or left-justify the report and summary text (customized
break lines).

PROC REPORT honors the first of these centering specifications that it finds:

� the CENTER or NOCENTER option in the PROC REPORT statement or the
CENTER toggle in the ROPTIONS window

� the CENTER or NOCENTER option stored in the report definition that is
loaded with REPORT= in the PROC REPORT statement

� the SAS system option CENTER or NOCENTER.

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

Interaction: When CENTER is in effect, PROC REPORT ignores spacing that
precedes the leftmost variable in the report.

COLWIDTH=column-width
specifies the default number of characters for columns containing computed variables
or numeric data set variables.

Default: 9

Range: 1 to the linesize

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

Interaction: When setting the width for a column, PROC REPORT first looks at
WIDTH= in the definition for that column. If WIDTH= is not present, then PROC
REPORT uses a column width large enough to accommodate the format for the
item. (For information about formats see the discussion of FORMAT= on page 901.)

If no format is associated with the item, then the column width depends on
variable type:

If the variable is a… Then the column width is the…

character variable in the input data set length of the variable

numeric variable in the input data set value of the COLWIDTH= option

computed variable (numeric or character) value of the COLWIDTH= option

Featured in: Example 2 on page 951

COMMAND
displays command lines rather than menu bars in all REPORT windows.

After you have started PROC REPORT in the windowing environment, you can
display the menu bars in the current window by issuing the COMMAND command.
You can display the menu bars in all PROC REPORT windows by issuing the
PMENU command. The PMENU command affects all the windows in your SAS
session. Both of these commands are toggles.

You can store a setting of COMMAND in your report profile. PROC REPORT
honors the first of these settings that it finds:

� the COMMAND option in the PROC REPORT statement

� the setting in your report profile.

Restriction: This option has no effect in the nonwindowing environment.

874 PROC REPORT Statement � Chapter 42

COMPLETECOLS|NOCOMPLETECOLS
creates all possible combinations for the values of the across variables even if one or
more of the combinations do not occur within the input data set. Consequently, the
column headings are the same for all logical pages of the report within a single BY
group.
Default: COMPLETECOLS
Interaction: The PRELOADFMT option in the DEFINE statement ensures that

PROC REPORT uses all user-defined format ranges for the combinations of across
variables, even when a frequency is zero.

COMPLETEROWS|NOCOMPLETEROWS
displays all possible combinations of the values of the group variables, even if one or
more of the combinations do not occur in the input data set. Consequently, the row
headings are the same for all logical pages of the report within a single BY group.
Default: NOCOMPLETEROWS
Interaction: The PRELOADFMT option in the DEFINE statement ensures that

PROC REPORT uses all user-defined format ranges for the combinations of group
variables, even when a frequency is zero.

CONTENTS=’link-text’
specifies the text for the entries in the HTML contents file or PDF table of contents
for the output that is produced by PROC REPORT. For information on HTML and
PDF output, see “Output Delivery System” on page 32.

Note: A hexadecimal value (such as ’DF’x) that is specified within link-text will
not resolve because it is specified within quotation marks. To resolve a hexadecimal
value, use the %sysfunc(byte(num)) function, where num is the hexadecimal value.
Be sure to enclose link-text in double quotation marks (" ") so that the macro function
will resolve. �
Restriction: For HTML output, the CONTENTS= option has no effect on the

HTML body file. It affects only the HTML contents file.

DATA=SAS-data-set
specifies the input data set.
Main discussion: “Input Data Sets” on page 19

EXCLNPWGT
excludes observations with nonpositive weight values (zero or negative) from the
analysis. By default, PROC REPORT treats observations with negative weights like
those with zero weights and counts them in the total number of observations.
Alias: EXCLNPWGTS
Requirement: You must use a WEIGHT statement.
See also: “WEIGHT Statement” on page 912

FORMCHAR <(position(s))>=’formatting-character(s)’
defines the characters to use as line-drawing characters in the report.

position(s)
identifies the position of one or more characters in the SAS formatting-character
string. A space or a comma separates the positions.
Default: Omitting (position(s)) is the same as specifying all 20 possible SAS

formatting characters, in order.
Range: PROC REPORT uses 12 of the 20 formatting characters that SAS

provides. Table 42.4 on page 875 shows the formatting characters that PROC
REPORT uses. Figure 42.8 on page 876 illustrates the use of some commonly
used formatting character in the output from PROC REPORT.

The REPORT Procedure � PROC REPORT Statement 875

formatting-character(s)
lists the characters to use for the specified positions. PROC REPORT assigns
characters in formatting-character(s) to position(s), in the order that they are
listed. For instance, the following option assigns the asterisk (*) to the third
formatting character, the pound sign (#) to the seventh character, and does not
alter the remaining characters:

formchar(3,7)=’*#’

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

Interaction: The SAS system option FORMCHAR= specifies the default formatting
characters. The system option defines the entire string of formatting characters.
The FORMCHAR= option in a procedure can redefine selected characters.

Tip: You can use any character in formatting-characters, including hexadecimal
characters. If you use hexadecimal characters, then you must put an x after the
closing quotation mark. For instance, the following option assigns the hexadecimal
character 2D to the third formatting character, the hexadecimal character 7C to
the seventh character, and does not alter the remaining characters:

formchar(3,7)=’2D7C’x

Table 42.4 Formatting Characters Used by PROC REPORT

Position Default Used to draw

1 | the right and left borders and
the vertical separators
between columns

2 - the top and bottom borders
and the horizontal separators
between rows; also
underlining and overlining in
break lines as well as the
underlining that the
HEADLINE option draws

3 - the top character in the left
border

4 - the top character in a line of
characters that separates
columns

5 - the top character in the right
border

6 | the leftmost character in a
row of horizontal separators

7 + the intersection of a column of
vertical characters and a row
of horizontal characters

8 | the rightmost character in a
row of horizontal separators

876 PROC REPORT Statement � Chapter 42

9 - the bottom character in the
left border

10 - the bottom character in a line
of characters that separate
columns

11 - the bottom character in the
right border

13 = double overlining and double
underlining in break lines

Figure 42.8 Formatting Characters in PROC REPORT Output

 Sales for Northern Sectors 1

 Sector Manager Sales

 Northeast Alomar 786.00
 Andrews 1,045.00

 1,831.00

 Northwest Brown 598.00
 Pelfrey 746.00
 Reveiz 1,110.00

 2,454.00

 ==========
 4,285.00
 ==========

2

13

2

HEADLINE
underlines all column headers and the spaces between them at the top of each page
of the report.

The HEADLINE option underlines with the second formatting character. (See the
discussion of FORMCHAR= on page 874 .)
Default: hyphen (-)
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Tip: In traditional (monospace) SAS output, you can underline column headers

without underlining the spaces between them, by using two hyphens (’--’) as
the last line of each column header instead of using HEADLINE.

Featured in: Example 2 on page 951 and Example 8 on page 968

HEADSKIP
writes a blank line beneath all column headers (or beneath the underlining that the
HEADLINE option writes) at the top of each page of the report.
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.

The REPORT Procedure � PROC REPORT Statement 877

Featured in: Example 2 on page 951

HELP=libref.catalog
identifies the library and catalog containing user-defined help for the report. This
help can be in CBT or HELP catalog entries. You can write a CBT or HELP entry for
each item in the report with the BUILD procedure in SAS/AF software. Store all
such entries for a report in the same catalog.

Specify the entry name for help for a particular report item in the DEFINITION
window for that report item or in a DEFINE statement.
Restriction: This option has no effect in the nonwindowing environment or on ODS

destinations other than traditional SAS monospace output.

LIST
writes to the SAS log the PROC REPORT code that creates the current report. This
listing may differ in these ways from the statements that you submit:

� It shows some defaults that you may not have specified.
� It omits some statements that are not specific to the REPORT procedure,

whether you submit them with the PROC REPORT step or had previously
submitted them. These statements include

BY

FOOTNOTE

FREQ

TITLE

WEIGHT

WHERE
� It omits these PROC REPORT statement options:

LIST

OUT=

OUTREPT=

PROFILE=

REPORT=

WINDOWS|NOWINDOWS
� It omits SAS system options.
� It resolves automatic macro variables.

Restriction: This option has no effect in the windowing environment. In the
windowing environment, you can write the report definition for the report that is
currently in the REPORT window to the SOURCE window by selecting

Tools � Report Statements

LS=line-size
specifies the length of a line of the report.

PROC REPORT honors the first of these line size specifications that it finds:
� the LS= option in the PROC REPORT statement or Linesize= in the

ROPTIONS window
� the LS= setting stored in the report definition loaded with REPORT= in the

PROC REPORT statement
� the SAS system option LINESIZE=.

878 PROC REPORT Statement � Chapter 42

Range: 64-256 (integer)
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Featured in: Example 6 on page 964 and Example 8 on page 968

MISSING
considers missing values as valid values for group, order, or across variables. Special
missing values used to represent numeric values (the letters A through Z and the
underscore (_) character) are each considered as a different value. A group for each
missing value appears in the report. If you omit the MISSING option, then PROC
REPORT does not include observations with a missing value for any group, order, or
across variables in the report.
See also: For information about special missing values, see the section on missing

values in SAS Language Reference: Concepts.
Featured in: Example 11 on page 977

NAMED
writes name= in front of each value in the report, where name is the column header
for the value.
Interaction: When you use the NAMED option, PROC REPORT automatically uses

the NOHEADER option.
Tip: Use NAMED in conjunction with the WRAP option to produce a report that

wraps all columns for a single row of the report onto consecutive lines rather than
placing columns of a wide report on separate pages.

Featured in: Example 7 on page 966

NOALIAS
lets you use a report that was created before compute blocks required aliases (before
Release 6.11). If you use NOALIAS, then you cannot use aliases in compute blocks.

NOCENTER
See CENTER|NOCENTER on page 873.

NOCOMPLETECOLS
See COMPLETECOLS|NOCOMPLETECOLS on page 874.

NOCOMPLETEROWS
See COMPLETEROWS|NOCOMPLETEROWS on page 874.

NOEXEC
suppresses the building of the report. Use NOEXEC with OUTREPT= to store a
report definition in a catalog entry. Use NOEXEC with LIST and REPORT= to
display a listing of the specified report definition.

NOHEADER
suppresses column headers, including those that span multiple columns.

When you suppress the display of column headers in the windowing environment,
you cannot select any report items.

NOTHREADS
See THREADS | NOTHREADS on page 883.

NOWINDOWS
Alias: NOWD
See WINDOWS|NOWINDOWS on page 884.

OUT=SAS-data-set
names the output data set. If this data set does not exist, then PROC REPORT
creates it. The data set contains one observation for each detail row of the report and

The REPORT Procedure � PROC REPORT Statement 879

one observation for each unique summary line. If you use both customized and
default summaries at the same place in the report, then the output data set contains
only one observation because the two summaries differ only in how they present the
data. Information about customization (underlining, color, text, and so forth) is not
data and is not saved in the output data set.

The output data set contains one variable for each column of the report. PROC
REPORT tries to use the name of the report item as the name of the corresponding
variable in the output data set. However, this is not possible if a data set variable is
under or over an across variable or if a data set variable appears multiple times in
the COLUMN statement without aliases. In these cases, the name of the variable is
based on the column number (_C1_, _C2_, and so forth).

Output data set variables that are derived from input data set variables retain the
formats of their counterparts in the input data set. PROC REPORT derives labels for
these variables from the corresponding column headers in the report unless the only
item defining the column is an across variable. In that case, the variables have no
label. If multiple items are stacked in a column, then the labels of the corresponding
output data set variables come from the analysis variable in the column.

The output data set also contains a character variable named _BREAK_. If an
observation in the output data set derives from a detail row in the report, then the
value of _BREAK_ is missing. If the observation derives from a summary line, then
the value of _BREAK_ is the name of the break variable that is associated with the
summary line, or _RBREAK_. If the observation derives from a COMPUTE BEFORE
PAGE or COMPUTE AFTER _PAGE_ statement, then the value of _BREAK_ is
PAGE. Note, however, that for COMPUTE BEFORE _PAGE_ and COMPUTE
AFTER _PAGE_, the _PAGE_ value is written to the output data set only; it is not
available as a value of the automatic variable _BREAK_ during execution of the
procedure.
Interaction: You cannot use OUT= in a PROC REPORT step that uses a BY

statement.
Featured in: Example 12 on page 980 and Example 13 on page 983

OUTREPT=libref.catalog.entry
stores in the specified catalog entry the REPORT definition that is defined by the
PROC REPORT step that you submit. PROC REPORT assigns the entry a type of
REPT.

The stored report definition may differ in these ways from the statements that you
submit:

� It omits some statements that are not specific to the REPORT procedure,
whether you submit them with the PROC REPORT step or whether they are
already in effect when you submit the step. These statements include

BY

FOOTNOTE

FREQ

TITLE

WEIGHT

WHERE
� It omits these PROC REPORT statement options:

LIST

NOALIAS

OUT=

880 PROC REPORT Statement � Chapter 42

OUTREPT=

PROFILE=

REPORT=

WINDOWS|NOWINDOWS
� It omits SAS system options.
� It resolves automatic macro variables.

Note: The current version of SAS will correctly read REPORT entries that were
created with earlier versions. However, earlier versions of SAS will not correctly read
REPORT entries that are created with the current version. �
Featured in: Example 7 on page 966

PANELS=number-of-panels
specifies the number of panels on each page of the report. If the width of a report is
less than half of the line size, then you can display the data in multiple sets of
columns so that rows that would otherwise appear on multiple pages appear on the
same page. Each set of columns is a panel. A familiar example of this kind of report
is a telephone book, which contains multiple panels of names and telephone numbers
on a single page.

When PROC REPORT writes a multipanel report, it fills one panel before
beginning the next.

The number of panels that fits on a page depends on the
� width of the panel
� space between panels

� line size.

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output. However, the COLUMNS= option in the ODS PRINTER
or ODS PDF statement produces similar results. For details, see the chapter on
ODS statements in SAS Output Delivery System: User’s Guide.

Default: 1
Tip: If number-of-panels is larger than the number of panels that can fit on the

page, then PROC REPORT creates as many panels as it can. Let PROC REPORT
put your data in the maximum number of panels that can fit on the page by
specifying a large number of panels (for example, 99).

See also: For information about the space between panels and the line size, see the
discussions of PSPACE= on page 881 and the discussion of LS= on page 877.

Featured in: Example 8 on page 968

PCTLDEF=
See QNTLDEF= on page 882.

PROFILE=libref.catalog
identifies the report profile to use. A profile

� specifies the location of menus that define alternative menu bars and pull-down
menus for the REPORT and COMPUTE windows.

� sets defaults for WINDOWS, PROMPT, and COMMAND.

PROC REPORT uses the entry REPORT.PROFILE in the catalog that you specify
as your profile. If no such entry exists, or if you do not specify a profile, then PROC
REPORT uses the entry REPORT.PROFILE in SASUSER.PROFILE. If you have no
profile, then PROC REPORT uses default menus and the default settings of the
options.

The REPORT Procedure � PROC REPORT Statement 881

You create a profile from the PROFILE window while using PROC REPORT in a
windowing environment. To create a profile

1 Invoke PROC REPORT with the WINDOWS option.
2 Select

Tools � Report Profile

3 Fill in the fields to suit your needs.

4 Select OK to exit the PROFILE window. When you exit the window, PROC
REPORT stores the profile in SASUSER.PROFILE.REPORT.PROFILE. Use the
CATALOG procedure or the Explorer window to copy the profile to another
location.

Note: If, after opening the PROFILE window, you decide not to create a profile,
then select CANCEL to close the window. �

PROMPT
opens the REPORT window and starts the PROMPT facility. This facility guides you
through creating a new report or adding more data set variables or statistics to an
existing report.

If you start PROC REPORT with prompting, then the first window gives you a
chance to limit the number of observations that are used during prompting. When
you exit the prompter, PROC REPORT removes the limit.

Restriction: When you use the PROMPT option, you open the REPORT window.
When the REPORT window is open, you cannot send procedure output to any ODS
destination.

Tip: You can store a setting of PROMPT in your report profile. PROC REPORT
honors the first of these settings that it finds:

� the PROMPT option in the PROC REPORT statement
� the setting in your report profile.

If you omit PROMPT from the PROC REPORT statement, then the procedure uses
the setting in your report profile, if you have one. If you do not have a report profile,
then PROC REPORT does not use the prompt facility. For information on report
profiles, see “PROFILE” on page 926.

PS=page-size
specifies the number of lines in a page of the report.

PROC REPORT honors the first of these page size specifications that it finds:

� the PS= option in the PROC REPORT statement
� the PS= setting in the report definition specified with REPORT= in the PROC

REPORT statement
� the SAS system option PAGESIZE=.

Range: 15-32,767 (integer)

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

Featured in: Example 6 on page 964 and Example 8 on page 968

PSPACE=space-between-panels
specifies the number of blank characters between panels. PROC REPORT separates
all panels in the report by the same number of blank characters. For each panel, the
sum of its width and the number of blank characters separating it from the panel to
its left cannot exceed the line size.

882 PROC REPORT Statement � Chapter 42

Default: 4
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Featured in: Example 8 on page 968

QMARKERS=number
specifies the default number of markers to use for the P2 estimation method. The
number of markers controls the size of fixed memory space.
Default: The default value depends on which quantiles you request. For the median

(P50), number is 7. For the quartiles (P25 and P75), number is 25. For the
quantiles P1, P5, P10, P90, P95, or P99, number is 105. If you request several
quantiles, then PROC REPORT uses the largest default value of number.

Range: any odd integer greater than 3
Tip: Increase the number of markers above the default settings to improve the

accuracy of the estimates; you can reduce the number of markers to conserve
computing resources.

QMETHOD=OS|P2
specifies the method that PROC REPORT uses to process the input data when it
computes quantiles. If the number of observations is less than or equal to the value
of the QMARKERS= option, and the value of the QNTLDEF= option is 5, then both
methods produce the same results.

OS
uses order statistics. This is the technique that PROC UNIVARIATE uses.

Note: This technique can be very memory intensive. �

P2
uses the P2 method to approximate the quantile.

Default: OS
Restriction: When QMETHOD=P2, PROC REPORT does not compute weighted

quantiles.
Tip: When QMETHOD=P2, reliable estimates of some quantiles (P1, P5, P95, P99)

might not be possible for some data sets such as those with heavily tailed or
skewed distributions.

QNTLDEF=1|2|3|4|5
specifies the mathematical definition that the procedure uses to calculate quantiles
when the value of the QMETHOD= option is OS. When QMETHOD=P2, you must
use QNTLDEF=5.
Default: 5
Alias: PCTLDEF=
Main discussion: “Quantile and Related Statistics” on page 1345

REPORT=libref.catalog.entry
specifies the report definition to use. PROC REPORT stores all report definitions as
entries of type REPT in a SAS catalog.
Interaction: If you use REPORT=, then you cannot use the COLUMN statement.
See also: OUTREPT= on page 879
Featured in: Example 7 on page 966

SHOWALL
overrides options in the DEFINE statement that suppress the display of a column.
See also: NOPRINT and NOZERO in “DEFINE Statement” on page 897

The REPORT Procedure � PROC REPORT Statement 883

SPACING=space-between-columns
specifies the number of blank characters between columns. For each column, the sum
of its width and the blank characters between it and the column to its left cannot
exceed the line size.
Default: 2
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Interaction: PROC REPORT separates all columns in the report by the number of

blank characters specified by SPACING= in the PROC REPORT statement unless
you use SPACING= in the DEFINE statement to change the spacing to the left of
a specific item.

Interaction: When CENTER is in effect, PROC REPORT ignores spacing that
precedes the leftmost variable in the report.

Featured in: Example 2 on page 951

SPLIT=’character’
specifies the split character. PROC REPORT breaks a column header when it
reaches that character and continues the header on the next line. The split character
itself is not part of the column header although each occurrence of the split character
counts toward the 256-character maximum for a label.
Default: slash (/)
Interaction: The FLOW option in the DEFINE statement honors the split character.
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Featured in: Example 5 on page 960

STYLE<(location(s))>=<style-element-name><[style-attribute-specification(s)]>
specifies the style element to use for the specified locations in the report. See “Using
Style Elements in PROC REPORT” on page 863 for details.
Restriction: This option affects only the HTML, RTF, and Printer output.
Featured in: Example 15 on page 989 and Example 16 on page 994

THREADS | NOTHREADS
enables or disables parallel processing of the input data set. This option overrides
the SAS system option THREADS | NOTHREADS. See SAS Language Reference:
Concepts for more information about parallel processing.
Default: value of SAS system option THREADS | NOTHREADS.
Interaction: PROC REPORT uses the value of the SAS system option THREADS

except when a BY statement is specified or the value of the SAS system option
CPUCOUNT is less than 2. You can use THREADS in the PROC REPORT
statement to force PROC REPORT to use parallel processing in these situations.

VARDEF=divisor
specifies the divisor to use in the calculation of the variance and standard deviation.
Table 42.5 on page 883 shows the possible values for divisor and associated divisors.

Table 42.5 Possible Values for VARDEF=

Value Divisor Formula for Divisor

DF degrees of freedom n − 1

N number of observations n

884 PROC REPORT Statement � Chapter 42

Value Divisor Formula for Divisor

WDF sum of weights minus one (�i wi) − 1

WEIGHT|WGT sum of weights �i wi

The procedure computes the variance as �����������, where ��� is the corrected
sums of squares and equals

�
�	� � 	��. When you weight the analysis variables,

��� equals
�

� �	� � 	��
�, where 	� is the weighted mean.

Default: DF
Requirement: To compute the standard error of the mean and Student’s t-test, use

the default value of VARDEF=.
Tip: When you use the WEIGHT statement and VARDEF=DF, the variance is an

estimate of ��, where the variance of the ith observation is ��� ���� � ����� and
�� is the weight for the ith observation. This yields an estimate of the variance of
an observation with unit weight.

Tip: When you use the WEIGHT statement and VARDEF=WGT, the computed
variance is asymptotically (for large n) an estimate of ����, where � is the
average weight. This yields an asymptotic estimate of the variance of an
observation with average weight.

See also: “WEIGHT” on page 63

WINDOWS|NOWINDOWS
selects a windowing or nonwindowing environment.

When you use WINDOWS, SAS opens the REPORT window, which enables you to
modify a report repeatedly and to see the modifications immediately. When you use
NOWINDOWS, PROC REPORT runs without the REPORT window and sends its
output to the open output destination(s).
Alias: WD|NOWD
Restriction: When you use the WINDOWS option, you cannot send procedure

output to the HTML, RTF, or Printer destination.
Tip: You can store a setting of WINDOWS in your report profile, if you have one. If

you do not specify WINDOWS or NOWINDOWS in the PROC REPORT statement,
then the procedure uses the setting in your report profile. If you do not have a
report profile, then PROC REPORT looks at the setting of the SAS system option
DMS. If DMS is ON, then PROC REPORT uses the windowing environment; if
DMS is OFF, then it uses the nonwindowing environment.

See also: For a discussion of the report profile see the discussion of PROFILE= on
page 880.

Featured in: Example 1 on page 948

WRAP
displays one value from each column of the report, on consecutive lines if necessary,
before displaying another value from the first column. By default, PROC REPORT
displays values for only as many columns as it can fit on one page. It fills a page
with values for these columns before starting to display values for the remaining
columns on the next page.
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Interaction: When WRAP is in effect, PROC REPORT ignores PAGE in any item

definitions.
Tip: Typically, you use WRAP in conjunction with the NAMED option in order to

avoid wrapping column headers.

The REPORT Procedure � BREAK Statement 885

Featured in: Example 7 on page 966

BREAK Statement

Produces a default summary at a break (a change in the value of a group or order variable). The
information in a summary applies to a set of observations. The observations share a unique
combination of values for the break variable and all other group or order variables to the left of
the break variable in the report.

Featured in: Example 4 on page 957 and Example 5 on page 960.

BREAK location break-variable</ option(s)>;

To do this Use this option

Specify the color of the break lines in the REPORT window COLOR=

Double overline each value DOL*

Double underline each value DUL*

Overline each value OL*

Start a new page after the last break line PAGE

Write a blank line for the last break line SKIP

Specify a style element for default summary lines, customized
summary lines or both

STYLE=

Write a summary line in each group of break lines SUMMARIZE

Suppress the printing of the value of the break variable in the
summary line and of any underlining or overlining in the break lines
in the column containing the break variable

SUPPRESS

Underline each value UL*

* Traditional SAS monospace output only.

Required Arguments

location
controls the placement of the break lines and is either

AFTER
places the break lines immediately after the last row of each set of rows that have
the same value for the break variable.

BEFORE
places the break lines immediately before the first row of each set of rows that
have the same value for the break variable.

886 BREAK Statement � Chapter 42

break-variable
is a group or order variable. The REPORT procedure writes break lines each time
the value of this variable changes.

Options

COLOR=color
specifies the color of the break lines in the REPORT window. You can use the
following colors:

BLACK MAGENTA

BLUE ORANGE

BROWN PINK

CYAN RED

GRAY WHITE

GREEN YELLOW

Default: The color of Foreground in the SASCOLOR window. (For more
information, see the online help for the SASCOLOR window.)

Restriction: This option affects output in the windowing environment only.
Note: Not all operating environments and devices support all colors, and on some

operating systems and devices, one color may map to another color. For example, if
the DEFINITION window displays the word BROWN in yellow characters, then
selecting BROWN results in a yellow item. �

DOL
(for double overlining) uses the thirteenth formatting character to overline each value

� that appears in the summary line
� that would appear in the summary line if you specified the SUMMARIZE option.

Default: equals sign (=)
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Interaction: If you specify both the OL and DOL options, then PROC REPORT

honors only OL.
See also: the discussion of FORMCHAR= on page 874.

DUL
(for double underlining) uses the thirteenth formatting character to underline each
value

� that appears in the summary line
� that would appear in the summary line if you specified the SUMMARIZE option.

Default: equals sign (=)
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Interaction: If you specify both the UL and DUL options, then PROC REPORT

honors only UL.

The REPORT Procedure � BREAK Statement 887

See also: the discussion of FORMCHAR= on page 874.

OL
(for overlining) uses the second formatting character to overline each value

� that appears in the summary line
� that would appear in the summary line if you specified the SUMMARIZE option.

Default: hyphen (-)
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Interaction: If you specify both the OL and DOL options, then PROC REPORT

honors only OL.
See also: the discussion of FORMCHAR= on page 874.
Featured in: Example 2 on page 951 and Example 9 on page 971

PAGE
starts a new page after the last break line.
Interaction: If you use PAGE in the BREAK statement and you create a break at

the end of the report, then the summary for the whole report appears on a
separate page.

Featured in: Example 9 on page 971

SKIP
writes a blank line for the last break line.
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Featured in: Example 2 on page 951, Example 4 on page 957, Example 5 on page

960, and Example 8 on page 968

STYLE<location(s)>=<style-element-name><[style-attribute-specification(s)]>
specifies the style element to use for default summary lines that are created with the
BREAK statement. See “Using Style Elements in PROC REPORT” on page 863 for
details.
Restriction: This option affects only the HTML, RTF, and Printer output.

SUMMARIZE
writes a summary line in each group of break lines. A summary line for a set of
observations contains values for

� the break variable (which you can suppress with the SUPPRESS option)
� other group or order variables to the left of the break variable
� statistics
� analysis variables
� computed variables.

The following table shows how PROC REPORT calculates the value for each kind
of report item in a summary line that is created by the BREAK statement:

If the report item is… Then its value is…

the break variable the current value of the variable (or a missing value if
you use SUPPRESS)

a group or order variable to the left of
the break variable

the current value of the variable

a group or order variable to the right
of the break variable, or a display
variable anywhere in the report

missing*

888 BREAK Statement � Chapter 42

If the report item is… Then its value is…

a statistic the value of the statistic over all observations in the set

an analysis variable the value of the statistic specified as the usage option in
the item’s definition. PROC REPORT calculates the
value of the statistic over all observations in the set.
The default usage is SUM.

a computed variable the results of the calculations based on the code in the
corresponding compute block (see “COMPUTE
Statement” on page 895).

* If you reference a variable with a missing value in a customized summary line, then PROC
REPORT displays that variable as a blank (for character variables) or a period (for numeric
variables).

Note: PROC REPORT cannot create groups in a report that contains order or
display variables. �

Featured in: Example 2 on page 951, Example 4 on page 957, and Example 9 on
page 971

SUPPRESS
suppresses printing of

� the value of the break variable in the summary line
� any underlining and overlining in the break lines in the column that contains

the break variable.

Interaction: If you use SUPPRESS, then the value of the break variable is
unavailable for use in customized break lines unless you assign a value to it in the
compute block that is associated with the break (see “COMPUTE Statement” on
page 895).

Featured in: Example 4 on page 957

UL
(for underlining) uses the second formatting character to underline each value

� that appears in the summary line

� that would appear in the summary line if you specified the SUMMARIZE option.

Default: hyphen (-)

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

Interaction: If you specify both the UL and DUL options, then PROC REPORT
honors only UL.

See also: the discussion of FORMCHAR= on page 874.

Order of Break Lines
When a default summary contains more than one break line, the order in which the

break lines appear is

1 overlining or double overlining (OL or DOL)
2 summary line (SUMMARIZE)

3 underlining or double underlining (UL or DUL)

The REPORT Procedure � BY Statement 889

4 skipped line (SKIP)
5 page break (PAGE).

Note: If you define a customized summary for the break, then customized break
lines appear after underlining or double underlining. For more information about
customized break lines, see “COMPUTE Statement” on page 895 and “LINE Statement”
on page 907. �

BY Statement

Creates a separate report on a separate page for each BY group.

Restriction: If you use the BY statement, then you must use the NOWINDOWS option in
the PROC REPORT statement.
Restriction: You cannot use the OUT= option when you use a BY statement.
Interaction: If you use the RBREAK statement in a report that uses BY processing, then
PROC REPORT creates a default summary for each BY group. In this case, you cannot
summarize information for the whole report.
Tip: Using the BY statement does not make the FIRST. and LAST. variables available
in compute blocks.

Main discussion: “BY” on page 58

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n> <NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, then the observations in the data set either must be sorted by all the
variables that you specify or must be indexed appropriately. Variables in a BY
statement are called BY variables.

Options

DESCENDING
specifies that the data set is sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The data are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same

890 CALL DEFINE Statement � Chapter 42

values for all BY variables. If observations with the same values for the BY variables
are not contiguous, then the procedure treats each contiguous set as a separate BY
group.

CALL DEFINE Statement

Sets the value of an attribute for a particular column in the current row.

Restriction: Valid only in a compute block that is attached to a report item.

Featured in: Example 4 on page 957

CALL DEFINE (column-id | _ROW_ , ’attribute-name’, value);

The CALL DEFINE statement is often used to write report definitions that other
people will use in a windowing environment. Only the FORMAT, URL, URLBP, and
URLP attributes have an effect in the nonwindowing environment. In fact, URL,
URLBP, and URLP are effective only in the nonwindowing environment. The STYLE=
and URL attributes are effective only when you are using the Output Delivery System
to create HTML, RTF, or Printer output. (See Table 42.6 on page 891 for descriptions of
the available attributes.)

Required Arguments

column-id
specifies a column name or a column number (that is, the position of the column from
the left edge of the report). A column ID can be one of the following:

� a character literal (in quotation marks) that is the column name

� a character expression that resolves to the column name

� a numeric literal that is the column number

� a numeric expression that resolves to the column number

� a name of the form ’_Cn_’, where n is the column number

� the automatic variable _COL_, which identifies the column that contains the
report item that the compute block is attached to

attribute-name
is the attribute to define. For attribute names, refer to Table 42.6 on page 891.

ROW
is an automatic variable that indicates the entire current row.

value
sets the value for the attribute. For values for each attribute, refer to Table 42.6 on
page 891.

The REPORT Procedure � CALL DEFINE Statement 891

Table 42.6 Attribute Descriptions

Attribute Description Values Affects

BLINK Controls blinking of current
value

1 turns blinking on; 0 turns
it off

windowing environment

COLOR Controls the color of the current
value in the REPORT window

’blue’, ’red’, ’pink’, ’green’,
’cyan’, ’yellow’, ’white’,
’orange’, ’black’, ’magenta’,
’gray’, ’brown’

windowing environment

COMMAND Specifies that a series of
commands follows

a quoted string of SAS
commands to submit to the
command line

windowing environment

FORMAT Specifies a format for the column a SAS format or a
user-defined format

windowing and
nonwindowing environments

HIGHLIGHT Controls highlighting of the
current value

1 turns highlighting on; 0
turns it off

windowing environment

RVSVIDEO Controls display of the current
value

1 turns reverse video on; 0
turns it off

windowing environment

STYLE= Specifies the style element for
the Output Delivery System

See “Using the STYLE=
Attribute” on page 892

HTML, RTF, and Printer
output

URL Makes the contents of each cell
of the column a link to the
specified Uniform Resource
Locator (URL)*

a quoted URL (either single
or double quotation marks
can be used)

HTML, RTF, and Printer
output

892 CALL DEFINE Statement � Chapter 42

Attribute Description Values Affects

URLBP Makes the contents of each cell
of the column a link. The link
points to a Uniform Resource
Locator that is a concatenation of

1 the string that is specified
by the BASE= option in
the ODS HTML statement

2 the string that is specified
by the PATH= option in
the ODS HTML statement

3 the value of the URLBP
attribute

*,#

a quoted URL (either single
or double quotation marks
can be used)

HTML output

URLP Makes the contents of each cell
of the column a link. The link
points to a Uniform Resource
Locator that is a concatenation of

1 the string that is specified
by the PATH= option in
the ODS HTML statement

2 the value of the URLP
attribute

*,#

a quoted URL (either single
or double quotation marks
can be used)

HTML output

* The total length of the URL that you specify (including any characters that come from the BASE= and PATH=
options) cannot exceed the line size. Use the LS= option in the PROC REPORT statement to alter the line size
for the PROC REPORT step.

For information on the BASE= and PATH= options, see the documentation for the ODS HTML statement in
SAS Output Delivery System: User’s Guide.

Note: The attributes BLINK, HIGHLIGHT, and RVSVIDEO do not work on all
devices. �

Using the STYLE= Attribute
The STYLE= attribute specifies the style element to use in the cells that are affected

by the CALL DEFINE statement.
The STYLE= attribute functions like the STYLE= option in other statements in

PROC REPORT. However, instead of acting as an option in a statement, it becomes the
value for the STYLE= attribute. For instance, the following CALL DEFINE statement
sets the background color to yellow and the font size to 7 for the specified column:

call define(_col_, "style",
"style=[background=yellow font_size=7]");

See “Using Style Elements in PROC REPORT” on page 863 for details.

Restriction: This option affects only the HTML, RTF, Printer destinations.
Interaction: If you set a style element for the CALLDEF location in the PROC

REPORT statement and you want to use that exact style element in a CALL
DEFINE statement, then use an empty string as the value for the STYLE
attribute, as shown here:

call define (_col_, "STYLE", "");

The REPORT Procedure � COLUMN Statement 893

Featured in: Example 16 on page 994

COLUMN Statement

Describes the arrangement of all columns and of headers that span more than one column.

Restriction: You cannot use the COLUMN statement if you use REPORT= in the PROC
REPORT statement.

Featured in: Example 1 on page 948, Example 3 on page 954, Example 5 on page 960,
Example 6 on page 964, Example 10 on page 975, and Example 11 on page 977

COLUMN column-specification(s);

Required Arguments

column-specification(s)
is one or more of the following:

� report-item(s)

� report-item-1, report-item-2 <. . . , report-item-n>

� (‘header-1 ’< . . . ‘header-n ’> report-item(s))

� report-item=name

where report-item is the name of a data set variable, a computed variable, or a
statistic. See “Statistics That Are Available in PROC REPORT” on page 857 for a list
of available statistics.

report-item(s)
identifies items that each form a column in the report.

Featured in: Example 1 on page 948 and Example 11 on page 977

report-item-1, report-item-2 <. . . , report-item-n>
identifies report items that collectively determine the contents of the column or
columns. These items are said to be stacked in the report because each item
generates a header, and the headers are stacked one above the other. The header
for the leftmost item is on top. If one of the items is an analysis variable, a
computed variable, a group variable, or a statistic, then its values fill the cells in
that part of the report. Otherwise, PROC REPORT fills the cells with frequency
counts.

If you stack a statistic with an analysis variable, then the statistic that you
name in the column statement overrides the statistic in the definition of the
analysis variable. For example, the following PROC REPORT step produces a
report that contains the minimum value of Sales for each sector:

proc report data=grocery;
column sector sales,min;
define sector/group;
define sales/analysis sum;

run;

894 COLUMN Statement � Chapter 42

If you stack a display variable under an across variable, then all the values of
that display variable appear in the report.

Interaction: A series of stacked report items can include only one analysis
variable or statistic. If you include more than one analysis variable or statistic,
then PROC REPORT returns an error because it cannot determine which
values to put in the cells of the report.

Tip: You can use parentheses to group report items whose headers should appear
at the same level rather than stacked one above the other.

Featured in: Example 5 on page 960, Example 6 on page 964, and Example 10 on
page 975

(‘header-1 ’<… ‘header-n ’> report-item(s))
creates one or more headers that span multiple columns.

header
is a string of characters that spans one or more columns in the report. PROC
REPORT prints each header on a separate line. You can use split characters in
a header to split one header over multiple lines. See the discussion of SPLIT=
on page 883.

In traditional (monospace) SAS output, if the first and last characters of a
header are one of the following characters, then PROC REPORT uses that
character to expand the header to fill the space over the column or columns:

:− = _ .* +

Similarly, if the first character of a header is < and the last character is >, or
vice-versa, then PROC REPORT expands the header to fill the space over the
column by repeating the first character before the text of the header and the
last character after it.

Note: A hexadecimal value (such as ’DF’x) that is specified within header
will not resolve because it is specified within quotation marks. To resolve a
hexadecimal value, use the %sysfunc(byte(num)) function, where num is the
hexadecimal value. Be sure to enclose header in double quotation marks (" ") so
that the macro function will resolve. �

report-item(s)
specifies the columns to span.

Featured in: Example 10 on page 975

report-item=name
specifies an alias for a report item. You can use the same report item more than
once in a COLUMN statement. However, you can use only one DEFINE statement
for any given name. (The DEFINE statement designates characteristics such as
formats and customized column headers. If you omit a DEFINE statement for an
item, then the REPORT procedure uses defaults.) Assigning an alias in the
COLUMN statement does not by itself alter the report. However, it does enable you
to use separate DEFINE statements for each occurrence of a variable or statistic.

Featured in: Example 3 on page 954

Note: You cannot always use an alias. When you refer in a compute block to a report
item that has an alias, you must usually use the alias. However, if the report item
shares a column with an across variable, then you must reference the column by column
number (see “Four Ways to Reference Report Items in a Compute Block” on page 859). �

The REPORT Procedure � COMPUTE Statement 895

COMPUTE Statement

Starts a compute block. A compute block contains one or more programming statements that
PROC REPORT executes as it builds the report.

Interaction: An ENDCOMP statement must mark the end of the group of statements in
the compute block.

Featured in: Example 2 on page 951, Example 3 on page 954, Example 4 on page 957,
Example 5 on page 960, Example 9 on page 971, and Example 10 on page 975

COMPUTE location <target>
</ STYLE=<style-element-name>
<[style-attribute-specification(s)]>>;

LINE specification(s);
. . . select SAS language elements . . .
ENDCOMP;

COMPUTE report-item </ type-specification>;
CALL DEFINE (column-id, ’attribute-name’, value);
. . . select SAS language elements . . .
ENDCOMP;

A compute block can be associated with a report item or with a location (at the top or
bottom of a report; at the top or bottom of a page; before or after a set of observations).
You create a compute block with the COMPUTE window or with the COMPUTE
statement. One form of the COMPUTE statement associates the compute block with a
report item. Another form associates the compute block with a location.

For a list of the SAS language elements that you can use in compute blocks, see “The
Contents of Compute Blocks” on page 859.

Required Arguments
You must specify either a location or a report item in the COMPUTE statement.

location
determines where the compute block executes in relation to target.

AFTER
executes the compute block at a break in one of the following places:

� immediately after the last row of a set of rows that have the same value for
the variable that you specify as target or, if there is a default summary on
that variable, immediately after the creation of the preliminary summary line
(see “How PROC REPORT Builds a Report” on page 936).

� except in Printer and RTF output, near the bottom of each page, immediately
before any footnotes, if you specify _PAGE_ as target.

� at the end of the report if you omit a target.

BEFORE
executes the compute block at a break in one of the following places:

� immediately before the first row of a set of rows that have the same value for
the variable that you specify as target or, if there is a default summary on

896 COMPUTE Statement � Chapter 42

that variable, immediately after the creation of the preliminary summary line
(see “How PROC REPORT Builds a Report” on page 936).

� except in Printer and RTF output, near the top of each page, between any
titles and the column headings, if you specify _PAGE_ as target.

� immediately before the first detail row if you omit a target.

Note: If a report contains more columns than will fit on a printed page, then
PROC REPORT generates an additional page or pages to contain the remaining
columns. In this case, when you specify _PAGE_ as target, the COMPUTE block does
NOT re-execute for each of these additional pages; the COMPUTE block re-executes
only after all columns have been printed. �
Featured in: Example 3 on page 954 and Example 9 on page 971

report-item
specifies a data set variable, a computed variable, or a statistic to associate the
compute block with. If you are working in the nonwindowing environment, then you
must include the report item in the COLUMN statement. If the item is a computed
variable, then you must include a DEFINE statement for it.

Featured in: Example 4 on page 957 and Example 5 on page 960
Note: The position of a computed variable is important. PROC REPORT assigns

values to the columns in a row of a report from left to right. Consequently, you cannot
base the calculation of a computed variable on any variable that appears to its right in
the report. �

Options

STYLE<(location(s))>=<style-element-name><[style-attribute-specification(s)]>
specifies the style to use for the text that is created by any LINE statements in this
compute block. See “Using Style Elements in PROC REPORT” on page 863 for
details.

Restriction: This option affects only the HTML, RTF, and Printer destinations.
Featured in: Example 16 on page 994

target
controls when the compute block executes. If you specify a location (BEFORE or
AFTER) for the COMPUTE statement, then you can also specify target, which can be
one of the following:

break-variable
is a group or order variable.

When you specify a break variable, PROC REPORT executes the statements in
the compute block each time the value of the break variable changes.

PAGE </ justification>
except in Printer and RTF output, causes the compute block to execute once for
each page, either immediately after printing any titles or immediately before
printing any footnotes. justification controls the placement of text and values. It
can be one of the following:

CENTER centers each line that the compute block writes.

LEFT left-justifies each line that the compute block writes.

RIGHT right-justifies each line that the compute block writes.
Default: CENTER

The REPORT Procedure � DEFINE Statement 897

Featured in: Example 9 on page 971

type-specification
specifies the type and, optionally, the length of report-item. If the report item that is
associated with a compute block is a computed variable, then PROC REPORT
assumes that it is a numeric variable unless you use a type specification to specify
that it is a character variable. A type specification has the form

CHARACTER <LENGTH=length>

where

CHARACTER
specifies that the computed variable is a character variable. If you do not specify a
length, then the variable’s length is 8.
Alias: CHAR
Featured in: Example 10 on page 975

LENGTH=length
specifies the length of a computed character variable.
Default: 8
Range: 1 to 200
Interaction: If you specify a length, then you must use CHARACTER to indicate

that the computed variable is a character variable.
Featured in: Example 10 on page 975

DEFINE Statement

Describes how to use and display a report item.

Tip: If you do not use a DEFINE statement, then PROC REPORT uses default
characteristics.
Featured in: Example 2 on page 951, Example 3 on page 954, Example 4 on page 957,
Example 5 on page 960, Example 6 on page 964, Example 9 on page 971, and Example
10 on page 975

DEFINE report-item / <option(s)>;

To do this Use this option

Specify how to use a report item (see “Usage of Variables in a Report” on page 853)

Define the item, which must be a data set variable, as an
across variable

ACROSS

Define the item, which must be a data set variable, as an
analysis variable

ANALYSIS

Define the item as a computed variable COMPUTED

Define the item, which must be a data set variable, as a
display variable

DISPLAY

898 DEFINE Statement � Chapter 42

To do this Use this option

Define the item, which must be a data set variable, as a
group variable

GROUP

Define the item, which must be a data set variable, as an
order variable

ORDER

Customize the appearance of a report item

Exclude all combinations of the item that are not found in
the preloaded range of user-defined formats

EXCLUSIVE

Assign a SAS or user-defined format to the item FORMAT=

Reference a HELP or CBT entry that contains Help
information for the report item

ITEMHELP=

Consider missing values as valid values for the item MISSING

Order the values of a group, order, or across variable
according to the specified order

ORDER=

Specify that all formats are preloaded for the item. PRELOADFMT

For traditional SAS monospace output, define the number
of blank characters to leave between the column being
defined and the column immediately to its left

SPACING=

Associate a statistic with an analysis variable statistic

Specify a style element (for the Output Delivery System)
for the report item

STYLE=

Specify a numeric variable whose values weight the value
of the analysis variable

WEIGHT=

Define the width of the column in which PROC REPORT
displays the report item

WIDTH=

Specify options for a report item

Reverse the order in which PROC REPORT displays rows
or values of a group, order, or across variable

DESCENDING

Wrap the value of a character variable in its column FLOW

Specify that the item that you are defining is an ID
variable

ID

Suppress the display of the report item NOPRINT

Suppress the display of the report item if its values are
all zero or missing

NOZERO

Insert a page break just before printing the first column
containing values of the report item

PAGE

Control the placement of values and column headers

Center the formatted values of the report item within the
column width and center the column header over the
values

CENTER

Left-justify the formatted values of the report item within
the column width and left-justify the column headers over
the values

LEFT

The REPORT Procedure � DEFINE Statement 899

To do this Use this option

Right-justify the formatted values of the report item
within the column width and right-justify the column
headers over the values

RIGHT

Specify the color in the REPORT window of the column
header and of the values of the item that you define

COLOR=

Define the column header for the report item column-header

Required Arguments

report-item
specifies the name or alias (established in the COLUMN statement) of the data set
variable, computed variable, or statistic to define.

Note: Do not specify a usage option in the definition of a statistic. The name of the
statistic tells PROC REPORT how to use it. �

Options

ACROSS
defines report-item, which must be a data set variable, as an across variable. (See
“Across Variables” on page 854.)
Featured in: Example 5 on page 960

ANALYSIS
defines report-item, which must be a data set variable, as an analysis variable. (See
“Analysis Variables” on page 855.)

By default, PROC REPORT calculates the Sum statistic for an analysis variable.
Specify an alternate statistic with the statistic option in the DEFINE statement.

Note: Naming a statistic in the DEFINE statement implies the ANALYSIS
option, so you never need to specify ANALYSIS. However, specifying ANALYSIS may
make your code easier for novice users to understand. �
Featured in: Example 2 on page 951, Example 3 on page 954, and Example 4 on

page 957

CENTER
centers the formatted values of the report item within the column width and centers
the column header over the values. This option has no effect on the CENTER option
in the PROC REPORT statement, which centers the report on the page.

COLOR=color
specifies the color in the REPORT window of the column header and of the values of
the item that you are defining. You can use the following colors:

BLACK MAGENTA

BLUE ORANGE

BROWN PINK

CYAN RED

900 DEFINE Statement � Chapter 42

GRAY WHITE

GREEN YELLOW

Default: The color of Foreground in the SASCOLOR window. (For more
information, see the online Help for the SASCOLOR window.)

Restriction: This option affects output in the windowing environment only.

Note: Not all operating environments and devices support all colors, and in some
operating environments and devices, one color may map to another color. For
example, if the DEFINITION window displays the word BROWN in yellow
characters, then selecting BROWN results in a yellow item. �

column-header
defines the column header for the report item. Enclose each header in single or
double quotation marks. When you specify multiple column headers, PROC REPORT
uses a separate line for each one. The split character also splits a column header
over multiple lines.

In traditional (monospace) SAS output, if the first and last characters of a heading
are one of the following characters, then PROC REPORT uses that character to
expand the heading to fill the space over the column:

:− = _ .* +

Similarly, if the first character of a header is < and the last character is >, or
vice-versa, then PROC REPORT expands the header to fill the space over the column
by repeating the first character before the text of the header and the last character
after it.

Note: A hexadecimal value (such as ’DF’x) that is specified within
column-header will not resolve because it is specified within quotation marks. To
resolve a hexadecimal value, use the %sysfunc(byte(num)) function, where num is
the hexadecimal value. Be sure to enclose column-header in double quotation marks
(" ") so that the macro function will resolve. �

Default:

Item Header

variable without a label variable name

variable with a label variable label

statistic statistic name

Tip: If you want to use names when labels exist, then submit the following SAS
statement before invoking PROC REPORT:

options nolabel;

Tip: HEADLINE underlines all column headers and the spaces between them. In
traditional (monospace) SAS output, you can underline column headers without
underlining the spaces between them, by using the special characters ’--’ as the
last line of each column header instead of using HEADLINE (see Example 4 on
page 957).

The REPORT Procedure � DEFINE Statement 901

See also: SPLIT= on page 883
Featured in: Example 3 on page 954, Example 4 on page 957, and Example 5 on

page 960

COMPUTED
defines the specified item as a computed variable. Computed variables are variables
that you define for the report. They are not in the input data set, and PROC
REPORT does not add them to the input data set.

In the windowing environment, you add a computed variable to a report from the
COMPUTED VAR window.

In the nonwindowing environment, you add a computed variable by
� including the computed variable in the COLUMN statement
� defining the variable’s usage as COMPUTED in the DEFINE statement
� computing the value of the variable in a compute block associated with the

variable.

Featured in: Example 5 on page 960 and Example 10 on page 975

DESCENDING
reverses the order in which PROC REPORT displays rows or values of a group, order,
or across variable.
Tip: By default, PROC REPORT orders group, order, and across variables by their

formatted values. Use the ORDER= option in the DEFINE statement to specify an
alternate sort order.

DISPLAY
defines report-item, which must be a data set variable, as a display variable. (See
“Display Variables” on page 853.)

EXCLUSIVE
excludes from the report and the output data set all combinations of the group
variables and the across variables that are not found in the preloaded range of
user-defined formats.
Requirement: You must specify the PRELOADFMT option in the DEFINE

statement in order to preload the variable formats.

FLOW
wraps the value of a character variable in its column. The FLOW option honors the
split character. If the text contains no split character, then PROC REPORT tries to
split text at a blank.
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Featured in: Example 10 on page 975

FORMAT=format
assigns a SAS or user-defined format to the item. This format applies to report-item
as PROC REPORT displays it; the format does not alter the format associated with a
variable in the data set. For data set variables, PROC REPORT honors the first of
these formats that it finds:

� the format that is assigned with FORMAT= in the DEFINE statement
� the format that is assigned in a FORMAT statement when you invoke PROC

REPORT
� the format that is associated with the variable in the data set.

If none of these is present, then PROC REPORT uses BESTw. for numeric
variables and $w. for character variables. The value of w is the default column

902 DEFINE Statement � Chapter 42

width. For character variables in the input data set, the default column width is the
variable’s length. For numeric variables in the input data set and for computed
variables (both numeric and character), the default column width is the value
specified by COLWIDTH= in the PROC REPORT statement or in the ROPTIONS
window.

In the windowing environment, if you are unsure what format to use, then type a
question mark (?) in the format field in the DEFINITION window to access the
FORMATS window.
Featured in: Example 2 on page 951 and Example 6 on page 964

GROUP
defines report-item, which must be a data set variable, as a group variable. (See
“Group Variables” on page 854.)
Featured in: Example 4 on page 957, Example 6 on page 964, and Example 14 on

page 986

ID
specifies that the item that you are defining is an ID variable. An ID variable and all
columns to its left appear at the left of every page of a report. ID ensures that you
can identify each row of the report when the report contains more columns than will
fit on one page.
Featured in: Example 6 on page 964

ITEMHELP=entry-name
references a HELP or CBT entry that contains help information for the report item.
Use PROC BUILD in SAS/AF software to create a HELP or CBT entry for a report
item. All HELP and CBT entries for a report must be in the same catalog, and you
must specify that catalog with the HELP= option in the PROC REPORT statement
or from the User Help fields in the ROPTIONS window.

Of course, you can access these entries only from a windowing environment. To
access a Help entry from the report, select the item and issue the HELP command.
PROC REPORT first searches for and displays an entry named entry-name.CBT. If
no such entry exists, then PROC REPORT searches for entry-name.HELP. If neither
a CBT nor a HELP entry for the selected item exists, then the opening frame of the
Help for PROC REPORT is displayed.

LEFT
left-justifies the formatted values of the report item within the column width and
left-justifies the column headers over the values. If the format width is the same as
the width of the column, then the LEFT option has no effect on the placement of
values.

MISSING
considers missing values as valid values for the report item. Special missing values
that represent numeric values (the letters A through Z and the underscore (_)
character) are each considered as a separate value.
Default: If you omit the MISSING option, then PROC REPORT excludes from the

report and the output data sets all observations that have a missing value for any
group, order, or across variable.

NOPRINT
suppresses the display of the report item. Use this option

� if you do not want to show the item in the report but you need to use its values
to calculate other values that you use in the report

� to establish the order of rows in the report
� if you do not want to use the item as a column but want to have access to its

values in summaries (see Example 9 on page 971).

The REPORT Procedure � DEFINE Statement 903

Interaction: Even though the columns that you define with NOPRINT do not
appear in the report, you must count them when you are referencing columns by
number (see “Four Ways to Reference Report Items in a Compute Block” on page
859).

Interaction: SHOWALL in the PROC REPORT statement or the ROPTIONS
window overrides all occurrences of NOPRINT.

Featured in: Example 3 on page 954, Example 9 on page 971, and Example 12 on
page 980

NOZERO
suppresses the display of the report item if its values are all zero or missing.
Interaction: Even though the columns that you define with NOZERO do not appear

in the report, you must count them when you are referencing columns by number
(see “Four Ways to Reference Report Items in a Compute Block” on page 859).

Interaction: SHOWALL in the PROC REPORT statement or in the ROPTIONS
window overrides all occurrences of NOZERO.

ORDER
defines report-item, which must be a data set variable, as an order variable. (See
“Order Variables” on page 853.)
Featured in: Example 2 on page 951

ORDER=DATA|FORMATTED|FREQ|INTERNAL
orders the values of a group, order, or across variable according to the specified order,
where

DATA
orders values according to their order in the input data set.

FORMATTED
orders values by their formatted (external) values. If no format has been assigned
to a class variable, then the default format, BEST12., is used.

FREQ
orders values by ascending frequency count.

INTERNAL
orders values by their unformatted values, which yields the same order that PROC
SORT would yield. This order is operating environment-dependent. This sort
sequence is particularly useful for displaying dates chronologically.

Default: FORMATTED
Interaction: DESCENDING in the item’s definition reverses the sort sequence for

an item. By default, the order is ascending.
Featured in: Example 2 on page 951

Note: The default value for the ORDER= option in PROC REPORT is not the
same as the default value in other SAS procedures. In other SAS procedures, the
default is ORDER=INTERNAL. The default for the option in PROC REPORT may
change in a future release to be consistent with other procedures. Therefore, in
production jobs where it is important to order report items by their formatted values,
specify ORDER=FORMATTED even though it is currently the default. Doing so
ensures that PROC REPORT will continue to produce the reports you expect even if
the default changes. �

PAGE
inserts a page break just before printing the first column containing values of the
report item.

904 DEFINE Statement � Chapter 42

Interaction: PAGE is ignored if you use WRAP in the PROC REPORT statement or
in the ROPTIONS window.

PRELOADFMT
specifies that the format is preloaded for the variable.
Restriction: PRELOADFMT applies only to group and across variables.
Requirement: PRELOADFMT has no effect unless you specify either EXCLUSIVE

or ORDER=DATA and you assign a format to the variable.
Interaction: To limit the report to the combination of formatted variable values

that are present in the input data set, use the EXCLUSIVE option in the DEFINE
statement.

Interaction To include all ranges and values of the user-defined formats in the
output, use the COMPLETEROWS option in the PROC REPORT statement.

Note: If you do not specify NOCOMPLETECOLS when you define the across
variables, then the report includes a column for every formatted variable. If you
specify COMPLETEROWS when you define the group variables, then the report
includes a row for every formatted value. Some combinations of rows and columns
might not make sense when the report includes a column for every formatted value
of the across variable and a row for every formatted value of the group variable. �

RIGHT
right-justifies the formatted values of the specified item within the column width and
right-justifies the column headers over the values. If the format width is the same as
the width of the column, then RIGHT has no effect on the placement of values.

SPACING=horizontal-positions
defines the number of blank characters to leave between the column being defined
and the column immediately to its left. For each column, the sum of its width and
the blank characters between it and the column to its left cannot exceed the line size.
Default: 2
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Interaction: When PROC REPORT’s CENTER option is in effect, PROC REPORT

ignores spacing that precedes the leftmost variable in the report.
Interaction: SPACING= in an item’s definition overrides the value of SPACING= in

the PROC REPORT statement or in the ROPTIONS window.

statistic
associates a statistic with an analysis variable. You must associate a statistic with
every analysis variable in its definition. PROC REPORT uses the statistic that you
specify to calculate values for the analysis variable for the observations that are
represented by each cell of the report. You cannot use statistic in the definition of any
other kind of variable.

See “Statistics That Are Available in PROC REPORT” on page 857 for a list of
available statistics.
Default: SUM
Featured in: Example 2 on page 951, Example 3 on page 954, and Example 4 on

page 957
Note: PROC REPORT uses the name of the analysis variable as the default

header for the column. You can customize the column header with the column-header
option in the DEFINE statement. �

STYLE<(location(s))>=<style-element-name><[style-attribute-specification(s)]>
specifies the style element to use for column headers and for text inside cells for this
report item. See “Using Style Elements in PROC REPORT” on page 863 for details.

The REPORT Procedure � DEFINE Statement 905

Restriction: This option affects only the HTML, RTF, and Printer destinations.
Featured in: Example 16 on page 994

WEIGHT=weight-variable
specifies a numeric variable whose values weight the values of the analysis variable
that is specified in the DEFINE statement. The variable value does not have to be an
integer. The following table describes how PROC REPORT treats various values of
the WEIGHT variable.

Weight
Value

PROC REPORT Response

0 counts the observation in the total number of observations

less than 0 converts the value to zero and counts the observation in the total number of
observations

missing excludes the observation

To exclude observations that contain negative and zero weights from the analysis,
use the EXCLNPWGT option in the PROC REPORT statement. Note that most
SAS/STAT procedures, such as PROC GLM, exclude negative and zero weights by
default.
Restriction: to compute weighted quantiles, use QMETHOD=OS in the PROC

REPORT statement.
Tip: When you use the WEIGHT= option, consider which value of the VARDEF=

option in the PROC REPORT statement is appropriate.
Tip: Use the WEIGHT= option in separate variable definitions in order to specify

different weights for the variables.
Note: Prior to Version 7 of SAS, the REPORT procedure did not exclude the

observations with missing weights from the count of observations. �

WIDTH=column-width
defines the width of the column in which PROC REPORT displays report-item.
Default: A column width that is just large enough to handle the format. If there is

no format, then PROC REPORT uses the value of the COLWIDTH= option in the
PROC REPORT statement.

Range: 1 to the value of the SAS system option LINESIZE=
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Interaction: WIDTH= in an item definition overrides the value of COLWIDTH= in

the PROC REPORT statement or the ROPTIONS window.
Tip: When you stack items in the same column in a report, the width of the item

that is at the bottom of the stack determines the width of the column.
Featured in: Example 10 on page 975

906 ENDCOMP Statement � Chapter 42

ENDCOMP Statement

Marks the end of one or more programming statements that PROC REPORT executes as it builds
the report.

Restriction: A COMPUTE statement must precede the ENDCOMP statement.

ENDCOMP;

See also: COMPUTE statement
Featured in: Example 2 on page 951

FREQ Statement

Treats observations as if they appear multiple times in the input data set.

Tip: The effects of the FREQ and WEIGHT statements are similar except when
calculating degrees of freedom.
See also: For an example that uses the FREQ statement, see “Example” on page 62

FREQ variable;

Required Arguments

variable
specifies a numeric variable whose value represents the frequency of the observation.
If you use the FREQ statement, then the procedure assumes that each observation
represents n observations, where n is the value of variable. If n is not an integer,
then SAS truncates it. If n is less than 1 or is missing, then the procedure does not
use that observation to calculate statistics.

Frequency Information Is Not Saved
When you store a report definition, PROC REPORT does not store the FREQ

statement.

The REPORT Procedure � LINE Statement 907

LINE Statement

Provides a subset of the features of the PUT statement for writing customized summaries.

Restriction: This statement is valid only in a compute block that is associated with a
location in the report.
Restriction: You cannot use the LINE statement in conditional statements (IF-THEN,
IF-THEN/ELSE, and SELECT) because it is not executed until PROC REPORT has
executed all other statements in the compute block.

Featured in: Example 2 on page 951, Example 3 on page 954, and Example 9 on page 971

LINE specification(s);

Required Arguments

specification(s)
can have one of the following forms. You can mix different forms of specifications in
one LINE statement.

item item-format
specifies the item to display and the format to use to display it, where

item
is the name of a data set variable, a computed variable, or a statistic in the
report. For information about referencing report items see “Four Ways to
Reference Report Items in a Compute Block” on page 859.

item-format
is a SAS format or user-defined format. You must specify a format for each item.

Featured in: Example 2 on page 951

’character-string ’
specifies a string of text to display. When the string is a blank and nothing else is
in specification(s), PROC REPORT prints a blank line.

Note: A hexadecimal value (such as ’DF’x) that is specified within
character-string will not resolve because it is specified within quotation marks. To
resolve a hexadecimal value, use the %sysfunc(byte(num)) function, where num
is the hexadecimal value. Be sure to enclose character-string in double quotation
marks (" ") so that the macro function will resolve. �
Featured in: Example 2 on page 951

number-of-repetitions*’character-string ’
specifies a character string and the number of times to repeat it.
Featured in: Example 3 on page 954

pointer-control
specifies the column in which PROC REPORT displays the next specification. You
can use either of the following forms for pointer controls:

@column-number
specifies the number of the column in which to begin displaying the next item in
the specification list.

908 RBREAK Statement � Chapter 42

+column-increment
specifies the number of columns to skip before beginning to display the next
item in the specification list.
Both column-number and column-increment can be either a variable or a literal

value.
Restriction: The pointer controls are designed for monospace output. They have

no effect on the HTML, RTF, or Printer output.
Featured in: Example 3 on page 954 and Example 5 on page 960

Differences between the LINE and PUT Statements
The LINE statement does not support the following features of the PUT statement:
� automatic labeling signaled by an equals sign (=), also known as named output
� the _ALL_, _INFILE_, and _PAGE_ arguments and the OVERPRINT option
� grouping items and formats to apply one format to a list of items
� pointer control using expressions
� line pointer controls (# and /)
� trailing at signs (@ and @@)
� format modifiers
� array elements.

RBREAK Statement

Produces a default summary at the beginning or end of a report or at the beginning or end of each
BY group.

Featured in: Example 1 on page 948 and Example 10 on page 975

RBREAK location </ option(s)>;

To do this Use this option

Specify the color of the break lines in the REPORT window COLOR=

Double overline each value DOL*

Double underline each value DUL*

Overline each value OL*

Start a new page after the last break line of a break located at the
beginning of the report

PAGE

Write a blank line for the last break line of a break located at the
beginning of the report

SKIP*

Specify a style element (for the Output Delivery System) for
default summary lines, customized summary lines, or both

STYLE=

Include a summary line as one of the break lines SUMMARIZE

Underline each value UL*

* Traditional SAS monospace output only.

The REPORT Procedure � RBREAK Statement 909

Required Arguments

location
controls the placement of the break lines and is either of the following:

AFTER
places the break lines at the end of the report.

BEFORE
places the break lines at the beginning of the report.

Options

COLOR=color
specifies the color of the break lines in the REPORT window. You can use the
following colors:

BLACK MAGENTA

BLUE ORANGE

BROWN PINK

CYAN RED

GRAY WHITE

GREEN YELLOW

Default: The color of Foreground in the SASCOLOR window. (For more
information, see the online Help for the SASCOLOR window.)

Restriction: This option affects output in the windowing environment only.
Note: Not all operating environments and devices support all colors, and in some

operating environments and devices, one color may map to another color. For
example, if the DEFINITION window displays the word BROWN in yellow
characters, then selecting BROWN results in a yellow item. �

DOL
(for double overlining) uses the thirteenth formatting character to overline each value

� that appears in the summary line

� that would appear in the summary line if you specified the SUMMARIZE option.

Default: equals sign (=)
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Interaction: If you specify both the OL and DOL options, then PROC REPORT

honors only OL.
See also: the discussion of FORMCHAR= on page 874.

910 RBREAK Statement � Chapter 42

Featured in: Example 1 on page 948

DUL
(for double underlining) uses the thirteenth formatting character to underline each
value

� that appears in the summary line

� that would appear in the summary line if you specified the SUMMARIZE option.

Default: equals sign (=)

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

Interaction: If you specify both the UL and DUL options, then PROC REPORT
honors only UL.

See also: the discussion of FORMCHAR= on page 874.

OL
(for overlining) uses the second formatting character to overline each value

� that appears in the summary line

� that would appear in the summary line if you specified the SUMMARIZE option.

Default: hyphen (-)

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

Interaction: If you specify both the OL and DOL options, then PROC REPORT
honors only OL.

See also: the discussion of FORMCHAR= on page 874.

Featured in: Example 10 on page 975

PAGE
starts a new page after the last break line of a break located at the beginning of the
report.

SKIP
writes a blank line after the last break line of a break located at the beginning of the
report.

Restriction: This option has no effect on ODS destinations other than traditional
SAS monospace output.

STYLE<(location(s))>=<style-element-name><[style-attribute-specification(s)]>
specifies the style element to use for default summary lines that are created with the
RBREAK statement. See “Using Style Elements in PROC REPORT” on page 863 for
details.

Restriction: This option affects only the HTML, RTF, and Printer destinations.

SUMMARIZE
includes a summary line as one of the break lines. A summary line at the beginning
or end of a report contains values for

� statistics

� analysis variables

� computed variables.

The following table shows how PROC REPORT calculates the value for each kind
of report item in a summary line created by the RBREAK statement:

The REPORT Procedure � RBREAK Statement 911

If the report item is… Then its value is…

a statistic the value of the statistic over all observations in
the set

an analysis variable the value of the statistic specified as the usage
option in the DEFINE statement. PROC REPORT
calculates the value of the statistic over all
observations in the set. The default usage is SUM.

a computed variable the results of the calculations based on the code in
the corresponding compute block (see “COMPUTE
Statement” on page 895).

Featured in: Example 1 on page 948 and Example 10 on page 975

UL
(for underlining) uses the second formatting character to underline each value

� that appears in the summary line
� that would appear in the summary line if you specified the SUMMARIZE option.

Default: hyphen (-)
Restriction: This option has no effect on ODS destinations other than traditional

SAS monospace output.
Interaction: If you specify both the UL and DUL options, then PROC REPORT

honors only UL.
See also: the discussion of FORMCHAR= on page 874.

Order of Break Lines
When a default summary contains more than one break line, the order in which the

break lines appear is
1 overlining or double overlining (OL or DOL, traditional SAS monospace output

only)
2 summary line (SUMMARIZE)
3 underlining or double underlining (UL or DUL, traditional SAS monospace output

only)
4 skipped line (SKIP, traditional SAS monospace output only)
5 page break (PAGE).

Note: If you define a customized summary for the break, then customized break
lines appear after underlining or double underlining. For more information about
customized break lines, see “COMPUTE Statement” on page 895 and “LINE Statement”
on page 907. �

912 WEIGHT Statement � Chapter 42

WEIGHT Statement

Specifies weights for analysis variables in the statistical calculations.

See also: For information about calculating weighted statistics see “Calculating
Weighted Statistics” on page 64. For an example that uses the WEIGHT statement, see
“Weighted Statistics Example” on page 65.

WEIGHT variable;

Required Arguments

variable
specifies a numeric variable whose values weight the values of the analysis variables.
The value of the variable does not have to be an integer. If the value of variable is

Weight value… PROC REPORT…

0 counts the observation in the total number of observations

less than 0 converts the value to zero and counts the observation in the
total number of observations

missing excludes the observation

To exclude observations that contain negative and zero weights from the analysis,
use EXCLNPWGT. Note that most SAS/STAT procedures, such as PROC GLM,
exclude negative and zero weights by default.

Tip: When you use the WEIGHT statement, consider which value of the VARDEF=
option is appropriate. See VARDEF= on page 883 and the calculation of weighted
statistics in “Keywords and Formulas” on page 1340 for more information.

Note: Prior to Version 7 of SAS, the procedure did not exclude the observations
with missing weights from the count of observations. �

Weight Information Is Not Saved

When you store a report definition, PROC REPORT does not store the WEIGHT
statement.

REPORT Procedure Windows

The windowing environment in PROC REPORT provides essentially the same
functionality as the statements, with one major exception: you cannot use the Output
Delivery System from the windowing environment.

The REPORT Procedure � BREAK 913

BREAK

Controls PROC REPORT’s actions at a change in the value of a group or order variable or at the
top or bottom of a report.

Path

Edit � Summarize information

After you select Summarize Information, PROC REPORT offers you four choices for
the location of the break:

� Before Item

� After Item

� At the top

� At the bottom.

After you select a location, the BREAK window opens.

Note: To create a break before or after detail lines (when the value of a group or
order variable changes), you must select a variable before you open the BREAK
window. �

Description

Note: For information about changing the formatting characters that are used by the
line drawing options in this window, see the discussion of FORMCHAR= on page 874. �

Options

Overline summary
uses the second formatting character to overline each value

914 BREAK � Chapter 42

� that appears in the summary line
� that would appear in the summary line if you specified the SUMMARIZE option.

Default: hyphen (-)
Interaction: If you specify options to overline and to double overline, then PROC

REPORT overlines.

Double overline summary
uses the thirteenth formatting character to overline each value

� that appears in the summary line
� that would appear in the summary line if you specified the SUMMARIZE option.

Default: equals sign (=)
Interaction: If you specify options to overline and to double overline, then PROC

REPORT overlines.

Underline summary
uses the second formatting character to underline each value

� that appears in the summary line
� that would appear in the summary line if you specified the SUMMARIZE option.

Default: hyphen (-)
Interaction: If you specify options to underline and to double underline, then

PROC REPORT underlines.

Double underline summary
uses the thirteenth formatting character to underline each value

� that appears in the summary line
� that would appear in the summary line if you specified the SUMMARIZE option.

Default: equals sign (=)
Interaction: If you specify options to underline and to double underline, then

PROC REPORT underlines.

Skip line after break
writes a blank line for the last break line.

This option has no effect if you use it in a break at the end of a report.

Page after break
starts a new page after the last break line. This option has no effect in a break at the
end of a report.
Interaction: If you use this option in a break on a variable and you create a break at

the end of the report, then the summary for the whole report is on a separate page.

Summarize analysis columns
writes a summary line in each group of break lines. A summary line contains values
for

� statistics
� analysis variables
� computed variables.

A summary line between sets of observations also contains
� the break variable (which you can suppress with Suppress break value)
� other group or order variables to the left of the break variable.

The following table shows how PROC REPORT calculates the value for each kind
of report item in a summary line created by the BREAK window:

The REPORT Procedure � BREAK 915

If the report item is… Then its value is…

the break variable the current value of the variable (or a missing value if
you select suppress break value)

a group or order variable to the left of
the break variable

the current value of the variable

a group or order variable to the right of
the break variable, or a display
variable anywhere in the report

missing*

a statistic the value of the statistic over all observations in the
set

an analysis variable the value of the statistic specified as the usage option
in the item’s definition. PROC REPORT calculates the
value of the statistic over all observations in the set.
The default usage is SUM.

a computed variable the results of the calculations based on the code in the
corresponding compute block (see “COMPUTE
Statement” on page 895).

*If you reference a variable with a missing value in a customized summary line, then PROC
REPORT displays that variable as a blank (for character variables) or a period (for numeric
variables).

Suppress break value
suppresses printing of

� the value of the break variable in the summary line
� any underlining and overlining in the break lines in the column containing the

break variable.

If you select Suppress break value, then the value of the break variable is
unavailable for use in customized break lines unless you assign it a value in the
compute block that is associated with the break.

Color
From the list of colors, select the one to use in the REPORT window for the column

header and the values of the item that you are defining.

Default: The color of Foreground in the SASCOLOR window. (For more
information, see the online Help for the SASCOLOR window.)

Note: Not all operating environments and devices support all colors, and in some
operating environments and devices, one color may map to another color. For
example, if the DEFINITION window displays the word BROWN in yellow
characters, then selecting BROWN results in a yellow item.

916 COMPUTE � Chapter 42

Buttons

Edit Program
opens the COMPUTE window and enables you to associate a compute block with a
location in the report.

OK
applies the information in the BREAK window to the report and closes the window.

Cancel
closes the BREAK window without applying information to the report.

COMPUTE

Attaches a compute block to a report item or to a location in the report. Use the SAS Text Editor
commands to manipulate text in this window.

Path
From Edit Program in the COMPUTED VAR, DEFINITION, or BREAK window.

Description
For information about the SAS language features that you can use in the COMPUTE

window, see “The Contents of Compute Blocks” on page 859.

COMPUTED VAR

Adds a variable that is not in the input data set to the report.

Path
Select a column. Then select

Edit � Add Item � Computed Column

After you select Computed Column, PROC REPORT prompts you for the location of
the computed column relative to the column that you have selected. After you select a
location, the COMPUTED VAR window opens.

Description
Enter the name of the variable at the prompt. If it is a character variable, then

select the Character data check box and, if you want, enter a value in the Length
field. The length can be any integer between 1 and 200. If you leave the field blank,
then PROC REPORT assigns a length of 8 to the variable.

The REPORT Procedure � DATA SELECTION 917

After you enter the name of the variable, select Edit Program to open the COMPUTE
window. Use programming statements in the COMPUTE window to define the
computed variable. After closing the COMPUTE and COMPUTED VAR windows, open
the DEFINITION window to describe how to display the computed variable.

Note: The position of a computed variable is important. PROC REPORT assigns
values to the columns in a row of a report from left to right. Consequently, you cannot
base the calculation of a computed variable on any variable that appears to its right in
the report. �

DATA COLUMNS
Lists all variables in the input data set so that you can add one or more data set variables to the
report.

Path
Select a report item. Then select

Edit � Add Item � Data Column

After you select Data column, PROC REPORT prompts you for the location of the
computed column relative to the column that you have selected. After you select a
location, the DATA COLUMNS window opens.

Description
Select one or more variables to add to the report. When you select the first variable,

it moves to the top of the list in the window. If you select multiple variables, then
subsequent selections move to the bottom of the list of selected variables. An asterisk
(*) identifies each selected variable. The order of selected variables from top to bottom
determines their order in the report from left to right.

DATA SELECTION
Loads a data set into the current report definition.

Path

File � Open Data Set

Description
The first list box in the DATA SELECTION window lists all the librefs defined for

your SAS session. The second one lists all the SAS data sets in the selected library.

918 DEFINITION � Chapter 42

Note: You must use data that is compatible with the current report definition. The
data set that you load must contain variables whose names are the same as the
variable names in the current report definition. �

Buttons

OK
loads the selected data set into the current report definition.

Cancel
closes the DATA SELECTION window without loading new data.

DEFINITION

Displays the characteristics associated with an item in the report and lets you change them.

Path
Select a report item. Then select

Edit � Define

Note: Alternatively, double-click on the selected item. (Not all operating
environments support this method of opening the DEFINITION window.) �

Description

Usage
For an explanation of each type of usage see “Laying Out a Report” on page 852.

DISPLAY
defines the selected item as a display variable. DISPLAY is the default for character
variables.

ORDER
defines the selected item as an order variable.

The REPORT Procedure � DEFINITION 919

GROUP
defines the selected item as a group variable.

ACROSS
defines the selected item as an across variable.

ANALYSIS
defines the selected item as an analysis variable. You must specify a statistic (see the
discussion of the Statistic= attribute on page 920) for an analysis variable.
ANALYSIS is the default for numeric variables.

COMPUTED
defines the selected item as a computed variable. Computed variables are variables
that you define for the report. They are not in the input data set, and PROC
REPORT does not add them to the input data set. However, computed variables are
included in an output data set if you create one.

In the windowing environment, you add a computed variable to a report from the
COMPUTED VAR window.

Attributes

Format=
assigns a SAS or user-defined format to the item. This format applies to the selected
item as PROC REPORT displays it; the format does not alter the format that is
associated with a variable in the data set. For data set variables, PROC REPORT
honors the first of these formats that it finds:

� the format that is assigned with FORMAT= in the DEFINITION window
� the format that is assigned in a FORMAT statement when you start PROC

REPORT
� the format that is associated with the variable in the data set.

If none of these is present, then PROC REPORT uses BESTw. for numeric
variables and $w. for character variables. The value of w is the default column
width. For character variables in the input data set, the default column width is the
variable’s length. For numeric variables in the input data set and for computed
variables (both numeric and character), the default column width is the value of the
COLWIDTH= attribute in the ROPTIONS window.

If you are unsure what format to use, then type a question mark (?) in the format
field in the DEFINITION window to access the FORMATS window.

Spacing=
defines the number of blank characters to leave between the column being defined
and the column immediately to its left. For each column, the sum of its width and
the blank characters between it and the column to its left cannot exceed the line size.
Default: 2
Interaction: When PROC REPORT’s CENTER option is in effect, PROC REPORT

ignores spacing that precedes the leftmost variable in the report.
Interaction: SPACING= in an item definition overrides the value of SPACING= in

the PROC REPORT statement or the ROPTIONS window.

Width=
defines the width of the column in which PROC REPORT displays the selected item.
Range: 1 to the value of the SAS system option LINESIZE=
Default: A column width that is just large enough to handle the format. If there is

no format, then PROC REPORT uses the value of COLWIDTH=.

920 DEFINITION � Chapter 42

Note: When you stack items in the same column in a report, the width of the
item that is at the bottom of the stack determines the width of the column. �

Statistic=
associates a statistic with an analysis variable. You must associate a statistic with
every analysis variable in its definition. PROC REPORT uses the statistic that you
specify to calculate values for the analysis variable for the observations represented
by each cell of the report. You cannot use statistic in the definition of any other kind
of variable.

Default: SUM

Note: PROC REPORT uses the name of the analysis variable as the default
header for the column. You can customize the column header with the Header field of
the DEFINITION window. �

You can use the following values for statistic:

Descriptive statistic keywords

CSS PCTSUM

CV RANGE

MAX STDDEV|STD

MEAN STDERR

MIN SUM

N SUMWGT

NMISS USS

PCTN VAR

Quantile statistic keywords

MEDIAN|Q2|P50 Q3|P75

P1 P90

P5 P95

P10 P99

Q1|P25 QRANGE

Hypothesis testing keyword

PROBT T

Explanations of the keywords, the formulas that are used to calculate them, and
the data requirements are discussed in Appendix 1, “SAS Elementary Statistics
Procedures,” on page 1339.

Requirement: To compute standard error and the Student’s t-test you must use the
default value of VARDEF= which is DF.

See also: For definitions of these statistics, see “Keywords and Formulas” on page
1340.

Order=
orders the values of a GROUP, ORDER, or ACROSS variable according to the
specified order, where

The REPORT Procedure � DEFINITION 921

DATA
orders values according to their order in the input data set.

FORMATTED
orders values by their formatted (external) values. By default, the order is
ascending.

FREQ
orders values by ascending frequency count.

INTERNAL
orders values by their unformatted values, which yields the same order that PROC
SORT would yield. This order is operating environment-dependent. This sort
sequence is particularly useful for displaying dates chronologically.

Default: FORMATTED
Interaction: DESCENDING in the item’s definition reverses the sort sequence for

an item.

Note: The default value for the ORDER= option in PROC REPORT is not the
same as the default value in other SAS procedures. In other SAS procedures, the
default is ORDER=INTERNAL. The default for the option in PROC REPORT may
change in a future release to be consistent with other procedures. Therefore, in
production jobs where it is important to order report items by their formatted values,
specify ORDER=FORMATTED even though it is currently the default. Doing so
ensures that PROC REPORT will continue to produce the reports you expect even if
the default changes. �

Justify=
You can justify the placement of the column header and of the values of the item that
you are defining within a column in one of three ways:

LEFT
left-justifies the formatted values of the item that you are defining within the
column width and left-justifies the column header over the values. If the format
width is the same as the width of the column, then LEFT has no effect on the
placement of values.

RIGHT
right-justifies the formatted values of the item that you are defining within the
column width and right-justifies the column header over the values. If the format
width is the same as the width of the column, then RIGHT has no effect on the
placement of values.

CENTER
centers the formatted values of the item that you are defining within the column
width and centers the column header over the values. This option has no effect on
the setting of the SAS system option CENTER.
When justifying values, PROC REPORT justifies the field width defined by the

format of the item within the column. Thus, numbers are always aligned.

Data type=
shows you if the report item is numeric or character. You cannot change this field.

Item Help=
references a HELP or CBT entry that contains help information for the selected item.
Use PROC BUILD in SAS/AF software to create a HELP or CBT entry for a report
item. All HELP and CBT entries for a report must be in the same catalog, and you
must specify that catalog with the HELP= option in the PROC REPORT statement
or from the User Help fields in the ROPTIONS window.

922 DEFINITION � Chapter 42

To access a help entry from the report, select the item and issue the HELP
command. PROC REPORT first searches for and displays an entry named
entry-name.CBT. If no such entry exists, then PROC REPORT searches for
entry-name.HELP. If neither a CBT nor a HELP entry for the selected item exists,
then the opening frame of the help for PROC REPORT is displayed.

Alias=
By entering a name in the Alias field, you create an alias for the report item that
you are defining. Aliases let you distinguish between different uses of the same
report item. When you refer in a compute block to a report item that has an alias,
you must use the alias (see Example 3 on page 954).

Options

NOPRINT
suppresses the display of the item that you are defining. Use this option

� if you do not want to show the item in the report but you need to use the values
in it to calculate other values that you use in the report

� to establish the order of rows in the report
� if you do not want to use the item as a column but want to have access to its

values in summaries (see Example 9 on page 971).

Interaction: Even though the columns that you define with NOPRINT do not
appear in the report, you must count them when you are referencing columns by
number (see “Four Ways to Reference Report Items in a Compute Block” on page
859).

Interaction: SHOWALL in the PROC REPORT statement or the ROPTIONS
window overrides all occurrences of NOPRINT.

NOZERO
suppresses the display of the item that you are defining if its values are all zero or
missing.
Interaction: Even though the columns that you define with NOZERO do not appear

in the report, you must count them when you are referencing columns by number
(see “Four Ways to Reference Report Items in a Compute Block” on page 859).

Interaction: SHOWALL in the PROC REPORT statement or the ROPTIONS
window overrides all occurrences of NOZERO.

DESCENDING
reverses the order in which PROC REPORT displays rows or values of a group, order,
or across variable.

PAGE
inserts a page break just before printing the first column containing values of the
selected item.
Interaction: PAGE is ignored if you use WRAP in the PROC REPORT statement or

in the ROPTIONS window.

FLOW
wraps the value of a character variable in its column. The FLOW option honors the
split character. If the text contains no split character, then PROC REPORT tries to
split text at a blank.

ID column
specifies that the item that you are defining is an ID variable. An ID variable and all
columns to its left appear at the left of every page of a report. ID ensures that you

The REPORT Procedure � DISPLAY PAGE 923

can identify each row of the report when the report contains more columns than will
fit on one page.

Color

From the list of colors, select the one to use in the REPORT window for the column
header and the values of the item that you are defining.

Default: The color of Foreground in the SASCOLOR window. (For more
information, see the online Help for the SASCOLOR window.)

Note: Not all operating environments and devices support all colors, and in some
operating environments and devices, one color may map to another color. For
example, if the DEFINITION window displays the word BROWN in yellow
characters, then selecting BROWN results in a yellow item.

Buttons

Apply
applies the information in the open window to the report and keeps the window open.

Edit Program
opens the COMPUTE window and enables you to associate a compute block with the
variable that you are defining.

OK
applies the information in the DEFINITION window to the report and closes the
window.

Cancel
closes the DEFINITION window without applying changes made with APPLY .

DISPLAY PAGE

Displays a particular page of the report.

Path

View � Display Page

Description

You can get to the last page of the report by entering a large number for the page
number. When you are on the last page of the report, PROC REPORT sends a note to
the message line of the REPORT window.

924 EXPLORE � Chapter 42

EXPLORE

Lets you experiment with your data.

Restriction: You cannot open the EXPLORE window unless your report contains at least
one group or order variable.

Path

Edit � Explore Data

Description

In the EXPLORE window you can

� subset the data with list boxes

� suppress the display of a column with the Remove Column check box

� change the order of the columns with Rotate columns .

Note: The results of your manipulations in the EXPLORE window appear in the
REPORT window but are not saved in report definitions. �

Window Features

list boxes
The EXPLORE window contains three list boxes. These boxes contain the value All
levels as well as actual values for the first three group or order variables in your
report. The values reflect any WHERE clause processing that is in effect. For
example, if you use a WHERE clause to subset the data so that it includes only the
northeast and northwest sectors, then the only values that appear in the list box for
Sector are All levels, Northeast, and Northwest. Selecting All levels in this
case displays rows of the report for only the northeast and northwest sectors. To see
data for all the sectors, you must clear the WHERE clause before you open the
EXPLORE window.

Selecting values in the list boxes restricts the display in the REPORT window to
the values that you select. If you select incompatible values, then PROC REPORT
returns an error.

Remove Column
Above each list box in the EXPLORE window is a check box labeled Remove Column.
Selecting this check box and applying the change removes the column from the
REPORT window. You can easily restore the column by clearing the check box and
applying that change.

Buttons

OK
applies the information in the EXPLORE window to the report and closes the window.

The REPORT Procedure � LOAD REPORT 925

Apply
applies the information in the EXPLORE window to the report and keeps the window
open.

Rotate columns
changes the order of the variables displayed in the list boxes. Each variable that can
move one column to the left does; the leftmost variable moves to the third column.

Cancel
closes the EXPLORE window without applying changes made with APPLY .

FORMATS

Displays a list of formats and provides a sample of each one.

Path
From the DEFINE window, type a question mark (?) in the Format field and select

any of the Buttons except Cancel, or press RETURN.

Description
When you select a format in the FORMATS window, a sample of that format appears

in the Sample: field. Select the format that you want to use for the variable that you
are defining.

Buttons

OK
writes the format that you have selected into the Format field in the DEFINITION
window and closes the FORMATS window. To see the format in the report, select
Apply in the DEFINITION window.

Cancel
closes the FORMATS window without writing a format into the Format field.

LOAD REPORT

Loads a stored report definition.

Path

File � Open Report

Description
The first list box in the LOAD REPORT window lists all the librefs that are defined

for your SAS session. The second list box lists all the catalogs that are in the selected

926 MESSAGES � Chapter 42

library. The third list box lists descriptions of all the stored report definitions (entry
types of REPT) that are in the selected catalog. If there is no description for an entry,
then the list box contains the entry’s name.

Buttons

OK
loads the current data into the selected report definition.

Cancel
closes the LOAD REPORT window without loading a new report definition.

Note: Issuing the END command in the REPORT window returns you to the
previous report definition (with the current data). �

MESSAGES

Automatically opens to display notes, warnings, and errors returned by PROC REPORT.

You must close the MESSAGES window by selecting OK before you can continue to
use PROC REPORT.

PROFILE

Customizes some features of the PROC REPORT environment by creating a report profile.

Path

Tools � Report Profile

Description
The PROFILE window creates a report profile that
� specifies the SAS library, catalog, and entry that define alternative menus to use

in the REPORT and COMPUTE windows. Use PROC PMENU to create catalog
entries of type PMENU that define these menus. PMENU entries for both
windows must be in the same catalog.

� sets defaults for WINDOWS, PROMPT, and COMMAND. PROC REPORT uses the
default option whenever you start the procedure unless you specifically override
the option in the PROC REPORT statement.

Specify the catalog that contains the profile to use with the PROFILE= option in the
PROC REPORT statement (see the discussion of PROFILE= on page 880).

The REPORT Procedure � PROMPTER 927

Buttons

OK
stores your profile in a file that is called SASUSER.PROFILE.REPORT.PROFILE.

Note: Use PROC CATALOG or the EXPLORER window to copy the profile to
another location. �

Cancel
closes the window without storing the profile.

PROMPTER

Prompts you for information as you add items to a report.

Path
Specify the PROMPT option when you start PROC REPORT or select PROMPT from

the ROPTIONS window. The PROMPTER window opens the next time that you add an
item to the report.

Description
The prompter guides you through parts of the windows that are most commonly used

to build a report. As the content of the PROMPTER window changes, the title of the
window changes to the name of the window that you would use to perform a task if you
were not using the prompter. The title change is to help you begin to associate the
windows with their functions and to learn what window to use if you later decide to
change something.

If you start PROC REPORT with prompting, then the first window gives you a
chance to limit the number of observations that are used during prompting. When you
exit the prompter, PROC REPORT removes the limit.

Buttons

OK
applies the information in the open window to the report and continues the
prompting process.

Note: When you select OK from the last prompt window, PROC REPORT
removes any limit on the number of observations that it is working with. �

Apply
applies the information in the open window to the report and keeps the window open.

Backup
returns you to the previous PROMPTER window.

Exit Prompter
closes the PROMPTER window without applying any more changes to the report. If
you have limited the number of observations to use during prompting, then PROC
REPORT removes the limit.

928 REPORT � Chapter 42

REPORT

Is the surface on which the report appears.

Path
Use WINDOWS or PROMPT in the PROC REPORT statement.

Description
You cannot write directly in any part of the REPORT window except column headers.

To change other aspects of the report, you select a report item (for example, a column
heading) as the target of the next command and issue the command. To select an item,
use a mouse or cursor keys to position the cursor over it. Then click the mouse button
or press ENTER. To execute a command, make a selection from the menu bar at the top
of the REPORT window. PROC REPORT displays the effect of a command immediately
unless the DEFER option is on.

Note: Issuing the END command in the REPORT window returns you to the
previous report definition with the current data. If there is no previous report
definition, then END closes the REPORT window. �

ROPTIONS

Displays choices that control the layout and display of the entire report and identifies the SAS data
library and catalog containing CBT or HELP entries for items in the report.

Path

Tools � Options � Report

The REPORT Procedure � ROPTIONS 929

Description

Modes

DEFER
stores the information for changes and makes the changes all at once when you turn
DEFER mode off or select

View � Refresh

DEFER is particularly useful when you know that you need to make several
changes to the report but do not want to see the intermediate reports.

By default, PROC REPORT redisplays the report in the REPORT window each
time you redefine the report by adding or deleting an item, by changing information
in the DEFINITION window, or by changing information in the BREAK window.

PROMPT
opens the PROMPTER window the next time that you add an item to the report.

Options

CENTER
centers the report and summary text (customized break lines). If CENTER is not
selected, then the report is left-justified.

PROC REPORT honors the first of these centering specifications that it finds:

� the CENTER or NOCENTER option in the PROC REPORT statement or the
CENTER toggle in the ROPTIONS window

� the CENTER or NOCENTER option stored in the report definition loaded with
REPORT= in the PROC REPORT statement

� the SAS system option CENTER or NOCENTER.

When PROC REPORT’s CENTER option is in effect, PROC REPORT ignores
spacing that precedes the leftmost variable in the report.

HEADLINE
underlines all column headers and the spaces between them at the top of each page
of the report.

930 ROPTIONS � Chapter 42

HEADLINE underlines with the second formatting character. (See the discussion
of FORMCHAR= on page 874.)

Default: hyphen (-)
Tip: In traditional (monospace) SAS output, you can underline column headers

without underlining the spaces between them, by using ’--’ as the last line of
each column header instead of using HEADLINE.

HEADSKIP
writes a blank line beneath all column headers (or beneath the underlining that the
HEADLINE option writes) at the top of each page of the report.

NAMED
writes name= in front of each value in the report, where name is the column header
for the value.
Tip: Use NAMED in conjunction with WRAP to produce a report that wraps all

columns for a single row of the report onto consecutive lines rather than placing
columns of a wide report on separate pages.

Interaction: When you use NAMED, PROC REPORT automatically uses
NOHEADER.

NOHEADER
suppresses column headers, including those that span multiple columns.

Once you suppress the display of column headers in the windowing environment,
you cannot select any report items.

SHOWALL
overrides the parts of a definition that suppress the display of a column (NOPRINT
and NOZERO). You define a report item with a DEFINE statement or in the
DEFINITION window.

WRAP
displays one value from each column of the report, on consecutive lines if necessary,
before displaying another value from the first column. By default, PROC REPORT
displays values for only as many columns as it can fit on one page. It fills a page
with values for these columns before starting to display values for the remaining
columns on the next page.
Interaction: When WRAP is in effect, PROC REPORT ignores PAGE in any item

definitions.
Tip: Typically, you use WRAP in conjunction with NAMED to avoid wrapping

column headers.

BOX
uses formatting characters to add line-drawing characters to the report. These
characters

� surround each page of the report

� separate column headers from the body of the report
� separate rows and columns from each other.

Interaction: You cannot use BOX if you use WRAP in the PROC REPORT
statement or ROPTIONS window or if you use FLOW in any item’s definition.

See also: For information about formatting characters, see the discussion of
FORMCHAR= on page 874.

MISSING
considers missing values as valid values for group, order, or across variables. Special
missing values that are used to represent numeric values (the letters A through Z

The REPORT Procedure � ROPTIONS 931

and the underscore (_) character) are each considered as a different value. A group
for each missing value appears in the report. If you omit the MISSING option, then
PROC REPORT does not include observations with a missing value for one or more
group, order, or across variables in the report.

Attributes

Linesize
specifies the line size for a report. PROC REPORT honors the first of these line-size
specifications that it finds:

� LS= in the PROC REPORT statement or Linesize= in the ROPTIONS window

� the LS= setting stored in the report definition loaded with REPORT= in the
PROC REPORT statement

� the SAS system option LINESIZE=.

Range: 64-256 (integer)

Tip: If the line size is greater than the width of the REPORT window, then use SAS
windowing environment commands RIGHT and LEFT to display portions of the
report that are not currently in the display.

Pagesize
specifies the page size for a report. PROC REPORT honors the first of these page
size specifications that it finds:

� PS= in the PROC REPORT statement or Pagesize= in the ROPTIONS window

� the PS= setting stored in the report definition loaded with REPORT= in the
PROC REPORT statement

� the SAS system option PAGESIZE=.

Range: 15-32,767 (integer)

Colwidth
specifies the default number of characters for columns containing computed variables
or numeric data set variables.

Range: 1 to the linesize

Default: 9

Interaction: When setting the width for a column, PROC REPORT first looks at
WIDTH= in the definition for that column. If WIDTH= is not present, then PROC
REPORT uses a column width large enough to accommodate the format for the
item. (For information about formats, see the discussion of Format= on page 919.)
If no format is associated with the item, then the column width depends on
variable type:

If the variable is a… Then the column width is the…

character variable in the input data set length of the variable

numeric variable in the input data set value of the COLWIDTH= option

computed variable (numeric or character) value of the COLWIDTH= option

932 ROPTIONS � Chapter 42

SPACING=space-between-columns
specifies the number of blank characters between columns. For each column, the sum
of its width and the blank characters between it and the column to its left cannot
exceed the line size.

Default: 2

Interaction: PROC REPORT separates all columns in the report by the number of
blank characters specified by SPACING= in the PROC REPORT statement or the
ROPTIONS window unless you use SPACING= in the definition of a particular
item to change the spacing to the left of that item.

Interaction: When CENTER is in effect, PROC REPORT ignores spacing that
precedes the leftmost variable in the report.

SPLIT=’character’
specifies the split character. PROC REPORT breaks a column header when it
reaches that character and continues the header on the next line. The split character
itself is not part of the column header although each occurrence of the split character
counts toward the 40-character maximum for a label.

Default: slash (/)

Interaction: The FLOW option in the DEFINE statement honors the split character.

Note: If you are typing over a header (rather than entering one from the
PROMPTER or DEFINITION window), then you do not see the effect of the split
character until you refresh the screen by adding or deleting an item, by changing
the contents of a DEFINITION or a BREAK window, or by selecting

View � Refresh

PANELS=number-of-panels
specifies the number of panels on each page of the report. If the width of a report is
less than half of the line size, then you can display the data in multiple sets of
columns so that rows that would otherwise appear on multiple pages appear on the
same page. Each set of columns is a panel. A familiar example of this kind of report
is a telephone book, which contains multiple panels of names and telephone numbers
on a single page.

When PROC REPORT writes a multipanel report, it fills one panel before
beginning the next.

The number of panels that fits on a page depends on the

� width of the panel

� space between panels

� line size.

Default: 1

Tip: If number-of-panels is larger than the number of panels that can fit on the
page, then PROC REPORT creates as many panels as it can. Let PROC REPORT
put your data in the maximum number of panels that can fit on the page by
specifying a large number of panels (for example, 99).

See also: For information about specifying the space between panels see the
discussion of PSPACE= on page 932. For information about setting the linesize,
see the discussion of Linesize on page 931).

PSPACE=space-between-panels
specifies the number of blank characters between panels. PROC REPORT separates
all panels in the report by the same number of blank characters. For each panel, the

The REPORT Procedure � SAVE DEFINITION 933

sum of its width and the number of blank characters separating it from the panel to
its left cannot exceed the line size.
Default: 4

User Help
identifies the library and catalog containing user-defined help for the report. This
help can be in CBT or HELP catalog entries. You can write a CBT or HELP entry for
each item in the report with the BUILD procedure in SAS/AF software. You must
store all such entries for a report in the same catalog.

Specify the entry name for help for a particular report item in the DEFINITION
window for that report item or in a DEFINE statement.

SAVE DATA SET
Lets you specify an output data set in which to store the data from the current report.

Path

File � Save Data Set

Description
To specify an output data set, enter the name of the SAS data library and the name

of the data set (called member in the window) that you want to create in the Save Data
Set window.

Buttons

OK
Creates the output data set and closes the Save Data Set window.

Cancel
Closes the Save Data Set window without creating an output data set.

SAVE DEFINITION
Saves a report definition for subsequent use with the same data set or with a similar data set.

Path

File � Save Report

Description
The SAVE DEFINITION window prompts you for the complete name of the catalog

entry in which to store the definition of the current report and for an optional

934 SOURCE � Chapter 42

description of the report. This description shows up in the LOAD REPORT window and
helps you to select the appropriate report.

SAS stores the report definition as a catalog entry of type REPT. You can use a report
definition to create an identically structured report for any SAS data set that contains
variables with the same names as those used in the report definition.

Buttons

OK
Creates the report definition and closes the SAVE DEFINITION window.

Cancel
Closes the SAVE DEFINITION window without creating a report definition.

SOURCE

Lists the PROC REPORT statements that build the current report.

Path

Tools � Report Statements

STATISTICS

Displays statistics that are available in PROC REPORT.

Path

Edit � Add item � Statistic

After you select Statistic, PROC REPORT prompts you for the location of the
statistic relative to the column that you have selected. After you select a location, the
STATISTICS window opens.

Description
Select the statistics that you want to include in your report and close the window.

When you select the first statistic, it moves to the top of the list in the window. If you
select multiple statistics, then subsequent selections move to the bottom of the list of
selected statistics. An asterisk (*) indicates each selected statistic. The order of selected
statistics from top to bottom determines their order in the report from left to right.

Note: If you double-click on a statistic, then PROC REPORT immediately adds it to
the report. The STATISTICS window remains open. �

The REPORT Procedure � WHERE ALSO 935

To compute standard error and the Student’s t test you must use the default value of
VARDEF= which is DF.

To add all selected statistics to the report, select

File � Accept Selection

Selecting

File � Close

closes the STATISTICS window without adding the selected statistics to the report.

WHERE

Selects observations from the data set that meet the conditions that you specify.

Path

Subset � Where

Description
Enter a where-expression in the Enter where clause field. A where-expression is an

arithmetic or logical expression that generally consists of a sequence of operands and
operators. For information about constructing a where-expression, see the
documentation of the WHERE statement in the section on statements in SAS Language
Reference: Dictionary.

Note: You can clear all where-expressions by leaving the Enter where clause field
empty and by selecting OK . �

Buttons

OK
Applies the where-expression to the report and closes the WHERE window.

Cancel
Closes the WHERE window without altering the report.

WHERE ALSO

Selects observations from the data set that meet the conditions that you specify and any other
conditions that are already in effect.

936 How PROC REPORT Builds a Report � Chapter 42

Path

Subset � Where Also

Description
Enter a where-expression in the Enter where also clause field. A

where-expression is an arithmetic or logical expression that generally consists of a
sequence of operands and operators. For information about constructing a
where-expression, see the documentation of the WHERE statement in the chapter on
statements in SAS Language Reference: Dictionary.

Buttons

OK
Adds the where-expression to any other where-expressions that are already in effect
and applies them all to the report. It also closes the WHERE ALSO window.

Cancel
Closes the WHERE ALSO window without altering the report.

How PROC REPORT Builds a Report

Sequence of Events
This section explains the general process of building a report. For examples that

illustrate this process, see “Report-Building Examples” on page 937. The sequence of
events is the same whether you use programming statements or the windowing
environment.

To understand the process of building a report, you must understand the difference
between report variables and temporary variables. Report variables are variables that
are specified in the COLUMN statement. A report variable can come from the input
data set or can be computed (that is, the DEFINE statement for that variable specifies
the COMPUTED option). A report variable might or might not appear in a compute
block. Variables that appear only in one or more compute blocks are temporary
variables. Temporary variables do not appear in the report and are not written to the
output data set (if one is requested).

PROC REPORT constructs a report as follows:
1 It consolidates the data by group, order, and across variables. It calculates all

statistics for the report, those for detail rows as well as those for summary lines in
breaks. Statistics include those computed for analysis variables. PROC REPORT
calculates statistics for summary lines whether or not they appear in the report. It
stores all this information in a temporary file.

2 It initializes all temporary variables to missing.
3 It begins constructing the rows of the report.

a At the beginning of each row, it initializes all report variables to missing.

The REPORT Procedure � Report-Building Examples 937

b It fills in values for report variables from left to right.
� Values for computed variables come from executing the statements in

the corresponding compute blocks.
� Values for all other variables come from the temporary file that was

created at the beginning of the report-building process.

c Whenever it comes to a break, PROC REPORT first constructs the break
lines that are created with the BREAK or RBREAK statement or with
options in the BREAK window. If there is a compute block attached to the
break, then PROC REPORT then executes the statements in the compute
block. See “Construction of Summary Lines” on page 937 for details.

Note: Because of the way PROC REPORT builds a report, you can
� use group statistics in compute blocks for a break before the group variable.
� use statistics for the whole report in a compute block at the beginning of the

report.

This document references these statistics with the appropriate compound name.
For information about referencing report items in a compute block, see “Four Ways
to Reference Report Items in a Compute Block” on page 859. �

Construction of Summary Lines
PROC REPORT constructs a summary line for a break if either of the following

conditions is true:
� You summarize numeric variables in the break.
� You use a compute block at the break. (You can attach a compute block to a break

without using a BREAK or RBREAK statement or without selecting any options in
the BREAK window.)

For more information about using compute blocks, see “Using Compute Blocks”
on page 858 and “COMPUTE Statement” on page 895.

The summary line that PROC REPORT constructs at this point is preliminary. If no
compute block is attached to the break, then the preliminary summary line becomes the
final summary line. However, if a compute block is attached to the break, then the
statements in the compute block can alter the values in the preliminary summary line.

PROC REPORT prints the summary line only if you summarize numeric variables in
the break.

Report-Building Examples

Building a Report That Uses Groups and a Report Summary
The report in Output 42.2 contains five columns:
� Sector and Department are group variables.
� Sales is an analysis variable that is used to calculate the Sum statistic.
� Profit is a computed variable whose value is based on the value of Department.
� The N statistic indicates how many observations each row represents.

At the end of the report a break summarizes the statistics and computed variables in
the report and assigns to Sector the value of TOTALS:.

The following statements produce Output 42.2. The user-defined formats that are
used are created by a PROC FORMAT step on page 949.

938 Report-Building Examples � Chapter 42

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=64
pagesize=60 fmtsearch=(proclib);

proc report data=grocery headline headskip;
column sector department sales Profit N;
define sector / group format=$sctrfmt.;
define department / group format=$deptfmt.;
define sales / analysis sum

format=dollar9.2;
define profit / computed format=dollar9.2;

compute profit;
if department=’np1’ or department=’np2’

then profit=0.4*sales.sum;
else profit=0.25*sales.sum;

endcomp;

rbreak after / dol dul summarize;
compute after;

sector=’TOTALS:’;
endcomp;

where sector contains ’n’;
title ’Report for Northeast and Northwest Sectors’;

run;

Output 42.2 Report with Groups and a Report Summary

Report for Northeast and Northwest Sectors 1

Sector Department Sales Profit N
--

Northeast Canned $840.00 $336.00 2
Meat/Dairy $490.00 $122.50 2
Paper $290.00 $116.00 2
Produce $211.00 $52.75 2

Northwest Canned $1,070.00 $428.00 3
Meat/Dairy $1,055.00 $263.75 3
Paper $150.00 $60.00 3
Produce $179.00 $44.75 3

========= ========= ========= =========
TOTALS: $4,285.00 $1,071.25 20
========= ========= ========= =========

A description of how PROC REPORT builds this report follows:

1 PROC REPORT starts building the report by consolidating the data (Sector and
Department are group variables) and by calculating the statistics (Sales.sum and
N) for each detail row and for the break at the end of the report. It stores these
values in a temporary file.

2 Now, PROC REPORT is ready to start building the first row of the report. This
report does not contain a break at the beginning of the report or a break before

The REPORT Procedure � Report-Building Examples 939

any groups, so the first row of the report is a detail row. The procedure initializes
all report variables to missing, as Figure 42.9 on page 939 illustrates. Missing
values for a character variable are represented by a blank, and missing values for
a numeric variable are represented by a period.

Figure 42.9 First Detail Row with Values Initialized

Sector Department Sales Profit N

. . .

3 Figure 42.10 on page 939 illustrates the construction of the first three columns of
the row. PROC REPORT fills in values for the row from left to right. Values come
from the temporary file that is created at the beginning of the report-building
process.

Figure 42.10 First Detail Row with Values Filled in from Left to Right

Sector Department Sales Profit N

Northeast . . .

Sector Department Sales Profit N

Northeast Canned . . .

Sector Department Sales Profit N

Northeast Canned $840.00 . .

4 The next column in the report contains the computed variable Profit. When it gets
to this column, PROC REPORT executes the statements in the compute block that
is attached to Profit. Nonperishable items (which have a value of np1 or np2)
return a profit of 40%; perishable items (which have a value of p1 or p2) return a
profit of 25%.

if department=’np1’ or department=’np2’
then profit=0.4*sales.sum;

else profit=0.25*sales.sum;

The row now looks like Figure 42.11 on page 940.

Note: The position of a computed variable is important. PROC REPORT
assigns values to the columns in a row of a report from left to right. Consequently,

940 Report-Building Examples � Chapter 42

you cannot base the calculation of a computed variable on any variable that
appears to its right in the report. �

Figure 42.11 A Computed Variable Added to the First Detail Row

Sector Department Sales Profit N

Northeast Canned $840.00 $336.00 .

5 Next, PROC REPORT fills in the value for the N statistic. The value comes from
the temporary file created at the beginning of the report-building process. Figure
42.12 on page 940 illustrates the completed row.

Figure 42.12 First Complete Detail Row

Sector Department Sales Profit N

Northeast Canned $840.00 $336.00 2

6 The procedure writes the completed row to the report.
7 PROC REPORT repeats steps 2, 3, 4, 5, and 6 for each detail row in the report.
8 At the break at the end of the report, PROC REPORT constructs the break lines

described by the RBREAK statement. These lines include double underlining,
double overlining, and a preliminary version of the summary line. The statistics
for the summary line were calculated earlier (see step 1). The value for the
computed variable is calculated when PROC REPORT reaches the appropriate
column, just as it is in detail rows. PROC REPORT uses these values to create the
preliminary version of the summary line (see Figure 42.13 on page 940).

Figure 42.13 Preliminary Summary Line

Sector Department Sales Profit N

$4,285.00 $1,071.25 20

9 If no compute block is attached to the break, then the preliminary version of the
summary line is the same as the final version. However, in this example, a
compute block is attached to the break. Therefore, PROC REPORT now executes
the statements in that compute block. In this case, the compute block contains one
statement:

The REPORT Procedure � Report-Building Examples 941

sector=’TOTALS:’;

This statement replaces the value of Sector, which in the summary line is
missing by default, with the word TOTALS:. After PROC REPORT executes the
statement, it modifies the summary line to reflect this change to the value of
Sector. The final version of the summary line appears in Figure 42.14 on page 941.

Figure 42.14 Final Summary Line

Sector Department Sales Profit N

TOTALS: $4,285.00 $1,071.25 20

10 Finally, PROC REPORT writes all the break lines, with underlining, overlining,
and the final summary line, to the report.

Building a Report That Uses Temporary Variables
PROC REPORT initializes report variables to missing at the beginning of each row of

the report. The value for a temporary variable is initialized to missing before PROC
REPORT begins to construct the rows of the report, and it remains missing until you
specifically assign a value to it. PROC REPORT retains the value of a temporary
variable from the execution of one compute block to another.

Because all compute blocks share the current values of all variables, you can
initialize temporary variables at a break at the beginning of the report or at a break
before a break variable. This report initializes the temporary variable Sctrtot at a
break before Sector.

Note: PROC REPORT creates a preliminary summary line for a break before it
executes the corresponding compute block. If the summary line contains computed
variables, then the computations are based on the values of the contributing variables
in the preliminary summary line. If you want to recalculate computed variables based
on values that you set in the compute block, then you must do so explicitly in the
compute block. This report illustrates this technique.

If no compute block is attached to a break, then the preliminary summary line
becomes the final summary line. �

The report in Output 42.3 contains five columns:

� Sector and Department are group variables.
� Sales is an analysis variable that is used twice in this report: once to calculate the

Sum statistic, and once to calculate the Pctsum statistic.

� Sctrpct is a computed variable whose values are based on the values of Sales and a
temporary variable, Sctrtot, which is the total sales for a sector.

At the beginning of the report, a customized report summary tells what the sales for
all stores are. At a break before each group of observations for a department, a default
summary summarizes the data for that sector. At the end of each group a break inserts
a blank line.

The following statements produce Output 42.3. The user-defined formats that are
used are created by a PROC FORMAT step on page 949.

942 Report-Building Examples � Chapter 42

Note: Calculations of the percentages do not multiply their results by 100 because
PROC REPORT prints them with the PERCENT. format. �

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=64
pagesize=60 fmtsearch=(proclib);

proc report data=grocery noheader nowindows;
column sector department sales

Sctrpct sales=Salespct;

define sector / ’Sector’ group
format=$sctrfmt.;

define department / group format=$deptfmt.;
define sales / analysis sum

format=dollar9.2 ;
define sctrpct / computed

format=percent9.2 ;
define salespct / pctsum format=percent9.2;

compute before;
line ’ ’;
line @16 ’Total for all stores is ’

sales.sum dollar9.2;
line ’ ’;
line @29 ’Sum of’ @40 ’Percent’

@51 ’Percent of’;
line @6 ’Sector’ @17 ’Department’

@29 ’Sales’
@40 ’of Sector’ @51 ’All Stores’;

line @6 55*’=’;
line ’ ’;

endcomp;

break before sector / summarize ul;
compute before sector;

sctrtot=sales.sum;
sctrpct=sales.sum/sctrtot;

endcomp;

compute sctrpct;
sctrpct=sales.sum/sctrtot;

endcomp;

break after sector/skip;
where sector contains ’n’;
title ’Report for Northeast and Northwest Sectors’;

run;

The REPORT Procedure � Report-Building Examples 943

Output 42.3 Report with Temporary Variables

Report for Northeast and Northwest Sectors 1

Total for all stores is $4,285.00

Sum of Percent Percent of
Sector Department Sales of Sector All Stores
===

Northeast $1,831.00 100.00% 42.73%
--------- --------- --------- ---------
Northeast Canned $840.00 45.88% 19.60%

Meat/Dairy $490.00 26.76% 11.44%
Paper $290.00 15.84% 6.77%
Produce $211.00 11.52% 4.92%

Northwest $2,454.00 100.00% 57.27%
--------- --------- --------- ---------
Northwest Canned $1,070.00 43.60% 24.97%

Meat/Dairy $1,055.00 42.99% 24.62%
Paper $150.00 6.11% 3.50%
Produce $179.00 7.29% 4.18%

A description of how PROC REPORT builds this report follows:

1 PROC REPORT starts building the report by consolidating the data (Sector and
Department are group variables) and by calculating the statistics (Sales.sum and
Sales.pctsum) for each detail row, for the break at the beginning of the report, for
the breaks before each group, and for the breaks after each group. It stores these
values in a temporary file.

2 PROC REPORT initializes the temporary variable, Sctrtot, to missing (see Figure
42.15 on page 943).

Figure 42.15 Initialized Temporary Variables

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

. . . .

Report Variables Temporary
Variable

3 Because this PROC REPORT step contains a COMPUTE BEFORE statement, the
procedure constructs a preliminary summary line for the break at the beginning of
the report. This preliminary summary line contains values for the statistics
(Sales.sum and Sales.pctsum) and the computed variable (Sctrpct).

At this break, Sales.sum is the sales for all stores, and Sales.pctsum is the
percentage those sales represent for all stores (100%). PROC REPORT takes the
values for these statistics from the temporary file that it created at the beginning
of the report-building process.

The value for Sctrpct comes from executing the statements in the corresponding
compute block. Because the value of Sctrtot is missing, PROC REPORT cannot
calculate a value for Sctrpct. Therefore, in the preliminary summary line (which is

944 Report-Building Examples � Chapter 42

not printed in this case), this variable also has a missing value (see Figure 42.16
on page 944).

The statements in the COMPUTE BEFORE block do not alter any variables.
Therefore, the final summary line is the same as the preliminary summary line.

Note: The COMPUTE BEFORE statement creates a break at the beginning of
the report. You do not need to use an RBREAK statement. �

Figure 42.16 Preliminary and Final Summary Line for the Break at the Beginning
of the Report

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

$4,285.00 . 100.00% .

Report Variables Temporary
Variable

4 Because the program does not include an RBREAK statement with the
SUMMARIZE option, PROC REPORT does not write the final summary line to the
report. Instead, it uses LINE statements to write a customized summary that
embeds the value of Sales.sum into a sentence and to write customized column
headers. (The NOHEADER option in the PROC REPORT statement suppresses
the default column headers, which would have appeared before the customized
summary.)

5 Next, PROC REPORT constructs a preliminary summary line for the break before
the first group of observations. (This break both uses the SUMMARIZE option in
the BREAK statement and has a compute block attached to it. Either of these
conditions generates a summary line.) The preliminary summary line contains
values for the break variable (Sector), the statistics (Sales.sum and Sales.pctsum),
and the computed variable (Sctrpct). At this break, Sales.sum is the sales for one
sector (the northeast sector). PROC REPORT takes the values for Sector,
Sales.sum, and Sales.pctsum from the temporary file that it created at the
beginning of the report-building process.

The value for Sctrpct comes from executing the statements in the corresponding
compute blocks. Because the value of Sctrtot is still missing, PROC REPORT
cannot calculate a value for Sctrpct. Therefore, in the preliminary summary line,
Sctrpct has a missing value (see Figure 42.17 on page 944).

Figure 42.17 Preliminary Summary Line for the Break before the First Group of
Observations

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

Northeast $1,831.00 . 42.73% .

Report Variables Temporary
Variable

6 PROC REPORT creates the final version of the summary line by executing the
statements in the COMPUTE BEFORE SECTOR compute block. These
statements execute once each time the value of Sector changes.

� The first statement assigns the value of Sales.sum, which in that part of the
report represents total sales for one Sector, to the variable Sctrtot.

The REPORT Procedure � Report-Building Examples 945

� The second statement completes the summary line by recalculating Sctrpct
from the new value of Sctrtot. Figure 42.18 on page 945 shows the final
summary line.

Note: In this example, you must recalculate the value for Sctrpct in the final
summary line. If you do not recalculate the value for Sctrpct, then it will be
missing because the value of Sctrtot is missing at the time that the COMPUTE
Sctrpct block executes. �

Figure 42.18 Final Summary Line for the Break before the First Group of
Observations

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

Northeast $1,831.00 100.00% 42.73% $1,831.00

Report Variables Temporary
Variable

7 Because the program contains a BREAK BEFORE statement with the
SUMMARIZE option, PROC REPORT writes the final summary line to the report.
The UL option in the BREAK statement underlines the summary line.

8 Now, PROC REPORT is ready to start building the first detail row of the report. It
initializes all report variables to missing. Values for temporary variables do not
change. Figure 42.19 on page 945 illustrates the first detail row at this point.

Figure 42.19 First Detail Row with Initialized Values

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

. . . $1,831.00

Report Variables Temporary
Variable

9 Figure 42.20 on page 945 illustrates the construction of the first three columns of
the row. PROC REPORT fills in values for the row from left to right. The values
come from the temporary file that it created at the beginning of the report-building
process.

Figure 42.20 Filling in Values from Left to Right

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

Northeast . . . $1,831.00

Report Variables

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

Northeast Canned . . . $1,831.00

Report Variables

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

Northeast Canned $840.00 . . $1,831.00

Report Variables

Temporary
Variable

Temporary
Variable

Temporary
Variable

946 Report-Building Examples � Chapter 42

10 The next column in the report contains the computed variable Sctrpct. When it
gets to this column, PROC REPORT executes the statement in the compute block
attached to Sctrpct. This statement calculates the percentage of the sector’s total
sales that this department accounts for:

sctrpct=sales.sum/sctrtot;

The row now looks like Figure 42.21 on page 946.

Figure 42.21 First Detail Row with the First Computed Variable Added

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

Northeast Canned $840.00 45.88% . $1,831.00

Report Variables Temporary
Variable

11 The next column in the report contains the statistic Sales.pctsum. PROC REPORT
gets this value from the temporary file. The first detail row is now complete (see
Figure 42.22 on page 946).

Figure 42.22 First Complete Detail Row

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

Northeast Canned $840.00 45.88% 19.60% $1,831.00

Report Variables Temporary
Variable

12 PROC REPORT writes the detail row to the report. It repeats steps 8, 9, 10, 11,
and 12 for each detail row in the group.

13 After writing the last detail row in the group to the report, PROC REPORT
constructs the default group summary. Because no compute block is attached to
this break and because the BREAK AFTER statement does not include the
SUMMARIZE option, PROC REPORT does not construct a summary line. The
only action at this break is that the SKIP option in the BREAK AFTER statement
writes a blank line after the last detail row of the group.

14 Now the value of the break variable changes from Northeast to Northwest.
PROC REPORT constructs a preliminary summary line for the break before this
group of observations. As at the beginning of any row, PROC REPORT initializes
all report variables to missing but retains the value of the temporary variable.
Next, it completes the preliminary summary line with the appropriate values for
the break variable (Sector), the statistics (Sales.sum and Sales.pctsum), and the
computed variable (Sctrpct). At this break, Sales.sum is the sales for the
Northwest sector. Because the COMPUTE BEFORE Sector block has not yet
executed, the value of Sctrtot is still $1,831.00, the value for the Northeast sector.
Thus, the value that PROC REPORT calculates for Sctrpct in this preliminary
summary line is incorrect (see Figure 42.23 on page 947). The statements in the
compute block for this break calculate the correct value (see the following step).

The REPORT Procedure � Report-Building Examples 947

Figure 42.23 Preliminary Summary Line for the Break before the Second Group of
Observations

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

Northwest $2,454.00 134.00% 57.27% $1,831.00

Report Variables Temporary
Variable

CAUTION:
Synchronize values for computed variables in break lines to prevent incorrect results.
If the PROC REPORT step does not recalculate Sctrpct in the compute block
that is attached to the break, then the value in the final summary line will not
be synchronized with the other values in the summary line, and the report will
be incorrect. �

15 PROC REPORT creates the final version of the summary line by executing the
statements in the COMPUTE BEFORE Sector compute block. These statements
execute once each time the value of Sector changes.

� The first statement assigns the value of Sales.sum, which in that part of the
report represents sales for the Northwest sector, to the variable Sctrtot.

� The second statement completes the summary line by recalculating Sctrpct
from the new, appropriate value of Sctrtot. Figure 42.24 on page 947 shows
the final summary line.

Figure 42.24 Final Summary Line for the Break before the Second Group of
Observations

Sector Department Sales.sum Sctrpct Sales.pctsum Sctrtot

Northwest $2,454.00 100.00% 57.27% $2,454.00

Report Variables Temporary
Variable

Because the program contains a BREAK BEFORE statement with the
SUMMARIZE option, PROC REPORT writes the final summary line to the report.
The UL option in the BREAK statement underlines the summary line.

16 Now, PROC REPORT is ready to start building the first row for this group of
observations. It repeats steps 8 through 16 until it has processed all observations
in the input data set (stopping with step 14 for the last group of observations).

948 Examples: REPORT Procedure � Chapter 42

Examples: REPORT Procedure

Example 1: Selecting Variables for a Report

Procedure features:
PROC REPORT statement options:

NOWD

COLUMN statement

default variable usage

RBREAK statement options:

DOL
SUMMARIZE

Other features:
FORMAT statement

FORMAT procedure:

LIBRARY=

SAS system options:

FMTSEARCH=

Automatic macro variables:

SYSDATE

This example uses a permanent data set and permanent formats to create a report
that contains

� one row for every observation

� a default summary for the whole report.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=64 pagesize=60;

The REPORT Procedure � Program 949

Create the GROCERY data set. GROCERY contains one day’s sales figures for eight stores in
the Grocery Mart chain. Each observation contains one day’s sales data for one department in
one store.

data grocery;
input Sector $ Manager $ Department $ Sales @@;
datalines;

se 1 np1 50 se 1 p1 100 se 1 np2 120 se 1 p2 80
se 2 np1 40 se 2 p1 300 se 2 np2 220 se 2 p2 70
nw 3 np1 60 nw 3 p1 600 nw 3 np2 420 nw 3 p2 30
nw 4 np1 45 nw 4 p1 250 nw 4 np2 230 nw 4 p2 73
nw 9 np1 45 nw 9 p1 205 nw 9 np2 420 nw 9 p2 76
sw 5 np1 53 sw 5 p1 130 sw 5 np2 120 sw 5 p2 50
sw 6 np1 40 sw 6 p1 350 sw 6 np2 225 sw 6 p2 80
ne 7 np1 90 ne 7 p1 190 ne 7 np2 420 ne 7 p2 86
ne 8 np1 200 ne 8 p1 300 ne 8 np2 420 ne 8 p2 125
;

Create the $SCTRFMT., $MGRFMT., and $DEPTFMT. formats. PROC FORMAT creates
permanent formats for Sector, Manager, and Department. The LIBRARY= option specifies a
permanent storage location so that the formats are available in subsequent SAS sessions. These
formats are used for examples throughout this section.

proc format library=proclib;
value $sctrfmt ’se’ = ’Southeast’

’ne’ = ’Northeast’
’nw’ = ’Northwest’
’sw’ = ’Southwest’;

value $mgrfmt ’1’ = ’Smith’ ’2’ = ’Jones’
’3’ = ’Reveiz’ ’4’ = ’Brown’
’5’ = ’Taylor’ ’6’ = ’Adams’
’7’ = ’Alomar’ ’8’ = ’Andrews’
’9’ = ’Pelfrey’;

value $deptfmt ’np1’ = ’Paper’
’np2’ = ’Canned’
’p1’ = ’Meat/Dairy’
’p2’ = ’Produce’;

run;

Specify the format search library. The SAS system option FMTSEARCH= adds the SAS
data library PROCLIB to the search path that is used to locate formats.

options fmtsearch=(proclib);

Specify the report options. The NOWD option runs the REPORT procedure without the
REPORT window and sends its output to the open output destination(s).

proc report data=grocery nowd;

950 Output � Chapter 42

Specify the report columns. The report contains a column for Manager, Department, and
Sales. Because there is no DEFINE statement for any of these variables, PROC REPORT uses
the character variables (Manager and Department) as display variables and the numeric
variable (Sales) as an analysis variable that is used to calculate the sum statistic.

column manager department sales;

Produce a report summary. The RBREAK statement produces a default summary at the end
of the report. DOL writes a line of equal signs (=) above the summary information.
SUMMARIZE sums the value of Sales for all observations in the report.

rbreak after / dol summarize;

Select the observations to process. The WHERE statement selects for the report only the
observations for stores in the southeast sector.

where sector=’se’;

Format the report columns. The FORMAT statement assigns formats to use in the report.
You can use the FORMAT statement only with data set variables.

format manager $mgrfmt. department $deptfmt.
sales dollar11.2;

Specify the titles. SYSDATE is an automatic macro variable that returns the date when the
SAS job or SAS session began. The TITLE2 statement uses double rather than single quotation
marks so that the macro variable resolves.

title ’Sales for the Southeast Sector’;
title2 "for &sysdate";

run;

Output

Sales for the Southeast Sector 1
for 04JAN02

Manager Department Sales
Smith Paper $50.00
Smith Meat/Dairy $100.00
Smith Canned $120.00
Smith Produce $80.00
Jones Paper $40.00
Jones Meat/Dairy $300.00
Jones Canned $220.00
Jones Produce $70.00

===========
$980.00

The REPORT Procedure � Program 951

Example 2: Ordering the Rows in a Report

Procedure features:
PROC REPORT statement options:

COLWIDTH=
HEADLINE
HEADSKIP
SPACING=

BREAK statement options:

OL
SKIP
SUMMARIZE

COMPUTE statement arguments:
AFTER

DEFINE statement options:
ANALYSIS
FORMAT=
ORDER
ORDER=
SUM

ENDCOMP statement
LINE statement:

with quoted text
with variable values

Data set: GROCERY on page 949

Formats: $MGRFMT. and $DEPTFMT. on page 949

This example

� arranges the rows alphabetically by the formatted values of Manager and the
internal values of Department (so that sales for the two departments that sell
nonperishable goods precede sales for the two departments that sell perishable
goods)

� controls the default column width and the spacing between columns

� underlines the column headers and writes a blank line beneath the underlining

� creates a default summary of Sales for each manager

� creates a customized summary of Sales for the whole report.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

952 Program � Chapter 42

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=64 pagesize=60
fmtsearch=(proclib);

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). COLWIDTH=10 sets the default
column width to 10 characters. SPACING= puts five blank characters between columns.
HEADLINE underlines all column headers and the spaces between them at the top of each page
of the report. HEADSKIP writes a blank line beneath the underlining that HEADLINE writes.

proc report data=grocery nowd
colwidth=10
spacing=5
headline headskip;

Specify the report columns. The report contains a column for Manager, Department, and
Sales.

column manager department sales;

Define the sort order variables. The values of all variables with the ORDER option in the
DEFINE statement determine the order of the rows in the report. In this report, PROC
REPORT arranges the rows first by the value of Manager (because it is the first variable in the
COLUMN statement) and then by the values of Department.

ORDER= specifies the sort order for a variable. This report arranges the rows according to the
formatted values of Manager and the internal values of Department (np1, np2, p1, and p2).
FORMAT= specifies the formats to use in the report.

define manager / order order=formatted format=$mgrfmt.;
define department / order order=internal format=$deptfmt.;

Define the analysis variable. Sum calculates the sum statistic for all observations that are
represented by the current row. In this report each row represents only one observation.
Therefore, the Sum statistic is the same as the value of Sales for that observation in the input
data set. Using Sales as an analysis variable in this report enables you to summarize the values
for each group and at the end of the report.

define sales / analysis sum format=dollar7.2;

Produce a report summary. This BREAK statement produces a default summary after the
last row for each manager. OL writes a row of hyphens above the summary line. SUMMARIZE
writes the value of Sales (the only analysis or computed variable) in the summary line. PROC
REPORT sums the values of Sales for each manager because Sales is an analysis variable that
is used to calculate the Sum statistic. SKIP writes a blank line after the summary line.

The REPORT Procedure � Output 953

break after manager / ol
summarize
skip;

Produce a customized summary. This COMPUTE statement begins a compute block that
produces a customized summary at the end of the report. The LINE statement places the quoted
text and the value of Sales.sum (with the DOLLAR9.2 format) in the summary. An ENDCOMP
statement must end the compute block.

compute after;
line ’Total sales for these stores were: ’

sales.sum dollar9.2;
endcomp;

Select the observations to process. The WHERE statement selects for the report only the
observations for stores in the southeast sector.

where sector=’se’;

Specify the title.

title ’Sales for the Southeast Sector’;
run;

Output

Sales for the Southeast Sector 1

Manager Department Sales

Jones Paper $40.00
Canned $220.00
Meat/Dairy $300.00
Produce $70.00

------- -------
Jones $630.00

Smith Paper $50.00
Canned $120.00
Meat/Dairy $100.00
Produce $80.00

------- -------
Smith $350.00

Total sales for these stores were: $980.00

954 Example 3: Using Aliases to Obtain Multiple Statistics for the Same Variable � Chapter 42

Example 3: Using Aliases to Obtain Multiple Statistics for the Same Variable

Procedure features:
COLUMN statement:

with aliases
COMPUTE statement arguments:

AFTER
DEFINE statement options:

ANALYSIS
MAX
MIN
NOPRINT
customizing column headers

LINE statement:
pointer controls
quoted text
repeating a character string
variable values and formats
writing a blank line

Other features:
automatic macro variables:

SYSDATE

Data set: GROCERY on page 949
Formats: $MGRFMT. and $DEPTFMT. on page 949

The customized summary at the end of this report displays the minimum and
maximum values of Sales over all departments for stores in the southeast sector. To
determine these values, PROC REPORT needs the MIN and MAX statistic for Sales in
every row of the report. However, to keep the report simple, the display of these
statistics is suppressed.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=64 pagesize=60
fmtsearch=(proclib);

The REPORT Procedure � Program 955

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). HEADLINE underlines all
column headers and the spaces between them at the top of each page of the report. HEADSKIP
writes a blank line beneath the underlining that HEADLINE writes.

proc report data=grocery nowd headline headskip;

Specify the report columns. The report contains columns for Manager and Department. It
also contains three columns for Sales. The column specifications SALES=SALESMIN and
SALES=SALESMAX create aliases for Sales. These aliases enable you to use a separate
definition of Sales for each of the three columns.

column manager department sales
sales=salesmin
sales=salesmax;

Define the sort order variables. The values of all variables with the ORDER option in the
DEFINE statement determine the order of the rows in the report. In this report, PROC REPORT
arranges the rows first by the value of Manager (because it is the first variable in the COLUMN
statement) and then by the values of Department. The ORDER= option specifies the sort order
for a variable. This report arranges the values of Manager by their formatted values and
arranges the values of Department by their internal values (np1, np2, p1, and p2). FORMAT=
specifies the formats to use in the report. Text in quotation marks specifies column headings.

define manager / order
order=formatted
format=$mgrfmt.
’Manager’;

define department / order
order=internal
format=$deptfmt.
’Department’;

Define the analysis variable. The value of an analysis variable in any row of a report is the
value of the statistic that is associated with it (in this case Sum), calculated for all observations
that are represented by that row. In a detail report each row represents only one observation.
Therefore, the Sum statistic is the same as the value of Sales for that observation in the input
data set.

define sales / analysis sum format=dollar7.2 ’Sales’;

Define additional analysis variables for use in the summary. These DEFINE statements
use aliases from the COLUMN statement to create separate columns for the MIN and MAX
statistics for the analysis variable Sales. NOPRINT suppresses the printing of these statistics.
Although PROC REPORT does not print these values in columns, it has access to them so that
it can print them in the summary.

define salesmin / analysis min noprint;
define salesmax / analysis max noprint;

956 Program � Chapter 42

Print a horizontal line at the end of the report. This COMPUTE statement begins a
compute block that executes at the end of the report. The first LINE statement writes a blank
line. The second LINE statement writes 53 hyphens (-), beginning in column 7. Note that the
pointer control (@) has no effect on ODS destinations other than traditional SAS monospace
output.

compute after;
line ’ ’;
line @7 53*’-’;

Produce a customized summary. The first line of this LINE statement writes the text in
quotation marks, beginning in column 7. The second line writes the value of Salesmin with the
DOLLAR7.2 format, beginning in the next column. The cursor then moves one column to the
right (+1), where PROC REPORT writes the text in quotation marks. Again, the cursor moves
one column to the right, and PROC REPORT writes the value of Salesmax with the DOLLAR7.2
format. (Note that the program must reference the variables by their aliases.) The third line
writes the text in quotation marks, beginning in the next column. Note that the pointer control
(@) is designed for the Listing destination (traditional SAS output). It has no effect on ODS
destinations other than traditional SAS monospace output. The ENDCOMP statement ends the
compute block.

line @7 ’| Departmental sales ranged from’
salesmin dollar7.2 +1 ’to’ +1 salesmax dollar7.2
’. |’;

line @7 53*’-’;
endcomp;

Select the observations to process. The WHERE statement selects for the report only the
observations for stores in the southeast sector.

where sector=’se’;

Specify the titles. SYSDATE is an automatic macro variable that returns the date when the
SAS job or SAS session began. The TITLE2 statement uses double rather than single quotation
marks so that the macro variable resolves.

title ’Sales for the Southeast Sector’;
title2 "for &sysdate";

run;

The REPORT Procedure � Example 4: Consolidating Multiple Observations into One Row of a Report 957

Output

Sales for the Southeast Sector 1
for 04JAN02

Manager Department Sales

Jones Paper $40.00
Canned $220.00
Meat/Dairy $300.00
Produce $70.00

Smith Paper $50.00
Canned $120.00
Meat/Dairy $100.00
Produce $80.00

| Departmental sales ranged from $40.00 to $300.00. |

Example 4: Consolidating Multiple Observations into One Row of a Report
Procedure features:

BREAK statement options:
OL
SKIP
SUMMARIZE
SUPPRESS

CALL DEFINE statement
Compute block

associated with a data set variable
COMPUTE statement arguments:

AFTER
a data set variable as report-item

DEFINE statement options:
ANALYSIS
GROUP
SUM
customizing column headers

LINE statement:
quoted text
variable values

Data set: GROCERY on page 949
Formats: $MGRFMT. and $DEPTFMT. on page 949

This example creates a summary report that
� consolidates information for each combination of Sector and Manager into one row

of the report

958 Program � Chapter 42

� contains default summaries of sales for each sector
� contains a customized summary of sales for all sectors

� uses one format for sales in detail rows and a different format in summary rows

� uses customized column headers.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=64 pagesize=60
fmtsearch=(proclib);

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). HEADLINE underlines all
column headings and the spaces between them at the top of each page of the report. HEADSKIP
writes a blank line beneath the underlining that HEADLINE writes.

proc report data=grocery nowd headline headskip;

Specify the report columns. The report contains columns for Sector, Manager, and Sales.

column sector manager sales;

Define the group and analysis variables. In this report, Sector and Manager are group
variables. Sales is an analysis variable that is used to calculate the Sum statistic. Each detail
row represents a set of observations that have a unique combination of formatted values for all
group variables. The value of Sales in each detail row is the sum of Sales for all observations in
the group. FORMAT= specifies the format to use in the report. Text in quotation marks in a
DEFINE statement specifies the column heading.

define sector / group
format=$sctrfmt.
’Sector’;

define manager / group
format=$mgrfmt.
’Manager’;

define sales / analysis sum
format=comma10.2
’Sales’;

The REPORT Procedure � Program 959

Produce a report summary. This BREAK statement produces a default summary after the
last row for each sector. OL writes a row of hyphens above the summary line. SUMMARIZE
writes the value of Sales in the summary line. PROC REPORT sums the values of Sales for
each manager because Sales is an analysis variable used to calculate the Sum statistic.
SUPPRESS prevents PROC REPORT from displaying the value of Sector in the summary line.
SKIP writes a blank line after the summary line.

break after sector / ol
summarize
suppress
skip;

Produce a customized summary. This compute block creates a customized summary at the
end of the report. The LINE statement writes the quoted text and the value of Sales.sum (with a
format of DOLLAR9.2) in the summary. An ENDCOMP statement must end the compute block.

compute after;
line ’Combined sales for the northern sectors were ’

sales.sum dollar9.2 ’.’;
endcomp;

Specify a format for the summary rows. In detail rows, PROC REPORT displays the value
of Sales with the format that is specified in its definition (COMMA10.2). The compute block
specifies an alternate format to use in the current column on summary rows. Summary rows are
identified as a value other than a blank for _BREAK_.

compute sales;
if _break_ ne ’ ’ then
call define(_col_,"format","dollar11.2");

endcomp;

Select the observations to process. The WHERE statement selects for the report only the
observations for stores in the northeast and northwest sectors. The TITLE statement specifies
the title.

where sector contains ’n’;

Specify the title.

title ’Sales Figures for Northern Sectors’;
run;

960 Output � Chapter 42

Output

Sales Figures for Northern Sectors 1

Sector Manager Sales

Northeast Alomar 786.00
Andrews 1,045.00

$1,831.00

Northwest Brown 598.00
Pelfrey 746.00
Reveiz 1,110.00

$2,454.00

Combined sales for the northern sectors were $4,285.00.

Example 5: Creating a Column for Each Value of a Variable
Procedure features:

PROC REPORT statement options:
SPLIT=

BREAK statement options:
SKIP

COLUMN statement:
stacking variables

COMPUTE statement arguments:
with a computed variable as report-item
AFTER

DEFINE statement options:
ACROSS
ANALYSIS
COMPUTED
SUM

LINE statement:
pointer controls

Data set: GROCERY on page 949
Formats: $SCTRFMT., $MGRFMT., and $DEPTFMT. on page 949

The report in this example
� consolidates multiple observations into one row
� contains a column for each value of Department that is selected for the report (the

departments that sell perishable items)
� contains a variable that is not in the input data set
� uses customized column headers, some of which contain blank lines

The REPORT Procedure � Program 961

� double-spaces between detail rows
� uses pointer controls to control the placement of text and variable values in a

customized summary.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=64 pagesize=60
fmtsearch=(proclib);

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). HEADLINE underlines the
column headings. HEADSKIP writes a blank line beneath the underlining that HEADLINE
writes. SPLIT= defines the split character as an asterisk (*) because the default split character
(/) is part of the name of a department.

proc report data=grocery nowd
headline
headskip
split=’*’;

Specify the report columns. Department and Sales are separated by a comma in the
COLUMN statement, so they collectively determine the contents of the column that they define.
Each item generates a header, but the header for Sales is set to blank in its definition. Because
Sales is an analysis variable, its values fill the cells that are created by these two variables.

column sector manager department,sales perish;

Define the group variables. In this report, Sector and Manager are group variables. Each
detail row of the report consolidates the information for all observations with the same values of
the group variables. FORMAT= specifies the formats to use in the report. Text in quotation
marks in the DEFINE statements specifies column headings. These statements illustrate two
ways to write a blank line in a column header. ’Sector’ ’’ writes a blank line because each
quoted string is a line of the column heading. The two adjacent quotation marks write a blank
line for the second line of the heading. ’Manager* ’ writes a blank line because the split
character (*) starts a new line of the heading. That line contains only a blank.

define sector / group format=$sctrfmt. ’Sector’ ’’;
define manager / group format=$mgrfmt. ’Manager* ’;

962 Program � Chapter 42

Define the across variable. PROC REPORT creates a column and a column heading for each
formatted value of the across variable Department. PROC REPORT orders the columns by these
values. PROC REPORT also generates a column heading that spans all these columns. Quoted
text in the DEFINE statement for Department customizes this heading. In traditional
(monospace) SAS output, PROC REPORT expands the heading with underscores to fill all
columns that are created by the across variable.

define department / across format=$deptfmt. ’_Department_’;

Define the analysis variable. Sales is an analysis variable that is used to calculate the sum
statistic. In each case, the value of Sales is the sum of Sales for all observations in one
department in one group. (In this case, the value represents a single observation.)

define sales / analysis sum format=dollar11.2 ’ ’;

Define the computed variable. The COMPUTED option indicates that PROC REPORT must
compute values for Perish. You compute the variable’s values in a compute block that is
associated with Perish.

define perish / computed format=dollar11.2
’Perishable*Total’;

Produce a report summary. This BREAK statement creates a default summary after the last
row for each value of Manager. The only option that is in use is SKIP, which writes a blank line.
You can use this technique to double-space in many reports that contains a group or order
variable.

break after manager / skip;

Calculate values for the computed variable. This compute block computes the value of
Perish from the values for the Meat/Dairy department and the Produce department. Because
the variables Sales and Department collectively define these columns, there is no way to
identify the values to PROC REPORT by name. Therefore, the assignment statement uses
column numbers to unambiguously specify the values to use. Each time PROC REPORT needs a
value for Perish, it sums the values in the third and fourth columns of that row of the report.

compute perish;
perish=sum(_c3_, _c4_);

endcomp;

Produce a customized summary. This compute block creates a customized summary at the
end of the report. The first LINE statement writes 57 hyphens (-) starting in column 4.
Subsequent LINE statements write the quoted text in the specified columns and the values of
the variables _C3_, _C4_, and _C5_ with the DOLLAR11.2 format. Note that the pointer control
(@) is designed for the Listing destination. It has no effect on ODS destinations other than
traditional SAS monospace output.

The REPORT Procedure � Output 963

compute after;
line @4 57*’-’;
line @4 ’| Combined sales for meat and dairy : ’

@46 _c3_ dollar11.2 ’ |’;
line @4 ’| Combined sales for produce : ’

@46 _c4_ dollar11.2 ’ |’;
line @4 ’|’ @60 ’|’;
line @4 ’| Combined sales for all perishables: ’

@46 _c5_ dollar11.2 ’ |’;
line @4 57*’-’;

endcomp;

Select the observations to process. The WHERE statement selects for the report only the
observations for departments p1 and p2 in stores in the northeast or northwest sector.

where sector contains ’n’
and (department=’p1’ or department=’p2’);

Specify the title.

title ’Sales Figures for Perishables in Northern Sectors’;
run;

Output

Sales Figures for Perishables in Northern Sectors 1

_______Department_______
Sector Manager Meat/Dairy Produce Perishable

Total

Northeast Alomar $190.00 $86.00 $276.00

Andrews $300.00 $125.00 $425.00

Northwest Brown $250.00 $73.00 $323.00

Pelfrey $205.00 $76.00 $281.00

Reveiz $600.00 $30.00 $630.00

| Combined sales for meat and dairy : $1,545.00 |
| Combined sales for produce : $390.00 |
| |
| Combined sales for all perishables: $1,935.00 |

964 Example 6: Displaying Multiple Statistics for One Variable � Chapter 42

Example 6: Displaying Multiple Statistics for One Variable

Procedure features:
PROC REPORT statement options:

LS=
PS=

COLUMN statement:

specifying statistics for stacked variables
DEFINE statement options:

FORMAT=
GROUP
ID

Data set: GROCERY on page 949

Formats: $MGRFMT. on page 949

The report in this example displays six statistics for the sales for each manager’s
store. The output is too wide to fit all the columns on one page, so three of the statistics
appear on the second page of the report. In order to make it easy to associate the
statistics on the second page with their group, the report repeats the values of Manager
and Sector on every page of the report.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=80 pagesize=60
fmtsearch=(proclib);

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). HEADLINE underlines all
column headings and the spaces between them at the top of each page of the report. HEADSKIP
writes a blank line beneath the underlining that HEADLINE writes. LS= sets the line size for
the report to 66, and PS= sets the page size to 18.

proc report data=grocery nowd headline headskip
ls=66 ps=18;

The REPORT Procedure � Output 965

Specify the report columns. This COLUMN statement creates a column for Sector, Manager,
and each of the six statistics that are associated with Sales.

column sector manager (Sum Min Max Range Mean Std),sales;

Define the group variables and the analysis variable. ID specifies that Manager is an ID
variable. An ID variable and all columns to its left appear at the left of every page of a report.
In this report, Sector and Manager are group variables. Each detail row of the report
consolidates the information for all observations with the same values of the group variables.
FORMAT= specifies the formats to use in the report.

define manager / group format=$mgrfmt. id;
define sector / group format=$sctrfmt.;
define sales / format=dollar11.2 ;

Specify the title.

title ’Sales Statistics for All Sectors’;
run;

Output

Sales Statistics for All Sectors 1

Sum Min Max
Sector Manager Sales Sales Sales

Northeast Alomar $786.00 $86.00 $420.00
Andrews $1,045.00 $125.00 $420.00

Northwest Brown $598.00 $45.00 $250.00
Pelfrey $746.00 $45.00 $420.00
Reveiz $1,110.00 $30.00 $600.00

Southeast Jones $630.00 $40.00 $300.00
Smith $350.00 $50.00 $120.00

Southwest Adams $695.00 $40.00 $350.00
Taylor $353.00 $50.00 $130.00

Sales Statistics for All Sectors 2

Range Mean Std
Sector Manager Sales Sales Sales

Northeast Alomar $334.00 $196.50 $156.57
Andrews $295.00 $261.25 $127.83

Northwest Brown $205.00 $149.50 $105.44
Pelfrey $375.00 $186.50 $170.39
Reveiz $570.00 $277.50 $278.61

Southeast Jones $260.00 $157.50 $123.39
Smith $70.00 $87.50 $29.86

Southwest Adams $310.00 $173.75 $141.86
Taylor $80.00 $88.25 $42.65

966 Example 7: Storing and Reusing a Report Definition � Chapter 42

Example 7: Storing and Reusing a Report Definition

Procedure features:
PROC REPORT statement options:

NAMED
OUTREPT=
REPORT=
WRAP

Other features:
TITLE statement
WHERE statement

Data set: GROCERY on page 949
Formats: $SCTRFMT., $MGRFMT. and $DEPTFMT. on page 949

The first PROC REPORT step in this example creates a report that displays one
value from each column of the report, using two rows to do so, before displaying another
value from the first column. (By default, PROC REPORT displays values for only as
many columns as it can fit on one page. It fills a page with values for these columns
before starting to display values for the remaining columns on the next page.)

Each item in the report is identified in the body of the report rather than in a column
header.

The report definition created by the first PROC REPORT step is stored in a catalog
entry. The second PROC REPORT step uses it to create a similar report for a different
sector of the city.

Program to Store a Report Definition

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=80 pagesize=60
fmtsearch=(proclib);

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). NAMED writes name= in front
of each value in the report, where name= is the column heading for the value. When you use
NAMED, PROC REPORT suppresses the display of column headings at the top of each page.

proc report data=grocery nowd
named

The REPORT Procedure � Output 967

wrap
ls=64 ps=36
outrept=proclib.reports.namewrap;

Specify the report columns. The report contains a column for Sector, Manager, Department,
and Sales.

column sector manager department sales;

Define the display and analysis variables. Because no usage is specified in the DEFINE
statements, PROC REPORT uses the defaults. The character variables (Sector, Manager, and
Department) are display variables. Sales is an analysis variable that is used to calculate the
sum statistic. FORMAT= specifies the formats to use in the report.

define sector / format=$sctrfmt.;
define manager / format=$mgrfmt.;
define department / format=$deptfmt.;
define sales / format=dollar11.2;

Select the observations to process. A report definition might differ from the SAS program
that creates the report. In particular, PROC REPORT stores neither WHERE statements nor
TITLE statements.

where manager=’1’;

Specify the title. SYSDATE is an automatic macro variable that returns the date when the
SAS job or SAS session began. The TITLE statement uses double rather than single quotation
marks so that the macro variable resolves.

title "Sales Figures for Smith on &sysdate";
run;

Output

This is the output from the first PROC REPORT step, which creates the
report definition.

Sales Figures for Smith on 04JAN02 1

Sector=Southeast Manager=Smith Department=Paper
Sales= $50.00
Sector=Southeast Manager=Smith Department=Meat/Dairy
Sales= $100.00
Sector=Southeast Manager=Smith Department=Canned
Sales= $120.00
Sector=Southeast Manager=Smith Department=Produce
Sales= $80.00

968 Program to Use a Report Definition � Chapter 42

Program to Use a Report Definition

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. FMTSEARCH= specifies the
library to include when searching for user-created formats.

options nodate pageno=1 fmtsearch=(proclib);

Specify the report options, load the report definition, and select the observations to
process. REPORT= uses the report definition that is stored in
PROCLIB.REPORTS.NAMEWRAP to produce the report. The second report differs from the
first one because it uses different WHERE and TITLE statements.

proc report data=grocery report=proclib.reports.namewrap
nowd;

where sector=’sw’;
title "Sales Figures for the Southwest Sector on &sysdate";

run;

Output

Sales Figures for the Southwest Sector on 04JAN02 1

Sector=Southwest Manager=Taylor Department=Paper
Sector=Southwest Manager=Taylor Department=Meat/Dairy
Sector=Southwest Manager=Taylor Department=Canned
Sector=Southwest Manager=Taylor Department=Produce
Sector=Southwest Manager=Adams Department=Paper
Sector=Southwest Manager=Adams Department=Meat/Dairy
Sector=Southwest Manager=Adams Department=Canned
Sector=Southwest Manager=Adams Department=Produce

Sales Figures for the Southwest Sector on 04JAN02 2

Sales= $53.00
Sales= $130.00
Sales= $120.00
Sales= $50.00
Sales= $40.00
Sales= $350.00
Sales= $225.00
Sales= $80.00

Example 8: Condensing a Report into Multiple Panels
Procedure features:

PROC REPORT statement options:

The REPORT Procedure � Program 969

FORMCHAR=
HEADLINE
LS=
PANELS=
PS=
PSPACE=

BREAK statement options:
SKIP

Other features:
SAS system option FORMCHAR=

Data set: GROCERY on page 949
Formats: $MGRFMT. and $DEPTFMT. on page 949

The report in this example
� uses panels to condense a two-page report to one page. Panels compactly present

information for long, narrow reports by placing multiple rows of information side
by side.

� uses a default summary to place a blank line after the last row for each manager.
� changes the default underlining character for the duration of this PROC REPORT

step.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=80 pagesize=60
fmtsearch=(proclib);

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). HEADLINE underlines all
column headings and the spaces between them at the top of each panel of the report.
FORMCHAR= sets the value of the second formatting character (the one that HEADLINE
uses) to the tilde (~). Therefore, the tilde underlines the column headings in the output.
HEADSKIP writes a blank line beneath the underlining that HEADLINE writes. LS= sets the
line size for the report to 64, and PS= sets the page size to 18. PANELS= creates a multipanel
report. Specifying PANELS=99 ensures that PROC REPORT fits as many panels as possible on
one page. PSPACE=6 places six spaces between panels.

proc report data=grocery nowd headline
formchar(2)=’~’

970 Program � Chapter 42

panels=99 pspace=6
ls=64 ps=18;

Specify the report columns. The report contains a column for Manager, Department, and
Sales.

column manager department sales;

Define the sort order and analysis columns. The values of all variables with the ORDER
option in the DEFINE statement determine the order of the rows in the report. In this report,
PROC REPORT arranges the rows first by the value of Manager (because it is the first variable
in the COLUMN statement) and then, within each value of Manager, by the values of
Department. The ORDER= option specifies the sort order for a variable. This report arranges
the values of Manager by their formatted values and arranges the values of Department by their
internal values (np1, np2, p1, and p2). FORMAT= specifies the formats to use in the report.

define manager / order
order=formatted
format=$mgrfmt.;

define department / order
order=internal
format=$deptfmt.;

define sales / format=dollar7.2;

Produce a report summary. This BREAK statement produces a default summary after the
last row for each manager. Because SKIP is the only option in the BREAK statement, each
break consists of only a blank line.

break after manager / skip;

Select the observations to process. The WHERE statement selects for the report only the
observations for stores in the northwest or southwest sector.

where sector=’nw’ or sector=’sw’;

Specify the title.

title ’Sales for the Western Sectors’;
run;

The REPORT Procedure � Example 9: Writing a Customized Summary on Each Page 971

Output

Sales for the Western Sectors 1

Manager Department Sales Manager Department Sales
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Adams Paper $40.00

Canned $225.00 Reveiz Paper $60.00
Meat/Dairy $350.00 Canned $420.00
Produce $80.00 Meat/Dairy $600.00

Produce $30.00
Brown Paper $45.00

Canned $230.00 Taylor Paper $53.00
Meat/Dairy $250.00 Canned $120.00
Produce $73.00 Meat/Dairy $130.00

Produce $50.00
Pelfrey Paper $45.00

Canned $420.00
Meat/Dairy $205.00
Produce $76.00

Example 9: Writing a Customized Summary on Each Page
Procedure features:

BREAK statement options:
OL
PAGE
SUMMARIZE

COMPUTE statement arguments:
with a computed variable as report-item
BEFORE break-variable
AFTER break-variable with conditional logic
BEFORE _PAGE_

DEFINE statement options:
NOPRINT

LINE statement:
pointer controls
quoted text
repeating a character string
variable values and formats

Data set: GROCERY on page 949
Formats: $SCTRFMT., $MGRFMT., and $DEPTFMT. on page 949

The report in this example displays a record of one day’s sales for each store. The
rows are arranged so that all the information about one store is together, and the
information for each store begins on a new page. Some variables appear in columns.
Others appear only in the page header that identifies the sector and the store’s manager.

The header that appears at the top of each page is created with the _PAGE_
argument in the COMPUTE statement.

Profit is a computed variable based on the value of Sales and Department.



972 Program � Chapter 42

The text that appears at the bottom of the page depends on the total of Sales for the
store. Only the first two pages of the report appear here.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=64 pagesize=30
fmtsearch=(proclib);

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). NOHEADER in the PROC
REPORT statement suppresses the default column headings.

proc report data=grocery nowd
headline headskip;

Specify the title.

title ’Sales for Individual Stores’;

Specify the report columns. The report contains a column for Sector, Manager, Department,
Sales, and Profit, but the NOPRINT option suppresses the printing of the columns for Sector and
Manager. The page heading (created later in the program) includes their values. To get these
variable values into the page heading, Sector and Manager must be in the COLUMN statement.

column sector manager department sales Profit;

Define the group, computed, and analysis variables. In this report, Sector, Manager, and
Department are group variables. Each detail row of the report consolidates the information for
all observations with the same values of the group variables. Profit is a computed variable
whose values are calculated in the next section of the program. FORMAT= specifies the formats
to use in the report.

define sector / group noprint;
define manager / group noprint;
define profit / computed format=dollar11.2;
define sales / analysis sum format=dollar11.2;
define department / group format=$deptfmt.;



The REPORT Procedure � Program 973

Calculate the computed variable. Profit is computed as a percentage of Sales. For
nonperishable items, the profit is 40% of the sale price. For perishable items the profit is 25%.
Notice that in the compute block you must reference the variable Sales with a compound name
(Sales.sum) that identifies both the variable and the statistic that you calculate with it.

compute profit;
if department=’np1’ or department=’np2’

then profit=0.4*sales.sum;
else profit=0.25*sales.sum;

endcomp;

Create a customized page header. This compute block executes at the top of each page, after
PROC REPORT writes the title. It writes the page heading for the current manager’s store. The
LEFT option left-justifies the text in the LINE statements. Each LINE statement writes the
text in quotation marks just as it appears in the statement. The first two LINE statements
write a variable value with the format specified immediately after the variable’s name.

compute before _page_ / left;
line sector $sctrfmt. ’ Sector’;
line ’Store managed by ’ manager $mgrfmt.;
line ’ ’;
line ’ ’;
line ’ ’;

endcomp;

Produce a report summary. This BREAK statement creates a default summary after the last
row for each manager. OL writes a row of hyphens above the summary line. SUMMARIZE
writes the value of Sales (the only analysis or computed variable) in the summary line. The
PAGE option starts a new page after each default summary so that the page heading that is
created in the preceding compute block always pertains to the correct manager.

break after manager / ol summarize page;

Produce a customized summary. This compute block places conditional text in a customized
summary that appears after the last detail row for each manager.

compute after manager;

Specify the length of the customized summary text. The LENGTH statement assigns a
length of 35 to the temporary variable TEXT. In this particular case, the LENGTH statement is
unnecessary because the longest version appears in the first IF/THEN statement. However,
using the LENGTH statement ensures that even if the order of the conditional statements
changes, TEXT will be long enough to hold the longest version.

length text $ 35;



974 Output � Chapter 42

Specify the conditional logic for the customized summary text. You cannot use the LINE
statement in conditional statements (IF-THEN, IF-THEN/ELSE, and SELECT) because it does
not take effect until PROC REPORT has executed all other statements in the compute block.
These IF-THEN/ELSE statements assign a value to TEXT based on the value of Sales.sum in
the summary row. A LINE statement writes that variable, whatever its value happens to be.

if sales.sum lt 500 then
text=’Sales are below the target region.’;

else if sales.sum ge 500 and sales.sum lt 1000 then
text=’Sales are in the target region.’;

else if sales.sum ge 1000 then
text=’Sales exceeded goal!’;

line ’ ’;
line text $35.;

endcomp;
run;

Output

Sales for Individual Stores 1

Northeast Sector
Store managed by Alomar

Department Sales Profit
------------------------------------

Canned $420.00 $168.00
Meat/Dairy $190.00 $47.50
Paper $90.00 $36.00
Produce $86.00 $21.50

----------- -----------
$786.00 $196.50

Sales are in the target region.

Sales for Individual Stores 2

Northeast Sector
Store managed by Andrews

Department Sales Profit
------------------------------------

Canned $420.00 $168.00
Meat/Dairy $300.00 $75.00
Paper $200.00 $80.00
Produce $125.00 $31.25

----------- -----------
$1,045.00 $261.25

Sales exceeded goal!



The REPORT Procedure � Program 975

Example 10: Calculating Percentages
Procedure features:

COLUMN statement arguments:
PCTSUM
SUM
spanning headers

COMPUTE statement options:
CHAR
LENGTH=

DEFINE statement options:
COMPUTED
FLOW
WIDTH=

RBREAK statement options:
OL
SUMMARIZE

Other features:
TITLE statement

Data set: GROCERY on page 949
Formats: $MGRFMT. and $DEPTFMT. on page 949

The summary report in this example shows the total sales for each store and the
percentage that these sales represent of sales for all stores. Each of these columns has
its own header. A single header also spans all the columns. This header looks like a
title, but it differs from a title because it would be stored in a report definition. You
must submit a null TITLE statement whenever you use the report definition, or the
report will contain both a title and the spanning header.

The report includes a computed character variable, COMMENT, that flags stores
with an unusually high percentage of sales. The text of COMMENT wraps across
multiple rows. It makes sense to compute COMMENT only for individual stores.
Therefore, the compute block that does the calculation includes conditional code that
prevents PROC REPORT from calculating COMMENT on the summary line.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=64 pagesize=60
fmtsearch=(proclib);



976 Program � Chapter 42

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). HEADLINE underlines all
column headings and the spaces between them at the top of each page of the report. The null
TITLE statement suppresses the title of the report.

proc report data=grocery nowd headline;
title;

Specify the report columns. The COLUMN statement uses the text in quotation marks as a
spanning heading. The heading spans all the columns in the report because they are all
included in the pair of parentheses that contains the heading. The COLUMN statement
associates two statistics with Sales: Sum and Pctsum. The Sum statistic sums the values of
Sales for all observations that are included in a row of the report. The Pctsum statistic shows
what percentage of Sales that sum is for all observations in the report.

column (’Individual Store Sales as a Percent of All Sales’
sector manager sales,(sum pctsum) comment);

Define the group and analysis columns. In this report, Sector and Manager are group
variables. Each detail row represents a set of observations that have a unique combination of
formatted values for all group variables. Sales is, by default, an analysis variable that is used to
calculate the Sum statistic. However, because statistics are associated with Sales in the column
statement, those statistics override the default. FORMAT= specifies the formats to use in the
report. Text between quotation marks specifies the column heading.

define manager / group
format=$mgrfmt.;

define sector / group
format=$sctrfmt.;

define sales / format=dollar11.2
’’;

define sum / format=dollar9.2
’Total Sales’;

Define the percentage and computed columns. The DEFINE statement for Pctsum
specifies a column heading, a format, and a column width of 8. The PERCENT. format presents
the value of Pctsum as a percentage rather than a decimal. The DEFINE statement for
COMMENT defines it as a computed variable and assigns it a column width of 20 and a blank
column heading. The FLOW option wraps the text for COMMENT onto multiple lines if it
exceeds the column width.

define pctsum / ’Percent of Sales’ format=percent6. width=8;
define comment / computed width=20 ’’ flow;

Calculate the computed variable. Options in the COMPUTE statement define COMMENT
as a character variable with a length of 40.

compute comment / char length=40;



The REPORT Procedure � Example 11: How PROC REPORT Handles Missing Values 977

Specify the conditional logic for the computed variable. For every store where sales
exceeded 15% of the sales for all stores, this compute block creates a comment that says Sales
substantially above expectations. Of course, on the summary row for the report, the
value of Pctsum is 100. However, it is inappropriate to flag this row as having exceptional sales.
The automatic variable _BREAK_ distinguishes detail rows from summary rows. In a detail row,
the value of _BREAK_ is blank. The THEN statement executes only on detail rows where the
value of Pctsum exceeds 0.15.

if sales.pctsum gt .15 and _break_ = ’ ’
then comment=’Sales substantially above expectations.’;
else comment=’ ’;

endcomp;

Produce the report summary. This RBREAK statement creates a default summary at the
end of the report. OL writes a row of hyphens above the summary line. SUMMARIZE writes the
values of Sales.sum and Sales.pctsum in the summary line.

rbreak after / ol summarize;
run;

Output

1

Individual Store Sales as a Percent of All Sales

Total Percent
Sector Manager Sales of Sales
-------------------------------------------------------------
Northeast Alomar $786.00 12%

Andrews $1,045.00 17% Sales substantially
above expectations.

Northwest Brown $598.00 9%
Pelfrey $746.00 12%
Reveiz $1,110.00 18% Sales substantially

above expectations.
Southeast Jones $630.00 10%

Smith $350.00 6%
Southwest Adams $695.00 11%

Taylor $353.00 6%
--------- --------
$6,313.00 100%

Example 11: How PROC REPORT Handles Missing Values

Procedure features:
PROC REPORT statement options:

MISSING



978 Program with Data Set with No Missing Values � Chapter 42

COLUMN statement
with the N statistic

Other features:
TITLE statement

Formats: $MGRFMT. on page 949

This example illustrates the difference between the way PROC REPORT handles
missing values for group (or order or across) variables with and without the MISSING
option. The differences in the reports are apparent if you compare the values of N for
each row and compare the totals in the default summary at the end of the report.

Program with Data Set with No Missing Values

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=64 pagesize=60
fmtsearch=(proclib);

Create the GROCMISS data set. GROCMISS is identical to GROCERY except that it
contains some observations with missing values for Sector, Manager, or both.

data grocmiss;
input Sector $ Manager $ Department $ Sales @@;

datalines;
se 1 np1 50 . 1 p1 100 se . np2 120 se 1 p2 80
se 2 np1 40 se 2 p1 300 se 2 np2 220 se 2 p2 70
nw 3 np1 60 nw 3 p1 600 . 3 np2 420 nw 3 p2 30
nw 4 np1 45 nw 4 p1 250 nw 4 np2 230 nw 4 p2 73
nw 9 np1 45 nw 9 p1 205 nw 9 np2 420 nw 9 p2 76
sw 5 np1 53 sw 5 p1 130 sw 5 np2 120 sw 5 p2 50
. . np1 40 sw 6 p1 350 sw 6 np2 225 sw 6 p2 80
ne 7 np1 90 ne . p1 190 ne 7 np2 420 ne 7 p2 86
ne 8 np1 200 ne 8 p1 300 ne 8 np2 420 ne 8 p2 125
;

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). HEADLINE underlines all
column headings and the spaces between them.

proc report data=grocmiss nowd headline;



The REPORT Procedure � Output with No Missing Values 979

Specify the report columns. The report contains columns for Sector, Manager, the N statistic,
and Sales.

column sector manager N sales;

Define the group and analysis variables. In this report, Sector and Manager are group
variables. Sales is, by default, an analysis variable that is used to calculate the Sum statistic.
Each detail row represents a set of observations that have a unique combination of formatted
values for all group variables. The value of Sales in each detail row is the sum of Sales for all
observations in the group. In this PROC REPORT step, the procedure does not include
observations with a missing value for the group variable. FORMAT= specifies formats to use in
the report.

define sector / group format=$sctrfmt.;
define manager / group format=$mgrfmt.;
define sales / format=dollar9.2;

Produce a report summary. This RBREAK statement creates a default summary at the end
of the report. DOL writes a row of equal signs above the summary line. SUMMARIZE writes the
values of N and Sales.sum in the summary line.

rbreak after / dol summarize;

Specify the title.

title ’Summary Report for All Sectors and Managers’;
run;

Output with No Missing Values

Summary Report for All Sectors and Managers 1

Sector Manager N Sales
----------------------------------------
Northeast Alomar 3 $596.00

Andrews 4 $1,045.00
Northwest Brown 4 $598.00

Pelfrey 4 $746.00
Reveiz 3 $690.00

Southeast Jones 4 $630.00
Smith 2 $130.00

Southwest Adams 3 $655.00
Taylor 4 $353.00

========= =========
31 $5,443.00



980 Program with Data Set with Missing Values � Chapter 42

Program with Data Set with Missing Values

Include the missing values. The MISSING option in the second PROC REPORT step includes
the observations with missing values for the group variable.

proc report data=grocmiss nowd headline missing;
column sector manager N sales;
define sector / group format=$sctrfmt.;
define manager / group format=$mgrfmt.;
define sales / format=dollar9.2;
rbreak after / dol summarize;

run;

Output with Missing Values

Summary Report for All Sectors and Managers 2

Sector Manager N Sales
----------------------------------------

1 $40.00
Reveiz 1 $420.00
Smith 1 $100.00

Northeast 1 $190.00
Alomar 3 $596.00
Andrews 4 $1,045.00

Northwest Brown 4 $598.00
Pelfrey 4 $746.00
Reveiz 3 $690.00

Southeast 1 $120.00
Jones 4 $630.00
Smith 2 $130.00

Southwest Adams 3 $655.00
Taylor 4 $353.00

========= =========
36 $6,313.00

Example 12: Creating and Processing an Output Data Set

Procedure features:
PROC REPORT statement options:

BOX
OUT=

DEFINE statement options:

ANALYSIS
GROUP
NOPRINT
SUM



The REPORT Procedure � Program to Create Output Data Set 981

Other features:
Data set options:

WHERE=
Data set: GROCERY on page 949
Formats: $MGRFMT. on page 949

This example uses WHERE processing as it builds an output data set. This
technique enables you to do WHERE processing after you have consolidated multiple
observations into a single row.

The first PROC REPORT step creates a report (which it does not display) in which
each row represents all the observations from the input data set for a single manager.
The second PROC REPORT step builds a report from the output data set. This report
uses line-drawing characters to separate the rows and columns.

Program to Create Output Data Set

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=64 pagesize=60
fmtsearch=(proclib);

Specify the report options and columns. The NOWD option runs PROC REPORT without
the REPORT window and sends its output to the open output destination(s). OUT= creates the
output data set TEMP. The output data set contains a variable for each column in the report
(Manager and Sales) as well as for the variable _BREAK_, which is not used in this example.
Each observation in the data set represents a row of the report. Because Manager is a group
variable and Sales is an analysis variable that is used to calculate the Sum statistic, each row
in the report (and therefore each observation in the output data set) represents multiple
observations from the input data set. In particular, each value of Sales in the output data set is
the total of all values of Sales for that manager. The WHERE= data set option in the OUT=
option filters those rows as PROC REPORT creates the output data set. Only those observations
with sales that exceed $1,000 become observations in the output data set.

proc report data=grocery nowd
out=temp( where=(sales gt 1000) );

column manager sales;



982 Output Showing the Output Data Set � Chapter 42

Define the group and analysis variables. Because the definitions of all report items in this
report include the NOPRINT option, PROC REPORT does not print a report. However, the
PROC REPORT step does execute and create an output data set.

define manager / group noprint;
define sales / analysis sum noprint;

run;

Output Showing the Output Data Set

This is the output data set that PROC REPORT creates. It is used as
the input set in the second PROC REPORT step.

The Data Set TEMP 1

Manager Sales _____________BREAK______________
3 1110
8 1045

Program That Uses the Output Data Set

Specify the report options and columns, define the group and analysis columns, and
specify the titles. DATA= specifies the output data set from the first PROC REPORT step as
the input data set for this report. The BOX option draws an outline around the output,
separates the column headings from the body of the report, and separates rows and columns of
data. The TITLE statements specify a title for the report.

proc report data=temp box nowd;
column manager sales;
define manager / group format=$mgrfmt.;
define sales / analysis sum format=dollar11.2;
title ’Managers with Daily Sales’;
title2 ’of over’;
title3 ’One Thousand Dollars’;

run;



The REPORT Procedure � Program That Creates the Output Data Set 983

Report Based on the Output Data Set

Managers with Daily Sales 1
of over

One Thousand Dollars

----------------------
|Manager Sales|
|--------------------|
|Andrews| $1,045.00|
|-------+------------|
|Reveiz | $1,110.00|
----------------------

Example 13: Storing Computed Variables as Part of a Data Set
Procedure features:

PROC REPORT statement options:
OUT=

COMPUTE statement:
with a computed variable as report-item

DEFINE statement options:
COMPUTED

Other features: CHART procedure
Data set: GROCERY on page 949
Formats: $SCTRFMT. on page 949

The report in this example
� creates a computed variable
� stores it in an output data set
� uses that data set to create a chart based on the computed variable.

Program That Creates the Output Data Set

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=64 pagesize=60
fmtsearch=(proclib);



984 Program That Creates the Output Data Set � Chapter 42

Delete any existing titles.

title;

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window and sends its output to the open output destination(s). OUT= creates the output data
set PROFIT.

proc report data=grocery nowd out=profit;

Specify the report columns. The report contains columns for Manager, Department, Sales,
and Profit, which is not in the input data set. Because the purpose of this report is to generate
an output data set to use in another procedure, the report layout simply uses the default usage
for all the data set variables to list all the observations. DEFINE statements for the data set
variables are unnecessary.

column sector manager department sales Profit;

Define the computed column. The COMPUTED option tells PROC REPORT that Profit is
defined in a compute block somewhere in the PROC REPORT step.

define profit / computed;

Calculate the computed column. Profit is computed as a percentage of Sales. For
nonperishable items, the profit is 40% of the sale price. For perishable items the profit is 25%.
Notice that in the compute block, you must reference the variable Sales with a compound name
(Sales.sum) that identifies both the variable and the statistic that you calculate with it.

/* Compute values for Profit. */
compute profit;

if department=’np1’ or department=’np2’ then profit=0.4*sales.sum;
else profit=0.25*sales.sum;

endcomp;
run;



The REPORT Procedure � Program That Uses the Output Data Set 985

The Output Data Set

This is the output data set that is created by PROC REPORT. It is used
as input for PROC CHART.

The Data Set PROFIT 1

Sector Manager Department Sales Profit _BREAK__
se 1 np1 50 20
se 1 p1 100 25
se 1 np2 120 48
se 1 p2 80 20
se 2 np1 40 16
se 2 p1 300 75
se 2 np2 220 88
se 2 p2 70 17.5
nw 3 np1 60 24
nw 3 p1 600 150
nw 3 np2 420 168
nw 3 p2 30 7.5
nw 4 np1 45 18
nw 4 p1 250 62.5
nw 4 np2 230 92
nw 4 p2 73 18.25
nw 9 np1 45 18
nw 9 p1 205 51.25
nw 9 np2 420 168
nw 9 p2 76 19
sw 5 np1 53 21.2
sw 5 p1 130 32.5
sw 5 np2 120 48
sw 5 p2 50 12.5
sw 6 np1 40 16
sw 6 p1 350 87.5
sw 6 np2 225 90
sw 6 p2 80 20
ne 7 np1 90 36
ne 7 p1 190 47.5
ne 7 np2 420 168
ne 7 p2 86 21.5
ne 8 np1 200 80
ne 8 p1 300 75
ne 8 np2 420 168
ne 8 p2 125 31.25

Program That Uses the Output Data Set

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=80 pagesize=60
fmtsearch=(proclib);



986 Output from Processing the Output Data Set � Chapter 42

Chart the data in the output data set. PROC CHART uses the output data set from the
previous PROC REPORT step to chart the sum of Profit for each sector.

proc chart data=profit;
block sector / sumvar=profit;
format sector $sctrfmt.;
format profit dollar7.2;
title ’Sum of Profit by Sector’;

run;

Output from Processing the Output Data Set

Sum of Profit by Sector 1

Sum of Profit by Sector

___
/_ /|

___ |**| |
/_ /| |**| |

|**| | |**| |
|**| | |**| |
|**| | |**| | ___ ___

-|**| |--------|**| |---------/_ /|---------/_ /|-------
/ |**| | / |**| | / |**| | / |**| | /

/ |**| | / |**| | / |**| | / |**| | /
/ |**| | / |**| | / |**| | / |**| | /

/ |**|/ / |**|/ / |**|/ / |**|/ /
/ / / / /

/ $627.25 / $796.50 / $309.50 / $327.70 /
/-------------/-------------/-------------/-------------/

Northeast Northwest Southeast Southwest

Sector

Example 14: Using a Format to Create Groups

Procedure features:
DEFINE statement options:

GROUP
Other features: FORMAT procedure
Data set: GROCERY on page 949
Formats: $MGRFMT. on page 949

This example shows how to use formats to control the number of groups that PROC
REPORT creates. The program creates a format for Department that classifies the four
departments as one of two types: perishable or nonperishable. Consequently, when
Department is an across variable, PROC REPORT creates only two columns instead of
four. The column header is the formatted value of the variable.



The REPORT Procedure � Program 987

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
specifies the library to include when searching for user-created formats.

options nodate pageno=1 linesize=64 pagesize=60
fmtsearch=(proclib);

Create the $PERISH. format. PROC FORMAT creates a format for Department. This
variable has four different values in the data set, but the format has only two values.

proc format;
value $perish ’p1’,’p2’=’Perishable’

’np1’,’np2’=’Nonperishable’;
run;

Specify the report options. The NOWD option runs the REPORT procedure without the
REPORT window and sends its output to the open output destination(s). HEADLINE underlines
all column headings and the spaces between them at the top of each page of the report.
HEADSKIP writes a blank line beneath the underlining that HEADLINE writes.

proc report data=grocery nowd
headline
headskip;

Specify the report columns. Department and Sales are separated by a comma in the
COLUMN statement, so they collectively determine the contents of the column that they define.
Because Sales is an analysis variable, its values fill the cells that are created by these two
variables. The report also contains a column for Manager and a column for Sales by itself
(which is the sales for all departments).

column manager department,sales sales;

Define the group and across variables. Manager is a group variable. Each detail row of the
report consolidates the information for all observations with the same value of Manager.
Department is an across variable. PROC REPORT creates a column and a column heading for
each formatted value of Department. ORDER=FORMATTED arranges the values of Manager
and Department alphabetically according to their formatted values. FORMAT= specifies the
formats to use. The empty quotation marks in the definition of Department specify a blank
column heading, so no heading spans all the departments. However, PROC REPORT uses the
formatted values of Department to create a column heading for each individual department.



988 Output � Chapter 42

define manager / group order=formatted
format=$mgrfmt.;

define department / across order=formatted
format=$perish. ’’;

Define the analysis variable. Sales is an analysis variable that is used to calculate the Sum
statistic. Sales appears twice in the COLUMN statement, and the same definition applies to both
occurrences. FORMAT= specifies the format to use in the report. WIDTH= specifies the width of
the column. Notice that the column headings for the columns that both Department and Sales
create are a combination of the heading for Department and the (default) heading for Sales.

define sales / analysis sum
format=dollar9.2 width=13;

Produce a customized summary. This COMPUTE statement begins a compute block that
produces a customized summary at the end of the report. The LINE statement places the quoted
text and the value of Sales.sum (with the DOLLAR9.2 format) in the summary. An ENDCOMP
statement must end the compute block.

compute after;
line ’ ’;
line ’Total sales for these stores were: ’

sales.sum dollar9.2;
endcomp;

Specify the title.

title ’Sales Summary for All Stores’;
run;

Output

Sales Summary for All Stores 1

Nonperishable Perishable
Manager Sales Sales Sales
----------------------------------------------------

Adams $265.00 $430.00 $695.00
Alomar $510.00 $276.00 $786.00
Andrews $620.00 $425.00 $1,045.00
Brown $275.00 $323.00 $598.00
Jones $260.00 $370.00 $630.00
Pelfrey $465.00 $281.00 $746.00
Reveiz $480.00 $630.00 $1,110.00
Smith $170.00 $180.00 $350.00
Taylor $173.00 $180.00 $353.00

Total sales for these stores were: $6,313.00



The REPORT Procedure � Program 989

Example 15: Specifying Style Elements for ODS Output in the PROC REPORT
Statement

Procedure features: STYLE= option in the PROC REPORT statement

Other features:
ODS HTML statement
ODS PDF statement
ODS RTF statement

Data set: GROCERY on page 949

Formats: $MGRFMT. and $DEPTFMT. on page 949

This example creates HTML, PDF, and RTF files and sets the style elements for each
location in the report in the PROC REPORT statement.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. FMTSEARCH= specifies the
library to include when searching for user-created formats. LINESIZE= and PAGESIZE= are
not set for this example because they have no effect on HTML, RTF, and Printer output.

options nodate pageno=1 fmtsearch=(proclib);

Specify the ODS output filenames. By opening multiple ODS destinations, you can produce
multiple output files in a single execution. The ODS HTML statement produces output that is
written in HTML. The ODS PDF statement produces output in Portable Document Format
(PDF). The ODS RTF statement produces output in Rich Text Format (RTF). The output from
PROC REPORT goes to each of these files.

ods html body=’external-HTML-file’;
ods pdf file=’external-PDF-file’;
ods rtf file=’external-RTF-file’;

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window. In this case, SAS writes the output to the traditional procedure output, the HTML body
file, and the RTF and PDF files.

proc report data=grocery nowd headline headskip

Specify the style attributes for the report. This STYLE= option sets the style element for
the structural part of the report. Because no style element is specified, PROC REPORT uses all
the style attributes of the default style element for this location except for CELLSPACING=,
BORDERWIDTH=, and BORDERCOLOR=.

style(report)=[cellspacing=5 borderwidth=10 bordercolor=blue]



990 Program � Chapter 42

Specify the style attributes for the column headings. This STYLE= option sets the style
element for all column headings. Because no style element is specified, PROC REPORT uses all
the style attributes of the default style element for this location except for those that are
specified here.

style(header)=[foreground=yellow
font_style=italic font_size=6]

Specify the style attributes for the report columns. This STYLE= option sets the style
element for all the cells in all the columns. Because no style element is specified, PROC
REPORT uses all the style attributes of the default style element for this location except for
those that are specified here.

style(column)=[foreground=moderate brown
font_face=helvetica font_size=4]

Specify the style attributes for the compute block lines. This STYLE= option sets the
style element for all the LINE statements in all compute blocks. Because no style element is
specified, PROC REPORT uses all the style attributes of the default style element for this
location except for those that are specified here.

style(lines)=[foreground=white background=black
font_style=italic font_weight=bold font_size=5]

Specify the style attributes for report summaries. This STYLE= option sets the style
element for all the default summary lines. Because no style element is specified, PROC
REPORT uses all the style attributes of the default style element for this location except for
those that are specified here.

style(summary)=[foreground=cx3e3d73 background=cxaeadd9
font_face=helvetica font_size=3 just=r];

Specify the report columns. The report contains columns for Manager, Department, and
Sales.

column manager department sales;

Define the sort order variables. In this report Manager and Department are order variables.
PROC REPORT arranges the rows first by the value of Manager (because it is the first variable
in the COLUMN statement), then by the value of Department. For Manager, ORDER= specifies
that values of Manager are arranged according to their formatted values; similarly, for
Department, ORDER= specifies that values of Department are arranged according to their
internal values. FORMAT= specifies the format to use for each variable. Text in quotation
marks specifies the column headings.

define manager / order
order=formatted
format=$mgrfmt.
’Manager’;

define department / order
order=internal
format=$deptfmt.
’Department’;



The REPORT Procedure � Program 991

Produce a report summary. The BREAK statement produces a default summary after the last
row for each manager. SUMMARIZE writes the values of Sales (the only analysis or computed
variable in the report) in the summary line. PROC REPORT sums the values of Sales for each
manager because Sales is an analysis variable that is used to calculate the Sum statistic.

break after manager / summarize;

Produce a customized summary. The COMPUTE statement begins a compute block that
produces a customized summary after each value of Manager. The LINE statement places the
quoted text and the values of Manager and Sales.sum (with the formats $MGRFMT. and
DOLLAR7.2) in the summary. An ENDCOMP statement must end the compute block.

compute after manager;
line ’Subtotal for ’ manager $mgrfmt. ’is ’

sales.sum dollar7.2 ’.’;
endcomp;

Produce a customized end-of-report summary. This COMPUTE statement begins a
compute block that executes at the end of the report. The LINE statement writes the quoted
text and the value of Sales.sum (with the DOLLAR7.2 format). An ENDCOMP statement must
end the compute block.

compute after;
line ’Total for all departments is: ’

sales.sum dollar7.2 ’.’;
endcomp;

Select the observations to process. The WHERE statement selects for the report only the
observations for stores in the southeast sector.

where sector=’se’;

Specify the title.

title ’Sales for the Southeast Sector’;
run;

Close the ODS destinations.

ods html close;
ods pdf close;
ods rtf close;



992 HTML Output � Chapter 42

HTML Output



The REPORT Procedure � PDF Output 993

PDF Output



994 RTF Output � Chapter 42

RTF Output

Example 16: Specifying Style Elements for ODS Output in Multiple
Statements

Procedure features:
STYLE= option in

PROC REPORT statement
CALL DEFINE statement
COMPUTE statement
DEFINE statement



The REPORT Procedure � Program 995

Other features:
ODS HTML statement
ODS PDF statement
ODS RTF statement

Data set: GROCERY on page 949
Formats: $MGRFMT. on page 949 and $DEPTFMT. on page 949

This example creates HTML, PDF, and RTF files and sets the style elements for each
location in the report in the PROC REPORT statement. It then overrides some of these
settings by specifying style elements in other statements.

Program

Declare the PROCLIB library. The PROCLIB library is used to store user-created formats.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. FMTSEARCH= specifies the
library to include when searching for user-created formats. LINESIZE= and PAGESIZE= are
not set for this example because they have no effect on HTML, RTF, and Printer output.

options nodate pageno=1 fmtsearch=(proclib);

Specify the ODS output filenames. By opening multiple ODS destinations, you can produce
multiple output files in a single execution. The ODS HTML statement produces output that is
written in HTML. The ODS PDF statement produces output in Portable Document Format
(PDF). The ODS RTF statement produces output in Rich Text Format (RTF). The output from
PROC REPORT goes to each of these files.

ods html body=’external-HTML-file’;
ods pdf file=’external-PDF-file’;
ods rtf file=’external-RTF-file’;

Specify the report options. The NOWD option runs PROC REPORT without the REPORT
window. In this case, SAS writes the output to the traditional procedure output, the HTML body
file, and the RTF and PDF files.

proc report data=grocery nowd headline headskip

Specify the style attributes for the report. This STYLE= option sets the style element for
the structural part of the report. Because no style element is specified, PROC REPORT uses all
the style attributes of the default style element for this location except for those that are
specified here.

style(report)=[cellspacing=5 borderwidth=10 bordercolor=blue]



996 Program � Chapter 42

Specify the style attributes for the column headings. This STYLE= option sets the style
element for all column headings. Because no style element is specified, PROC REPORT uses all
the style attributes of the default style element for this location except for those that are
specified here.

style(header)=[foreground=yellow
font_style=italic font_size=6]

Specify the style attributes for the report columns. This STYLE= option sets the style
element for all the cells in all the columns. Because no style element is specified, PROC
REPORT uses all the style attributes of the default style element for this location except for
those that are specified here.

style(column)=[foreground=moderate brown
font_face=helvetica font_size=4]

Specify the style attributes for the compute block lines. This STYLE= option sets the
style element for all the LINE statements in all compute blocks. Because no style element is
specified, PROC REPORT uses all the style attributes of the default style element for this
location except for those that are specified here.

style(lines)=[foreground=white background=black
font_style=italic font_weight=bold font_size=5]

Specify the style attributes for the report summaries. This STYLE= option sets the style
element for all the default summary lines. Because no style element is specified, PROC
REPORT uses all the style attributes of the default style element for this location except for
those that are specified here.

style(summary)=[foreground=cx3e3d73 background=cxaeadd9
font_face=helvetica font_size=3 just=r];

Specify the report columns. The report contains columns for Manager, Department, and
Sales.

column manager department sales;

Define the first sort order variable. In this report Manager is an order variable. PROC
REPORT arranges the rows first by the value of Manager (because it is the first variable in the
COLUMN statement). ORDER= specifies that values of Manager are arranged according to
their formatted values. FORMAT= specifies the format to use for this variable. Text in quotation
marks specifies the column headings.

define manager / order
order=formatted
format=$mgrfmt.
’Manager’

Specify the style attributes for the first sort order variable column heading. The
STYLE= option sets the foreground and background colors of the column heading for Manager.
The other style attributes for the column heading will match those that were established for the
HEADER location in the PROC REPORT statement.

style(header)=[foreground=white
background=black];



The REPORT Procedure � Program 997

Define the second sort order variable. In this report Department is an order variable.
PROC REPORT arranges the rows first by the value of Manager (because it is the first variable
in the COLUMN statement), then by the value of Department. ORDER= specifies that values of
Department are arranged according to their internal values. FORMAT= specifies the format to
use for this variable. Text in quotation marks specifies the column heading.

define department / order
order=internal
format=$deptfmt.
’Department’

Specify the style attributes for the second sort order variable column.The STYLE=
option sets the font of the cells in the column Department to italic. The other style attributes for
the cells will match those that were established for the COLUMN location in the PROC
REPORT statement.

style(column)=[font_style=italic];

Produce a report summary. The BREAK statement produces a default summary after the last
row for each manager. SUMMARIZE writes the values of Sales (the only analysis or computed
variable in the report) in the summary line. PROC REPORT sums the values of Sales for each
manager because Sales is an analysis variable that is used to calculate the Sum statistic.

break after manager / summarize;

Produce a customized summary. The COMPUTE statement begins a compute block that
produces a customized summary at the end of the report. This STYLE= option specifies the style
element to use for the text that is created by the LINE statement in this compute block. This
style element switches the foreground and background colors that were specified for the LINES
location in the PROC REPORT statement. It also changes the font style, the font weight, and
the font size.

compute after manager
/ style=[font_style=roman font_size=3 font_weight=bold

background=white foreground=black];

Specify the text for the customized summary. The LINE statement places the quoted text
and the values of Manager and Sales.sum (with the formats $MGRFMT. and DOLLAR7.2) in
the summary. An ENDCOMP statement must end the compute block.

line ’Subtotal for ’ manager $mgrfmt. ’is ’
sales.sum dollar7.2 ’.’;

endcomp;

Produce a customized background for the analysis column. This compute block specifies
a background color and a bold font for all cells in the Sales column that contain values of 100 or
greater and that are not summary lines.

compute sales;
if sales.sum>100 and _break_=’ ’ then
call define(_col_, "style",

"style=[background=yellow
font_face=helvetica
font_weight=bold]");

endcomp;



998 Program � Chapter 42

Produce a customized end-of-report summary. This COMPUTE statement begins a
compute block that executes at the end of the report. The LINE statement writes the quoted
text and the value of Sales.sum (with the DOLLAR7.2 format). An ENDCOMP statement must
end the compute block.

compute after;
line ’Total for all departments is: ’

sales.sum dollar7.2 ’.’;
endcomp;

Select the observations to process. The WHERE statement selects for the report only the
observations for stores in the southeast sector.

where sector=’se’;

Specify the title.

title ’Sales for the Southeast Sector’;
run;

Close the ODS destinations.

ods html close;
ods pdf close;
ods rtf close;



The REPORT Procedure � HTML Body File 999

HTML Body File



1000 PDF Output � Chapter 42

PDF Output



The REPORT Procedure � RTF Output 1001

RTF Output



1002



1003

C H A P T E R

43
The SORT Procedure

Overview: SORT Procedure 1003
What Does the SORT Procedure Do? 1003

Sorting SAS Data Sets 1004

Syntax: SORT Procedure 1005

PROC SORT Statement 1005

BY Statement 1012
Concepts: SORT Procedure 1013

Multi-threaded Sorting 1013

Using PROC SORT with a DBMS 1013

Sorting Orders for Numeric Variables 1013

Sorting Orders for Character Variables 1014

Default Collating Sequence 1014
EBCDIC Order 1014

ASCII Order 1014

Specifying Sorting Orders for Character Variables 1015

Stored Sort Information 1015

Integrity Constraints: SORT Procedure 1015
Results: SORT Procedure 1016

Procedure Output 1016

Output Data Set 1016

Examples: SORT Procedure 1016

Example 1: Sorting by the Values of Multiple Variables 1017
Example 2: Sorting in Descending Order 1019

Example 3: Maintaining the Relative Order of Observations in Each BY Group 1020

Example 4: Retaining the First Observation of Each BY Group 1023

Overview: SORT Procedure

What Does the SORT Procedure Do?
The SORT procedure orders SAS data set observations by the values of one or more

character or numeric variables. The SORT procedure either replaces the original data
set or creates a new data set. PROC SORT produces only an output data set. For more
information, see “Procedure Output” on page 1016.

Operating Environment Information: The sorting capabilities that are described in this
chapter are available for all operating environments. In addition, if you use the HOST
value of the SAS system option SORTPGM=, you might be able to use other sorting
options that are available only for your operating environment. Refer to the SAS



1004 Sorting SAS Data Sets � Chapter 43

documentation for your operating environment for information about other sorting
capabilities �

Sorting SAS Data Sets
In the following example, the original data set was in alphabetical order by last

name. PROC SORT replaces the original data set with a data set that is sorted by
employee identification number. Output 43.1 shows the log that results from running
this PROC SORT step. Output 43.2 shows the results of the PROC PRINT step. The
statements that produce the output follow:

proc sort data=employee;
by idnumber;

run;

proc print data=employee;
run;

Output 43.1 SAS Log Generated by PROC SORT

NOTE: There were 6 observations read from the data set WORK.EMPLOYEE.
NOTE: The data set WORK.EMPLOYEE has 6 observations and 3 variables.
NOTE: PROCEDURE SORT used:

real time 0.01 seconds
cpu time 0.01 seconds

Output 43.2 Observations Sorted by the Values of One Variable

The SAS System 1

Obs Name IDnumber

1 Belloit 1988
2 Wesley 2092
3 Lemeux 4210
4 Arnsbarger 5466
5 Pierce 5779
6 Capshaw 7338

The following output shows the results of a more complicated sort by three variables.
The businesses in this example are sorted by town, then by debt from highest amount
to lowest amount, then by account number. For an explanation of the program that
produces this output, see Example 2 on page 1019.



The SORT Procedure � PROC SORT Statement 1005

Output 43.3 Observations Sorted by the Values of Three Variables

Customers with Past-Due Accounts 1
Listed by Town, Amount, Account Number

Account
Obs Company Town Debt Number

1 Paul’s Pizza Apex 83.00 1019
2 Peter’s Auto Parts Apex 65.79 7288
3 Watson Tabor Travel Apex 37.95 3131
4 Tina’s Pet Shop Apex 37.95 5108
5 Apex Catering Apex 37.95 9923
6 Deluxe Hardware Garner 467.12 8941
7 Boyd & Sons Accounting Garner 312.49 4762
8 World Wide Electronics Garner 119.95 1122
9 Elway Piano and Organ Garner 65.79 5217

10 Ice Cream Delight Holly Springs 299.98 2310
11 Tim’s Burger Stand Holly Springs 119.95 6335
12 Strickland Industries Morrisville 657.22 1675
13 Pauline’s Antiques Morrisville 302.05 9112
14 Bob’s Beds Morrisville 119.95 4998

Syntax: SORT Procedure
Requirements: BY statement
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 57 for
details. You can also use any global statements. See “Global Statements” on page 18 for
a list.
See: SORT Procedure in the documentation for your operating environment.

PROC SORT <collating-sequence-option> <other option(s)>;
BY <DESCENDING> variable-1 <…<DESCENDING> variable-n>;

PROC SORT Statement

PROC SORT <collating-sequence-option> <other option(s)>;

To do this Use this option

Specify the collating sequence

Specify ASCII ASCII

Specify EBCDIC EBCDIC



1006 PROC SORT Statement � Chapter 43

To do this Use this option

Specify Danish DANISH

Specify Finnish FINNISH

Specify Norwegian NORWEGIAN

Specify Swedish SWEDISH

Specify a customized sequence NATIONAL

Specify any of these collating sequences: ASCII,
EBCDIC, DANISH, FINNISH, ITALIAN,
NORWEGIAN, SPANISH, SWEDISH

SORTSEQ=

Specify the input data set DATA=

Sort a SAS data set without changing the created and
modified dates

DATECOPY

Create output data sets

Specifies the output data set OUT=

Specifies the output data set to which duplicate
observations are written

DUPOUT=

Specify the output order

Reverse the collation order for character
variables

REVERSE

Maintain relative order within BY groups EQUALS

Do not maintain relative order within BY groups NOEQUALS

Eliminate duplicate observations

Delete observations with duplicate BY values NODUPKEY

Delete duplicate observations NODUPRECS

Delete the input data set before the replacement
output data set is populated

OVERWRITE

Specify the available memory SORTSIZE=

Force redundant sorting FORCE

Reduce temporary disk usage TAGSORT

Override SAS system option THREADS

Enable multi-threaded sorting THREADS

Prevent multi-threaded sorting NOTHREADS

Options
Options can include one collating-sequence-option and multiple other options. The

order of the two types of options does not matter and both types are not necessary in
the same PROC SORT step.



The SORT Procedure � PROC SORT Statement 1007

Collating-Sequence-Options

Operating Environment Information: For information about behavior specific to
your operating environment for the DANISH, FINNISH, NORWEGIAN, or
SWEDISH collating-sequence-option, see the SAS documentation for your operating
environment. �

Restriction: You can specify only one collating-sequence-option in a PROC SORT
step.

ASCII
sorts character variables using the ASCII collating sequence. You need this option
only when you sort by ASCII on a system where EBCDIC is the native collating
sequence.
See also: “Sorting Orders for Character Variables” on page 1014

DANISH
NORWEGIAN

sorts characters according to the Danish and Norwegian national standard.
The Danish and Norwegian collating sequence is shown in Figure 43.1 on page

1008.

EBCDIC
sorts character variables using the EBCDIC collating sequence. You need this option
only when you sort by EBCDIC on a system where ASCII is the native collating
sequence.
See also: “Sorting Orders for Character Variables” on page 1014

FINNISH
SWEDISH

sorts characters according to the Finnish and Swedish national standard. The
Finnish and Swedish collating sequence is shown in Figure 43.1 on page 1008.

NATIONAL
sorts character variables using an alternate collating sequence, as defined by your
installation, to reflect a country’s National Use Differences. To use this option, your
site must have a customized national sort sequence defined. Check with the SAS
Installation Representative at your site to determine if a customized national sort
sequence is available.

NORWEGIAN
See DANISH.

SORTSEQ=collating-sequence
specifies the collating sequence. The value of collating-sequence can be any one of the
collating-sequence-options in the PROC SORT statement, or the value can be the
name of a translation table, either a default translation table or one that you have
created in the TRANTAB procedure. For an example of using PROC TRANTAB and
PROC SORT with SORTSEQ=, see Using Different Translation Tables for Sorting in
SAS National Language Support (NLS): User’s Guide. The available translation
tables are

Danish

Finnish
Italian

Norwegian
Spanish



1008 PROC SORT Statement � Chapter 43

Swedish

The following figure shows how the alphanumeric characters in each language will
sort.

Figure 43.1 National Collating Sequences of Alphanumeric Characters

CAUTION:
If you use a host sort utility to sort your data, then specifying the SORTSEQ= option
might corrupt the character BY variables. For more information, see the PROC SORT
documentation for your operating environment. �

SWEDISH
See FINNISH.

Other Options

DATA=SAS-data-set
identifies the input SAS data set.
Main discussion: “Input Data Sets” on page 19

DATECOPY
copies the SAS internal date and time when the SAS data set was created and the
date and time when it was last modified prior to the sort to the resulting sorted data
set. Note that the operating environment date and time are not preserved.
Restriction: DATECOPY can be used only when the resulting data set uses the V8

or V9 engine.
Tip: You can alter the file creation date and time with the DTC= option in the

MODIFY statement in PROC DATASETS. For more information, see “MODIFY
Statement” on page 348.

DUPOUT= SAS-data-set
specifies the output data set to which duplicate observations are written.

EQUALS | NOEQUALS
specifies the order of the observations in the output data set. For observations with
identical BY-variable values, EQUALS maintains the relative order of the
observations within the input data set in the output data set. NOEQUALS does not
necessarily preserve this order in the output data set.
Default: EQUALS
Interaction: When you use NODUPRECS or NODUPKEY to remove observations

in the output data set, the choice of EQUALS or NOEQUALS can affect which
observations are removed.



The SORT Procedure � PROC SORT Statement 1009

Interaction: The EQUALS | NOEQUALS procedure option overrides the default
sort stability behavior that is established with the SORTEQUALS |
NOSORTEQUALS system option.

Interaction: The EQUALS option is supported by the multi-threaded sort.
However, I/O performance may be reduced when using the EQUALS option with
the multi-threaded sort because partitioned data sets will be processed as if they
are non-partitioned data sets.

Interaction: The NOEQUALS option is supported by the multi-threaded sort. The
order of observations within BY groups that are returned by the multi-threaded
sort might not be consistent between runs. Therefore, using the NOEQUALS
option can produce inconsistent results in your output data sets.

Tip: Using NOEQUALS can save CPU time and memory.

FORCE
sorts and replaces an indexed data set when the OUT= option is not specified.
Without the FORCE option, PROC SORT does not sort and replace an indexed data
set because sorting destroys user-created indexes for the data set. When you specify
FORCE, PROC SORT sorts and replaces the data set and destroys all user-created
indexes for the data set. Indexes that were created or required by integrity
constraints are preserved.

Tip: PROC SORT checks for the sort information before it sorts a data set so that
data is not re-sorted unnecessarily. By default, PROC SORT does not sort a data
set if the sort information matches the requested sort. You can use FORCE to
override this behavior. You might need to use FORCE if SAS cannot verify the sort
specification in the data set option SORTEDBY=. For more information about
SORTEDBY=, see the chapter on SAS data set options in SAS Language
Reference: Dictionary.

Restriction: If you use PROC SORT with the FORCE option on data sets that were
created with the Version 5 compatibility engine or with a sequential engine such
as a tape format engine, you must also specify the OUT= option.

NODUPKEY
checks for and eliminates observations with duplicate BY values. If you specify this
option, then PROC SORT compares all BY values for each observation to those for
the previous observation that is written to the output data set. If an exact match is
found, then the observation is not written to the output data set.

Operating Environment Information: If you use the VMS operating environment
sort, then the observation that is written to the output data set is not always the
first observation of the BY group. �

Note: See NODUPRECS for information about eliminating duplicate
observations. �

Interaction: When you are removing observations with duplicate BY values with
NODUPKEY, the choice of EQUALS or NOEQUALS can have an effect on which
observations are removed.

Tip: Use the EQUALS option with the NODUPKEY option for consistent results in
your output data sets.

Featured in: Example 4 on page 1023

NODUPRECS
checks for and eliminates duplicate observations. If you specify this option, then
PROC SORT compares all variable values for each observation to those for the
previous observation that was written to the output data set. If an exact match is
found, then the observation is not written to the output data set.



1010 PROC SORT Statement � Chapter 43

Note: See NODUPKEY for information about eliminating observations with
duplicate BY values. �
Alias : NODUP
Interaction: When you are removing consecutive duplicate observations in the

output data set with NODUPRECS, the choice of EQUALS or NOEQUALS can
have an effect on which observations are removed.

Tip: Use the EQUALS option with the NODUPRECS option for consistent results
in your output data sets.

Interaction: The action of NODUPRECS is directly related to the setting of the
SORTDUP= system option. When SORTDUP= is set to LOGICAL, NODUPRECS
removes duplicate observations based on the examination of the variables that
remain after a DROP or KEEP operation on the input data set. Setting
SORTDUP=LOGICAL increases the number of duplicate observations that are
removed, because it eliminates variables before observation comparisons take
place. Also, setting SORTDUP=LOGICAL can improve performance, because
dropping variables before sorting reduces the amount of memory required to
perform the sort. When SORTDUP= is set to PHYSICAL, NODUPRECS examines
all variables in the data set, regardless of whether they have been kept or
dropped. For more information about SORTDUP=, see the chapter on SAS system
options in SAS Language Reference: Dictionary.

Tip: Because NODUPRECS checks only consecutive observations, some
nonconsecutive duplicate observations might remain in the output data set. You
can remove all duplicates with this option by sorting on all variables.

NOEQUALS
See EQUALS | NOEQUALS.

NOTHREADS
See THREADS|NOTHREADS.

OUT=SAS-data-set
names the output data set. If SAS-data-set does not exist, then PROC SORT creates
it.

CAUTION:
Use care when you use PROC SORT without OUT=. Without OUT=, data could be lost
if your system failed during execution of PROC SORT. �

Default: Without OUT=, PROC SORT overwrites the original data set.
Tip : You can use data set options with OUT=.
Featured in: Example 1 on page 1017

OVERWRITE
enables the input data set to be deleted before the replacement output data set is
populated with observations.
Restriction: The OVERWRITE option has no effect if you also specify the

TAGSORT option. You cannot overwrite the input data set because TAGSORT
must reread the input data set while populating the output data set.

Restriction: The OVERWRITE option is supported by the SAS sort and SAS
multi-threaded sort only. The option has no effect if you are using a host sort.

Tip: Using the OVERWRITE option can reduce disk space requirements.

CAUTION:
Use the OVERWRITE option only with a data set that is backed up or with a data set that
you can reconstruct. Because the input data set is deleted, data will be lost if a
failure occurs while the output data set is being written. �



The SORT Procedure � PROC SORT Statement 1011

REVERSE
sorts character variables using a collating sequence that is reversed from the normal
collating sequence.

Operating Environment Information: For information about the normal collating
sequence for your operating environment, see “EBCDIC Order” on page 1014, “ASCII
Order” on page 1014, and the SAS documentation for your operating environment. �

Interaction: Using REVERSE with the DESCENDING option in the BY statement
restores the sequence to the normal order.

Restriction: The REVERSE option cannot be used with a collating-sequence-option.
You can specify either a collating-sequence-option or the REVERSE option in a
PROC SORT, but you cannot specify both.

See also: The DESCENDING option in the BY statement. The difference is that the
DESCENDING option can be used with both character and numeric variables.

SORTSIZE=memory-specification
specifies the maximum amount of memory that is available to PROC SORT. Valid
values for memory-specification are as follows:

MAX
specifies that all available memory can be used.

n
specifies the amount of memory in bytes, where n is a real number.

nK
specifies the amount of memory in kilobytes, where n is a real number.

nM
specifies the amount of memory in megabytes, where n is a real number.

nG
specifies the amount of memory in gigabytes, where n is a real number.
Specifying the SORTSIZE= option in the PROC SORT statement temporarily

overrides the SAS system option SORTSIZE=. For more information about
SORTSIZE=, see the chapter on SAS system options in SAS Language Reference:
Dictionary.

Operating Environment Information: Some system sort utilities may treat this
option differently. Refer to the SAS documentation for your operating environment. �

Default: the value of the SAS system option SORTSIZE=
Tip: Setting the SORTSIZE= option in the PROC SORT statement to MAX or 0, or

not setting the SORTSIZE= option, limits the PROC SORT to the available
physical memory based on the settings of the SAS system options that relate to
memory and information regarding available memory that is gathered from the
operating environment.

Operating Environment Information: For information about the SAS system
options that relate to memory, see the SAS documentation for your operating
environment. �

TAGSORT
stores only the BY variables and the observation numbers in temporary files. The BY
variables and the observation numbers are called tags. At the completion of the
sorting process, PROC SORT uses the tags to retrieve records from the input data set
in sorted order.
Restriction: The TAGSORT option is not compatible with the OVERWRITE option.
Interaction: The TAGSORT option is not supported by the multi-threaded sort.



1012 BY Statement � Chapter 43

Tip: When the total length of BY variables is small compared with the record
length, TAGSORT reduces temporary disk usage considerably. However,
processing time may be much higher.

THREADS | NOTHREADS
enables or prevents the activation of multi-threaded sorting.

Default: the value of the SAS system option THREADS

Interaction: THREADS|NOTHREADS overrides the value of the SAS system
option THREADS. For more information about THREADS, see the chapter on SAS
system options in SAS Language Reference: Dictionary.

Interaction: The THREADS option is honored if the value of the SAS system option
CPUCOUNT is greater than 1.

Interaction: The TAGSORT option is not supported by the multi-threaded sort.

Note: If THREADS is specified either as a SAS system option or in PROC SORT,
and another program has the input SAS data set open for reading, writing, or
updating using the SPDE engine, then the procedure might fail. In this case,
PROC SORT stops processing and writes a message to the SAS log.

See also: “Multi-threaded Sorting” on page 1013

BY Statement

Specifies the sorting variables

Featured in: Example 1 on page 1017, Example 2 on page 1019, and Example 4 on page
1023

BY <DESCENDING> variable-1 <…<DESCENDING> variable-n>;

Required Arguments

variable
specifies the variable by which PROC SORT sorts the observations. PROC SORT
first arranges the data set by the values in ascending order, by default, of the first
BY variable. PROC SORT then arranges any observations that have the same value
of the first BY variable by the values of the second BY variable in ascending order.
This sorting continues for every specified BY variable.

Option

DESCENDING
reverses the sort order for the variable that immediately follows in the statement so
that observations are sorted from the largest value to the smallest value.

Featured in: Example 2 on page 1019



The SORT Procedure � Sorting Orders for Numeric Variables 1013

Concepts: SORT Procedure

Multi-threaded Sorting
The SAS system option THREADS activates multi-threaded sorting, which is new

with SAS System 9. Multi-threaded sorting achieves a degree of parallelism in the
sorting operations. This parallelism is intended to reduce the real-time to completion
for a given operation at the possible cost of additional CPU resources. For more
information, see the section on “Support for Parallel Processing” in SAS Language
Reference: Concepts.

The performance of the multi-threaded sort will be affected by the value of the SAS
system option CPUCOUNT=. CPUCOUNT= suggests how many system CPUs are
available for use by the multi-threaded sort.

The multi-threaded sort supports concurrent input from the partitions of a
partitioned data set.

Note: These partitioned data sets should not be confused with partitioned data sets
on z/OS. �

Operating Environment Information: For information about the support of partitioned
data sets in your operating environment, see the SAS documentation for your operating
environment. �

For more information about THREADS and CPUCOUNT=, see the chapter on SAS
system options in SAS Language Reference: Dictionary.

Using PROC SORT with a DBMS
When you use a DBMS data source, the observation ordering that is produced by

PROC SORT depends on whether the DBMS or SAS performs the sorting. If you use
the BEST value of the SAS system option SORTPGM=, then either the DBMS or SAS
will perform the sort. If the DBMS performs the sort, then the configuration and
characteristics of the DBMS sorting program will affect the resulting data order. Most
database management systems do not guarantee sort stability, and the sort might be
performed by the DBMS regardless of the state of the SORTEQUALS/
NOSORTEQUALS system option and EQUALS/NOEQUALS procedure option.

If you set the SAS system option SORTPGM= to SAS, then unordered data is
delivered from the DBMS to SAS and SAS performs the sorting. However, consistency
in the delivery order of observations from a DBMS is not guaranteed. Therefore, even
though SAS can perform a stable sort on the DBMS data, SAS cannot guarantee that
the ordering of observations within output BY groups will be the same, run after run.
To achieve consistency in the ordering of observations within BY groups, first populate
a SAS data set with the DBMS data, then use the EQUALS or SORTEQUALS option to
perform a stable sort.

Sorting Orders for Numeric Variables
For numeric variables, the smallest-to-largest comparison sequence is
1 SAS missing values (shown as a period or special missing value)
2 negative numeric values



1014 Sorting Orders for Character Variables � Chapter 43

3 zero
4 positive numeric values.

Sorting Orders for Character Variables

Default Collating Sequence
By default, PROC SORT uses either the EBCDIC or the ASCII collating sequence

when it compares character values, depending on the environment under which the
procedure is running.

EBCDIC Order
The z/OS operating environment uses the EBCDIC collating sequence.
The sorting order of the English-language EBCDIC sequence is

blank . < ( + | & ! $ * ); - / , % _ > ?: # @ ’= "

a b c d e f g h i j k l m n o p q r ~ s t u v w x y z

{ A B C D E F G H I } J K L M N O P Q R \S T

U V W X Y Z

0 1 2 3 4 5 6 7 8 9

The main features of the EBCDIC sequence are that lowercase letters are sorted
before uppercase letters, and uppercase letters are sorted before digits. Note also that
some special characters interrupt the alphabetic sequences. The blank is the smallest
character that you can display.

ASCII Order
The operating environments that use the ASCII collating sequence include
� UNIX and its derivatives
� OpenVMS
� Windows.

From the smallest to the largest character that you can display, the English-language
ASCII sequence is

blank ! " # $ % & ’( )* + , - . /0 1 2 3 4 5 6 7 8 9 : ; < = > ? @

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z[ \] _ˆ

a b c d e f g h i j k l m n o p q r s t u v w x y z { } ~

The main features of the ASCII sequence are that digits are sorted before uppercase
letters, and uppercase letters are sorted before lowercase letters. The blank is the
smallest character that you can display.



The SORT Procedure � Integrity Constraints: SORT Procedure 1015

Specifying Sorting Orders for Character Variables
The options EBCDIC, ASCII, NATIONAL, DANISH, SWEDISH, and REVERSE

specify collating sequences that are stored in the HOST catalog.
If you want to provide your own collating sequences or change a collating sequence

provided for you, then use the TRANTAB procedure to create or modify translation
tables. For complete details, see the TRANTAB procedure in SAS National Language
Support (NLS): User’s Guide. When you create your own translation tables, they are
stored in your PROFILE catalog, and they override any translation tables that have the
same name in the HOST catalog.

Note: System managers can modify the HOST catalog by copying newly created
tables from the PROFILE catalog to the HOST catalog. Then all users can access the
new or modified translation table. �

Stored Sort Information
PROC SORT records the BY variables, collating sequence, and character set that it

uses to sort the data set. This information is stored with the data set to help avoid
unnecessary sorts.

Before PROC SORT sorts a data set, it checks the stored sort information. If you try
to sort a data set the way that it is currently sorted, then PROC SORT does not
perform the sort and writes a message to the log to that effect. To override this
behavior, use the FORCE option. If you try to sort a data set the way that it is
currently sorted and you specify an OUT= data set, then PROC SORT simply makes a
copy of the DATA= data set.

To override the sort information that PROC SORT stores, use the _NULL_ value
with the SORTEDBY= data set option. For more information about SORTEDBY=, see
the chapter on SAS data set options in SAS Language Reference: Dictionary.

If you want to change the sort information for an existing data set, then use the
SORTEDBY= data set option in the MODIFY statement in the DATASETS procedure.
For more information, see “MODIFY Statement” on page 348.

To access the sort information that is stored with a data set, use the CONTENTS
statement in PROC DATASETS. For more information, see “CONTENTS Statement” on
page 323.

Integrity Constraints: SORT Procedure
Sorting the input data set and replacing it with the sorted data set preserves both

referential and general integrity constraints, as well as any indexes that they may
require. A sort that creates a new data set will not preserve any integrity constraints or
indexes. For more information about implicit replacement, explicit replacement, and no
replacement with and without the OUT= option, see “Output Data Set” on page 1016.
For more information about integrity constraints, see the chapter on SAS data files in
SAS Language Reference: Concepts.



1016 Results: SORT Procedure � Chapter 43

Results: SORT Procedure

Procedure Output
PROC SORT produces only an output data set. To see the output data set, you can

use PROC PRINT, PROC REPORT, or another of the many available methods of
printing in SAS.

Output Data Set
Without the OUT= option, PROC SORT replaces the original data set with the sorted

observations when the procedure executes without errors. When you specify the OUT=
option using a new data set name, PROC SORT creates a new data set that contains
the sorted observations.

To do this Use this statement

implicit replacement of input data set proc sort data=names;

explicit replacement of input data set proc sort data=names out=names;

no replacement of input data set proc sort data=names out=namesbyid;

With all three replacement options (implicit replacement, explicit replacement, and no
replacement) there must be at least enough space in the output data library for a copy
of the original data set.

You can also sort compressed data sets. If you specify a compressed data set as the
input data set and omit the OUT= option, then the input data set is sorted and remains
compressed. If you specify an OUT= data set, then the resulting data set is compressed
only if you choose a compression method with the COMPRESS= data set option. For
more information about COMPRESS=, see the chapter on SAS data set options in SAS
Language Reference: Dictionary.

Note: If the SAS system option NOREPLACE is in effect, then you cannot replace
an original permanent data set with a sorted version. You must either use the OUT=
option or specify the SAS system option REPLACE in an OPTIONS statement. The
SAS system option NOREPLACE does not affect temporary SAS data sets. �

Examples: SORT Procedure



The SORT Procedure � Program 1017

Example 1: Sorting by the Values of Multiple Variables

Procedure features:
PROC SORT statement option:

OUT=
BY statement

Other features:
PROC PRINT

This example
� sorts the observations by the values of two variables
� creates an output data set for the sorted observations
� prints the results.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the input data set ACCOUNT. ACCOUNT contains the name of each business that
owes money, the amount of money that it owes on its account, the account number, and the town
where the business is located.

data account;
input Company $ 1-22 Debt 25-30 AccountNumber 33-36

Town $ 39-51;
datalines;

Paul’s Pizza 83.00 1019 Apex
World Wide Electronics 119.95 1122 Garner
Strickland Industries 657.22 1675 Morrisville
Ice Cream Delight 299.98 2310 Holly Springs
Watson Tabor Travel 37.95 3131 Apex
Boyd & Sons Accounting 312.49 4762 Garner
Bob’s Beds 119.95 4998 Morrisville
Tina’s Pet Shop 37.95 5108 Apex
Elway Piano and Organ 65.79 5217 Garner
Tim’s Burger Stand 119.95 6335 Holly Springs
Peter’s Auto Parts 65.79 7288 Apex
Deluxe Hardware 467.12 8941 Garner
Pauline’s Antiques 302.05 9112 Morrisville
Apex Catering 37.95 9923 Apex
;



1018 Output � Chapter 43

Create the output data set BYTOWN. OUT= creates a new data set for the sorted
observations.

proc sort data=account out=bytown;

Sort by two variables. The BY statement specifies that the observations should be first
ordered alphabetically by town and then by company.

by town company;
run;

Print the output data set BYTOWN. PROC PRINT prints the data set BYTOWN.

proc print data=bytown;

Specify the variables to print. The VAR statement specifies the variables to print and their
column order in the output.

var company town debt accountnumber;

Specify the titles.

title ’Customers with Past-Due Accounts’;
title2 ’Listed Alphabetically within Town’;

run;

Output

Customers with Past-Due Accounts 1
Listed Alphabetically within Town

Account
Obs Company Town Debt Number

1 Apex Catering Apex 37.95 9923
2 Paul’s Pizza Apex 83.00 1019
3 Peter’s Auto Parts Apex 65.79 7288
4 Tina’s Pet Shop Apex 37.95 5108
5 Watson Tabor Travel Apex 37.95 3131
6 Boyd & Sons Accounting Garner 312.49 4762
7 Deluxe Hardware Garner 467.12 8941
8 Elway Piano and Organ Garner 65.79 5217
9 World Wide Electronics Garner 119.95 1122

10 Ice Cream Delight Holly Springs 299.98 2310
11 Tim’s Burger Stand Holly Springs 119.95 6335
12 Bob’s Beds Morrisville 119.95 4998
13 Pauline’s Antiques Morrisville 302.05 9112
14 Strickland Industries Morrisville 657.22 1675



The SORT Procedure � Program 1019

Example 2: Sorting in Descending Order

Procedure features:
This example BY statement option:

DESCENDING

Other features
PROC PRINT

Data set: ACCOUNT on page 1017

� sorts the observations by the values of three variables
� sorts one of the variables in descending order

� prints the results.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the output data set SORTED. OUT= creates a new data set for the sorted
observations.

proc sort data=account out=sorted;

Sort by three variables with one in descending order. The BY statement specifies that
observations should be first ordered alphabetically by town, then by descending value of amount
owed, then by ascending value of the account number.

by town descending debt accountnumber;
run;

Print the output data set SORTED. PROC PRINT prints the data set SORTED.

proc print data=sorted;

Specify the variables to print. The VAR statement specifies the variables to print and their
column order in the output.

var company town debt accountnumber;



1020 Output � Chapter 43

Specify the titles.

title ’Customers with Past-Due Accounts’;
title2 ’Listed by Town, Amount, Account Number’;

run;

Output

Note that sorting last by AccountNumber puts the businesses in Apex with a debt of $37.95 in
order of account number.

Customers with Past-Due Accounts 1
Listed by Town, Amount, Account Number

Account
Obs Company Town Debt Number

1 Paul’s Pizza Apex 83.00 1019
2 Peter’s Auto Parts Apex 65.79 7288
3 Watson Tabor Travel Apex 37.95 3131
4 Tina’s Pet Shop Apex 37.95 5108
5 Apex Catering Apex 37.95 9923
6 Deluxe Hardware Garner 467.12 8941
7 Boyd & Sons Accounting Garner 312.49 4762
8 World Wide Electronics Garner 119.95 1122
9 Elway Piano and Organ Garner 65.79 5217

10 Ice Cream Delight Holly Springs 299.98 2310
11 Tim’s Burger Stand Holly Springs 119.95 6335
12 Strickland Industries Morrisville 657.22 1675
13 Pauline’s Antiques Morrisville 302.05 9112
14 Bob’s Beds Morrisville 119.95 4998

Example 3: Maintaining the Relative Order of Observations in Each BY Group

Procedure features:
PROC SORT statement option:

EQUALS|NOEQUALS

Other features: PROC PRINT

This example

� sorts the observations by the value of the first variable

� maintains the relative order with the EQUALS option

� does not maintain the relative order with the NOEQUALS option.



The SORT Procedure � Program 1021

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the input data set INSURANCE. INSURANCE contains the number of years worked
by all insured employees and their insurance ids.

data insurance;
input YearsWorked 1 InsuranceID 3-5;
datalines;

5 421
5 336
1 209
1 564
3 711
3 343
4 212
4 616
;

Create the output data set BYYEARS1 with the EQUALS option. OUT= creates a new
data set for the sorted observations. The EQUALS option maintains the order of the
observations relative to each other.

proc sort data=insurance out=byyears1 equals;

Sort by the first variable. The BY statement specifies that the observations should be ordered
numerically by the number of years worked.

by yearsworked;
run;

Print the output data set BYYEARS1. PROC PRINT prints the data set BYYEARS1.

proc print data=byyears1;

Specify the variables to print. The VAR statement specifies the variables to print and their
column order in the output.

var yearsworked insuranceid;



1022 Program � Chapter 43

Specify the title.

title ’Sort with EQUALS’;
run;

Create the output data set BYYEARS2. OUT= creates a new data set for the sorted
observations. The NOEQUALS option will not maintain the order of the observations relative to
each other.

proc sort data=insurance out=byyears2 noequals;

Sort by the first variable. The BY statement specifies that the observations should be ordered
numerically by the number of years worked.

by yearsworked;
run;

Print the output data set BYYEARS2. PROC PRINT prints the data set BYYEARS2.

proc print data=byyears2;

Specify the variables to print. The VAR statement specifies the variables to print and their
column order in the output.

var yearsworked insuranceid;

Specify the title.

title ’Sort with NOEQUALS’;
run;



The SORT Procedure � Example 4: Retaining the First Observation of Each BY Group 1023

Output

Note that sorting with the EQUALS option versus sorting with the NOEQUALS option causes a
different sort order for the observations where YearsWorked=3.

Sort with EQUALS 1

Years Insurance
Obs Worked ID

1 1 209
2 1 564
3 3 711
4 3 343
5 4 212
6 4 616
7 5 421
8 5 336

Sort with NOEQUALS 2

Years Insurance
Obs Worked ID

1 1 209
2 1 564
3 3 343
4 3 711
5 4 212
6 4 616
7 5 421
8 5 336

Example 4: Retaining the First Observation of Each BY Group
Procedure features:

PROC SORT statement option:
NODUPKEY

BY statement
Other features:

PROC PRINT
Data set: ACCOUNT on page 1017
Interaction: The EQUALS option, which is the default, must be in effect to ensure that
the first observation for each BY group is the one that is retained by the NODUPKEY
option. If the NOEQUALS option has been specified, then one observation for each BY
group will still be retained by the NODUPKEY option, but not necessarily the first
observation.

In this example, PROC SORT creates an output data set that contains only the first
observation of each BY group. The NODUPKEY option prevents an observation from



1024 Program � Chapter 43

being written to the output data set when its BY value is identical to the BY value of
the last observation written to the output data set. The resulting report contains one
observation for each town where the businesses are located.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the output data set TOWNS but include only the first observation of each BY
group. NODUPKEY writes only the first observation of each BY group to the new data set
TOWNS.

Operating Environment Information: If you use the VMS operating environment sort,
then the observation that is written to the output data set is not always the first
observation of the BY group. �

proc sort data=account out=towns nodupkey;

Sort by one variable. The BY statement specifies that observations should be ordered by town.

by town;
run;

Print the output data set TOWNS. PROC PRINT prints the data set TOWNS.

proc print data=towns;

Specify the variables to print. The VAR statement specifies the variables to print and their
column order in the output.

var town company debt accountnumber;

Specify the title.

title ’Towns of Customers with Past-Due Accounts’;
run;



The SORT Procedure � Output 1025

Output

The output data set contains only four observations, one for each town in the input data set.

Towns of Customers with Past-Due Accounts 1

Account
Obs Town Company Debt Number

1 Apex Paul’s Pizza 83.00 1019
2 Garner World Wide Electronics 119.95 1122
3 Holly Springs Ice Cream Delight 299.98 2310
4 Morrisville Strickland Industries 657.22 1675



1026



1027

C H A P T E R

44
The SQL Procedure

Overview: SQL Procedure 1029
What Is the SQL Procedure? 1029

What Are PROC SQL Tables? 1029

What Are Views? 1029

SQL Procedure Coding Conventions 1030

Syntax: SQL Procedure 1031
PROC SQL Statement 1033

ALTER TABLE Statement 1038

CONNECT Statement 1042

CREATE INDEX Statement 1043

CREATE TABLE Statement 1045

CREATE VIEW Statement 1049
DELETE Statement 1051

DESCRIBE Statement 1052

DISCONNECT Statement 1053

DROP Statement 1054

EXECUTE Statement 1055
INSERT Statement 1056

RESET Statement 1058

SELECT Statement 1058

UPDATE Statement 1069

VALIDATE Statement 1070
SQL Procedure Component Dictionary 1071

BETWEEN condition 1071

BTRIM function 1072

CALCULATED 1073

CASE expression 1073

COALESCE Function 1075
column-definition 1075

column-modifier 1076

column-name 1078

CONNECTION TO 1079

CONTAINS condition 1079
EXISTS condition 1080

IN condition 1080

IS condition 1081

joined-table 1082

LIKE condition 1091
LOWER function 1093

query-expression 1093

sql-expression 1099



1028 Contents � Chapter 44

SUBSTRING function 1106
summary-function 1107

table-expression 1113

UPPER function 1114

Concepts: SQL Procedure 1114

Using SAS Data Set Options with PROC SQL 1114
Connecting to a DBMS Using the SQL Procedure Pass-Through Facility 1115

What Is the Pass-Through Facility? 1115

Return Codes 1115

Connecting to a DBMS Using the LIBNAME Statement 1115

Using the DICTIONARY Tables 1116

What Are DICTIONARY Tables? 1116
Retrieving Information about DICTIONARY Tables and SASHELP Views 1117

Using DICTIONARY Tables 1118

DICTIONARY Tables and Performance 1118

Using Macro Variables Set by PROC SQL 1119

Updating PROC SQL and SAS/ACCESS Views 1121
PROC SQL and the ANSI Standard 1122

Compliance 1122

SQL Procedure Enhancements 1122

Reserved Words 1122

Column Modifiers 1123
Alternate Collating Sequences 1123

ORDER BY Clause in a View Definition 1123

In-Line Views 1123

Outer Joins 1123

Arithmetic Operators 1123

Orthogonal Expressions 1123
Set Operators 1123

Statistical Functions 1124

SAS DATA Step Functions 1124

SQL Procedure Omissions 1124

COMMIT Statement 1124
ROLLBACK Statement 1124

Identifiers and Naming Conventions 1124

Granting User Privileges 1124

Three-Valued Logic 1124

Embedded SQL 1125
Examples: SQL Procedure 1125

Example 1: Creating a Table and Inserting Data into It 1125

Example 2: Creating a Table from a Query’s Result 1127

Example 3: Updating Data in a PROC SQL Table 1129

Example 4: Joining Two Tables 1131

Example 5: Combining Two Tables 1134
Example 6: Reporting from DICTIONARY Tables 1136

Example 7: Performing an Outer Join 1138

Example 8: Creating a View from a Query’s Result 1143

Example 9: Joining Three Tables 1145

Example 10: Querying an In-Line View 1148
Example 11: Retrieving Values with the SOUNDS-LIKE Operator 1150

Example 12: Joining Two Tables and Calculating a New Value 1152

Example 13: Producing All the Possible Combinations of the Values in a Column 1154

Example 14: Matching Case Rows and Control Rows 1158

Example 15: Counting Missing Values with a SAS Macro 1160



The SQL Procedure � What Are Views? 1029

Overview: SQL Procedure

What Is the SQL Procedure?
The SQL procedure implements Structured Query Language (SQL) for SAS. SQL is a

standardized, widely used language that retrieves data from and updates data in tables
and the views that are based on those tables.

The SAS SQL procedure enables you to
� retrieve and manipulate data that is stored in tables or views.

� create tables, views, and indexes on columns in tables.
� create SAS macro variables that contain values from rows in a query’s result.
� add or modify the data values in a table’s columns or insert and delete rows. You

can also modify the table itself by adding, modifying, or dropping columns.
� send DBMS-specific SQL statements to a database management system (DBMS)

and retrieve DBMS data.

The following figure summarizes the variety of source material that you can use with
PROC SQL and what the procedure can produce.

Figure 44.1 PROC SQL Input and Output

PROC SQL tables
(SAS data files)

SAS data views
(PROC SQL views)
(DATA step views)
(SAS/ACCESS views)

DBMS tables

DBMS tables

reports

PROC SQL views

PROC
SQL

PROC SQL tables
(SAS data files)

macro variables

What Are PROC SQL Tables?
A PROC SQL table is synonymous with a SAS data file and has a member type of

DATA. You can use PROC SQL tables as input into DATA steps and procedures.
You create PROC SQL tables from SAS data files, from SAS data views, or from

DBMS tables by using PROC SQL’s Pass-Through Facility or the SAS/ACCESS
LIBNAME statement. The Pass-Through Facility is described in “Connecting to a
DBMS Using the SQL Procedure Pass-Through Facility” on page 1115. The
SAS/ACCESS LIBNAME statement is described in “Connecting to a DBMS Using the
LIBNAME Statement” on page 1115.

In PROC SQL terminology, a row in a table is the same as an observation in a SAS
data file. A column is the same as a variable.

What Are Views?
A SAS data view defines a virtual data set that is named and stored for later use. A

view contains no data but describes or defines data that is stored elsewhere. There are
three types of SAS data views:



1030 SQL Procedure Coding Conventions � Chapter 44

� PROC SQL views
� SAS/ACCESS views
� DATA step views.

You can refer to views in queries as if they were tables. The view derives its data
from the tables or views that are listed in its FROM clause. The data that is accessed
by a view is a subset or superset of the data that is in its underlying table(s) or view(s).

A PROC SQL view is a SAS data set of type VIEW that is created by PROC SQL. A
PROC SQL view contains no data. It is a stored query expression that reads data
values from its underlying files, which can include SAS data files, SAS/ACCESS views,
DATA step views, other PROC SQL views, or DBMS data. When executed, a PROC
SQL view’s output can be a subset or superset of one or more underlying files.

SAS/ACCESS views and DATA step views are similar to PROC SQL views in that
they are both stored programs of member type VIEW. SAS/ACCESS views describe data
in DBMS tables from other software vendors. DATA step views are stored DATA step
programs.

Note: Starting in SAS System 9, PROC SQL views, the Pass-Through Facility, and
the SAS/ACCESS LIBNAME statement are the preferred ways to access relational
DBMS data; SAS/ACCESS views are no longer recommended. You can convert existing
SAS/ACCESS views to PROC SQL views by using the CV2VIEW procedure. See The
CV2VIEW Procedure in SAS/ACCESS for Relational Databases: Reference for more
information. �

You can update data through a PROC SQL or SAS/ACCESS view with certain
restrictions. See “Updating PROC SQL and SAS/ACCESS Views” on page 1121.

You can use all types of views as input to DATA steps and procedures.

Note: In this chapter, the term view collectively refers to PROC SQL views, DATA
step views, and SAS/ACCESS views, unless otherwise noted. �

Note: When the contents of an SQL view are processed (by a DATA step or a
procedure), the referenced data set must be opened to retrieve information about the
variables that is not stored in the view. If that data set has a libref associated with it
that is not defined in the current SAS code, then an error will result. You can avoid this
error by specifying a USING clause in the CREATE VIEW statement. See “CREATE
VIEW Statement” on page 1049 for details. �

SQL Procedure Coding Conventions
Because PROC SQL implements Structured Query Language, it works somewhat

differently from other base SAS procedures, as described here:
� When a PROC SQL statement is executed, PROC SQL continues to run until a

QUIT statement, a DATA step, or another SAS procedure is executed. Therefore,
you do not need to repeat the PROC SQL statement with each SQL statement.
You need to repeat the PROC SQL statement only if you execute a QUIT
statement, a DATA step, or another SAS procedure between SQL statements.

� SQL procedure statements are divided into clauses. For example, the most basic
SELECT statement contains the SELECT and FROM clauses. Items within
clauses are separated with commas in SQL, not with blanks as in other SAS code.
For example, if you list three columns in the SELECT clause, then the columns
are separated with commas.

� The SELECT statement, which is used to retrieve data, also automatically writes
the output data to the Output window unless you specify the NOPRINT option in
the PROC SQL statement. Therefore, you can display your output or send it to a
list file without specifying the PRINT procedure.



The SQL Procedure � Syntax: SQL Procedure 1031

� The ORDER BY clause sorts data by columns. In addition, tables do not need to
be presorted by a variable for use with PROC SQL. Therefore, you do not need to
use the SORT procedure with your PROC SQL programs.

� A PROC SQL statement runs when you submit it; you do not have to specify a
RUN statement. If you follow a PROC SQL statement with a RUN statement,
then SAS ignores the RUN statement and submits the statements as usual.

Syntax: SQL Procedure
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
ODS Table Name: SQL_Results
Reminder: You can use any global statements. See Chapter 2, “Fundamental Concepts
for Using Base SAS Procedures,” on page 15 for a list.
Reminder: You can use data set options any time a table name or view name is specified.
See “Using SAS Data Set Options with PROC SQL” on page 1114 for details.
Note:

Regular type indicates the name of a component that is described in “SQL Procedure
Component Dictionary” on page 1071.

view-name indicates a SAS data view of any type.

PROC SQL <option(s)>;
ALTER TABLE table-name

<ADD <CONSTRAINT> constraint-clause<, … constraint-clause>>
<ADD column-definition<, … column-definition>>
<DROP CONSTRAINT constraint-name <, … constraint-name>>
<DROP column<, … column>>
<DROP FOREIGN KEY constraint-name>
<DROP PRIMARY KEY>
<MODIFY column-definition<, … column-definition>>

;
CREATE <UNIQUE> INDEX index-name

ON table-name ( column <, … column>);
CREATE TABLE table-name

(column-specification<, …column-specification | constraint-specification>)
;
CREATE TABLE table-name LIKE table-name2;
CREATE TABLE table-name AS query-expression

<ORDER BY order-by-item<, … order-by-item>>;
CREATE VIEW proc-sql-view AS query-expression

<ORDER BY order-by-item<, … order-by-item>>
<USING libname-clause<, … libname-clause>> ;

DELETE
FROM table-name|proc-sql-view |sas/access-view <AS alias>

<WHERE sql-expression>;
DESCRIBE TABLEtable-name <, … table-name>;



1032 Syntax: SQL Procedure � Chapter 44

DESCRIBE VIEW proc-sql-view <, … proc-sql-view>;
DESCRIBE TABLE CONSTRAINTS table-name <, … table-name>;
DROP INDEX index-name <, … index-name>

FROM table-name;
DROP TABLE table-name <, … table-name>;
DROP VIEW view-name <, … view-name>;
INSERT INTO table-name|sas/access-view|proc-sql-view <(column<, … column>)>

SET column=sql-expression
<, … column=sql-expression>

<SET column=sql-expression
<, … column=sql-expression>>;

INSERT INTO table-name|sas/access-view|proc-sql-view <(column<, … column>)>
VALUES (value <, … value>)

<… VALUES (value <, … value>)>;
INSERT INTO table-name|sas/access-view|proc-sql-view

<(column<, …column>)> query-expression;
RESET <option(s)>;
SELECT <DISTINCT> object-item <, …object-item>

<INTO macro-variable-specification
<, … macro-variable-specification>>

FROM from-list
<WHERE sql-expression>
<GROUP BY group-by-item

<, … group-by-item>>
<HAVING sql-expression>
<ORDER BY order-by-item

<, … order-by-item>>;
UPDATE table-name|sas/access-view|proc-sql-view <AS alias>

SET column=sql-expression
<, … column=sql-expression>

<SET column=sql-expression
<, … column=sql-expression>>

<WHERE sql-expression>;
VALIDATE query-expression;

To connect to a DBMS and send it a DBMS-specific nonquery SQL statement, use
this form:

PROC SQL;
CONNECT TO dbms-name <AS alias>

<(connect-statement-argument-1=value <…
connect-statement-argument-n=value>)>
<(database-connection-argument-1=value <…
database-connection-argument-n=value>)>;

EXECUTE (dbms-SQL-statement)
BY dbms-name|alias;

<DISCONNECT FROM dbms-name|alias;>

<QUIT;>

To connect to a DBMS and query the DBMS data, use this form:



The SQL Procedure � PROC SQL Statement 1033

PROC SQL;
CONNECT TO dbms-name <AS alias>

<(connect-statement-argument-1=value <…
connect-statement-argument-n=value>)>
<(database-connection-argument-1=value <…
database-connection-argument-n=value>)>;

SELECT column-list
FROM CONNECTION TO dbms-name|alias

(dbms-query)
optional PROC SQL clauses;

<DISCONNECT FROM dbms-name|alias;>
<QUIT;>

To do this Use this statement

Modify, add, or drop columns ALTER TABLE

Establish a connection with a DBMS CONNECT TO

Create an index on a column CREATE INDEX

Create a PROC SQL table CREATE TABLE

Create a PROC SQL view CREATE VIEW

Delete rows DELETE

Display a definition of a table or view DESCRIBE

Terminate the connection with a DBMS DISCONNECT FROM

Delete tables, views, or indexes DROP

Send a DBMS-specific nonquery SQL statement to a
DBMS

EXECUTE

Add rows INSERT

Reset options that affect the procedure environment
without restarting the procedure

RESET

Select and execute rows SELECT

Query a DBMS CONNECTION TO

Modify values UPDATE

Verify the accuracy of your query VALIDATE

PROC SQL Statement

PROC SQL <option(s)>;



1034 PROC SQL Statement � Chapter 44

To do this Use this option

Control output

Double-space the report DOUBLE|NODOUBLE

Write a statement to the SAS log that
expands the query

FEEDBACK|NOFEEDBACK

Flow characters within a column FLOW|NOFLOW

Include a column of row numbers NUMBER|NONUMBER

Specify whether PROC SQL prints the
query’s result

PRINT|NOPRINT

Specify whether PROC SQL should display
sorting information

SORTMSG|NOSORTMSG

Specify a collating sequence SORTSEQ=

Control execution

Allow PROC SQL to use names other than
SAS names

DQUOTE=

Specify whether PROC SQL should stop
executing after an error

ERRORSTOP|NOERRORSTOP

Specify whether PROC SQL should execute
statements

EXEC|NOEXEC

Restrict the number of input rows INOBS=

Restrict the number of output rows OUTOBS=

Restrict the number of loops LOOPS=

Specify whether PROC SQL prompts you
when a limit is reached with the INOBS=,
OUTOBS=, or LOOPS= options

PROMPT|NOPROMPT

Specify whether PROC SQL writes timing
information for each statement to the SAS log

STIMER|NOSTIMER

Override the SAS system option
THREADS|NOTHREADS

THREADS|NOTHREADS

Specify how PROC SQL handles updates
when there is an interruption

UNDO_POLICY=

Options

DOUBLE|NODOUBLE
double-spaces the report.

Default: NODOUBLE

Featured in: Example 5 on page 1134

DQUOTE=ANSI|SAS
specifies whether PROC SQL treats values within double quotation marks (" ") as
variables or strings. With DQUOTE=ANSI, PROC SQL treats a quoted value as a



The SQL Procedure � PROC SQL Statement 1035

variable. This feature enables you to use the following as table names, column
names, or aliases:

� reserved words such as AS, JOIN, GROUP, and so on

� DBMS names and other names that are not normally permissible in SAS.

The quoted value can contain any character.
With DQUOTE=SAS, values within double quotation marks are treated as strings.

Default: SAS

ERRORSTOP|NOERRORSTOP
specifies whether PROC SQL stops executing if it encounters an error. In a batch or
noninteractive session, ERRORSTOP instructs PROC SQL to stop executing the
statements but to continue checking the syntax after it has encountered an error.

NOERRORSTOP instructs PROC SQL to execute the statements and to continue
checking the syntax after an error occurs.

Default: NOERRORSTOP in an interactive SAS session; ERRORSTOP in a batch
or noninteractive session

Interaction: This option is useful only when the EXEC option is in effect.

Tip: ERRORSTOP has an effect only when SAS is running in the batch or
noninteractive execution mode.

Tip: NOERRORSTOP is useful if you want a batch job to continue executing SQL
procedure statements after an error is encountered.

EXEC|NOEXEC
specifies whether a statement should be executed after its syntax is checked for
accuracy.

Default: EXEC

Tip: NOEXEC is useful if you want to check the syntax of your SQL statements
without executing the statements.

See also: ERRORSTOP on page 1035

FEEDBACK|NOFEEDBACK
specifies whether PROC SQL displays, in the SAS log, PROC SQL statements after
view references are expanded or certain other transformations of the statement are
made.

This option has the following effects:

� Any asterisk (for example, SELECT *) is expanded into the list of qualified
columns that it represents.

� Any PROC SQL view is expanded into the underlying query.

� Macro variables are resolved.

� Parentheses are shown around all expressions to further indicate their order of
evaluation.

� Comments are removed.

Default: NOFEEDBACK

FLOW<=n <m>>|NOFLOW
specifies that character columns longer than n are flowed to multiple lines. PROC
SQL sets the column width at n and specifies that character columns longer than n
are flowed to multiple lines. When you specify FLOW=n m, PROC SQL floats the
width of the columns between these limits to achieve a balanced layout. Specifying
FLOW without arguments is equivalent to specifying FLOW=12 200.

Default: NOFLOW



1036 PROC SQL Statement � Chapter 44

INOBS=n
restricts the number of rows (observations) that PROC SQL retrieves from any single
source.

Tip: This option is useful for debugging queries on large tables.

LOOPS=n
restricts PROC SQL to n iterations through its inner loop. You use the number of
iterations reported in the SQLOOPS macro variable (after each SQL statement is
executed) to discover the number of loops. Set a limit to prevent queries from
consuming excessive computer resources. For example, joining three large tables
without meeting the join-matching conditions could create a huge internal table that
would be inefficient to execute.

See also: “Using Macro Variables Set by PROC SQL” on page 1119

NODOUBLE
See DOUBLE|NODOUBLE on page 1034.

NOERRORSTOP
See ERRORSTOP|NOERRORSTOP on page 1035.

NOEXEC
See EXEC|NOEXEC on page 1035.

NOFEEDBACK
See FEEDBACK|NOFEEDBACK on page 1035.

NOFLOW
See FLOW|NOFLOW on page 1035.

NONUMBER
See NUMBER|NONUMBER on page 1036.

NOPRINT
See PRINT|NOPRINT on page 1036.

NOPROMPT
See PROMPT|NOPROMPT on page 1037.

NOSORTMSG
See SORTMSG|NOSORTMSG on page 1037.

NOSTIMER
See STIMER|NOSTIMER on page 1037.

NOTHREADS
See THREADS|NOTHREADS.

NUMBER|NONUMBER
specifies whether the SELECT statement includes a column called ROW, which is the
row (or observation) number of the data as the rows are retrieved.
Default: NONUMBER

Featured in: Example 4 on page 1131

OUTOBS=n
restricts the number of rows (observations) in the output. For example, if you specify
OUTOBS=10 and insert values into a table using a query-expression, then the SQL
procedure inserts a maximum of 10 rows. Likewise, OUTOBS=10 limits the output to
10 rows.

PRINT|NOPRINT
specifies whether the output from a SELECT statement is printed.



The SQL Procedure � PROC SQL Statement 1037

Default: PRINT

Tip: NOPRINT is useful when you are selecting values from a table into macro
variables and do not want anything to be displayed.

Interaction: NOPRINT affects the value of the SQLOBS automatic macro variable.
See “Using Macro Variables Set by PROC SQL” on page 1119 for details.

PROMPT|NOPROMPT
modifies the effect of the INOBS=, OUTOBS=, and LOOPS= options. If you specify
the PROMPT option and reach the limit specified by INOBS=, OUTOBS=, or
LOOPS=, then PROC SQL prompts you to stop or continue. The prompting repeats if
the same limit is reached again.

Default: NOPROMPT

SORTMSG|NOSORTMSG
Certain operations, such as ORDER BY, may sort tables internally using PROC
SORT. Specifying SORTMSG requests information from PROC SORT about the sort
and displays the information in the log.

Default: NOSORTMSG

SORTSEQ=sort-table
specifies the collating sequence to use when a query contains an ORDER BY clause.
Use this option only if you want a collating sequence other than your system’s or
installation’s default collating sequence.

See also: SORTSEQ= option in SAS National Language Support (NLS): User’s
Guide.

STIMER|NOSTIMER
specifies whether PROC SQL writes timing information to the SAS log for each
statement, rather than as a cumulative value for the entire procedure. For this
option to work, you must also specify the SAS system option STIMER. Some
operating environments require that you specify this system option when you invoke
SAS. If you use the system option alone, then you receive timing information for the
entire SQL procedure, not on a statement-by-statement basis.

Default: NOSTIMER

THREADS|NOTHREADS
overrides the SAS system option THREADS|NOTHREADS for a particular
invocation of PROC SQL. THREADS|NOTHREADS can also be specified in a
RESET statement for use in particular queries. When THREADS is specified, PROC
SQL uses parallel processing in order to increase the performance of sorting
operations that involve large amounts of data. For more information about parallel
processing, see SAS Language Reference: Concepts.

Default: value of SAS system option THREADS|NOTHREADS.

Note: When THREADS|NOTHREADS has been specified in a PROC SQL
statement or a RESET statement, there is no way to reset the option to its default
(that is, the value of the SAS system option THREADS|NOTHREADS) for that
invocation of PROC SQL. �

UNDO_POLICY=NONE|OPTIONAL|REQUIRED
specifies how PROC SQL handles updated data if errors occur while you are
updating data. You can use UNDO_POLICY= to control whether your changes will
be permanent:

NONE
keeps any updates or inserts.



1038 ALTER TABLE Statement � Chapter 44

OPTIONAL
reverses any updates or inserts that it can reverse reliably.

REQUIRED
reverses all inserts or updates that have been done to the point of the error. In
some cases, the UNDO operation cannot be done reliably. For example, when a
program uses a SAS/ACCESS view, it may not be able to reverse the effects of the
INSERT and UPDATE statements without reversing the effects of other changes
at the same time. In that case, PROC SQL issues an error message and does not
execute the statement. Also, when a SAS data set is accessed through a
SAS/SHARE server and is opened with the data set option CNTLLEV=RECORD,
you cannot reliably reverse your changes.

This option may enable other users to update newly inserted rows. If an error
occurs during the insert, then PROC SQL can delete a record that another user
updated. In that case, the statement is not executed, and an error message is
issued.

Default: REQUIRED

Note: Options can be added, removed, or changed between PROC SQL statements
with the RESET statement. �

ALTER TABLE Statement

Adds columns to, drops columns from, and changes column attributes in an existing table. Adds,
modifies, and drops integrity constraints from an existing table.

Restriction: You cannot use any type of view in an ALTER TABLE statement.

Restriction: You cannot use ALTER TABLE on a table that is accessed by an engine that
does not support UPDATE processing.

Restriction: You must use at least one ADD, DROP, or MODIFY clause in the ALTER
TABLE statement.

Featured in: Example 3 on page 1129

ALTER TABLE table-name

<ADD CONSTRAINT constraint-name constraint-clause<, … constraint-name
constraint-clause>>

<ADD constraint-specification<, … constraint-specification>>

<ADD column-definition<, … column-definition>>

<DROP CONSTRAINT constraint-name <, … constraint-name>>

<DROP column<, … column>>

<DROP FOREIGN KEY constraint-name>

<DROP PRIMARY KEY>

<MODIFY column-definition<, … column-definition>>
;



The SQL Procedure � ALTER TABLE Statement 1039

Arguments

<ADD CONSTRAINT constraint-name constraint-specification<, … constraint-name
constraint-specification>>

adds the integrity constraint that is specified in constraint-specification and assigns
constraint-name to it.

<ADD constraint-specification<, … constraint-specification>>
adds the integrity constraint that is specified in constraint-specification and assigns a
default name to it. The default constraint name has the form that is shown in the
following table:

Default Name Constraint Type

_NMxxxx_ Not null

_UNxxxx_ Unique

_CKxxxx_ Check

_PKxxxx_ Primary key

_FKxxxx_ Foreign key

In these default names, xxxx is a counter that begins at 0001.

<ADD column-definition<, … column-definition>>
adds the column(s) that are specified in each column-definition.

column
names a column in table-name.

column-definition
See “column-definition” on page 1075.

constraint
is one of the following integrity constraints:

CHECK (WHERE-clause)
specifies that all rows in table-name satisfy the WHERE-clause.

DISTINCT (column<, … column>)
specifies that the values of each column must be unique. This constraint is
identical to UNIQUE.

FOREIGN KEY (column<, … column>)
REFERENCES table-name
<ON DELETE referential-action > <ON UPDATE referential-action>

specifies a foreign key, that is, a set of columns whose values are linked to the
values of the primary key variable in another table (the table-name that is specified
for REFERENCES). The referential-actions are performed when the values of a
primary key column that is referenced by the foreign key are updated or deleted.

Restriction: When defining overlapping primary key and foreign key constraints,
which means that variables in a data file are part of both a primary key and a
foreign key definition,

� if you use the exact same variables, then the variables must be defined in
a different order.



1040 ALTER TABLE Statement � Chapter 44

� the foreign key’s update and delete referential actions must both be
RESTRICT.

NOT NULL (column)
specifies that column does not contain a null or missing value, including special
missing values.

PRIMARY KEY (column<, … column>)
specifies one or more primary key columns, that is, columns that do not contain
missing values and whose values are unique.
Restriction: When you are defining overlapping primary key and foreign key

constraints, which means that variables in a data file are part of both a primary
key definition and a foreign key definition, if you use the exact same variables,
then the variables must be defined in a different order.

UNIQUE (column<, … column>)
specifies that the values of each column must be unique. This constraint is
identical to DISTINCT.

constraint-name
specifies a name for the constraint that is being specified. The name must be a valid
SAS name.

Note: The names PRIMARY, FOREIGN, MESSAGE, UNIQUE, DISTINCT,
CHECK, and NOT cannot be used as values for constraint-name. �

constraint-specification
consists of

constraint <MESSAGE=’message-string’ <MSGTYPE=message-type>>

<DROP column<, … column>>
deletes each column from the table.

<DROP CONSTRAINT constraint-name <, …constraint-name>>
deletes the integrity constraint that is referenced by each constraint-name. To find
the name of an integrity constraint, use the DESCRIBE TABLE CONSTRAINTS
clause (see “DESCRIBE Statement” on page 1052).

<DROP FOREIGN KEY constraint-name>
Removes the foreign key constraint that is referenced by constraint-name.

Note: The DROP FOREIGN KEY clause is a DB2 extension. �

<DROP PRIMARY KEY>
Removes the primary key constraint from table-name.

Note: The DROP PRIMARY KEY clause is a DB2 extension. �

message-string
specifies the text of an error message that is written to the log when the integrity
constraint is not met. The maximum length of message-string is 250 characters.

message-type
specifies how the error message is displayed in the SAS log when an integrity
constraint is not met.



The SQL Procedure � ALTER TABLE Statement 1041

NEWLINE
the text that is specified for MESSAGE= is displayed as well as the default error
message for that integrity constraint.

USER
only the text that is specified for MESSAGE= is displayed.

<MODIFY column-definition<, … column-definition>>
changes one or more attributes of the column that is specified in each
column-definition.

referential-action
specifies the type of action to be performed on all matching foreign key values.

CASCADE
allows primary key data values to be updated, and updates matching values in the
foreign key to the same values. This referential action is currently supported for
updates only.

RESTRICT
prevents the update or deletion of primary key data values if a matching value
exists in the foreign key. This referential action is the default.

SET NULL
allows primary key data values to be updated, and sets all matching foreign key
values to NULL.

table-name

� in the ALTER TABLE statement, refers to the name of the table that is to be
altered.

� in the REFERENCES clause, refers to the name of table that contains the
primary key that is referenced by the foreign key.

table-name can be a one-level name, a two-level libref.table name, or a physical
pathname that is enclosed in single quotation marks.

WHERE-clause
specifies a SAS WHERE clause. Do not include the WHERE keyword in the WHERE
clause.

Specifying Initial Values of New Columns
When the ALTER TABLE statement adds a column to the table, it initializes the

column’s values to missing in all rows of the table. Use the UPDATE statement to add
values to the new column(s).

Changing Column Attributes
If a column is already in the table, then you can change the following column

attributes by using the MODIFY clause: length, informat, format, and label. The values
in a table are either truncated or padded with blanks (if character data) as necessary to
meet the specified length attribute.

You cannot change a character column to numeric and vice versa. To change a
column’s data type, drop the column and then add it (and its data) again, or use the
DATA step.

Note: You cannot change the length of a numeric column with the ALTER TABLE
statement. Use the DATA step instead. �



1042 CONNECT Statement � Chapter 44

Renaming Columns
To change a column’s name, you must use the SAS data set option RENAME=. You

cannot change this attribute with the ALTER TABLE statement. RENAME= is
described in the section on SAS data set options in SAS Language Reference: Dictionary.

Indexes on Altered Columns
When you alter the attributes of a column and an index has been defined for that

column, the values in the altered column continue to have the index defined for them. If
you drop a column with the ALTER TABLE statement, then all the indexes (simple and
composite) in which the column participates are also dropped. See “CREATE INDEX
Statement” on page 1043 for more information about creating and using indexes.

Integrity Constraints
Use ALTER TABLE to modify integrity constraints for existing tables. Use the

CREATE TABLE statement to attach integrity constraints to new tables. For more
information on integrity constraints, see the section on SAS files in SAS Language
Reference: Concepts.

CONNECT Statement

Establishes a connection with a DBMS that is supported by SAS/ACCESS software.

Requirement: SAS/ACCESS software is required. For more information about this
statement, refer to your SAS/ACCESS documentation.

See also: “Connecting to a DBMS Using the SQL Procedure Pass-Through Facility” on
page 1115

CONNECT TO dbms-name <AS alias>
<(connect-statement-argument-1=value <…
connect-statement-argument-n=value>)>
<(database-connection-argument-1=value <…
database-connection-argument-n=value>)>;

Arguments

alias
specifies an alias that has 1 to 32 characters. The keyword AS must precede alias.
Some DBMSs allow more than one connection. The optional AS clause enables you to
name the connections so that you can refer to them later.

connect-statement-argument=value
specifies values for arguments that indicate whether you can make multiple
connections, shared or unique connections, and so on, to the database. These
arguments are optional, but if they are included, then they must be enclosed in
parentheses. See SAS/ACCESS for Relational Databases: Reference for more
information about these arguments.



The SQL Procedure � CREATE INDEX Statement 1043

database-connection-argument=value
specifies values for the DBMS-specific arguments that are needed by PROC SQL in
order to connect to the DBMS. These arguments are optional for most databases, but
if they are included, then they must be enclosed in parentheses. For more
information, see the SAS/ACCESS documentation for your DBMS.

dbms-name
identifies the DBMS that you want to connect to (for example, ORACLE or DB2).

CREATE INDEX Statement

Creates indexes on columns in tables.

Restriction: You cannot use CREATE INDEX on a table that is accessed with an engine
that does not support UPDATE processing.

CREATE <UNIQUE> INDEX index-name

ON table-name ( column <, … column>);

Arguments

column
specifies a column in table-name.

index-name
names the index that you are creating. If you are creating an index on one column
only, then index-name must be the same as column. If you are creating an index on
more than one column, then index-name cannot be the same as any column in the
table.

table-name
specifies a PROC SQL table.



1044 CREATE INDEX Statement � Chapter 44

Indexes in PROC SQL
An index stores both the values of a table’s columns and a system of directions that

enable access to rows in that table by index value. Defining an index on a column or set
of columns enables SAS, under certain circumstances, to locate rows in a table more
quickly and efficiently. Indexes enable PROC SQL to execute the following classes of
queries more efficiently:

� comparisons against a column that is indexed

� an IN subquery where the column in the inner subquery is indexed
� correlated subqueries, where the column being compared with the correlated

reference is indexed
� join-queries, where the join-expression is an equals comparison and all the

columns in the join-expression are indexed in one of the tables being joined.

SAS maintains indexes for all changes to the table, whether the changes originate
from PROC SQL or from some other source. Therefore, if you alter a column’s definition
or update its values, then the same index continues to be defined for it. However, if an
indexed column in a table is dropped, then the index on it is also dropped.

You can create simple or composite indexes. A simple index is created on one column
in a table. A simple index must have the same name as that column. A composite index
is one index name that is defined for two or more columns. The columns can be
specified in any order, and they can have different data types. A composite index name
cannot match the name of any column in the table. If you drop a composite index, then
the index is dropped for all the columns named in that composite index.

UNIQUE Keyword
The UNIQUE keyword causes SAS to reject any change to a table that would cause

more than one row to have the same index value. Unique indexes guarantee that data
in one column, or in a composite group of columns, remain unique for every row in a
table. For this reason, a unique index cannot be defined for a column that includes
NULL or missing values.



The SQL Procedure � CREATE TABLE Statement 1045

Managing Indexes
You can use the CONTENTS statement in the DATASETS procedure to display a

table’s index names and the columns for which they are defined. You can also use the
DICTIONARY tables INDEXES, TABLES, and COLUMNS to list information about
indexes. For more information, see “Using the DICTIONARY Tables” on page 1116.

See the section on SAS files in SAS Language Reference: Dictionary for a further
description of when to use indexes and how they affect SAS statements that handle
BY-group processing.

CREATE TABLE Statement

Creates PROC SQL tables.

Featured in: Example 1 on page 1125 and Example 2 on page 1127

u CREATE TABLE table-name
(column-specification<, …column-specification | constraint-specification>)

;

v CREATE TABLE table-name LIKE table-name2;

w CREATE TABLE table-name AS query-expression
<ORDER BY order-by-item<, … order-by-item>>;

Arguments

column-constraint
is one of the following:

CHECK (WHERE-clause)
specifies that all rows in table-name satisfy the WHERE-clause.

DISTINCT
specifies that the values of the column must be unique. This constraint is identical
to UNIQUE.



1046 CREATE TABLE Statement � Chapter 44

NOT NULL
specifies that the column does not contain a null or missing value, including
special missing values.

PRIMARY KEY
specifies that the column is a primary key column, that is, a column that does not
contain missing values and whose values are unique.
Restriction: When defining overlapping primary key and foreign key constraints,

which means that variables in a data file are part of both a primary key and a
foreign key definition, if you use the exact same variables, then the variables
must be defined in a different order.

REFERENCES table-name
<ON DELETE referential-action > <ON UPDATE referential-action>

specifies that the column is a foreign key, that is, a column whose values are
linked to the values of the primary key variable in another table (the table-name
that is specified for REFERENCES). The referential-actions are performed when
the values of a primary key column that is referenced by the foreign key are
updated or deleted.
Restriction: When you are defining overlapping primary key and foreign key

constraints, which means that variables in a data file are part of both a primary
key definition and a foreign key definition,

� if you use the exact same variables, then the variables must be defined in
a different order

� the foreign key’s update and delete referential actions must both be
RESTRICT.

UNIQUE
specifies that the values of the column must be unique. This constraint is identical
to DISTINCT.

Note: If you specify column-constraint, then SAS automatically assigns a name to
the constraint. The constraint name has the form

Default name Constraint type

_CKxxxx_ Check

_FKxxxx_ Foreign key

_NMxxxx_ Not Null

_PKxxxx_ Primary key

_UNxxxx_ Unique

where xxxx is a counter that begins at 0001. �

column-definition
See “column-definition” on page 1075.

column-specification
consists of

column-definition <column-constraint>

constraint
is one of the following:



The SQL Procedure � CREATE TABLE Statement 1047

CHECK (WHERE-clause)
specifies that all rows in table-name satisfy the WHERE-clause.

DISTINCT (column<, … column>)
specifies that the values of each column must be unique. This constraint is
identical to UNIQUE.

FOREIGN KEY (column<, … column>)
REFERENCES table-name
<ON DELETE referential-action > <ON UPDATE referential-action>

specifies a foreign key, that is, a set of columns whose values are linked to the
values of the primary key variable in another table (the table-name that is specified
for REFERENCES). The referential-actions are performed when the values of a
primary key column that is referenced by the foreign key are updated or deleted.

Restriction: When you are defining overlapping primary key and foreign key
constraints, which means that variables in a data file are part of both a primary
key definition and a foreign key definition,

� if you use the exact same variables, then the variables must be defined in
a different order

� the foreign key’s update and delete referential actions must both be
RESTRICT.

NOT NULL (column)
specifies that column does not contain a null or missing value, including special
missing values.

PRIMARY KEY (column<, … column>)
specifies one or more primary key columns, that is, columns that do not contain
missing values and whose values are unique.

Restriction: When defining overlapping primary key and foreign ke constraints,
which means that variables in a data file are part of both a primary key and a
foreign key definition, if you use the exact same variables, then the variables
must be defined in a different order.

UNIQUE (column<, …column>)
specifies that the values of each column must be unique. This constraint is
identical to DISTINCT.

constraint-name
specifies a name for the constraint that is being specified. The name must be a valid
SAS name.

Note: The names PRIMARY, FOREIGN, MESSAGE, UNIQUE, DISTINCT,
CHECK, and NOT cannot be used as values for constraint-name. �

constraint-specification
consists of

CONSTRAINT constraint-name constraint <MESSAGE=’message-string’
<MSGTYPE=message-type>>

message-string
specifies the text of an error message that is written to the log when the integrity
constraint is not met. The maximum length of message-string is 250 characters.

message-type
specifies how the error message is displayed in the SAS log when an integrity
constraint is not met.



1048 CREATE TABLE Statement � Chapter 44

NEWLINE
the text that is specified for MESSAGE= is displayed as well as the default error
message for that integrity constraint.

USER
only the text that is specified for MESSAGE= is displayed.

ORDER BY order-by-item
sorts the rows in table-name by the values of each order-by-item. See ORDER BY
Clause on page 1067.

query-expression
creates table-name from the results of a query. See “query-expression” on page 1093.

referential-action
specifies the type of action to be performed on all matching foreign key values.

CASCADE
allows primary key data values to be updated, and updates matching values in the
foreign key to the same values. This referential action is currently supported for
updates only.

RESTRICT
occurs only if there are matching foreign key values. This referential action is the
default.

SET NULL
sets all matching foreign key values to NULL.

table-name

� in the CREATE TABLE statement, refers to the name of the table that is to be
created. You can use data set options by placing them in parentheses
immediately after table-name. See “Using SAS Data Set Options with PROC
SQL” on page 1114 for details.

� in the REFERENCES clause, refers to the name of table that contains the
primary key that is referenced by the foreign key.

table-name2
creates table-name with the same column names and column attributes as
table-name2, but with no rows.

WHERE-clause
specifies a SAS WHERE clause. Do not include the WHERE keyword in the WHERE
clause.

Creating a Table without Rows

u The first form of the CREATE TABLE statement creates tables that automatically
map SQL data types to those that are supported by SAS. Use this form when you
want to create a new table with columns that are not present in existing tables. It
is also useful if you are running SQL statements from an SQL application in
another SQL-based database.

v The second form uses a LIKE clause to create a table that has the same column
names and column attributes as another table. To drop any columns in the new
table, you can specify the DROP= data set option in the CREATE TABLE
statement. The specified columns are dropped when the table is created. Indexes
are not copied to the new table.



The SQL Procedure � CREATE VIEW Statement 1049

Both of these forms create a table without rows. You can use an INSERT
statement to add rows. Use an ALTER TABLE statement to modify column
attributes or to add or drop columns.

Creating a Table from a Query Expression

w The third form of the CREATE TABLE statement stores the results of any
query-expression in a table and does not display the output. It is a convenient way
to create temporary tables that are subsets or supersets of other tables.

When you use this form, a table is physically created as the statement is
executed. The newly created table does not reflect subsequent changes in the
underlying tables (in the query-expression). If you want to continually access the
most current data, then create a view from the query expression instead of a table.
See “CREATE VIEW Statement” on page 1049.

CAUTION:
Recursive table references can cause data integrity problems. While it is possible to
recursively reference the target table of a CREATE TABLE AS statement, doing
so can cause data integrity problems and incorrect results. Constructions such
as the following should be avoided:

proc sql;
create table a as

select var1, var2
from a;

�

Integrity Constraints

You can attach integrity constraints when you create a new table. To modify integrity
constraints, use the ALTER TABLE statement. For more information on integrity
constraints, see the section on SAS files in SAS Language Reference: Concepts.

CREATE VIEW Statement

Creates a PROC SQL view from a query-expression.

See also: “What Are Views?” on page 1029

Featured in: Example 8 on page 1143

CREATE VIEW proc-sql-view <(column-name-list)> AS query-expression

<ORDER BY order-by-item<, … order-by-item>>

<USING libname-clause<, … libname-clause>> ;



1050 CREATE VIEW Statement � Chapter 44

Arguments

column-name-list
is a comma-separated list of column names for the view, to be used in place of the
column names or aliases that are specified in the SELECT clause. The names in this
list are assigned to columns in the order in which they are specified in the SELECT
clause. If the number of column names in this list does not equal the number of
columns in the SELECT clause, then a warning is written to the SAS log.

query-expression
See “query-expression” on page 1093.

libname-clause
is one of the following:

LIBNAME libref <engine> ’SAS-data-library’ <option(s)> <engine-host-option(s)>

LIBNAME libref SAS/ACCESS-engine-name
<SAS/ACCESS-engine-connection-option(s)>
<SAS/ACCESS-engine-LIBNAME-option(s)>

See SAS Language Reference: Dictionary for information about the base SAS
LIBNAME statement. See SAS/ACCESS for Relational Databases: Reference for
information about the LIBNAME statement for relational databases.

order-by-item
See ORDER BY Clause on page 1067.

proc-sql-view
specifies the name for the PROC SQL view that you are creating. See “What Are
Views?” on page 1029 for a definition of a PROC SQL view.

Sorting Data Retrieved by Views
PROC SQL enables you to specify the ORDER BY clause in the CREATE VIEW

statement. When a view with an ORDER BY clause is accessed, and the ORDER BY
clause directly affects the order of the results, its data is sorted and displayed as
specified by the ORDER BY clause. However, if the ORDER BY clause does not directly
affect the order of the results (for instance, if the view is specified as part of a join),
then PROC SQL ignores the ORDER BY clause in order to enhance performance.

Note: If you specify the NUMBER option in the PROC SQL statement when you
create your view, then the ROW column appears in the output. However, you cannot
order by the ROW column in subsequent queries. See the description of
NUMBER|NONUMBER on page 1036. �

Librefs and Stored Views
You can refer to a table name alone (without the libref) in the FROM clause of a

CREATE VIEW statement if the table and view reside in the same SAS data library, as
in this example:

create view proclib.view1 as
select *

from invoice
where invqty>10;

In this view, VIEW1 and INVOICE are stored permanently in the SAS data library
referenced by PROCLIB. Specifying a libref for INVOICE is optional.



The SQL Procedure � DELETE Statement 1051

Updating Views

You can update a view’s underlying data with some restrictions. See “Updating
PROC SQL and SAS/ACCESS Views” on page 1121.

Embedded LIBNAME Statements

The USING clause enables you to store DBMS connection information in a view by
embedding the SAS/ACCESS LIBNAME statement inside the view. When PROC SQL
executes the view, the stored query assigns the libref and establishes the DBMS
connection using the information in the LIBNAME statement. The scope of the libref is
local to the view, and will not conflict with any identically named librefs in the SAS
session. When the query finishes, the connection to the DBMS is terminated and the
libref is deassigned.

The USING clause must be the last clause in the CREATE VIEW statement. Multiple
LIBNAME statements can be specified, separated by commas. In the following example,
a connection is made and the libref ACCREC is assigned to an ORACLE database.

create view proclib.view1 as
select *

from accrec.invoices as invoices
using libname accrec oracle

user=username pass=password
path=’dbms-path’;

For more information on the SAS/ACCESS LIBNAME statement, see the SAS/ACCESS
documentation for your DBMS.

Note: Starting in SAS System 9, PROC SQL views, the Pass-Through Facility, and
the SAS/ACCESS LIBNAME statement are the preferred ways to access relational
DBMS data; SAS/ACCESS views are no longer recommended. You can convert existing
SAS/ACCESS views to PROC SQL views by using the CV2VIEW procedure. See “The
CV2VIEW Procedure” in SAS/ACCESS for Relational Databases: Reference for more
information. �

You can also embed a SAS LIBNAME statement in a view with the USING clause.
This enables you to store SAS libref information in the view. Just as in the embedded
SAS/ACCESS LIBNAME statement, the scope of the libref is local to the view, and it
will not conflict with an identically named libref in the SAS session.

create view work.tableview as
select * from proclib.invoices

using libname proclib ’sas-data-library’;

DELETE Statement

Removes one or more rows from a table or view that is specified in the FROM clause.

Restriction: You cannot use DELETE FROM on a table that is accessed by an engine
that does not support UPDATE processing.

Featured in: Example 5 on page 1134



1052 DESCRIBE Statement � Chapter 44

DELETE
FROM table-name|sas/access-view|proc-sql-view <AS alias>

<WHERE sql-expression>;

Arguments

alias
assigns an alias to table-name, sas/access-view, or proc-sql-view.

sas/access-view
specifies a SAS/ACCESS view that you are deleting rows from.

proc-sql-view
specifies a PROC SQL view that you are deleting rows from. proc-sql-view can be a
one-level name, a two-level libref.view name, or a physical pathname that is enclosed
in single quotation marks.

sql-expression
See “sql-expression” on page 1099.

table-name
specifies the table that you are deleting rows from. table-name can be a one-level
name, a two-level libref.table name, or a physical pathname that is enclosed in single
quotation marks.

CAUTION:
Recursive table references can cause data integrity problems. While it is possible to
recursively reference the target table of a DELETE statement, doing so can cause
data integrity problems and incorrect results. Constructions such as the following
should be avoided:

proc sql;
delete from a

where var1 > (select min(var2) from a);

�

Deleting Rows through Views
You can delete one or more rows from a view’s underlying table, with some

restrictions. See “Updating PROC SQL and SAS/ACCESS Views” on page 1121.

CAUTION:
If you omit a WHERE clause, then the DELETE statement deletes all the rows from the
specified table or the table that is described by a view. �

DESCRIBE Statement

Displays a PROC SQL definition in the SAS log.

Restriction: PROC SQL views are the only type of view allowed in a DESCRIBE VIEW
statement.
Featured in: Example 6 on page 1136



The SQL Procedure � DISCONNECT Statement 1053

DESCRIBE TABLE table-name <, … table-name>;

DESCRIBE VIEW proc-sql-view <, … proc-sql-view>;

DESCRIBE TABLE CONSTRAINTS table-name <, … table-name>;

Arguments

table-name
specifies a PROC SQL table. table-name can be a one-level name, a two-level
libref.table name, or a physical pathname that is enclosed in single quotation marks.

proc-sql-view
specifies a PROC SQL view. proc-sql-view can be a one-level name, a two-level
libref.view name, or a physical pathname that is enclosed in single quotation marks.

Details

� The DESCRIBE TABLE statement writes a CREATE TABLE statement to the
SAS log for the table specified in the DESCRIBE TABLE statement, regardless of
how the table was originally created (for example, with a DATA step). If
applicable, SAS data set options are included with the table definition. If indexes
are defined on columns in the table, then CREATE INDEX statements for those
indexes are also written to the SAS log.

When you are transferring a table to a DBMS that is supported by
SAS/ACCESS software, it is helpful to know how it is defined. To find out more
information about a table, use the FEEDBACK option or the CONTENTS
statement in the DATASETS procedure.

� The DESCRIBE VIEW statement writes a view definition to the SAS log. If you
use a PROC SQL view in the DESCRIBE VIEW statement that is based on or
derived from another view, then you might want to use the FEEDBACK option in
the PROC SQL statement. This option displays in the SAS log how the underlying
view is defined and expands any expressions that are used in this view definition.
The CONTENTS statement in DATASETS procedure can also be used with a view
to find out more information.

� The DESCRIBE TABLE CONSTRAINTS statement lists the integrity constraints
that are defined for the specified table(s).

DISCONNECT Statement

Ends the connection with a DBMS that is supported by a SAS/ACCESS interface.

Requirement: SAS/ACCESS software is required. For more information on this
statement, refer to your SAS/ACCESS documentation.

See also: “Connecting to a DBMS Using the SQL Procedure Pass-Through Facility” on
page 1115

DISCONNECT FROM dbms-name|alias;



1054 DROP Statement � Chapter 44

Arguments

alias
specifies the alias that is defined in the CONNECT statement.

dbms-name
specifies the DBMS from which you want to end the connection (for example, DB2 or
ORACLE). The name you specify should match the name that is specified in the
CONNECT statement.

Details

� An implicit COMMIT is performed before the DISCONNECT statement ends the
DBMS connection. If a DISCONNECT statement is not submitted, then implicit
DISCONNECT and COMMIT actions are performed and the connection to the
DBMS is broken when PROC SQL terminates.

� PROC SQL continues executing until you submit a QUIT statement, another SAS
procedure, or a DATA step.

DROP Statement

Deletes tables, views, or indexes.

Restriction: You cannot use DROP TABLE or DROP INDEX on a table that is accessed
by an engine that does not support UPDATE processing.

DROP TABLE table-name <, … table-name>;

DROP VIEW view-name <, … view-name>;

DROP INDEX index-name <, … index-name>
FROM table-name;

Arguments

index-name
specifies an index that exists on table-name.

table-name
specifies a PROC SQL table. table-name can be a one-level name, a two-level
libref.table name, or a physical pathname that is enclosed in single quotation marks.

view-name
specifies a SAS data view of any type: PROC SQL view, SAS/ACCESS view, or DATA
step view. view-name can be a one-level name, a two-level libref.view name, or a
physical pathname that is enclosed in single quotation marks.



The SQL Procedure � EXECUTE Statement 1055

Details

� If you drop a table that is referenced in a view definition and try to execute the
view, then an error message is written to the SAS log that states that the table
does not exist. Therefore, remove references in queries and views to any table(s)
and view(s) that you drop.

� If you drop a table with indexed columns, then all the indexes are automatically
dropped. If you drop a composite index, then the index is dropped for all the
columns that are named in that index.

� You can use the DROP statement to drop a table or view in an external database
that is accessed with the Pass-Through Facility or SAS/ACCESS LIBNAME
statement, but not for an external database table or view that is described by a
SAS/ACCESS view.

EXECUTE Statement

Sends a DBMS-specific SQL statement to a DBMS that is supported by a SAS/ACCESS interface.

Requirement: SAS/ACCESS software is required. For more information on this
statement, refer to your SAS/ACCESS documentation.

See also: “Connecting to a DBMS Using the SQL Procedure Pass-Through Facility” on
page 1115 and the SQL documentation for your DBMS.

EXECUTE (dbms-SQL-statement)
BY dbms-name|alias;

Arguments

alias
specifies an optional alias that is defined in the CONNECT statement. Note that
alias must be preceded by the keyword BY.

dbms-name
identifies the DBMS to which you want to direct the DBMS statement (for example,
ORACLE or DB2).

dbms-SQL-statement
is any DBMS-specific SQL statement, except the SELECT statement, that can be
executed by the DBMS-specific dynamic SQL.

Details

� If your DBMS supports multiple connections, then you can use the alias that is
defined in the CONNECT statement. This alias directs the EXECUTE statements
to a specific DBMS connection.

� Any return code or message that is generated by the DBMS is available in the
macro variables SQLXRC and SQLXMSG after the statement completes.



1056 INSERT Statement � Chapter 44

INSERT Statement

Adds rows to a new or existing table or view.

Restriction: You cannot use INSERT INTO on a table that is accessed with an engine
that does not support UPDATE processing.

Featured in: Example 1 on page 1125

u INSERT INTO table-name|sas/access-view|proc-sql-view <(column<, … column>)>

SET column=sql-expression
<, … column=sql-expression>

<SET column=sql-expression
<, … column=sql-expression>>;

v INSERT INTO table-name|sas/access-view|proc-sql-view <(column<, … column>)>

VALUES (value <, … value>)
<… VALUES (value <, … value>)>;

w INSERT INTO table-name|sas/access-view|proc-sql-view
<(column<, …column>)> query-expression;

Arguments

column
specifies the column into which you are inserting rows.

proc-sql-view
specifies a PROC SQL view into which you are inserting rows. proc-sql-view can be a
one-level name, a two-level libref.view name, or a physical pathname that is enclosed
in single quotation marks.

query-expression
See “query-expression” on page 1093.

sas/access-view
specifies a SAS/ACCESS view into which you are inserting rows.

sql-expression
See “sql-expression” on page 1099.

table-name
specifies a PROC SQL table into which you are inserting rows. table-name can be a
one-level name, a two-level libref.table name, or a physical pathname that is enclosed
in single quotation marks.

value
is a data value.

CAUTION:
Recursive table references can cause data integrity problems. While it is possible to
recursively reference the target table of an INSERT statement, doing so can cause
data integrity problems and incorrect results. Constructions such as the following
should be avoided:



The SQL Procedure � INSERT Statement 1057

proc sql;
insert into a

select var1, var2
from a
where var1 > 0;

�

Methods for Inserting Values

u The first form of the INSERT statement uses the SET clause, which specifies or
alters the values of a column. You can use more than one SET clause per INSERT
statement, and each SET clause can set the values in more than one column.
Multiple SET clauses are not separated by commas. If you specify an optional list
of columns, then you can set a value only for a column that is specified in the list
of columns to be inserted.

v The second form of the INSERT statement uses the VALUES clause. This clause
can be used to insert lists of values into a table. You can either give a value for
each column in the table or give values just for the columns specified in the list of
column names. One row is inserted for each VALUES clause. Multiple VALUES
clauses are not separated by commas. The order of the values in the VALUES
clause matches the order of the column names in the INSERT column list or, if no
list was specified, the order of the columns in the table.

w The third form of the INSERT statement inserts the results of a query-expression
into a table. The order of the values in the query-expression matches the order of
the column names in the INSERT column list or, if no list was specified, the order
of the columns in the table.

Note: If the INSERT statement includes an optional list of column names, then only
those columns are given values by the statement. Columns that are in the table but not
listed are given missing values. �

Inserting Rows through Views
You can insert one or more rows into a table through a view, with some restrictions.

See “Updating PROC SQL and SAS/ACCESS Views” on page 1121.

Adding Values to an Indexed Column
If an index is defined on a column and you insert a new row into the table, then that

value is added to the index. You can display information about indexes with
� the CONTENTS statement in the DATASETS procedure. See “CONTENTS

Statement” on page 323.
� the DICTIONARY.INDEXES table. See “Using the DICTIONARY Tables” on page

1116 for more information.

For more information on creating and using indexes, see “CREATE INDEX
Statement” on page 1043.



1058 RESET Statement � Chapter 44

RESET Statement

Resets PROC SQL options without restarting the procedure.

Featured in: Example 5 on page 1134

RESET <option(s)>;

The RESET statement enables you to add, drop, or change the options in PROC SQL
without restarting the procedure. See “PROC SQL Statement” on page 1033 for a
description of the options.

SELECT Statement

Selects columns and rows of data from tables and views.

Restriction: The clauses in the SELECT statement must appear in the order shown.

See also: “table-expression” on page 1113, “query-expression” on page 1093

SELECT <DISTINCT> object-item <, …object-item>

<INTO macro-variable-specification
<, … macro-variable-specification>>

FROM from-list
<WHERE sql-expression>
<GROUP BY group-by-item

<, … group-by-item>>
<HAVING sql-expression>
<ORDER BY order-by-item

<, … order-by-item>>;

SELECT Clause

Lists the columns that will appear in the output.

See Also: “column-definition” on page 1075

Featured in: Example 1 on page 1125 and Example 2 on page 1127

SELECT <DISTINCT> object-item <, … object-item>



The SQL Procedure � SELECT Clause 1059

Arguments

alias
assigns a temporary, alternate name to the column.

DISTINCT
eliminates duplicate rows.
Featured in: Example 13 on page 1154

object-item
is one of the following:

*
represents all columns in the tables or views that are listed in the FROM clause.

case-expression <AS alias>
derives a column from a CASE expression. See “CASE expression” on page 1073.

column-name <<AS> alias>
<column-modifier <… column-modifier>>

names a single column. See “column-name” on page 1078 and “column-modifier”
on page 1076.

sql-expression <AS alias>
<column-modifier <… column-modifier>>

derives a column from an sql-expression. See “sql-expression” on page 1099 and
“column-modifier” on page 1076.

table-name.*
specifies all columns in the PROC SQL table that is specified in table-name.

table-alias.*
specifies all columns in the PROC SQL table that has the alias that is specified in
table-alias.

view-name.*
specifies all columns in the SAS data view that is specified in view-name.

view-alias.*
specifies all columns in the SAS data view that has the alias that is specified in
view-alias.

Asterisk (*) Notation
The asterisk (*) represents all columns of the table(s) listed in the FROM clause.

When an asterisk is not prefixed with a table name, all the columns from all tables in
the FROM clause are included; when it is prefixed (for example, table-name.* or
table-alias.*), all the columns from that table only are included.

Column Aliases
A column alias is a temporary, alternate name for a column. Aliases are specified in

the SELECT clause to name or rename columns so that the result table is clearer or
easier to read. Aliases are often used to name a column that is the result of an
arithmetic expression or summary function. An alias is one word only. If you need a
longer column name, then use the LABEL= column-modifier, as described in
“column-modifier” on page 1076. The keyword AS is not required with a column alias.

Column aliases are optional, and each column name in the SELECT clause can have
an alias. After you assign an alias to a column, you can use the alias to refer to that
column in other clauses.



1060 INTO Clause � Chapter 44

If you use a column alias when creating a PROC SQL view, then the alias becomes
the permanent name of the column for each execution of the view.

INTO Clause

Stores the value of one or more columns for use later in another PROC SQL query or SAS
statement.

Restriction: An INTO clause cannot be used in a CREATE TABLE statement.
See also: “Using Macro Variables Set by PROC SQL” on page 1119

INTO macro-variable-specification
<, … macro-variable-specification>

Arguments

macro-variable
specifies a SAS macro variable that stores the values of the rows that are returned.

macro-variable-specification
is one of the following:

:macro-variable <SEPARATED BY ’character(s)’ <NOTRIM>>
stores the values that are returned into a single macro variable.

:macro-variable-1 – :macro-variable-n <NOTRIM>
stores the values that are returned into a range of macro variables.

NOTRIM
protects the leading and trailing blanks from being deleted from values that are
stored in a range of macro variables or multiple values that are stored in a single
macro variable.

SEPARATED BY ’character’
specifies a character that separates the values of the rows.

Details

� Use the INTO clause only in the outer query of a SELECT statement and not in a
subquery.

� When storing a single value into a macro variable, PROC SQL preserves leading
or trailing blanks. However, when storing values into a range of macro variables,
or when using the SEPARATED BY option to store multiple values in one macro
variable, PROC SQL trims leading or trailing blanks unless you use the NOTRIM
option.

� You can put multiple rows of the output into macro variables. You can check the
PROC SQL macro variable SQLOBS to see the number of rows that are produced
by a query-expression. See “Using Macro Variables Set by PROC SQL” on page
1119 for more information on SQLOBS.



The SQL Procedure � INTO Clause 1061

Examples

These examples use the PROCLIB.HOUSES table:

The SAS System 1

Style SqFeet
------------------
CONDO 900
CONDO 1000
RANCH 1200
RANCH 1400
SPLIT 1600
SPLIT 1800
TWOSTORY 2100
TWOSTORY 3000
TWOSTORY 1940
TWOSTORY 1860

With the macro-variable-specification, you can do the following:

� You can create macro variables based on the first row of the result.

proc sql noprint;
select style, sqfeet

into :style, :sqfeet
from proclib.houses;

%put &style &sqfeet;

The results are written to the SAS log:

1 proc sql noprint;
2 select style, sqfeet
3 into :style, :sqfeet
4 from proclib.houses;
5
6 %put &style &sqfeet;
CONDO 900

� You can create one new macro variable per row in the result of the SELECT
statement. This example shows how you can request more values for one column
than for another. The hyphen (-) is used in the INTO clause to imply a range of
macro variables. You can use either of the keywords THROUGH or THRU instead
of a hyphen.

The following PROC SQL step puts the values from the first four rows of the
PROCLIB.HOUSES table into macro variables:

proc sql noprint;
select distinct Style, SqFeet

into :style1 - :style3, :sqfeet1 - :sqfeet4
from proclib.houses;

%put &style1 &sqfeet1;
%put &style2 &sqfeet2;
%put &style3 &sqfeet3;
%put &sqfeet4;



1062 INTO Clause � Chapter 44

The %PUT statements write the results to the SAS log:

1 proc sql noprint;
2 select distinct style, sqfeet
3 into :style1 - :style3, :sqfeet1 - :sqfeet4
4 from proclib.houses;
5
6 %put &style1 &sqfeet1;
CONDO 900
7 %put &style2 &sqfeet2;
CONDO 1000
8 %put &style3 &sqfeet3;
RANCH 1200
9 %put &sqfeet4;
1400

� You can concatenate the values of one column into one macro variable. This form
is useful for building up a list of variables or constants.

proc sql noprint;
select distinct style

into :s1 separated by ’,’
from proclib.houses;

%put &s1;

The results are written to the SAS log:

3 proc sql noprint;
4 select distinct style
5 into :s1 separated by ’,’
6 from proclib.houses;
7
8 %put &s1

CONDO,RANCH,SPLIT,TWOSTORY

� You can use leading zeros in order to create a range of macro variable names, as
shown in the following example:

proc sql noprint;
select SqFeet

into :sqfeet01 - :sqfeet10
from proclib.houses;

%put &sqfeet01 &sqfeet02 &sqfeet03 &sqfeet04 &sqfeet05;
%put &sqfeet06 &sqfeet07 &sqfeet08 &sqfeet09 &sqfeet10;

The results are written to the SAS log:

11 proc sql noprint;
12 select sqfeet
13 into :sqfeet01 - :sqfeet10
14 from proclib.houses;

15 %put &sqfeet01 &sqfeet02 &sqfeet03 &sqfeet04 &sqfeet05;
900 1000 1200 1400 1600
16 %put &sqfeet06 &sqfeet07 &sqfeet08 &sqfeet09 &sqfeet10;
1800 2100 3000 1940 1860



The SQL Procedure � FROM Clause 1063

� You can prevent leading and trailing blanks from being trimmed from values that
are stored in macro variables. By default, when storing values in a range of macro
variables or when storing multiple values in one macro variable (with the
SEPARATED BY option), PROC SQL trims the leading and trailing blanks from
the values before creating the macro variables. If you do not want the blanks to be
trimmed, then add the NOTRIM option, as shown in the following example:

proc sql noprint;
select style, sqfeet

into :style1 - :style4 notrim,
:sqfeet separated by ’,’ notrim

from proclib.houses;

%put *&style1* *&sqfeet*;
%put *&style2* *&sqfeet*;
%put *&style3* *&sqfeet*;
%put *&style4* *&sqfeet*;

The results are written to the SAS log, as shown in the following output:

3 proc sql noprint;
4 select style, sqfeet
5 into :style1 - :style4 notrim,
6 :sqfeet separated by ’,’ notrim
7 from proclib.houses;
8
9 %put *&style1* *&sqfeet*;
*CONDO * * 900, 1000, 1200, 1400, 1600, 1800, 2100,

3000, 1940, 1860*
10 %put *&style2* *&sqfeet*;
*CONDO * * 900, 1000, 1200, 1400, 1600, 1800, 2100,

3000, 1940, 1860**
11 %put *&style3* *&sqfeet*;
*RANCH * * 900, 1000, 1200, 1400, 1600, 1800, 2100,

3000, 1940, 1860**
12 %put *&style4* *&sqfeet*;
*RANCH * * 900, 1000, 1200, 1400, 1600, 1800, 2100,

3000, 1940, 1860**

FROM Clause

Specifies source tables or views.

Featured in: Example 1 on page 1125, Example 4 on page 1131, Example 9 on page 1145,
and Example 10 on page 1148

FROM from-list

Arguments

alias
specifies a temporary, alternate name for a table, view, or in-line view that is
specified in the FROM clause.



1064 FROM Clause � Chapter 44

column
names the column that appears in the output. The column names that you specify
are matched by position to the columns in the output.

from-list
is one of the following:

table-name <<AS> alias>
names a single PROC SQL table. table-name can be a one-level name, a two-level
libref.table name, or a physical pathname that is enclosed in single quotation
marks.

view-name <<AS> alias>
names a single SAS data view. view-name can be a one-level name, a two-level
libref.view name, or a physical pathname that is enclosed in single quotation
marks.

joined-table
specifies a join. See “joined-table” on page 1082.

(query-expression) <AS alias>
<(column <, … column>)>

specifies an in-line view. See “query-expression” on page 1093.

CONNECTION TO
specifies a DBMS table. See “CONNECTION TO” on page 1079.

Note: With table-name and view-name, you can use data set options by placing
them in parentheses immediately after table-name or view-name. See “Using SAS
Data Set Options with PROC SQL” on page 1114 for details. �

Table Aliases
A table alias is a temporary, alternate name for a table that is specified in the FROM

clause. Table aliases are prefixed to column names to distinguish between columns that
are common to multiple tables. Column names in reflexive joins (joining a table with
itself) must be prefixed with a table alias in order to distinguish which copy of the table
the column comes from. Column names in other kinds of joins must be prefixed with
table aliases or table names unless the column names are unique to those tables.

The optional keyword AS is often used to distinguish a table alias from other table
names.

In-Line Views
The FROM clause can itself contain a query-expression that takes an optional table

alias. This kind of nested query-expression is called an in-line view. An in-line view is
any query-expression that would be valid in a CREATE VIEW statement. PROC SQL
can support many levels of nesting, but it is limited to 32 tables in any one query. The
32-table limit includes underlying tables that may contribute to views that are specified
in the FROM clause.

An in-line view saves you a programming step. Rather than creating a view and
referring to it in another query, you can specify the view in-line in the FROM clause.

Characteristics of in-line views include the following:

� An in-line view is not assigned a permanent name, although it can take an alias.

� An in-line view can be referred to only in the query in which it is defined. It
cannot be referenced in another query.

� You cannot use an ORDER BY clause in an in-line view.



The SQL Procedure � GROUP BY Clause 1065

� The names of columns in an in-line view can be assigned in the object-item list of
that view or with a parenthesized list of names following the alias. This syntax
can be useful for renaming columns. See Example 10 on page 1148 for an example.

� In order to visually separate an in-line view from the rest of the query, you can
enclose the in-line view in any number of pairs of parentheses. Note that if you
specify an alias for the in-line view, the alias specification must appear outside the
outermost pair of parentheses for that in-line view.

WHERE Clause

Subsets the output based on specified conditions.

Featured in: Example 4 on page 1131 and Example 9 on page 1145

WHERE sql-expression

Argument

sql-expression
See “sql-expression” on page 1099.

Details

� When a condition is met (that is, the condition resolves to true), those rows are
displayed in the result table; otherwise, no rows are displayed.

� You cannot use summary functions that specify only one column. For example:

where max(measure1) > 50;

However, this WHERE clause will work:

where max(measure1,measure2) > 50;

GROUP BY Clause

Specifies how to group the data for summarizing.

Featured in: Example 8 on page 1143 and Example 12 on page 1152

GROUP BY group-by-item <, …, group-by-item>



1066 GROUP BY Clause � Chapter 44

Arguments

group-by-item
is one of the following:

integer
is a positive integer that equates to a column’s position.

column-name
is the name of a column or a column alias. See “column-name” on page 1078.

sql-expression
See “sql-expression” on page 1099.

Details

� You can specify more than one group-by-item to get more detailed reports. Both
the grouping of multiple items and the BY statement of a PROC step are
evaluated in similar ways. If more than one group-by-item is specified, then the
first one determines the major grouping.

� Integers can be substituted for column names (that is, SELECT object-items) in
the GROUP BY clause. For example, if the group-by-item is 2, then the results are
grouped by the values in the second column of the SELECT clause list. Using
integers can shorten your coding and enable you to group by the value of an
unnamed expression in the SELECT list. Note that if you use a floating-point
value (for example, 2.3), then PROC SQL ignores the decimal portion.

� The data does not have to be sorted in the order of the group-by values because
PROC SQL handles sorting automatically. You can use the ORDER BY clause to
specify the order in which rows are displayed in the result table.

� If you specify a GROUP BY clause in a query that does not contain a summary
function, then your clause is transformed into an ORDER BY clause and a
message to that effect is written to the SAS log.

� You can group the output by the values that are returned by an expression. For
example, if X is a numeric variable, then the output of the following is grouped by
the integer portion of values of X:

select x, sum(y)
from table1
group by int(x);

Similarly, if Y is a character variable, then the output of the following is grouped
by the second character of values of Y:

select sum(x), y
from table1
group by substring(y from 2 for 1);

Note that an expression that contains only numeric literals (and functions of
numeric literals) or only character literals (and functions of character literals) is
ignored.

An expression in a GROUP BY clause cannot be a summary function. For
example, the following GROUP BY clause is not valid:

group by sum(x)



The SQL Procedure � ORDER BY Clause 1067

HAVING Clause

Subsets grouped data based on specified conditions.

Featured in: Example 8 on page 1143 and Example 12 on page 1152

HAVING sql-expression

Argument

sql-expression
See “sql-expression” on page 1099.

Subsetting Grouped Data
The HAVING clause is used with at least one summary function and an optional

GROUP BY clause to summarize groups of data in a table. A HAVING clause is any
valid SQL expression that is evaluated as either true or false for each group in a query.
Alternatively, if the query involves remerged data, then the HAVING expression is
evaluated for each row that participates in each group. The query must include one or
more summary functions.

Typically, the GROUP BY clause is used with the HAVING expression and defines
the group(s) to be evaluated. If you omit the GROUP BY clause, then the summary
function and the HAVING clause treat the table as one group.

The following PROC SQL step uses the PROCLIB.PAYROLL table (shown in
Example 2 on page 1127) and groups the rows by Gender to determine the oldest
employee of each gender. In SAS, dates are stored as integers. The lower the birth date
as an integer, the greater the age. The expression birth=min(birth)is evaluated for
each row in the table. When the minimum birth date is found, the expression becomes
true and the row is included in the output.

proc sql;
title ’Oldest Employee of Each Gender’;
select *

from proclib.payroll
group by gender
having birth=min(birth);

Note: This query involves remerged data because the values returned by a
summary function are compared to values of a column that is not in the GROUP BY
clause. See “Remerging Data” on page 1110 for more information about summary
functions and remerging data. �

ORDER BY Clause

Specifies the order in which rows are displayed in a result table.

See also: “query-expression” on page 1093
Featured in: Example 11 on page 1150



1068 ORDER BY Clause � Chapter 44

ORDER BY order-by-item <ASC|DESC><, … order-by-item <ASC|DESC>>;

Arguments

order-by-item
is one of the following:

integer
equates to a column’s position.

column-name
is the name of a column or a column alias. See “column-name” on page 1078.

sql-expression
See “sql-expression” on page 1099.

ASC
orders the data in ascending order. This is the default order; if neither ASC nor
DESC is specified, the data is ordered in ascending order.

DESC
orders the data in descending order.

Details

� The ORDER BY clause sorts the result of a query expression according to the
order specified in that query. When this clause is used, the default ordering
sequence is ascending, from the lowest value to the highest. You can use the
SORTSEQ= option to change the collating sequence for your output. See “PROC
SQL Statement” on page 1033.

� If an ORDER BY clause is omitted, then a particular order to the output rows,
such as the order in which the rows are encountered in the queried table, cannot
be guaranteed. Without an ORDER BY clause, the order of the output rows is
determined by the internal processing of PROC SQL, the default collating
sequence of SAS, and your operating environment. Therefore, if you want your
result table to appear in a particular order, then use the ORDER BY clause.

� If more than one order-by-item is specified (separated by commas), then the first
one determines the major sort order.

� Integers can be substituted for column names (that is, SELECT object-items) in
the ORDER BY clause. For example, if the order-by-item is 2 (an integer), then the
results are ordered by the values of the second column. If a query-expression
includes a set operator (for example, UNION), then use integers to specify the
order. Doing so avoids ambiguous references to columns in the table expressions.
Note that if you use a floating-point value (for example, 2.3) instead of an integer,
then PROC SQL ignores the decimal portion.

� In the ORDER BY clause, you can specify any column of a table or view that is
specified in the FROM clause of a query-expression, regardless of whether that
column has been included in the query’s SELECT clause. For example, this query
produces a report ordered by the descending values of the population change for
each country from 1990 to 1995:

proc sql;
select country



The SQL Procedure � UPDATE Statement 1069

from census
order by pop95-pop90 desc;

NOTE: The query as specified involves
ordering by an item that
doesn’t appear in its SELECT clause.

� You can order the output by the values that are returned by an expression. For
example, if X is a numeric variable, then the output of the following is ordered by
the integer portion of values of X:

select x, y
from table1
order by int(x);

Similarly, if Y is a character variable, then the output of the following is ordered
by the second character of values of Y:

select x, y
from table1
order by substring(y from 2 for 1);

Note that an expression that contains only numeric literals (and functions of
numeric literals) or only character literals (and functions of character literals) is
ignored.

UPDATE Statement

Modifies a column’s values in existing rows of a table or view.

Restriction: You cannot use UPDATE on a table that is accessed by an engine that does
not support UPDATE processing.

Featured in: Example 3 on page 1129

UPDATE table-name|sas/access-view|proc-sql-view <AS alias>

SET column=sql-expression
<, … column=sql-expression>

<SET column=sql-expression
<, … column=sql-expression>>

<WHERE sql-expression>;

Arguments

alias
assigns an alias to table-name, sas/access-view, or proc-sql-view.

column
specifies a column in table-name, sas/access-view, or proc-sql-view.

sas/access-view
specifies a SAS/ACCESS view.



1070 VALIDATE Statement � Chapter 44

sql-expression
See “sql-expression” on page 1099.

table-name
specifies a PROC SQL table. table-name can be a one-level name, a two-level
libref.table name, or a physical pathname that is enclosed in single quotation marks.

proc-sql-view
specifies a PROC SQL view. proc-sql-view can be a one-level name, a two-level
libref.view name, or a physical pathname that is enclosed in single quotation marks.

Updating Tables through Views
You can update one or more rows of a table through a view, with some restrictions.

See “Updating PROC SQL and SAS/ACCESS Views” on page 1121.

Details

� Any column that is not modified retains its original values, except in certain
queries using the CASE expression. See “CASE expression” on page 1073 for a
description of CASE expressions.

� To add, drop, or modify a column’s definition or attributes, use the ALTER TABLE
statement, described in “ALTER TABLE Statement” on page 1038.

� In the SET clause, a column reference on the left side of the equal sign can also
appear as part of the expression on the right side of the equal sign. For example,
you could use this expression to give employees a $1,000 holiday bonus:

set salary=salary + 1000

� If you omit the WHERE clause, then all the rows are updated. When you use a
WHERE clause, only the rows that meet the WHERE condition are updated.

� When you update a column and an index has been defined for that column, the
values in the updated column continue to have the index defined for them.

VALIDATE Statement

Checks the accuracy of a query-expression’s syntax and semantics without executing the
expression.

VALIDATE query-expression;

Argument

query-expression
See “query-expression” on page 1093.



The SQL Procedure � BETWEEN condition 1071

Details

� The VALIDATE statement writes a message in the SAS log that states that the
query is valid. If there are errors, then VALIDATE writes error messages to the
SAS log.

� The VALIDATE statement can also be included in applications that use the macro
facility. When used in such an application, VALIDATE returns a value that
indicates the query-expression’s validity. The value is returned through the macro
variable SQLRC (a short form for SQL return code). For example, if a SELECT
statement is valid, then the macro variable SQLRC returns a value of 0. See
“Using Macro Variables Set by PROC SQL” on page 1119 for more information.

SQL Procedure Component Dictionary
This section describes the components that are used in SQL procedure statements.

Components are the items in PROC SQL syntax that appear in roman type.

Most components are contained in clauses within the statements. For example, the
basic SELECT statement is composed of the SELECT and FROM clauses, where each
clause contains one or more components. Components can also contain other
components.

For easy reference, components appear in alphabetical order, and some terms are
referred to before they are defined. Use the index or the “See Also” references to refer
to other statement or component descriptions that may be helpful.

BETWEEN condition

Selects rows where column values are within a range of values.

sql-expression <NOT> BETWEEN sql-expression
AND sql-expression

Argument

sql-expression
is described in “sql-expression” on page 1099.

Details

� The sql-expressions must be of compatible data types. They must be either all
numeric or all character types.

� Because a BETWEEN condition evaluates the boundary values as a range, it is
not necessary to specify the smaller quantity first.

� You can use the NOT logical operator to exclude a range of numbers, for example,
to eliminate customer numbers between 1 and 15 (inclusive) so that you can
retrieve data on more recently acquired customers.



1072 BTRIM function � Chapter 44

� PROC SQL supports the same comparison operators that the DATA step supports.
For example:

x between 1 and 3
x between 3 and 1
1<=x<=3
x>=1 and x<=3

BTRIM function

Removes blanks or specified characters from the beginning, the end, or both the beginning and
end of a character string.

BTRIM (<<btrim-specification> <’btrim-character’ FROM>> sql-expression)

Arguments

btrim-specification
is one of the following:

LEADING
removes the blanks or specified characters from the beginning of the character
string.

TRAILING
removes the blanks or specified characters from the end of the character string.

BOTH
removes the blanks or specified characters from both the beginning and the end of
the character string.

Default: BOTH

btrim-character
is a single character that is to be removed from the character string. The default
character is a blank.

sql-expression
must resolve to a character string or character variable and is described in
“sql-expression” on page 1099.

Details
The BTRIM function operates on character strings. BTRIM removes one or more

instances of a single character (the value of btrim-character) from the beginning, the
end, or both the beginning and end of a string, depending whether LEADING,
TRAILING, or BOTH is specified. If btrim-specification is not specified, then BOTH is
used. If btrim-character is omitted, then blanks are removed.

Note: SAS adds trailing blanks to character values that are shorter than the length
of the variable. Suppose you have a character variable Z, with length 10, and a value
xxabcxx. SAS stores the value with three blanks after the last x (for a total length of
10). If you attempt to remove all the x characters with

btrim(both ’x’ from z)



The SQL Procedure � CASE expression 1073

then the result is abcxx because PROC SQL sees the trailing characters as blanks, not
the x character. In order to remove all the x characters, use

btrim(both ’x’ from btrim(z))

The inner BTRIM function removes the trailing blanks before passing the value to the
outer BTRIM function. �

CALCULATED

Refers to columns already calculated in the SELECT clause.

CALCULATED column-alias

Argument

column-alias
is the name that is assigned to the column in the SELECT clause.

Referencing a CALCULATED Column
CALCULATED enables you to use the results of an expression in the same SELECT

clause or in the WHERE clause. It is valid only when used to refer to columns that are
calculated in the immediate query expression.

CASE expression

Selects result values that satisfy specified conditions.

Featured in: Example 3 on page 1129 and Example 13 on page 1154

CASE <case-operand>
WHEN when-condition THEN result-expression
<…WHEN when-condition THEN result-expression>
<ELSE result-expression>
END



1074 CASE expression � Chapter 44

Arguments

case-operand
is a valid sql-expression that resolves to a table column whose values are compared
to all the when-conditions. See “sql-expression” on page 1099.

when-condition

� When case-operand is specified, when-condition is a shortened sql-expression
that assumes case-operand as one of its operands and that resolves to true or
false.

� When case-operand is not specified, when-condition is an sql-expression that
resolves to true or false.

result-expression
is an sql-expression that resolves to a value.

Details
The CASE expression selects values if certain conditions are met. A CASE expression

returns a single value that is conditionally evaluated for each row of a table (or view).
Use the WHEN-THEN clauses when you want to execute a CASE expression for some
but not all of the rows in the table that is being queried or created. An optional ELSE
expression gives an alternative action if no THEN expression is executed.

When you omit case-operand, when-condition is evaluated as a Boolean (true or false)
value. If when-condition returns a nonzero, nonmissing result, then the WHEN clause
is true. If case-operand is specified, then it is compared with when-condition for
equality. If case-operand equals when-condition, then the WHEN clause is true.

If the when-condition is true for the row that is being executed, then the
result-expression that follows THEN is executed. If when-condition is false, then PROC
SQL evaluates the next when-condition until they are all evaluated. If every
when-condition is false, then PROC SQL executes the ELSE expression, and its result
becomes the CASE expression’s result. If no ELSE expression is present and every
when-condition is false, then the result of the CASE expression is a missing value.

You can use a CASE expression as an item in the SELECT clause and as either
operand in an sql-expression.

Example
The following two PROC SQL steps show two equivalent CASE expressions that

create a character column with the strings in the THEN clause. The CASE expression
in the second PROC SQL step is a shorthand method that is useful when all the
comparisons are with the same column.

proc sql;
select Name, case

when Continent = ’North America’ then ’Continental U.S.’
when Continent = ’Oceania’ then ’Pacific Islands’
else ’None’
end as Region

from states;

proc sql;
select Name, case Continent

when ’North America’ then ’Continental U.S.’
when ’Oceania’ then ’Pacific Islands’



The SQL Procedure � column-definition 1075

else ’None’
end as Region

from states;

Note: When you use the shorthand method, the conditions must all be equality
tests. That is, they cannot use comparison operators or other types of operators. �

COALESCE Function

Returns the first nonmissing value from a list of columns.

Featured in: Example 7 on page 1138

COALESCE (column-name <, … column-name>)

Arguments

column-name
is described in “column-name” on page 1078.

Details
COALESCE accepts one or more column names of the same data type. The

COALESCE function checks the value of each column in the order in which they are
listed and returns the first nonmissing value. If only one column is listed, the
COALESCE function returns the value of that column. If all the values of all
arguments are missing, the COALESCE function returns a missing value.

In some SQL DBMSs, the COALESCE function is called the IFNULL function. See
“PROC SQL and the ANSI Standard” on page 1122 for more information.

Note: If your query contains a large number of COALESCE function calls, it might
be more efficient to use a natural join instead. See “Natural Joins” on page 1088. �

column-definition

Defines PROC SQL’s data types and dates.

See also: “column-modifier” on page 1076
Featured in: Example 1 on page 1125

column data-type <column-modifier <… column-modifier>>



1076 column-modifier � Chapter 44

Arguments

column
is a column name.

column-modifier
is described in “column-modifier” on page 1076.

data-type
is one of the following data types:

CHARACTER|VARCHAR <(width)>
indicates a character column with a column width of width. The default column
width is eight characters.

INTEGER|SMALLINT
indicates an integer column.

DECIMAL|NUMERIC|FLOAT <(width<, ndec>)>
indicates a floating-point column with a column width of width and ndec decimal
places.

REAL|DOUBLE PRECISION
indicates a floating-point column.

DATE
indicates a date column.

Details

� SAS supports many but not all of the data types that SQL-based databases
support.

� For all the numeric data types (INTEGER, SMALLINT, DECIMAL, NUMERIC,
FLOAT, REAL, DOUBLE PRECISION, and DATE), the SQL procedure defaults to
the SAS data type NUMERIC. The width and ndec arguments are ignored; PROC
SQL creates all numeric columns with the maximum precision allowed by SAS. If
you want to create numeric columns that use less storage space, then use the
LENGTH statement in the DATA step. The various numeric data type names,
along with the width and ndec arguments, are included for compatibility with
other SQL software.

� For the character data types (CHARACTER and VARCHAR), the SQL procedure
defaults to the SAS data type CHARACTER. The width argument is honored.

� The CHARACTER, INTEGER, and DECIMAL data types can be abbreviated to
CHAR, INT, and DEC, respectively.

� A column that is declared with DATE is a SAS numeric variable with a date
informat or format. You can use any of the column-modifiers to set the appropriate
attributes for the column that is being defined. See SAS Language Reference:
Dictionary for more information on dates.

column-modifier
Sets column attributes.

See also: “column-definition” on page 1075 and SELECT Clause on page 1058
Featured in: Example 1 on page 1125 and Example 2 on page 1127



The SQL Procedure � column-modifier 1077

column-modifier

Arguments

column-modifier
is one of the following:

INFORMAT=informatw.d
specifies a SAS informat to be used when SAS accesses data from a table or view.
You can change one permanent informat to another by using the ALTER
statement. PROC SQL stores informats in its table definitions so that other SAS
procedures and the DATA step can use this information when they reference tables
created by PROC SQL.

See SAS Language Reference: Dictionary for more information about informats.

FORMAT=formatw.d
specifies a SAS format for determining how character and numeric values in a
column are displayed by the query-expression. If the FORMAT= modifier is used
in the ALTER, CREATE TABLE, or CREATE VIEW statements, then it specifies
the permanent format to be used when SAS displays data from that table or view.
You can change one permanent format to another by using the ALTER statement.

See SAS Language Reference: Dictionary for more information about formats.

LABEL=’label’
specifies a column label. If the LABEL= modifier is used in the ALTER, CREATE
TABLE, or CREATE VIEW statements, then it specifies the permanent label to be
used when displaying that column. You can change one permanent label to
another by using the ALTER statement.

A label can begin with the following characters: a through z, A through Z, 0
through 9, an underscore (_), or a blank space. If you begin a label with any other
character, such as pound sign (#), then that character is used as a split character
and it splits the label onto the next line wherever it appears. For example:

select dropout label=
’#Percentage of#Students Who#Dropped Out’

from educ(obs=5);

If a special character must appear as the first character in the output, then
precede it with a space or a forward slash (/).

You can omit the LABEL= part of the column-modifier and still specify a label.
Be sure to enclose the label in quotation marks, as in this example:

select empname "Names of Employees"
from sql.employees;

If an apostrophe must appear in the label, then type it twice so that SAS reads
the apostrophe as a literal. Alternatively, you can use single and double quotation
marks alternately (for example, “Date Rec’d”).

LENGTH=length
specifies the length of the column. This column modifier is valid only in the
context of a SELECT statement.

TRANSCODE=YES|NO
for character columns, specifies whether values can be transcoded. Use
TRANSCODE=NO to suppress transcoding. Note that when you create a table by
using the CREATE TABLE AS statement, the transcoding attribute for a given
character column in the created table is the same as it is in the source table unless



1078 column-name � Chapter 44

you change it with the TRANSCODE= column modifier. For more information
about transcoding, see SAS National Language Support (NLS): User’s Guide.
Default: YES
Restriction: Suppression of transcoding is not supported for the V6TAPE engine.
Interaction: If the TRANSCODE= attribute is set to NO for any character

variable in a table, then PROC CONTENTS prints a transcode column that
contains the TRANSCODE= value for each variable in the data set. If all
variables in the table are set to the default TRANSCODE= value (YES), then no
transcode column is printed.

Details
If you refer to a labeled column in the ORDER BY or GROUP BY clause, then you

must use either the column name (not its label), the column’s alias, or its ordering
integer (for example, ORDER BY 2). See the section on SAS statements in SAS
Language Reference: Dictionary for more information about labels.

column-name

Specifies the column to select.

See also: “column-modifier” on page 1076 and SELECT Clause on page 1058

column-name

column-name
is one of the following:

column
is the name of a column.

table-name.column
is the name of a column in the table table-name.

table-alias.column
is the name of a column in the table that is referenced by table-alias.

view-name.column
is the name of a column in the view view-name.

view-alias.column
is the name of a column in the view that is referenced by view-alias.

Details
A column can be referred to by its name alone if it is the only column by that name

in all the tables or views listed in the current query-expression. If the same column
name exists in more than one table or view in the query-expression, then you must
qualify each use of the column name by prefixing a reference to the table that contains
it. Consider the following examples:



The SQL Procedure � CONTAINS condition 1079

SALARY /* name of the column */
EMP.SALARY /* EMP is the table or view name */
E.SALARY /* E is an alias for the table

or view that contains the
SALARY column */

CONNECTION TO

Retrieves and uses DBMS data in a PROC SQL query or view.

Tip: You can use CONNECTION TO in the SELECT statement’s FROM clause as part
of the from-list.

See also: “Connecting to a DBMS Using the SQL Procedure Pass-Through Facility” on
page 1115 and your SAS/ACCESS documentation.

CONNECTION TO dbms-name (dbms-query)

CONNECTION TO alias (dbms-query)

Arguments

alias
specifies an alias, if one was defined in the CONNECT statement.

dbms-name
identifies the DBMS that you are using.

dbms-query
specifies the query to send to a DBMS. The query uses the DBMS’s dynamic SQL.
You can use any SQL syntax that the DBMS understands, even if that is not valid for
PROC SQL. However, your DBMS query cannot contain a semicolon because that
represents the end of a statement to SAS.

The number of tables that you can join with dbms-query is determined by the
DBMS. Each CONNECTION TO component counts as one table toward the 32-table
PROC SQL limit for joins.

See SAS/ACCESS for Relational Databases: Reference for more information about
DBMS queries.

CONTAINS condition

Tests whether a string is part of a column’s value.

Alias: ?

Restriction: The CONTAINS condition is used only with character operands.

Featured in: Example 7 on page 1138



1080 EXISTS condition � Chapter 44

sql-expression <NOT> CONTAINS sql-expression

Argument

sql-expression
is described in “sql-expression” on page 1099.

EXISTS condition

Tests if a subquery returns one or more rows.

See also: “Query Expressions (Subqueries)” on page 1102

<NOT> EXISTS (query-expression)

Argument

query-expression
is described in “query-expression” on page 1093.

Details
The EXISTS condition is an operator whose right operand is a subquery. The result

of an EXISTS condition is true if the subquery resolves to at least one row. The result
of a NOT EXISTS condition is true if the subquery evaluates to zero rows. For example,
the following query subsets PROCLIB.PAYROLL (which is shown in Example 2 on page
1127) based on the criteria in the subquery. If the value for STAFF.IDNUM is on the
same row as the value CT in PROCLIB.STAFF (which is shown in Example 4 on page
1131), then the matching IDNUM in PROCLIB.PAYROLL is included in the output.
Thus, the query returns all the employees from PROCLIB.PAYROLL who live in CT.

proc sql;
select *

from proclib.payroll p
where exists (select *

from proclib.staff s
where p.idnumber=s.idnum

and state=’CT’);

IN condition

Tests set membership.

Featured in: Example 4 on page 1131



The SQL Procedure � IS condition 1081

sql-expression <NOT> IN (query-expression | constant <, … constant>)

Arguments

constant
is a number or a quoted character string (or other special notation) that indicates a
fixed value. Constants are also called literals.

query-expression
is described in “query-expression” on page 1093.

sql-expression
is described in “sql-expression” on page 1099.

Details
An IN condition tests if the column value that is returned by the sql-expression on

the left is a member of the set (of constants or values returned by the query-expression)
on the right. The IN condition is true if the value of the left-hand operand is in the set
of values that are defined by the right-hand operand.

IS condition

Tests for a missing value.

Featured in: Example 5 on page 1134

sql-expression IS <NOT> NULL | MISSING

Argument

sql-expression
is described in “sql-expression” on page 1099.

Details
IS NULL and IS MISSING are predicates that test for a missing value. IS NULL and

IS MISSING are used in the WHERE, ON, and HAVING expressions. Each predicate
resolves to true if the sql-expression’s result is missing and false if it is not missing.

SAS stores a numeric missing value as a period (.) and a character missing value as
a blank space. Unlike missing values in some versions of SQL, missing values in SAS
always appear first in the collating sequence. Therefore, in Boolean and comparison
operations, the following expressions resolve to true in a predicate:

3>null
-3>null

0>null



1082 joined-table � Chapter 44

The SAS way of evaluating missing values differs from that of the ANSI Standard for
SQL. According to the Standard, these expressions are NULL. See “sql-expression” on
page 1099 for more information on predicates and operators. See “PROC SQL and the
ANSI Standard” on page 1122 for more information on the ANSI Standard.

joined-table

Joins a table with itself or with other tables or views.

Restrictions: Joins are limited to 32 tables.

See also: FROM Clause on page 1063 and “query-expression” on page 1093

Featured in: Example 4 on page 1131, Example 7 on page 1138, Example 9 on page 1145,
Example 13 on page 1154, and Example 14 on page 1158

u table-name <<AS> alias>, table-name <<AS> alias>
<, … table-name <<AS> alias>>

v <(>table-name <INNER> JOIN table-name
ON sql-expression<)>

w <(>table-name LEFT JOIN | RIGHT JOIN | FULL JOIN
table-name ON sql-expression<)>

x <(>table-name CROSS JOIN table-name<)>

y <(>table-name UNION JOIN table-name<)>

U <(>table-name NATURAL
<INNER | FULL <OUTER> | LEFT <OUTER > | RIGHT <OUTER >>

JOIN table-name<)>

Arguments

alias
specifies an alias for table-name. The AS keyword is optional.

sql-expression
is described in “sql-expression” on page 1099.

table-name
can be one of the following:

� the name of a PROC SQL table.

� the name of a SAS data view or PROC SQL view.

� a query-expression. A query-expression in the FROM clause is usually referred
to as an in-line view. See “FROM Clause” on page 1063 for more information
about in-line views.

� a connection to a DBMS in the form of the CONNECTION TO component. See
“CONNECTION TO” on page 1079 for more information.

table-name can be a one-level name, a two-level libref.table name, or a physical
pathname that is enclosed in single quotation marks.



The SQL Procedure � joined-table 1083

Note: If you include parentheses, then be sure to include them in pairs.
Parentheses are not valid around comma joins (type u). �

Types of Joins

uv Inner join. See “Inner Joins” on page 1084.

w Outer join. See “Outer Joins” on page 1086.

x Cross join. See “Cross Joins” on page 1087.

y Union join. See “Union Joins” on page 1088.

U Natural join. See “Natural Joins” on page 1088.

Joining Tables
When multiple tables, views, or query-expressions are listed in the FROM clause,

they are processed to form one table. The resulting table contains data from each
contributing table. These queries are referred to as joins.

Conceptually, when two tables are specified, each row of table A is matched with all
the rows of table B to produce an internal or intermediate table. The number of rows in
the intermediate table (Cartesian product) is equal to the product of the number of rows
in each of the source tables. The intermediate table becomes the input to the rest of the
query in which some of its rows may be eliminated by the WHERE clause or
summarized by a summary function.

A common type of join is an equijoin, in which the values from a column in the first
table must equal the values of a column in the second table.

Table Limit
PROC SQL can process a maximum of 32 tables for a join. If you are using views in

a join, then the number of tables on which the views are based count toward the
32-table limit. Each CONNECTION TO component in the Pass-Through Facility counts
as one table.

Specifying the Rows to Be Returned
The WHERE clause or ON clause contains the conditions (sql-expression) under

which the rows in the Cartesian product are kept or eliminated in the result table.
WHERE is used to select rows from inner joins. ON is used to select rows from inner or
outer joins.

The expression is evaluated for each row from each table in the intermediate table
described earlier in “Joining Tables” on page 1083. The row is considered to be matching
if the result of the expression is true (a nonzero, nonmissing value) for that row.

Note: You can follow the ON clause with a WHERE clause to further subset the
query result. See Example 7 on page 1138 for an example. �

Table Aliases
Table aliases are used in joins to distinguish the columns of one table from those in

the other table(s). A table name or alias must be prefixed to a column name when you
are joining tables that have matching column names. See FROM Clause on page 1063
for more information on table aliases.



1084 joined-table � Chapter 44

Joining a Table with Itself
A single table can be joined with itself to produce more information. These joins are

sometimes called reflexive joins. In these joins, the same table is listed twice in the
FROM clause. Each instance of the table must have a table alias or you will not be able
to distinguish between references to columns in either instance of the table. See
Example 13 on page 1154 and Example 14 on page 1158 for examples.

Inner Joins
An inner join returns a result table for all the rows in a table that have one or more

matching rows in the other table(s), as specified by the sql-expression. Inner joins can
be performed on up to 32 tables in the same query-expression.

You can perform an inner join by using a list of table-names separated by commas or
by using the INNER, JOIN, and ON keywords.

The LEFTTAB and RIGHTTAB tables are used to illustrate this type of join:

Left Table - LEFTTAB

Continent Export Country
-----------------------------
NA wheat Canada
EUR corn France
EUR rice Italy
AFR oil Egypt

Right Table - RIGHTTAB

Continent Export Country
-----------------------------
NA sugar USA
EUR corn Spain
EUR beets Belgium
ASIA rice Vietnam

The following example joins the LEFTTAB and RIGHTTAB tables to get the
Cartesian product of the two tables. The Cartesian product is the result of combining
every row from one table with every row from another table. You get the Cartesian
product when you join two tables and do not subset them with a WHERE clause or ON
clause.

proc sql;
title ’The Cartesian Product of’;
title2 ’LEFTTAB and RIGHTTAB’;
select *

from lefttab, righttab;



The SQL Procedure � joined-table 1085

The Cartesian Product of
LEFTTAB and RIGHTTAB

Continent Export Country Continent Export Country
------------------------------------------------------------
NA wheat Canada NA sugar USA
NA wheat Canada EUR corn Spain
NA wheat Canada EUR beets Belgium
NA wheat Canada ASIA rice Vietnam
EUR corn France NA sugar USA
EUR corn France EUR corn Spain
EUR corn France EUR beets Belgium
EUR corn France ASIA rice Vietnam
EUR rice Italy NA sugar USA
EUR rice Italy EUR corn Spain
EUR rice Italy EUR beets Belgium
EUR rice Italy ASIA rice Vietnam
AFR oil Egypt NA sugar USA
AFR oil Egypt EUR corn Spain
AFR oil Egypt EUR beets Belgium
AFR oil Egypt ASIA rice Vietnam

The LEFTTAB and RIGHTTAB tables can be joined by listing the table names in the
FROM clause. The following query represents an equijoin because the values of
Continent from each table are matched. The column names are prefixed with the table
aliases so that the correct columns can be selected.

proc sql;
title ’Inner Join’;
select *

from lefttab as l, righttab as r
where l.continent=r.continent;

Inner Join

Continent Export Country Continent Export Country
------------------------------------------------------------
NA wheat Canada NA sugar USA
EUR corn France EUR corn Spain
EUR corn France EUR beets Belgium
EUR rice Italy EUR corn Spain
EUR rice Italy EUR beets Belgium

The following PROC SQL step is equivalent to the previous one and shows how to
write an equijoin using the INNER JOIN and ON keywords.

proc sql;
title ’Inner Join’;
select *

from lefttab as l inner join
righttab as r

on l.continent=r.continent;

See Example 4 on page 1131, Example 13 on page 1154, and Example 14 on page
1158 for more examples.



1086 joined-table � Chapter 44

Outer Joins

Outer joins are inner joins that have been augmented with rows that did not match
with any row from the other table in the join. The three types of outer joins are left,
right, and full.

A left outer join, specified with the keywords LEFT JOIN and ON, has all the rows
from the Cartesian product of the two tables for which the sql-expression is true, plus
rows from the first (LEFTTAB) table that do not match any row in the second
(RIGHTTAB) table.

proc sql;
title ’Left Outer Join’;
select *

from lefttab as l left join
righttab as r

on l.continent=r.continent;

Left Outer Join

Continent Export Country Continent Export Country
------------------------------------------------------------
AFR oil Egypt
EUR rice Italy EUR beets Belgium
EUR corn France EUR beets Belgium
EUR rice Italy EUR corn Spain
EUR corn France EUR corn Spain
NA wheat Canada NA sugar USA

A right outer join, specified with the keywords RIGHT JOIN and ON, has all the
rows from the Cartesian product of the two tables for which the sql-expression is true,
plus rows from the second (RIGHTTAB) table that do not match any row in the first
(LEFTTAB) table.

proc sql;
title ’Right Outer Join’;
select *

from lefttab as l right join
righttab as r

on l.continent=r.continent;

Right Outer Join

Continent Export Country Continent Export Country
------------------------------------------------------------

ASIA rice Vietnam
EUR rice Italy EUR beets Belgium
EUR rice Italy EUR corn Spain
EUR corn France EUR beets Belgium
EUR corn France EUR corn Spain
NA wheat Canada NA sugar USA

A full outer join, specified with the keywords FULL JOIN and ON, has all the rows
from the Cartesian product of the two tables for which the sql-expression is true, plus
rows from each table that do not match any row in the other table.



The SQL Procedure � joined-table 1087

proc sql;
title ’Full Outer Join’;
select *

from lefttab as l full join
righttab as r

on l.continent=r.continent;

Full Outer Join

Continent Export Country Continent Export Country
------------------------------------------------------------
AFR oil Egypt

ASIA rice Vietnam
EUR rice Italy EUR beets Belgium
EUR rice Italy EUR corn Spain
EUR corn France EUR beets Belgium
EUR corn France EUR corn Spain
NA wheat Canada NA sugar USA

See Example 7 on page 1138 for another example.

Cross Joins
A cross join returns as its result table the product of the two tables.
Using the LEFTTAB and RIGHTTAB example tables, the following program

demonstrates the cross join:

proc sql;
title ’Cross Join’;
select *

from lefttab as l cross join
righttab as r;

Cross Join

Continent Export Country Continent Export Country
------------------------------------------------------------
NA wheat Canada NA sugar USA
NA wheat Canada EUR corn Spain
NA wheat Canada EUR beets Belgium
NA wheat Canada ASIA rice Vietnam
EUR corn France NA sugar USA
EUR corn France EUR corn Spain
EUR corn France EUR beets Belgium
EUR corn France ASIA rice Vietnam
EUR rice Italy NA sugar USA
EUR rice Italy EUR corn Spain
EUR rice Italy EUR beets Belgium
EUR rice Italy ASIA rice Vietnam
AFR oil Egypt NA sugar USA
AFR oil Egypt EUR corn Spain
AFR oil Egypt EUR beets Belgium
AFR oil Egypt ASIA rice Vietnam



1088 joined-table � Chapter 44

The cross join is not functionally different from a Cartesian product join. You would
get the same result by submitting the following program:

proc sql;
select *

from lefttab, righttab;

Do not use an ON clause with a cross join. An ON clause will cause a cross join to
fail. However, you can use a WHERE clause to subset the output.

Union Joins

A union join returns a union of the columns of both tables. The union join places in
the results all rows with their respective column values from each input table. Columns
that do not exist in one table will have null (missing) values for those rows in the result
table. The following example demonstrates a union join.

proc sql;
title ’Union Join’;
select *

from lefttab union join righttab;

Union Join

Continent Export Country Continent Export Country
------------------------------------------------------------

NA sugar USA
EUR corn Spain
EUR beets Belgium
ASIA rice Vietnam

NA wheat Canada
EUR corn France
EUR rice Italy
AFR oil Egypt

Using a union join is similar to concatenating tables with the OUTER UNION set
operator. See “query-expression” on page 1093 for more information.

Do not use an ON clause with a union join. An ON clause will cause a union join to
fail.

Natural Joins

A natural join selects rows from two tables that have equal values in columns that
share the same name and the same type. An error results if two columns have the same
name but different types. If join-specification is omitted when specifying a natural join,
then INNER is implied. If no like columns are found, then a cross join is performed.

The following examples use these two tables:

table1

x y z
----------------------------

1 2 3
2 1 8
6 5 4
2 5 6



The SQL Procedure � joined-table 1089

table2

x b z
----------------------------

1 5 3
3 5 4
2 7 8
6 0 4

The following program demonstrates a natural inner join.

proc sql;
title ’Natural Inner Join’;
select *
from table1 natural join table2;

Natural Inner Join

x z b y
--------------------------------------

1 3 5 2
2 8 7 1
6 4 0 5

The following program demonstrates a natural left outer join.

proc sql;
title ’Natural Left Outer Join’;
select *

from table1 natural left join table2;

Natural Left Outer Join

x z b y
--------------------------------------

1 3 5 2
2 6 . 5
2 8 7 1
6 4 0 5

Do not use an ON clause with a natural join. An ON clause will cause a natural join
to fail. When using a natural join, an ON clause is implied, matching all like columns.

Joining More Than Two Tables

Inner joins are usually performed on two or three tables, but they can be performed
on up to 32 tables in PROC SQL. A join on three tables is described here to explain how
and why the relationships work among the tables.

In a three-way join, the sql-expression consists of two conditions: one relates the first
table to the second table and the other relates the second table to the third table. It is
possible to break this example into stages, performing a two-way join into a temporary



1090 joined-table � Chapter 44

table and then joining that table with the third one for the same result. However,
PROC SQL can do it all in one step as shown in the next example.

The example shows the joining of three tables: COMM, PRICE, and AMOUNT. To
calculate the total revenue from exports for each country, you need to multiply the
amount exported (AMOUNT table) by the price of each unit (PRICE table), and you
must know the commodity that each country exports (COMM table).

COMM Table

Continent Export Country
-----------------------------
NA wheat Canada
EUR corn France
EUR rice Italy
AFR oil Egypt

PRICE Table

Export Price
------------------
rice 3.56
corn 3.45
oil 18
wheat 2.98

AMOUNT Table

Country Quantity
------------------
Canada 16000
France 2400
Italy 500
Egypt 10000

proc sql;
title ’Total Export Revenue’;
select c.Country, p.Export, p.Price,

a.Quantity,a.quantity*p.price
as Total

from comm c, price p, amount a
where c.export=p.export

and c.country=a.country;

Total Export Revenue

Country Export Price Quantity Total
------------------------------------------------
Italy rice 3.56 500 1780
France corn 3.45 2400 8280
Egypt oil 18 10000 180000
Canada wheat 2.98 16000 47680



The SQL Procedure � LIKE condition 1091

See Example 9 on page 1145 for another example.

Comparison of Joins and Subqueries
You can often use a subquery or a join to get the same result. However, it is often

more efficient to use a join if the outer query and the subquery do not return duplicate
rows. For example, the following queries produce the same result. The second query is
more efficient:

proc sql;
select IDNumber, Birth

from proclib.payroll
where IDNumber in (select idnum

from proclib.staff
where lname like ’B%’);

proc sql;
select p.IDNumber, p.Birth

from proclib.payroll p, proclib.staff s
where p.idnumber=s.idnum

and s.lname like ’B%’;

Note: PROCLIB.PAYROLL is shown in Example 2 on page 1127. �

LIKE condition

Tests for a matching pattern.

sql-expression <NOT> LIKE sql-expression <ESCAPE character-expression>

Arguments

sql-expression
is described in “sql-expression” on page 1099.

character-expression
is an sql-expression that evaluates to a single character. The operands of
character-expression must be character or string literals; they cannot be column
names.

Note: If you use an ESCAPE clause, then the pattern-matching specification must
be a quoted string or quoted concatenated string; it cannot contain column names. �

Details
The LIKE condition selects rows by comparing character strings with a

pattern-matching specification. It resolves to true and displays the matched string(s) if
the left operand matches the pattern specified by the right operand.

The ESCAPE clause is used to search for literal instances of the percent (%) and
underscore (_) characters, which are usually used for pattern matching.



1092 LIKE condition � Chapter 44

Patterns for Searching
Patterns are composed of three classes of characters:

underscore (_)
matches any single character.

percent sign (%)
matches any sequence of zero or more characters.

any other character
matches that character.

These patterns can appear before, after, or on both sides of characters that you want to
match. The LIKE condition is case-sensitive.

The following list uses these values: Smith, Smooth, Smothers, Smart, and Smuggle.

’Sm%’
matches Smith, Smooth, Smothers, Smart, Smuggle.

’%th’
matches Smith, Smooth.

’S__gg%’
matches Smuggle.

’S_o’
matches a three-letter word, so it has no matches here.

’S_o%’
matches Smooth, Smothers.

’S%th’
matches Smith, Smooth.

’Z’
matches the single, uppercase character Z only, so it has no matches here.

Searching for Literal % and _
Because the % and _ characters have special meaning in the context of the LIKE

condition, you must use the ESCAPE clause to search for these character literals in the
input character string.

These example use the values app, a_%, a__, bbaa1, and ba_1.

� The condition like ’a_%’ matches app, a_%, and a__, because the underscore (_)
in the search pattern matches any single character (including the underscore), and
the percent (%) in the search pattern matches zero or more characters, including
’%’ and ’_’.

� The condition like ’a_^%’ escape ’^’ matches only a_%, because the escape
character (^) specifies that the pattern search for a literal ’%’.

� The condition like ’a_%’ escape ’_’ matches none of the values, because the
escape character (_) specifies that the pattern search for an ’a’ followed by a literal
’%’, which does not apply to any of these values.

Searching for Mixed-Case Strings
To search for mixed-case strings, use the UPCASE function to make all the names

uppercase before entering the LIKE condition:

upcase(name) like ’SM%’;



The SQL Procedure � query-expression 1093

Note: When you are using the % character, be aware of the effect of trailing blanks.
You may have to use the TRIM function to remove trailing blanks in order to match
values. �

LOWER function

Converts the case of a character string to lowercase.

See also: “UPPER function” on page 1114

LOWER (sql-expression)

Argument

sql-expression
must resolve to a character string and is described in “sql-expression” on page 1099.

Details

The LOWER function operates on character strings. LOWER changes the case of its
argument to all lowercase.

Note: The LOWER function is provided for compatibility with the ANSI SQL
standard. You can also use the SAS function LOWCASE. �

query-expression

Retrieves data from tables.

See also: “table-expression” on page 1113, “Query Expressions (Subqueries)” on page
1102, and “In-Line Views” on page 1064

table-expression <set-operator table-expression> <…set-operator table-expression>

Arguments

table-expression
is described in “table-expression” on page 1113.



1094 query-expression � Chapter 44

set-operator
is one of the following:

INTERSECT <CORRESPONDING> <ALL>

OUTER UNION <CORRESPONDING>

UNION <CORRESPONDING> <ALL>

EXCEPT <CORRESPONDING> <ALL>

Query Expressions and Table Expressions
A query-expression is one or more table-expressions. Multiple table expressions are

linked by set operators. The following figure illustrates the relationship between
table-expressions and query-expressions.

query-
expression

table-
expression

table-
expression

set operator

SELECT  clause
FROM  clause
(more  clauses)

SELECT  clause
FROM  clause
(more  clauses)

Set Operators
PROC SQL provides these set operators:

OUTER UNION
concatenates the query results.

UNION
produces all unique rows from both queries.

EXCEPT
produces rows that are part of the first query only.

INTERSECT
produces rows that are common to both query results.

A query-expression with set operators is evaluated as follows.

� Each table-expression is evaluated to produce an (internal) intermediate result
table.

� Each intermediate result table then becomes an operand linked with a set
operator to form an expression, for example, A UNION B.

� If the query-expression involves more than two table-expressions, then the result
from the first two becomes an operand for the next set operator and operand, such
as (A UNION B) EXCEPT C, ((A UNION B) EXCEPT C) INTERSECT D, and so on.

� Evaluating a query-expression produces a single output table.

Set operators follow this order of precedence unless they are overridden by
parentheses in the expression(s): INTERSECT is evaluated first. OUTER UNION,
UNION, and EXCEPT have the same level of precedence.



The SQL Procedure � query-expression 1095

PROC SQL performs set operations even if the tables or views that are referred to in
the table-expressions do not have the same number of columns. The reason for this
behavior is that the ANSI Standard for SQL requires that tables or views that are
involved in a set operation have the same number of columns and that the columns have
matching data types. If a set operation is performed on a table or view that has fewer
columns than the one(s) with which it is being linked, then PROC SQL extends the table
or view with fewer columns by creating columns with missing values of the appropriate
data type. This temporary alteration enables the set operation to be performed correctly.

CORRESPONDING (CORR) Keyword
The CORRESPONDING keyword is used only when a set operator is specified.

CORR causes PROC SQL to match the columns in table-expressions by name and not
by ordinal position. Columns that do not match by name are excluded from the result
table, except for the OUTER UNION operator. See “OUTER UNION” on page 1095.

For example, when performing a set operation on two table-expressions, PROC SQL
matches the first specified column-name (listed in the SELECT clause) from one
table-expression with the first specified column-name from the other. If CORR is
omitted, then PROC SQL matches the columns by ordinal position.

ALL Keyword
The set operators automatically eliminate duplicate rows from their output tables.

The optional ALL keyword preserves the duplicate rows, reduces the execution by one
step, and thereby improves the query-expression’s performance. You use it when you
want to display all the rows resulting from the table-expressions, rather than just the
unique rows. The ALL keyword is used only when a set operator is also specified.

OUTER UNION
Performing an OUTER UNION is very similar to performing the SAS DATA step

with a SET statement. The OUTER UNION concatenates the intermediate results from
the table-expressions. Thus, the result table for the query-expression contains all the
rows produced by the first table-expression followed by all the rows produced by the
second table-expression. Columns with the same name are in separate columns in the
result table.

For example, the following query expression concatenates the ME1 and ME2 tables
but does not overlay like-named columns. Output 44.1 shows the result.

ME1

IDnum Jobcode Salary Bonus
--------------------------------------
1400 ME1 29769 587
1403 ME1 28072 342
1120 ME1 28619 986
1120 ME1 28619 986



1096 query-expression � Chapter 44

ME2

IDnum Jobcode Salary
----------------------------
1653 ME2 35108
1782 ME2 35345
1244 ME2 36925

proc sql;
title ’ME1 and ME2: OUTER UNION’;
select *

from me1
outer union
select *

from me2;

Output 44.1 OUTER UNION of ME1 and ME2 Tables

ME1 and ME2: OUTER UNION

IDnum Jobcode Salary Bonus IDnum Jobcode Salary
--------------------------------------------------------------------
1400 ME1 29769 587 .
1403 ME1 28072 342 .
1120 ME1 28619 986 .
1120 ME1 28619 986 .

. . 1653 ME2 35108

. . 1782 ME2 35345

. . 1244 ME2 36925

Concatenating tables with the OUTER UNION set operator is similar to performing
a union join. See “Union Joins” on page 1088 for more information.

To overlay columns with the same name, use the CORRESPONDING keyword.

proc sql;
title ’ME1 and ME2: OUTER UNION CORRESPONDING’;
select *

from me1
outer union corr
select *

from me2;



The SQL Procedure � query-expression 1097

ME1 and ME2: OUTER UNION CORRESPONDING

IDnum Jobcode Salary Bonus
--------------------------------------
1400 ME1 29769 587
1403 ME1 28072 342
1120 ME1 28619 986
1120 ME1 28619 986
1653 ME2 35108 .
1782 ME2 35345 .
1244 ME2 36925 .

In the resulting concatenated table, notice the following:

� OUTER UNION CORRESPONDING retains all nonmatching columns.

� For columns with the same name, if a value is missing from the result of the first
table-expression, then the value in that column from the second table-expression is
inserted.

� The ALL keyword is not used with OUTER UNION because this operator’s default
action is to include all rows in a result table. Thus, both rows from the table ME1
where IDnum is 1120 appear in the output.

UNION
The UNION operator produces a table that contains all the unique rows that result

from both table-expressions. That is, the output table contains rows produced by the
first table-expression, the second table-expression, or both.

Columns are appended by position in the tables, regardless of the column names.
However, the data type of the corresponding columns must match or the union will not
occur. PROC SQL issues a warning message and stops executing.

The names of the columns in the output table are the names of the columns from the
first table-expression unless a column (such as an expression) has no name in the first
table-expression. In such a case, the name of that column in the output table is the
name of the respective column in the second table-expression.

In the following example, PROC SQL combines the two tables:

proc sql;
title ’ME1 and ME2: UNION’;
select *

from me1
union
select *

from me2;

ME1 and ME2: UNION

IDnum Jobcode Salary Bonus
--------------------------------------
1120 ME1 28619 986
1244 ME2 36925 .
1400 ME1 29769 587
1403 ME1 28072 342
1653 ME2 35108 .
1782 ME2 35345 .



1098 query-expression � Chapter 44

In the following example, ALL includes the duplicate row from ME1. In addition,
ALL changes the sorting by specifying that PROC SQL make one pass only. Thus, the
values from ME2 are simply appended to the values from ME1.

proc sql;
title ’ME1 and ME2: UNION ALL’;
select *

from me1
union all
select *

from me2;

ME1 and ME2: UNION ALL

IDnum Jobcode Salary Bonus
--------------------------------------
1400 ME1 29769 587
1403 ME1 28072 342
1120 ME1 28619 986
1120 ME1 28619 986
1653 ME2 35108 .
1782 ME2 35345 .
1244 ME2 36925 .

See Example 5 on page 1134 for another example.

EXCEPT
The EXCEPT operator produces (from the first table-expression) an output table that

has unique rows that are not in the second table-expression. If the intermediate result
from the first table-expression has at least one occurrence of a row that is not in the
intermediate result of the second table-expression, then that row (from the first
table-expression) is included in the result table.

In the following example, the IN_USA table contains flights to cities within and
outside the USA. The OUT_USA table contains flights only to cities outside the USA.
This example returns only the rows from IN_USA that are not also in OUT_USA:

proc sql;
title ’Flights from IN_USA Only’;
select * from in_usa
except
select * from out_usa;

IN_USA

Flight Dest
------------------
145 ORD
156 WAS
188 LAX
193 FRA
207 LON



The SQL Procedure � sql-expression 1099

OUT_USA

Flight Dest
------------------
193 FRA
207 LON
311 SJA

Flights from IN_USA Only

Flight Dest
------------------
145 ORD
156 WAS
188 LAX

INTERSECT
The INTERSECT operator produces an output table that has rows that are common

to both tables. For example, using the IN_USA and OUT_USA tables shown above, the
following example returns rows that are in both tables:

proc sql;
title ’Flights from Both IN_USA and OUT_USA’;
select * from in_usa
intersect
select * from out_usa;

Flights from Both IN_USA and OUT_USA

Flight Dest
------------------
193 FRA
207 LON

sql-expression
Produces a value from a sequence of operands and operators.

operand operator operand

Arguments

operand
is one of the following:

� a constant, which is a number or a quoted character string (or other special
notation) that indicates a fixed value. Constants are also called literals.
Constants are described in SAS Language Reference: Dictionary.



1100 sql-expression � Chapter 44

� a column-name, which is described in “column-name” on page 1078.

� a CASE expression, which is described in “CASE expression” on page 1073.

� a SAS function, which is any SAS function except LAG, DIF, and SOUND.
Functions are described in SAS Language Reference: Dictionary.

� the ANSI SQL functions COALESCE, BTRIM, LOWER, UPPER, and
SUBSTRING.

� a summary-function, which is described in “summary-function” on page 1107.

� a query-expression, which is described in “query-expression” on page 1093.

� the USER literal, which references the userid of the person who submitted the
program. The userid that is returned is operating environment-dependent, but
PROC SQL uses the same value that the &SYSJOBID macro variable has on
the operating environment.

operator
is described in “Operators and the Order of Evaluation” on page 1100.

Note: SAS functions, including summary functions, can stand alone as SQL
expressions. For example

select min(x) from table;

select scan(y,4) from table;

�

SAS Functions
PROC SQL supports the same SAS functions as the DATA step, except for the

functions LAG, DIF, and SOUND. For example, the SCAN function is used in the
following query:

select style, scan(street,1) format=$15.
from houses;

See SAS Language Reference: Dictionary for complete documentation on SAS
functions. Summary functions are also SAS functions. See “summary-function” on page
1107 for more information.

USER Literal
USER can be specified in a view definition, for example, to create a view that restricts

access to those in the user’s department. Note that the USER literal value is stored in
uppercase, so it is advisable to use the UPCASE function when comparing to this value:

create view myemp as
select * from dept12.employees

where upcase(manager)=user;

This view produces a different set of employee information for each manager who
references it.

Operators and the Order of Evaluation
The order in which operations are evaluated is the same as in the DATA step with

this one exception: NOT is grouped with the logical operators AND and OR in PROC
SQL; in the DATA step, NOT is grouped with the unary plus and minus signs.



The SQL Procedure � sql-expression 1101

Unlike missing values in some versions of SQL, missing values in SAS always appear
first in the collating sequence. Therefore, in Boolean and comparison operations, the
following expressions resolve to true in a predicate:

3>null
-3>null

0>null

You can use parentheses to group values or to nest mathematical expressions.
Parentheses make expressions easier to read and can also be used to change the order
of evaluation of the operators. Evaluating expressions with parentheses begins at the
deepest level of parentheses and moves outward. For example, SAS evaluates A+B*C
as A+(B*C), although you can add parentheses to make it evaluate as (A+B)*C for a
different result.

Higher priority operations are performed first: that is, group 0 operators are
evaluated before group 5 operators. The following table shows the operators and their
order of evaluation, including their priority groups.

Table 44.1 Operators and Order of Evaluation

Group Operator Description

0 ( ) forces the expression enclosed to be evaluated first

1 case-expression selects result values that satisfy specified conditions

2 ** raises to a power

unary +, unary - indicates a positive or negative number

3 * multiplies

/ divides

4 + adds

− subtracts

5 || concatenates

6 <NOT> BETWEEN condition See “BETWEEN condition” on page 1071.

<NOT> CONTAINS condition see “CONTAINS condition” on page 1079.

<NOT> EXISTS condition See “EXISTS condition” on page 1080.

<NOT> IN condition See “IN condition” on page 1080.

IS <NOT> condition See “IS condition” on page 1081.

<NOT> LIKE condition See “LIKE condition” on page 1091.

7 =, eq equals

=, ^=, < >, ne does not equal

>, gt is greater than

<, lt is less than

>=, ge is greater than or equal to

<=, le is less than or equal to

=* sounds like (use with character operands only). See Example 11 on
page 1150.



1102 sql-expression � Chapter 44

Group Operator Description

eqt equal to truncated strings (use with character operands only). See
“Truncated String Comparison Operators” on page 1102.

gtt greater than truncated strings

ltt less than truncated strings

get greater than or equal to truncated strings

let less than or equal to truncated strings

net not equal to truncated strings

8 &, AND indicates logical AND

9 |, OR indicates logical OR

10 , ^, NOT indicates logical NOT

Symbols for operators might vary, depending on your operating environment. See
SAS Language Reference: Dictionary for more information on operators and expressions.

Truncated String Comparison Operators
PROC SQL supports truncated string comparison operators (see Group 7 in Table

44.1 on page 1101). In a truncated string comparison, the comparison is performed
after making the strings the same length by truncating the longer string to be the same
length as the shorter string. For example, the expression ’TWOSTORY’ eqt ’TWO’ is
true because the string ’TWOSTORY’ is reduced to ’TWO’ before the comparison is
performed. Note that the truncation is performed internally; neither operand is
permanently changed.

Note: Unlike the DATA step, PROC SQL does not support the colon operators (such
as =:, >:, and <=:) for truncated string comparisons. Use the alphabetic operators (such
as EQT, GTT, and LET). �

Query Expressions (Subqueries)
A query-expression is called a subquery when it is used in a WHERE or HAVING

clause. A subquery is a query-expression that is nested as part of another
query-expression. A subquery selects one or more rows from a table based on values in
another table.

Depending on the clause that contains it, a subquery can return a single value or
multiple values. If more than one subquery is used in a query-expression, then the
innermost query is evaluated first, then the next innermost query, and so on, moving
outward.

PROC SQL allows a subquery (contained in parentheses) at any point in an
expression where a simple column value or constant can be used. In this case, a
subquery must return a single value, that is, one row with only one column.

The following is an example of a subquery that returns one value. This PROC SQL
step subsets the PROCLIB.PAYROLL table based on information in the
PROCLIB.STAFF table. (PROCLIB.PAYROLL is shown in Example 2 on page 1127,
and PROCLIB.STAFF is shown in Example 4 on page 1131.) PROCLIB.PAYROLL
contains employee identification numbers (IdNumber) and their salaries (Salary) but
does not contain their names. If you want to return only the row from
PROCLIB.PAYROLL for one employee, then you can use a subquery that queries the
PROCLIB.STAFF table, which contains the employees’ identification numbers and their
names (Lname and Fname).



The SQL Procedure � sql-expression 1103

options ls=64 nodate nonumber;
proc sql;

title ’Information for Earl Bowden’;
select *

from proclib.payroll
where idnumber=

(select idnum
from proclib.staff
where upcase(lname)=’BOWDEN’);

Information for Earl Bowden

Id
Number Gender Jobcode Salary Birth Hired
---------------------------------------------------
1403 M ME1 28072 28JAN69 21DEC91

Subqueries can return multiple values. The following example uses the tables
PROCLIB.DELAY and PROCLIB.MARCH. These tables contain information about the
same flights and have the Flight column in common. The following subquery returns all
the values for Flight in PROCLIB.DELAY for international flights. The values from the
subquery complete the WHERE clause in the outer query. Thus, when the outer query
is executed, only the international flights from PROCLIB.MARCH are in the output.

options ls=64 nodate nonumber;
proc sql outobs=5;

title ’International Flights from’;
title2 ’PROCLIB.MARCH’;
select Flight, Date, Dest, Boarded

from proclib.march
where flight in

(select flight
from proclib.delay
where destype=’International’);

International Flights from
PROCLIB.MARCH

Flight Date Dest Boarded
-------------------------------
219 01MAR94 LON 198
622 01MAR94 FRA 207
132 01MAR94 YYZ 115
271 01MAR94 PAR 138
219 02MAR94 LON 147

Sometimes it is helpful to compare a value with a set of values returned by a
subquery. The keywords ANY or ALL can be specified before a subquery when the
subquery is the right-hand operand of a comparison. If ALL is specified, then the
comparison is true only if it is true for all values that are returned by the subquery. If a



1104 sql-expression � Chapter 44

subquery returns no rows, then the result of an ALL comparison is true for each row of
the outer query.

If ANY is specified, then the comparison is true if it is true for any one of the values
that are returned by the subquery. If a subquery returns no rows, then the result of an
ANY comparison is false for each row of the outer query.

The following example selects all those in PROCLIB.PAYROLL who earn more than
the highest paid ME3:

options ls=64 nodate nonumber ;
proc sql;
title ‘‘Employees who Earn More than’’;
title2 ‘‘All ME’s’’;

select *
from proclib.payroll
where salary > all (select salary

from proclib.payroll
where jobcode=’ME3’);

Employees who Earn More than
All ME’s

Id
Number Gender Jobcode Salary Birth Hired
---------------------------------------------------
1333 M PT2 88606 30MAR61 10FEB81
1739 M PT1 66517 25DEC64 27JAN91
1428 F PT1 68767 04APR60 16NOV91
1404 M PT2 91376 24FEB53 01JAN80
1935 F NA2 51081 28MAR54 16OCT81
1905 M PT1 65111 16APR72 29MAY92
1407 M PT1 68096 23MAR69 18MAR90
1410 M PT2 84685 03MAY67 07NOV86
1439 F PT1 70736 06MAR64 10SEP90
1545 M PT1 66130 12AUG59 29MAY90
1106 M PT2 89632 06NOV57 16AUG84
1442 F PT2 84536 05SEP66 12APR88
1417 M NA2 52270 27JUN64 07MAR89
1478 M PT2 84203 09AUG59 24OCT90
1556 M PT1 71349 22JUN64 11DEC91
1352 M NA2 53798 02DEC60 16OCT86
1890 M PT2 91908 20JUL51 25NOV79
1107 M PT2 89977 09JUN54 10FEB79
1830 F PT2 84471 27MAY57 29JAN83
1928 M PT2 89858 16SEP54 13JUL90
1076 M PT1 66558 14OCT55 03OCT91

Note: See the first item in “Subqueries and Efficiency” on page 1105 for a note
about efficiency when using ALL. �

In order to visually separate a subquery from the rest of the query, you can enclose
the subquery in any number of pairs of parentheses.

Correlated Subqueries

In a correlated subquery, the WHERE expression in a subquery refers to values in a
table in the outer query. The correlated subquery is evaluated for each row in the outer



The SQL Procedure � sql-expression 1105

query. With correlated subqueries, PROC SQL executes the subquery and the outer
query together.

The following example uses the PROCLIB.DELAY and PROCLIB.MARCH tables. A
DATA step (“PROCLIB.DELAY” on page 1390) creates PROCLIB.DELAY.
PROCLIB.MARCH is shown in Example 13 on page 1154. PROCLIB.DELAY has the
Flight, Date, Orig, and Dest columns in common with PROCLIB.MARCH:

proc sql outobs=5;
title ’International Flights’;
select *

from proclib.march
where ’International’ in

(select destype
from proclib.delay
where march.Flight=delay.Flight);

The subquery resolves by substituting every value for MARCH.Flight into the
subquery’s WHERE clause, one row at a time. For example, when MARCH.Flight=219,
the subquery resolves as follows:

1 PROC SQL retrieves all the rows from DELAY where Flight=219 and passes their
DESTYPE values to the WHERE clause.

2 PROC SQL uses the DESTYPE values to complete the WHERE clause:

where ’International’ in
(’International’,’International’, ...)

3 The WHERE clause checks to see if International is in the list. Because it is, all
rows from MARCH that have a value of 219 for Flight become part of the output.

The following output contains the rows from MARCH for international flights only.

Output 44.2 International Flights for March

International Flights

Flight Date Depart Orig Dest Miles Boarded Capacity
-----------------------------------------------------------------
219 01MAR94 9:31 LGA LON 3442 198 250
622 01MAR94 12:19 LGA FRA 3857 207 250
132 01MAR94 15:35 LGA YYZ 366 115 178
271 01MAR94 13:17 LGA PAR 3635 138 250
219 02MAR94 9:31 LGA LON 3442 147 250

Subqueries and Efficiency

� Use the MAX function in a subquery instead of the ALL keyword before the
subquery. For example, the following queries produce the same result, but the
second query is more efficient:

proc sql;
select * from proclib.payroll
where salary> all(select salary

from proclib.payroll
where jobcode=’ME3’);



1106 SUBSTRING function � Chapter 44

proc sql;
select * from proclib.payroll
where salary> (select max(salary)

from proclib.payroll
where jobcode=’ME3’);

� With subqueries, use IN instead of EXISTS when possible. For example, the
following queries produce the same result, but the second query is usually more
efficient:

proc sql;
select *

from proclib.payroll p
where exists (select *

from staff s
where p.idnum=s.idnum

and state=’CT’);

proc sql;
select *

from proclib.payroll
where idnum in (select idnum

from staff
where state=’CT’);

SUBSTRING function

Returns a part of a character expression.

SUBSTRING (sql-expression FROM start <FOR length>)

� sql-expression must be a character string and is described in “sql-expression” on
page 1099.

� start is a number (not a variable or column name) that specifies the position,
counting from the left end of the character string, at which to begin extracting the
substring.

� length is a number (not a variable or column name) that specifies the length of the
substring that is to be extracted.

Details
The SUBSTRING function operates on character strings. SUBSTRING returns a

specified part of the input character string, beginning at the position that is specified by
start. If length is omitted, then the SUBSTRING function returns all characters from
start to the end of the input character string. The values of start and length must be
numbers (not variables) and can be positive, negative, or zero.

If start is greater than the length of the input character string, then the
SUBSTRING function returns a zero-length string.

If start is less than 1, then the SUBSTRING function begins extraction at the
beginning of the input character string.

If length is specified, then the sum of start and length cannot be less than start or an
error is returned. If the sum of start and length is greater than the length of the input



The SQL Procedure � summary-function 1107

character string, then the SUBSTRING function returns all characters from start to the
end of the input character string. If the sum of start and length is less than 1, then the
SUBSTRING function returns a zero-length string.

Note: The SUBSTRING function is provided for compatibility with the ANSI SQL
standard. You can also use the SAS function SUBSTR. �

summary-function

Performs statistical summary calculations.

Restriction: A summary function cannot appear in an ON clause or a WHERE clause.

See also: GROUP BY on page 1065, HAVING Clause on page 1067, SELECT Clause on
page 1058, and “table-expression” on page 1113

Featured in: Example 8 on page 1143, Example 12 on page 1152, and Example 15 on
page 1160

summary-function (<DISTINCT | ALL> sql-expression)

Arguments

summary-function
is one of the following:

AVG|MEAN
arithmetic mean or average of values

COUNT|FREQ|N
number of nonmissing values

CSS
corrected sum of squares

CV
coefficient of variation (percent)

MAX
largest value

MIN
smallest value

NMISS
number of missing values

PRT
probability of a greater absolute value of Student’s t

RANGE
range of values



1108 summary-function � Chapter 44

STD
standard deviation

STDERR
standard error of the mean

SUM
sum of values

SUMWGT
sum of the WEIGHT variable values*

T
Student’s t value for testing the hypothesis that the population mean is zero

USS
uncorrected sum of squares

VAR
variance
For a description and the formulas used for these statistics, see Appendix 1, “SAS

Elementary Statistics Procedures,” on page 1339.

DISTINCT
specifies that only the unique values of sql-expression be used in the calculation.

ALL
specifies that all values of sql-expression be used in the calculation. If neither
DISTINCT nor ALL is specified, then ALL is used.

sql-expression
is described in “sql-expression” on page 1099.

Summarizing Data
Summary functions produce a statistical summary of the entire table or view that is

listed in the FROM clause or for each group that is specified in a GROUP BY clause. If
GROUP BY is omitted, then all the rows in the table or view are considered to be a
single group. These functions reduce all the values in each row or column in a table to
one summarizing or aggregate value. For this reason, these functions are often called
aggregate functions. For example, the sum (one value) of a column results from the
addition of all the values in the column.

Counting Rows
The COUNT function counts rows. COUNT(*) returns the total number of rows in a

group or in a table. If you use a column name as an argument to COUNT, then the
result is the total number of rows in a group or in a table that have a nonmissing value
for that column. If you want to count the unique values in a column, then specify
COUNT(DISTINCT column).

* Currently, there is no way to designate a WEIGHT variable for a table in PROC SQL. Thus, each row (or observation) has a
weight of 1.



The SQL Procedure � summary-function 1109

If the SELECT clause of a table-expression contains one or more summary functions
and that table-expression resolves to no rows, then the summary function results are
missing values. The following are exceptions that return zeros:

COUNT(*)

COUNT(<DISTINCT> sql-expression)

NMISS(<DISTINCT> sql-expression)

See Example 8 on page 1143 and Example 15 on page 1160 for examples.

Calculating Statistics Based on the Number of Arguments

The number of arguments that is specified in a summary function affects how the
calculation is performed. If you specify a single argument, then the values in the
column are calculated. If you specify multiple arguments, then the arguments or
columns that are listed are calculated for each row. For example, consider calculations
on the following table.

proc sql;
title ’Summary Table’;
select * from summary;

Summary Table

X Y Z
----------------------------

1 3 4
2 4 5
8 9 4
4 5 4

If you use one argument in the function, then the calculation is performed on that
column only. If you use more than one argument, then the calculation is performed on
each row of the specified columns. In the following PROC SQL step, the MIN and MAX
functions return the minimum and maximum of the columns they are used with. The
SUM function returns the sum of each row of the columns specified as arguments:

proc sql;
select min(x) as Colmin_x,

min(y) as Colmin_y,
max(z) as Colmax_z,
sum(x,y,z) as Rowsum

from summary;

Summary Table

Colmin_x Colmin_y Colmax_z Rowsum
--------------------------------------

1 3 5 8
1 3 5 11
1 3 5 21
1 3 5 13



1110 summary-function � Chapter 44

Remerging Data

When you use a summary function in a SELECT clause or a HAVING clause, you
might see the following message in the SAS log:

NOTE: The query requires remerging summary
statistics back with the original
data.

The process of remerging involves two passes through the data. On the first pass,
PROC SQL

� calculates and returns the value of summary functions. It then uses the result to
calculate the arithmetic expressions in which the summary function participates.

� groups data according to the GROUP BY clause.

On the second pass, PROC SQL retrieves any additional columns and rows that it
needs to show in the output.

The following examples use the PROCLIB.PAYROLL table (shown in Example 2 on
page 1127) to show when remerging of data is and is not necessary.

The first query requires remerging. The first pass through the data groups the data
by Jobcode and resolves the AVG function for each group. However, PROC SQL must
make a second pass in order to retrieve the values of IdNumber and Salary.

proc sql outobs=10;
title ’Salary Information’;
title2 ’(First 10 Rows Only)’;
select IdNumber, Jobcode, Salary,

avg(salary) as AvgSalary
from proclib.payroll
group by jobcode;

Salary Information
(First 10 Rows Only)

Id
Number Jobcode Salary AvgSalary
------------------------------------
1704 BCK 25465 25794.22
1677 BCK 26007 25794.22
1383 BCK 25823 25794.22
1845 BCK 25996 25794.22
1100 BCK 25004 25794.22
1663 BCK 26452 25794.22
1673 BCK 25477 25794.22
1389 BCK 25028 25794.22
1834 BCK 26896 25794.22
1132 FA1 22413 23039.36

You can change the previous query to return only the average salary for each
jobcode. The following query does not require remerging because the first pass of the
data does the summarizing and the grouping. A second pass is not necessary.

proc sql outobs=10;
title ’Average Salary for Each Jobcode’;
select Jobcode, avg(salary) as AvgSalary
from proclib.payroll
group by jobcode;



The SQL Procedure � summary-function 1111

Average Salary for Each Jobcode

Jobcode AvgSalary
------------------
BCK 25794.22
FA1 23039.36
FA2 27986.88
FA3 32933.86
ME1 28500.25
ME2 35576.86
ME3 42410.71
NA1 42032.2
NA2 52383
PT1 67908

When you use the HAVING clause, PROC SQL may have to remerge data to resolve
the HAVING expression.

First, consider a query that uses HAVING but that does not require remerging. The
query groups the data by values of Jobcode, and the result contains one row for each
value of Jobcode and summary information for people in each Jobcode. On the first
pass, the summary functions provide values for the Number, Average Age, and Average
Salary columns. The first pass provides everything that PROC SQL needs to resolve
the HAVING clause, so no remerging is necessary.

proc sql outobs=10;
title ’Summary Information for Each Jobcode’;
title2 ’(First 10 Rows Only)’;

select Jobcode,
count(jobcode) as number

label=’Number’,
avg(int((today()-birth)/365.25))

as avgage format=2.
label=’Average Age’,

avg(salary) as avgsal format=dollar8.
label=’Average Salary’

from proclib.payroll
group by jobcode
having avgage ge 30;

Summary Information for Each Jobcode
(First 10 Rows Only)

Average Average
Jobcode Number Age Salary
------------------------------------
BCK 9 36 $25,794
FA1 11 33 $23,039
FA2 16 37 $27,987
FA3 7 39 $32,934
ME1 8 34 $28,500
ME2 14 39 $35,577
ME3 7 42 $42,411
NA1 5 30 $42,032
NA2 3 42 $52,383
PT1 8 38 $67,908



1112 summary-function � Chapter 44

In the following query, PROC SQL remerges the data because the HAVING clause
uses the SALARY column in the comparison and SALARY is not in the GROUP BY
clause.

proc sql outobs=10;
title ’Employees who Earn More than the’;
title2 ’Average for Their Jobcode’;
title3 ’(First 10 Rows Only)’;

select Jobcode, Salary,
avg(salary) as AvgSalary

from proclib.payroll
group by jobcode
having salary > AvgSalary;

Employees who Earn More than the
Average for Their Jobcode

(First 10 Rows Only)

Jobcode Salary AvgSalary
----------------------------
BCK 26007 25794.22
BCK 25823 25794.22
BCK 25996 25794.22
BCK 26452 25794.22
BCK 26896 25794.22
FA1 23177 23039.36
FA1 23738 23039.36
FA1 23979 23039.36
FA1 23916 23039.36
FA1 23644 23039.36

Keep in mind that PROC SQL remerges data when

� the values returned by a summary function are used in a calculation. For
example, the following query returns the values of X and the percent of the total
for each row. On the first pass, PROC SQL computes the sum of X, and on the
second pass PROC SQL computes the percentage of the total for each value of X:

proc sql;
title ’Percentage of the Total’;
select X, (100*x/sum(X)) as Pct_Total

from summary;

Percentage of the Total

x Pct_Total
-------------------

32 14.81481
86 39.81481
49 22.68519
49 22.68519

� the values returned by a summary function are compared to values of a column
that is not specified in the GROUP BY clause. For example, the following query
uses the PROCLIB.PAYROLL table. PROC SQL remerges data because the
column Salary is not specified in the GROUP BY clause:



The SQL Procedure � table-expression 1113

proc sql;
select jobcode, salary,

avg(salary) as avsal
from proclib.payroll
group by jobcode
having salary > avsal;

� a column from the input table is specified in the SELECT clause and is not
specified in the GROUP BY clause. This rule does not refer to columns used as
arguments to summary functions in the SELECT clause.

For example, in the following query, the presence of IdNumber in the SELECT
clause causes PROC SQL to remerge the data because IdNumber is not involved in
grouping or summarizing during the first pass. In order for PROC SQL to retrieve
the values for IdNumber, it must make a second pass through the data.

proc sql;
select IdNumber, jobcode,

avg(salary) as avsal
from proclib.payroll
group by jobcode;

table-expression

Defines part or all of a query-expression.

See also: “query-expression” on page 1093

SELECT <DISTINCT> object-item<, … object-item>
<INTO :macro-variable-specification

<, … :macro-variable-specification>>
FROM from-list
<WHERE sql-expression>
<GROUP BY group-by-item <, … group-by-item>>
<HAVING sql-expression>

See “SELECT Statement” on page 1058 for complete information on the SELECT
statement.

Details
A table-expression is a SELECT statement. It is the fundamental building block of

most SQL procedure statements. You can combine the results of multiple
table-expressions with set operators, which creates a query-expression. Use one
ORDER BY clause for an entire query-expression. Place a semicolon only at the end of
the entire query-expression. A query-expression is often only one SELECT statement or
table-expression.



1114 UPPER function � Chapter 44

UPPER function

Converts the case of a character string to uppercase.

See also: “LOWER function” on page 1093

UPPER (sql-expression)

� sql-expression must be a character string and is described in “sql-expression” on
page 1099.

Details
The UPPER function operates on character strings. UPPER converts the case of its

argument to all uppercase.

Concepts: SQL Procedure

Using SAS Data Set Options with PROC SQL
In PROC SQL, you can apply most of the SAS data set options, such as KEEP= and

DROP=, to tables or SAS/ACCESS views any time that you specify a table or
SAS/ACCESS view. In the SQL procedure, SAS data set options that are separated by
spaces are enclosed in parentheses, and they follow immediately after the table or
SAS/ACCESS view name. In the following PROC SQL step, RENAME= renames
LNAME to LASTNAME for the STAFF1 table. OBS= restricts the number of rows
written to STAFF1 to 15:

proc sql;
create table

staff1(rename=(lname=lastname)) as
select *

from staff(obs=15);

SAS data set options can be combined with SQL statement arguments:

proc sql;
create table test

(a character, b numeric, pw=cat);
create index staffidx on

staff1 (lastname, alter=dog);

You cannot use SAS data set options with DICTIONARY tables because
DICTIONARY tables are read-only objects.

The only SAS data set options that you can use with PROC SQL views are those that
assign and provide SAS passwords: READ=, WRITE=, ALTER=, and PW=.

See SAS Language Reference: Dictionary for a description of SAS data set options.



The SQL Procedure � Connecting to a DBMS Using the LIBNAME Statement 1115

Connecting to a DBMS Using the SQL Procedure Pass-Through Facility

What Is the Pass-Through Facility?
The SQL Procedure Pass-Through Facility enables you to send DBMS-specific SQL

statements directly to a DBMS for execution. The Pass-Through Facility uses a SAS/
ACCESS interface engine to connect to the DBMS. Therefore, you must have SAS/
ACCESS software installed for your DBMS.

You submit SQL statements that are DBMS-specific. For example, you pass
Transact-SQL statements to a SYBASE database. The Pass-Through Facility’s basic
syntax is the same for all the DBMSs. Only the statements that are used to connect to
the DBMS and the SQL statements are DBMS-specific.

With the Pass-Through Facility, you can perform the following tasks:
� establish a connection with the DBMS using a CONNECT statement and

terminate the connection with the DISCONNECT statement.
� send nonquery DBMS-specific SQL statements to the DBMS using the EXECUTE

statement.
� retrieve data from the DBMS to be used in a PROC SQL query with the

CONNECTION TO component in a SELECT statement’s FROM clause.

You can use the Pass-Through Facility statements in a query, or you can store them
in a PROC SQL view. When a view is stored, any options that are specified in the
corresponding CONNECT statement are also stored. Thus, when the PROC SQL view
is used in a SAS program, SAS can automatically establish the appropriate connection
to the DBMS.

See “CONNECT Statement” on page 1042, “DISCONNECT Statement” on page 1053,
“EXECUTE Statement” on page 1055, “CONNECTION TO” on page 1079, and “The
Pass-Through Facility for Relational Databases” in SAS/ACCESS for Relational
Databases: Reference.

Note: SAS procedures that do multipass processing cannot operate on PROC SQL
views that store Pass-Through Facility statements, because the Pass-Through Facility
does not allow reopening of a table after the first record has been retrieved. To work
around this limitation, create a SAS data set from the view and use the SAS data set as
the input data set. �

Return Codes
As you use PROC SQL statements that are available in the Pass-Through Facility,

any errors are written to the SAS log. The return codes and messages that are
generated by the Pass-Through Facility are available to you through the SQLXRC and
SQLXMSG macro variables. Both macro variables are described in “Using Macro
Variables Set by PROC SQL” on page 1119.

Connecting to a DBMS Using the LIBNAME Statement
For many DBMSs, you can directly access DBMS data by assigning a libref to the

DBMS using the SAS/ACCESS LIBNAME statement. Once you have associated a libref
with the DBMS, you can specify a DBMS table in a two-level SAS name and work with
the table like any SAS data set. You can also embed the LIBNAME statement in a
PROC SQL view (see “CREATE VIEW Statement” on page 1049).

PROC SQL will take advantage of the capabilities of a DBMS by passing it certain
operations whenever possible. For example, before implementing a join, PROC SQL



1116 Using the DICTIONARY Tables � Chapter 44

checks to see if the DBMS can do the join. If it can, then PROC SQL passes the join to
the DBMS. This enhances performance by reducing data movement and translation. If
the DBMS cannot do the join, then PROC SQL processes the join. Using the
SAS/ACCESS LIBNAME statement can often provide you with the performance
benefits of the SQL Procedure Pass-Through Facility without having to write
DBMS-specific code.

To use the SAS/ACCESS LIBNAME statement, you must have SAS/ACCESS
software installed for your DBMS. For more information about the SAS/ACCESS
LIBNAME statement, refer to the SAS/ACCESS documentation for your DBMS.

Using the DICTIONARY Tables

What Are DICTIONARY Tables?

DICTIONARY tables are special, read-only SAS data views that contain information
about your SAS session. For example, the DICTIONARY.COLUMNS table contains
information, such as name, type, length, and format, about all columns in all tables
that are known to the current SAS session. DICTIONARY tables are accessed by using
the libref DICTIONARY in the FROM clause in a SELECT statement in PROC SQL.
Additionally, there are PROC SQL views, stored in the SASHELP library and known as
SASHELP views, that reference the DICTIONARY tables and that can be used in other
SAS procedures and in the DATA step.

Note: You cannot use data set options with DICTIONARY tables. �

For an example that demonstrates the use of a DICTIONARY table, see Example 6
on page 1136.

The following table describes the DICTIONARY tables that are available and shows
the associated SASHELP view(s) for each table.

Table 44.2 DICTIONARY Tables and Associated SASHELP Views

DICTIONARY table SASHELP
view

Description

CATALOGS VCATALG Contains information about known SAS
catalogs.

CHECK_CONSTRAINTS VCHKCON Contains information about known check
constraints.

COLUMNS VCOLUMN Contains information about columns in all
known tables.

CONSTRAINT_COLUMN_USAGE VCNCOLU Contains information about columns that are
referred to by integrity constraints.

CONSTRAINT_TABLE_USAGE VCNTABU Contains information about tables that have
integrity constraints defined on them.

DICTIONARIES VDCTNRY Contains information about all DICTIONARY
tables.

ENGINES VENGINE Contains information about SAS engines.



The SQL Procedure � Using the DICTIONARY Tables 1117

DICTIONARY table SASHELP
view

Description

EXTFILES VEXTFL Contains information about known external
files.

FORMATS VFORMAT Contains information about currently
accessible formats and informats.

GOPTIONS VGOPT

VALLOPT

Contains information about currently defined
graphics options (SAS/GRAPH software).
SASHELP.VALLOPT includes SAS system
options as well as graphics options.

INDEXES VINDEX Contains information about known indexes.

LIBNAMES VLIBNAM Contains information about currently defined
SAS data libraries.

MACROS VMACRO Contains information about currently defined
macros.

MEMBERS VMEMBER

VSACCES

VSCATLG

VSLIB

VSTABLE

VSTABVW

VSVIEW

Contains information about all objects that
are in currently defined SAS data libraries.
SASHELP.VMEMBER contains information
for all member types; the other SASHELP
views are specific to particular member types
(such as tables or views).

OPTIONS VOPTION

VALLOPT

Contains information on SAS system options.
SASHELP.VALLOPT includes graphics
options as well as SAS system options.

REFERENTIAL_CONSTRAINTS VREFCON Contains information about referential
constraints.

STYLES VSTYLE Contains information about known ODS styles.

TABLE_CONSTRAINTS VTABCON Contains information about integrity
constraints in all known tables.

TABLES VTABLE Contains information about known tables.

TITLES VTITLE Contains information about currently defined
titles and footnotes.

VIEWS VVIEW Contains information about known data views.

Retrieving Information about DICTIONARY Tables and SASHELP Views
To see how each DICTIONARY table is defined, submit a DESCRIBE TABLE

statement. After you know how a table is defined, you can use its column names in a
subsetting WHERE clause in order to retrieve more specific information. For example:

proc sql;
describe table dictionary.indexes;



1118 Using the DICTIONARY Tables � Chapter 44

The results are written to the SAS log:

6 proc sql;
7 describe table dictionary.indexes;
NOTE: SQL table DICTIONARY.INDEXES was created like:

create table DICTIONARY.INDEXES
(

libname char(8) label=’Library Name’,
memname char(32) label=’Member Name’,
memtype char(8) label=’Member Type’,
name char(32) label=’Column Name’,
idxusage char(9) label=’Column Index Type’,
indxname char(32) label=’Index Name’,
indxpos num label=’Position of Column in Concatenated Key’,
nomiss char(3) label=’Nomiss Option’,
unique char(3) label=’Unique Option’

);

Use the DESCRIBE VIEW statement in PROC SQL to find out how a SASHELP
view is defined. Here’s an example:

proc sql;
describe view sashelp.vstabvw;

The results are written to the SAS log:

6 proc sql;
7 describe view sashelp.vstabvw;
NOTE: SQL view SASHELP.VSTABVW is defined as:

select libname, memname, memtype
from DICTIONARY.MEMBERS

where (memtype=’VIEW’) or (memtype=’DATA’)
order by libname asc, memname asc;

Using DICTIONARY Tables
DICTIONARY tables are commonly used to monitor and manage SAS sessions

because the data is more easily manipulated than the output from, for example, PROC
DATASETS. You can query DICTIONARY tables the same way that you query any other
table, including subsetting with a WHERE clause, ordering the results, and creating
PROC SQL views. Note that many character values in the DICTIONARY tables are
stored as all-uppercase characters; you should design your queries accordingly.

Because DICTIONARY tables are read-only objects, you cannot insert rows or
columns, alter column attributes, or add integrity constraints to them.

Note: For DICTIONARY.TABLES and SASHELP.VTABLE, if a table is
read-protected with a password, then the only information that is listed for that table is
the library name, member name, member type, and type of password protection; all
other information is set to missing. �

DICTIONARY Tables and Performance
When querying a DICTIONARY table, SAS launches a discovery process that gathers

information that is pertinent to that table. Depending on the DICTIONARY table that
is being queried, this discovery process can search libraries, open tables, and execute
views. Unlike other SAS procedures and the DATA step, PROC SQL can mitigate this



The SQL Procedure � Using Macro Variables Set by PROC SQL 1119

process by optimizing the query before the discovery process is launched. Therefore,
although it is possible to access DICTIONARY table information with SAS procedures
or the DATA step by using the SASHELP views, it is often more efficient to use PROC
SQL instead.

For example, the following programs both produce the same result, but the PROC
SQL step runs much faster because the WHERE clause is processed prior to opening
the tables that are referenced by the SASHELP.VCOLUMN view:

data mytable;
set sashelp.vcolumn;
where libname=’WORK’ and memname=’SALES’;

run;

proc sql;
create table mytable as

select * from sashelp.vcolumn
where libname=’WORK’ and memname=’SALES’;

quit;

Note: SAS does not maintain DICTIONARY table information between queries.
Each query of a DICTIONARY table launches a new discovery process. �

If you are querying the same DICTIONARY table several times in a row, then you
can get even faster performance by creating a temporary SAS data set (with the DATA
step SET statement or PROC SQL CREATE TABLE AS statement) with the
information that you want and running your query against that data set.

Using Macro Variables Set by PROC SQL

PROC SQL sets up macro variables with certain values after it executes each
statement. These macro variables can be tested inside a macro to determine whether to
continue executing the PROC SQL step. SAS/AF software users can also test them in a
program after an SQL SUBMIT block of code, using the SYMGET function.

After each PROC SQL statement has executed, the following macro variables are
updated with these values:

SQLOBS
contains the number of rows executed by an SQL procedure statement. For
example, it contains the number of rows formatted and displayed in SAS output by
a SELECT statement or the number of rows deleted by a DELETE statement.

When the NOPRINT option is specified, the value of the SQLOBS macro
variable depends on whether an output table, single macro variable, macro
variable range, or macro variable list is created:

� If no output table, macro variable list, or macro variable range is created,
then SQLOBS contains the value 1.

� If an output table is created, then SQLOBS contains the number of rows in
the output table.

� If a single macro variable is created, then SQLOBS contains the value 1.

� If a macro variable list or macro variable range is created, then SQLOBS
contains the number of rows that are processed to create the macro variable
list or range.



1120 Using Macro Variables Set by PROC SQL � Chapter 44

SQLRC
contains the following status values that indicate the success of the SQL procedure
statement:

0
PROC SQL statement completed successfully with no errors.

4
PROC SQL statement encountered a situation for which it issued a warning.
The statement continued to execute.

8
PROC SQL statement encountered an error. The statement stopped
execution at this point.

12
PROC SQL statement encountered an internal error, indicating a bug in
PROC SQL that should be reported to SAS Technical Support. These errors
can occur only during compile time.

16
PROC SQL statement encountered a user error. This error code is used, for
example, when a subquery (that can only return a single value) evaluates to
more than one row. These errors can only be detected during run time.

24
PROC SQL statement encountered a system error. This error is used, for
example, if the system cannot write to a PROC SQL table because the disk is
full. These errors can occur only during run time.

28
PROC SQL statement encountered an internal error, indicating a bug in
PROC SQL that should be reported to SAS Technical Support. These errors
can occur only during run time.

SQLOOPS
contains the number of iterations that the inner loop of PROC SQL executes. The
number of iterations increases proportionally with the complexity of the query. See
also the description of LOOPS= on page 1036.

SQLXRC
contains the DBMS-specific return code that is returned by the Pass-Through
Facility.

SQLXMSG
contains descriptive information and the DBMS-specific return code for the error
that is returned by the Pass-Through Facility.

Note: Because the value of the SQLXMSG macro variable can contain special
characters (such as &, %, /, *, and ;), use the %SUPERQ macro function when
printing the value:

%put %superq(sqlxmsg);

See SAS Macro Language: Reference for information about the %SUPERQ
function. �

This example retrieves the data but does not display them in SAS output because of
the NOPRINT option in the PROC SQL statement. The %PUT macro statement
displays the macro variables values.

proc sql noprint;
select *



The SQL Procedure � Updating PROC SQL and SAS/ACCESS Views 1121

from proclib.payroll;

%put sqlobs=**&sqlobs**
sqloops=**&sqloops**
sqlrc=**&sqlrc**;

The message in Output 44.3 appears in the SAS log and gives you the macros’ values.

Output 44.3 PROC SQL Macro Variable Values

40 options ls=80;
41
42 proc sql noprint;
43 select *
44 from proclib.payroll;
45
46 %put sqlobs=**&sqlobs**
47 sqloops=**&sqloops**
48 sqlrc=**&sqlrc**;
sqlobs=**1** sqloops=**11** sqlrc=**0**

Macro variables that are generated by PROC SQL follow the scoping rules for %LET.
For more information about macro variable scoping, see SAS Macro Language:
Reference.

Updating PROC SQL and SAS/ACCESS Views
You can update PROC SQL and SAS/ACCESS views using the INSERT, DELETE,

and UPDATE statements, under the following conditions.
� If the view accesses a DBMS table, then you must have been granted the

appropriate authorization by the external database management system (for
example, DB2). You must have installed the SAS/ACCESS software for your
DBMS. See the SAS/ACCESS interface guide for your DBMS for more information
on SAS/ACCESS views.

� You can update only a single table through a view. The table cannot be joined to
another table or linked to another table with a set-operator. The view cannot
contain a subquery.

� You can update a column in a view using the column’s alias, but you cannot
update a derived column, that is, a column produced by an expression. In the
following example, you can update the column SS, but not WeeklySalary.

create view EmployeeSalaries as
select Employee, SSNumber as SS,

Salary/52 as WeeklySalary
from employees;

� You cannot update a view containing an ORDER BY.

Note: Starting in SAS System 9, PROC SQL views, the Pass-Through Facility, and
the SAS/ACCESS LIBNAME statement are the preferred ways to access relational
DBMS data; SAS/ACCESS views are no longer recommended. You can convert existing
SAS/ACCESS views to PROC SQL views by using the CV2VIEW procedure. See The
CV2VIEW Procedure in SAS/ACCESS for Relational Databases: Reference for more
information. �



1122 PROC SQL and the ANSI Standard � Chapter 44

PROC SQL and the ANSI Standard

Compliance
PROC SQL follows most of the guidelines set by the American National Standards

Institute (ANSI) in its implementation of SQL. However, it is not fully compliant with
the current ANSI Standard for SQL.*

The SQL research project at SAS has focused primarily on the expressive power of
SQL as a query language. Consequently, some of the database features of SQL have not
yet been implemented in PROC SQL.

SQL Procedure Enhancements

Reserved Words
PROC SQL reserves very few keywords and then only in certain contexts. The ANSI

Standard reserves all SQL keywords in all contexts. For example, according to the
Standard you cannot name a column GROUP because of the keywords GROUP BY.

The following words are reserved in PROC SQL:

� The keyword CASE is always reserved; its use in the CASE expression (an SQL2
feature) precludes its use as a column name.

If you have a column named CASE in a table and you want to specify it in a
PROC SQL step, then you can use the SAS data set option RENAME= to rename
that column for the duration of the query. You can also surround CASE in double
quotation marks (“CASE”) and set the PROC SQL option DQUOTE=ANSI.

� The keywords AS, ON, FULL, JOIN, LEFT, FROM, WHEN, WHERE, ORDER,
GROUP, RIGHT, INNER, OUTER, UNION, EXCEPT, HAVING, and INTERSECT
cannot normally be used for table aliases. These keywords all introduce clauses
that appear after a table name. Since the alias is optional, PROC SQL deals with
this ambiguity by assuming that any one of these words introduces the
corresponding clause and is not the alias. If you want to use one of these keywords
as an alias, then use the PROC SQL option DQUOTE=ANSI.

� The keyword USER is reserved for the current userid. If you specify USER on a
SELECT statement in conjunction with a CREATE TABLE statement, then the
column is created in the table with a temporary column name that is similar to
_TEMA001. If you specify USER in a SELECT statement without using the
CREATE TABLE statement, then the column is written to the output without a
column heading. In either case, the value for the column varies by operating
environment, but is typically the userid of the user who is submitting the program
or the value of the &SYSJOBID automatic macro variable.

If you have a column named USER in a table and you want to specify it in a
PROC SQL step, then you can use the SAS data set option RENAME= to rename
that column for the duration of the query. You can also enclose USER with double
quotation marks (“USER”) and set the PROC SQL option DQUOTE=ANSI.

* International Organization for Standardization (ISO): Database SQL. Document ISO/IEC 9075:1992. Also available as
American National Standards Institute (ANSI) Document ANSI X3.135-1992.



The SQL Procedure � SQL Procedure Enhancements 1123

Column Modifiers
PROC SQL supports the SAS INFORMAT=, FORMAT=, and LABEL= modifiers for

expressions within the SELECT clause. These modifiers control the format in which
output data are displayed and labeled.

Alternate Collating Sequences
PROC SQL allows you to specify an alternate collating (sorting) sequence to be used

when you specify the ORDER BY clause. See the description of the SORTSEQ= option
in “PROC SQL Statement” on page 1033 for more information.

ORDER BY Clause in a View Definition
PROC SQL permits you to specify an ORDER BY clause in a CREATE VIEW

statement. When the view is queried, its data are always sorted according to the
specified order unless a query against that view includes a different ORDER BY clause.
See “CREATE VIEW Statement” on page 1049 for more information.

In-Line Views
The ability to code nested query-expressions in the FROM clause is a requirement of

the ANSI Standard. PROC SQL supports such nested coding.

Outer Joins
The ability to include columns that both match and do not match in a join-expression

is a requirement of the ANSI Standard. PROC SQL supports this ability.

Arithmetic Operators
PROC SQL supports the SAS exponentiation (**) operator. PROC SQL uses the

notation <> to mean not equal.

Orthogonal Expressions
PROC SQL permits the combination of comparison, Boolean, and algebraic

expressions. For example, (X=3)*7 yields a value of 7 if X=3 is true because true is
defined to be 1. If X=3 is false, then it resolves to 0 and the entire expression yields a
value of 0.

PROC SQL permits a subquery in any expression. This feature is required by the
ANSI Standard. Therefore, you can have a subquery on the left side of a comparison
operator in the WHERE expression.

PROC SQL permits you to order and group data by any kind of mathematical
expression (except those including summary functions) using ORDER BY and GROUP
BY clauses. You can also group by an expression that appears on the SELECT clause
by using the integer that represents the expression’s ordinal position in the SELECT
clause. You are not required to select the expression by which you are grouping or
ordering. See ORDER BY Clause on page 1067 and GROUP BY Clause on page 1065
for more information.

Set Operators
The set operators UNION, INTERSECT, and EXCEPT are required by the ANSI

Standard. PROC SQL provides these operators plus the OUTER UNION operator.



1124 SQL Procedure Omissions � Chapter 44

The ANSI Standard also requires that the tables being operated upon all have the
same number of columns with matching data types. The SQL procedure works on
tables that have the same number of columns, as well as on those that do not, by
creating virtual columns so that a query can evaluate correctly. See “query-expression”
on page 1093 for more information.

Statistical Functions
PROC SQL supports many more summary functions than required by the ANSI

Standard for SQL.
PROC SQL supports the remerging of summary function results into the table’s

original data. For example, computing the percentage of total is achieved with 100*x/
SUM(x) in PROC SQL. See “summary-function” on page 1107 for more information on
the available summary functions and remerging data.

SAS DATA Step Functions
PROC SQL supports all the functions available to the SAS DATA step, except for

LAG, DIF, and SOUND. Other SQL databases support their own set of functions.

SQL Procedure Omissions

COMMIT Statement
The COMMIT statement is not supported.

ROLLBACK Statement
The ROLLBACK statement is not supported. The UNDO_POLICY= option in the

PROC SQL statement addresses rollback. See the description of the UNDO_POLICY=
option in “PROC SQL Statement” on page 1033 for more information.

Identifiers and Naming Conventions
In SAS, table names, column names, and aliases are limited to 32 characters and can

contain mixed case. For more information on SAS naming conventions, see SAS
Language Reference: Dictionary. The ANSI Standard for SQL allows longer names.

Granting User Privileges
The GRANT statement, PRIVILEGES keyword, and authorization-identifier features

of SQL are not supported. You might want to use operating environment-specific means
of security instead.

Three-Valued Logic
ANSI-compatible SQL has three-valued logic, that is, special cases for handling

comparisons involving NULL values. Any value compared with a NULL value
evaluates to NULL.

PROC SQL follows the SAS convention for handling missing values: when numeric
NULL values are compared to non-NULL numbers, the NULL values are less than or
smaller than all the non-NULL values; when character NULL values are compared to
non-NULL characters, the character NULL values are treated as a string of blanks.



The SQL Procedure � Program 1125

Embedded SQL
Currently there is no provision for embedding PROC SQL statements in other SAS

programming environments, such as the DATA step or SAS/IML software.

Examples: SQL Procedure

Example 1: Creating a Table and Inserting Data into It

Procedure features:
CREATE TABLE statement

column-modifier
INSERT statement

VALUES clause
SELECT clause
FROM clause

Table: PROCLIB.PAYLIST

This example creates the table PROCLIB.PAYLIST and inserts data into it.

Program

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Create the PROCLIB.PAYLIST table. The CREATE TABLE statement creates
PROCLIB.PAYLIST with six empty columns. Each column definition indicates whether the
column is character or numeric. The number in parentheses specifies the width of the column.
INFORMAT= and FORMAT= assign date informats and formats to the Birth and Hired columns.

proc sql;
create table proclib.paylist

(IdNum char(4),



1126 Program � Chapter 44

Gender char(1),
Jobcode char(3),
Salary num,
Birth num informat=date7.

format=date7.,
Hired num informat=date7.

format=date7.);

Insert values into the PROCLIB.PAYLIST table. The INSERT statement inserts data
values into PROCLIB.PAYLIST according to the position in the VALUES clause. Therefore, in
the first VALUES clause, 1639 is inserted into the first column, F into the second column, and
so forth. Dates in SAS are stored as integers with 0 equal to January 1, 1960. Suffixing the date
with a d is one way to use the internal value for dates.

insert into proclib.paylist
values(’1639’,’F’,’TA1’,42260,’26JUN70’d,’28JAN91’d)
values(’1065’,’M’,’ME3’,38090,’26JAN54’d,’07JAN92’d)
values(’1400’,’M’,’ME1’,29769.’05NOV67’d,’16OCT90’d)

Include missing values in the data. The value null represents a missing value for the
character column Jobcode. The period represents a missing value for the numeric column Salary.

values(’1561’,’M’,null,36514,’30NOV63’d,’07OCT87’d)
values(’1221’,’F’,’FA3’,.,’22SEP63’d,’04OCT94’d);

Specify the title.

title ’PROCLIB.PAYLIST Table’;

Display the entire PROCLIB.PAYLIST table. The SELECT clause selects columns from
PROCLIB.PAYLIST. The asterisk (*) selects all columns. The FROM clause specifies
PROCLIB.PAYLIST as the table to select from.

select *
from proclib.paylist;



The SQL Procedure � Example 2: Creating a Table from a Query’s Result 1127

Output Table

PROCLIB.PAYLIST

PROCLIB.PAYLIST Table

Id
Num Gender Jobcode Salary Birth Hired
-------------------------------------------------
1639 F TA1 42260 26JUN70 28JAN91
1065 M ME3 38090 26JAN54 07JAN92
1400 M ME1 29769 05NOV67 16OCT90
1561 M 36514 30NOV63 07OCT87
1221 F FA3 . 22SEP63 04OCT94

Example 2: Creating a Table from a Query’s Result

Procedure features:
CREATE TABLE statement

AS query-expression
SELECT clause

column alias
FORMAT= column-modifier
object-item

Other features:
data set option

OBS=
Tables:

PROCLIB.PAYROLL, PROCLIB.BONUS

This example builds a column with an arithmetic expression and creates the
PROCLIB.BONUS table from the query’s result.



1128 Input Table � Chapter 44

Input Table

PROCLIB.PAYROLL (Partial Listing)

PROCLIB.PAYROLL
First 10 Rows Only

Id
Number Gender Jobcode Salary Birth Hired
---------------------------------------------------
1919 M TA2 34376 12SEP60 04JUN87
1653 F ME2 35108 15OCT64 09AUG90
1400 M ME1 29769 05NOV67 16OCT90
1350 F FA3 32886 31AUG65 29JUL90
1401 M TA3 38822 13DEC50 17NOV85
1499 M ME3 43025 26APR54 07JUN80
1101 M SCP 18723 06JUN62 01OCT90
1333 M PT2 88606 30MAR61 10FEB81
1402 M TA2 32615 17JAN63 02DEC90
1479 F TA3 38785 22DEC68 05OCT89

Program

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Create the PROCLIB.BONUS table. The CREATE TABLE statement creates the table
PROCLIB.BONUS from the result of the subsequent query.

proc sql;
create table proclib.bonus as

Select the columns to include. The SELECT clause specifies that three columns will be in
the new table: IdNumber, Salary, and Bonus. FORMAT= assigns the DOLLAR8. format to
Salary. The Bonus column is built with the SQL expression salary*.025.

select IdNumber, Salary format=dollar8.,
salary*.025 as Bonus format=dollar8.

from proclib.payroll;



The SQL Procedure � Example 3: Updating Data in a PROC SQL Table 1129

Specify the title.

title ’BONUS Information’;

Display the first 10 rows of the PROCLIB.BONUS table. The SELECT clause selects
columns from PROCLIB.BONUS. The asterisk (*) selects all columns. The FROM clause
specifies PROCLIB.BONUS as the table to select from. The OBS= data set option limits the
printing of the output to 10 rows.

select *
from proclib.bonus(obs=10);

Output

PROCLIB.BONUS

BONUS Information

Id
Number Salary Bonus
--------------------------
1919 $34,376 $859
1653 $35,108 $878
1400 $29,769 $744
1350 $32,886 $822
1401 $38,822 $971
1499 $43,025 $1,076
1101 $18,723 $468
1333 $88,606 $2,215
1402 $32,615 $815
1479 $38,785 $970

Example 3: Updating Data in a PROC SQL Table

Procedure features:
ALTER TABLE statement

DROP clause
MODIFY clause

UPDATE statement

SET clause
CASE expression

Table: EMPLOYEES

This example updates data values in the EMPLOYEES table and drops a column.



1130 Input � Chapter 44

Input
data Employees;

input IdNum $4. +2 LName $11. FName $11. JobCode $3.
+1 Salary 5. +1 Phone $12.;

datalines;
1876 CHIN JACK TA1 42400 212/588-5634
1114 GREENWALD JANICE ME3 38000 212/588-1092
1556 PENNINGTON MICHAEL ME1 29860 718/383-5681
1354 PARKER MARY FA3 65800 914/455-2337
1130 WOOD DEBORAH PT2 36514 212/587-0013
;

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Display the entire EMPLOYEES table. The SELECT clause displays the table before the
updates. The asterisk (*) selects all columns for display. The FROM clause specifies
EMPLOYEES as the table to select from.

proc sql;
title ’Employees Table’;
select * from Employees;

Update the values in the Salary column. The UPDATE statement updates the values in
EMPLOYEES. The SET clause specifies that the data in the Salary column be multiplied by
1.04 when the job code ends with a 1 and 1.025 for all other job codes. (The two underscores
represent any character.) The CASE expression returns a value for each row that completes the
SET clause.

update employees
set salary=salary*
case when jobcode like ’__1’ then 1.04

else 1.025
end;

Modify the format of the Salary column and delete the Phone column. The ALTER
TABLE statement specifies EMPLOYEES as the table to alter. The MODIFY clause
permanently modifies the format of the Salary column. The DROP clause permanently drops the
Phone column.

alter table employees
modify salary num format=dollar8.
drop phone;



The SQL Procedure � Example 4: Joining Two Tables 1131

Specify the title.

title ’Updated Employees Table’;

Display the entire updated EMPLOYEES table. The SELECT clause displays the
EMPLOYEES table after the updates. The asterisk (*) selects all columns.

select * from employees;

Output

Employees Table 1

Id Job
Num LName FName Code Salary Phone
------------------------------------------------------------
1876 CHIN JACK TA1 42400 212/588-5634
1114 GREENWALD JANICE ME3 38000 212/588-1092
1556 PENNINGTON MICHAEL ME1 29860 718/383-5681
1354 PARKER MARY FA3 65800 914/455-2337
1130 WOOD DEBORAH PT2 36514 212/587-0013

Updated Employees Table 2

Id Job
Num LName FName Code Salary
----------------------------------------------
1876 CHIN JACK TA1 $44,096
1114 GREENWALD JANICE ME3 $38,950
1556 PENNINGTON MICHAEL ME1 $31,054
1354 PARKER MARY FA3 $67,445
1130 WOOD DEBORAH PT2 $37,427

Example 4: Joining Two Tables

Procedure features:
FROM clause

table alias
inner join
joined-table component
PROC SQL statement option

NUMBER
WHERE clause

IN condition



1132 Input Tables � Chapter 44

Tables: PROCLIB.STAFF, PROCLIB.PAYROLL

This example joins two tables in order to get more information about data that are
common to both tables.

Input Tables

PROCLIB.STAFF (Partial Listing)

PROCLIB.STAFF
First 10 Rows Only

Id
Num Lname Fname City State Hphone
----------------------------------------------------------------------------
1919 ADAMS GERALD STAMFORD CT 203/781-1255
1653 ALIBRANDI MARIA BRIDGEPORT CT 203/675-7715
1400 ALHERTANI ABDULLAH NEW YORK NY 212/586-0808
1350 ALVAREZ MERCEDES NEW YORK NY 718/383-1549
1401 ALVAREZ CARLOS PATERSON NJ 201/732-8787
1499 BAREFOOT JOSEPH PRINCETON NJ 201/812-5665
1101 BAUCOM WALTER NEW YORK NY 212/586-8060
1333 BANADYGA JUSTIN STAMFORD CT 203/781-1777
1402 BLALOCK RALPH NEW YORK NY 718/384-2849
1479 BALLETTI MARIE NEW YORK NY 718/384-8816

PROCLIB.PAYROLL (Partial Listing)

PROCLIB.PAYROLL
First 10 Rows Only

Id
Number Gender Jobcode Salary Birth Hired
---------------------------------------------------
1919 M TA2 34376 12SEP60 04JUN87
1653 F ME2 35108 15OCT64 09AUG90
1400 M ME1 29769 05NOV67 16OCT90
1350 F FA3 32886 31AUG65 29JUL90
1401 M TA3 38822 13DEC50 17NOV85
1499 M ME3 43025 26APR54 07JUN80
1101 M SCP 18723 06JUN62 01OCT90
1333 M PT2 88606 30MAR61 10FEB81
1402 M TA2 32615 17JAN63 02DEC90
1479 F TA3 38785 22DEC68 05OCT89



The SQL Procedure � Program 1133

Program

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=120 pagesize=40;

Add row numbers to PROC SQL output. NUMBER adds a column that contains the row
number.

proc sql number;

Specify the title.

title ’Information for Certain Employees Only’;

Select the columns to display. The SELECT clause selects the columns to show in the output.

select Lname, Fname, City, State,
IdNumber, Salary, Jobcode

Specify the tables from which to obtain the data. The FROM clause lists the tables to
select from.

from proclib.staff, proclib.payroll

Specify the join criterion and subset the query. The WHERE clause specifies that the
tables are joined on the ID number from each table. WHERE also further subsets the query
with the IN condition, which returns rows for only four employees.

where idnumber=idnum and idnum in
(’1919’, ’1400’, ’1350’, ’1333’);



1134 Output � Chapter 44

Output

Information for Certain Employees Only

Id
Row Lname Fname City State Number

Salary Jobcode
------------------------------------------------------------------------

1 ADAMS GERALD STAMFORD CT 1919
34376 TA2

2 ALHERTANI ABDULLAH NEW YORK NY 1400
29769 ME1

3 ALVAREZ MERCEDES NEW YORK NY 1350
32886 FA3

4 BANADYGA JUSTIN STAMFORD CT 1333
88606 PT2

Example 5: Combining Two Tables

Procedure features:
DELETE statement
IS condition
RESET statement option

DOUBLE
UNION set operator

Tables: PROCLIB.NEWPAY, PROCLIB.PAYLIST, PROCLIB.PAYLIST2

This example creates a new table, PROCLIB.NEWPAY, by concatenating two other
tables: PROCLIB.PAYLIST and PROCLIB.PAYLIST2.

Input Tables

PROCLIB.PAYLIST

Information for Certain Employees Only

Id
Num Gender Jobcode Salary Birth Hired
-------------------------------------------------
1639 F TA1 42260 26JUN70 28JAN91
1065 M ME3 38090 26JAN54 07JAN92
1400 M ME1 29769 05NOV67 16OCT90
1561 M 36514 30NOV63 07OCT87
1221 F FA3 . 22SEP63 04OCT94



The SQL Procedure � Program 1135

PROCLIB.PAYLIST2

PROCLIB.PAYLIST2 Table

Id
Num Gender Jobcode Salary Birth Hired
-------------------------------------------------
1919 M TA2 34376 12SEP66 04JUN87
1653 F ME2 31896 15OCT64 09AUG92
1350 F FA3 36886 31AUG55 29JUL91
1401 M TA3 38822 13DEC55 17NOV93
1499 M ME1 23025 26APR74 07JUN92

Program

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the PROCLIB.NEWPAY table. The SELECT clauses select all the columns from the
tables that are listed in the FROM clauses. The UNION set operator concatenates the query
results that are produced by the two SELECT clauses.

proc sql;
create table proclib.newpay as

select * from proclib.paylist
union
select * from proclib.paylist2;

Delete rows with missing Jobcode or Salary values. The DELETE statement deletes rows
from PROCLIB.NEWPAY that satisfy the WHERE expression. The IS condition specifies rows
that contain missing values in the Jobcode or Salary column.

delete
from proclib.newpay
where jobcode is missing or salary is missing;



1136 Output � Chapter 44

Reset the PROC SQL environment and double-space the output. RESET changes the
procedure environment without stopping and restarting PROC SQL. The DOUBLE option
double-spaces the output. (The DOUBLE option has no effect on ODS output.)

reset double;

Specify the title.

title ’Personnel Data’;

Display the entire PROCLIB.NEWPAY table. The SELECT clause selects all columns from
the newly created table, PROCLIB.NEWPAY.

select *
from proclib.newpay;

Output

Personnel Data

Id
Num Gender Jobcode Salary Birth Hired
-------------------------------------------------
1065 M ME3 38090 26JAN54 07JAN92

1350 F FA3 36886 31AUG55 29JUL91

1400 M ME1 29769 05NOV67 16OCT90

1401 M TA3 38822 13DEC55 17NOV93

1499 M ME1 23025 26APR74 07JUN92

1639 F TA1 42260 26JUN70 28JAN91

1653 F ME2 31896 15OCT64 09AUG92

1919 M TA2 34376 12SEP66 04JUN87

Example 6: Reporting from DICTIONARY Tables

Procedure features:
DESCRIBE TABLE statement
DICTIONARY.table-name component

Table: DICTIONARY.MEMBERS

This example uses DICTIONARY tables to show a list of the SAS files in a SAS data
library. If you do not know the names of the columns in the DICTIONARY table that
you are querying, then use a DESCRIBE TABLE statement with the table.



The SQL Procedure � Program 1137

Program

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. SOURCE writes
the programming statements to the SAS log.

options nodate pageno=1 source linesize=80 pagesize=60;

List the column names from the DICTIONARY.MEMBERS table. DESCRIBE TABLE
writes the column names from DICTIONARY.MEMBERS to the SAS log.

proc sql;
describe table dictionary.members;

Specify the title.

title ’SAS Files in the PROCLIB Library’;

Display a list of files in the PROCLIB library. The SELECT clause selects the MEMNAME
and MEMTYPE columns. The FROM clause specifies DICTIONARY.MEMBERS as the table to
select from. The WHERE clause subsets the output to include only those rows that have a libref
of PROCLIB in the LIBNAME column.

select memname, memtype
from dictionary.members
where libname=’PROCLIB’;



1138 Log � Chapter 44

Log

277 options nodate pageno=1 source linesize=80 pagesize=60;
278
279 proc sql;
280 describe table dictionary.members;
NOTE: SQL table DICTIONARY.MEMBERS was created like:

create table DICTIONARY.MEMBERS
(

libname char(8) label=’Library Name’,
memname char(32) label=’Member Name’,
memtype char(8) label=’Member Type’,
engine char(8) label=’Engine Name’,
index char(32) label=’Indexes’,
path char(1024) label=’Path Name’

);

281 title ’SAS Files in the PROCLIB Library’;
282
283 select memname, memtype
284 from dictionary.members
285 where libname=’PROCLIB’;

Output

SAS Files in the PROCLIB Library

Member
Member Name Type
------------------------------------------
ALL DATA
BONUS DATA
BONUS95 DATA
DELAY DATA
HOUSES DATA
INTERNAT DATA
MARCH DATA
NEWPAY DATA
PAYLIST DATA
PAYLIST2 DATA
PAYROLL DATA
PAYROLL2 DATA
SCHEDULE DATA
SCHEDULE2 DATA
STAFF DATA
STAFF2 DATA
SUPERV DATA
SUPERV2 DATA

Example 7: Performing an Outer Join

Procedure features:
joined-table component
left outer join
SELECT clause



The SQL Procedure � Input Tables 1139

COALESCE function
WHERE clause

CONTAINS condition

Tables: PROCLIB.PAYROLL, PROCLIB.PAYROLL2

This example illustrates a left outer join of the PROCLIB.PAYROLL and
PROCLIB.PAYROLL2 tables.

Input Tables

PROCLIB.PAYROLL (Partial Listing)

PROCLIB.PAYROLL
First 10 Rows Only

Id
Number Gender Jobcode Salary Birth Hired
---------------------------------------------------
1009 M TA1 28880 02MAR59 26MAR92
1017 M TA3 40858 28DEC57 16OCT81
1036 F TA3 39392 19MAY65 23OCT84
1037 F TA1 28558 10APR64 13SEP92
1038 F TA1 26533 09NOV69 23NOV91
1050 M ME2 35167 14JUL63 24AUG86
1065 M ME2 35090 26JAN44 07JAN87
1076 M PT1 66558 14OCT55 03OCT91
1094 M FA1 22268 02APR70 17APR91
1100 M BCK 25004 01DEC60 07MAY88

PROCLIB.PAYROLL2

PROCLIB.PAYROLL2

Id
Num Sex Jobcode Salary Birth Hired
----------------------------------------------
1036 F TA3 42465 19MAY65 23OCT84
1065 M ME3 38090 26JAN44 07JAN87
1076 M PT1 69742 14OCT55 03OCT91
1106 M PT3 94039 06NOV57 16AUG84
1129 F ME3 36758 08DEC61 17AUG91
1221 F FA3 29896 22SEP67 04OCT91
1350 F FA3 36098 31AUG65 29JUL90
1369 M TA3 36598 28DEC61 13MAR87
1447 F FA1 22123 07AUG72 29OCT92
1561 M TA3 36514 30NOV63 07OCT87
1639 F TA3 42260 26JUN57 28JAN84
1998 M SCP 23100 10SEP70 02NOV92



1140 Program � Chapter 44

Program

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Limit the number of output rows. OUTOBS= limits the output to 10 rows.

proc sql outobs=10;

Specify the title for the first query.

title ’Most Current Jobcode and Salary Information’;

Select the columns. The SELECT clause lists the columns to select. Some column names are
prefixed with a table alias because they are in both tables. LABEL= and FORMAT= are column
modifiers.

select p.IdNumber, p.Jobcode, p.Salary,
p2.jobcode label=’New Jobcode’,
p2.salary label=’New Salary’ format=dollar8.

Specify the type of join. The FROM clause lists the tables to join and assigns table aliases.
The keywords LEFT JOIN specify the type of join. The order of the tables in the FROM clause
is important. PROCLIB.PAYROLL is listed first and is considered the “left” table.
PROCLIB.PAYROLL2 is the “right” table.

from proclib.payroll as p left join proclib.payroll2 as p2

Specify the join criterion. The ON clause specifies that the join be performed based on the
values of the ID numbers from each table.

on p.IdNumber=p2.idnum;



The SQL Procedure � Output 1141

Output

As the output shows, all rows from the left table, PROCLIB.PAYROLL, are returned. PROC
SQL assigns missing values for rows in the left table, PAYROLL, that have no matching values
for IdNum in PAYROLL2.

Most Current Jobcode and Salary Information

Id New New
Number Jobcode Salary Jobcode Salary
--------------------------------------------
1009 TA1 28880 .
1017 TA3 40858 .
1036 TA3 39392 TA3 $42,465
1037 TA1 28558 .
1038 TA1 26533 .
1050 ME2 35167 .
1065 ME2 35090 ME3 $38,090
1076 PT1 66558 PT1 $69,742
1094 FA1 22268 .
1100 BCK 25004 .

Specify the title for the second query.

title ’Most Current Jobcode and Salary Information’;

Select the columns and coalesce the Jobcode columns.The SELECT clause lists the
columns to select. COALESCE overlays the like-named columns. For each row, COALESCE
returns the first nonmissing value of either P2.JOBCODE or P.JOBCODE. Because
P2.JOBCODE is the first argument, if there is a nonmissing value for P2.JOBCODE,
COALESCE returns that value. Thus, the output contains the most recent job code information
for every employee. LABEL= assigns a column label.

select p.idnumber, coalesce(p2.jobcode,p.jobcode)
label=’Current Jobcode’,

Coalesce the Salary columns. For each row, COALESCE returns the first nonmissing value
of either P2.SALARY or P.SALARY. Because P2.SALARY is the first argument, if there is a
nonmissing value for P2.SALARY, then COALESCE returns that value. Thus, the output
contains the most recent salary information for every employee.

coalesce(p2.salary,p.salary) label=’Current Salary’
format=dollar8.



1142 Output � Chapter 44

Specify the type of join and the join criterion. The FROM clause lists the tables to join and
assigns table aliases. The keywords LEFT JOIN specify the type of join. The ON clause specifies
that the join is based on the ID numbers from each table.

from proclib.payroll p left join proclib.payroll2 p2
on p.IdNumber=p2.idnum;

Output

Most Current Jobcode and Salary Information

Id Current Current
Number Jobcode Salary
-------------------------
1009 TA1 $28,880
1017 TA3 $40,858
1036 TA3 $42,465
1037 TA1 $28,558
1038 TA1 $26,533
1050 ME2 $35,167
1065 ME3 $38,090
1076 PT1 $69,742
1094 FA1 $22,268
1100 BCK $25,004

Subset the query. The WHERE clause subsets the left join to include only those rows
containing the value TA.

title ’Most Current Information for Ticket Agents’;
select p.IdNumber,

coalesce(p2.jobcode,p.jobcode) label=’Current Jobcode’,
coalesce(p2.salary,p.salary) label=’Current Salary’

from proclib.payroll p left join proclib.payroll2 p2
on p.IdNumber=p2.idnum
where p2.jobcode contains ’TA’;

Output

Most Current Information for Ticket Agents

Id Current Current
Number Jobcode Salary
-------------------------
1036 TA3 42465
1369 TA3 36598
1561 TA3 36514
1639 TA3 42260



The SQL Procedure � Program 1143

Example 8: Creating a View from a Query’s Result

Procedure features:
CREATE VIEW statement
GROUP BY clause
SELECT clause

COUNT function
HAVING clause

Other features:
AVG summary function
data set option

PW=

Tables: PROCLIB.PAYROLL, PROCLIB.JOBS

This example creates the PROC SQL view PROCLIB.JOBS from the result of a
query-expression.

Input Table

PROCLIB.PAYROLL (Partial Listing)

PROCLIB.PAYROLL
First 10 Rows Only

Id
Number Gender Jobcode Salary Birth Hired
---------------------------------------------------
1009 M TA1 28880 02MAR59 26MAR92
1017 M TA3 40858 28DEC57 16OCT81
1036 F TA3 39392 19MAY65 23OCT84
1037 F TA1 28558 10APR64 13SEP92
1038 F TA1 26533 09NOV69 23NOV91
1050 M ME2 35167 14JUL63 24AUG86
1065 M ME2 35090 26JAN44 07JAN87
1076 M PT1 66558 14OCT55 03OCT91
1094 M FA1 22268 02APR70 17APR91
1100 M BCK 25004 01DEC60 07MAY88

Program

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;



1144 Program � Chapter 44

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the PROCLIB.JOBS view. CREATE VIEW creates the PROC SQL view
PROCLIB.JOBS. The PW= data set option assigns password protection to the data that is
generated by this view.

proc sql;
create view proclib.jobs(pw=red) as

Select the columns. The SELECT clause specifies four columns for the view: Jobcode and
three columns, Number, AVGAGE, and AVGSAL, whose values are the products functions.
COUNT returns the number of nonmissing values for each job code because the data is grouped
by Jobcode. LABEL= assigns a label to the column.

select Jobcode,
count(jobcode) as number label=’Number’,

Calculate the Avgage and Avgsal columns. The AVG summary function calculates the
average age and average salary for each job code.

avg(int((today()-birth)/365.25)) as avgage
format=2. label=’Average Age’,

avg(salary) as avgsal
format=dollar8. label=’Average Salary’

Specify the table from which the data is obtained. The FROM clause specifies PAYROLL
as the table to select from. PROC SQL assumes the libref of PAYROLL to be PROCLIB because
PROCLIB is used in the CREATE VIEW statement.

from payroll

Organize the data into groups and specify the groups to include in the output. The
GROUP BY clause groups the data by the values of Jobcode. Thus, any summary statistics are
calculated for each grouping of rows by value of Jobcode. The HAVING clause subsets the
grouped data and returns rows for job codes that contain an average age of greater than or
equal to 30.

group by jobcode
having avgage ge 30;

Specify the titles.

title ’Current Summary Information for Each Job Category’;
title2 ’Average Age Greater Than or Equal to 30’;



The SQL Procedure � Example 9: Joining Three Tables 1145

Display the entire PROCLIB.JOBS view. The SELECT statement selects all columns from
PROCLIB.JOBS. PW=RED is necessary because the view is password protected.

select * from proclib.jobs(pw=red);

Output

Current Summary Information for Each Job Category
Average Age Greater Than Or Equal to 30

Average Average
Jobcode Number Age Salary
------------------------------------
BCK 9 36 $25,794
FA1 11 33 $23,039
FA2 16 37 $27,987
FA3 7 39 $32,934
ME1 8 34 $28,500
ME2 14 39 $35,577
ME3 7 42 $42,411
NA1 5 30 $42,032
NA2 3 42 $52,383
PT1 8 38 $67,908
PT2 10 43 $87,925
PT3 2 54 $10,505
SCP 7 37 $18,309
TA1 9 36 $27,721
TA2 20 36 $33,575
TA3 12 40 $39,680

Example 9: Joining Three Tables

Procedure features:
FROM clause
joined-table component
WHERE clause

Tables: PROCLIB.STAFF2, PROCLIB.SCHEDULE2, PROCLIB.SUPERV2

This example joins three tables and produces a report that contains columns from
each table.



1146 Input Tables � Chapter 44

Input Tables

PROCLIB.STAFF2

PROCLIB.STAFF2

Id
Num Lname Fname City State Hphone
----------------------------------------------------------------------------
1106 MARSHBURN JASPER STAMFORD CT 203/781-1457
1430 DABROWSKI SANDRA BRIDGEPORT CT 203/675-1647
1118 DENNIS ROGER NEW YORK NY 718/383-1122
1126 KIMANI ANNE NEW YORK NY 212/586-1229
1402 BLALOCK RALPH NEW YORK NY 718/384-2849
1882 TUCKER ALAN NEW YORK NY 718/384-0216
1479 BALLETTI MARIE NEW YORK NY 718/384-8816
1420 ROUSE JEREMY PATERSON NJ 201/732-9834
1403 BOWDEN EARL BRIDGEPORT CT 203/675-3434
1616 FUENTAS CARLA NEW YORK NY 718/384-3329

PROCLIB.SCHEDULE2

PROCLIB.SCHEDULE2

Id
Flight Date Dest Num
---------------------------
132 01MAR94 BOS 1118
132 01MAR94 BOS 1402
219 02MAR94 PAR 1616
219 02MAR94 PAR 1478
622 03MAR94 LON 1430
622 03MAR94 LON 1882
271 04MAR94 NYC 1430
271 04MAR94 NYC 1118
579 05MAR94 RDU 1126
579 05MAR94 RDU 1106



The SQL Procedure � Program 1147

PROCLIB.SUPERV2

PROCLIB.SUPERV2

Supervisor Job
Id State Category
---------------------------
1417 NJ NA
1352 NY NA
1106 CT PT
1442 NJ PT
1118 NY PT
1405 NJ SC
1564 NY SC
1639 CT TA
1126 NY TA
1882 NY ME

Program

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Select the columns. The SELECT clause specifies the columns to select. IdNum is prefixed
with a table alias because it appears in two tables.

proc sql;
title ’All Flights for Each Supervisor’;
select s.IdNum, Lname, City ’Hometown’, Jobcat,

Flight, Date

Specify the tables to include in the join. The FROM clause lists the three tables for the join
and assigns an alias to each table.

from proclib.schedule2 s, proclib.staff2 t, proclib.superv2 v



1148 Output � Chapter 44

Specify the join criteria. The WHERE clause specifies the columns that join the tables. The
STAFF2 and SCHEDULE2 tables have an IdNum column, which has related values in both
tables. The STAFF2 and SUPERV2 tables have the IdNum and SUPID columns, which have
related values in both tables.

where s.idnum=t.idnum and t.idnum=v.supid;

Output

All Flights for Each Supervisor

Id Job
Num Lname Hometown Category Flight Date
-----------------------------------------------------------------
1106 MARSHBURN STAMFORD PT 579 05MAR94
1118 DENNIS NEW YORK PT 132 01MAR94
1118 DENNIS NEW YORK PT 271 04MAR94
1126 KIMANI NEW YORK TA 579 05MAR94
1882 TUCKER NEW YORK ME 622 03MAR94

Example 10: Querying an In-Line View
Procedure features:

FROM clause
in-line view

Tables: PROCLIB.STAFF2, PROCLIB.SCHEDULE2, PROCLIB.SUPERV2

This example shows an alternative way to construct the query that is explained in
Example 9 on page 1145 by joining one of the tables with the results of an in-line view.
The example also shows how to rename columns with an in-line view.

Program

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;



The SQL Procedure � Output 1149

Select the columns. The SELECT clause selects all columns that are returned by the in-line
view (which will have the alias Three assigned to it), plus one column from the third table
(which will have the alias V assigned to it).

proc sql;
title ’All Flights for Each Supervisor’;
select three.*, v.jobcat

Specify the in-line query. Instead of including the name of a table or view, the FROM clause
includes a query that joins two of the three tables. In the in-line query, the SELECT clause lists
the columns to select. IdNum is prefixed with a table alias because it appears in both tables.
The FROM clause lists the two tables for the join and assigns an alias to each table. The
WHERE clause specifies the columns that join the tables. The STAFF2 and SCHEDULE2 tables
have an IdNum column, which has related values in both tables.

from (select lname, s.idnum, city, flight, date
from proclib.schedule2 s, proclib.staff2 t
where s.idnum=t.idnum)

Specify an alias for the query and names for the columns. The alias Three refers to the
results of the in-line view. The names in parentheses become the names for the columns in the
view.

as three (Surname, Emp_ID, Hometown,
FlightNumber, FlightDate),

Join the results of the in-line view with the third table. The WHERE clause specifies the
columns that join the table with the in-line view. Note that the WHERE clause specifies the
renamed Emp_ID column from the in-line view.

proclib.superv2 v
where three.Emp_ID=v.supid;

Output

All Flights for Each Supervisor 1

Job
Surname Emp_ID Hometown FlightNumber FlightDate Category
----------------------------------------------------------------------------
MARSHBURN 1106 STAMFORD 579 05MAR94 PT
DENNIS 1118 NEW YORK 132 01MAR94 PT
DENNIS 1118 NEW YORK 271 04MAR94 PT
KIMANI 1126 NEW YORK 579 05MAR94 TA
TUCKER 1882 NEW YORK 622 03MAR94 ME



1150 Example 11: Retrieving Values with the SOUNDS-LIKE Operator � Chapter 44

Example 11: Retrieving Values with the SOUNDS-LIKE Operator

Procedure features:
ORDER BY clause
SOUNDS-LIKE operator

Table: PROCLIB.STAFF

This example returns rows based on the functionality of the SOUNDS-LIKE operator
in a WHERE clause.

Note: The SOUNDS-LIKE operator is based on the SOUNDEX algorithm for
identifying words that sound alike. The SOUNDEX algorithm is English-biased and is
less useful for languages other than English. For more information on the SOUNDEX
algorithm, see SAS Language Reference: Dictionary. �

Input Table

PROCLIB.STAFF

PROCLIB.STAFF
First 10 Rows Only

Id
Num Lname Fname City State Hphone
----------------------------------------------------------------------------
1919 ADAMS GERALD STAMFORD CT 203/781-1255
1653 ALIBRANDI MARIA BRIDGEPORT CT 203/675-7715
1400 ALHERTANI ABDULLAH NEW YORK NY 212/586-0808
1350 ALVAREZ MERCEDES NEW YORK NY 718/383-1549
1401 ALVAREZ CARLOS PATERSON NJ 201/732-8787
1499 BAREFOOT JOSEPH PRINCETON NJ 201/812-5665
1101 BAUCOM WALTER NEW YORK NY 212/586-8060
1333 BANADYGA JUSTIN STAMFORD CT 203/781-1777
1402 BLALOCK RALPH NEW YORK NY 718/384-2849
1479 BALLETTI MARIE NEW YORK NY 718/384-8816

Program

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=60;



The SQL Procedure � Output 1151

Select the columns and the table from which the data is obtained. The SELECT clause
selects all columns from the table in the FROM clause, PROCLIB.STAFF.

proc sql;
title "Employees Whose Last Name Sounds Like ’Johnson’";
select idnum, upcase(lname), fname

from proclib.staff

Subset the query and sort the output. The WHERE clause uses the SOUNDS-LIKE
operator to subset the table by those employees whose last name sounds like Johnson. The
ORDER BY clause orders the output by the second column.

where lname=*"Johnson"
order by 2;

Output

Employees Whose Last Name Sounds Like ’Johnson’ 1

Id
Num Fname
--------------------------------------
1411 JOHNSEN JACK
1113 JOHNSON LESLIE
1369 JONSON ANTHONY

SOUNDS-LIKE is useful, but there might be instances where it does not return every row that
seems to satisfy the condition. PROCLIB.STAFF has an employee with the last name SANDERS
and an employee with the last name SANYERS. The algorithm does not find SANYERS, but it does
find SANDERS and SANDERSON.

title "Employees Whose Last Name Sounds Like ’Sanders’";
select *

from proclib.staff
where lname=*"Sanders"
order by 2;

Employees Whose Last Name Sounds Like ’Sanders’ 2

Id
Num Lname Fname City State Hphone
----------------------------------------------------------------------------
1561 SANDERS RAYMOND NEW YORK NY 212/588-6615
1414 SANDERSON NATHAN BRIDGEPORT CT 203/675-1715
1434 SANDERSON EDITH STAMFORD CT 203/781-1333



1152 Example 12: Joining Two Tables and Calculating a New Value � Chapter 44

Example 12: Joining Two Tables and Calculating a New Value
Procedure features:

GROUP BY clause
HAVING clause
SELECT clause

ABS function
FORMAT= column-modifier
LABEL= column-modifier
MIN summary function
** operator, exponentiation
SQRT function

Tables: STORES, HOUSES

This example joins two tables in order to compare and analyze values that are unique
to each table yet have a relationship with a column that is common to both tables.

options ls=80 ps=60 nodate pageno=1 ;
data stores;

input Store $ x y;
datalines;

store1 5 1
store2 5 3
store3 3 5
store4 7 5
;
data houses;

input House $ x y;
datalines;

house1 1 1
house2 3 3
house3 2 3
house4 7 7
;

Input Tables

STORES and HOUSES

The tables contain X and Y coordinates that represent the location of the stores and houses.

STORES Table 1
Coordinates of Stores

Store x y
----------------------------
store1 6 1
store2 5 2
store3 3 5
store4 7 5



The SQL Procedure � Program 1153

HOUSES Table 2
Coordinates of Houses

House x y
----------------------------
house1 1 1
house2 3 3
house3 2 3
house4 7 7

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the query. The SELECT clause specifies three columns: HOUSE, STORE, and DIST.
The arithmetic expression uses the square root function (SQRT) to create the values of DIST,
which contain the distance from HOUSE to STORE for each row. The double asterisk (**)
represents exponentiation. LABEL= assigns a label to STORE and to DIST.

proc sql;
title ’Each House and the Closest Store’;
select house, store label=’Closest Store’,

sqrt((abs(s.x-h.x)**2)+(abs(h.y-s.y)**2)) as dist
label=’Distance’ format=4.2

from stores s, houses h

Organize the data into groups and subset the query. The minimum distance from each
house to all the stores is calculated because the data are grouped by house. The HAVING clause
specifies that each row be evaluated to determine if its value of DIST is the same as the
minimum distance from that house to any store.

group by house
having dist=min(dist);



1154 Output � Chapter 44

Output

Note that two stores are tied for shortest distance from house2.

Each House and the Closest Store 1

Closest
House Store Distance
----------------------------
house1 store1 4.00
house2 store2 2.00
house2 store3 2.00
house3 store3 2.24
house4 store4 2.00

Example 13: Producing All the Possible Combinations of the Values in a
Column

Procedure features:
CASE expression
joined-table component
Cross join
SELECT clause

DISTINCT keyword
Tables: PROCLIB.MARCH, FLIGHTS

This example joins a table with itself to get all the possible combinations of the
values in a column.



The SQL Procedure � Program to Create the Flights Table 1155

Input Table

PROCLIB.MARCH (Partial Listing)

PROCLIB.MARCH 1
First 10 Rows Only

Flight Date Depart Orig Dest Miles Boarded Capacity
-----------------------------------------------------------------
114 01MAR94 7:10 LGA LAX 2475 172 210
202 01MAR94 10:43 LGA ORD 740 151 210
219 01MAR94 9:31 LGA LON 3442 198 250
622 01MAR94 12:19 LGA FRA 3857 207 250
132 01MAR94 15:35 LGA YYZ 366 115 178
271 01MAR94 13:17 LGA PAR 3635 138 250
302 01MAR94 20:22 LGA WAS 229 105 180
114 02MAR94 7:10 LGA LAX 2475 119 210
202 02MAR94 10:43 LGA ORD 740 120 210
219 02MAR94 9:31 LGA LON 3442 147 250

Program to Create the Flights Table

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the FLIGHTS table. The CREATE TABLE statement creates the table FLIGHTS from
the output of the query. The SELECT clause selects the unique values of Dest. DISTINCT
specifies that only one row for each value of city be returned by the query and stored in the
table FLIGHTS. The FROM clause specifies PROCLIB.MARCH as the table to select from.

proc sql;
create table flights as

select distinct dest
from proclib.march;



1156 Output � Chapter 44

Specify the title.

title ’Cities Serviced by the Airline’;

Display the entire FLIGHTS table.

select * from flights;

Output

FLIGHTS Table

Cities Serviced by the Airline 1

Dest
----
FRA
LAX
LON
ORD
PAR
WAS
YYZ

Program Using Conventional Join

Specify the title.

title ’All Possible Connections’;

Select the columns. The SELECT clause specifies three columns for the output. The prefixes
on DEST are table aliases to specify which table to take the values of Dest from. The CASE
expression creates a column that contains the character string to and from.

select f1.Dest, case
when f1.dest ne ’ ’ then ’to and from’

end,
f2.Dest

Specify the type of join. The FROM clause joins FLIGHTS with itself and creates a table that
contains every possible combination of rows (a Cartesian product). The table contains two rows
for each possible route, for example, PAR <-> WAS and WAS <-> PAR.

from flights as f1, flights as f2



The SQL Procedure � Program Using Cross Join 1157

Specify the join criterion. The WHERE clause subsets the internal table by choosing only
those rows where the name in F1.Dest sorts before the name in F2.Dest. Thus, there is only one
row for each possible route.

where f1.dest < f2.dest

Sort the output. ORDER BY sorts the result by the values of F1.Dest.

order by f1.dest;

Output

All Possible Connections 2

Dest Dest
-----------------------
FRA to and from LAX
FRA to and from LON
FRA to and from WAS
FRA to and from ORD
FRA to and from PAR
FRA to and from YYZ
LAX to and from LON
LAX to and from PAR
LAX to and from WAS
LAX to and from ORD
LAX to and from YYZ
LON to and from ORD
LON to and from WAS
LON to and from PAR
LON to and from YYZ
ORD to and from WAS
ORD to and from PAR
ORD to and from YYZ
PAR to and from WAS
PAR to and from YYZ
WAS to and from YYZ

Program Using Cross Join

Specify a cross join. Because a cross join is functionally the same as a Cartesian product join,
the cross join syntax can be substituted for the conventional join syntax.

proc sql;
title ’All Possible Connections’;
select f1.Dest, case

when f1.dest ne ’ ’ then ’to and from’
end,

f2.Dest
from flights as f1 cross join flights as f2
where f1.dest < f2.dest
order by f1.dest;



1158 Output � Chapter 44

Output

All Possible Connections 1

Dest Dest
-----------------------
FRA to and from LAX
FRA to and from LON
FRA to and from WAS
FRA to and from ORD
FRA to and from PAR
FRA to and from YYZ
LAX to and from LON
LAX to and from PAR
LAX to and from WAS
LAX to and from ORD
LAX to and from YYZ
LON to and from ORD
LON to and from WAS
LON to and from PAR
LON to and from YYZ
ORD to and from WAS
ORD to and from PAR
ORD to and from YYZ
PAR to and from WAS
PAR to and from YYZ
WAS to and from YYZ

Example 14: Matching Case Rows and Control Rows

Procedure features:
joined-table component

Tables: MATCH_11 on page 1388, MATCH

This example uses a table that contains data for a case-control study. Each row
contains information for a case or a control. To perform statistical analysis, you need a
table with one row for each case-control pair. PROC SQL joins the table with itself in
order to match the cases with their appropriate controls. After the rows are matched,
differencing can be performed on the appropriate columns.

The input table MATCH_11 contains one row for each case and one row for each
control. Pair contains a number that associates the case with its control. Low is 0 for
the controls and 1 for the cases. The remaining columns contain information about the
cases and controls.



The SQL Procedure � Program 1159

Input Table

MATCH_11 Table 1

First 10 Rows Only

Pair Low Age Lwt Race Smoke Ptd Ht UI race1 race2

------------------------------------------------------------------------------------------------------------

1 0 14 135 1 0 0 0 0 0 0

1 1 14 101 3 1 1 0 0 0 1

2 0 15 98 2 0 0 0 0 1 0

2 1 15 115 3 0 0 0 1 0 1

3 0 16 95 3 0 0 0 0 0 1

3 1 16 130 3 0 0 0 0 0 1

4 0 17 103 3 0 0 0 0 0 1

4 1 17 130 3 1 1 0 1 0 1

5 0 17 122 1 1 0 0 0 0 0

5 1 17 110 1 1 0 0 0 0 0

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the MATCH table. The SELECT clause specifies the columns for the table MATCH.
SQL expressions in the SELECT clause calculate the differences for the appropriate columns
and create new columns.

proc sql;
create table match as

select
one.Low,
one.Pair,
(one.lwt - two.lwt) as Lwt_d,
(one.smoke - two.smoke) as Smoke_d,
(one.ptd - two.ptd) as Ptd_d,
(one.ht - two.ht) as Ht_d,
(one.ui - two.ui) as UI_d

Specify the type of join and the join criterion. The FROM clause lists the table MATCH_11
twice. Thus, the table is joined with itself. The WHERE clause returns only the rows for each
pair that show the difference when the values for control are subtracted from the values for case.

from match_11 one, match_11 two
where (one.pair=two.pair and one.low>two.low);



1160 Output � Chapter 44

Specify the title.

title ’Differences for Cases and Controls’;

Display the first five rows of the MATCH table. The SELECT clause selects all the columns
from MATCH. The OBS= data set option limits the printing of the output to five rows.

select *
from match(obs=5);

Output

MATCH Table

Differences for Cases and Controls 1

Low Pair Lwt_d Smoke_d Ptd_d Ht_d UI_d
--------------------------------------------------------------------

1 1 -34 1 1 0 0
1 2 17 0 0 0 1
1 3 35 0 0 0 0
1 4 27 1 1 0 1
1 5 -12 0 0 0 0

Example 15: Counting Missing Values with a SAS Macro

Procedure feature:
COUNT function

Table: SURVEY

This example uses a SAS macro to create columns. The SAS macro is not explained
here. See SAS Macro Language: Reference for information on SAS macros.



The SQL Procedure � Program 1161

Input Table

SURVEY contains data from a questionnaire about diet and exercise habits. SAS enables you to
use a special notation for missing values. In the EDUC column, the .x notation indicates that
the respondent gave an answer that is not valid, and .n indicates that the respondent did not
answer the question. A period as a missing value indicates a data entry error.

data survey;
input id $ diet $ exer $ hours xwk educ;
datalines;

1001 yes yes 1 3 1
1002 no yes 1 4 2
1003 no no . . .n
1004 yes yes 2 3 .x
1005 no yes 2 3 .x
1006 yes yes 2 4 .x
1007 no yes .5 3 .
1008 no no . . .
;

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Count the nonmissing responses. The COUNTM macro uses the COUNT function to perform
various counts for a column. Each COUNT function uses a CASE expression to select the rows
to be counted. The first COUNT function uses only the column as an argument to return the
number of nonmissing rows.

%macro countm(col);
count(&col) "Valid Responses for &col",

Count missing or invalid responses. The NMSS function returns the number of rows for
which the column has any type of missing value: .n, .x, or a period.

nmiss(&col) "Missing or NOT VALID Responses for &col",



1162 Output � Chapter 44

Count the occurrences of various sources of missing or invalid responses. The last
three COUNT functions use CASE expressions to count the occurrences of the three notations
for missing values. The “count me” character string gives the COUNT function a nonmissing
value to count.

count(case
when &col=.n then "count me"
end) "Coded as NO ANSWER for &col",

count(case
when &col=.x then "count me"
end) "Coded as NOT VALID answers for &col",

count(case
when &col=. then "count me"
end) "Data Entry Errors for &col"

%mend;

Use the COUNTM macro to create the columns. The SELECT clause specifies the columns
that are in the output. COUNT(*) returns the total number of rows in the table. The COUNTM
macro uses the values of the EDUC column to create the columns that are defined in the macro.

proc sql;
title ’Counts for Each Type of Missing Response’;
select count(*) "Total No. of Rows",

%countm(educ)
from survey;

Output

Counts for Each Type of Missing Response 1

Missing Coded as
or NOT Coded as NOT Data

Total Valid VALID NO VALID Entry
No. of Responses Responses ANSWER answers Errors

Rows for educ for educ for educ for educ for educ
------------------------------------------------------------

8 2 6 1 3 2



1163

C H A P T E R

45
The STANDARD Procedure

Overview: STANDARD Procedure 1163
What Does the STANDARD Procedure Do? 1163

Standardizing Data 1163

Syntax: STANDARD Procedure 1165

PROC STANDARD Statement 1166

BY Statement 1168
FREQ Statement 1169

VAR Statement 1169

WEIGHT Statement 1169

Results: STANDARD Procedure 1170

Missing Values 1170

Output Data Set 1170
Statistical Computations: STANDARD Procedure 1171

Examples: STANDARD Procedure 1171

Example 1: Standardizing to a Given Mean and Standard Deviation 1171

Example 2: Standardizing BY Groups and Replacing Missing Values 1173

Overview: STANDARD Procedure

What Does the STANDARD Procedure Do?
The STANDARD procedure standardizes variables in a SAS data set to a given mean

and standard deviation, and it creates a new SAS data set containing the standardized
values.

Standardizing Data
Output 45.1 shows a simple standardization where the output data set contains

standardized student exam scores. The statements that produce the output follow:

proc standard data=score mean=75 std=5
out=stndtest;

run;

proc print data=stndtest;
run;



1164 Standardizing Data � Chapter 45

Output 45.1 Standardized Test Scores Using PROC STANDARD

The SAS System 1

Obs Student Test1

1 Capalleti 80.5388
2 Dubose 64.3918
3 Engles 80.9143
4 Grant 68.8980
5 Krupski 75.2816
6 Lundsford 79.7877
7 McBane 73.4041
8 Mullen 78.6612
9 Nguyen 74.9061

10 Patel 71.9020
11 Si 73.4041
12 Tanaka 77.9102

Output 45.2 shows a more complex example that uses BY-group processing. PROC
STANDARD computes Z scores separately for two BY groups by standardizing
life-expectancy data to a mean of 0 and a standard deviation of 1. The data are 1950
and 1993 life expectancies at birth for 16 countries. The birth rates for each country,
classified as stable or rapid, form the two BY groups. The statements that produce the
analysis also

� print statistics for each variable to standardize
� replace missing values with the given mean
� calculate standardized values using a given mean and standard deviation
� print the data set with the standardized values.

For an explanation of the program that produces this output, see Example 2 on page
1173.

Output 45.2 Z Scores for Each BY Group Using PROC STANDARD

Life Expectancies by Birth Rate 2

-------------------- PopulationRate=Stable ---------------------

The STANDARD Procedure

Standard
Name Mean Deviation N
Label

Life50 67.400000 1.854724 5
1950 life expectancy
Life93 74.500000 4.888763 6
1993 life expectancy

--------------------- PopulationRate=Rapid ---------------------

Standard
Name Mean Deviation N
Label

Life50 42.000000 5.033223 8
1950 life expectancy
Life93 59.100000 8.225300 10
1993 life expectancy



The STANDARD Procedure � Syntax: STANDARD Procedure 1165

Standardized Life Expectancies at Birth 3
by a Country’s Birth Rate

Population
Rate Country Life50 Life93

Stable France -0.21567 0.51138
Stable Germany 0.32350 0.10228
Stable Japan -1.83316 0.92048
Stable Russia 0.00000 -1.94323
Stable United Kingdom 0.86266 0.30683
Stable United States 0.86266 0.10228
Rapid Bangladesh 0.00000 -0.74161
Rapid Brazil 1.78812 0.96045
Rapid China -0.19868 1.32518
Rapid Egypt 0.00000 0.10942
Rapid Ethiopia -1.78812 -1.59265
Rapid India -0.59604 -0.01216
Rapid Indonesia -0.79472 -0.01216
Rapid Mozambique 0.00000 -1.47107
Rapid Philippines 1.19208 0.59572
Rapid Turkey 0.39736 0.83888

Syntax: STANDARD Procedure
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
ODS Table Name: Standard
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 57 for
details. You can also use any global statements. See “Global Statements” on page 18 for
a list.

PROC STANDARD <option(s)>;
BY <DESCENDING> variable-1 <…<DESCENDING> variable-n>

<NOTSORTED>;
FREQ variable;
VAR variable(s);
WEIGHT variable;

To do this Use this statement

Calculate separate standardized values for each BY
group

BY

Identify a variable whose values represent the
frequency of each observation

FREQ



1166 PROC STANDARD Statement � Chapter 45

To do this Use this statement

Select the variables to standardize and determine the
order in which they appear in the printed output

VAR

Identify a variable whose values weight each
observation in the statistical calculations

WEIGHT

PROC STANDARD Statement

PROC STANDARD <option(s)>;

To do this Use this option

Specify the input data set DATA=

Specify the output data set OUT=

Computational options

Exclude observations with nonpositive weights EXCLNPWGT

Specify the mean value MEAN=

Replace missing values with a variable mean or
MEAN= value

REPLACE

Specify the standard deviation value STD=

Specify the divisor for variance calculations VARDEF=

Control printed output

Print statistics for each variable to standardize PRINT

Without Options

If you do not specify MEAN=, REPLACE, or STD=, the output data set is an
identical copy of the input data set.

Options

DATA=SAS-data-set
identifies the input SAS data set.

Main discussion: “Input Data Sets” on page 19

Restriction: You cannot use PROC STANDARD with an engine that supports
concurrent access if another user is updating the data set at the same time.



The STANDARD Procedure � PROC STANDARD Statement 1167

EXCLNPWGT
excludes observations with nonpositive weight values (zero or negative). The
procedure does not use the observation to calculate the mean and standard deviation,
but the observation is still standardized. By default, the procedure treats
observations with negative weights like those with zero weights and counts them in
the total number of observations.

MEAN=mean-value
standardizes variables to a mean of mean-value.
Alias: M=
Default: mean of the input values
Featured in: Example 1 on page 1171

OUT=SAS-data-set
identifies the output data set. If SAS-data-set does not exist, PROC STANDARD
creates it. If you omit OUT=, the data set is named DATAn, where n is the smallest
integer that makes the name unique.
Default: DATAn
Featured in: Example 1 on page 1171

PRINT
prints the original frequency, mean, and standard deviation for each variable to
standardize.
Featured in: Example 2 on page 1173

REPLACE
replaces missing values with the variable mean.
Interaction: If you use MEAN=, PROC STANDARD replaces missing values with

the given mean.
Featured in: Example 2 on page 1173

STD=std-value
standardizes variables to a standard deviation of
std-value.
Alias: S=
Default: standard deviation of the input values
Featured in: Example 1 on page 1171

VARDEF=divisor
specifies the divisor to use in the calculation of variances and standard deviation.
Table 45.1 on page 1167 shows the possible values for divisor and the associated
divisors.

Table 45.1 Possible Values for VARDEF=

Value Divisor Formula for Divisor

DF degrees of freedom n − 1

N number of observations n

WDF sum of weights minus one (�i wi) − 1

WEIGHT
|WGT

sum of weights �i wi

The procedure computes the variance as �����������, where ��� is the corrected
sums of squares and equals

�
�	� � ��

�. When you weight the analysis variables,
��� equals

�
�� ��� � ���� where �� is the weighted mean.



1168 BY Statement � Chapter 45

Default: DF

Tip: When you use the WEIGHT statement and VARDEF=DF, the variance is an
estimate of ��, where the variance of the ith observation is ��� ���� � ����� and
�� is the weight for the ith observation. This yields an estimate of the variance of
an observation with unit weight.

Tip: When you use the WEIGHT statement and VARDEF=WGT, the computed
variance is asymptotically (for large n) an estimate of ����, where � is the
average weight. This yields an asymptotic estimate of the variance of an
observation with average weight.

See also: “WEIGHT” on page 63

Main discussion: “Keywords and Formulas” on page 1340

BY Statement

Calculates standardized values separately for each BY group.

Main discussion: “BY” on page 58

Featured in: Example 2 on page 1173

BY <DESCENDING> variable-1 <…<DESCENDING> variable-n><NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables
that you specify, or they must be indexed appropriately. These variables are called
BY variables.

Options

DESCENDING
specifies that the data set is sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The data are grouped in another way, such as chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the
NOTSORTED option. In fact, the procedure does not use an index if you specify
NOTSORTED. The procedure defines a BY group as a set of contiguous observations
that have the same values for all BY variables. If observations with the same values
for the BY variables are not contiguous, the procedure treats each contiguous set as a
separate BY group.



The STANDARD Procedure � WEIGHT Statement 1169

FREQ Statement

Specifies a numeric variable whose values represent the frequency of the observation.

Tip: The effects of the FREQ and WEIGHT statements are similar except when
calculating degrees of freedom.
See also: For an example that uses the FREQ statement, see “FREQ” on page 61

FREQ variable;

Required Arguments

variable
specifies a numeric variable whose value represents the frequency of the observation.
If you use the FREQ statement, the procedure assumes that each observation
represents n observations, where n is the value of variable. If n is not an integer, the
SAS System truncates it. If n is less than 1 or is missing, the procedure does not use
that observation to calculate statistics but the observation is still standardized.

The sum of the frequency variable represents the total number of observations.

VAR Statement

Specifies the variables to standardize and their order in the printed output.

Default: If you omit the VAR statement, PROC STANDARD standardizes all numeric
variables not listed in the other statements.
Featured in: Example 1 on page 1171

VAR variable(s);

Required Arguments

variable(s)
identifies one or more variables to standardize.

WEIGHT Statement

Specifies weights for analysis variables in the statistical calculations.

See also: For information about calculating weighted statistics and for an example that
uses the WEIGHT statement, see “WEIGHT” on page 63



1170 Results: STANDARD Procedure � Chapter 45

WEIGHT variable;

Required Arguments

variable
specifies a numeric variable whose values weight the values of the analysis variables.
The values of the variable do not have to be integers. If the value of the weight
variable is

Weight value… PROC STANDARD…

0 counts the observation in the total number of observations

less than 0 converts the weight value to zero and counts the observation in
the total number of observations

missing excludes the observation from the calculation of mean and
standard deviation

To exclude observations that contain negative and zero weights from the calculation
of mean and standard deviation, use EXCLNPWGT. Note that most SAS/STAT
procedures, such as PROC GLM, exclude negative and zero weights by default.
Tip: When you use the WEIGHT statement, consider which value of the VARDEF=

option is appropriate. See VARDEF= on page 1167 and the calculation of weighted
statistics in “Keywords and Formulas” on page 1340 for more information.

Note: Prior to Version 7 of the SAS System, the procedure did not exclude the
observations with missing weights from the count of observations. �

Results: STANDARD Procedure

Missing Values
By default, PROC STANDARD excludes missing values for the analysis variables

from the standardization process, and the values remain missing in the output data set.
When you specify the REPLACE option, the procedure replaces missing values with the
variable’s mean or the MEAN= value.

If the value of the WEIGHT variable or the FREQ variable is missing then the
procedure does not use the observation to calculate the mean and the standard
deviation. However, the observation is standardized.

Output Data Set
PROC STANDARD always creates an output data set that stores the standardized

values in the VAR statement variables, regardless of whether you specify the OUT=
option. The output data set contains all the input data set variables, including those
not standardized. PROC STANDARD does not print the output data set. Use PROC
PRINT, PROC REPORT, or another SAS reporting tool to print the output data set.



The STANDARD Procedure � Example 1: Standardizing to a Given Mean and Standard Deviation 1171

Statistical Computations: STANDARD Procedure
Standardizing values removes the location and scale attributes from a set of data.

The formula to compute standardized values is

�
�

�
�
� � ��� � ��

��
��

where

�
�

�
is a new standardized value

� is the value of STD=

� is the value of MEAN=

�� is an observation’s value

� is a variable’s mean

�� is a variable’s standard deviation.

PROC STANDARD calculates the mean (�) and standard deviation (��) from the
input data set. The resulting standardized variable has a mean of M and a standard
deviation of S.

If the data are normally distributed, standardizing is also studentizing since the
resulting data have a Student’s t distribution.

Examples: STANDARD Procedure

Example 1: Standardizing to a Given Mean and Standard Deviation
Procedure features:

PROC STANDARD statement options:
MEAN=
OUT=
STD=

VAR statement
Other features:

PRINT procedure

This example
� standardizes two variables to a mean of 75 and a standard deviation of 5
� specifies the output data set
� combines standardized variables with original variables
� prints the output data set.



1172 Program � Chapter 45

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

Create the SCORE data set. This data set contains test scores for students who took two tests
and a final exam. The FORMAT statement assigns the Zw.d format to StudentNumber. This
format pads right-justified output with 0s instead of blanks. The LENGTH statement specifies
the number of bytes to use to store values of Student.

data score;
length Student $ 9;
input Student $ StudentNumber Section $

Test1 Test2 Final @@;
format studentnumber z4.;
datalines;

Capalleti 0545 1 94 91 87 Dubose 1252 2 51 65 91
Engles 1167 1 95 97 97 Grant 1230 2 63 75 80
Krupski 2527 2 80 69 71 Lundsford 4860 1 92 40 86
McBane 0674 1 75 78 72 Mullen 6445 2 89 82 93
Nguyen 0886 1 79 76 80 Patel 9164 2 71 77 83
Si 4915 1 75 71 73 Tanaka 8534 2 87 73 76
;

Generate the standardized data and create the output data set STNDTEST. PROC
STANDARD uses a mean of 75 and a standard deviation of 5 to standardize the values. OUT=
identifies STNDTEST as the data set to contain the standardized values.

proc standard data=score mean=75 std=5 out=stndtest;

Specify the variables to standardize. The VAR statement specifies the variables to
standardize and their order in the output.

var test1 test2;
run;

Create a data set that combines the original values with the standardized values.
PROC SQL joins SCORE and STNDTEST to create the COMBINED data set (table) that
contains standardized and original test scores for each student. Using AS to rename the
standardized variables NEW.TEST1 to StdTest1 and NEW.TEST2 to StdTest2 makes the
variable names unique.

proc sql;
create table combined as



The STANDARD Procedure � Example 2: Standardizing BY Groups and Replacing Missing Values 1173

select old.student, old.studentnumber,
old.section,
old.test1, new.test1 as StdTest1,
old.test2, new.test2 as StdTest2,
old.final

from score as old, stndtest as new
where old.student=new.student;

Print the data set. PROC PRINT prints the COMBINED data set. ROUND rounds the
standardized values to two decimal places. The TITLE statement specifies a title.

proc print data=combined noobs round;
title ’Standardized Test Scores for a College Course’;

run;

Output

The data set contains variables with both standardized and original values. StdTest1 and
StdTest2 store the standardized test scores that PROC STANDARD computes.

Standardized Test Scores for a College Course 1

Student Std Std
Student Number Section Test1 Test1 Test2 Test2 Final

Capalleti 0545 1 94 80.54 91 80.86 87
Dubose 1252 2 51 64.39 65 71.63 91
Engles 1167 1 95 80.91 97 82.99 97
Grant 1230 2 63 68.90 75 75.18 80
Krupski 2527 2 80 75.28 69 73.05 71
Lundsford 4860 1 92 79.79 40 62.75 86
McBane 0674 1 75 73.40 78 76.24 72
Mullen 6445 2 89 78.66 82 77.66 93
Nguyen 0886 1 79 74.91 76 75.53 80
Patel 9164 2 71 71.90 77 75.89 83
Si 4915 1 75 73.40 71 73.76 73
Tanaka 8534 2 87 77.91 73 74.47 76

Example 2: Standardizing BY Groups and Replacing Missing Values

Procedure features:
PROC STANDARD statement options:

PRINT
REPLACE

BY statement



1174 Program � Chapter 45

Other features:
FORMAT procedure
PRINT procedure
SORT procedure

This example
� calculates Z scores separately for each BY group using a mean of 1 and standard

deviation of 0
� replaces missing values with the given mean
� prints the mean and standard deviation for the variables to standardize
� prints the output data set.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

Assign a character string format to a numeric value. PROC FORMAT creates the format
POPFMT to identify birth rates with a character value.

proc format;
value popfmt 1=’Stable’

2=’Rapid’;
run;

Create the LIFEEXP data set. Each observation in this data set contains information on 1950
and 1993 life expectancies at birth for 16 nations.* The birth rate for each nation is classified as
stable (1) or rapid (2). The nations with missing data obtained independent status after 1950.

data lifexp;
input PopulationRate Country $char14. Life50 Life93 @@;
label life50=’1950 life expectancy’

life93=’1993 life expectancy’;
datalines;

2 Bangladesh . 53 2 Brazil 51 67
2 China 41 70 2 Egypt 42 60
2 Ethiopia 33 46 1 France 67 77
1 Germany 68 75 2 India 39 59
2 Indonesia 38 59 1 Japan 64 79

* Data are from Vital Signs 1994: The Trends That Are Shaping Our Future, Lester R. Brown, Hal Kane, and David Malin
Roodman, eds. Copyright © 1994 by Worldwatch Institute. Reprinted by permission of W.W. Norton & Company, Inc.



The STANDARD Procedure � Program 1175

2 Mozambique . 47 2 Philippines 48 64
1 Russia . 65 2 Turkey 44 66
1 United Kingdom 69 76 1 United States 69 75
;

Sort the LIFEEXP data set. PROC SORT sorts the observations by the birth rate.

proc sort data=lifexp;
by populationrate;

run;

Generate the standardized data for all numeric variables and create the output data
set ZSCORE. PROC STANDARD standardizes all numeric variables to a mean of 1 and a
standard deviation of 0. REPLACE replaces missing values. PRINT prints statistics.

proc standard data=lifexp mean=0 std=1 replace
print out=zscore;

Create the standardized values for each BY group. The BY statement standardizes the
values separately by birth rate.

by populationrate;

Assign a format to a variable and specify a title for the report. The FORMAT statement
assigns a format to PopulationRate. The output data set contains formatted values. The TITLE
statement specifies a title.

format populationrate popfmt.;
title1 ’Life Expectancies by Birth Rate’;

run;

Print the data set. PROC PRINT prints the ZSCORE data set with the standardized values.
The TITLE statements specify two titles to print.

proc print data=zscore noobs;
title ’Standardized Life Expectancies at Birth’;
title2 ’by a Country’’s Birth Rate’;

run;



1176 Output � Chapter 45

Output

PROC STANDARD prints the variable name, mean, standard deviation, input frequency, and
label of each variable to standardize for each BY group.

Life expectancies for Bangladesh, Mozambique, and Russia are no longer missing. The missing
values are replaced with the given mean (0).

Life Expectancies by Birth Rate 1

---------------------------- PopulationRate=Stable -----------------------------

Standard
Name Mean Deviation N Label

Life50 67.400000 1.854724 5 1950 life expectancy
Life93 74.500000 4.888763 6 1993 life expectancy

----------------------------- PopulationRate=Rapid -----------------------------

Standard
Name Mean Deviation N Label

Life50 42.000000 5.033223 8 1950 life expectancy
Life93 59.100000 8.225300 10 1993 life expectancy

Standardized Life Expectancies at Birth 2
by a Country’s Birth Rate

Population
Rate Country Life50 Life93

Stable France -0.21567 0.51138
Stable Germany 0.32350 0.10228
Stable Japan -1.83316 0.92048
Stable Russia 0.00000 -1.94323
Stable United Kingdom 0.86266 0.30683
Stable United States 0.86266 0.10228
Rapid Bangladesh 0.00000 -0.74161
Rapid Brazil 1.78812 0.96045
Rapid China -0.19868 1.32518
Rapid Egypt 0.00000 0.10942
Rapid Ethiopia -1.78812 -1.59265
Rapid India -0.59604 -0.01216
Rapid Indonesia -0.79472 -0.01216
Rapid Mozambique 0.00000 -1.47107
Rapid Philippines 1.19208 0.59572
Rapid Turkey 0.39736 0.83888



1177

C H A P T E R

46
The SUMMARY Procedure

Overview: SUMMARY Procedure 1177
Syntax: SUMMARY Procedure 1177

PROC SUMMARY Statement 1178

VAR Statement 1178

Overview: SUMMARY Procedure
The SUMMARY procedure provides data summarization tools that compute

descriptive statistics for variables across all observations or within groups of
observations. The SUMMARY procedure is very similar to the MEANS procedure; for
full syntax details, see Chapter 27, “The MEANS Procedure,” on page 523. Except for
the differences that are discussed here, all the PROC MEANS information also applies
to PROC SUMMARY.

Syntax: SUMMARY Procedure
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
ODS Table Name: Summary
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 57 for
details. You can also use any global statements. See “Global Statements” on page 18 for
a list.
Reminder: Full syntax descriptions are in “Syntax: MEANS Procedure” on page 526.

PROC SUMMARY <option(s)> <statistic-keyword(s)>;
BY <DESCENDING> variable-1<…<DESCENDING> variable-n>

<NOTSORTED>;
CLASS variable(s) </ option(s)>;
FREQ variable;
ID variable(s);
OUTPUT <OUT=SAS-data-set><output-statistic-specification(s)>

<id-group-specification(s)> <maximum-id-specification(s)>
<minimum-id-specification(s)></ option(s)> ;

TYPES request(s);



1178 PROC SUMMARY Statement � Chapter 46

VAR variable(s)</ WEIGHT=weight-variable>;
WAYS list;
WEIGHT variable;

PROC SUMMARY Statement

PRINT | NOPRINT
specifies whether PROC SUMMARY displays the descriptive statistics. By default,
PROC SUMMARY produces no display output, but PROC MEANS does produce
display output.
Default: NOPRINT

VAR Statement

Identifies the analysis variables and their order in the results.

Default: If you omit the VAR statement, then PROC SUMMARY produces a simple
count of observations, whereas PROC MEANS tries to analyze all the numeric variables
that are not listed in the other statements.
Interaction: If you specify statistics on the PROC SUMMARY statement and the VAR
statement is omitted, then PROC SUMMARY stops processing and an error message is
written to the SAS log.



1179

C H A P T E R

47
The TABULATE Procedure

Overview: TABULATE Procedure 1180
What Does the TABULATE Procedure Do? 1180

Simple Tables 1180

Complex Tables 1181

PROC TABULATE and the Output Delivery System 1182

Terminology: TABULATE Procedure 1183
Syntax: TABULATE Procedure 1186

PROC TABULATE Statement 1187

BY Statement 1196

CLASS Statement 1197

CLASSLEV Statement 1200

FREQ Statement 1201
KEYLABEL Statement 1202

KEYWORD Statement 1202

TABLE Statement 1203

VAR Statement 1211

WEIGHT Statement 1212
Concepts: TABULATE Procedure 1213

Statistics That Are Available in PROC TABULATE 1213

Formatting Class Variables 1214

Formatting Values in Tables 1215

How Using BY-Group Processing Differs from Using the Page Dimension 1215
Calculating Percentages 1216

Calculating the Percentage of the Value of in a Single Table Cell 1216

Using PCTN and PCTSUM 1217

Specifying a Denominator for the PCTN Statistic 1217

Specifying a Denominator for the PCTSUM Statistic 1218

Using Style Elements in PROC TABULATE 1220
What Are Style Elements? 1220

Using the STYLE= Option 1220

Applying Style Attributes to Table Cells 1221

Using a Format to Assign a Style Attribute 1221

Results: TABULATE Procedure 1222
Missing Values 1222

How PROC TABULATE Treats Missing Values 1222

No Missing Values 1223

A Missing Class Variable 1224

Including Observations with Missing Class Variables 1225
Formatting Headings for Observations with Missing Class Variables 1226

Providing Headings for All Categories 1227

Providing Text for Cells That Contain Missing Values 1228



1180 Overview: TABULATE Procedure � Chapter 47

Providing Headings for All Values of a Format 1229
Understanding the Order of Headings with ORDER=DATA 1230

Portability of ODS Output with PROC TABULATE 1231

Examples: TABULATE Procedure 1232

Example 1: Creating a Basic Two-Dimensional Table 1232

Example 2: Specifying Class Variable Combinations to Appear in a Table 1235
Example 3: Using Preloaded Formats with Class Variables 1237

Example 4: Using Multilabel Formats 1242

Example 5: Customizing Row and Column Headings 1244

Example 6: Summarizing Information with the Universal Class Variable ALL 1246

Example 7: Eliminating Row Headings 1249

Example 8: Indenting Row Headings and Eliminating Horizontal Separators 1251
Example 9: Creating Multipage Tables 1253

Example 10: Reporting on Multiple-Response Survey Data 1255

Example 11: Reporting on Multiple-Choice Survey Data 1260

Example 12: Calculating Various Percentage Statistics 1266

Example 13: Using Denominator Definitions to Display Basic Frequency Counts and
Percentages 1269

Example 14: Specifying Style Elements for ODS Output 1279

References 1283

Overview: TABULATE Procedure

What Does the TABULATE Procedure Do?
The TABULATE procedure displays descriptive statistics in tabular format, using

some or all of the variables in a data set. You can create a variety of tables ranging
from simple to highly customized.

PROC TABULATE computes many of the same statistics that are computed by other
descriptive statistical procedures such as MEANS, FREQ, and REPORT. PROC
TABULATE provides

� simple but powerful methods to create tabular reports
� flexibility in classifying the values of variables and establishing hierarchical

relationships between the variables
� mechanisms for labeling and formatting variables and procedure-generated

statistics.

Simple Tables
Output 47.1 shows a simple table that was produced by PROC TABULATE. The data

set“ENERGY” on page 1387 contains data on expenditures of energy by two types of
customers, residential and business, in individual states in the Northeast (1) and West
(4) regions of the United States. The table sums expenditures for states within a
geographic division. (The RTS option provides enough space to display the column
headers without hyphenating them.)

options nodate pageno=1 linesize=64
pagesize=40;

proc tabulate data=energy;
class region division type;



The TABULATE Procedure � Complex Tables 1181

var expenditures;
table region*division, type*expenditures /

rts=20;
run;

Output 47.1 Simple Table Produced by PROC TABULATE

The SAS System 1

----------------------------------------------
| | Type | |
| |-------------------------|
| | 1 | 2 |
| |------------+------------|
| |Expenditures|Expenditures|
| |------------+------------|
| | Sum | Sum |
|------------------+------------+------------|
|Region |Division | | |
|--------+---------| | |
|1 |1 | 7477.00| 5129.00|
| |---------+------------+------------|
| |2 | 19379.00| 15078.00|
|--------+---------+------------+------------|
|4 |3 | 5476.00| 4729.00|
| |---------+------------+------------|
| |4 | 13959.00| 12619.00|
----------------------------------------------

Complex Tables
Output 47.2 is a more complicated table using the same data set that was used to

create Output 47.1. The statements that create this report
� customize column and row headers
� apply a format to all table cells
� sum expenditures for residential and business customers
� compute subtotals for each division
� compute totals for all regions.

For an explanation of the program that produces this report, see Example 6 on page
1246.



1182 PROC TABULATE and the Output Delivery System � Chapter 47

Output 47.2 Complex Table Produced by PROC TABULATE

Energy Expenditures for Each Region 2
(millions of dollars)

----------------------------------------------------------------
| | Customer Base | | |
| |-------------------------| |
| |Residential | Business | All |
| | Customers | Customers | Customers |
|-----------------------+------------+------------+------------|
|Region |Division | | | |
|-----------+-----------| | | |
|Northeast |New England| 7,477| 5,129| 12,606|
| |-----------+------------+------------+------------|
| |Middle | | | |
| |Atlantic | 19,379| 15,078| 34,457|
| |-----------+------------+------------+------------|
| |Subtotal | 26,856| 20,207| 47,063|
|-----------+-----------+------------+------------+------------|
|West |Division | | | |
| |-----------| | | |
| |Mountain | 5,476| 4,729| 10,205|
| |-----------+------------+------------+------------|
| |Pacific | 13,959| 12,619| 26,578|
| |-----------+------------+------------+------------|
| |Subtotal | 19,435| 17,348| 36,783|
|-----------------------+------------+------------+------------|
|Total for All Regions | $46,291| $37,555| $83,846|
----------------------------------------------------------------

PROC TABULATE and the Output Delivery System
Display 47.1 on page 1183 shows a table that is created in Hypertext Markup

Language (HTML). You can use the Output Delivery System with PROC TABULATE to
create customized output in HTML, Rich Text Format (RTF), Portable Document
Format (PDF), and other output formats. For an explanation of the program that
produces this table, see Example 14 on page 1279.



The TABULATE Procedure � Terminology: TABULATE Procedure 1183

Display 47.1 HTML Table Produced by PROC TABULATE

Terminology: TABULATE Procedure
The following figures illustrate some of the terms that are commonly used in

discussions of PROC TABULATE.



1184 Terminology: TABULATE Procedure � Chapter 47

Figure 47.1 Parts of a PROC TABULATE Table

Column headings Column

CellRow Row headings

                The SAS System                   1

------------------------------------------------

|                      |         Type          |

|                      |-----------------------|

|                      |Residential|  Business |

|                      | Customers | Customers |

|----------------------+-----------+-----------|

|Region    |Division   |           |           |

|----------+-----------|           |           |

|Northeast |New England|     $7,477|    $5,129 |

|          |-----------+-----------+-----------|

|          |Middle     |           |           |

|          |Atlantic   |    $19,379|   $15,078 |

|----------+-----------+-----------+-----------|

|West      |Mountain   |     $5,476|    $4,729 |

|          |-----------+-----------+-----------|

|          |Pacific    |    $13,959|   $12,619 |

------------------------------------------------



The TABULATE Procedure � Terminology: TABULATE Procedure 1185

Figure 47.2 PROC TABULATE Table Dimensions

The SAS System
Year: 2000

1

The SAS System
Year: 2001

2

The SAS System
Year: 2002

3

column dimension

row
 dim

ension

page
   dimension

In addition, the following terms frequently appear in discussions of PROC
TABULATE:

category
the combination of unique values of class variables. The TABULATE procedure
creates a separate category for each unique combination of values that exists in
the observations of the data set. Each category that is created by PROC
TABULATE is represented by one or more cells in the table where the pages, rows,
and columns that describe the category intersect.

The table in Figure 47.1 on page 1184 contains three class variables: Region,
Division, and Type. These class variables form the eight categories listed in Table
47.1 on page 1185. (For convenience, the categories are described in terms of their
formatted values.)

Table 47.1 Categories Created from Three Class Variables

Region Division Type

Northeast New England Residential Customers

Northeast New England Business Customers

Northeast Middle Atlantic Residential Customers

Northeast Middle Atlantic Business Customers

West Mountain Residential Customers

West Mountain Business Customers

West Pacific Residential Customers

West Pacific Business Customers

continuation message
the text that appears below the table if it spans multiple physical pages.



1186 Syntax: TABULATE Procedure � Chapter 47

nested variable
a variable whose values appear in the table with each value of another variable.

In Figure 47.1 on page 1184, Division is nested under Region.

page dimension text
the text that appears above the table if the table has a page dimension. However,
if you specify BOX=_PAGE_ in the TABLE statement, then the text that would
appear above the table appears in the box. In Figure 47.2 on page 1185, the word
Year:, followed by the value, is the page dimension text.

Page dimension text has a style. The default style is Beforecaption. For more
information about using styles, see STYLE= on page 1194 in the PROC
TABULATE statement and “Output Delivery System” on page 32.

subtable
the group of cells that is produced by crossing a single element from each
dimension of the TABLE statement when one or more dimensions contain
concatenated elements.

Figure 47.1 on page 1184 contains no subtables. For an illustration of a table
that is composed of multiple subtables, see Figure 47.18 on page 1274.

Syntax: TABULATE Procedure
Requirements: At least one TABLE statement is required.
Requirements: Depending on the variables that appear in the TABLE statement, a
CLASS statement, a VAR statement, or both are required.
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
ODS Table Name: Table
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 57 for
details. You can also use any global statements. See “Global Statements” on page 18 for
a list.

PROC TABULATE <option(s)>;
BY <DESCENDING> variable-1

<…<DESCENDING> variable-n>
<NOTSORTED>;

CLASS variable(s) </ options>;
CLASSLEV variable(s) / STYLE=<style-element-name | PARENT>

<[style-attribute-specification(s)] >;
FREQ variable;
KEYLABEL keyword-1=’description-1’

<…keyword-n=’description-n’>;
KEYWORD keyword(s) / STYLE=<style-element-name | PARENT>

<[style-attribute-specification(s)] >;
TABLE <<page-expression,> row-expression,> column-expression</ table-option(s)>;
VAR analysis-variable(s)</ options>;
WEIGHT variable;



The TABULATE Procedure � PROC TABULATE Statement 1187

To do this Use this statement

Create a separate table for each BY group BY

Identify variables in the input data set as class
variables

CLASS

Specify a style for class variable level value headings CLASSLEV

Identify a variable in the input data set whose values
represent the frequency of each observation

FREQ

Specify a label for a keyword KEYLABEL

Specify a style for keyword headings KEYWORD

Describe the table to create TABLE

Identify variables in the input data set as analysis
variables

VAR

Identify a variable in the input data set whose values
weight each observation in the statistical calculations

WEIGHT

PROC TABULATE Statement

PROC TABULATE <option(s)>;

To do this Use this option

Customize the HTML contents link to the output CONTENTS=

Specify the input data set DATA=

Specify the output data set OUT=

Override the SAS system option THREADS |
NOTHREADS

THREADS | NOTHREADS

Enable floating point exception recovery TRAP

Identify categories of data that are of interest

Specify a secondary data set that contains the
combinations of values of class variables to
include in tables and output data sets

CLASSDATA=

Exclude from tables and output data sets all
combinations of class variable values that are
not in the CLASSDATA= data set

EXCLUSIVE

Consider missing values as valid values for class
variables

MISSING

Control the statistical analysis

Specify the confidence level for the confidence
limits

ALPHA=



1188 PROC TABULATE Statement � Chapter 47

To do this Use this option

Exclude observations with nonpositive weights EXCLNPWGTS

Specify the sample size to use for the P2 quantile
estimation method

QMARKERS=

Specify the quantile estimation method QMETHOD=

Specify the mathematical definition to calculate
quantiles

QNTLDEF=

Specify the variance divisor VARDEF=

Customize the appearance of the table

Specify a default format for each cell in the table FORMAT=

Define the characters to use to construct the
table outlines and dividers

FORMCHAR=

Eliminate horizontal separator lines from the
row titles and the body of the table

NOSEPS

Order the values of a class variable according to
the specified order

ORDER=

Specify the default style element or style
elements (for the Output Delivery System) to
use for each cell of the table

STYLE=

Options

ALPHA=value
specifies the confidence level to compute the confidence limits for the mean. The
percentage for the confidence limits is (1–value)�100. For example, ALPHA=.05
results in a 95% confidence limit.

Default: .05

Range: between 0 and 1

Interaction: To compute confidence limits specify the statistic-keyword LCLM or
UCLM.

CLASSDATA=SAS-data-set
specifies a data set that contains the combinations of values of the class variables
that must be present in the output. Any combinations of values of the class variables
that occur in the CLASSDATA= data set but not in the input data set appear in each
table or output data set and have a frequency of zero.

Restriction: The CLASSDATA= data set must contain all class variables. Their
data type and format must match the corresponding class variables in the input
data set.

Interaction: If you use the EXCLUSIVE option, then PROC TABULATE excludes
any observations in the input data set whose combinations of values of class
variables are not in the CLASSDATA= data set.

Tip: Use the CLASSDATA= data set to filter or supplement the input data set.

Featured in: Example 2 on page 1235



The TABULATE Procedure � PROC TABULATE Statement 1189

CONTENTS=link-name
enables you to name the link in the HTML table of contents that points to the ODS
output of the first table that was produced by using the TABULATE procedure.

Note: CONTENTS= affects only the contents file of ODS HTML output. It has no
effect on the actual TABULATE procedure reports. �

DATA=SAS-data-set
specifies the input data set.

Main Discussion: “Input Data Sets” on page 19

EXCLNPWGTS
excludes observations with nonpositive weight values (zero or negative) from the
analysis. By default, PROC TABULATE treats observations with negative weights
like those with zero weights and counts them in the total number of observations.

Alias: EXCLNPWGT

See also: WEIGHT= on page 1212 and “WEIGHT Statement” on page 1212

EXCLUSIVE
excludes from the tables and the output data sets all combinations of the class
variable that are not found in the CLASSDATA= data set.
Requirement: If a CLASSDATA= data set is not specified, then this option is

ignored.

Featured in: Example 2 on page 1235

FORMAT=format-name
specifies a default format for the value in each table cell. You can use any SAS or
user-defined format.

Alias: F=

Default: If you omit FORMAT=, then PROC TABULATE uses BEST12.2 as the
default format.

Interaction: Formats that are specified in a TABLE statement override the format
that is specified with FORMAT=.

Tip: This option is especially useful for controlling the number of print positions
that are used to print a table.

Featured in: Example 1 on page 1232 and Example 6 on page 1246

FORMCHAR <(position(s))>=’formatting-character(s)’
defines the characters to use for constructing the table outlines and dividers.

position(s)
identifies the position of one or more characters in the SAS formatting-character
string. A space or a comma separates the positions.
Default: Omitting position(s) is the same as specifying all 20 possible SAS

formatting characters, in order.

Range: PROC TABULATE uses 11 of the 20 formatting characters that SAS
provides. Table 47.2 on page 1190 shows the formatting characters that PROC
TABULATE uses. Figure 47.3 on page 1191 illustrates the use of each
formatting character in the output from PROC TABULATE.

formatting-character(s)
lists the characters to use for the specified positions. PROC TABULATE assigns
characters in formatting-character(s) to position(s), in the order that they are
listed. For example, the following option assigns the asterisk (*) to the third



1190 PROC TABULATE Statement � Chapter 47

formatting character, the pound sign (#) to the seventh character, and does not
alter the remaining characters:

formchar(3,7)=’*#’

Interaction: The SAS system option FORMCHAR= specifies the default formatting
characters. The system option defines the entire string of formatting characters.
The FORMCHAR= option in a procedure can redefine selected characters.

Restriction: The FORMCHAR= option affects only the traditional SAS monospace
output destination.

Tip: You can use any character in formatting-characters, including hexadecimal
characters. If you use hexadecimal characters, then you must put an x after the
closing quotation mark. For instance, the following option assigns the hexadecimal
character 2D to the third formatting character, assigns the hexadecimal character
7C to the seventh character, and does not alter the remaining characters:

formchar(3,7)=’2D7C’x

Tip: Specifying all blanks for formatting-character(s) produces tables with no
outlines or dividers.

formchar(1,2,3,4,5,6,7,8,9,10,11)
=’ ’ (11 blanks)

See also: For more information about formatting output, see Chapter 5,
“Controlling the Table’s Appearance,” in the SAS Guide to TABULATE Processing.

For information about which hexadecimal codes to use for which characters,
consult the documentation for your hardware.

Table 47.2 Formatting Characters Used by PROC TABULATE

Position Default Used to draw

1 | the right and left borders and the vertical separators
between columns

2 - the top and bottom borders and the horizontal separators
between rows

3 - the top character in the left border

4 - the top character in a line of characters that separate
columns

5 - the top character in the right border

6 | the leftmost character in a row of horizontal separators

7 + the intersection of a column of vertical characters and a
row of horizontal characters

8 | the rightmost character in a row of horizontal separators

9 - the bottom character in the left border

10 - the bottom character in a line of characters that separate
columns

11 - the bottom character in the right border



The TABULATE Procedure � PROC TABULATE Statement 1191

Figure 47.3 Formatting Characters in PROC TABULATE Output

------------------------------------
|                       |  Expend  |
|                       |----------|
|                       |   Sum    |
|-----------------------+----------|
|Region     |Division   |          |
|-----------+-----------|          |
|Northeast  |New England|   $12,606|
|           |-----------+----------|
|           |Middle     |          |
|           |Atlantic   |   $34,457|
|-----------+-----------+----------|
|West       |Mountain   |   $10,205|
|           |-----------+----------|
|           |Pacific    |   $26,578|
------------------------------------

3 2

4

5

7

8

11109

6

1

MISSING
considers missing values as valid values to create the combinations of class variables.
Special missing values that are used to represent numeric values (the letters A
through Z and the underscore (_) character) are each considered as a separate value.
A heading for each missing value appears in the table.

Default: If you omit MISSING, then PROC TABULATE does not include
observations with a missing value for any class variable in the report.

Main Discussion: “Including Observations with Missing Class Variables” on page
1225

See also: SAS Language Reference: Concepts for a discussion of missing values that
have special meaning.

NOSEPS
eliminates horizontal separator lines from the row titles and the body of the table.
Horizontal separator lines remain between nested column headers.

Restriction: The NOSEPS option affects only the traditional SAS monospace
output destination.

Tip: If you want to replace the separator lines with blanks rather than remove
them, then use the FORMCHAR= option on page 1189.

Featured in: Example 8 on page 1251

NOTHREADS
See THREADS | NOTHREADS on page 1195.

NOTRAP
See TRAP | NOTRAP on page 1195.

ORDER=DATA | FORMATTED | FREQ | UNFORMATTED
specifies the sort order to create the unique combinations of the values of the class
variables, which form the headings of the table, according to the specified order.

DATA
orders values according to their order in the input data set.



1192 PROC TABULATE Statement � Chapter 47

Interaction: If you use PRELOADFMT in the CLASS statement, then the order
for the values of each class variable matches the order that PROC FORMAT
uses to store the values of the associated user-defined format. If you use the
CLASSDATA= option, then PROC TABULATE uses the order of the unique
values of each class variable in the CLASSDATA= data set to order the output
levels. If you use both options, then PROC TABULATE first uses the
user-defined formats to order the output. If you omit EXCLUSIVE, then PROC
TABULATE appends after the user-defined format and the CLASSDATA=
values the unique values of the class variables in the input data set in the same
order in which they are encountered.

Tip: By default, PROC FORMAT stores a format definition in sorted order. Use
the NOTSORTED option to store the values or ranges of a user defined format
in the order that you define them.

FORMATTED
orders values by their ascending formatted values. If no format has been assigned
to a numeric class variable, then the default format, BEST12., is used. This order
depends on your operating environment.
Alias: FMT | EXTERNAL

FREQ
orders values by descending frequency count.
Interaction: Use the ASCENDING option in the CLASS statement to order

values by ascending frequency count.

UNFORMATTED
orders values by their unformatted values, which yields the same order as PROC
SORT. This order depends on your operating environment. This sort sequence is
particularly useful for displaying dates chronologically.
Alias: UNFMT | INTERNAL

Default: UNFORMATTED
Interaction: If you use the PRELOADFMT option in the CLASS statement, then

PROC TABULATE orders the levels by the order of the values in the user-defined
format.

Featured in: “Understanding the Order of Headings with ORDER=DATA” on page
1230

OUT=SAS-data-set
names the output data set. If SAS-data-set does not exist, then PROC TABULATE
creates it.

The number of observations in the output data set depends on the number of
categories of data that are used in the tables and the number of subtables that are
generated. The output data set contains these variables (in this order):

by variables
variables that are listed in the BY statement.

class variables
variables that are listed in the CLASS statement.

_TYPE_
a character variable that shows which combination of class variables produced the
summary statistics in that observation. Each position in _TYPE_ represents one
variable in the CLASS statement. If that variable is in the category that produced
the statistic, then the position contains a 1; if it is not, then the position contains a
0. In simple PROC TABULATE steps that do not use the universal class variable
ALL, all values of _TYPE_ contain only 1’s because the only categories that are



The TABULATE Procedure � PROC TABULATE Statement 1193

being considered involve all class variables. If you use the variable ALL, then your
tables will contain data for categories that do not include all the class variables,
and positions of _TYPE_ will, therefore, include both 1’s and 0’s.

_PAGE_
The logical page that contains the observation.

_TABLE_
The number of the table that contains the observation.

statistics
statistics that are calculated for each observation in the data set.

Featured in: Example 3 on page 1237

PCTLDEF=
See QNTLDEF= on page 1193.

QMARKERS=number
specifies the default number of markers to use for the P2 quantile estimation method.
The number of markers controls the size of fixed memory space.

Default: The default value depends on which quantiles you request. For the median
(P50), number is 7. For the quartiles (P25 and P75), number is 25. For the
quantiles P1, P5, P10, P90, P95, or P99, number is 105. If you request several
quantiles, then PROC TABULATE uses the largest default value of number.

Range: an odd integer greater than 3

Tip: Increase the number of markers above the default settings to improve the
accuracy of the estimates; reduce the number of markers to conserve memory and
computing time.

Main Discussion: “Quantiles” on page 555

QMETHOD=OS|P2|HIST
specifies the method PROC TABULATE uses to process the input data when it
computes quantiles. If the number of observations is less than or equal to the
QMARKERS= value and QNTLDEF=5, then both methods produce the same results.

OS
uses order statistics. This is the technique that PROC UNIVARIATE uses.

Note: This technique can be very memory-intensive. �

P2|HIST
uses the P2 method to approximate the quantile.

Default: OS

Restriction: When QMETHOD=P2, PROC TABULATE does not compute weighted
quantiles.

Tip: When QMETHOD=P2, reliable estimates of some quantiles (P1, P5, P95, P99)
may not be possible for some types of data.

Main Discussion: “Quantiles” on page 555

QNTLDEF=1|2|3|4|5
specifies the mathematical definition that the procedure uses to calculate quantiles
when QMETHOD=OS is specified. When QMETHOD=P2, you must use
QNTLDEF=5.

Default: 5

Alias: PCTLDEF=

Main discussion: “Quantile and Related Statistics” on page 1345



1194 PROC TABULATE Statement � Chapter 47

STYLE=<style-element-name|PARENT>[style-attribute-name=style-attribute-
value<… style-attribute-name=style-attribute-value>]

specifies the style element to use for the data cells of a table when it is used in the
PROC TABULATE statement. For example, the following statement specifies that
the background color for data cells be red:

proc tabulate data=one style=[background=red];

Note: This option can be used in other statements, or in dimension expressions,
to specify style elements for other parts of a table. �

Note: You can use braces ({ and }) instead of square brackets ([ and ]). �

style-element-name
is the name of a style element that is part of a style definition that is registered
with the Output Delivery System. SAS provides some style definitions. You can
create your own style definitions with PROC TEMPLATE.
Default: If you do not specify a style element, then PROC TABULATE uses Data.
See also: See SAS Output Delivery System: User’s Guide for information about

PROC TEMPLATE and the default style definitions.

PARENT
specifies that the data cell use the style element of its parent heading. The parent
style element of a data cell is one of the following:

� the style element of the leaf heading above the column that contains the data
cell, if the table specifies no row dimension, or if the table specifies the style
element in the column dimension expression.

� the style element of the leaf heading above the row that contains the cell, if
the table specifies the style element in the row dimension expression.

� the Beforecaption style element, if the table specifies the style element in the
page dimension expression.

� undefined, otherwise.

Note: The parent of a heading (not applicable to STYLE= in the PROC
TABULATE statement) is the heading under which the current heading is
nested. �

style-attribute-name
specifies the attribute to change. The following table shows attributes that you can
set or change with the STYLE= option in the PROC TABULATE statement (or in
any other statement that uses STYLE=, except for the TABLE statement). Note
that not all attributes are valid in all destinations.

ASIS= FONT_WIDTH=

BACKGROUND= HREFTARGET=

BACKGROUNDIMAGE= HTMLCLASS=

BORDERCOLOR= JUST=

BORDERCOLORDARK= NOBREAKSPACE=

BORDERCOLORLIGHT= POSTHTML=

BORDERWIDTH= POSTIMAGE=

CELLHEIGHT= POSTTEXT=

CELLWIDTH= PREHTML=

FLYOVER= PREIMAGE=



The TABULATE Procedure � PROC TABULATE Statement 1195

FONT= PRETEXT=

FONT_FACE= PROTECTSPECIALCHARS=

FONT_SIZE= TAGATTR=

FONT_STYLE= URL=

FONT_WEIGHT= VJUST=

style-attribute-value
specifies a value for the attribute. Each attribute has a different set of valid
values. See SAS Output Delivery System: User’s Guide for more information about
these style attributes, their valid values, and their applicable destinations.

Alias: S=

Restriction: This option affects only the HTML, RTF, and Printer destinations.

Tip: To specify a style element for data cells with missing values, use STYLE= in
the TABLE statement MISSTEXT= option.

See also: “Using Style Elements in PROC TABULATE” on page 1220

Featured in: Example 14 on page 1279

THREADS | NOTHREADS
enables or disables parallel processing of the input data set. This option overrides
the SAS system option THREADS | NOTHREADS. See SAS Language Reference:
Concepts for more information about parallel processing.

Default: value of SAS system option THREADS | NOTHREADS.

Interaction: PROC TABULATE uses the value of the SAS system option THREADS
except when a BY statement is specified or the value of the SAS system option
CPUCOUNT is equal to 1. In those cases, you can use THREADS in the PROC
TABULATE statement to force PROC TABULATE to use parallel processing.

TRAP | NOTRAP
enables or disables floating point exception (FPE) recovery during data processing
beyond that provided by normal SAS FPE handling, which terminates PROC
TABULATE in the case of math exceptions. Note that with NOTRAP, normal SAS
FPE handling is still in effect so that PROC TABULATE terminates in the case of
math exceptions.

Default: NOTRAP

VARDEF=divisor
specifies the divisor to use in the calculation of the variance and standard deviation.
Table 47.3 on page 1195 shows the possible values for divisor and the associated
divisors.

Table 47.3 Possible Values for VARDEF=

Value Divisor Formula for Divisor

DF degrees of freedom n − 1

N number of observations n

WDF sum of weights minus one (�i wi) − 1

WEIGHT | WGT sum of weights �i wi



1196 BY Statement � Chapter 47

The procedure computes the variance as �����������, where ��� is the corrected
sums of squares and equals

�
�	� � 	��. When you weight the analysis variables,

��� equals
�


� �	� � 	��
� where 	� is the weighted mean.

Default: DF
Requirement: To compute standard error of the mean, use the default value of

VARDEF=.
Tip: When you use the WEIGHT statement and VARDEF=DF, the variance is an

estimate of ��, where the variance of the ith observation is ��� �	�� � ���
�, and

� is the weight for the ith observation. This yields an estimate of the variance of
an observation with unit weight.

Tip: When you use the WEIGHT statement and VARDEF=WGT, the computed
variance is asymptotically (for large n) an estimate of ���
, where 
 is the
average weight. This yields an asymptotic estimate of the variance of an
observation with average weight.

See also: “Weighted Statistics Example” on page 65

BY Statement

Creates a separate table on a separate page for each BY group.

Main discussion: “BY” on page 58

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, then the observations in the data set must either be sorted by all the
variables that you specify, or they must be indexed appropriately. Variables in a BY
statement are called BY variables.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED



The TABULATE Procedure � CLASS Statement 1197

option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, then the procedure treats each contiguous set as a separate BY
group.

CLASS Statement

Identifies class variables for the table. Class variables determine the categories that PROC
TABULATE uses to calculate statistics.

Tip: You can use multiple CLASS statements.
Tip: Some CLASS statement options are also available in the PROC TABULATE
statement. They affect all CLASS variables rather than just the one(s) that you specify
in a CLASS statement.

CLASS variable(s) </option(s)>;

Required Arguments

variable(s)
specifies one or more variables that the procedure uses to group the data. Variables
in a CLASS statement are referred to as class variables. Class variables can be
numeric or character. Class variables can have continuous values, but they typically
have a few discrete values that define the classifications of the variable. You do not
have to sort the data by class variables.

Options

ASCENDING
specifies to sort the class variable values in ascending order.
Alias: ASCEND
Interaction: PROC TABULATE issues a warning message if you specify both

ASCENDING and DESCENDING and ignores both options.

DESCENDING
specifies to sort the class variable values in descending order.
Alias: DESCEND
Default: ASCENDING
Interaction: PROC TABULATE issues a warning message if you specify both

ASCENDING and DESCENDING and ignores both options.

EXCLUSIVE
excludes from tables and output data sets all combinations of class variables that are
not found in the preloaded range of user-defined formats.
Requirement: You must specify the PRELOADFMT option in the CLASS statement

to preload the class variable formats.



1198 CLASS Statement � Chapter 47

Featured in: Example 3 on page 1237

GROUPINTERNAL
specifies not to apply formats to the class variables when PROC TABULATE groups
the values to create combinations of class variables.
Interaction: If you specify the PRELOADFMT option in the CLASS statement,

then PROC TABULATE ignores the GROUPINTERNAL option and uses the
formatted values.

Interaction: If you specify the ORDER=FORMATTED option, then PROC
TABULATE ignores the GROUPINTERNAL option and uses the formatted values.

Tip: This option saves computer resources when the class variables contain discrete
numeric values.

MISSING
considers missing values as valid class variable levels. Special missing values that
represent numeric values (the letters A through Z and the underscore (_) character)
are each considered as a separate value.
Default: If you omit MISSING, then PROC TABULATE excludes the observations

with any missing CLASS variable values from tables and output data sets.
See also: SAS Language Reference: Concepts for a discussion of missing values with

special meanings.

MLF
enables PROC TABULATE to use the format label or labels for a given range or
overlapping ranges to create subgroup combinations when a multilabel format is
assigned to a class variable.
Requirement: You must use PROC FORMAT and the MULTILABEL option in the

VALUE statement to create a multilabel format.
Interaction: Using MLF with ORDER=FREQ may not produce the order that you

expect for the formatted values.
Interaction: When you specify MLF, the formatted values of the class variable

become internal values. Therefore, specifying ORDER=FORMATTED produces the
same results as specifying ORDER=UNFORMATTED.

Tip: If you omit MLF, then PROC TABULATE uses the primary format labels,
which correspond to the first external format value, to determine the subgroup
combinations.

See also: The MULTILABEL option on page 449 in the VALUE statement of the
FORMAT procedure.

Featured in: Example 4 on page 1242
Note: When the formatted values overlap, one internal class variable value maps

to more than one class variable subgroup combination. Therefore, the sum of the N
statistics for all subgroups is greater than the number of observations in the data set
(the overall N statistic). �

ORDER=DATA | FORMATTED | FREQ | UNFORMATTED
specifies the order to group the levels of the class variables in the output, where

DATA
orders values according to their order in the input data set.
Interaction: If you use PRELOADFMT, then the order for the values of each class

variable matches the order that PROC FORMAT uses to store the values of the
associated user-defined format. If you use the CLASSDATA= option in the
PROC statement, then PROC TABULATE uses the order of the unique values of
each class variable in the CLASSDATA= data set to order the output levels. If



The TABULATE Procedure � CLASS Statement 1199

you use both options, then PROC TABULATE first uses the user-defined
formats to order the output. If you omit EXCLUSIVE in the PROC statement,
then PROC TABULATE places, in the order in which they are encountered, the
unique values of the class variables that are in the input data set after the
user-defined format and the CLASSDATA= values.

Tip: By default, PROC FORMAT stores a format definition in sorted order. Use
the NOTSORTED option to store the values or ranges of a user-defined format
in the order that you define them.

FORMATTED
orders values by their ascending formatted values. This order depends on your
operating environment.

Alias: FMT | EXTERNAL

FREQ
orders values by descending frequency count.

Interaction: Use the ASCENDING option to order values by ascending frequency
count.

UNFORMATTED
orders values by their unformatted values, which yields the same order as PROC
SORT. This order depends on your operating environment. This sort sequence is
particularly useful for displaying dates chronologically.

Alias: UNFMT | INTERNAL

Default: UNFORMATTED

Interaction: If you use the PRELOADFMT option in the CLASS statement, then
PROC TABULATE orders the levels by the order of the values in the user-defined
format.

Tip: By default, all orders except FREQ are ascending. For descending orders, use
the DESCENDING option.

Featured in: “Understanding the Order of Headings with ORDER=DATA” on page
1230

PRELOADFMT
specifies that all formats are preloaded for the class variables.

Requirement: PRELOADFMT has no effect unless you specify EXCLUSIVE,
ORDER=DATA, or PRINTMISS and you assign formats to the class variables.

Note: If you specify PRELOADFMT without also specifying EXCLUSIVE,
ORDER=DATA, or PRINTMISS, then SAS writes a warning message to the SAS
log. �

Interaction: To limit PROC TABULATE output to the combinations of formatted
class variable values present in the input data set, use the EXCLUSIVE option in
the CLASS statement.

Interaction: To include all ranges and values of the user-defined formats in the
output, use the PRINTMISS option in the TABLE statement.

Note: Use care when you use PRELOADFMT with PRINTMISS. This feature
creates all possible combinations of formatted class variables. Some of these
combinations may not make sense. �

Featured in: Example 3 on page 1237



1200 CLASSLEV Statement � Chapter 47

STYLE=<style-element-name|PARENT>[style-attribute-name=style-attribute-
value<… style-attribute-name=style-attribute-value>]

specifies the style element to use for page dimension text and class variable name
headings. For information about the arguments of this option, and how it is used, see
STYLE= on page 1194 in the PROC TABULATE statement.

Note: When you use STYLE= in the CLASS statement, it differs slightly from its
use in the PROC TABULATE statement. In the CLASS statement, the parent of the
heading is the page dimension text or heading under which the current heading is
nested. �

Note: If a page dimension expression contains multiple nested elements, then the
Beforecaption style element is the style element of the first element in the nesting. �
Alias: S=
Restriction: This option affects only the HTML, RTF, and Printer destinations.
Tip: To override a style element that is specified for page dimension text in the

CLASS statement, you can specify a style element in the TABLE statement page
dimension expression.

Tip: To override a style element that is specified for a class variable name heading
in the CLASS statement, you can specify a style element in the related TABLE
statement dimension expression.

Featured in: Example 14 on page 1279

How PROC TABULATE Handles Missing Values for Class Variables
By default, if an observation contains a missing value for any class variable, then

PROC TABULATE excludes that observation from all tables that it creates. CLASS
statements apply to all TABLE statements in the PROC TABULATE step. Therefore, if
you define a variable as a class variable, then PROC TABULATE omits observations
that have missing values for that variable from every table even if the variable does not
appear in the TABLE statement for one or more tables.

If you specify the MISSING option in the PROC TABULATE statement, then the
procedure considers missing values as valid levels for all class variables. If you specify
the MISSING option in a CLASS statement, then PROC TABULATE considers missing
values as valid levels for the class variable(s) that are specified in that CLASS
statement.

CLASSLEV Statement

Specifies a style element for class variable level value headings.

Restriction: This statement affects only the HTML, RTF, and Printer destinations.

CLASSLEV variable(s) / STYLE=<style-element-name | PARENT>
[style-attribute-name=style-attribute-value<…
style-attribute-name=style-attribute-value>] ;



The TABULATE Procedure � FREQ Statement 1201

Required Arguments

variable(s)
specifies one or more class variables from the CLASS statement for which you want
to specify a style element.

Options

STYLE=<style-element-name|PARENT>[style-attribute-name=style-attribute-
value<… style-attribute-name=style-attribute-value>]

specifies a style element for class variable level value headings. For information on
the arguments of this option and how it is used, see STYLE= on page 1194 in the
PROC TABULATE statement.

Note: When you use STYLE= in the CLASSLEV statement, it differs slightly
from its use in the PROC TABULATE statement. In the CLASSLEV statement, the
parent of the heading is the heading under which the current heading is nested. �

Alias: S=

Restriction: This option affects only the HTML, RTF, and Printer destinations.

Tip: To override a style element that is specified in the CLASSLEV statement, you
can specify a style element in the related TABLE statement dimension expression.

Featured in: Example 14 on page 1279

FREQ Statement

Specifies a numeric variable that contains the frequency of each observation.

Tip: The effects of the FREQ and WEIGHT statements are similar except when
calculating degrees of freedom.

See also: For an example that uses the FREQ statement, see “FREQ” on page 61.

FREQ variable;

Required Arguments

variable
specifies a numeric variable whose value represents the frequency of the observation.
If you use the FREQ statement, then the procedure assumes that each observation
represents n observations, where n is the value of variable. If n is not an integer,
then SAS truncates it. If n is less than 1 or is missing, then the procedure does not
use that observation to calculate statistics.

The sum of the frequency variable represents the total number of observations.



1202 KEYLABEL Statement � Chapter 47

KEYLABEL Statement

Labels a keyword for the duration of the PROC TABULATE step. PROC TABULATE uses the label
anywhere that the specified keyword would otherwise appear.

KEYLABEL keyword-1=’description-1’
<…keyword-n=’description-n’>;

Required Arguments

keyword
is one of the keywords for statistics that is discussed in “Statistics That Are Available
in PROC TABULATE” on page 1213 or is the universal class variable ALL (see
“Elements That You Can Use in a Dimension Expression” on page 1208).

description
is up to 256 characters to use as a label. As the syntax shows, you must enclose
description in quotation marks.

Restriction: Each keyword can have only one label in a particular PROC
TABULATE step; if you request multiple labels for the same keyword, then PROC
TABULATE uses the last one that is specified in the step.

KEYWORD Statement

Specifies a style element for keyword headings.

Restriction: This statement affects only the HTML, RTF, and Printer output.

KEYWORD keyword(s) / STYLE=<style-element-name | PARENT>
[style-attribute-name=style-attribute-value<…
style-attribute-name=style-attribute-value>] ;

Required Arguments

keyword
is one of the keywords for statistics that is discussed in “Statistics That Are Available
in PROC TABULATE” on page 1213 or is the universal class variable ALL (see
“Elements That You Can Use in a Dimension Expression” on page 1208).

Options

STYLE=<style-element-name|PARENT>[style-attribute-name=style-attribute-
value<… style-attribute-name=style-attribute-value>]



The TABULATE Procedure � TABLE Statement 1203

specifies a style element for the keyword headings. For information on the
arguments of this option and how it is used, see STYLE= on page 1194 in the PROC
TABULATE statement.

Note: When you use STYLE= in the KEYWORD statement, it differs slightly
from its use in the PROC TABULATE statement. In the KEYWORD statement, the
parent of the heading is the heading under which the current heading is nested. �

Alias: S=
Restriction: This option affects only the HTML, RTF, and Printer destinations.
Tip: To override a style element that is specified in the KEYWORD statement, you

can specify a style element in the related TABLE statement dimension expression.
Featured in: Example 14 on page 1279

TABLE Statement

Describes a table to print.

Requirement: All variables in the TABLE statement must appear in either the VAR
statement or the CLASS statement.
Tip: Use multiple TABLE statements to create several tables.

TABLE <<page-expression,> row-expression,>
column-expression </ table-option(s)>;

Required Arguments

column-expression
defines the columns in the table. For information on constructing dimension
expressions, see “Constructing Dimension Expressions” on page 1208.
Restriction: A column dimension is the last dimension in a TABLE statement. A

row dimension or a row dimension and a page dimension may precede a column
dimension.

Options

To do this Use this option

Add dimensions

Define the pages in a table page-expression

Define the rows in a table row-expression

Customize the HTML contents entry link to the output CONTENTS=

Modify the appearance of the table

Change the order of precedence for specified format modifiers FORMAT_PRECEDENCE=

Specify a style element for various parts of the table STYLE=



1204 TABLE Statement � Chapter 47

To do this Use this option

Change the order of precedence for specified style attribute
values

STYLE_PRECEDENCE=

Customize text in the table

Specify the text to place in the empty box above row titles BOX=

Supply up to 256 characters to print in table cells that contain
missing values

MISSTEXT=

Suppress the continuation message for tables that span
multiple physical pages

NOCONTINUED

Modify the layout of the table

Print as many complete logical pages as possible on a single
printed page or, if possible, print multiple pages of tables that
are too wide to fit on a page one below the other on a single
page, instead of on separate pages.

CONDENSE

Create the same row and column headings for all logical pages
of the table

PRINTMISS

Customize row headings

Specify the number of spaces to indent nested row headings INDENT=

Control allocation of space for row titles within the available
space

ROW=

Specify the number of print positions available for row titles RTSPACE=

BOX=value
BOX={<label=value>
<STYLE=<style-element-name>[style-attribute-name=style-attribute-value<…
style-attribute-name=style-attribute-value>]>}

specifies text and a style element for the empty box above the row titles.
Value can be one of the following:

_PAGE_
writes the page-dimension text in the box. If the page-dimension text does not fit,
then it is placed in its default position above the box, and the box remains empty.

’string’
writes the quoted string in the box. Any string that does not fit in the box is
truncated.

variable
writes the name (or label, if the variable has one) of a variable in the box. Any
name or label that does not fit in the box is truncated.

For details about the arguments of the STYLE= option and how it is used, see
STYLE= on page 1194 in the PROC TABULATE statement.

Featured in: Example 9 on page 1253 and Example 14 on page 1279

CONDENSE
prints as many complete logical pages as possible on a single printed page or, if
possible, prints multiple pages of tables that are too wide to fit on a page one below



The TABULATE Procedure � TABLE Statement 1205

the other on a single page, instead of on separate pages. A logical page is all the
rows and columns that fall within one of the following:

� a page-dimension category (with no BY-group processing)
� a BY group with no page dimension
� a page-dimension category within a single BY group.

Restrictions: CONDENSE has no effect on the pages that are generated by the BY
statement. The first table for a BY group always begins on a new page.

Featured in: Example 9 on page 1253

CONTENTS=link-name
enables you to name the link in the HTML table of contents that points to the ODS
output of the table that is produced by using the TABLE statement.

Note: CONTENTS= affects only the contents file of ODS HTML output. It has no
effect on the actual TABULATE procedure reports. �

FORMAT_PRECEDENCE=PAGE|ROW|COLUMN|COL
specifies whether the format that is specified for the page dimension (PAGE), row
dimension (ROW), or column dimension (COLUMN or COL) is applied to the
contents of the table cells.
Default: COLUMN

FUZZ=number
supplies a numeric value against which analysis variable values and table cell values
other than frequency counts are compared to eliminate trivial values (absolute values
less than the FUZZ= value) from computation and printing. A number whose
absolute value is less than the FUZZ= value is treated as zero in computations and
printing. The default value is the smallest representable floating-point number on
the computer that you are using.

INDENT=number-of-spaces
specifies the number of spaces to indent nested row headings, and suppresses the
row headings for class variables.
Tip: When there are no crossings in the row dimension, there is nothing to indent,

so the value of number-of-spaces has no effect. However, in such cases INDENT=
still suppresses the row headings for class variables.

Restriction: In the HTML, RTF, and Printer destinations, the INDENT= option
suppresses the row headings for class variables but does not indent nested row
headings.

Featured in: Example 8 on page 1251 (with crossings) and Example 9 on page 1253
(without crossings)

MISSTEXT=’text’

MISSTEXT={<label= ’text’> <STYLE=<style-element-name>
[style-attribute-name=style-attribute-value<…
style-attribute-name=style-attribute-value>]>}

supplies up to 256 characters of text to print and specifies a style element for table
cells that contain missing values. For details on the arguments of the STYLE= option
and how it is used, see STYLE= on page 1194 in the PROC TABULATE statement.
Interaction: A style element that is specified in a dimension expression overrides a

style element that is specified in the MISSTEXT= option for any given cell(s).
Featured in: “Providing Text for Cells That Contain Missing Values” on page 1228

and Example 14 on page 1279



1206 TABLE Statement � Chapter 47

NOCONTINUED
suppresses the continuation message, continued, that is displayed at the bottom of
tables that span multiple pages. The text is rendered with the Aftercaption style
element.

Note: Because HTML browsers do not break pages, NOCONTINUED has no
effect on the HTML destination. �

page-expression
defines the pages in a table. For information on constructing dimension expressions,
see “Constructing Dimension Expressions” on page 1208.
Restriction: A page dimension is the first dimension in a table statement. Both a

row dimension and a column dimension must follow a page dimension.
Featured in: Example 9 on page 1253

PRINTMISS
prints all values that occur for a class variable each time headings for that variable
are printed, even if there are no data for some of the cells that these headings create.
Consequently, PRINTMISS creates row and column headings that are the same for
all logical pages of the table, within a single BY group.
Default: If you omit PRINTMISS, then PROC TABULATE suppresses a row or

column for which there are no data, unless you use the CLASSDATA= option in
the PROC TABULATE statement.

Restrictions: If an entire logical page contains only missing values, then that page
does not print regardless of the PRINTMISS option.

See also: CLASSDATA= option on page 1188
Featured in: “Providing Headings for All Categories” on page 1227

ROW=spacing
specifies whether all title elements in a row crossing are allotted space even when
they are blank. The possible values for spacing are as follows:

CONSTANT
allots space to all row titles even if the title has been blanked out (for example,
N=’ ’).
Alias: CONST

FLOAT
divides the row title space equally among the nonblank row titles in the crossing.

Default: CONSTANT
Featured in: Example 7 on page 1249

row-expression
defines the rows in the table. For information on constructing dimension expressions,
see “Constructing Dimension Expressions” on page 1208.
Restriction: A row dimension is the next to last dimension in a table statement. A

column dimension must follow a row dimension. A page dimension may precede a
row dimension.

RTSPACE=number
specifies the number of print positions to allot to all of the headings in the row
dimension, including spaces that are used to print outlining characters for the row
headings. PROC TABULATE divides this space equally among all levels of row
headings.
Alias: RTS=
Default: one-fourth of the value of the SAS system option LINESIZE=



The TABULATE Procedure � TABLE Statement 1207

Restriction: The RTSPACE= option affects only the traditional SAS monospace
output destination.

Interaction: By default, PROC TABULATE allots space to row titles that are blank.
Use ROW=FLOAT in the TABLE statement to divide the space among only
nonblank titles.

See also: For more information about controlling the space for row titles, see
Chapter 5, “Controlling the Table’s Appearance,” in SAS Guide to TABULATE
Processing.

Featured in: Example 1 on page 1232

STYLE=<style-element-name> [style-attribute-name=style-attribute-value<…
style-attribute-name=style-attribute-value>]

specifies a style element to use for parts of the table other than table cells. For
information about the arguments of this option and how it is used, see STYLE= on
page 1194 in the PROC TABULATE statement.

Note: The list of attributes that you can set or change with the STYLE= option in
the TABLE statement differs from that of the PROC TABULATE statement. �

The following table shows the attributes that you can set or change with the
STYLE= option in the TABLE statement. Most of these attributes apply to parts of
the table other than cells (for example, table borders and the lines between columns
and rows). Attributes that you apply in the PROC TABULATE statement and in
other locations in the PROC TABULATE step apply to cells within the table. Note
that not all attributes are valid in all destinations. See SAS Output Delivery System:
User’s Guide for more information about these style attributes, their valid values,
and their applicable destinations.

BACKGROUND= FONT_WIDTH=*

BACKGROUNDIMAGE= FOREGROUND=*

BORDERCOLOR= FRAME=

BORDERCOLORDARK= HTMLCLASS=

BORDERCOLORLIGHT= JUST=

BORDERWIDTH= OUTPUTWIDTH=

CELLPADDING= POSTHTML=

CELLSPACING= POSTIMAGE=

FONT=* POSTTEXT=

FONT_FACE=* PREHTML=

FONT_SIZE=* PREIMAGE=

FONT_STYLE=* PRETEXT=

FONT_WEIGHT=* RULES=

* When you use these attributes in this location, they affect only the text that is specified
with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To alter
the foreground color or the font for the text that appears in the table, you must set the
corresponding attribute in a location that affects the cells rather than the table.

Note: You can use braces ({ and }) instead of square brackets ([ and ]). �
Alias: S=



1208 TABLE Statement � Chapter 47

Restriction: This option affects only the HTML, RTF, and Printer destinations.
Tip: To override a style element specification that is made as an option in the

TABLE statement, specify STYLE= in a dimension expression of the TABLE
statement.

Featured in: Example 14 on page 1279

STYLE_PRECEDENCE=PAGE|ROW|COLUMN|COL
specifies whether the style that is specified for the page dimension (PAGE), row
dimension (ROW), or column dimension (COLUMN or COL) is applied to the
contents of the table cells.
Default: COLUMN

Constructing Dimension Expressions

What Are Dimension Expressions?
A dimension expression defines the content and appearance of a dimension (the
columns, rows, or pages in the table) by specifying the combination of variables,
variable values, and statistics that make up that dimension. A TABLE statement
consists of from one to three dimension expressions separated by commas. Options can
follow the dimension expressions.

If all three dimensions are specified, then the leftmost dimension expression defines
pages, the middle dimension expression defines rows, and the rightmost dimension
expression defines columns. If two dimensions are specified, then the left dimension
expression defines rows, and the right dimension expression defines columns. If a single
dimension is specified, then the dimension expression defines columns.

A dimension expression is composed of one or more elements and operators.

Elements That You Can Use in a Dimension Expression

analysis variables
(see “VAR Statement” on page 1211).

class variables
(see “CLASS Statement” on page 1197).

the universal class variable ALL
summarizes all of the categories for class variables in the same parenthetical
group or dimension (if the variable ALL is not contained in a parenthetical group).
Featured in: Example 6 on page 1246, Example 9 on page 1253, and Example 13

on page 1269

Note: If the input data set contains a variable named ALL, then enclose the
name of the universal class variable in quotation marks. �

keywords for statistics
See “Statistics That Are Available in PROC TABULATE” on page 1213 for a list of
available statistics. Use the asterisk (*) operator to associate a statistic keyword
with a variable. The N statistic (number of nonmissing values) can be specified in
a dimension expression without associating it with a variable.
Restriction: Statistic keywords other than N must be associated with an

analysis variable.
Default: For analysis variables, the default statistic is SUM. Otherwise, the

default statistic is N.



The TABULATE Procedure � TABLE Statement 1209

Examples:

n
Region*n
Sales*max

Featured in: Example 10 on page 1255 and Example 13 on page 1269

format modifiers
define how to format values in cells. Use the asterisk (*) operator to associate a
format modifier with the element (an analysis variable or a statistic) that produces
the cells that you want to format. Format modifiers have the form

f=format

Example:

Sales*f=dollar8.2

Tip: Format modifiers have no effect on CLASS variables.

See also: For more information on specifying formats in tables, see “Formatting
Values in Tables” on page 1215.

Featured in: Example 6 on page 1246

labels
temporarily replace the names of variables and statistics. Labels affect only the
variable or statistic that immediately precedes the label. Labels have the form

statistic-keyword-or-variable-name=’label-text’

Tip: PROC TABULATE eliminates the space for blank column headings from a
table but by default does not eliminate the space for blank row headings unless
all row headings are blank. Use ROW=FLOAT in the TABLE statement to
remove the space for blank row headings.

Examples:

Region=’Geographical Region’
Sales*max=’Largest Sale’

Featured in: Example 5 on page 1244 and Example 7 on page 1249

style-element specifications
specify style elements for page dimension text, headings, or data cells. For details,
see “Specifying Style Elements in Dimension Expressions” on page 1210.

Operators That You Can Use in a Dimension Expression

asterisk *
creates categories from the combination of values of the class variables and
constructs the appropriate headers for the dimension. If one of the elements is an
analysis variable, then the statistics for the analysis variable are calculated for the
categories that are created by the class variables. This process is called crossing.

Examples:

Region*Division
Quarter*Sales*f=dollar8.2

Featured in: Example 1 on page 1232

(blank)
places the output for each element immediately after the output for the preceding
element. This process is called concatenation.



1210 TABLE Statement � Chapter 47

Example:

n Region*Sales ALL

Featured in: Example 6 on page 1246

parentheses ()
group elements and associate an operator with each concatenated element in the
group.

Examples:

Division*(Sales*max Sales*min)
(Region ALL)*Sales

Featured in: Example 6 on page 1246

angle brackets <>
specify denominator definitions, which determine the value of the denominator in
the calculation of a percentage. For a discussion of how to construct denominator
definitions, see “Calculating Percentages” on page 1216.

Featured in: Example 10 on page 1255 and Example 13 on page 1269

Specifying Style Elements in Dimension Expressions
You can specify a style element in a dimension expression to control the appearance in
HTML, RTF, and Printer output of the following table elements:

analysis variable name headings

class variable name headings

class variable level value headings

data cells

keyword headings

page dimension text

Specifying a style element in a dimension expression is useful when you want to
override a style element that you have specified in another statement, such as the
PROC TABULATE, CLASS, CLASSLEV, KEYWORD, TABLE, or VAR statements.

The syntax for specifying a style element in a dimension expression is

[STYLE<(CLASSLEV)>=<style-element-name |
PARENT>[style-attribute-name=style-attribute-value<…
style-attribute-name=style-attribute-value>]]

Some examples of style elements in dimension expressions are

dept={label=’Department’
style=[foreground=red]}, N

dept*[style=MyDataStyle], N

dept*[format=12.2 style=MyDataStyle], N

Note: When used in a dimension expression, the STYLE= option must be enclosed
within square brackets ([ and ]) or braces ({ and }). �

With the exception of (CLASSLEV), all arguments are described in STYLE= on page
1194 in the PROC TABULATE statement.



The TABULATE Procedure � VAR Statement 1211

(CLASSLEV)
assigns a style element to a class variable level value heading. For example, the
following TABLE statement specifies that the level value heading for the class
variable, DEPT, has a foreground color of yellow:

table dept=[style(classlev)=
[foreground=yellow]]*sales;

Note: This option is used only in dimension expressions. �

For an example that shows how to specify style elements within dimension
expressions, see Example 14 on page 1279.

VAR Statement

Identifies numeric variables to use as analysis variables.

Alias: VARIABLES

Tip: You can use multiple VAR statements.

VAR analysis-variable(s) </ option(s)>;

Required Arguments

analysis-variable(s);
identifies the analysis variables in the table. Analysis variables are numeric
variables for which PROC TABULATE calculates statistics. The values of an analysis
variable can be continuous or discrete.

If an observation contains a missing value for an analysis variable, then PROC
TABULATE omits that value from calculations of all statistics except N (the number
of observations with nonmissing variable values) and NMISS (the number of
observations with missing variable values). For example, the missing value does not
increase the SUM, and it is not counted when you are calculating statistics such as
the MEAN.

Options

STYLE=<style-element-name|PARENT>[style-attribute-name=style-attribute-
value<… style-attribute-name=style-attribute-value>]

specifies a style element for analysis variable name headings. For information on the
arguments of this option and how it is used, see STYLE= on page 1194 in the PROC
TABULATE statement.

Note: When you use STYLE= in the VAR statement, it differs slightly from its
use in the PROC TABULATE statement. In the VAR statement, the parent of the
heading is the heading under which the current heading is nested. �



1212 WEIGHT Statement � Chapter 47

Alias: S=
Restriction: This option affects only the HTML, RTF, and Printer destinations.
Tip: To override a style element that is specified in the VAR statement, you can

specify a style element in the related TABLE statement dimension expression.
Featured in: Example 14 on page 1279

WEIGHT=weight-variable
specifies a numeric variable whose values weight the values of the variables that are
specified in the VAR statement. The variable does not have to be an integer. If the
value of the weight variable is

Weight value… PROC TABULATE…

0 counts the observation in the total number of observations

less than 0 converts the value to zero and counts the observation in the total
number of observations

missing excludes the observation

To exclude observations that contain negative and zero weights from the analysis,
use EXCLNPWGT. Note that most SAS/STAT procedures, such as PROC GLM,
exclude negative and zero weights by default.
Restriction: To compute weighted quantiles, use QMETHOD=OS in the PROC

statement.
Tip: When you use the WEIGHT= option, consider which value of the VARDEF=

option is appropriate (see the discussion of VARDEF= on page 1195).
Tip: Use the WEIGHT option in multiple VAR statements to specify different

weights for the analysis variables.
Note: Prior to Version 7 of SAS, the procedure did not exclude the observations

with missing weights from the count of observations. �

WEIGHT Statement

Specifies weights for analysis variables in the statistical calculations.

See also: For information on calculating weighted statistics and for an example that
uses the WEIGHT statement, see “Calculating Weighted Statistics” on page 64

WEIGHT variable;

Required Arguments

variable
specifies a numeric variable whose values weight the values of the analysis variables.
The values of the variable do not have to be integers. PROC TABULATE responds to
weight values in accordance with the following table.



The TABULATE Procedure � Statistics That Are Available in PROC TABULATE 1213

Weight value PROC TABULATE response

0 counts the observation in the total number of observations

less than 0 converts the value to zero and counts the observation in the
total number of observations

missing excludes the observation

To exclude observations that contain negative and zero weights from the analysis,
use EXCLNPWGT. Note that most SAS/STAT procedures, such as PROC GLM,
exclude negative and zero weights by default.

Restriction: To compute weighted quantiles, use QMETHOD=OS in the PROC
statement.

Interaction: If you use the WEIGHT= option in a VAR statement to specify a
weight variable, then PROC TABULATE uses this variable instead to weight those
VAR statement variables.

Tip: When you use the WEIGHT statement, consider which value of the VARDEF=
option is appropriate. See the discussion of VARDEF= on page 1195 and the
calculation of weighted statistics in “Keywords and Formulas” on page 1340 for
more information.

Note: Prior to Version 7 of SAS, the procedure did not exclude the observations
with missing weights from the count of observations. �

Concepts: TABULATE Procedure

Statistics That Are Available in PROC TABULATE
Use the following keywords to request statistics in the TABLE statement or to

specify statistic keywords in the KEYWORD or KEYLABEL statement. If a variable
name (class or analysis) and a statistic name are the same, then enclose the statistic
name in single quotation marks — for example, ’MAX’.

Descriptive statistic keywords

COLPCTN PCTSUM

COLPCTSUM RANGE

CSS REPPCTN

CV REPPCTSUM

KURTOSIS | KURT ROWPCTN

LCLM ROWPCTSUM

MAX SKEWNESS | SKEW

MEAN STDDEV|STD

MIN STDERR



1214 Formatting Class Variables � Chapter 47

N SUM

NMISS SUMWGT

PAGEPCTN UCLM

PAGEPCTSUM USS

PCTN VAR

Quantile statistic keywords

MEDIAN|P50 Q3|P75

P1 P90

P5 P95

P10 P99

Q1|P25 QRANGE

Hypothesis testing keywords

PROBT T

These statistics, the formulas that are used to calculate them, and their data
requirements are discussed in “Keywords and Formulas” on page 1340.

To compute standard error of the mean (STDERR) or Student’s t-test, you must use
the default value of the VARDEF= option, which is DF. The VARDEF= option is
specified in the PROC TABULATE statement.

To compute weighted quantiles, you must use QMETHOD=OS in the PROC
TABULATE statement.

Use both LCLM and UCLM to compute a two-sided confidence limit for the mean.
Use only LCLM or UCLM to compute a one-sided confidence limit. Use the ALPHA=
option in the PROC TABULATE statement to specify a confidence level.

Formatting Class Variables
Use the FORMAT statement to assign a format to a class variable for the duration of

a PROC TABULATE step. When you assign a format to a class variable, PROC
TABULATE uses the formatted values to create categories, and it uses the formatted
values in headings. If you do not specify a format for a class variable, and the variable
does not have any other format assigned to it, then the default format, BEST12., is
used, unless the GROUPINTERNAL option is specified.

User-defined formats are particularly useful for grouping values into fewer
categories. For example, if you have a class variable, Age, with values ranging from 1
to 99, then you could create a user-defined format that groups the ages so that your
tables contain a manageable number of categories. The following PROC FORMAT step
creates a format that condenses all possible values of age into six groups of values.

proc format;
value agefmt 0-29=’Under 30’

30-39=’30-39’
40-49=’40-49’
50-59=’50-59’
60-69=’60-69’
other=’70 or over’;

run;



The TABULATE Procedure � How Using BY-Group Processing Differs from Using the Page Dimension 1215

For information on creating user-defined formats, see Chapter 22, “The FORMAT
Procedure,” on page 429.

By default, PROC TABULATE includes in a table only those formats for which the
frequency count is not zero and for which values are not missing. To include missing
values for all class variables in the output, use the MISSING option in the PROC
TABULATE statement, and to include missing values for selected class variables, use
the MISSING option in a CLASS statement. To include formats for which the frequency
count is zero, use the PRELOADFMT option in a CLASS statement and the
PRINTMISS option in the TABLE statement, or use the CLASSDATA= option in the
PROC TABULATE statement.

Formatting Values in Tables
The formats for data in table cells serve two purposes. They determine how PROC

TABULATE displays the values, and they determine the width of the columns. The
default format for values in table cells is 12.2. You can modify the format for printing
values in table cells by

� changing the default format with the FORMAT= option in the PROC TABULATE
statement

� crossing elements in the TABLE statement with the F= format modifier.

PROC TABULATE determines the format to use for a particular cell from the
following default order of precedence for formats:

1 If no other formats are specified, then PROC TABULATE uses the default format
(12.2).

2 The FORMAT= option in the PROC TABULATE statement changes the default
format. If no format modifiers affect a cell, then PROC TABULATE uses this
format for the value in that cell.

3 A format modifier in the page dimension applies to the values in all the table cells
on the logical page unless you specify another format modifier for a cell in the row
or column dimension.

4 A format modifier in the row dimension applies to the values in all the table cells
in the row unless you specify another format modifier for a cell in the column
dimension.

5 A format modifier in the column dimension applies to the values in all the table
cells in the column.

You can change this order of precedence by using the FORMAT_PRECEDENCE=
option in the TABLE statement. For example, if you specify
FORMAT_PRECEDENCE=ROW and specify a format modifier in the row dimension,
then that format overrides all other specified formats for the table cells.

How Using BY-Group Processing Differs from Using the Page
Dimension

Using the page-dimension expression in a TABLE statement can have an effect
similar to using a BY statement.

Table 47.4 on page 1216 contrasts the two methods.



1216 Calculating Percentages � Chapter 47

Table 47.4 Contrasting the BY Statement and the Page Dimension

Issue PROC TABULATE with a BY statement
PROC TABULATE with a page dimension
in the TABLE statement

Order of observations
in the input data set

The observations in the input data set must
be sorted by the BY variables. 1

Sorting is unnecessary.

One report
summarizing all BY
groups

You cannot create one report for all the BY
groups.

Use ALL in the page dimension to create a
report for all classes. (See Example 6 on
page 1246.)

Percentages The percentages in the tables are
percentages of the total for that BY group.
You cannot calculate percentages for a BY
group compared to the totals for all BY
groups because PROC TABULATE prepares
the individual reports separately. Data for
the report for one BY group are not
available to the report for another BY
group.

You can use denominator definitions to
control the meaning of PCTN (see
“Calculating Percentages” on page 1216.)

Titles You can use the #BYVAL, #BYVAR, and
#BYLINE specifications in TITLE
statements to customize the titles for each
BY group (see “Creating Titles That Contain
BY-Group Information” on page 20).

The BOX= option in the TABLE statement
customizes the page headers, but you must
use the same title on each page.

Ordering class
variables

ORDER=DATA and ORDER=FREQ order
each BY group independently.

The order of class variables is the same on
every page.

Obtaining uniform
headings

You may need to insert dummy
observations into BY groups that do not
have all classes represented.

The PRINTMISS option ensures that each
page of the table has uniform headings.

Multiple ranges with
the same format

PROC TABULATE produces a table for
each range.

PROC TABULATE combines observations
from the two ranges.

1 You can use the BY statement without sorting the data set if the data set has an index for the BY variable.

Calculating Percentages

Calculating the Percentage of the Value of in a Single Table Cell
The following statistics print the percentage of the value in a single table cell in

relation to the total of the values in a group of cells. No denominator definitions are
required; however, an analysis variable may be used as a denominator definition for
percentage sum statistics.

REPPCTN and REPPCTSUM statistics—print the percentage of the value in a single
table cell in relation to the total of the values in the report.

COLPCTN and COLPCTSUM statistics—print the percentage of the value in a single
table cell in relation to the total of the values in the column.

ROWPCTN and ROWPCTSUM statistics—print the percentage of the value in a
single table cell in relation to the total of the values in the row.

PAGEPCTN and PAGEPCTSUM statistics—print the percentage of the value in a
single table cell in relation to the total of the values in the page.



The TABULATE Procedure � Calculating Percentages 1217

These statistics calculate the most commonly used percentages. See Example 12 on
page 1266 for an example.

Using PCTN and PCTSUM
PCTN and PCTSUM statistics can be used to calculate these same percentages. They

allow you to manually define denominators. PCTN and PCTSUM statistics print the
percentage of the value in a single table cell in relation to the value (used in the
denominator of the calculation of the percentage) in another table cell or to the total of
the values in a group of cells. By default, PROC TABULATE summarizes the values in
all N cells (for PCTN) or all SUM cells (for PCTSUM) and uses the summarized value
for the denominator. You can control the value that PROC TABULATE uses for the
denominator with a denominator definition.

You place a denominator definition in angle brackets (< and >) next to the PCTN or
PCTSUM statistic. The denominator definition specifies which categories to sum for the
denominator.

This section illustrates how to specify denominator definitions in a simple table.
Example 13 on page 1269 illustrates how to specify denominator definitions in a table
that is composed of multiple subtables. For more examples of denominator definitions,
see “How Percentages Are Calculated” in Chapter 3, “Details of TABULATE
Processing,” in SAS Guide to TABULATE Processing.

Specifying a Denominator for the PCTN Statistic
The following PROC TABULATE step calculates the N statistic and three different

versions of PCTN using the data set ENERGY“ENERGY” on page 1387.

proc tabulate data=energy;
class division type;
table division*

(n=’Number of customers’
pctn<type>=’% of row’ u

pctn<division>=’% of column’ v

pctn=’% of all customers’), w

type/rts=50;
title ’Number of Users in Each Division’;

run;

The TABLE statement creates a row for each value of Division and a column for
each value of Type. Within each row, the TABLE statement nests four statistics: N and
three different calculations of PCTN (see Figure 47.4 on page 1218). Each occurrence of
PCTN uses a different denominator definition.



1218 Calculating Percentages � Chapter 47

Figure 47.4 Three Different Uses of the PCTN Statistic with Frequency Counts
Highlighted

              Number of Users in Each Division
1

------------------------------------------------------------
|                                |          Type           | |
|                                |-------------------------|
|                                |     1      |     2      |
|--------------------------------+------------+------------|
|Division |                      |            |            |
|---------+----------------------|            |            |
|1        |Number of customers   |        6.00|        6.00|
|         |----------------------+------------+------------|
|         |% of row ➊            |       50.00|       50.00|
|         |----------------------+------------+------------|
|         |% of column ❷         |       27.27|       27.27|
|         |----------------------+------------+------------|
|         |% of all customers ❸   |       13.64|       13.64|
|---------+----------------------+------------+------------|
|2        |Number of customers   |        3.00|        3.00|
|         |----------------------+------------+------------|
|         |% of row              |       50.00|       50.00|
|         |----------------------+------------+------------|
|         |% of column           |       13.64|       13.64|
|         |----------------------+------------+------------|
|         |% of all customers    |        6.82|        6.82|
|---------+----------------------+------------+------------|
|3        |Number of customers   |        8.00|        8.00|
|         |----------------------+------------+------------|
|         |% of row              |       50.00|       50.00|
|         |----------------------+------------+------------|
|         |% of column           |       36.36|       36.36|
|         |----------------------+------------+------------|
|         |% of all customers    |       18.18|       18.18|
|---------+----------------------+------------+------------|
|4        |Number of customers   |        5.00|        5.00|
|         |----------------------+------------+------------|
|         |% of row              |       50.00|       50.00|
|         |----------------------+------------+------------|
|         |% of column           |       22.73|       22.73|
|         |----------------------+------------+------------|
|         |% of all customers    |       11.36|       11.36|

u <type> sums the frequency counts for all occurrences of Type within the same
value of Division. Thus, for Division=1, the denominator is 6 + 6, or 12.

v <division> sums the frequency counts for all occurrences of Division within the
same value of Type. Thus, for Type=1, the denominator is 6 + 3 + 8 + 5, or 22.

w The third use of PCTN has no denominator definition. Omitting a denominator
definition is the same as including all class variables in the denominator definition.
Thus, for all cells, the denominator is 6 + 3 + 8 + 5 + 6 + 3 + 8 + 5, or 44.

Specifying a Denominator for the PCTSUM Statistic
The following PROC TABULATE step sums expenditures for each combination of

Type and Division and calculates three different versions of PCTSUM.

proc tabulate data=energy format=8.2;
class division type;
var expenditures;
table division*

(sum=’Expenditures’*f=dollar10.2
pctsum<type>=’% of row’ u



The TABULATE Procedure � Calculating Percentages 1219

pctsum<division>=’% of column’ v

pctsum=’% of all customers’), w

type*expenditures/rts=40;
title ’Expenditures in Each Division’;

run;

The TABLE statement creates a row for each value of Division and a column for each
value of Type. Because Type is crossed with Expenditures, the value in each cell is the
sum of the values of Expenditures for all observations that contribute to the cell.
Within each row, the TABLE statement nests four statistics: SUM and three different
calculations of PCTSUM (see Figure 47.5 on page 1219). Each occurrence of PCTSUM
uses a different denominator definition.

Figure 47.5 Three Different Uses of the PCTSUM Statistic with Sums Highlighted

               Expenditures in Each Division             1

--------------------------------------------------------
|                                |        Type         | |
|                                |---------------------|
|                                |    1     |    2     |
|                                |----------+----------|
|                                |  Expend  |  Expend  |
|--------------------------------+----------+----------|
|Division   |                    |          |          |
|-----------+--------------------|          |          |
|1          |Expenditures        | $7,477.00| $5,129.00|
|           |--------------------+----------+----------|
|           |% of row ➊          |     59.31|     40.69|
|           |--------------------+----------+----------|
|           |% of column ❷       |     16.15|     13.66|
|           |--------------------+----------+----------|
|           |% of all customers ❸|      8.92|      6.12|
|-----------+--------------------+----------+----------|
|2          |Expenditures        |$19,379.00|$15,078.00|
|           |--------------------+----------+----------|
|           |% of row            |     56.24|     43.76|
|           |--------------------+----------+----------|
|           |% of column         |     41.86|     40.15|
|           |--------------------+----------+----------|
|           |% of all customers  |     23.11|     17.98|
|-----------+--------------------+----------+----------|
|3          |Expenditures        | $5,476.00| $4,729.00|
|           |--------------------+----------+----------|
|           |% of row            |     53.66|     46.34|
|           |--------------------+----------+----------|
|           |% of column         |     11.83|     12.59|
|           |--------------------+----------+----------|
|           |% of all customers  |      6.53|      5.64|
|-----------+--------------------+----------+----------|
|4          |Expenditures        |$13,959.00|$12,619.00|
|           |--------------------+----------+----------|
|           |% of row            |     52.52|     47.48|
|           |--------------------+----------+----------|
|           |% of column         |     30.15|     33.60|
|           |--------------------+----------+----------|
|           |% of all customers  |     16.65|     15.05|
--------------------------------------------------------

u <type> sums the values of Expenditures for all occurrences of Type within the
same value of Division. Thus, for Division=1, the denominator is $7,477 + $5,129.

v <division> sums the frequency counts for all occurrences of Division within the
same value of Type. Thus, for Type=1, the denominator is $7,477 + $19,379 +
$5,476 + $13,959.

w The third use of PCTN has no denominator definition. Omitting a denominator
definition is the same as including all class variables in the denominator



1220 Using Style Elements in PROC TABULATE � Chapter 47

definition. Thus, for all cells, the denominator is $7,477 + $19,379 + $5,476 +
$13,959 + $5,129 + $15,078 + $4,729 + $12,619.

Using Style Elements in PROC TABULATE

What Are Style Elements?
If you use the Output Delivery System to create HTML, RTF, or Printer output from

PROC TABULATE, then you can set the style element that the procedure uses for
various parts of the table. Style elements determine presentation attributes, such as
font face, font weight, color, and so forth. See “Output Delivery System” on page 32 for
more information. The following table lists the default styles for various regions of a
table.

Table 47.5 Default Styles for Table Regions

Region Style

column headings Header

box Header

page dimension text Beforecaption

row headings Rowheader

data cells Data

table Table

Using the STYLE= Option
You specify style elements for PROC TABULATE with the STYLE= option. The

following table shows where you can use this option. Specifications in the TABLE
statement override the same specification in the PROC TABULATE statement.
However, any style attributes that you specify in the PROC TABULATE statement and
that you do not override in the TABLE statement are inherited. For instance, if you
specify a blue background and a white foreground for all data cells in the PROC
TABULATE statement, and you specify a gray background for the data cells of a
particular crossing in the TABLE statement, then the background for those data cells is
gray, and the foreground is white (as specified in the PROC TABULATE statement).

Detailed information on STYLE= is provided in the documentation for individual
statements.

Table 47.6 Using the STYLE= Option in PROC TABULATE

To set the style element for Use STYLE in this statement

data cells PROC TABULATE or dimension expression(s)

page dimension text and class variable name headings CLASS

class level value headings CLASSLEV

keyword headings KEYWORD



The TABULATE Procedure � Using Style Elements in PROC TABULATE 1221

To set the style element for Use STYLE in this statement

table borders, rules, and other parts that are not
specified elsewhere

TABLE

box text TABLE statement, BOX= option

missing values TABLE statement, MISSTEXT= option

analysis variable name headings VAR

Applying Style Attributes to Table Cells
PROC TABULATE determines the style attributes to use for a particular cell from

the following default order of precedence for styles:

1 If no other style attributes are specified, then PROC TABULATE uses the default
style attributes from the default style (Data).

2 The STYLE= option in the PROC TABULATE statement changes the default style
attributes. If no other STYLE= option specifications affect a cell, then PROC
TABULATE uses these style attributes for that cell.

3 A STYLE= option that is specified in the page dimension applies to all the table
cells on the logical page unless you specify another STYLE= option for a cell in the
row or column dimension.

4 A STYLE= option that is specified in the row dimension applies to all the table
cells in the row unless you specify another STYLE= option for a cell in the column
dimension.

5 A STYLE= option that is specified in the column dimension applies to all the table
cells in the column.

You can change this order of precedence by using the STYLE_PRECEDENCE=
option in the TABLE statement. For example, if you specify
STYLE_PRECEDENCE=ROW and specify a STYLE= option in the row dimension, then
those style attribute values override all others that are specified for the table cells.

Using a Format to Assign a Style Attribute
You can use a format to assign a style attribute value to any cell whose content is

determined by value(s) of a class or analysis variable. For example, the following code
assigns a red background to cells whose values are less than 10,000, a yellow
background to cells whose values are at least 10,000 but less than 20,000, and a green
background to cells whose values are at least 20,000:

proc format;
value expfmt low-<10000=’red’

10000-<20000=’yellow’
20000-high=’green’;

run;

ods html body=’external-HTML-file’;
proc tabulate data=energy style=[background=expfmt.];

class region division type;
var expenditures;
table (region all)*(division all),

type*expenditures;
run;
ods html close;



1222 Results: TABULATE Procedure � Chapter 47

Results: TABULATE Procedure

Missing Values

How PROC TABULATE Treats Missing Values

How a missing value for a variable in the input data set affects your output depends
on how you use the variable in the PROC TABULATE step. Table 47.7 on page 1222
summarizes how the procedure treats missing values.

Table 47.7 Summary of How PROC TABULATE Treats Missing Values

If … PROC TABULATE, by default, … To override the default …

an observation contains a missing
value for an analysis variable

excludes that observation from the
calculation of statistics (except N and
NMISS) for that particular variable

no alternative

an observation contains a missing
value for a class variable

excludes that observation from the
table1

use MISSING in the PROC
TABULATE statement, or MISSING
in the CLASS statement

there are no data for a category does not show the category in the
table

use PRINTMISS in the TABLE
statement, or use CLASSDATA= in
the PROC TABULATE statement

every observation that contributes to
a table cell contains a missing value
for an analysis variable

displays a missing value for any
statistics (except N and NMISS) in
that cell

use MISSTEXT= in the TABLE
statement

there are no data for a formatted
value

does not display that formatted
value in the table

use PRELOADFMT in the CLASS
statement with PRINTMISS in the
TABLE statement, or use
CLASSDATA= in the PROC
TABULATE statement, or add
dummy observations to the input
data set so that it contains data for
each formatted value

a FREQ variable value is missing or
is less than 1

does not use that observation to
calculate statistics

no alternative

a WEIGHT variable value is missing
or 0

uses a value of 0 no alternative

1 The CLASS statement applies to all TABLE statements in a PROC TABULATE step. Therefore, if you define a variable as
a class variable, PROC TABULATE omits observations that have missing values for that variable even if you do not use the
variable in a TABLE statement.

This section presents a series of PROC TABULATE steps that illustrate how PROC
TABULATE treats missing values. The following program creates the data set and
formats that are used in this section and prints the data set. The data set COMPREV
contains no missing values (see Figure 47.6 on page 1223).



The TABULATE Procedure � Missing Values 1223

proc format;
value cntryfmt 1=’United States’

2=’Japan’;
value compfmt 1=’Supercomputer’

2=’Mainframe’
3=’Midrange’
4=’Workstation’
5=’Personal Computer’
6=’Laptop’;

run;

data comprev;
input Country Computer Rev90 Rev91 Rev92;
datalines;

1 1 788.8 877.6 944.9
1 2 12538.1 9855.6 8527.9
1 3 9815.8 6340.3 8680.3
1 4 3147.2 3474.1 3722.4
1 5 18660.9 18428.0 23531.1
2 1 469.9 495.6 448.4
2 2 5697.6 6242.4 5382.3
2 3 5392.1 5668.3 4845.9
2 4 1511.6 1875.5 1924.5
2 5 4746.0 4600.8 4363.7
;

proc print data=comprev noobs;
format country cntryfmt. computer compfmt.;
title ’The Data Set COMPREV’;

run;

Figure 47.6 The Data Set COMPREV

                    The Data Set COMPREV                    1

Country        Computer             Rev90    Rev91    Rev92

United States  Supercomputer        788.8    877.6    944.9
United States  Mainframe          12538.1   9855.6   8527.9
United States  Midrange            9815.8   6340.3   8680.3
United States  Workstation         3147.2   3474.1   3722.4
United States  Personal Computer  18660.9  18428.0  23531.1
Japan          Supercomputer        469.9    495.6    448.4
Japan          Mainframe           5697.6   6242.4   5382.3
Japan          Midrange            5392.1   5668.3   4845.9
Japan          Workstation         1511.6   1875.5   1924.5
Japan          Personal Computer   4746.0   4600.8   4363.7

No Missing Values
The following PROC TABULATE step produces Figure 47.7 on page 1224:

proc tabulate data=comprev;
class country computer;
var rev90 rev91 rev92;



1224 Missing Values � Chapter 47

table computer*country,rev90 rev91 rev92 /
rts=32;

format country cntryfmt. computer compfmt.;
title ’Revenues from Computer Sales’;
title2 ’for 1990 to 1992’;

run;

Figure 47.7 Computer Sales Data: No Missing Values

Because the data set contains no missing values, the table includes all observations. All headers
and cells contain nonmissing values.

               Revenues from Computer Sales                  1
                       for 1990 to 1992

--------------------------------------------------------------
|                             | Rev90    | Rev91    | Rev92  |
|                             |----------+----------+--------|
|                             |  Sum     |  Sum     |  Sum   |
|-----------------------------+----------+----------+--------|
|Computer      |Country       |          |          |        |
|--------------+--------------|          |          |        |
|Supercomputer |United States |    788.80|    877.60|  944.90|
|              |--------------+----------+----------+--------|
|              |Japan         |    469.90|    495.60|  448.40|
|--------------+--------------+----------+----------+--------|
|Mainframe     |United States |  12538.10|   9855.60| 8527.90|
|              |--------------+----------+----------+--------|
|              |Japan         |   5697.60|   6242.40| 5382.30|
|--------------+--------------+----------+----------+--------|
|Midrange      |United States |   9815.80|   6340.30| 8680.30|
|              |--------------+----------+----------+--------|
|              |Japan         |   5392.10|   5668.30| 4845.90|
|--------------+--------------+----------+----------+--------|
|Workstation   |United States |   3147.20|   3474.10| 3722.40|
|              |--------------+----------+----------+--------|
|              |Japan         |   1511.60|   1875.50| 1924.50|
|--------------+--------------+----------+----------+--------|
|Personal      |United States |  18660.90|  18428.00|23531.10|
|Computer      |--------------+----------+----------+--------|
|              |Japan         |   4746.00|   4600.80| 4363.70|
--------------------------------------------------------------

A Missing Class Variable
The next program copies COMPREV and alters the data so that the eighth

observation has a missing value for Computer. Except for specifying this new data set,
the program that produces Figure 47.8 on page 1225 is the same as the program that
produces Figure 47.7 on page 1224. By default, PROC TABULATE ignores observations
with missing values for a class variable.

data compmiss;
set comprev;
if _n_=8 then computer=.;

run;

proc tabulate data=compmiss;
class country computer;



The TABULATE Procedure � Missing Values 1225

var rev90 rev91 rev92;
table computer*country,rev90 rev91 rev92 /

rts=32;
format country cntryfmt. computer compfmt.;
title ’Revenues from Computer Sales’;
title2 ’for 1990 to 1992’;

run;

Figure 47.8 Computer Sales Data: Midrange, Japan, Deleted

The observation with a missing value for Computer was the category Midrange, Japan. This
category no longer exists. By default, PROC TABULATE ignores observations with missing
values for a class variable, so this table contains one fewer row than Figure 47.7 on page 1224.

                 Revenues from Computer Sales                 1
                        for 1990 to 1992

--------------------------------------------------------------
|                             | Rev90   | Rev91    | Rev92   |
|                             |---------+----------+---------|
|                             |  Sum    |  Sum     |  Sum    |
|-----------------------------+---------+----------+---------|
|Computer      |Country       |         |          |         |
|--------------+--------------|         |          |         |
|Supercomputer |United States |   788.80|    877.60|   944.90|
|              |--------------+---------+----------+---------|
|              |Japan         |   469.90|    495.60|   448.40|
|--------------+--------------+---------+----------+---------|
|Mainframe     |United States | 12538.10|   9855.60|  8527.90|
|              |--------------+---------+----------+---------|
|              |Japan         |  5697.60|   6242.40|  5382.30|
|--------------+--------------+---------+----------+---------|
|Midrange      |United States |  9815.80|   6340.30|  8680.30|
|--------------+--------------+---------+----------+---------|
|Workstation   |United States |  3147.20|   3474.10|  3722.40|
|              |--------------+---------+----------+---------|
|              |Japan         |  1511.60|   1875.50|  1924.50|
|--------------+--------------+---------+----------+---------|
|Personal      |United States | 18660.90|  18428.00| 23531.10|
|Computer      |--------------+---------+----------+---------|
|              |Japan         |  4746.00|   4600.80|  4363.70|
--------------------------------------------------------------

Including Observations with Missing Class Variables

This program adds the MISSING option to the previous program. MISSING is
available either in the PROC TABULATE statement or in the CLASS statement. If you
want MISSING to apply only to selected class variables, but not to others, then specify
MISSING in a separate CLASS statement with the selected variable(s). The MISSING
option includes observations with missing values of a class variable in the report (see
Figure 47.9 on page 1226).

proc tabulate data=compmiss missing;
class country computer;
var rev90 rev91 rev92;
table computer*country,rev90 rev91 rev92 /

rts=32;
format country cntryfmt. computer compfmt.;



1226 Missing Values � Chapter 47

title ’Revenues from Computer Sales’;
title2 ’for 1990 to 1992’;

run;

Figure 47.9 Computer Sales Data: Missing Values for Computer

This table includes a category with missing values of Computer. This category makes up the
first row of data in the table.

                                                              1

 -------------------------------------------------------------
 |                          Animal                           |
 |-----------------------------------------------------------|
 |             cat             |             dog             |
 |-----------------------------+-----------------------------|
 |            Food             |            Food             |
 |-----------------------------+-----------------------------|
 |  fish   |  meat   |  milk   |  fish   |  meat   |  bones  |
 |---------+---------+---------+---------+---------+---------|
 |    N    |    N    |    N    |    N    |    N    |    N    |
 |---------+---------+---------+---------+---------+---------|
 |        1|        1|        1|        1|        1|        1|
 -------------------------------------------------------------

Formatting Headings for Observations with Missing Class Variables
By default, as shown in Figure 47.9 on page 1226, PROC TABULATE displays

missing values of a class variable as one of the standard SAS characters for missing
values (a period, a blank, an underscore, or one of the letters A through Z). If you want
to display something else instead, then you must assign a format to the class variable
that has missing values, as shown in the following program (see Figure 47.10 on page
1227):

proc format;
value misscomp 1=’Supercomputer’

2=’Mainframe’
3=’Midrange’
4=’Workstation’
5=’Personal Computer’
6=’Laptop’
.=’No type given’;

run;

proc tabulate data=compmiss missing;
class country computer;
var rev90 rev91 rev92;
table computer*country,rev90 rev91 rev92 /

rts=32;
format country cntryfmt. computer misscomp.;



The TABULATE Procedure � Missing Values 1227

title ’Revenues for Computer Sales’;
title2 ’for 1990 to 1992’;

run;

Figure 47.10 Computer Sales Data: Text Supplied for Missing Computer Value

In this table, the missing value appears as the text that the MISSCOMP. format specifies.

               Revenues for Computer Sales                 1
                     for 1990 to 1992

----------------------------------------------------------
|                             | Rev90  | Rev91  | Rev92  |
|                             |--------+--------+--------|
|                             |  Sum   |  Sum   |  Sum   |
|-----------------------------+--------+--------+--------|
|Computer      |Country       |        |        |        |
|--------------+--------------|        |        |        |
|No type given |Japan         | 5392.10| 5668.30| 4845.90|
|--------------+--------------+--------+--------+--------|
|Supercomputer |United States |  788.80|  877.60|  944.90|
|              |--------------+--------+--------+--------|
|              |Japan         |  469.90|  495.60|  448.40|
|--------------+--------------+--------+--------+--------|
|Mainframe     |United States |12538.10| 9855.60| 8527.90|
|              |--------------+--------+--------+--------|
|              |Japan         | 5697.60| 6242.40| 5382.30|
|--------------+--------------+--------+--------+--------|
|Midrange      |United States | 9815.80| 6340.30| 8680.30|
|--------------+--------------+--------+--------+--------|
|Workstation   |United States | 3147.20| 3474.10| 3722.40|
|              |--------------+--------+--------+--------|
|              |Japan         | 1511.60| 1875.50| 1924.50|
|--------------+--------------+--------+--------+--------|
|Personal      |United States |18660.90|18428.00|23531.10|
|Computer      |--------------+--------+--------+--------|
|              |Japan         | 4746.00| 4600.80| 4363.70|
----------------------------------------------------------

Providing Headings for All Categories
By default, PROC TABULATE evaluates each page that it prints and omits columns

and rows for categories that do not exist. For example, Figure 47.10 on page 1227 does
not include a row for No type given and for United States or for Midrange and for
Japan because there are no data in these categories. If you want the table to represent
all possible categories, then use the PRINTMISS option in the TABLE statement, as
shown in the following program (see Figure 47.11 on page 1228):

proc tabulate data=compmiss missing;
class country computer;
var rev90 rev91 rev92;
table computer*country,rev90 rev91 rev92 /

rts=32 printmiss;
format country cntryfmt. computer misscomp.;
title ’Revenues for Computer Sales’;
title2 ’for 1990 to 1992’;

run;



1228 Missing Values � Chapter 47

Figure 47.11 Computer Sales Data: Missing Statistics Values

This table contains a row for the categories No type given, United States and Midrange,
Japan. Because there are no data in these categories, the values for the statistics are all
missing.

                Revenues for Computer Sales                 1
                       for 1990 to 1992

------------------------------------------------------------
|                            | Rev90   |  Rev91  |  Rev92  |
|                            |---------+---------+---------|
|                            |  Sum    |   Sum   |   Sum   |
|----------------------------+---------+---------+---------|
|Computer      |Country      |         |         |         |
|--------------+-------------|         |         |         |
|No type given |United States|        .|        .|        .|
|              |-------------+---------+---------+---------|
|              |Japan        |  5392.10|  5668.30|  4845.90|
|--------------+-------------+---------+---------+---------|
|Supercomputer |United States|   788.80|   877.60|   944.90|
|              |-------------+---------+---------+---------|
|              |Japan        |   469.90|   495.60|   448.40|
|--------------+-------------+---------+---------+---------|
|Mainframe     |United States| 12538.10|  9855.60|  8527.90|
|              |-------------+---------+---------+---------|
|              |Japan        |  5697.60|  6242.40|  5382.30|
|--------------+-------------+---------+---------+---------|
|Midrange      |United States|  9815.80|  6340.30|  8680.30|
|              |-------------+---------+---------+---------|
|              |Japan        |        .|        .|        .|
|--------------+-------------+---------+---------+---------|
|Workstation   |United States|  3147.20|  3474.10|  3722.40|
|              |-------------+---------+---------+---------|
|              |Japan        |  1511.60|  1875.50|  1924.50|
|--------------+-------------+---------+---------+---------|
|Personal      |United States| 18660.90| 18428.00| 23531.10|
|Computer      |-------------+---------+---------+---------|
|              |Japan        |  4746.00|  4600.80|  4363.70|
------------------------------------------------------------

Providing Text for Cells That Contain Missing Values

If some observations in a category contain missing values for analysis variables, then
PROC TABULATE does not use those observations to calculate statistics (except N and
NMISS). However, if each observation in a category contains a missing value, then
PROC TABULATE displays a missing value for the value of the statistic. To replace
missing values for analysis variables with text, use the MISSTEXT= option in the
TABLE statement to specify the text to use, as shown in the following program (see
Figure 47.12 on page 1229).

proc tabulate data=compmiss missing;
class country computer;
var rev90 rev91 rev92;
table computer*country,rev90 rev91 rev92 /

rts=32 printmiss misstext=’NO DATA!’;
format country cntryfmt. computer misscomp.;
title ’Revenues for Computer Sales’;
title2 ’for 1990 to 1992’;

run;



The TABULATE Procedure � Missing Values 1229

Figure 47.12 Computer Sales Data: Text Supplied for Missing Statistics Values

This table replaces the period normally used to display missing values with the text of the
MISSTEXT= option.

            Revenues for Computer Sales                    1
                  for 1990 to 1992

----------------------------------------------------------
|                             | Rev90  | Rev91  | Rev92  |
|                             |--------+--------+--------|
|                             |   Sum  |  Sum   |  Sum   |
|-----------------------------+--------+------------+----|
|Computer      |Country       |        |        |        |
|--------------+--------------|        |        |        |
|No type given |United States |NO DATA!|NO DATA!|NO DATA!|
|              |--------------+--------+--------+--------|
|              |Japan         | 5392.10| 5668.30| 4845.90|
|--------------+--------------+--------+--------+--------|
|Supercomputer |United States |  788.80|  877.60|  944.90|
|              |--------------+--------+--------+--------|
|              |Japan         |  469.90|  495.60|  448.40|
|--------------+--------------+--------+--------+--------|
|Mainframe     |United States |12538.10| 9855.60| 8527.90|
|              |--------------+--------+--------+--------|
|              |Japan         | 5697.60| 6242.40| 5382.30|
|--------------+--------------+--------+--------+--------|
|Midrange      |United States | 9815.80| 6340.30| 8680.30|
|              |--------------+--------+--------+--------|
|              |Japan         |NO DATA!|NO DATA!|NO DATA!|
|--------------+--------------+--------+--------+--------|
|Workstation   |United States | 3147.20| 3474.10| 3722.40|
|              |--------------+--------+--------+--------|
|              |Japan         | 1511.60| 1875.50| 1924.50|
|--------------+--------------+--------+--------+--------|
|Personal      |United States |18660.90|18428.00|23531.10|
|Computer      |--------------+--------+--------+--------|
|              |Japan         | 4746.00| 4600.80| 4363.70|
----------------------------------------------------------

Providing Headings for All Values of a Format
PROC TABULATE prints headings only for values that appear in the input data set.

For example, the format COMPFMT. provides for six possible values of Computer. Only
five of these values occur in the data set COMPREV. The data set contains no data for
laptop computers.

If you want to include headings for all possible values of Computer (perhaps to make
it easier to compare the output with tables that are created later when you do have
data for laptops), then you have three different ways to create such a table:

� Use the PRELOADFMT option in the CLASS statement with the PRINTMISS
option in the TABLE statement. See Example 3 on page 1237 for another example
that uses PRELOADFMT.

� Use the CLASSDATA= option in the PROC TABULATE statement. See Example 2
on page 1235 for an example that uses the CLASSDATA= option.

� Add dummy values to the input data set so that each value that the format
handles appears at least once in the data set.

The following program adds the PRELOADFMT option to a CLASS statement that
contains the relevant variable.

The results are shown in Figure 47.13 on page 1230.

proc tabulate data=compmiss missing;
class country;



1230 Understanding the Order of Headings with ORDER=DATA � Chapter 47

class computer / preloadfmt;
var rev90 rev91 rev92;
table computer*country,rev90 rev91 rev92 /

rts=32 printmiss misstext=’NO DATA!’;
format country cntryfmt. computer compfmt.;
title ’Revenues for Computer Sales’;
title2 ’for 1990 to 1992’;

run;

Figure 47.13 Computer Sales Data: All Possible Computer Values Included

This table contains a heading for each possible value of Computer.

               Revenues for Computer Sales               1
                     for 1990 to 1992

---------------------------------------------------------
|                            | Rev90  | Rev91  |  Rev92 |
|                            |--------+--------+--------|
|                            |  Sum   |   Sum  |   Sum  |
|----------------------------+--------+--------+--------|
|Computer      |Country      |        |        |        |
|--------------+-------------|        |        |        |
|.             |United States|NO DATA!|NO DATA!|NO DATA!|
|              |-------------+--------+--------+--------|
|              |Japan        | 5392.10| 5668.30| 4845.90|
|--------------+-------------+--------+--------+--------|
|Supercomputer |United States|  788.80|  877.60|  944.90|
|              |-------------+--------+--------+--------|
|              |Japan        |  469.90|  495.60|  448.40|
|--------------+-------------+--------+--------+--------|
|Mainframe     |United States|12538.10| 9855.60| 8527.90|
|              |-------------+--------+--------+--------|
|              |Japan        | 5697.60| 6242.40| 5382.30|
|--------------+-------------+--------+--------+--------|
|Midrange      |United States| 9815.80| 6340.30| 8680.30|
|              |-------------+--------+------------+----|
|              |Japan        |NO DATA!|NO DATA!|NO DATA!|
|--------------+-------------+--------+------------+----|
|Workstation   |United States| 3147.20| 3474.10| 3722.40|
|              |-------------+--------+------------+----|
|              |Japan        | 1511.60| 1875.50| 1924.50|
|--------------+-------------+--------+--------+--------|
|Personal      |United States|18660.90|18428.00|23531.10|
|Computer      |-------------+--------+--------+--------|
|              |Japan        | 4746.00| 4600.80| 4363.70|
|--------------+-------------+--------+--------+--------|
|Laptop        |United States|NO DATA!|NO DATA!|NO DATA!|
|              |-------------+--------+--------+--------|
|              |Japan        |NO DATA!|NO DATA!|NO DATA!|
---------------------------------------------------------

Understanding the Order of Headings with ORDER=DATA
The ORDER= option applies to all class variables. Occasionally, you want to order

the headings for different variables differently. One method for doing this is to group
the data as you want them to appear and to specify ORDER=DATA.

For this technique to work, the first value of the first class variable must occur in the
data with all possible values of all the other class variables. If this criterion is not met,
then the order of the headings might surprise you.



The TABULATE Procedure � Portability of ODS Output with PROC TABULATE 1231

The following program creates a simple data set in which the observations are
ordered first by the values of Animal, then by the values of Food. The ORDER= option
in the PROC TABULATE statement orders the heading for the class variables by the
order of their appearance in the data set (see Figure 47.14 on page 1231). Although
bones is the first value for Food in the group of observations where Animal=dog, all
other values for Food appear before bones in the data set because bones never appears
when Animal=cat. Therefore, the header for bones in the table in Figure 47.14 on page
1231 is not in alphabetical order.

In other words, PROC TABULATE maintains for subsequent categories the order
that was established by earlier categories. If you want to re-establish the order of Food
for each value of Animal, then use BY-group processing. PROC TABULATE creates a
separate table for each BY group, so that the ordering can differ from one BY group to
the next.

data foodpref;
input Animal $ Food $;
datalines;

cat fish
cat meat
cat milk
dog bones
dog fish
dog meat
;

proc tabulate data=foodpref format=9.
order=data;

class animal food;
table animal*food;

run;

Figure 47.14 Ordering the Headings of Class Variables

                                                              1

 -------------------------------------------------------------
 |                          Animal                           |
 |-----------------------------------------------------------|
 |             cat             |             dog             |
 |-----------------------------+-----------------------------|
 |            Food             |            Food             |
 |-----------------------------+-----------------------------|
 |  fish   |  meat   |  milk   |  fish   |  meat   |  bones  |
 |---------+---------+---------+---------+---------+---------|
 |    N    |    N    |    N    |    N    |    N    |    N    |
 |---------+---------+---------+---------+---------+---------|
 |        1|        1|        1|        1|        1|        1|
 -------------------------------------------------------------

Portability of ODS Output with PROC TABULATE
Under certain circumstances, using PROC TABULATE with the Output Delivery

System produces files that are not portable. If the SAS system option FORMCHAR= in
your SAS session uses nonstandard line-drawing characters, then the output might
include strange characters instead of lines in operating environments in which the SAS



1232 Examples: TABULATE Procedure � Chapter 47

Monospace font is not installed. To avoid this problem, specify the following OPTIONS
statement before executing PROC TABULATE:

options formchar="|----|+|---+=|-/\<>*";

Examples: TABULATE Procedure

Example 1: Creating a Basic Two-Dimensional Table

Procedure features:
PROC TABULATE statement options:

FORMAT=
TABLE statement

crossing (*) operator
TABLE statement options:

RTS=
Other features: FORMAT statement

This example
� creates a category for each type of user (residential or business) in each division of

each region
� applies the same format to all cells in the table
� applies a format to each class variable
� extends the space for row headings.

Program

Create the ENERGY data set. ENERGY contains data on expenditures of energy for business
and residential customers in individual states in the Northeast and West regions of the United
States. A DATA step on page 1387 creates the data set.

data energy;
length State $2;
input Region Division state $ Type Expenditures;
datalines;

1 1 ME 1 708
1 1 ME 2 379

. . . more data lines . . .

4 4 HI 1 273



The TABULATE Procedure � Program 1233

4 4 HI 2 298
;

Create the REGFMT., DIVFMT., and USETYPE. formats. PROC FORMAT creates formats
for Region, Division, and Type.

proc format;
value regfmt 1=’Northeast’

2=’South’
3=’Midwest’
4=’West’;

value divfmt 1=’New England’
2=’Middle Atlantic’
3=’Mountain’
4=’Pacific’;

value usetype 1=’Residential Customers’
2=’Business Customers’;

run;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the table options. The FORMAT= option specifies DOLLAR12. as the default format
for the value in each table cell.

proc tabulate data=energy format=dollar12.;

Specify subgroups for the analysis. The CLASS statement separates the analysis by values
of Region, Division, and Type.

class region division type;

Specify the analysis variable. The VAR statement specifies that PROC TABULATE calculate
statistics on the Expenditures variable.

var expenditures;



1234 Output � Chapter 47

Define the table rows and columns. The TABLE statement creates a row for each formatted
value of Region. Nested within each row are rows for each formatted value of Division. The
TABLE statement also creates a column for each formatted value of Type. Each cell that is
created by these rows and columns contains the sum of the analysis variable Expenditures for
all observations that contribute to that cell.

table region*division,
type*expenditures

Specify the row title space. RTS= provides 25 characters per line for row headings.

/ rts=25;

Format the output. The FORMAT statement assigns formats to the variables Region,
Division, and Type.

format region regfmt. division divfmt. type usetype.;

Specify the titles.

title ’Energy Expenditures for Each Region’;
title2 ’(millions of dollars)’;

run;

Output

Energy Expenditures for Each Region 1
(millions of dollars)

---------------------------------------------------
| | Type | |
| |-------------------------|
| |Residential | Business |
| | Customers | Customers |
| |------------+------------|
| |Expenditures|Expenditures|
| |------------+------------|
| | Sum | Sum |
|-----------------------+------------+------------|
|Region |Division | | |
|-----------+-----------| | |
|Northeast |New England| $7,477| $5,129|
| |-----------+------------+------------|
| |Middle | | |
| |Atlantic | $19,379| $15,078|
|-----------+-----------+------------+------------|
|West |Mountain | $5,476| $4,729|
| |-----------+------------+------------|
| |Pacific | $13,959| $12,619|
---------------------------------------------------



The TABULATE Procedure � Program 1235

Example 2: Specifying Class Variable Combinations to Appear in a Table

Procedure features:
PROC TABULATE Statement options:

CLASSDATA=
EXCLUSIVE

Data set: ENERGY “ENERGY” on page 1387

Formats: REGFMT., DIVFMT., and USETYPE. on page 1233

This example

� uses the CLASSDATA= option to specify combinations of class variables to appear
in a table

� uses the EXCLUSIVE option to restrict the output to only the combinations
specified in the CLASSDATA= data set. Without the EXCLUSIVE option, the
output would be the same as in Example 1 on page 1232.

Program

Create the CLASSES data set. CLASSES contains the combinations of class variable values
that PROC TABULATE uses to create the table.

data classes;
input region division type;
datalines;

1 1 1
1 1 2
4 4 1
4 4 2
;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the table options. CLASSDATA= and EXCLUSIVE restrict the class level
combinations to those that are specified in the CLASSES data set.

proc tabulate data=energy format=dollar12.
classdata=classes exclusive;



1236 Program � Chapter 47

Specify subgroups for the analysis. The CLASS statement separates the analysis by values
of Region, Division, and Type.

class region division type;

Specify the analysis variable. The VAR statement specifies that PROC TABULATE calculate
statistics on the Expenditures variable.

var expenditures;

Define the table rows and columns. The TABLE statement creates a row for each formatted
value of Region. Nested within each row are rows for each formatted value of Division. The
TABLE statement also creates a column for each formatted value of Type. Each cell that is
created by these rows and columns contains the sum of the analysis variable Expenditures for
all observations that contribute to that cell.

table region*division,
type*expenditures

Specify the row title space. RTS= provides 25 characters per line for row headings.

/ rts=25;

Format the output. The FORMAT statement assigns formats to the variables Region,
Division, and Type.

format region regfmt. division divfmt. type usetype.;

Specify the titles.

title ’Energy Expenditures for Each Region’;
title2 ’(millions of dollars)’;

run;



The TABULATE Procedure � Example 3: Using Preloaded Formats with Class Variables 1237

Output

Energy Expenditures for Each Region 1
(millions of dollars)

---------------------------------------------------
| | Type | |
| |-------------------------|
| |Residential | Business |
| | Customers | Customers |
| |------------+------------|
| |Expenditures|Expenditures|
| |------------+------------|
| | Sum | Sum |
|-----------------------+------------+------------|
|Region |Division | | |
|-----------+-----------| | |
|Northeast |New England| $7,477| $5,129|
|-----------+-----------+------------+------------|
|West |Pacific | $13,959| $12,619|
---------------------------------------------------

Example 3: Using Preloaded Formats with Class Variables

Procedure features:
PROC TABULATE statement option:

OUT=
CLASS statement options:

EXCLUSIVE
PRELOADFMT

TABLE statement option:
PRINTMISS

Other features: PRINT procedure
Data set: ENERGY “ENERGY” on page 1387
Formats: REGFMT., DIVFMT., and USETYPE. on page 1233

This example
� creates a table that includes all possible combinations of formatted class variable

values (PRELOADFMT with PRINTMISS), even if those combinations have a zero
frequency and even if they do not make sense

� uses only the preloaded range of user-defined formats as the levels of class
variables (PRELOADFMT with EXCLUSIVE).

� writes the output to an output data set, and prints that data set.



1238 Program � Chapter 47

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the table options. The FORMAT= option specifies DOLLAR12. as the default format
for the value in each table cell.

proc tabulate data=energy format=dollar12.;

Specify subgroups for the analysis. The CLASS statement separates the analysis by values
of Region, Division, and Type. PRELOADFMT specifies that PROC TABULATE use the
preloaded values of the user-defined formats for the class variables.

class region division type / preloadfmt;

Specify the analysis variable. The VAR statement specifies that PROC TABULATE calculate
statistics on the Expenditures variable.

var expenditures;

Define the table rows and columns, and specify row and column options. PRINTMISS
specifies that all possible combinations of user-defined formats be used as the levels of the class
variables.

table region*division,
type*expenditures / rts=25 printmiss;

Format the output. The FORMAT statement assigns formats to the variables Region,
Division, and Type.

format region regfmt. division divfmt. type usetype.;

Specify the titles.

title ’Energy Expenditures for Each Region’;
title2 ’(millions of dollars)’;

run;



The TABULATE Procedure � Program 1239

Specify the table options and the output data set. The OUT= option specifies the name of
the output data set to which PROC TABULATE writes the data.

proc tabulate data=energy format=dollar12. out=tabdata;

Specify subgroups for the analysis. The EXCLUSIVE option, when used with
PRELOADFMT, uses only the preloaded range of user-defined formats as the levels of class
variables.

class region division type / preloadfmt exclusive;

Specify the analysis variable. The VAR statement specifies that PROC TABULATE calculate
statistics on the Expenditures variable.

var expenditures;

Define the table rows and columns, and specify row and column options. The
PRINTMISS option is not specified in this case. If it were, then it would override the
EXCLUSIVE option in the CLASS statement.

table region*division,
type*expenditures / rts=25;

Format the output. The FORMAT statement assigns formats to the variables Region,
Division, and Type.

format region regfmt. division divfmt. type usetype.;

Specify the titles.

title ’Energy Expenditures for Each Region’;
title2 ’(millions of dollars)’;

run;

Print the output data set WORK.TABDATA.

proc print data=tabdata;
run;



1240 Output � Chapter 47

Output

This output, created with the PRELOADFMT and PRINTMISS options, contains all possible
combinations of preloaded user-defined formats for the class variable values. It includes
combinations with zero frequencies, and combinations that make no sense, such as Northeast
and Pacific.

Energy Expenditures for Each Region 1
(millions of dollars)

---------------------------------------------------
| | Type | |
| |-------------------------|
| |Residential | Business |
| | Customers | Customers |
| |------------+------------|
| |Expenditures|Expenditures|
| |------------+------------|
| | Sum | Sum |
|-----------------------+------------+------------|
|Region |Division | | |
|-----------+-----------| | |
|Northeast |New England| $7,477| $5,129|
| |-----------+------------+------------|
| |Middle | | |
| |Atlantic | $19,379| $15,078|
| |-----------+------------+------------|
| |Mountain | .| .|
| |-----------+------------+------------|
| |Pacific | .| .|
|-----------+-----------+------------+------------|
|South |New England| .| .|
| |-----------+------------+------------|
| |Middle | | |
| |Atlantic | .| .|
| |-----------+------------+------------|
| |Mountain | .| .|
| |-----------+------------+------------|
| |Pacific | .| .|
|-----------+-----------+------------+------------|
|Midwest |New England| .| .|
| |-----------+------------+------------|
| |Middle | | |
| |Atlantic | .| .|
| |-----------+------------+------------|
| |Mountain | .| .|
| |-----------+------------+------------|
| |Pacific | .| .|
|-----------+-----------+------------+------------|
|West |New England| .| .|
| |-----------+------------+------------|
| |Middle | | |
| |Atlantic | .| .|
| |-----------+------------+------------|
| |Mountain | $5,476| $4,729|
| |-----------+------------+------------|
| |Pacific | $13,959| $12,619|
---------------------------------------------------



The TABULATE Procedure � Output 1241

This output, created with the PRELOADFMT and EXCLUSIVE options, contains only those
combinations of preloaded user-defined formats for the class variable values that appear in the
input data set. This output is identical to the output from Example 1 on page 1232.

Energy Expenditures for Each Region 1
(millions of dollars)

---------------------------------------------------
| | Type | |
| |-------------------------|
| |Residential | Business |
| | Customers | Customers |
| |------------+------------|
| |Expenditures|Expenditures|
| |------------+------------|
| | Sum | Sum |
|-----------------------+------------+------------|
|Region |Division | | |
|-----------+-----------| | |
|Northeast |New England| $7,477| $5,129|
| |-----------+------------+------------|
| |Middle | | |
| |Atlantic | $19,379| $15,078|
|-----------+-----------+------------+------------|
|West |Mountain | $5,476| $4,729|
| |-----------+------------+------------|
| |Pacific | $13,959| $12,619|
---------------------------------------------------

This output is a listing of the output data set TABDATA, which was created by the OUT= option
in the PROC TABULATE statement. TABDATA contains the data that is created by having the
PRELOADFMT and EXCLUSIVE options specified.

Energy Expenditures for Each Region
(millions of dollars)

E
x
p
e
n
d
i
t

D u
i _ r

R v _ _ T e
e i T P A s
g s T Y A B _

O i i y P G L S
b o o p E E E u
s n n e _ _ _ m

1 Northeast New England Residential Customers 111 1 1 7477
2 Northeast New England Business Customers 111 1 1 5129
3 Northeast Middle Atlantic Residential Customers 111 1 1 19379
4 Northeast Middle Atlantic Business Customers 111 1 1 15078
5 West Mountain Residential Customers 111 1 1 5476
6 West Mountain Business Customers 111 1 1 4729
7 West Pacific Residential Customers 111 1 1 13959
8 West Pacific Business Customers 111 1 1 12619



1242 Example 4: Using Multilabel Formats � Chapter 47

Example 4: Using Multilabel Formats

Procedure features:
CLASS statement options:

MLF
PROC TABULATE statement options:

FORMAT=
TABLE statement

ALL class variable
concatenation (blank) operator
crossing (*) operator
grouping elements (parentheses) operator
label
variable list

Other features:
FORMAT procedure
FORMAT statement
VALUE statement options:

MULTILABEL

This example
� shows how to specify a multilabel format in the VALUE statement of PROC

FORMAT
� shows how to activate multilabel format processing using the MLF option with the

CLASS statement
� demonstrates the behavior of the N statistic when multilabel format processing is

activated.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=64;

Create the CARSURVEY data set. CARSURVEY contains data from a survey that was
distributed by a car manufacturer to a focus group of potential customers who were brought
together to evaluate new car names. Each observation in the data set contains an identification
number, the participant’s age, and the participant’s ratings of four car names. A DATA step
creates the data set.

data carsurvey;
input Rater Age Progressa Remark Jupiter Dynamo;
datalines;

1 38 94 98 84 80
2 49 96 84 80 77
3 16 64 78 76 73



The TABULATE Procedure � Program 1243

4 27 89 73 90 92

. . . more data lines . . .

77 61 92 88 77 85
78 24 87 88 88 91
79 18 54 50 62 74
80 62 90 91 90 86
;

Create the AGEFMT. format. The FORMAT procedure creates a multilabel format for ages by
using the MULTILABEL option on page 449. A multilabel format is one in which multiple labels
can be assigned to the same value, in this case because of overlapping ranges. Each value is
represented in the table for each range in which it occurs. The NOTSORTED option stores the
ranges in the order in which they are defined.

proc format;
value agefmt (multilabel notsorted)

15 - 29 = ’Below 30 years’
30 - 50 = ’Between 30 and 50’

51 - high = ’Over 50 years’
15 - 19 = ’15 to 19’
20 - 25 = ’20 to 25’
25 - 39 = ’25 to 39’
40 - 55 = ’40 to 55’

56 - high = ’56 and above’;
run;

Specify the table options. The FORMAT= option specifies up to 10 digits as the default
format for the value in each table cell.

proc tabulate data=carsurvey format=10.;

Specify subgroups for the analysis. The CLASS statement identifies Age as the class
variable and uses the MLF option to activate multilabel format processing.

class age / mlf;

Specify the analysis variables. The VAR statement specifies that PROC TABULATE
calculate statistics on the Progressa, Remark, Jupiter, and Dynamo variables.

var progressa remark jupiter dynamo;

Define the table rows and columns. The row dimension of the TABLE statement creates a
row for each formatted value of Age. Multilabel formatting allows an observation to be included
in multiple rows or age categories. The row dimension uses the ALL class variable to
summarize information for all rows. The column dimension uses the N statistic to calculate the
number of observations for each age group. Notice that the result of the N statistic crossed with
the ALL class variable in the row dimension is the total number of observations instead of the
sum of the N statistics for the rows. The column dimension uses the ALL class variable at the
beginning of a crossing to assign a label, Potential Car Names. The four nested columns
calculate the mean ratings of the car names for each age group.

table age all, n all=’Potential Car Names’*(progressa remark
jupiter dynamo)*mean;



1244 Output � Chapter 47

Specify the titles.

title1 "Rating Four Potential Car Names";
title2 "Rating Scale 0-100 (100 is the highest rating)";

Format the output. The FORMAT statement assigns the user-defined format AGEFMT. to Age
for this analysis.

format age agefmt.;
run;

Output

Output 47.3

Rating Four Potential Car Names 1
Rating Scale 0-100 (100 is the highest rating)

---------------------------------------------------------------------------
| | | Potential Car Names | | | |
| | |-------------------------------------------|
| | |Progressa | Remark | Jupiter | Dynamo |
| | |----------+----------+----------+----------|
| | N | Mean | Mean | Mean | Mean |
|------------------+----------+----------+----------+----------+----------|
|Age | | | | | |
|------------------| | | | | |
|15 to 19 | 14| 75| 78| 81| 73|
|------------------+----------+----------+----------+----------+----------|
|20 to 25 | 11| 89| 88| 84| 89|
|------------------+----------+----------+----------+----------+----------|
|25 to 39 | 26| 84| 90| 82| 72|
|------------------+----------+----------+----------+----------+----------|
|40 to 55 | 14| 85| 87| 80| 68|
|------------------+----------+----------+----------+----------+----------|
|56 and above | 15| 84| 82| 81| 75|
|------------------+----------+----------+----------+----------+----------|
|Below 30 years | 36| 82| 84| 82| 75|
|------------------+----------+----------+----------+----------+----------|
|Between 30 and 50 | 25| 86| 89| 81| 73|
|------------------+----------+----------+----------+----------+----------|
|Over 50 years | 19| 82| 84| 80| 76|
|------------------+----------+----------+----------+----------+----------|
|All | 80| 83| 86| 81| 74|
---------------------------------------------------------------------------

Example 5: Customizing Row and Column Headings

Procedure features:
TABLE statement

labels

Data set: ENERGY“ENERGY” on page 1387

Formats: REGFMT., DIVFMT., and USETYPE. on page 1233



The TABULATE Procedure � Program 1245

This example shows how to customize row and column headings. A label specifies
text for a heading. A blank label creates a blank heading. PROC TABULATE removes
the space for blank column headings from the table.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the table options. The FORMAT= option specifies DOLLAR12. as the default format
for the value in each table cell.

proc tabulate data=energy format=dollar12.;

Specify subgroups for the analysis. The CLASS statement identifies Region, Division, and
Type as class variables.

class region division type;

Specify the analysis variable. The VAR statement specifies that PROC TABULATE calculate
statistics on the Expenditures variable.

var expenditures;

Define the table rows and columns. The TABLE statement creates a row for each formatted
value of Region. Nested within each row are rows for each formatted value of Division. The
TABLE statement also creates a column for each formatted value of Type. Each cell that is
created by these rows and columns contains the sum of the analysis variable Expenditures for
all observations that contribute to that cell. Text in quotation marks specifies headings for the
corresponding variable or statistic. Although Sum is the default statistic, it is specified here so
that you can specify a blank for its heading.

table region*division,
type=’Customer Base’*expenditures=’ ’*sum=’ ’

Specify the row title space. RTS= provides 25 characters per line for row headings.

/ rts=25;

Format the output. The FORMAT statement assigns formats to Region, Division, and Type.

format region regfmt. division divfmt. type usetype.;



1246 Output � Chapter 47

Specify the titles.

title ’Energy Expenditures for Each Region’;
title2 ’(millions of dollars)’;

run;

Output

The heading for Type contains text that is specified in the TABLE statement. The TABLE
statement eliminated the headings for Expenditures and Sum.

Energy Expenditures for Each Region 1
(millions of dollars)

---------------------------------------------------
| | Customer Base | |
| |-------------------------|
| |Residential | Business |
| | Customers | Customers |
|-----------------------+------------+------------|
|Region |Division | | |
|-----------+-----------| | |
|Northeast |New England| $7,477| $5,129|
| |-----------+------------+------------|
| |Middle | | |
| |Atlantic | $19,379| $15,078|
|-----------+-----------+------------+------------|
|West |Mountain | $5,476| $4,729|
| |-----------+------------+------------|
| |Pacific | $13,959| $12,619|
---------------------------------------------------

Example 6: Summarizing Information with the Universal Class Variable ALL
Procedure features:

PROC TABULATE statement options:
FORMAT=

TABLE statement:
ALL class variable
concatenation (blank operator)
format modifiers
grouping elements (parentheses operator)

Data set: ENERGY“ENERGY” on page 1387
Formats: REGFMT., DIVFMT., and USETYPE. on page 1233

This example shows how to use the universal class variable ALL to summarize
information from multiple categories.



The TABULATE Procedure � Program 1247

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=64 pagesize=60;

Specify the table options. The FORMAT= option specifies COMMA12. as the default format
for the value in each table cell.

proc tabulate data=energy format=comma12.;

Specify subgroups for the analysis. The CLASS statement identifies Region, Division, and
Type as class variables.

class region division type;

Specify the analysis variable. The VAR statement specifies that PROC TABULATE calculate
statistics on the Expenditures variable.

var expenditures;

Define the table rows. The row dimension of the TABLE statement creates a row for each
formatted value of Region. Nested within each row are rows for each formatted value of Division
and a row (labeled Subtotal) that summarizes all divisions in the region. The last row of the
report (labeled Total for All Regions) summarizes all regions. The format modifier
f=DOLLAR12. assigns the DOLLAR12. format to the cells in this row.

table region*(division all=’Subtotal’)
all=’Total for All Regions’*f=dollar12.,

Define the table columns. The column dimension of the TABLE statement creates a column
for each formatted value of Type and a column that is labeled All customers that shows
expenditures for all customers in a row of the table. Each cell that is created by these rows and
columns contains the sum of the analysis variable Expenditures for all observations that
contribute to that cell. Text in quotation marks specifies headings for the corresponding variable
or statistic. Although Sum is the default statistic, it is specified here so that you can specify a
blank for its heading.

type=’Customer Base’*expenditures=’ ’*sum=’ ’
all=’All Customers’*expenditures=’ ’*sum=’ ’

Specify the row title space. RTS= provides 25 characters per line for row headings.

/ rts=25;



1248 Output � Chapter 47

Format the output. The FORMAT statement assigns formats to the variables Region,
Division, and Type.

format region regfmt. division divfmt. type usetype.;

Specify the titles.

title ’Energy Expenditures for Each Region’;
title2 ’(millions of dollars)’;

run;

Output

The universal class variable ALL provides subtotals and totals in this
table.

Energy Expenditures for Each Region 1
(millions of dollars)

----------------------------------------------------------------
| | Customer Base | | |
| |-------------------------| |
| |Residential | Business | All |
| | Customers | Customers | Customers |
|-----------------------+------------+------------+------------|
|Region |Division | | | |
|-----------+-----------| | | |
|Northeast |New England| 7,477| 5,129| 12,606|
| |-----------+------------+------------+------------|
| |Middle | | | |
| |Atlantic | 19,379| 15,078| 34,457|
| |-----------+------------+------------+------------|
| |Subtotal | 26,856| 20,207| 47,063|
|-----------+-----------+------------+------------+------------|
|West |Division | | | |
| |-----------| | | |
| |Mountain | 5,476| 4,729| 10,205|
| |-----------+------------+------------+------------|
| |Pacific | 13,959| 12,619| 26,578|
| |-----------+------------+------------+------------|
| |Subtotal | 19,435| 17,348| 36,783|
|-----------------------+------------+------------+------------|
|Total for All Regions | $46,291| $37,555| $83,846|
----------------------------------------------------------------



The TABULATE Procedure � Program 1249

Example 7: Eliminating Row Headings

Procedure features:
TABLE statement:

labels
ROW=FLOAT

Data set: ENERGY“ENERGY” on page 1387
Formats: REGFMT., DIVFMT., and USETYPE. on page 1233

This example shows how to eliminate blank row headings from a table. To do so, you
must both provide blank labels for the row headings and specify ROW=FLOAT in the
TABLE statement.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the table options. The FORMAT= option specifies DOLLAR12. as the default format
for the value in each table cell.

proc tabulate data=energy format=dollar12.;

Specify subgroups for the analysis. The CLASS statement identifies Region, Division, and
Type as class variables.

class region division type;

Specify the analysis variable. The VAR statement specifies that PROC TABULATE calculate
statistics on the Expenditures variable.

var expenditures;

Define the table rows. The row dimension of the TABLE statement creates a row for each
formatted value of Region. Nested within these rows is a row for each formatted value of
Division. The analysis variable Expenditures and the Sum statistic are also included in the row
dimension, so PROC TABULATE creates row headings for them as well. The text in quotation
marks specifies the headings for the corresponding variable or statistic. Although Sum is the
default statistic, it is specified here so that you can specify a blank for its heading.

table region*division*expenditures=’ ’*sum=’ ’,



1250 Output � Chapter 47

Define the table columns. The column dimension of the TABLE statement creates a column
for each formatted value of Type.

type=’Customer Base’

Specify the row title space and eliminate blank row headings. RTS= provides 25
characters per line for row headings. ROW=FLOAT eliminates blank row headings.

/ rts=25 row=float;

Format the output. The FORMAT statement assigns formats to the variables Region,
Division, and Type.

format region regfmt. division divfmt. type usetype.;

Specify the titles.

title ’Energy Expenditures for Each Region’;
title2 ’(millions of dollars)’;

run;

Output

Compare this table with the output in Example 5 on page 1244. The two tables are identical,
but the program that creates this table uses Expenditures and Sum in the row dimension.
PROC TABULATE automatically eliminates blank headings from the column dimension,
whereas you must specify ROW=FLOAT to eliminate blank headings from the row dimension.

Energy Expenditures for Each Region 1
(millions of dollars)

---------------------------------------------------
| | Customer Base | |
| |-------------------------|
| |Residential | Business |
| | Customers | Customers |
|-----------------------+------------+------------|
|Region |Division | | |
|-----------+-----------| | |
|Northeast |New England| $7,477| $5,129|
| |-----------+------------+------------|
| |Middle | | |
| |Atlantic | $19,379| $15,078|
|-----------+-----------+------------+------------|
|West |Mountain | $5,476| $4,729|
| |-----------+------------+------------|
| |Pacific | $13,959| $12,619|
---------------------------------------------------



The TABULATE Procedure � Program 1251

Example 8: Indenting Row Headings and Eliminating Horizontal Separators

Procedure features:
PROC TABULATE statement options:

NOSEPS
TABLE statement options:

INDENT=

Data set: ENERGY“ENERGY” on page 1387

Formats: REGFMT., DIVFMT., and USETYPE. on page 1233

This example shows how to condense the structure of a table by

� removing row headings for class variables

� indenting nested rows underneath parent rows instead of placing them next to
each other

� eliminating horizontal separator lines from the row titles and the body of the table.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the table options. The FORMAT= option specifies DOLLAR12. as the default format
for the value in each table cell. NOSEPS eliminates horizontal separator lines from row titles
and from the body of the table.

proc tabulate data=energy format=dollar12. noseps;

Specify subgroups for the analysis. The CLASS statement identifies Region, Division, and
Type as class variables.

class region division type;

Specify the analysis variable. The VAR statement specifies that PROC TABULATE calculate
statistics on the Expenditures variable.

var expenditures;



1252 Output � Chapter 47

Define the table rows and columns. The TABLE statement creates a row for each formatted
value of Region. Nested within each row are rows for each formatted value of Division. The
TABLE statement also creates a column for each formatted value of Type. Each cell that is
created by these rows and columns contains the sum of the analysis variable Expenditures for
all observations that contribute to that cell. Text in quotation marks in all dimensions specifies
headings for the corresponding variable or statistic. Although Sum is the default statistic, it is
specified here so that you can specify a blank for its heading.

table region*division,
type=’Customer Base’*expenditures=’ ’*sum=’ ’

Specify the row title space and indention value. RTS= provides 25 characters per line for
row headings. INDENT= removes row headings for class variables, places values for Division
beneath values for Region rather than beside them, and indents values for Division four spaces.

/ rts=25 indent=4;

Format the output. The FORMAT statement assigns formats to the variables Region,
Division, and Type.

format region regfmt. division divfmt. type usetype.;

Specify the titles.

title ’Energy Expenditures for Each Region’;
title2 ’(millions of dollars)’;

run;

Output

NOSEPS removes the separator lines from the row titles and the body of the table. INDENT=
eliminates the row headings for Region and Division and indents values for Division underneath
values for Region.

Energy Expenditures for Each Region 1
(millions of dollars)

---------------------------------------------------
| | Customer Base | |
| |-------------------------|
| |Residential | Business |
| | Customers | Customers |
|-----------------------+------------+------------|
|Northeast | | |
| New England | $7,477| $5,129|
| Middle Atlantic | $19,379| $15,078|
|West | | |
| Mountain | $5,476| $4,729|
| Pacific | $13,959| $12,619|
---------------------------------------------------



The TABULATE Procedure � Program 1253

Example 9: Creating Multipage Tables

Procedure features:
TABLE statement

ALL class variable
BOX=
CONDENSE
INDENT=
page expression

Data set: ENERGY “ENERGY” on page 1387
Formats: REGFMT., DIVFMT., and USETYPE. on page 1233

This example creates a separate table for each region and one table for all regions.
By default, PROC TABULATE creates each table on a separate page, but the
CONDENSE option places them all on the same page.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the table options. The FORMAT= option specifies DOLLAR12. as the default format
for the value in each table cell.

proc tabulate data=energy format=dollar12.;

Specify subgroups for the analysis. The CLASS statement identifies Region, Division, and
Type as class variables.

class region division type;

Specify the analysis variable. The VAR statement specifies that PROC TABULATE calculate
statistics on the Expenditures variable.

var expenditures;

Define the table pages. The page dimension of the TABLE statement creates one table for
each formatted value of Region and one table for all regions. Text in quotation marks provides
the heading for each page.

table region=’Region: ’ all=’All Regions’,



1254 Program � Chapter 47

Define the table rows. The row dimension creates a row for each formatted value of Division
and a row for all divisions. Text in quotation marks provides the row headings.

division all=’All Divisions’,

Define the table columns. The column dimension of the TABLE statement creates a column
for each formatted value of Type. Each cell that is created by these pages, rows, and columns
contains the sum of the analysis variable Expenditures for all observations that contribute to
that cell. Text in quotation marks specifies headings for the corresponding variable or statistic.
Although Sum is the default statistic, it is specified here so that you can specify a blank for its
heading.

type=’Customer Base’*expenditures=’ ’*sum=’ ’

Specify additional table options. RTS= provides 25 characters per line for row headings.
BOX= places the page heading inside the box above the row headings. CONDENSE places as
many tables as possible on one physical page. INDENT= eliminates the row heading for
Division. (Because there is no nesting in the row dimension, there is nothing to indent.)

/ rts=25 box=_page_ condense indent=1;

Format the output. The FORMAT statement assigns formats to the variables Region,
Division, and Type.

format region regfmt. division divfmt. type usetype.;

Specify the titles.

title ’Energy Expenditures for Each Region and All Regions’;
title2 ’(millions of dollars)’;

run;



The TABULATE Procedure � Example 10: Reporting on Multiple-Response Survey Data 1255

Output

Energy Expenditures for Each Region and All Regions 1
(millions of dollars)

---------------------------------------------------
|Region: Northeast | Customer Base | |
| |-------------------------|
| |Residential | Business |
| | Customers | Customers |
|-----------------------+------------+------------|
|New England | $7,477| $5,129|
|-----------------------+------------+------------|
|Middle Atlantic | $19,379| $15,078|
|-----------------------+------------+------------|
|All Divisions | $26,856| $20,207|
---------------------------------------------------

---------------------------------------------------
|Region: West | Customer Base | |
| |-------------------------|
| |Residential | Business |
| | Customers | Customers |
|-----------------------+------------+------------|
|Mountain | $5,476| $4,729|
|-----------------------+------------+------------|
|Pacific | $13,959| $12,619|
|-----------------------+------------+------------|
|All Divisions | $19,435| $17,348|
---------------------------------------------------

---------------------------------------------------
|All Regions | Customer Base | |
| |-------------------------|
| |Residential | Business |
| | Customers | Customers |
|-----------------------+------------+------------|
|New England | $7,477| $5,129|
|-----------------------+------------+------------|
|Middle Atlantic | $19,379| $15,078|
|-----------------------+------------+------------|
|Mountain | $5,476| $4,729|
|-----------------------+------------+------------|
|Pacific | $13,959| $12,619|
|-----------------------+------------+------------|
|All Divisions | $46,291| $37,555|
---------------------------------------------------

Example 10: Reporting on Multiple-Response Survey Data
Procedure features:

TABLE statement:
denominator definition (angle bracket operators)
N statistic
PCTN statistic
variable list

Other features:
FORMAT procedure



1256 Collecting the Data � Chapter 47

SAS system options:
FORMDLIM=
NONUMBER

SYMPUT routine

The two tables in this example show
� which factors most influenced customers’ decisions to buy products
� where customers heard of the company.

The reports appear on one physical page with only one page number. By default, they
would appear on separate pages.

In addition to showing how to create these tables, this example shows how to
� use a DATA step to count the number of observations in a data set
� store that value in a macro variable
� access that value later in the SAS session.

Collecting the Data
Figure 47.15 on page 1256 shows the survey form that is used to collect data.

Figure 47.15 Completed Survey Form

Customer Questionnaire

Please place a check beside all answers that apply.

Why do you buy our products?

How did you find out about our company?

What makes a sales person effective?

Cost Performance Reliability Sales staff

Newspaper / MagazineT.V. / Radio Word of mouth

Product knowledge Personality Appearance

ID#:



The TABULATE Procedure � Program 1257

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. The FORMDLIM=
option replaces the character that delimits page breaks with a single blank. By default, a new
physical page starts whenever a page break occurs.

options nodate pageno=1 linesize=80 pagesize=18 formdlim=’ ’;

Create the CUSTOMER_RESPONSE data set. CUSTOMER_RESPONSE contains data from
a customer survey. Each observation in the data set contains information about factors that
influence one respondent’s decisions to buy products. A DATA step on page 1380 creates the
data set. Using missing values rather than 0’s is crucial for calculating frequency counts in
PROC TABULATE.

data customer_response;
input Customer Factor1-Factor4 Source1-Source3

Quality1-Quality3;
datalines;

1 . . 1 1 1 1 . 1 . .
2 1 1 . 1 1 1 . 1 1 .
3 . . 1 1 1 1 . . . .

. . . more data lines . . .

119 . . . 1 . . . 1 . .
120 1 1 . 1 . . . . 1 .
;

Store the number of observations in a macro variable. The SET statement reads the
descriptor portion of CUSTOMER_RESPONSE at compile time and stores the number of
observations (the number of respondents) in COUNT. The SYMPUT routine stores the value of
COUNT in the macro variable NUM. This variable is available for use by other procedures and
DATA steps for the remainder of the SAS session. The IF 0 condition, which is always false,
ensures that the SET statement, which reads the observations, never executes. (Reading
observations is unnecessary.) The STOP statement ensures that the DATA step executes only
once.

data _null_;
if 0 then set customer_response nobs=count;
call symput(’num’,left(put(count,4.)));
stop;

run;



1258 Program � Chapter 47

Create the PCTFMT. format. The FORMAT procedure creates a format for percentages. The
PCTFMT. format writes all values with at least one digit to the left of the decimal point and
with one digit to the right of the decimal point. A blank and a percent sign follow the digits.

proc format;
picture pctfmt low-high=’009.9 %’;

run;

Create the report and use the default table options.

proc tabulate data=customer_response;

Specify the analysis variables. The VAR statement specifies that PROC TABULATE
calculate statistics on the Factor1, Factor2, Factor3, Factor4, and Customer variables. The
variable Customer must be listed because it is used to calculate the Percent column that is
defined in the TABLE statement.

var factor1-factor4 customer;

Define the table rows and columns. The TABLE statement creates a row for each factor, a
column for frequency counts, and a column for the percentages. Text in quotation marks
supplies headers for the corresponding row or column. The format modifiers F=7. and
F=PCTFMT9. provide formats for values in the associated cells and extend the column widths to
accommodate the column headers.

table factor1=’Cost’
factor2=’Performance’
factor3=’Reliability’
factor4=’Sales Staff’,
(n=’Count’*f=7. pctn<customer>=’Percent’*f=pctfmt9.) ;

Specify the titles.

title ’Customer Survey Results: Spring 1996’;
title3 ’Factors Influencing the Decision to Buy’;

run;

Suppress page numbers. The SAS system option NONUMBER suppresses page numbers for
subsequent pages.

options nonumber;

Create the report and use the default table options.

proc tabulate data=customer_response;



The TABULATE Procedure � Program 1259

Specify the analysis variables. The VAR statement specifies that PROC TABULATE
calculate statistics on the Source1, Source2, Source3, and Customer variables. The variable
Customer must be in the variable list because it appears in the denominator definition.

var source1-source3 customer;

Define the table rows and columns. The TABLE statement creates a row for each source of
the company name, a column for frequency counts, and a column for the percentages. Text in
quotation marks supplies a heading for the corresponding row or column.

table source1=’TV/Radio’
source2=’Newspaper’
source3=’Word of Mouth’,
(n=’Count’*f=7. pctn<customer>=’Percent’*f=pctfmt9.) ;

Specify the title and footnote. The macro variable NUM resolves to the number of
respondents. The FOOTNOTE statement uses double rather than single quotation marks so
that the macro variable will resolve.

title ’Source of Company Name’;
footnote "Number of Respondents: &num";

run;

Reset the SAS system options. The FORMDLIM= option resets the page delimiter to a page
eject. The NUMBER option resumes the display of page numbers on subsequent pages.

options formdlim=’’ number;



1260 Output � Chapter 47

Output

Customer Survey Results: Spring 1996 1

Factors Influencing the Decision to Buy

--------------------------------------
| | Count | Percent |
|------------------+-------+---------|
|Cost | 87| 72.5 %|
|------------------+-------+---------|
|Performance | 62| 51.6 %|
|------------------+-------+---------|
|Reliability | 30| 25.0 %|
|------------------+-------+---------|
|Sales Staff | 120| 100.0 %|
--------------------------------------

Source of Company Name

--------------------------------------
| | Count | Percent |
|------------------+-------+---------|
|TV/Radio | 92| 76.6 %|
|------------------+-------+---------|
|Newspaper | 69| 57.5 %|
|------------------+-------+---------|
|Word of Mouth | 26| 21.6 %|
--------------------------------------

Number of Respondents: 120

Example 11: Reporting on Multiple-Choice Survey Data
Procedure features:

TABLE statement:
N statistic

Other features:
FORMAT procedure
TRANSPOSE procedure
Data set options:

RENAME=

This report of listener preferences shows how many listeners select each type of
programming during each of seven time periods on a typical weekday. The data was
collected by a survey, and the results were stored in a SAS data set. Although this data



The TABULATE Procedure � Collecting the Data 1261

set contains all the information needed for this report, the information is not arranged
in a way that PROC TABULATE can use.

To make this crosstabulation of time of day and choice of radio programming, you
must have a data set that contains a variable for time of day and a variable for
programming preference. PROC TRANSPOSE reshapes the data into a new data set
that contains these variables. Once the data are in the appropriate form, PROC
TABULATE creates the report.

Collecting the Data
Figure 47.16 on page 1261 shows the survey form that is used to collect data.

Figure 47.16 Completed Survey Form

phone_ _ _

LISTENER SURVEY

1. _______ What is your age?

2. _______ What is your gender?

3. _______ On the average WEEKDAY, how many hours do you listen
to the radio?

4. _______ On the average WEEKEND-DAY, how many hours do you
listen to the radio?

Use codes 1-8 for question 5.  Use codes 0-8 for 6-19.
0 Do not listen at that time

1 Rock 5 Classical
2 Top 40 6 Easy Listening
3 Country 7 News/Information/Talk
4 Jazz 8 Other

5. _______ What style of music or radio programming do you most
often listen to?

On a typical WEEKDAY,
what kind of radio program-
ming do you listen to

6. _______ from 6-9 a.m.?

7. _______ from 9 a.m. to noon?

8. _______ from noon to 1 p.m.?

9. _______ from 1-4 p.m.?

10. _______ from 4-6 p.m.?

11. _______ from 6-10 p.m.?

12. _______ from 10 p.m. to 2 a.m.?

On a typical WEEKEND-DAY,
what kind of radio programming
do you listen to

13. _______ from 6-9 a.m.?

14. _______ from 9 a.m. to noon?

15. _______ from noon to 1 p.m.?

16. _______ from 1-4 p.m.?

17. _______ from 4-6 p.m.?

18. _______ from 6-10 p.m.?

19. _______ from 10 p.m. to 2 a.m.?

An external file on page 1405 contains the raw data for the survey. Several lines
from that file appear here.

967 32 f 5 3 5
7 5 5 5 7 0 0 0 8 7 0 0 8 0
781 30 f 2 3 5
5 0 0 0 5 0 0 0 4 7 5 0 0 0



1262 Program � Chapter 47

859 39 f 1 0 5
1 0 0 0 1 0 0 0 0 0 0 0 0 0

. . . more data lines . . .

859 32 m .25 .25 1
1 0 0 0 0 0 0 0 1 0 0 0 0 0

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=132 pagesize=40;

Create the RADIO data set and specify the input file. RADIO contains data from a survey
of 336 listeners. The data set contains information about listeners and their preferences in radio
programming. The INFILE statement specifies the external file that contains the data.
MISSOVER prevents the input pointer from going to the next record if it fails to find values in
the current line for all variables that are listed in the INPUT statement.

data radio;
infile ’input-file’ missover;

Read the appropriate data line, assign a unique number to each respondent, and
write an observation to RADIO. Each raw-data record contains two lines of information
about each listener. The INPUT statement reads only the information that this example needs.
The / line control skips the first line of information in each record. The rest of the INPUT
statement reads Time1-Time7 from the beginning of the second line. These variables represent
the listener’s radio programming preference for each of seven time periods on weekdays (see
Figure 47.16 on page 1261). The listener=_N_ statement assigns a unique identifier to each
listener. An observation is automatically written to RADIO at the end of each iteration.

input /(Time1-Time7) ($1. +1);
listener=_n_;

run;

Create the $TIMEFMT. and $PGMFMT. formats. PROC FORMAT creates formats for the
time of day and the choice of programming.

proc format;
value $timefmt ’Time1’=’6-9 a.m.’

’Time2’=’9 a.m. to noon’
’Time3’=’noon to 1 p.m.’
’Time4’=’1-4 p.m.’
’Time5’=’4-6 p.m.’
’Time6’=’6-10 p.m.’
’Time7’=’10 p.m. to 2 a.m.’



The TABULATE Procedure � Program 1263

other=’*** Data Entry Error ***’;
value $pgmfmt ’0’="Don’t Listen"

’1’,’2’=’Rock and Top 40’
’3’=’Country’

’4’,’5’,’6’=’Jazz, Classical, and Easy Listening’
’7’=’News/ Information /Talk’
’8’=’Other’

other=’*** Data Entry Error ***’;
run;

Reshape the data by transposing the RADIO data set. PROC TRANSPOSE creates
RADIO_TRANSPOSED. This data set contains the variable Listener from the original data set.
It also contains two transposed variables: Timespan and Choice. Timespan contains the names
of the variables (Time1-Time7) from the input data set that are transposed to form observations
in the output data set. Choice contains the values of these variables. (See “A Closer Look” on
page 1264 for a complete explanation of the PROC TRANSPOSE step.)

proc transpose data=radio
out=radio_transposed(rename=(col1=Choice))
name=Timespan;

by listener;
var time1-time7;

Format the transposed variables. The FORMAT statement permanently associates these
formats with the variables in the output data set.

format timespan $timefmt. choice $pgmfmt.;
run;

Create the report and specify the table options. The FORMAT= option specifies the default
format for the values in each table cell.

proc tabulate data=radio_transposed format=12.;

Specify subgroups for the analysis. The CLASS statement identifies Timespan and Choice
as class variables.

class timespan choice;

Define the table rows and columns. The TABLE statement creates a row for each formatted
value of Timespan and a column for each formatted value of Choice. In each column are values
for the N statistic. Text in quotation marks supplies headings for the corresponding rows or
columns.

table timespan=’Time of Day’,
choice=’Choice of Radio Program’*n=’Number of Listeners’;



1264 Output � Chapter 47

Specify the title.

title ’Listening Preferences on Weekdays’;
run;

Output

Listening Preferences on Weekdays 1

---------------------------------------------------------------------------------------------------------------

| | Choice of Radio Program |

| |-----------------------------------------------------------------------------|

| | | | | Jazz, | | |

| | | | | Classical, | News/ | |

| | |Rock and Top| | and Easy |Information | |

| |Don’t Listen| 40 | Country | Listening | /Talk | Other |

| |------------+------------+------------+------------+------------+------------|

| | Number of | Number of | Number of | Number of | Number of | Number of |

| | Listeners | Listeners | Listeners | Listeners | Listeners | Listeners |

|-------------------------------+------------+------------+------------+------------+------------+------------|

|Time of Day | | | | | | |

|-------------------------------| | | | | | |

|6-9 a.m. | 34| 143| 7| 39| 96| 17|

|-------------------------------+------------+------------+------------+------------+------------+------------|

|9 a.m. to noon | 214| 59| 5| 51| 3| 4|

|-------------------------------+------------+------------+------------+------------+------------+------------|

|noon to 1 p.m. | 238| 55| 3| 27| 9| 4|

|-------------------------------+------------+------------+------------+------------+------------+------------|

|1-4 p.m. | 216| 60| 5| 50| 2| 3|

|-------------------------------+------------+------------+------------+------------+------------+------------|

|4-6 p.m. | 56| 130| 6| 57| 69| 18|

|-------------------------------+------------+------------+------------+------------+------------+------------|

|6-10 p.m. | 202| 54| 9| 44| 20| 7|

|-------------------------------+------------+------------+------------+------------+------------+------------|

|10 p.m. to 2 a.m. | 264| 29| 3| 36| 2| 2|

---------------------------------------------------------------------------------------------------------------

A Closer Look

Reshape the data
The original input data set has all the information that you need to make the
crosstabular report, but PROC TABULATE cannot use the information in that form.
PROC TRANSPOSE rearranges the data so that each observation in the new data set
contains the variable Listener, a variable for time of day, and a variable for
programming preference. Figure 47.17 on page 1265 illustrates the transposition.
PROC TABULATE uses this new data set to create the crosstabular report.

PROC TRANSPOSE restructures data so that values that were stored in one
observation are written to one variable. You can specify which variables you want to
transpose. This section illustrates how PROC TRANSPOSE reshapes the data. The
following section explains the PROC TRANSPOSE step in this example.

When you transpose with BY processing, as this example does, you create from each
BY group one observation for each variable that you transpose. In this example,
Listener is the BY variable. Each observation in the input data set is a BY group
because the value of Listener is unique for each observation.

This example transposes seven variables, Time1 through Time7. Therefore, the
output data set has seven observations from each BY group (each observation) in the
input data set.



The TABULATE Procedure � A Closer Look 1265

Figure 47.17 Transposing Two Observations

Time1 Time2 Time3 Time4 Time5 Time6 Time7

7 5 5 5 7 0 0

5 0 0 0 5 0 0

Listener

1

2

Listener

1

1

1

1

1

1

1

2

2

2

2

2

2

2

_NAME_

Time1

Time2

Time3

Time4

Time5

Time6

Time7

Time1

Time2

Time3

Time4

Time5

Time6

Time7

COL1

7

7

5

5

7

0

0

5

0

0

0

5

0

0

➊ The BY variable is not
transposed. All the
observations created from the
same BY group contain the
same value of Listener.

➋ _NAME_ contains the name
of the variable in the input
data set that was transposed
to create the current
observation in the output
data set.

➌ COL1 contains the values of
Time1–Time7.

➊➋ ➌

Input Data Set

Output Data Set

Understanding the PROC TRANSPOSE Step
Here is a detailed explanation of the PROC TRANSPOSE step that reshapes the data:



1266 Example 12: Calculating Various Percentage Statistics � Chapter 47

proc transpose data=radio u

out=radio_transposed(rename=(col1=Choice)) v

name=Timespan; w

by listener; x

var time1-time7; y

format timespan $timefmt. choice $pgmfmt.; U

run;

u The DATA= option specifies the input data set.

v The OUT= option specifies the output data set. The RENAME= data set option
renames the transposed variable from COL1 (the default name) to Choice.

w The NAME= option specifies the name for the variable in the output data set that
contains the name of the variable that is being transposed to create the current
observation. By default, the name of this variable is _NAME_.

x The BY statement identifies Listener as the BY variable.

y The VAR statement identifies Time1 through Time7 as the variables to transpose.

U The FORMAT statement assigns formats to Timespan and Choice. The PROC
TABULATE step that creates the report does not need to format Timespan and
Choice because the formats are stored with these variables.

Example 12: Calculating Various Percentage Statistics

Procedure features:
PROC TABULATE statement options:

FORMAT=

TABLE statement:

ALL class variable
COLPCTSUM statistic
concatenation (blank) operator
crossing (*) operator
format modifiers
grouping elements (parentheses) operator
labels
REPPCTSUM statistic
ROWPCTSUM statistic
variable list

TABLE statement options:

ROW=FLOAT
RTS=

Other features: FORMAT procedure

This example shows how to use three percentage sum statistics: COLPCTSUM,
REPPCTSUM, and ROWPCTSUM.



The TABULATE Procedure � Program 1267

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=105 pagesize=60;

Create the FUNDRAIS data set. FUNDRAIS contains data on student sales during a school
fund-raiser. A DATA step creates the data set.

data fundrais;
length name $ 8 classrm $ 1;
input @1 team $ @8 classrm $ @10 name $

@19 pencils @23 tablets;
sales=pencils + tablets;
datalines;

BLUE A ANN 4 8
RED A MARY 5 10
GREEN A JOHN 6 4
RED A BOB 2 3
BLUE B FRED 6 8
GREEN B LOUISE 12 2
BLUE B ANNETTE . 9
RED B HENRY 8 10
GREEN A ANDREW 3 5
RED A SAMUEL 12 10
BLUE A LINDA 7 12
GREEN A SARA 4 .
BLUE B MARTIN 9 13
RED B MATTHEW 7 6
GREEN B BETH 15 10
RED B LAURA 4 3
;

Create the PCTFMT. format. The FORMAT procedure creates a format for percentages. The
PCTFMT. format writes all values with at least one digit, a blank, and a percent sign.

proc format;
picture pctfmt low-high=’009 %’;

run;

Specify the title.

title "Fundraiser Sales";

Create the report and specify the table options. The FORMAT= option specifies up to
seven digits as the default format for the value in each table cell.

proc tabulate format=7.;

Specify subgroups for the analysis. The CLASS statement identifies Team and Classrm as
class variables.

class team classrm;



1268 Output � Chapter 47

Specify the analysis variable. The VAR statement specifies that PROC TABULATE calculate
statistics on the Sales variable.

var sales;

Define the table rows. The row dimension of the TABLE statement creates a row for each
formatted value of Team. The last row of the report summarizes sales for all teams.

table (team all),

Define the table columns. The column dimension of the TABLE statement creates a column
for each formatted value of Classrm. Crossed within each value of Classrm is the analysis
variable (sales) with a blank label. Nested within each column are columns that summarize
sales for the class.

� The first nested column, labeled sum, is the sum of sales for the row for the classroom.

� The second nested column, labeled ColPctSum, is the percentage of the sum of sales for the
row for the classroom in relation to the sum of sales for all teams in the classroom.

� The third nested column, labeled RowPctSum, is the percentage of the sum of sales for the
row for the classroom in relation to the sum of sales for the row for all classrooms.

� The fourth nested column, labeled RepPctSum, is the percentage of the sum of sales for the
row for the classroom in relation to the sum of sales for all teams for all classrooms.

The last column of the report summarizes sales for the row for all classrooms.

classrm=’Classroom’*sales=’ ’*(sum
colpctsum*f=pctfmt9.
rowpctsum*f=pctfmt9.
reppctsum*f=pctfmt9.)
all*sales*sum=’ ’

Specify the row title space and eliminate blank row headings. RTS= provides 20
characters per line for row headings.

/rts=20;
run;

Output

Fundraiser Sales 1

--------------------------------------------------------------------------------------------------------

| | Classroom | |

| |---------------------------------------------------------------------------| |

| | A | B | All |

| |-------------------------------------+-------------------------------------+-------|

| | Sum |ColPctSum|RowPctSum|RepPctSum| Sum |ColPctSum|RowPctSum|RepPctSum| Sum |

|------------------+-------+---------+---------+---------+-------+---------+---------+---------+-------|

|team | | | | | | | | | |

|------------------| | | | | | | | | |

|BLUE | 31| 34 %| 46 %| 15 %| 36| 31 %| 53 %| 17 %| 67|

|------------------+-------+---------+---------+---------+-------+---------+---------+---------+-------|

|GREEN | 18| 19 %| 31 %| 8 %| 39| 34 %| 68 %| 19 %| 57|

|------------------+-------+---------+---------+---------+-------+---------+---------+---------+-------|

|RED | 42| 46 %| 52 %| 20 %| 38| 33 %| 47 %| 18 %| 80|

|------------------+-------+---------+---------+---------+-------+---------+---------+---------+-------|

|All | 91| 100 %| 44 %| 44 %| 113| 100 %| 55 %| 55 %| 204|

--------------------------------------------------------------------------------------------------------



The TABULATE Procedure � Program 1269

A Closer Look
Here are the percentage sum statistic calculations used to produce the output for the

Blue Team in Classroom A:
COLPCTSUM=31/91*100=34%
ROWPCTSUM=31/67*100=46%
REPPCTSUM=31/204*100=15%

Similar calculations were used to produce the output for the remaining teams and
classrooms.

Example 13: Using Denominator Definitions to Display Basic Frequency
Counts and Percentages

Procedure features:
TABLE statement:

ALL class variable
denominator definitions (angle bracket operators)
N statistic
PCTN statistic

Other features:
FORMAT procedure

Crosstabulation tables (also called contingency tables and stub-and-banner reports)
show combined frequency distributions for two or more variables. This table shows
frequency counts for females and males within each of four job classes. The table also
shows the percentage that each frequency count represents of

� the total women and men in that job class (row percentage)
� the total for that gender in all job classes (column percentage)
� the total for all employees.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the JOBCLASS data set. JOBCLASS contains encoded information about the gender
and job class of employees at a fictitious company.

data jobclass;
input Gender Occupation @@;



1270 Program � Chapter 47

datalines;
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 3 1 3 1 3 1 3 1 3 1 3 1 3
1 1 1 1 1 1 1 2 1 2 1 2 1 2
1 2 1 2 1 3 1 3 1 4 1 4 1 4
1 4 1 4 1 4 1 1 1 1 1 1 1 1
1 1 1 2 1 2 1 2 1 2 1 2 1 2
1 2 1 3 1 3 1 3 1 3 1 4 1 4
1 4 1 4 1 4 1 1 1 3 2 1 2 1
2 1 2 1 2 1 2 1 2 1 2 2 2 2
2 2 2 2 2 2 2 3 2 3 2 3 2 4
2 4 2 4 2 4 2 4 2 4 2 1 2 3
2 3 2 3 2 3 2 3 2 4 2 4 2 4
2 4 2 4 2 1 2 1 2 1 2 1 2 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 3 2 3 2 4 2 4 2 4 2 1 2 1
2 1 2 1 2 1 2 2 2 2 2 2 2 3
2 3 2 3 2 3 2 4
;

Create the GENDFMT. and OCCUPFMT. formats. PROC FORMAT creates formats for the
variables Gender and Occupation.

proc format;
value gendfmt 1=’Female’

2=’Male’
other=’*** Data Entry Error ***’;

value occupfmt 1=’Technical’
2=’Manager/Supervisor’
3=’Clerical’
4=’Administrative’

other=’*** Data Entry Error ***’;
run;

Create the report and specify the table options. The FORMAT= option specifies the 8.2
format as the default format for the value in each table cell.

proc tabulate data=jobclass format=8.2;

Specify subgroups for the analysis. The CLASS statement identifies Gender and Occupation
as class variables.

class gender occupation;



The TABULATE Procedure � Program 1271

Define the table rows. The TABLE statement creates a set of rows for each formatted value of
Occupation and for all jobs together. Text in quotation marks supplies a header for the
corresponding row.

The asterisk in the row dimension indicates that the statistics that follow in parentheses are
nested within the values of Occupation and All to form sets of rows. Each set of rows includes
four statistics:

� N, the frequency count. The format modifier (F=9.) writes the values of N without the
decimal places that the default format would use. It also extends the column width to nine
characters so that the word Employees fits on one line.

� the percentage of the row total (row percent).

� the percentage of the column total (column percent).

� the overall percent. Text in quotation marks supplies the heading for the corresponding row.
A comma separates the row definition from the column definition.

For detailed explanations of the structure of this table and of the use of denominator definitions,
see “A Closer Look” on page 1272.

table (occupation=’Job Class’ all=’All Jobs’)
*(n=’Number of employees’*f=9.
pctn<gender all>=’Percent of row total’
pctn<occupation all>=’Percent of column total’
pctn=’Percent of total’),

Define the table columns and specify the amount of space for row headings. The
column dimension creates a column for each formatted value of Gender and for all employees.
Text in quotation marks supplies the heading for the corresponding column. The RTS= option
provides 50 characters per line for row headings.

gender=’Gender’ all=’All Employees’/ rts=50;

Format the output. The FORMAT statement assigns formats to the variables Gender and
Occupation.

format gender gendfmt. occupation occupfmt.;

Specify the titles.

title ’Gender Distribution’;
title2 ’within Job Classes’;

run;



1272 Output � Chapter 47

Output

Gender Distribution 1
within Job Classes

--------------------------------------------------------------------------------
| | Gender | | |
| |-------------------| All |
| | Female | Male |Employees|
|------------------------------------------------+---------+---------+---------|
|Job Class | | | | |
|-----------------------+------------------------| | | |
|Technical |Number of employees | 16| 18| 34|
| |------------------------+---------+---------+---------|
| |Percent of row total | 47.06| 52.94| 100.00|
| |------------------------+---------+---------+---------|
| |Percent of column total | 26.23| 29.03| 27.64|
| |------------------------+---------+---------+---------|
| |Percent of total | 13.01| 14.63| 27.64|
|-----------------------+------------------------+---------+---------+---------|
|Manager/Supervisor |Number of employees | 20| 15| 35|
| |------------------------+---------+---------+---------|
| |Percent of row total | 57.14| 42.86| 100.00|
| |------------------------+---------+---------+---------|
| |Percent of column total | 32.79| 24.19| 28.46|
| |------------------------+---------+---------+---------|
| |Percent of total | 16.26| 12.20| 28.46|
|-----------------------+------------------------+---------+---------+---------|
|Clerical |Number of employees | 14| 14| 28|
| |------------------------+---------+---------+---------|
| |Percent of row total | 50.00| 50.00| 100.00|
| |------------------------+---------+---------+---------|
| |Percent of column total | 22.95| 22.58| 22.76|
| |------------------------+---------+---------+---------|
| |Percent of total | 11.38| 11.38| 22.76|
|-----------------------+------------------------+---------+---------+---------|
|Administrative |Number of employees | 11| 15| 26|
| |------------------------+---------+---------+---------|
| |Percent of row total | 42.31| 57.69| 100.00|
| |------------------------+---------+---------+---------|
| |Percent of column total | 18.03| 24.19| 21.14|
| |------------------------+---------+---------+---------|
| |Percent of total | 8.94| 12.20| 21.14|
|-----------------------+------------------------+---------+---------+---------|
|All Jobs |Number of employees | 61| 62| 123|
| |------------------------+---------+---------+---------|
| |Percent of row total | 49.59| 50.41| 100.00|
| |------------------------+---------+---------+---------|
| |Percent of column total | 100.00| 100.00| 100.00|
| |------------------------+---------+---------+---------|
| |Percent of total | 49.59| 50.41| 100.00|
--------------------------------------------------------------------------------

A Closer Look
The part of the TABLE statement that defines the rows of the table uses the PCTN

statistic to calculate three different percentages.
In all calculations of PCTN, the numerator is N, the frequency count for one cell of

the table. The denominator for each occurrence of PCTN is determined by the
denominator definition. The denominator definition appears in angle brackets after the
keyword PCTN. It is a list of one or more expressions. The list tells PROC TABULATE
which frequency counts to sum for the denominator.



The TABULATE Procedure � A Closer Look 1273

Analyzing the Structure of the Table
Taking a close look at the structure of the table helps you understand how PROC
TABULATE uses the denominator definitions. The following simplified version of the
TABLE statement clarifies the basic structure of the table:

table occupation=’Job Class’ all=’All Jobs’,
gender=’Gender’ all=’All Employees’;

The table is a concatenation of four subtables. In this report, each subtable is a
crossing of one class variable in the row dimension and one class variable in the column
dimension. Each crossing establishes one or more categories. A category is a
combination of unique values of class variables, such as female, technical or all,
clerical. Table 47.8 on page 1273 describes each subtable.

Table 47.8 Contents of Subtables

Class variables contributing to the
subtable Description of frequency counts

Number of
categories

Occupation and Gender number of females in each job or
number of males in each job

8

All and Gender number of females or number of males 2

Occupation and All number of people in each job 4

All and All number of people in all jobs 1

Figure 47.18 on page 1274 highlights these subtables and the frequency counts for each
category.



1274 A Closer Look � Chapter 47

Figure 47.18 Illustration of the Four Subtables

Occupation and Gender

Occupation
and All

All and Gender
All
and All

----------------------------------------------------------------------
|                                                |      Gender       | |
|                                                |-------------------|
|                                                | Female  |  Male   |
|------------------------------------------------+---------+---------+
|Job Class              |                        |         |         |
|-----------------------+------------------------|         |         |
|Technical              |Number of employees     |       16|       18|
|                       |------------------------+---------+---------+
|                       |Percent of row total    |    47.06|    52.94|
|                       |------------------------+---------+---------+
|                       |Percent of column total |    26.23|    29.03|
|                       |------------------------+---------+---------+
|                       |Percent of total        |    13.01|    14.63|
|-----------------------+------------------------+---------+---------+
|Manager/Supervisor     |Number of employees     |       20|       15|
|                       |------------------------+---------+---------+
|                       |Percent of row total    |    57.14|    42.86|
|                       |------------------------+---------+---------+
|                       |Percent of column total |    32.79|    24.19|
|                       |------------------------+---------+---------+
|                       |Percent of total        |    16.26|    12.20|
|-----------------------+------------------------+---------+---------+
|Clerical               |Number of employees     |       14|       14|
|                       |------------------------+---------+---------+
|                       |Percent of row total    |    50.00|    50.50|
|                       |------------------------+---------+---------+
|                       |Percent of column total |    22.95|    22.58|
|                       |------------------------+---------+---------+
|                       |Percent of total        |    11.38|    11.38|
|-----------------------+------------------------+---------+---------+
|Administrative         |Number of employees     |       11|       15|
|                       |------------------------+---------+---------+
|                       |Percent of row total    |    42.31|    57.69|
|                       |------------------------+---------+---------+
|                       |Percent of column total |    18.03|    24.19|
|                       |------------------------+---------+---------+
|                       |Percent of total        |     8.94|    12.20|
|-----------------------+------------------------+---------+---------+

-----------
|         |
|   All   |
|Employees|
+---------|
|         |
|         |
|       34|
+---------|
|   100.00|
+---------|
|    27.64|
+---------|
|    27.64|
+---------|
|       35|
+---------|
|   100.00|
+---------|
|    28.46|
+---------|
|    28.46|
+---------|
|       28|
+---------|
|   100.00|
+---------|
|    22.76|
+---------|
|    22.76|
+---------|
|       26|
+---------|
|   100.00|
+---------|
|    21.14|
+---------|
|    21.14|
+---------|

|-----------------------+------------------------+---------+---------+
|All Jobs               |Number of employees     |       61|       62|
|                       |------------------------+---------+---------+
|                       |Percent of row total    |    49.59|    50.41|
|                       |------------------------+---------+---------+
|                       |Percent of column total |   100.00|   100.00|
|                       |------------------------+---------+---------+
|                       |Percent of total        |    49.59|    50.41|
----------------------------------------------------------------------

+---------|
|      123|
+---------|
|   100.00|
+---------|
|   100.00|
+---------|
|   100.00|
-----------

Interpreting Denominator Definitions
The following fragment of the TABLE statement defines the denominator definitions for
this report. The PCTN keyword and the denominator definitions are highlighted.

table (occupation=’Job Class’ all=’All Jobs’)
*(n=’Number of employees’*f=5.

pctn<gender all>=’Row percent’
pctn<occupation all>=’Column percent’
pctn=’Percent of total’),

Each use of PCTN nests a row of statistics within each value of Occupation and All.
Each denominator definition tells PROC TABULATE which frequency counts to sum for
the denominators in that row. This section explains how PROC TABULATE interprets
these denominator definitions.

Row Percentages
The part of the TABLE statement that calculates the row percentages and that labels
the row is

pctn<gender all>=’Row percent’

Consider how PROC TABULATE interprets this denominator definition for each
subtable.



The TABULATE Procedure � A Closer Look 1275

Subtable 1: Occupation and Gender

Gender Distribution
within Job Classes

--------------------------------------------------------------------------------
|                                                |      Gender       |         | |
|                                                |-------------------|   All   |
|                                                | Female  |  Male   |Employees|
|------------------------------------------------+---------+---------+---------|
|Job Class              |                        |         |         |         |
|-----------------------+------------------------|         |         |         |
|Technical              |Number of employees     |       16|       18|       34|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    47.06|    52.94|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    26.23|    29.03|    27.64|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    13.01|    14.63|    27.64|
|-----------------------+------------------------+---------+---------+---------|
|Manager/Supervisor     |Number of employees     |       20|       15|       35|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    57.14|    42.86|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    32.79|    24.19|    28.46|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    16.26|    12.20|    28.46|
|-----------------------+------------------------+---------+---------+---------|
|Clerical               |Number of employees     |       14|       14|       28|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    50.00|    50.50|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    22.95|    22.58|    22.76|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    11.38|    11.38|    22.76|
|-----------------------+------------------------+---------+---------+---------|
|Administrative         |Number of employees     |       11|       15|       26|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    42.31|    57.69|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    18.03|    24.19|    21.14|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |     8.94|    12.20|    21.14|
|-----------------------+------------------------+---------+---------+---------|
|All Jobs               |Number of employees     |       61|       62|      123|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    49.59|    50.41|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |   100.00|   100.00|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    49.59|    50.41|   100.00|
--------------------------------------------------------------------------------

PROC TABULATE looks at the first element in the denominator definition, Gender,
and asks if Gender contributes to the subtable. Because Gender does contribute to the
subtable, PROC TABULATE uses it as the denominator definition. This denominator
definition tells PROC TABULATE to sum the frequency counts for all occurrences of
Gender within the same value of Occupation.

For example, the denominator for the category female, technical is the sum of all
frequency counts for all categories in this subtable for which the value of Occupation is
technical. There are two such categories: female, technical and male,
technical. The corresponding frequency counts are 16 and 18. Therefore, the
denominator for this category is 16+18, or 34.

Subtable 2: All and Gender

Gender Distribution
within Job Classes

--------------------------------------------------------------------------------
|                                                |      Gender       |         | |
|                                                |-------------------|   All   |
|                                                | Female  |  Male   |Employees|
|------------------------------------------------+---------+---------+---------|
|Job Class              |                        |         |         |         |
|-----------------------+------------------------|         |         |         |
|Technical              |Number of employees     |       16|       18|       34|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    47.06|    52.94|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    26.23|    29.03|    27.64|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    13.01|    14.63|    27.64|
|-----------------------+------------------------+---------+---------+---------|
|Manager/Supervisor     |Number of employees     |       20|       15|       35|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    57.14|    42.86|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    32.79|    24.19|    28.46|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    16.26|    12.20|    28.46|
|-----------------------+------------------------+---------+---------+---------|
|Clerical               |Number of employees     |       14|       14|       28|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    50.00|    50.50|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    22.95|    22.58|    22.76|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    11.38|    11.38|    22.76|
|-----------------------+------------------------+---------+---------+---------|
|Administrative         |Number of employees     |       11|       15|       26|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    42.31|    57.69|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    18.03|    24.19|    21.14|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |     8.94|    12.20|    21.14|
|-----------------------+------------------------+---------+---------+---------|
|All Jobs               |Number of employees     |       61|       62|      123|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    49.59|    50.41|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |   100.00|   100.00|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    49.59|    50.41|   100.00|
--------------------------------------------------------------------------------

PROC TABULATE looks at the first element in the denominator definition, Gender,
and asks if Gender contributes to the subtable. Because Gender does contribute to the
subtable, PROC TABULATE uses it as the denominator definition. This denominator
definition tells PROC TABULATE to sum the frequency counts for all occurrences of
Gender in the subtable.

For example, the denominator for the category all, female is the sum of the
frequency counts for all, female and all, male. The corresponding frequency counts
are 61 and 62. Therefore, the denominator for cells in this subtable is 61+62, or 123.



1276 A Closer Look � Chapter 47

Subtable 3: Occupation and All

Gender Distribution
within Job Classes

--------------------------------------------------------------------------------
|                                                |      Gender       |         | |
|                                                |-------------------|   All   |
|                                                | Female  |  Male   |Employees|
|------------------------------------------------+---------+---------+---------|
|Job Class              |                        |         |         |         |
|-----------------------+------------------------|         |         |         |
|Technical              |Number of employees     |       16|       18|       34|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    47.06|    52.94|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    26.23|    29.03|    27.64|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    13.01|    14.63|    27.64|
|-----------------------+------------------------+---------+---------+---------|
|Manager/Supervisor     |Number of employees     |       20|       15|       35|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    57.14|    42.86|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    32.79|    24.19|    28.46|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    16.26|    12.20|    28.46|
|-----------------------+------------------------+---------+---------+---------|
|Clerical               |Number of employees     |       14|       14|       28|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    50.00|    50.50|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    22.95|    22.58|    22.76|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    11.38|    11.38|    22.76|
|-----------------------+------------------------+---------+---------+---------|
|Administrative         |Number of employees     |       11|       15|       26|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    42.31|    57.69|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    18.03|    24.19|    21.14|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |     8.94|    12.20|    21.14|
|-----------------------+------------------------+---------+---------+---------|
|All Jobs               |Number of employees     |       61|       62|      123|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    49.59|    50.41|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |   100.00|   100.00|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    49.59|    50.41|   100.00|
--------------------------------------------------------------------------------

PROC TABULATE looks at the first element in the denominator definition, Gender,
and asks if Gender contributes to the subtable. Because Gender does not contribute to
the subtable, PROC TABULATE looks at the next element in the denominator
definition, which is All. The variable All does contribute to this subtable, so PROC
TABULATE uses it as the denominator definition. All is a reserved class variable with
only one category. Therefore, this denominator definition tells PROC TABULATE to use
the frequency count of All as the denominator.

For example, the denominator for the category clerical, all is the frequency
count for that category, 28.

Note: In these table cells, because the numerator and the denominator are the
same, the row percentages in this subtable are all 100. �

Subtable 4: All and All

Gender Distribution
within Job Classes

--------------------------------------------------------------------------------
|                                                |      Gender       |         | |
|                                                |-------------------|   All   |
|                                                | Female  |  Male   |Employees|
|------------------------------------------------+---------+---------+---------|
|Job Class              |                        |         |         |         |
|-----------------------+------------------------|         |         |         |
|Technical              |Number of employees     |       16|       18|       34|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    47.06|    52.94|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    26.23|    29.03|    27.64|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    13.01|    14.63|    27.64|
|-----------------------+------------------------+---------+---------+---------|
|Manager/Supervisor     |Number of employees     |       20|       15|       35|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    57.14|    42.86|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    32.79|    24.19|    28.46|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    16.26|    12.20|    28.46|
|-----------------------+------------------------+---------+---------+---------|
|Clerical               |Number of employees     |       14|       14|       28|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    50.00|    50.50|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    22.95|    22.58|    22.76|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    11.38|    11.38|    22.76|
|-----------------------+------------------------+---------+---------+---------|
|Administrative         |Number of employees     |       11|       15|       26|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    42.31|    57.69|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    18.03|    24.19|    21.14|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |     8.94|    12.20|    21.14|
|-----------------------+------------------------+---------+---------+---------|
|All Jobs               |Number of employees     |       61|       62|      123|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    49.59|    50.41|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |   100.00|   100.00|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    49.59|    50.41|   100.00|
--------------------------------------------------------------------------------

PROC TABULATE looks at the first element in the denominator definition, Gender,
and asks if Gender contributes to the subtable. Because Gender does not contribute to
the subtable, PROC TABULATE looks at the next element in the denominator
definition, which is All. The variable All does contribute to this subtable, so PROC
TABULATE uses it as the denominator definition. All is a reserved class variable with
only one category. Therefore, this denominator definition tells PROC TABULATE to use
the frequency count of All as the denominator.

There is only one category in this subtable: all, all. The denominator for this
category is 123.

Note: In this table cell, because the numerator and denominator are the same, the
row percentage in this subtable is 100. �

Column Percentages
The part of the TABLE statement that calculates the column percentages and labels the
row is

pctn<occupation all>=’Column percent’

Consider how PROC TABULATE interprets this denominator definition for each
subtable.



The TABULATE Procedure � A Closer Look 1277

Subtable 1: Occupation and Gender

Gender Distribution
within Job Classes

--------------------------------------------------------------------------------
|                                                |      Gender       |         | |
|                                                |-------------------|   All   |
|                                                | Female  |  Male   |Employees|
|------------------------------------------------+---------+---------+---------|
|Job Class              |                        |         |         |         |
|-----------------------+------------------------|         |         |         |
|Technical              |Number of employees     |       16|       18|       34|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    47.06|    52.94|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    26.23|    29.03|    27.64|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    13.01|    14.63|    27.64|
|-----------------------+------------------------+---------+---------+---------|
|Manager/Supervisor     |Number of employees     |       20|       15|       35|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    57.14|    42.86|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    32.79|    24.19|    28.46|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    16.26|    12.20|    28.46|
|-----------------------+------------------------+---------+---------+---------|
|Clerical               |Number of employees     |       14|       14|       28|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    50.00|    50.50|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    22.95|    22.58|    22.76|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    11.38|    11.38|    22.76|
|-----------------------+------------------------+---------+---------+---------|
|Administrative         |Number of employees     |       11|       15|       26|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    42.31|    57.69|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    18.03|    24.19|    21.14|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |     8.94|    12.20|    21.14|
|-----------------------+------------------------+---------+---------+---------|
|All Jobs               |Number of employees     |       61|       62|      123|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    49.59|    50.41|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |   100.00|   100.00|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    49.59|    50.41|   100.00|
--------------------------------------------------------------------------------

PROC TABULATE looks at the first element in the denominator definition,
Occupation, and asks if Occupation contributes to the subtable. Because Occupation
does contribute to the subtable, PROC TABULATE uses it as the denominator
definition. This denominator definition tells PROC TABULATE to sum the frequency
counts for all occurrences of Occupation within the same value of Gender.

For example, the denominator for the category manager/supervisor, male is the
sum of all frequency counts for all categories in this subtable for which the value of
Gender is male. There are four such categories: technical, male; manager/
supervisor, male; clerical, male; and administrative, male. The corresponding
frequency counts are 18, 15, 14, and 15. Therefore, the denominator for this category is
18+15+14+15, or 62.

Subtable 2: All and Gender

Gender Distribution
within Job Classes

--------------------------------------------------------------------------------
|                                                |      Gender       |         | |
|                                                |-------------------|   All   |
|                                                | Female  |  Male   |Employees|
|------------------------------------------------+---------+---------+---------|
|Job Class              |                        |         |         |         |
|-----------------------+------------------------|         |         |         |
|Technical              |Number of employees     |       16|       18|       34|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    47.06|    52.94|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    26.23|    29.03|    27.64|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    13.01|    14.63|    27.64|
|-----------------------+------------------------+---------+---------+---------|
|Manager/Supervisor     |Number of employees     |       20|       15|       35|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    57.14|    42.86|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    32.79|    24.19|    28.46|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    16.26|    12.20|    28.46|
|-----------------------+------------------------+---------+---------+---------|
|Clerical               |Number of employees     |       14|       14|       28|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    50.00|    50.50|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    22.95|    22.58|    22.76|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    11.38|    11.38|    22.76|
|-----------------------+------------------------+---------+---------+---------|
|Administrative         |Number of employees     |       11|       15|       26|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    42.31|    57.69|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    18.03|    24.19|    21.14|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |     8.94|    12.20|    21.14|
|-----------------------+------------------------+---------+---------+---------|
|All Jobs               |Number of employees     |       61|       62|      123|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    49.59|    50.41|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |   100.00|   100.00|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    49.59|    50.41|   100.00|
--------------------------------------------------------------------------------

PROC TABULATE looks at the first element in the denominator definition,
Occupation, and asks if Occupation contributes to the subtable. Because Occupation
does not contribute to the subtable, PROC TABULATE looks at the next element in the
denominator definition, which is All. Because the variable All does contribute to this
subtable, PROC TABULATE uses it as the denominator definition. All is a reserved
class variable with only one category. Therefore, this denominator definition tells PROC
TABULATE to use the frequency count for All as the denominator.

For example, the denominator for the category all, female is the frequency count
for that category, 61.

Note: In these table cells, because the numerator and denominator are the same,
the column percentages in this subtable are all 100. �



1278 A Closer Look � Chapter 47

Subtable 3: Occupation and All

Gender Distribution
within Job Classes

--------------------------------------------------------------------------------
|                                                |      Gender       |         | |
|                                                |-------------------|   All   |
|                                                | Female  |  Male   |Employees|
|------------------------------------------------+---------+---------+---------|
|Job Class              |                        |         |         |         |
|-----------------------+------------------------|         |         |         |
|Technical              |Number of employees     |       16|       18|       34|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    47.06|    52.94|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    26.23|    29.03|    27.64|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    13.01|    14.63|    27.64|
|-----------------------+------------------------+---------+---------+---------|
|Manager/Supervisor     |Number of employees     |       20|       15|       35|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    57.14|    42.86|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    32.79|    24.19|    28.46|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    16.26|    12.20|    28.46|
|-----------------------+------------------------+---------+---------+---------|
|Clerical               |Number of employees     |       14|       14|       28|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    50.00|    50.50|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    22.95|    22.58|    22.76|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    11.38|    11.38|    22.76|
|-----------------------+------------------------+---------+---------+---------|
|Administrative         |Number of employees     |       11|       15|       26|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    42.31|    57.69|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    18.03|    24.19|    21.14|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |     8.94|    12.20|    21.14|
|-----------------------+------------------------+---------+---------+---------|
|All Jobs               |Number of employees     |       61|       62|      123|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    49.59|    50.41|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |   100.00|   100.00|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    49.59|    50.41|   100.00|
--------------------------------------------------------------------------------

PROC TABULATE looks at the first element in the denominator definition,
Occupation, and asks if Occupation contributes to the subtable. Because Occupation
does contribute to the subtable, PROC TABULATE uses it as the denominator
definition. This denominator definition tells PROC TABULATE to sum the frequency
counts for all occurrences of Occupation in the subtable.

For example, the denominator for the category technical, all is the sum of the
frequency counts for technical, all; manager/supervisor, all; clerical, all;
and administrative, all. The corresponding frequency counts are 34, 35, 28, and 26.
Therefore, the denominator for this category is 34+35+28+26, or 123.

Subtable 4: All and All

Gender Distribution
within Job Classes

--------------------------------------------------------------------------------
|                                                |      Gender       |         | |
|                                                |-------------------|   All   |
|                                                | Female  |  Male   |Employees|
|------------------------------------------------+---------+---------+---------|
|Job Class              |                        |         |         |         |
|-----------------------+------------------------|         |         |         |
|Technical              |Number of employees     |       16|       18|       34|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    47.06|    52.94|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    26.23|    29.03|    27.64|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    13.01|    14.63|    27.64|
|-----------------------+------------------------+---------+---------+---------|
|Manager/Supervisor     |Number of employees     |       20|       15|       35|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    57.14|    42.86|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    32.79|    24.19|    28.46|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    16.26|    12.20|    28.46|
|-----------------------+------------------------+---------+---------+---------|
|Clerical               |Number of employees     |       14|       14|       28|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    50.00|    50.50|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    22.95|    22.58|    22.76|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    11.38|    11.38|    22.76|
|-----------------------+------------------------+---------+---------+---------|
|Administrative         |Number of employees     |       11|       15|       26|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    42.31|    57.69|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |    18.03|    24.19|    21.14|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |     8.94|    12.20|    21.14|
|-----------------------+------------------------+---------+---------+---------|
|All Jobs               |Number of employees     |       61|       62|      123|
|                       |------------------------+---------+---------+---------|
|                       |Percent of row total    |    49.59|    50.41|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of column total |   100.00|   100.00|   100.00|
|                       |------------------------+---------+---------+---------|
|                       |Percent of total        |    49.59|    50.41|   100.00|
--------------------------------------------------------------------------------

PROC TABULATE looks at the first element in the denominator definition,
Occupation, and asks if Occupation contributes to the subtable. Because Occupation
does not contribute to the subtable, PROC TABULATE looks at the next element in the
denominator definition, which is All. Because the variable All does contribute to this
subtable, PROC TABULATE uses it as the denominator definition. All is a reserved
class variable with only one category. Therefore, this denominator definition tells PROC
TABULATE to use the frequency count of All as the denominator.

There is only one category in this subtable: all, all. The frequency count for this
category is 123.

Note: In this calculation, because the numerator and denominator are the same, the
column percentage in this subtable is 100. �

Total Percentages
The part of the TABLE statement that calculates the total percentages and labels the
row is

pctn=’Total percent’

If you do not specify a denominator definition, then PROC TABULATE obtains the
denominator for a cell by totaling all the frequency counts in the subtable. Table 47.9
on page 1279 summarizes the process for all subtables in this example.



The TABULATE Procedure � Program 1279

Table 47.9 Denominators for Total Percentages

Class variables contributing to
the subtable Frequency counts Total

Occupat and Gender 16, 18, 20, 15 14, 14, 11, 15 123

Occupat and All 34, 35, 28, 26 123

Gender and All 61, 62 123

All and All 123 123

Consequently, the denominator for total percentages is always 123.

Example 14: Specifying Style Elements for ODS Output
Procedure features:

STYLE= option in
PROC TABULATE statement
CLASSLEV statement
KEYWORD statement
TABLE statement
VAR statement

Other features:
ODS HTML statement
ODS PDF statement
ODS RTF statement

Data set: ENERGY“ENERGY” on page 1387
Formats: REGFMT, DIVFMT, and USETYPE. on page 1233

This example creates HTML, RTF, and PDF files and specifies style elements for
various table regions.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= and PAGESIZE= are
not set for this example because they have no effect on HTML, RTF, and Printer output.

options nodate pageno=1;

Specify the ODS output filenames. By opening multiple ODS destinations, you can produce
multiple output files in a single execution. The ODS HTML statement produces output that is
written in HTML. The ODS PDF statement produces output in Portable Document Format
(PDF). The ODS RTF statement produces output in Rich Text Format (RTF). The output from
PROC TABULATE goes to each of these files.

ods html body=’external-HTML-file’;
ods pdf file=’external-PDF-file’;



1280 Program � Chapter 47

ods rtf file=’external-RTF-file’;

Specify the table options. The STYLE= option in the PROC TABULATE statement specifies
the style element for the data cells of the table.

proc tabulate data=energy style=[font_weight=bold];

Specify subgroups for the analysis. The STYLE= option in the CLASS statement specifies
the style element for the class variable name headings.

class region division type / style=[just=center];

Specify the style attributes for the class variable value headings. The STYLE= option in
the CLASSLEV statement specifies the style element for the class variable level value headings.

classlev region division type / style=[just=left];

Specify the analysis variable and its style attributes. The STYLE= option in the VAR
statement specifies a style element for the variable name headings.

var expenditures / style=[font_size=3];

Specify the style attributes for keywords, and label the “all” keyword. The STYLE=
option in the KEYWORD statement specifies a style element for keywords. The KEYLABEL
statement assigns a label to the keyword.

keyword all sum / style=[font_width=wide];
keylabel all="Total";

Define the table rows and columns and their style attributes. The STYLE= option in the
dimension expression overrides any other STYLE= specifications in PROC TABULATE that
specify attributes for table cells. The STYLE= option after the slash (/) specifies attributes for
parts of the table other than table cells.

table (region all)*(division all*[style=[background=yellow]]),
(type all)*(expenditures*f=dollar10.) /
style=[bordercolor=blue]

Specify the style attributes for cells with missing values. The STYLE= option in the
MISSTEXT option of the TABLE statement specifies a style element to use for the text in table
cells that contain missing values.

misstext=[label="Missing" style=[font_weight=light]]

Specify the style attributes for the box above the row titles. The STYLE= option in the
BOX option of the TABLE statement specifies a style element to use for text in the box above
the row titles.

box=[label="Region by Division by Type"
style=[font_style=italic]];

Format the class variable values. The FORMAT statement assigns formats to Region,
Division, and Type.

format region regfmt. division divfmt. type usetype.;



The TABULATE Procedure � HTML Output 1281

Specify the titles.

title ’Energy Expenditures’;
title2 ’(millions of dollars)’;

run;

Close the ODS destinations.

ods html close;
ods pdf close;
ods rtf close;

HTML Output



1282 PDF Output � Chapter 47

PDF Output



The TABULATE Procedure � References 1283

RTF Output

References

Jain, Raj and Chlamtac, Imrich (1985), “The P2 Algorithm for Dynamic Calculation of
Quantiles and Histograms without Storing Observations,” Communications of the
Association of Computing Machinery, 28:10.



1284



1285

C H A P T E R

48
The TEMPLATE Procedure

Information about the TEMPLATE Procedure 1285

Information about the TEMPLATE Procedure
See: For complete documentation of the TEMPLATE procedure, see SAS Output
Delivery System: User’s Guide.



1286



1287

C H A P T E R

49
The TIMEPLOT Procedure

Overview: TIMEPLOT Procedure 1287
Syntax: TIMEPLOT Procedure 1289

PROC TIMEPLOT Statement 1290

BY Statement 1291

CLASS Statement 1291

ID Statement 1292
PLOT Statement 1293

Results: TIMEPLOT Procedure 1297

Data Considerations 1297

Procedure Output 1297

Page Layout 1297

Contents of the Listing 1298
ODS Table Names 1298

Missing Values 1298

Examples: TIMEPLOT Procedure 1299

Example 1: Plotting a Single Variable 1299

Example 2: Customizing an Axis and a Plotting Symbol 1301
Example 3: Using a Variable for a Plotting Symbol 1303

Example 4: Superimposing Two Plots 1306

Example 5: Showing Multiple Observations on One Line of a Plot 1308

Overview: TIMEPLOT Procedure

The TIMEPLOT procedure plots one or more variables over time intervals. A listing
of variable values accompanies the plot. Although the plot and the listing are similar to
those produced by the PLOT and PRINT procedures, PROC TIMEPLOT output has
these distinctive features:

� The vertical axis always represents the sequence of observations in the data set;
thus, if the observations are in order of date or time, then the vertical axis
represents the passage of time.

� The horizontal axis represents the values of the variable that you are examining.
Like PROC PLOT, PROC TIMEPLOT can overlay multiple plots on one set of axes
so that each line of the plot can contain values for more than one variable.

� A plot produced by PROC TIMEPLOT may occupy more than one page.
� Each observation appears sequentially on a separate line of the plot; PROC

TIMEPLOT does not hide observations as PROC PLOT sometimes does.
� The listing of the plotted values may include variables that do not appear in the

plot.



1288 Overview: TIMEPLOT Procedure � Chapter 49

Output 49.1 illustrates a simple report that you can produce with PROC TIMEPLOT.
This report shows sales of refrigerators for two sales representatives during the first six
weeks of the year. The statements that produce the output follow. A DATA
stepExample 1 on page 1299 creates the data set SALES.

options linesize=64 pagesize=60 nodate
pageno=1;

proc timeplot data=sales;
plot icebox;
id month week;
title ’Weekly Sales of Refrigerators’;
title2 ’for the’;
title3 ’First Six Weeks of the Year’;

run;

Output 49.1 Simple Report Created with PROC TIMEPLOT

Weekly Sales of Refrigerators 1
for the

First Six Weeks of the Year

Month Week Icebox min max
2520.04 3550.43

*-------------------------------*
1 1 3450.94 | I |
1 1 2520.04 |I |
1 2 3240.67 | I |
1 2 2675.42 | I |
1 3 3160.45 | I |
1 3 2805.35 | I |
1 4 3400.24 | I |
1 4 2870.61 | I |
2 1 3550.43 | I|
2 1 2730.09 | I |
2 2 3385.74 | I |
2 2 2670.93 | I |

*-------------------------------*

Output 49.2 is a more complicated report of the same data set that is used to create
Output 49.1. The statements that create this report

� create one plot for the sale of refrigerators and one for the sale of stoves
� plot sales for both sales representatives on the same line
� identify points on the plots by the first letter of the sales representative’s last name
� control the size of the horizontal axis
� control formats and labels.

For an explanation of the program that produces this report, see Example 5 on page
1308.



The TIMEPLOT Procedure � Syntax: TIMEPLOT Procedure 1289

Output 49.2 More Complex Report Created with PROC TIMEPLOT

Weekly Appliance Sales for the First Quarter 1

Seller :Kreitz Seller :LeGrange
Month Week Stove Stove min max

$184.24 $2,910.37
*-------------------------*

January 1 $1,312.61 $728.13 | L K |
January 2 $222.35 $184.24 |! |
January 3 $2,263.33 $267.35 | L K |
January 4 $1,787.45 $274.51 | L K |
February 1 $2,910.37 $397.98 | L K|
February 2 $819.69 $2,242.24 | K L |

*-------------------------*

Weekly Appliance Sales for the First Quarter 2

Kreitz LeGrange
Month Week Icebox Icebox min max

$2,520.04 $3,550.43
*-------------------------*

January 1 $3,450.94 $2,520.04 |L K |
January 2 $3,240.67 $2,675.42 | L K |
January 3 $3,160.45 $2,805.35 | L K |
January 4 $3,400.24 $2,870.61 | L K |
February 1 $3,550.43 $2,730.09 | L K|
February 2 $3,385.74 $2,670.93 | L K |

*-------------------------*

Syntax: TIMEPLOT Procedure
Requirements: At least one PLOT statement

Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.

ODS Table Names: See: “ODS Table Names” on page 1298

Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 57 for
details. You can also use any global statements. See “Global Statements” on page 18 for
a list.

PROC TIMEPLOT <option(s)>;

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

CLASS variable(s);

ID variable(s);

PLOT plot-request(s)/option(s);



1290 PROC TIMEPLOT Statement � Chapter 49

To do this Use this statement

Produce a separate plot for each BY group BY

Group data according to the values of the class
variables

CLASS

Print in the listing the values of the variables that
you identify

ID

Specify the plots to produce PLOT

PROC TIMEPLOT Statement

PROC TIMEPLOT <option(s)>;

Options

DATA=SAS-data-set
identifies the input data set.

MAXDEC=number
specifies the maximum number of decimal places to print in the listing.

Interaction: A decimal specification in a format overrides a MAXDEC=
specification.

Default: 2

Range: 0-12

Featured in: Example 4 on page 1306

SPLIT=’split-character’
specifies a split character, which controls line breaks in column headings. It also
specifies that labels be used as column headings. PROC TIMEPLOT breaks a column
heading when it reaches the split character and continues the heading on the next
line. Unless the split character is a blank, it is not part of the column heading. Each
occurrence of the split character counts toward the 256-character maximum for a
label.

Alias: S=

Default: blank (’ ’)

Note: Column headings can occupy up to three lines. If the column label can be
split into more lines than this fixed number, then the split character is used only as a
recommendation on how to split the label. �

UNIFORM
uniformly scales the horizontal axis across all BY groups. By default, PROC
TIMEPLOT separately determines the scale of the axis for each BY group.

Interaction: UNIFORM also affects the calculation of means for reference lines (see
REF= on page 1296).



The TIMEPLOT Procedure � CLASS Statement 1291

BY Statement

Produces a separate plot for each BY group.

Main discussion: “BY” on page 58

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, then either the observations in the data set must be sorted by all the
variables that you specify, or they must be indexed appropriately. These variables are
called BY variables.

Options

DESCENDING
specifies that the data set is sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The data is grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations that have the same values for the BY
variables are not contiguous, then the procedure treats each contiguous set as a
separate BY group.

CLASS Statement

Groups data according to the values of the class variables.

Tip: PROC TIMEPLOT uses the formatted values of the CLASS variables to form
classes. Thus, if a format groups the values, then the procedure uses those groups.
Featured in: Example 5 on page 1308

CLASS variable(s);



1292 ID Statement � Chapter 49

Required Arguments

variable(s)
specifies one or more variables that the procedure uses to group the data. Variables
in a CLASS statement are called class variables. Class variables can be numeric or
character. Class variables can have continuous values, but they typically have a few
discrete values that define the classifications of the variable. You do not have to sort
the data by class variables.

The values of the class variables appear in the listing. PROC TIMEPLOT prints
and plots one line each time the combination of values of the class variables changes.
Therefore, the output typically is more meaningful if you sort or group the data
according to values of the class variables.

Using Multiple CLASS Statements
You can use any number of CLASS statements. If you use more than one CLASS

statement, then PROC TIMEPLOT simply concatenates all variables from all of the
CLASS statements. The following form of the CLASS statement includes three
variables:

CLASS variable-1 variable-2 variable-3;

It has the same effect as this form:

CLASS variable-1;

CLASS variable-2;

CLASS variable-3;

Using a Symbol Variable
Normally, you use the CLASS statement with a symbol variable (see the discussion of

plot requests on page 1294). In this case, the listing of the plot variable contains a
column for each value of the symbol variable, and each row of the plot contains a point
for each value of the symbol variable. The plotting symbol is the first character of the
formatted value of the symbol variable. If more than one observation within a class has
the same value of a symbol variable, then PROC TIMEPLOT plots and prints only the
first occurrence of that value and writes a warning message to the SAS log.

ID Statement

Prints in the listing the values of the variables that you identify.

Featured in: Example 1 on page 1299

ID variable(s);



The TIMEPLOT Procedure � PLOT Statement 1293

Required Arguments

variable(s)
identifies one or more ID variables to print in the listing.

PLOT Statement

Specifies the plots to produce.

Tip: Each PLOT statement produces a separate plot.

PLOT plot-request(s)/option(s);

Table 49.1 on page 1293 summarizes the options that are available in the PLOT
statement.

Table 49.1 Summary of Options for the PLOT Statement

To do this Use this option

Customize the axis

Specify the range of values to plot on the horizontal axis, as well as the
interval represented by each print position on the horizontal axis

AXIS=

Order the values on the horizontal axis with the largest value in the
leftmost position

REVERSE

Control the appearance of the plot

Connect the leftmost plotting symbol to the rightmost plotting symbol with a
line of hyphens (-)

HILOC

Connect the leftmost and rightmost symbols on each line of the plot with a
line of hyphens (-) regardless of whether the symbols are reference symbols
or plotting symbols

JOINREF

Suppress the name of the symbol variable in column headings when you use
a CLASS statement

NOSYMNAME

Suppress the listing of the values of the variables that appear in the PLOT
statement

NPP

Specify the number of print positions to use for the horizontal axis POS=

Create and customize a reference line

Draw lines on the plot that are perpendicular to the specified values on the
horizontal axis

REF=

Specify the character for drawing reference lines REFCHAR=

Display multiple plots on the same set of axes

Plot all requests in one PLOT statement on one set of axes OVERLAY

Specify the character to print if multiple plotting symbols coincide OVPCHAR=



1294 PLOT Statement � Chapter 49

Required Arguments

plot-request(s)
specifies the variable or variables to plot and, optionally, the plotting symbol to use.
By default, each plot request produces a separate plot.

A plot request can have the following forms. You can mix different forms of
requests in one PLOT statement (see Example 4 on page 1306).

variable(s)
identifies one or more numeric variables to plot. PROC TIMEPLOT uses the first
character of the variable name as the plotting symbol.
Featured in: Example 1 on page 1299

(variable(s))=’plotting-symbol’
identifies one or more numeric variables to plot and specifies the plotting symbol
to use for all variables in the list. You can omit the parentheses if you use only one
variable.
Featured in: Example 2 on page 1301

(variable(s))=symbol-variable
identifies one or more numeric variables to plot and specifies a symbol variable.
PROC TIMEPLOT uses the first nonblank character of the formatted value of the
symbol variable as the plotting symbol for all variables in the list. The plotting
symbol changes from one observation to the next if the value of the symbol
variable changes. You can omit the parentheses if you use only one variable.
Featured in: Example 3 on page 1303

Options

AXIS=axis-specification
specifies the range of values to plot on the horizontal axis, as well as the interval
represented by each print position on the axis. PROC TIMEPLOT labels the first and
last ends of the axis, if space permits.

� For numeric values, axis-specification can be one of the following or a
combination of both:

n< . . .n>

n TO n <BY increment>

The values must be in either ascending or descending order. Use a negative
value for increment to specify descending order. The specified values are spaced
evenly along the horizontal axis even if the values are not uniformly
distributed. Numeric values can be specified in the following ways:

Specification Comments

axis=1 2 10 Values are 1, 2, and 10.

axis=10 to 100 by 5 Values appear in increments of 5,
starting at 10 and ending at 100.

axis=12 10 to 100 by 5 A combination of the two previous
forms of specification.



The TIMEPLOT Procedure � PLOT Statement 1295

� For axis variables that contain datetime values, axis-specification is either an
explicit list of values or a starting and an ending value with an increment
specified:

’date-time-value’i <. . . ’date-time-value’i>

’date-time-value’i TO ’date-time-value’i
<BY increment>

’date-time-value’i
any SAS date, time, or datetime value described for the SAS functions INTCK
and INTNX. The suffix i is one of the following:

D date

T time

DT datetime

increment
one of the valid arguments for the INTCK or INTNX functions. For dates,
increment can be one of the following:

DAY

WEEK

MONTH

QTR

YEAR
For datetimes, increment can be one of the following:

DTDAY

DTWEEK

DTMONTH

DTQTR

DTYEAR
For times, increment can be one of the following:

HOUR

MINUTE

SECOND
For example,

axis=’01JAN95’d to ’01JAN96’d by month
axis=’01JAN95’d to ’01JAN96’d by qtr

For descriptions of individual intervals, see the chapter on dates, times, and
intervals in SAS Language Reference: Concepts.

Note: You must use a FORMAT statement to print the tick-mark values in
an understandable form. �



1296 PLOT Statement � Chapter 49

Interaction: The value of POS= (see POS= on page 1296) overrides an interval set
with AXIS=.

Tip: If the range that you specify does not include all your data, then PROC
TIMEPLOT uses angle brackets (< or >) on the left or right border of the plot to
indicate a value that is outside the range.

Featured in: Example 2 on page 1301

HILOC
connects the leftmost plotting symbol to the rightmost plotting symbol with a line of
hyphens (-).
Interactions: If you specify JOINREF, then PROC TIMEPLOT ignores HILOC.

JOINREF
connects the leftmost and rightmost symbols on each line of the plot with a line of
hyphens (-), regardless of whether the symbols are reference symbols or plotting
symbols. However, if a line contains only reference symbols, then PROC TIMEPLOT
does not connect the symbols.
Featured in: Example 3 on page 1303

NOSYMNAME
suppresses the name of the symbol variable in column headings when you use a
CLASS statement. If you use NOSYMNAME, then only the value of the symbol
variable appears in the column heading.
Featured in: Example 5 on page 1308

NPP
suppresses the listing of the values of the variables that appear in the PLOT
statement.
Featured in: Example 3 on page 1303

OVERLAY
plots all requests in one PLOT statement on one set of axes. Otherwise, PROC
TIMEPLOT produces a separate plot for each plot request.
Featured in: Example 4 on page 1306

OVPCHAR=’character’
specifies the character to print if multiple plotting symbols coincide. If a plotting
symbol and a character in a reference line coincide, then PROC TIMEPLOT prints
the plotting symbol.
Default: at sign (@)
Featured in: Example 5 on page 1308

POS=print-positions-for-plot
specifies the number of print positions to use for the horizontal axis.
Default: If you omit both POS= and AXIS=, then PROC TIMEPLOT initially

assumes that POS=20. However, if space permits, then this value increases so
that the plot fills the available space.

Interaction: If you specify POS=0 and AXIS=, then the plot fills the available
space. POS= overrides an interval set with AXIS= (see the discussion of AXIS= on
page 1294).

See also: “Page Layout” on page 1297
Featured in: Example 1 on page 1299

REF=reference-value(s)
draws lines on the plot that are perpendicular to the specified values on the horizontal
axis. The values for reference-value(s) may be constants, or you may use the form



The TIMEPLOT Procedure � Procedure Output 1297

MEAN(variable(s))

If you use this form of REF=, then PROC TIMEPLOT evaluates the mean for each
variable that you list and draws a reference line for each mean.

Interaction: If you use the UNIFORM option in the PROC TIMEPLOT statement,
then the procedure calculates the mean values for the variables over all
observations for all BY groups. If you do not use UNIFORM, then the procedure
calculates the mean for each variable for each BY group.

Interaction: If a plotting symbol and a reference character coincide, then PROC
TIMEPLOT prints the plotting symbol.

Featured in: Example 3 on page 1303 and Example 4 on page 1306

REFCHAR=’character’
specifies the character for drawing reference lines.
Default: vertical bar (|)

Interaction: If you are using the JOINREF or HILOC option, then do not specify a
value for REFCHAR= that is the same as a plotting symbol, because PROC
TIMEPLOT will interpret the plotting symbols as reference characters and will
not connect the symbols as you expect.

Featured in: Example 3 on page 1303

REVERSE
orders the values on the horizontal axis with the largest value in the leftmost
position.

Featured in: Example 4 on page 1306

Results: TIMEPLOT Procedure

Data Considerations
The input data set usually contains a date variable to use as either a class or an ID

variable. Although PROC TIMEPLOT does not require an input data set sorted by
date, the output is usually more meaningful if the observations are in chronological
order. In addition, if you use a CLASS statement, then the output is more meaningful if
the input data set groups observations according to combinations of class variable
values. (For more information see “CLASS Statement” on page 1291.)

Procedure Output

Page Layout
For each plot request, PROC TIMEPLOT prints a listing and a plot. PROC

TIMEPLOT determines the arrangement of the page as follows:

� If you use POS=, then the procedure
� determines the size of the plot from the POS= value

� determines the space for the listing from the width of the columns of printed
values, equally spaced and with a maximum of five positions between columns



1298 ODS Table Names � Chapter 49

� centers the output on the page.

� If you omit POS=, then the procedure

� determines the width of the plot from the value of the AXIS= option

� expands the listing to fill the rest of the page.

If there is not enough space to print the listing and the plot for a particular plot
request, then PROC TIMEPLOT produces no output and writes the following error
message to the SAS log:

ERROR: Too many variables/symbol values
to print.

The error does not affect other plot requests.

Contents of the Listing
The listing in the output contains different information depending on whether or not

you use a CLASS statement. If you do not use a CLASS statement (see Example 1 on
page 1299), then PROC TIMEPLOT prints (and plots) each observation on a separate
line. If you do use a CLASS statement, then the form of the output varies depending on
whether or not you specify a symbol variable (see “Using a Symbol Variable” on page
1292).

ODS Table Names
The TIMEPLOT procedure assigns a name to each table that it creates. You can use

these names to reference the table when using the Output Delivery System (ODS) to
select tables and create output data sets. For more information, see SAS Output
Delivery System: User’s Guide.

Table 49.2 ODS Tables Produced by the TIMEPLOT Procedure

Table Name Description The TIMEPLOT procedure
generates the table:

Plot A single plot if you do not specify the
OVERLAY option

OverlaidPlot Two or more plots on a single
set of axes

if you specify the OVERLAY
option

Missing Values
Four types of variables can appear in the listing from PROC TIMEPLOT: plot

variables, ID variables, class variables, and symbol variables (as part of some column
headers). Plot variables and symbol variables can also appear in the plot.

Observations with missing values of a class variable form a class of observations.
In the listing, missing values appear as a period (.), a blank, or a special missing

value (the letters A through Z and the underscore (_) character).
In the plot, PROC TIMEPLOT handles different variables in different ways:

� An observation or class of observations with a missing value of the plot variable
does not appear in the plot.



The TIMEPLOT Procedure � Program 1299

� If you use a symbol variable (see the discussion of plot requests on page 1294),
then PROC TIMEPLOT uses a period (.) as the symbol variable on the plot for all
observations that have a missing value for the symbol variable.

Examples: TIMEPLOT Procedure

Example 1: Plotting a Single Variable

Procedure features:
ID statement
PLOT statement arguments:

simple plot request
POS=

This example
� uses a single PLOT statement to plot sales of refrigerators
� specifies the number of print positions to use for the horizontal axis of the plot
� provides context for the points in the plot by printing in the listing the values of

two variables that are not in the plot.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the SALES data set. SALES contains weekly information on the sales of refrigerators
and stoves by two sales representatives.

data sales;
input Month Week Seller $ Icebox Stove;
datalines;

1 1 Kreitz 3450.94 1312.61
1 1 LeGrange 2520.04 728.13
1 2 Kreitz 3240.67 222.35
1 2 LeGrange 2675.42 184.24
1 3 Kreitz 3160.45 2263.33
1 3 LeGrange 2805.35 267.35
1 4 Kreitz 3400.24 1787.45
1 4 LeGrange 2870.61 274.51



1300 Output � Chapter 49

2 1 Kreitz 3550.43 2910.37
2 1 LeGrange 2730.09 397.98
2 2 Kreitz 3385.74 819.69
2 2 LeGrange 2670.93 2242.24
;

Plot sales of refrigerators. The plot variable, Icebox, appears in both the listing and the
output. POS= provides 50 print positions for the horizontal axis.

proc timeplot data=sales;
plot icebox / pos=50;

Label the rows in the listing. The values of the ID variables, Month and Week, are used to
uniquely identify each row of the listing.

id month week;

Specify the titles.

title ’Weekly Sales of Iceboxes’;
title2 ’for the’;
title3 ’First Six Weeks of the Year’;

run;

Output

The column headers in the listing are the variables’ names. The plot uses the default plotting
symbol, which is the first character of the plot variable’s name.

Weekly Sales of Iceboxes 1
for the

First Six Weeks of the Year

Month Week Icebox min max
2520.04 3550.43

*--------------------------------------------------*
1 1 3450.94 | I |
1 1 2520.04 |I |
1 2 3240.67 | I |
1 2 2675.42 | I |
1 3 3160.45 | I |
1 3 2805.35 | I |
1 4 3400.24 | I |
1 4 2870.61 | I |
2 1 3550.43 | I|
2 1 2730.09 | I |
2 2 3385.74 | I |
2 2 2670.93 | I |

*--------------------------------------------------*



The TIMEPLOT Procedure � Program 1301

Example 2: Customizing an Axis and a Plotting Symbol

Procedure features:
ID statement
PLOT statement arguments:

using a plotting symbol
AXIS=

Other features:
LABEL statement
PROC FORMAT
SAS system options:

FMTSEARCH=
Data set: SALES on page 1299

This example
� specifies the character to use as the plotting symbol
� specifies the minimum and maximum values for the horizontal axis as well as the

interval represented by each print position
� provides context for the points in the plot by printing in the listing the values of

two variables that are not in the plot
� uses a variable’s label as a column header in the listing
� creates and uses a permanent format.

Program

Declare the PROCLIB SAS data library.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
adds the SAS data library PROCLIB to the search path that is used to locate formats.

options nodate pageno=1 linesize=80 pagesize=60
fmtsearch=(proclib);



1302 Program � Chapter 49

Create a format for the Month variable. PROC FORMAT creates a permanent format for
Month. The LIBRARY= option specifies a permanent storage location so that the formats are
available in subsequent SAS sessions. This format is used for examples throughout this chapter.

proc format library=proclib;
value monthfmt 1=’January’

2=’February’;
run;

Plot sales of refrigerators. The plot variable, Icebox, appears in both the listing and the
output. The plotting symbol is ’R’. AXIS= sets the minimum value of the axis to 2500 and the
maximum value to 3600. BY 25 specifies that each print position on the axis represents 25 units
(in this case, dollars).

proc timeplot data=sales;
plot icebox=’R’ / axis=2500 to 3600 by 25;

Label the rows in the listing. The values of the ID variables, Month and Week, are used to
uniquely identify each row of the listing.

id month week;

Apply a label to the sales column in the listing. The LABEL statement associates a label
with the variable Icebox for the duration of the PROC TIMEPLOT step. PROC TIMEPLOT uses
the label as the column header in the listing.

label icebox=’Refrigerator’;

Apply the MONTHFMT. format to the Month variable. The FORMAT statement assigns a
format to use for Month in the report.

format month monthfmt.;

Specify the titles.

title ’Weekly Sales of Refrigerators’;
title2 ’for the’;
title3 ’First Six Weeks of the Year’;

run;



The TIMEPLOT Procedure � Example 3: Using a Variable for a Plotting Symbol 1303

Output

The column headers in the listing are the variables’ names (for Month and Week, which have no
labels) and the variable’s label (for Icebox, which has a label). The plotting symbol is R (for
Refrigerator).

Weekly Sales of Refrigerators 1
for the

First Six Weeks of the Year

Month Week Refrigerator min max
2500 3600

*---------------------------------------------*
January 1 3450.94 | R |
January 1 2520.04 | R |
January 2 3240.67 | R |
January 2 2675.42 | R |
January 3 3160.45 | R |
January 3 2805.35 | R |
January 4 3400.24 | R |
January 4 2870.61 | R |
February 1 3550.43 | R |
February 1 2730.09 | R |
February 2 3385.74 | R |
February 2 2670.93 | R |

*---------------------------------------------*

Example 3: Using a Variable for a Plotting Symbol

Procedure features:
ID statement
PLOT statement arguments:

using a variable as the plotting symbol
JOINREF
NPP
REF=
REFCHAR=

Data set: SALES on page 1299

Formats: MONTHFMT. on page 1302

This example

� specifies a variable to use as the plotting symbol to distinguish between points for
each of two sales representatives

� suppresses the printing of the values of the plot variable in the listing

� draws a reference line to a specified value on the axis and specifies the character
to use to draw the line

� connects the leftmost and rightmost symbols on each line of the plot.



1304 Program � Chapter 49

Program

Declare the PROCLIB SAS data library.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
adds the SAS data library PROCLIB to the search path that is used to locate formats.

options nodate pageno=1 linesize=80 pagesize=60
fmtsearch=(proclib);

Plot sales of stoves. The PLOT statement specifies both the plotting variable, Stove, and a
symbol variable, Seller. The plotting symbol is the first letter of the formatted value of the Seller
(in this case, L or K).

proc timeplot data=sales;
plot stove=seller /

Suppress the appearance of the plotting variable in the listing. The values of the Stove
variable will not appear in the listing.

npp

Create a reference line on the plot. REF= and REFCHAR= draw a line of colons at the sales
target of $1500.

ref=1500 refchar=’:’

Draw a line between the symbols on each line of the plot. In this plot, JOINREF connects
each plotting symbol to the reference line.

joinref

Customize the horizontal axis. AXIS= sets the minimum value of the horizontal axis to 100
and the maximum value to 3000. BY 50 specifies that each print position on the axis represents
50 units (in this case, dollars).

axis=100 to 3000 by 50;



The TIMEPLOT Procedure � Output 1305

Label the rows in the listing. The values of the ID variables, Month and Week, are used to
identify each row of the listing.

id month week;

Apply the MONTHFMT. format to the Month variable. The FORMAT statement assigns a
format to use for Month in the report.

format month monthfmt.;

Specify the titles.

title ’Weekly Sales of Stoves’;
title2 ’Compared to Target Sales of $1500’;
title3 ’K for Kreitz; L for LeGrange’;

run;

Output

The plot uses the first letter of the value of Seller as the plotting symbol.

Weekly Sales of Stoves 1
Compared to Target Sales of $1500

K for Kreitz; L for LeGrange

Month Week min max
100 3000

*-----------------------------------------------------------*
January 1 | K---: |
January 1 | L--------------: |
January 2 | K-------------------------: |
January 2 | L-------------------------: |
January 3 | :--------------K |
January 3 | L------------------------: |
January 4 | :-----K |
January 4 | L------------------------: |
February 1 | :---------------------------K |
February 1 | L---------------------: |
February 2 | K-------------: |
February 2 | :--------------L |

*-----------------------------------------------------------*



1306 Example 4: Superimposing Two Plots � Chapter 49

Example 4: Superimposing Two Plots

Procedure features:
PROC TIMEPLOT statement options:

MAXDEC=
PLOT statement arguments:

using two types of plot requests
OVERLAY
REF=MEAN(variable(s))
REVERSE

Data set: SALES on page 1299

This example
� superimposes two plots on one set of axes
� specifies a variable to use as the plotting symbol for one plot and a character to

use as the plotting symbol for the other plot
� draws a reference line to the mean value of each of the two variables plotted
� reverses the labeling of the axis so that the largest value is at the far left of the

plot.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the number of decimal places to display. MAXDEC= specifies the number of
decimal places to display in the listing.

proc timeplot data=sales maxdec=0;

Plot sales of both stoves and refrigerators.The PLOT statement requests two plots. One
plot uses the first letter of the formatted value of Seller to plot the values of Stove. The other
uses the letter R (to match the label Refrigerators) to plot the value of Icebox.

plot stove=seller icebox=’R’ /

Print both plots on the same set of axes.

overlay



The TIMEPLOT Procedure � Output 1307

Create two reference lines on the plot. REF= draws two reference lines: one perpendicular
to the mean of Stove, the other perpendicular to the mean of Icebox.

ref=mean(stove icebox)

Order the values on the horizontal axis from largest to smallest.

reverse;

Apply a label to the sales column in the listing. The LABEL statement associates a label
with the variable Icebox for the duration of the PROC TIMEPLOT step. PROC TIMEPLOT uses
the label as the column header in the listing.

label icebox=’Refrigerators’;

Specify the titles.

title ’Weekly Sales of Stoves and Refrigerators’;
title2 ’for the’;
title3 ’First Six Weeks of the Year’;

run;

Output

The column header for the variable Icebox in the listing is the variable’s label (Refrigerators).
One plot uses the first letter of the value of Seller as the plotting symbol. The other plot uses
the letter R.

Weekly Sales of Stoves and Refrigerators 1
for the

First Six Weeks of the Year

Stove Refrigerators max min
3550.43 184.24

*--------------------------------------------------*
1313 3451 |R | K | |

728 2520 | | R | L |
222 3241 | R | | K |
184 2675 | | R | L|

2263 3160 | R | K | |
267 2805 | | R | L |

1787 3400 | R | K | |
275 2871 | | R | L |

2910 3550 |R | K | |
398 2730 | | R | L |
820 3386 | R | | K |

2242 2671 | | R L | |
*--------------------------------------------------*



1308 Example 5: Showing Multiple Observations on One Line of a Plot � Chapter 49

Example 5: Showing Multiple Observations on One Line of a Plot

Procedure features:
CLASS statement

PLOT statement arguments:

creating multiple plots
NOSYMNAME
OVPCHAR=

Data set: SALES on page 1299

Formats: MONTHFMT. on page 1302

This example

� groups observations for the same month and week so that sales for the two sales
representatives for the same week appear on the same line of the plot

� specifies a variable to use as the plotting symbol

� suppresses the name of the plotting variable from one plot

� specifies a size for the plots so that they both occupy the same amount of space.

Program

Declare the PROCLIB SAS data library.

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page. FMTSEARCH=
adds the SAS data library PROCLIB to the search path that is used to locate formats.

options nodate pageno=1 linesize=80 pagesize=60
fmtsearch=(proclib);

Specify subgroups for the analysis. The CLASS statement groups all observations with the
same values of Month and Week into one line in the output. Using the CLASS statement with a
symbol variable produces in the listing one column of the plot variable for each value of the
symbol variable.

proc timeplot data=sales;
class month week;



The TIMEPLOT Procedure � Output 1309

Plot sales of stoves and refrigerators. Each PLOT statement produces a separate plot. The
plotting symbol is the first character of the formatted value of the symbol variable: K for Kreitz;
L for LeGrange. POS= specifies that each plot uses 25 print positions for the horizontal axis.
OVPCHAR= designates the exclamation point as the plotting symbol when the plotting symbols
coincide. NOSYMNAME suppresses the name of the symbol variable Seller from the second
listing.

plot stove=seller / pos=25 ovpchar=’!’;
plot icebox=seller / pos=25 ovpchar=’!’ nosymname;

Apply formats to values in the listing. The FORMAT statement assigns formats to use for
Stove, Icebox, and Month in the report. The TITLE statement specifies a title.

format stove icebox dollar10.2 month monthfmt.;

Specify the title.

title ’Weekly Appliance Sales for the First Quarter’;
run;

Output

Weekly Appliance Sales for the First Quarter 1

Seller :Kreitz Seller :LeGrange
Month Week Stove Stove min max

$184.24 $2,910.37
*-------------------------*

January 1 $1,312.61 $728.13 | L K |
January 2 $222.35 $184.24 |! |
January 3 $2,263.33 $267.35 | L K |
January 4 $1,787.45 $274.51 | L K |
February 1 $2,910.37 $397.98 | L K|
February 2 $819.69 $2,242.24 | K L |

*-------------------------*

Weekly Appliance Sales for the First Quarter 2

Kreitz LeGrange
Month Week Icebox Icebox min max

$2,520.04 $3,550.43
*-------------------------*

January 1 $3,450.94 $2,520.04 |L K |
January 2 $3,240.67 $2,675.42 | L K |
January 3 $3,160.45 $2,805.35 | L K |
January 4 $3,400.24 $2,870.61 | L K |
February 1 $3,550.43 $2,730.09 | L K|
February 2 $3,385.74 $2,670.93 | L K |

*-------------------------*



1310



1311

C H A P T E R

50
The TRANSPOSE Procedure

Overview: TRANSPOSE Procedure 1311
What Does the TRANSPOSE Procedure Do? 1311

What Types of Transpositions Can PROC TRANSPOSE Perform? 1312

Syntax: TRANSPOSE Procedure 1314

PROC TRANSPOSE Statement 1314

BY Statement 1315
COPY Statement 1317

ID Statement 1318

IDLABEL Statement 1319

VAR Statement 1319

Results: TRANSPOSE Procedure 1320

Output Data Set 1320
Output Data Set Variables 1320

Attributes of Transposed Variables 1321

Names of Transposed Variables 1321

Examples: TRANSPOSE Procedure 1321

Example 1: Performing a Simple Transposition 1321
Example 2: Naming Transposed Variables 1323

Example 3: Labeling Transposed Variables 1324

Example 4: Transposing BY Groups 1325

Example 5: Naming Transposed Variables When the ID Variable Has Duplicate Values 1328

Example 6: Transposing Data for Statistical Analysis 1329

Overview: TRANSPOSE Procedure

What Does the TRANSPOSE Procedure Do?
The TRANSPOSE procedure creates an output data set by restructuring the values

in a SAS data set, transposing selected variables into observations. The TRANSPOSE
procedure can often eliminate the need to write a lengthy DATA step to achieve the
same result. Further, the output data set can be used in subsequent DATA or PROC
steps for analysis, reporting, or further data manipulation.

PROC TRANSPOSE does not produce printed output. To print the output data set
from the PROC TRANSPOSE step, use PROC PRINT, PROC REPORT, or another SAS
reporting tool.



1312 What Types of Transpositions Can PROC TRANSPOSE Perform? � Chapter 50

A transposed variable is a variable that the procedure creates by transposing the
values of an observation in the input data set into values of a variable in the output
data set.

What Types of Transpositions Can PROC TRANSPOSE Perform?

Simple Transposition
The following example illustrates a simple transposition. In the input data set, each

variable represents the scores from one tester. In the output data set, each observation
now represents the scores from one tester. Each value of _NAME_ is the name of a
variable in the input data set that the procedure transposed. Thus, the value of
_NAME_ identifies the source of each observation in the output data set. For example,
the values in the first observation in the output data set come from the values of the
variable Tester1 in the input data set. The statements that produce the output follow.

proc print data=proclib.product noobs;
title ’The Input Data Set’;

run;

proc transpose data=proclib.product
out=proclib.product_transposed;

run;

proc print data=proclib.product_transposed noobs;
title ’The Output Data Set’;

run;

Output 50.1 A Simple Transposition

The Input Data Set 1

Tester1 Tester2 Tester3 Tester4

22 25 21 21
15 19 18 17
17 19 19 19
20 19 16 19
14 15 13 13
15 17 18 19
10 11 9 10
22 24 23 21

The Output Data Set 2

_NAME_ COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8

Tester1 22 15 17 20 14 15 10 22
Tester2 25 19 19 19 15 17 11 24
Tester3 21 18 19 16 13 18 9 23
Tester4 21 17 19 19 13 19 10 21



The TRANSPOSE Procedure � What Types of Transpositions Can PROC TRANSPOSE Perform? 1313

Complex Transposition Using BY Groups
The next example, which uses BY groups, is more complex. The input data set

represents measurements of the weight and length of fish at two lakes. The statements
that create the output data set do the following:

� transpose only the variables that contain the length measurements
� create six BY groups, one for each lake and date
� use a data set option to name the transposed variable.

Output 50.2 A Transposition with BY Groups

Input Data Set 1

L
o L W L W L W L W
c e e e e e e e e
a n i n i n i n i
t D g g g g g g g g
i a t h t h t h t h
o t h t h t h t h t
n e 1 1 2 2 3 3 4 4

Cole Pond 02JUN95 31 0.25 32 0.30 32 0.25 33 0.30
Cole Pond 03JUL95 33 0.32 34 0.41 37 0.48 32 0.28
Cole Pond 04AUG95 29 0.23 30 0.25 34 0.47 32 0.30
Eagle Lake 02JUN95 32 0.35 32 0.25 33 0.30 . .
Eagle Lake 03JUL95 30 0.20 36 0.45 . . . .
Eagle Lake 04AUG95 33 0.30 33 0.28 34 0.42 . .

Fish Length Data for Each Location and Date 2

Location Date _NAME_ Measurement

Cole Pond 02JUN95 Length1 31
Cole Pond 02JUN95 Length2 32
Cole Pond 02JUN95 Length3 32
Cole Pond 02JUN95 Length4 33
Cole Pond 03JUL95 Length1 33
Cole Pond 03JUL95 Length2 34
Cole Pond 03JUL95 Length3 37
Cole Pond 03JUL95 Length4 32
Cole Pond 04AUG95 Length1 29
Cole Pond 04AUG95 Length2 30
Cole Pond 04AUG95 Length3 34
Cole Pond 04AUG95 Length4 32
Eagle Lake 02JUN95 Length1 32
Eagle Lake 02JUN95 Length2 32
Eagle Lake 02JUN95 Length3 33
Eagle Lake 02JUN95 Length4 .
Eagle Lake 03JUL95 Length1 30
Eagle Lake 03JUL95 Length2 36
Eagle Lake 03JUL95 Length3 .
Eagle Lake 03JUL95 Length4 .
Eagle Lake 04AUG95 Length1 33
Eagle Lake 04AUG95 Length2 33
Eagle Lake 04AUG95 Length3 34
Eagle Lake 04AUG95 Length4 .

For a complete explanation of the SAS program that produces these results, see
Example 4 on page 1325.



1314 Syntax: TRANSPOSE Procedure � Chapter 50

Syntax: TRANSPOSE Procedure
Tip: Does not support the Output Delivery System

Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 57 for
details. You can also use any global statements. See “Global Statements” on page 18 for
a list.

PROC TRANSPOSE <DATA=input-data-set> <LABEL=label> <LET>
<NAME=name> <OUT=output-data-set> <PREFIX=prefix>;

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

COPY variable(s);
ID variable;

IDLABEL variable;
VAR variable(s);

To do this Use this statement

Transpose each BY group BY

Copy variables directly without transposing them COPY

Specify a variable whose values name the transposed
variables

ID

Create labels for the transposed variables IDLABEL

List the variables to transpose VAR

PROC TRANSPOSE Statement
Reminder: You can use data set options with the DATA= and OUT= options. See “Data
Set Options” on page 18 for a list.

PROC TRANSPOSE <DATA=input-data-set> <LABEL=label> <LET>
<NAME=name> <OUT=output-data-set> <PREFIX=prefix>;

Options

DATA= input-data-set
names the SAS data set to transpose.

Default: most recently created SAS data set



The TRANSPOSE Procedure � BY Statement 1315

LABEL= label
specifies a name for the variable in the output data set that contains the label of the
variable that is being transposed to create the current observation.
Default: _LABEL_

LET
allows duplicate values of an ID variable. PROC TRANSPOSE transposes the
observation that contains the last occurrence of a particular ID value within the data
set or BY group.
Featured in: Example 5 on page 1328

NAME= name
specifies the name for the variable in the output data set that contains the name of
the variable that is being transposed to create the current observation.
Default: _NAME_
Featured in: Example 2 on page 1323

OUT= output-data-set
names the output data set. If output-data-set does not exist, then PROC
TRANSPOSE creates it by using the DATAn naming convention.
Default: DATAn

Featured in: Example 1 on page 1321

PREFIX= prefix
specifies a prefix to use in constructing names for transposed variables in the output
data set. For example, if PREFIX=VAR, then the names of the variables are VAR1,
VAR2, …,VARn.
Interaction: when you use PREFIX= with an ID statement, the value prefixes to

the ID value.
Featured in: Example 2 on page 1323

BY Statement

Defines BY groups.

Main discussion: “BY” on page 58
Featured in: Example 4 on page 1325
Restriction: You cannot use PROC TRANSPOSE with a BY statement or an ID
statement with an engine that supports concurrent access if another user is updating
the data set at the same time.

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;



1316 BY Statement � Chapter 50

Required Arguments

variable
specifies the variable that PROC TRANSPOSE uses to form BY groups. You can
specify more than one variable. If you do not use the NOTSORTED option in the BY
statement, then either the observations must be sorted by all the variables that you
specify, or they must be indexed appropriately. Variables in a BY statement are
called BY variables.

Options

DESCENDING
specifies that the data set is sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The data is grouped in another way, such as chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, then the procedure treats each contiguous set as a separate BY
group.

Transpositions with BY Groups
PROC TRANSPOSE does not transpose BY groups. Instead, for each BY group,

PROC TRANSPOSE creates one observation for each variable that it transposes.
Figure 50.1 on page 1317 shows what happens when you transpose a data set with

BY groups. TYPE is the BY variable, and SOLD, NOTSOLD, REPAIRED, and
JUNKED are the variables to transpose.



The TRANSPOSE Procedure � COPY Statement 1317

Figure 50.1 Transposition with BY Groups

TYPE MONTH SOLD NOTSOLD REPAIRED JUNKED

sedan
sedan
sports
sports
trucks
trucks

jan
feb
jan
feb
jan
feb

SOLD
NOTSOLD
REPAIRED
JUNKED
SOLD
NOTSOLD
REPAIRED
JUNKED
SOLD
NOTSOLD
REPAIRED
JUNKED

26
28
16
19
29
35

6
9
6
7
1
3

41
48
15
20
20
22

4
2
0
1
3
4

26
6

41
4

16
6

15
0

29
1

20
3

28
9

48
2

19
7

20
1

35
3

22
4

sedan
sedan
sedan
sedan
sports
sports
sports
sports
trucks
trucks
trucks
trucks

TYPE _NAME_ COL1 COL2

input
data set

output
data set

� The number of observations in the output data set (12) is the number of BY groups
(3) multiplied by the number of variables that are transposed (4).

� The BY variable is not transposed.
� _NAME_ contains the name of the variable in the input data set that was

transposed to create the current observation in the output data set. You can use
the NAME= option to specify another name for the _NAME_ variable.

� The maximum number of observations in any BY group in the input data set is
two; therefore, the output data set contains two variables, COL1 and COL2. COL1
and COL2 contain the values of SOLD, NOTSOLD, REPAIRED, and JUNKED.

Note: If a BY group in the input data set has more observations than other BY
groups, then PROC TRANSPOSE assigns missing values in the output data set to the
variables that have no corresponding input observations. �

COPY Statement

Copies variables directly from the input data set to the output data set without transposing them.

Featured in: Example 6 on page 1329

COPY variable(s);



1318 ID Statement � Chapter 50

Required Argument

variable(s)
names one or more variables that the COPY statement copies directly from the input
data set to the output data set without transposing them.

Details
Because the COPY statement copies variables directly to the output data set, the

number of observations in the output data set is equal to the number of observations in
the input data set.

The procedure pads the output data set with missing values if the number of
observations in the input data set is not equal to the number of variables that it
transposes.

ID Statement

Specifies a variable in the input data set whose formatted values name the transposed variables
in the output data set.

Featured in: Example 2 on page 1323
Restriction: You cannot use PROC TRANSPOSE with an ID statement or a BY
statement with an engine that supports concurrent access if another user is updating
the data set at the same time.

ID variable;

Required Argument

variable
names the variable whose formatted values name the transposed variables.

Duplicate ID Values
Typically, each formatted ID value occurs only once in the input data set or, if you

use a BY statement, only once within a BY group. Duplicate values cause PROC
TRANSPOSE to issue a warning message and stop. However, if you use the LET option
in the PROC TRANSPOSE statement, then the procedure issues a warning message
about duplicate ID values and transposes the observation that contains the last
occurrence of the duplicate ID value.

Making Variable Names out of Numeric Values
When you use a numeric variable as an ID variable, PROC TRANSPOSE changes

the formatted ID value into a valid SAS name.
However, SAS variable names cannot begin with a number. Thus, when the first

character of the formatted value is numeric, the procedure prefixes an underscore to the
value, truncating the last character of a 32-character value. Any remaining invalid



The TRANSPOSE Procedure � VAR Statement 1319

characters are replaced by underscores. The procedure truncates to 32 characters any
ID value that is longer than 32 characters when it uses that value to name a
transposed variable.

If the formatted value looks like a numeric constant, then PROC TRANSPOSE
changes the characters ‘+’, ‘−’, and ‘.’ to ‘P’, ‘N’, and ‘D’, respectively. If the formatted
value has characters that are not numerics, then PROC TRANSPOSE changes the
characters ‘+’, ‘−’, and ‘.’ to underscores.

Note: If the value of the VALIDVARNAME system option is V6, then PROC
TRANSPOSE truncates transposed variable names to eight characters. �

Missing Values
If you use an ID variable that contains a missing value, then PROC TRANSPOSE

writes an error message to the log. The procedure does not transpose observations that
have a missing value for the ID variable.

IDLABEL Statement

Creates labels for the transposed variables.

Restriction: Must appear after an ID statement.

Featured in: Example 3 on page 1324

IDLABEL variable;

Required Argument

variable
names the variable whose values the procedure uses to label the variables that the
ID statement names. variable can be character or numeric.

Note: To see the effect of the IDLABEL statement, print the output data set with
the PRINT procedure by using the LABEL option, or print the contents of the output
data set by using the CONTENTS statement in the DATASETS procedure. �

VAR Statement

Lists the variables to transpose.

Featured in: Example 4 on page 1325 and Example 6 on page 1329

VAR variable(s);



1320 Results: TRANSPOSE Procedure � Chapter 50

Required Argument

variable(s)
names one or more variables to transpose.

Details

� If you omit the VAR statement, the then TRANSPOSE procedure transposes all
numeric variables in the input data set that are not listed in another statement.

� You must list character variables in a VAR statement if you want to transpose
them.

Results: TRANSPOSE Procedure

Output Data Set
The TRANSPOSE procedure always produces an output data set, regardless of

whether you specify the OUT= option in the PROC TRANSPOSE statement. PROC
TRANSPOSE does not print the output data set. Use PROC PRINT, PROC REPORT, or
some other SAS reporting tool to print the output data set.

Output Data Set Variables
The output data set contains the following variables:

� variables that result from transposing the values of each variable into an
observation.

� a variable that PROC TRANSPOSE creates to identify the source of the values in
each observation in the output data set. This variable is a character variable
whose values are the names of the variables that are transposed from the input
data set. By default, PROC TRANSPOSE names this variable _NAME_. To
override the default name, use the NAME= option. The label for the _NAME_
variable is NAME OF FORMER VARIABLE.

� variables that PROC TRANSPOSE copies from the input data set when you use
either the BY or COPY statement. These variables have the same names and
values as they do in the input data set.

� a character variable whose values are the variable labels of the variables that are
being transposed (if any of the variables that the procedure is transposing have
labels). Specify the name of the variable by using the LABEL= option. The default
is _LABEL_.

Note: If the value of the LABEL= option or the NAME= option is the same as a
variable that appears in a BY or COPY statement, then the output data set does
not contain a variable whose values are the names or labels of the transposed
variables. �



The TRANSPOSE Procedure � Example 1: Performing a Simple Transposition 1321

Attributes of Transposed Variables

� All transposed variables are the same type and length.
� If all variables that the procedure is transposing are numeric, then the transposed

variables are numeric. Thus, if the numeric variable has a character string as a
formatted value, then its unformatted numeric value is transposed.

� If any variable that the procedure is transposing is character, then all transposed
variables are character. Thus, if you are transposing a numeric variable that has a
character string as a formatted value, then the formatted value is transposed.

� The length of the transposed variables is equal to the length of the longest
variable that is being transposed.

Names of Transposed Variables
PROC TRANSPOSE names transposed variables by using the following rules:
1 An ID statement specifies a variable in the input data set whose formatted values

become names for the transposed variables.
2 The PREFIX= option specifies a prefix to use in constructing the names of

transposed variables.
3 If you do not use an ID statement or the PREFIX= option, then PROC

TRANSPOSE looks for an input variable called _NAME_ from which to get the
names of the transposed variables.

4 If you do not use an ID statement or the PREFIX= option, and if the input data
set does not contain a variable named _NAME_, then PROC TRANSPOSE assigns
the names COL1, COL2, …, COLn to the transposed variables.

Examples: TRANSPOSE Procedure

Example 1: Performing a Simple Transposition

Procedure features:
PROC TRANSPOSE statement option:

OUT=

This example performs a default transposition and uses no subordinate statements.



1322 Program � Chapter 50

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Create the SCORE data set.set SCORE contains students’ names, their identification
numbers, and their grades on two tests and a final exam.

data score;
input Student $9. +1 StudentID $ Section $ Test1 Test2 Final;
datalines;

Capalleti 0545 1 94 91 87
Dubose 1252 2 51 65 91
Engles 1167 1 95 97 97
Grant 1230 2 63 75 80
Krupski 2527 2 80 76 71
Lundsford 4860 1 92 40 86
McBane 0674 1 75 78 72
;

Transpose the data set. PROC TRANSPOSE transposes only the numeric variables, Test1,
Test2, and Final, because no VAR statement appears and none of the numeric variables appear
in another statement. OUT= puts the result of the transposition in the data set
SCORE_TRANSPOSED.

proc transpose data=score out=score_transposed;
run;

Print the SCORE_TRANSPOSED data set. The NOOBS option suppresses the printing of
observation numbers.

proc print data=score_transposed noobs;
title ’Student Test Scores in Variables’;

run;



The TRANSPOSE Procedure � Program 1323

Output

In the output data set SCORE_TRANSPOSED, the variables COL1 through COL7 contain the
individual scores for the students. Each observation contains all the scores for one test. The
variable _NAME_ contains the names of the variables from the input data set that were
transposed.

Student Test Scores in Variables 1

_NAME_ COL1 COL2 COL3 COL4 COL5 COL6 COL7

Test1 94 51 95 63 80 92 75
Test2 91 65 97 75 76 40 78
Final 87 91 97 80 71 86 72

Example 2: Naming Transposed Variables
Procedure features:

PROC TRANSPOSE statement options:
NAME=
PREFIX=

ID statement
Data set: SCORE on page 1322

This example uses the values of a variable and a user-supplied value to name
transposed variables.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Transpose the data set. PROC TRANSPOSE transposes only the numeric variables, Test1,
Test2, and Final, because no VAR statement appears. OUT= puts the result of the transposition
in the IDNUMBER data set. NAME= specifies Test as the name for the variable that contains
the names of the variables in the input data set that the procedure transposes. The procedure
names the transposed variables by using the value from PREFIX=, sn, and the value of the ID
variable StudentID.

proc transpose data=score out=idnumber name=Test
prefix=sn;



1324 Output � Chapter 50

id studentid;
run;

Print the IDNUMBER data set. The NOOBS option suppresses the printing of observation
numbers.

proc print data=idnumber noobs;
title ’Student Test Scores’;

run;

Output

This is the output data set, IDNUMBER.

Student Test Scores 1

Test sn0545 sn1252 sn1167 sn1230 sn2527 sn4860 sn0674

Test1 94 51 95 63 80 92 75
Test2 91 65 97 75 76 40 78
Final 87 91 97 80 71 86 72

Example 3: Labeling Transposed Variables

Procedure features:
PROC TRANSPOSE statement option:

PREFIX=
IDLABEL statement

Data set: SCORE on page 1322

This example uses the values of the variable in the IDLABEL statement to label
transposed variables.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;



The TRANSPOSE Procedure � Example 4: Transposing BY Groups 1325

Transpose the data set. PROC TRANSPOSE transposes only the numeric variables, Test1,
Test2, and Final, because no VAR statement appears. OUT= puts the result of the transposition
in the IDLABEL data set. NAME= specifies Test as the name for the variable that contains the
names of the variables in the input data set that the procedure transposes. The procedure
names the transposed variables by using the value from PREFIX=, sn, and the value of the ID
variable StudentID.

proc transpose data=score out=idlabel name=Test
prefix=sn;

id studentid;

Assign labels to the output variables. PROC TRANSPOSE uses the values of the variable
Student to label the transposed variables. The procedure provides the following as the label for
the _NAME_ variable:NAME OF FORMER VARIABLE

idlabel student;
run;

Print the IDLABEL data set. The LABEL option causes PROC PRINT to print variable labels
for column headers. The NOOBS option suppresses the printing of observation numbers.

proc print data=idlabel label noobs;
title ’Student Test Scores’;

run;

Output

This is the output data set, IDLABEL.

Student Test Scores 1

NAME OF
FORMER

VARIABLE Capalleti Dubose Engles Grant Krupski Lundsford McBane

Test1 94 51 95 63 80 92 75
Test2 91 65 97 75 76 40 78
Final 87 91 97 80 71 86 72

Example 4: Transposing BY Groups

Procedure features:
BY statement
VAR statement



1326 Program � Chapter 50

Other features: Data set option:
RENAME=

This example illustrates transposing BY groups and selecting variables to transpose.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Create the FISHDATA data set. The data in FISHDATA represents length and weight
measurements of fish that were caught at two ponds on three separate days. The raw data is
sorted by Location and Date.

data fishdata;
infile datalines missover;
input Location & $10. Date date7.

Length1 Weight1 Length2 Weight2 Length3 Weight3
Length4 Weight4;

format date date7.;
datalines;

Cole Pond 2JUN95 31 .25 32 .3 32 .25 33 .3
Cole Pond 3JUL95 33 .32 34 .41 37 .48 32 .28
Cole Pond 4AUG95 29 .23 30 .25 34 .47 32 .3
Eagle Lake 2JUN95 32 .35 32 .25 33 .30
Eagle Lake 3JUL95 30 .20 36 .45
Eagle Lake 4AUG95 33 .30 33 .28 34 .42
;

Transpose the data set. OUT= puts the result of the transposition in the FISHLENGTH data
set. RENAME= renames COL1 in the output data set to Measurement.

proc transpose data=fishdata
out=fishlength(rename=(col1=Measurement));

Specify the variables to transpose. The VAR statement limits the variables that PROC
TRANSPOSE transposes.

var length1-length4;



The TRANSPOSE Procedure � Output 1327

Organize the output data set into BY groups. The BY statement creates BY groups for each
unique combination of values of Location and Date. The procedure does not transpose the BY
variables.

by location date;
run;

Print the FISHLENGTH data set. The NOOBS option suppresses the printing of observation
numbers.

proc print data=fishlength noobs;
title ’Fish Length Data for Each Location and Date’;

run;

Output

This is the output data set, FISHLENGTH. For each BY group in the original data set, PROC
TRANSPOSE creates four observations, one for each variable that it is transposing. Missing
values appear for the variable Measurement (renamed from COL1) when the variables that are
being transposed have no value in the input data set for that BY group. Several observations
have a missing value for Measurement. For example, in the last observation, a missing value
appears because the input data contained no value for Length4 on 04AUG95 at Eagle Lake.

Fish Length Data for Each Location and Date 1

Location Date _NAME_ Measurement

Cole Pond 02JUN95 Length1 31
Cole Pond 02JUN95 Length2 32
Cole Pond 02JUN95 Length3 32
Cole Pond 02JUN95 Length4 33
Cole Pond 03JUL95 Length1 33
Cole Pond 03JUL95 Length2 34
Cole Pond 03JUL95 Length3 37
Cole Pond 03JUL95 Length4 32
Cole Pond 04AUG95 Length1 29
Cole Pond 04AUG95 Length2 30
Cole Pond 04AUG95 Length3 34
Cole Pond 04AUG95 Length4 32
Eagle Lake 02JUN95 Length1 32
Eagle Lake 02JUN95 Length2 32
Eagle Lake 02JUN95 Length3 33
Eagle Lake 02JUN95 Length4 .
Eagle Lake 03JUL95 Length1 30
Eagle Lake 03JUL95 Length2 36
Eagle Lake 03JUL95 Length3 .
Eagle Lake 03JUL95 Length4 .
Eagle Lake 04AUG95 Length1 33
Eagle Lake 04AUG95 Length2 33
Eagle Lake 04AUG95 Length3 34
Eagle Lake 04AUG95 Length4 .



1328 Example 5: Naming Transposed Variables When the ID Variable Has Duplicate Values � Chapter 50

Example 5: Naming Transposed Variables When the ID Variable Has
Duplicate Values

Procedure features:
PROC TRANSPOSE statement option:

LET

This example shows how to use values of a variable (ID) to name transposed
variables even when the ID variable has duplicate values.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=64 pagesize=40;

Create the STOCKS data set. STOCKS contains stock prices for two competing kite
manufacturers. The prices are recorded for two days, three times a day: at opening, at noon, and
at closing. Notice that the input data set contains duplicate values for the Date variable.

data stocks;
input Company $14. Date $ Time $ Price;
datalines;

Horizon Kites jun11 opening 29
Horizon Kites jun11 noon 27
Horizon Kites jun11 closing 27
Horizon Kites jun12 opening 27
Horizon Kites jun12 noon 28
Horizon Kites jun12 closing 30
SkyHi Kites jun11 opening 43
SkyHi Kites jun11 noon 43
SkyHi Kites jun11 closing 44
SkyHi Kites jun12 opening 44
SkyHi Kites jun12 noon 45
SkyHi Kites jun12 closing 45
;

Transpose the data set. LET transposes only the last observation for each BY group. PROC
TRANSPOSE transposes only the Price variable. OUT= puts the result of the transposition in
the CLOSE data set.

proc transpose data=stocks out=close let;



The TRANSPOSE Procedure � Example 6: Transposing Data for Statistical Analysis 1329

Organize the output data set into BY groups. The BY statement creates two BY groups,
one for each company.

by company;

Name the transposed variables. The values of Date are used as names for the transposed
variables.

id date;
run;

Print the CLOSE data set. The NOOBS option suppresses the printing of observation
numbers..

proc print data=close noobs;
title ’Closing Prices for Horizon Kites and SkyHi Kites’;

run;

Output

This is the output data set, CLOSE.

Closing Prices for Horizon Kites and SkyHi Kites 1

Company _NAME_ jun11 jun12

Horizon Kites Price 27 30
SkyHi Kites Price 44 45

Example 6: Transposing Data for Statistical Analysis

Procedure features:
COPY statement

VAR statement

This example arranges data to make it suitable for either a multivariate or a
univariate repeated-measures analysis.

The data is from Chapter 8, “Repeated-Measures Analysis of Variance,” in SAS
System for Linear Models, Third Edition.



1330 Program 1 � Chapter 50

Program 1

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Create the WEIGHTS data set. The data in WEIGHTS represents the results of an exercise
therapy study of three weight-lifting programs: CONT is a control group, RI is a program in
which the number of repetitions is increased, and WI is a program in which the weight is
increased.

data weights;
input Program $ s1-s7;
datalines;

CONT 85 85 86 85 87 86 87
CONT 80 79 79 78 78 79 78
CONT 78 77 77 77 76 76 77
CONT 84 84 85 84 83 84 85
CONT 80 81 80 80 79 79 80
RI 79 79 79 80 80 78 80
RI 83 83 85 85 86 87 87
RI 81 83 82 82 83 83 82
RI 81 81 81 82 82 83 81
RI 80 81 82 82 82 84 86
WI 84 85 84 83 83 83 84
WI 74 75 75 76 75 76 76
WI 83 84 82 81 83 83 82
WI 86 87 87 87 87 87 86
WI 82 83 84 85 84 85 86
;

Create the SPLIT data set. This DATA step rearranges WEIGHTS to create the data set
SPLIT. The DATA step transposes the strength values and creates two new variables: Time and
Subject. SPLIT contains one observation for each repeated measure. SPLIT can be used in a
PROC GLM step for a univariate repeated-measures analysis.

data split;
set weights;
array s{7} s1-s7;
Subject + 1;
do Time=1 to 7;

Strength=s{time};
output;

end;
drop s1-s7;

run;



The TRANSPOSE Procedure � Program 2 1331

Print the SPLIT data set. The NOOBS options suppresses the printing of observation
numbers. The OBS= data set option limits the printing to the first 15 observations. SPLIT has
105 observations.

proc print data=split(obs=15) noobs;
title ’SPLIT Data Set’;
title2 ’First 15 Observations Only’;

run;

Output 1

SPLIT Data Set 1
First 15 Observations Only

Program Subject Time Strength

CONT 1 1 85
CONT 1 2 85
CONT 1 3 86
CONT 1 4 85
CONT 1 5 87
CONT 1 6 86
CONT 1 7 87
CONT 2 1 80
CONT 2 2 79
CONT 2 3 79
CONT 2 4 78
CONT 2 5 78
CONT 2 6 79
CONT 2 7 78
CONT 3 1 78

Program 2

Set the SAS system options.

options nodate pageno=1 linesize=80 pagesize=40;

Transpose the SPLIT data set. PROC TRANSPOSE transposes SPLIT to create TOTSPLIT.
The TOTSPLIT data set contains the same variables as SPLIT and a variable for each strength
measurement (Str1-Str7). TOTSPLIT can be used for either a multivariate repeated-measures
analysis or a univariate repeated-measures analysis.

proc transpose data=split out=totsplit prefix=Str;

Organize the output data set into BY groups, and populate each BY group with
untransposed values.The variables in the BY and COPY statements are not transposed.
TOTSPLIT contains the variables Program, Subject, Time, and Strength with the same values
that are in SPLIT. The BY statement creates the first observation in each BY group, which
contains the transposed values of Strength. The COPY statement creates the other observations
in each BY group by copying the values of Time and Strength without transposing them.



1332 Output 2 � Chapter 50

by program subject;
copy time strength;

Specify the variable to transpose. The VAR statement specifies the Strength variable as the
only variable to be transposed.

var strength;
run;

Print the TOTSPLIT data set. The NOOBS options suppresses the printing of observation
numbers. The OBS= data set option limits the printing to the first 15 observations. SPLIT has
105 observations.

proc print data=totsplit(obs=15) noobs;
title ’TOTSPLIT Data Set’;
title2 ’First 15 Observations Only’;

run;

Output 2

The variables in TOTSPLIT with missing values are used only in a multivariate
repeated-measures analysis. The missing values do not preclude this data set from being used
in a repeated-measures analysis because the MODEL statement in PROC GLM ignores
observations with missing values.

TOTSPLIT Data Set 1
First 15 Observations Only

Program Subject Time Strength _NAME_ Str1 Str2 Str3 Str4 Str5 Str6 Str7

CONT 1 1 85 Strength 85 85 86 85 87 86 87
CONT 1 2 85 . . . . . . .
CONT 1 3 86 . . . . . . .
CONT 1 4 85 . . . . . . .
CONT 1 5 87 . . . . . . .
CONT 1 6 86 . . . . . . .
CONT 1 7 87 . . . . . . .
CONT 2 1 80 Strength 80 79 79 78 78 79 78
CONT 2 2 79 . . . . . . .
CONT 2 3 79 . . . . . . .
CONT 2 4 78 . . . . . . .
CONT 2 5 78 . . . . . . .
CONT 2 6 79 . . . . . . .
CONT 2 7 78 . . . . . . .
CONT 3 1 78 Strength 78 77 77 77 76 76 77



1333

C H A P T E R

51
The TRANTAB Procedure

Information about the TRANTAB Procedure 1333

Information about the TRANTAB Procedure
See: For documentation of the TRANTAB procedure, see SAS National Language
Support (NLS): User’s Guide.



1334



1335

C H A P T E R

52
The UNIVARIATE Procedure

Information about the UNIVARIATE Procedure 1335

Information about the UNIVARIATE Procedure
See: The documentation for the UNIVARIATE procedure has moved to Volume 3 of this
book.



1336



1337

P A R T3

Appendices

Appendix 1. . . . . . . . .SAS Elementary Statistics Procedures 1339

Appendix 2. . . . . . . . .Operating Environment-Specific Procedures 1375

Appendix 3. . . . . . . . .Raw Data and DATA Steps 1377

Appendix 4. . . . . . . . .Recommended Reading 1419



1338



1339

A P P E N D I X

1
SAS Elementary Statistics
Procedures

Overview 1339
Keywords and Formulas 1340

Simple Statistics 1340

Descriptive Statistics 1342

Quantile and Related Statistics 1345

Hypothesis Testing Statistics 1347
Confidence Limits for the Mean 1347

Using Weights 1348

Data Requirements for Summarization Procedures 1348

Statistical Background 1348

Populations and Parameters 1348

Samples and Statistics 1349
Measures of Location 1350

The Mean 1350

The Median 1350

The Mode 1350

Percentiles 1350
Quantiles 1350

Measures of Variability 1354

The Range 1354

The Interquartile Range 1355

The Variance 1355
The Standard Deviation 1355

Coefficient of Variation 1355

Measures of Shape 1355

Skewness 1355

Kurtosis 1356

The Normal Distribution 1356
Sampling Distribution of the Mean 1359

Testing Hypotheses 1369

Defining a Hypothesis 1369

Significance and Power 1370

Student’s t Distribution 1371
Probability Values 1372

References 1373

Overview
This appendix provides a brief description of some of the statistical concepts

necessary for you to interpret the output of base SAS procedures for elementary



1340 Keywords and Formulas � Appendix 1

statistics. In addition, this appendix lists statistical notation, formulas, and standard
keywords used for common statistics in base SAS procedures. Brief examples illustrate
the statistical concepts.

Table A1.1 on page 1341 lists the most common statistics and the procedures that
compute them.

Keywords and Formulas

Simple Statistics
The base SAS procedures use a standardized set of keywords to refer to statistics.

You specify these keywords in SAS statements to request the statistics to be displayed
or stored in an output data set.

In the following notation, summation is over observations that contain nonmissing
values of the analyzed variable and, except where shown, over nonmissing weights and
frequencies of one or more:

��

is the nonmissing value of the analyzed variable for observation i.

��

is the frequency that is associated with �� if you use a FREQ statement. If you
omit the FREQ statement, then �� � � for all i.

��

is the weight that is associated with �� if you use a WEIGHT statement. The base
procedures automatically exclude the values of �� with missing weights from the
analysis.

By default, the base procedures treat a negative weight as if it is equal to zero.
However, if you use the EXCLNPWGT option in the PROC statement, then the
procedure also excludes those values of �� with nonpositive weights. Note that
most SAS/STAT procedures, such as PROC TTEST and PROC GLM, exclude
values with nonpositive weights by default.

If you omit the WEIGHT statement, then �� � � for all i.

�
is the number of nonmissing values of ��,

�
��. If you use the EXCLNPWGT

option and the WEIGHT statement, then � is the number of nonmissing values
with positive weights.

��
is the mean

�
�����
�

��

��

is the variance

�

�

�
�� ��� � ����



SAS Elementary Statistics Procedures � Simple Statistics 1341

where � is the variance divisor (the VARDEF= option) that you specify in the
PROC statement. Valid values are as follows:

When VARDEF= � equals . . .

N �

DF �� �

WEIGHT
�

��

WDF
�

�� � �

The default is DF.

��

is the standardized variable

��� � ��� ��

The standard keywords and formulas for each statistic follow. Some formulas use
keywords to designate the corresponding statistic.

Table A1.1 The Most Common Simple Statistics

Statistic

PROC
MEANS and
SUMMARY

PROC
UNIVARIATE

PROC
TABULATE

PROC
REPORT

PROC
CORR

PROC
SQL

Number of missing values X X X X X

Number of nonmissing
values X X X X X X

Number of observations X X X

Sum of weights X X X X X X

Mean X X X X X X

Sum X X X X X X

Extreme values X X

Minimum X X X X X X

Maximum X X X X X X

Range X X X X X

Uncorrected sum of
squares X X X X X X

Corrected sum of squares X X X X X X

Variance X X X X X X

Covariance X

Standard deviation X X X X X X



1342 Descriptive Statistics � Appendix 1

Statistic

PROC
MEANS and
SUMMARY

PROC
UNIVARIATE

PROC
TABULATE

PROC
REPORT

PROC
CORR

PROC
SQL

Standard error of the
mean X X X X X

Coefficient of variation X X X X X

Skewness X X X

Kurtosis X X X

Confidence Limits

of the mean X X X

of the variance X

of quantiles X

Median X X X X X

Mode X

Percentiles/Deciles/
Quartiles X X X X

t test

for mean=0 X X X X X

for mean=�� X

Nonparametric tests for
location X

Tests for normality X

Correlation coefficients X

Cronbach’s alpha X

Descriptive Statistics
The keywords for descriptive statistics are

CSS
is the sum of squares corrected for the mean, computed as

�
�� ��� � ���

�

CV
is the percent coefficient of variation, computed as

������ ���

KURTOSIS | KURT
is the kurtosis, which measures heaviness of tails. When VARDEF=DF, the
kurtosis is computed as



SAS Elementary Statistics Procedures � Descriptive Statistics 1343

���
�

��� �
� ��� ���

��� �� ��� ��

where ��� is ������
���������������

. The weighted kurtosis is computed as

� ���
�

���� � �� � ����
�
�

� �� � ���

��� �� ��� ��

� ��
�

�
��
� ���� � �� ����� �

� ��� ���

��� �� �� � ��

When VARDEF=N, the kurtosis is computed as

�
�

�

�
��� � �

and the weighted kurtosis is computed as

�
�

�

�
���� � �� � ����

�
� �

�
�

�

�
��
� ���� � �� ����� � �

where ��
�

is �����. The formula is invariant under the transformation
��

�
� ���� � � �. When you use VARDEF=WDF or VARDEF=WEIGHT, the

kurtosisis set to missing.

Note: PROC MEANS and PROC TABULATE do not compute weighted
kurtosis. �

MAX
is the maximum value of ��.

MEAN
is the arithmetic mean �.

MIN
is the minimum value of ��.

MODE
is the most frequent value of ��.

N
is the number of �� values that are not missing. Observations with 	� less than
one and �� equal to missing or �� � � (when you use the EXCLNPWGT option)
are excluded from the analysis and are not included in the calculation of N.

NMISS
is the number of �� values that are missing. Observations with 	� less than one
and �� equal to missing or �� � � (when you use the EXCLNPWGT option) are
excluded from the analysis and are not included in the calculation of NMISS.



1344 Descriptive Statistics � Appendix 1

NOBS
is the total number of observations and is calculated as the sum of N and NMISS.
However, if you use the WEIGHT statement, then NOBS is calculated as the sum
of N, NMISS, and the number of observations excluded because of missing or
nonpositive weights.

RANGE
is the range and is calculated as the difference between maximum value and
minimum value.

SKEWNESS | SKEW
is skewness, which measures the tendency of the deviations to be larger in one
direction than in the other. When VARDEF=DF, the skewness is computed as

���
�

��
�

where ��
�

is �
����������

. The weighted skewness is computed as

� ���
�

���� � �� � ����
�

� ���
�

�
���
� ���� � �� �����

When VARDEF=N, the skewness is computed as

�
�

�

�
���

and the weighted skewness is computed as

�
�

�

�
���� � �� � ����

�

�
�

�

�
�

���
� ���� � �� �����

The formula is invariant under the transformation ��

� � ���� � � �. When you
use VARDEF=WDF or VARDEF=WEIGHT, the skewnessis set to missing.

Note: PROC MEANS and PROC TABULATE do not compute weighted
skewness. �

STDDEV|STD
is the standard deviation s and is computed as the square root of the variance, 	�.

STDERR | STDMEAN
is the standard error of the mean, computed as

	�
��

��

when VARDEF=DF, which is the default. Otherwise, STDERR is set to missing.



SAS Elementary Statistics Procedures � Quantile and Related Statistics 1345

SUM
is the sum, computed as

�
����

SUMWGT
is the sum of the weights, � , computed as

�
��

USS
is the uncorrected sum of squares, computed as

�
���

�

�

VAR
is the variance ��.

Quantile and Related Statistics
The keywords for quantiles and related statistics are

MEDIAN
is the middle value.

P1
is the 1st percentile.

P5
is the 5th percentile.

P10
is the 10th percentile.

P90
is the 90th percentile.

P95
is the 95th percentile.

P99
is the 99th percentile.

Q1
is the lower quartile (25th percentile).

Q3
is the upper quartile (75th percentile).

QRANGE
is interquartile range and is calculated as

�� ���



1346 Quantile and Related Statistics � Appendix 1

You use the QNTLDEF= option (PCTLDEF= in PROC UNIVARIATE) to specify the
method that the procedure uses to compute percentiles. Let � be the number of
nonmissing values for a variable, and let ��� ��� � � � � �� represent the ordered values of
the variable such that �� is the smallest value, �� is next smallest value, and �� is the
largest value. For the tth percentile between 0 and 1, let � � �����. Then define � as
the integer part of �� and � as the fractional part of �� or ��� �� �, so that

�� � � � � ��	
 ������ � �� �� �� �� �

�� � �� � � � � � ��	
 ������ � �

Here, QNTLDEF= specifies the method that the procedure uses to compute the tth
percentile, as shown in the table that follows.

When you use the WEIGHT statement, the tth percentile is computed as

� �

�����
����

�

�
��� � ����� if

��
���

	� � �


���� if
��

���

	� � �
 �
����
���

	�

where 	� is the weight associated with �� and 
 �
��

���

	� is the sum of the weights.

When the observations have identical weights, the weighted percentiles are the same as
the unweighted percentiles with QNTLDEF=5.

Table A1.2 Methods for Computing Quantile Statistics

QNTLDEF= Description Formula

� � �� � ���� � �����1 weighted average at ���

where �� is taken to be ��

� � �� if � �� �
�

� � �� if � � �
� and � is

even

� � ���� if � � �
� and � is

odd

2 observation numbered closest to ��

where i is the integer part of ��� �
�

� � �� if � � �3 empirical distribution function

� � ���� if � � �

� � �� � ���� � �����4 weighted average aimed at �������

where ���� is taken to be ��



SAS Elementary Statistics Procedures � Confidence Limits for the Mean 1347

QNTLDEF= Description Formula

� � �
� ��� � ����� if � � �5 empirical distribution function with

averaging
� � ���� if � � �

Hypothesis Testing Statistics
The keywords for hypothesis testing statistics are

T
is the Student’s t statistic to test the null hypothesis that the population mean is
equal to �� and is calculated as

�� ��

��
��

��

By default, �� is equal to zero. You can use the MU0= option in the PROC
UNIVARIATE statement to specify ��. You must use VARDEF=DF, which is the
default variance divisor, otherwise T is set to missing.

By default, when you use a WEIGHT statement, the procedure counts the ��
values with nonpositive weights in the degrees of freedom. Use the EXCLNPWGT
option in the PROC statement to exclude values with nonpositive weights. Most
SAS/STAT procedures, such as PROC TTEST and PROC GLM automatically
exclude values with nonpositive weights.

PROBT
is the two-tailed p-value for Student’s t statistic, T, with � � � degrees of freedom.
This is the probability under the null hypothesis of obtaining a more extreme
value of T than is observed in this sample.

Confidence Limits for the Mean
The keywords for confidence limits are

CLM
is the two-sided confidence limit for the mean. A two-sided ��� �� � 	�percent
confidence interval for the mean has upper and lower limits

�� 
�����������
���
��

where � is
�

�
���

�
��� � ���, 
����������� is the (�� 	��) critical value of the

Student’s t statistics with �� � degrees of freedom, and 	 is the value of the
ALPHA= option which by default is 0.05. Unless you use VARDEF=DF, which is
the default variance divisor, CLM is set to missing.

LCLM
is the one-sided confidence limit below the mean. The one-sided
��� �� � 	�percent confidence interval for the mean has the lower limit



1348 Using Weights � Appendix 1

�� ����������
�

��
��

Unless you use VARDEF=DF, which is the default variance divisor, LCLM is set to
missing.

UCLM
is the one-sided confidence limit above the mean. The one-sided
��� �� � ��percent confidence interval for the mean has the upper limit

�� ����������
�

��
��

Unless you use VARDEF=DF, which is the default variance divisor, UCLM is set to
missing.

Using Weights
For more information on using weights and an example, see “WEIGHT” on page 63.

Data Requirements for Summarization Procedures
The following are the minimal data requirements to compute unweighted statistics

and do not describe recommended sample sizes. Statistics are reported as missing if
VARDEF=DF (the default) and these requirements are not met:

� N and NMISS are computed regardless of the number of missing or nonmissing
observations.

� SUM, MEAN, MAX, MIN, RANGE, USS, and CSS require at least one nonmissing
observation.

� VAR, STD, STDERR, CV, T, and PRT require at least two nonmissing observations.

� SKEWNESS requires at least three nonmissing observations.
� KURTOSIS requires at least four nonmissing observations.
� SKEWNESS, KURTOSIS, T, and PROBT require that STD is greater than zero.
� CV requires that MEAN is not equal to zero.
� CLM, LCLM, UCLM, STDERR, T, and PROBT require that VARDEF=DF.

Statistical Background

Populations and Parameters
Usually, there is a clearly defined set of elements in which you are interested. This

set of elements is called the universe, and a set of values associated with these elements
is called a population of values. The statistical term population has nothing to do with
people per se. A statistical population is a collection of values, not a collection of people.
For example, a universe is all the students at a particular school, and there could be
two populations of interest: one of height values and one of weight values. Or, a



SAS Elementary Statistics Procedures � Samples and Statistics 1349

universe is the set of all widgets manufactured by a particular company, while the
population of values could be the length of time each widget is used before it fails.

A population of values can be described in terms of its cumulative distribution
function, which gives the proportion of the population less than or equal to each
possible value. A discrete population can also be described by a probability function,
which gives the proportion of the population equal to each possible value. A continuous
population can often be described by a density function, which is the derivative of the
cumulative distribution function. A density function can be approximated by a
histogram that gives the proportion of the population lying within each of a series of
intervals of values. A probability density function is like a histogram with an infinite
number of infinitely small intervals.

In technical literature, when the term distribution is used without qualification, it
generally refers to the cumulative distribution function. In informal writing,
distribution sometimes means the density function instead. Often the word distribution
is used simply to refer to an abstract population of values rather than some concrete
population. Thus, the statistical literature refers to many types of abstract distributions,
such as normal distributions, exponential distributions, Cauchy distributions, and so
on. When a phrase such as normal distribution is used, it frequently does not matter
whether the cumulative distribution function or the density function is intended.

It may be expedient to describe a population in terms of a few measures that
summarize interesting features of the distribution. One such measure, computed from
the population values, is called a parameter. Many different parameters can be defined
to measure different aspects of a distribution.

The most commonly used parameter is the (arithmetic) mean. If the population
contains a finite number of values, then the population mean is computed as the sum of
all the values in the population divided by the number of elements in the population.
For an infinite population, the concept of the mean is similar but requires more
complicated mathematics.

E(x) denotes the mean of a population of values symbolized by x, such as height,
where E stands for expected value. You can also consider expected values of derived
functions of the original values. For example, if x represents height, then �

�
�
�
�

is the
expected value of height squared, that is, the mean value of the population obtained by
squaring every value in the population of heights.

Samples and Statistics
It is often impossible to measure all of the values in a population. A collection of

measured values is called a sample. A mathematical function of a sample of values is
called a statistic. A statistic is to a sample as a parameter is to a population. It is
customary to denote statistics by Roman letters and parameters by Greek letters. For
example, the population mean is often written as �, whereas the sample mean is
written as ��. The field of statistics is largely concerned with the study of the behavior of
sample statistics.

Samples can be selected in a variety of ways. Most SAS procedures assume that the
data constitute a simple random sample, which means that the sample was selected in
such a way that all possible samples were equally likely to be selected.

Statistics from a sample can be used to make inferences, or reasonable guesses,
about the parameters of a population. For example, if you take a random sample of 30
students from the high school, then the mean height for those 30 students is a
reasonable guess, or estimate, of the mean height of all the students in the high school.
Other statistics, such as the standard error, can provide information about how good an
estimate is likely to be.

For any population parameter, several statistics can estimate it. Often, however,
there is one particular statistic that is customarily used to estimate a given parameter.



1350 Measures of Location � Appendix 1

For example, the sample mean is the usual estimator of the population mean. In the
case of the mean, the formulas for the parameter and the statistic are the same. In
other cases, the formula for a parameter may be different from that of the most
commonly used estimator. The most commonly used estimator is not necessarily the
best estimator in all applications.

Measures of Location
Measures of location include the mean, the median, and the mode. These measures

describe the center of a distribution. In the definitions that follow, notice that if the
entire sample changes by adding a fixed amount to each observation, then these
measures of location are shifted by the same fixed amount.

The Mean
The population mean � � ��� � is usually estimated by the sample mean ��.

The Median
The population median is the central value, lying above and below half of the

population values. The sample median is the middle value when the data are arranged
in ascending or descending order. For an even number of observations, the midpoint
between the two middle values is usually reported as the median.

The Mode
The mode is the value at which the density of the population is at a maximum. Some

densities have more than one local maximum (peak) and are said to be multimodal.
The sample mode is the value that occurs most often in the sample. By default, PROC
UNIVARIATE reports the lowest such value if there is a tie for the most-often-occurring
sample value. PROC UNIVARIATE lists all possible modes when you specify the
MODES option in the PROC statement. If the population is continuous, then all sample
values occur once, and the sample mode has little use.

Percentiles
Percentiles, including quantiles, quartiles, and the median, are useful for a detailed

study of a distribution. For a set of measurements arranged in order of magnitude, the
pth percentile is the value that has p percent of the measurements below it and (100−p)
percent above it. The median is the 50th percentile. Because it may not be possible to
divide your data so that you get exactly the desired percentile, the UNIVARIATE
procedure uses a more precise definition.

The upper quartile of a distribution is the value below which 75 percent of the
measurements fall (the 75th percentile). Twenty-five percent of the measurements fall
below the lower quartile value.

Quantiles
In the following example, SAS artificially generates the data with a pseudorandom

number function. The UNIVARIATE procedure computes a variety of quantiles and
measures of location, and outputs the values to a SAS data set. A DATA step then uses
the SYMPUT routine to assign the values of the statistics to macro variables. The



SAS Elementary Statistics Procedures � Quantiles 1351

macro %FORMGEN uses these macro variables to produce value labels for the
FORMAT procedure. PROC CHART uses the resulting format to display the values of
the statistics on a histogram.

options nodate pageno=1 linesize=80 pagesize=52;

title ’Example of Quantiles and Measures of Location’;

data random;
drop n;
do n=1 to 1000;

X=floor(exp(rannor(314159)*.8+1.8));
output;

end;
run;

proc univariate data=random nextrobs=0;
var x;
output out=location

mean=Mean mode=Mode median=Median
q1=Q1 q3=Q3 p5=P5 p10=P10 p90=P90 p95=P95
max=Max;

run;

proc print data=location noobs;
run;

data _null_;
set location;
call symput(’MEAN’,round(mean,1));
call symput(’MODE’,mode);
call symput(’MEDIAN’,round(median,1));
call symput(’Q1’,round(q1,1));
call symput(’Q3’,round(q3,1));
call symput(’P5’,round(p5,1));
call symput(’P10’,round(p10,1));
call symput(’P90’,round(p90,1));
call symput(’P95’,round(p95,1));
call symput(’MAX’,min(50,max));

run;

%macro formgen;
%do i=1 %to &max;

%let value=&i;
%if &i=&p5 %then %let value=&value P5;
%if &i=&p10 %then %let value=&value P10;
%if &i=&q1 %then %let value=&value Q1;
%if &i=&mode %then %let value=&value Mode;
%if &i=&median %then %let value=&value Median;
%if &i=&mean %then %let value=&value Mean;
%if &i=&q3 %then %let value=&value Q3;
%if &i=&p90 %then %let value=&value P90;
%if &i=&p95 %then %let value=&value P95;



1352 Quantiles � Appendix 1

%if &i=&max %then %let value=>=&value;
&i="&value"

%end;
%mend;

proc format print;
value stat %formgen;

run;
options pagesize=42 linesize=80;

proc chart data=random;
vbar x / midpoints=1 to &max by 1;
format x stat.;
footnote ’P5 = 5TH PERCENTILE’;
footnote2 ’P10 = 10TH PERCENTILE’;
footnote3 ’P90 = 90TH PERCENTILE’;
footnote4 ’P95 = 95TH PERCENTILE’;
footnote5 ’Q1 = 1ST QUARTILE ’;
footnote6 ’Q3 = 3RD QUARTILE ’;



SAS Elementary Statistics Procedures � Quantiles 1353

run;

Example of Quantiles and Measures of Location 1

The UNIVARIATE Procedure
Variable: X

Moments

N 1000 Sum Weights 1000
Mean 7.605 Sum Observations 7605
Std Deviation 7.38169794 Variance 54.4894645
Skewness 2.73038523 Kurtosis 11.1870588
Uncorrected SS 112271 Corrected SS 54434.975
Coeff Variation 97.0637467 Std Error Mean 0.23342978

Basic Statistical Measures

Location Variability

Mean 7.605000 Std Deviation 7.38170
Median 5.000000 Variance 54.48946
Mode 3.000000 Range 62.00000

Interquartile Range 6.00000

Tests for Location: Mu0=0

Test -Statistic- -----p Value------

Student’s t t 32.57939 Pr > |t| <.0001
Sign M 494.5 Pr >= |M| <.0001
Signed Rank S 244777.5 Pr >= |S| <.0001

Quantiles (Definition 5)

Quantile Estimate

100% Max 62.0
99% 37.5
95% 21.5
90% 16.0
75% Q3 9.0
50% Median 5.0
25% Q1 3.0
10% 2.0
5% 1.0
1% 0.0
0% Min 0.0

Example of Quantiles and Measures of Location 2

Mean Max P95 P90 Q3 Median Q1 P10 P5 Mode

7.605 62 21.5 16 9 5 3 2 1 3



1354 Measures of Variability � Appendix 1

Example of Quantiles and Measures of Location 3

Frequency

120 + *
| *
| **
| ***

90 +*****
|*****
|*******
|*******

60 +*******
|*********
|*********
|*********

30 +************
|************ *
|**************** *
|*********************** * *
---------------------------------------------------

1234567891111111111222222222233333333334444444444>
0123456789012345678901234567890123456789=

5
PPQ M MQ 0
511 e e3 P P

0 d a 9 9
i n 0 5

M a
o n
d
e

X Midpoint

P5 = 5TH PERCENTILE
P10 = 10TH PERCENTILE
P90 = 90TH PERCENTILE
P95 = 95TH PERCENTILE
Q1 = 1ST QUARTILE
Q3 = 3RD QUARTILE

Measures of Variability
Another group of statistics is important in studying the distribution of a population.

These statistics measure the variability, also called the spread, of values. In the
definitions given in the sections that follow, notice that if the entire sample is changed
by the addition of a fixed amount to each observation, then the values of these statistics
are unchanged. If each observation in the sample is multiplied by a constant, however,
then the values of these statistics are appropriately rescaled.

The Range
The sample range is the difference between the largest and smallest values in the

sample. For many populations, at least in statistical theory, the range is infinite, so the
sample range may not tell you much about the population. The sample range tends to
increase as the sample size increases. If all sample values are multiplied by a constant,
then the sample range is multiplied by the same constant.



SAS Elementary Statistics Procedures � Measures of Shape 1355

The Interquartile Range
The interquartile range is the difference between the upper and lower quartiles. If

all sample values are multiplied by a constant, then the sample interquartile range is
multiplied by the same constant.

The Variance
The population variance, usually denoted by ��, is the expected value of the squared

difference of the values from the population mean:

�
� � ��� � ���

The sample variance is denoted by ��. The difference between a value and the mean
is called a deviation from the mean. Thus, the variance approximates the mean of the
squared deviations.

When all the values lie close to the mean, the variance is small but never less than
zero. When values are more scattered, the variance is larger. If all sample values are
multiplied by a constant, then the sample variance is multiplied by the square of the
constant.

Sometimes values other than �� � are used in the denominator. The VARDEF=
option controls what divisor the procedure uses.

The Standard Deviation
The standard deviation is the square root of the variance, or root-mean-square

deviation from the mean, in either a population or a sample. The usual symbols are �

for the population and s for a sample. The standard deviation is expressed in the same
units as the observations, rather than in squared units. If all sample values are
multiplied by a constant, then the sample standard deviation is multiplied by the same
constant.

Coefficient of Variation
The coefficient of variation is a unitless measure of relative variability. It is defined

as the ratio of the standard deviation to the mean expressed as a percentage. The
coefficient of variation is meaningful only if the variable is measured on a ratio scale. If
all sample values are multiplied by a constant, then the sample coefficient of variation
remains unchanged.

Measures of Shape

Skewness
The variance is a measure of the overall size of the deviations from the mean. Since

the formula for the variance squares the deviations, both positive and negative
deviations contribute to the variance in the same way. In many distributions, positive
deviations may tend to be larger in magnitude than negative deviations, or vice versa.
Skewness is a measure of the tendency of the deviations to be larger in one direction
than in the other. For example, the data in the last example are skewed to the right.



1356 The Normal Distribution � Appendix 1

Population skewness is defined as

� �� � ��� ���

Because the deviations are cubed rather than squared, the signs of the deviations are
maintained. Cubing the deviations also emphasizes the effects of large deviations. The
formula includes a divisor of �� to remove the effect of scale, so multiplying all values
by a constant does not change the skewness. Skewness can thus be interpreted as a
tendency for one tail of the population to be heavier than the other. Skewness can be
positive or negative and is unbounded.

Kurtosis
The heaviness of the tails of a distribution affects the behavior of many statistics.

Hence it is useful to have a measure of tail heaviness. One such measure is kurtosis.
The population kurtosis is usually defined as

� �� � ���

��
� �

Note: Some statisticians omit the subtraction of 3. �

Because the deviations are raised to the fourth power, positive and negative
deviations make the same contribution, while large deviations are strongly emphasized.
Because of the divisor ��, multiplying each value by a constant has no effect on kurtosis.

Population kurtosis must lie between �� and ��, inclusive. If �� represents
population skewness and �� represents population kurtosis, then

�� � ����
�
� �

Statistical literature sometimes reports that kurtosis measures the peakedness of a
density. However, heavy tails have much more influence on kurtosis than does the shape
of the distribution near the mean (Kaplansky 1945; Ali 1974; Johnson, et al. 1980).

Sample skewness and kurtosis are rather unreliable estimators of the corresponding
parameters in small samples. They are better estimators when your sample is very
large. However, large values of skewness or kurtosis may merit attention even in small
samples because such values indicate that statistical methods that are based on
normality assumptions may be inappropriate.

The Normal Distribution
One especially important family of theoretical distributions is the normal or Gaussian

distribution. A normal distribution is a smooth symmetric function often referred to as
"bell-shaped." Its skewness and kurtosis are both zero. A normal distribution can be
completely specified by only two parameters: the mean and the standard deviation.
Approximately 68 percent of the values in a normal population are within one standard
deviation of the population mean; approximately 95 percent of the values are within



SAS Elementary Statistics Procedures � The Normal Distribution 1357

two standard deviations of the mean; and about 99.7 percent are within three standard
deviations. Use of the term normal to describe this particular kind of distribution does
not imply that other kinds of distributions are necessarily abnormal or pathological.

Many statistical methods are designed under the assumption that the population
being sampled is normally distributed. Nevertheless, most real-life populations do not
have normal distributions. Before using any statistical method based on normality
assumptions, you should consult the statistical literature to find out how sensitive the
method is to nonnormality and, if necessary, check your sample for evidence of
nonnormality.

In the following example, SAS generates a sample from a normal distribution with a
mean of 50 and a standard deviation of 10. The UNIVARIATE procedure performs tests
for location and normality. Because the data are from a normal distribution, all p-values
from the tests for normality are greater than 0.15. The CHART procedure displays a
histogram of the observations. The shape of the histogram is a belllike, normal density.

options nodate pageno=1 linesize=80 pagesize=52;

title ’10000 Obs Sample from a Normal Distribution’;
title2 ’with Mean=50 and Standard Deviation=10’;

data normaldat;
drop n;
do n=1 to 10000;

X=10*rannor(53124)+50;
output;

end;
run;

proc univariate data=normaldat nextrobs=0 normal
mu0=50 loccount;

var x;
run;

proc format;
picture msd

20=’20 3*Std’ (noedit)
30=’30 2*Std’ (noedit)
40=’40 1*Std’ (noedit)
50=’50 Mean ’ (noedit)
60=’60 1*Std’ (noedit)
70=’70 2*Std’ (noedit)
80=’80 3*Std’ (noedit)

other=’ ’;
run;
options linesize=80 pagesize=42;

proc chart;
vbar x / midpoints=20 to 80 by 2;
format x msd.;

run;



1358 The Normal Distribution � Appendix 1

10000 Obs Sample from a Normal Distribution 1
with Mean=50 and Standard Deviation=10

The UNIVARIATE Procedure
Variable: X

Moments

N 10000 Sum Weights 10000
Mean 50.0323744 Sum Observations 500323.744
Std Deviation 9.92013874 Variance 98.4091525
Skewness -0.019929 Kurtosis -0.0163755
Uncorrected SS 26016378 Corrected SS 983993.116
Coeff Variation 19.8274395 Std Error Mean 0.09920139

Basic Statistical Measures

Location Variability

Mean 50.03237 Std Deviation 9.92014
Median 50.06492 Variance 98.40915
Mode . Range 76.51343

Interquartile Range 13.28179

Tests for Location: Mu0=50

Test -Statistic- -----p Value------

Student’s t t 0.32635 Pr > |t| 0.7442
Sign M 26 Pr >= |M| 0.6101
Signed Rank S 174063 Pr >= |S| 0.5466

Location Counts: Mu0=50.00

Count Value

Num Obs > Mu0 5026
Num Obs ^= Mu0 10000
Num Obs < Mu0 4974

Tests for Normality

Test --Statistic--- -----p Value------

Kolmogorov-Smirnov D 0.006595 Pr > D >0.1500
Cramer-von Mises W-Sq 0.049963 Pr > W-Sq >0.2500
Anderson-Darling A-Sq 0.371151 Pr > A-Sq >0.2500



SAS Elementary Statistics Procedures � Sampling Distribution of the Mean 1359

10000 Obs Sample from a Normal Distribution 2
with Mean=50 and Standard Deviation=10

The UNIVARIATE Procedure
Variable: X

Quantiles (Definition 5)

Quantile Estimate

100% Max 90.2105
99% 72.6780
95% 66.2221
90% 62.6678
75% Q3 56.7280
50% Median 50.0649
25% Q1 43.4462
10% 37.1139
5% 33.5454
1% 26.9189
0% Min 13.6971

10000 Obs Sample from a Normal Distribution 3
with Mean=50 and Standard Deviation=10

Frequency

| *
800 + ***

| ****
| ******
| *******

600 + *******
| **********
| ***********
| ***********

400 + ************
| *************
| ***************
| *****************

200 + ******************
| *******************
| **********************
| ***************************
--------------------------------

2 3 4 5 6 7 8
0 0 0 0 0 0 0

3 2 1 M 1 2 3
* * * e * * *
S S S a S S S
t t t n t t t
d d d d d d

X Midpoint

Sampling Distribution of the Mean
If you repeatedly draw samples of size n from a population and compute the mean of

each sample, then the sample means themselves have a distribution. Consider a new
population consisting of the means of all the samples that could possibly be drawn from
the original population. The distribution of this new population is called a sampling
distribution.



1360 Sampling Distribution of the Mean � Appendix 1

It can be proven mathematically that if the original population has mean � and
standard deviation �, then the sampling distribution of the mean also has mean �, but
its standard deviation is ��

�
�. The standard deviation of the sampling distribution of

the mean is called the standard error of the mean. The standard error of the mean
provides an indication of the accuracy of a sample mean as an estimator of the
population mean.

If the original population has a normal distribution, then the sampling distribution of
the mean is also normal. If the original distribution is not normal but does not have
excessively long tails, then the sampling distribution of the mean can be approximated
by a normal distribution for large sample sizes.

The following example consists of three separate programs that show how the
sampling distribution of the mean can be approximated by a normal distribution as the
sample size increases. The first DATA step uses the RANEXP function to create a
sample of 1000 observations from an exponential distribution.The theoretical
population mean is 1.00, while the sample mean is 1.01, to two decimal places. The
population standard deviation is 1.00; the sample standard deviation is 1.04.

This is an example of a nonnormal distribution. The population skewness is 2.00,
which is close to the sample skewness of 1.97. The population kurtosis is 6.00, but the
sample kurtosis is only 4.80.

options nodate pageno=1 linesize=80 pagesize=42;

title ’1000 Observation Sample’;
title2 ’from an Exponential Distribution’;

data expodat;
drop n;
do n=1 to 1000;

X=ranexp(18746363);
output;

end;
run;
proc format;

value axisfmt
.05=’0.05’
.55=’0.55’

1.05=’1.05’
1.55=’1.55’
2.05=’2.05’
2.55=’2.55’
3.05=’3.05’
3.55=’3.55’
4.05=’4.05’
4.55=’4.55’
5.05=’5.05’
5.55=’5.55’
other=’ ’;

run;

proc chart data=expodat ;
vbar x / axis=300

midpoints=0.05 to 5.55 by .1;
format x axisfmt.;

run;



SAS Elementary Statistics Procedures � Sampling Distribution of the Mean 1361

options pagesize=64;

proc univariate data=expodat noextrobs=0 normal
mu0=1;

var x;



1362 Sampling Distribution of the Mean � Appendix 1

run;

1000 Observation Sample 1
from an Exponential Distribution

Frequency

300 +
|
|
|
|

250 +
|
|
|
|

200 +
|
|
|
|

150 +
|
|
|
|

100 +*
|*
|*** *
|*****
|***** *

50 +********
|***********
|************ *
|*************** ** *
|************************* *** *** * * *
---------------------------------------------------------

0 0 1 1 2 2 3 3 4 4 5 5
. . . . . . . . . . . .
0 5 0 5 0 5 0 5 0 5 0 5
5 5 5 5 5 5 5 5 5 5 5 5

X Midpoint

1000 Observation Sample 2
from an Exponential Distribution

The UNIVARIATE Procedure
Variable: X

Moments

N 1000 Sum Weights 1000
Mean 1.01176214 Sum Observations 1011.76214
Std Deviation 1.04371187 Variance 1.08933447
Skewness 1.96963112 Kurtosis 4.80150594
Uncorrected SS 2111.90777 Corrected SS 1088.24514
Coeff Variation 103.15783 Std Error Mean 0.03300507

Basic Statistical Measures

Location Variability

Mean 1.011762 Std Deviation 1.04371
Median 0.689502 Variance 1.08933
Mode . Range 6.63851

Interquartile Range 1.06252



SAS Elementary Statistics Procedures � Sampling Distribution of the Mean 1363

Tests for Location: Mu0=1

Test -Statistic- -----p Value------

Student’s t t 0.356374 Pr > |t| 0.7216
Sign M -140 Pr >= |M| <.0001
Signed Rank S -50781 Pr >= |S| <.0001

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.801498 Pr < W <0.0001
Kolmogorov-Smirnov D 0.166308 Pr > D <0.0100
Cramer-von Mises W-Sq 9.507975 Pr > W-Sq <0.0050
Anderson-Darling A-Sq 54.5478 Pr > A-Sq <0.0050

Quantiles (Definition 5)

Quantile Estimate

100% Max 6.63906758
99% 5.04491651
95% 3.13482318
90% 2.37803632
75% Q3 1.35733401
50% Median 0.68950221
25% Q1 0.29481436
10% 0.10219011
5% 0.05192799
1% 0.01195590
0% Min 0.00055441

The next DATA step generates 1000 different samples from the same exponential
distribution. Each sample contains ten observations. The MEANS procedure computes
the mean of each sample. In the data set that is created by PROC MEANS, each
observation represents the mean of a sample of ten observations from an exponential
distribution. Thus, the data set is a sample from the sampling distribution of the mean
for an exponential population.

PROC UNIVARIATE displays statistics for this sample of means. Notice that the
mean of the sample of means is .99, almost the same as the mean of the original
population. Theoretically, the standard deviation of the sampling distribution is
��
�
� � �����

�
�� � ���, whereas the standard deviation of this sample from

thesampling distribution is .30. The skewness (.55) and kurtosis (-.006) are closer to
zero in the sample from the sampling distribution than in the original sample from the
exponential distribution. This is so because the sampling distribution is closer to a
normal distribution than is the original exponential distribution. The CHART
procedure displays a histogram of the 1000-sample means. The shape of the histogram
is much closer to a belllike, normal density, but it is still distinctly lopsided.

options nodate pageno=1 linesize=80 pagesize=48;

title ’1000 Sample Means with 10 Obs per Sample’;
title2 ’Drawn from an Exponential Distribution’;

data samp10;
drop n;
do Sample=1 to 1000;

do n=1 to 10;



1364 Sampling Distribution of the Mean � Appendix 1

X=ranexp(433879);
output;

end;
end;

proc means data=samp10 noprint;
output out=mean10 mean=Mean;
var x;
by sample;

run;

proc format;
value axisfmt

.05=’0.05’

.55=’0.55’
1.05=’1.05’
1.55=’1.55’
2.05=’2.05’
other=’ ’;

run;

proc chart data=mean10;
vbar mean/axis=300

midpoints=0.05 to 2.05 by .1;
format mean axisfmt.;

run;

options pagesize=64;
proc univariate data=mean10 noextrobs=0 normal

mu0=1;
var mean;



SAS Elementary Statistics Procedures � Sampling Distribution of the Mean 1365

run;

1000 Sample Means with 10 Obs per Sample 1
Drawn from an Exponential Distribution

Frequency

300 +
|
|
|
|

250 +
|
|
|
|

200 +
|
|
|
|

150 +
| *
| * * *
| * * * *
| * * * *

100 + * * * *
| * * * * *
| * * * * * *
| * * * * * *
| * * * * * * * *

50 + * * * * * * * * * *
| * * * * * * * * * *
| * * * * * * * * * * *
| * * * * * * * * * * * *
| * * * * * * * * * * * * * * * *
--------------------------------------------

0 0 1 1 2
. . . . .
0 5 0 5 0
5 5 5 5 5

Mean Midpoint

1000 Sample Means with 10 Obs per Sample 2
Drawn from an Exponential Distribution

The UNIVARIATE Procedure
Variable: Mean

Moments

N 1000 Sum Weights 1000
Mean 0.9906857 Sum Observations 990.685697
Std Deviation 0.30732649 Variance 0.09444957
Skewness 0.54575615 Kurtosis -0.0060892
Uncorrected SS 1075.81327 Corrected SS 94.3551193
Coeff Variation 31.0215931 Std Error Mean 0.00971852

Basic Statistical Measures

Location Variability

Mean 0.990686 Std Deviation 0.30733
Median 0.956152 Variance 0.09445
Mode . Range 1.79783

Interquartile Range 0.41703



1366 Sampling Distribution of the Mean � Appendix 1

Tests for Location: Mu0=1

Test -Statistic- -----p Value------

Student’s t t -0.95841 Pr > |t| 0.3381
Sign M -53 Pr >= |M| 0.0009
Signed Rank S -22687 Pr >= |S| 0.0129

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.9779 Pr < W <0.0001
Kolmogorov-Smirnov D 0.055498 Pr > D <0.0100
Cramer-von Mises W-Sq 0.953926 Pr > W-Sq <0.0050
Anderson-Darling A-Sq 5.945023 Pr > A-Sq <0.0050

Quantiles (Definition 5)

Quantile Estimate

100% Max 2.053899
99% 1.827503
95% 1.557175
90% 1.416611
75% Q3 1.181006
50% Median 0.956152
25% Q1 0.763973
10% 0.621787
5% 0.553568
1% 0.433820
0% Min 0.256069

In the following DATA step, the size of each sample from the exponential distribution
is increased to 50. The standard deviation of the sampling distribution is smaller than
in the previous example because the size of each sample is larger. Also, the sampling
distribution is even closer to a normal distribution, as can be seen from the histogram
and the skewness.

options nodate pageno=1 linesize=80 pagesize=48;

title ’1000 Sample Means with 50 Obs per Sample’;
title2 ’Drawn from an Exponential Distribution’;

data samp50;
drop n;
do sample=1 to 1000;

do n=1 to 50;
X=ranexp(72437213);
output;

end;
end;

proc means data=samp50 noprint;
output out=mean50 mean=Mean;
var x;
by sample;

run;



SAS Elementary Statistics Procedures � Sampling Distribution of the Mean 1367

proc format;
value axisfmt

.05=’0.05’

.55=’0.55’
1.05=’1.05’
1.55=’1.55’
2.05=’2.05’
2.55=’2.55’
other=’ ’;

run;

proc chart data=mean50;
vbar mean / axis=300

midpoints=0.05 to 2.55 by .1;
format mean axisfmt.;

run;

options pagesize=64;

proc univariate data=mean50 nextrobs=0 normal
mu0=1;

var mean;



1368 Sampling Distribution of the Mean � Appendix 1

run;

1000 Sample Means with 50 Obs per Sample 1
Drawn from an Exponential Distribution

Frequency

300 +
|
|
| *
| * *

250 + * *
| * *
| * *
| * *
| * *

200 + * *
| * *
| * * *
| * * *
| * * *

150 + * * * *
| * * * *
| * * * *
| * * * *
| * * * *

100 + * * * *
| * * * *
| * * * *
| * * * * *
| * * * * * *

50 + * * * * * *
| * * * * * *
| * * * * * *
| * * * * * * *
| * * * * * * * *
------------------------------------------------------

0 0 1 1 2 2
. . . . . .
0 5 0 5 0 5
5 5 5 5 5 5

Mean Midpoint

1000 Sample Means with 50 Obs per Sample 2
Drawn from an Exponential Distribution

The UNIVARIATE Procedure
Variable: Mean

Moments

N 1000 Sum Weights 1000
Mean 0.99679697 Sum Observations 996.796973
Std Deviation 0.13815404 Variance 0.01908654
Skewness 0.19062633 Kurtosis -0.1438604
Uncorrected SS 1012.67166 Corrected SS 19.067451
Coeff Variation 13.8597969 Std Error Mean 0.00436881

Basic Statistical Measures

Location Variability

Mean 0.996797 Std Deviation 0.13815
Median 0.996023 Variance 0.01909
Mode . Range 0.87040

Interquartile Range 0.18956



SAS Elementary Statistics Procedures � Testing Hypotheses 1369

Tests for Location: Mu0=1

Test -Statistic- -----p Value------

Student’s t t -0.73316 Pr > |t| 0.4636
Sign M -13 Pr >= |M| 0.4292
Signed Rank S -10767 Pr >= |S| 0.2388

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.996493 Pr < W 0.0247
Kolmogorov-Smirnov D 0.023687 Pr > D >0.1500
Cramer-von Mises W-Sq 0.084468 Pr > W-Sq 0.1882
Anderson-Darling A-Sq 0.66039 Pr > A-Sq 0.0877

Quantiles (Definition 5)

Quantile Estimate

100% Max 1.454957
99% 1.337016
95% 1.231508
90% 1.179223
75% Q3 1.086515
50% Median 0.996023
25% Q1 0.896953
10% 0.814906
5% 0.780783
1% 0.706588
0% Min 0.584558

Testing Hypotheses

Defining a Hypothesis

The purpose of the statistical methods that have been discussed so far is to estimate
a population parameter by means of a sample statistic. Another class of statistical
methods is used for testing hypotheses about population parameters or for measuring
the amount of evidence against a hypothesis.

Consider the universe of students in a college. Let the variable X be the number of
pounds by which a student’s weight deviates from the ideal weight for a person of the
same sex, height, and build. You want to find out whether the population of students is,
on the average, underweight or overweight. To this end, you have taken a random
sample of X values from nine students, with results as given in the following DATA step:

title ’Deviations from Normal Weight’;

data x;
input X @@;
datalines;

-7 -2 1 3 6 10 15 21 30
;

You can define several hypotheses of interest. One hypothesis is that, on the average,
the students are of exactly ideal weight. If � represents the population mean of the X
values, then you can write this hypothesis, called the null hypothesis, as �� � � � �.



1370 Testing Hypotheses � Appendix 1

The other two hypotheses, called alternative hypotheses, are that the students are
underweight on the average, �� � � � �, and that the students are overweight on the
average, �� � � � �.

The null hypothesis is so called because in many situations it corresponds to the
assumption of “no effect” or “no difference.” However, this interpretation is not
appropriate for all testing problems. The null hypothesis is like a straw man that can
be toppled by statistical evidence. You decide between the alternative hypotheses
according to which way the straw man falls.

A naive way to approach this problem would be to look at the sample mean �� and
decide among the three hypotheses according to the following rule:

� If �� � �, then decide on �� � � � �.
� If �� � �, then decide on �� � � � �.
� If �� � �, then decide on �� � � � �.

The trouble with this approach is that there may be a high probability of making an
incorrect decision. If H0 is true, then you are nearly certain to make a wrong decision
because the chances of �� being exactly zero are almost nil. If � is slightly less than
zero, so that H1 is true, then there may be nearly a 50 percent chance that �� will be
greater than zero in repeated sampling, so the chances of incorrectly choosing H2 would
also be nearly 50 percent. Thus, you have a high probability of making an error if �� is
near zero. In such cases, there is not enough evidence to make a confident decision, so
the best response may be to reserve judgment until you can obtain more evidence.

The question is, how far from zero must �� be for you to be able to make a confident
decision? The answer can be obtained by considering the sampling distribution of ��. If
X has a roughly normal distribution, then �� has an approximately normal sampling
distribution. The mean of the sampling distribution of �� is �. Assume temporarily that
�, the standard deviation of X, is known to be 12. Then the standard error of �� for
samples of nine observations is ��

�
� � ���

�
� � �.

You know that about 95 percent of the values from a normal distribution are within
two standard deviations of the mean, so about 95 percent of the possible samples of
nine X values have a sample mean �� between �� � 	�
and � � � 	�
, or between −8
and 8. Consider the chances of making an error with the following decision rule:

� If �� � ��, then decide on �� � � � �.
� If �� � �� � �, then reserve judgment.
� If �� � �, then decide on �� � � � �.

If H0 is true, then in about 95 percent of the possible samples �� will be between the
critical values �� and 8, so you will reserve judgment. In these cases the statistical
evidence is not strong enough to fell the straw man. In the other 5 percent of the
samples you will make an error; in 2.5 percent of the samples you will incorrectly
choose H1, and in 2.5 percent you will incorrectly choose H2.

The price you pay for controlling the chances of making an error is the necessity of
reserving judgment when there is not sufficient statistical evidence to reject the null
hypothesis.

Significance and Power
The probability of rejecting the null hypothesis if it is true is called the Type I error

rate of the statistical test and is typically denoted as �. In this example, an �� value less
than �� or greater than 8 is said to be statistically significant at the 5 percent level.
You can adjust the type I error rate according to your needs by choosing different critical
values. For example, critical values of −4 and 4 would produce a significance level of
about 32 percent, while −12 and 12 would give a type I error rate of about 0.3 percent.

The decision rule is a two-tailed test because the alternative hypotheses allow for
population means either smaller or larger than the value specified in the null



SAS Elementary Statistics Procedures � Testing Hypotheses 1371

hypothesis. If you were interested only in the possibility of the students being
overweight on the average, then you could use a one-tailed test:

� If �� � �, then reserve judgment.
� If �� � �, then decide on �� � � � �.

For this one-tailed test, the type I error rate is 2.5 percent, half that of the two-tailed
test.

The probability of rejecting the null hypothesis if it is false is called the power of the
statistical test and is typically denoted as �� �. � is called the Type II error rate,
which is the probability of not rejecting a false null hypothesis. The power depends on
the true value of the parameter. In the example, assume the population mean is 4. The
power for detecting H2 is the probability of getting a sample mean greater than 8. The
critical value 8 is one standard error higher than the population mean 4. The chance of
getting a value at least one standard deviation greater than the mean from a normal
distribution is about 16 percent, so the power for detecting the alternative hypothesis
H2 is about 16 percent. If the population mean were 8, then the power for H2 would be
50 percent, whereas a population mean of 12 would yield a power of about 84 percent.

The smaller the type I error rate is, the less the chance of making an incorrect
decision, but the higher the chance of having to reserve judgment. In choosing a type I
error rate, you should consider the resulting power for various alternatives of interest.

Student’s t Distribution
In practice, you usually cannot use any decision rule that uses a critical value based

on � because you do not usually know the value of �. You can, however, use s as an
estimate of �. Consider the following statistic:

� �
��� ��
��
�
�

This t statistic is the difference between the sample mean and the hypothesized
mean �� divided by the estimated standard error of the mean.

If the null hypothesis is true and the population is normally distributed, then the t
statistic has what is called a Student’s t distribution with �� � degrees of freedom.
This distribution looks very similar to a normal distribution, but the tails of the
Student’s t distribution are heavier. As the sample size gets larger, the sample standard
deviation becomes a better estimator of the population standard deviation, and the t
distribution gets closer to a normal distribution.

You can base a decision rule on the t statistic:
� If � 	 ��
�, then decide on �� � � 	 �.
� If ��
� � � � �
�, then reserve judgment.
� If � � �
�, then decide on �� � � � �.

The value 2.3 was obtained from a table of Student’s t distribution to give a type I
error rate of 5 percent for 8 (that is, 	� � � �) degrees of freedom. Most common
statistics texts contain a table of Student’s t distribution. If you do not have a statistics
text handy, then you can use the DATA step and the TINV function to print any values
from the t distribution.

By default, PROC UNIVARIATE computes a t statistic for the null hypothesis that
�� � �, along with related statistics. Use the MU0= option in the PROC statement to
specify another value for the null hypothesis.

This example uses the data on deviations from normal weight, which consist of nine
observations. First, PROC MEANS computes the t statistic for the null hypothesis that



1372 Testing Hypotheses � Appendix 1

� � �. Then, the TINV function in a DATA step computes the value of Student’s t
distribution for a two-tailed test at the 5 percent level of significance and 8 degrees of
freedom.

data devnorm;
title ’Deviations from Normal Weight’;
input X @@;
datalines;

-7 -2 1 3 6 10 15 21 30
;

proc means data=devnorm maxdec=3 n mean
std stderr t probt;

run;

title ’Student’’s t Critical Value’;

data _null_;
file print;
t=tinv(.975,8);
put t 5.3;

run;

Deviations from Normal Weight 1
The MEANS Procedure

Analysis Variable : X

N Mean Std Dev Std Error t Value Pr > |t|
--------------------------------------------------------------
9 8.556 11.759 3.920 2.18 0.0606
--------------------------------------------------------------

Student’s t Critical Value 2
2.306

In the current example, the value of the t statistic is 2.18, which is less than the critical
t value of 2.3 (for a 5 percent significance level and 8 degrees of freedom). Thus, at a 5
percent significance level you must reserve judgment. If you had elected to use a 10
percent significance level, then the critical value of the t distribution would have been
1.86 and you could have rejected the null hypothesis. The sample size is so small,
however, that the validity of your conclusion depends strongly on how close the
distribution of the population is to a normal distribution.

Probability Values

Another way to report the results of a statistical test is to compute a probability
value or p-value. A p-value gives the probability in repeated sampling of obtaining a
statistic as far in the direction(s) specified by the alternative hypothesis as is the value
actually observed. A two-tailed p-value for a t statistic is the probability of obtaining an
absolute t value that is greater than the observed absolute t value. A one-tailed p-value
for a t statistic for the alternative hypothesis � � �� is the probability of obtaining a t



SAS Elementary Statistics Procedures � References 1373

value greater than the observed t value. Once the p-value is computed, you can perform
a hypothesis test by comparing the p-value with the desired significance level. If the
p-value is less than or equal to the type I error rate of the test, then the null hypothesis
can be rejected. The two-tailed p-value, labeled Pr > |t| in the PROC MEANS output,
is .0606, so the null hypothesis could be rejected at the 10 percent significance level but
not at the 5 percent level.

A p-value is a measure of the strength of the evidence against the null hypothesis.
The smaller the p-value, the stronger the evidence for rejecting the null hypothesis.

Note: For a more thorough discussion, consult an introductory statistics textbook
such as Mendenhall and Beaver (1998); Ott and Mendenhall (1994); or Snedecor and
Cochran (1989). �

References
Ali, M.M. (1974), “Stochastic Ordering and Kurtosis Measure,” Journal of the

American Statistical Association, 69, 543–545.

Johnson, M.E., Tietjen, G.L., and Beckman, R.J. (1980), “A New Family of
Probability Distributions With Applications to Monte Carlo Studies,” Journal of
the American Statistical Association, 75, 276-279.

Kaplansky, I. (1945), “A Common Error Concerning Kurtosis,” Journal of the
American Statistical Association, 40, 259-263.

Mendenhall, W. and Beaver, R.. (1998), Introduction to Probability and Statistics,
10th Edition, Belmont, CA: Wadsworth Publishing Company.

Ott, R. and Mendenhall, W. (1994) Understanding Statistics, 6th Edition, North
Scituate, MA: Duxbury Press.

Schlotzhauer, S.D. and Littell, R.C. (1997), SAS System for Elementary Statistical
Analysis, Second Edition, Cary, NC: SAS Institute Inc.

Snedecor, G.W. and Cochran, W.C. (1989), Statistical Methods, 8th Edition, Ames, IA:
Iowa State University Press.



1374



1375

A P P E N D I X

2
Operating Environment-Specific
Procedures

Descriptions of Operating Environment-Specific Procedures 1375

Descriptions of Operating Environment-Specific Procedures
The following table gives a brief description and the relevant releases for some

common operating environment-specific procedures. All of these procedures are
described in more detail in operating environment-companion documentation.

Table A2.1 Host-Specific Procedures

Procedure Description Releases

BMDP Calls any BMDP program to analyze data in a SAS data set. All

CONVERT Converts BMDP, OSIRIS, and SPSS system files to SAS data
sets.

All

C16PORT Converts a 16-bit SAS data library or catalog created in Release
6.08 to a transport file, which you can then convert to a 32-bit
format for use in the current release of SAS by using the
CIMPORT procedure.

6.10 - 6.12

FSDEVICE Creates, copies, modifies, deletes, or renames device descriptions
in a catalog.

All

PDS Lists, deletes, or renames the members of a partitioned data set. 6.09E

PDSCOPY Copies partitioned data sets from disk to disk, disk to tape, tape
to tape, or tape to disk.

6.09E

RELEASE Releases unused space at the end of a disk data set. 6.09E

SOURCE Provides an easy way to back up and process source library data
sets.

6.09E

TAPECOPY Copies an entire tape volume, or files from one or more tape
volumes, to one output tape volume.

6.09E

TAPELABEL Writes the label information of an IBM standard-labeled tape
volume to the SAS procedure output file.

6.09E



1376



1377

A P P E N D I X

3
Raw Data and DATA Steps

Overview 1377
CENSUS 1377

CHARITY 1378

CUSTOMER_RESPONSE 1380

DJIA 1383

EDUCATION 1384
EMPDATA 1385

ENERGY 1387

GROC 1388

MATCH_11 1388

PROCLIB.DELAY 1390

PROCLIB.EMP95 1391
PROCLIB.EMP96 1392

PROCLIB.INTERNAT 1393

PROCLIB.LAKES 1393

PROCLIB.MARCH 1394

PROCLIB.PAYLIST2 1395
PROCLIB.PAYROLL 1395

PROCLIB.PAYROLL2 1398

PROCLIB.SCHEDULE 1399

PROCLIB.STAFF 1402

PROCLIB.SUPERV 1405
RADIO 1405

Overview

The programs for examples in this document generally show you how to create the
data sets that are used. Some examples show only partial data. For these examples,
the complete data is shown in this appendix.

CENSUS

data census;

input Density CrimeRate State $ 14-27 PostalCode $ 29-30;

datalines;

263.3 4575.3 Ohio OH



1378 CHARITY � Appendix 3

62.1 7017.1 Washington WA

103.4 5161.9 South Carolina SC

53.4 3438.6 Mississippi MS

180.0 8503.2 Florida FL

80.8 2190.7 West Virginia WV

428.7 5477.6 Maryland MD

71.2 4707.5 Missouri MO

43.9 4245.2 Arkansas AR

7.3 6371.4 Nevada NV

264.3 3163.2 Pennsylvania PA

11.5 4156.3 Idaho ID

44.1 6025.6 Oklahoma OK

51.2 4615.8 Minnesota MN

55.2 4271.2 Vermont VT

27.4 6969.9 Oregon OR

205.3 5416.5 Illinois IL

94.1 5792.0 Georgia GA

9.1 2678.0 South Dakota SD

9.4 2833.0 North Dakota ND

102.4 3371.7 New Hampshire NH

54.3 7722.4 Texas TX

76.6 4451.4 Alabama AL

307.6 4938.8 Delaware DE

151.4 6506.4 California CA

111.6 4665.6 Tennessee TN

120.4 4649.9 North Carolina NC

;

CHARITY

data Charity;

input School $ 1-7 Year 9-12 Name $ 14-20 MoneyRaised 22-26

HoursVolunteered 28-29;

datalines;

Monroe 1992 Allison 31.65 19

Monroe 1992 Barry 23.76 16

Monroe 1992 Candace 21.11 5

Monroe 1992 Danny 6.89 23

Monroe 1992 Edward 53.76 31

Monroe 1992 Fiona 48.55 13

Monroe 1992 Gert 24.00 16

Monroe 1992 Harold 27.55 17

Monroe 1992 Ima 15.98 9

Monroe 1992 Jack 20.00 23

Monroe 1992 Katie 22.11 2

Monroe 1992 Lisa 18.34 17

Monroe 1992 Tonya 55.16 40

Monroe 1992 Max 26.77 34

Monroe 1992 Ned 28.43 22

Monroe 1992 Opal 32.66 14

Monroe 1993 Patsy 18.33 18

Monroe 1993 Quentin 16.89 15



Raw Data and DATA Steps � CHARITY 1379

Monroe 1993 Randall 12.98 17

Monroe 1993 Sam 15.88 5

Monroe 1993 Tyra 21.88 23

Monroe 1993 Myrtle 47.33 26

Monroe 1993 Frank 41.11 22

Monroe 1993 Cameron 65.44 14

Monroe 1993 Vern 17.89 11

Monroe 1993 Wendell 23.00 10

Monroe 1993 Bob 26.88 6

Monroe 1993 Leah 28.99 23

Monroe 1994 Becky 30.33 26

Monroe 1994 Sally 35.75 27

Monroe 1994 Edgar 27.11 12

Monroe 1994 Dawson 17.24 16

Monroe 1994 Lou 5.12 16

Monroe 1994 Damien 18.74 17

Monroe 1994 Mona 27.43 7

Monroe 1994 Della 56.78 15

Monroe 1994 Monique 29.88 19

Monroe 1994 Carl 31.12 25

Monroe 1994 Reba 35.16 22

Monroe 1994 Dax 27.65 23

Monroe 1994 Gary 23.11 15

Monroe 1994 Suzie 26.65 11

Monroe 1994 Benito 47.44 18

Monroe 1994 Thomas 21.99 23

Monroe 1994 Annie 24.99 27

Monroe 1994 Paul 27.98 22

Monroe 1994 Alex 24.00 16

Monroe 1994 Lauren 15.00 17

Monroe 1994 Julia 12.98 15

Monroe 1994 Keith 11.89 19

Monroe 1994 Jackie 26.88 22

Monroe 1994 Pablo 13.98 28

Monroe 1994 L.T. 56.87 33

Monroe 1994 Willard 78.65 24

Monroe 1994 Kathy 32.88 11

Monroe 1994 Abby 35.88 10

Kennedy 1992 Arturo 34.98 14

Kennedy 1992 Grace 27.55 25

Kennedy 1992 Winston 23.88 22

Kennedy 1992 Vince 12.88 21

Kennedy 1992 Claude 15.62 5

Kennedy 1992 Mary 28.99 34

Kennedy 1992 Abner 25.89 22

Kennedy 1992 Jay 35.89 35

Kennedy 1992 Alicia 28.77 26

Kennedy 1992 Freddy 29.00 27

Kennedy 1992 Eloise 31.67 25

Kennedy 1992 Jenny 43.89 22

Kennedy 1992 Thelma 52.63 21

Kennedy 1992 Tina 19.67 21

Kennedy 1992 Eric 24.89 12

Kennedy 1993 Bubba 37.88 12



1380 CUSTOMER_RESPONSE � Appendix 3

Kennedy 1993 G.L. 25.89 21

Kennedy 1993 Bert 28.89 21

Kennedy 1993 Clay 26.44 21

Kennedy 1993 Leeann 27.17 17

Kennedy 1993 Georgia 38.90 11

Kennedy 1993 Bill 42.23 25

Kennedy 1993 Holly 18.67 27

Kennedy 1993 Benny 19.09 25

Kennedy 1993 Cammie 28.77 28

Kennedy 1993 Amy 27.08 31

Kennedy 1993 Doris 22.22 24

Kennedy 1993 Robbie 19.80 24

Kennedy 1993 Ted 27.07 25

Kennedy 1993 Sarah 24.44 12

Kennedy 1993 Megan 28.89 11

Kennedy 1993 Jeff 31.11 12

Kennedy 1993 Taz 30.55 11

Kennedy 1993 George 27.56 11

Kennedy 1993 Heather 38.67 15

Kennedy 1994 Nancy 29.90 26

Kennedy 1994 Rusty 30.55 28

Kennedy 1994 Mimi 37.67 22

Kennedy 1994 J.C. 23.33 27

Kennedy 1994 Clark 27.90 25

Kennedy 1994 Rudy 27.78 23

Kennedy 1994 Samuel 34.44 18

Kennedy 1994 Forrest 28.89 26

Kennedy 1994 Luther 72.22 24

Kennedy 1994 Trey 6.78 18

Kennedy 1994 Albert 23.33 19

Kennedy 1994 Che-Min 26.66 33

Kennedy 1994 Preston 32.22 23

Kennedy 1994 Larry 40.00 26

Kennedy 1994 Anton 35.99 28

Kennedy 1994 Sid 27.45 25

Kennedy 1994 Will 28.88 21

Kennedy 1994 Morty 34.44 25

;

CUSTOMER_RESPONSE

data customer_response;

input Customer Factor1-Factor4 Source1-Source3

Quality1-Quality3;

datalines;

1 . . 1 1 1 1 . 1 . .

2 1 1 . 1 1 1 . 1 1 .

3 . . 1 1 1 1 . . . .

4 1 1 . 1 . 1 . . . 1

5 . 1 . 1 1 . . . . 1

6 . 1 . 1 1 . . . . .

7 . 1 . 1 1 . . 1 . .



Raw Data and DATA Steps � CUSTOMER_RESPONSE 1381

8 1 . . 1 1 1 . 1 1 .

9 1 1 . 1 1 . . . . 1

10 1 . . 1 1 1 . 1 1 .

11 1 1 1 1 . 1 . 1 1 1

12 1 1 . 1 1 1 . . . .

13 1 1 . 1 . 1 . 1 1 .

14 1 1 . 1 1 1 . . . .

15 1 1 . 1 . 1 . 1 1 1

16 1 . . 1 1 . . 1 . .

17 1 1 . 1 1 1 . . 1 .

18 1 1 . 1 1 1 1 . . 1

19 . 1 . 1 1 1 1 . 1 .

20 1 . . 1 1 1 . 1 1 1

21 . . . 1 1 1 . 1 . .

22 . . . 1 1 1 . 1 1 .

23 1 . . 1 . . . . . 1

24 . 1 . 1 1 . . 1 . 1

25 1 1 . 1 1 . . . 1 1

26 1 1 . 1 1 . . 1 . .

27 1 . . 1 1 . . . 1 .

28 1 1 . 1 . . . 1 1 1

29 1 . . 1 1 1 . 1 . 1

30 1 . 1 1 1 . . 1 1 .

31 . . . 1 1 . . 1 1 .

32 1 1 1 1 1 . . 1 1 1

33 1 . . 1 1 . . 1 . 1

34 . . 1 1 . . . 1 1 .

35 1 1 1 1 1 . 1 1 . .

36 1 1 1 1 . 1 . 1 . .

37 1 1 . 1 . . . 1 . .

38 . . . 1 1 1 . 1 . .

39 1 1 . 1 1 . . 1 . 1

40 1 . . 1 . . 1 1 . 1

41 1 . . 1 1 1 1 1 . 1

42 1 1 1 1 . . 1 1 . .

43 1 . . 1 1 1 . 1 . .

44 1 . 1 1 . 1 . 1 . 1

45 . . . 1 . . 1 . . 1

46 . . . 1 1 . . . 1 .

47 1 1 . 1 . . 1 1 . .

48 1 . 1 1 1 . 1 1 . .

49 . . 1 1 1 1 . 1 . 1

50 . 1 . 1 1 . . 1 1 .

51 1 . 1 1 1 1 . . . .

52 1 1 1 1 1 1 . 1 . .

53 . 1 1 1 . 1 . 1 1 1

54 1 . . 1 1 . . 1 1 .

55 1 1 . 1 1 1 . 1 . .

56 1 . . 1 1 . . 1 1 .

57 1 1 . 1 1 . 1 . . 1

58 . 1 . 1 . 1 . . 1 1

59 1 1 1 1 . . 1 1 1 .

60 . 1 1 1 1 1 . . 1 1

61 1 1 1 1 1 1 . 1 . .



1382 CUSTOMER_RESPONSE � Appendix 3

62 1 1 . 1 1 . . 1 1 .

63 . . . 1 . . . 1 1 1

64 1 . . 1 1 1 . 1 . .

65 1 . . 1 1 1 . 1 . .

66 1 . . 1 1 1 1 1 1 .

67 1 1 . 1 1 1 . 1 1 .

68 1 1 . 1 1 1 . 1 1 .

69 1 1 . 1 1 . 1 . . .

70 . . . 1 1 1 . 1 . .

71 1 . . 1 1 . 1 . . 1

72 1 . 1 1 1 1 . . 1 .

73 1 1 . 1 . 1 . 1 1 .

74 1 1 1 1 1 1 . 1 . .

75 . 1 . 1 1 1 . . 1 .

76 1 1 . 1 1 1 . 1 1 1

77 . . . 1 1 1 . . . .

78 1 1 1 1 1 1 . 1 1 .

79 1 . . 1 1 1 . 1 1 .

80 1 1 1 1 1 . 1 1 . 1

81 1 1 . 1 1 1 1 1 1 .

82 . . . 1 1 1 1 . . .

83 1 1 . 1 1 1 . 1 1 .

84 1 . . 1 1 . . 1 1 .

85 . . . 1 . 1 . 1 . .

86 1 . . 1 1 1 . 1 1 1

87 1 1 . 1 1 1 . 1 . .

88 . . . 1 . 1 . . . .

89 1 . . 1 . 1 . . 1 1

90 1 1 . 1 1 1 . 1 . 1

91 . . . 1 1 . . . 1 .

92 1 . . 1 1 1 . 1 1 .

93 1 . . 1 1 . . 1 1 .

94 1 . . 1 1 1 1 1 . .

95 1 . . 1 . 1 1 1 1 .

96 1 . 1 1 1 1 . . 1 .

97 1 1 . 1 1 . . . 1 .

98 1 . 1 1 1 1 1 1 . .

99 1 1 . 1 1 1 1 1 1 .

100 1 . 1 1 1 . . . 1 1

101 1 . 1 1 1 1 . . . .

102 1 . . 1 1 . 1 1 . .

103 1 1 . 1 1 1 . 1 . .

104 . . . 1 1 1 . 1 1 1

105 1 . 1 1 1 . . 1 . 1

106 1 1 1 1 1 1 1 1 1 1

107 1 1 1 1 . . . 1 . 1

108 1 . . 1 . 1 1 1 . .

109 . 1 . 1 1 . . 1 1 .

110 1 . . 1 . . . . . .

111 1 . . 1 1 1 . 1 1 .

112 1 1 . 1 1 1 . . . 1

113 1 1 . 1 1 . 1 1 1 .

114 1 1 . 1 1 . . . . .

115 1 1 . 1 1 . . 1 . .



Raw Data and DATA Steps � DJIA 1383

116 . 1 . 1 1 1 1 1 . .

117 . 1 . 1 1 1 . . . .

118 . 1 1 1 1 . . 1 1 .

119 . . . 1 . . . 1 . .

120 1 1 . 1 . . . . 1 .

;

DJIA

data djia;

input Year @7 HighDate date7. High @24 LowDate date7. Low;

format highdate lowdate date7.;

datalines;

1954 31DEC54 404.39 11JAN54 279.87

1955 30DEC55 488.40 17JAN55 388.20

1956 06APR56 521.05 23JAN56 462.35

1957 12JUL57 520.77 22OCT57 419.79

1958 31DEC58 583.65 25FEB58 436.89

1959 31DEC59 679.36 09FEB59 574.46

1960 05JAN60 685.47 25OCT60 568.05

1961 13DEC61 734.91 03JAN61 610.25

1962 03JAN62 726.01 26JUN62 535.76

1963 18DEC63 767.21 02JAN63 646.79

1964 18NOV64 891.71 02JAN64 768.08

1965 31DEC65 969.26 28JUN65 840.59

1966 09FEB66 995.15 07OCT66 744.32

1967 25SEP67 943.08 03JAN67 786.41

1968 03DEC68 985.21 21MAR68 825.13

1969 14MAY69 968.85 17DEC69 769.93

1970 29DEC70 842.00 06MAY70 631.16

1971 28APR71 950.82 23NOV71 797.97

1972 11DEC72 1036.27 26JAN72 889.15

1973 11JAN73 1051.70 05DEC73 788.31

1974 13MAR74 891.66 06DEC74 577.60

1975 15JUL75 881.81 02JAN75 632.04

1976 21SEP76 1014.79 02JAN76 858.71

1977 03JAN77 999.75 02NOV77 800.85

1978 08SEP78 907.74 28FEB78 742.12

1979 05OCT79 897.61 07NOV79 796.67

1980 20NOV80 1000.17 21APR80 759.13

1981 27APR81 1024.05 25SEP81 824.01

1982 27DEC82 1070.55 12AUG82 776.92

1983 29NOV83 1287.20 03JAN83 1027.04

1984 06JAN84 1286.64 24JUL84 1086.57

1985 16DEC85 1553.10 04JAN85 1184.96

1986 02DEC86 1955.57 22JAN86 1502.29

1987 25AUG87 2722.42 19OCT87 1738.74

1988 21OCT88 2183.50 20JAN88 1879.14

1989 09OCT89 2791.41 03JAN89 2144.64

1990 16JUL90 2999.75 11OCT90 2365.10

1991 31DEC91 3168.83 09JAN91 2470.30

1992 01JUN92 3413.21 09OCT92 3136.58



1384 EDUCATION � Appendix 3

1993 29DEC93 3794.33 20JAN93 3241.95

1994 31JAN94 3978.36 04APR94 3593.35

;

EDUCATION

data education;

input State $14. +1 Code $ DropoutRate Expenditures MathScore Region $;

label dropoutrate=’Dropout Percentage - 1989’

expenditures=’Expenditure Per Pupil - 1989’

mathscore=’8th Grade Math Exam - 1990’;

datalines;

Alabama AL 22.3 3197 252 SE

Alaska AK 35.8 7716 . W

Arizona AZ 31.2 3902 259 W

Arkansas AR 11.5 3273 256 SE

California CA 32.7 4121 256 W

Colorado CO 24.7 4408 267 W

Connecticut CT 16.8 6857 270 NE

Delaware DE 28.5 5422 261 NE

Florida FL 38.5 4563 255 SE

Georgia GA 27.9 3852 258 SE

Hawaii HI 18.3 4121 251 W

Idaho ID 21.8 2838 272 W

Illinois IL 21.5 4906 260 MW

Indiana IN 13.8 4284 267 MW

Iowa IA 13.6 4285 278 MW

Kansas KS 17.9 4443 . MW

Kentucky KY 32.7 3347 256 SE

Louisiana LA 43.1 3317 246 SE

Maine ME 22.5 4744 . NE

Maryland MD 26.0 5758 260 NE

Massachusetts MA 28.0 5979 . NE

Michigan MI 29.3 5116 264 MW

Minnesota MN 11.4 4755 276 MW

Mississippi MS 39.9 2874 . SE

Missouri MO 26.5 4263 . MW

Montana MT 15.0 4293 280 W

Nebraska NE 13.9 4360 276 MW

Nevada NV 28.1 3791 . W

New Hampshire NH 25.9 4807 273 NE

New Jersey NE 20.4 7549 269 NE

New Mexico NM 28.5 3473 256 W

New York NY 35.0 . 261 NE

North Carolina NC 31.2 3874 250 SE

North Dakota ND 12.1 3952 281 MW

Ohio OH 24.4 4649 264 MW

;



Raw Data and DATA Steps � EMPDATA 1385

EMPDATA

data empdata;

input IdNumber $ 1-4 LastName $ 9-19 FirstName $ 20-29

City $ 30-42 State $ 43-44 /

Gender $ 1 JobCode $ 9-11 Salary 20-29 @30 Birth date7.

@43 Hired date7. HomePhone $ 54-65;

format birth hired date7.;

datalines;

1919 Adams Gerald Stamford CT

M TA2 34376 15SEP48 07JUN75 203/781-1255

1653 Alexander Susan Bridgeport CT

F ME2 35108 18OCT52 12AUG78 203/675-7715

1400 Apple Troy New York NY

M ME1 29769 08NOV55 19OCT78 212/586-0808

1350 Arthur Barbara New York NY

F FA3 32886 03SEP53 01AUG78 718/383-1549

1401 Avery Jerry Paterson NJ

M TA3 38822 16DEC38 20NOV73 201/732-8787

1499 Barefoot Joseph Princeton NJ

M ME3 43025 29APR42 10JUN68 201/812-5665

1101 Baucom Walter New York NY

M SCP 18723 09JUN50 04OCT78 212/586-8060

1333 Blair Justin Stamford CT

M PT2 88606 02APR49 13FEB69 203/781-1777

1402 Blalock Ralph New York NY

M TA2 32615 20JAN51 05DEC78 718/384-2849

1479 Bostic Marie New York NY

F TA3 38785 25DEC56 08OCT77 718/384-8816

1403 Bowden Earl Bridgeport CT

M ME1 28072 31JAN57 24DEC79 203/675-3434

1739 Boyce Jonathan New York NY

M PT1 66517 28DEC52 30JAN79 212/587-1247

1658 Bradley Jeremy New York NY

M SCP 17943 11APR55 03MAR80 212/587-3622

1428 Brady Christine Stamford CT

F PT1 68767 07APR58 19NOV79 203/781-1212

1782 Brown Jason Stamford CT

M ME2 35345 07DEC58 25FEB80 203/781-0019

1244 Bryant Leonard New York NY

M ME2 36925 03SEP51 20JAN76 718/383-3334

1383 Burnette Thomas New York NY

M BCK 25823 28JAN56 23OCT80 718/384-3569

1574 Cahill Marshall New York NY

M FA2 28572 30APR48 23DEC80 718/383-2338

1789 Caraway Davis New York NY

M SCP 18326 28JAN45 14APR66 212/587-9000

1404 Carter Donald New York NY

M PT2 91376 27FEB41 04JAN68 718/384-2946

1437 Carter Dorothy Bridgeport CT

F A3 33104 23SEP48 03SEP72 203/675-4117

1639 Carter Karen Stamford CT



1386 EMPDATA � Appendix 3

F A3 40260 29JUN45 31JAN72 203/781-8839

1269 Caston Franklin Stamford CT

M NA1 41690 06MAY60 01DEC80 203/781-3335

1065 Chapman Neil New York NY

M ME2 35090 29JAN32 10JAN75 718/384-5618

1876 Chin Jack New York NY

M TA3 39675 23MAY46 30APR73 212/588-5634

1037 Chow Jane Stamford CT

F TA1 28558 13APR52 16SEP80 203/781-8868

1129 Cook Brenda New York NY

F ME2 34929 11DEC49 20AUG79 718/383-2313

1988 Cooper Anthony New York NY

M FA3 32217 03DEC47 21SEP72 212/587-1228

1405 Davidson Jason Paterson NJ

M SCP 18056 08MAR54 29JAN80 201/732-2323

1430 Dean Sandra Bridgeport CT

F TA2 32925 03MAR50 30APR75 203/675-1647

1983 Dean Sharon New York NY

F FA3 33419 03MAR50 30APR75 718/384-1647

1134 Delgado Maria Stamford CT

F TA2 33462 08MAR57 24DEC76 203/781-1528

1118 Dennis Roger New York NY

M PT3 111379 19JAN32 21DEC68 718/383-1122

1438 Donaldson Karen Stamford CT

F TA3 39223 18MAR53 21NOV75 203/781-2229

1125 Dunlap Donna New York NY

F FA2 28888 11NOV56 14DEC75 718/383-2094

1475 Eaton Alicia New York NY

F FA2 27787 18DEC49 16JUL78 718/383-2828

1117 Edgerton Joshua New York NY

M TA3 39771 08JUN51 16AUG80 212/588-1239

1935 Fernandez Katrina Bridgeport CT

F NA2 51081 31MAR42 19OCT69 203/675-2962

1124 Fields Diana White Plains NY

F FA1 23177 13JUL46 04OCT78 914/455-2998

1422 Fletcher Marie Princeton NJ

F FA1 22454 07JUN52 09APR79 201/812-0902

1616 Flowers Annette New York NY

F TA2 34137 04MAR58 07JUN81 718/384-3329

1406 Foster Gerald Bridgeport CT

M ME2 35185 11MAR49 20FEB75 203/675-6363

1120 Garcia Jack New York NY

M ME1 28619 14SEP60 10OCT81 718/384-4930

1094 Gomez Alan Bridgeport CT

M FA1 22268 05APR58 20APR79 203/675-7181

1389 Gordon Levi New York NY

M BCK 25028 18JUL47 21AUG78 718/384-9326

1905 Graham Alvin New York NY

M PT1 65111 19APR60 01JUN80 212/586-8815

1407 Grant Daniel Mt. Vernon NY

M PT1 68096 26MAR57 21MAR78 914/468-1616

1114 Green Janice New York NY

F TA2 32928 21SEP57 30JUN75 212/588-1092

;



Raw Data and DATA Steps � ENERGY 1387

ENERGY

data energy;

length State $2;

input Region Division state $ Type Expenditures;

datalines;

1 1 ME 1 708

1 1 ME 2 379

1 1 NH 1 597

1 1 NH 2 301

1 1 VT 1 353

1 1 VT 2 188

1 1 MA 1 3264

1 1 MA 2 2498

1 1 RI 1 531

1 1 RI 2 358

1 1 CT 1 2024

1 1 CT 2 1405

1 2 NY 1 8786

1 2 NY 2 7825

1 2 NJ 1 4115

1 2 NJ 2 3558

1 2 PA 1 6478

1 2 PA 2 3695

4 3 MT 1 322

4 3 MT 2 232

4 3 ID 1 392

4 3 ID 2 298

4 3 WY 1 194

4 3 WY 2 184

4 3 CO 1 1215

4 3 CO 2 1173

4 3 NM 1 545

4 3 NM 2 578

4 3 AZ 1 1694

4 3 AZ 2 1448

4 3 UT 1 621

4 3 UT 2 438

4 3 NV 1 493

4 3 NV 2 378

4 4 WA 1 1680

4 4 WA 2 1122

4 4 OR 1 1014

4 4 OR 2 756

4 4 CA 1 10643

4 4 CA 2 10114

4 4 AK 1 349

4 4 AK 2 329

4 4 HI 1 273

4 4 HI 2 298

;



1388 GROC � Appendix 3

GROC

data groc;

input Region $9. Manager $ Department $ Sales;

datalines;

Southeast Hayes Paper 250

Southeast Hayes Produce 100

Southeast Hayes Canned 120

Southeast Hayes Meat 80

Southeast Michaels Paper 40

Southeast Michaels Produce 300

Southeast Michaels Canned 220

Southeast Michaels Meat 70

Northwest Jeffreys Paper 60

Northwest Jeffreys Produce 600

Northwest Jeffreys Canned 420

Northwest Jeffreys Meat 30

Northwest Duncan Paper 45

Northwest Duncan Produce 250

Northwest Duncan Canned 230

Northwest Duncan Meat 73

Northwest Aikmann Paper 45

Northwest Aikmann Produce 205

Northwest Aikmann Canned 420

Northwest Aikmann Meat 76

Southwest Royster Paper 53

Southwest Royster Produce 130

Southwest Royster Canned 120

Southwest Royster Meat 50

Southwest Patel Paper 40

Southwest Patel Produce 350

Southwest Patel Canned 225

Southwest Patel Meat 80

Northeast Rice Paper 90

Northeast Rice Produce 90

Northeast Rice Canned 420

Northeast Rice Meat 86

Northeast Fuller Paper 200

Northeast Fuller Produce 300

Northeast Fuller Canned 420

Northeast Fuller Meat 125

;

MATCH_11

data match_11;

input Pair Low Age Lwt Race Smoke Ptd Ht UI @@;

select(race);

when (1) do;



Raw Data and DATA Steps � MATCH_11 1389

race1=0;

race2=0;

end;

when (2) do;

race1=1;

race2=0;

end;

when (3) do;

race1=0;

race2=1;

end;

end;

datalines;

1 0 14 135 1 0 0 0 0 1 1 14 101 3 1 1 0 0

2 0 15 98 2 0 0 0 0 2 1 15 115 3 0 0 0 1

3 0 16 95 3 0 0 0 0 3 1 16 130 3 0 0 0 0

4 0 17 103 3 0 0 0 0 4 1 17 130 3 1 1 0 1

5 0 17 122 1 1 0 0 0 5 1 17 110 1 1 0 0 0

6 0 17 113 2 0 0 0 0 6 1 17 120 1 1 0 0 0

7 0 17 113 2 0 0 0 0 7 1 17 120 2 0 0 0 0

8 0 17 119 3 0 0 0 0 8 1 17 142 2 0 0 1 0

9 0 18 100 1 1 0 0 0 9 1 18 148 3 0 0 0 0

10 0 18 90 1 1 0 0 1 10 1 18 110 2 1 1 0 0

11 0 19 150 3 0 0 0 0 11 1 19 91 1 1 1 0 1

12 0 19 115 3 0 0 0 0 12 1 19 102 1 0 0 0 0

13 0 19 235 1 1 0 1 0 13 1 19 112 1 1 0 0 1

14 0 20 120 3 0 0 0 1 14 1 20 150 1 1 0 0 0

15 0 20 103 3 0 0 0 0 15 1 20 125 3 0 0 0 1

16 0 20 169 3 0 1 0 1 16 1 20 120 2 1 0 0 0

17 0 20 141 1 0 1 0 1 17 1 20 80 3 1 0 0 1

18 0 20 121 2 1 0 0 0 18 1 20 109 3 0 0 0 0

19 0 20 127 3 0 0 0 0 19 1 20 121 1 1 1 0 1

20 0 20 120 3 0 0 0 0 20 1 20 122 2 1 0 0 0

21 0 20 158 1 0 0 0 0 21 1 20 105 3 0 0 0 0

22 0 21 108 1 1 0 0 1 22 1 21 165 1 1 0 1 0

23 0 21 124 3 0 0 0 0 23 1 21 200 2 0 0 0 0

24 0 21 185 2 1 0 0 0 24 1 21 103 3 0 0 0 0

25 0 21 160 1 0 0 0 0 25 1 21 100 3 0 1 0 0

26 0 21 115 1 0 0 0 0 26 1 21 130 1 1 0 1 0

27 0 22 95 3 0 0 1 0 27 1 22 130 1 1 0 0 0

28 0 22 158 2 0 1 0 0 28 1 22 130 1 1 1 0 1

29 0 23 130 2 0 0 0 0 29 1 23 97 3 0 0 0 1

30 0 23 128 3 0 0 0 0 30 1 23 187 2 1 0 0 0

31 0 23 119 3 0 0 0 0 31 1 23 120 3 0 0 0 0

32 0 23 115 3 1 0 0 0 32 1 23 110 1 1 1 0 0

33 0 23 190 1 0 0 0 0 33 1 23 94 3 1 0 0 0

34 0 24 90 1 1 1 0 0 34 1 24 128 2 0 1 0 0

35 0 24 115 1 0 0 0 0 35 1 24 132 3 0 0 1 0

36 0 24 110 3 0 0 0 0 36 1 24 155 1 1 1 0 0

37 0 24 115 3 0 0 0 0 37 1 24 138 1 0 0 0 0

38 0 24 110 3 0 1 0 0 38 1 24 105 2 1 0 0 0

39 0 25 118 1 1 0 0 0 39 1 25 105 3 0 1 1 0

40 0 25 120 3 0 0 0 1 40 1 25 85 3 0 0 0 1

41 0 25 155 1 0 0 0 0 41 1 25 115 3 0 0 0 0



1390 PROCLIB.DELAY � Appendix 3

42 0 25 125 2 0 0 0 0 42 1 25 92 1 1 0 0 0

43 0 25 140 1 0 0 0 0 43 1 25 89 3 0 1 0 0

44 0 25 241 2 0 0 1 0 44 1 25 105 3 0 1 0 0

45 0 26 113 1 1 0 0 0 45 1 26 117 1 1 1 0 0

46 0 26 168 2 1 0 0 0 46 1 26 96 3 0 0 0 0

47 0 26 133 3 1 1 0 0 47 1 26 154 3 0 1 1 0

48 0 26 160 3 0 0 0 0 48 1 26 190 1 1 0 0 0

49 0 27 124 1 1 0 0 0 49 1 27 130 2 0 0 0 1

50 0 28 120 3 0 0 0 0 50 1 28 120 3 1 1 0 1

51 0 28 130 3 0 0 0 0 51 1 28 95 1 1 0 0 0

52 0 29 135 1 0 0 0 0 52 1 29 130 1 0 0 0 1

53 0 30 95 1 1 0 0 0 53 1 30 142 1 1 1 0 0

54 0 31 215 1 1 0 0 0 54 1 31 102 1 1 1 0 0

55 0 32 121 3 0 0 0 0 55 1 32 105 1 1 0 0 0

56 0 34 170 1 0 1 0 0 56 1 34 187 2 1 0 1 0

;

PROCLIB.DELAY

data proclib.delay;

input flight $3. +5 date date7. +2 orig $3. +3 dest $3. +3

delaycat $15. +2 destype $15. +8 delay;

informat date date7.;

format date date7.;

datalines;

114 01MAR94 LGA LAX 1-10 Minutes Domestic 8

202 01MAR94 LGA ORD No Delay Domestic -5

219 01MAR94 LGA LON 11+ Minutes International 18

622 01MAR94 LGA FRA No Delay International -5

132 01MAR94 LGA YYZ 11+ Minutes International 14

271 01MAR94 LGA PAR 1-10 Minutes International 5

302 01MAR94 LGA WAS No Delay Domestic -2

114 02MAR94 LGA LAX No Delay Domestic 0

202 02MAR94 LGA ORD 1-10 Minutes Domestic 5

219 02MAR94 LGA LON 11+ Minutes International 18

622 02MAR94 LGA FRA No Delay International 0

132 02MAR94 LGA YYZ 1-10 Minutes International 5

271 02MAR94 LGA PAR 1-10 Minutes International 4

302 02MAR94 LGA WAS No Delay Domestic 0

114 03MAR94 LGA LAX No Delay Domestic -1

202 03MAR94 LGA ORD No Delay Domestic -1

219 03MAR94 LGA LON 1-10 Minutes International 4

622 03MAR94 LGA FRA No Delay International -2

132 03MAR94 LGA YYZ 1-10 Minutes International 6

271 03MAR94 LGA PAR 1-10 Minutes International 2

302 03MAR94 LGA WAS 1-10 Minutes Domestic 5

114 04MAR94 LGA LAX 11+ Minutes Domestic 15

202 04MAR94 LGA ORD No Delay Domestic -5

219 04MAR94 LGA LON 1-10 Minutes International 3

622 04MAR94 LGA FRA 11+ Minutes International 30

132 04MAR94 LGA YYZ No Delay International -5

271 04MAR94 LGA PAR 1-10 Minutes International 5



Raw Data and DATA Steps � PROCLIB.EMP95 1391

302 04MAR94 LGA WAS 1-10 Minutes Domestic 7

114 05MAR94 LGA LAX No Delay Domestic -2

202 05MAR94 LGA ORD 1-10 Minutes Domestic 2

219 05MAR94 LGA LON 1-10 Minutes International 3

622 05MAR94 LGA FRA No Delay International -6

132 05MAR94 LGA YYZ 1-10 Minutes International 3

271 05MAR94 LGA PAR 1-10 Minutes International 5

114 06MAR94 LGA LAX No Delay Domestic -1

202 06MAR94 LGA ORD No Delay Domestic -3

219 06MAR94 LGA LON 11+ Minutes International 27

132 06MAR94 LGA YYZ 1-10 Minutes International 7

302 06MAR94 LGA WAS 1-10 Minutes Domestic 1

114 07MAR94 LGA LAX No Delay Domestic -1

202 07MAR94 LGA ORD No Delay Domestic -2

219 07MAR94 LGA LON 11+ Minutes International 15

622 07MAR94 LGA FRA 11+ Minutes International 21

132 07MAR94 LGA YYZ No Delay International -2

271 07MAR94 LGA PAR 1-10 Minutes International 4

302 07MAR94 LGA WAS No Delay Domestic 0

;

PROCLIB.EMP95

data proclib.emp95;

input #1 idnum $4. @6 name $15.

#2 address $42.

#3 salary 6.;

datalines;

2388 James Schmidt

100 Apt. C Blount St. SW Raleigh NC 27693

92100

2457 Fred Williams

99 West Lane Garner NC 27509

33190

2776 Robert Jones

12988 Wellington Farms Ave. Cary NC 27512

29025

8699 Jerry Capalleti

222 West L St. Oxford NC 27587

39985

2100 Lanny Engles

293 Manning Pl. Raleigh NC 27606

30998

9857 Kathy Krupski

1000 Taft Ave. Morrisville NC 27508

38756

0987 Dolly Lunford

2344 Persimmons Branch Apex NC 27505

44010

3286 Hoa Nguyen

2818 Long St. Cary NC 27513

87734



1392 PROCLIB.EMP96 � Appendix 3

6579 Bryan Samosky

3887 Charles Ave. Garner NC 27508

50234

3888 Kim Siu

5662 Magnolia Blvd Southeast Cary NC 27513

77558

;

PROCLIB.EMP96

data proclib.emp96;

input #1 idnum $4. @6 name $15.

#2 address $42.

#3 salary 6.;

datalines;

2388 James Schmidt

100 Apt. C Blount St. SW Raleigh NC 27693

92100

2457 Fred Williams

99 West Lane Garner NC 27509

33190

2776 Robert Jones

12988 Wellington Farms Ave. Cary NC 27511

29025

8699 Jerry Capalleti

222 West L St. Oxford NC 27587

39985

3278 Mary Cravens

211 N. Cypress St. Cary NC 27512

35362

2100 Lanny Engles

293 Manning Pl. Raleigh NC 27606

30998

9857 Kathy Krupski

100 Taft Ave. Morrisville NC 27508

40456

0987 Dolly Lunford

2344 Persimmons Branch Trail Apex NC 27505

45110

3286 Hoa Nguyen

2818 Long St. Cary NC 27513

89834

6579 Bryan Samosky

3887 Charles Ave. Garner NC 27508

50234

3888 Kim Siu

5662 Magnolia Blvd Southwest Cary NC 27513

79958

6544 Roger Monday



Raw Data and DATA Steps � PROCLIB.LAKES 1393

3004 Crepe Myrtle Court Raleigh NC 27604

47007

;

PROCLIB.INTERNAT

data proclib.internat;

input flight $3. +5 date date7. +2 dest $3. +8 boarded;

informat date date7.;

format date date7.;

datalines;

219 01MAR94 LON 198

622 01MAR94 FRA 207

132 01MAR94 YYZ 115

271 01MAR94 PAR 138

219 02MAR94 LON 147

622 02MAR94 FRA 176

132 02MAR94 YYZ 106

271 02MAR94 PAR 172

219 03MAR94 LON 197

622 03MAR94 FRA 180

132 03MAR94 YYZ 75

271 03MAR94 PAR 147

219 04MAR94 LON 232

622 04MAR94 FRA 137

132 04MAR94 YYZ 117

271 04MAR94 PAR 146

219 05MAR94 LON 160

622 05MAR94 FRA 185

132 05MAR94 YYZ 157

271 05MAR94 PAR 177

219 06MAR94 LON 163

132 06MAR94 YYZ 150

219 07MAR94 LON 241

622 07MAR94 FRA 210

132 07MAR94 YYZ 164

271 07MAR94 PAR 155

;

PROCLIB.LAKES

data proclib.lakes;

input region $ 1-2 lake $ 5-13 pol_a1 pol_a2 pol_b1-pol_b4;

datalines;

NE Carr 0.24 0.99 0.95 0.36 0.44 0.67

NE Duraleigh 0.34 0.01 0.48 0.58 0.12 0.56

NE Charlie 0.40 0.48 0.29 0.56 0.52 0.95

NE Farmer 0.60 0.65 0.25 0.20 0.30 0.64

NW Canyon 0.63 0.44 0.20 0.98 0.19 0.01

NW Morris 0.85 0.95 0.80 0.67 0.32 0.81



1394 PROCLIB.MARCH � Appendix 3

NW Golf 0.69 0.37 0.08 0.72 0.71 0.32

NW Falls 0.01 0.02 0.59 0.58 0.67 0.02

SE Pleasant 0.16 0.96 0.71 0.35 0.35 0.48

SE Juliette 0.82 0.35 0.09 0.03 0.59 0.90

SE Massey 1.01 0.77 0.45 0.32 0.55 0.66

SE Delta 0.84 1.05 0.90 0.09 0.64 0.03

SW Alumni 0.45 0.32 0.45 0.44 0.55 0.12

SW New Dam 0.80 0.70 0.31 0.98 1.00 0.22

SW Border 0.51 0.04 0.55 0.35 0.45 0.78

SW Red 0.22 0.09 0.02 0.10 0.32 0.01

;

PROCLIB.MARCH

data proclib.march;

input flight $3. +5 date date7. +3 depart time5. +2 orig $3.

+3 dest $3. +7 miles +6 boarded +6 capacity;

format date date7. depart time5.;

informat date date7. depart time5.;

datalines;

114 01MAR94 7:10 LGA LAX 2475 172 210

202 01MAR94 10:43 LGA ORD 740 151 210

219 01MAR94 9:31 LGA LON 3442 198 250

622 01MAR94 12:19 LGA FRA 3857 207 250

132 01MAR94 15:35 LGA YYZ 366 115 178

271 01MAR94 13:17 LGA PAR 3635 138 250

302 01MAR94 20:22 LGA WAS 229 105 180

114 02MAR94 7:10 LGA LAX 2475 119 210

202 02MAR94 10:43 LGA ORD 740 120 210

219 02MAR94 9:31 LGA LON 3442 147 250

622 02MAR94 12:19 LGA FRA 3857 176 250

132 02MAR94 15:35 LGA YYZ 366 106 178

302 02MAR94 20:22 LGA WAS 229 78 180

271 02MAR94 13:17 LGA PAR 3635 104 250

114 03MAR94 7:10 LGA LAX 2475 197 210

202 03MAR94 10:43 LGA ORD 740 118 210

219 03MAR94 9:31 LGA LON 3442 197 250

622 03MAR94 12:19 LGA FRA 3857 180 250

132 03MAR94 15:35 LGA YYZ 366 75 178

271 03MAR94 13:17 LGA PAR 3635 147 250

302 03MAR94 20:22 LGA WAS 229 123 180

114 04MAR94 7:10 LGA LAX 2475 178 210

202 04MAR94 10:43 LGA ORD 740 148 210

219 04MAR94 9:31 LGA LON 3442 232 250

622 04MAR94 12:19 LGA FRA 3857 137 250

132 04MAR94 15:35 LGA YYZ 366 117 178

271 04MAR94 13:17 LGA PAR 3635 146 250

302 04MAR94 20:22 LGA WAS 229 115 180

114 05MAR94 7:10 LGA LAX 2475 117 210

202 05MAR94 10:43 LGA ORD 740 104 210

219 05MAR94 9:31 LGA LON 3442 160 250

622 05MAR94 12:19 LGA FRA 3857 185 250



Raw Data and DATA Steps � PROCLIB.PAYROLL 1395

132 05MAR94 15:35 LGA YYZ 366 157 178

271 05MAR94 13:17 LGA PAR 3635 177 250

114 06MAR94 7:10 LGA LAX 2475 128 210

202 06MAR94 10:43 LGA ORD 740 115 210

219 06MAR94 9:31 LGA LON 3442 163 250

132 06MAR94 15:35 LGA YYZ 366 150 178

302 06MAR94 20:22 LGA WAS 229 66 180

114 07MAR94 7:10 LGA LAX 2475 160 210

202 07MAR94 10:43 LGA ORD 740 175 210

219 07MAR94 9:31 LGA LON 3442 241 250

622 07MAR94 12:19 LGA FRA 3857 210 250

132 07MAR94 15:35 LGA YYZ 366 164 178

271 07MAR94 13:17 LGA PAR 3635 155 250

302 07MAR94 20:22 LGA WAS 229 135 180

;

PROCLIB.PAYLIST2

proc sql;

create table proclib.paylist2

(IdNum char(4),

Gender char(1),

Jobcode char(3),

Salary num,

Birth num informat=date7.

format=date7.,

Hired num informat=date7.

format=date7.);

insert into proclib.paylist2

values(’1919’,’M’,’TA2’,34376,’12SEP66’d,’04JUN87’d)

values(’1653’,’F’,’ME2’,31896,’15OCT64’d,’09AUG92’d)

values(’1350’,’F’,’FA3’,36886,’31AUG55’d,’29JUL91’d)

values(’1401’,’M’,’TA3’,38822,’13DEC55’d,’17NOV93’d)

values(’1499’,’M’,’ME1’,23025,’26APR74’d,’07JUN92’d);

title ’PROCLIB.PAYLIST2 Table’;

select * from proclib.paylist2;

PROCLIB.PAYROLL
This data set (table) is updated in Example 3 on page 1129 and its updated data is

used in subsequent examples.

data proclib.payroll;

input IdNumber $4. +3 Gender $1. +4 Jobcode $3. +9 Salary 5.

+2 Birth date7. +2 Hired date7.;

informat birth date7. hired date7.;

format birth date7. hired date7.;

datalines;

1919 M TA2 34376 12SEP60 04JUN87



1396 PROCLIB.PAYROLL � Appendix 3

1653 F ME2 35108 15OCT64 09AUG90

1400 M ME1 29769 05NOV67 16OCT90

1350 F FA3 32886 31AUG65 29JUL90

1401 M TA3 38822 13DEC50 17NOV85

1499 M ME3 43025 26APR54 07JUN80

1101 M SCP 18723 06JUN62 01OCT90

1333 M PT2 88606 30MAR61 10FEB81

1402 M TA2 32615 17JAN63 02DEC90

1479 F TA3 38785 22DEC68 05OCT89

1403 M ME1 28072 28JAN69 21DEC91

1739 M PT1 66517 25DEC64 27JAN91

1658 M SCP 17943 08APR67 29FEB92

1428 F PT1 68767 04APR60 16NOV91

1782 M ME2 35345 04DEC70 22FEB92

1244 M ME2 36925 31AUG63 17JAN88

1383 M BCK 25823 25JAN68 20OCT92

1574 M FA2 28572 27APR60 20DEC92

1789 M SCP 18326 25JAN57 11APR78

1404 M PT2 91376 24FEB53 01JAN80

1437 F FA3 33104 20SEP60 31AUG84

1639 F TA3 40260 26JUN57 28JAN84

1269 M NA1 41690 03MAY72 28NOV92

1065 M ME2 35090 26JAN44 07JAN87

1876 M TA3 39675 20MAY58 27APR85

1037 F TA1 28558 10APR64 13SEP92

1129 F ME2 34929 08DEC61 17AUG91

1988 M FA3 32217 30NOV59 18SEP84

1405 M SCP 18056 05MAR66 26JAN92

1430 F TA2 32925 28FEB62 27APR87

1983 F FA3 33419 28FEB62 27APR87

1134 F TA2 33462 05MAR69 21DEC88

1118 M PT3 111379 16JAN44 18DEC80

1438 F TA3 39223 15MAR65 18NOV87

1125 F FA2 28888 08NOV68 11DEC87

1475 F FA2 27787 15DEC61 13JUL90

1117 M TA3 39771 05JUN63 13AUG92

1935 F NA2 51081 28MAR54 16OCT81

1124 F FA1 23177 10JUL58 01OCT90

1422 F FA1 22454 04JUN64 06APR91

1616 F TA2 34137 01MAR70 04JUN93

1406 M ME2 35185 08MAR61 17FEB87

1120 M ME1 28619 11SEP72 07OCT93

1094 M FA1 22268 02APR70 17APR91

1389 M BCK 25028 15JUL59 18AUG90

1905 M PT1 65111 16APR72 29MAY92

1407 M PT1 68096 23MAR69 18MAR90

1114 F TA2 32928 18SEP69 27JUN87

1410 M PT2 84685 03MAY67 07NOV86

1439 F PT1 70736 06MAR64 10SEP90

1409 M ME3 41551 19APR50 22OCT81

1408 M TA2 34138 29MAR60 14OCT87

1121 M ME1 29112 26SEP71 07DEC91

1991 F TA1 27645 07MAY72 12DEC92

1102 M TA2 34542 01OCT59 15APR91



Raw Data and DATA Steps � PROCLIB.PAYROLL 1397

1356 M ME2 36869 26SEP57 22FEB83

1545 M PT1 66130 12AUG59 29MAY90

1292 F ME2 36691 28OCT64 02JUL89

1440 F ME2 35757 27SEP62 09APR91

1368 M FA2 27808 11JUN61 03NOV84

1369 M TA2 33705 28DEC61 13MAR87

1411 M FA2 27265 27MAY61 01DEC89

1113 F FA1 22367 15JAN68 17OCT91

1704 M BCK 25465 30AUG66 28JUN87

1900 M ME2 35105 25MAY62 27OCT87

1126 F TA3 40899 28MAY63 21NOV80

1677 M BCK 26007 05NOV63 27MAR89

1441 F FA2 27158 19NOV69 23MAR91

1421 M TA2 33155 08JAN59 28FEB90

1119 M TA1 26924 20JUN62 06SEP88

1834 M BCK 26896 08FEB72 02JUL92

1777 M PT3 109630 23SEP51 21JUN81

1663 M BCK 26452 11JAN67 11AUG91

1106 M PT2 89632 06NOV57 16AUG84

1103 F FA1 23738 16FEB68 23JUL92

1477 M FA2 28566 21MAR64 07MAR88

1476 F TA2 34803 30MAY66 17MAR87

1379 M ME3 42264 08AUG61 10JUN84

1104 M SCP 17946 25APR63 10JUN91

1009 M TA1 28880 02MAR59 26MAR92

1412 M ME1 27799 18JUN56 05DEC91

1115 F FA3 32699 22AUG60 29FEB80

1128 F TA2 32777 23MAY65 20OCT90

1442 F PT2 84536 05SEP66 12APR88

1417 M NA2 52270 27JUN64 07MAR89

1478 M PT2 84203 09AUG59 24OCT90

1673 M BCK 25477 27FEB70 15JUL91

1839 F NA1 43433 29NOV70 03JUL93

1347 M TA3 40079 21SEP67 06SEP84

1423 F ME2 35773 14MAY68 19AUG90

1200 F ME1 27816 10JAN71 14AUG92

1970 F FA1 22615 25SEP64 12MAR91

1521 M ME3 41526 12APR63 13JUL88

1354 F SCP 18335 29MAY71 16JUN92

1424 F FA2 28978 04AUG69 11DEC89

1132 F FA1 22413 30MAY72 22OCT93

1845 M BCK 25996 20NOV59 22MAR80

1556 M PT1 71349 22JUN64 11DEC91

1413 M FA2 27435 16SEP65 02JAN90

1123 F TA1 28407 31OCT72 05DEC92

1907 M TA2 33329 15NOV60 06JUL87

1436 F TA2 34475 11JUN64 12MAR87

1385 M ME3 43900 16JAN62 01APR86

1432 F ME2 35327 03NOV61 10FEB85

1111 M NA1 40586 14JUL73 31OCT92

1116 F FA1 22862 28SEP69 21MAR91

1352 M NA2 53798 02DEC60 16OCT86

1555 F FA2 27499 16MAR68 04JUL92

1038 F TA1 26533 09NOV69 23NOV91



1398 PROCLIB.PAYROLL2 � Appendix 3

1420 M ME3 43071 19FEB65 22JUL87

1561 M TA2 34514 30NOV63 07OCT87

1434 F FA2 28622 11JUL62 28OCT90

1414 M FA1 23644 24MAR72 12APR92

1112 M TA1 26905 29NOV64 07DEC92

1390 M FA2 27761 19FEB65 23JUN91

1332 M NA1 42178 17SEP70 04JUN91

1890 M PT2 91908 20JUL51 25NOV79

1429 F TA1 27939 28FEB60 07AUG92

1107 M PT2 89977 09JUN54 10FEB79

1908 F TA2 32995 10DEC69 23APR90

1830 F PT2 84471 27MAY57 29JAN83

1882 M ME3 41538 10JUL57 21NOV78

1050 M ME2 35167 14JUL63 24AUG86

1425 F FA1 23979 28DEC71 28FEB93

1928 M PT2 89858 16SEP54 13JUL90

1480 F TA3 39583 03SEP57 25MAR81

1100 M BCK 25004 01DEC60 07MAY88

1995 F ME1 28810 24AUG73 19SEP93

1135 F FA2 27321 20SEP60 31MAR90

1415 M FA2 28278 09MAR58 12FEB88

1076 M PT1 66558 14OCT55 03OCT91

1426 F TA2 32991 05DEC66 25JUN90

1564 F SCP 18833 12APR62 01JUL92

1221 F FA2 27896 22SEP67 04OCT91

1133 M TA1 27701 13JUL66 12FEB92

1435 F TA3 38808 12MAY59 08FEB80

1418 M ME1 28005 29MAR57 06JAN92

1017 M TA3 40858 28DEC57 16OCT81

1443 F NA1 42274 17NOV68 29AUG91

1131 F TA2 32575 26DEC71 19APR91

1427 F TA2 34046 31OCT70 30JAN90

1036 F TA3 39392 19MAY65 23OCT84

1130 F FA1 23916 16MAY71 05JUN92

1127 F TA2 33011 09NOV64 07DEC86

1433 F FA3 32982 08JUL66 17JAN87

1431 F FA3 33230 09JUN64 05APR88

1122 F FA2 27956 01MAY63 27NOV88

1105 M ME2 34805 01MAR62 13AUG90

;

PROCLIB.PAYROLL2

data proclib.payroll2;

input idnum $4. +3 gender $1. +4 jobcode $3. +9 salary 5.

+2 birth date7. +2 hired date7.;

informat birth date7. hired date7.;

format birth date7. hired date7.;

datalines;

1639 F TA3 42260 26JUN57 28JAN84

1065 M ME3 38090 26JAN44 07JAN87

1561 M TA3 36514 30NOV63 07OCT87



Raw Data and DATA Steps � PROCLIB.SCHEDULE 1399

1221 F FA3 29896 22SEP67 04OCT91

1447 F FA1 22123 07AUG72 29OCT92

1998 M SCP 23100 10SEP70 02NOV92

1036 F TA3 42465 19MAY65 23OCT84

1106 M PT3 94039 06NOV57 16AUG84

1129 F ME3 36758 08DEC61 17AUG91

1350 F FA3 36098 31AUG65 29JUL90

1369 M TA3 36598 28DEC61 13MAR87

1076 M PT1 69742 14OCT55 03OCT91

;

PROCLIB.SCHEDULE

data proclib.schedule;

input flight $3. +5 date date7. +2 dest $3. +3 idnum $4.;

format date date7.;

informat date date7.;

datalines;

132 01MAR94 YYZ 1739

132 01MAR94 YYZ 1478

132 01MAR94 YYZ 1130

132 01MAR94 YYZ 1390

132 01MAR94 YYZ 1983

132 01MAR94 YYZ 1111

219 01MAR94 LON 1407

219 01MAR94 LON 1777

219 01MAR94 LON 1103

219 01MAR94 LON 1125

219 01MAR94 LON 1350

219 01MAR94 LON 1332

271 01MAR94 PAR 1439

271 01MAR94 PAR 1442

271 01MAR94 PAR 1132

271 01MAR94 PAR 1411

271 01MAR94 PAR 1988

271 01MAR94 PAR 1443

622 01MAR94 FRA 1545

622 01MAR94 FRA 1890

622 01MAR94 FRA 1116

622 01MAR94 FRA 1221

622 01MAR94 FRA 1433

622 01MAR94 FRA 1352

132 02MAR94 YYZ 1556

132 02MAR94 YYZ 1478

132 02MAR94 YYZ 1113

132 02MAR94 YYZ 1411

132 02MAR94 YYZ 1574

132 02MAR94 YYZ 1111

219 02MAR94 LON 1407

219 02MAR94 LON 1118

219 02MAR94 LON 1132

219 02MAR94 LON 1135



1400 PROCLIB.SCHEDULE � Appendix 3

219 02MAR94 LON 1441

219 02MAR94 LON 1332

271 02MAR94 PAR 1739

271 02MAR94 PAR 1442

271 02MAR94 PAR 1103

271 02MAR94 PAR 1413

271 02MAR94 PAR 1115

271 02MAR94 PAR 1443

622 02MAR94 FRA 1439

622 02MAR94 FRA 1890

622 02MAR94 FRA 1124

622 02MAR94 FRA 1368

622 02MAR94 FRA 1477

622 02MAR94 FRA 1352

132 03MAR94 YYZ 1739

132 03MAR94 YYZ 1928

132 03MAR94 YYZ 1425

132 03MAR94 YYZ 1135

132 03MAR94 YYZ 1437

132 03MAR94 YYZ 1111

219 03MAR94 LON 1428

219 03MAR94 LON 1442

219 03MAR94 LON 1130

219 03MAR94 LON 1411

219 03MAR94 LON 1115

219 03MAR94 LON 1332

271 03MAR94 PAR 1905

271 03MAR94 PAR 1118

271 03MAR94 PAR 1970

271 03MAR94 PAR 1125

271 03MAR94 PAR 1983

271 03MAR94 PAR 1443

622 03MAR94 FRA 1545

622 03MAR94 FRA 1830

622 03MAR94 FRA 1414

622 03MAR94 FRA 1368

622 03MAR94 FRA 1431

622 03MAR94 FRA 1352

132 04MAR94 YYZ 1428

132 04MAR94 YYZ 1118

132 04MAR94 YYZ 1103

132 04MAR94 YYZ 1390

132 04MAR94 YYZ 1350

132 04MAR94 YYZ 1111

219 04MAR94 LON 1739

219 04MAR94 LON 1478

219 04MAR94 LON 1130

219 04MAR94 LON 1125

219 04MAR94 LON 1983

219 04MAR94 LON 1332

271 04MAR94 PAR 1407

271 04MAR94 PAR 1410

271 04MAR94 PAR 1094

271 04MAR94 PAR 1411



Raw Data and DATA Steps � PROCLIB.SCHEDULE 1401

271 04MAR94 PAR 1115

271 04MAR94 PAR 1443

622 04MAR94 FRA 1545

622 04MAR94 FRA 1890

622 04MAR94 FRA 1116

622 04MAR94 FRA 1221

622 04MAR94 FRA 1433

622 04MAR94 FRA 1352

132 05MAR94 YYZ 1556

132 05MAR94 YYZ 1890

132 05MAR94 YYZ 1113

132 05MAR94 YYZ 1475

132 05MAR94 YYZ 1431

132 05MAR94 YYZ 1111

219 05MAR94 LON 1428

219 05MAR94 LON 1442

219 05MAR94 LON 1422

219 05MAR94 LON 1413

219 05MAR94 LON 1574

219 05MAR94 LON 1332

271 05MAR94 PAR 1739

271 05MAR94 PAR 1928

271 05MAR94 PAR 1103

271 05MAR94 PAR 1477

271 05MAR94 PAR 1433

271 05MAR94 PAR 1443

622 05MAR94 FRA 1545

622 05MAR94 FRA 1830

622 05MAR94 FRA 1970

622 05MAR94 FRA 1441

622 05MAR94 FRA 1350

622 05MAR94 FRA 1352

132 06MAR94 YYZ 1333

132 06MAR94 YYZ 1890

132 06MAR94 YYZ 1414

132 06MAR94 YYZ 1475

132 06MAR94 YYZ 1437

132 06MAR94 YYZ 1111

219 06MAR94 LON 1106

219 06MAR94 LON 1118

219 06MAR94 LON 1425

219 06MAR94 LON 1434

219 06MAR94 LON 1555

219 06MAR94 LON 1332

132 07MAR94 YYZ 1407

132 07MAR94 YYZ 1118

132 07MAR94 YYZ 1094

132 07MAR94 YYZ 1555

132 07MAR94 YYZ 1350

132 07MAR94 YYZ 1111

219 07MAR94 LON 1905

219 07MAR94 LON 1478

219 07MAR94 LON 1124

219 07MAR94 LON 1434



1402 PROCLIB.STAFF � Appendix 3

219 07MAR94 LON 1983

219 07MAR94 LON 1332

271 07MAR94 PAR 1410

271 07MAR94 PAR 1777

271 07MAR94 PAR 1103

271 07MAR94 PAR 1574

271 07MAR94 PAR 1115

271 07MAR94 PAR 1443

622 07MAR94 FRA 1107

622 07MAR94 FRA 1890

622 07MAR94 FRA 1425

622 07MAR94 FRA 1475

622 07MAR94 FRA 1433

622 07MAR94 FRA 1352

;

PROCLIB.STAFF

data proclib.staff;

input idnum $4. +3 lname $15. +2 fname $15. +2 city $15. +2

state $2. +5 hphone $12.;

datalines;

1919 ADAMS GERALD STAMFORD CT 203/781-1255

1653 ALIBRANDI MARIA BRIDGEPORT CT 203/675-7715

1400 ALHERTANI ABDULLAH NEW YORK NY 212/586-0808

1350 ALVAREZ MERCEDES NEW YORK NY 718/383-1549

1401 ALVAREZ CARLOS PATERSON NJ 201/732-8787

1499 BAREFOOT JOSEPH PRINCETON NJ 201/812-5665

1101 BAUCOM WALTER NEW YORK NY 212/586-8060

1333 BANADYGA JUSTIN STAMFORD CT 203/781-1777

1402 BLALOCK RALPH NEW YORK NY 718/384-2849

1479 BALLETTI MARIE NEW YORK NY 718/384-8816

1403 BOWDEN EARL BRIDGEPORT CT 203/675-3434

1739 BRANCACCIO JOSEPH NEW YORK NY 212/587-1247

1658 BREUHAUS JEREMY NEW YORK NY 212/587-3622

1428 BRADY CHRISTINE STAMFORD CT 203/781-1212

1782 BREWCZAK JAKOB STAMFORD CT 203/781-0019

1244 BUCCI ANTHONY NEW YORK NY 718/383-3334

1383 BURNETTE THOMAS NEW YORK NY 718/384-3569

1574 CAHILL MARSHALL NEW YORK NY 718/383-2338

1789 CARAWAY DAVIS NEW YORK NY 212/587-9000

1404 COHEN LEE NEW YORK NY 718/384-2946

1437 CARTER DOROTHY BRIDGEPORT CT 203/675-4117

1639 CARTER-COHEN KAREN STAMFORD CT 203/781-8839

1269 CASTON FRANKLIN STAMFORD CT 203/781-3335

1065 COPAS FREDERICO NEW YORK NY 718/384-5618

1876 CHIN JACK NEW YORK NY 212/588-5634

1037 CHOW JANE STAMFORD CT 203/781-8868

1129 COUNIHAN BRENDA NEW YORK NY 718/383-2313

1988 COOPER ANTHONY NEW YORK NY 212/587-1228

1405 DACKO JASON PATERSON NJ 201/732-2323

1430 DABROWSKI SANDRA BRIDGEPORT CT 203/675-1647



Raw Data and DATA Steps � PROCLIB.STAFF 1403

1983 DEAN SHARON NEW YORK NY 718/384-1647

1134 DELGADO MARIA STAMFORD CT 203/781-1528

1118 DENNIS ROGER NEW YORK NY 718/383-1122

1438 DABBOUSSI KAMILLA STAMFORD CT 203/781-2229

1125 DUNLAP DONNA NEW YORK NY 718/383-2094

1475 ELGES MARGARETE NEW YORK NY 718/383-2828

1117 EDGERTON JOSHUA NEW YORK NY 212/588-1239

1935 FERNANDEZ KATRINA BRIDGEPORT CT 203/675-2962

1124 FIELDS DIANA WHITE PLAINS NY 914/455-2998

1422 FUJIHARA KYOKO PRINCETON NJ 201/812-0902

1616 FUENTAS CARLA NEW YORK NY 718/384-3329

1406 FOSTER GERALD BRIDGEPORT CT 203/675-6363

1120 GARCIA JACK NEW YORK NY 718/384-4930

1094 GOMEZ ALAN BRIDGEPORT CT 203/675-7181

1389 GOLDSTEIN LEVI NEW YORK NY 718/384-9326

1905 GRAHAM ALVIN NEW YORK NY 212/586-8815

1407 GREGORSKI DANIEL MT. VERNON NY 914/468-1616

1114 GREENWALD JANICE NEW YORK NY 212/588-1092

1410 HARRIS CHARLES STAMFORD CT 203/781-0937

1439 HASENHAUER CHRISTINA BRIDGEPORT CT 203/675-4987

1409 HAVELKA RAYMOND STAMFORD CT 203/781-9697

1408 HENDERSON WILLIAM PRINCETON NJ 201/812-4789

1121 HERNANDEZ ROBERTO NEW YORK NY 718/384-3313

1991 HOWARD GRETCHEN BRIDGEPORT CT 203/675-0007

1102 HERMANN JOACHIM WHITE PLAINS NY 914/455-0976

1356 HOWARD MICHAEL NEW YORK NY 212/586-8411

1545 HERRERO CLYDE STAMFORD CT 203/781-1119

1292 HUNTER HELEN BRIDGEPORT CT 203/675-4830

1440 JACKSON LAURA STAMFORD CT 203/781-0088

1368 JEPSEN RONALD STAMFORD CT 203/781-8413

1369 JONSON ANTHONY NEW YORK NY 212/587-5385

1411 JOHNSEN JACK PATERSON NJ 201/732-3678

1113 JOHNSON LESLIE NEW YORK NY 718/383-3003

1704 JONES NATHAN NEW YORK NY 718/384-0049

1900 KING WILLIAM NEW YORK NY 718/383-3698

1126 KIMANI ANNE NEW YORK NY 212/586-1229

1677 KRAMER JACKSON BRIDGEPORT CT 203/675-7432

1441 LAWRENCE KATHY PRINCETON NJ 201/812-3337

1421 LEE RUSSELL MT. VERNON NY 914/468-9143

1119 LI JEFF NEW YORK NY 212/586-2344

1834 LEBLANC RUSSELL NEW YORK NY 718/384-0040

1777 LUFKIN ROY NEW YORK NY 718/383-4413

1663 MARKS JOHN NEW YORK NY 212/587-7742

1106 MARSHBURN JASPER STAMFORD CT 203/781-1457

1103 MCDANIEL RONDA NEW YORK NY 212/586-0013

1477 MEYERS PRESTON BRIDGEPORT CT 203/675-8125

1476 MONROE JOYCE STAMFORD CT 203/781-2837

1379 MORGAN ALFRED STAMFORD CT 203/781-2216

1104 MORGAN CHRISTOPHER NEW YORK NY 718/383-9740

1009 MORGAN GEORGE NEW YORK NY 212/586-7753

1412 MURPHEY JOHN PRINCETON NJ 201/812-4414

1115 MURPHY ALICE NEW YORK NY 718/384-1982

1128 NELSON FELICIA BRIDGEPORT CT 203/675-1166

1442 NEWKIRK SANDRA PRINCETON NJ 201/812-3331



1404 PROCLIB.STAFF � Appendix 3

1417 NEWKIRK WILLIAM PATERSON NJ 201/732-6611

1478 NEWTON JAMES NEW YORK NY 212/587-5549

1673 NICHOLLS HENRY STAMFORD CT 203/781-7770

1839 NORRIS DIANE NEW YORK NY 718/384-1767

1347 O’NEAL BRYAN NEW YORK NY 718/384-0230

1423 OSWALD LESLIE MT. VERNON NY 914/468-9171

1200 OVERMAN MICHELLE STAMFORD CT 203/781-1835

1970 PARKER ANNE NEW YORK NY 718/383-3895

1521 PARKER JAY NEW YORK NY 212/587-7603

1354 PARKER MARY WHITE PLAINS NY 914/455-2337

1424 PATTERSON RENEE NEW YORK NY 212/587-8991

1132 PEARCE CAROL NEW YORK NY 718/384-1986

1845 PEARSON JAMES NEW YORK NY 718/384-2311

1556 PENNINGTON MICHAEL NEW YORK NY 718/383-5681

1413 PETERS RANDALL PRINCETON NJ 201/812-2478

1123 PETERSON SUZANNE NEW YORK NY 718/383-0077

1907 PHELPS WILLIAM STAMFORD CT 203/781-1118

1436 PORTER SUSAN NEW YORK NY 718/383-5777

1385 RAYNOR MILTON BRIDGEPORT CT 203/675-2846

1432 REED MARILYN MT. VERNON NY 914/468-5454

1111 RHODES JEREMY PRINCETON NJ 201/812-1837

1116 RICHARDS CASEY NEW YORK NY 212/587-1224

1352 RIVERS SIMON NEW YORK NY 718/383-3345

1555 RODRIGUEZ JULIA BRIDGEPORT CT 203/675-2401

1038 RODRIGUEZ MARIA BRIDGEPORT CT 203/675-2048

1420 ROUSE JEREMY PATERSON NJ 201/732-9834

1561 SANDERS RAYMOND NEW YORK NY 212/588-6615

1434 SANDERSON EDITH STAMFORD CT 203/781-1333

1414 SANDERSON NATHAN BRIDGEPORT CT 203/675-1715

1112 SANYERS RANDY NEW YORK NY 718/384-4895

1390 SMART JONATHAN NEW YORK NY 718/383-1141

1332 STEPHENSON ADAM BRIDGEPORT CT 203/675-1497

1890 STEPHENSON ROBERT NEW YORK NY 718/384-9874

1429 THOMPSON ALICE STAMFORD CT 203/781-3857

1107 THOMPSON WAYNE NEW YORK NY 718/384-3785

1908 TRENTON MELISSA NEW YORK NY 212/586-6262

1830 TRIPP KATHY BRIDGEPORT CT 203/675-2479

1882 TUCKER ALAN NEW YORK NY 718/384-0216

1050 TUTTLE THOMAS WHITE PLAINS NY 914/455-2119

1425 UNDERWOOD JENNY STAMFORD CT 203/781-0978

1928 UPCHURCH LARRY WHITE PLAINS NY 914/455-5009

1480 UPDIKE THERESA NEW YORK NY 212/587-8729

1100 VANDEUSEN RICHARD NEW YORK NY 212/586-2531

1995 VARNER ELIZABETH NEW YORK NY 718/384-7113

1135 VEGA ANNA NEW YORK NY 718/384-5913

1415 VEGA FRANKLIN NEW YORK NY 718/384-2823

1076 VENTER RANDALL NEW YORK NY 718/383-2321

1426 VICK THERESA PRINCETON NJ 201/812-2424

1564 WALTERS ANNE NEW YORK NY 212/587-3257

1221 WALTERS DIANE NEW YORK NY 718/384-1918

1133 WANG CHIN NEW YORK NY 212/587-1956

1435 WARD ELAINE NEW YORK NY 718/383-4987

1418 WATSON BERNARD NEW YORK NY 718/383-1298

1017 WELCH DARIUS NEW YORK NY 212/586-5535



Raw Data and DATA Steps � RADIO 1405

1443 WELLS AGNES STAMFORD CT 203/781-5546

1131 WELLS NADINE NEW YORK NY 718/383-1045

1427 WHALEY CAROLYN MT. VERNON NY 914/468-4528

1036 WONG LESLIE NEW YORK NY 212/587-2570

1130 WOOD DEBORAH NEW YORK NY 212/587-0013

1127 WOOD SANDRA NEW YORK NY 212/587-2881

1433 YANCEY ROBIN PRINCETON NJ 201/812-1874

1431 YOUNG DEBORAH STAMFORD CT 203/781-2987

1122 YOUNG JOANN NEW YORK NY 718/384-2021

1105 YOUNG LAWRENCE NEW YORK NY 718/384-0008

;

PROCLIB.SUPERV

data proclib.superv;

input supid $4. +8 state $2. +5 jobcat $2.;

label supid=’Supervisor Id’ jobcat=’Job Category’;

datalines;

1677 CT BC

1834 NY BC

1431 CT FA

1433 NJ FA

1983 NY FA

1385 CT ME

1420 NJ ME

1882 NY ME

1935 CT NA

1417 NJ NA

1352 NY NA

1106 CT PT

1442 NJ PT

1118 NY PT

1405 NJ SC

1564 NY SC

1639 CT TA

1401 NJ TA

1126 NY TA

;

RADIO

This DATA step uses an INFILE statement to read data that is stored in an external
file.

data radio;

infile ’input-file’ missover;

input /(time1-time7) ($1. +1);

listener=_n_;

run;



1406 RADIO � Appendix 3

Here is the data that is stored in the external file:

967 32 f 5 3 5

7 5 5 5 7 0 0 0 8 7 0 0 8 0

781 30 f 2 3 5

5 0 0 0 5 0 0 0 4 7 5 0 0 0

859 39 f 1 0 5

1 0 0 0 1 0 0 0 0 0 0 0 0 0

859 40 f 6 1 5

7 5 0 5 7 0 0 0 0 0 0 5 0 0

467 37 m 2 3 1

1 5 5 5 5 4 4 8 8 0 0 0 0 0

220 35 f 3 1 7

7 0 0 0 7 0 0 0 7 0 0 0 0 0

833 42 m 2 2 4

7 0 0 0 7 5 4 7 4 0 1 4 4 0

967 39 f .5 1 7

7 0 0 0 7 7 0 0 0 0 0 0 8 0

677 28 m .5 .5 7

7 0 0 0 0 0 0 0 0 0 0 0 0 0

833 28 f 3 4 1

1 0 0 0 0 1 1 1 1 0 0 0 1 1

677 24 f 3 1 2

2 0 0 0 0 0 0 2 0 8 8 0 0 0

688 32 m 5 2 4

5 5 0 4 8 0 0 5 0 8 0 0 0 0

542 38 f 6 8 5

5 0 0 5 5 5 0 5 5 5 5 5 5 0

677 27 m 6 1 1

1 1 0 4 4 0 0 1 4 0 0 0 0 0

779 37 f 2.5 4 7

7 0 0 0 7 7 0 7 7 4 4 7 8 0

362 31 f 1 2 2

8 0 0 0 8 0 0 0 0 0 8 8 0 0

859 29 m 10 3 4

4 4 0 2 2 0 0 4 0 0 0 4 4 0

467 24 m 5 8 1

7 1 1 1 7 1 1 0 1 7 1 1 1 1

851 34 m 1 2 8

0 0 0 0 8 0 0 0 4 0 0 0 8 0

859 23 f 1 1 8

8 0 0 0 8 0 0 0 0 0 0 0 0 8

781 34 f 9 3 1

2 1 0 1 4 4 4 0 1 1 1 1 4 4

851 40 f 2 4 5

5 0 0 0 5 0 0 5 0 0 5 5 0 0

783 34 m 3 2 4

7 0 0 0 7 4 4 0 0 4 4 0 0 0

848 29 f 4 1.5 7

7 4 4 1 7 0 0 0 7 0 0 7 0 0

851 28 f 1 2 2

2 0 2 0 2 0 0 0 0 2 2 2 0 0

856 42 f 1.5 1 2

2 0 0 0 0 0 0 2 0 0 0 0 0 0

859 29 m .5 .5 5



Raw Data and DATA Steps � RADIO 1407

5 0 0 0 1 0 0 0 0 0 8 8 5 0

833 29 m 1 3 2

2 0 0 0 2 2 0 0 4 2 0 2 0 0

859 23 f 10 3 1

1 5 0 8 8 1 4 0 1 1 1 1 1 4

781 37 f .5 2 7

7 0 0 0 1 0 0 0 1 7 0 1 0 0

833 31 f 5 4 1

1 0 0 0 1 0 0 0 4 0 4 0 0 0

942 23 f 4 2 1

1 0 0 0 1 0 1 0 1 1 0 0 0 0

848 33 f 5 4 1

1 1 0 1 1 0 0 0 1 1 1 0 0 0

222 33 f 2 0 1

1 0 0 0 1 0 0 0 0 0 0 0 0 0

851 45 f .5 1 8

8 0 0 0 8 0 0 0 0 0 8 0 0 0

848 27 f 2 4 1

1 0 0 0 1 1 0 0 4 1 1 1 1 1

781 38 m 2 2 1

5 0 0 0 1 0 0 0 0 0 1 1 0 0

222 27 f 3 1 2

2 0 2 0 2 2 0 0 2 0 0 0 0 0

467 34 f 2 2 1

1 0 0 0 0 1 0 1 0 0 0 0 1 0

833 27 f 8 8 1

7 0 1 0 7 4 0 0 1 1 1 4 1 0

677 49 f 1.5 0 8

8 0 8 0 8 0 0 0 0 0 0 0 0 0

849 43 m 1 4 1

1 0 0 0 4 0 0 0 4 0 1 0 0 0

467 28 m 2 1 7

7 0 0 0 7 0 0 7 0 0 1 0 0 0

732 29 f 1 0 2

2 0 0 0 2 0 0 0 0 0 0 0 0 0

851 31 m 2 2 2

2 5 0 6 0 0 8 0 2 2 8 2 0 0

779 42 f 8 2 2

7 2 0 2 7 0 0 0 0 0 0 0 2 0

493 40 m 1 3 3

3 0 0 0 5 3 0 5 5 0 0 0 1 1

859 30 m 1 0 7

7 0 0 0 7 0 0 0 0 0 0 0 0 0

833 36 m 4 2 5

7 5 0 5 0 5 0 0 7 0 0 0 5 0

467 30 f 1 4 1

0 0 0 0 1 0 6 0 0 1 1 1 0 6

859 32 f 3 5 2

2 2 2 2 2 2 6 6 2 2 2 2 2 6

851 43 f 8 1 5

7 5 5 5 0 0 0 4 0 0 0 0 0 0

848 29 f 3 5 1

7 0 0 0 7 1 0 0 1 1 1 1 1 0

833 25 f 2 4 5



1408 RADIO � Appendix 3

7 0 0 0 5 7 0 0 7 5 0 0 5 0

783 33 f 8 3 8

8 0 8 0 7 0 0 0 8 0 5 4 0 5

222 26 f 10 2 1

1 1 0 1 1 0 0 0 3 1 1 0 0 0

222 23 f 3 2 2

2 2 2 2 7 0 0 2 2 0 0 0 0 0

859 50 f 1 5 4

7 0 0 0 7 0 0 5 4 4 4 7 0 0

833 26 f 3 2 1

1 0 0 1 1 0 0 5 5 0 1 0 0 0

467 29 m 7 2 1

1 1 1 1 1 0 0 1 1 1 0 0 0 0

859 35 m .5 2 2

7 0 0 0 2 0 0 7 5 0 0 4 0 0

833 33 f 3 3 6

7 0 0 0 6 8 0 8 0 0 0 8 6 0

221 36 f .5 1 5

0 7 0 0 0 7 0 0 7 0 0 7 7 0

220 32 f 2 4 5

5 0 5 0 5 5 5 0 5 5 5 5 5 5

684 19 f 2 4 2

0 2 0 2 0 0 0 0 0 2 2 0 0 0

493 55 f 1 0 5

5 0 0 5 0 0 0 0 7 0 0 0 0 0

221 27 m 1 1 7

7 0 0 0 0 0 0 0 5 0 0 0 5 0

684 19 f 0 .5 1

7 0 0 0 0 1 1 0 0 0 0 0 1 1

493 38 f .5 .5 5

0 8 0 0 5 0 0 0 5 0 0 0 0 0

221 26 f .5 2 1

0 1 0 0 0 1 0 0 5 5 5 1 0 0

684 18 m 1 .5 1

0 2 0 0 0 0 1 0 0 0 0 1 1 0

684 19 m 1 1 1

0 0 0 1 1 0 0 0 0 0 1 0 0 0

221 29 m .5 .5 5

0 0 0 0 0 5 5 0 0 0 0 0 5 5

683 18 f 2 4 8

0 0 0 0 8 0 0 0 8 8 8 0 0 0

966 23 f 1 2 1

1 5 5 5 1 0 0 0 0 1 0 0 1 0

493 25 f 3 5 7

7 0 0 0 7 2 0 0 7 0 2 7 7 0

683 18 f .5 .5 2

1 0 0 0 0 0 5 0 0 1 0 0 0 1

382 21 f 3 1 8

0 8 0 0 5 8 8 0 0 8 8 0 0 0

683 18 f 4 6 2

2 0 0 0 2 2 2 0 2 0 2 2 2 0

684 19 m .5 2 1

0 0 0 0 1 1 0 0 0 1 1 1 1 5

684 19 m 1.5 3.5 2



Raw Data and DATA Steps � RADIO 1409

2 0 0 0 2 0 0 0 0 0 2 5 0 0

221 23 f 1 5 1

7 5 1 5 1 3 1 7 5 1 5 1 3 1

684 18 f 2 3 1

2 0 0 1 1 1 1 7 2 0 1 1 1 1

683 19 f 3 5 2

2 0 0 2 0 6 1 0 1 1 2 2 6 1

683 19 f 3 5 1

2 0 0 2 0 6 1 0 1 1 2 0 2 1

221 35 m 3 5 5

7 5 0 1 7 0 0 5 5 5 0 0 0 0

221 43 f 1 4 5

1 0 0 0 5 0 0 5 5 0 0 0 0 0

493 32 f 2 1 6

0 0 0 6 0 0 0 0 0 0 0 0 4 0

221 24 f 4 5 2

2 0 5 0 0 2 4 4 4 5 0 0 2 2

684 19 f 2 3 2

0 5 5 2 5 0 1 0 5 5 2 2 2 2

221 19 f 3 3 8

0 1 1 8 8 8 4 0 5 4 1 8 8 4

221 29 m 1 1 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5

221 21 m 1 1 1

1 0 0 0 0 0 5 1 0 0 0 0 0 5

683 20 f 1 2 2

0 0 0 0 2 0 0 0 2 0 0 0 0 0

493 54 f 1 1 5

7 0 0 5 0 0 0 0 0 0 5 0 0 0

493 45 m 4 6 5

7 0 0 0 7 5 0 0 5 5 5 5 5 5

850 44 m 2.5 1.5 7

7 0 7 0 4 7 5 0 5 4 3 0 0 4

220 33 m 5 3 5

1 5 0 5 1 0 0 0 0 0 0 0 5 5

684 20 f 1.5 3 1

1 0 0 0 1 0 1 0 1 0 0 1 1 0

966 63 m 3 5 3

5 4 7 5 4 5 0 5 0 0 5 5 4 0

683 21 f 4 6 1

0 1 0 1 1 1 1 0 1 1 1 1 1 1

493 23 f 5 2 5

7 5 0 4 0 0 0 0 1 1 1 1 1 0

493 32 f 8 8 5

7 5 0 0 7 0 5 5 5 0 0 7 5 5

942 33 f 7 2 5

0 5 5 4 7 0 0 0 0 0 0 7 8 0

493 34 f .5 1 5

5 0 0 0 5 0 0 0 0 0 6 0 0 0

382 40 f 2 2 5

5 0 0 0 5 0 0 5 0 0 5 0 0 0

362 27 f 0 3 8

0 0 0 0 0 0 0 0 0 0 0 0 8 0

542 36 f 3 3 7



1410 RADIO � Appendix 3

7 0 0 0 7 1 0 0 0 7 1 1 0 0

966 39 f 3 6 5

7 0 0 0 7 5 0 0 7 0 5 0 5 0

849 32 m 1 .5 7

7 0 0 0 5 0 0 0 7 4 4 5 7 0

677 52 f 3 2 3

7 0 0 0 0 7 0 0 0 7 0 0 3 0

222 25 m 2 4 1

1 0 0 0 1 0 0 0 1 0 1 0 0 0

732 42 f 3 2 7

7 0 0 0 1 7 5 5 7 0 0 3 4 0

467 26 f 4 4 1

7 0 1 0 7 1 0 0 7 7 4 7 0 0

467 38 m 2.5 0 1

1 0 0 0 1 0 0 0 0 0 0 0 0 0

382 37 f 1.5 .5 7

7 0 0 0 7 0 0 0 3 0 0 0 3 0

856 45 f 3 3 7

7 0 0 0 7 5 0 0 7 7 4 0 0 0

677 33 m 3 2 7

7 0 0 4 7 0 0 0 7 0 0 0 0 0

490 27 f .5 1 2

2 0 0 0 2 0 0 0 2 0 2 0 0 0

362 27 f 1.5 2 2

2 0 0 0 1 0 4 0 1 0 0 0 4 4

783 25 f 2 1 1

1 0 0 0 1 7 0 0 0 0 1 1 1 0

546 30 f 8 3 1

1 1 1 1 1 0 0 1 0 5 5 0 0 0

677 30 f 2 0 1

1 0 0 0 0 1 0 0 0 0 0 0 0 1

221 35 f 2 2 1

1 0 0 0 1 0 1 0 1 1 1 0 0 0

966 32 f 6 1 7

7 1 1 1 7 4 0 1 7 1 8 8 4 0

222 28 f 1 5 4

7 0 0 0 4 0 0 4 4 4 4 0 0 0

467 29 f 5 3 4

4 5 5 5 1 4 4 5 1 1 1 1 4 4

467 32 m 3 4 1

1 0 1 0 4 0 0 0 4 0 0 0 1 0

966 30 m 1.5 1 7

7 0 0 0 7 5 0 7 0 0 0 0 5 0

967 38 m 14 4 7

7 7 7 7 7 0 4 8 0 0 0 0 4 0

490 28 m 8 1 1

7 1 1 1 1 0 0 7 0 0 8 0 0 0

833 30 f .5 1 6

6 0 0 0 6 0 0 0 0 6 0 0 6 0

851 40 m 1 0 7

7 5 5 5 7 0 0 0 0 0 0 0 0 0

859 27 f 2 5 2

6 0 0 0 2 0 0 0 0 0 0 2 2 2

851 22 f 3 5 2



Raw Data and DATA Steps � RADIO 1411

7 0 2 0 2 2 0 0 2 0 8 0 2 0

967 38 f 1 1.5 7

7 0 0 0 7 5 0 7 4 0 0 7 5 0

856 34 f 1.5 1 1

0 1 0 0 0 1 0 0 4 0 0 0 0 0

222 33 m .1 .1 7

7 0 0 0 7 0 0 0 0 0 7 0 0 0

856 22 m .50 .25 1

0 1 0 0 1 0 0 0 0 0 0 0 0 0

677 30 f 2 2 4

1 0 4 0 4 0 0 0 4 0 0 0 0 0

859 25 m 2 3 7

0 0 0 0 0 7 0 0 7 0 2 0 0 1

833 35 m 2 6 7

7 0 0 0 7 1 1 0 4 7 4 7 1 1

677 35 m 10 4 1

1 1 1 1 1 8 6 8 1 0 0 8 8 8

848 29 f 5 3 8

8 0 0 0 8 8 0 0 0 8 8 8 0 0

688 26 m 3 1 1

1 1 7 1 1 7 0 0 0 8 8 0 0 0

490 41 m 2 2 5

5 0 0 0 0 0 5 5 0 0 0 0 0 5

493 35 m 4 4 7

7 5 0 5 7 0 0 7 7 7 7 0 0 0

677 27 m 15 11 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

848 27 f 3 5 1

1 1 0 0 1 1 0 0 1 1 1 1 0 0

362 30 f 1 0 1

1 0 0 0 7 5 0 0 0 0 0 0 0 0

783 29 f 1 1 4

4 0 0 0 4 0 0 0 4 0 0 0 4 0

467 39 f .5 2 4

7 0 4 0 4 4 0 0 4 4 4 4 4 4

677 27 m 2 2 7

7 0 0 0 7 0 0 7 7 0 0 7 0 0

221 23 f 2.5 1 1

1 0 0 0 1 0 0 0 0 0 0 0 0 0

677 29 f 1 1 7

0 0 0 0 7 0 0 0 7 0 0 0 0 0

783 32 m 1 2 5

4 5 5 5 4 2 0 0 0 0 3 2 2 0

833 25 f 1 0 1

1 1 0 0 0 0 0 0 0 0 0 0 0 0

859 24 f 7 3 7

1 0 0 0 1 0 0 0 0 1 0 0 1 0

677 29 m 2 2 8

0 8 8 0 8 0 0 0 8 8 8 0 0 0

688 31 m 8 2 5

7 5 5 5 5 7 0 0 7 7 0 0 0 0

856 31 m 9 4 1

1 1 1 1 1 0 0 0 0 0 0 0 1 0

856 44 f 1 0 6



1412 RADIO � Appendix 3

6 0 0 0 6 0 0 0 0 0 0 0 0 0

677 37 f 3 3 1

0 0 1 0 0 0 0 0 4 4 0 0 0 0

859 27 m 2 .5 2

2 2 2 2 2 2 2 2 0 0 0 0 0 2

781 30 f 10 4 2

2 0 0 0 2 0 2 0 0 0 0 0 0 2

362 27 m 12 4 3

3 1 1 1 1 3 3 3 0 0 0 0 3 0

362 33 f 2 4 1

1 0 0 0 7 0 0 7 1 1 1 1 1 0

222 26 f 8 1 1

1 1 1 1 0 0 0 1 0 0 0 0 0 0

779 37 f 6 3 1

1 1 1 1 1 0 0 1 1 0 0 0 1 0

467 32 f 1 1 2

2 0 0 0 0 0 0 0 2 0 0 2 0 0

859 23 m 1 1 1

1 0 0 0 1 1 0 1 0 0 0 0 1 1

781 33 f 1 .5 6

6 0 0 0 6 0 0 0 0 0 0 0 0 0

779 28 m 5 2 1

1 1 1 1 1 0 0 0 0 7 7 1 1 0

677 28 m 3 1 5

7 5 5 5 5 6 0 0 6 6 6 6 6 0

677 25 f 9 2 5

1 5 5 5 5 1 1 0 1 1 1 1 1 1

848 30 f 6 2 8

8 0 0 0 2 7 0 0 0 0 2 0 2 0

546 36 f 4 6 4

7 0 0 0 4 4 0 5 5 5 5 2 4 4

222 30 f 2 3 2

2 2 0 0 2 0 0 0 2 0 2 2 0 0

383 32 m 4 1 2

2 0 0 0 2 0 0 2 0 0 0 0 0 0

851 43 f 8 1 6

4 6 0 6 4 0 0 0 0 0 0 0 0 0

222 27 f 1 3 1

1 1 0 1 1 1 0 0 1 0 0 0 4 0

833 22 f 1.5 2 1

1 0 0 0 1 1 0 0 1 1 1 0 0 0

467 29 f 2 1 8

8 0 8 0 8 0 0 0 0 0 8 0 0 0

856 28 f 2 3 1

1 0 0 0 1 0 0 0 1 0 0 1 0 0

580 31 f 2.5 2.5 6

6 6 6 6 6 6 6 6 1 1 1 1 6 6

688 39 f 8 8 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3

677 37 f 1.5 .5 1

6 1 1 1 6 6 0 0 1 1 6 6 6 0

859 38 m 3 6 3

7 0 0 0 7 3 0 0 3 0 3 0 0 0

677 25 f 7 1 1



Raw Data and DATA Steps � RADIO 1413

0 1 1 1 2 0 0 0 1 2 1 1 1 0

848 36 f 7 1 1

0 1 0 1 1 0 0 0 0 0 0 1 1 0

781 31 f 2 4 1

1 0 0 0 1 1 0 1 1 1 1 1 0 0

781 40 f 2 2 8

8 0 0 8 8 0 0 0 0 0 8 8 0 0

677 25 f 3 5 1

1 6 1 6 6 3 0 0 2 2 1 1 1 1

779 33 f 3 2 1

1 0 1 0 0 0 1 0 1 0 0 0 1 0

677 25 m 7 1.5 1

1 1 0 1 1 0 0 0 0 0 1 0 0 0

362 35 f .5 0 1

1 0 0 0 1 0 0 0 0 0 0 0 0 0

677 41 f 6 2 7

7 7 0 7 7 0 0 0 0 0 8 0 0 0

677 24 m 5 1 5

1 5 0 5 0 0 0 0 1 0 0 0 0 0

833 29 f .5 0 6

6 0 0 0 6 0 0 0 0 0 0 0 0 0

362 30 f 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 0 0

850 26 f 6 12 6

6 0 0 0 2 2 2 6 6 6 0 0 6 6

467 25 f 2 3 1

1 0 0 6 1 1 0 0 0 0 1 1 1 1

967 29 f 1 2 7

7 0 0 0 7 0 0 7 7 0 0 0 0 0

833 31 f 1 1 7

7 0 7 0 7 3 0 0 3 3 0 0 0 0

859 40 f 7 1 5

1 5 0 5 5 1 0 0 1 0 0 0 0 0

848 31 m 1 2 1

1 0 0 0 1 1 0 0 4 4 1 4 0 0

222 32 f 2 3 3

3 0 0 0 0 7 0 0 3 0 8 0 0 0

783 33 f 2 0 4

7 0 0 0 7 0 0 0 4 0 4 0 0 0

856 28 f 8 4 2

0 2 0 2 2 0 0 0 2 0 2 0 4 0

781 30 f 3 5 1

1 1 1 1 1 1 0 0 1 1 1 1 1 0

850 25 f 6 3 1

7 5 0 5 7 1 0 0 7 0 1 0 1 0

580 33 f 2.5 4 2

2 0 0 0 2 0 0 0 0 0 8 8 0 0

677 38 f 3 3 1

1 0 0 0 1 0 1 1 1 0 1 0 0 4

677 26 f 2 2 1

1 0 1 0 1 0 0 0 1 1 1 0 0 0

467 52 f 3 2 2

2 6 6 6 6 2 0 0 2 2 2 2 0 0

542 31 f 1 3 1



1414 RADIO � Appendix 3

1 0 1 0 1 0 0 0 1 1 1 1 1 0

859 50 f 9 3 6

6 6 6 6 6 6 6 6 6 3 3 3 6 6

779 26 f 1 2 1

7 0 1 0 1 1 4 1 4 1 1 1 4 4

779 36 m 1.5 2 4

1 4 0 4 4 0 0 4 4 4 4 0 0 0

222 31 f 0 3 7

1 0 0 0 7 0 0 0 0 0 0 0 0 0

362 27 f 1 1 1

1 0 1 0 1 4 0 4 4 1 0 4 4 0

967 32 f 3 2 7

7 0 0 0 7 0 0 0 1 0 0 1 0 0

362 29 f 10 2 2

2 2 2 2 2 2 2 2 2 2 2 7 0 0

677 27 f 3 4 1

0 5 1 1 0 5 0 0 0 1 1 1 0 0

546 32 m 5 .5 8

8 0 0 0 8 0 0 0 8 0 0 0 0 0

688 38 m 2 3 2

2 0 0 0 2 0 0 0 2 0 0 0 1 0

362 28 f 1 1 1

1 0 0 0 1 1 0 4 0 0 0 0 4 0

851 32 f .5 2 4

5 0 0 0 4 0 0 0 0 0 0 0 2 0

967 43 f 2 2 1

1 0 0 0 1 0 0 1 7 0 0 0 1 0

467 44 f 10 4 6

7 6 0 6 6 0 6 0 0 0 0 0 0 6

467 23 f 5 3 1

0 2 1 2 1 0 0 0 1 1 1 1 1 1

783 30 f 1 .5 1

1 0 0 0 1 0 0 0 0 0 0 7 0 0

677 29 f 3 1 2

2 2 2 2 2 0 0 0 0 0 0 0 0 0

859 26 f 9.5 1.5 2

2 2 2 2 2 0 0 2 2 0 0 0 0 0

222 28 f 3 0 2

2 0 0 0 2 0 0 0 0 0 2 0 0 0

966 37 m 2 1 1

7 1 1 1 7 0 0 0 7 0 0 0 0 0

859 31 f 10 10 1

0 1 1 1 1 0 0 0 1 1 0 0 1 0

781 27 f 2 1 2

2 0 0 0 1 0 0 0 4 0 0 0 0 0

677 31 f .5 .5 6

7 0 0 0 0 0 0 0 6 0 0 0 0 0

848 28 f 5 1 2

2 2 0 2 0 0 0 0 2 0 0 0 0 0

781 24 f 3 3 6

1 6 6 6 1 6 0 0 0 0 1 0 1 1

856 27 f 1.5 1 6

2 6 6 6 2 5 0 2 0 0 5 2 0 0

382 30 m 1 2 7



Raw Data and DATA Steps � RADIO 1415

7 0 0 0 7 0 4 7 0 0 0 7 4 4

848 25 f 9 3 1

7 1 1 5 1 0 0 0 1 1 1 1 1 0

382 30 m 1 2 4

7 0 0 0 7 0 4 7 0 0 0 7 4 4

688 40 m 2 3 1

1 0 0 0 1 3 1 0 5 0 4 4 7 1

856 40 f .5 5 5

3 0 0 0 3 0 0 0 0 0 5 5 0 0

966 25 f 2 .5 2

1 0 0 0 2 6 0 0 4 0 0 0 0 0

859 30 f 2 4 2

2 0 0 0 0 2 0 0 0 0 2 0 0 0

849 29 m 10 1 5

7 5 5 5 7 5 5 0 0 0 0 0 7 0

781 28 m 1.5 3 4

1 0 0 0 1 4 4 0 4 4 1 1 4 0

467 35 f 4 2 6

7 6 7 6 6 7 6 7 7 7 7 7 7 6

222 32 f 10 5 1

1 1 0 1 1 0 0 1 1 1 0 0 1 0

677 32 f 1 0 1

1 0 1 0 0 0 0 0 0 0 0 0 0 0

222 54 f 21 4 3

5 0 0 0 7 0 0 7 0 0 0 0 0 0

677 30 m 4 6 1

7 0 0 0 0 1 1 1 7 1 1 0 8 1

683 29 f 1 2 8

8 0 0 0 8 0 0 0 0 8 8 0 0 0

467 38 m 3 5 1

1 0 0 0 1 0 0 1 1 0 0 0 0 0

781 29 f 2 3 8

8 0 0 0 8 8 0 0 8 8 0 8 8 0

781 30 f 1 0 5

5 0 0 0 0 5 0 0 0 0 0 0 0 0

783 40 f 1.5 3 1

1 0 0 0 1 4 0 0 1 1 1 0 0 0

851 30 f 1 1 6

6 0 0 0 6 0 0 0 6 0 0 6 0 0

851 40 f 1 1 5

5 0 0 0 5 0 0 0 0 1 0 0 0 0

779 40 f 1 0 2

2 0 0 0 2 0 0 0 0 0 0 0 0 0

467 37 f 4 8 1

1 0 0 0 1 0 3 0 3 1 1 1 0 0

859 37 f 4 3 3

0 3 7 0 0 7 0 0 0 7 8 3 7 0

781 26 f 4 1 2

2 2 0 2 1 0 0 0 2 0 0 0 0 0

859 23 f 8 3 3

3 2 0 2 3 0 0 0 1 0 0 3 0 0

967 31 f .5 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0

851 38 m 4 2 5



1416 RADIO � Appendix 3

7 5 0 5 4 0 4 7 7 0 4 0 8 0

467 30 m 2 1 2

2 2 0 2 0 0 0 0 2 0 2 0 0 0

848 33 f 2 2 7

7 0 0 0 0 7 0 7 7 0 0 0 7 0

688 35 f 5 8 3

2 2 2 2 2 0 0 3 3 3 3 3 0 0

467 27 f 2 3 1

1 0 1 0 0 1 0 0 1 1 1 0 0 0

783 42 f 3 1 1

1 0 0 0 1 0 0 0 1 0 1 1 0 0

687 40 m 1.5 2 1

7 0 0 0 1 1 0 0 1 0 7 0 1 0

779 30 f 4 8 7

7 0 0 0 7 0 6 7 4 2 2 0 0 6

222 34 f 9 0 8

8 2 0 2 8 0 0 0 0 0 0 0 0 0

467 28 m 3 1 2

2 0 0 0 2 2 0 0 0 2 2 0 0 0

222 28 f 8 4 2

1 2 1 2 2 0 0 1 2 2 0 0 2 0

542 35 m 2 3 2

6 0 7 0 7 0 7 0 0 0 2 2 0 0

677 31 m 12 4 3

7 3 0 3 3 4 0 0 4 4 4 0 0 0

783 45 f 1.5 2 6

6 0 0 0 6 0 0 6 6 0 0 0 0 0

942 34 f 1 .5 4

4 0 0 0 1 0 0 0 0 0 2 0 0 0

222 30 f 8 4 1

1 1 1 1 1 0 0 0 1 1 0 0 0 0

967 38 f 1.5 2 7

7 0 0 0 7 0 0 7 1 1 1 1 0 0

783 37 f 2 1 1

6 6 1 1 6 6 0 0 6 1 1 1 6 0

467 31 f 1.5 2 2

2 0 7 0 7 0 0 7 7 0 0 0 7 0

859 48 f 3 0 7

7 0 0 0 0 0 0 0 0 7 0 0 0 0

490 35 f 1 1 7

7 0 0 0 7 0 0 0 0 0 0 0 8 0

222 27 f 3 2 3

8 0 0 0 3 8 0 3 3 0 0 0 0 0

382 36 m 3 2 4

7 0 5 4 7 4 4 0 7 7 4 7 0 4

859 37 f 1 1 2

7 0 0 0 0 2 0 2 2 0 0 0 0 2

856 29 f 3 1 1

1 0 0 0 1 1 1 1 0 0 1 1 0 1

542 32 m 3 3 7

7 0 0 0 0 7 7 7 0 0 0 0 7 7

783 31 m 1 1 1

1 0 0 0 1 0 0 0 1 1 1 0 0 0

833 35 m 1 1 1



Raw Data and DATA Steps � RADIO 1417

5 4 1 5 1 0 0 1 1 0 0 0 0 0

782 38 m 30 8 5

7 5 5 5 5 0 0 4 4 4 4 4 0 0

222 33 m 3 3 1

1 1 1 1 1 1 1 1 4 1 1 1 1 1

467 24 f 2 4 1

0 0 1 0 1 0 0 0 1 1 1 0 0 0

467 34 f 1 1 1

1 0 0 0 1 0 0 1 1 0 0 0 0 0

781 53 f 2 1 5

5 0 0 0 5 5 0 0 0 0 5 5 5 0

222 30 m 2 5 3

6 3 3 3 6 0 0 0 3 3 3 3 0 0

688 26 f 2 2 1

1 0 0 0 1 0 0 0 1 0 1 1 0 0

222 29 m 8 5 1

1 6 0 6 1 0 0 1 1 1 1 0 0 0

783 33 m 1 2 7

7 0 0 0 7 0 0 0 7 0 0 0 7 0

781 39 m 1.5 2.5 2

2 0 2 0 2 0 0 0 2 2 2 0 0 0

850 22 f 2 1 1

1 0 0 0 1 1 1 0 5 0 0 1 0 0

493 36 f 1 0 5

0 0 0 0 7 0 0 0 0 0 0 0 0 0

967 46 f 2 4 7

7 5 0 5 7 0 0 0 4 7 4 0 0 0

856 41 m 2 2 4

7 4 0 0 7 4 0 4 0 0 0 7 0 0

546 25 m 5 5 8

8 8 0 0 0 0 0 0 0 0 0 0 0 0

222 27 f 4 4 3

2 2 2 3 7 7 0 2 2 2 3 3 3 0

688 23 m 9 3 3

3 3 3 3 3 7 0 0 3 0 0 0 0 0

849 26 m .5 .5 8

8 0 0 0 8 0 0 0 0 8 0 0 0 0

783 29 f 3 3 1

1 0 0 0 4 0 0 4 1 0 1 0 0 0

856 34 f 1.5 2 1

7 0 0 0 7 0 0 7 4 0 0 7 0 0

966 33 m 3 5 4

7 0 0 0 7 4 5 0 7 0 0 7 4 4

493 34 f 2 5 1

1 0 0 0 1 0 0 0 7 0 1 1 8 0

467 29 m 2 4 2

2 0 0 0 2 0 0 2 2 2 2 2 2 2

677 28 f 1 4 1

1 1 1 1 1 0 0 0 1 0 1 0 0 0

781 27 m 2 2 1

1 0 1 0 4 2 4 0 2 2 1 0 1 4

467 24 m 4 4 1

7 1 0 1 1 1 0 7 1 0 0 0 0 0

859 26 m 5 5 1



1418 RADIO � Appendix 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1

848 27 m 7 2 5

7 5 0 5 4 5 0 0 0 7 4 4 0 4

677 25 f 1 2 8

8 0 0 0 0 5 0 0 8 0 0 0 2 0

222 26 f 3.5 0 2

2 0 0 0 2 0 0 0 0 0 0 0 0 0

833 32 m 1 2 1

1 0 0 0 1 0 0 0 5 0 1 0 0 0

781 28 m 2 .5 7

7 0 0 0 7 0 0 0 4 0 0 0 0 0

783 28 f 1 1 1

1 0 0 0 1 0 0 0 0 0 1 1 0 0

222 28 f 5 5 2

2 6 6 2 2 0 0 0 2 2 0 0 2 2

851 33 m 4 5 3

1 0 0 0 7 3 0 3 3 3 3 3 7 5

859 39 m 2 1 1

1 0 0 0 1 0 0 0 0 0 0 1 0 0

848 45 m 2 2 7

7 0 0 0 7 0 0 0 7 0 0 0 0 0

467 37 m 2 2 7

7 0 0 0 0 7 0 0 0 7 0 0 7 0

859 32 m .25 .25 1

1 0 0 0 0 0 0 0 1 0 0 0 0 0



1419

A P P E N D I X

4
Recommended Reading

Recommended Reading 1419

Recommended Reading

Here is the recommended reading list for this title:
� The Little SAS Book: A Primer, Third Edition
� Output Delivery System: The Basics

� PROC TABULATE by Example
� SAS Guide to Report Writing: Examples
� SAS Language Reference: Concepts

� SAS Language Reference: Dictionary
� SAS Output Delivery System: User’s Guide
� SAS Programming by Example

� SAS SQL Procedure User’s Guide
� Step-by-Step Programming with Base SAS Software

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=59216
http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=58087
http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=56514
http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=59602
http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=55126


1420



Index 1421

Index

A
ACCELERATE= option

ITEM statement (PMENU) 671
ACROSS option

DEFINE statement (REPORT) 899
across variables 854, 899
activities data set 86, 107
AFTER= option

PROC CPORT statement 288
AGE statement

DATASETS procedure 312
aging data sets 388
aging files 312
ALL class variable 1246
ALL keyword 1095
ALLOBS option

PROC COMPARE statement 231
ALLSTATS option

PROC COMPARE statement 231
ALLVARS option

PROC COMPARE statement 231
ALPHA= option

PROC MEANS statement 528
PROC TABULATE statement 1188

ALTER= option
AGE statement (DATASETS) 312
CHANGE statement (DATASETS) 322
COPY statement (DATASETS) 328
DELETE statement (DATASETS) 334
EXCHANGE statement (DATASETS) 338
MODIFY statement (DATASETS) 349
PROC DATASETS statement 309
REPAIR statement (DATASETS) 353
SELECT statement (DATASETS) 356

ALTER TABLE statement
SQL procedure 1038

alternative hypotheses
ANALYSIS option

DEFINE statement (REPORT) 899
analysis variables 548, 855, 899

SUMMARY procedure 1179
TABULATE procedure 1211, 1212
weights for 64, 912, 1212

ANSI Standard 1122
APPEND 75
APPEND procedure 75

overview 75
syntax 75

APPEND statement
DATASETS procedure 314

appending data sets 314
APPEND procedure vs. APPEND state-

ment 319
compressed data sets 316
indexed data sets 316
integrity constraints and 318
password-protected data sets 316
restricting observations 315
SET statement vs. APPEND statement 315
system failures 319
variables with different attributes 317
with different variables 317
with generation groups 318

APPENDVER= option
APPEND statement (DATASETS) 314

arithmetic mean
arithmetic operators 1123
ASCENDING option

CHART procedure 192
CLASS statement (MEANS) 536
CLASS statement (TABULATE) 1197

ASCII option
PROC SORT statement 1007

ASCII order 1007, 1014
ASIS option

PROC CPORT statement 288
asterisk (*) notation 1059
ATTR= option

TEXT statement (PMENU) 679
ATTRIB statement

procedures and 57
audit files

creating 321
event logging 320

AUDIT statement
DATASETS procedure 320

AUDIT_ALL= option
AUDIT statement (DATASETS) 320

AUTOLABEL option
OUTPUT statement (MEANS) 545

AUTONAME option
OUTPUT statement (MEANS) 545

axes
customizing

AXIS= option
CHART procedure 193
PLOT statement (TIMEPLOT) 1294

B
bar charts 180

horizontal 180, 189, 209
maximum number of bars 187
percentage charts 201
side-by-side 206
vertical 180, 191, 203

BASE= argument
APPEND statement (DATASETS) 314

base data set 226
BASE= option

PROC COMPARE statement 232
batch mode

creating printer definitions 789
printing from 867

BATCH option
PROC DISPLAY statement 396

BETWEEN condition 1071
block charts 181, 187

for BY groups 210
BLOCK statement

CHART procedure 187
BOX option

PLOT statement (PLOT) 615
PROC REPORT statement 872
TABLE statement (TABULATE) 1204

_BREAK_ automatic variable 862
break lines 861

_BREAK_ automatic variable 862
creating 861
order of 861, 888, 911

BREAK statement
REPORT procedure 885

BREAK window
REPORT procedure 913

breaks 861
BRIEFSUMMARY option

PROC COMPARE statement 232
browsing external files 489
BTRIM function (SQL) 1072
buttons 670
BY-group information

titles containing 20
BY-group processing 20, 59

error processing for 24
formats and 30
TABULATE procedure 1215

BY groups
block charts for 210



1422 Index

plotting 646
transposing

BY lines
inserting into titles 23
suppressing the default 20

BY processing
COMPARE procedure 237

BY statement 58
BY-group processing 59
CALENDAR procedure 91
CHART procedure 188
COMPARE procedure 236
example 60
formatting BY-variable values 59
MEANS procedure 535, 562
options 58
PLOT procedure 612
PRINT procedure 716
procedures supporting 60
RANK procedure 819
REPORT procedure 889
SORT procedure 1012
STANDARD procedure 1168
TABULATE procedure 1196
TIMEPLOT procedure 1291
TRANSPOSE procedure

BY variables
formatting values 59
inserting names into titles 22
inserting values into titles 21

C
calculated columns

SQL 1073
CALCULATED component 1073
CALEDATA= option

PROC CALENDAR statement 86
CALENDAR 84
calendar, defined 104
calendar data set 86, 109

multiple calendars 105, 106
CALENDAR procedure 84

activities data set 107
activity lines 113
calendar data set 109
calendar types 79, 101
concepts 101
customizing calendar appearance 113
default calendars 103
duration 94
examples 114
holiday duration 95
holidays data set 108
input data sets 106
missing values 111
multiple calendars 79, 92, 104
ODS portability 113
output, format of 112
output, quantity of 112
overview 79
project management 83
results 112
schedule calendars 102
scheduling 83, 137
summary calendars 102

syntax 84
task tables 84, 85
workdays data set 110

calendar reports 104
CALID statement

CALENDAR procedure 92
CALL DEFINE statement

REPORT procedure 890
CAPS option

PROC FSLIST statement 491
Cartesian product 1083, 1084
case-control studies 1158
CASE expression 1073
CATALOG 154
CATALOG= argument

PROC DISPLAY statement 396
catalog concatenation 168
catalog entries

copying 159, 165, 170
deleting 156, 160, 170, 176
displaying contents of 174
excluding, for copying 162
exporting 296, 298
importing 223
modifying descriptions of 163, 174
moving, from multiple catalogs 170
renaming 157, 174
routing log or output to entries 779
saving from deletion 164
switching names of 161

CATALOG= option
CONTENTS statement (CATALOG) 158
PROC PMENU statement 667

CATALOG procedure 154
catalog concatenation 168
concepts 165
ending a step 166
entry type specification 166
error handling 166
examples 170
interactive processing with RUN groups 165
overview 153
results 169
syntax 154
task tables 154, 155, 159

catalogs
concatenating 168
exporting multiple 295
format catalogs 456
listing contents of 157
PMENU entries 667, 673, 680
repairing 353

categories 1185
headings for 1227

categories of procedures 3
CC option

FSLIST command 493
PROC FSLIST statement 491

CENTER option
DEFINE statement (REPORT) 899
PROC REPORT statement 873

centiles 344
CENTILES option

CONTENTS statement (DATASETS) 324
CFREQ option

CHART procedure 193

CHANGE statement
CATALOG procedure 157
DATASETS procedure 322

character data
converting to numeric values 470

character strings
converting to lowercase 1093
converting to uppercase 1114
formats for 448
ranges for 480
returning a substring 1106
trimming 1072

character values
formats for 466

character variables
sorting orders for 1014

CHART 185
CHART procedure 185

bar charts 180, 206
block charts 181, 187, 210
concepts 197
customizing charts 191
examples 198
formatting characters 185
frequency counts 198
horizontal bar charts 189, 209
missing values 195, 197
ODS output 198
ODS table names 198
options 192
overview 179
percentage bar charts 201
pie charts 182, 189
results 197
star charts 183, 190
syntax 185
task table 191
variable characteristics 197
vertical bar charts 191, 203

charts
bar charts 180, 201, 206
block charts 181, 187, 210
customizing 191
horizontal bar charts 189, 209
missing values 195
pie charts 182, 189
star charts 183, 190
vertical bar charts 191, 203

CHARTYPE option
PROC MEANS statement 528

check boxes 668, 670
active vs. inactive 668
color of 668

CHECKBOX statement
PMENU procedure 668

CIMPORT 216
CIMPORT procedure 216

examples 222
file transport process 215
overview 215
results 221
syntax 216
task table 216

CLASS statement
MEANS procedure 536
TABULATE procedure 1197
TIMEPLOT procedure 1292



Index 1423

class variables 536
BY statement (MEANS) with 562
CLASSDATA= option (MEANS) with 564
combinations of 546, 549, 1235
computing descriptive statistics 560
formatting in TABULATE 1214
level value headings 1201
MEANS procedure 550
missing 1224, 1225, 1226
missing values 539, 578, 1200
multilabel value formats with 567
ordering values 551
preloaded formats with 570, 1237
TABULATE procedure 1197
TIMEPLOT procedure 1292

CLASSDATA= option
PROC MEANS statement 528, 564
PROC TABULATE statement 1188

classifying formatted data 27
CLASSLEV statement

TABULATE procedure 1201
CLEARSASUSER option

PROC REGISTRY statement 832
client/server model

exporting data 410
CLM keyword
CLONE option

COPY statement (DATASETS) 328
CNTLIN= option

PROC FORMAT statement 433
CNTLOUT= option

PROC FORMAT statement 433, 434, 448
COALESCE function (SQL) 1075
coefficient of variation
collating sequence 1007
collision states 628
COLOR= option

BREAK statement (REPORT) 886
CHECKBOX statement (PMENU) 668
DEFINE statement (REPORT) 899
RBREAK statement (REPORT) 909
RBUTTON statement (PMENU) 676
TEXT statement (PMENU) 679

column aliases 1059
column attributes 1041, 1077

reports 890
column-definition component 1076
column-header option

DEFINE statement (REPORT) 900
column headings

customizing 1244
customizing text in 727
page layout 722

column-modifier component 1077
column modifiers 1123
column-name component 1078
COLUMN statement

REPORT procedure 893
column width 723
columns

aliases 1059
altering 1038
calculated 1073
combinations of values 1154
for each variable value 960
in reports 893
indexes on 1042, 1043, 1057

inserting values 1057
length of 1077
modifiers 1123
renaming 1042
returning values 1075
selecting 1058, 1078
SQL procedure 1029
storing values of 1060
updating values 1069

COLWIDTH= option
PROC REPORT statement 873

COMMAND option
PROC REPORT statement 873

COMMIT statement (SQL) 1124
COMPARE 229
COMPARE= option

PROC COMPARE statement 232
COMPARE procedure 229

BY processing 237
comparing selected variables 240
comparing unsorted data 238
comparing variables 240
comparisons with 240
concepts 240
customizing output 227
differences report 256
duplicate ID values 238
equality criterion 242
examples 256
ID variables 238, 241, 266
information provided by 226
listing variables for matching observa-

tions 238
log and 244
macro return codes 244
ODS table names 253
output 246
output data set 254
output statistics data set 255
overview 226
position of observations 240
restricting comparisons 239
results 244
syntax 229
task tables 229, 230
variable formats 244

COMPAREREG1 option
PROC REGISTRY statement 832

COMPAREREG2 option
PROC REGISTRY statement 833

COMPARETO= option
PROC REGISTRY statement 833

comparison data set 226
COMPLETECOLS option

PROC REPORT statement 874
COMPLETEROWS option

PROC REPORT statement 874
COMPLETETYPES option

PROC MEANS statement 529
composite indexes 1044
compound names 862
compressed data sets

appending 316
compute blocks 858

contents of 859
processing 860
referencing report items in 859

starting 895
COMPUTE statement

REPORT procedure 895
COMPUTE window

REPORT procedure 916
COMPUTED option

DEFINE statement (REPORT) 901
COMPUTED VAR window

REPORT procedure 916
computed variables 855, 901

storing 983
concatenating catalogs 168
concatenating data sets 386
CONDENSE option

TABLE statement (TABULATE) 1204
confidence limits 553, 573

keywords and formulas
one-sided, above the mean
one-sided, below the mean
TABULATE procedure 1188
two-sided

CONNECT statement
SQL procedure 1042

CONNECTION TO component 1079
CONSTRAINT= option

COPY statement (DATASETS) 330
PROC CPORT statement 288

CONTAINS condition 1080
CONTENTS= option

PROC PRINT statement 707
PROC REPORT statement 874
PROC TABULATE statement 1189
TABLE statement (TABULATE) 1205

CONTENTS procedure 276
overview 275
syntax 276
task table 276
versus CONTENTS statement

(DATASETS) 327
CONTENTS statement

CATALOG procedure 157
DATASETS procedure 323

contingency tables 1269
continuation messages 1185
CONTOUR= option

PLOT statement (PLOT) 615
contour plots 615, 642
converting files 215, 285
COPY 278
COPY procedure 278

concepts 278
example 279
overview 277
syntax 278
transporting data sets 278
versus COPY statement (DATASETS) 333

COPY statement
CATALOG procedure 159
DATASETS procedure 327
TRANSPOSE procedure

copying data libraries
entire data library 331

copying data sets
between hosts 279
long variable names 332

copying files 327
COPY statement vs. COPY procedure 333



1424 Index

excluding files 339
member type 331
password-protected files 332
selected files 331, 356

corrected sum of squares
CORRECTENCODING= option

MODIFY statement (DATASETS) 349
correlated subqueries 1104
CORRESPONDING keyword 1095
COUNT(*) function 1108
CPERCENT option

CHART procedure 193
CPM procedure 83, 137
CPORT 286
CPORT procedure 286

concepts 294
Data Control Blocks 294
examples 295
file transport process 286
overview 285
password-protected data sets 294
results 294
syntax 286
task table 286

CREATE INDEX statement
SQL procedure 1043

CREATE TABLE statement
SQL procedure 1045

CREATE VIEW statement
SQL procedure 1049

CRITERION= option
PROC COMPARE statement 232, 242

cross joins 1087
crosstabulation tables 1269
CSS keyword
cumulative distribution function
customized output 51

for output objects 53
customizing charts 191
CV keyword

D
DANISH option

PROC SORT statement 1007
DATA= argument

PROC EXPORT statement 404
DATA COLUMNS window

REPORT procedure 917
data components

definition 40
Data Control Blocks (DCBs) 221, 294
data libraries

copying entire library 331
copying files 327
deleting files 334
exchanging filenames 338
importing 222
printing directories of 275, 323
processing all data sets in 30
renaming files 322
saving files from deletion 355
USER data library 17

DATA= option
APPEND statement (DATASETS) 314
CONTENTS statement (DATASETS) 324

PROC CALENDAR statement 86
PROC CHART statement 185
PROC COMPARE statement 232
PROC MEANS statement 529
PROC OPTLOAD statement 602
PROC PLOT statement 609
PROC PRINT statement 708
PROC PRTDEF statement 790
PROC RANK statement 816
PROC REPORT statement 874
PROC SORT statement 1008
PROC STANDARD statement 1166
PROC TABULATE statement 1189
PROC TIMEPLOT statement 1290
PROC TRANSPOSE statement

DATA SELECTION window
REPORT procedure 917

data set options 18
SQL procedure with 1114

data sets
aging 388
appending 314
appending compressed data sets 316
appending indexed data sets 316
appending password-protected data sets 316
concatenating 386
content descriptions 323
contents of 275
copying between hosts 279
creating formats from 472
describing 384
exporting 296
input data sets 19
loading system options from 601
modifying 381
naming 16
permanent 16
printing all data sets in library 767
printing formatted values for 25
processing all data sets in a library 30
renaming variables 352
repairing 353
saving system option settings in 603
standardizing variables 1163
temporary 16
transporting 278, 333
transporting password-protected 294
USER data library and 17
writing printer attributes to 806

data sets, comparing
base data set 226
comparison data set 226
comparison summary 246
variables in different data sets 261
variables in same data set 240, 264

DATA step views
SQL procedure 1029

data summaries 1108, 1246
data summarization tools 1177
DATABASE= statement

EXPORT procedure 409
IMPORT procedure 511

DATAFILE= argument
PROC IMPORT statement 502

DATAROW= statement
IMPORT procedure 507

DATASETS 308

DATASETS procedure 308
concepts 357
directory listings 363
ending 359
error handling 358
examples 376
execution of statements 357
forcing RUN-group processing 359
generation data sets 362
member types 361
ODS and 368, 389
output 305
output data sets 370
overview 304
password errors 359
passwords with 359
procedure output 364
restricting member types 360
results 363
RUN-group processing 357
syntax 308
task tables 308, 323, 348

DATATYPE= option
PICTURE statement (FORMAT) 439

date formats 468
DATECOPY option

PROC CIMPORT statement 217
PROC CPORT statement 288
PROC SORT statement 1008
COPY statement (DATASETS) 330

DATETIME option
PROC CALENDAR statement 86

DAYLENGTH= option
PROC CALENDAR statement 86

DBMS
SORT procedure with 1013

DBMS connections
ending 1054
LIBNAME statement for 1115
Pass-Through Facility for 1115
sending DBMS statements to 1055
SQL procedure 1042
storing in views 1051

DBMS= option
PROC EXPORT statement 405
PROC IMPORT statement 503

DBMS queries 1079
DBMS tables

exporting to 409
importing 511

DBPWD= statement
EXPORT procedure 409
IMPORT procedure 512

DBSASLABEL= statement
IMPORT procedure 507, 512

DCBs (Data Control Blocks) 221, 294
DDNAME= argument

PROC FSLIST statement 490
DDNAME= option

PROC DATASETS statement 311
debugging

registry debugging 833
DEBUGOFF option

PROC REGISTRY statement 833
DEBUGON option

PROC REGISTRY statement 833



Index 1425

DECSEP= option
PICTURE statement (FORMAT) 439

DEFAULT= option
FORMAT procedure 451
RADIOBOX statement (PMENU) 675

DEFINE option
PROC OPTIONS statement 595

DEFINE statement
REPORT procedure 897

DEFINITION window
REPORT procedure 918

DELETE option
PROC PRTDEF statement 790

DELETE statement
CATALOG procedure 160
DATASETS procedure 334
SQL procedure 1052

delimited files
exporting 408, 411
importing 506, 514

DELIMITER= statement
EXPORT procedure 408
IMPORT procedure 507

denominator definitions 1269
density function
DESC option

PROC PMENU statement 667
DESCENDING option

BY statement 58
BY statement (CALENDAR) 92
BY statement (CHART) 188
BY statement (COMPARE) 237
BY statement (MEANS) 535
BY statement (PLOT) 612
BY statement (PRINT) 716
BY statement (RANK) 819
BY statement (REPORT) 889
BY statement (SORT) 1012
BY statement (STANDARD) 1168
BY statement (TABULATE) 1196
BY statement (TIMEPLOT) 1291
BY statement (TRANSPOSE)
CHART procedure 193
CLASS statement (MEANS) 536
CLASS statement (TABULATE) 1197
DEFINE statement (REPORT) 901
ID statement (COMPARE) 238
PROC RANK statement 816

DESCENDTYPES option
PROC MEANS statement 529

DESCRIBE statement
SQL procedure 1053

DESCRIPTION= argument
MODIFY statement (CATALOG) 163

descriptive statistics 558, 1177
computing with class variables 560
keywords and formulas
table of 31

destination-independent input 43
detail reports 847
detail rows 847
DETAILS option

CONTENTS statement (DATASETS) 325
PROC DATASETS statement 309

deviation from the mean
device drivers

system fonts 425

dialog boxes 669
check boxes in 668
collecting user input 685
color for 679
input fields 678
radio buttons in 676
searching multiple values 688
text for 678

DIALOG statement
PMENU procedure 669

DICTIONARY tables 1116
performance and 1118
reporting from 1136
retrieving information about 1117
uses for 1118

difference 244
report of differences 256

DIG3SEP= option
PICTURE statement (FORMAT) 439

digit selectors 442
dimension expressions 1208

elements in 1208
operators in 1209
style elements in 1210

directives 442
DIRECTORY option

CONTENTS statement (DATASETS) 325
DISCONNECT statement

SQL procedure 1054
DISCRETE option

CHART procedure 193
DISPLAY 395
DISPLAY option

DEFINE statement (REPORT) 901
DISPLAY PAGE window

REPORT procedure 923
DISPLAY procedure 395

example 396
overview 395
syntax 395

display variables 853, 901
distribution
DMOPTLOAD command 601
DMOPTSAVE command 603
DOCUMENT destination 44

definition 40
DOL option

BREAK statement (REPORT) 886
RBREAK statement (REPORT) 909

DOUBLE option
PROC PRINT statement 708
PROC SQL statement 1034

double overlining 886, 909
double underlining 886, 910
DQUOTE= option

PROC SQL statement 1034
DROP statement

SQL procedure 1054
DTC= option

MODIFY statement (DATASETS) 349
DUL option

RBREAK statement (REPORT) 886, 910
DUPOUT= option

PROC SORT statement 1008
DUR statement

CALENDAR procedure 94

E
EBCDIC option

PROC SORT statement 1007
EBCDIC order 1007, 1014
EET= option

PROC CIMPORT statement 217
PROC CPORT statement 289

efficiency
statistical procedures 7

elementary statistics procedures
embedded LIBNAME statements 1051
embedded SQL 1125
encoded passwords 807, 809

in SAS programs 808, 809
saving to paste buffer 811

encoding
versus encryption 808

encryption
versus encoding 808

ENDCOMP statement
REPORT procedure 906

ENTRYTYPE= option
CATALOG procedure 167
CHANGE statement (CATALOG) 157
COPY statement (CATALOG) 159
DELETE statement (CATALOG) 161
EXCHANGE statement (CATALOG) 161
EXCLUDE statement (CATALOG) 162
EXCLUDE statement (CIMPORT) 220
EXCLUDE statement (CPORT) 292
MODIFY statement (CATALOG) 164
PROC CATALOG statement 156
SAVE statement (CATALOG) 164
SELECT statement (CATALOG) 165
SELECT statement (CIMPORT) 221
SELECT statement (CPORT) 293

EQUALS option
PROC SORT statement 1008

equijoins 1083
error checking

formats and 30
error handling

CATALOG procedure 166
ERROR option

PROC COMPARE statement 232
error processing

of BY-group specifications 24
ERRORSTOP option

PROC SQL statement 1035
estimates
ET= option

PROC CIMPORT statement 218
PROC CPORT statement 289

ETYPE= option
SELECT statement (CPORT) 293

event logging 320
Excel

exporting spreadsheets 407, 416
exporting subset of observations to 414
exporting to a specific spreadsheet 415
importing spreadsheet from workbook 517,

521
importing spreadsheets 505
importing subset of records from 518
loading spreadsheet into workbook 408

EXCEPT operator 1098



1426 Index

EXCHANGE statement
CATALOG procedure 161
DATASETS procedure 338

EXCLNPWGT option
PROC REPORT statement 874
PROC STANDARD statement 1167

EXCLNPWGTS option
PROC MEANS statement 529
PROC TABULATE statement 1189

EXCLUDE statement
CATALOG procedure 162
CIMPORT procedure 219
CPORT procedure 292
DATASETS procedure 339
FORMAT procedure 434
PRTEXP procedure 804

exclusion lists 52
destinations for output objects 53

EXCLUSIVE option
CLASS statement (MEANS) 536
CLASS statement (TABULATE) 1197
DEFINE statement (REPORT) 901
PROC MEANS statement 529
PROC TABULATE statement 1189

EXEC option
PROC SQL statement 1035

EXECUTE statement
SQL procedure 1055

EXISTS condition 1080
expected value
EXPLODE 403
EXPLODE procedure 403
EXPLORE window

REPORT procedure 924
EXPORT 404
EXPORT= option

PROC REGISTRY statement 834
EXPORT procedure 404

data source statements 408
DBMS specifications 405
DBMS table statements 409
examples 411
overview 403
syntax 404

exporting
catalog entries 296, 298
CPORT procedure 285
excluding files or entries 292
multiple catalogs 295
printer definitions 790
registry contents 834, 840
selecting files or entries 293

exporting data 403
client/server model 410
DBMS tables 409
delimited files 408, 411
Microsoft Access 407, 410, 415
spreadsheet compatibility 407
spreadsheets 408

EXTENDSN= option
PROC CIMPORT statement 218

external files
browsing 489
comparing registry with 841
routing output or log to 776

extreme values 580, 583

F
FEEDBACK option

PROC SQL statement 1035
FILE= option

CONTENTS statement (CATALOG) 158
PROC CIMPORT statement 218
PROC CPORT statement 289

file transport process 286
FILEREF= argument

PROC FSLIST statement 490
files

aging 312
converting 215, 285
copying 277, 327
deleting 334
exchanging names 338
excluding from copying 339
modifying attributes 348
moving 331
renaming 322
renaming groups of 312
saving from deletion 355, 380
selecting for copying 356

FILL option
PROC CALENDAR statement 86
PICTURE statement (FORMAT) 440

FIN statement
CALENDAR procedure 94

FINNISH option
PROC SORT statement 1007

floating point exception (FPE) recovery 1195
FLOW option

DEFINE statement (REPORT) 901
PROC SQL statement 1035

FMTLEN option
CONTENTS statement (DATASETS) 325

FMTLIB option
PROC FORMAT statement 433, 434, 448

font files
adding 425, 426
searching directories for 421
specifying 421
TrueType 422, 427
Type 1 422

FONTFILE statement
FONTREG procedure 421

FONTPATH statement
FONTREG procedure 421

FONTREG 420
FONTREG procedure 420

concepts 423
examples 425
font naming conventions 423
overview 419
removing fonts from registry 424
SAS/GRAPH device drivers 425
supported font types 423
syntax 420

fonts
naming conventions 423
removing from registry 424

FORCE option
APPEND statement (DATASETS) 314
COPY statement (DATASETS) 330
PROC CATALOG statement 156, 176
PROC CIMPORT statement 218

PROC DATASETS statement 310
PROC SORT statement 1009

FOREIGN option
PROC PRTDEF statement 790

FORMAT 432
format catalogs 456
format-name formats 451
FORMAT= option

DEFINE statement (REPORT) 901
MEAN statement (CALENDAR) 98
PROC TABULATE statement 1189
SUM statement (CALENDAR) 100

FORMAT procedure 432
associating formats/informats with vari-

ables 455
concepts 455
examples 463
excluding entries from processing 434
input control data set 460
options 451
output control data set 458
overview 430
procedure output 461
ranges 453
results 458
selecting entries for processing 448
storing formats/informats 456
syntax 432
task tables 432, 435, 438, 448
values 453

FORMAT statement 57
DATASETS procedure 340

FORMAT_PRECEDENCE= option
TABLE statement (TABULATE) 1205

formats
See also picture formats
assigning style attribute values 866
assigning style attributes 1221
associating with variables 430, 455
BY-group processing and 30
comparing unformatted values 244
creating from data sets 472
creating groups with 986
date formats 468
definition of 430
error checking and 30
for character values 448, 466
for columns 1077
format-name formats 451
managing with DATASETS procedure 340
missing 457
multilabel 1242
multilabel value formats 567
permanent 456, 457
picture-name formats 447
preloaded 904, 1199, 1237
preloaded, with class variables 570
printing descriptions of 477
ranges for character strings 480
retrieving permanent formats 478
storing 456
temporarily associating with variables 28
temporarily dissociating from variables 29
temporary 456

FORMATS window
REPORT procedure 925



Index 1427

formatted values 25, 59
classifying formatted data 27
grouping formatted data 27
printing 25

FORMCHAR option
PROC CHART statement 185
PROC PLOT statement 610
PROC REPORT statement 874
PROC TABULATE statement 1189
PROC CALENDAR statement 87

forms
printing reports with 867

FORMS 487
FORMS procedure 487
formulas

for statistics
FORTCC option

FSLIST command 493
PROC FSLIST statement 491

FPE recovery 1195
FRACTION option

PROC RANK statement 816
FRAME applications

associating menus with 700
FreeType fonts 419
FREQ option

CHART procedure 193
CHART procedure 193

FREQ statement 61
example 62
MEANS procedure 539
procedures supporting 62
REPORT procedure 906
STANDARD procedure 1169
TABULATE procedure 1201

frequency counts
CHART procedure 198
displaying with denominator definitions 1269
TABULATE procedure 1269

frequency of observations 61
FROM clause

SQL procedure 1063
FSEDIT applications

menu bars for 682
FSEDIT sessions

associating menu bar with 684
FSLIST 489
FSLIST command 490, 492
FSLIST procedure 489

overview 489
syntax 489

FSLIST window 494
commands 494
display commands 498
global commands 494
scrolling commands 494
searching commands 496

FULLSTATUS option
PROC REGISTRY statement 834

functional categories of procedures 3
functions

SQL procedure and 1100, 1124
FUZZ= option

FORMAT procedure 436, 452
PROC COMPARE statement 232
TABLE statement (TABULATE) 1205

FW= option
PROC MEANS statement 529

G
G100 option

CHART procedure 194
Gaussian distribution
generation data sets

DATASETS procedure and 362
generation groups

appending with 318
changing number of 352
copying 333
deleting 335
removing passwords 352

GENERATION option
PROC CPORT statement 289

GENMAX= option
MODIFY statement (DATASETS) 349

GENNUM= data set option 318
GENNUM= option

AUDIT statement (DATASETS) 320
CHANGE statement (DATASETS) 322
DELETE statement (DATASETS) 334
MODIFY statement (DATASETS) 349
PROC DATASETS statement 310
REPAIR statement (DATASETS) 353

GETDELETED= statement
IMPORT procedure 508

GETNAMES= statement
IMPORT procedure 508

Ghostview printer definition 797
global statements 18
GRAY option

ITEM statement (PMENU) 672
grayed items 672
GROUP BY clause

SQL procedure 1065
GROUP option

DEFINE statement (REPORT) 902
CHART procedure 194
PROC OPTIONS statement 595

group variables 854, 902
grouping formatted data 27
GROUPINTERNAL option

CLASS statement (MEANS) 537
CLASS statement (TABULATE) 1198

groups
creating with formats 986

GROUPS= option
PROC RANK statement 817

GSPACE= option
CHART procedure 194

GUESSING ROWS= statement
IMPORT procedure 508

H
HAVING clause

SQL procedure 1067
HAXIS= option

PLOT statement (PLOT) 616

HBAR statement
CHART procedure 189

HEADER= option
PROC CALENDAR statement 89

HEADING= option
PROC PRINT statement 708

HEADLINE option
PROC REPORT statement 876

HEADSKIP option
PROC REPORT statement 876

HELP= option
ITEM statement (PMENU) 672
PROC REPORT statement 877

HEXPAND option
PLOT statement (PLOT) 618

hidden label characters 628
hidden observations 630
HILOC option

PLOT statement (TIMEPLOT) 1296
HOLIDATA= option

PROC CALENDAR statement 89
holidays data set 89, 108

multiple calendars 105, 106
HOLIDUR statement

CALENDAR procedure 95
HOLIFIN statement

CALENDAR procedure 96
HOLISTART statement

CALENDAR procedure 96
HOLIVAR statement

CALENDAR procedure 97
horizontal bar charts 180, 189

for subset of data 209
horizontal separators 1251
HOST option

PROC OPTIONS statement 595
host-specific procedures
HPERCENT= option

PROC PLOT statement 610
HPOS= option

PLOT statement (PLOT) 618
HREF= option

PLOT statement (PLOT) 618
HREFCHAR= option

PLOT statement (PLOT) 618
HREVERSE option

PLOT statement (PLOT) 618
HSCROLL= option

PROC FSLIST statement 492
HSPACE= option

PLOT statement (PLOT) 618
HTML destination 45
HTML files

style elements 989
TABULATE procedure 1279

HTML output
sample 35

HTML reports 725
HTML version setting 50
hypotheses

keywords and formulas
testing

HZERO option
PLOT statement (PLOT) 618



1428 Index

I
IC CREATE statement

DATASETS procedure 340
IC DELETE statement

DATASETS procedure 343
IC REACTIVATE statement

DATASETS procedure 343
ID option

DEFINE statement (REPORT) 902
ITEM statement (PMENU) 672

ID statement
COMPARE procedure 238
MEANS procedure 540
PRINT procedure 717
TIMEPLOT procedure 1293
TRANSPOSE procedure

ID variables 902
COMPARE procedure 238

IDLABEL statement
TRANSPOSE procedure

IDMIN option
PROC MEANS statement 530

IMPORT 502
IMPORT= option

PROC REGISTRY statement 834
IMPORT procedure 502

data source statements 506
DBMS specifications 504
examples 514
overview 501
syntax 502

IMPORT statement
DBMS table statements 511

importing
catalog entries 223
CIMPORT procedure 215
data libraries 222
excluding files or entries 219
indexed data sets 224
selecting files or entries 221
to registry 834, 839

importing data 501
DBMS tables 511
delimited files 506, 514
Excel spreadsheets 505
Microsoft Access 505, 513, 519
PC files 506
spreadsheet from Excel workbook 517, 521
spreadsheets 506
subset of records from Excel 518

IN= argument
PROC PWENCODE statement 808

IN condition 1081
in-line views 1064, 1123

querying 1148
IN= option

COPY statement (CATALOG) 159
COPY statement (DATASETS) 330

INDENT= option
TABLE statement (TABULATE) 1205

indenting row headings 1251
INDEX CENTILES statement

DATASETS procedure 344
INDEX CREATE statement

DATASETS procedure 345

INDEX DELETE statement
DATASETS procedure 346

INDEX= option
COPY statement (DATASETS) 330
PROC CPORT statement 289

indexed data sets
importing 224

indexes
appending indexed data sets 316
centiles for indexed variables 344
composite indexes 1044
creating 345
deleting 346, 1054
managing 1045
on altered columns 1042
on columns 1043, 1057
simple indexes 1044
SQL procedure 1044
UNIQUE keyword 1044

INFILE= option
PROC CIMPORT statement 218

INFORMAT statement
DATASETS procedure 347

informats
associating with variables 430, 455
character data to numeric values 470
definition of 430
for columns 1077
managing with DATASETS procedure 347
missing 457
permanent 456, 457
printing descriptions of 477
raw data values 435
storing 456
temporary 456

INITIATE argument
AUDIT statement (DATASETS) 320

inner joins 1084
INOBS= option

PROC SQL statement 1036
input data sets 19

CALENDAR procedure 106
input fields 678
input files

procedure output as 782
INSERT statement

SQL procedure 1056
integrity constraints

appending data sets and 318
copying data sets and 330
creating 340
deleting 343
names for 342
password-protected files with 327
PROC SQL tables 1042, 1049
reactivating 343
SORT procedure 1015

interactive line mode
printing from 868

interquartile range
INTERSECT operator 1099
INTERVAL= option

PROC CALENDAR statement 89
INTO clause

SQL procedure 1060
INTYPE= option

PROC CPORT statement 290

INVALUE statement
FORMAT procedure 435

IS condition 1081
ITEM statement

PMENU procedure 671
ITEMHELP= option

DEFINE statement (REPORT) 902

J
joined-table component 1082
JOINREF option

PLOT statement (TIMEPLOT) 1296
joins

cross joins 1087
definition of 1083
equijoins 1083
inner joins 1084
joining a table with itself 1084
joining more than two tables 1089
joining tables 1083
joining three tables 1145
joining two tables 1131
natural joins 1088
outer joins 1086, 1123, 1138
reflexive joins 1084
rows to be returned 1083
subqueries compared with 1091
table limit 1083
types of 1083
union joins 1088

JUST option
INVALUE statement (FORMAT) 436

K
KEEPLEN option

OUTPUT statement (MEANS) 545
KEY= option

PROC OPTLOAD statement 602
PROC OPTSAVE statement 604

key sequences 671
KEYLABEL statement

TABULATE procedure 1202
keyword headings

style elements for 1202
KEYWORD statement

TABULATE procedure 1202
keywords

for statistics
KILL option

PROC CATALOG statement 156, 176
PROC DATASETS statement 310

kurtosis
KURTOSIS keyword

L
LABEL option

PROC PRINT statement 708
MODIFY statement (DATASETS) 350
ODS TRACE statement 52
PROC PRINTTO statement 773



Index 1429

PROC TRANSPOSE statement
LABEL statement 57

DATASETS procedure 348
labels

for columns 1077
hidden label characters 628
on plots 649, 654, 658

language concepts 16
data set options 18
global statements 18
system options 17
temporary and permanent data sets 16

LCLM keyword
LEFT option

DEFINE statement (REPORT) 902
LEGEND option

PROC CALENDAR statement 89
LET option

PROC TRANSPOSE statement
LEVELS option

OUTPUT statement (MEANS) 546
CHART procedure 194

LIBNAME statement
DBMS connections with 1115
embedding in views 1051

libraries
printing all data sets 767

LIBRARY= option
PROC DATASETS statement 311
PROC FORMAT statement 433

librefs
stored views and 1050

LIKE condition 1091
line-drawing characters 872
LINE statement

REPORT procedure 907
LIST option

PLOT statement (PLOT) 618
PROC PRTDEF statement 790
PROC REGISTRY statement 834
PROC REPORT statement 877

LISTALL option
PROC COMPARE statement 232

LISTBASE option
PROC COMPARE statement 233

LISTBASEOBS option
PROC COMPARE statement 233

LISTBASEVAR option
PROC COMPARE statement 233

LISTCOMP option
PROC COMPARE statement 233

LISTCOMPOBS option
PROC COMPARE statement 233

LISTCOMPVAR option
PROC COMPARE statement 233

LISTEQUALVAR option
PROC COMPARE statement 233

LISTHELP= option
PROC REGISTRY statement 835

LISTING destination 44
definition 40

Listing output
sample 33

listing reports 704, 727
LISTOBS option

PROC COMPARE statement 233

LISTREG= option
PROC REGISTRY statement 835

LISTUSER option
PROC REGISTRY statement 835

LISTVAR option
PROC COMPARE statement 233

LOAD REPORT window
REPORT procedure 925

LOCALE option
PROC CALENDAR statement 90

log
COMPARE procedure results 244
default destinations 771
destinations for 771
displaying SQL definitions 1053
listing registry contents in 835
routing to catalog entries 779
routing to external files 776
routing to printer 775, 785
writing printer attributes to 805
writing registry contents to 834

LOG option
AUDIT statement (DATASETS) 320
PROC PRINTTO statement 773

logarithmic scale for plots 639
LONG option

PROC OPTIONS statement 596
LOOPS= option

PROC SQL statement 1036
LOWER function (SQL) 1093
LPI= option

PROC CHART statement 186
LS= option

PROC REPORT statement 877

M
macro return codes

COMPARE procedure 244
macro variables

set by SQL procedure 1119
macros

adjusting plot labels 658
markers 882, 1193
MARKUP destination 45

definition 40
markup languages 40
matching observations 226
matching patterns 1091, 1158
matching variables 226
MAX keyword
MAX= option

FORMAT procedure 436, 452
MAXDEC= option

PROC MEANS statement 530
PROC TIMEPLOT statement 1290

maximum value
MAXLABLEN= option

PROC FORMAT statement 434
MAXPRINT= option

PROC COMPARE statement 233
MAXSELEN= option

PROC FORMAT statement 434
mean
MEAN keyword

MEAN option
CHART procedure 194
PROC STANDARD statement 1167

MEAN statement
CALENDAR procedure 97

MEANS 526
MEANS procedure 526

class variables 550
column width for output 556
computational resources 552
computer resources 539
concepts 550
examples 558
missing values 539, 556, 578
N Obs statistic 556
output 524
output data set 557
output statistics 575, 577, 578, 580,
overview 524
results 556
statistic keywords 533, 541
statistical computations 553
syntax 526
task tables 526, 527

MEANTYPE= option
PROC CALENDAR statement 90

measures of location
measures of shape
measures of variability
median
MEDIAN keyword
MEMOSIZE= statement

IMPORT procedure 512
MEMTYPE= option

AGE statement (DATASETS) 312
CHANGE statement (DATASETS) 323
CONTENTS statement (DATASETS) 325
COPY statement (DATASETS) 330, 331
DELETE statement (DATASETS) 334
EXCHANGE statement (DATASETS) 338
EXCLUDE statement (CIMPORT) 220
EXCLUDE statement (CPORT) 292
EXCLUDE statement (DATASETS) 339
MODIFY statement (DATASETS) 350
PROC CIMPORT statement 218
PROC CPORT statement 290
PROC DATASETS statement 311
REPAIR statement (DATASETS) 354
SAVE statement (DATASETS) 355
SELECT statement (CIMPORT) 221
SELECT statement (CPORT) 293
SELECT statement (DATASETS) 356

menu bars 665
associating with FSEDIT sessions 684, 691
associating with FSEDIT window 687
defining items 673
for FSEDIT applications 682
items in 671
key sequences for 671

menu items 671
MENU statement

PMENU procedure 673
merging data

SQL procedure 1110
message characters 442
MESSAGE= option

IC CREATE statement (DATASETS) 342



1430 Index

MESSAGES window
REPORT procedure 926

METHOD= option
PROC COMPARE statement 233
PROC PWENCODE statement 808

Microsoft Access
exporting tables 415
exporting to database 407
importing tables 505, 519
security level for tables 513
security levels 410

MIDPOINTS= option
CHART procedure 194

MIGRATE 591
MIGRATE procedure 591
MIN keyword
MIN= option

FORMAT procedure 436, 452
minimum value
missing formats/informats 457
MISSING option

CHART procedure 195
CLASS statement (MEANS) 537
CLASS statement (TABULATE) 1198
DEFINE statement (REPORT) 902
PROC CALENDAR statement 90
PROC MEANS statement 530
PROC PLOT statement 611
PROC REPORT statement 878
PROC TABULATE statement 1191

missing values
CALENDAR procedure 111
charts 195, 197
for class variables 539
MEANS procedure 539, 556, 578
NMISS keyword
PLOT procedure 630, 652
RANK procedure 821
REPORT procedure 860, 977
SQL procedure 1081, 1160
STANDARD procedure 1170
TABULATE procedure 1200, 1222
TIMEPLOT procedure 1298
TRANSPOSE procedure

MISSTEXT= option
TABLE statement (TABULATE) 1205

MIXED= statement
IMPORT procedure 508

MLF option
CLASS statement (MEANS) 537
CLASS statement (TABULATE) 1198

MNEMONIC= option
ITEM statement (PMENU) 673

mode
MODE keyword
MODE= option

PROC FONTREG statement 420
MODIFY statement

CATALOG procedure 163
DATASETS procedure 348

moment statistics 553
MOVE option

COPY statement (CATALOG) 159
COPY statement (DATASETS) 330

moving files 331
MSGLEVEL= option

PROC FONTREG statement 420

MT= option
PROC CPORT statement 290

MTYPE= option
AGE statement (DATASETS) 312
EXCLUDE statement (CPORT) 292
SELECT statement (CPORT) 293
SELECT statement (DATASETS) 356

multi-threaded sorting 1013
multilabel formats 1242
MULTILABEL option

PICTURE statement (FORMAT) 440
VALUE statement (FORMAT) 449

multilabel value formats 567
multipage tables 1253
multiple-choice survey data 1260
multiple-response survey data 1255
MULTIPLIER= option

PICTURE statement (FORMAT) 441

N
N keyword
N Obs statistic 556
N option

PROC PRINT statement 709
NAME= option

PROC TRANSPOSE statement
NAMED option

PROC REPORT statement 878
naming data sets 16
NATIONAL option

PROC SORT statement 1007
natural joins 1088
NEDIT option

PROC CPORT statement 290
nested variables 1186
NEW option

COPY statement (CATALOG) 159
PROC CIMPORT statement 218
PROC PRINTTO statement 774
APPEND statement (DATASETS) 314

NMISS keyword
NOALIAS option

PROC REPORT statement 878
NOBORDER option

PROC FSLIST statement 492
NOBS keyword
NOBYLINE system option

BY statement (MEANS) with 535
BY statement (PRINT) with 716

NOCC option
FSLIST command 493
PROC FSLIST statement 491

NOCOMPRESS option
PROC CPORT statement 290

NOCONTINUED option
TABLE statement (TABULATE) 1206

NODATE option
PROC COMPARE statement 234

NODS option
CONTENTS statement (DATASETS) 326

NODUPKEY option
PROC SORT statement 1009

NODUPRECS option
PROC SORT statement 1009

NOEDIT option
COPY statement (CATALOG) 160
PICTURE statement (FORMAT) 441
PROC CIMPORT statement 218
PROC CPORT statement 290

NOEXEC option
PROC REPORT statement 878

NOHEADER option
CHART procedure 195
PROC REPORT statement 878

NOINHERIT option
OUTPUT statement (MEANS) 546

NOLEGEND option
CHART procedure 195
PROC PLOT statement 611

NOLIST option
PROC DATASETS statement 311

NOMISS option
INDEX CREATE statement

(DATASETS) 345
PROC PLOT statement 611

NOMISSBASE option
PROC COMPARE statement 234

NOMISSCOMP option
PROC COMPARE statement 234

NOMISSING option
PROC COMPARE statement 234

NONE option
RBUTTON statement (PMENU) 676

noninteractive mode
printing from 867

NONOBS option
PROC MEANS statement 530

NOOBS option
PROC PRINT statement 709

NOPRINT option
CONTENTS statement (DATASETS) 326
DEFINE statement (REPORT) 902
PROC COMPARE statement 234
PROC SUMMARY statement 1178

NOREPLACE option
PROC FORMAT statement 434

normal distribution
NORMAL= option

PROC RANK statement 817
NORWEGIAN option

PROC SORT statement 1007
NOSEPS option

PROC TABULATE procedure 1191
NOSOURCE option

COPY statement (CATALOG) 160
NOSRC option

PROC CIMPORT statement 219
PROC CPORT statement 291

NOSTATS option
CHART procedure 195

NOSUMMARY option
PROC COMPARE statement 234

NOSYMBOL option
CHART procedure 195

NOSYMNAME option
PLOT statement (TIMEPLOT) 1296

NOTE option
PROC COMPARE statement 234

NOTRAP option
PROC MEANS statement 530



Index 1431

NOTSORTED option
BY statement 58
BY statement (CALENDAR) 92
BY statement (CHART) 188
BY statement (COMPARE) 237
BY statement (MEANS) 535
BY statement (PLOT) 612
BY statement (PRINT) 716
BY statement (RANK) 819
BY statement (REPORT) 889
BY statement (STANDARD) 1168
BY statement (TABULATE) 1196
BY statement (TIMEPLOT) 1291
BY statement (TRANSPOSE)
FORMAT procedure 452
ID statement (COMPARE) 238
FORMAT procedure 436

NOUPDATE option
PROC FONTREG statement 421

NOVALUES option
PROC COMPARE statement 234

NOWARN option
PROC DATASETS statement 311

NOZERO option
DEFINE statement (REPORT) 903

NOZEROS option
CHART procedure 195

NPLUS1 option
PROC RANK statement 817

NPP option
PLOT statement (TIMEPLOT) 1296

NSRC option
PROC CPORT statement 291

null hypothesis
NUM option

PROC FSLIST statement 492
NUMBER option

PROC SQL statement 1036
numbers

template for printing 438
numeric values

converting raw character data to 470
summing 742

numeric variables
sorting orders for 1013
summing 737

NWAY option
PROC MEANS statement 530

O
OBS= option

PROC PRINT statement 709
observations

consolidating in reports 957
frequency of 61
grouping for reports 731
hidden 630
page layout 720
SQL procedure 1029
statistics for groups of 7
total number of
transposing variables into
weighting 549

observations, comparing
comparison summary 247, 252

matching observations 226
with ID variable 266
with output data set 270

ODS destinations
categories of 43
changing default settings 51
definition 40
destination-independent input 43
exclusion lists 52
SAS formatted destinations 44
selection lists 52
system resources and 47
third-party formatted destinations 45

ODS output
CALENDAR procedure 113
CHART procedure 198
definition 41
style elements for 989, 994, 1279
TABULATE procedure 1231

ODS (Output Delivery System) 32
customized output 51
DATASETS procedure and 368, 389
how it works 41
PLOT procedure and 630
printing reports 867
processing 41
registry and 49
samples 33
summary of 54
TABULATE procedure and 1182, 1279
terminology 40

ODS table names
CHART procedure 198
COMPARE procedure 253
DATASETS procedure 369
PLOT procedure 629
TIMEPLOT procedure 1298

ODS TRACE statement
LABEL= option 52
purpose 52

OL option
BREAK statement (REPORT) 887
RBREAK statement (REPORT) 910

ON option
CHECKBOX statement (PMENU) 668

one-tailed tests
operands

values from 1099
operating environment-specific procedures 30
operators

arithmetic 1123
in dimension expressions 1209
order of evaluation 1100
set operators 1094, 1123
truncated string comparison operators 1102
values from 1099

OPTION= option
PROC OPTIONS statement 596

OPTIONS 595
OPTIONS procedure 595

display settings for a group of options 593
examples 597
output 591
overview 591
results 596
syntax 595
task table 595

OPTLOAD 602
OPTLOAD procedure 602

overview 601
syntax 602
task table 602

OPTSAVE 604
OPTSAVE procedure 604

overview 603
syntax 604
task table 604

ORDER BY clause
SQL procedure 1068, 1123

ORDER option
DEFINE statement (REPORT) 903
CLASS statement (MEANS) 537
CLASS statement (TABULATE) 1198
CONTENTS statement (DATASETS) 326
DEFINE statement (REPORT) 903
PROC MEANS statement 531
PROC TABULATE statement 1191, 1230

order variables 853, 903
orthogonal expressions 1123
OUT= argument

APPEND statement (DATASETS) 314
COPY statement (CATALOG) 159
COPY statement (DATASETS) 327
PROC IMPORT statement 503

OUT= option
CONTENTS statement (CATALOG) 158
CONTENTS statement (DATASETS) 326
OUTPUT statement (MEANS) 541
PROC COMPARE statement 235, 254, 270
PROC OPTSAVE statement 604
PROC PRTEXP statement 804
PROC PWENCODE statement 808
PROC RANK statement 817
PROC REPORT statement 878
PROC SORT statement 1010
PROC STANDARD statement 1167
PROC TABULATE statement 1192
PROC TRANSPOSE statement

OUT2= option
CONTENTS statement (DATASETS) 326

OUTALL option
PROC COMPARE statement 235

OUTBASE option
PROC COMPARE statement 235

OUTCOMP option
PROC COMPARE statement 235

OUTDIF option
PROC COMPARE statement 235

OUTDUR statement
CALENDAR procedure 98

outer joins 1086, 1123, 1138
OUTER UNION set operator 1095
OUTFILE= argument

PROC EXPORT statement 405
OUTFIN statement

CALENDAR procedure 99
OUTLIB= option

PROC CPORT statement 291
OUTNOEQUAL option

PROC COMPARE statement 235
OUTOBS= option

PROC SQL statement 1036
OUTPERCENT option

PROC COMPARE statement 235



1432 Index

output data sets
comparing observations 270
summary statistics in 273

OUTPUT destination 44
definition 40

output objects
customized output for 53
definition 40
determining destinations for 52, 53

OUTPUT= option
CALID statement (CALENDAR) 93

OUTPUT statement
MEANS procedure 541

Output window
printing from 867

OUTREPT= option
PROC REPORT statement 879

OUTSTART statement
CALENDAR procedure 99

OUTSTATS= option
PROC COMPARE statement 236, 255, 273

OUTTABLE= argument
PROC EXPORT statement 405

OUTTYPE= option
PROC CPORT statement 291

OUTWARD= option
PLOT statement (PLOT) 618

OVERLAY option
PLOT statement (PLOT) 619
PLOT statement (TIMEPLOT) 1296

overlaying plots 628, 634
overlining 886, 887, 909, 910
OVERWRITE option

PROC SORT statement 1010
OVP option

FSLIST command 494
PROC FSLIST statement 492

OVPCHAR= option
PLOT statement (TIMEPLOT) 1296

P
P keywords
p-values
page dimension 1215
page dimension text 1186
page ejects 717
page layout 720

column headings 722
column width 723
customizing 761
observations 720
plots 1297
with many variables 754

page numbering 775
PAGE option

BREAK statement (REPORT) 887
DEFINE statement (REPORT) 903
PROC FORMAT statement 434
RBREAK statement (REPORT) 910

PAGEBY statement
PRINT procedure 717

panels
in reports 968

PANELS= option
PROC REPORT statement 880

parameters
partitioned data sets

multi-threaded sorting 1013
password-protected data sets

appending 316
copying files 332
transporting 294

passwords 351
assigning 351
changing 351
DATASETS procedure with 359
encoding 807, 809
integrity constraints and 327
removing 352

pattern matching 1091, 1158
PC files

importing 506
PCTLDEF= option

PROC MEANS statement 532
PROC REPORT statement 882
PROC TABULATE statement 1193

PCTN statistic 1217
denominator for 1217

PCTSUM statistic 1217
denominator for 1218

PDF files
style elements 989
TABULATE procedure 1279

PDF output
sample 37

PDF reports 729
peakedness
penalties 626

changing 627, 661
index values for 626

PENALTIES= option
PLOT statement (PLOT) 619

percent coefficient of variation
percent difference 244
PERCENT option

CHART procedure 195
PROC RANK statement 818

percentage bar charts 201
percentages

displaying with denominator definitions 1269
in reports 975
TABULATE procedure 1216, 1266, 1269

percentiles
keywords and formulas

permanent data sets 16
permanent formats/informats 456

accessing 457
retrieving 478

picture formats 438
creating 464
digit selectors 442
directives 442
filling 483
message characters 442
steps for building 443

picture-name formats 447
PICTURE statement

FORMAT procedure 438
pie charts 182, 189
PIE statement

CHART procedure 189

PLACEMENT= option
PLOT statement (PLOT) 619

PLOT 609
PLOT procedure 609

combinations of variables 615
computational resources 628
concepts 624
examples 631
generating data with program statements 625
hidden observations 630
labeling plot points 625
missing values 630, 652
ODS table names 629
overview 606
portability of ODS output 630
printed output 629
results 629
RUN groups 624
scale of axes 629
syntax 609
task tables 609, 613
variable lists in plot requests 615

PLOT statement
PLOT procedure 613
TIMEPLOT procedure 1293

plots
collision states 628
contour plots 615, 642
customizing axes
customizing plotting symbols
data on logarithmic scale 639
data values on axis 640
hidden label characters 628
horizontal axis 632
labels 649, 654, 658
multiple observations, on one line
multiple plots per page 636
overlaying 628, 634
page layout 1297
penalties 626
plotting a single variable
plotting BY groups 646
pointer symbols 625
reference lines 628, 632
specifying in TIMEPLOT 1293
superimposing

plotting symbols 631
customizing
variables for

PMENU 667
PMENU catalog entries

naming 673
steps for building and using 680
storing 667

PMENU command 665
PMENU procedure 667

concepts 679
ending 680
examples 682
execution of 679
initiating 679
overview 665
PMENU catalog entries 680
syntax 667
task tables 667, 671
templates for 681

pointer symbols 625



Index 1433

populations
PORT= statement

EXPORT procedure 410
IMPORT procedure 508, 512

POS= option
PLOT statement (TIMEPLOT) 1296

PostScript files 751
PostScript output

previewing 797
sample 35

power of statistical tests
PREFIX= option

PICTURE statement (FORMAT) 441
PROC TRANSPOSE statement

preloaded formats 904, 1199
class variables with 570, 1237

PRELOADFMT option
CLASS statement (MEANS) 538
CLASS statement (TABULATE) 1199
DEFINE statement (REPORT) 904

PRINT 706
PRINT option

PROC MEANS statement 531
PROC SQL statement 1036
PROC STANDARD statement 1167
PROC PRINTTO statement 774

PRINT procedure 706
examples 723
HTML reports 725
listing reports 724, 727
overview 703
page layout 720, 754, 761
PDF reports 729
PostScript files 751
procedure output 720
results 720
RTF reports 734
style definitions with 49
style elements 711
syntax 706
task tables 706, 707
XML files 740

PRINTALL option
PROC COMPARE statement 236

PRINTALLTYPES option
PROC MEANS statement 532

printer attributes
extracting from registry 803
writing to data sets 806
writing to log 805

printer definitions 789
adding 799
available to all users 798
creating 805
deleting 790, 799, 801
exporting 790
for Ghostview printer 797
in SASHELP library 790
modifying 799, 805
multiple 796
replicating 805

PRINTER destination 46
definition 40

printers
list of 790
routing log or output to 775, 785

PRINTIDVARS option
PROC MEANS statement 532

printing
See also printing reports
all data sets in library 767
data set contents 275
formatted values 25
grouping observations 731
informat/format descriptions 477
page ejects 717
page layout 720, 754, 761
selecting variables for 719, 723
template for printing numbers 438

printing reports 867
batch mode 867
from Output window 867
from REPORT window 867
interactive line mode 868
noninteractive mode 867
PRINTTO procedure 868
with forms 867
with ODS 867

PRINTMISS option
TABLE statement (TABULATE) 1206

PRINTTO 772
PRINTTO procedure 772

concepts 775
examples 776
overview 771
printing reports 868
syntax 772
task table 772

probability function
probability values
PROBT keyword
PROC CALENDAR statement 85
PROC CATALOG statement 155

options 156
PROC CHART statement 185
PROC CIMPORT statement 216
PROC COMPARE statement 230
PROC CONTENTS statement 276
PROC CPORT statement 286
PROC DATASETS statement 308

restricting member types 360
PROC DISPLAY statement 396
PROC EXPORT statement 404
PROC FONTREG statement 420
PROC FORMAT statement 432
PROC FSLIST statement 490
PROC IMPORT statement 502
PROC MEANS statement 527
PROC OPTIONS statement 595
PROC OPTLOAD statement 602
PROC OPTSAVE statement 604
PROC PLOT statement 609
PROC PMENU statement 667
PROC PRINT statement 707
PROC PRINTTO statement 772
PROC PRTDEF statement 790
PROC PRTEXP statement 804
PROC PWENCODE statement 807
PROC RANK statement 816
PROC REGISTRY statement 832
PROC REPORT statement 870
PROC SORT statement 1005
PROC SQL statement 1034

PROC SQL tables 1029
adding rows 1056
aliases 1064, 1083
altering columns 1038
altering integrity constraints 1038
changing column attributes 1041
combining 1134
counting rows 1108
creating 1045, 1125
creating, from query expressions 1049
creating, from query results 1127
deleting 1054
deleting rows 1052
indexes on columns 1042
initial values of columns 1041
inserting data 1125
inserting values 1057
integrity constraints 1042, 1049
joining 1082, 1131, 1152
joining a table with itself 1082, 1084
joining more than two tables 1089
joining three tables 1145
ordering rows 1068
recursive table references 1049
renaming columns 1042
retrieving data from 1093
selecting columns 1058
selecting rows 1058
source tables 1063
table definitions 1053
table expressions 1094, 1113
updating 1069, 1070, 1129
without rows 1048

PROC SQL views
adding rows 1056
creating, from query expressions 1049
creating, from query results 1143
deleting 1054
deleting rows 1052
embedding LIBNAME statements in 1051
inserting rows 1057
librefs and stored views 1050
selecting columns 1058
selecting rows 1058
sorting data retrieved by 1050
source views 1063
SQL procedure 1029
storing DBMS connection information 1051
updating 1051, 1121
updating column values 1069
updating tables through 1070
view definitions 1053, 1123

PROC STANDARD statement 1166
PROC SUMMARY statement 1178
PROC TABULATE statement 1187
PROC TIMEPLOT statement 1290
PROC TRANSPOSE statement
procedure concepts 19

formatted values 25
input data sets 19
operating environment-specific procedures 30
processing all data sets in a library 30
RUN-group processing 19
shortcut notations for variable names 24
statistics, computational requirements 32
statistics, descriptions of 31
titles containing BY-group information 20



1434 Index

procedure output
as input file 782
default destinations 771
destinations for 771
page numbering 775
routing to catalog entries 779
routing to external files 776
routing to printer 775, 785

procedures
descriptions of 10
ending 63
functional categories 3
host-specific
raw data for examples
report-writing procedures 3, 4
statistical procedures 3, 6
style definitions with 48
utility procedures 4, 7

PROFILE= option
PROC REPORT statement 880

PROFILE window
REPORT procedure 926

project management 83
PROMPT option

PROC REPORT statement 881
PROC SQL statement 1037

PROMPTER window
REPORT procedure 927

PROTO 789
PROTO procedure 789
PRTDEF 789
PRTDEF procedure 789

examples 796
input data set 791
optional variables 793
overview 789
required variables 792
syntax 789
task table 790
valid variables 791

PRTEXP 803
PRTEXP procedure 803

concepts 805
examples 805
overview 803
syntax 803

PS= option
PROC REPORT statement 881

PSPACE= option
PROC REPORT statement 881

pull-down menus 665
activating 665
associating FRAME applications with 700
defining 674
for DATA step window applications 694
grayed items 672
items in 671
key sequences for 671
separator lines 678
submenus 678

PUT statement
compared with LINE statement (RE-

PORT) 908
PW= option

MODIFY statement (DATASETS) 350
PROC DATASETS statement 311

PWD= statement
EXPORT procedure 409
IMPORT procedure 512

PWENCODE 807
PWENCODE procedure 807

concepts 808
encoding vs. encryption 808
examples 809
overview 807
syntax 807

Q
Q keywords
QMARKERS= option

PROC MEANS statement 532
PROC REPORT statement 882
PROC TABULATE statement 1193

QMETHOD= option
PROC MEANS statement 532
PROC REPORT statement 882
PROC TABULATE statement 1193

QNTLDEF= option
PROC MEANS statement 532
PROC REPORT statement 882
PROC TABULATE statement 1193

QRANGE keyword
quantiles 882, 1193

efficiency issues 7
MEANS procedure 555

queries
creating tables from results 1127
creating views from results 1143
DBMS queries 1079
in-line view queries 1148

query-expression component 1093
query expressions 1094

creating PROC SQL tables from 1049
creating PROC SQL views from 1049
subqueries 1102
validating syntax 1070

QUIT statement 63
procedures supporting 63

R
radio boxes 670, 675
radio buttons 670, 676

color of 676
default 675

RADIOBOX statement
PMENU procedure 675

range
RANGE keyword
RANGE= statement

IMPORT procedure 508
ranges

for character strings 480
FORMAT procedure 453

RANK 815
RANK procedure 815

computer resources 820
concepts 820
examples 822

input variables 820
missing values 821
output data set 821
overview 813
ranking data 814
results 821
statistical applications 820
syntax 815
task tables 815, 816
variables for rank values 819

ranking data 814
ranks

groups based on 826
of multiple variables 822
values within BY groups 823

RANKS statement
RANK procedure 819

raw data
character data to numeric values 470
informats for 435
procedures examples

RBREAK statement
REPORT procedure 908

RBUTTON statement
PMENU procedure 676

READ= option
MODIFY statement (DATASETS) 350
PROC DATASETS statement 311

REF= option
CHART procedure 195
PLOT statement (TIMEPLOT) 1296

REFCHAR= option
PLOT statement (TIMEPLOT) 1297

reference lines 628, 632
reflexive joins 1084
REFRESH option

INDEX CENTILES statement
(DATASETS) 344

registry 831
changing default HTML version setting 50
changing ODS destination default settings 51
clearing SASUSER 832
comparing file contents with 833, 841
comparing registries 832, 833, 842
debugging 833
exporting contents of 834
extracting printer attributes from 803
importing to 834, 839
keys, subkeys, and values 834, 835
listing 840
listing contents in log 835
loading system options from 601
ODS and 49
removing fonts from 424
sample entries 837
SASHELP specification 836
saving system option settings in 603
system fonts in 419
uppercasing key names 835
writing contents to log 834
writing SASHELP to log 835
writing SASUSER to log 835

registry files
creating 836
key names 836
sample registry entries 837
structure of 836



Index 1435

values for keys 836
REGISTRY procedure 832

creating registry files 836
examples 839
overview 831
syntax 832
task table 832

remerging data
SQL procedure 1110

RENAME statement
DATASETS procedure 352

renaming files 322
REPAIR statement

DATASETS procedure 353
REPLACE option

PROC EXPORT statement 408
PROC IMPORT statement 506
PROC PRTDEF statement 790
PROC STANDARD statement 1167

report definitions
specifying 882
storing and reusing 868, 966

report items 897
report layout 852

across variables 854, 899
analysis variables 855, 899, 912
computed variables 855, 901
display variables 853, 901
group variables 854, 902
order variables 853
planning 852
statistics 857
variables, position and usage 855
variables usage 853

REPORT= option
PROC REPORT statement 882

REPORT procedure 869
See also REPORT procedure windows
break lines 861
compound names 862
compute blocks 858
concepts 852
ending program statements 906
examples 846
formatting characters 874
layout of reports 852
missing values 860, 977
output data set 980
overview 847
printing reports 867
report-building 936
report definitions 868
report types 847
sample reports 847
statistics 857
style definitions with 49
style elements 863, 989, 994
summary lines 937
syntax 869
task tables 869, 870, 885, 897,

REPORT procedure windows 913
BREAK 913
COMPUTE 916
COMPUTED VAR 916
DATA COLUMNS 917
DATA SELECTION 917
DEFINITION 918

DISPLAY PAGE 923
EXPLORE 924
FORMATS 925
LOAD REPORT 925
MESSAGES 926
PROFILE 926
PROMPTER 927
REPORT 928
ROPTIONS 928
SAVE DATA SET 933
SAVE DEFINITION 933
SOURCE 934
STATISTICS 934
WHERE 935
WHERE ALSO 936

report variables 936
REPORT window

printing from 867
REPORT procedure 928

report-writing procedures 3, 4
reports 847

See also report layout
building 936
code for 877
colors for 899, 909
column attributes 890
column for each variable value 960
columns 893
computed variables 983
consolidating observations 957
customized 704
customized summaries 907, 971
default summaries 885, 908
detail reports 847
from DICTONARY tables 1136
grouping observations 731
groups 986
header arrangement 893
help for 877
ID variables 902
limiting sums in 748
listing reports 704, 727
multiple-choice survey data 1260
multiple-response survey data 1255
order variables 903
ordering rows in 951
panels 968
PDF 729
percentages in 975
printing 867
RTF 734
samples of 847
selecting variables for 719, 948
shrinking 866
statistics in 954, 964
stub-and-banner reports 1269
summary reports 847
suppressing 878

RESET statement
SQL procedure 1058

RESUME option
AUDIT statement (DATASETS) 321

REVERSE option
PLOT statement (TIMEPLOT) 1297
PROC SORT statement 1011

RIGHT option
DEFINE statement (REPORT) 904

ROLLBACK statement (SQL) 1124
ROPTIONS window

REPORT procedure 928
ROUND option

PICTURE statement (FORMAT) 441
PROC PRINT statement 709

row headings
customizing 1244
eliminating 1249
indenting 1251

ROW= option
TABLE statement (TABULATE) 1206

row spacing 866
rows

adding to tables or views 1056
consolidating observations 957
counting 1108
deleting 1052
inserting 1057
joins and 1083
ordering 1068
ordering in reports 951
returned by subqueries 1080
selecting 1058, 1071
SQL procedure 1029

ROWS= option
PROC PRINT statement 710

RTF destination 46
definition 40

RTF files
style elements 989
TABULATE procedure 1279

RTF output
sample 36

RTF reports 734
RTSPACE= option

TABLE statement (TABULATE) 1206
RUN-group processing 19

CATALOG procedure 165
DATASETS procedure 357, 359

RUN groups
PLOT procedure 624

S
S= option

PLOT statement (PLOT) 622
samples
sampling distribution
SAS/ACCESS views

SQL procedure 1029
updating 1121

SAS/AF applications
executing 395, 396

SAS data views
DICTIONARY tables 1116
SQL procedure 1029

SAS Explorer window
list of available styles 48

SAS formatted destinations 43, 44
SAS/GRAPH device drivers

system fonts 425
SASHELP views 1116

retrieving information about 1117
SASUSER library

Ghostview printer definition in 797



1436 Index

SAVAGE option
PROC RANK statement 818

SAVE DATA SET window
REPORT procedure 933

SAVE DEFINITION window
REPORT procedure 933

SAVE statement
CATALOG procedure 164
DATASETS procedure 355

SCANMEMO= statement
IMPORT procedure 512

SCANTEXT= statement
IMPORT procedure 509

SCANTIME= statement
IMPORT procedure 509, 512

schedule calendars 79, 102
advanced 80
simple 79

scheduling 83
searching for patterns 1091, 1158
SELECT clause

SQL procedure 1058
SELECT statement

CATALOG procedure 165
CIMPORT procedure 221
CPORT procedure 293
DATASETS procedure 356
FORMAT procedure 448
PRTEXP procedure 804
SQL procedure 1058

selection lists 52
destinations for output objects 53

SELECTION statement
PMENU procedure 677

separator lines 678
SEPARATOR statement

PMENU procedure 678
SERVER= statement

EXPORT procedure 410
IMPORT procedure 509, 513

SERVICE= statement
EXPORT procedure 410
IMPORT procedure 509, 513

set membership 1081
set operators 1094, 1123
SET statement

appending data 315
SHEET= statement

EXPORT procedure 408
IMPORT procedure 509

SHORT option
CONTENTS statement (DATASETS) 326
PROC OPTIONS statement 596

SHOWALL option
PROC REPORT statement 882

shrinking reports 866
significance
simple indexes 1044
simple random sample
skewness
SKEWNESS keyword
SKIP option

BREAK statement (REPORT) 887
RBREAK statement (REPORT) 910

SLIST= option
PLOT statement (PLOT) 623

SORT 1005

sort order
ASCII 1007, 1014
EBCDIC 1007, 1014
for character variables 1014
for numeric variables 1013

SORT procedure 1005
character variable sorting orders 1014
collating-sequence options 1007
concepts 1013
DBMS data source 1013
examples 1016
integrity constraints 1015
multi-threaded sorting 1013
numeric variable sorting orders 1013
output 1016
output data set 1016
overview 1003
results 1016
sorting data sets 1004
stored sort information 1015
syntax 1005
task tables 1005, 1016

SORTEDBY= option
MODIFY statement (DATASETS) 350

sorting
by multiple variable values 1017
collating sequence 1007
data retrieved by views 1050
data sets 1004
in descending order 1019
maintaining relative order of observa-

tions 1020
multi-threaded 1013
retaining first observation of BY groups 1023
stored sort information 1015

SORTMSG option
PROC SQL statement 1037

SORTSEQ= option
PROC SORT statement 1007
PROC SQL statement 1037

SORTSIZE= option
PROC SORT statement 1011

SOUNDS-LIKE operator 1150
SOURCE window

REPORT procedure 934
SPACE= option

CHART procedure 195
SPACING= option

DEFINE statement (REPORT) 904
PROC REPORT statement 883

SPLIT= option
PLOT statement (PLOT) 623
PROC PRINT statement 710
PROC REPORT statement 883
PROC TIMEPLOT statement 1290

spread of values
spreadsheets

exporting 407, 416
exporting subset of observations to 414
exporting to specific spreadsheet 415
importing 505, 506
importing from Excel workbook 517, 521
importing subset of records from 518

SQL 1031
SQL, embedded 1125
SQL components 1071

BETWEEN condition 1071

BTRIM function 1072
CALCULATED 1073
CASE expression 1073
COALESCE function 1075
column-definition 1076
column-modifier 1077
column-name 1078
CONNECTION TO 1079
CONTAINS condition 1080
EXISTS condition 1080
IN condition 1081
IS condition 1081
joined-table 1082
LIKE condition 1091
LOWER function 1093
query-expression 1093
sql-expression 1099
SUBSTRING function 1106
summary-function 1107
table-expression 1113
UPPER function 1114

sql-expression component 1099
SQL procedure 1031

See also SQL components
ANSI Standard and 1122
coding conventions 1030
collating sequences 1123
column modifiers 1123
concepts 1114
data set options with 1114
data types and dates 1076
DBMS connections 1115
DICTIONARY tables 1116
examples 1125
functions supported by 1124
indexes 1044
list of available styles 48
macro variables set by 1119
missing values 1081, 1160
naming conventions 1124
orthogonal expressions 1123
overview 1029
PROC SQL tables 1029
reserved words 1122
resetting options 1058
statistical functions 1124
syntax 1031
task tables 1033, 1034
terminology 1029
three-valued logic 1124
user privileges 1124
views 1029

SQL Procedure Pass-Through Facility
DBMS connections 1115
return codes 1115

SQLOBS macro variable 1119
SQLOOPS macro variable 1120
SQLRC macro variable 1120
SQLXMSG macro variable 1120
SQLXRC macro variable 1120
STANDARD 1165
standard deviation
standard error of the mean
STANDARD procedure 1165

examples 1171
missing values 1170
output data set 1170



Index 1437

overview 1163
results 1170
standardizing data 1163
statistical computations 1171
syntax 1165
task tables 1165, 1166

standardizing data 1163
order of variables 1169
specifying variables 1169
weights for analysis variables 1170

star charts 183, 190
STAR statement

CHART procedure 190
START statement

CALENDAR procedure 100
STARTAT= option

PROC REGISTRY statement 835
STATE= option

ITEM statement (PMENU) 673
statements with same function in multiple proce-

dures 57
ATTRIB 57
BY 58
FORMAT 57
FREQ 61
LABEL 57
QUIT 63
WEIGHT 64
WHERE 69

STATES option
PLOT statement (PLOT) 623

statistic, defined
statistic option

DEFINE statement (REPORT) 904
statistical analysis

transposing data for
statistical procedures 3, 6

efficiency issues 7
quantiles 7

statistical summaries 1107
statistically significant
statistics

based on number of arguments 1109
computational requirements for 32
descriptive statistics 1177
for groups of observations 7
formulas for
in reports 954
keywords for
measures of location
measures of shape
measures of variability
normal distribution
percentiles
populations
REPORT procedure 857
samples
sampling distribution
summarization procedures
table of descriptive statistics 31
TABULATE procedure 1213
testing hypotheses
weighted statistics 64
weights

statistics procedures
STATISTICS window

REPORT procedure 934

STATS option
PROC COMPARE statement 236

STD keyword
STD= option

PROC STANDARD statement 1167
STDDEV keyword
STDERR keyword
STDMEAN keyword
STIMER option

PROC SQL statement 1037
string comparison operators

truncated 1102
stub-and-banner reports 1269
Student’s t distribution
Student’s t statistic

two-tailed p-value
Student’s t test 554
STYLE= attribute

CALL DEFINE statement (REPORT) 892
style attributes 46

applying to table cells 1221
assigning with formats 1221
definition 48

style definitions
definition of 47
procedures with 48
SAS-supplied 48

style elements
class variable level value headings 1201
definition 47
for keyword headings 1202
for ODS output 989, 994
in dimension expressions 1210
PRINT procedure 711
REPORT procedure 863, 989, 994
TABULATE procedure 1194, 1220, 1279

STYLE= option
BREAK statement (REPORT) 887
CLASS statement (TABULATE) 1200
CLASSLEV statement (TABULATE) 1201
COMPUTE statement (REPORT) 896
DEFINE statement (REPORT) 904
ID statement (PRINT) 717
KEYWORD statement (TABULATE) 1202
PROC PRINT statement 711
PROC REPORT statement 883
PROC TABULATE statement 1194
RBREAK statement (REPORT) 910
REPORT procedure 863, 864
SUM statement (PRINT) 718
TABLE statement (TABULATE) 1207
TABULATE procedure 1220
VAR statement (PRINT) 720
VAR statement (TABULATE) 1211

SUBGROUP= option
CHART procedure 196

SUBMENU statement
PMENU procedure 678

submenus 678
subqueries 1102

compared with joins 1091
correlated 1104
efficiency and 1105
returning rows 1080

subsetting data
SQL procedure 1065, 1067
WHERE statement 69

SUBSTITUTE= option
CHECKBOX statement (PMENU) 668
RBUTTON statement (PMENU) 676

SUBSTRING function (SQL) 1106
subtables 1186
SUM keyword
sum of squares

corrected
uncorrected

sum of the weights
SUM option

CHART procedure 196
SUM statement

CALENDAR procedure 100
PRINT procedure 718, 737, 742

SUMBY statement
PRINT procedure 719

summarization procedures
data requirements

SUMMARIZE option
BREAK statement (REPORT) 887
RBREAK statement (REPORT) 910

summarizing data
SQL procedure 1108

SUMMARY 1178
summary calendars 79, 102

multiple activities per day 107
simple 81

summary-function component 1107
summary lines 847

construction of 937
SUMMARY procedure 1178

overview 1177
syntax 1178

summary reports 847
summary statistics

COMPARE procedure 250, 273
SUMSIZE= option

PROC MEANS statement 533
SUMVAR= option

CHART procedure 196
SUMWGT keyword
superimposing plots
SUPPRESS option

BREAK statement (REPORT) 888
survey data

multiple-choice 1260
multiple-response 1255

SUSPEND option
AUDIT statement (DATASETS) 321

SWEDISH option
PROC SORT statement 1007

SYMBOL= option
CHART procedure 196

symbol variables
TIMEPLOT procedure 1292

SYSINFO macro variable 244
system fonts 419

SAS/GRAPH device drivers for 425
system options

display setting for single option 598
display settings for a group 593
list of current settings 591
loading from registry or data sets 601
OPTIONS procedure 591
procedures and 17
saving current settings 603



1438 Index

short form listing 597

T
T keyword
table aliases 1064, 1083
TABLE= argument

PROC IMPORT statement 503
table attributes

definition 47
table definitions 1053

definition of 40, 47
table elements

definition 47
table-expression component 1113
table expressions 1094
TABLE statement

TABULATE procedure 1203
tables

See also PROC SQL tables
applying style attributes to cells 1221
cells with missing values 1228
class variable combinations 1235
crosstabulation 1269
customizing headings 1244
describing for printing 1203
formatting values in 1215
multipage 1253
subtables 1186
two-dimensional 1232

TABULATE 1187
TABULATE procedure 1187

BY-group processing 1215
complex tables 1181
concepts 1213
dimension expressions 1208
examples 1232
formatting characters 1189
formatting class variables 1214
formatting values in tables 1215
headings 1227, 1229, 1230
missing values 1200, 1222
ODS and 1182
overview 1180
page dimension 1215
percentages 1216
portability of ODS output 1231
results 1222
simple tables 1180
statistics 1213
style definitions with 49
style elements 1194, 1220
syntax 1187
task tables 1187, 1203
terminology 1183

tagsets 45
list of 41

TAGSORT option
PROC SORT statement 1011

TAPE option
PROC CIMPORT statement 219
PROC CPORT statement 291

TEMPLATE procedure
list of available styles 48

templates
for printing numbers 438

PMENU procedure 681
temporary data sets 16
temporary formats/informats 456
temporary variables 936
TERMINATE option

AUDIT statement (DATASETS) 321
text fields 670, 678
TEXT statement

PMENU procedure 678
TEXTSIZE= statement

IMPORT procedure 508
third-party formatted destinations 45

definition 43
formatting control and 46

threads
multi-threaded sorting 1013

THREADS option
PROC MEANS statement 534
PROC REPORT statement 883
PROC SQL statement 1037
PROC TABULATE statement 1195
SORT procedure 1012

three-valued logic 1124
TIES= option

PROC RANK statement 818
TIMEPLOT 1290
TIMEPLOT procedure 1290

data considerations 1297
examples
missing values 1298
ODS table names 1298
overview 1287
page layout 1297
procedure output 1287
results 1297
symbol variables 1292
syntax 1290
task tables 1290, 1293

titles
BY-group information in 20

TRANSLATE= option
PROC CPORT statement 291

translation tables
applying to transport files 297
for exporting catalogs 294

transport files 215
applying translation tables to 297
COPY procedure 278
CPORT procedure 285

transporting data sets 333
COPY procedure 278
password-protected 294

TRANSPOSE
TRANSPOSE option

PROC COMPARE statement 236, 252
TRANSPOSE procedure

complex transposition
copying variables without transposing
duplicate ID values
examples
formatted ID values
labeling transposed variables
listing variables to transpose
missing values
output data set
overview
results

simple transposition
syntax
task table
transposing BY groups
variable names, from numeric values

transposed variables
attributes of
labeling
naming

TRANTAB statement
CPORT procedure 294

TRAP option
PROC TABULATE procedure 1195

TrueType font files
replacing from a directory 427
searching directories for 422

TRUETYPE statement
FONTREG procedure 422

truncated string comparison operators 1102
two-dimensional tables 1232
two-tailed tests
Type 1 font files 422
Type I error rate
Type II error rate
TYPE= option

CHART procedure 196
MODIFY statement (DATASETS) 351

TYPE1 statement
FONTREG procedure 422

TYPES statement
MEANS procedure 546

U
UCLM keyword
UID= statement

EXPORT procedure 409
IMPORT procedure 513

UL option
BREAK statement (REPORT) 888
RBREAK statement (REPORT) 911

uncorrected sum of squares
underlining 886, 888, 910, 911
UNDO_POLICY= option

PROC SQL statement 1037
unformatted values

comparing 244
UNIFORM option

PROC PLOT statement 611
PROC TIMEPLOT statement 1290

UNINSTALL= option
PROC REGISTRY statement 835

union joins 1088
UNION operator 1097
UNIQUE keyword 1044
UNIQUE option

CREATE INDEX statement
(DATASETS) 345

UNIT= argument
PROC FSLIST statement 491

UNIT= option
PROC PRINTTO statement 775

universe
unsorted data

comparing 238



Index 1439

UPCASE option
INVALUE statement (FORMAT) 436
PROC REGISTRY statement 835

UPDATE statement
SQL procedure 1069

UPDATECENTILES= option
CREATE INDEX statement

(DATASETS) 346
INDEX CENTILES statement

(DATASETS) 344
UPPER function (SQL) 1114
USEDATE= statement

IMPORT procedure 510, 513
USER data library 17
user input

collecting in dialog boxes 685
USER literal 1100
USER_VAR option

AUDIT statement (DATASETS) 321
USESASHELP option

PROC FONTREG statement 421
PROC PRTDEF statement 790
PROC PRTEXP statement 804
PROC REGISTRY statement 836

USS keyword
utility procedures 4, 7

V
VALIDATE statement

SQL procedure 1070
VALUE option

PROC OPTIONS statement 596
value-range-sets 453
VALUE statement

FORMAT procedure 448
VAR keyword
VAR statement

CALENDAR procedure 101
COMPARE procedure 239
MEANS procedure 548
PRINT procedure 719
RANK procedure 820
STANDARD procedure 1169
SUMMARY procedure 1179
TABULATE procedure 1211
TRANSPOSE procedure

VARDEF= option
PROC MEANS statement 534
PROC REPORT statement 883
PROC STANDARD statement 1167
PROC TABULATE statement 1195

variability
variable formats

COMPARE procedure 244
variable names

shortcut notations for 24
variables

across variables 854, 899
analysis variables 855, 899
associating formats/informats with 430, 455
attributes of 348
CHART procedure 197
class variables 1197
computed variables 855, 901, 983
copying without transposing

display variables 853, 901
group variables 854, 902
ID variables 902
in reports 853
labels 348
nested 1186
order of 719
order variables 853, 903
position and usage in reports 855
renaming 352
report variables 936
selecting for printing 719, 723
selecting for reports 948
SQL procedure 1029
standardizing 1163
temporarily associating formats with 28
temporarily dissociating formats from 29
temporary 936
transposing into observations

variables, comparing
by position 240
comparison summary 246
different data sets 261
different variable names 240
listing for matching 238
matching variables 226
multiple times 263
same data set 240, 264
selected variables 240
value comparison results 249
values comparison summary 248

variance
VARNUM option

CONTENTS statement (DATASETS) 326
VAXIS= option

PLOT statement (PLOT) 623
VBAR statement

CHART procedure 191
VERSION= statement

EXPORT procedure 410
IMPORT procedure 510, 513

vertical bar charts 180, 191
subdividing bars 203

VEXPAND option
PLOT statement (PLOT) 623

view definitions 1053
views

in-line 1064, 1123, 1148
SAS/ACCESS views 1121
SAS data views 1116
SASHELP views 1116, 1117
SQL procedure 1029

VPERCENT= option
PROC PLOT statement 611

VPOS= option
PLOT statement (PLOT) 623

VREF= option
PLOT statement (PLOT) 624

VREFCHAR= option
PLOT statement (PLOT) 624

VREVERSE option
PLOT statement (PLOT) 624

VSPACE= option
PLOT statement (PLOT) 624

VTOH= option
PROC PLOT statement 611

VZERO option
PLOT statement (PLOT) 624

W
WARNING option

PROC COMPARE statement 236
WAYS option

OUTPUT statement (MEANS) 546
WAYS statement

MEANS procedure 549
WBUILD macro 693
WEEKDAYS option

PROC CALENDAR statement 90
WEIGHT= option

DEFINE statement (REPORT) 905
VAR statement (MEANS) 548
VAR statement (TABULATE) 1212

WEIGHT statement 64
calculating weighted statistics 64
example 65
MEANS procedure 549
procedures supporting 64
REPORT procedure 912
STANDARD procedure 1170
TABULATE procedure 1212

weight values 874, 1189
weighted statistics 64
weighting observations 549
weights

analysis variables 64
WGDB= statement

EXPORT procedure 409
IMPORT procedure 513

WHERE ALSO window
REPORT procedure 936

WHERE clause
SQL procedure 1065

WHERE statement 69
example 69
procedures supporting 69

WHERE window
REPORT procedure 935

WIDTH= option
CHART procedure 197
DEFINE statement (REPORT) 905
PROC PRINT statement 714

window applications
menus for 694

windows
associating with menus 697

WINDOWS option
PROC REPORT statement 884

WITH statement
COMPARE procedure 240

WORKDATA= option
PROC CALENDAR statement 91

workdays data set 91, 110
default workshifts instead of 110
missing values 111
workshifts 110

WRAP option
PROC REPORT statement 884

WRITE= option
MODIFY statement (DATASETS) 351



1440 Index

X
XML files 740

XML output
sample 38



Your Turn

If you have comments or suggestions about Base SAS 9.1 Procedures Guide, please
send them to us on a photocopy of this page, or send us electronic mail.

For comments about this book, please return the photocopy to
SAS Publishing
SAS Campus Drive
Cary, NC 27513
email: yourturn@sas.com

Send suggestions about the software, please return the photocopy to
SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
email: suggest@sas.com



Base SAS®

9.1 Procedures Guide
Volume 3

CORR, FREQ, and UNIVARIATE Procedures



The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
Base SAS ® 9.1 Procedures Guide. Cary, NC: SAS Institute Inc.

Base SAS® 9.1 Procedures Guide
Copyright © 2004 by SAS Institute Inc., Cary, NC, USA
ISBN 1-59047-204-7
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.



Contents

Chapter 1. The CORR Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2. The FREQ Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

Chapter 3. The UNIVARIATE Procedure. . . . . . . . . . . . . . . . . . . . . . . . .191

Subject Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .379

Syntax Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387



ii



Chapter 1
The CORR Procedure

Chapter Contents

OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

GETTING STARTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

SYNTAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
PROC CORR Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
FREQ Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
PARTIAL Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
VAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
WEIGHT Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
WITH Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

DETAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Pearson Product-Moment Correlation. . . . . . . . . . . . . . . . . . . . . 14
Spearman Rank-Order Correlation. . . . . . . . . . . . . . . . . . . . . . 16
Kendall’s Tau-b Correlation Coefficient. . . . . . . . . . . . . . . . . . . . 16
Hoeffding Dependence Coefficient. . . . . . . . . . . . . . . . . . . . . . 18
Partial Correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Fisher’s z Transformation. . . . . . . . . . . . . . . . . . . . . . . . . . .21
Cronbach’s Coefficient Alpha. . . . . . . . . . . . . . . . . . . . . . . . . 24
Missing Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Output Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Output Data Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Determining Computer Resources. . . . . . . . . . . . . . . . . . . . . . . 28
ODS Table Names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
ODS Graphics (Experimental). . . . . . . . . . . . . . . . . . . . . . . . . 31

EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Example 1.1. Computing Four Measures of Association. . . . . . . . . . . 34
Example 1.2. Computing Correlations between Two Sets of Variables. . . . 38
Example 1.3. Analysis Using Fisher’s z Transformation. . . . . . . . . . . 42
Example 1.4. Applications of Fisher’s z Transformation. . . . . . . . . . . 44
Example 1.5. Computing Cronbach’s Coefficient Alpha. . . . . . . . . . . 48
Example 1.6. Saving Correlations in an Output Data Set. . . . . . . . . . . 52
Example 1.7. Creating Scatter Plots. . . . . . . . . . . . . . . . . . . . . . 53
Example 1.8. Computing Partial Correlations. . . . . . . . . . . . . . . . . 58



2 � Chapter 1. The CORR Procedure

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61



Chapter 1
The CORR Procedure
Overview

The CORR procedure computes Pearson correlation coefficients, three nonparametric
measures of association, and the probabilities associated with these statistics. The
correlation statistics include

• Pearson product-moment correlation

• Spearman rank-order correlation

• Kendall’s tau-b coefficient

• Hoeffding’s measure of dependence,D

• Pearson, Spearman, and Kendall partial correlation

Pearson product-moment correlation is a parametric measure of a linear relationship
between two variables. For nonparametric measures of association, Spearman rank-
order correlation uses the ranks of the data values and Kendall’s tau-b uses the num-
ber of concordances and discordances in paired observations. Hoeffding’s measure of
dependence is another nonparametric measure of association that detects more gen-
eral departures from independence. A partial correlation provides a measure of the
correlation between two variables after controlling the effects of other variables.

With only one set of analysis variables specified, the default correlation analysis in-
cludes descriptive statistics for each analysis variable and Pearson correlation statis-
tics for these variables. You can also compute Cronbach’s coefficient alpha for esti-
mating reliability.

With two sets of analysis variables specified, the default correlation analysis includes
descriptive statistics for each analysis variable and Pearson correlation statistics be-
tween these two sets of variables.

You can save the correlation statistics in a SAS data set for use with other statistical
and reporting procedures.

For a Pearson or Spearman correlation, the Fisher’sz transformation can be used to
derive its confidence limits and ap-value under a specified null hypothesisH0: ρ =
ρ0. Either a one-sided or a two-sided alternative is used for these statistics.

Experimental ODS graphics are now available with the CORR procedure, including
scatter plots and a scatter plot matrix of the analysis variables. For more information,
see the“ODS Graphics”section on page 31.



4 � Chapter 1. The CORR Procedure

Getting Started

The following statements create the data setFitness, which has been altered to con-
tain some missing values:

*----------------- Data on Physical Fitness -----------------*
| These measurements were made on men involved in a physical |
| fitness course at N.C. State University. |
| The variables are Age (years), Weight (kg), |
| Runtime (time to run 1.5 miles in minutes), and |
| Oxygen (oxygen intake, ml per kg body weight per minute) |
| Certain values were changed to missing for the analysis. |
*------------------------------------------------------------*;
data Fitness;

input Age Weight Oxygen RunTime @@;
datalines;

44 89.47 44.609 11.37 40 75.07 45.313 10.07
44 85.84 54.297 8.65 42 68.15 59.571 8.17
38 89.02 49.874 . 47 77.45 44.811 11.63
40 75.98 45.681 11.95 43 81.19 49.091 10.85
44 81.42 39.442 13.08 38 81.87 60.055 8.63
44 73.03 50.541 10.13 45 87.66 37.388 14.03
45 66.45 44.754 11.12 47 79.15 47.273 10.60
54 83.12 51.855 10.33 49 81.42 49.156 8.95
51 69.63 40.836 10.95 51 77.91 46.672 10.00
48 91.63 46.774 10.25 49 73.37 . 10.08
57 73.37 39.407 12.63 54 79.38 46.080 11.17
52 76.32 45.441 9.63 50 70.87 54.625 8.92
51 67.25 45.118 11.08 54 91.63 39.203 12.88
51 73.71 45.790 10.47 57 59.08 50.545 9.93
49 76.32 . . 48 61.24 47.920 11.50
52 82.78 47.467 10.50
;

The following statements invoke the CORR procedure and request a correlation anal-
ysis:

ods html;
ods graphics on;

proc corr data=Fitness plots;
run;

ods graphics off;
ods html close;

This graphical display is requested by specifying the experimental ODS GRAPHICS
statement and the experimental PLOTS option. For general information about ODS
graphics, refer to Chapter 15, “Statistical Graphics Using ODS” (SAS/STAT User’s
Guide). For specific information about the graphics available in the CORR procedure,
see the section“ODS Graphics”on page 31.



Getting Started � 5

The CORR Procedure

4 Variables: Age Weight Oxygen RunTime

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

Age 31 47.67742 5.21144 1478 38.00000 57.00000
Weight 31 77.44452 8.32857 2401 59.08000 91.63000
Oxygen 29 47.22721 5.47718 1370 37.38800 60.05500
RunTime 29 10.67414 1.39194 309.55000 8.17000 14.03000

Figure 1.1. Univariate Statistics

By default, all numeric variables not listed in other statements are used in the anal-
ysis. Observations with nonmissing values for each variable are used to derive the
univariate statistics for that variable.

Pearson Correlation Coefficients
Prob > |r| under H0: Rho=0

Number of Observations

Age Weight Oxygen RunTime

Age 1.00000 -0.23354 -0.31474 0.14478
0.2061 0.0963 0.4536

31 31 29 29

Weight -0.23354 1.00000 -0.15358 0.20072
0.2061 0.4264 0.2965

31 31 29 29

Oxygen -0.31474 -0.15358 1.00000 -0.86843
0.0963 0.4264 <.0001

29 29 29 28

RunTime 0.14478 0.20072 -0.86843 1.00000
0.4536 0.2965 <.0001

29 29 28 29

Figure 1.2. Pearson Correlation Coefficients

By default, Pearson correlation statistics are computed from observations with non-
missing values for each pair of analysis variables. With missing values in the analysis,
the “Pearson Correlation Coefficients” table shown inFigure 1.2displays the corre-
lation, thep-value under the null hypothesis of zero correlation, and the number of
nonmissing observations for each pair of variables.

The table displays a correlation of−0.86843 betweenRuntime andOxygen, which
is significant with ap-value less than 0.0001. That is, there exists an inverse lin-
ear relationship between these two variables. AsRuntime (time to run 1.5 miles
in minutes) increases,Oxygen (oxygen intake, ml per kg body weight per minute)
decreases.



6 � Chapter 1. The CORR Procedure

The experimental PLOTS option displays a symmetric matrix plot for the analysis
variables. This inverse linear relationship between these two variables,Oxygen and
Runtime, is also shown inFigure 1.3.

Figure 1.3. Symmetric Matrix Plot (Experimental)

Syntax
The following statements are available in PROC CORR.

PROC CORR < options > ;
BY variables ;
FREQ variable ;
PARTIAL variables ;
VAR variables ;
WEIGHT variable ;
WITH variables ;

The BY statement specifies groups in which separate correlation analyses are per-
formed.

The FREQ statement specifies the variable that represents the frequency of occur-
rence for other values in the observation.



PROC CORR Statement � 7

The PARTIAL statement identifies controlling variables to compute Pearson,
Spearman, or Kendall partial-correlation coefficients.

The VAR statement lists the numeric variables to be analyzed and their order in the
correlation matrix. If you omit the VAR statement, all numeric variables not listed in
other statements are used.

The WEIGHT statement identifies the variable whose values weight each observation
to compute Pearson product-moment correlation.

The WITH statement lists the numeric variables with which correlations are to be
computed.

The PROC CORR statement is the only required statement for the CORR procedure.
The rest of this section provides detailed syntax information for each of these state-
ments, beginning with the PROC CORR statement. The remaining statements are in
alphabetical order.

PROC CORR Statement

PROC CORR < options > ;

The following table summarizes the options available in the PROC CORR statement.

Table 1.1. Summary of PROC CORR Options

Tasks Options

Specify data sets
Input data set DATA=
Output data set with Hoeffding’s D statistics OUTH=
Output data set with Kendall correlation statistics OUTK=
Output data set with Pearson correlation statistics OUTP=
Output data set with Spearman correlation statistics OUTS=

Control statistical analysis
Exclude observations with nonpositive weight values EXCLNPWGT
from the analysis
Exclude observations with missing analysis values NOMISS
from the analysis
Request Hoeffding’s measure of dependence, D HOEFFDING
Request Kendall’s tau-b KENDALL
Request Pearson product-moment correlation PEARSON
Request Spearman rank-order correlation SPEARMAN
Request Pearson correlation statistics using Fisher’s FISHER PEARSON
z transformation
Request Spearman rank-order correlation statistics FISHER SPEARMAN
using Fisher’sz transformation

Control Pearson correlation statistics
Compute Cronbach’s coefficient alpha ALPHA
Compute covariances COV
Compute corrected sums of squares and crossproducts CSSCP



8 � Chapter 1. The CORR Procedure

Table 1.1. (continued)

Tasks Options

Compute correlation statistics based on Fisher’s FISHER
z transformation
Exclude missing values NOMISS
Specify singularity criterion SINGULAR=
Compute sums of squares and crossproducts SSCP
Specify the divisor for variance calculations VARDEF=

Control printed output
Display a specified number of ordered correlation coefficients BEST=
Suppress Pearson correlations NOCORR
Suppress all printed output NOPRINT
Suppressp-values NOPROB
Suppress descriptive statistics NOSIMPLE
Display ordered correlation coefficients RANK

The following options (listed in alphabetical order) can be used in the PROC CORR
statement:

ALPHA
calculates and prints Cronbach’s coefficient alpha. PROC CORR computes sepa-
rate coefficients using raw and standardized values (scaling the variables to a unit
variance of 1). For each VAR statement variable, PROC CORR computes the corre-
lation between the variable and the total of the remaining variables. It also computes
Cronbach’s coefficient alpha using only the remaining variables.

If a WITH statement is specified, the ALPHA option is invalid. When you specify
the ALPHA option, the Pearson correlations will also be displayed. If you specify the
OUTP= option, the output data set also contains observations with Cronbach’s coeffi-
cient alpha. If you use the PARTIAL statement, PROC CORR calculates Cronbach’s
coefficient alpha for partialled variables. See the section“Partial Correlation”on
page 18.

BEST=n
prints then highest correlation coefficients for each variable,n ≥ 1. Correlations
are ordered from highest to lowest in absolute value. Otherwise, PROC CORR prints
correlations in a rectangular table using the variable names as row and column labels.

If you specify the HOEFFDING option, PROC CORR displays theD statistics in
order from highest to lowest.

COV
displays the variance and covariance matrix. When you specify the COV option, the
Pearson correlations will also be displayed. If you specify the OUTP= option, the
output data set also contains the covariance matrix with the corresponding–TYPE–
variable value ‘COV.’ If you use the PARTIAL statement, PROC CORR computes a
partial covariance matrix.



PROC CORR Statement � 9

CSSCP
displays a table of the corrected sums of squares and crossproducts. When you spec-
ify the CSSCP option, the Pearson correlations will also be displayed. If you specify
the OUTP= option, the output data set also contains a CSSCP matrix with the corre-
sponding–TYPE– variable value ‘CSSCP.’ If you use a PARTIAL statement, PROC
CORR prints both an unpartial and a partial CSSCP matrix, and the output data set
contains a partial CSSCP matrix.

DATA=SAS-data-set
names the SAS data set to be analyzed by PROC CORR. By default, the procedure
uses the most recently created SAS data set.

EXCLNPWGT
excludes observations with nonpositive weight values from the analysis. By default,
PROC CORR treats observations with negative weights like those with zero weights
and counts them in the total number of observations.

FISHER < ( fisher-options ) >
requests confidence limits andp-values under a specified null hypothesis,H0: ρ =
ρ0, for correlation coefficients using Fisher’sz transformation. These correlations
include the Pearson correlations and Spearman correlations.

The followingfisher-options are available:

ALPHA= α
specifies the level of the confidence limits for the correlation,100(1 − α)%.
The value of the ALPHA= option must be between 0 and 1, and the default is
ALPHA=0.05.

BIASADJ= YES | NO
specifies whether or not the bias adjustment is used in constructing confidence
limits. The BIASADJ=YES option also produces a new correlation estimate
using the bias adjustment. By default, BIASADJ=YES.

RHO0= ρ0

specifies the valueρ0 in the null hypothesisH0: ρ = ρ0, where−1 < ρ0 < 1.
By default, RHO0=0.

TYPE= LOWER | UPPER | TWOSIDED
specifies the type of confidence limits. The TYPE=LOWER option re-
quests a lower confidence limit from the lower alternativeH1: ρ < ρ0, the
TYPE=UPPER option requests an upper confidence limit from the upper alter-
nativeH1: ρ > ρ0, and the default TYPE=TWOSIDED option requests two-
sided confidence limits from the two-sided alternativeH1: ρ 6= ρ0.

HOEFFDING
requests a table of Hoeffding’sD statistics. ThisD statistic is 30 times larger than the
usual definition and scales the range between−0.5 and 1 so that large positive values
indicate dependence. The HOEFFDING option is invalid if a WEIGHT or PARTIAL
statement is used.



10 � Chapter 1. The CORR Procedure

KENDALL
requests a table of Kendall’s tau-b coefficients based on the number of concordant
and discordant pairs of observations. Kendall’s tau-b ranges from−1 to 1.

The KENDALL option is invalid if a WEIGHT statement is used. If you use a
PARTIAL statement, probability values for Kendall’s partial tau-b are not available.

NOCORR
suppresses displaying of Pearson correlations. If you specify the OUTP= option, the
data set type remains CORR. To change the data set type to COV, CSSCP, or SSCP,
use the TYPE= data set option.

NOMISS
excludes observations with missing values from the analysis. Otherwise, PROC
CORR computes correlation statistics using all of the nonmissing pairs of variables.
Using the NOMISS option is computationally more efficient.

NOPRINT
suppresses all displayed output. Use NOPRINT if you want to create an output data
set only.

NOPROB
suppresses displaying the probabilities associated with each correlation coefficient.

NOSIMPLE
suppresses printing simple descriptive statistics for each variable. However, if you
request an output data set, the output data set still contains simple descriptive statistics
for the variables.

OUTH=output-data-set
creates an output data set containing Hoeffding’sD statistics. The contents of the
output data set are similar to the OUTP= data set. When you specify the OUTH=
option, the Hoeffding’sD statistics will be displayed, and the Pearson correlations
will be displayed only if the PEARSON, ALPHA, COV, CSSCP, SSCP, or OUT=
option is also specified.

OUTK=output-data-set
creates an output data set containing Kendall correlation statistics. The contents of
the output data set are similar to those of the OUTP= data set. When you specify the
OUTK= option, the Kendall correlation statistics will be displayed, and the Pearson
correlations will be displayed only if the PEARSON, ALPHA, COV, CSSCP, SSCP,
or OUT= option is also specified.

OUTP=output-data-set
OUT=output-data-set

creates an output data set containing Pearson correlation statistics. This data set also
includes means, standard deviations, and the number of observations. The value of
the–TYPE– variable is ‘CORR.’ When you specify the OUTP= option, the Pearson
correlations will also be displayed. If you specify the ALPHA option, the output data
set also contains six observations with Cronbach’s coefficient alpha.



PROC CORR Statement � 11

OUTS=SAS-data-set
creates an output data set containing Spearman correlation coefficients. The con-
tents of the output data set are similar to the OUTP= data set. When you specify
the OUTS= option, the Spearman correlation coefficients will be displayed, and the
Pearson correlations will be displayed only if the PEARSON, ALPHA, COV, CSSCP,
SSCP, or OUT= option is also specified.

PEARSON
requests a table of Pearson product-moment correlations. If you do not specify
the HOEFFDING, KENDALL, SPEARMAN, OUTH=, OUTK=, or OUTS= op-
tion, the CORR procedure produces Pearson product-moment correlations by default.
Otherwise, you must specify the PEARSON, ALPHA, COV, CSSCP, SSCP, or OUT=
option for Pearson correlations. The correlations range from−1 to 1.

RANK
displays the ordered correlation coefficients for each variable. Correlations are or-
dered from highest to lowest in absolute value. If you specify the HOEFFDING
option, theD statistics are displayed in order from highest to lowest.

SINGULAR=p
specifies the criterion for determining the singularity of a variable if you use a
PARTIAL statement. A variable is considered singular if its corresponding diago-
nal element after Cholesky decomposition has a value less thanp times the original
unpartialled value of that variable. The default value is 1E−8. The range ofρ is
between 0 and 1.

SPEARMAN
requests a table of Spearman correlation coefficients based on the ranks of the vari-
ables. The correlations range from−1 to 1. If you specify a WEIGHT statement, the
SPEARMAN option is invalid.

SSCP
displays a table the sums of squares and crossproducts. When you specify the SSCP
option, the Pearson correlations will also be displayed. If you specify the OUTP=
option, the output data set contains a SSCP matrix and the corresponding–TYPE–
variable value is ‘SSCP.’ If you use a PARTIAL statement, the unpartial SSCP matrix
is displayed, and the output data set does not contain an SSCP matrix.

VARDEF=d
specifies the variance divisor in the calculation of variances and covariances. The
following table shows the possible values for the valued and associated divisors,
wherek is the number of PARTIAL statement variables. The default is VARDEF=DF.

Table 1.2. Possible Values for VARDEF=
Value Divisor Formula
DF degrees of freedom n− k − 1
N number of observations n
WDF sum of weights minus one(Σwi)− k − 1
WEIGHT|WGT sum of weights Σwi



12 � Chapter 1. The CORR Procedure

The variance is computed as

1
d

∑
i

(xi − x̄)2

wherex̄ is the sample mean.

If a WEIGHT statement is used, the variance is computed as

1
d

∑
i

wi(xi − x̄w)2

wherewi is the weight for theith observation and̄xw is the weighted mean.

If you use the WEIGHT statement and VARDEF=DF, the variance is an estimate
of s2, where the variance of theith observation isV (xi) = s2/wi. This yields an
estimate of the variance of an observation with unit weight.

If you use the WEIGHT statement and VARDEF=WGT, the computed variance is
asymptotically an estimate ofs2/w̄, wherew̄ is the average weight (for largen). This
yields an asymptotic estimate of the variance of an observation with average weight.

BY Statement

BY variables ;

You can specify a BY statement with PROC CORR to obtain separate analyses on
observations in groups defined by the BY variables. If a BY statement appears, the
procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the CORR procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.



WEIGHT Statement � 13

FREQ Statement

FREQ variable ;

The FREQ statement lists a numeric variable whose value represents the frequency
of the observation. If you use the FREQ statement, the procedure assumes that each
observation representsn observations, wheren is the value of the FREQ variable. If
n is not an integer, SAS truncates it. Ifn is less than 1 or is missing, the observation
is excluded from the analysis. The sum of the frequency variable represents the total
number of observations.

The effects of the FREQ and WEIGHT statements are similar except when calculat-
ing degrees of freedom.

PARTIAL Statement

PARTIAL variables ;

The PARTIAL statement lists variables to use in the calculation of partial corre-
lation statistics. Only the Pearson partial correlation, Spearman partial rank-order
correlation, and Kendall’s partial tau-b can be computed. It is not valid with the
HOEFFDING option. When you use the PARTIAL statement, observations with
missing values are excluded.

With a PARTIAL statement, PROC CORR also displays the partial variance and stan-
dard deviation for each analysis variable if the PEARSON option is specified.

VAR Statement

VAR variables ;

The VAR statement lists variables for which to compute correlation coefficients. If
the VAR statement is not specified, PROC CORR computes correlations for all nu-
meric variables not listed in other statements.

WEIGHT Statement

WEIGHT variable ;

The WEIGHT statement lists weights to use in the calculation of Pearson weighted
product-moment correlation. The HOEFFDING, KENDALL, and SPEARMAN op-
tions are not valid with the WEIGHT statement.

The observations with missing weights are excluded from the analysis. By default,
for observations with nonpositive weights, weights are set to zero and the observa-
tions are included in the analysis. You can use the EXCLNPWGT option to exclude
observations with negative or zero weights from the analysis.

Note that most SAS/STAT procedures, such as PROC GLM, exclude negative and
zero weights by default. If you use the WEIGHT statement, consider which value of
the VARDEF= option is appropriate. See the discussion of the VARDEF= option for
more information.



14 � Chapter 1. The CORR Procedure

WITH Statement

WITH variables;

The WITH statement lists variables with which correlations of the VAR statement
variables are to be computed. The WITH statement requests correlations of the form
r(Xi, Yj), whereX1, . . . , Xm are analysis variables specified in the VAR statement,
andY1, . . . , Yn are variables specified in the WITH statement. The correlation matrix
has a rectangular structure of the form

 r(Y1, X1) · · · r(Y1, Xm)
...

...
...

r(Yn, X1) · · · r(Yn, Xm)


For example, the statements

proc corr;
var x1 x2;
with y1 y2 y3;

run;

produce correlations for the following combinations:

 r(Y 1, X1) r(Y 1, X2)
r(Y 2, X1) r(Y 2, X2)
r(Y 3, X1) r(Y 3, X2)



Details

Pearson Product-Moment Correlation

The Pearson product-moment correlation is a parametric measure of association for
two variables. It measures both the strength and direction of a linear relationship. If
one variableX is an exact linear function of another variableY, a positive relationship
exists if the correlation is 1 and a negative relationship exists if the correlation is−1.
If there is no linear predictability between the two variables, the correlation is 0. If
the two variables are normal with a correlation 0, the two variables are independent.
However, correlation does not imply causality because, in some cases, an underlying
causal relationship may not exist.

The following scatter plot matrix displays the relationship between two numeric ran-
dom variables under various situations.



Pearson Product-Moment Correlation � 15

Figure 1.4. Correlations between Two Variables

The scatter plot matrix shows a positive correlation between variablesY1 andX1, a
negative correlation betweenY1 andX2, and no clear correlation betweenY2 and
X1. The plot also shows no clear linear correlation betweenY2 andX2, even though
Y2 is dependent onX2.

The formula for the population Pearson product-moment correlation, denotedρxy, is

ρxy =
Cov(x, y)√
V (x)V (y)

=
E( (x− E(x))(y − E(y)) )√
E(x− E(x))2 E(y − E(y))2

The sample correlation, such as a Pearson product-moment correlation or weighted
product-moment correlation, estimates the population correlation. The formula for
the sample Pearson product-moment correlation is

rxy =
∑

i( (xi − x̄)(yi − ȳ) )√∑
i(xi − x̄)2

∑
i(yi − ȳ)2

wherex̄ is the sample mean ofx andȳ is the sample mean ofy. The formula for a
weighted Pearson product-moment correlation is

rxy =
∑

i wi(xi − x̄w)(yi − ȳw)√∑
iwi(xi − x̄w)2

∑
iwi(yi − ȳw)2



16 � Chapter 1. The CORR Procedure

wherewi is the weight,̄xw is the weighted mean ofx, andȳw is the weighted mean
of y.

Probability Values

Probability values for the Pearson correlation are computed by treating

t = (n− 2)1/2

(
r2

1− r2

)1/2

as coming from at distribution with(n−2) degrees of freedom, wherer is the sample
correlation.

Spearman Rank-Order Correlation

Spearman rank-order correlation is a nonparametric measure of association based on
the ranks of the data values. The formula is

θ =
∑

i( (Ri − R̄)(Si − S̄) )√∑
i(Ri − R̄)2

∑
(Si − S̄)2

whereRi is the rank ofxi, Si is the rank ofyi, R̄ is the mean of theRi values, and̄S
is the mean of theSi values.

PROC CORR computes the Spearman correlation by ranking the data and using the
ranks in the Pearson product-moment correlation formula. In case of ties, the aver-
aged ranks are used.

Probability Values

Probability values for the Spearman correlation are computed by treating

t = (n− 2)1/2

(
r2

1− r2

)1/2

as coming from at distribution with(n−2) degrees of freedom, wherer is the sample
Spearman correlation.

Kendall’s Tau-b Correlation Coefficient

Kendall’s tau-b is a nonparametric measure of association based on the number of
concordances and discordances in paired observations. Concordance occurs when
paired observations vary together, and discordance occurs when paired observations
vary differently. The formula for Kendall’s tau-b is

τ =

∑
i<j (sgn(xi − xj)sgn(yi − yj))√

(T0 − T1)(T0 − T2)



Kendall’s Tau-b Correlation Coefficient � 17

whereT0 = n(n − 1)/2, T1 =
∑

k tk(tk − 1)/2, andT2 =
∑

l ul(ul − 1)/2. The
tk is the number of tiedx values in thekth group of tiedx values,ul is the number
of tiedy values in thelth group of tiedy values,n is the number of observations, and
sgn(z) is defined as

sgn(z) =


1 if z > 0
0 if z = 0
−1 if z < 0

PROC CORR computes Kendall’s tau-b by ranking the data and using a method sim-
ilar to Knight (1966). The data are double sorted by ranking observations according
to values of the first variable and reranking the observations according to values of
the second variable. PROC CORR computes Kendall’s tau-b from the number of in-
terchanges of the first variable and corrects for tied pairs (pairs of observations with
equal values of X or equal values of Y).

Probability Values

Probability values for Kendall’s tau-b are computed by treating

s√
V (s)

as coming from a standard normal distribution where

s =
∑
i<j

(sgn(xi − xj)sgn(yi − yj))

andV (s), the variance ofs, is computed as

V (s) =
v0 − vt − vu

18
+

v1
2n(n− 1)

+
v2

9n(n− 1)(n− 2)

where

v0 = n(n− 1)(2n+ 5)

vt =
∑

k tk(tk − 1)(2tk + 5)

vu =
∑

l ul(ul − 1)(2ul + 5)

v1 = (
∑

k tk(tk − 1)) (
∑
ui(ul − 1))

v2 = (
∑

l ti(tk − 1)(tk − 2)) (
∑
ul(ul − 1)(ul − 2))

The sums are over tied groups of values whereti is the number of tiedx values andui

is the number of tiedy values (Noether 1967). The sampling distribution of Kendall’s
partial tau-b is unknown; therefore, the probability values are not available.



18 � Chapter 1. The CORR Procedure

Hoeffding Dependence Coefficient

Hoeffding’s measure of dependence,D, is a nonparametric measure of association
that detects more general departures from independence. The statistic approximates a
weighted sum over observations of chi-square statistics for two-by-two classification
tables (Hoeffding 1948). Each set of(x, y) values are cut points for the classification.
The formula for Hoeffding’sD is

D = 30
(n− 2)(n− 3)D1 +D2 − 2(n− 2)D3

n(n− 1)(n− 2)(n− 3)(n− 4)

whereD1 =
∑

i(Qi − 1)(Qi − 2),D2 =
∑

i(Ri − 1)(Ri − 2)(Si − 1)(Si − 2), and
D3 =

∑
i(Ri − 2)(Si − 2)(Qi − 1). Ri is the rank ofxi, Si is the rank ofyi, and

Qi (also called the bivariate rank) is 1 plus the number of points with bothx andy
values less than theith point.

A point that is tied on only thex value ory value contributes 1/2 toQi if the other
value is less than the corresponding value for theith point.

A point that is tied on bothx andy contributes 1/4 toQi. PROC CORR obtains
theQi values by first ranking the data. The data are then double sorted by ranking
observations according to values of the first variable and reranking the observations
according to values of the second variable. Hoeffding’sD statistic is computed using
the number of interchanges of the first variable. When no ties occur among data
set observations, theD statistic values are between−0.5 and 1, with 1 indicating
complete dependence. However, when ties occur, theD statistic may result in a
smaller value. That is, for a pair of variables with identical values, the Hoeffding’s
D statistic may be less than 1. With a large number of ties in a small data set, theD
statistic may be less than−0.5. For more information about Hoeffding’sD, refer to
Hollander and Wolfe (1973, p. 228).

Probability Values

The probability values for Hoeffding’sD statistic are computed using the asymptotic
distribution computed by Blum, Kiefer, and Rosenblatt (1961). The formula is

(n− 1)π4

60
D +

π4

72

which comes from the asymptotic distribution. If the sample size is less than 10, refer
to the tables for the distribution ofD in Hollander and Wolfe (1973).

Partial Correlation

A partial correlation measures the strength of a relationship between two variables,
while controlling the effect of other variables. The Pearson partial correlation be-
tween two variables, after controlling for variables in the PARTIAL statement, is
equivalent to the Pearson correlation between the residuals of the two variables after
regression on the controlling variables.



Partial Correlation � 19

Let y = (y1, y2, . . . , yv) be the set of variables to correlate andz = (z1, z2, . . . , zp)
be the set of controlling variables. The population Pearson partial correlation between
theith and thejth variables ofy givenz is the correlation between errors(yi−E(yi))
and(yj − E(yj)), where

E(yi) = αi + zβi and E(yj) = αj + zβj

are the regression models for variablesyi andyj given the set of controlling variables
z, respectively.

For a given sample of observations, a sample Pearson partial correlation betweenyi

andyj givenz is derived from the residualsyi − ŷi andyj − ŷj , where

ŷi = α̂i + zβ̂i and ŷj = α̂j + zβ̂j

are fitted values from regression models for variablesyi andyj givenz.

The partial corrected sums of squares and crossproducts (CSSCP) ofy givenz are
the corrected sums of squares and crossproducts of the residualsy − ŷ. Using these
partial corrected sums of squares and crossproducts, you can calculate the partial
partial covariances and partial correlations.

PROC CORR derives the partial corrected sums of squares and crossproducts ma-
trix by applying the Cholesky decomposition algorithm to the CSSCP matrix. For
Pearson partial correlations, letS be the partitioned CSSCP matrix between two sets
of variables,z andy:

S =
[

Szz Szy

S′zy Syy

]

PROC CORR calculatesSyy.z, the partial CSSCP matrix ofy after controlling forz,
by applying the Cholesky decomposition algorithm sequentially on the rows associ-
ated withz, the variables being partialled out.

After applying the Cholesky decomposition algorithm to each row associated with
variablesz, PROC CORR checks all higher numbered diagonal elements associated
with z for singularity. A variable is considered singular if the value of the corre-
sponding diagonal element is less thanε times the original unpartialled corrected
sum of squares of that variable. You can specify the singularity criterionε using
the SINGULAR= option. For Pearson partial correlations, a controlling variablez is
considered singular if theR2 for predicting this variable from the variables that are
already partialled out exceeds1− ε. When this happens, PROC CORR excludes the
variable from the analysis. Similarly, a variable is considered singular if theR2 for
predicting this variable from the controlling variables exceeds1− ε. When this hap-
pens, its associated diagonal element and all higher numbered elements in this row or
column are set to zero.

After the Cholesky decomposition algorithm is performed on all rows associated with
z, the resulting matrix has the form



20 � Chapter 1. The CORR Procedure

T =
[

Tzz Tzy

0 Syy.z

]

whereTzz is an upper triangular matrix withT ′
zzTzz = S′zz, T ′

zzTzy = S′zy, and
Syy.z = Syy − T ′

zyTzy.

If Szz is positive definite, thenTzy = T ′
zz
−1S′zy and the partial CSSCP matrixSyy.z

is identical to the matrix derived from the formula

Syy.z = Syy − S′zyS
′−1
zz Szy

The partial variance-covariance matrix is calculated with the variance divisor
(VARDEF= option). PROC CORR then uses the standard Pearson correlation for-
mula on the partial variance-covariance matrix to calculate the Pearson partial corre-
lation matrix.

When a correlation matrix is positive definite, the resulting partial correlation be-
tween variablesx and y after adjusting for a single variablez is identical to that
obtained from the first-order partial correlation formula

rxy.z =
rxy − rxzryz√

(1− r2xz)(1− r2yz)

whererxy, rxz, andryz are the appropriate correlations.

The formula for higher-order partial correlations is a straightforward extension of the
preceding first-order formula. For example, when the correlation matrix is positive
definite, the partial correlation betweenx and y controlling for bothz1 and z2 is
identical to the second-order partial correlation formula

rxy.z1z2 =
rxy.z1 − rxz2.z1ryz2.z1√
(1− r2xz2.z1

)(1− r2yz2.z1
)

whererxy.z1 , rxz2.z1 , andryz2.z1 are first-order partial correlations among variables
x, y, andz2 givenz1.

To derive the corresponding Spearman partial rank-order correlations and Kendall
partial tau-b correlations, PROC CORR applies the Cholesky decomposition algo-
rithm to the Spearman rank-order correlation matrix and Kendall’s tau-b correlation
matrix and uses the correlation formula. That is, the Spearman partial correlation is
equivalent to the Pearson correlation between the residuals of the linear regression
of the ranks of the two variables on the ranks of the partialled variables. Thus, if a
PARTIAL statement is specified with the CORR=SPEARMAN option, the residuals
of the ranks of the two variables are displayed in the plot. The partial tau-b correla-
tions range from –1 to 1. However, the sampling distribution of this partial tau-b is
unknown; therefore, the probability values are not available.



Fisher’s z Transformation � 21

Probability Values

Probability values for the Pearson and Spearman partial correlations are computed by
treating

(n− k − 2)1/2r

(1− r2)1/2

as coming from at distribution with(n − k − 2) degrees of freedom, wherer is the
partial correlation andk is the number of variables being partialled out.

Fisher’s z Transformation

For a sample correlationr using a sample from a bivariate normal distribution with
correlationρ = 0, the statistic

tr = (n− 2)1/2

(
r2

1− r2

)1/2

has a Student-t distribution with (n− 2) degrees of freedom.

With the monotone transformation of the correlationr (Fisher 1921)

zr = tanh−1(r) =
1
2

log
(

1 + r

1− r

)

the statisticz has an approximate normal distribution with mean and variance

E(zr) = ζ +
ρ

2(n− 1)

V (zr) =
1

n− 3

whereζ = tanh−1(ρ).

For the transformedzr, the approximate varianceV (zr) = 1/(n− 3) is independent
of the correlationρ. Furthermore, even the distribution ofzr is not strictly normal;
it tends to normality rapidly as the sample size increases for any values ofρ (Fisher
1970, pp. 200 –201).

For the null hypothesisH0: ρ = ρ0, thep-values are computed by treating

zr − ζ0 −
ρ0

2(n− 1)

as a normal random variable with mean zero and variance1/(n − 3), whereζ0 =
tanh−1(ρ0) (Fisher 1970, p. 207; Anderson 1984, p. 123).



22 � Chapter 1. The CORR Procedure

Note that the bias adjustment,ρ0/(2(n−1)), is always used when computingp-values
under the null hypothesisH0: ρ = ρ0 in the CORR procedure.

The ALPHA= option in the FISHER option specifies the valueα for the confidence
level 1 − α, the RHO0= option specifies the valueρ0 in the hypothesisH0: ρ = ρ0,
and the BIASADJ= option specifies whether the bias adjustment is to be used for the
confidence limits.

The TYPE= option specifies the type of confidence limits. The TYPE=TWOSIDED
option requests two-sided confidence limits and ap-value under the hypothesis
H0: ρ = ρ0. For a one-sided confidence limit, the TYPE=LOWER option requests
a lower confidence limit and ap-value under the hypothesisH0: ρ <= ρ0, and the
TYPE=UPPER option requests an upper confidence limit and ap-value under the
hypothesisH0: ρ >= ρ0.

Confidence Limits for the Correlation

The confidence limits for the correlationρ are derived through the confidence limits
for the parameterζ, with or without the bias adjustment.

Without a bias adjustment, confidence limits forζ are computed by treating

zr − ζ

as having a normal distribution with mean zero and variance1/(n− 3).

That is, the two-sided confidence limits forζ are computed as

ζl = zr − z(1−α/2)

√
1

n− 3

ζu = zr + z(1−α/2)

√
1

n− 3

wherez(1−α/2) is the100(1−α/2) percentage point of the standard normal distribu-
tion.

With a bias adjustment, confidence limits forζ are computed by treating

zr − ζ − bias(r)

as having a normal distribution with mean zero and variance1/(n − 3), where the
bias adjustment function (Keeping 1962, p. 308) is

bias(rr) =
r

2(n− 1)

That is, the two-sided confidence limits forζ are computed as

ζl = zr − bias(r)− z(1−α/2)

√
1

n− 3



Fisher’s z Transformation � 23

ζu = zr − bias(r) + z(1−α/2)

√
1

n− 3

These computed confidence limits ofζl andζu are then transformed back to derive
the confidence limits for the correlationρ:

rl = tanh(ζl) =
exp(2ζl)− 1
exp(2ζl) + 1

ru = tanh(ζu) =
exp(2ζu)− 1
exp(2ζu) + 1

Note that with a bias adjustment, the CORR procedure also displays the following
correlation estimate:

radj = tanh(zr − bias(r))

Applications of Fisher’s z Transformation

Fisher (1970, p. 199) describes the following practical applications of thez transfor-
mation:

• Testing whether a population correlation is equal to a given value
• Testing for equality of two population correlations
• Combining correlation estimates from different samples

To test if a population correlationρ1 from a sample ofn1 observations with sample
correlationr1 is equal to a givenρ0, first apply thez transformation tor1 andρ0:
z1 = tanh−1(r1) andζ0 = tanh−1(ρ0).

Thep-value is then computed by treating

z1 − ζ0 −
ρ0

2(n1 − 1)

as a normal random variable with mean zero and variance1/(n1 − 3).

Assume that sample correlationsr1 andr2 are computed from two independent sam-
ples ofn1 andn2 observations, respectively. To test whether the two corresponding
population correlations,ρ1 andρ2, are equal, first apply thez transformation to the
two sample correlations:z1 = tanh−1(r1) andz2 = tanh−1(r2).

The p-value is derived under the null hypothesis of equal correlation. That is, the
differencez1 − z2 is distributed as a normal random variable with mean zero and
variance1/(n1 − 3) + 1/(n2 − 3).



24 � Chapter 1. The CORR Procedure

Assuming further that the two samples are from populations with identical correla-
tion, a combined correlation estimate can be computed. The weighted average of the
correspondingz values is

z̄ =
(n1 − 3)z1 + (n2 − 3)z2

n1 + n2 − 6

where the weights are inversely proportional to their variances.

Thus, a combined correlation estimate isr̄ = tanh(z̄) andV (z̄) = 1/(n1 + n2 − 6).
SeeExample 1.4for further illustrations of these applications.

Note that this approach can be extended to include more than two samples.

Cronbach’s Coefficient Alpha

Analyzing latent constructs such as job satisfaction, motor ability, sensory recog-
nition, or customer satisfaction requires instruments to accurately measure the con-
structs. Interrelated items may be summed to obtain an overall score for each par-
ticipant. Cronbach’s coefficient alpha estimates the reliability of this type of scale
by determining the internal consistency of the test or the average correlation of items
within the test (Cronbach 1951).

When a value is recorded, the observed value contains some degree of measurement
error. Two sets of measurements on the same variable for the same individual may
not have identical values. However, repeated measurements for a series of individuals
will show some consistency. Reliability measures internal consistency from one set
of measurements to another. The observed valueY is divided into two components,
a true valueT and a measurement errorE. The measurement error is assumed to be
independent of the true value, that is,

Y = T + E Cov(T,E) = 0

The reliability coefficient of a measurement test is defined as the squared correlation
between the observed valueY and the true valueT , that is,

r2(Y, T ) =
Cov(Y, T )2

V (Y )V (T )
=

V (T )2

V (Y )V (T )
=
V (T )
V (Y )

which is the proportion of the observed variance due to true differences among indi-
viduals in the sample. IfY is the sum of several observed variables measuring the
same feature, you can estimateV (T ). Cronbach’s coefficient alpha, based on a lower
bound forV (T ), is an estimate of the reliability coefficient.

Supposep variables are used withYj = Tj + Ej for j = 1, 2, . . . , p, whereYj is the
observed value,Tj is the true value, andEj is the measurement error. The measure-
ment errors (Ej) are independent of the true values (Tj) and are also independent of



Cronbach’s Coefficient Alpha � 25

each other. LetY0 =
∑

j Yj be the total observed score andT0 =
∑

j Tj be the total
true score. Because

(p− 1)
∑

j

V (Tj) ≥
∑
i6=j

Cov(Ti, Tj)

a lower bound forV (T0) is given by

p

p− 1

∑
i6=j

Cov(Ti, Tj)

With Cov(Yi, Yj) = Cov(Ti, Tj) for i 6= j, a lower bound for the reliability coeffi-
cient,V (T0)/V (Y0), is then given by the Cronbach’s coefficient alpha:

α =
(

p

p− 1

) ∑
i6=j Cov(Yi, Yj)
V (Y0)

=
(

p

p− 1

)(
1−

∑
j V (Yj)
V (Y0)

)

If the variances of the items vary widely, you can standardize the items to a standard
deviation of 1 before computing the coefficient alpha. If the variables are dichoto-
mous (0,1), the coefficient alpha is equivalent to the Kuder-Richardson 20 (KR-20)
reliability measure.

When the correlation between each pair of variables is 1, the coefficient alpha has a
maximum value of 1. With negative correlations between some variables, the coeffi-
cient alpha can have a value less than zero. The larger the overall alpha coefficient, the
more likely that items contribute to a reliable scale. Nunnally and Bernstein (1994)
suggests 0.70 as an acceptable reliability coefficient; smaller reliability coefficients
are seen as inadequate. However, this varies by discipline.

To determine how each item reflects the reliability of the scale, you calculate a coeffi-
cient alpha after deleting each variable independently from the scale. The Cronbach’s
coefficient alpha from all variables except thekth variable is given by

αk =
(
p− 1
p− 2

)(
1−

∑
i6=k V (Yi)

V (
∑

i6=k Yi)

)

If the reliability coefficient increases after an item is deleted from the scale, you can
assume that the item is not correlated highly with other items in the scale. Conversely,
if the reliability coefficient decreases, you can assume that the item is highly corre-
lated with other items in the scale. Refer toSAS Communications, Fourth Quarter
1994, for more information on how to interpret Cronbach’s coefficient alpha.

Listwise deletion of observations with missing values is necessary to correctly calcu-
late Cronbach’s coefficient alpha. PROC CORR does not automatically use listwise
deletion if you specify the ALPHA option. Therefore, you should use the NOMISS
option if the data set contains missing values. Otherwise, PROC CORR prints a
warning message indicating the need to use the NOMISS option with the ALPHA
option.



26 � Chapter 1. The CORR Procedure

Missing Values

PROC CORR excludes observations with missing values in the WEIGHT and FREQ
variables. By default, PROC CORR usespairwise deletionwhen observations con-
tain missing values. PROC CORR includes all nonmissing pairs of values for each
pair of variables in the statistical computations. Therefore, the correlation statistics
may be based on different numbers of observations.

If you specify the NOMISS option, PROC CORR useslistwise deletionwhen a value
of the VAR or WITH statement variable is missing. PROC CORR excludes all obser-
vations with missing values from the analysis. Therefore, the number of observations
for each pair of variables is identical.

The PARTIAL statement always excludes the observations with missing values by
automatically invoking the NOMISS option. With the NOMISS option, the data are
processed more efficiently because fewer resources are needed. Also, the resulting
correlation matrix is nonnegative definite.

In contrast, if the data set contains missing values for the analysis variables and the
NOMISS option is not specified, the resulting correlation matrix may not be nonneg-
ative definite. This leads to several statistical difficulties if you use the correlations
as input to regression or other statistical procedures.

Output Tables

By default, PROC CORR prints a report that includes descriptive statistics and cor-
relation statistics for each variable. The descriptive statistics include the number of
observations with nonmissing values, the mean, the standard deviation, the minimum,
and the maximum.

If a nonparametric measure of association is requested, the descriptive statistics in-
clude the median. Otherwise, the sample sum is included. If a Pearson partial cor-
relation is requested, the descriptive statistics also include the partial variance and
partial standard deviation.

If variable labels are available, PROC CORR labels the variables. If you specify the
CSSCP, SSCP, or COV option, the appropriate sum-of-squares and crossproducts and
covariance matrix appears at the top of the correlation report. If the data set contains
missing values, PROC CORR prints additional statistics for each pair of variables.
These statistics, calculated from the observations with nonmissing row and column
variable values, may include

• SSCP(’W’,’V’), uncorrected sum-of-squares and crossproducts

• USS(’W’), uncorrected sum-of-squares for the row variable

• USS(’V’), uncorrected sum-of-squares for the column variable

• CSSCP(’W’,’V’), corrected sum-of-squares and crossproducts

• CSS(’W’), corrected sum-of-squares for the row variable

• CSS(’V’), corrected sum-of-squares for the column variable



Output Data Sets � 27

• COV(’W’,’V’), covariance

• VAR(’W’), variance for the row variable

• VAR(’V’), variance for the column variable

• DF(’W’,’V’), divisor for calculating covariance and variances

For each pair of variables, PROC CORR prints the correlation coefficients, the num-
ber of observations used to calculate the coefficient, and thep-value.

If you specify the ALPHA option, PROC CORR prints Cronbach’s coefficient alpha,
the correlation between the variable and the total of the remaining variables, and
Cronbach’s coefficient alpha using the remaining variables for the raw variables and
the standardized variables.

Output Data Sets

If you specify the OUTP=, OUTS=, OUTK=, or OUTH= option, PROC CORR cre-
ates an output data set containing statistics for Pearson correlation, Spearman corre-
lation, Kendall’s tau-b, or Hoeffding’sD, respectively. By default, the output data set
is a special data set type (TYPE=CORR) that many SAS/STAT procedures recognize,
including PROC REG and PROC FACTOR. When you specify the NOCORR option
and the COV, CSSCP, or SSCP option, use the TYPE= data set option to change the
data set type to COV, CSSCP, or SSCP.

The output data set includes the following variables:

• BY variables, which identify the BY group when using a BY statement

• –TYPE– variable, which identifies the type of observation

• –NAME– variable, which identifies the variable that corresponds to a given
row of the correlation matrix

• INTERCEPT variable, which identifies variable sums when specifying the
SSCP option

• VAR variables, which identify the variables listed in the VAR statement

You can use a combination of the–TYPE– and–NAME– variables to identify the
contents of an observation. The–NAME– variable indicates which row of the corre-
lation matrix the observation corresponds to. The values of the–TYPE– variable are

• SSCP, uncorrected sums of squares and crossproducts

• CSSCP, corrected sums of squares and crossproducts

• COV, covariances

• MEAN, mean of each variable

• STD, standard deviation of each variable

• N, number of nonmissing observations for each variable

• SUMWGT, sum of the weights for each variable when using a WEIGHT state-
ment

• CORR, correlation statistics for each variable.



28 � Chapter 1. The CORR Procedure

If you specify the SSCP option, the OUTP= data set includes an additional observa-
tion that contains intercept values. If you specify the ALPHA option, the OUTP=
data set also includes observations with the following–TYPE– values:

• RAWALPHA, Cronbach’s coefficient alpha for raw variables

• STDALPHA, Cronbach’s coefficient alpha for standardized variables

• RAWALDEL, Cronbach’s coefficient alpha for raw variables after deleting one
variable

• STDALDEL, Cronbach’s coefficient alpha for standardized variables after
deleting one variable

• RAWCTDEL, the correlation between a raw variable and the total of the re-
maining raw variables

• STDCTDEL, the correlation between a standardized variable and the total of
the remaining standardized variables

If you use a PARTIAL statement, the statistics are calculated after the variables are
partialled. If PROC CORR computes Pearson correlation statistics, MEAN equals
zero and STD equals the partial standard deviation associated with the partial variance
for the OUTP=, OUTK=, and OUTS= data sets. Otherwise, PROC CORR assigns
missing values to MEAN and STD.

Determining Computer Resources

The only factor limiting the number of variables that you can analyze is the amount
of available memory. The computer resources that PROC CORR requires depend
on which statements and options you specify. To determine the computer resources,
define the following variables as follows:

L = number of observations in the data set
C = number of correlation types (C = 1, 2, 3, 4)
V = number of VAR statement variables
W = number of WITH statement variables
P = number of PARTIAL statement variables

Furthermore, define the following variables:

T = V +W + P

K =
{
V ∗W
V ∗ (V + 1)/2

whenW > 0
whenW = 0

L =
{
K
T ∗ (T + 1)/2

whenP = 0
whenP > 0



Determining Computer Resources � 29

For smallN and largeK, the CPU time varies asK for all types of correlations. For
largeN , the CPU time depends on the type of correlation:

K ∗N with PEARSON (default)
T ∗N ∗ logN with SPEARMAN
K ∗N ∗ logN with HOEFFDING or KENDALL

You can reduce CPU time by specifying NOMISS. With NOMISS, processing is
much faster when most observations do not contain missing values. The options and
statements you use in the procedure require different amounts of storage to process
the data. For Pearson correlations, the amount of temporary storage needed (in bytes)
is

M = 40T + 16L+ 56K + 56T

The NOMISS option decreases the amount of temporary storage by56K bytes, the
FISHER option increases the storage by24K bytes, the PARTIAL statement in-
creases the storage by12T bytes, and the ALPHA option increases the storage by
32V + 16 bytes.

The following example uses a PARTIAL statement, which excludes missing values.

proc corr;
var x1 x2;
with y1 y2 y3;
partial z1;

run;

Therefore, using40T + 16L + 56T + 12T , the minimum temporary storage equals
984 bytes (T = 2 + 3 + 1 andL = T (T + 1)/2).

Using the SPEARMAN, KENDALL, or HOEFFDING option requires additional
temporary storage for each observation. For the most time-efficient processing, the
amount of temporary storage (in bytes) is

M = 40T + 8K + 8L ∗ C + 12T ∗N + 28N +QS +QP +QK

where

QS =
{

0
68T

with NOSIMPLE
otherwise

QP =
{

56K
0

with PEARSON and without NOMISS
otherwise

QK =
{

32N
0

with KENDALL or HOEFFDING
otherwise



30 � Chapter 1. The CORR Procedure

The following example requests Kendall’s tau-b coefficients:

proc corr kendall;
var x1 x2 x3;

run;

Therefore, the minimum temporary storage in bytes is

M = 40 ∗ 3 + 8 ∗ 6 + 8 ∗ 6 ∗ 1 + 12 ∗ 3N + 28N + 3 ∗ 68 + 32N
= 420 + 96N

whereN is the number of observations.

If M bytes are not available, PROC CORR must process the data multiple times to
compute all the statistics. This reduces the minimum temporary storage you need by
12(T − 2)N bytes. When this occurs, PROC CORR prints a note suggesting a larger
memory region.

ODS Table Names

PROC CORR assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets.

Table 1.3. ODS Tables Produced with the PROC CORR Statement

ODS Name Description Option
Cov Covariances COV
CronbachAlpha Coefficient alpha ALPHA
CronbachAlphaDel Coefficient alpha with deleted variable ALPHA
Csscp Corrected sums of squares and crossproducts CSSCP
FisherPearsonCorr Pearson correlation statistics using Fisher’s FISHER

z Transformation
FisherSpearmanCorr Spearman correlation statistics using Fisher’s FISHER SPEARMAN

z Transformation
HoeffdingCorr Hoeffding’sD statistics HOEFFDING
KendallCorr Kendall’s tau-b coefficients KENDALL
PearsonCorr Pearson correlations PEARSON
SimpleStats Simple descriptive statistics
SpearmanCorr Spearman correlations SPEARMAN
Sscp Sums of squares and crossproducts SSCP
VarInformation Variable information

Table 1.4. ODS Tables Produced with the PARTIAL Statement

ODS Name Description Option
FisherPearsonPartialCorr Pearson Partial Correlation Statistics

Using Fisher’sz Transformation
FISHER

FisherSpearmanPartialCorr Spearman Partial Correlation Statistics
Using Fisher’sz Transformation

FISHER SPEARMAN



ODS Graphics (Experimental) � 31

Table 1.4. (continued)

ODS Name Description Option
PartialCsscp Partial corrected sums of squares and

crossproduct
CSSCP

PartialCov Partial covariances COV
PartialKendallCorr Partial Kendall tau-b coefficients KENDALL
PartialPearsonCorr Partial Pearson correlations
PartialSpearmanCorr Partial Spearman correlations SPEARMAN

ODS Graphics (Experimental)

This section describes the use of ODS for creating graphics with the CORR proce-
dure. These graphics are experimental in this release, meaning that both the graphical
results and the syntax for specifying them are subject to change in a future release.

To request these graphs, you must specify the ODS GRAPHICS statement in addition
to the following options in the PROC CORR statement. For more information on the
ODS GRAPHICS statement, refer to Chapter 15, “Statistical Graphics Using ODS”
(SAS/STAT User’s Guide).

PLOTS
PLOTS = MATRIX < ( matrix-options ) >
PLOTS = SCATTER < ( scatter-options ) >
PLOTS = ( MATRIX < ( matrix-options ) > SCATTER < ( scatter-options ) > )

requests a scatter plot matrix for all variables, scatter plots for all pairs of variables, or
both. If only the option keyword PLOTS is specified, the PLOTS=MATRIX option
is used. When you specify the PLOTS option, the Pearson correlations will also be
displayed.

You can specify the following with the PLOTS=option:

MATRIX < ( matrix-options ) >
requests a scatter plot matrix for all variables. That is, the procedure displays a sym-
metric matrix plot with variables in the VAR list if a WITH statement is not specified.
Otherwise, the procedure displays a rectangular matrix plot with the WITH variables
appear down the side and the VAR variables appear across the top.

The availablematrix-options are:

NMAXVAR=n
specifies the maximum number of variables in the VAR list to be displayed
in the matrix plot, wheren ≥ 0. If you specify NMAXVAR=0, then the total
number of variables in the VAR list is used and no restriction occurs. By default,
NMAXVAR=5.

NMAXWITH=n
specifies the maximum number of variables in the WITH list to be displayed in
the matrix plot, wheren ≥ 0. If you specify NMAXWITH=0, then the total
number of variables in the WITH list is used and no restriction occurs. By
default, NMAXWITH=5.



32 � Chapter 1. The CORR Procedure

SCATTER < ( scatter-options ) >
requests a scatter plot for each pair of variables. That is, the procedure displays a
scatter plot for each pair of distinct variables from the VAR list if a WITH statement
is not specified. Otherwise, the procedure displays a scatter plot for each pair of
variables, one from the WITH list and the other from the VAR list.

The availablescatter-options are:

ALPHA= numbers
specifies theα values for the confidence or prediction ellipses to be displayed
in the scatter plots, where0 < α < 1. For eachα value specified, a (1 − α)
confidence or prediction ellipse is created. By default,α = 0.05.

ELLIPSE=PREDICTION | MEAN | NONE
requests prediction ellipses for new observations (ELLIPSE=PREDICTION),
confidence ellipses for the mean (ELLIPSE=MEAN), or no ellipses
(ELLIPSE=NONE) to be created in the scatter plots. By default,
ELLIPSE=PREDICTION.

NOINSET
suppresses the default inset of summary information for the scatter plot. The
inset table is displayed next to the scatter plot and contains statistics such as
number of observations (NObs), correlation, andp-value (Prob >|r|).

NOLEGEND
suppresses the default legend for overlaid prediction or confidence ellipses. The
legend table is displayed next to the scatter plot and identifies each ellipse dis-
played in the plot.

NMAXVAR=n
specifies the maximum number of variables in the VAR list to be displayed in
the plots, wheren ≥ 0. If you specify NMAXVAR=0, then the total num-
ber of variables in the VAR list is used and no restriction occurs. By default,
NMAXVAR=5.

NMAXWITH=n
specifies the maximum number of variables in the WITH list to be displayed in
the plots, wheren ≥ 0. If you specify NMAXWITH=0, then the total number
of variables in the WITH list is used and no restriction occurs. By default,
NMAXWITH=5.

When the relationship between two variables is nonlinear or when outliers are present,
the correlation coefficient may incorrectly estimate the strength of the relationship.
Plotting the data enables you to verify the linear relationship and to identify the po-
tential outliers.

The partial correlation between two variables, after controlling for variables in the
PARTIAL statement, is the correlation between the residuals of the linear regression
of the two variables on the partialled variables. Thus, if a PARTIAL statement is
also specified, the residuals of the analysis variables are displayed in the scatter plot
matrix and scatter plots.



ODS Graphics (Experimental) � 33

Confidence and Prediction Ellipses
The CORR procedure optionally provides two types of ellipses for each pair of vari-
ables in a scatter plot. One is a confidence ellipse for the population mean, and the
other is a prediction ellipse for a new observation. Both assume a bivariate normal
distribution.

Let Z̄ andS be the sample mean and sample covariance matrix of a random sample
of sizen from a bivariate normal distribution with meanµ and covariance matrixΣ.
The variableZ̄ − µ is distributed as a bivariate normal variate with mean zero and
covariance(1/n)Σ, and it is independent ofS. Using Hotelling’sT 2 statistic, which
is defined as

T 2 = n(Z̄− µ)′S−1(Z̄− µ)

a100(1− α)% confidence ellipse forµ is computed from the equation

n

n− 1
(Z̄− µ)′S−1(Z̄− µ) =

2
n− 2

F2,n−2(1− α)

whereF2,n−2(1 − α) is the(1 − α) critical value of anF distribution with degrees
of freedom2 andn− 2.

A prediction ellipse is a region for predicting a new observation in the population. It
also approximates a region containing a specified percentage of the population.

Denote a new observation as the bivariate random variableZnew. The variable

Znew − Z̄ = (Znew − µ)− (Z̄− µ)

is distributed as a bivariate normal variate with mean zero (the zero vector) and co-
variance(1 + 1/n)Σ, and it is independent ofS. A 100(1 − α)% prediction ellipse
is then given by the equation

n

n− 1
(Z̄− µ)′S−1(Z̄− µ) =

2(n+ 1)
n− 2

F2,n−2(1− α)

The family of ellipses generated by different critical values of theF distribution has
a common center (the sample mean) and common major and minor axis directions.

The shape of an ellipse depends on the aspect ratio of the plot. The ellipse indicates
the correlation between the two variables if the variables are standardized (by divid-
ing the variables by their respective standard deviations). In this situation, the ratio
between the major and minor axis lengths is√

1 + |r|
1− |r|

In particular, if r = 0, the ratio is 1, which corresponds to a circular confidence
contour and indicates that the variables are uncorrelated. A larger value of the ratio
indicates a larger positive or negative correlation between the variables.



34 � Chapter 1. The CORR Procedure

ODS Graph Names

The CORR procedure assigns a name to each graph it creates using ODS. You can
use these names to reference the graphs when using ODS. The names are listed in
Table 1.5.

To request these graphs you must specify the ODS GRAPHICS statement in addition
to the options and statements indicated inTable 1.5. For more information on the
ODS GRAPHICS statement, refer to Chapter 15, “Statistical Graphics Using ODS”
(SAS/STAT User’s Guide).

Table 1.5. ODS Graphics Produced by PROC CORR

ODS Graph Name Plot Description Option Statement
ScatterPlot Scatter plot PLOTS=SCATTER
RecMatrixPlot Rectangular scatter plot matrix PLOTS=MATRIX WITH
SymMatrixPlot Symmetric scatter plot matrix PLOTS=MATRIX (omit WITH)

Examples

Example 1.1. Computing Four Measures of Association

This example produces a correlation analysis with descriptive statistics and four mea-
sures of association: the Pearson product-moment correlation, the Spearman rank-
order correlation, Kendall’s tau-b coefficients, and Hoeffding’s measure of depen-
dence,D.

The Fitness data set created in the“Getting Started”section beginning on page 4
contains measurements from a study of physical fitness of 31 participants. The fol-
lowing statements request all four measures of association for the variablesWeight,
Oxygen, andRuntime.

ods html;
ods graphics on;

title ’Measures of Association for a Physical Fitness Study’;
proc corr data=Fitness pearson spearman kendall hoeffding

plots;
var Weight Oxygen RunTime;

run;

ods graphics off;
ods html close;

Note that Pearson correlations are computed by default only if all three nonpara-
metric correlations (SPEARMAN, KENDALL, and HOEFFDING) are not specified.
Otherwise, you need to specify the PEARSON option explicitly to compute Pearson
correlations.

By default, observations with nonmissing values for each variable are used to de-
rive the univariate statistics for that variable. When nonparametric measures of as-
sociation are specified, the procedure displays the median instead of the sum as an
additional descriptive measure.



Example 1.1. Computing Four Measures of Association � 35

Output 1.1.1. Simple Statistics

Measures of Association for a Physical Fitness Study

The CORR Procedure

3 Variables: Weight Oxygen RunTime

Simple Statistics

Variable N Mean Std Dev Median Minimum Maximum

Weight 31 77.44452 8.32857 77.45000 59.08000 91.63000
Oxygen 29 47.22721 5.47718 46.67200 37.38800 60.05500
RunTime 29 10.67414 1.39194 10.50000 8.17000 14.03000

Output 1.1.2. Pearson Correlation Coefficients

Measures of Association for a Physical Fitness Study

Pearson Correlation Coefficients
Prob > |r| under H0: Rho=0

Number of Observations

Weight Oxygen RunTime

Weight 1.00000 -0.15358 0.20072
0.4264 0.2965

31 29 29

Oxygen -0.15358 1.00000 -0.86843
0.4264 <.0001

29 29 28

RunTime 0.20072 -0.86843 1.00000
0.2965 <.0001

29 28 29

The Pearson correlation is a parametric measure of association for two continuous
random variables. When there is missing data, the number of observations used to
calculate the correlation can vary.

In Output 1.1.2, the Pearson correlation betweenRuntime andOxygen is−0.86843,
which is significant with ap-value less than 0.0001. This indicates a strong negative
linear relationship between these two variables. AsRuntime increases,Oxygen
decreases linearly.

The Spearman rank-order correlation is a nonparametric measure of association based
on the ranks of the data values. The “Spearman Correlation Coefficients” table
shown inOutput 1.1.3displays results similar to those of the “Pearson Correlation
Coefficients” table.



36 � Chapter 1. The CORR Procedure

Output 1.1.3. Spearman Correlation Coefficients

Measures of Association for a Physical Fitness Study

Spearman Correlation Coefficients
Prob > |r| under H0: Rho=0

Number of Observations

Weight Oxygen RunTime

Weight 1.00000 -0.06824 0.13749
0.7250 0.4769

31 29 29

Oxygen -0.06824 1.00000 -0.80131
0.7250 <.0001

29 29 28

RunTime 0.13749 -0.80131 1.00000
0.4769 <.0001

29 28 29

Output 1.1.4. Kendall’s Tau-b Correlation Coefficients

Measures of Association for a Physical Fitness Study

Kendall Tau b Correlation Coefficients
Prob > |r| under H0: Rho=0

Number of Observations

Weight Oxygen RunTime

Weight 1.00000 -0.00988 0.06675
0.9402 0.6123

31 29 29

Oxygen -0.00988 1.00000 -0.62434
0.9402 <.0001

29 29 28

RunTime 0.06675 -0.62434 1.00000
0.6123 <.0001

29 28 29

Kendall’s tau-b is a nonparametric measure of association based on the number
of concordances and discordances in paired observations. The “Kendall Tau-b
Correlation Coefficients” table shown inOutput 1.1.4displays results similar to those
of the “Pearson Correlation Coefficients” table inOutput 1.1.2.

Hoeffding’s measure of dependence,D, is a nonparametric measure of association
that detects more general departures from independence. Without ties in the variables,
the values of theD statistic can vary between -0.5 and 1, with 1 indicating complete
dependence. Otherwise, theD statistic can result in a smaller value. Since ties occur
in the variableWeight, theD statistic for theWeight variable is less than 1, as shown
in the “Hoeffding Dependence Coefficients” table inOutput 1.1.5.



Example 1.1. Computing Four Measures of Association � 37

Output 1.1.5. Hoeffding’s Dependence Coefficients

Measures of Association for a Physical Fitness Study

Hoeffding Dependence Coefficients
Prob > D under H0: D=0
Number of Observations

Weight Oxygen RunTime

Weight 0.97690 -0.00497 -0.02355
<.0001 0.5101 1.0000

31 29 29

Oxygen -0.00497 1.00000 0.23449
0.5101 <.0001

29 29 28

RunTime -0.02355 0.23449 1.00000
1.0000 <.0001

29 28 29

Output 1.1.6. Symmetric Scatter Plot Matrix (Experimental)

The experimental PLOTS option requests a symmetric scatter plot for the analysis
variables listed in the VAR statement. The strong negative linear relationship between
Oxygen andRuntime is evident inOutput 1.1.6.



38 � Chapter 1. The CORR Procedure

This display is requested by specifying both the ODS GRAPHICS statement and
the PLOTS option. For general information about ODS graphics, refer to Chapter 15,
“Statistical Graphics Using ODS” (SAS/STAT User’s Guide). For specific information
about the graphics available in the CORR procedure, see the section“ODS Graphics”
on page 31.

Example 1.2. Computing Correlations between Two Sets of
Variables

The following statements create a data set which contains measurements for four iris
parts from Fisher’s iris data (1936): sepal length, sepal width, petal length, and petal
width. Each observation represents one specimen.

*------------------- Data on Iris Setosa --------------------*
| The data set contains 50 iris specimens from the species |
| Iris Setosa with the following four measurements: |
| SepalLength (sepal length) |
| SepalWidth (sepal width) |
| PetalLength (petal length) |
| PetalWidth (petal width) |
| Certain values were changed to missing for the analysis. |
*------------------------------------------------------------*;
data Setosa;

input SepalLength SepalWidth PetalLength PetalWidth @@;
label sepallength=’Sepal Length in mm.’

sepalwidth=’Sepal Width in mm.’
petallength=’Petal Length in mm.’
petalwidth=’Petal Width in mm.’;

datalines;
50 33 14 02 46 34 14 03 46 36 . 02
51 33 17 05 55 35 13 02 48 31 16 02
52 34 14 02 49 36 14 01 44 32 13 02
50 35 16 06 44 30 13 02 47 32 16 02
48 30 14 03 51 38 16 02 48 34 19 02
50 30 16 02 50 32 12 02 43 30 11 .
58 40 12 02 51 38 19 04 49 30 14 02
51 35 14 02 50 34 16 04 46 32 14 02
57 44 15 04 50 36 14 02 54 34 15 04
52 41 15 . 55 42 14 02 49 31 15 02
54 39 17 04 50 34 15 02 44 29 14 02
47 32 13 02 46 31 15 02 51 34 15 02
50 35 13 03 49 31 15 01 54 37 15 02
54 39 13 04 51 35 14 03 48 34 16 02
48 30 14 01 45 23 13 03 57 38 17 03
51 38 15 03 54 34 17 02 51 37 15 04
52 35 15 02 53 37 15 02
;

The following statements request a correlation analysis between two sets of variables,
the sepal measurements and the petal measurements.



Example 1.2. Computing Correlations between Two Sets of Variables � 39

ods html;
ods graphics on;

title ’Fisher (1936) Iris Setosa Data’;
proc corr data=Setosa sscp cov plots;

var sepallength sepalwidth;
with petallength petalwidth;

run;

ods graphics off;
ods html close;

The CORR procedure displays univariate statistics for variables in the VAR and
WITH statements.

Output 1.2.1. Simple Statistics

Fisher (1936) Iris Setosa Data

The CORR Procedure

2 With Variables: PetalLength PetalWidth
2 Variables: SepalLength SepalWidth

Simple Statistics

Variable N Mean Std Dev Sum

PetalLength 49 14.71429 1.62019 721.00000
PetalWidth 48 2.52083 1.03121 121.00000
SepalLength 50 50.06000 3.52490 2503
SepalWidth 50 34.28000 3.79064 1714

Simple Statistics

Variable Minimum Maximum Label

PetalLength 11.00000 19.00000 Petal Length in mm.
PetalWidth 1.00000 6.00000 Petal Width in mm.
SepalLength 43.00000 58.00000 Sepal Length in mm.
SepalWidth 23.00000 44.00000 Sepal Width in mm.

When the WITH statement is specified together with the VAR statement, the
CORR procedure produces rectangular matrices for statistics such as covariances
and correlations. The matrix rows correspond to the WITH variables (PetalLength
and PetalWidth) while the matrix columns correspond to the VAR variables
(SepalLength and SepalWidth). The CORR procedure uses the WITH variable
labels to label the matrix rows.

The SSCP option requests a table of the uncorrected sum-of-squares and crossprod-
ucts matrix, and the COV option requests a table of the covariance matrix. The SSCP
and COV options also produce a table of the Pearson correlations.



40 � Chapter 1. The CORR Procedure

The sum-of-squares and crossproducts statistics for each pair of variables are com-
puted by using observations with nonmissing row and column variable values. The
“Sums of Squares and Crossproducts” table shown inOutput 1.2.2displays the
crossproduct, sum of squares for the row variable, and sum of squares for the col-
umn variable for each pair of variables.

Output 1.2.2. Sum-of-squares and Crossproducts

Fisher (1936) Iris Setosa Data

Sums of Squares and Crossproducts
SSCP / Row Var SS / Col Var SS

SepalLength SepalWidth

PetalLength 36214.00000 24756.00000
Petal Length in mm. 10735.00000 10735.00000

123793.0000 58164.0000

PetalWidth 6113.00000 4191.00000
Petal Width in mm. 355.00000 355.00000

121356.0000 56879.0000

The variances are computed by using observations with nonmissing row and column
variable values. The “Variances and Covariances” table shown inOutput 1.2.3dis-
plays the covariance, variance for the row variable, variance for the column variable,
and the associated degrees of freedom for each pair of variables.

Output 1.2.3. Variances and Covariances

Fisher (1936) Iris Setosa Data

Variances and Covariances
Covariance / Row Var Variance / Col Var Variance / DF

SepalLength SepalWidth

PetalLength 1.270833333 1.363095238
Petal Length in mm. 2.625000000 2.625000000

12.33333333 14.60544218
48 48

PetalWidth 0.911347518 1.048315603
Petal Width in mm. 1.063386525 1.063386525

11.80141844 13.62721631
47 47



Example 1.2. Computing Correlations between Two Sets of Variables � 41

Output 1.2.4. Pearson Correlation Coefficients

Fisher (1936) Iris Setosa Data

Pearson Correlation Coefficients
Prob > |r| under H0: Rho=0

Number of Observations

Sepal Sepal
Length Width

PetalLength 0.22335 0.22014
Petal Length in mm. 0.1229 0.1285

49 49

PetalWidth 0.25726 0.27539
Petal Width in mm. 0.0775 0.0582

48 48

When there are missing values in the analysis variables, the “Pearson Correlation
Coefficients” table shown inOutput 1.2.4displays the correlation, thep-value under
the null hypothesis of zero correlation, and the number of observations for each pair
of variables. Only the correlation betweenPetalWidth andSepalLength and the
correlation betweenPetalWidth andSepalWidth are slightly positive.

The experimental PLOTS option displays a rectangular scatter plot matrix for the two
sets of variables. The VAR variablesSepalLength andSepalWidth are listed across
the top of the matrix, and the WITH variablesPetalLength andPetalWidth are listed
down the side of the matrix. As measured inOutput 1.2.4, the plot forPetalWidth
andSepalLength and the plot forPetalWidth andSepalWidth show slight positive
correlations.



42 � Chapter 1. The CORR Procedure

Output 1.2.5. Rectangular Matrix Plot (Experimental)

This display is requested by specifying both the ODS GRAPHICS statement and
the PLOTS option. For general information about ODS graphics, refer to Chapter 15,
“Statistical Graphics Using ODS” (SAS/STAT User’s Guide). For specific information
about the graphics available in the CORR procedure, see the section“ODS Graphics”
on page 31.

Example 1.3. Analysis Using Fisher’s z Transformation

The following statements request Pearson correlation statistics using Fisher’sz trans-
formation for the data setFitness.

proc corr data=Fitness nosimple fisher;
var weight oxygen runtime;

run;

The NOSIMPLE option suppresses the table of descriptive statistics. The “Pearson
Correlation Coefficients” table is displayed by default.



Example 1.3. Analysis Using Fisher’s z Transformation � 43

Output 1.3.1. Sample Correlations

Fisher (1936) Iris Setosa Data

The CORR Procedure

Pearson Correlation Coefficients
Prob > |r| under H0: Rho=0

Number of Observations

Weight Oxygen RunTime

Weight 1.00000 -0.15358 0.20072
0.4264 0.2965

31 29 29

Oxygen -0.15358 1.00000 -0.86843
0.4264 <.0001

29 29 28

RunTime 0.20072 -0.86843 1.00000
0.2965 <.0001

29 28 29

The FISHER option requests correlation statistics using Fisher’sz transformation,
which are shown inOutput 1.3.2.

Output 1.3.2. Correlation Statistics Using Fisher’s z Transformation

Pearson Correlation Statistics (Fisher’s z Transformation)

With Sample Bias Correlation
Variable Variable N Correlation Fisher’s z Adjustment Estimate

Weight Oxygen 29 -0.15358 -0.15480 -0.00274 -0.15090
Weight RunTime 29 0.20072 0.20348 0.00358 0.19727
Oxygen RunTime 28 -0.86843 -1.32665 -0.01608 -0.86442

Pearson Correlation Statistics (Fisher’s z Transformation)

With p Value for
Variable Variable 95% Confidence Limits H0:Rho=0

Weight Oxygen -0.490289 0.228229 0.4299
Weight RunTime -0.182422 0.525765 0.2995
Oxygen RunTime -0.935728 -0.725221 <.0001

See the section“Fisher’s z Transformation”on page 21 for details on Fisher’sz trans-
formation.

The following statements request one-sided hypothesis tests and confidence limits for
the correlation using Fisher’sz transformation.

proc corr data=Fitness nosimple nocorr fisher (type=lower);
var weight oxygen runtime;

run;



44 � Chapter 1. The CORR Procedure

The NOSIMPLE option suppresses the “Simple Statistics” table, and the NOCORR
option suppresses the “Pearson Correlation Coefficients” table.

Output 1.3.3. One-sided Correlation Analysis Using Fisher’s z Transformation

The CORR Procedure

Pearson Correlation Statistics (Fisher’s z Transformation)

With Sample Bias Correlation
Variable Variable N Correlation Fisher’s z Adjustment Estimate

Weight Oxygen 29 -0.15358 -0.15480 -0.00274 -0.15090
Weight RunTime 29 0.20072 0.20348 0.00358 0.19727
Oxygen RunTime 28 -0.86843 -1.32665 -0.01608 -0.86442

Pearson Correlation Statistics (Fisher’s z Transformation)

With p Value for
Variable Variable Lower 95% CL H0:Rho<=0

Weight Oxygen -0.441943 0.7850
Weight RunTime -0.122077 0.1497
Oxygen RunTime -0.927408 1.0000

The TYPE=LOWER option requests a lower confidence limit and ap-value for the
test of the one-sided hypothesisH0: ρ ≤ 0 against the alternative hypothesisH1: ρ >
0. Here Fisher’sz, the bias adjustment, and the estimate of the correlation are the
same as for the two-sided alternative. However, because TYPE=LOWER is specified,
only a lower confidence limit is computed for each correlation, and one-sidedp-
values are computed.

Example 1.4. Applications of Fisher’s z Transformation

This example illustrates some applications of Fisher’sz transformation. For details,
see the section“Fisher’s z Transformation”on page 21.

The following statements simulate independent samples of variablesX andY from
a bivariate normal distribution. The first batch of 150 observations is sampled using
a known correlation of 0.3, the second batch of 150 observations is sampled using a
known correlation of 0.25, and the third batch of 100 observations is sampled using
a known correlation of 0.3.

data Sim (drop=i);
do i=1 to 400;

X = rannor(135791);
Batch = 1 + (i>150) + (i>300);
if Batch = 1 then Y = 0.3*X + 0.9*rannor(246791);
if Batch = 2 then Y = 0.25*X + sqrt(.8375)*rannor(246791);
if Batch = 3 then Y = 0.3*X + 0.9*rannor(246791);
output;

end;
run;



Example 1.4. Applications of Fisher’s z Transformation � 45

This data set will be used to illustrate the following applications of Fisher’sz trans-
formation:

• Testing whether a population correlation is equal to a given value
• Testing for equality of two population correlations
• Combining correlation estimates from different samples

See the section“Fisher’s z Transformation”on page 21.

Testing Whether a Population Correlation Is Equal to a Given Value ρ0

You can use the following statements to test the null hypothesisH0: ρ = 0.5 against
a two-sided alternativeH1: ρ 6= 0.5.

ods select FisherPearsonCorr;
title ’Analysis for Batch 1’;
proc corr data=Sim (where=(Batch=1)) fisher(rho0=.5);

var X Y;
run;

The test is requested with the option FISHER(RHO0=0.5). The results, which are
based on Fisher’s transformation, are shown inOutput 1.4.1.

Output 1.4.1. Fisher’s Test for H0: ρ = ρ0

Analysis for Batch 1

The CORR Procedure

Pearson Correlation Statistics (Fisher’s z Transformation)

With Sample Bias Correlation
Variable Variable N Correlation Fisher’s z Adjustment Estimate

X Y 150 0.22081 0.22451 0.0007410 0.22011

Pearson Correlation Statistics (Fisher’s z Transformation)

With ------H0:Rho=Rho0-----
Variable Variable 95% Confidence Limits Rho0 p Value

X Y 0.062034 0.367409 0.50000 <.0001

The null hypothesis is rejected since thep-value is less than 0.0001.

Testing for Equality of Two Population Correlations

You can use the following statements to test for equality of two population correla-
tions,ρ1 andρ2. Here, the null hypothesisH0: ρ1 = ρ2 is tested against the alternative
H1: ρ1 6= ρ2.



46 � Chapter 1. The CORR Procedure

ods select FisherPearsonCorr;
ods output FisherPearsonCorr=SimCorr;
title ’Testing Equality of Population Correlations’;
proc corr data=Sim (where=(Batch=1 or Batch=2)) fisher;

var X Y;
by Batch;

run;

The ODS SELECT statement restricts the output from PROC CORR to the
“FisherPearsonCorr” table, which is shown inOutput 1.4.2; see the section“ODS
Table Names”on page 30. The output data setSimCorr contains Fisher’sz statistics
for both batches.

Output 1.4.2. Fisher’s Correlation Statistics

Testing Equality of Population Correlations

----------------------------------- Batch=1 ------------------------------------

The CORR Procedure

Pearson Correlation Statistics (Fisher’s z Transformation)

With Sample Bias Correlation
Variable Variable N Correlation Fisher’s z Adjustment Estimate

X Y 150 0.22081 0.22451 0.0007410 0.22011

Pearson Correlation Statistics (Fisher’s z Transformation)

With p Value for
Variable Variable 95% Confidence Limits H0:Rho=0

X Y 0.062034 0.367409 0.0065

Testing Equality of Population Correlations

----------------------------------- Batch=2 ------------------------------------

The CORR Procedure

Pearson Correlation Statistics (Fisher’s z Transformation)

With Sample Bias Correlation
Variable Variable N Correlation Fisher’s z Adjustment Estimate

X Y 150 0.33694 0.35064 0.00113 0.33594

Pearson Correlation Statistics (Fisher’s z Transformation)

With p Value for
Variable Variable 95% Confidence Limits H0:Rho=0

X Y 0.185676 0.470853 <.0001



Example 1.4. Applications of Fisher’s z Transformation � 47

Thep-value for testingH0 is derived by treating the differencez1 − z2 as a normal
random variable with mean zero and variance1/(n1−3)+1/(n2−3), wherez1 and
z2 are Fisher’sz transformation of the sample correlationsr1 andr2, respectively,
and wheren1 andn2 are the corresponding sample sizes.

The following statements compute thep-value shown inOutput 1.4.3.

data SimTest (drop=Batch);
merge SimCorr (where=(Batch=1) keep=Nobs ZVal Batch

rename=(Nobs=n1 ZVal=z1))
SimCorr (where=(Batch=2) keep=Nobs ZVal Batch

rename=(Nobs=n2 ZVal=z2));
variance = 1/(n1-3) + 1/(n2-3);
z = (z1 - z2) / sqrt( variance );
pval = probnorm(z);
if (pval > 0.5) then pval = 1 - pval;
pval = 2*pval;

run;

proc print data=SimTest noobs;
run;

Output 1.4.3. Test of Equality of Observed Correlations

n1 z1 n2 z2 variance z pval

150 0.22451 150 0.35064 0.013605 -1.08135 0.27954

In Output 1.4.3, thep-value of 0.2795 does not provide evidence to reject the null
hypothesis thatρ1 = ρ2. The sample sizesn1 = 150 andn2 = 150 are not large
enough to detect the differenceρ1 − ρ2 = 0.05 at a significance level ofα = 0.05.

Combining Correlation Estimates from Different Samples

Assume that sample correlationsr1 andr2 are computed from two independent sam-
ples ofn1 andn2 observations, respectively. A combined correlation estimate is
given by r̄ = tanh(z̄), wherez̄ is the weighted average of thez-transformations of
r1 andr2:

z̄ =
(n1 − 3)z1 + (n2 − 3)z2

n1 + n2 − 6



48 � Chapter 1. The CORR Procedure

The following statements compute a combined estimate ofρ using Batch 1 and
Batch 3:

ods output FisherPearsonCorr=SimCorr2;
proc corr data=Sim (where=(Batch=1 or Batch=3)) fisher noprint;

var X Y;
by Batch;

run;

data SimComb (drop=Batch);
merge SimCorr2 (where=(Batch=1) keep=Nobs ZVal Batch

rename=(Nobs=n1 ZVal=z1))
SimCorr2 (where=(Batch=3) keep=Nobs ZVal Batch

rename=(Nobs=n2 ZVal=z2));
z = ((n1-3)*z1 + (n2-3)*z2) / (n1+n2-6);
corr = tanh(z);
var = 1/(n1+n2-6);
lcl = corr - probit(0.975)*sqrt(var);
ucl = corr + probit(0.975)*sqrt(var);

run;

proc print data=SimComb noobs;
var n1 z1 n2 z2 corr lcl ucl;

run;

Output 1.4.4displays the combined estimate ofρ.

Output 1.4.4. Combined Correlation Estimate

n1 z1 n2 z2 corr lcl ucl

150 0.22451 100 0.23929 0.22640 0.10092 0.35187

Thus, a correlation estimate from the combined samples isr = 0.23. The 95%
confidence interval displayed inOutput 1.4.4is (0.10, 0.35) using the variance of the
combined estimate. Note that this interval contains the population correlation 0.3.
See the section“Applications of Fisher’s z Transformation”on page 23.

Example 1.5. Computing Cronbach’s Coefficient Alpha

The following statements create the data setFish1 from theFish data set used in
Chapter 67, “The STEPDISC Procedure.” The cubic root of the weight (Weight3) is
computed as a one-dimensional measure of the size of a fish.

*------------------- Fish Measurement Data ----------------------*
| The data set contains 35 fish from the species Bream caught in |
| Finland’s lake Laengelmavesi with the following measurements: |
| Weight (in grams) |
| Length3 (length from the nose to the end of its tail, in cm) |
| HtPct (max height, as percentage of Length3) |
| WidthPct (max width, as percentage of Length3) |
*----------------------------------------------------------------*;



Example 1.5. Computing Cronbach’s Coefficient Alpha � 49

data Fish1 (drop=HtPct WidthPct);
title ’Fish Measurement Data’;
input Weight Length3 HtPct WidthPct @@;
Weight3= Weight**(1/3);
Height=HtPct*Length3/100;
Width=WidthPct*Length3/100;
datalines;

242.0 30.0 38.4 13.4 290.0 31.2 40.0 13.8
340.0 31.1 39.8 15.1 363.0 33.5 38.0 13.3
430.0 34.0 36.6 15.1 450.0 34.7 39.2 14.2
500.0 34.5 41.1 15.3 390.0 35.0 36.2 13.4
450.0 35.1 39.9 13.8 500.0 36.2 39.3 13.7
475.0 36.2 39.4 14.1 500.0 36.2 39.7 13.3
500.0 36.4 37.8 12.0 . 37.3 37.3 13.6
600.0 37.2 40.2 13.9 600.0 37.2 41.5 15.0
700.0 38.3 38.8 13.8 700.0 38.5 38.8 13.5
610.0 38.6 40.5 13.3 650.0 38.7 37.4 14.8
575.0 39.5 38.3 14.1 685.0 39.2 40.8 13.7
620.0 39.7 39.1 13.3 680.0 40.6 38.1 15.1
700.0 40.5 40.1 13.8 725.0 40.9 40.0 14.8
720.0 40.6 40.3 15.0 714.0 41.5 39.8 14.1
850.0 41.6 40.6 14.9 1000.0 42.6 44.5 15.5
920.0 44.1 40.9 14.3 955.0 44.0 41.1 14.3
925.0 45.3 41.4 14.9 975.0 45.9 40.6 14.7
950.0 46.5 37.9 13.7
;

The following statements request a correlation analysis and compute Cronbach’s co-
efficient alpha for the variablesWeight3, Length3, Height, andWidth.

ods html;
ods graphics on;

title ’Fish Measurement Data’;
proc corr data=fish1 nomiss alpha plots;

var Weight3 Length3 Height Width;
run;

ods graphics off;
ods html close;

The NOMISS option excludes observations with missing values, and the PLOTS op-
tion requests a symmetric scatter plot matrix for the analysis variables.

By default, the CORR procedure displays descriptive statistics for each variable, as
shown inOutput 1.5.1.



50 � Chapter 1. The CORR Procedure

Output 1.5.1. Simple Statistics

Fish Measurement Data

The CORR Procedure

4 Variables: Weight3 Length3 Height Width

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

Weight3 34 8.44751 0.97574 287.21524 6.23168 10.00000
Length3 34 38.38529 4.21628 1305 30.00000 46.50000
Height 34 15.22057 1.98159 517.49950 11.52000 18.95700
Width 34 5.43805 0.72967 184.89370 4.02000 6.74970

Since the NOMISS option is specified, the same set of 34 observations is used to
compute the correlation for each pair of variables. The correlations are shown in
Output 1.5.2.

Output 1.5.2. Pearson Correlation Coefficients

Fish Measurement Data

Pearson Correlation Coefficients, N = 34
Prob > |r| under H0: Rho=0

Weight3 Length3 Height Width

Weight3 1.00000 0.96523 0.96261 0.92789
<.0001 <.0001 <.0001

Length3 0.96523 1.00000 0.95492 0.92171
<.0001 <.0001 <.0001

Height 0.96261 0.95492 1.00000 0.92632
<.0001 <.0001 <.0001

Width 0.92789 0.92171 0.92632 1.00000
<.0001 <.0001 <.0001

Since the data set contains only one species of fish, all the variables are highly corre-
lated. This is evidenced in the scatter plot matrix for the analysis variables, which is
shown inOutput 1.7.3, created inExample 1.7.

Positive correlation is needed for the alpha coefficient because variables measure a
common entity.

With the ALPHA option, the CORR procedure computes Cronbach’s coefficient al-
pha, which is a lower bound for the reliability coefficient for the raw variables and
the standardized variables.



Example 1.6. Computing Cronbach’s Coefficient Alpha � 51

Output 1.5.3. Cronbach’s Coefficient Alpha

Fish Measurement Data

Cronbach Coefficient Alpha

Variables Alpha
----------------------------
Raw 0.822134
Standardized 0.985145

Because the variances of some variables vary widely, you should use the standardized
score to estimate reliability. The overall standardized Cronbach’s coefficient alpha of
0.985145 provides an acceptable lower bound for the reliability coefficient. This
is much greater than the suggested value of 0.70 given by Nunnally and Bernstein
(1994).

Output 1.5.4. Cronbach’s Coefficient Alpha with Deleted Variables

Fish Measurement Data

Cronbach Coefficient Alpha with Deleted Variable

Raw Variables Standardized Variables

Deleted Correlation Correlation
Variable with Total Alpha with Total Alpha
------------------------------------------------------------------------
Weight3 0.975379 0.783365 0.973464 0.977103
Length3 0.967602 0.881987 0.967177 0.978783
Height 0.964715 0.655098 0.968079 0.978542
Width 0.934635 0.824069 0.937599 0.986626

The standardized alpha coefficient provides information on how each variable re-
flects the reliability of the scale with standardized variables. If the standardized
alpha decreases after removing a variable from the construct, then this variable is
strongly correlated with other variables in the scale. On the other hand, if the stan-
dardized alpha increases after removing a variable from the construct, then remov-
ing this variable from the scale makes the construct more reliable. The “Cronbach
Coefficient Alpha with Deleted Variables” table inOutput 1.5.4does not show sig-
nificant increase or decrease for the standardized alpha coefficients. See the sec-
tion “Cronbach’s Coefficient Alpha”on page 24 for more information regarding con-
structs and Cronbach’s alpha.



52 � Chapter 1. The CORR Procedure

Example 1.6. Saving Correlations in an Output Data Set
The following statements compute Pearson correlations and covariances.

title ’Correlations for a Fitness and Exercise Study’;
proc corr data=Fitness nomiss outp=CorrOutp;

var weight oxygen runtime;
run;

The NOMISS option excludes observations with missing values of the VAR state-
ment variables from the analysis. The NOSIMPLE option suppresses the display
of descriptive statistics, and the OUTP= option creates an output data set named
CorrOutp that contains the Pearson correlation statistics. Since the NOMISS option
is specified, the same set of 28 observations is used to compute the correlation for
each pair of variables.

Output 1.6.1. Pearson Correlation Coefficients

Correlations for a Fitness and Exercise Study

The CORR Procedure

Pearson Correlation Coefficients, N = 28
Prob > |r| under H0: Rho=0

Weight Oxygen RunTime

Weight 1.00000 -0.18419 0.19505
0.3481 0.3199

Oxygen -0.18419 1.00000 -0.86843
0.3481 <.0001

RunTime 0.19505 -0.86843 1.00000
0.3199 <.0001

The following statements display the output data set, which is shown inOutput 1.6.2.

title ’Output Data Set from PROC CORR’;
proc print data=CorrOutp noobs;
run;

Output 1.6.2. OUTP= Data Set with Pearson Correlations

Output Data Set from PROC CORR

_TYPE_ _NAME_ Weight Oxygen RunTime

MEAN 77.2168 47.1327 10.6954
STD 8.4495 5.5535 1.4127
N 28.0000 28.0000 28.0000
CORR Weight 1.0000 -0.1842 0.1950
CORR Oxygen -0.1842 1.0000 -0.8684
CORR RunTime 0.1950 -0.8684 1.0000



Example 1.7. Creating Scatter Plots � 53

The output data set has the default type CORR and can be used as an input data set
for regression or other statistical procedures. For example, the following statements
request a regression analysis usingCorrOutp, without reading the original data in the
REG procedure:

title ’Input Type CORR Data Set from PROC REG’;
proc reg data=CorrOutp;

model runtime= weight oxygen;
run;

The preceding statements generate the same results as the following statements:

proc reg data=Fitness nomiss;
model runtime= weight oxygen;

run;

Example 1.7. Creating Scatter Plots

The following statements request a correlation analysis and a scatter plot matrix for
the variables in the data setFish1, which was created inExample 1.5. This data
set contains 35 observations, one of which contains a missing value for the variable
Weight3.

ods html;
ods graphics on;

title ’Fish Measurement Data’;
proc corr data=fish1 nomiss plots=matrix;

var Height Width Length3 Weight3;
run;

ods graphics off;
ods html close;

By default, the CORR procedure displays descriptive statistics for the VAR statement
variables, which are shown inOutput 1.7.1.

Output 1.7.1. Simple Statistics

Fish Measurement Data

The CORR Procedure

4 Variables: Height Width Length3 Weight3

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

Height 34 15.22057 1.98159 517.49950 11.52000 18.95700
Width 34 5.43805 0.72967 184.89370 4.02000 6.74970
Length3 34 38.38529 4.21628 1305 30.00000 46.50000
Weight3 34 8.44751 0.97574 287.21524 6.23168 10.00000



54 � Chapter 1. The CORR Procedure

Since the NOMISS option is specified, the same set of 34 observations is used to
compute the correlation for each pair of variables. The correlations are shown in
Output 1.7.2.

Output 1.7.2. Pearson Correlation Coefficients

Fish Measurement Data

Pearson Correlation Coefficients, N = 34
Prob > |r| under H0: Rho=0

Height Width Length3 Weight3

Height 1.00000 0.92632 0.95492 0.96261
<.0001 <.0001 <.0001

Width 0.92632 1.00000 0.92171 0.92789
<.0001 <.0001 <.0001

Length3 0.95492 0.92171 1.00000 0.96523
<.0001 <.0001 <.0001

Weight3 0.96261 0.92789 0.96523 1.00000
<.0001 <.0001 <.0001

The variables are highly correlated. For example, the correlation betweenHeight and
Width is 0.92632.

The experimental PLOTS=MATRIX option requests a scatter plot matrix for the VAR
statement variables, which is shown inOutput 1.7.3.

In order to create this display, you must specify the experimental ODS GRAPHICS
statement in addition to the PLOTS=MATRIX option. For general information about
ODS graphics, refer to Chapter 15, “Statistical Graphics Using ODS” (SAS/STAT
User’s Guide). For specific information about ODS graphics available in the CORR
procedure, see the section“ODS Graphics”on page 31.



Example 1.7. Creating Scatter Plots � 55

Output 1.7.3. Scatter Plot Matrix (Experimental)

To explore the correlation betweenHeight andWidth, the following statements re-
quest a scatter plot with prediction ellipses for the two variables, which is shown in
Output 1.7.4. A prediction ellipse is a region for predicting a new observation from
the population, assuming bivariate normality. It also approximates a region contain-
ing a specified percentage of the population.

ods html;
ods graphics on;

proc corr data=fish1 nomiss noprint
plots=scatter(nmaxvar=2 alpha=.20 .30);

var Height Width Length3 Weight3;
run;

ods graphics off;
ods html close;



56 � Chapter 1. The CORR Procedure

The NOMISS option is specified with the original VAR statement to ensure that
the same set of 34 observations is used for this analysis. The experimental
PLOTS=SCATTER(NMAXVAR=2) option requests a scatter plot for the first two
variables in the VAR list. The ALPHA= suboption requests80% and70% prediction
ellipses.

Output 1.7.4. Scatter Plot with Prediction Ellipses (Experimental)

The prediction ellipse is centered at the means(x̄, ȳ). For further details, see the
section“Confidence and Prediction Ellipses”on page 33.

Note that the following statements can also be used to create a scatter plot forHeight
andWidth:

ods html;
ods graphics on;

proc corr data=fish1 noprint
plots=scatter(alpha=.20 .30);

var Height Width;
run;

ods graphics off;
ods html close;



Example 1.7. Creating Scatter Plots � 57

Output 1.7.5. Scatter Plot with Prediction Ellipses (Experimental)

Output 1.7.5includes the point(13.9, 5.1), which was excluded fromOutput 1.7.4
because the observation had a missing value forWeight3. The prediction ellipses in
Output 1.7.5also reflect the inclusion of this observation.

The following statements request a scatter plot with confidence ellipses for the mean,
which is shown inOutput 1.7.6:

ods html;
ods graphics on;

title ’Fish Measurement Data’;
proc corr data=fish1 nomiss noprint

plots=scatter(ellipse=mean nmaxvar=2 alpha=.05 .01);
var Height Width Length3 Weight3;

run;

ods graphics off;
ods html close;



58 � Chapter 1. The CORR Procedure

The experimental PLOTS=SCATTER option requests scatter plots for all the vari-
ables in the VAR statement, and the NMAXVAR=2 suboption restricts the number of
plots created to the first two variables in the VAR statement. The ELLIPSE=MEAN
and ALPHA= suboptions request95% and99% confidence ellipses for the mean.

Output 1.7.6. Scatter Plot with Confidence Ellipses (Experimental)

The confidence ellipse for the mean is centered at the means(x̄, ȳ). For further
details, see the section“Confidence and Prediction Ellipses”on page 33.

Example 1.8. Computing Partial Correlations

A partial correlation measures the strength of the linear relationship between two
variables, while adjusting for the effect of other variables.

The following statements request a partial correlation analysis of variablesHeight
andWidth while adjusting for the variablesLength3 andWeight. The latter vari-
ables, which are said to be “partialled out” of the analysis, are specified with the
PARTIAL statement.



Example 1.8. Computing Partial Correlations � 59

ods html;
ods graphics on;

title ’Fish Measurement Data’;
proc corr data=fish1 plots=scatter(alpha=.20 .30);

var Height Width;
partial Length3 Weight3;

run;

ods graphics off;
ods html close;

By default, the CORR procedure displays descriptive statistics for all the variables
and the partial variance and partial standard deviation for the VAR statement vari-
ables, as shown inOutput 1.8.1.

Output 1.8.1. Descriptive Statistics

Fish Measurement Data

The CORR Procedure

2 Partial Variables: Length3 Weight3
2 Variables: Height Width

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

Length3 34 38.38529 4.21628 1305 30.00000 46.50000
Weight3 34 8.44751 0.97574 287.21524 6.23168 10.00000
Height 34 15.22057 1.98159 517.49950 11.52000 18.95700
Width 34 5.43805 0.72967 184.89370 4.02000 6.74970

Simple Statistics

Partial Partial
Variable Variance Std Dev

Length3
Weight3
Height 0.26607 0.51582
Width 0.07315 0.27047

When a PARTIAL statement is specified, observations with missing values are ex-
cluded from the analysis. The partial correlations for the VAR statement variables
are shown inOutput 1.8.2.

The partial correlation between the variablesHeight andWidth is 0.25692, which
is much less than the unpartialled correlation, 0.92632. Thep-value for the partial
correlation is 0.1558.

The PLOTS=SCATTER option requests a scatter plot of the residuals for the variables
Height andWidth after controlling for the effect of variablesLength3 andWeight.



60 � Chapter 1. The CORR Procedure

The ALPHA= suboption requests80% and70% prediction ellipses. The scatter plot
is shown inOutput 1.8.3.

Output 1.8.2. Pearson Partial Correlation Coefficients

Fish Measurement Data

Pearson Partial Correlation Coefficients, N = 34
Prob > |r| under H0: Partial Rho=0

Height Width

Height 1.00000 0.25692
0.1558

Width 0.25692 1.00000
0.1558

Output 1.8.3. Partial Residual Scatter Plot (Experimental)

In Output 1.8.3, a standard deviation ofHeight has roughly the same length on the
X-axis as a standard deviation ofWidth on the Y-axis. The major axis length is not
significantly larger than the minor axis length, indicating a weak partial correlation
betweenHeight andWidth.



References � 61

References

Anderson, T.W. (1984),An Introduction to Multivariate Statistical Analysis,Second
Edition, New York: John Wiley & Sons.

Blum, J.R., Kiefer, J., and Rosenblatt, M. (1961), “Distribution Free Tests
of Independence Based on the Sample Distribution Function,”Annals of
Mathematical Statistics, 32, 485–498.

Conover, W.J. (1998),Practical Nonparametric Statistics, Third Edition, New York:
John Wiley & Sons, Inc.

Cronbach, L.J. (1951), “Coefficient Alpha and the Internal Structure of Tests,”
Psychometrika, 16, 297–334.

Fisher, R.A. (1915), “Frequency Distribution of the Values of the Correlation
Coefficient in Samples from an Indefinitely Large Population,”Biometrika, 10,
507–521.

Fisher, R.A. (1921), “On the “Probable Error” of a Coefficient of Correlation
Deduced from a Small Sample,”Metron, 1, 3–32.

Fisher, R.A. (1936), “The Use of Multiple Measurements in Taxonomic Problems,”
Annals of Eugenics, 7, 179–188.

Fisher, R.A. (1970),Statistical Methods for Research Workers,Fourteenth Edition,
Davien, CT: Hafner Publishing Company.

Hoeffding, W. (1948), “A Non-Parametric Test of Independence,”Annals of
Mathematical Statistics, 19, 546–557.

Hollander, M. and Wolfe, D. (1999),Nonparametric Statistical Methods, Second
Edition, New York: John Wiley & Sons, Inc.

Keeping, E.S. (1962),Introduction to Statistical Inference,New York: D. Van
Nostrand Cimpany, Inc.

Knight, W.E. (1966), “A Computer Method for Calculating Kendall’s Tau with
Ungrouped Data,”Journal of the American Statistical Association, 61, 436–439.

Moore, D.S. (2000),Statistics: Concepts and Controversies, Fifth Edition, New
York: W.H. Freeman & Company.

Mudholkar, G.S. (1983), “Fisher’sz-Transformation,”Encyclopedia of Statistical
Sciences, 3, 130–135.

Noether, G.E. (1967),Elements of Nonparametric Statistics, New York: John Wiley
& Sons, Inc.

Novick, M.R. (1967), “Coefficient Alpha and the Reliability of Composite
Measurements,”Psychometrika, 32, 1–13.

Nunnally, J.C. and Bernstein, I.H. (1994),Psychometric Theory, Third Edition, New
York: McGraw-Hill Companies.

Ott, R.L. and Longnecker, M.T. (2000),An Introduction to Statistical Methods and
Data Analysis, Fifth Edition, Belmont, CA: Wadsworth Publishing Company.



62 � Chapter 1. The CORR Procedure

SAS Institute Inc., “Measuring the Internal Consistency of a Test, Using PROC
CORR to Compute Cronbach’s Coefficient Alpha,”SAS Communications, 20:4,
TT2–TT5.

Spector, P.E. (1992),Summated Rating Scale Construction: An Introduction,
Newbury Park: Sage.



Chapter 2
The FREQ Procedure

Chapter Contents

OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

GETTING STARTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Frequency Tables and Statistics. . . . . . . . . . . . . . . . . . . . . . . . 66
Agreement Study Example. . . . . . . . . . . . . . . . . . . . . . . . . .72

SYNTAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
PROC FREQ Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . .75
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
EXACT Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
OUTPUT Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
TABLES Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
TEST Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
WEIGHT Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

DETAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
Inputting Frequency Counts. . . . . . . . . . . . . . . . . . . . . . . . . .98
Grouping with Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
Missing Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Statistical Computations. . . . . . . . . . . . . . . . . . . . . . . . . . . .102

Definitions and Notation. . . . . . . . . . . . . . . . . . . . . . . . . .102
Chi-Square Tests and Statistics. . . . . . . . . . . . . . . . . . . . . .103
Measures of Association. . . . . . . . . . . . . . . . . . . . . . . . . .108
Binomial Proportion . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
Risks and Risk Differences. . . . . . . . . . . . . . . . . . . . . . . .120
Odds Ratio and Relative Risks for 2 x 2 Tables. . . . . . . . . . . . . .122
Cochran-Armitage Test for Trend. . . . . . . . . . . . . . . . . . . . .124
Jonckheere-Terpstra Test. . . . . . . . . . . . . . . . . . . . . . . . . .125
Tests and Measures of Agreement. . . . . . . . . . . . . . . . . . . . .127
Cochran-Mantel-Haenszel Statistics. . . . . . . . . . . . . . . . . . . .134
Exact Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142

Computational Resources. . . . . . . . . . . . . . . . . . . . . . . . . . .147
Output Data Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148
Displayed Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151
ODS Table Names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158

EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161



64 � Chapter 2. The FREQ Procedure

Example 2.1. Creating an Output Data Set with Table Cell Frequencies. . . 161
Example 2.2. Computing Chi-Square Tests for One-Way Frequency Tables. 164
Example 2.3. Computing Binomial Proportions for One-Way Frequency

Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166
Example 2.4. Analyzing a 2x2 Contingency Table. . . . . . . . . . . . . .169
Example 2.5. Creating an Output Data Set Containing Chi-Square Statistics172
Example 2.6. Computing Cochran-Mantel-Haenszel

Statistics for a Stratified Table. . . . . . . . . . . . . . . . . . . .174
Example 2.7. Computing the Cochran-Armitage Trend Test. . . . . . . . .177
Example 2.8. Computing Friedman’s Chi-Square Statistic. . . . . . . . . .180
Example 2.9. Testing Marginal Homogeneity with

Cochran’s Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185



Chapter 2
The FREQ Procedure
Overview

The FREQ procedure produces one-way ton-way frequency and crosstabulation
(contingency) tables. For two-way tables, PROC FREQ computes tests and measures
of association. Forn-way tables, PROC FREQ does stratified analysis, computing
statistics within, as well as across, strata. Frequencies and statistics can also be out-
put to SAS data sets.

For one-way frequency tables, PROC FREQ can compute statistics to test for equal
proportions, specified proportions, or the binomial proportion. For contingency ta-
bles, PROC FREQ can compute various statistics to examine the relationships be-
tween two classification variables adjusting for any stratification variables. PROC
FREQ automatically displays the output in a report and can also save the output in a
SAS data set.

For some pairs of variables, you may want to examine the existence or the strength
of any association between the variables. To determine if an association exists, chi-
square tests are computed. To estimate the strength of an association, PROC FREQ
computes measures of association that tend to be close to zero when there is no asso-
ciation and close to the maximum (or minimum) value when there is perfect associa-
tion. The statistics for contingency tables include

• chi-square tests and measures

• measures of association

• risks (binomial proportions) and risk differences for2× 2 tables

• odds ratios and relative risks for2× 2 tables

• tests for trend

• tests and measures of agreement

• Cochran-Mantel-Haenszel statistics

PROC FREQ computes asymptotic standard errors, confidence intervals, and tests for
measures of association and measures of agreement. Exactp-values and confidence
intervals are available for various test statistics and measures. PROC FREQ also
performs stratified analyses that compute statistics within, as well as across, strata for
n-way tables. The statistics include Cochran-Mantel-Haenszel statistics and measures
of agreement.

In choosing measures of association to use in analyzing a two-way table, you should
consider the study design (which indicates whether the row and column variables are
dependent or independent), the measurement scale of the variables (nominal, ordinal,



66 � Chapter 2. The FREQ Procedure

or interval), the type of association that each measure is designed to detect, and any
assumptions required for valid interpretation of a measure. You should exercise care
in selecting measures that are appropriate for your data.

Similar comments apply to the choice and interpretation of the test statistics. For
example, the Mantel-Haenszel chi-square statistic requires an ordinal scale for both
variables and is designed to detect a linear association. The Pearson chi-square, on
the other hand, is appropriate for all variables and can detect any kind of association,
but it is less powerful for detecting a linear association because its power is dispersed
over a greater number of degrees of freedom (except for2× 2 tables).

Several SAS procedures produce frequency counts; only PROC FREQ computes chi-
square tests for one-way ton-way tables and measures of association and agreement
for contingency tables. Other procedures to consider for counting are TABULATE,
CHART, and UNIVARIATE. When you want to fit models to categorical data, use a
procedure such as CATMOD, GENMOD, LOGISTIC, PHREG, or PROBIT.

For more information on selecting the appropriate statistical analyses, refer to Agresti
(1996) or Stokes, Davis, and Koch (1995).

Getting Started

Frequency Tables and Statistics

The FREQ procedure provides easy access to statistics for testing for association in a
crosstabulation table.

In this example, high school students applied for courses in a summer enrichment
program: these courses included journalism, art history, statistics, graphic arts, and
computer programming. The students accepted were randomly assigned to classes
with and without internships in local companies. The following table contains counts
of the students who enrolled in the summer program by gender and whether they were
assigned an internship slot.

Table 2.1. Summer Enrichment Data

Enrollment
Gender Internship Yes No Total
boys yes 35 29 64
boys no 14 27 41
girls yes 32 10 42
girls no 53 23 76

The SAS data setSummerSchool is created by inputting the summer enrichment
data as cell count data, or providing the frequency count for each combination
of variable values. The following DATA step statements create the SAS data set
SummerSchool.



Frequency Tables and Statistics � 67

data SummerSchool;
input Gender $ Internship $ Enrollment $ Count @@;
datalines;

boys yes yes 35 boys yes no 29
boys no yes 14 boys no no 27
girls yes yes 32 girls yes no 10
girls no yes 53 girls no no 23
;

The variableGender takes the values ‘boys’ or ‘girls’, the variableInternship takes
the values ‘yes’ and ‘no’, and the variableEnrollment takes the values ‘yes’ and
‘no’. The variableCount contains the number of students corresponding to each
combination of data values. The double at sign (@@) indicates that more than one
observation is included on a single data line. In this DATA step, two observations are
included on each line.

Researchers are interested in whether there is an association between internship status
and summer program enrollment. The Pearson chi-square statistic is an appropriate
statistic to assess the association in the corresponding2 × 2 table. The following
PROC FREQ statements specify this analysis.

You specify the table for which you want to compute statistics with the TABLES
statement. You specify the statistics you want to compute with options after a slash
(/) in the TABLES statement.

proc freq data=SummerSchool order=data;
weight count;
tables Internship*Enrollment / chisq;

run;

The ORDER= option controls the order in which variable values are displayed in the
rows and columns of the table. By default, the values are arranged according to the
alphanumeric order of their unformatted values. If you specify ORDER=DATA, the
data are displayed in the same order as they occur in the input data set. Here, since
‘yes’ appears before ‘no’ in the data, ‘yes’ appears first in any table. Other options for
controlling order include ORDER=FORMATTED, which orders according to the for-
matted values, and ORDER=FREQUENCY, which orders by descending frequency
count.

In the TABLES statement,Internship*Enrollment specifies a table where the rows
are internship status and the columns are program enrollment. The CHISQ option
requests chi-square statistics for assessing association between these two variables.
Since the input data are in cell count form, the WEIGHT statement is required. The
WEIGHT statement names the variableCount, which provides the frequency of each
combination of data values.



68 � Chapter 2. The FREQ Procedure

Figure 2.1presents the crosstabulation ofInternship andEnrollment. In each cell,
the values printed under the cell count are the table percentage, row percentage, and
column percentage, respectively. For example, in the first cell, 63.21 percent of those
offered courses with internships accepted them and 36.79 percent did not.

The FREQ Procedure

Table of Internship by Enrollment

Internship Enrollment

Frequency|
Percent |
Row Pct |
Col Pct |yes |no | Total
---------+--------+--------+
yes | 67 | 39 | 106

| 30.04 | 17.49 | 47.53
| 63.21 | 36.79 |
| 50.00 | 43.82 |

---------+--------+--------+
no | 67 | 50 | 117

| 30.04 | 22.42 | 52.47
| 57.26 | 42.74 |
| 50.00 | 56.18 |

---------+--------+--------+
Total 134 89 223

60.09 39.91 100.00

Figure 2.1. Crosstabulation Table

Statistics for Table of Internship by Enrollment

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 0.8189 0.3655
Likelihood Ratio Chi-Square 1 0.8202 0.3651
Continuity Adj. Chi-Square 1 0.5899 0.4425
Mantel-Haenszel Chi-Square 1 0.8153 0.3666
Phi Coefficient 0.0606
Contingency Coefficient 0.0605
Cramer’s V 0.0606

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 67
Left-sided Pr <= F 0.8513
Right-sided Pr >= F 0.2213

Table Probability (P) 0.0726
Two-sided Pr <= P 0.4122

Sample Size = 223

Figure 2.2. Statistics Produced with the CHISQ Option



Frequency Tables and Statistics � 69

Figure 2.2displays the statistics produced by the CHISQ option. The Pearson chi-
square statistic is labeled ‘Chi-Square’ and has a value of 0.8189 with 1 degree of
freedom. The associatedp-value is 0.3655, which means that there is no significant
evidence of an association between internship status and program enrollment. The
other chi-square statistics have similar values and are asymptotically equivalent. The
other statistics (Phi Coefficient, Contingency Coefficient, and Cramer’sV ) are mea-
sures of association derived from the Pearson chi-square. For Fisher’s exact test,
the two-sidedp-value is 0.4122, which also shows no association between internship
status and program enrollment.

The analysis, so far, has ignored gender. However, it may be of interest to ask whether
program enrollment is associated with internship status after adjusting for gender.
You can address this question by doing an analysis of a set of tables, in this case, by
analyzing the set consisting of one for boys and one for girls. The Cochran-Mantel-
Haenszel statistic is appropriate for this situation: it addresses whether rows and
columns are associated after controlling for the stratification variable. In this case,
you would be stratifying by gender.

The FREQ statements for this analysis are very similar to those for the first analysis,
except that there is a third variable,Gender, in the TABLES statement. When you
cross more than two variables, the two rightmost variables construct the rows and
columns of the table, respectively, and the leftmost variables determine the stratifica-
tion.

proc freq data=SummerSchool;
weight count;
tables Gender*Internship*Enrollment / chisq cmh;

run;

This execution of PROC FREQ first produces two individual crosstabulation tables
of Internship*Enrollment, one for boys and one for girls. Chi-square statistics are
produced for each individual table.Figure 2.3shows the results for boys. Note that
the chi-square statistic for boys is significant at theα = 0.05 level of significance.
Boys offered a course with an internship are more likely to enroll than boys who are
not.

If you look at the individual table for girls, displayed inFigure 2.4, you see that
there is no evidence of association for girls between internship offers and program
enrollment.



70 � Chapter 2. The FREQ Procedure

The FREQ Procedure

Table 1 of Internship by Enrollment
Controlling for Gender=boys

Internship Enrollment

Frequency|
Percent |
Row Pct |
Col Pct |no |yes | Total
---------+--------+--------+
no | 27 | 14 | 41

| 25.71 | 13.33 | 39.05
| 65.85 | 34.15 |
| 48.21 | 28.57 |

---------+--------+--------+
yes | 29 | 35 | 64

| 27.62 | 33.33 | 60.95
| 45.31 | 54.69 |
| 51.79 | 71.43 |

---------+--------+--------+
Total 56 49 105

53.33 46.67 100.00

Statistics for Table 1 of Internship by Enrollment
Controlling for Gender=boys

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 4.2366 0.0396
Likelihood Ratio Chi-Square 1 4.2903 0.0383
Continuity Adj. Chi-Square 1 3.4515 0.0632
Mantel-Haenszel Chi-Square 1 4.1963 0.0405
Phi Coefficient 0.2009
Contingency Coefficient 0.1969
Cramer’s V 0.2009

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 27
Left-sided Pr <= F 0.9885
Right-sided Pr >= F 0.0311

Table Probability (P) 0.0196
Two-sided Pr <= P 0.0467

Sample Size = 105

Figure 2.3. Crosstabulation Table and Statistics for Boys



Frequency Tables and Statistics � 71

Table 2 of Internship by Enrollment
Controlling for Gender=girls

Internship Enrollment

Frequency|
Percent |
Row Pct |
Col Pct |no |yes | Total
---------+--------+--------+
no | 23 | 53 | 76

| 19.49 | 44.92 | 64.41
| 30.26 | 69.74 |
| 69.70 | 62.35 |

---------+--------+--------+
yes | 10 | 32 | 42

| 8.47 | 27.12 | 35.59
| 23.81 | 76.19 |
| 30.30 | 37.65 |

---------+--------+--------+
Total 33 85 118

27.97 72.03 100.00

Statistics for Table 2 of Internship by Enrollment
Controlling for Gender=girls

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 0.5593 0.4546
Likelihood Ratio Chi-Square 1 0.5681 0.4510
Continuity Adj. Chi-Square 1 0.2848 0.5936
Mantel-Haenszel Chi-Square 1 0.5545 0.4565
Phi Coefficient 0.0688
Contingency Coefficient 0.0687
Cramer’s V 0.0688

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 23
Left-sided Pr <= F 0.8317
Right-sided Pr >= F 0.2994

Table Probability (P) 0.1311
Two-sided Pr <= P 0.5245

Sample Size = 118

Figure 2.4. Crosstabulation Table and Statistics for Girls



72 � Chapter 2. The FREQ Procedure

These individual table results demonstrate the occasional problems with combining
information into one table and not accounting for information in other variables such
asGender. Figure 2.5contains the CMH results. There are three summary (CMH)
statistics; which one you use depends on whether your rows and/or columns have
an order inr × c tables. However, in the case of2 × 2 tables, ordering does not
matter and all three statistics take the same value. The CMH statistic follows the chi-
square distribution under the hypothesis of no association, and here, it takes the value
4.0186 with 1 degree of freedom. The associatedp-value is 0.0450, which indicates
a significant association at theα = 0.05 level.

Thus, when you adjust for the effect of gender in these data, there is an association
between internship and program enrollment. But, if you ignore gender, no association
is found. Note that the CMH option also produces other statistics, including estimates
and confidence limits for relative risk and odds ratios for2×2 tables and the Breslow-
Day Test. These results are not displayed here.

Summary Statistics for Internship by Enrollment
Controlling for Gender

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 4.0186 0.0450
2 Row Mean Scores Differ 1 4.0186 0.0450
3 General Association 1 4.0186 0.0450

Total Sample Size = 223

Figure 2.5. Test for the Hypothesis of No Association

Agreement Study Example

Medical researchers are interested in evaluating the efficacy of a new treatment for a
skin condition. Dermatologists from participating clinics were trained to conduct the
study and to evaluate the condition. After the training, two dermatologists examined
patients with the skin condition from a pilot study and rated the same patients. The
possible evaluations are terrible, poor, marginal, and clear.Table 2.2contains the
data.



Agreement Study Example � 73

Table 2.2. Skin Condition Data

Dermatologist 2
Dermatologist 1 Terrible Poor Marginal Clear
Terrible 10 4 1 0
Poor 5 10 12 2
Marginal 2 4 12 5
Clear 0 2 6 13

The dermatologists’ evaluations of the patients are contained in the variablesderm1
andderm2; the variablecount is the number of patients given a particular pair of
ratings. In order to evaluate the agreement of the diagnoses (a possible contribution
to measurement error in the study), thekappa coefficientis computed. You specify
the AGREE option in the TABLES statement and use the TEST statement to request
a test for the null hypothesis that their agreement is purely by chance. You specify
the keyword KAPPA to perform this test for the kappa coefficient. The results are
shown inFigure 2.6.

data SkinCondition;
input derm1 $ derm2 $ count;
datalines;

terrible terrible 10
terrible poor 4
terrible marginal 1
terrible clear 0
poor terrible 5
poor poor 10
poor marginal 12
poor clear 2
marginal terrible 2
marginal poor 4
marginal marginal 12
marginal clear 5
clear terrible 0
clear poor 2
clear marginal 6
clear clear 13
;

proc freq data=SkinCondition order=data;
weight count;
tables derm1*derm2 / agree noprint;
test kappa;

run;



74 � Chapter 2. The FREQ Procedure

The FREQ Procedure

Statistics for Table of derm1 by derm2

Simple Kappa Coefficient
--------------------------------
Kappa 0.3449
ASE 0.0724
95% Lower Conf Limit 0.2030
95% Upper Conf Limit 0.4868

Test of H0: Kappa = 0

ASE under H0 0.0612
Z 5.6366
One-sided Pr > Z <.0001
Two-sided Pr > |Z| <.0001

Sample Size = 88

Figure 2.6. Agreement Study

The kappa coefficient has the value 0.3449, which indicates slight agreement be-
tween the dermatologists, and the hypothesis test confirms that you can reject the
null hypothesis of no agreement. This conclusion is further supported by the confi-
dence interval of (0.2030, 0.4868), which suggests that the true kappa is greater than
zero. The AGREE option also produces Bowker’s test for symmetry and the weighted
kappa coefficient, but that output is not shown.

Syntax

The following statements are available in PROC FREQ.

PROC FREQ < options > ;
BY variables ;
EXACT statistic-options < / computation-options > ;
OUTPUT < OUT=SAS-data-set > options ;
TABLES requests < / options > ;
TEST options ;
WEIGHT variable < / option > ;

The PROC FREQ statement is the only required statement for the FREQ procedure.
If you specify the following statements, PROC FREQ produces a one-way frequency
table for each variable in the most recently created data set.

proc freq;
run;

The rest of this section gives detailed syntax information for the BY, EXACT,
OUTPUT, TABLES, TEST, and WEIGHT statements in alphabetical order after the
description of the PROC FREQ statement.Table 2.3summarizes the basic functions
of each statement.



PROC FREQ Statement � 75

Table 2.3. Summary of PROC FREQ Statements
Statement Description
BY calculates separate frequency or crosstabulation tables for each BY

group.
EXACT requests exact tests for specified statistics.
OUTPUT creates an output data set that contains specified statistics.
TABLES specifies frequency or crosstabulation tables and requests tests and

measures of association.
TEST requests asymptotic tests for measures of association and agree-

ment.
WEIGHT identifies a variable with values that weight each observation.

PROC FREQ Statement

PROC FREQ < options > ;

The PROC FREQ statement invokes the procedure.

The following table lists the options available in the PROC FREQ statement.
Descriptions follow in alphabetical order.

Table 2.4. PROC FREQ Statement Options
Option Description
DATA= specifies the input data set.
COMPRESS begins the next one-way table on the current page
FORMCHAR= specifies the outline and cell divider characters for the cells of the

crosstabulation table.
NLEVELS displays the number of levels for all TABLES variables
NOPRINT suppresses all displayed output.
ORDER= specifies the order for listing variable values.
PAGE displays one table per page.

You can specify the following options in the PROC FREQ statement.

COMPRESS
begins display of the next one-way frequency table on the same page as the preceding
one-way table if there is enough space to begin the table. By default, the next one-
way table begins on the current page only if the entire table fits on that page. The
COMPRESS option is not valid with the PAGE option.

DATA=SAS-data-set
names the SAS data set to be analyzed by PROC FREQ. If you omit the DATA=
option, the procedure uses the most recently created SAS data set.

FORMCHAR (1,2,7) =’ formchar-string’
defines the characters to be used for constructing the outlines and dividers for the
cells of contingency tables. The FORMCHAR= option can specify 20 different SAS
formatting characters used to display output; however, PROC FREQ uses only the
first, second, and seventh formatting characters. Therefore, the proper specification
for PROC FREQ is FORMCHAR(1,2,7)= ’formchar-string’. The formchar-string



76 � Chapter 2. The FREQ Procedure

should be three characters long. The characters are used to denote (1) vertical sep-
arator, (2) horizontal separator, and (7) vertical-horizontal intersection. You can use
any character informchar-string, including hexadecimal characters. If you use hex-
adecimal characters, you must put anx after the closing quote. For information on
which hexadecimal codes to use for which characters, consult the documentation for
your hardware.

Specifying all blanks forformchar-stringproduces tables with no outlines or dividers:

formchar (1,2,7)=’ ’

If you do not specify the FORMCHAR= option, PROC FREQ uses the default
formchar (1,2,7)=’|-+’

Refer to the CALENDAR, PLOT, and TABULATE procedures in theBase SAS 9.1
Procedures Guidefor more information on form characters.

Table 2.5. Formatting Characters Used by PROC FREQ
Position Default Used to Draw
1 | vertical separators
2 - horizontal separators
7 + intersections of vertical and horizontal separators

NLEVELS
displays the “Number of Variable Levels” table. This table provides the number of
levels for each variable named in the TABLES statements. See the section“Number
of Variable Levels Table”on page 151 for more information. PROC FREQ deter-
mines the variable levels from the formatted variable values, as described in the sec-
tion “Grouping with Formats”on page 99.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the
Output Delivery System (ODS). For more information, see Chapter 14, “Using the
Output Delivery System.” (SAS/STAT User’s Guide) .

Note: A NOPRINToption is also available in the TABLES statement. It suppresses
display of the crosstabulation tables but allows display of the requested statistics.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the order in which the values of the frequency and crosstabulation table
variables are to be reported. The following table shows how PROC FREQ interprets
values of the ORDER= option.

DATA orders values according to their order in the input data set.

FORMATTED orders values by their formatted values. This order is operating-
environment dependent. By default, the order is ascending.

FREQ orders values by descending frequency count.

INTERNAL orders values by their unformatted values, which yields the same
order that the SORT procedure does. This order is operating-
environment dependent.

By default, ORDER=INTERNAL. The ORDER= option does not apply to missing
values, which are always ordered first.



EXACT Statement � 77

PAGE
displays only one table per page. Otherwise, PROC FREQ displays multiple tables
per page as space permits. The PAGE option is not valid with the COMPRESS option.

BY Statement

BY variables ;

You can specify a BY statement with PROC FREQ to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the FREQ procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theBase SAS 9.1 Procedures Guide.

EXACT Statement

EXACT statistic-options < / computation-options > ;

The EXACT statement requests exact tests or confidence limits for the specified
statistics. Optionally, PROC FREQ computes Monte Carlo estimates of the exact
p-values. Thestatistic-optionsspecify the statistics for which to provide exact tests
or confidence limits. Thecomputation-optionsspecify options for the computation
of exact statistics.

CAUTION: PROC FREQ computes exact tests with fast and efficient algorithms
that are superior to direct enumeration. Exact tests are appropriate when a data set
is small, sparse, skewed, or heavily tied. For some large problems, computation of
exact tests may require a large amount of time and memory. Consider using asymp-
totic tests for such problems. Alternatively, when asymptotic methods may not be
sufficient for such large problems, consider using Monte Carlo estimation of exact
p-values. See the section“Computational Resources”on page 145 for more informa-
tion.



78 � Chapter 2. The FREQ Procedure

Statistic-Options

The statistic-optionsspecify the statistics for which exact tests or confidence lim-
its are computed. PROC FREQ can compute exactp-values for the following
hypothesis tests: chi-square goodness-of-fit test for one-way tables; Pearson chi-
square, likelihood-ratio chi-square, Mantel-Haenszel chi-square, Fisher’s exact test,
Jonckheere-Terpstra test, Cochran-Armitage test for trend, and McNemar’s test for
two-way tables. PROC FREQ can also compute exactp-values for tests of the fol-
lowing statistics: Pearson correlation coefficient, Spearman correlation coefficient,
simple kappa coefficient, weighted kappa coefficient, and common odds ratio. PROC
FREQ can compute exactp-values for the binomial proportion test for one-way ta-
bles, as well as exact confidence limits for the binomial proportion. Additionally,
PROC FREQ can compute exact confidence limits for the odds ratio for2× 2 tables,
as well as exact confidence limits for the common odds ratio for stratified2×2 tables.

Table 2.6 lists the availablestatistic-optionsand the exact statistics computed. Most
of the option names are identical to the corresponding options in the TABLES state-
ment and the OUTPUT statement. You can request exact computations for groups
of statistics by using options that are identical to the following TABLES statement
options: CHISQ, MEASURES, and AGREE. For example, when you specify the
CHISQ option in the EXACT statement, PROC FREQ computes exactp-values for
the Pearson chi-square, likelihood-ratio chi-square, and Mantel-Haenszel chi-square
tests. You request exactp-values for an individual test by specifying one of the
statistic-optionsshown inTable 2.6.

Table 2.6. EXACT Statement Statistic-Options

Option Exact Statistics Computed
AGREE McNemar’s test for2 × 2 tables, simple kappa coefficient, and

weighted kappa coefficient
BINOMIAL binomial proportion test for one-way tables
CHISQ chi-square goodness-of-fit test for one-way tables; Pearson chi-

square, likelihood-ratio chi-square, and Mantel-Haenszel chi-
square tests for two-way tables

COMOR confidence limits for the common odds ratio forh× 2× 2 tables;
common odds ratio test

FISHER Fisher’s exact test
JT Jonckheere-Terpstra test
KAPPA test for the simple kappa coefficient
LRCHI likelihood-ratio chi-square test
MCNEM McNemar’s test
MEASURES tests for the Pearson correlation and the Spearman correlation, and

the odds ratio confidence limits for2× 2 tables
MHCHI Mantel-Haenszel chi-square test
OR confidence limits for the odds ratio for2× 2 tables
PCHI Pearson chi-square test
PCORR test for the Pearson correlation coefficient
SCORR test for the Spearman correlation coefficient
TREND Cochran-Armitage test for trend
WTKAP test for the weighted kappa coefficient



EXACT Statement � 79

Computation-Options

Thecomputation-optionsspecify options for computation of exact statistics. You can
specify the followingcomputation-optionsin the EXACT statement.ALPHA=α
specifies the level of the confidence limits for Monte Carlop-value estimates. The
value of the ALPHA= option must be between 0 and 1, and the default is 0.01.
A confidence level ofα produces100(1 − α)% confidence limits. The default of
ALPHA=.01 produces 99% confidence limits for the Monte Carlo estimates. The
ALPHA= option invokes theMC option.

MAXTIME=value
specifies the maximum clock time (in seconds) that PROC FREQ can use to compute
an exactp-value. If the procedure does not complete the computation within the spec-
ified time, the computation terminates. The value of the MAXTIME= option must be
a positive number. The MAXTIME= option is valid for Monte Carlo estimation of
exactp-values, as well as for direct exactp-value computation.

See the section“Computational Resources”on page 145 for more information.

MC
requests Monte Carlo estimation of exactp-values instead of direct exactp-value
computation. Monte Carlo estimation can be useful for large problems that require a
great amount of time and memory for exact computations but for which asymptotic
approximations may not be sufficient. See the section“Monte Carlo Estimation”on
page 146 for more information.

The MC option is available for all EXACTstatistic-optionsexcept BINOMIAL,
COMOR, MCNEM, and OR. PROC FREQ computes only exact tests or confidence
limits for those statistics.

TheALPHA=, N=, andSEED=options also invoke the MC option.

N=n
specifies the number of samples for Monte Carlo estimation. The value of the N=
option must be a positive integer, and the default is 10000 samples. Larger values
of n produce more precise estimates of exactp-values. Because larger values ofn
generate more samples, the computation time increases. The N= option invokes the
MC option.

POINT
requests exact point probabilities for the test statistics.

The POINT option is available for all the EXACT statementstatistic-optionsexcept
the OR option, which provides exact confidence limits as opposed to an exact test.
The POINT option is not available with theMC option.

SEED=number
specifies the initial seed for random number generation for Monte Carlo estimation.
The value of the SEED= option must be an integer. If you do not specify the SEED=
option, or if the SEED= value is negative or zero, PROC FREQ uses the time of day
from the computer’s clock to obtain the initial seed. The SEED= option invokes the
MC option.



80 � Chapter 2. The FREQ Procedure

Using TABLES Statement Options with the EXACT Statement

If you use only one TABLES statement, you do not need to specify options in the
TABLES statement that are identical to options appearing in the EXACT statement.
PROC FREQ automatically invokes the corresponding TABLES statement option
when you specify the option in the EXACT statement. However, when you use mul-
tiple TABLES statements and want exact computations, you must specify options in
the TABLES statement to compute the desired statistics. PROC FREQ then performs
exact computations for all statistics that are also specified in the EXACT statement.

OUTPUT Statement

OUTPUT < OUT= SAS-data-set > options ;

The OUTPUT statement creates a SAS data set containing statistics computed by
PROC FREQ. The variables contain statistics for each two-way table or stratum, as
well as summary statistics across all strata.

Only one OUTPUT statement is allowed for each execution of PROC FREQ. You
must specify a TABLES statement with the OUTPUT statement. If you use multiple
TABLES statements, the contents of the OUTPUT data set correspond to the last
TABLES statement. If you use multiple table requests in a TABLES statement, the
contents of the OUTPUT data set correspond to the last table request.

For more information, see the section“Output Data Sets”on page 148.

Note that you can use the Output Delivery System (ODS) to create a SAS data set
from any piece of PROC FREQ output. For more information, seeTable 2.11on page
159 and Chapter 14, “Using the Output Delivery System.” (SAS/STAT User’s Guide)

You can specify the following options in an OUTPUT statement.

OUT=SAS-data-set
names the output data set. If you omit the OUT= option, the data set is named DATAn,
wheren is the smallest integer that makes the name unique.

options
specify the statistics that you want in the output data set. Available statistics are those
produced by PROC FREQ for each one-way or two-way table, as well as the summary
statistics across all strata. When you request a statistic, the OUTPUT data set contains
that estimate or test statistic plus any associated standard error, confidence limits,p-
values, and degrees of freedom. You can output statistics by using group options
identical to those specified in the TABLES statement: AGREE, ALL, CHISQ, CMH,
and MEASURES. Alternatively, you can request an individual statistic by specifying
one of the options shown in the following table.



OUTPUT Statement � 81

Table 2.7. OUTPUT Statement Options and Required TABLES Statement Options

Option Output Data Set Statistics Required TABLES
Statement Option

AGREE McNemar’s test for2 × 2 tables, simple
kappa coefficient, and weighted kappa
coefficient; for square tables with more
than two response categories, Bowker’s
test of symmetry; for multiple strata,
overall simple and weighted kappa statis-
tics, and tests for equal kappas among
strata; for multiple strata with two re-
sponse categories, Cochran’sQ test

AGREE

AJCHI continuity-adjusted chi-square for2 × 2
tables

ALL or CHISQ

ALL all statistics under CHISQ, MEASURES,
and CMH, and the number of nonmissing
subjects

ALL

BDCHI Breslow-Day test ALL or CMH or CMH1
or CMH2

BIN | BINOMIAL for one-way tables, binomial proportion
statistics

BINOMIAL

CHISQ chi-square goodness-of-fit test for one-
way tables; for two-way tables, Pearson
chi-square, likelihood-ratio chi-square,
continuity-adjusted chi-square for2 ×
2 tables, Mantel-Haenszel chi-square,
Fisher’s exact test for2 × 2 tables, phi
coefficient, contingency coefficient, and
Cramer’sV

ALL or CHISQ

CMH Cochran-Mantel-Haenszel correlation,
row mean scores (ANOVA), and general
association statistics; for2 × 2 tables,
logit and Mantel-Haenszel adjusted odds
ratios, relative risks, and Breslow-Day
test

ALL or CMH

CMH1 same as CMH, but excludes general as-
sociation and row mean scores (ANOVA)
statistics

ALL or CMH or CMH1

CMH2 same as CMH, but excludes the general
association statistic

ALL or CMH or CMH2

CMHCOR Cochran-Mantel-Haenszel correlation
statistic

ALL or CMH or CMH1
or CMH2

CMHGA Cochran-Mantel-Haenszel general asso-
ciation statistic

ALL or CMH

CMHRMS Cochran-Mantel-Haenszel row mean
scores (ANOVA) statistic

ALL or CMH or CMH2

COCHQ Cochran’sQ AGREE



82 � Chapter 2. The FREQ Procedure

Table 2.7. (continued)

Option Output Data Set Statistics Required TABLES
Statement Option

CONTGY contingency coefficient ALL or CHISQ
CRAMV Cramer’sV ALL or CHISQ
EQKAP test for equal simple kappas AGREE
EQWKP test for equal weighted kappas AGREE
FISHER | EXACT Fisher’s exact test ALL or CHISQ∗

GAMMA gamma ALL or MEASURES
JT Jonckheere-Terpstra test JT
KAPPA simple kappa coefficient AGREE
KENTB Kendall’s tau-b ALL or MEASURES
LAMCR lambda asymmetric(C|R) ALL or MEASURES
LAMDAS lambda symmetric ALL or MEASURES
LAMRC lambda asymmetric(R|C) ALL or MEASURES
LGOR adjusted logit odds ratio ALL or CMH or CMH1

or CMH2
LGRRC1 adjusted column 1 logit relative risk ALL or CMH or CMH1

or CMH2
LGRRC2 adjusted column 2 logit relative risk ALL or CMH or CMH1

or CMH2
LRCHI likelihood-ratio chi-square ALL or CHISQ
MCNEM McNemar’s test AGREE
MEASURES gamma, Kendall’s tau-b, Stuart’s

tau-c, Somers’ D(C|R), Somers’
D(R|C), Pearson correlation coefficient,
Spearman correlation coefficient, lambda
asymmetric(C|R), lambda asymmetric
(R|C), lambda symmetric, uncertainty
coefficient(C|R), uncertainty coefficient
(R|C), and symmetric uncertainty coef-
ficient; for 2 × 2 tables, odds ratio and
relative risks

ALL or MEASURES

MHCHI Mantel-Haenszel chi-square ALL or CHISQ
MHOR adjusted Mantel-Haenszel odds ratio ALL or CMH or CMH1

or CMH2
MHRRC1 adjusted column 1 Mantel-Haenszel rela-

tive risk
ALL or CMH or CMH1
or CMH2

MHRRC2 adjusted column 2 Mantel-Haenszel rela-
tive risk

ALL or CMH or CMH1
or CMH2

N number of nonmissing subjects for the
stratum

NMISS number of missing subjects for the stra-
tum

∗ALL and CHISQ compute Fisher’s exact test for2× 2 tables. Use the FISHER option to compute
Fisher’s exact test for generalrxc tables.



OUTPUT Statement � 83

Table 2.7. (continued)

Option Output Data Set Statistics Required TABLES
Statement Option

OR odds ratio ALL or MEASURES
or RELRISK

PCHI chi-square goodness-of-fit test for one-
way tables; for two-way tables, Pearson
chi-square

ALL or CHISQ

PCORR Pearson correlation coefficient ALL or MEASURES
PHI phi coefficient ALL or CHISQ
PLCORR polychoric correlation coefficient PLCORR
RDIF1 column 1 risk difference (row 1 - row 2) RISKDIFF
RDIF2 column 2 risk difference (row 1 - row 2) RISKDIFF
RELRISK odds ratio and relative risks for2 × 2 ta-

bles
ALL or MEASURES
or RELRISK

RISKDIFF risks and risk differences RISKDIFF
RISKDIFF1 column 1 risks and risk difference RISKDIFF
RISKDIFF2 column 2 risks and risk difference RISKDIFF
RRC1 column 1 relative risk ALL or MEASURES

or RELRISK
RRC2 column 2 relative risk ALL or MEASURES

or RELRISK
RSK1 column 1 risk (overall) RISKDIFF
RSK11 column 1 risk, for row 1 RISKDIFF
RSK12 column 2 risk, for row 1 RISKDIFF
RSK2 column 2 risk (overall) RISKDIFF
RSK21 column 1 risk, for row 2 RISKDIFF
RSK22 column 2 risk, for row 2 RISKDIFF
SCORR Spearman correlation coefficient ALL or MEASURES
SMDCR Somers’D(C|R) ALL or MEASURES
SMDRC Somers’D(R|C) ALL or MEASURES
STUTC Stuart’s tau-c ALL or MEASURES
TREND Cochran-Armitage test for trend TREND
TSYMM Bowker’s test of symmetry AGREE
U symmetric uncertainty coefficient ALL or MEASURES
UCR uncertainty coefficient(C|R) ALL or MEASURES
URC uncertainty coefficient(R|C) ALL or MEASURES
WTKAP weighted kappa coefficient AGREE

Using the TABLES Statement with the OUTPUT Statement
In order to specify that the OUTPUT data set contain a particular statistic, you must
have PROC FREQ compute the statistic by using the corresponding option in the
TABLES statement or the EXACT statement. For example, you cannot specify the
option PCHI (Pearson chi-square) in the OUTPUT statement without also specifying
a TABLES statement option or an EXACT statement option to compute the Pearson
chi-square. The TABLES statement option ALL or CHISQ computes the Pearson chi-
square. Additionally, if you have only one TABLES statement, the EXACT statement
option CHISQ or PCHI computes the Pearson chi-square.



84 � Chapter 2. The FREQ Procedure

TABLES Statement

TABLES requests < / options > ;

The TABLES statement requests one-way ton-way frequency and crosstabulation
tables and statistics for those tables.

If you omit the TABLES statement, PROC FREQ generates one-way frequency tables
for all data set variables that are not listed in the other statements.

The following argument is required in the TABLES statement.

requests
specify the frequency and crosstabulation tables to produce. A request is composed
of one variable name or several variable names separated by asterisks. To request a
one-way frequency table, use a single variable. To request a two-way crosstabulation
table, use an asterisk between two variables. To request a multiway table (ann-way
table, wheren>2), separate the desired variables with asterisks. The unique values of
these variables form the rows, columns, and strata of the table.

For two-way to multiway tables, the values of the last variable form the crosstab-
ulation table columns, while the values of the next-to-last variable form the rows.
Each level (or combination of levels) of the other variables forms one stratum. PROC
FREQ produces a separate crosstabulation table for each stratum. For example, a
specification ofA*B*C*D in a TABLES statement producesk tables, wherek is the
number of different combinations of values forA andB. Each table lists the values
for C down the side and the values forD across the top.

You can use multiple TABLES statements in the PROC FREQ step. PROC FREQ
builds all the table requests in one pass of the data, so that there is essentially no
loss of efficiency. You can also specify any number of table requests in a single
TABLES statement. To specify multiple table requests quickly, use a grouping syntax
by placing parentheses around several variables and joining other variables or variable
combinations. For example, the following statements illustrate grouping syntax.

Table 2.8. Grouping Syntax
Request Equivalent to
tablesA*(B C); tablesA*B A*C;
tables (A B)*(C D); tablesA*C B*C A*D B*D;
tables (A B C)*D; tablesA*D B*D C*D;
tablesA – – C; tablesA B C;
tables (A – – C)*D; tablesA*D B*D C*D;

Without Options

If you request a one-way frequency table for a variable without specifying options,
PROC FREQ produces frequencies, cumulative frequencies, percentages of the total
frequency, and cumulative percentages for each value of the variable. If you request a
two-way or ann-way crosstabulation table without specifying options, PROC FREQ
produces crosstabulation tables that include cell frequencies, cell percentages of the
total frequency, cell percentages of row frequencies, and cell percentages of column



TABLES Statement � 85

frequencies. The procedure excludes observations with missing values from the table
but displays the total frequency of missing observations below each table.

Options

The following table lists the options available with the TABLES statement.
Descriptions follow in alphabetical order.

Table 2.9. TABLES Statement Options

Option Description
Control Statistical Analysis
AGREE requests tests and measures of classification agreement
ALL requests tests and measures of association produced by CHISQ,

MEASURES, and CMH
ALPHA= sets the confidence level for confidence limits
BDT requests Tarone’s adjustment for the Breslow-Day test
BINOMIAL requests binomial proportion, confidence limits and test for one-

way tables
BINOMIALC requests BINOMIAL statistics with a continuity correction
CHISQ requests chi-square tests and measures of association based on chi-

square
CL requests confidence limits for the MEASURES statistics
CMH requests all Cochran-Mantel-Haenszel statistics
CMH1 requests the CMH correlation statistic, and adjusted relative risks

and odds ratios
CMH2 requests CMH correlation and row mean scores (ANOVA) statis-

tics, and adjusted relative risks and odds ratios
CONVERGE= specifies convergence criterion to compute polychoric correlation
FISHER requests Fisher’s exact test for tables larger than2× 2
JT requests Jonckheere-Terpstra test
MAXITER= specifies maximum number of iterations to compute polychoric

correlation
MEASURES requests measures of association and their asymptotic standard er-

rors
MISSING treats missing values as nonmissing
PLCORR requests polychoric correlation
RELRISK requests relative risk measures for2× 2 tables
RISKDIFF requests risks and risk differences for2× 2 tables
RISKDIFFC requests RISKDIFF statistics with a continuity correction
SCORES= specifies the type of row and column scores
TESTF= specifies expected frequencies for a one-way table chi-square test
TESTP= specifies expected proportions for a one-way table chi-square test
TREND requests Cochran-Armitage test for trend



86 � Chapter 2. The FREQ Procedure

Table 2.9. (continued)

Option Description
Control Additional Table Information
CELLCHI2 displays each cell’s contribution to the total Pearson chi-square

statistic
CUMCOL displays the cumulative column percentage in each cell
DEVIATION displays the deviation of the cell frequency from the expected

value for each cell
EXPECTED displays the expected cell frequency for each cell
MISSPRINT displays missing value frequencies
SPARSE lists all possible combinations of variable levels even when a com-

bination does not occur
TOTPCT displays percentage of total frequency onn-way tables whenn > 2

Control Displayed Output
CONTENTS= specifies the HTML contents link for crosstabulation tables
CROSSLIST displays crosstabulation tables in ODS column format
FORMAT= formats the frequencies in crosstabulation tables
LIST displays two-way ton-way tables in list format
NOCOL suppresses display of the column percentage for each cell
NOCUM suppresses display of cumulative frequencies and cumulative per-

centages in one-way frequency tables and in list format
NOFREQ suppresses display of the frequency count for each cell
NOPERCENT suppresses display of the percentage, row percentage, and column

percentage in crosstabulation tables, or percentages and cumula-
tive percentages in one-way frequency tables and in list format

NOPRINT suppresses display of tables but displays statistics
NOROW suppresses display of the row percentage for each cell
NOSPARSE suppresses zero cell frequencies in the list display and in the OUT=

data set when ZEROS is specified
NOWARN suppresses log warning message for the chi-square test
PRINTKWT displays kappa coefficient weights
SCOROUT displays the row and the column scores

Create an Output Data Set
OUT= specifies an output data set to contain variable values and fre-

quency counts
OUTCUM includes the cumulative frequency and cumulative percentage in

the output data set for one-way tables
OUTEXPECT includes the expected frequency of each cell in the output data set
OUTPCT includes the percentage of column frequency, row frequency, and

two-way table frequency in the output data set



TABLES Statement � 87

You can specify the following options in a TABLES statement.

AGREE < (WT=FC) >
requests tests and measures of classification agreement for square tables. The
AGREE option provides McNemar’s test for2 × 2 tables and Bowker’s test of sym-
metry for tables with more than two response categories. The AGREE option also
produces the simple kappa coefficient, the weighted kappa coefficient, the asymptotic
standard errors for the simple and weighted kappas, and the corresponding confidence
limits. When there are multiple strata, the AGREE option provides overall simple and
weighted kappas as well as tests for equal kappas among strata. When there are mul-
tiple strata and two response categories, PROC FREQ computes Cochran’sQ test.
For more information, see the section“Tests and Measures of Agreement”on page
127.

The (WT=FC) specification requests that PROC FREQ use Fleiss-Cohen weights to
compute the weighted kappa coefficient. By default, PROC FREQ uses Cicchetti-
Allison weights. See the section“Weighted Kappa Coefficient”on page 130 for
more information. You can specify thePRINTKWT option to display the kappa
coefficient weights.

AGREE statistics are computed only for square tables, where the number of rows
equals the number of columns. If your table is not square due to observations with
zero weights, you can use theZEROSoption in the WEIGHT statement to include
these observations. For more details, see the section“Tables with Zero Rows and
Columns”on page 133.

ALL
requests all of the tests and measures that are computed by theCHISQ, MEASURES,
andCMH options. The number of CMH statistics computed can be controlled by the
CMH1 andCMH2 options.

ALPHA=α
specifies the level of confidence limits. The value of the ALPHA= option must be be-
tween 0 and 1, and the default is 0.05. A confidence level ofα produces100(1−α)%
confidence limits. The default of ALPHA=0.05 produces 95% confidence limits.

ALPHA= applies to confidence limits requested by TABLES statement options.
There is a separateALPHA= option in the EXACT statement that sets the level of
confidence limits for Monte Carlo estimates of exactp-values, which are requested
in the EXACT statement.

BDT
requests Tarone’s adjustment in the Breslow-Day test for homogeneity of odds ratios.
(You must specify theCMH option to compute the Breslow-Day test.) See the sec-
tion “Breslow-Day Test for Homogeneity of the Odds Ratios”on page 142 for more
information.

BINOMIAL < (P= value) | (LEVEL= level-number | level-value) >
requests the binomial proportion for one-way tables. The BINOMIAL option also
provides the asymptotic standard error, asymptotic and exact confidence intervals,



88 � Chapter 2. The FREQ Procedure

and the asymptotic test for the binomial proportion. To request an exact test for the
binomial proportion, use the BINOMIAL option in theEXACT statement.

To specify the null hypothesis proportion for the test, use P=. If you omit P=value,
PROC FREQ uses 0.5 as the default for the test. By default, BINOMIAL computes
the proportion of observations for the first variable level that appears in the output.
To specify a different level, use LEVEL=level-numberor LEVEL=level-value, where
level-numberis the variable level’s number or order in the output, andlevel-valueis
the formatted value of the variable level.

To include a continuity correction in the asymptotic confidence interval and test, use
theBINOMIALC option instead of the BINOMIAL option.

See the section“Binomial Proportion”on page 118 for more information.

BINOMIALC < (P= value) | (LEVEL= level-number | level-value) >
requests theBINOMIAL option statistics for one-way tables, and includes a conti-
nuity correction in the asymptotic confidence interval and the asymptotic test. The
BINOMIAL option statistics include the binomial proportion, the asymptotic stan-
dard error, asymptotic and exact confidence intervals, and the asymptotic test for the
binomial proportion. To request an exact test for the binomial proportion, use the
BINOMIAL option in theEXACT statement.

To specify the null hypothesis proportion for the test, use P=. If you omit P=value,
PROC FREQ uses 0.5 as the default for the test. By default BINOMIALC computes
the proportion of observations for the first variable level that appears in the output.
To specify a different level, use LEVEL=level-numberor LEVEL=level-value, where
level-numberis the variable level’s number or order in the output, andlevel-valueis
the formatted value of the variable level.

See the section“Binomial Proportion”on page 118 for more information.

CELLCHI2
displays each crosstabulation table cell’s contribution to the total Pearson chi-square
statistic, which is computed as

(frequency− expected)2

expected

The CELLCHI2 option has no effect for one-way tables or for tables that are dis-
played with the LIST option.

CHISQ
requests chi-square tests of homogeneity or independence and measures of associa-
tion based on chi-square. The tests include the Pearson chi-square, likelihood-ratio
chi-square, and Mantel-Haenszel chi-square. The measures include the phi coeffi-
cient, the contingency coefficient, and Cramer’sV . For 2 × 2 tables, the CHISQ
option includes Fisher’s exact test and the continuity-adjusted chi-square. For one-
way tables, the CHISQ option requests a chi-square goodness-of-fit test for equal
proportions. If you specify the null hypothesis proportions with theTESTP=option,
then PROC FREQ computes a chi-square goodness-of-fit test for the specified pro-
portions. If you specify null hypothesis frequencies with theTESTF=option, PROC



TABLES Statement � 89

FREQ computes a chi-square goodness-of-fit test for the specified frequencies. See
the section“Chi-Square Tests and Statistics”on page 103 for more information.

CL
requests confidence limits for theMEASURES statistics. If you omit the
MEASURES option, the CL option invokes MEASURES. The FREQ procedure
determines the confidence coefficient using theALPHA= option, which, by default,
equals 0.05 and produces 95% confidence limits.

For more information, see the section“Confidence Limits”on page 109.

CMH
requests Cochran-Mantel-Haenszel statistics, which test for association between the
row and column variables after adjusting for the remaining variables in a multiway
table. In addition, for2 × 2 tables, PROC FREQ computes the adjusted Mantel-
Haenszel and logit estimates of the odds ratios and relative risks and the correspond-
ing confidence limits. For the stratified2 × 2 case, PROC FREQ computes the
Breslow-Day test for homogeneity of odds ratios. (To request Tarone’s adjustment
for the Breslow-Day test, use theBDT option.) TheCMH1 andCMH2 options con-
trol the number of CMH statistics that PROC FREQ computes. For more information,
see the section“Cochran-Mantel-Haenszel Statistics”on page 134.

CMH1
requests the Cochran-Mantel-Haenszel correlation statistic and, for2 × 2 tables, the
adjusted Mantel-Haenszel and logit estimates of the odds ratios and relative risks
and the corresponding confidence limits. For the stratified2 × 2 case, PROC FREQ
computes the Breslow-Day test for homogeneity of odds ratios. Except for2 × 2
tables, the CMH1 option requires less memory than theCMH option, which can
require an enormous amount for large tables.

CMH2
requests the Cochran-Mantel-Haenszel correlation statistic, row mean scores
(ANOVA) statistic, and, for2 × 2 tables, the adjusted Mantel-Haenszel and logit
estimates of the odds ratios and relative risks and the corresponding confidence
limits. For the stratified2× 2 case, PROC FREQ computes the Breslow-Day test for
homogeneity of odds ratios. Except for tables with two columns, the CMH2 option
requires less memory than theCMH option, which can require an enormous amount
for large tables.

CONTENTS=link-text
specifies the text for the HTML contents file links to crosstabulation tables. For
information on HTML output, refer to theSAS Output Delivery System User’s Guide.
The CONTENTS= option affects only the HTML contents file, and not the HTML
body file.

If you omit the CONTENTS= option, by default, the HTML link text for crosstabu-
lation tables is “Cross-Tabular Freq Table.”

Note that links to all crosstabulation tables produced by a single TABLES statement
use the same text. To specify different text for different crosstabulation table links,



90 � Chapter 2. The FREQ Procedure

request the tables in separate TABLES statements and use the CONTENTS= option
in each TABLES statement.

The CONTENTS= option affects only links to crosstabulation tables. It does not
affect links to other PROC FREQ tables. To specify link text for any other PROC
FREQ table, you can use PROC TEMPLATE to create a customized table defini-
tion. The CONTENTS–LABEL attribute in the DEFINE TABLE statement of PROC
TEMPLATE specifies the contents file link for the table. For detailed information,
refer to the chapter titled “The TEMPLATE Procedure” in theSAS Output Delivery
System User’s Guide.

CONVERGE=value
specifies the convergence criterion for computing the polychoric correlation when
you specify thePLCORRoption. The value of the CONVERGE= option must be a
positive number; by default, CONVERGE=0.0001. Iterative computation of the poly-
choric correlation stops when the convergence measure falls below the value of the
CONVERGE= option or when the number of iterations exceeds the value specified
in theMAXITER= option, whichever happens first.

See the section“Polychoric Correlation”on page 116 for more information.

CROSSLIST
displays crosstabulation tables in ODS column format, instead of the default crosstab-
ulation cell format. In a CROSSLIST table display, the rows correspond to the
crosstabulation table cells, and the columns correspond to descriptive statistics such
as Frequency, Percent, and so on. See the section“Multiway Tables”on page 152 for
details on the contents of the CROSSLIST table.

The CROSSLIST table displays the same information as the default crosstabulation
table, but uses an ODS column format instead of the table cell format. Unlike the
default crosstabulation table, the CROSSLIST table has a table definition that you
can customize with PROC TEMPLATE. For more information, refer to the chapter
titled “The TEMPLATE Procedure” in theSAS Output Delivery System User’s Guide.

You can control the contents of a CROSSLIST table with the same options available
for the default crosstabulation table. These include theNOFREQ, NOPERCENT,
NOROW, and NOCOL options. You can request additional information in a
CROSSLIST table with theCELLCHI2, DEVIATION, EXPECTED, MISSPRINT,
andTOTPCToptions.

The FORMAT= option and theCUMCOL option have no effect for CROSSLIST
tables. You cannot specify both theLIST option and the CROSSLIST option in the
same TABLES statement.

You can use theNOSPARSEoption to suppress display of variable levels with zero
frequency in CROSSLIST tables. By default for CROSSLIST tables, PROC FREQ
displays all levels of the column variable within each level of the row variable, includ-
ing any column variable levels with zero frequency for that row. And for multiway
tables displayed with the CROSSLIST option, the procedure displays all levels of
the row variable for each stratum of the table by default, including any row variable
levels with zero frequency for the stratum.



TABLES Statement � 91

CUMCOL
displays the cumulative column percentages in the cells of the crosstabulation table.

DEVIATION
displays the deviation of the cell frequency from the expected frequency for each cell
of the crosstabulation table. The DEVIATION option is valid for contingency tables
but has no effect on tables produced with the LIST option.

EXPECTED
displays the expected table cell frequencies under the hypothesis of independence (or
homogeneity). The EXPECTED option is valid for crosstabulation tables but has no
effect on tables produced with the LIST option.

FISHER | EXACT
requests Fisher’s exact test for tables that are larger than2 × 2. This test is also
known as the Freeman-Halton test. For more information, see the section“Fisher’s
Exact Test”on page 106 and the“EXACT Statement”section on page 77.

If you omit theCHISQoption in the TABLES statement, the FISHER option invokes
CHISQ. You can also request Fisher’s exact test by specifying the FISHER option in
theEXACT statement.

CAUTION: For tables with many rows or columns or with large total frequency,
PROC FREQ may require a large amount of time or memory to compute exactp-
values. See the section“Computational Resources”on page 145 for more informa-
tion.

FORMAT=format-name
specifies a format for the following crosstabulation table cell values: frequency, ex-
pected frequency, and deviation. PROC FREQ also uses this format to display the
total row and column frequencies for crosstabulation tables.

You can specify any standard SAS numeric format or a numeric format defined
with the FORMAT procedure. The format length must not exceed 24. If you omit
FORMAT=, by default, PROC FREQ uses the BEST6. format to display frequencies
less than 1E6, and the BEST7. format otherwise.

To change formats for all other FREQ tables, you can use PROC TEMPLATE. For in-
formation on this procedure, refer to the chapter titled “The TEMPLATE Procedure”
in theSAS Output Delivery System User’s Guide.

JT
performs the Jonckheere-Terpstra test. For more information, see the section
“Jonckheere-Terpstra Test”on page 125.

LIST
displays two-way ton-way tables in a list format rather than as crosstabulation tables.
PROC FREQ ignores the LIST option when you request statistical tests or measures
of association.



92 � Chapter 2. The FREQ Procedure

MAXITER=number
specifies the maximum number of iterations for computing the polychoric correlation
when you specify thePLCORRoption. The value of the MAXITER= option must be
a positive integer; by default, MAXITER=20. Iterative computation of the polychoric
correlation stops when the number of iterations exceeds the value of the MAXITER=
option, or when the convergence measure falls below the value of theCONVERGE=
option, whichever happens first. For more information see the section“Polychoric
Correlation”on page 116.

MEASURES
requests several measures of association and their asymptotic standard errors (ASE).
The measures include gamma, Kendall’s tau-b, Stuart’s tau-c, Somers’D(C|R),
Somers’D(R|C), the Pearson and Spearman correlation coefficients, lambda (sym-
metric and asymmetric), uncertainty coefficients (symmetric and asymmetric). To
request confidence limits for these measures of association, you can specify theCL
option.

For 2 × 2 tables, the MEASURES option also provides the odds ratio, column
1 relative risk, column 2 relative risk, and the corresponding confidence limits.
Alternatively, you can obtain the odds ratio and relative risks, without the other mea-
sures of association, by specifying theRELRISKoption.

For more information, see the section“Measures of Association”on page 108.

MISSING
treats missing values as nonmissing and includes them in calculations of percentages
and other statistics.

For more information, see the section“Missing Values”on page 100.

MISSPRINT
displays missing value frequencies for all tables, even though PROC FREQ does not
use the frequencies in the calculation of statistics. For more information, see the
section“Missing Values”on page 100.

NOCOL
suppresses the display of column percentages in cells of the crosstabulation table.

NOCUM
suppresses the display of cumulative frequencies and cumulative percentages for one-
way frequency tables and for crosstabulation tables in list format.

NOFREQ
suppresses the display of cell frequencies for crosstabulation tables. This also sup-
presses frequencies for row totals.

NOPERCENT
suppresses the display of cell percentages, row total percentages, and column total
percentages for crosstabulation tables. For one-way frequency tables and crosstabu-
lation tables in list format, the NOPERCENT option suppresses the display of per-
centages and cumulative percentages.



TABLES Statement � 93

NOPRINT
suppresses the display of frequency and crosstabulation tables but displays all re-
quested tests and statistics. Use theNOPRINToption in the PROC FREQ statement
to suppress the display of all tables.

NOROW
suppresses the display of row percentages in cells of the crosstabulation table.

NOSPARSE
requests that PROC FREQ not invoke theSPARSEoption when you specify the
ZEROS option in the WEIGHT statement. The NOSPARSE option suppresses the
display of cells with a zero frequency count in the list output, and it also omits them
from the OUT= data set. By default, the ZEROS option invokes the SPARSE op-
tion, which displays table cells with a zero frequency count in theLIST output and
includes them in the OUT= data set. For more information, see the description of the
ZEROSoption.

ForCROSSLISTtables, the NOSPARSE option suppresses display of variable levels
with zero frequency. By default for CROSSLIST tables, PROC FREQ displays all
levels of the column variable within each level of the row variable, including any
column variable levels with zero frequency for that row. And for multiway tables
displayed with the CROSSLIST option, the procedure displays all levels of the row
variable for each stratum of the table by default, including any row variable levels
with zero frequency for the stratum.

NOWARN
suppresses the log warning message that the asymptotic chi-square test may not be
valid. By default, PROC FREQ displays this log message when more than 20 percent
of the table cells have expected frequencies less than five.

OUT=SAS-data-set
names the output data set that contains variable values and frequency counts. The
variableCOUNT contains the frequencies and the variablePERCENT contains the
percentages. If more than one table request appears in the TABLES statement, the
contents of the data set correspond to the last table request in the TABLES statement.
For more information, see the section“Output Data Sets”on page 148 and see the
following descriptions for the optionsOUTCUM, OUTEXPECT, andOUTPCT.

OUTCUM
includes the cumulative frequency and the cumulative percentage for one-way tables
in the output data set when you specify theOUT= option in the TABLES statement.
The variableCUM–FREQ contains the cumulative frequency for each level of the
analysis variable, and the variableCUM–PCT contains the cumulative percentage
for each level. The OUTCUM option has no effect for two-way or multiway tables.

For more information, see the section“Output Data Sets”on page 148.

OUTEXPECT
includes the expected frequency in the output data set for crosstabulation tables when
you specify theOUT= option in the TABLES statement. The variableEXPECTED



94 � Chapter 2. The FREQ Procedure

contains the expected frequency for each table cell. The EXPECTED option is valid
for two-way or multiway tables, and has no effect for one-way tables.

For more information, see the section“Output Data Sets”on page 148.

OUTPCT
includes the following additional variables in the output data set when you specify
theOUT= option in the TABLES statement for crosstabulation tables:

PCT–COL the percentage of column frequency

PCT–ROW the percentage of row frequency

PCT–TABL the percentage of stratum frequency, forn-way tables wheren > 2

The OUTPCT option is valid for two-way or multiway tables, and has no effect for
one-way tables.

For more information, see the section“Output Data Sets”on page 148.

PLCORR
requests the polychoric correlation coefficient. For2× 2 tables, this statistic is more
commonly known as the tetrachoric correlation coefficient, and it is labeled as such
in the displayed output. If you omit theMEASURESoption, the PLCORR option in-
vokes MEASURES. For more information, see the section“Polychoric Correlation”
on page 116 and the descriptions for theCONVERGE=andMAXITER= options in
this list.

PRINTKWT
displays the weights PROC FREQ uses to compute the weighted kappa coefficient.
You must also specify theAGREEoption, which requests the weighted kappa coef-
ficient. You can specify (WT=FC) with the AGREE option to request Fleiss-Cohen
weights. By default, PROC FREQ uses Cicchetti-Allison weights.

See the section“Weighted Kappa Coefficient”on page 130 for more information.

RELRISK
requests relative risk measures and their confidence limits for2 × 2 tables. These
measures include the odds ratio and the column 1 and 2 relative risks. For more
information, see the section“Odds Ratio and Relative Risks for 2 x 2 Tables”on page
122. You can also obtain the RELRISK measures by specifying theMEASURES
option, which produces other measures of association in addition to the relative risks.

RISKDIFF
requests column 1 and 2 risks (or binomial proportions), risk differences, and their
confidence limits for2 × 2 tables. See the section“Risks and Risk Differences”on
page 120 for more information.

RISKDIFFC
requests theRISKDIFF option statistics for2 × 2 tables, and includes a continuity
correction in the asymptotic confidence limits. The RISKDIFF option statistics in-
clude the column 1 and 2 risks (or binomial proportions), risk differences, and their



TABLES Statement � 95

confidence limits. See the section“Risks and Risk Differences”on page 120 for more
information.

SCORES=type
specifies the type of row and column scores that PROC FREQ uses with the Mantel-
Haenszel chi-square, Pearson correlation, Cochran-Armitage test for trend, weighted
kappa coefficient, and Cochran-Mantel-Haenszel statistics, wheretype is one of the
following (the default is SCORE=TABLE):

• MODRIDIT

• RANK

• RIDIT

• TABLE

By default, the row or column scores are the integers 1,2,... for character variables
and the actual variable values for numeric variables. Using other types of scores
yields nonparametric analyses. For more information, see the section“Scores”on
page 102.

To display the row and column scores, you can use theSCOROUToption.

SCOROUT
displays the row and the column scores. You specify the score type with the
SCORES=option. PROC FREQ uses the scores when it calculates the Mantel-
Haenszel chi-square, Pearson correlation, Cochran-Armitage test for trend, weighted
kappa coefficient, or Cochran-Mantel-Haenszel statistics. The SCOROUT option
displays the row and column scores only when statistics are computed for two-way
tables. To store the scores in an output data set, use the Output Delivery System.

For more information, see the section“Scores”on page 102.

SPARSE
lists all possible combinations of the variable values for ann-way table whenn > 1,
even if a combination does not occur in the data. The SPARSE option applies only
to crosstabulation tables displayed in list format and to the OUT= output data set.
Otherwise, if you do not use theLIST option or theOUT= option, the SPARSE
option has no effect.

When you specify the SPARSE and LIST options, PROC FREQ displays all combina-
tions of variable variables in the table listing, including those values with a frequency
count of zero. By default, without the SPARSE option, PROC FREQ does not display
zero-frequency values in list output. When you use the SPARSE and OUT= options,
PROC FREQ includes empty crosstabulation table cells in the output data set. By
default, PROC FREQ does not include zero-frequency table cells in the output data
set.

For more information, see the section“Missing Values”on page 100.



96 � Chapter 2. The FREQ Procedure

TESTF=(values)
specifies the null hypothesis frequencies for a one-way chi-square test for specified
frequencies. You can separatevalueswith blanks or commas. The sum of the fre-
quency values must equal the total frequency for the one-way table. The number of
TESTF= values must equal the number of variable levels in the one-way table. List
these values in the order in which the corresponding variable levels appear in the
output. If you omit theCHISQoption, the TESTF= option invokes CHISQ.

For more information, see the section“Chi-Square Test for One-Way Tables”on page
104.

TESTP=(values)
specifies the null hypothesis proportions for a one-way chi-square test for specified
proportions. You can separatevalueswith blanks or commas. Specifyvaluesin prob-
ability form as numbers between 0 and 1, where the proportions sum to 1. Or specify
valuesin percentage form as numbers between 0 and 100, where the percentages sum
to 100. The number of TESTP= values must equal the number of variable levels in
the one-way table. List these values in the order in which the corresponding vari-
able levels appear in the output. If you omit theCHISQoption, the TESTP= option
invokes CHISQ.

For more information, see the section“Chi-Square Test for One-Way Tables”on page
104.

TOTPCT
displays the percentage of total frequency in crosstabulation tables, forn-way ta-
bles wheren > 2. This percentage is also available with theLIST option or as the
PERCENT variable in theOUT= output data set.

TREND
performs the Cochran-Armitage test for trend. The table must be2×C orR×2. For
more information, see the section“Cochran-Armitage Test for Trend”on page 124.

TEST Statement

TEST options ;

The TEST statement requests asymptotic tests for the specified measures of associa-
tion and measures of agreement. You must use a TABLES statement with the TEST
statement.

options
specify the statistics for which to provide asymptotic tests. The available statistics are
those measures of association and agreement listed inTable 2.10. The option names
are identical to those in the TABLES statement and the OUTPUT statement. You can
request all available tests for groups of statistics by using group options MEASURES
or AGREE. Or you can request tests individually by using one of the options shown
in Table 2.10.

For each measure of association or agreement that you specify, the TEST state-
ment provides an asymptotic test that the measure equals zero. When you request
an asymptotic test, PROC FREQ gives the asymptotic standard error under the null



WEIGHT Statement � 97

hypothesis, the test statistic, and thep-values. Additionally, PROC FREQ reports the
confidence limits for that measure. TheALPHA= option in the TABLES statement
determines the confidence level, which, by default, equals 0.05 and provides 95%
confidence limits. For more information, see the sections“Asymptotic Tests”on
page 109 and“Confidence Limits”on page 109, and see“Statistical Computations”
beginning on page 102 for sections describing the individual measures.

In addition to these asymptotic tests, exact tests for selected measures of association
and agreement are available with the EXACT statement. See the section“EXACT
Statement”on page 77 for more information.

Table 2.10. TEST Statement Options and Required TABLES Statement Options

Option Asymptotic Tests Computed Required TABLES
Statement Option

AGREE simple kappa coefficient and weighted
kappa coefficient

AGREE

GAMMA gamma ALL or MEASURES
KAPPA simple kappa coefficient AGREE
KENTB Kendall’s tau-b ALL or MEASURES
MEASURES gamma, Kendall’s tau-b, Stuart’s tau-c,

Somers’D(C|R), Somers’D(R|C), the
Pearson correlation, and the Spearman
correlation

ALL or MEASURES

PCORR Pearson correlation coefficient ALL or MEASURES
SCORR Spearman correlation coefficient ALL or MEASURES
SMDCR Somers’D(C|R) ALL or MEASURES
SMDRC Somers’D(R|C) ALL or MEASURES
STUTC Stuart’s tau-c ALL or MEASURES
WTKAP weighted kappa coefficient AGREE

WEIGHT Statement

WEIGHT variable < / option > ;

The WEIGHT statement specifies a numericvariablewith a value that represents the
frequency of the observation. The WEIGHT statement is most commonly used to
input cell count data. See the“Inputting Frequency Counts”section on page 98 for
more information. If you use the WEIGHT statement, PROC FREQ assumes that an
observation representsn observations, wheren is the value ofvariable. The value of
the weight variable need not be an integer. When a weight value is missing, PROC
FREQ ignores the corresponding observation. When a weight value is zero, PROC
FREQ ignores the corresponding observation unless you specify the ZEROS option,
which includes observations with zero weights. If a WEIGHT statement does not
appear, each observation has a default weight of 1. The sum of the weight variable
values represents the total number of observations.

If any value of the weight variable is negative, PROC FREQ displays the frequencies
(as measured by the weighted values) but does not compute percentages and other
statistics. If you create an output data set using the OUT= option in the TABLES



98 � Chapter 2. The FREQ Procedure

statement, PROC FREQ creates the PERCENT variable and assigns a missing value
for each observation. PROC FREQ also assigns missing values to the variables that
the OUTEXPECT and OUTPCT options create. You cannot create an output data
set using the OUTPUT statement since statistics are not computed when there are
negative weights.

Option

ZEROS
includes observations with zero weight values. By default, PROC FREQ ignores
observations with zero weights.

If you specify the ZEROS option, frequency and and crosstabulation tables display
any levels corresponding to observations with zero weights. Without the ZEROS
option, PROC FREQ does not process observations with zero weights, and so does
not display levels that contain only observations with zero weights.

With the ZEROS option, PROC FREQ includes levels with zero weights in the chi-
square goodness-of-fit test for one-way tables. Also, PROC FREQ includes any levels
with zero weights in binomial computations for one-way tables. This enables com-
putation of binomial estimates and tests when there are no observations with positive
weights in the specified level.

For two-way tables, the ZEROS option enables computation of kappa statistics when
there are levels containing no observations with positive weight. For more informa-
tion, see the section“Tables with Zero Rows and Columns”on page 133.

Note that even with the ZEROS option, PROC FREQ does not compute the CHISQ
or MEASURES statistics for two-way tables when the table has a zero row or zero
column, because most of these statistics are undefined in this case.

The ZEROS option invokes theSPARSEoption in the TABLES statement, which
includes table cells with a zero frequency count in the list output and the OUT=
data set. By default, without the SPARSE option, PROC FREQ does not include
zero frequency cells in the list output or in the OUT= data set. If you specify the
ZEROS option in the WEIGHT statement but do not want the SPARSE option, you
can specify theNOSPARSEoption in the TABLES statement.

Details

Inputting Frequency Counts

PROC FREQ can use either raw data or cell count data to produce frequency and
crosstabulation tables.Raw data, also known as case-record data, report the data
as one record for each subject or sample member.Cell count datareport the data
as a table, listing all possible combinations of data values along with the frequency
counts. This way of presenting data often appears in published results.



Grouping with Formats � 99

The following DATA step statements store raw data in a SAS data set:

data Raw;
input Subject $ R C @@;
datalines;

01 1 1 02 1 1 03 1 1 04 1 1 05 1 1
06 1 2 07 1 2 08 1 2 09 2 1 10 2 1
11 2 1 12 2 1 13 2 2 14 2 2 14 2 2
;

You can store the same data as cell counts using the following DATA step statements:

data CellCounts;
input R C Count @@;
datalines;

1 1 5 1 2 3
2 1 4 2 2 3
;

The variableR contains the values for the rows, and the variableC contains the values
for the columns. TheCount variable contains the cell count for each row and column
combination.

Both theRaw data set and theCellCounts data set produce identical frequency
counts, two-way tables, and statistics. With theCellCounts data set, you must use
a WEIGHT statement to specify that theCount variable contains cell counts. For
example, to create a two-way crosstabulation table, submit the following statements:

proc freq data=CellCounts;
weight Count;
tables R*C;

run;

Grouping with Formats

PROC FREQ groups a variable’s values according to its formatted values. If you
assign a format to a variable with a FORMAT statement, PROC FREQ formats the
variable values before dividing observations into the levels of a frequency or crosstab-
ulation table.

For example, suppose that a variableX has the values 1.1, 1.4, 1.7, 2.1, and 2.3. Each
of these values appears as a level in the frequency table. If you decide to round each
value to a single digit, include the following statement in the PROC FREQ step:

format X 1.;

Now the table lists the frequency count for formatted level 1 as two and formatted
level 2 as three.



100 � Chapter 2. The FREQ Procedure

PROC FREQ treats formatted character variables in the same way. The formatted val-
ues are used to group the observations into the levels of a frequency table or crosstab-
ulation table. PROC FREQ uses the entire value of a character format to classify an
observation.

You can also use the FORMAT statement to assign formats that were created with
the FORMAT procedure to the variables. User-written formats determine the number
of levels for a variable and provide labels for a table. If you use the same data with
different formats, then you can produce frequency counts and statistics for different
classifications of the variable values.

When you use PROC FORMAT to create a user-written format that combines missing
and nonmissing values into one category, PROC FREQ treats the entire category of
formatted values as missing. For example, a questionnaire codes 1 as yes, 2 as no,
and 8 as a no answer. The following PROC FORMAT step creates a user-written
format:

proc format;
value Questfmt 1 =’Yes’

2 =’No’
8,.=’Missing’;

run;

When you use a FORMAT statement to assignQuestfmt. to a variable, the variable’s
frequency table no longer includes a frequency count for the response of 8. You
must use the MISSING or MISSPRINT option in the TABLES statement to list the
frequency for no answer. The frequency count for this level includes observations
with either a value of 8 or a missing value (.).

The frequency or crosstabulation table lists the values of both character and numeric
variables in ascending order based on internal (unformatted) variable values unless
you change the order with the ORDER= option. To list the values in ascending order
by formatted values, use ORDER=FORMATTED in the PROC FREQ statement.

For more information on the FORMAT statement, refer toSAS Language Reference:
Concepts.

Missing Values

By default, PROC FREQ excludes missing values before it constructs the frequency
and crosstabulation tables. PROC FREQ also excludes missing values before com-
puting statistics. However, the total frequency of observations with missing values is
displayed below each table. The following options change the way in which PROC
FREQ handles missing values:

MISSPRINT includes missing value frequencies in frequency or crosstabulation ta-
bles.

MISSING includes missing values in percentage and statistical calculations.



Missing Values � 101

The OUT= option in the TABLES statement includes an observation in the output
data set that contains the frequency of missing values. The NMISS option in the
OUTPUT statement creates a variable in the output data set that contains the number
of missing values.

Figure 2.7shows three ways in which PROC FREQ handles missing values. The first
table uses the default method; the second table uses the MISSPRINT option; and the
third table uses the MISSING option.

*** Default ***

The FREQ Procedure

Cumulative Cumulative
A Frequency Percent Frequency Percent
------------------------------------------------------
1 2 50.00 2 50.00
2 2 50.00 4 100.00

Frequency Missing = 2

*** MISSPRINT Option ***

The FREQ Procedure

Cumulative Cumulative
A Frequency Percent Frequency Percent
------------------------------------------------------
. 2 . . .
1 2 50.00 2 50.00
2 2 50.00 4 100.00

Frequency Missing = 2

*** MISSING Option ***

The FREQ Procedure

Cumulative Cumulative
A Frequency Percent Frequency Percent
------------------------------------------------------
. 2 33.33 2 33.33
1 2 33.33 4 66.67
2 2 33.33 6 100.00

Figure 2.7. Missing Values in Frequency Tables

When a combination of variable values for a crosstabulation is missing, PROC FREQ
assigns zero to the frequency count for the table cell. By default, PROC FREQ omits
missing combinations in list format and in the output data set that is created in a
TABLES statement. To include the missing combinations, use the SPARSE option
with the LIST or OUT= option in the TABLES statement.

PROC FREQ treats missing BY variable values like any other BY variable value. The
missing values form a separate BY group. When the value of a WEIGHT variable is
missing, PROC FREQ excludes the observation from the analysis.



102 � Chapter 2. The FREQ Procedure

Statistical Computations

Definitions and Notation

In this chapter, a two-way table represents the crosstabulation of variablesX andY.
Let the rows of the table be labeled by the valuesXi, i = 1, 2, . . . , R, and the columns
by Yj , j = 1, 2, . . . , C. Let nij denote the cell frequency in theith row and thejth
column and define the following:

ni· =
∑

j

nij (row totals)

n·j =
∑

i

nij (column totals)

n =
∑

i

∑
j

nij (overall total)

pij = nij/n (cell percentages)

pi· = ni·/n (row percentages)

p·j = n·j/n (column percentages)

Ri = score for rowi

Cj = score for columnj

R̄ =
∑

i

ni·Ri/n (average row score)

C̄ =
∑

j

n·jCj/n (average column score)

Aij =
∑
k>i

∑
l>j

nkl +
∑
k<i

∑
l<j

nkl

Dij =
∑
k>i

∑
l<j

nkl +
∑
k<i

∑
l>j

nkl

P =
∑

i

∑
j

nijAij (twice the number of concordances)

Q =
∑

i

∑
j

nijDij (twice the number of discordances)

Scores

PROC FREQ uses scores for the variable values when computing the Mantel-
Haenszel chi-square, Pearson correlation, Cochran-Armitage test for trend, weighted
kappa coefficient, and Cochran-Mantel-Haenszel statistics. The SCORES= option in
the TABLES statement specifies the score type that PROC FREQ uses. The available
score types are TABLE, RANK, RIDIT, and MODRIDIT scores. The default score
type is TABLE.



Statistical Computations � 103

For numeric variables, table scores are the values of the row and column levels. If the
row or column variables are formatted, then the table score is the internal numeric
value corresponding to that level. If two or more numeric values are classified into
the same formatted level, then the internal numeric value for that level is the smallest
of these values. For character variables, table scores are defined as the row numbers
and column numbers (that is, 1 for the first row, 2 for the second row, and so on).

Rank scores, which you can use to obtain nonparametric analyses, are defined by

Row scores: R1i =
∑
k<i

nk· + (ni· + 1)/2 i = 1, 2, . . . , R

Column scores: C1j =
∑
l<j

n·l + (n·j + 1)/2 j = 1, 2, . . . , C

Note that rank scores yield midranks for tied values.

Ridit scores (Bross 1958; Mack and Skillings 1980) also yield nonparametric analy-
ses, but they are standardized by the sample size. Ridit scores are derived from rank
scores as

R2i = R1i/n

C2j = C1j/n

Modified ridit (MODRIDIT) scores (van Elteren 1960; Lehmann 1975), which also
yield nonparametric analyses, represent the expected values of the order statistics for
the uniform distribution on (0,1). Modified ridit scores are derived from rank scores
as

R3i = R1i/(n+ 1)

C3j = C1j/(n+ 1)

Chi-Square Tests and Statistics

When you specify the CHISQ option in the TABLES statement, PROC FREQ per-
forms the following chi-square tests for each two-way table: Pearson chi-square,
continuity-adjusted chi-square for2 × 2 tables, likelihood-ratio chi-square, Mantel-
Haenszel chi-square, and Fisher’s exact test for2 × 2 tables. Also, PROC FREQ
computes the following statistics derived from the Pearson chi-square: the phi coeffi-
cient, the contingency coefficient, and Cramer’sV . PROC FREQ computes Fisher’s
exact test for generalR×C tables when you specify the FISHER (or EXACT) option
in the TABLES statement, or, equivalently, when you specify the FISHER option in
the EXACT statement.



104 � Chapter 2. The FREQ Procedure

For one-way frequency tables, PROC FREQ performs a chi-square goodness-of-fit
test when you specify the CHISQ option. The other chi-square tests and statistics
described in this section are defined only for two-way tables and so are not computed
for one-way frequency tables.

All the two-way test statistics described in this section test the null hypothesis of
no association between the row variable and the column variable. When the sample
sizen is large, these test statistics are distributed approximately as chi-square when
the null hypothesis is true. When the sample size is not large, exact tests may be
useful. PROC FREQ computes exact tests for the following chi-square statistics when
you specify the corresponding option in the EXACT statement: Pearson chi-square,
likelihood-ratio chi-square, and Mantel-Haenszel chi-square. See the section“Exact
Statistics”beginning on page 142 for more information.

Note that the Mantel-Haenszel chi-square statistic is appropriate only when both vari-
ables lie on an ordinal scale. The other chi-square tests and statistics in this section
are appropriate for either nominal or ordinal variables. The following sections give
the formulas that PROC FREQ uses to compute the chi-square tests and statistics. For
further information on the formulas and on the applicability of each statistic, refer to
Agresti (1996), Stokes, Davis, and Koch (1995), and the other references cited for
each statistic.

Chi-Square Test for One-Way Tables

For one-way frequency tables, the CHISQ option in the TABLES statement computes
a chi-square goodness-of-fit test. LetC denote the number of classes, or levels, in the
one-way table. Letfi denote the frequency of classi (or the number of observations
in classi) for i = 1, 2, ..., C. Then PROC FREQ computes the chi-square statistic as

QP =
C∑

i=1

(fi − ei)2

ei

whereei is the expected frequency for classi under the null hypothesis.

In the test for equal proportions, which is the default for the CHISQ option, the null
hypothesis specifies equal proportions of the total sample size for each class. Under
this null hypothesis, the expected frequency for each class equals the total sample
size divided by the number of classes,

ei = n / C for i = 1, 2, . . . , C

In the test for specified frequencies, which PROC FREQ computes when you in-
put null hypothesis frequencies using the TESTF= option, the expected frequencies
are those TESTF= values. In the test for specified proportions, which PROC FREQ
computes when you input null hypothesis proportions using the TESTP= option, the
expected frequencies are determined from the TESTP= proportionspi, as

ei = pi × n for i = 1, 2, . . . , C



Statistical Computations � 105

Under the null hypothesis (of equal proportions, specified frequencies, or specified
proportions), this test statistic has an asymptotic chi-square distribution, withC − 1
degrees of freedom. In addition to the asymptotic test, PROC FREQ computes the
exact one-way chi-square test when you specify the CHISQ option in the EXACT
statement.

Chi-Square Test for Two-Way Tables

The Pearson chi-square statistic for two-way tables involves the differences between
the observed and expected frequencies, where the expected frequencies are computed
under the null hypothesis of independence. The chi-square statistic is computed as

QP =
∑

i

∑
j

(nij − eij)2

eij

where

eij =
ni· n·j
n

When the row and column variables are independent,QP has an asymptotic chi-
square distribution with(R− 1)(C − 1) degrees of freedom. For large values ofQP ,
this test rejects the null hypothesis in favor of the alternative hypothesis of general
association. In addition to the asymptotic test, PROC FREQ computes the exact chi-
square test when you specify the PCHI or CHISQ option in the EXACT statement.

For a2 × 2 table, the Pearson chi-square is also appropriate for testing the equality
of two binomial proportions or, forR × 2 and2 × C tables, the homogeneity of
proportions. Refer to Fienberg (1980).

Likelihood-Ratio Chi-Square Test

The likelihood-ratio chi-square statistic involves the ratios between the observed and
expected frequencies. The statistic is computed as

G2 = 2
∑

i

∑
j

nij ln
(
nij

eij

)

When the row and column variables are independent,G2 has an asymptotic chi-
square distribution with(R − 1)(C − 1) degrees of freedom. In addition to the
asymptotic test, PROC FREQ computes the exact test when you specify the LRCHI
or CHISQ option in the EXACT statement.

Continuity-Adjusted Chi-Square Test

The continuity-adjusted chi-square statistic for2 × 2 tables is similar to the Pearson
chi-square, except that it is adjusted for the continuity of the chi-square distribution.
The continuity-adjusted chi-square is most useful for small sample sizes. The use of
the continuity adjustment is controversial; this chi-square test is more conservative,
and more like Fisher’s exact test, when your sample size is small. As the sample size
increases, the statistic becomes more and more like the Pearson chi-square.



106 � Chapter 2. The FREQ Procedure

The statistic is computed as

QC =
∑

i

∑
j

[ max(0, |nij − eij | − 0.5) ]2

eij

Under the null hypothesis of independence,QC has an asymptotic chi-square distri-
bution with(R− 1)(C − 1) degrees of freedom.

Mantel-Haenszel Chi-Square Test

The Mantel-Haenszel chi-square statistic tests the alternative hypothesis that there is
a linear association between the row variable and the column variable. Both variables
must lie on an ordinal scale. The statistic is computed as

QMH = (n− 1)r2

wherer2 is the Pearson correlation between the row variable and the column vari-
able. For a description of the Pearson correlation, see the“Pearson Correlation
Coefficient” sectionon page 113. The Pearson correlation and, thus, the Mantel-
Haenszel chi-square statistic use the scores that you specify in the SCORES= option
in the TABLES statement.

Under the null hypothesis of no association,QMH has an asymptotic chi-square
distribution with one degree of freedom. In addition to the asymptotic test, PROC
FREQ computes the exact test when you specify the MHCHI or CHISQ option in the
EXACT statement.

Refer to Mantel and Haenszel (1959) and Landis, Heyman, and Koch (1978).

Fisher’s Exact Test

Fisher’s exact test is another test of association between the row and column vari-
ables. This test assumes that the row and column totals are fixed, and then uses the
hypergeometric distribution to compute probabilities of possible tables with these
observed row and column totals. Fisher’s exact test does not depend on any large-
sample distribution assumptions, and so it is appropriate even for small sample sizes
and for sparse tables.

2 × 2 Tables

For2×2 tables, PROC FREQ gives the following information for Fisher’s exact test:
table probability, two-sidedp-value, left-sidedp-value, and right-sidedp-value. The
table probability equals the hypergeometric probability of the observed table, and is
in fact the value of the test statistic for Fisher’s exact test.

Wherep is the hypergeometric probability of a specific table with the observed row
and column totals, Fisher’s exactp-values are computed by summing probabilitiesp
over defined sets of tables,

PROB=
∑
A

p



Statistical Computations � 107

The two-sidedp-value is the sum of all possible table probabilties (for tables having
the observed row and column totals) that are less than or equal to the observed table
probability. So, for the two-sidedp-value, the setA includes all possible tables with
hypergeometric probabilities less than or equal to the probability of the observed
table. A small two-sidedp-value supports the alternative hypothesis of association
between the row and column variables.

One-sided tests are defined in terms of the frequency of the cell in the first row and
first column of the table, the (1,1) cell. Denoting the observed (1,1) cell frequency
by F , the left-sidedp-value for Fisher’s exact test is probability that the (1,1) cell
frequency is less than or equal toF . So, for the left-sidedp-value, the setA includes
those tables with a (1,1) cell frequency less than or equal toF . A small left-sidedp-
value supports the alternative hypothesis that the probability of an observation being
in the first cell is less than expected under the null hypothesis of independent row and
column variables.

Similarly, for a right-sided alternative hypothesis,A is the set of tables where the
frequency of the (1,1) cell is greater than or equal to that in the observed table. A
small right-sidedp-value supports the alternative that the probability of the first cell
is greater than that expected under the null hypothesis.

Because the (1,1) cell frequency completely determines the2 × 2 table when the
marginal row and column sums are fixed, these one-sided alternatives can be equiv-
alently stated in terms of other cell probabilities or ratios of cell probabilities. The
left-sided alternative is equivalent to an odds ratio greater than 1, where the odds ra-
tio equals (n11 n22 / n12 n21). Additionally, the left-sided alternative is equivalent to
the column 1 risk for row 1 being less than the column 1 risk for row 2,p1|1 < p1|2.
Similarly, the right-sided alternative is equivalent to the column 1 risk for row 1 being
greater than the column 1 risk for row 2,p1|1 > p1|2. Refer to Agresti (1996).

R × C Tables

Fisher’s exact test was extended to generalR × C tables by Freeman and Halton
(1951), and this test is also known as the Freeman-Halton test. ForR×C tables, the
two-sidedp-value is defined the same as it is for2× 2 tables. The setA contains all
tables withp less than or equal to the probability of the observed table. A smallp-
value supports the alternative hypothesis of association between the row and column
variables. ForR×C tables, Fisher’s exact test is inherently two-sided. The alternative
hypothesis is defined only in terms of general, and not linear, association. Therefore,
PROC FREQ does not provide right-sided or left-sidedp-values for generalR × C
tables.

ForR×C tables, PROC FREQ computes Fisher’s exact test using the network algo-
rithm of Mehta and Patel (1983), which provides a faster and more efficient solution
than direct enumeration. See the section“Exact Statistics”beginning on page 142 for
more details.



108 � Chapter 2. The FREQ Procedure

Phi Coefficient

The phi coefficient is a measure of association derived from the Pearson chi-square
statistic. It has the range−1 ≤ φ ≤ 1 for 2 × 2 tables. Otherwise, the range is
0 ≤ φ ≤ min(

√
R− 1,

√
C − 1) (Liebetrau 1983). The phi coefficient is computed

as

φ =
n11 n22 − n12 n21√
n1· n2· n·1 n·2

for 2× 2 tables

φ =
√
QP /n otherwise

Refer to Fleiss (1981, pp. 59–60).

Contingency Coefficient

The contingency coefficient is a measure of association derived from the Pearson chi-
square. It has the range0 ≤ P ≤

√
(m− 1)/m, wherem = min(R,C) (Liebetrau

1983). The contingency coefficient is computed as

P =

√
QP

QP + n

Refer to Kendall and Stuart (1979, pp. 587–588).

Cramer’s V

Cramer’sV is a measure of association derived from the Pearson chi-square. It is
designed so that the attainable upper bound is always 1. It has the range−1 ≤ V ≤ 1
for 2× 2 tables; otherwise, the range is0 ≤ V ≤ 1. Cramer’sV is computed as

V = φ for 2× 2 tables

V =

√
QP /n

min(R− 1, C − 1)
otherwise

Refer to Kendall and Stuart (1979, p. 588).

Measures of Association

When you specify the MEASURES option in the TABLES statement, PROC FREQ
computes several statistics that describe the association between the two variables
of the contingency table. The following are measures of ordinal association that
consider whether the variableY tends to increase asX increases: gamma, Kendall’s
tau-b, Stuart’s tau-c, and Somers’D. These measures are appropriate for ordinal
variables, and they classify pairs of observations asconcordantor discordant. A pair
is concordant if the observation with the larger value ofX also has the larger value of
Y. A pair is discordant if the observation with the larger value ofX has the smaller



Statistical Computations � 109

value ofY. Refer to Agresti (1996) and the other references cited in the discussion of
each measure of association.

The Pearson correlation coefficient and the Spearman rank correlation coefficient are
also appropriate for ordinal variables. The Pearson correlation describes the strength
of the linear association between the row and column variables, and it is computed
using the row and column scores specified by the SCORES= option in the TABLES
statement. The Spearman correlation is computed with rank scores. The polychoric
correlation (requested by the PLCORR option) also requires ordinal variables and
assumes that the variables have an underlying bivariate normal distribution. The fol-
lowing measures of association do not require ordinal variables, but they are appro-
priate for nominal variables: lambda asymmetric, lambda symmetric, and uncertainty
coefficients.

PROC FREQ computes estimates of the measures according to the formulas given in
the discussion of each measure of association. For each measure, PROC FREQ com-
putes an asymptotic standard error (ASE), which is the square root of the asymptotic
variance denoted byvar in the following sections.

Confidence Limits

If you specify the CL option in the TABLES statement, PROC FREQ computes
asymptotic confidence limits for all MEASURES statistics. The confidence coeffi-
cient is determined according to the value of the ALPHA= option, which, by default,
equals 0.05 and produces 95% confidence limits.

The confidence limits are computed as

est ± ( zα/2 × ASE )

whereest is the estimate of the measure,zα/2 is the 100(1 − α/2) percentile of
the standard normal distribution, and ASE is the asymptotic standard error of the
estimate.

Asymptotic Tests

For each measure that you specify in the TEST statement, PROC FREQ computes
an asymptotic test of the null hypothesis that the measure equals zero. Asymptotic
tests are available for the following measures of association: gamma, Kendall’s tau-b,
Stuart’s tau-c, Somers’D(R|C), Somers’D(C|R), the Pearson correlation coeffi-
cient, and the Spearman rank correlation coefficient. To compute an asymptotic test,
PROC FREQ uses a standardized test statisticz, which has an asymptotic standard
normal distribution under the null hypothesis. The standardized test statistic is com-
puted as

z =
est√

var0(est)

whereest is the estimate of the measure andvar0(est) is the variance of the estimate
under the null hypothesis. Formulas forvar0(est) are given in the discussion of each
measure of association.



110 � Chapter 2. The FREQ Procedure

Note that the ratio ofest to
√
var0(est) is the same for the following measures:

gamma, Kendall’s tau-b, Stuart’s tau-c, Somers’D(R|C), and Somers’D(C|R).
Therefore, the tests for these measures are identical. For example, thep-values for
the test ofH0: gamma= 0 equal thep-values for the test ofH0: tau-b = 0.

PROC FREQ computes one-sided and two-sidedp-values for each of these tests.
When the test statisticz is greater than its null hypothesis expected value of zero,
PROC FREQ computes the right-sidedp-value, which is the probability of a larger
value of the statistic occurring under the null hypothesis. A small right-sidedp-value
supports the alternative hypothesis that the true value of the measure is greater than
zero. When the test statistic is less than or equal to zero, PROC FREQ computes the
left-sidedp-value, which is the probability of a smaller value of the statistic occurring
under the null hypothesis. A small left-sidedp-value supports the alternative hypoth-
esis that the true value of the measure is less than zero. The one-sidedp-valueP1 can
be expressed as

P1 = Prob ( Z > z ) if z > 0

P1 = Prob ( Z < z ) if z ≤ 0

whereZ has a standard normal distribution. The two-sidedp-valueP2 is computed
as

P2 = Prob ( |Z| > |z| )

Exact Tests

Exact tests are available for two measures of association, the Pearson correlation co-
efficient and the Spearman rank correlation coefficient. If you specify the PCORR
option in the EXACT statement, PROC FREQ computes the exact test of the hypoth-
esis that the Pearson correlation equals zero. If you specify the SCORR option in the
EXACT statement, PROC FREQ computes the exact test of the hypothesis that the
Spearman correlation equals zero. See the section“Exact Statistics”beginning on
page 142 for information on exact tests.

Gamma

The estimator of gamma is based only on the number of concordant and discordant
pairs of observations. It ignores tied pairs (that is, pairs of observations that have
equal values ofX or equal values ofY ). Gamma is appropriate only when both
variables lie on an ordinal scale. It has the range−1 ≤ Γ ≤ 1. If the two variables
are independent, then the estimator of gamma tends to be close to zero. Gamma is
estimated by

G =
P −Q

P +Q

with asymptotic variance

var =
16

(P +Q)4
∑

i

∑
j

nij(QAij − PDij)2



Statistical Computations � 111

The variance of the estimator under the null hypothesis that gamma equals zero is
computed as

var0(G) =
4

(P +Q)2

∑
i

∑
j

nij(Aij −Dij)2 − (P −Q)2/n


For 2 × 2 tables, gamma is equivalent to Yule’sQ. Refer to Goodman and Kruskal
(1979), Agresti (1990), and Brown and Benedetti (1977).

Kendall’s Tau- b

Kendall’s tau-b is similar to gamma except that tau-b uses a correction for ties. Tau-b
is appropriate only when both variables lie on an ordinal scale. Tau-b has the range
−1 ≤ τb ≤ 1. It is estimated by

tb =
P −Q
√
wrwc

with

var =
1
w4

∑
i

∑
j

nij(2wdij + tbvij)2 − n3t2b(wr + wc)2


where

w =
√
wrwc

wr = n2 −
∑

i

n2
i·

wc = n2 −
∑

j

n2
·j

dij = Aij −Dij

vij = ni·wc + n·jwr

The variance of the estimator under the null hypothesis that tau-b equals zero is com-
puted as

var0(tb) =
4

wrwc

∑
i

∑
j

nij(Aij −Dij)2 − (P −Q)2/n


Refer to Kendall (1955) and Brown and Benedetti (1977).



112 � Chapter 2. The FREQ Procedure

Stuart’s Tau- c

Stuart’s tau-c makes an adjustment for table size in addition to a correction for ties.
Tau-c is appropriate only when both variables lie on an ordinal scale. Tau-c has the
range−1 ≤ τc ≤ 1. It is estimated by

tc =
m(P −Q)
n2(m− 1)

with

var =
4m2

(m− 1)2n4

∑
i

∑
j

nijd
2
ij − (P −Q)2/n


where

m = min(R,C)

dij = Aij −Dij

The variance of the estimator under the null hypothesis that tau-c equals zero is

var0(tc) = var

Refer to Brown and Benedetti (1977).

Somers’ D (C |R ) and D (R |C )

Somers’D(C|R) and Somers’D(R|C) are asymmetric modifications of tau-b. C|R
denotes that the row variableX is regarded as an independent variable, while the
column variableY is regarded as dependent. Similarly,R|C denotes that the column
variableY is regarded as an independent variable, while the row variableX is regarded
as dependent. Somers’D differs from tau-b in that it uses a correction only for pairs
that are tied on the independent variable. Somers’D is appropriate only when both
variables lie on an ordinal scale. It has the range−1 ≤ D ≤ 1. Formulas for Somers’
D(R|C) are obtained by interchanging the indices.

D(C|R) =
P −Q

wr

with

var =
4
w4

r

∑
i

∑
j

nij (wrdij − (P −Q)(n− ni·))
2



Statistical Computations � 113

where

wr = n2 −
∑

i

n2
i·

dij = Aij −Dij

The variance of the estimator under the null hypothesis thatD(C|R) equals zero is
computed as

var0(D(C|R)) =
4
w2

r

∑
i

∑
j

nij(Aij −Dij)2 − (P −Q)2/n


Refer to Somers (1962), Goodman and Kruskal (1979), and Liebetrau (1983).

Pearson Correlation Coefficient

PROC FREQ computes the Pearson correlation coefficient using the scores specified
in the SCORES= option. The Pearson correlation is appropriate only when both vari-
ables lie on an ordinal scale. It has the range−1 ≤ ρ ≤ 1. The Pearson correlation
coefficient is computed as

r =
v

w
=

ssrc√
ssrssc

with

var =
1
w4

∑
i

∑
j

nij

(
w(Ri − R̄)(Cj − C̄)− bijv

2w

)2

The row scoresRi and the column scoresCj are determined by the SCORES= option
in the TABLES statement, and

ssr =
∑

i

∑
j

nij(Ri − R̄)2

ssc =
∑

i

∑
j

nij(Cj − C̄)2

ssrc =
∑

i

∑
j

nij(Ri − R̄)(Cj − C̄)

bij = (Ri − R̄)2ssc + (Cj − C̄)2ssr

v = ssrc

w =
√
ssrssc



114 � Chapter 2. The FREQ Procedure

Refer to Snedecor and Cochran (1989) and Brown and Benedetti (1977).

To compute an asymptotic test for the Pearson correlation, PROC FREQ uses a stan-
dardized test statisticr∗, which has an asymptotic standard normal distribution under
the null hypothesis that the correlation equals zero. The standardized test statistic is
computed as

r∗ =
r√

var0(r)

wherevar0(r) is the variance of the correlation under the null hypothesis.

var0(r) =

∑
i

∑
j nij(Ri − R̄)2(Cj − C̄)2 − ss2rc/n

ssrssc

The asymptotic variance is derived for multinomial sampling in a contingency table
framework, and it differs from the form obtained under the assumption that both
variables are continuous and normally distributed. Refer to Brown and Benedetti
(1977).

PROC FREQ also computes the exact test for the hypothesis that the Pearson correla-
tion equals zero when you specify the PCORR option in the EXACT statement. See
the section“Exact Statistics”beginning on page 142 for information on exact tests.

Spearman Rank Correlation Coefficient

The Spearman correlation coefficient is computed using rank scoresR1i andC1j ,
defined in the section“Scores”beginning on page 102. It is appropriate only when
both variables lie on an ordinal scale. It has the range−1 ≤ ρs ≤ 1. The Spearman
correlation coefficient is computed as

rs =
v

w

with

var =
1

n2w4

∑
i

∑
j

nij(zij − z̄)2

where

v =
∑

i

∑
j

nijR(i)C(j)

w =
1
12

√
FG

F = n3 −
∑

i

n3
i·



Statistical Computations � 115

G = n3 −
∑

j

n3
·j

R(i) = R1i − n/2

C(j) = C1j − n/2

z̄ =
1
n

∑
i

∑
j

nijzij

zij = wvij − vwij

vij = n

(
R(i)C(j) +

1
2

∑
l

nilC(l) +
1
2

∑
k

nkjR(k)+

∑
l

∑
k>i

nklC(l) +
∑

k

∑
l>j

nklR(k)


wij =

−n
96w

(
Fn2

·j +Gn2
i·
)

Refer to Snedecor and Cochran (1989) and Brown and Benedetti (1977).

To compute an asymptotic test for the Spearman correlation, PROC FREQ uses a
standardized test statisticr∗s , which has an asymptotic standard normal distribution
under the null hypothesis that the correlation equals zero. The standardized test statis-
tic is computed as

r∗s =
rs√

var0(rs)

wherevar0(rs) is the variance of the correlation under the null hypothesis.

var0(rs) =
1

n2w2

∑
i

∑
j

nij(vij − v̄)2

where

v̄ =
∑

i

∑
j

nijvij/n

The asymptotic variance is derived for multinomial sampling in a contingency table
framework, and it differs from the form obtained under the assumption that both
variables are continuous and normally distributed. Refer to Brown and Benedetti
(1977).

PROC FREQ also computes the exact test for the hypothesis that the Spearman rank
correlation equals zero when you specify the SCORR option in the EXACT state-
ment. See the section“Exact Statistics”beginning on page 142 for information on
exact tests.



116 � Chapter 2. The FREQ Procedure

Polychoric Correlation

When you specify the PLCORR option in the TABLES statement, PROC FREQ
computes the polychoric correlation. This measure of association is based on the
assumption that the ordered, categorical variables of the frequency table have an un-
derlying bivariate normal distribution. For2× 2 tables, the polychoric correlation is
also known as the tetrachoric correlation. Refer to Drasgow (1986) for an overview
of polychoric correlation. The polychoric correlation coefficient is the maximum
likelihood estimate of the product-moment correlation between the normal variables,
estimating thresholds from the observed table frequencies. The range of the poly-
choric correlation is from -1 to 1. Olsson (1979) gives the likelihood equations and
an asymptotic covariance matrix for the estimates.

To estimate the polychoric correlation, PROC FREQ iteratively solves the likelihood
equations by a Newton-Raphson algorithm using the Pearson correlation coefficient
as the initial approximation. Iteration stops when the convergence measure falls be-
low the convergence criterion or when the maximum number of iterations is reached,
whichever occurs first. The CONVERGE= option sets the convergence criterion, and
the default value is 0.0001. The MAXITER= option sets the maximum number of
iterations, and the default value is 20.

Lambda Asymmetric

Asymmetric lambda,λ(C|R), is interpreted as the probable improvement in pre-
dicting the column variableY given knowledge of the row variableX. Asymmetric
lambda has the range0 ≤ λ(C|R) ≤ 1. It is computed as

λ(C|R) =
∑

i ri − r

n− r

with

var =
n−

∑
i ri

(n− r)3

(∑
i

ri + r − 2
∑

i

(ri | li = l)

)

where

ri = max
j

(nij)

r = max
j

(n·j)

Also, let li be the unique value ofj such thatri = nij , and letl be the unique value
of j such thatr = n·j .

Because of the uniqueness assumptions, ties in the frequencies or in the marginal
totals must be broken in an arbitrary but consistent manner. In case of ties,l is defined
here as the smallest value ofj such thatr = n·j . For a giveni, if there is at least one
valuej such thatnij = ri = cj , thenli is defined here to be the smallest such value



Statistical Computations � 117

of j. Otherwise, ifnil = ri, thenli is defined to be equal tol. If neither condition is
true, thenli is taken to be the smallest value ofj such thatnij = ri. The formulas for
lambda asymmetric(R|C) can be obtained by interchanging the indices.

Refer to Goodman and Kruskal (1979).

Lambda Symmetric

The nondirectional lambda is the average of the two asymmetric lambdas,λ(C|R)
andλ(R|C). Lambda symmetric has the range0 ≤ λ ≤ 1. Lambda symmetric is
defined as

λ =

∑
i ri +

∑
j cj − r − c

2n− r − c
=
w − v

w

with

var =
1
w4

wvy − 2w2

n−∑
i

∑
j

(nij | j = li, i = kj)

− 2v2(n− nkl)


where

cj = max
i

(nij)

c = max
i

(ni·)

w = 2n− r − c

v = 2n−
∑

i

ri −
∑

j

cj

x =
∑

i

(ri | li = l) +
∑

j

(cj | kj = k) + rk + cl

y = 8n− w − v − 2x

Refer to Goodman and Kruskal (1979).

Uncertainty Coefficients ( C |R ) and (R |C )

The uncertainty coefficient,U(C|R), is the proportion of uncertainty (entropy) in
the column variableY that is explained by the row variableX. It has the range
0 ≤ U(C|R) ≤ 1. The formulas forU(R|C) can be obtained by interchanging
the indices.



118 � Chapter 2. The FREQ Procedure

U(C|R) =
H(X) +H(Y )−H(XY )

H(Y )
=
v

w

with

var =
1

n2w4

∑
i

∑
j

nij

(
H(Y ) ln

(
nij

ni·

)
+ (H(X)−H(XY )) ln

(n·j
n

))2

where

v = H(X) +H(Y )−H(XY )

w = H(Y )

H(X) = −
∑

i

(ni·
n

)
ln
(ni·
n

)
H(Y ) = −

∑
j

(n·j
n

)
ln
(n·j
n

)

H(XY ) = −
∑

i

∑
j

(nij

n

)
ln
(nij

n

)

Refer to Theil (1972, pp. 115–120) and Goodman and Kruskal (1979).

Uncertainty Coefficient ( U )

The uncertainty coefficient,U , is the symmetric version of the two asymmetric coef-
ficients. It has the range0 ≤ U ≤ 1. It is defined as

U =
2(H(X) +H(Y )−H(XY ))

H(X) +H(Y )

with

var = 4
∑

i

∑
j

nij

(
H(XY ) ln

(ni·n·j
n2

)
− (H(X) +H(Y )) ln

(nij

n

))2
n2 (H(X) +H(Y ))4

Refer to Goodman and Kruskal (1979).

Binomial Proportion

When you specify the BINOMIAL option in the TABLES statement, PROC FREQ
computes a binomial proportion for one-way tables. By default this is the proportion
of observations in the first variable level, or class, that appears in the output. To
specify a different level, use the LEVEL= option.

p̂ = n1 / n



Statistical Computations � 119

wheren1 is the frequency for the first level andn is the total frequency for the one-
way table. The standard error for the binomial proportion is computed as

se(p̂) =
√
p̂ (1− p̂) / n

Using the normal approximation to the binomial distribution, PROC FREQ constructs
asymptotic confidence limits forp according to

p̂ ± ( zα/2 × se(p̂) )

wherezα/2 is the100(1 − α/2) percentile of the standard normal distribution. The
confidence levelα is determined by the ALPHA= option, which, by default, equals
0.05 and produces 95% confidence limits.

If you specify the BINOMIALC option, PROC FREQ includes a continuity correc-
tion of 1/2n in the asymptotic confidence limits forp. The purpose of this correction
is to adjust for the difference between the normal approximation and the binomial dis-
tribution, which is a discrete distribution. Refer to Fleiss (1981). With the continuity
correction, the asymptotic confidence limits forp are

p̂ ± ( zα/2 × se(p̂) + (1/2n) )

Additionally, PROC FREQ computes exact confidence limits for the binomial pro-
portion using theF distribution method given in Collett (1991) and also described by
Leemis and Trivedi (1996).

PROC FREQ computes an asymptotic test of the hypothesis that the binomial pro-
portion equalsp0, where the value ofp0 is specified by the P= option in the TABLES
statement. If you do not specify a value for the P= option, PROC FREQ usesp0 = 0.5
by default. The asymptotic test statistic is

z =
p̂− p0√

p0 (1− p0) / n

If you specify the BINOMIALC option, PROC FREQ includes a continuity correc-
tion in the asymptotic test statistic, towards adjusting for the difference between the
normal approximation and the discrete binomial distribution. Refer to Fleiss (1981).
The continuity correction of(1/2n) is subtracted from(p̂ − p0) in the numerator of
the test statisticz if (p̂− p0) is positive; otherwise, the continuity correction is added
to the numerator.

PROC FREQ computes one-sided and two-sidedp-values for this test. When the test
statisticz is greater than zero, its expected value under the null hypothesis, PROC
FREQ computes the right-sidedp-value, which is the probability of a larger value
of the statistic occurring under the null hypothesis. A small right-sidedp-value sup-
ports the alternative hypothesis that the true value of the proportion is greater than
p0. When the test statistic is less than or equal to zero, PROC FREQ computes the
left-sidedp-value, which is the probability of a smaller value of the statistic occurring



120 � Chapter 2. The FREQ Procedure

under the null hypothesis. A small left-sidedp-value supports the alternative hypoth-
esis that the true value of the proportion is less thanp0. The one-sidedp-valueP1 can
be expressed as

P1 = Prob ( Z > z ) if z > 0

P1 = Prob ( Z < z ) if z ≤ 0

whereZ has a standard normal distribution. The two-sidedp-valueP2 is computed
as

P2 = Prob ( |Z| > |z| )

When you specify the BINOMIAL option in the EXACT statement, PROC FREQ
also computes an exact test of the null hypothesisH0: p = p0. To compute this exact
test, PROC FREQ uses the binomial probability function

Prob (X = x | p0) =
(
n
x

)
p x
0 (1− p0) (n−x) x = 0, 1, 2, . . . , n

where the variableX has a binomial distribution with parametersn andp0. To com-
puteProb(X ≤ n1), PROC FREQ sums these binomial probabilities overx from
zero ton1. To computeProb(X ≥ n1), PROC FREQ sums these binomial probabil-
ities overx from n1 to n. Then the exact one-sidedp-value is

P1 = min ( Prob(X ≤ n1 | p0), Prob(X ≥ n1 | p0) )

and the exact two-sidedp-value is

P2 = 2 × P1

Risks and Risk Differences

The RISKDIFF option in the TABLES statement provides estimates of risks (or bi-
nomial proportions) and risk differences for2×2 tables. This analysis may be appro-
priate when comparing the proportion of some characteristic for two groups, where
row 1 and row 2 correspond to the two groups, and the columns correspond to two
possible characteristics or outcomes. For example, the row variable might be a treat-
ment or dose, and the column variable might be the response. Refer to Collett (1991),
Fleiss (1981), and Stokes, Davis, and Koch (1995).

Let the frequencies of the2× 2 table be represented as follows.

Column 1 Column 2 Total
Row 1 n11 n12 n1·
Row 2 n21 n22 n2·
Total n·1 n·2 n



Statistical Computations � 121

The column 1 risk for row 1 is the proportion of row 1 observations classified in
column 1,

p1|1 = n11 / n1·

This estimates the conditional probability of the column 1 response, given the first
level of the row variable.

The column 1 risk for row 2 is the proportion of row 2 observations classified in
column 1,

p1|2 = n21 / n2·

and the overall column 1 risk is the proportion of all observations classified in
column 1,

p·1 = n·1 / n

The column 1 risk difference compares the risks for the two rows, and it is computed
as the column 1 risk for row 1 minus the column 1 risk for row 2,

(pdiff )1 = p1|1 − p1|2

The risks and risk difference are defined similarly for column 2.

The standard error of the column 1 risk estimate for rowi is computed as

se(p1|i) =
√
p1|i (1− p1|i) / ni·

The standard error of the overall column 1 risk estimate is computed as

se(p·1) =
√
p·1 (1− p·1) / n

If the two rows represent independent binomial samples, the standard error for the
column 1 risk difference is computed as

se ( (pdiff )1 ) =
√
var(p1|1) + var(p1|2)

The standard errors are computed in a similar manner for the column 2 risks and risk
difference.

Using the normal approximation to the binomial distribution, PROC FREQ constructs
asymptotic confidence limits for the risks and risk differences according to

est ± ( zα/2 × se(est) )



122 � Chapter 2. The FREQ Procedure

whereest is the estimate,zα/2 is the100(1−α/2) percentile of the standard normal
distribution, andse(est) is the standard error of the estimate. The confidence levelα
is determined from the value of the ALPHA= option, which, by default, equals 0.05
and produces 95% confidence limits.

If you specify the RISKDIFFC option, PROC FREQ includes continuity corrections
in the asymptotic confidence limits for the risks and risk differences. Continuity cor-
rections adjust for the difference between the normal approximation and the discrete
binomial distribution. Refer to Fleiss (1981). Including a continuity correction, the
asymptotic confidence limits become

est ± ( zα/2 × se(est) + cc )

wherecc is the continuity correction. For the column 1 risk for row 1,cc = (1/2n1·);
for the column 1 risk for row 2,cc = (1/2n2·); for the overall column 1 risk,cc =
(1/2n); and for the column 1 risk difference,cc = ((1/n1· + 1/n2·)/2). Continuity
corrections are computed similarly for the column 2 risks and risk difference.

PROC FREQ computes exact confidence limits for the column 1, column 2, and over-
all risks using theF distribution method given in Collett (1991) and also described by
Leemis and Trivedi (1996). PROC FREQ does not provide exact confidence limits
for the risk differences. Refer to Agresti (1992) for a discussion of issues involved in
constructing exact confidence limits for differences of proportions.

Odds Ratio and Relative Risks for 2 x 2 Tables

Odds Ratio (Case-Control Studies)

The odds ratio is a useful measure of association for a variety of study designs. For a
retrospective design called acase-control study, the odds ratio can be used to estimate
the relative risk when the probability of positive response is small (Agresti 1990). In a
case-control study, two independent samples are identified based on a binary (yes-no)
response variable, and the conditional distribution of a binary explanatory variable is
examined, within fixed levels of the response variable. Refer to Stokes, Davis, and
Koch (1995) and Agresti (1996).

The odds of a positive response (column 1) in row 1 isn11/n12. Similarly, the odds
of a positive response in row 2 isn21/n22. The odds ratio is formed as the ratio of
the row 1 odds to the row 2 odds. The odds ratio for2× 2 tables is defined as

OR =
n11/n12

n21/n22
=
n11 n22

n12 n21

The odds ratio can be any nonnegative number. When the row and column variables
are independent, the true value of the odds ratio equals 1. An odds ratio greater than 1
indicates that the odds of a positive response are higher in row 1 than in row 2. Values
less than 1 indicate the odds of positive response are higher in row 2. The strength of
association increases with the deviation from 1.

The transformationG = (OR− 1)/(OR+ 1) transforms the odds ratio to the range
(−1, 1) with G = 0 when OR= 1; G = −1 when OR= 0; andG approaches 1



Statistical Computations � 123

as OR approaches infinity.G is the gamma statistic, which PROC FREQ computes
when you specify the MEASURES option.

The asymptotic100(1− α)% confidence limits for the odds ratio are(
OR · exp(−z

√
v), OR · exp(z

√
v)
)

where

v = var(ln OR) =
1
n11

+
1
n12

+
1
n21

+
1
n22

andz is the100(1−α/2) percentile of the standard normal distribution. If any of the
four cell frequencies are zero, the estimates are not computed.

When you specify option OR in the EXACT statement, PROC FREQ computes exact
confidence limits for the odds ratio. Because this is a discrete problem, the confidence
coefficient for these exact confidence limits is not exactly1− α but is at least1− α.
Thus, these confidence limits are conservative. Refer to Agresti (1992).

PROC FREQ computes exact confidence limits for the odds ratio with an algorithm
based on that presented by Thomas (1971). Refer also to Gart (1971). The following
two equations are solved iteratively for the lower and upper confidence limits,φ1 and
φ2.

n·1∑
i=n11

(
n1·
i

)(
n2·

n·1 − i

)
φi

1 /

n·1∑
i=0

(
n1·
i

)(
n2·

n·1 − i

)
φi

1 = α/2

n11∑
i=0

(
n1·
i

)(
n2·

n·1 − i

)
φi

2 /

n·1∑
i=0

(
n1·
i

)(
n2·

n·1 − i

)
φi

2 = α/2

When the odds ratio equals zero, which occurs when eithern11 = 0 or n22 = 0, then
PROC FREQ sets the lower exact confidence limit to zero and determines the upper
limit with level α. Similarly, when the odds ratio equals infinity, which occurs when
eithern12 = 0 or n21 = 0, then PROC FREQ sets the upper exact confidence limit
to infinity and determines the lower limit with levelα.

Relative Risks (Cohort Studies)

These measures of relative risk are useful incohort (prospective) study designs,
where two samples are identified based on the presence or absence of an explanatory
factor. The two samples are observed in future time for the binary (yes-no) response
variable under study. Relative risk measures are also useful in cross-sectional studies,
where two variable are observed simultaneously. Refer to Stokes, Davis, and Koch
(1995) and Agresti (1996).

The column 1 relative risk is the ratio of the column 1 risks for row 1 to row 2.
The column 1 risk for row 1 is the proportion of the row 1 observations classified in
column 1,

p1|1 = n11 / n1·



124 � Chapter 2. The FREQ Procedure

Similarly, the column 1 risk for row 2 is

p1|2 = n21 / n2·

The column 1 relative risk is then computed as

RR1 =
p1|1

p1|2

A relative risk greater than 1 indicates that the probability of positive response is
greater in row 1 than in row 2. Similarly, a relative risk less than 1 indicates that
the probability of positive response is less in row 1 than in row 2. The strength of
association increases with the deviation from 1.

The asymptotic100(1− α)% confidence limits for the column 1 relative risk are

(
RR1 · exp(−z

√
v), RR1 · exp(z

√
v)
)

where

v = var(ln RR1) =
1− p1|1

n11
+

1− p1|2

n21

andz is the100(1−α/2) percentile of the standard normal distribution. If eithern11

or n21 is zero, the estimates are not computed.

PROC FREQ computes the column 2 relative risks in a similar manner.

Cochran-Armitage Test for Trend

The TREND option in the TABLES statement requests the Cochran-Armitage test
for trend, which tests for trend in binomial proportions across levels of a single fac-
tor or covariate. This test is appropriate for a contingency table where one variable
has two levels and the other variable is ordinal. The two-level variable represents
the response, and the other variable represents an explanatory variable with ordered
levels. When the contingency table has two columns andR rows, PROC FREQ tests
for trend across theR levels of the row variable, and the binomial proportion is com-
puted as the proportion of observations in the first column. When the table has two
rows andC columns, PROC FREQ tests for trend across theC levels of the column
variable, and the binomial proportion is computed as the proportion of observations
in the first row.

The trend test is based upon the regression coefficient for the weighted linear re-
gression of the binomial proportions on the scores of the levels of the explanatory
variable. Refer to Margolin (1988) and Agresti (1990). If the contingency table has
two columns andR rows, the trend test statistic is computed as

T =
∑R

i=1 ni1(Ri − R̄)√
p·1(1− p·1)s2



Statistical Computations � 125

where

s2 =
R∑

i=1

ni·(Ri − R̄)2

The row scoresRi are determined by the value of the SCORES= option in the
TABLES statement. By default, PROC FREQ uses table scores. For character vari-
ables, the table scores for the row variable are the row numbers (for example, 1 for
the first row, 2 for the second row, and so on). For numeric variables, the table score
for each row is the numeric value of the row level. When you perform the trend
test, the explanatory variable may be numeric (for example, dose of a test substance),
and these variable values may be appropriate scores. If the explanatory variable has
ordinal levels that are not numeric, you can assign meaningful scores to the variable
levels. Sometimes equidistant scores, such as the table scores for a character variable,
may be appropriate. For more information on choosing scores for the trend test, refer
to Margolin (1988).

The null hypothesis for the Cochran-Armitage test is no trend, which means that the
binomial proportionpi1 = ni1/ni· is the same for all levels of the explanatory vari-
able. Under this null hypothesis, the trend test statistic is asymptotically distributed as
a standard normal random variable. In addition to this asymptotic test, PROC FREQ
can compute the exact trend test, which you request by specifying the TREND option
in the EXACT statement. See the section“Exact Statistics”beginning on page 142
for information on exact tests.

PROC FREQ computes one-sided and two-sidedp-values for the trend test. When the
test statistic is greater than its null hypothesis expected value of zero, PROC FREQ
computes the right-sidedp-value, which is the probability of a larger value of the
statistic occurring under the null hypothesis. A small right-sidedp-value supports
the alternative hypothesis of increasing trend in binomial proportions from row 1 to
rowR. When the test statistic is less than or equal to zero, PROC FREQ outputs the
left-sidedp-value. A small left-sidedp-value supports the alternative of decreasing
trend.

The one-sidedp-valueP1 can be expressed as

P1 = Prob ( Trend Statistic > T ) if T > 0

P1 = Prob ( Trend Statistic < T ) if T ≤ 0

The two-sidedp-valueP2 is computed as

P2 = Prob ( |Trend Statistic| > |T | )

Jonckheere-Terpstra Test

The JT option in the TABLES statement requests the Jonckheere-Terpstra test, which
is a nonparametric test for ordered differences among classes. It tests the null hypoth-
esis that the distribution of the response variable does not differ among classes. It is



126 � Chapter 2. The FREQ Procedure

designed to detect alternatives of ordered class differences, which can be expressed
asτ1 ≤ τ2 ≤ · · · ≤ τR (or τ1 ≥ τ2 ≥ · · · ≥ τR), with at least one of the inequalities
being strict, whereτi denotes the effect of classi. For such ordered alternatives, the
Jonckheere-Terpstra test can be preferable to tests of more general class difference al-
ternatives, such as the Kruskal–Wallis test (requested by the option WILCOXON in
the NPAR1WAY procedure). Refer to Pirie (1983) and Hollander and Wolfe (1973)
for more information about the Jonckheere-Terpstra test.

The Jonckheere-Terpstra test is appropriate for a contingency table in which an ordi-
nal column variable represents the response. The row variable, which can be nominal
or ordinal, represents the classification variable. The levels of the row variable should
be ordered according to the ordering you want the test to detect. The order of vari-
able levels is determined by the ORDER= option in the PROC FREQ statement. The
default is ORDER=INTERNAL, which orders by unformatted values. If you specify
ORDER=DATA, PROC FREQ orders values according to their order in the input data
set. For more information on how to order variable levels, see theORDER= option
on page 76.

The Jonckheere-Terpstra test statistic is computed by first formingR(R−1)/2 Mann-
Whitney countsMi,i′ , wherei < i′, for pairs of rows in the contingency table,

Mi,i′ = { number of times Xi,j < Xi′,j′ ,

j = 1, . . . , ni.; j′ = 1, . . . , ni′. }
+ 1

2 { number of times Xi,j = Xi′,j′ ,

j = 1, . . . , ni.; j′ = 1, . . . , ni′. }

whereXi,j is responsej in row i. Then the Jonckheere-Terpstra test statistic is com-
puted as

J =
∑
1≤i<

∑
i′≤R

Mi,i′

This test rejects the null hypothesis of no difference among classes for large values
of J . Asymptoticp-values for the Jonckheere-Terpstra test are obtained by using
the normal approximation for the distribution of the standardized test statistic. The
standardized test statistic is computed as

J∗ =
J − E0(J)√
var0(J)

whereE0(J) andvar0(J) are the expected value and variance of the test statistic
under the null hypothesis.

E0(J) =

(
n2 −

∑
i

n2
i·

)
/4

var0(J) = A/72 +B/ [36n(n− 1)(n− 2)] + C/ [8n(n− 1)]



Statistical Computations � 127

where

A = n(n− 1)(2n+ 5)−
∑

i

ni·(ni· − 1)(2ni· + 5)−
∑

j

n·j(n·j − 1)(2n·j + 5)

B =

∑
i

ni·(ni· − 1)(ni· − 2)

∑
j

n·j(n·j − 1)(n·j − 2)



C =

∑
i

ni·(ni· − 1)

∑
j

n·j(n·j − 1)


In addition to this asymptotic test, PROC FREQ can compute the exact Jonckheere-
Terpstra test, which you request by specifying the JT option in the EXACT statement.
See the section“Exact Statistics”beginning on page 142 for information on exact
tests.

PROC FREQ computes one-sided and two-sidedp-values for the Jonckheere-Terpstra
test. When the standardized test statistic is greater than its null hypothesis expected
value of zero, PROC FREQ computes the right-sidedp-value, which is the probability
of a larger value of the statistic occurring under the null hypothesis. A small right-
sidedp-value supports the alternative hypothesis of increasing order from row 1 to
rowR. When the standardized test statistic is less than or equal to zero, PROC FREQ
computes the left-sidedp-value. A small left-sidedp-value supports the alternative
of decreasing order from row 1 to rowR.

The one-sidedp-valueP1 can be expressed as

P1 = Prob ( Std JT Statistic > J∗ ) if J∗ > 0

P1 = Prob ( Std JT Statistic < J∗ ) if J∗ ≤ 0

The two-sidedp-valueP2 is computed as

P2 = Prob ( |Std JT Statistic| > |J∗| )

Tests and Measures of Agreement

When you specify the AGREE option in the TABLES statement, PROC FREQ com-
putes tests and measures of agreement for square tables (that is, for tables where
the number of rows equals the number of columns). For two-way tables, these tests
and measures include McNemar’s test for2 × 2 tables, Bowker’s test of symmetry,
the simple kappa coefficient, and the weighted kappa coefficient. For multiple strata
(n-way tables, wheren > 2), PROC FREQ computes the overall simple kappa co-
efficient and the overall weighted kappa coefficient, as well as tests for equal kappas
(simple and weighted) among strata. Cochran’sQ is computed for multi-way tables
when each variable has two levels, that is, for2× 2× · · · × 2 tables.



128 � Chapter 2. The FREQ Procedure

PROC FREQ computes the kappa coefficients (simple and weighted), their asymp-
totic standard errors, and their confidence limits when you specify the AGREE option
in the TABLES statement. If you also specify the KAPPA option in the TEST state-
ment, then PROC FREQ computes the asymptotic test of the hypothesis that simple
kappa equals zero. Similarly, if you specify the WTKAP option in the TEST state-
ment, PROC FREQ computes the asymptotic test for weighted kappa.

In addition to the asymptotic tests described in this section, PROC FREQ computes
the exactp-value for McNemar’s test when you specify the option MCNEM in the
EXACT statement. For the kappa statistics, PROC FREQ computes the exact test
of the hypothesis that kappa (or weighted kappa) equals zero when you specify
the option KAPPA (or WTKAP) in the EXACT statement. See the section“Exact
Statistics”beginning on page 142 for information on exact tests.

The discussion of each test and measures of agreement provides the formulas that
PROC FREQ uses to compute the AGREE statistics. For information on the use and
interpretation of these statistics, refer to Agresti (1990), Agresti (1996), Fleiss (1981),
and the other references cited for each statistic.

McNemar’s Test

PROC FREQ computes McNemar’s test for2×2 tables when you specify the AGREE
option. McNemar’s test is appropriate when you are analyzing data from matched
pairs of subjects with a dichotomous (yes-no) response. It tests the null hypothesis of
marginal homogeneity, orp1· = p·1. McNemar’s test is computed as

QM =
(n12 − n21)2

n12 + n21

Under the null hypothesis,QM has an asymptotic chi-square distribution with one
degree of freedom. Refer to McNemar (1947), as well as the references cited in the
preceding section. In addition to the asymptotic test, PROC FREQ also computes
the exactp-value for McNemar’s test when you specify the MCNEM option in the
EXACT statement.

Bowker’s Test of Symmetry

For Bowker’s test of symmetry, the null hypothesis is that the probabilities in the
square table satisfy symmetry or thatpij = pji for all pairs of table cells. When there
are more than two categories, Bowker’s test of symmetry is calculated as

QB =
∑∑

i<j

(nij − nji)2

nij + nji

For large samples,QB has an asymptotic chi-square distribution withR(R − 1)/2
degrees of freedom under the null hypothesis of symmetry of the expected counts.
Refer to Bowker (1948). For two categories, this test of symmetry is identical to
McNemar’s test.



Statistical Computations � 129

Simple Kappa Coefficient

The simple kappa coefficient, introduced by Cohen (1960), is a measure of interrater
agreement:

κ̂ =
Po − Pe

1− Pe

wherePo =
∑

i pii andPe =
∑

i pi.p.i. If the two response variables are viewed as
two independent ratings of then subjects, the kappa coefficient equals +1 when there
is complete agreement of the raters. When the observed agreement exceeds chance
agreement, kappa is positive, with its magnitude reflecting the strength of agreement.
Although this is unusual in practice, kappa is negative when the observed agreement
is less than chance agreement. The minimum value of kappa is between−1 and 0,
depending on the marginal proportions.

The asymptotic variance of the simple kappa coefficient can be estimated by the fol-
lowing, according to Fleiss, Cohen, and Everitt (1969):

var =
A+B − C

(1− Pe)2n

where

A =
∑

i

pii

[
1− (pi· + p·i)(1− κ̂)

]2

B = (1− κ̂)2
∑∑

i6=j
pij(p·i + pj·)2

and

C =
[
κ̂− Pe(1− κ̂)

]2

PROC FREQ computes confidence limits for the simple kappa coefficient according
to

κ̂ ± ( zα/2 ×
√
var )

wherezα/2 is the100(1 − α/2) percentile of the standard normal distribution. The
value ofα is determined by the value of the ALPHA= option, which, by default,
equals 0.05 and produces 95% confidence limits.

To compute an asymptotic test for the kappa coefficient, PROC FREQ uses a stan-
dardized test statistiĉκ∗, which has an asymptotic standard normal distribution under



130 � Chapter 2. The FREQ Procedure

the null hypothesis that kappa equals zero. The standardized test statistic is computed
as

κ̂∗ =
κ̂√

var0(κ̂)

wherevar0(κ̂) is the variance of the kappa coefficient under the null hypothesis.

var0(κ̂) =
Pe + P 2

e −
∑

i pi·p·i(pi· + p·i)
(1− Pe)2n

Refer to Fleiss (1981).

In addition to the asymptotic test for kappa, PROC FREQ computes the exact test
when you specify the KAPPA or AGREE option in the EXACT statement. See the
section“Exact Statistics”beginning on page 142 for information on exact tests.

Weighted Kappa Coefficient

The weighted kappa coefficient is a generalization of the simple kappa coefficient,
using weights to quantify the relative difference between categories. For2×2 tables,
the weighted kappa coefficient equals the simple kappa coefficient. PROC FREQ
displays the weighted kappa coefficient only for tables larger than2 × 2. PROC
FREQ computes the weights from the column scores, using either the Cicchetti-
Allison weight type or the Fleiss-Cohen weight type, both of which are described
in the following section. The weightswij are constructed so that0 ≤ wij < 1 for all
i 6= j, wii = 1 for all i, andwij = wji. The weighted kappa coefficient is defined as

κ̂w =
Po(w) − Pe(w)

1− Pe(w)

where

Po(w) =
∑

i

∑
j

wijpij

and

Pe(w) =
∑

i

∑
j

wijpi·p·j

The asymptotic variance of the weighted kappa coefficient can be estimated by the
following, according to Fleiss, Cohen, and Everitt (1969):

var =

∑
i

∑
j pij

[
wij − (wi· + w·j)(1− κ̂w)

]2

−
[
κ̂w − Pe(w)(1− κ̂w)

]2

(1− Pe(w))2n



Statistical Computations � 131

where

wi· =
∑

j

p·jwij

and

w·j =
∑

i

pi·wij

PROC FREQ computes confidence limits for the weighted kappa coefficient accord-
ing to

κ̂w ± ( zα/2 ×
√
var )

wherezα/2 is the100(1 − α/2) percentile of the standard normal distribution. The
value ofα is determined by the value of the ALPHA= option, which, by default,
equals 0.05 and produces 95% confidence limits.

To compute an asymptotic test for the weighted kappa coefficient, PROC FREQ uses
a standardized test statisticκ̂∗w, which has an asymptotic standard normal distribution
under the null hypothesis that weighted kappa equals zero. The standardized test
statistic is computed as

κ̂∗w =
κ̂w√

var0(κ̂w)

wherevar0(κ̂w) is the variance of the weighted kappa coefficient under the null hy-
pothesis.

var0(κ̂w) =

∑
i

∑
j pi·p·j

[
wij − (wi· + w·j)

]2

− P 2
e(w)

(1− Pe(w))2n

Refer to Fleiss (1981).

In addition to the asymptotic test for weighted kappa, PROC FREQ computes the
exact test when you specify the WTKAP or AGREE option in the EXACT statement.
See the section“Exact Statistics”beginning on page 142 for information on exact
tests.

Weights

PROC FREQ computes kappa coefficient weights using the column scores and one of
two available weight types. The column scores are determined by the SCORES= op-
tion in the TABLES statement. The two available weight types are Cicchetti-Allison
and Fleiss-Cohen, and PROC FREQ uses the Cicchetti-Allison type by default. If you
specify (WT=FC) with the AGREE option, then PROC FREQ uses the Fleiss-Cohen
weight type to construct kappa weights.



132 � Chapter 2. The FREQ Procedure

PROC FREQ computes Cicchetti-Allison kappa coefficient weights using a form sim-
ilar to that given by Cicchetti and Allison (1971).

wij = 1− |Ci − Cj |
CC − C1

whereCi is the score for columni, andC is the number of categories or columns.
You can specify the score type using the SCORES= option in the TABLES state-
ment; if you do not specify the SCORES= option, PROC FREQ uses table scores.
For numeric variables, table scores are the values of the numeric row and column
headings. You can assign numeric values to the categories in a way that reflects their
level of similarity. For example, suppose you have four categories and order them
according to similarity. If you assign them values of 0, 2, 4, and 10, the following
weights are used for computing the weighted kappa coefficient:w12 = 0.8,w13 = 0.6,
w14 = 0, w23 = 0.8,w24 = 0.2, andw34 = 0.4. Note that when there are only two
categories (that is,C = 2), the weighted kappa coefficient is identical to the simple
kappa coefficient.

If you specify (WT=FC) with the AGREE option in the TABLES statement, PROC
FREQ computes Fleiss-Cohen kappa coefficient weights using a form similar to that
given by Fleiss and Cohen (1973).

wij = 1− (Ci − Cj)2

(CC − C1)2

For the preceding example, the weights used for computing the weighted kappa co-
efficient are:w12 = 0.96,w13 = 0.84,w14 = 0, w23 = 0.96,w24 = 0.36, andw34 =
0.64.

Overall Kappa Coefficient

When there are multiple strata, PROC FREQ combines the stratum-level estimates of
kappa into an overall estimate of the supposed common value of kappa. Assume there
areq strata, indexed byh = 1, 2, . . . , q, and letvar(κ̂h) denote the squared standard
error of κ̂h. Then the estimate of the overall kappa, according to Fleiss (1981), is
computed as

κ̂overall =
q∑

h=1

κ̂h

var(κ̂h)
/

q∑
h=1

1
var(κ̂h)

PROC FREQ computes an estimate of the overall weighted kappa in a similar manner.

Tests for Equal Kappa Coefficients

When there are multiple strata, the following chi-square statistic tests whether the
stratum-level values of kappa are equal.

QK =
q∑

h=1

(κ̂h − κ̂overall)2

var(κ̂h)



Statistical Computations � 133

Under the null hypothesis of equal kappas over theq strata,QK has an asymptotic
chi-square distribution withq − 1 degrees of freedom. PROC FREQ computes a test
for equal weighted kappa coefficients in a similar manner.

Cochran’s Q Test

Cochran’sQ is computed for multi-way tables when each variable has two levels,
that is, for2× 2 · · · × 2 tables. Cochran’sQ statistic is used to test the homogeneity
of the one-dimensional margins. Letm denote the number of variables andN denote
the total number of subjects. Then Cochran’sQ statistic is computed as

QC = (m− 1)
m
∑m

j=1 T
2
j − T 2

mT −
∑N

k=1 S
2
k

whereTj is the number of positive responses for variablej, T is the total number
of positive responses over all variables, andSk is the number of positive responses
for subjectk. Under the null hypothesis, Cochran’sQ is an approximate chi-square
statistic withm − 1 degrees of freedom. Refer to Cochran (1950). When there are
only two binary response variables (m = 2), Cochran’sQ simplifies to McNemar’s
test. When there are more than two response categories, you can test for marginal
homogeneity using the repeated measures capabilities of the CATMOD procedure.

Tables with Zero Rows and Columns

The AGREE statistics are defined only for square tables, where the number of rows
equals the number of columns. If the table is not square, PROC FREQ does not
compute AGREE statistics. In the kappa statistic framework, where two independent
raters assign ratings to each ofn subjects, suppose one of the raters does not use all
possibler rating levels. If the corresponding table hasr rows but onlyr−1 columns,
then the table is not square, and PROC FREQ does not compute the AGREE statistics.
To create a square table in this situation, use the ZEROS option in the WEIGHT
statement, which requests that PROC FREQ include observations with zero weights
in the analysis. And input zero-weight observations to represent any rating levels that
are not used by a rater, so that the input data set has at least one observation for each
possible rater and rating combination. This includes all rating levels in the analysis,
whether or not all levels are actually assigned by both raters. The resulting table is a
square table,r × r, and so all AGREE statistics can be computed.

For more information, see the description of theZEROSoption. By default, PROC
FREQ does not process observations that have zero weights, because these observa-
tions do not contribute to the total frequency count, and because any resulting zero-
weight row or column causes many of the tests and measures of association to be
undefined. However, kappa statistics are defined for tables with a zero-weight row or
column, and the ZEROS option allows input of zero-weight observations so you can
construct the tables needed to compute kappas.



134 � Chapter 2. The FREQ Procedure

Cochran-Mantel-Haenszel Statistics

For n-way crosstabulation tables, consider the following example:

proc freq;
tables A*B*C*D / cmh;

run;

The CMH option in the TABLES statement gives a stratified statistical analysis of the
relationship between C and D, after controlling for A and B. The stratified analysis
provides a way to adjust for the possible confounding effects of A and B without be-
ing forced to estimate parameters for them. The analysis produces Cochran-Mantel-
Haenszel statistics, and for2 × 2 tables, it includes estimation of the common odds
ratio, common relative risks, and the Breslow-Day test for homogeneity of the odds
ratios.

Let the number of strata be denoted byq, indexing the strata byh = 1, 2, . . . , q.
Each stratum contains a contingency table withX representing the row variable and
Y representing the column variable. For tableh, denote the cell frequency in rowi
and columnj by nhij , with corresponding row and column marginal totals denoted
by nhi. andnh.j , and the overall stratum total bynh.

Because the formulas for the Cochran-Mantel-Haenszel statistics are more easily de-
fined in terms of matrices, the following notation is used. Vectors are presumed to be
column vectors unless they are transposed(′).

n′hi = (nhi1, nhi2, . . . , nhiC) (1× C)

n′h = (n′h1,n
′
h2, . . . ,n

′
hR) (1×RC)

phi· = nhi·
nh

(1× 1)

ph·j = nh·j
nh

(1× 1)

P′
h∗· = (ph1·, ph2·, . . . , phR·) (1×R)

P′
h·∗ = (ph·1, ph·2, . . . , ph·C) (1× C)

Assume that the strata are independent and that the marginal totals of each stratum
are fixed. The null hypothesis,H0, is that there is no association betweenX andY
in any of the strata. The corresponding model is the multiple hypergeometric; this
implies that, underH0, the expected value and covariance matrix of the frequencies
are, respectively,

mh = E[nh | H0] = nh(Ph·∗ ⊗Ph∗·)

and

var[nh | H0] = c
(

(DPh·∗ −Ph·∗P′
h·∗)⊗ (DPh∗· −Ph∗·P′

h∗·)
)



Statistical Computations � 135

where

c =
n2

h

nh − 1

and where⊗ denotes Kronecker product multiplication andDa is a diagonal matrix
with elements ofa on the main diagonal.

The generalized CMH statistic (Landis, Heyman, and Koch 1978) is defined as

QCMH = G′VG
−1G

where

G =
∑

h

Bh(nh −mh)

VG =
∑

h

Bh (Var(nh | H0))B′
h

and where

Bh = Ch ⊗Rh

is a matrix of fixed constants based on column scoresCh and row scoresRh. When
the null hypothesis is true, the CMH statistic has an asymptotic chi-square distribution
with degrees of freedom equal to the rank ofBh. If VG is found to be singular, PROC
FREQ prints a message and sets the value of the CMH statistic to missing.

PROC FREQ computes three CMH statistics using this formula for the generalized
CMH statistic, with different row and column score definitions for each statistic. The
CMH statistics that PROC FREQ computes are the correlation statistic, the ANOVA
(row mean scores) statistic, and the general association statistic. These statistics test
the null hypothesis of no association against different alternative hypotheses. The
following sections describe the computation of these CMH statistics.

CAUTION: The CMH statistics have low power for detecting an association in which
the patterns of association for some of the strata are in the opposite direction of the
patterns displayed by other strata. Thus, a nonsignificant CMH statistic suggests
either that there is no association or that no pattern of association has enough strength
or consistency to dominate any other pattern.

Correlation Statistic

The correlation statistic, popularized by Mantel and Haenszel (1959) and Mantel
(1963), has one degree of freedom and is known as the Mantel-Haenszel statistic.

The alternative hypothesis for the correlation statistic is that there is a linear associ-
ation betweenX andY in at least one stratum. If eitherX or Y does not lie on an
ordinal (or interval) scale, then this statistic is not meaningful.



136 � Chapter 2. The FREQ Procedure

To compute the correlation statistic, PROC FREQ uses the formula for the general-
ized CMH statistic with the row and column scores determined by the SCORES=
option in the TABLES statement. See the section“Scores”on page 102 for more
information on the available score types. The matrix of row scoresRh has dimension
1×R, and the matrix of column scoresCh has dimension1× C.

When there is only one stratum, this CMH statistic reduces to(n − 1)r2, wherer is
the Pearson correlation coefficient betweenX andY . When nonparametric (RANK
or RIDIT) scores are specified, then the statistic reduces to(n− 1)r2s , wherers is the
Spearman rank correlation coefficient betweenX andY. When there is more than one
stratum, then this CMH statistic becomes a stratum-adjusted correlation statistic.

ANOVA (Row Mean Scores) Statistic

The ANOVA statistic can be used only when the column variableY lies on an ordinal
(or interval) scale so that the mean score ofY is meaningful. For the ANOVA statistic,
the mean score is computed for each row of the table, and the alternative hypothesis
is that, for at least one stratum, the mean scores of theR rows are unequal. In other
words, the statistic is sensitive to location differences among theR distributions of
Y.

The matrix of column scoresCh has dimension1 × C, the column scores are deter-
mined by the SCORES= option.

The matrix of row scoresRh has dimension(R− 1)×R and is created internally by
PROC FREQ as

Rh = [IR−1,−JR−1]

whereIR−1 is an identity matrix of rankR − 1, andJR−1 is an(R − 1) × 1 vector
of ones. This matrix has the effect of formingR − 1 independent contrasts of theR
mean scores.

When there is only one stratum, this CMH statistic is essentially an analysis of vari-
ance (ANOVA) statistic in the sense that it is a function of the variance ratioF statis-
tic that would be obtained from a one-way ANOVA on the dependent variableY. If
nonparametric scores are specified in this case, then the ANOVA statistic is a Kruskal-
Wallis test.

If there is more than one stratum, then this CMH statistic corresponds to a stratum-
adjusted ANOVA or Kruskal-Wallis test. In the special case where there is one subject
per row and one subject per column in the contingency table of each stratum, this
CMH statistic is identical to Friedman’s chi-square. SeeExample 2.8on page 180
for an illustration.

General Association Statistic

The alternative hypothesis for the general association statistic is that, for at least one
stratum, there is some kind of association betweenX andY. This statistic is always
interpretable because it does not require an ordinal scale for eitherX or Y.



Statistical Computations � 137

For the general association statistic, the matrixRh is the same as the one used for the
ANOVA statistic. The matrixCh is defined similarly as

Ch = [IC−1,−JC−1]

PROC FREQ generates both score matrices internally. When there is only one stra-
tum, then the general association CMH statistic reduces toQP (n− 1)/n, whereQP

is the Pearson chi-square statistic. When there is more than one stratum, then the
CMH statistic becomes a stratum-adjusted Pearson chi-square statistic. Note that a
similar adjustment can be made by summing the Pearson chi-squares across the strata.
However, the latter statistic requires a large sample size in each stratum to support the
resulting chi-square distribution withq(R−1)(C−1) degrees of freedom. The CMH
statistic requires only a large overall sample size since it has only(R − 1)(C − 1)
degrees of freedom.

Refer to Cochran (1954); Mantel and Haenszel (1959); Mantel (1963); Birch (1965);
Landis, Heyman, and Koch (1978).

Adjusted Odds Ratio and Relative Risk Estimates

The CMH option provides adjusted odds ratio and relative risk estimates for stratified
2×2 tables. For each of these measures, PROC FREQ computes the Mantel-Haenszel
estimate and the logit estimate. These estimates apply ton-way table requests in the
TABLES statement, when the row and column variables both have only two levels.

For example,

proc freq;
tables A*B*C*D / cmh;

run;

In this example, if the row and columns variablesC and D both have two levels,
PROC FREQ provides odds ratio and relative risk estimates, adjusting for the con-
founding variablesA andB.

The choice of an appropriate measure depends on the study design. For case-control
(retrospective) studies, the odds ratio is appropriate. For cohort (prospective) or cross-
sectional studies, the relative risk is appropriate. See the section“Odds Ratio and
Relative Risks for 2 x 2 Tables”beginning on page 122 for more information on
these measures.

Throughout this section,z denotes the100(1−α/2) percentile of the standard normal
distribution.

Odds Ratio, Case-Control Studies

Mantel-Haenszel Estimator

The Mantel-Haenszel estimate of the common odds ratio is computed as

ORMH =
∑

h nh11 nh22/nh∑
h nh12 nh21/nh



138 � Chapter 2. The FREQ Procedure

It is always computed unless the denominator is zero. Refer to Mantel and Haenszel
(1959) and Agresti (1990).

Using the estimated variance forlog(ORMH) given by Robins, Breslow, and
Greenland (1986), PROC FREQ computes the corresponding100(1 − α)% confi-
dence limits for the odds ratio as

( ORMH · exp(−zσ̂), ORMH · exp(zσ̂) )

where

σ̂2 = ˆvar[ ln(ORMH) ]

=
∑

h(nh11 + nh22)(nh11 nh22)/n2
h

2 (
∑

h nh11 nh22/nh)2

+
∑

h[(nh11 + nh22)(nh12 nh21) + (nh12 + nh21)(nh11 nh22)]/n2
h

2 (
∑

h nh11 nh22/nh) (
∑

h nh12 nh21/nh)

+
∑

h(nh12 + nh21)(nh12 nh21)/n2
h

2 (
∑

h nh12 nh21/nh)2

Note that the Mantel-Haenszel odds ratio estimator is less sensitive to smallnh than
the logit estimator.

Logit Estimator

The adjusted logit estimate of the odds ratio (Woolf 1955) is computed as

ORL = exp
(∑

hwh ln(ORh)∑
hwh

)
and the corresponding100(1− α)% confidence limits are(

ORL · exp

(
−z√∑

hwh

)
, ORL · exp

(
z√∑
hwh

))

where ORh is the odds ratio for stratumh, and

wh =
1

var(ln ORh)

If any cell frequency in a stratumh is zero, then PROC FREQ adds0.5 to each cell
of the stratum before computing ORh andwh (Haldane 1955), and prints a warning.

Exact Confidence Limits for the Common Odds Ratio

When you specify the COMOR option in the EXACT statement, PROC FREQ com-
putes exact confidence limits for the common odds ratio for stratified2 × 2 tables.



Statistical Computations � 139

This computation assumes that the odds ratio is constant over all the2 × 2 tables.
Exact confidence limits are constructed from the distribution ofS =

∑
h nh11, con-

ditional on the marginal totals of the2× 2 tables.

Because this is a discrete problem, the confidence coefficient for these exact confi-
dence limits is not exactly1 − α but is at least1 − α. Thus, these confidence limits
are conservative. Refer to Agresti (1992).

PROC FREQ computes exact confidence limits for the common odds ratio with an
algorithm based on that presented by Vollset, Hirji, and Elashoff (1991). Refer also
to Mehta, Patel, and Gray (1985).

Conditional on the marginal totals of2× 2 tableh, let the random variableSh denote
the frequency of table cell(1, 1). Given the row totalsnh1· andnh2· and column
totalsnh·1 andnh·2, the lower and upper bounds forSh arelh anduh,

lh = max ( 0, nh1· − nh·2 )
uh = min ( nh1·, nh·1 )

LetCsh
denote the hypergeometric coefficient,

Csh
=

(
nh·1
sh

)(
nh·2

nh1· − sh

)

and letφ denote the common odds ratio. Then the conditional distribution ofSh is

P ( Sh = sh | n1·, n·1, n·2 ) = Csh
φ sh /

x = uh∑
x = lh

Cx φ
x

Summing over all the2× 2 tables, S =
∑

h Sh , and the lower and upper bounds
of S arel andu,

l =
∑

h

lh and u =
∑

h

uh

The conditional distribution of the sumS is

P ( S = s | nh1·, nh·1, nh·2; h = 1, . . . , q ) = Cs φ
s /

x = u∑
x = l

Cx φ
x

where

Cs =
∑

s1+....+sq = s

( ∏
h

Csh

)



140 � Chapter 2. The FREQ Procedure

Let s0 denote the observed sum of cell (1,1) frequencies over theq tables. The fol-
lowing two equations are solved iteratively for lower and upper confidence limits for
the common odds ratio,φ1 andφ2,

x = u∑
x = so

Cx φ
x
1 /

x = u∑
x = l

Cx φ
x
1 = α/2

x = s0∑
x = l

Cx φ
x
2 /

x = u∑
x = l

Cx φ
x
2 = α/2

When the observed sums0 equals the lower boundl, then PROC FREQ sets the lower
exact confidence limit to zero and determines the upper limit with levelα. Similarly,
when the observed sums0 equals the upper boundu, then PROC FREQ sets the upper
exact confidence limit to infinity and determines the lower limit with levelα.

When you specify the COMOR option in the EXACT statement, PROC FREQ also
computes the exact test that the common odds ratio equals one. Settingφ = 1, the
conditional distribution of the sumS under the null hypothesis becomes

P0( S = s | nh1·, nh·1, nh·2; h = 1, . . . , q ) = Cs /
x = u∑
x = l

Cx

The point probability for this exact test is the probability of the observed sums0
under the null hypothesis, conditional on the marginals of the stratified2 × 2 tables,
and is denoted byP0(s0). The expected value ofS under the null hypothesis is

E0(S) =
x = u∑
x = l

x Cx /
x = u∑
x = l

Cx

The one-sided exactp-value is computed from the conditional distribution as
P0(S >= s0) or P0(S ≤ s0), depending on whether the observed sums0 is greater
or less thanE0(S).

P1 = P0( S >= s0 ) =
x = u∑
x = s0

Cx /

x = u∑
x = l

Cx if s0 > E0(S)

P1 = P0( S <= s0 ) =
x = s0∑
x = l

Cx /
x = u∑
x = l

Cx if s0 ≤ E0(S)

PROC FREQ computes two-sidedp-values for this test according to three different
definitions. A two-sidedp-value is computed as twice the one-sidedp-value, setting
the result equal to one if it exceeds one.

P a
2 = 2 × P1



Statistical Computations � 141

Additionally, a two-sidedp-value is computed as the sum of all probabilities less than
or equal to the point probability of the observed sums0, summing over all possible
values ofs, l ≤ s ≤ u.

P b
2 =

∑
l≤s≤u: P0(s)≤P0(s0)

P0(s)

Also, a two-sidedp-value is computed as the sum of the one-sidedp-value and the
corresponding area in the opposite tail of the distribution, equidistant from the ex-
pected value.

P c
2 = P0 ( |S − E0(S)| ≥ |s0 − E0(S)| )

Relative Risks, Cohort Studies

Mantel-Haenszel Estimator

The Mantel-Haenszel estimate of the common relative risk for column 1 is computed
as

RRMH =
∑

h nh11 nh2·/nh∑
h nh21 nh1·/nh

It is always computed unless the denominator is zero. Refer to Mantel and Haenszel
(1959) and Agresti (1990).

Using the estimated variance forlog(RRMH) given by Greenland and Robins (1985),
PROC FREQ computes the corresponding100(1 − α)% confidence limits for the
relative risk as

( RRMH · exp(−zσ̂), RRMH · exp(zσ̂) )

where

σ̂2 = ˆvar[ ln(RRMH) ]

=
∑

h(nh1· nh2· nh·1 − nh11 nh21 nh)/n2
h

(
∑

h nh11 nh2·/nh) (
∑

h nh21 nh1·/nh)

Logit Estimator

The adjusted logit estimate of the common relative risk for column 1 is computed as

RRL = exp
(∑

hwh ln RRh∑
wh

)
and the corresponding100(1− α)% confidence limits are(

RRL exp

(
−z√∑

hwh

)
,RRL exp

(
z√∑
hwh

))



142 � Chapter 2. The FREQ Procedure

where RRh is the column 1 relative risk estimate for stratumh, and

wh =
1

var(ln RRh)

If nh11 or nh21 is zero, then PROC FREQ adds0.5 to each cell of the stratum before
computing RRh andwh, and prints a warning. Refer to Kleinbaum, Kupper, and
Morgenstern (1982, Sections 17.4 and 17.5).

Breslow-Day Test for Homogeneity of the Odds Ratios

When you specify the CMH option, PROC FREQ computes the Breslow-Day test for
stratified analysis of2×2 tables. It tests the null hypothesis that the odds ratios for the
q strata are all equal. When the null hypothesis is true, the statistic has approximately
a chi-square distribution withq − 1 degrees of freedom. Refer to Breslow and Day
(1980) and Agresti (1996).

The Breslow-Day statistic is computed as

QBD =
∑

h

(nh11 − E(nh11 | ORMH))2

var(nh11 | ORMH)

whereE andvar denote expected value and variance, respectively. The summation
does not include any table with a zero row or column. If ORMH equals zero or if it
is undefined, then PROC FREQ does not compute the statistic and prints a warning
message.

For the Breslow-Day test to be valid, the sample size should be relatively large in
each stratum, and at least 80% of the expected cell counts should be greater than
5. Note that this is a stricter sample size requirement than the requirement for the
Cochran-Mantel-Haenszel test forq × 2 × 2 tables, in that each stratum sample size
(not just the overall sample size) must be relatively large. Even when the Breslow-
Day test is valid, it may not be very powerful against certain alternatives, as discussed
in Breslow and Day (1980).

If you specify the BDT option, PROC FREQ computes the Breslow-Day test with
Tarone’s adjustment, which subtracts an adjustment factor fromQBD to make the
resulting statistic asymptotically chi-square.

QBDT = QBD −
(
∑

h (nh11 − E(nh11 | ORMH)))2∑
h var(nh11 | ORMH)

Refer to Tarone (1985), Jones et al. (1989), and Breslow (1996).

Exact Statistics

Exact statistics can be useful in situations where the asymptotic assumptions are not
met, and so the asymptoticp-values are not close approximations for the truep-
values. Standard asymptotic methods involve the assumption that the test statistic
follows a particular distribution when the sample size is sufficiently large. When the



Statistical Computations � 143

sample size is not large, asymptotic results may not be valid, with the asymptotic
p-values differing perhaps substantially from the exactp-values. Asymptotic results
may also be unreliable when the distribution of the data is sparse, skewed, or heav-
ily tied. Refer to Agresti (1996) and Bishop, Fienberg, and Holland (1975). Exact
computations are based on the statistical theory of exact conditional inference for
contingency tables, reviewed by Agresti (1992).

In addition to computation of exactp-values, PROC FREQ provides the option of
estimating exactp-values by Monte Carlo simulation. This can be useful for problems
that are so large that exact computations require a great amount of time and memory,
but for which asymptotic approximations may not be sufficient.

PROC FREQ provides exactp-values for the following tests for two-way tables:
Pearson chi-square, likelihood-ratio chi-square, Mantel-Haenszel chi-square, Fisher’s
exact test, Jonckheere-Terpstra test, Cochran-Armitage test for trend, and McNemar’s
test. PROC FREQ also computes exactp-values for tests of hypotheses that the fol-
lowing statistics equal zero: Pearson correlation coefficient, Spearman correlation
coefficient, simple kappa coefficient, and weighted kappa coefficient. Additionally,
PROC FREQ computes exact confidence limits for the odds ratio for2×2 tables. For
stratified2 × 2 tables, PROC FREQ computes exact confidence limits for the com-
mon odds ratio, as well as an exact test that the common odds ratio equals one. For
one-way frequency tables, PROC FREQ provides the exact chi-square goodness-of-
fit test (for equal proportions or for proportions or frequencies that you specify). Also
for one-way tables, PROC FREQ provides exact confidence limits for the binomial
proportion and an exact test for the binomial proportion value.

The following sections summarize the exact computational algorithms, define the
exactp-values that PROC FREQ computes, discuss the computational resource re-
quirements, and describe the Monte Carlo estimation option.

Computational Algorithms

PROC FREQ computes exactp-values for generalR×C tables using the network al-
gorithm developed by Mehta and Patel (1983). This algorithm provides a substantial
advantage over direct enumeration, which can be very time-consuming and feasible
only for small problems. Refer to Agresti (1992) for a review of algorithms for com-
putation of exactp-values, and refer to Mehta, Patel, and Tsiatis (1984) and Mehta,
Patel, and Senchaudhuri (1991) for information on the performance of the network
algorithm.

The reference set for a given contingency table is the set of all contingency tables
with the observed marginal row and column sums. Corresponding to this reference
set, the network algorithm forms a directed acyclic network consisting of nodes in a
number of stages. A path through the network corresponds to a distinct table in the
reference set. The distances between nodes are defined so that the total distance of a
path through the network is the corresponding value of the test statistic. At each node,
the algorithm computes the shortest and longest path distances for all the paths that
pass through that node. For statistics that can be expressed as a linear combination
of cell frequencies multiplied by increasing row and column scores, PROC FREQ
computes shortest and longest path distances using the algorithm given in Agresti,
Mehta, and Patel (1990). For statistics of other forms, PROC FREQ computes an



144 � Chapter 2. The FREQ Procedure

upper bound for the longest path and a lower bound for the shortest path, following
the approach of Valz and Thompson (1994).

The longest and shortest path distances or bounds for a node are compared to the
value of the test statistic to determine whether all paths through the node contribute
to thep-value, none of the paths through the node contribute to thep-value, or neither
of these situations occur. If all paths through the node contribute, thep-value is incre-
mented accordingly, and these paths are eliminated from further analysis. If no paths
contribute, these paths are eliminated from the analysis. Otherwise, the algorithm
continues, still processing this node and the associated paths. The algorithm finishes
when all nodes have been accounted for, incrementing thep-value accordingly, or
eliminated.

In applying the network algorithm, PROC FREQ uses full precision to represent all
statistics, row and column scores, and other quantities involved in the computations.
Although it is possible to use rounding to improve the speed and memory require-
ments of the algorithm, PROC FREQ does not do this since it can result in reduced
accuracy of thep-values.

For one-way tables, PROC FREQ computes the exact chi-square goodness-of-fit test
by the method of Radlow and Alf (1975). PROC FREQ generates all possible one-
way tables with the observed total sample size and number of categories. For each
possible table, PROC FREQ compares its chi-square value with the value for the ob-
served table. If the table’s chi-square value is greater than or equal to the observed
chi-square, PROC FREQ increments the exactp-value by the probability of that ta-
ble, which is calculated under the null hypothesis using the multinomial frequency
distribution. By default, the null hypothesis states that all categories have equal pro-
portions. If you specify null hypothesis proportions or frequencies using the TESTP=
or TESTF= option in the TABLES statement, then PROC FREQ calculates the exact
chi-square test based on that null hypothesis.

For binomial proportions in one-way tables, PROC FREQ computes exact confidence
limits using theF distribution method given in Collett (1991) and also described by
Leemis and Trivedi (1996). PROC FREQ computes the exact test for a binomial
proportion (H0: p = p0) by summing binomial probabilities over all alternatives. See
the section“Binomial Proportion”on page 118 for details. By default, PROC FREQ
usesp0 = 0.5 as the null hypothesis proportion. Alternatively, you can specify the
null hypothesis proportion with the P= option in the TABLES statement.

See the section“Odds Ratio and Relative Risks for 2 x 2 Tables”on page 122 for
details on computation of exact confidence limits for the odds ratio for2 × 2 tables.
See the section“Exact Confidence Limits for the Common Odds Ratio” on page 138
for details on computation of exact confidence limits for the common odds ratio for
stratified2× 2 tables.

Definition of p-Values

For several tests in PROC FREQ, the test statistic is nonnegative, and large values of
the test statistic indicate a departure from the null hypothesis. Such tests include the
Pearson chi-square, the likelihood-ratio chi-square, the Mantel-Haenszel chi-square,
Fisher’s exact test for tables larger than 2× 2 tables, McNemar’s test, and the one-



Statistical Computations � 145

way chi-square goodness-of-fit test. The exactp-value for these nondirectional tests
is the sum of probabilities for those tables having a test statistic greater than or equal
to the value of the observed test statistic.

There are other tests where it may be appropriate to test against either a one-sided or a
two-sided alternative hypothesis. For example, when you test the null hypothesis that
the true parameter value equals 0 (T = 0), the alternative of interest may be one-sided
(T ≤ 0, or T ≥ 0) or two-sided (T 6= 0). Such tests include the Pearson correla-
tion coefficient, Spearman correlation coefficient, Jonckheere-Terpstra test, Cochran-
Armitage test for trend, simple kappa coefficient, and weighted kappa coefficient. For
these tests, PROC FREQ outputs the right-sidedp-value when the observed value of
the test statistic is greater than its expected value. The right-sidedp-value is the sum
of probabilities for those tables having a test statistic greater than or equal to the
observed test statistic. Otherwise, when the test statistic is less than or equal to its
expected value, PROC FREQ outputs the left-sidedp-value. The left-sidedp-value
is the sum of probabilities for those tables having a test statistic less than or equal to
the one observed. The one-sidedp-valueP1 can be expressed as

P1 = Prob (Test Statistic ≥ t) if t > E0(T )

P1 = Prob (Test Statistic ≤ t) if t ≤ E0(T )

wheret is the observed value of the test statistic andE0(T ) is the expected value of
the test statistic under the null hypothesis. PROC FREQ computes the two-sidedp-
value as the sum of the one-sidedp-value and the corresponding area in the opposite
tail of the distribution of the statistic, equidistant from the expected value. The two-
sidedp-valueP2 can be expressed as

P2 = Prob ( |Test Statistic− E0(T ) | ≥ | t− E0(T ) | )

If you specify the POINT option in the EXACT statement, PROC FREQ also displays
exact point probabilities for the test statistics. The exact point probability is the exact
probability that the test statistic equals the observed value.

Computational Resources

PROC FREQ uses relatively fast and efficient algorithms for exact computations.
These recently developed algorithms, together with improvements in computer
power, make it feasible now to perform exact computations for data sets where pre-
viously only asymptotic methods could be applied. Nevertheless, there are still large
problems that may require a prohibitive amount of time and memory for exact com-
putations, depending on the speed and memory available on your computer. For large
problems, consider whether exact methods are really needed or whether asymptotic
methods might give results quite close to the exact results, while requiring much less
computer time and memory. When asymptotic methods may not be sufficient for
such large problems, consider using Monte Carlo estimation of exactp-values, as
described in the section“Monte Carlo Estimation”on page 146.



146 � Chapter 2. The FREQ Procedure

A formula does not exist that can predict in advance how much time and memory
are needed to compute an exactp-value for a certain problem. The time and memory
required depend on several factors, including which test is being performed, the total
sample size, the number of rows and columns, and the specific arrangement of the
observations into table cells. Generally, larger problems (in terms of total sample size,
number of rows, and number of columns) tend to require more time and memory.
Additionally, for a fixed total sample size, time and memory requirements tend to
increase as the number of rows and columns increases, since this corresponds to an
increase in the number of tables in the reference set. Also for a fixed sample size, time
and memory requirements increase as the marginal row and column totals become
more homogeneous. Refer to Agresti, Mehta, and Patel (1990) and Gail and Mantel
(1977).

At any time while PROC FREQ is computing exactp-values, you can terminate
the computations by pressing the system interrupt key sequence (refer to theSAS
Companionfor your system) and choosing to stop computations. After you terminate
exact computations, PROC FREQ completes all other remaining tasks. The proce-
dure produces the requested output and reports missing values for any exactp-values
that were not computed by the time of termination.

You can also use the MAXTIME= option in the EXACT statement to limit the amount
of time PROC FREQ uses for exact computations. You specify a MAXTIME= value
that is the maximum amount of clock time (in seconds) that PROC FREQ can use to
compute an exactp-value. If PROC FREQ does not finish computing an exactp-value
within that time, it terminates the computation and completes all other remaining
tasks.

Monte Carlo Estimation

If you specify the option MC in the EXACT statement, PROC FREQ computes Monte
Carlo estimates of the exactp-values instead of directly computing the exactp-values.
Monte Carlo estimation can be useful for large problems that require a great amount
of time and memory for exact computations but for which asymptotic approximations
may not be sufficient. To describe the precision of each Monte Carlo estimate, PROC
FREQ provides the asymptotic standard error and100(1−α)% confidence limits. The
confidence levelα is determined by the ALPHA= option in the EXACT statement,
which, by default, equals 0.01, and produces 99% confidence limits. The N=n option
in the EXACT statement specifies the number of samples that PROC FREQ uses for
Monte Carlo estimation; the default is 10000 samples. You can specify a larger value
for n to improve the precision of the Monte Carlo estimates. Because larger values
of n generate more samples, the computation time increases. Alternatively, you can
specify a smaller value ofn to reduce the computation time.

To compute a Monte Carlo estimate of an exactp-value, PROC FREQ generates a
random sample of tables with the same total sample size, row totals, and column to-
tals as the observed table. PROC FREQ uses the algorithm of Agresti, Wackerly, and
Boyett (1979), which generates tables in proportion to their hypergeometric proba-
bilities conditional on the marginal frequencies. For each sample table, PROC FREQ
computes the value of the test statistic and compares it to the value for the observed
table. When estimating a right-sidedp-value, PROC FREQ counts all sample tables



Computational Resources � 147

for which the test statistic is greater than or equal to the observed test statistic. Then
thep-value estimate equals the number of these tables divided by the total number of
tables sampled.

P̂MC = M / N

M = number of samples with(Test Statistic≥ t)
N = total number of samples

t = observed Test Statistic

PROC FREQ computes left-sided and two-sidedp-value estimates in a similar man-
ner. For left-sidedp-values, PROC FREQ evaluates whether the test statistic for each
sampled table is less than or equal to the observed test statistic. For two-sidedp-
values, PROC FREQ examines the sample test statistics according to the expression
for P2 given in the section“Asymptotic Tests”on page 109. The variableM is a bi-
nomially distributed variable withN trials and success probabilityp. It follows that
the asymptotic standard error of the Monte Carlo estimate is

se(P̂MC) =
√
P̂MC(1− P̂MC)/(N − 1)

PROC FREQ constructs asymptotic confidence limits for thep-values according to

P̂MC ± zα/2 · se(P̂MC)

wherezα/2 is the100(1−α/2) percentile of the standard normal distribution, and the
confidence levelα is determined by the ALPHA= option in the EXACT statement.

When the Monte Carlo estimatêPMC equals 0, then PROC FREQ computes the
confidence limits for thep-value as

( 0, 1− α(1/N) )

When the Monte Carlo estimatêPMC equals 1, then PROC FREQ computes the
confidence limits as

( α(1/N), 1 )

Computational Resources

For each variable in a table request, PROC FREQ stores all of the levels in memory.
If all variables are numeric and not formatted, this requires about 84 bytes for each
variable level. When there are character variables or formatted numeric variables,
the memory that is required depends on the formatted variable lengths, with longer
formatted lengths requiring more memory. The number of levels for each variable is
limited only by the largest integer that your operating environment can store.



148 � Chapter 2. The FREQ Procedure

For any single crosstabulation table requested, PROC FREQ builds the entire table in
memory, regardless of whether the table has zero cell counts. Thus, if the numeric
variablesA, B, andC each have 10 levels, PROC FREQ requires 2520 bytes to store
the variable levels for the table requestA*B*C, as follows:

3 variables * 10 levels/variable * 84 bytes/level

In addition, PROC FREQ requires 8000 bytes to store the table cell frequencies

1000 cells * 8 bytes/cell

even though there may be only 10 observations.

When the variables have many levels or when there are many multiway tables, your
computer may not have enough memory to construct the tables. If PROC FREQ
runs out of memory while constructing tables, it stops collecting levels for the vari-
able with the most levels and returns the memory that is used by that variable. The
procedure then builds the tables that do not contain the disabled variables.

If there is not enough memory for your table request and if increasing the available
memory is impractical, you can reduce the number of multiway tables or variable
levels. If you are not using the CMH or AGREE option in the TABLES statement
to compute statistics across strata, reduce the number of multiway tables by using
PROC SORT to sort the data set by one or more of the variables or by using the
DATA step to create an index for the variables. Then remove the sorted or indexed
variables from the TABLES statement and include a BY statement that uses these
variables. You can also reduce memory requirements by using a FORMAT statement
in the PROC FREQ step to reduce the number of levels. Additionally, reducing the
formatted variable lengths reduces the amount of memory that is needed to store
the variable levels. For more information on using formats, see the“Grouping with
Formats”section on page 99.

Output Data Sets

PROC FREQ produces two types of output data sets that you can use with other
statistical and reporting procedures. These data sets are produced as follows:

• Specifying a TABLES statement with an OUT= option creates an output data
set that contains frequency or crosstabulation table counts and percentages.

• Specifying an OUTPUT statement creates an output data set that contains
statistics.

PROC FREQ does not display the output data sets. Use PROC PRINT, PROC
REPORT, or any other SAS reporting tool to display an output data set.



Output Data Sets � 149

Contents of the TABLES Statement Output Data Set

The OUT= option in the TABLES statement creates an output data set that contains
one observation for each combination of the variable values (or table cell) in the last
table request. By default, each observation contains the frequency and percentage for
the table cell. When the input data set contains missing values, the output data set
also contains an observation with the frequency of missing values. The output data
set includes the following variables:

• BY variables

• table request variables, such asA, B, C, andD in the table requestA*B*C*D

• COUNT, a variable containing the cell frequency

• PERCENT, a variable containing the cell percentage

If you specify the OUTEXPECT and OUTPCT options in the TABLES statement,
the output data set also contains expected frequencies and row, column, and table
percentages, respectively. The additional variables are

• EXPECTED, a variable containing the expected frequency

• PCT–TABL, a variable containing the percentage of two-way table frequency,
for n-way tables wheren > 2

• PCT–ROW, a variable containing the percentage of row frequency

• PCT–COL, a variable containing the percentage of column frequency

If you specify the OUTCUM option in the TABLES statement, the output data set
also contains cumulative frequencies and cumulative percentages for one-way tables.
The additional variables are

• CUM–FREQ, a variable containing the cumulative frequency

• CUM–PCT, a variable containing the cumulative percentage

The OUTCUM option has no effect for two-way or multiway tables.

When you submit the following statements

proc freq;
tables A A*B / out=D;

run;

the output data setD contains frequencies and percentages for the last table request,
A*B. If A has two levels (1 and 2),B has three levels (1,2, and 3), and no table cell
count is zero or missing, the output data setD includes six observations, one for each
combination ofA andB. The first observation corresponds toA=1 andB=1; the sec-
ond observation corresponds toA=1 andB=2; and so on. The data set includes the
variablesCOUNT andPERCENT. The value ofCOUNT is the number of observa-
tions with the given combination ofA andB values. The value ofPERCENT is the
percent of the total number of observations having thatA andB combination.

When PROC FREQ combines different variable values into the same formatted level,
the output data set contains the smallest internal value for the formatted level. For



150 � Chapter 2. The FREQ Procedure

example, suppose a variableX has the values 1.1., 1.4, 1.7, 2.1, and 2.3. When you
submit the statement

format X 1.;

in a PROC FREQ step, the formatted levels listed in the frequency table forX are 1
and 2. If you create an output data set with the frequency counts, the internal values
of X are 1.1 and 1.7. To report the internal values ofX when you display the output
data set, use a format of 3.1 withX.

Contents of the OUTPUT Statement Output Data Set
The OUTPUT statement creates a SAS data set containing the statistics that PROC
FREQ computes for the last table request. You specify which statistics to store in the
output data set. There is an observation with the specified statistics for each stratum
or two-way table. If PROC FREQ computes summary statistics for a stratified table,
the output data set also contains a summary observation with those statistics.

The OUTPUT data set can include the following variables.

• BY variables

• variables that identify the stratum, such asA and B in the table request
A*B*C*D

• variables that contain the specified statistics

The output data set also includes variables with thep-values and degrees of freedom,
asymptotic standard error (ASE), or confidence limits when PROC FREQ computes
these values for a specified statistic.

The variable names for the specified statistics in the output data set are the names
of the options enclosed in underscores. PROC FREQ forms variable names for the
correspondingp-values, degrees of freedom, or confidence limits by combining the
name of the option with the appropriate prefix from the following list:

DF– degrees of freedom
E– asymptotic standard error (ASE)
L– lower confidence limit
U– upper confidence limit
E0– ASE under the null hypothesis
Z– standardized value
P– p-value
P2– two-sidedp-value
PL– left-sidedp-value
PR– right-sidedp-value
XP– exactp-value
XP2– exact two-sidedp-value
XPL– exact left-sidedp-value
XPR– exact right-sidedp-value
XPT– exact point probability
XL– exact lower confidence limit
XR– exact upper confidence limit



Displayed Output � 151

For example, variable names created for the Pearson chi-square, its degrees of free-
dom, itsp-values are–PCHI– , DF–PCHI, andP–PCHI, respectively.

If the length of the prefix plus the statistic option exceeds eight characters, PROC
FREQ truncates the option so that the name of the new variable is eight characters
long.

Displayed Output

Number of Variable Levels Table

If you specify theNLEVELS option in the PROC FREQ statement, PROC FREQ
displays the “Number of Variable Levels” table. This table provides the number of
levels for all variables named in the TABLES statements. PROC FREQ determines
the variable levels from the formatted variable values. See“Grouping with Formats”
for details. The “Number of Variable Levels” table contains the following informa-
tion:

• Variable name

• Levels, which is the total number of levels of the variable

• Number of Nonmissing Levels, if there are missing levels for any of the vari-
ables

• Number of Missing Levels, if there are missing levels for any of the variables

One-Way Frequency Tables

PROC FREQ displays one-way frequency tables for all one-way table requests in the
TABLES statements, unless you specify theNOPRINToption in the PROC statement
or theNOPRINT option in the TABLES statement. For a one-way table showing
the frequency distribution of a single variable, PROC FREQ displays the following
information:

• the name of the variable and its values

• Frequency counts, giving the number of observations that have each value

• specified Test Frequency counts, if you specify theCHISQ andTESTF=op-
tions to request a chi-square goodness-of-fit test for specified frequencies

• Percent, giving the percentage of the total number of observations with that
value. (TheNOPERCENToption suppresses this information.)

• specified Test Percents, if you specify theCHISQ and TESTP= options
to request a chi-square goodness-of-fit test for specified percents. (The
NOPERCENToption suppresses this information.)

• Cumulative Frequency counts, giving the sum of the frequency counts of that
value and all other values listed above it in the table. The last cumulative fre-
quency is the total number of nonmissing observations. (TheNOCUM option
suppresses this information.)

• Cumulative Percent values, giving the percentage of the total number of ob-
servations with that value and all others previously listed in the table. (The
NOCUM or theNOPERCENToption suppresses this information.)



152 � Chapter 2. The FREQ Procedure

The one-way table also displays the Frequency Missing, or the number of observa-
tions with missing values.

Statistics for One-Way Frequency Tables

For one-way tables, two statistical options are available in theTABLES statement.
The CHISQ option provides a chi-square goodness-of-fit test, and theBINOMIAL
option provides binomial proportion statistics. PROC FREQ displays the following
information, unless you specify theNOPRINToption in the PROC statement:

• If you specify theCHISQoption for a one-way table, PROC FREQ provides a
chi-square goodness-of-fit test, displaying the Chi-Square statistic, the degrees
of freedom (DF), and the probability value (Pr > ChiSq). If you specify the
CHISQ option in theEXACT statement, PROC FREQ also displays the ex-
act probability value for this test. If you specify thePOINT option with the
CHISQ option in the EXACT statement, PROC FREQ displays the exact point
probability for the test statistic.

• If you specify theBINOMIAL option for a one-way table, PROC FREQ dis-
plays the estimate of the binomial Proportion, which is the proportion of obser-
vations in the first class listed in the one-way table. PROC FREQ also displays
the asymptotic standard error (ASE) and the asymptotic and exact confidence
limits for this estimate. For the binomial proportion test, PROC FREQ displays
the asymptotic standard error under the null hypothesis (ASE Under H0), the
standardized test statistic (Z), and the one-sided and two-sided probability val-
ues. If you specify the BINOMIAL option in theEXACT statement, PROC
FREQ also displays the exact one-sided and two-sided probability values for
this test. If you specify thePOINT option with the BINOMIAL option in the
EXACT statement, PROC FREQ displays the exact point probability for the
test.

Multiway Tables

PROC FREQ displays all multiway table requests in theTABLES statements, unless
you specify theNOPRINToption in the PROC statement or theNOPRINToption in
the TABLES statement.

For two-way to multiway crosstabulation tables, the values of the last variable in the
table request form the table columns. The values of the next-to-last variable form the
rows. Each level (or combination of levels) of the other variables forms one stratum.

There are three ways to display multiway tables in PROC FREQ. By default, PROC
FREQ displays multiway tables as separate two-way crosstabulation tables for each
stratum of the multiway table. Also by default, PROC FREQ displays these two-
way crosstabulation tables in table cell format. Alternatively, if you specify the
CROSSLISToption, PROC FREQ displays the two-way crosstabulation tables in
ODS column format. If you specify theLIST option, PROC FREQ displays multi-
way tables in list format.



Displayed Output � 153

Crosstabulation Tables

By default, PROC FREQ displays two-way crosstabulation tables in table cell format.
The row variable values are listed down the side of the table, the column variable
values are listed across the top of the table, and each row and column variable level
combination forms a table cell.

Each cell of a crosstabulation table may contain the following information:

• Frequency, giving the number of observations that have the indicated values of
the two variables. (TheNOFREQoption suppresses this information.)

• the Expected cell frequency under the hypothesis of independence, if you spec-
ify the EXPECTEDoption

• the Deviation of the cell frequency from the expected value, if you specify the
DEVIATION option

• Cell Chi-Square, which is the cell’s contribution to the total chi-square statistic,
if you specify theCELLCHI2 option

• Tot Pct, or the cell’s percentage of the total frequency, forn-way tables when
n > 2, if you specify theTOTPCToption

• Percent, the cell’s percentage of the total frequency. (TheNOPERCENToption
suppresses this information.)

• Row Pct, or the row percentage, the cell’s percentage of the total frequency
count for that cell’s row. (TheNOROWoption suppresses this information.)

• Col Pct, or column percentage, the cell’s percentage of the total frequency
count for that cell’s column. (TheNOCOLoption suppresses this information.)

• Cumulative Col%, or cumulative column percent, if you specify theCUMCOL
option

The table also displays the Frequency Missing, or the number of observations with
missing values.

CROSSLIST Tables

If you specify theCROSSLISToption, PROC FREQ displays two-way crosstabu-
lation tables with ODS column format. Using column format, a CROSSLIST table
provides the same information (frequencies, percentages, and other statistics) as the
default crosstabulation table with cell format. But unlike the default crosstabulation
table, a CROSSLIST table has a table definition that you can customize with PROC
TEMPLATE. For more information, refer to the chapter titled “The TEMPLATE
Procedure” in theSAS Output Delivery System User’s Guide.

In the CROSSLIST table format, the rows of the display correspond to the crosstab-
ulation table cells, and the columns of the display correspond to descriptive statistics
such as frequencies and percentages. Each table cell is identified by the values of
its TABLES row and column variable levels, with all column variable levels listed
within each row variable level. The CROSSLIST table also provides row totals, col-
umn totals, and overall table totals.



154 � Chapter 2. The FREQ Procedure

For a crosstabulation table in the CROSSLIST format, PROC FREQ displays the
following information:

• the row variable name and values

• the column variable name and values

• Frequency, giving the number of observations that have the indicated values of
the two variables. (TheNOFREQoption suppresses this information.)

• the Expected cell frequency under the hypothesis of independence, if you spec-
ify the EXPECTEDoption

• the Deviation of the cell frequency from the expected value, if you specify the
DEVIATION option

• Cell Chi-Square, which is the cell’s contribution to the total chi-square statistic,
if you specify theCELLCHI2 option

• Total Percent, or the cell’s percentage of the total frequency, forn-way tables
whenn > 2, if you specify theTOTPCToption

• Percent, the cell’s percentage of the total frequency. (TheNOPERCENToption
suppresses this information.)

• Row Percent, the cell’s percentage of the total frequency count for that cell’s
row. (TheNOROWoption suppresses this information.)

• Column Percent, the cell’s percentage of the total frequency count for that cell’s
column. (TheNOCOLoption suppresses this information.)

The table also displays the Frequency Missing, or the number of observations with
missing values.

LIST Tables

If you specify theLIST option in the TABLES statement, PROC FREQ displays
multiway tables in a list format rather than as crosstabulation tables. The LIST option
displays the entire multiway table in one table, instead of displaying a separate two-
way table for each stratum. The LIST option is not available when you also request
statistical options. Unlike the default crosstabulation output, the LIST output does
not display row percentages, column percentages, and optional information such as
expected frequencies and cell chi-squares.

For a multiway table in list format, PROC FREQ displays the following information:

• the variable names and values

• Frequency counts, giving the number of observations with the indicated com-
bination of variable values

• Percent, the cell’s percentage of the total number of observations. (The
NOPERCENToption suppresses this information.)

• Cumulative Frequency counts, giving the sum of the frequency counts of that
cell and all other cells listed above it in the table. The last cumulative fre-
quency is the total number of nonmissing observations. (TheNOCUM option
suppresses this information.)



Displayed Output � 155

• Cumulative Percent values, giving the percentage of the total number of obser-
vations for that cell and all others previously listed in the table. (TheNOCUM
or theNOPERCENToption suppresses this information.)

The table also displays the Frequency Missing, or the number of observations with
missing values.

Statistics for Multiway Tables

PROC FREQ computes statistical tests and measures for crosstabulation tables, de-
pending on which statements and options you specify. You can suppress the display
of all these results by specifying the NOPRINT option in the PROC statement. With
any of the following information, PROC FREQ also displays the Sample Size and the
Frequency Missing.

• If you specify the SCOROUT option, PROC FREQ displays the Row Scores
and Column Scores that it uses for statistical computations. The Row Scores ta-
ble displays the row variable values and the Score corresponding to each value.
The Column Scores table displays the column variable values and the corre-
sponding Scores. PROC FREQ also identifies the score type used to compute
the row and column scores. You can specify the score type with the SCORES=
option in the TABLES statement.

• If you specify the CHISQ option, PROC FREQ displays the following statistics
for each two-way table: Pearson Chi-Square, Likelihood-Ratio Chi-Square,
Continuity-Adjusted Chi-Square (for2 × 2 tables), Mantel-Haenszel Chi-
Square, the Phi Coefficient, the Contingency Coefficient, and Cramer’sV . For
each test statistic, PROC FREQ also displays the degrees of freedom (DF) and
the probability value (Prob).

• If you specify the CHISQ option for2 × 2 tables, PROC FREQ also displays
Fisher’s exact test. The test output includes the cell (1,1) frequency (F), the
exact left-sided and right-sided probability values, the table probability (P),
and the exact two-sided probability value.

• If you specify the FISHER option in the TABLES statement (or, equivalently,
the FISHER option in the EXACT statement), PROC FREQ displays Fisher’s
exact test for tables larger than2 × 2. The test output includes the table prob-
ability (P) and the probability value. In addition, PROC FREQ displays the
CHISQ output listed earlier, even if you do not also specify the CHISQ option.

• If you specify the PCHI, LRCHI, or MHCHI option in the EXACT statement,
PROC FREQ also displays the corresponding exact test: Pearson Chi-Square,
Likelihood-Ratio Chi-Square, or Mantel-Haenszel Chi-Square, respectively.
The test output includes the test statistic, the degrees of freedom (DF), and
the asymptotic and exact probability values. If you also specify the POINT
option in the EXACT statement, PROC FREQ displays the point probability
for each exact test requested. If you specify the CHISQ option in the EXACT
statement, PROC FREQ displays exact probability values for all three of these
chi-square tests.



156 � Chapter 2. The FREQ Procedure

• If you specify the MEASURES option, PROC FREQ displays the following
statistics and their asymptotic standard errors (ASE) for each two-way
table: Gamma, Kendall’s Tau-b, Stuart’s Tau-c, Somers’D(C|R), Somers’
D(R|C), Pearson Correlation, Spearman Correlation, Lambda Asymmetric
(C|R), Lambda Asymmetric(R|C), Lambda Symmetric, Uncertainty
Coefficient (C|R), Uncertainty Coefficient (R|C), and Uncertainty
Coefficient Symmetric. If you specify the CL option, PROC FREQ also
displays confidence limits for these measures.

• If you specify the PLCORR option, PROC FREQ displays the tetrachoric cor-
relation for2× 2 tables or the polychoric correlation for larger tables. In addi-
tion, PROC FREQ displays the MEASURES output listed earlier, even if you
do not also specify the MEASURES option.

• If you specify the option GAMMA, KENTB, STUTC, SMDCR, SMDRC,
PCORR, or SCORR in the TEST statement, PROC FREQ displays asymptotic
tests for Gamma, Kendall’s Tau-b, Stuart’s Tau-c, Somers’D(C|R), Somers’
D(R|C), the Pearson Correlation, or the Spearman Correlation, respectively.
If you specify the MEASURES option in the TEST statement, PROC FREQ
displays all these asymptotic tests. The test output includes the statistic, its
asymptotic standard error (ASE), Confidence Limits, the ASE under the null
hypothesis H0, the standardized test statistic (Z), and the one-sided and two-
sided probability values.

• If you specify the PCORR or SCORR option in the EXACT statement, PROC
FREQ displays asymptotic and exact tests for the Pearson Correlation or the
Spearman Correlation, respectively. The test output includes the correlation, its
asymptotic standard error (ASE), Confidence Limits, the ASE under the null
hypothesis H0, the standardized test statistic (Z), and the asymptotic and exact
one-sided and two-sided probability values. If you also specify the POINT
option in the EXACT statement, PROC FREQ displays the point probability
for each exact test requested.

• If you specify the RISKDIFF option for2 × 2 tables, PROC FREQ displays
the Column 1 and Column 2 Risk Estimates. For each column, PROC FREQ
displays Row 1 Risk, Row 2 Risk, Total Risk, and Risk Difference, together
with their asymptotic standard errors (ASE), Asymptotic Confidence Limits,
and Exact Confidence Limits. Exact confidence limits are not available for the
risk difference.

• If you specify the MEASURES option or the RELRISK option for2×2 tables,
PROC FREQ displays Estimates of the Relative Risk for Case-Control and
Cohort studies, together with their Confidence Limits. These measures are
also known as the Odds Ratio and the Column 1 and 2 Relative Risks. If you
specify the OR option in the EXACT statement, PROC FREQ also displays
Exact Confidence Limits for the Odds Ratio.

• If you specify the TREND option, PROC FREQ displays the Cochran-
Armitage Trend Test for tables that are2 × C or R × 2. For this test, PROC
FREQ gives the Statistic (Z) and the one-sided and two-sided probability val-
ues. If you specify the TREND option in the EXACT statement, PROC FREQ
also displays the exact one-sided and two-sided probability values for this test.



Displayed Output � 157

If you specify the POINT option with the TREND option in the EXACT state-
ment, PROC FREQ displays the exact point probability for the test statistic.

• If you specify the JT option, PROC FREQ displays the Jonckheere-Terpstra
Test, showing the Statistic (JT), the standardized test statistic (Z), and the one-
sided and two-sided probability values. If you specify the JT option in the
EXACT statement, PROC FREQ also displays the exact one-sided and two-
sided probability values for this test. If you specify the POINT option with
the JT option in the EXACT statement, PROC FREQ displays the exact point
probability for the test statistic.

• If you specify the AGREE option and the PRINTKWT option, PROC FREQ
displays the Kappa Coefficient Weights for square tables greater than2× 2.

• If you specify the AGREE option, for two-way tables PROC FREQ displays
McNemar’s Test and the Simple Kappa Coefficient for2× 2 tables. For square
tables larger than2 × 2, PROC FREQ displays Bowker’s Test of Symmetry,
the Simple Kappa Coefficient, and the Weighted Kappa Coefficient. For
McNemar’s Test and Bowker’s Test of Symmetry, PROC FREQ displays the
Statistic (S), the degrees of freedom (DF), and the probability value (Pr > S).
If you specify the MCNEM option in the EXACT statement, PROC FREQ
also displays the exact probability value for McNemar’s test. If you specify
the POINT option with the MCNEM option in the EXACT statement, PROC
FREQ displays the exact point probability for the test statistic. For the sim-
ple and weighted kappa coefficients, PROC FREQ displays the kappa values,
asymptotic standard errors (ASE), and Confidence Limits.

• If you specify the KAPPA or WTKAP option in the TEST statement, PROC
FREQ displays asymptotic tests for the simple kappa coefficient or the
weighted kappa coefficient, respectively. If you specify the AGREE option
in the TEST statement, PROC FREQ displays both these asymptotic tests. The
test output includes the kappa coefficient, its asymptotic standard error (ASE),
Confidence Limits, the ASE under the null hypothesis H0, the standardized test
statistic (Z), and the one-sided and two-sided probability values.

• If you specify the KAPPA or WTKAP option in the EXACT statement, PROC
FREQ displays asymptotic and exact tests for the simple kappa coefficient or
the weighted kappa coefficient, respectively. The test output includes the kappa
coefficient, its asymptotic standard error (ASE), Confidence Limits, the ASE
under the null hypothesis H0, the standardized test statistic (Z), and the asymp-
totic and exact one-sided and two-sided probability values. If you specify the
POINT option in the EXACT statement, PROC FREQ displays the point prob-
ability for each exact test requested.

• If you specify the MC option in the EXACT statement, PROC FREQ displays
Monte Carlo estimates for all exactp-values requested bystatistic-optionsin
the EXACT statement. The Monte Carlo output includes thep-value Estimate,
its Confidence Limits, the Number of Samples used to compute the Monte
Carlo estimate, and the Initial Seed for random number generation.

• If you specify the AGREE option, for multiple strata PROC FREQ displays
Overall Simple and Weighted Kappa Coefficients, with their asymptotic stan-
dard errors (ASE) and Confidence Limits. PROC FREQ also displays Tests for



158 � Chapter 2. The FREQ Procedure

Equal Kappa Coefficients, giving the Chi-Squares, degrees of freedom (DF),
and probability values (Pr > ChiSq) for the Simple Kappa and Weighted Kappa.
For multiple strata of2× 2 tables, PROC FREQ displays Cochran’sQ, giving
the Statistic (Q), the degrees of freedom (DF), and the probability value (Pr >
Q).

• If you specify the CMH option, PROC FREQ displays Cochran-Mantel-
Haenszel Statistics for the following three alternative hypotheses: Nonzero
Correlation, Row Mean Scores Differ (ANOVA Statistic), and General
Association. For each of these statistics, PROC FREQ gives the degrees of
freedom (DF) and the probability value (Prob). For2× 2 tables, PROC FREQ
also displays Estimates of the Common Relative Risk for Case-Control and
Cohort studies, together with their confidence limits. These include both
Mantel-Haenszel and Logit stratum-adjusted estimates of the common Odds
Ratio, Column 1 Relative Risk, and Column 2 Relative Risk. Also for2 × 2
tables, PROC FREQ displays the Breslow-Day Test for Homogeneity of the
Odds Ratios. For this test, PROC FREQ gives the Chi-Square, the degrees of
freedom (DF), and the probability value (Pr > ChiSq).

• If you specify the CMH option in the TABLES statement and also specify the
COMOR option in the EXACT statement, PROC FREQ displays exact confi-
dence limits for the Common Odds Ratio for multiple strata of2 × 2 tables.
PROC FREQ also displays the Exact Test of H0: Common Odds Ratio = 1.
The test output includes the Cell (1,1) Sum (S), Mean of S Under H0,
One-sided Pr <= S, and Point Pr = S. PROC FREQ also provides exact
two-sided probability values for the test, computed according to the following
three methods: 2 * One-sided, Sum of probabilities <= Point probability, and
Pr >= |S - Mean|.

ODS Table Names

PROC FREQ assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. For more information on ODS, see Chapter 14, “Using
the Output Delivery System.” (SAS/STAT User’s Guide)

Table 2.11lists the ODS table names together with their descriptions and the options
required to produce the tables. Note that the ALL option in the TABLES statement
invokes the CHISQ, MEASURES, and CMH options.



ODS Table Names � 159

Table 2.11. ODS Tables Produced in PROC FREQ

ODS Table Name Description Statement Option
BinomialProp Binomial proportion TABLES BINOMIAL (one-way tables)
BinomialPropTest Binomial proportion test TABLES BINOMIAL (one-way tables)
BreslowDayTest Breslow-Day test TABLES CMH (h× 2× 2 tables)
CMH Cochran-Mantel-Haenszel

statistics
TABLES CMH

ChiSq Chi-square tests TABLES CHISQ
CochransQ Cochran’sQ TABLES AGREE (h× 2× 2 tables)
ColScores Column scores TABLES SCOROUT
CommonOddsRatioCL Exact confidence limits

for the common odds ratio
EXACT COMOR

CommonOddsRatioTest Common odds ratio exact test EXACT COMOR
CommonRelRisks Common relative risks TABLES CMH (h× 2× 2 tables)
CrossList Column format TABLES CROSSLIST

crosstabulation table (n-way table request,n > 1)
CrossTabFreqs Crosstabulation table TABLES (n-way table request,n > 1)
EqualKappaTest Test for equal simple kappas TABLES AGREE (h× 2× 2 tables)
EqualKappaTests Tests for equal kappas TABLES AGREE (h×r×r tables,r > 2)
FishersExact Fisher’s exact test EXACT FISHER

or TABLES FISHER or EXACT
or TABLES CHISQ (2× 2 tables)

FishersExactMC Monte Carlo estimates
for Fisher’s exact test

EXACT FISHER / MC

Gamma Gamma TEST GAMMA
GammaTest Gamma test TEST GAMMA
JTTest Jonckheere-Terpstra test TABLES JT
JTTestMC Monte Carlo estimates

for the JT exact test
EXACT JT / MC

KappaStatistics Kappa statistics TABLES AGREE
(r × r tables,r > 2, and
no TEST or EXACT KAPPA)

KappaWeights Kappa weights TABLES AGREE and PRINTKWT
List List format multiway table TABLES LIST
LRChiSq Likelihood-ratio

chi-square exact test
EXACT LRCHI

LRChiSqMC Monte Carlo exact test for
likelihood-ratio chi-square

EXACT LRCHI / MC

McNemarsTest McNemar’s test TABLES AGREE (2× 2 tables)
Measures Measures of association TABLES MEASURES
MHChiSq Mantel-Haenszel

chi-square exact test
EXACT MHCHI

MHChiSqMC Monte Carlo exact test for
Mantel-Haenszel chi-square

EXACT MHCHI / MC

NLevels Number of variable levels PROC NLEVELS
OddsRatioCL Exact confidence limits

for the odds ratio
EXACT OR

OneWayChiSq One-way chi-square test TABLES CHISQ (one-way tables)



160 � Chapter 2. The FREQ Procedure

Table 2.11. (continued)

ODS Table Name Description Statement Option
OneWayChiSqMC Monte Carlo exact test

for one-way chi-square
EXACT CHISQ / MC (one-way tables)

OneWayFreqs One-way frequencies PROC (with no TABLES stmt)
or TABLES (one-way table request)

OverallKappa Overall simple kappa TABLES AGREE (h× 2× 2 tables)
OverallKappas Overall kappa coefficients TABLES AGREE (h×r×r tables,r > 2)
PearsonChiSq Pearson chi-square

exact test
EXACT PCHI

PearsonChiSqMC Monte Carlo exact test
for Pearson chi-square

EXACT PCHI / MC

PearsonCorr Pearson correlation TEST PCORR
or EXACT PCORR

PearsonCorrMC Monte Carlo exact test
for Pearson correlation

EXACT PCORR / MC

PearsonCorrTest Pearson correlation test TEST PCORR
or EXACT PCORR

RelativeRisks Relative risk estimates TABLES RELRISK or MEASURES
(2× 2 tables)

RiskDiffCol1 Column 1 risk estimates TABLES RISKDIFF (2× 2 tables)
RiskDiffCol2 Column 2 risk estimates TABLES RISKDIFF (2× 2 tables)
RowScores Row scores TABLES SCOROUT
SimpleKappa Simple kappa coefficient TEST KAPPA

or EXACT KAPPA
SimpleKappaMC Monte Carlo exact test

for simple kappa
EXACT KAPPA / MC

SimpleKappaTest Simple kappa test TEST KAPPA
or EXACT KAPPA

SomersDCR Somers’D(C|R) TEST SMDCR
SomersDCRTest Somers’D(C|R) test TEST SMDCR
SomersDRC Somers’D(R|C) TEST SMDRC
SomersDRCTest Somers’D(R|C) test TEST SMDRC
SpearmanCorr Spearman correlation TEST SCORR

or EXACT SCORR
SpearmanCorrMC Monte Carlo exact test

for Spearman correlation
EXACT SCORR / MC

SpearmanCorrTest Spearman correlation test TEST SCORR
or EXACT SCORR

SymmetryTest Test of symmetry TABLES AGREE
TauB Kendall’s tau-b TEST KENTB
TauBTest Kendall’s tau-b test TEST KENTB
TauC Stuart’s tau-c TEST STUTC
TauCTest Stuart’s tau-c test TEST STUTC
TrendTest Cochran-Armitage test

for trend
TABLES TREND



Examples � 161

Table 2.11. (continued)

ODS Table Name Description Statement Option
TrendTestMC Monte Carlo exact test

for trend
EXACT TREND / MC

WeightedKappa Weighted kappa TEST WTKAP
or EXACT WTKAP

WeightedKappaMC Monte Carlo exact test
for weighted kappa

EXACT WTKAP / MC

WeightedKappaTest Weighted kappa test TEST WTKAP
or EXACT WTKAP

Examples

Example 2.1. Creating an Output Data Set with Table Cell
Frequencies

The eye and hair color of children from two different regions of Europe are recorded
in the data setColor. Instead of recording one observation per child, the data are
recorded as cell counts, where the variableCount contains the number of children
exhibiting each of the 15 eye and hair color combinations. The data set does not
include missing combinations.

data Color;
input Region Eyes $ Hair $ Count @@;

label Eyes =’Eye Color’
Hair =’Hair Color’
Region=’Geographic Region’;

datalines;
1 blue fair 23 1 blue red 7 1 blue medium 24
1 blue dark 11 1 green fair 19 1 green red 7
1 green medium 18 1 green dark 14 1 brown fair 34
1 brown red 5 1 brown medium 41 1 brown dark 40
1 brown black 3 2 blue fair 46 2 blue red 21
2 blue medium 44 2 blue dark 40 2 blue black 6
2 green fair 50 2 green red 31 2 green medium 37
2 green dark 23 2 brown fair 56 2 brown red 42
2 brown medium 53 2 brown dark 54 2 brown black 13
;

The following statements read theColor data set and create an output data set con-
taining the frequencies, percentages, and expected cell frequencies of the Eyes by
Hair two-way table. The TABLES statement requests three tables:Eyes andHair
frequency tables and anEyes by Hair crosstabulation table. The OUT= option
creates theFreqCnt data set, which contains the crosstabulation table frequencies.
The OUTEXPECT option outputs the expected cell frequencies toFreqCnt, and the
SPARSE option includes the zero cell counts. The WEIGHT statement specifies
that Count contains the observation weights. These statements createOutput 2.1.1
throughOutput 2.1.3.



162 � Chapter 2. The FREQ Procedure

proc freq data=Color;
weight Count;
tables Eyes Hair Eyes*Hair / out=FreqCnt outexpect sparse;
title1 ’Eye and Hair Color of European Children’;

run;
proc print data=FreqCnt noobs;

title2 ’Output Data Set from PROC FREQ’;
run;

Output 2.1.1displays the two frequency tables produced, one showing the distribu-
tion of eye color, and one showing the distribution of hair color. By default, PROC
FREQ lists the variables values in alphabetical order. The ’Eyes*Hair’ specification
produces a crosstabulation table, shown inOutput 2.1.2, with eye color defining the
table rows and hair color defining the table columns. A zero cell count for green eyes
and black hair indicates that this eye and hair color combination does not occur in the
data.

The output data set (Output 2.1.3) contains frequency counts and percentages for the
last table. The data set also includes an observation for the zero cell count (SPARSE)
and a variable with the expected cell frequency for each table cell (OUTEXPECT).

Output 2.1.1. Frequency Tables

Eye and Hair Color of European Children

The FREQ Procedure

Eye Color

Cumulative Cumulative
Eyes Frequency Percent Frequency Percent
----------------------------------------------------------
blue 222 29.13 222 29.13
brown 341 44.75 563 73.88
green 199 26.12 762 100.00

Hair Color

Cumulative Cumulative
Hair Frequency Percent Frequency Percent
-----------------------------------------------------------
black 22 2.89 22 2.89
dark 182 23.88 204 26.77
fair 228 29.92 432 56.69
medium 217 28.48 649 85.17
red 113 14.83 762 100.00



Examples � 163

Output 2.1.2. Crosstabulation Table

Eye and Hair Color of European Children

Table of Eyes by Hair

Eyes(Eye Color) Hair(Hair Color)

Frequency|
Percent |
Row Pct |
Col Pct |black |dark |fair |medium |red | Total
---------+--------+--------+--------+--------+--------+
blue | 6 | 51 | 69 | 68 | 28 | 222

| 0.79 | 6.69 | 9.06 | 8.92 | 3.67 | 29.13
| 2.70 | 22.97 | 31.08 | 30.63 | 12.61 |
| 27.27 | 28.02 | 30.26 | 31.34 | 24.78 |

---------+--------+--------+--------+--------+--------+
brown | 16 | 94 | 90 | 94 | 47 | 341

| 2.10 | 12.34 | 11.81 | 12.34 | 6.17 | 44.75
| 4.69 | 27.57 | 26.39 | 27.57 | 13.78 |
| 72.73 | 51.65 | 39.47 | 43.32 | 41.59 |

---------+--------+--------+--------+--------+--------+
green | 0 | 37 | 69 | 55 | 38 | 199

| 0.00 | 4.86 | 9.06 | 7.22 | 4.99 | 26.12
| 0.00 | 18.59 | 34.67 | 27.64 | 19.10 |
| 0.00 | 20.33 | 30.26 | 25.35 | 33.63 |

---------+--------+--------+--------+--------+--------+
Total 22 182 228 217 113 762

2.89 23.88 29.92 28.48 14.83 100.00

Output 2.1.3. OUT= Data Set

Output Data Set from PROC FREQ

Eyes Hair COUNT EXPECTED PERCENT

blue black 6 6.409 0.7874
blue dark 51 53.024 6.6929
blue fair 69 66.425 9.0551
blue medium 68 63.220 8.9239
blue red 28 32.921 3.6745
brown black 16 9.845 2.0997
brown dark 94 81.446 12.3360
brown fair 90 102.031 11.8110
brown medium 94 97.109 12.3360
brown red 47 50.568 6.1680
green black 0 5.745 0.0000
green dark 37 47.530 4.8556
green fair 69 59.543 9.0551
green medium 55 56.671 7.2178
green red 38 29.510 4.9869



164 � Chapter 2. The FREQ Procedure

Example 2.2. Computing Chi-Square Tests for One-Way
Frequency Tables

This example examines whether the children’s hair color (fromExample 2.1on page
161) has a specified multinomial distribution for the two regions. The hypothesized
distribution for hair color is 30% fair, 12% red, 30% medium, 25% dark, and 3%
black.

In order to test the hypothesis for each region, the data are first sorted byRegion.
Then the FREQ procedure uses a BY statement to produce a separate table for each
BY group (Region). The option ORDER=DATA orders the frequency table values
(hair color) by their order in the data set. The TABLES statement requests a fre-
quency table for hair color, and the option NOCUM suppresses the display of the
cumulative frequencies and percentages. The TESTP= option specifies the hypothe-
sized percentages for the chi-square test; the number of percentages specified equals
the number of table levels, and the percentages sum to 100. The following statements
produceOutput 2.2.1.

proc sort data=Color;
by Region;

run;
proc freq data=Color order=data;

weight Count;
tables Hair / nocum testp=(30 12 30 25 3);
by Region;
title ’Hair Color of European Children’;

run;

The frequency tables inOutput 2.2.1list the variable values (hair color) in the order
in which they appear in the data set. The “Test Percent” column lists the hypothesized
percentages for the chi-square test. Always check that you have ordered the TESTP=
percentages to correctly match the order of the variable levels.

PROC FREQ computes a chi-square statistic for each region. The chi-square statistic
is significant at the 0.05 level for Region 2 (p=0.0003) but not for Region 1. This
indicates a significant departure from the hypothesized percentages in Region 2.



Examples � 165

Output 2.2.1. One-Way Frequency Table with BY Groups

Hair Color of European Children

----------------------------- Geographic Region=1 ------------------------------

The FREQ Procedure

Hair Color

Test
Hair Frequency Percent Percent
-------------------------------------------
fair 76 30.89 30.00
red 19 7.72 12.00
medium 83 33.74 30.00
dark 65 26.42 25.00
black 3 1.22 3.00

Chi-Square Test
for Specified Proportions
-------------------------
Chi-Square 7.7602
DF 4
Pr > ChiSq 0.1008

Sample Size = 246

Hair Color of European Children

----------------------------- Geographic Region=2 ------------------------------

Hair Color

Test
Hair Frequency Percent Percent
-------------------------------------------
fair 152 29.46 30.00
red 94 18.22 12.00
medium 134 25.97 30.00
dark 117 22.67 25.00
black 19 3.68 3.00

Chi-Square Test
for Specified Proportions
-------------------------
Chi-Square 21.3824
DF 4
Pr > ChiSq 0.0003

Sample Size = 516



166 � Chapter 2. The FREQ Procedure

Example 2.3. Computing Binomial Proportions for One-Way
Frequency Tables

The binomial proportion is computed as the proportion of observations for the first
level of the variable that you are studying. The following statements compute the
proportion of children with brown eyes (from the data set inExample 2.1on page
161) and test this value against the hypothesis that the proportion is 50%. Also,
these statements test whether the proportion of children with fair hair is 28%.

proc freq data=Color order=freq;
weight Count;
tables Eyes / binomial alpha=.1;
tables Hair / binomial(p=.28);
title ’Hair and Eye Color of European Children’;

run;

The first TABLES statement produces a frequency table for eye color. The
BINOMIAL option computes the binomial proportion and confidence limits, and it
tests the hypothesis that the proportion for the first eye color level (brown) is 0.5. The
option ALPHA=.1 specifies that 90% confidence limits should be computed. The
second TABLES statement creates a frequency table for hair color and computes the
binomial proportion and confidence limits, but it tests that the proportion for the first
hair color (fair) is 0.28. These statements produceOutput 2.3.1andOutput 2.3.2.

The frequency table inOutput 2.3.1displays the variable values in order of descend-
ing frequency count. Since the first variable level is ’brown’, PROC FREQ computes
the binomial proportion of children with brown eyes. PROC FREQ also computes its
asymptotic standard error (ASE), and asymptotic and exact 90% confidence limits.
If you do not specify the ALPHA= option, then PROC FREQ computes the default
95% confidence limits.

Because the value ofZ is less than zero, PROC FREQ computes a left-sidedp-value
(0.0019). This smallp-value supports the alternative hypothesis that the true value of
the proportion of children with brown eyes is less than 50%.

Output 2.3.2displays the results from the second TABLES statement. PROC FREQ
computes the default 95% confidence limits since the ALPHA= option is not spec-
ified. The value ofZ is greater than zero, so PROC FREQ computes a right-sided
p-value (0.1188). This largep-value provides insufficient evidence to reject the null
hypothesis that the proportion of children with fair hair is 28%.



Examples � 167

Output 2.3.1. Binomial Proportion for Eye Color

Hair and Eye Color of European Children

The FREQ Procedure

Eye Color

Cumulative Cumulative
Eyes Frequency Percent Frequency Percent
----------------------------------------------------------
brown 341 44.75 341 44.75
blue 222 29.13 563 73.88
green 199 26.12 762 100.00

Binomial Proportion
for Eyes = brown

--------------------------------
Proportion 0.4475
ASE 0.0180
90% Lower Conf Limit 0.4179
90% Upper Conf Limit 0.4771

Exact Conf Limits
90% Lower Conf Limit 0.4174
90% Upper Conf Limit 0.4779

Test of H0: Proportion = 0.5

ASE under H0 0.0181
Z -2.8981
One-sided Pr < Z 0.0019
Two-sided Pr > |Z| 0.0038

Sample Size = 762



168 � Chapter 2. The FREQ Procedure

Output 2.3.2. Binomial Proportion for Hair Color

Hair and Eye Color of European Children

Hair Color

Cumulative Cumulative
Hair Frequency Percent Frequency Percent
-----------------------------------------------------------
fair 228 29.92 228 29.92
medium 217 28.48 445 58.40
dark 182 23.88 627 82.28
red 113 14.83 740 97.11
black 22 2.89 762 100.00

Binomial Proportion
for Hair = fair

--------------------------------
Proportion 0.2992
ASE 0.0166
95% Lower Conf Limit 0.2667
95% Upper Conf Limit 0.3317

Exact Conf Limits
95% Lower Conf Limit 0.2669
95% Upper Conf Limit 0.3331

Test of H0: Proportion = 0.28

ASE under H0 0.0163
Z 1.1812
One-sided Pr > Z 0.1188
Two-sided Pr > |Z| 0.2375

Sample Size = 762



Example 2.4. Analyzing a 2x2 Contingency Table � 169

Example 2.4. Analyzing a 2x2 Contingency Table

This example computes chi-square tests and Fisher’s exact test to compare the prob-
ability of coronary heart disease for two types of diet. It also estimates the relative
risks and computes exact confidence limits for the odds ratio.

The data setFatComp contains hypothetical data for a case-control study of high
fat diet and the risk of coronary heart disease. The data are recorded as cell counts,
where the variableCount contains the frequencies for each exposure and response
combination. The data set is sorted in descending order by the variablesExposure
and Response, so that the first cell of the2 × 2 table contains the frequency of
positive exposure and positive response. The FORMAT procedure creates formats to
identify the type of exposure and response with character values.

proc format;
value ExpFmt 1=’High Cholesterol Diet’

0=’Low Cholesterol Diet’;
value RspFmt 1=’Yes’

0=’No’;
run;

data FatComp;
input Exposure Response Count;
label Response=’Heart Disease’;
datalines;

0 0 6
0 1 2
1 0 4
1 1 11
;

proc sort data=FatComp;
by descending Exposure descending Response;

run;

In the following statements, the TABLES statement creates a two-way table, and the
option ORDER=DATA orders the contingency table values by their order in the data
set. The CHISQ option produces several chi-square tests, while the RELRISK option
produces relative risk measures. The EXACT statement creates the exact Pearson chi-
square test and exact confidence limits for the odds ratio. These statements produce
Output 2.4.1throughOutput 2.4.3.

proc freq data=FatComp order=data;
weight Count;
tables Exposure*Response / chisq relrisk;
exact pchi or;
format Exposure ExpFmt. Response RspFmt.;
title ’Case-Control Study of High Fat/Cholesterol Diet’;

run;



170 � Chapter 2. The FREQ Procedure

Output 2.4.1. Contingency Table

Case-Control Study of High Fat/Cholesterol Diet

The FREQ Procedure

Table of Exposure by Response

Exposure Response(Heart Disease)

Frequency |
Percent |
Row Pct |
Col Pct |Yes |No | Total
-----------------+--------+--------+
High Cholesterol | 11 | 4 | 15

Diet | 47.83 | 17.39 | 65.22
| 73.33 | 26.67 |
| 84.62 | 40.00 |

-----------------+--------+--------+
Low Cholesterol | 2 | 6 | 8
Diet | 8.70 | 26.09 | 34.78

| 25.00 | 75.00 |
| 15.38 | 60.00 |

-----------------+--------+--------+
Total 13 10 23

56.52 43.48 100.00

The contingency table inOutput 2.4.1displays the variable values so that the first
table cell contains the frequency for the first cell in the data set, the frequency of
positive exposure and positive response.



Example 2.4. Analyzing a 2x2 Contingency Table � 171

Output 2.4.2. Chi-Square Statistics

Case-Control Study of High Fat/Cholesterol Diet

Statistics for Table of Exposure by Response

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 4.9597 0.0259
Likelihood Ratio Chi-Square 1 5.0975 0.0240
Continuity Adj. Chi-Square 1 3.1879 0.0742
Mantel-Haenszel Chi-Square 1 4.7441 0.0294
Phi Coefficient 0.4644
Contingency Coefficient 0.4212
Cramer’s V 0.4644

WARNING: 50% of the cells have expected counts less than 5.
(Asymptotic) Chi-Square may not be a valid test.

Pearson Chi-Square Test
----------------------------------
Chi-Square 4.9597
DF 1
Asymptotic Pr > ChiSq 0.0259
Exact Pr >= ChiSq 0.0393

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 11
Left-sided Pr <= F 0.9967
Right-sided Pr >= F 0.0367

Table Probability (P) 0.0334
Two-sided Pr <= P 0.0393

Sample Size = 23

Output 2.4.2displays the chi-square statistics. Since the expected counts in some
of the table cells are small, PROC FREQ gives a warning that the asymptotic chi-
square tests may not be appropriate. In this case, the exact tests are appropriate.
The alternative hypothesis for this analysis states that coronary heart disease is more
likely to be associated with a high fat diet, so a one-sided test is desired. Fisher’s
exact right-sided test analyzes whether the probability of heart disease in the high fat
group exceeds the probability of heart disease in the low fat group; since thisp-value
is small, the alternative hypothesis is supported.



172 � Chapter 2. The FREQ Procedure

Output 2.4.3. Relative Risk

Case-Control Study of High Fat/Cholesterol Diet

Statistics for Table of Exposure by Response

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits
-----------------------------------------------------------------
Case-Control (Odds Ratio) 8.2500 1.1535 59.0029
Cohort (Col1 Risk) 2.9333 0.8502 10.1204
Cohort (Col2 Risk) 0.3556 0.1403 0.9009

Odds Ratio (Case-Control Study)
-----------------------------------
Odds Ratio 8.2500

Asymptotic Conf Limits
95% Lower Conf Limit 1.1535
95% Upper Conf Limit 59.0029

Exact Conf Limits
95% Lower Conf Limit 0.8677
95% Upper Conf Limit 105.5488

Sample Size = 23

The odds ratio, displayed inOutput 2.4.3, provides an estimate of the relative risk
when an event is rare. This estimate indicates that the odds of heart disease is 8.25
times higher in the high fat diet group; however, the wide confidence limits indicate
that this estimate has low precision.

Example 2.5. Creating an Output Data Set Containing Chi-
Square Statistics

This example uses theColor data fromExample 2.1(page 161) to output the Pearson
chi-square and the likelihood-ratio chi-square statistics to a SAS data set. The fol-
lowing statements create a two-way table of eye color versus hair color.

proc freq data=Color order=data;
weight Count;
tables Eyes*Hair / chisq expected cellchi2 norow nocol;
output out=ChiSqData pchi lrchi n nmiss;
title ’Chi-Square Tests for 3 by 5 Table of Eye and Hair Color’;

run;
proc print data=ChiSqData noobs;

title1 ’Chi-Square Statistics for Eye and Hair Color’;
title2 ’Output Data Set from the FREQ Procedure’;

run;

The CHISQ option produces chi-square tests, the EXPECTED option displays ex-
pected cell frequencies in the table, and the CELLCHI2 option displays the cell con-
tribution to the chi-square. The NOROW and NOCOL options suppress the display
of row and column percents in the table.



Example 2.5. Creating an Output Data Set Containing Chi-Square Statistics � 173

The OUTPUT statement creates the ChiSqData data set with eight variables: the N
option stores the number of nonmissing observations, the NMISS option stores the
number of missing observations, and the PCHI and LRCHI options store Pearson
and likelihood-ratio chi-square statistics, respectively, together with their degrees of
freedom andp-values.

The preceding statements produceOutput 2.5.1andOutput 2.5.2.

Output 2.5.1. Contingency Table

Chi-Square Tests for 3 by 5 Table of Eye and Hair Color

The FREQ Procedure

Table of Eyes by Hair

Eyes(Eye Color) Hair(Hair Color)

Frequency |
Expected |
Cell Chi-Square|
Percent |fair |red |medium |dark |black | Total
---------------+--------+--------+--------+--------+--------+
blue | 69 | 28 | 68 | 51 | 6 | 222

| 66.425 | 32.921 | 63.22 | 53.024 | 6.4094 |
| 0.0998 | 0.7357 | 0.3613 | 0.0772 | 0.0262 |
| 9.06 | 3.67 | 8.92 | 6.69 | 0.79 | 29.13

---------------+--------+--------+--------+--------+--------+
green | 69 | 38 | 55 | 37 | 0 | 199

| 59.543 | 29.51 | 56.671 | 47.53 | 5.7454 |
| 1.5019 | 2.4422 | 0.0492 | 2.3329 | 5.7454 |
| 9.06 | 4.99 | 7.22 | 4.86 | 0.00 | 26.12

---------------+--------+--------+--------+--------+--------+
brown | 90 | 47 | 94 | 94 | 16 | 341

| 102.03 | 50.568 | 97.109 | 81.446 | 9.8451 |
| 1.4187 | 0.2518 | 0.0995 | 1.935 | 3.8478 |
| 11.81 | 6.17 | 12.34 | 12.34 | 2.10 | 44.75

---------------+--------+--------+--------+--------+--------+
Total 228 113 217 182 22 762

29.92 14.83 28.48 23.88 2.89 100.00

The contingency table inOutput 2.5.1displays eye and hair color in the order in
which they appear in theColor data set. The Pearson chi-square statistic inOutput
2.5.2 provides evidence of an association between eye and hair color (p=0.0073).
The cell chi-square values show that most of the association is due to more green-
eyed children with fair or red hair and fewer with dark or black hair. The opposite
occurs with the brown-eyed children.



174 � Chapter 2. The FREQ Procedure

Output 2.5.2. Chi-Square Statistics

Chi-Square Tests for 3 by 5 Table of Eye and Hair Color

Statistics for Table of Eyes by Hair

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 8 20.9248 0.0073
Likelihood Ratio Chi-Square 8 25.9733 0.0011
Mantel-Haenszel Chi-Square 1 3.7838 0.0518
Phi Coefficient 0.1657
Contingency Coefficient 0.1635
Cramer’s V 0.1172

Sample Size = 762

Output 2.5.3. Output Data Set

Chi-Square Statistics for Eye and Hair Color
Output Data Set from the FREQ Procedure

N NMISS _PCHI_ DF_PCHI P_PCHI _LRCHI_ DF_LRCHI P_LRCHI

762 0 20.9248 8 .007349898 25.9733 8 .001061424

The OUT= data set is displayed inOutput 2.5.3. It contains one observation with the
sample size, the number of missing values, and the chi-square statistics and corre-
sponding degrees of freedom andp-values as inOutput 2.5.2.

Example 2.6. Computing Cochran-Mantel-Haenszel
Statistics for a Stratified Table

The data setMigraine contains hypothetical data for a clinical trial of migraine treat-
ment. Subjects of both genders receive either a new drug therapy or a placebo. Their
response to treatment is coded as ’Better’ or ’Same’. The data are recorded as cell
counts, and the number of subjects for each treatment and response combination is
recorded in the variableCount.

data Migraine;
input Gender $ Treatment $ Response $ Count @@;
datalines;

female Active Better 16 female Active Same 11
female Placebo Better 5 female Placebo Same 20
male Active Better 12 male Active Same 16
male Placebo Better 7 male Placebo Same 19
;



Example 2.6. Computing Cochran-Mantel-Haenszel
Statistics for a Stratified Table � 175

The following statements create a three-way table stratified byGender, where
Treatment forms the rows andResponse forms the columns. The CMH option
produces the Cochran-Mantel-Haenszel statistics. For this stratified2× 2 table, esti-
mates of the common relative risk and the Breslow-Day test for homogeneity of the
odds ratios are also displayed. The NOPRINT option suppresses the display of the
contingency tables. These statements produceOutput 2.6.1throughOutput 2.6.3.

proc freq data=Migraine;
weight Count;
tables Gender*Treatment*Response / cmh noprint;
title ’Clinical Trial for Treatment of Migraine Headaches’;

run;

Output 2.6.1. Cochran-Mantel-Haenszel Statistics

Clinical Trial for Treatment of Migraine Headaches

The FREQ Procedure

Summary Statistics for Treatment by Response
Controlling for Gender

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 8.3052 0.0040
2 Row Mean Scores Differ 1 8.3052 0.0040
3 General Association 1 8.3052 0.0040

Total Sample Size = 106

For a stratified2 × 2 table, the three CMH statistics displayed inOutput 2.6.1test
the same hypothesis. The significantp-value (0.004) indicates that the association
between treatment and response remains strong after adjusting for gender.



176 � Chapter 2. The FREQ Procedure

Output 2.6.2. CMH Option: Relative Risks

Clinical Trial for Treatment of Migraine Headaches

Summary Statistics for Treatment by Response
Controlling for Gender

Estimates of the Common Relative Risk (Row1/Row2)

Type of Study Method Value 95% Confidence Limits
-------------------------------------------------------------------------
Case-Control Mantel-Haenszel 3.3132 1.4456 7.5934

(Odds Ratio) Logit 3.2941 1.4182 7.6515

Cohort Mantel-Haenszel 2.1636 1.2336 3.7948
(Col1 Risk) Logit 2.1059 1.1951 3.7108

Cohort Mantel-Haenszel 0.6420 0.4705 0.8761
(Col2 Risk) Logit 0.6613 0.4852 0.9013

Total Sample Size = 106

The CMH option also produces a table of relative risks, as shown inOutput 2.6.2.
Because this is a prospective study, the relative risk estimate assesses the effectiveness
of the new drug; the “Cohort (Col1 Risk)” values are the appropriate estimates for the
first column, or the risk of improvement. The probability of migraine improvement
with the new drug is just over two times the probability of improvement with the
placebo.

Output 2.6.3. CMH Option: Breslow-Day Test

Clinical Trial for Treatment of Migraine Headaches

Summary Statistics for Treatment by Response
Controlling for Gender

Breslow-Day Test for
Homogeneity of the Odds Ratios
------------------------------
Chi-Square 1.4929
DF 1
Pr > ChiSq 0.2218

Total Sample Size = 106

The largep-value for the Breslow-Day test (0.2218) inOutput 2.6.3indicates no
significant gender difference in the odds ratios.



Example 2.7. Computing the Cochran-Armitage Trend Test � 177

Example 2.7. Computing the Cochran-Armitage Trend Test

The data setPain contains hypothetical data for a clinical trial of a drug therapy
to control pain. The clinical trial investigates whether adverse responses increase
with larger drug doses. Subjects receive either a placebo or one of four drug doses.
An adverse response is recorded asAdverse=’Yes’; otherwise, it is recorded as
Adverse=’No’. The number of subjects for each drug dose and response combi-
nation is contained in the variableCount.

data pain;
input Dose Adverse $ Count @@;
datalines;

0 No 26 0 Yes 6
1 No 26 1 Yes 7
2 No 23 2 Yes 9
3 No 18 3 Yes 14
4 No 9 4 Yes 23
;

The TABLES statement in the following program produces a two-way table. The
MEASURES option produces measures of association, and the CL option produces
confidence limits for these measures. The TREND option tests for a trend across the
ordinal values of theDose variable with the Cochran-Armitage test. The EXACT
statement produces exactp-values for this test, and the MAXTIME= option termi-
nates the exact computations if they do not complete within 60 seconds. The TEST
statement computes an asymptotic test for Somer’sD(C|R). These statements pro-
duceOutput 2.7.1throughOutput 2.7.3.

proc freq data=Pain;
weight Count;
tables Dose*Adverse / trend measures cl;
test smdcr;
exact trend / maxtime=60;
title1 ’Clinical Trial for Treatment of Pain’;

run;



178 � Chapter 2. The FREQ Procedure

Output 2.7.1. Contingency Table

Clinical Trial for Treatment of Pain

The FREQ Procedure

Table of Dose by Adverse

Dose Adverse

Frequency|
Percent |
Row Pct |
Col Pct |No |Yes | Total
---------+--------+--------+

0 | 26 | 6 | 32
| 16.15 | 3.73 | 19.88
| 81.25 | 18.75 |
| 25.49 | 10.17 |

---------+--------+--------+
1 | 26 | 7 | 33

| 16.15 | 4.35 | 20.50
| 78.79 | 21.21 |
| 25.49 | 11.86 |

---------+--------+--------+
2 | 23 | 9 | 32

| 14.29 | 5.59 | 19.88
| 71.88 | 28.13 |
| 22.55 | 15.25 |

---------+--------+--------+
3 | 18 | 14 | 32

| 11.18 | 8.70 | 19.88
| 56.25 | 43.75 |
| 17.65 | 23.73 |

---------+--------+--------+
4 | 9 | 23 | 32

| 5.59 | 14.29 | 19.88
| 28.13 | 71.88 |
| 8.82 | 38.98 |

---------+--------+--------+
Total 102 59 161

63.35 36.65 100.00

The “Row Pct” values inOutput 2.7.1show the expected increasing trend in the
proportion of adverse effects due to increasing dosage (from 18.75% to 71.88%).



Example 2.7. Computing the Cochran-Armitage Trend Test � 179

Output 2.7.2. Measures of Association

Clinical Trial for Treatment of Pain

Statistics for Table of Dose by Adverse

95%
Statistic Value ASE Confidence Limits
----------------------------------------------------------------------------
Gamma 0.5313 0.0935 0.3480 0.7146
Kendall’s Tau-b 0.3373 0.0642 0.2114 0.4631
Stuart’s Tau-c 0.4111 0.0798 0.2547 0.5675

Somers’ D C|R 0.2569 0.0499 0.1592 0.3547
Somers’ D R|C 0.4427 0.0837 0.2786 0.6068

Pearson Correlation 0.3776 0.0714 0.2378 0.5175
Spearman Correlation 0.3771 0.0718 0.2363 0.5178

Lambda Asymmetric C|R 0.2373 0.0837 0.0732 0.4014
Lambda Asymmetric R|C 0.1250 0.0662 0.0000 0.2547
Lambda Symmetric 0.1604 0.0621 0.0388 0.2821

Uncertainty Coefficient C|R 0.1261 0.0467 0.0346 0.2175
Uncertainty Coefficient R|C 0.0515 0.0191 0.0140 0.0890
Uncertainty Coefficient Symmetric 0.0731 0.0271 0.0199 0.1262

Somers’ D C|R
--------------------------------
Somers’ D C|R 0.2569
ASE 0.0499
95% Lower Conf Limit 0.1592
95% Upper Conf Limit 0.3547

Test of H0: Somers’ D C|R = 0

ASE under H0 0.0499
Z 5.1511
One-sided Pr > Z <.0001
Two-sided Pr > |Z| <.0001

Sample Size = 161

Output 2.7.2displays the measures of association produced by the MEASURES
option. Somer’sD(C|R) measures the association treating the column variable
(Adverse) as the response and the row variable (Dose) as a predictor. Because the
asymptotic 95% confidence limits do not contain zero, this indicates a strong posi-
tive association. Similarly, the Pearson and Spearman correlation coefficients show
evidence of a strong positive association, as hypothesized.



180 � Chapter 2. The FREQ Procedure

Output 2.7.3. Trend Test

Clinical Trial for Treatment of Pain

Statistics for Table of Dose by Adverse

Cochran-Armitage Trend Test
-------------------------------
Statistic (Z) -4.7918

Asymptotic Test
One-sided Pr < Z <.0001
Two-sided Pr > |Z| <.0001

Exact Test
One-sided Pr <= Z 7.237E-07
Two-sided Pr >= |Z| 1.324E-06

Sample Size = 161

The Cochran-Armitage test (Output 2.7.3) supports the trend hypothesis. The small
left-sidedp-values for the Cochran-Armitage test indicate that the probability of the
Column 1 level (Adverse=’No’) decreases asDose increases or, equivalently, that
the probability of the Column 2 level (Adverse=’Yes’) increases asDose increases.
The two-sidedp-value tests against either an increasing or decreasing alternative.
This is an appropriate hypothesis when you want to determine whether the drug has
progressive effects on the probability of adverse effects but the direction is unknown.

Example 2.8. Computing Friedman’s Chi-Square Statistic

Friedman’s test is a nonparametric test for treatment differences in a randomized
complete block design. Each block of the design may be a subject or a homogeneous
group of subjects. If blocks are groups of subjects, the number of subjects in each
block must equal the number of treatments. Treatments are randomly assigned to
subjects within each block. If there is one subject per block, then the subjects are re-
peatedly measured once under each treatment. The order of treatments is randomized
for each subject.

In this setting, Friedman’s test is identical to the ANOVA (row means scores) CMH
statistic when the analysis uses rank scores (SCORES=RANK). The three-way table
uses subject (or subject group) as the stratifying variable, treatment as the row vari-
able, and response as the column variable. PROC FREQ handles ties by assigning
midranks to tied response values. If there are multiple subjects per treatment in each
block, the ANOVA CMH statistic is a generalization of Friedman’s test.

The data setHypnosis contains data from a study investigating whether hypnosis has
the same effect on skin potential (measured in millivolts) for four emotions (Lehmann
1975, p. 264). Eight subjects are asked to display fear, joy, sadness, and calmness
under hypnosis. The data are recorded as one observation per subject for each emo-
tion.



Example 2.8. Computing Friedman’s Chi-Square Statistic � 181

data Hypnosis;
length Emotion $ 10;
input Subject Emotion $ SkinResponse @@;
datalines;

1 fear 23.1 1 joy 22.7 1 sadness 22.5 1 calmness 22.6
2 fear 57.6 2 joy 53.2 2 sadness 53.7 2 calmness 53.1
3 fear 10.5 3 joy 9.7 3 sadness 10.8 3 calmness 8.3
4 fear 23.6 4 joy 19.6 4 sadness 21.1 4 calmness 21.6
5 fear 11.9 5 joy 13.8 5 sadness 13.7 5 calmness 13.3
6 fear 54.6 6 joy 47.1 6 sadness 39.2 6 calmness 37.0
7 fear 21.0 7 joy 13.6 7 sadness 13.7 7 calmness 14.8
8 fear 20.3 8 joy 23.6 8 sadness 16.3 8 calmness 14.8
;

In the following statements, the TABLES statement creates a three-way table strat-
ified by Subject and a two-way table; the variablesEmotion andSkinResponse
form the rows and columns of each table. The CMH2 option produces the first two
Cochran-Mantel-Haenszel statistics, the option SCORES=RANK specifies that rank
scores are used to compute these statistics, and the NOPRINT option suppresses the
contingency tables. These statements produceOutput 2.8.1andOutput 2.8.2.

proc freq data=Hypnosis;
tables Subject*Emotion*SkinResponse

/ cmh2 scores=rank noprint;
run;

Output 2.8.1. CMH Statistics: Stratifying by Subject

The FREQ Procedure

Summary Statistics for Emotion by SkinResponse
Controlling for Subject

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 0.2400 0.6242
2 Row Mean Scores Differ 3 6.4500 0.0917

Total Sample Size = 32

Because the CMH statistics inOutput 2.8.1are based on rank scores, the Row Mean
Scores Differ statistic is identical to Friedman’s chi-square (Q = 6.45). Thep-value
of 0.0917 indicates that differences in skin potential response for different emotions
are significant at the 10% level but not at the 5% level.



182 � Chapter 2. The FREQ Procedure

Output 2.8.2. CMH Statistics: No Stratification

The FREQ Procedure

Summary Statistics for Emotion by SkinResponse

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 0.0001 0.9933
2 Row Mean Scores Differ 3 0.5678 0.9038

Total Sample Size = 32

When you do not stratify by subject, the Row Mean Scores Differ CMH statistic is
identical to a Kruskal-Wallis test and is not significant (p=0.9038 inOutput 2.8.2).
Thus, adjusting for subject is critical to reducing the background variation due to
subject differences.

Example 2.9. Testing Marginal Homogeneity with
Cochran’s Q

When a binary response is measured several times or under different conditions,
Cochran’sQ tests that the marginal probability of a positive response is unchanged
across the times or conditions. When there are more than two response categories,
you can use the CATMOD procedure to fit a repeated-measures model.

The data setDrugs contains data for a study of three drugs to treat a chronic disease
(Agresti 1990). Forty-six subjects receive drugs A, B, and C. The response to each
drug is either favorable (’F’) or unfavorable (’U’).

proc format;
value $ResponseFmt ’F’=’Favorable’

’U’=’Unfavorable’;

data drugs;
input Drug_A $ Drug_B $ Drug_C $ Count @@;
datalines;

F F F 6 U F F 2
F F U 16 U F U 4
F U F 2 U U F 6
F U U 4 U U U 6
;



Example 2.9. Testing Marginal Homogeneity with
Cochran’s Q � 183

The following statements create one-way frequency tables of the responses to each
drug. The AGREE option produces Cochran’sQ and other measures of agreement
for the three-way table. These statements produceOutput 2.9.1throughOutput 2.9.3.

proc freq data=Drugs;
weight Count;
tables Drug_A Drug_B Drug_C / nocum;
tables Drug_A*Drug_B*Drug_C / agree noprint;
format Drug_A Drug_B Drug_C $ResponseFmt.;
title ’Study of Three Drug Treatments for a Chronic Disease’;

run;

Output 2.9.1. One-Way Frequency Tables

Study of Three Drug Treatments for a Chronic Disease

The FREQ Procedure

Drug_A Frequency Percent
------------------------------------
Favorable 28 60.87
Unfavorable 18 39.13

Drug_B Frequency Percent
------------------------------------
Favorable 28 60.87
Unfavorable 18 39.13

Drug_C Frequency Percent
------------------------------------
Favorable 16 34.78
Unfavorable 30 65.22

The one-way frequency tables inOutput 2.9.1provide the marginal response for each
drug. For drugs A and B, 61% of the subjects reported a favorable response while
35% of the subjects reported a favorable response to drug C.



184 � Chapter 2. The FREQ Procedure

Output 2.9.2. Measures of Agreement

Study of Three Drug Treatments for a Chronic Disease

Statistics for Table 1 of Drug_B by Drug_C
Controlling for Drug_A=Favorable

McNemar’s Test
------------------------
Statistic (S) 10.8889
DF 1
Pr > S 0.0010

Simple Kappa Coefficient
--------------------------------
Kappa -0.0328
ASE 0.1167
95% Lower Conf Limit -0.2615
95% Upper Conf Limit 0.1960

Sample Size = 28

Statistics for Table 2 of Drug_B by Drug_C
Controlling for Drug_A=Unfavorable

McNemar’s Test
-----------------------
Statistic (S) 0.4000
DF 1
Pr > S 0.5271

Simple Kappa Coefficient
--------------------------------
Kappa -0.1538
ASE 0.2230
95% Lower Conf Limit -0.5909
95% Upper Conf Limit 0.2832

Sample Size = 18

Study of Three Drug Treatments for a Chronic Disease

Summary Statistics for Drug_B by Drug_C
Controlling for Drug_A

Overall Kappa Coefficient
--------------------------------
Kappa -0.0588
ASE 0.1034
95% Lower Conf Limit -0.2615
95% Upper Conf Limit 0.1439

Test for Equal Kappa
Coefficients

--------------------
Chi-Square 0.2314
DF 1
Pr > ChiSq 0.6305

Total Sample Size = 46



References � 185

McNemar’s test (Output 2.9.2) shows strong discordance between drugs B and C
when the response to drug A is favorable. The small negative value of the simple
kappa indicates no agreement between drug B response and drug C response.

Output 2.9.3. Cochran’s Q

Study of Three Drug Treatments for a Chronic Disease

Summary Statistics for Drug_B by Drug_C
Controlling for Drug_A

Cochran’s Q, for Drug_A
by Drug_B by Drug_C

-----------------------
Statistic (Q) 8.4706
DF 2
Pr > Q 0.0145

Total Sample Size = 46

Cochran’sQ is statistically significant (p=0.0144 inOutput 2.9.3), which leads to
rejection of the hypothesis that the probability of favorable response is the same for
the three drugs.

References

Agresti, A. (1990),Categorical Data Analysis, New York: John Wiley & Sons, Inc.

Agresti, A. (1992), “A Survey of Exact Inference for Contingency Tables,”Statistical
Science, 7(1), 131–177.

Agresti, A. (1996),An Introduction to Categorical Data Analysis, New York: John
Wiley & Sons, Inc.

Agresti, A., Mehta, C.R. and Patel, N.R. (1990), “Exact Inference for Contingency
Tables with Ordered Categories,”Journal of the American Statistical
Association, 85, 453–458.

Agresti, A., Wackerly, D., and Boyett, J.M. (1979), “Exact Conditional Tests
for Cross-Classifications: Approximation of Attained Significance Levels,”
Psychometrika, 44, 75–83.

Birch, M.W. (1965), “The Detection of Partial Association, II: The General Case,”
Journal of the Royal Statistical Society, B, 27, 111–124.

Bishop, Y., Fienberg, S.E., and Holland, P.W. (1975),Discrete Multivariate Analysis:
Theory and Practice, Cambridge, MA: MIT Press.

Bowker, A.H. (1948), “Bowker’s Test for Symmetry,”Journal of the American
Statistical Association, 43, 572–574.

Breslow, N.E. (1996), “Statistics in Epidemiology: The Case-Control Study,”Journal
of the American Statistical Association, 91, 14–26.



186 � Chapter 2. The FREQ Procedure

Breslow, N.E. and Day, N.E. (1980),Statistical Methods in Cancer Research, Volume
I: The Analysis of Case-Control Studies, IARC Scientific Publications, No. 32,
Lyon, France: International Agency for Research on Cancer.

Breslow, N.E. and Day, N.E. (1987),Statistical Methods in Cancer Research, Volume
II: The Design and Analysis of Cohort Studies, IARC Scientific Publications, No.
82, Lyon, France: International Agency for Research on Cancer.

Bross, I.D.J. (1958), “How to Use Ridit Analysis,”Biometrics, 14, 18–38.

Brown, M.B. and Benedetti, J.K. (1977), “Sampling Behavior of Tests for
Correlation in Two-Way Contingency Tables,”Journal of the American
Statistical Association, 72, 309–315.

Cicchetti, D.V. and Allison, T. (1971), “A New Procedure for Assessing Reliability
of Scoring EEG Sleep Recordings,”American Journal of EEG Technology, 11,
101–109.

Cochran, W.G. (1950), “The Comparison of Percentages in Matched Samples,”
Biometrika, 37, 256–266.

Cochran, W.G. (1954), “Some Methods for Strengthening the Commonχ2 Tests,”
Biometrics, 10, 417–451.

Collett, D. (1991),Modelling Binary Data, London: Chapman & Hall.

Cohen, J. (1960), “A Coefficient of Agreement for Nominal Scales,”Educational
and Psychological Measurement, 20, 37–46.

Drasgow, F. (1986), “Polychoric and Polyserial Correlations” inEncyclopedia of
Statistical Sciences, vol. 7, ed. S. Kotz and N. L. Johnson, New York: John
Wiley & Sons, Inc., 68–74.

Fienberg, S.E. (1980),The Analysis of Cross-Classified Data, Second Edition,
Cambridge, MA: MIT Press.

Fleiss, J.L. (1981),Statistical Methods for Rates and Proportions, Second Edition,
New York: John Wiley & Sons, Inc.

Fleiss, J.L. and Cohen, J. (1973), “The Equivalence of Weighted Kappa and the
Intraclass Correlation Coefficient as Measures of Reliability,”Educational and
Psychological Measurement, 33, 613–619.

Fleiss, J.L., Cohen, J., and Everitt, B.S. (1969), “Large-Sample Standard Errors of
Kappa and Weighted Kappa,”Psychological Bulletin, 72, 323–327.

Freeman, G.H. and Halton, J.H. (1951), “Note on an Exact Treatment of Contingency,
Goodness of Fit and Other Problems of Significance,”Biometrika, 38, 141–149.

Gail, M. and Mantel, N. (1977), “Counting the Number ofr × c Contingency
Tables with Fixed Margins,”Journal of the American Statistical Association, 72,
859–862.

Gart, J.J. (1971), “The Comparison of Proportions: A Review of Significance
Tests, Confidence Intervals and Adjustments for Stratification,”Review of the
International Statistical Institute, 39(2), 148–169.



References � 187

Goodman, L.A. and Kruskal, W.H. (1979),Measures of Association for Cross
Classification, New York: Springer-Verlag.

Greenland, S. and Robins, J.M. (1985), “Estimators of the Mantel-Haenszel Variance
Consistent in Both Sparse Data and Large-Strata Limiting Models,”Biometrics,
42, 311–323.

Haldane, J.B.S. (1955), “The Estimation and Significance of the Logarithm of a Ratio
of Frequencies,”Annals of Human Genetics, 20, 309–314.

Hollander, M. and Wolfe, D.A. (1973),Nonparametric Statistical Methods, New
York: John Wiley & Sons, Inc.

Jones, M.P., O’Gorman, T.W., Lemka, J.H., and Woolson, R.F. (1989), “A Monte
Carlo Investigation of Homogeneity Tests of the Odds Ratio Under Various
Sample Size Configurations,”Biometrics, 45, 171–181.

Kendall, M. (1955),Rank Correlation Methods, Second Edition, London: Charles
Griffin and Co.

Kendall, M. and Stuart, A. (1979),The Advanced Theory of Statistics, vol. 2, New
York: Macmillan Publishing Company, Inc.

Kleinbaum, D.G., Kupper, L.L., and Morgenstern, H. (1982),Epidemiologic
Research: Principles and Quantitative Methods, Research Methods Series, New
York: Van Nostrand Reinhold.

Landis, R.J., Heyman, E.R., and Koch, G.G. (1978), “Average Partial Association in
Three-way Contingency Tables: A Review and Discussion of Alternative Tests,”
International Statistical Review, 46, 237–254.

Leemis, L.M. and Trivedi, K.S. (1996), “A Comparison of Approximate Interval
Estimators for the Bernoulli Parameter,”The American Statistician, 50(1),
63–68.

Lehmann, E.L. (1975),Nonparametrics: Statistical Methods Based on Ranks, San
Francisco: Holden-Day, Inc.

Liebetrau, A.M. (1983),Measures of Association, Quantitative Application in the
Social Sciences, vol. 32, Beverly Hills: Sage Publications, Inc.

Mack, G.A. and Skillings, J.H. (1980), “A Friedman-Type Rank Test for Main Effects
in a Two-Factor ANOVA,”Journal of the American Statistical Association, 75,
947–951.

Mantel, N. (1963), “Chi-square Tests with One Degree of Freedom: Extensions of the
Mantel-Haenszel Procedure,”Journal of the American Statistical Association,
58, 690–700.

Mantel, N. and Haenszel, W. (1959), “Statistical Aspects of the Analysis of Data from
Retrospective Studies of Disease,”Journal of the National Cancer Institute, 22,
719–748.

Margolin, B.H. (1988), “Test for Trend in Proportions,” inEncyclopedia of Statistical
Sciences, vol. 9, ed. S. Kotz and N.L. Johnson, New York: John Wiley & Sons,
Inc., 334–336.



188 � Chapter 2. The FREQ Procedure

McNemar, Q. (1947), “Note on the Sampling Error of the Difference between
Correlated Proportions or Percentages,”Psychometrika, 12, 153–157.

Mehta, C.R. and Patel, N.R. (1983), “A Network Algorithm for Performing Fisher’s
Exact Test inr × c Contingency Tables,”Journal of the American Statistical
Association, 78, 427–434.

Mehta, C.R., Patel, N.R., and Gray, R. (1985), “On Computing an Exact Confidence
Interval for the Common Odds Ratio in Several2 × 2 Contingency Tables,”
Journal of the American Statistical Association, 80, 969–973.

Mehta, C.R., Patel, N.R., and Senchaudhuri, P. (1991), “Exact Stratified Linear Rank
Tests for Binary Data,”Computing Science and Statistics: Proceedings of the
23rd Symposium on the Interface, ed. E.M. Keramidas, 200–207.

Mehta, C.R., Patel, N.R., and Tsiatis, A.A. (1984), “Exact Significance Testing to
Establish Treatment Equivalence with Ordered Categorical Data,”Biometrics,
40, 819–825.

Narayanan, A. and Watts, D. (1996), “Exact Methods in the NPAR1WAY Procedure,”
in Proceedings of the Twenty-First Annual SAS Users Group International
Conference, Cary, NC: SAS Institute Inc., 1290–1294.

Olsson, U. (1979), “Maximum Likelihood Estimation of the Polychoric Correlation
Coefficient,”Psychometrika, 12, 443–460.

Pirie, W. (1983), “Jonckheere Tests for Ordered Alternatives,” inEncyclopedia of
Statistical Sciences, vol. 4, ed. S. Kotz and N.L. Johnson, New York: John Wiley
& Sons, Inc., 315–318.

Radlow, R. and Alf, E.F. (1975), “An Alternate Multinomial Assessment of the
Accuracy of the Chi-Square Test of Goodness of Fit,”Journal of the American
Statistical Association, 70, 811–813.

Robins, J.M., Breslow, N., and Greenland, S. (1986), “Estimators of the Mantel-
Haenszel Variance Consistent in Both Sparse Data and Large-Strata Limiting
Models,”Biometrics, 42, 311–323.

Snedecor, G.W. and Cochran, W.G. (1989),Statistical Methods, Eighth Edition,
Ames, IA: Iowa State University Press.

Somers, R.H. (1962), “A New Asymmetric Measure of Association for Ordinal
Variables,”American Sociological Review, 27, 799–811.

Stokes, M.E., Davis, C.S., and Koch, G.G. (1995),Categorical Data Analysis Using
the SAS System, Cary, NC: SAS Institute Inc.

Tarone, R.E. (1985), “On Heterogeneity Tests Based on Efficient Scores,”
Biometrika, 72, 1, 91–95.

Theil, H. (1972),Statistical Decomposition Analysis, Amsterdam: North-Holland
Publishing Company.

Thomas, D.G. (1971), “Algorithm AS-36. Exact Confidence Limits for the Odds
Ratio in a2× 2 Table,”Applied Statistics, 20, 105–110.



References � 189

Valz, P.D. and Thompson, M.E. (1994), “Exact Inference for Kendall’s S and
Spearman’s Rho with Extensions to Fisher’s Exact Test inr × c Contingency
Tables,”Journal of Computational and Graphical Statistics, 3(4), 459–472.

van Elteren, P.H. (1960), “On the Combination of Independent Two-Sample Tests of
Wilcoxon,” Bulletin of the International Statistical Institute, 37, 351–361.

Vollset, S.E., Hirji, K.F., and Elashoff, R.M. (1991), “Fast Computation of Exact
Confidence Limits for the Common Odds Ratio in a Series of2 × 2 Tables,”
Journal of the American Statistical Association, 86, 404–409.

Woolf, B. (1955), “On Estimating the Relationship between Blood Group and
Disease,”Annals of Human Genetics, 19, 251–253.



190 � Chapter 2. The FREQ Procedure



Chapter 3
The UNIVARIATE Procedure

Chapter Contents

OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195

GETTING STARTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196
Capabilities of PROC UNIVARIATE. . . . . . . . . . . . . . . . . . . . .196
Summarizing a Data Distribution. . . . . . . . . . . . . . . . . . . . . . .196
Exploring a Data Distribution. . . . . . . . . . . . . . . . . . . . . . . . .197
Modeling a Data Distribution. . . . . . . . . . . . . . . . . . . . . . . . .200

SYNTAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202
PROC UNIVARIATE Statement . . . . . . . . . . . . . . . . . . . . . . .203
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209
CLASS Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210
FREQ Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212
HISTOGRAM Statement. . . . . . . . . . . . . . . . . . . . . . . . . . .212
ID Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230
INSET Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230
OUTPUT Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237
PROBPLOT Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . .241
QQPLOT Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253
VAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266
WEIGHT Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267

DETAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268
Missing Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268
Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269
Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269
Calculating the Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . .272
Calculating Percentiles. . . . . . . . . . . . . . . . . . . . . . . . . . . .273
Tests for Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275
Confidence Limits for Parameters of the Normal Distribution. . . . . . . .277
Robust Estimators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .278
Creating Line Printer Plots. . . . . . . . . . . . . . . . . . . . . . . . . .281
Creating High-Resolution Graphics. . . . . . . . . . . . . . . . . . . . . .284
Using the CLASS Statement to Create Comparative Plots. . . . . . . . . .284
Positioning the Inset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285
Formulas for Fitted Continuous Distributions. . . . . . . . . . . . . . . . .288
Goodness-of-Fit Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . .292



192 � Chapter 3. The UNIVARIATE Procedure

Kernel Density Estimates. . . . . . . . . . . . . . . . . . . . . . . . . . .297
Construction of Quantile-Quantile and Probability Plots. . . . . . . . . . .298
Interpretation of Quantile-Quantile and Probability Plots. . . . . . . . . . .299
Distributions for Probability and Q-Q Plots. . . . . . . . . . . . . . . . . .300
Estimating Shape Parameters Using Q-Q Plots. . . . . . . . . . . . . . . .303
Estimating Location and Scale Parameters Using Q-Q Plots. . . . . . . . .304
Estimating Percentiles Using Q-Q Plots. . . . . . . . . . . . . . . . . . . .305
Input Data Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305
OUT= Output Data Set in the OUTPUT Statement. . . . . . . . . . . . . .306
OUTHISTOGRAM= Output Data Set. . . . . . . . . . . . . . . . . . . .308
Tables for Summary Statistics. . . . . . . . . . . . . . . . . . . . . . . . .308
ODS Table Names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309
ODS Tables for Fitted Distributions. . . . . . . . . . . . . . . . . . . . . .310
Computational Resources. . . . . . . . . . . . . . . . . . . . . . . . . . .311

EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312
Example 3.1. Computing Descriptive Statistics for Multiple Variables. . . . 312
Example 3.2. Calculating Modes. . . . . . . . . . . . . . . . . . . . . . .314
Example 3.3. Identifying Extreme Observations and Extreme Values. . . . 315
Example 3.4. Creating a Frequency Table. . . . . . . . . . . . . . . . . . .317
Example 3.5. Creating Plots for Line Printer Output. . . . . . . . . . . . .319
Example 3.6. Analyzing a Data Set With a FREQ Variable. . . . . . . . . .322
Example 3.7. Saving Summary Statistics in an OUT= Output Data Set. . . 323
Example 3.8. Saving Percentiles in an Output Data Set. . . . . . . . . . . .325
Example 3.9. Computing Confidence Limits for the Mean, Standard Deviation,

and Variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326
Example 3.10. Computing Confidence Limits for Quantiles and Percentiles. 328
Example 3.11. Computing Robust Estimates. . . . . . . . . . . . . . . . .329
Example 3.12. Testing for Location. . . . . . . . . . . . . . . . . . . . . .331
Example 3.13. Performing a Sign Test Using Paired Data. . . . . . . . . .332
Example 3.14. Creating a Histogram. . . . . . . . . . . . . . . . . . . . .333
Example 3.15. Creating a One-Way Comparative Histogram. . . . . . . . .334
Example 3.16. Creating a Two-Way Comparative Histogram. . . . . . . . .337
Example 3.17. Adding Insets with Descriptive Statistics. . . . . . . . . . .338
Example 3.18. Binning a Histogram. . . . . . . . . . . . . . . . . . . . .340
Example 3.19. Adding a Normal Curve to a Histogram. . . . . . . . . . . .343
Example 3.20. Adding Fitted Normal Curves to a Comparative Histogram. 345
Example 3.21. Fitting a Beta Curve. . . . . . . . . . . . . . . . . . . . . .346
Example 3.22. Fitting Lognormal, Weibull, and Gamma Curves. . . . . . . 348
Example 3.23. Computing Kernel Density Estimates. . . . . . . . . . . . .352
Example 3.24. Fitting a Three-Parameter Lognormal Curve. . . . . . . . .354
Example 3.25. Annotating a Folded Normal Curve. . . . . . . . . . . . . .355
Example 3.26. Creating Lognormal Probability Plots. . . . . . . . . . . . .360
Example 3.27. Creating a Histogram to Display Lognormal Fit. . . . . . . 363
Example 3.28. Creating a Normal Quantile Plot. . . . . . . . . . . . . . .365
Example 3.29. Adding a Distribution Reference Line. . . . . . . . . . . .366
Example 3.30. Interpreting a Normal Quantile Plot. . . . . . . . . . . . . .368
Example 3.31. Estimating Three Parameters from Lognormal Quantile Plots369



Chapter 3. The UNIVARIATE Procedure � 193

Example 3.32. Estimating Percentiles from Lognormal Quantile Plots. . . . 372
Example 3.33. Estimating Parameters from Lognormal Quantile Plots. . . . 373
Example 3.34. Comparing Weibull Quantile Plots. . . . . . . . . . . . . .375

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377



194 � Chapter 3. The UNIVARIATE Procedure



Chapter 3
The UNIVARIATE Procedure
Overview

The UNIVARIATE procedure provides the following:

• descriptive statistics based on moments (including skewness and kurtosis),
quantiles or percentiles (such as the median), frequency tables, and extreme
values

• histograms and comparative histograms. Optionally, these can be fitted with
probability density curves for various distributions and with kernel density es-
timates.

• quantile-quantile plots (Q-Q plots) and probability plots. These plots facilitate
the comparison of a data distribution with various theoretical distributions.

• goodness-of-fit tests for a variety of distributions including the normal

• the ability to inset summary statistics on plots produced on a graphics device

• the ability to analyze data sets with a frequency variable

• the ability to create output data sets containing summary statistics, histogram
intervals, and parameters of fitted curves

You can use the PROC UNIVARIATE statement, together with the VAR statement,
to compute summary statistics. See“Getting Started”on page 196 for introductory
examples. In addition, you can use the following statements to request plots:

• the HISTOGRAM statement for creating histograms, the QQPLOT statement
for creating Q-Q plots, and the PROBPLOT statement for creating probability
plots

• the CLASS statement together with the HISTOGRAM, QQPLOT, and
PROBPLOT statement for creating comparative histograms, Q-Q plots, and
probability plots

• the INSET statement with any of the plot statements for enhancing the plot
with an inset table of summary statistics. The INSET statement is applicable
only to plots produced on graphics devices.



196 � Chapter 3. The UNIVARIATE Procedure

Getting Started

The following examples demonstrate how you can use the UNIVARIATE procedure
to analyze the distributions of variables through the use of descriptive statistical mea-
sures and graphical displays, such as histograms.

Capabilities of PROC UNIVARIATE

The UNIVARIATE procedure provides a variety of descriptive measures, high-
resolution graphical displays, and statistical methods, which you can use to summa-
rize, visualize, analyze, and model the statistical distributions of numeric variables.
These tools are appropriate for a broad range of tasks and applications:

• Exploring the distributions of the variables in a data set is an important pre-
liminary step in data analysis, data warehousing, and data mining. With the
UNIVARIATE procedure you can use tables and graphical displays, such as
histograms and nonparametric density estimates, to find key features of distri-
butions, identify outliers and extreme observations, determine the need for data
transformations, and compare distributions.

• Modeling the distributions of data and validating distributional assumptions are
basic steps in statistical analysis. You can use the UNIVARIATE procedure to
fit parametric distributions (beta, exponential, gamma, lognormal, normal, and
Weibull) and to compute probabilities and percentiles from these models. You
can assess goodness of fit with hypothesis tests and with graphical displays
such as probability plots and quantile-quantile plots. You can also use the
UNIVARIATE procedure to validate distributional assumptions for other types
of statistical analysis. When standard assumptions are not met, you can use the
UNIVARIATE procedure to perform nonparametric tests and compute robust
estimates of location and scale.

• Summarizing the distribution of the data is often helpful for creating effective
statistical reports and presentations. You can use the UNIVARIATE procedure
to create tables of summary measures, such as means and percentiles, together
with graphical displays, such as histograms and comparative histograms, which
facilitate the interpretation of the report.

The following examples illustrate a few of the tasks that you can carry out with the
UNIVARIATE procedure.

Summarizing a Data Distribution

Figure 3.1shows a table of basic summary measures and a table of extreme obser-
vations for the loan-to-value ratios of 5,840 home mortgages. The ratios are saved
as values of the variableLoanToValueRatio in a data set namedHomeLoans. The
following statements request a univariate analysis:



Exploring a Data Distribution � 197

ods select BasicMeasures ExtremeObs;
proc univariate data=homeloans;

var LoanToValueRatio;
run;

The ODS SELECT statement restricts the default output to the tables for basic statis-
tical measures and extreme observations.

The UNIVARIATE Procedure
Variable: LoanToValueRatio (Loan to Value Ratio)

Basic Statistical Measures

Location Variability

Mean 0.292512 Std Deviation 0.16476
Median 0.248050 Variance 0.02715
Mode 0.250000 Range 1.24780

Interquartile Range 0.16419

Extreme Observations

-------Lowest------ -----Highest-----

Value Obs Value Obs

0.0651786 1 1.13976 5776
0.0690157 3 1.14209 5791
0.0699755 59 1.14286 5801
0.0702412 84 1.17090 5799
0.0704787 4 1.31298 5811

Figure 3.1. Basic Measures and Extreme Observations

The tables inFigure 3.1show, in particular, that the average ratio is 0.2925 and the
minimum and maximum ratios are 0.06518 and 1.1398, respectively.

Exploring a Data Distribution

Figure 3.2shows a histogram of the loan-to-value ratios. The histogram reveals fea-
tures of the ratio distribution, such as its skewness and the peak at 0.175, which are
not evident from the tables in the previous example. The following statements create
the histogram:

title ’Home Loan Analysis’;
proc univariate data=homeloans noprint;

histogram LoanToValueRatio / cfill=ltgray;
inset n = ’Number of Homes’ / position=ne;

run;

The NOPRINT option suppresses the display of summary statistics. The INSET
statement inserts the total number of analyzed home loans in the northeast corner of
the plot.



198 � Chapter 3. The UNIVARIATE Procedure

Figure 3.2. Histogram for Loan-to-Value Ratio

The data setHomeLoans contains a variable namedLoanType that classifies the
loans into two types: Gold and Platinum. It is useful to compare the distributions
of LoanToValueRatio for the two types. The following statements request quantiles
for each distribution and a comparative histogram, which are shown inFigure 3.3and
Figure 3.4.

title ’Comparison of Loan Types’;
ods select Quantiles MyHist;
proc univariate data=HomeLoans;

var LoanToValueRatio;
class LoanType;
histogram LoanToValueRatio / cfill=ltgray

kernel(color=black)
name=’MyHist’;

inset n=’Number of Homes’ median=’Median Ratio’ (5.3) / position=ne;
label LoanType = ’Type of Loan’;

run;

The ODS SELECT statement restricts the default output to the tables of quantiles.
The CLASS statement specifiesLoanType as a classification variable for the quan-
tile computations and comparative histogram. The KERNEL option adds a smooth
nonparametric estimate of the ratio density to each histogram. The INSET statement
specifies summary statistics to be displayed directly in the graph.



Exploring a Data Distribution � 199

Comparison of Loan Types

The UNIVARIATE Procedure
Variable: LoanToValueRatio (Loan to Value Ratio)

LoanType = Gold

Quantiles (Definition 5)

Quantile Estimate

100% Max 1.0617647
99% 0.8974576
95% 0.6385908
90% 0.4471369
75% Q3 0.2985099
50% Median 0.2217033
25% Q1 0.1734568
10% 0.1411130
5% 0.1213079
1% 0.0942167
0% Min 0.0651786

Comparison of Loan Types

The UNIVARIATE Procedure
Variable: LoanToValueRatio (Loan to Value Ratio)

LoanType = Platinum

Quantiles (Definition 5)

Quantile Estimate

100% Max 1.312981
99% 1.050000
95% 0.691803
90% 0.549273
75% Q3 0.430160
50% Median 0.366168
25% Q1 0.314452
10% 0.273670
5% 0.253124
1% 0.231114
0% Min 0.215504

Figure 3.3. Quantiles for Loan-to-Value Ratio

The output inFigure 3.3shows that the median ratio for Platinum loans (0.366) is
greater than the median ratio for Gold loans (0.222). The comparative histogram in
Figure 3.4enables you to compare the two distributions more easily.



200 � Chapter 3. The UNIVARIATE Procedure

Figure 3.4. Comparative Histogram for Loan-to-Value Ratio

The comparative histogram shows that the ratio distributions are similar except for a
shift of about 0.14.

A sample program,univar1.sas, for this example is available in the SAS Sample
Library for Base SAS software.

Modeling a Data Distribution

In addition to summarizing a data distribution as in the preceding example, you can
use PROC UNIVARIATE to statistically model a distribution based on a random
sample of data. The following statements create a data set namedAircraft containing
the measurements of a position deviation for a sample of 30 aircraft components.

data Aircraft;
input Deviation @@;
label Deviation = ’Position Deviation’;
datalines;

-.00653 0.00141 -.00702 -.00734 -.00649 -.00601
-.00631 -.00148 -.00731 -.00764 -.00275 -.00497
-.00741 -.00673 -.00573 -.00629 -.00671 -.00246
-.00222 -.00807 -.00621 -.00785 -.00544 -.00511
-.00138 -.00609 0.00038 -.00758 -.00731 -.00455
;
run;



Modeling a Data Distribution � 201

An initial question in the analysis is whether the measurement distribution is normal.
The following statements request a table of moments, the tests for normality, and a
normal probability plot, which are shown inFigure 3.5andFigure 3.6:

title ’Position Deviation Analysis’;
ods select Moments TestsForNormality MyPlot;
proc univariate data=Aircraft normaltest;

var Deviation;
probplot Deviation / normal (mu=est sigma=est)

square name=’MyPlot’;
label Deviation = ’Position Deviation’;
inset mean std / format=6.4;

run;

Position Deviation Analysis

The UNIVARIATE Procedure
Variable: Deviation (Position Deviation)

Moments

N 30 Sum Weights 30
Mean -0.0053067 Sum Observations -0.1592
Std Deviation 0.00254362 Variance 6.47002E-6
Skewness 1.2562507 Kurtosis 0.69790426
Uncorrected SS 0.00103245 Corrected SS 0.00018763
Coeff Variation -47.932613 Std Error Mean 0.0004644

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.845364 Pr < W 0.0005
Kolmogorov-Smirnov D 0.208921 Pr > D <0.0100
Cramer-von Mises W-Sq 0.329274 Pr > W-Sq <0.0050
Anderson-Darling A-Sq 1.784881 Pr > A-Sq <0.0050

Figure 3.5. Moments and Tests for Normality

All four goodness-of-fit tests inFigure 3.5reject the hypothesis that the measure-
ments are normally distributed.

Figure 3.6shows a normal probability plot for the measurements. A linear pattern
of points following the diagonal reference line would indicate that the measurements
are normally distributed. Instead, the curved point pattern suggests that a skewed
distribution, such as the lognormal, is more appropriate than the normal distribution.

A lognormal distribution forDeviation is fitted inExample 3.26.

A sample program,univar2.sas, for this example is available in the SAS Sample
Library for Base SAS software.



202 � Chapter 3. The UNIVARIATE Procedure

Figure 3.6. Normal Probability Plot

Syntax

PROC UNIVARIATE < options > ;
BY variables ;
CLASS variable-1 <(v-options)>< variable-2 <(v-options)>>
< / KEYLEVEL= value1 | ( value1 value2 ) >;

FREQ variable ;
HISTOGRAM < variables >< / options > ;
ID variables ;
INSET keyword-list < / options > ;
OUTPUT < OUT=SAS-data-set >
< keyword1=names. . .keywordk=names >< percentile-options >;

PROBPLOT < variables >< / options > ;
QQPLOT < variables >< / options > ;
VAR variables ;
WEIGHT variable ;

The PROC UNIVARIATE statement invokes the procedure. TheVAR statement
specifies the numeric variables to be analyzed, and it is required if theOUTPUT
statement is used to save summary statistics in an output data set. If you do not use
the VAR statement, all numeric variables in the data set are analyzed.



PROC UNIVARIATE Statement � 203

The plot statementsHISTOGRAM, PROBPLOT, andQQPLOTcreate graphical dis-
plays, and theINSET statement enhances these displays by adding a table of sum-
mary statistics directly on the graph. You can specify one or more of each of the
plot statements, theINSETstatement, and theOUTPUTstatement. If you use aVAR
statement, the variables listed in a plot statement must be a subset of the variables
listed in theVAR statement.

You can use aCLASSstatement to specify one or two variables that group the data
into classification levels. The analysis is carried out for each combination of levels,
and you can use the CLASS statement with a plot statement to create a comparative
display.

You can specify aBY statement to obtain separate analysis for each BY group. The
FREQ statement specifies a variable whose values provide the frequency for each
observation. TheWEIGHT statement specifies a variable whose values are used to
weight certain statistics. TheID statement specifies one or more variables to identify
the extreme observations.

PROC UNIVARIATE Statement

PROC UNIVARIATE < options > ;

The PROC UNIVARIATE statement is required to invoke the UNIVARIATE proce-
dure. You can use the PROC UNIVARIATE statement by itself to request a variety
of statistics for summarizing the data distribution of each analysis variable:

• sample moments
• basic measures of location and variability
• confidence intervals for the mean, standard deviation, and variance
• tests for location
• tests for normality
• trimmed and Winsorized means
• robust estimates of scale
• quantiles and related confidence intervals
• extreme observations and extreme values
• frequency counts for observations
• missing values

In addition, you can use options in the PROC UNIVARIATE statement to

• specify the input data set to be analyzed
• specify a graphics catalog for saving graphical output
• specify rounding units for variable values
• specify the definition used to calculate percentiles
• specify the divisor used to calculate variances and standard deviations
• request that plots be produced on line printers and define special printing char-

acters used for features
• suppress tables



204 � Chapter 3. The UNIVARIATE Procedure

The following are theoptions that can be used with the PROC UNIVARIATE state-
ment:

ALL
requests all statistics and tables that the FREQ, MODES, NEXTRVAL=5, PLOT,
and CIBASIC options generate. If the analysis variables are not weighted,
this option also requests the statistics and tables generated by the CIPCTLDF,
CIPCTLNORMAL, LOCCOUNT, NORMAL, ROBUSTSCALE, TRIMMED=.25,
and WINSORIZED=.25 options. PROC UNIVARIATE also uses any values
that you specify for ALPHA=, MU0=, NEXTRVAL=, CIBASIC, CIPCTLDF,
CIPCTLNORMAL, TRIMMED=, or WINSORIZED= to produce the output.

ALPHA=α
specifies the level of significanceα for 100(1−α)% confidence intervals. The value
αmust be between 0 and 1; the default value is 0.05, which results in 95% confidence
intervals.

Note that specialized ALPHA= options are available for a number of confidence in-
terval options. For example, you can specify CIBASIC( ALPHA=0.10 ) to request a
table of basic confidence limits at the 90% level. The defaultvalues of these options
are the value of the ALPHA= option in the PROC statement.

ANNOTATE=SAS-data-set
ANNO=SAS-data-set

specifies an input data set that contains annotate variables as described in
SAS/GRAPH Reference. You can use this data set to add features to your high-
resolution graphics. PROC UNIVARIATE adds the features in this data set to every
high-resolution graph that is produced in the procedure. PROC UNIVARIATE does
not use the ANNOTATE= data set unless you create a high-resolution graph with
the HISTOGRAM, PROBPLOT, or QQPLOT statement. Use the ANNOTATE=
option in the HISTOGRAM, PROBPLOT, or QQPLOT statement if you want to add
a feature to a specific graph produced by the statement.

CIBASIC <(<TYPE=keyword><ALPHA=α >)>
requests confidence limits for the mean, standard deviation, and variance based on the
assumption that the data are normally distributed. If you use the CIBASIC option,
you must use the default value of VARDEF=, which is DF.

TYPE=keyword
specifies the type of confidence limit, wherekeyword is LOWER, UPPER, or
TWOSIDED. The default value is TWOSIDED.

ALPHA=α
specifies the level of significanceα for 100(1−α)% confidence intervals. The
valueα must be between 0 and 1; the default value is 0.05, which results in
95% confidence intervals. The default value is the value of ALPHA= given in
the PROC statement.

CIPCTLDF <(<TYPE=keyword><ALPHA=α >)>
CIQUANTDF <(<TYPE=keyword><ALPHA=α >)>

requests confidence limits for quantiles based on a method that is distribution-free. In
other words, no specific parametric distribution such as the normal is assumed for the



PROC UNIVARIATE Statement � 205

data. PROC UNIVARIATE uses order statistics (ranks) to compute the confidence
limits as described by Hahn and Meeker (1991). This option does not apply if you
use a WEIGHT statement.

TYPE=keyword
specifies the type of confidence limit, wherekeyword is LOWER, UPPER,
SYMMETRIC, or ASYMMETRIC. The default value is SYMMETRIC.

ALPHA=α
specifies the level of significanceα for 100(1−α)% confidence intervals. The
valueα must be between 0 and 1; the default value is 0.05, which results in
95% confidence intervals. The default value is the value of ALPHA= given in
the PROC statement.

CIPCTLNORMAL <(<TYPE=keyword><ALPHA=α >)>
CIQUANTNORMAL <(<TYPE=keyword><ALPHA=α >)>

requests confidence limits for quantiles based on the assumption that the data are
normally distributed. The computational method is described in Section 4.4.1 of
Hahn and Meeker (1991) and uses the noncentralt distribution as given by Odeh and
Owen (1980). This option does not apply if you use a WEIGHT statement

TYPE=keyword
specifies the type of confidence limit, wherekeyword is LOWER, UPPER, or
TWOSIDED. The default is TWOSIDED.

ALPHA=α
specifies the level of significanceα for 100(1−α)% confidence intervals. The
valueα must be between 0 and 1; the default value is 0.05, which results in
95% confidence intervals. The default value is the value of ALPHA= given in
the PROC statement.

DATA=SAS-data-set
specifies the input SAS data set to be analyzed. If the DATA= option is omitted, the
procedure uses the most recently created SAS data set.

EXCLNPWGT
excludes observations with nonpositive weight values (zero or negative) from the
analysis. By default, PROC UNIVARIATE treats observations with negative weights
like those with zero weights and counts them in the total number of observations.
This option applies only when you use a WEIGHT statement.

FREQ
requests a frequency table that consists of the variable values, frequencies, cell per-
centages, and cumulative percentages.

If you specify the WEIGHT statement, PROC UNIVARIATE includes the weighted
count in the table and uses this value to compute the percentages.

GOUT=graphics-catalog
specifies the SAS catalog that PROC UNIVARIATE uses to save high-resolution
graphics output. If you omit the libref in the name of thegraphics-catalog, PROC
UNIVARIATE looks for the catalog in the temporary library called WORK and cre-
ates the catalog if it does not exist.



206 � Chapter 3. The UNIVARIATE Procedure

LOCCOUNT
requests a table that shows the number of observations greater than, not equal to, and
less than the value of MU0=. PROC UNIVARIATE uses these values to construct the
sign test and the signed rank test. This option does not apply if you use a WEIGHT
statement.

MODES|MODE
requests a table of all possible modes. By default, when the data contain multiple
modes, PROC UNIVARIATE displays the lowest mode in the table of basic statistical
measures. When all the values are unique, PROC UNIVARIATE does not produce a
table of modes.

MU0=values
LOCATION=values

specifies the value of the mean or location parameter (µ0) in the null hypothesis for
tests of location summarized in the table labeledTests for Location: Mu0=value. If
you specify one value, PROC UNIVARIATE tests the same null hypothesis for all
analysis variables. If you specify multiple values, a VAR statement is required, and
PROC UNIVARIATE tests a different null hypothesis for each analysis variable in
the corresponding order. The defaultvalue is 0.

The following statement tests the hypothesisµ0 = 0 for the first variable and the
hypothesisµ0 = 0.5 for the second variable.

proc univariate mu0=0 0.5;

NEXTROBS=n
specifies the number of extreme observations that PROC UNIVARIATE lists in the
table of extreme observations. The table lists then lowest observations and then
highest observations. The default value is 5, andn can range between 0 and half the
maximum number of observations. You can specify NEXTROBS=0 to suppress the
table of extreme observations.

NEXTRVAL=n
specifies the number of extreme values that PROC UNIVARIATE lists in the table of
extreme values. The table lists then lowest unique values and then highest unique
values. The default value is 0, andn can range between 0 and half the maximum
number of observations. By default,n = 0 and no table is displayed.

NOBYPLOT
suppresses side-by-side box plots that are created by default when you use the BY
statement and the ALL option or the PLOT option in the PROC statement.

NOPRINT
suppresses all the tables of descriptive statistics that the PROC UNIVARIATE state-
ment creates. NOPRINT does not suppress the tables that the HISTOGRAM state-
ment creates. You can use the NOPRINT option in the HISTOGRAM statement to
suppress the creation of its tables. Use NOPRINT when you want to create an OUT=
output data set only.



PROC UNIVARIATE Statement � 207

NORMAL
NORMALTEST

requests tests for normality that include a series of goodness-of-fit tests based on
the empirical distribution function. The table provides test statistics andp-values
for the Shapiro-Wilk test (provided the sample size is less than or equal to 2000),
the Kolmogorov-Smirnov test, the Anderson-Darling test, and the Cramér-von Mises
test. This option does not apply if you use a WEIGHT statement.

PCTLDEF=value
DEF=value

specifies the definition that PROC UNIVARIATE uses to calculate quantiles. The
default value is 5. Values can be 1, 2, 3, 4, or 5. You cannot use PCTLDEF= when
you compute weighted quantiles. See the section“Calculating Percentiles”on page
273 for details on quantile definitions.

PLOTS | PLOT
produces a stem-and-leaf plot (or a horizontal bar chart), a box plot, and a normal
probability plot in line printer output. If you use a BY statement, side-by-side box
plots that are labeled “Schematic Plots” appear after the univariate analysis for the
last BY group.

PLOTSIZE=n
specifies the approximate number of rows used in line-printer plots requested with the
PLOTS option. Ifn is larger than the value of the SAS system option PAGESIZE=,
PROC UNIVARIATE uses the value of PAGESIZE=. Ifn is less than 8, PROC
UNIVARIATE uses eight rows to draw the plots.

ROBUSTSCALE
produces a table with robust estimates of scale. The statistics include the interquar-
tile range, Gini’s mean difference, the median absolute deviation about the median
(MAD), and two statistics proposed by Rousseeuw and Croux (1993),Qn, andSn.
This option does not apply if you use a WEIGHT statement.

ROUND=units
specifies the units to use to round the analysis variables prior to computing statistics.
If you specify one unit, PROC UNIVARIATE uses this unit to round all analysis
variables. If you specify multiple units, a VAR statement is required, and each unit
rounds the values of the corresponding analysis variable. If ROUND=0, no rounding
occurs. The ROUND= option reduces the number of unique variable values, thereby
reducing memory requirements for the procedure. For example, to make the rounding
unit 1 for the first analysis variable and 0.5 for the second analysis variable, submit
the statement

proc univariate round=1 0.5;
var yldstren tenstren;

run;

When a variable value is midway between the two nearest rounded points, the value
is rounded to the nearest even multiple of the roundoff value. For example, with a
roundoff value of 1, the variable values of−2.5,−2.2, and−1.5 are rounded to−2;
the values of−0.5, 0.2, and 0.5 are rounded to 0; and the values of 0.6, 1.2, and 1.4
are rounded to 1.



208 � Chapter 3. The UNIVARIATE Procedure

TRIMMED=values <(<TYPE=keyword><ALPHA=α >)>
TRIM=values <(<TYPE=keyword><ALPHA=α >)>

requests a table of trimmed means, wherevalue specifies the number or the propor-
tion of observations that PROC UNIVARIATE trims. If thevalue is the numbern
of trimmed observations,n must be between 0 and half the number of nonmissing
observations. Ifvalue is a proportionp between 0 and12 , the number of observa-
tions that PROC UNIVARIATE trims is the smallest integer that is greater than or
equal tonp, wheren is the number of observations. To include confidence limits
for the mean and the Student’st test in the table, you must use the default value of
VARDEF= which is DF. For details concerning the computation of trimmed means,
see the section“Trimmed Means”on page 279.

TYPE= keyword
specifies the type of confidence limit for the mean, wherekeyword is LOWER,
UPPER, or TWOSIDED. The default value is TWOSIDED.

ALPHA=α
specifies the level of significanceα for 100(1−α)% confidence intervals. The
valueα must be between 0 and 1; the default value is 0.05, which results in
95% confidence intervals.

This option does not apply if you use a WEIGHT statement.

VARDEF=divisor
specifies the divisor to use in the calculation of variances and standard deviation. By
default, VARDEF=DF. The following table shows the possible values fordivisor and
associated divisors.

Table 3.1. Possible Values for VARDEF=
Value Divisor Formula for Divisor
DF Degrees of freedom n− 1
N Number of observations n
WDF Sum of weights minus one(Σiwi)− 1
WEIGHT|WGT Sum of weights Σiwi

The procedure computes the variance asCSS
divisor whereCSS is the corrected sums of

squares and equals
∑n

i=1(xi− x̄)2. When you weight the analysis variables,CSS =∑n
i=1(wixi − x̄w)2 wherex̄w is the weighted mean.

The default value is DF. To compute the standard error of the mean, confidence limits,
and Student’st test, use the default value of VARDEF=.

When you use the WEIGHT statement and VARDEF=DF, the variance is an estimate
of s2 where the variance of theith observation isvar(xi) = s2

wi
andwi is the weight

for theith observation. This yields an estimate of the variance of an observation with
unit weight.

When you use the WEIGHT statement and VARDEF=WGT, the computed variance
is asymptotically (for largen) an estimate ofs

2

w̄ wherew̄ is the average weight. This
yields an asymptotic estimate of the variance of an observation with average weight.



BY Statement � 209

WINSORIZED=values <(<TYPE=keyword><ALPHA=α >)>
WINSOR=values <(<TYPE=keyword><ALPHA=α>)>

requests of a table of Winsorized means, wherevalue is the number or the proportion
of observations that PROC UNIVARIATE uses to compute the Winsorized mean. If
thevalue is the numbern of winsorized observations,n must be between 0 and half
the number of nonmissing observations. Ifvalue is a proportionp between 0 and12 ,
the number of observations that PROC UNIVARIATE uses is equal to the smallest
integer that is greater than or equal tonp, wheren is the number of observations. To
include confidence limits for the mean and the studentt test in the table, you must use
the default value of VARDEF=, which is DF. For details concerning the computation
of Winsorized means, see the section“Winsorized Means”on page 278.

TYPE=keyword
specifies the type of confidence limit for the mean, wherekeyword is LOWER,
UPPER, or TWOSIDED. The default is TWOSIDED.

ALPHA=α
specifies the level of significanceα for 100(1−α)% confidence intervals. The
valueα must be between 0 and 1; the default value is 0.05, which results in
95% confidence intervals.

This option does not apply if you use a WEIGHT statement.

BY Statement

BY variables ;

You can specify a BY statement with PROC UNIVARIATE to obtain separate analy-
ses for each BY group. The BY statement specifies thevariables that the procedure
uses to form BY groups. You can specify more than onevariable. If you do not
use the NOTSORTED option in the BY statement, the observations in the data set
must either be sorted by all thevariables that you specify or they must be indexed
appropriately.

DESCENDING
specifies that the data set is sorted in descending order by the variable that immedi-
ately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The data are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED.
The procedure defines a BY group as a set of contiguous observations that have the
same values for all BY variables. If observations with the same values for the BY
variables are not contiguous, the procedure treats each contiguous set as a separate
BY group.



210 � Chapter 3. The UNIVARIATE Procedure

CLASS Statement

CLASS variable-1 <(v-options)>< variable-2 <(v-options)>>
< / KEYLEVEL= value1 | ( value1 value2 ) >;

The CLASS statement specifies one or two variables that the procedure uses to group
the data into classification levels. Variables in a CLASS statement are referred to as
class variables. Class variables can be numeric or character. Class variables can have
floating point values, but they typically have a few discrete values that define levels of
the variable. You do not have to sort the data by class variables. PROC UNIVARIATE
uses the formatted values of the class variables to determine the classification levels.

You can specify the followingv-options enclosed in parentheses after the class vari-
able:

MISSING
specifies that missing values for the CLASS variable are to be treated as valid clas-
sification levels. Special missing values that represent numeric values (the letters A
through Z and the underscore (–) character) are each considered as a separate value.
If you omit MISSING, PROC UNIVARIATE excludes the observations with a miss-
ing class variable value from the analysis. Enclose this option in parentheses after the
class variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the display order for the class variable values. The default value is
INTERNAL. You can specify the following values with the ORDER=option:

DATA
orders values according to their order in the input data set. When you use
a HISTOGRAM, PROBPLOT, or QQPLOT statement, PROC UNIVARIATE
displays the rows (columns) of the comparative plot from top to bottom (left
to right) in the order that the class variable values first appear in the input data
set.

FORMATTED
orders values by their ascending formatted values. This order may depend on
your operating environment. When you use a HISTOGRAM, PROBPLOT, or
QQPLOT statement, PROC UNIVARIATE displays the rows (columns) of the
comparative plot from top to bottom (left to right) in increasing order of the
formatted class variable values. For example, suppose a numeric class variable
DAY (with values 1, 2, and 3) has a user-defined format that assigns Wednesday
to the value 1, Thursday to the value 2, and Friday to the value 3. The rows
of the comparative plot will appear in alphabetical order (Friday, Thursday,
Wednesday) from top to bottom.

If there are two or more distinct internal values with the same formatted value,
then PROC UNIVARIATE determines the order by the internal value that oc-
curs first in the input data set. For numerical variables without an explicit
format, the levels are ordered by their internal values.



CLASS Statement � 211

FREQ
orders values by descending frequency count so that levels with the most ob-
servations are listed first. If two or more values have the same frequency count,
PROC UNIVARIATE uses the formatted values to determine the order.

When you use a HISTOGRAM, PROBPLOT, or QQPLOT statement, PROC
UNIVARIATE displays the rows (columns) of the comparative plot from top
to bottom (left to right) in order of decreasing frequency count for the class
variable values.

INTERNAL
orders values by their unformatted values, which yields the same order as
PROC SORT. This order may depend on your operating environment.

When you use a HISTOGRAM, PROBPLOT, or QQPLOT statement, PROC
UNIVARIATE displays the rows (columns) of the comparative plot from top
to bottom (left to right) in increasing order of the internal (unformatted) values
of the class variable. The first class variable is used to label the rows of the
comparative plots (top to bottom). The second class variable is used to label
the columns of the comparative plots (left to right). For example, suppose a
numeric class variable DAY (with values 1, 2, and 3) has a user-defined format
that assigns Wednesday to the value 1, Thursday to the value 2, and Friday to
the value 3. The rows of the comparative plot will appear in day-of-the-week
order (Wednesday, Thursday, Friday) from top to bottom.

You can specify the followingoption after the slash (/) in the CLASS statement.

KEYLEVEL= value1 | ( value1 value2 )
specifies thekey cellin a comparative plot. PROC UNIVARIATE first determines
the bin size and midpoints for the key cell, and then extends the midpoint list to
accommodate the data ranges for the remaining cells. Thus, the choice of the key
cell determines the uniform horizontal axis that PROC UNIVARIATE uses for all
cells. If you specify only one class variable and use a HISTOGRAM statement,
KEYLEVEL= value identifies the key cell as the level for which variable is equal to
value. By default, PROC UNIVARIATE sorts the levels in the order that is deter-
mined by the ORDER= option. Then, the key cell is the first occurrence of a level in
this order. The cells display in order from top to bottom or left to right. Consequently,
the key cell appears at the top (or left). When you specify a different key cell with
the KEYLEVEL= option, this cell appears at the top (or left).

Likewise, with the PROBPLOT and QQPLOT statements, the key cell determines
uniform axis scaling. If you specify two class variables, use KEYLEVEL=value1
value2 to identify the key cell as the level for which variable-n is equal to value-n.

By default, PROC UNIVARIATE sorts the levels of the first CLASS variable in the
order that is determined by its ORDER= option and, within each of these levels, it
sorts the levels of the second CLASS variable in the order that is determined by its
ORDER= option. Then, the default key cell is the first occurrence of a combination
of levels for the two variables in this order. The cells display in the order of the first
CLASS variable from top to bottom and in the order of the second CLASS variable
from left to right. Consequently, the default key cell appears at the upper left corner.



212 � Chapter 3. The UNIVARIATE Procedure

When you specify a different key cell with the KEYLEVEL= option, this cell appears
at the upper left corner.

The length of the KEYLEVEL= value cannot exceed 16 characters and you must
specify a formatted value.

The KEYLEVEL= option does not apply unless you specify a HISTOGRAM,
PROBPLOT, or QQPLOT statement.

FREQ Statement

FREQ variable ;

The FREQ statement specifies a numeric variable whose value represents the fre-
quency of the observation. If you use the FREQ statement, the procedure assumes
that each observation representsn observations, wheren is the value of variable. If
the variable is not an integer, the SAS System truncates it. If the variable is less
than 1 or is missing, the procedure excludes that observation from the analysis. See
Example 3.6.

Note: The FREQ statement affects the degrees of freedom, but the WEIGHT state-
ment does not.

HISTOGRAM Statement

HISTOGRAM < variables >< / options >;

The HISTOGRAM statement creates histograms and optionally superimposes esti-
mated parametric and nonparametric probability density curves. You cannot use the
WEIGHT statement with the HISTOGRAM statement. You can use any number of
HISTOGRAM statements after aPROC UNIVARIATE statement. The components
of the HISTOGRAM statement are described as follows.

variables
are the variables for which histograms are to be created. If you specify a VAR state-
ment, thevariables must also be listed in the VAR statement. Otherwise, thevariables
can be any numeric variables in the input data set. If you do not specifyvariables in
a VAR statement or in the HISTOGRAM statement, then by default, a histogram is
created for each numeric variable in the DATA= data set. If you use a VAR statement
and do not specify anyvariables in the HISTOGRAM statement, then by default, a
histogram is created for each variable listed in the VAR statement.

For example, suppose a data set namedSteel contains exactly two numeric variables
namedLength andWidth. The following statements create two histograms, one for
Length and one forWidth:

proc univariate data=Steel;
histogram;

run;



HISTOGRAM Statement � 213

Likewise, the following statements create histograms forLength andWidth:

proc univariate data=Steel;
var Length Width;
histogram;

run;

The following statements create a histogram forLength only:

proc univariate data=Steel;
var Length Width;
histogram Length;

run;

options
add features to the histogram. Specify alloptions after the slash (/) in the
HISTOGRAM statement.Options can be one of the following:

• primary options for fitted parametric distributions and kernel density estimates

• secondary options for fitted parametric distributions and kernel density esti-
mates

• general options for graphics and output data sets

For example, in the following statements, the NORMAL option displays a fitted nor-
mal curve on the histogram, the MIDPOINTS= option specifies midpoints for the
histogram, and the CTEXT= option specifies the color of the text:

proc univariate data=Steel;
histogram Length / normal

midpoints = 5.6 5.8 6.0 6.2 6.4
ctext = blue;

run;

Table 3.2throughTable 3.12list the HISTOGRAMoptions by function. For complete
descriptions, see the the section“Dictionary of Options”on page 217.

Parametric Density Estimation Options

Table 3.2lists primary options that display a parametric density estimate on the his-
togram.



214 � Chapter 3. The UNIVARIATE Procedure

Table 3.2. Primary Options for Parametric Fitted Distributions
BETA(beta-options) Fits beta distribution with threshold

parameterθ, scale parameterσ, and
shape parametersα andβ

EXPONENTIAL(exponential-options) Fits exponential distribution with
threshold parameterθ and scale pa-
rameterσ

GAMMA( gamma-options) Fits gamma distribution with thresh-
old parameterθ, scale parameterσ,
and shape parameterα

LOGNORMAL(lognormal-options) Fits lognormal distribution with
threshold parameterθ, scale pa-
rameter ζ, and shape parameter
σ

NORMAL(normal-options) Fits normal distribution with meanµ
and standard deviationσ

WEIBULL(Weibull-options) Fits Weibull distribution with thresh-
old parameterθ, scale parameterσ,
and shape parameterc

Table 3.3throughTable 3.9list secondary options that specify parameters for fitted
parametric distributions and that control the display of fitted curves. Specify these
secondary options in parentheses after theprimary distribution option. For example,
you can fit a normal curve by specifying the NORMAL option as follows:

proc univariate;
histogram / normal(color=red mu=10 sigma=0.5);

run;

The COLOR=normal-option draws the curve in red, and the MU= and SIGMA=
normal-options specify the parametersµ = 10 andσ = 0.5 for the curve. Note
that the sample mean and sample standard deviation are used to estimateµ andσ,
respectively, when the MU= and SIGMA=normal-options are not specified.

Table 3.3. Secondary Options Used with All Parametric Distribution Options
COLOR=color Specifies color of density curve

FILL Fills area under density curve

L=linetype Specifies line type of curve

MIDPERCENTS Prints table of midpoints of histogram intervals

NOPRINT Suppresses tables summarizing curve

PERCENTS=value-list Lists percents for which quantiles calculated from data and
quantiles estimated from curve are tabulated

W=n Specifies width of density curve



HISTOGRAM Statement � 215

Table 3.4. Secondary Beta-Options
ALPHA=value Specifies first shape parameterα for beta curve

BETA=value Specifies second shape parameterβ for beta curve

SIGMA=value | EST Specifies scale parameterσ for beta curve

THETA=value | EST Specifies lower threshold parameterθ for beta curve

Table 3.5. Secondary Exponential-Options
SIGMA=value Specifies scale parameterσ for exponential curve

THETA=value | EST Specifies threshold parameterθ for exponential curve

Table 3.6. Secondary Gamma-Options
ALPHA=value Specifies shape parameterα for gamma curve

SIGMA=value Specifies scale parameterσ for gamma curve

THETA=value | EST Specifies threshold parameterθ for gamma curve

Table 3.7. Secondary Lognormal-Options
SIGMA=value Specifies shape parameterσ for lognormal curve

THETA=value | EST Specifies threshold parameterθ for lognormal curve

ZETA=value Specifies scale parameterζ for lognormal curve

Table 3.8. Secondary Normal-Options
MU=value Specifies meanµ for normal curve

SIGMA=value Specifies standard deviationσ for normal curve

Table 3.9. Secondary Weibull-Options
C=value Specifies shape parameterc for Weibull curve

SIGMA=value Specifies scale parameterσ for Weibull curve

THETA=value | EST Specifies threshold parameterθ for Weibull curve

Nonparametric Density Estimation Options

Use the option KERNEL(kernel-options) to compute kernel density estimates.
Specify the followingsecondary options in parentheses after the KERNEL option
to control features of density estimates requested with the KERNEL option.

Table 3.10. Kernel-Options
C=value-list | MISE Specifies standardized bandwidth parameterc

COLOR=color Specifies color of the kernel density curve

FILL Fills area under kernel density curve

K=NORMAL |
QUADRATIC |
TRIANGULAR

Specifies type of kernel function

L=linetype Specifies line type used for kernel density curve

LOWER= Specifies lower bound for kernel density curve

UPPER= Specifies upper bound for kernel density curve

W=n Specifies line width for kernel density curve



216 � Chapter 3. The UNIVARIATE Procedure

General Options

Table 3.11summarizesoptions for enhancing histograms, andTable 3.12summarizes
options for requesting output data sets.

Table 3.11. General Graphics Options

Option Description
ANNOKEY Applies annotation requested in ANNOTATE= data set to key cell only
ANNOTATE= Specifies annotate data set
BARWIDTH= Specifies width for the bars
CAXIS= Specifies color for axis
CBARLINE= Specifies color for outlines of histogram bars
CFILL= Specifies color for filling under curve
CFRAME= Specifies color for frame
CFRAMESIDE= Specifies color for filling frame for row labels
CFRAMETOP= Specifies color for filling frame for column labels
CGRID= Specifies color for grid lines
CHREF= Specifies color for HREF= lines
CPROP= Specifies color for proportion of frequency bar
CTEXT= Specifies color for text
CTEXTSIDE= Specifies color for row labels of comparative histograms
CTEXTTOP= Specifies color for column labels of comparative histograms
CVREF= Specifies color for VREF= lines
DESCRIPTION= Specifies description for plot in graphics catalog
ENDPOINTS= Lists endpoints for histogram intervals
FONT= Specifies software font for text
FORCEHIST Forces creation of histogram
GRID Creates a grid
FRONTREF Draws reference lines in front of histogram bars
HEIGHT= Specifies height of text used outside framed areas
HMINOR= Specifies number of horizontal minor tick marks
HOFFSET= Specifies offset for horizontal axis
HREF= Specifies reference lines perpendicular to the horizontal axis
HREFLABELS= Specifies labels for HREF= lines
HREFLABPOS= Specifies vertical position of labels for HREF= lines
INFONT= Specifies software font for text inside framed areas
INHEIGHT= Specifies height of text inside framed areas
INTERTILE= Specifies distance between tiles
LGRID= Specifies a line type for grid lines
LHREF= Specifies line style for HREF= lines
LVREF= Specifies line style for VREF= lines
MAXNBIN= Specifies maximum number of bins to display
MAXSIGMAS= Limits the number of bins that display to within a specified number of

standard deviations above and below mean of data in key cell
MIDPOINTS= Lists midpoints for histogram intervals
NAME= Specifies name for plot in graphics catalog
NCOLS= Specifies number of columns in comparative histogram
NOBARS Suppresses histogram bars
NOFRAME Suppresses frame around plotting area



HISTOGRAM Statement � 217

Table 3.11. (continued)

Option Description
NOHLABEL Suppresses label for horizontal axis
NOPLOT Suppresses plot
NOVLABEL Suppresses label for vertical axis
NOVTICK Suppresses tick marks and tick mark labels for vertical axis
NROWS= Specifies number of rows in comparative histogram
PFILL= Specifies pattern for filling under curve
RTINCLUDE Includes right endpoint in interval
TURNVLABELS Turn and vertically string out characters in labels for vertical axis
VAXIS= Specifies AXIS statement or values for vertical axis
VAXISLABEL= Specifies label for vertical axis
VMINOR= Specifies number of vertical minor tick marks
VOFFSET= Specifies length of offset at upper end of vertical axis
VREF= Specifies reference lines perpendicular to the vertical axis
VREFLABELS= Specifies labels for VREF= lines
VREFLABPOS= Specifies horizontal position of labels for VREF= lines
VSCALE= Specifies scale for vertical axis
WAXIS= Specifies line thickness for axes and frame
WBARLINE= Specifies line thickness for bar outlines
WGRID= Specifies line thickness for grid

Table 3.12. Options for Requesting Output Data Sets

Option Description
MIDPERCENTS Creates table of histogram intervals
OUTHISTOGRAM= Specifies information on histogram intervals

Dictionary of Options

The following entries provide detailed descriptions ofoptions in the HISTOGRAM
statement.

ALPHA= value
specifies the shape parameterα for fitted curves requested with the BETA and
GAMMA options. Enclose the ALPHA= option in parentheses after the BETA or
GAMMA options. By default, the procedure calculates a maximum likelihood esti-
mate forα. You can specify A= as an alias for ALPHA= if you use it as abeta-option.
You can specify SHAPE= as an alias for ALPHA= if you use it as agamma-option.

ANNOKEY
applies the annotation requested with the ANNOTATE= option to the key cell only.
By default, the procedure applies annotation to all of the cells. This option is not
available unless you use the CLASS statement. You can use the KEYLEVEL= option
in the CLASS statement to specify the key cell.



218 � Chapter 3. The UNIVARIATE Procedure

ANNOTATE=SAS-data-set
ANNO=SAS-data-set

specifies an input data set containing annotate variables as described inSAS/GRAPH
Software: Reference. The ANNOTATE= data set you specify in the HISTOGRAM
statement is used for all plots created by the statement. You can also specify an
ANNOTATE= data set in the PROC UNIVARIATE statement to enhance all plots
created by the procedure.

BARWIDTH=value
specifies the width of the histogram bars in screen percent units.

BETA <(beta-options)>
displays a fitted beta density curve on the histogram. The BETA option can occur
only once in a HISTOGRAM statement. The beta distribution is bounded below by
the parameterθ and above by the valueθ + σ. Use the THETA= and SIGMA=beta-
options to specify these parameters. By default, THETA=0 and SIGMA=1. You can
specify THETA=EST and SIGMA=EST to request maximum likelihood estimates
for θ andσ. SeeExample 3.21.

Note: Three- and four-parameter maximum likelihood estimation may not always
converge. The beta distribution has two shape parameters,α andβ. If these pa-
rameters are known, you can specify their values with the ALPHA= and BETA=
beta-options. By default, the procedure computes maximum likelihood estimates for
α andβ. Table 3.3(page 214) andTable 3.4(page 215) list options you can specify
with the BETA option.

BETA=value
B=value

specifies the second shape parameterβ for beta density curves requested with the
BETA option. Enclose the BETA= option in parentheses after the BETA option. By
default, the procedure calculates a maximum likelihood estimate forβ.

C=value
specifies the shape parameterc for Weibull density curves requested with the
WEIBULL option. Enclose the C=Weibull-option in parentheses after the WEIBULL
option. If you do not specify a value forc, the procedure calculates a maximum like-
lihood estimate. You can specify the SHAPE=Weibull-option as an alias for the C=
Weibull-option.

C=value-list | MISE
specifies the standardized bandwidth parameterc for kernel density estimates re-
quested with the KERNEL option. Enclose the C=kernel-option in parentheses after
the KERNEL option. You can specify up to five values to request multiple estimates.
You can also specify the C=MISE option, which produces the estimate with a band-
width that minimizes the approximate mean integrated square error (MISE).

You can also use the C=kernel-option with the K=kernel-option, which specifies the
kernel function, to compute multiple estimates. If you specify more kernel functions
than bandwidths, the last bandwidth in the list is repeated for the remaining estimates.
Likewise, if you specify more bandwidths than kernel functions, the last kernel func-



HISTOGRAM Statement � 219

tion is repeated for the remaining estimates. If you do not specify a value forc, the
bandwidth that minimizes the approximate MISE is used for all the estimates.

CAXIS=color
CAXES=color
CA=color

specifies the color for the axes and tick marks. This option overrides any COLOR=
specifications in an AXIS statement. The default value is the first color in the device
color list.

CBARLINE= color
specifies the color for the outline of the histogram bars. This option overrides the C=
option in the SYMBOL1 statement. The default value is the first color in the device
color list.

CFILL=color
specifies the color to fill the bars of the histogram (or the area under a fitted density
curve if you also specify the FILL option). See the entries for the FILL and PFILL=
options for additional details. Refer toSAS/GRAPH Software: Referencefor a list of
colors. By default, bars and curve areas are not filled.

CFRAME=color
specifies the color for the area that is enclosed by the axes and frame. The area is not
filled by default.

CFRAMESIDE=color
specifies the color to fill the frame area for the row labels that display along the left
side of the comparative histogram. This color also fills the frame area for the label
of the corresponding class variable (if you associate a label with the variable). By
default, these areas are not filled. This option is not available unless you use the
CLASS statement.

CFRAMETOP=color
specifies the color to fill the frame area for the column labels that display across the
top of the comparative histogram. This color also fills the frame area for the label
of the corresponding class variable (if you associate a label with the variable). By
default, these areas are not filled. This option is not available unless you use the
CLASS statement.

CGRID=color
specifies the color for grid lines when a grid displays on the histogram. The default
color is the first color in the device color list. This option also produces a grid.

CHREF=color
CH=color

specifies the color for horizontal axis reference lines requested by the HREF= option.
The default is the first color in the device color list.

COLOR=color
specifies the color of the density curve. Enclose the COLOR= option in parentheses
after the distribution option or the KERNEL option. If you use the COLOR= option
with the KERNEL option, you can specify a list of up to five colors in parentheses



220 � Chapter 3. The UNIVARIATE Procedure

for multiple kernel density estimates. If there are more estimates than colors, the last
color specified is used for the remaining estimates.

CPROP=color | EMPTY
specifies the color for a horizontal bar whose length (relative to the width of the tile)
indicates the proportion of the total frequency that is represented by the corresponding
cell in a comparative histogram. By default, no bars are displayed. This option is not
available unless you use the CLASS statement. You can specify the keyword EMPTY
to display empty bars. SeeExample 3.20.

CTEXT=color
CT=color

specifies the color for tick mark values and axis labels. The default is the color
specified for the CTEXT= option in the GOPTIONS statement. In the absence of a
GOPTIONS statement, the default color is the first color in the device color list.

CTEXTSIDE=color
specifies the color for the row labels that display along the left side of the comparative
histogram. By default, the color specified by the CTEXT= option is used. If you omit
the CTEXT= option, the color specified in the GOPTIONS statement is used. If you
omit the GOPTIONS statement, the the first color in the device color list is used.
This option is not available unless you use the CLASS statement. You can specify
the CFRAMESIDE= option to change the background color for the row labels.

CTEXTTOP=color
specifies the color for the column labels that display along the left side of the com-
parative histogram. By default, the color specified by the CTEXT= option is used.
If you omit the CTEXT= option, the color specified in the GOPTIONS statement is
used. If you omit the GOPTIONS statement, the the first color in the device color list
is used. This option is not available unless you specify the CLASS statement. You
can use the CFRAMETOP= option to change the background color for the column
labels.

CVREF=color
CV=color

specifies the color for lines requested with the VREF= option. The default is the first
color in the device color list.

DESCRIPTION=’string’
DES=’string’

specifies a description, up to 40 characters long, that appears in the PROC GREPLAY
master menu. The default value is the variable name.

ENDPOINTS <=values | KEY | UNIFORM>
uses the endpoints as the tick mark values for the horizontal axis and determines how
to compute the bin width of the histogram bars, wherevalues specifies values for both
the left and right endpoint of each histogram interval. The width of the histogram bars
is the difference between consecutive endpoints. The procedure uses the same values
for all variables.

The range of endpoints must cover the range of the data. For example, if you specify



HISTOGRAM Statement � 221

endpoints=2 to 10 by 2

then all of the observations must fall in the intervals [2,4) [4,6) [6,8) [8,10]. You also
must use evenly spaced endpoints which you list in increasing order.

KEY determines the endpoints for the data in the key cell. The initial
number of endpoints is based on the number of observations in the
key cell using the method of Terrell and Scott (1985). The proce-
dure extends the endpoint list for the key cell in either direction as
necessary until it spans the data in the remaining cells.

UNIFORM determines the endpoints by using all the observations as if there
were no cells. In other words, the number of endpoints is based
on the total sample size by using the method of Terrell and Scott
(1985).

Neither KEY nor UNIFORM apply unless you use the CLASS statement.

If you omit ENDPOINTS, the procedure uses the midpoints. If you specify
ENDPOINTS, the procedure computes the endpoints by using an algorithm (Terrell
and Scott 1985) that is primarily applicable to continuous data that are approximately
normally distributed.

If you specify both MIDPOINTS= and ENDPOINTS, the procedure issues a warning
message and uses the endpoints.

If you specify RTINCLUDE, the procedure includes the right endpoint of each his-
togram interval in that interval instead of including the left endpoint.

If you use a CLASS statement and specify ENDPOINTS, the procedure uses
ENDPOINTS=KEY as the default. However if the key cell is empty, then the proce-
dure uses ENDPOINTS=UNIFORM.

EXPONENTIAL <(exponential-options)>
EXP <(exponential-options)>

displays a fitted exponential density curve on the histogram. The EXPONENTIAL
option can occur only once in a HISTOGRAM statement. The parameterθ must be
less than or equal to the minimum data value. Use the THETA=exponential-option
to specifyθ. By default, THETA=0. You can specify THETA=EST to request the
maximum likelihood estimate forθ. Use the SIGMA=exponential-option to spec-
ify σ. By default, the procedure computes a maximum likelihood estimate forσ.
Table 3.3(page 214) andTable 3.5(page 215) list options you can specify with the
EXPONENTIAL option.

FILL
fills areas under the fitted density curve or the kernel density estimate with colors
and patterns. The FILL option can occur with only one fitted curve. Enclose the
FILL option in parentheses after a density curve option or the KERNEL option. The
CFILL= and PFILL= options specify the color and pattern for the area under the
curve. For a list of available colors and patterns, seeSAS/GRAPH Reference.



222 � Chapter 3. The UNIVARIATE Procedure

FONT=font
specifies a software font for reference line and axis labels. You can also specify fonts
for axis labels in an AXIS statement. The FONT= font takes precedence over the
FTEXT= font specified in the GOPTIONS statement. Hardware characters are used
by default.

FORCEHIST
forces the creation of a histogram if there is only one unique observation. By default,
a histogram is not created if the standard deviation of the data is zero.

FRONTREF
draws reference lines requested with the HREF= and VREF= options in front of the
histogram bars. By default, reference lines are drawn behind the histogram bars and
can be obscured by them.

GAMMA <(gamma-options)>
displays a fitted gamma density curve on the histogram. The GAMMA option can
occur only once in a HISTOGRAM statement. The parameterθ must be less than
the minimum data value. Use the THETA=gamma-option to specifyθ. By de-
fault, THETA=0. You can specify THETA=EST to request the maximum likelihood
estimate forθ. Use the ALPHA= and the SIGMA=gamma-options to specify the
shape parameterα and the scale parameterσ. By default, PROC UNIVARIATE
computes maximum likelihood estimates forα andσ. The procedure calculates the
maximum likelihood estimate ofα iteratively using the Newton-Raphson approxima-
tion. Table 3.3(page 214) andTable 3.6(page 215) list options you can specify with
the GAMMA option. SeeExample 3.22.

GRID
displays a grid on the histogram. Grid lines are horizontal lines that are positioned at
major tick marks on the vertical axis.

HEIGHT=value
specifies the height, in percentage screen units, of text for axis labels, tick mark
labels, and legends. This option takes precedence over the HTEXT= option in the
GOPTIONS statement.

HMINOR=n
HM=n

specifies the number of minor tick marks between each major tick mark on the hori-
zontal axis. Minor tick marks are not labeled. By default, HMINOR=0.

HOFFSET=value
specifies the offset, in percentage screen units, at both ends of the horizontal axis.
You can use HOFFSET=0 to eliminate the default offset.

HREF=values
draws reference lines that are perpendicular to the horizontal axis at the values
that you specify. If a reference line is almost completely obscured, then use the
FRONTREF option to draw the reference lines in front of the histogram bars. Also
see the CHREF=, HREFCHAR=, and LHREF= options.



HISTOGRAM Statement � 223

HREFLABELS=’ label1’ . . . ’ labeln’
HREFLABEL=’ label1’ . . . ’ labeln’
HREFLAB=’ label1’ . . . ’ labeln’

specifies labels for the lines requested by the HREF= option. The number of labels
must equal the number of lines. Enclose each label in quotes. Labels can have up to
16 characters.

HREFLABPOS=1 | 2 | 3
specifies the vertical position of HREFLABELS= labels. If you specify
HREFLABPOS=1, the labels are positioned along the top of the histogram. If
you specify HREFLABPOS=2, the labels are staggered from top to bottom of the
histogram. If you specify HREFLABPOS=3, the labels are positioned along the
bottom of the histogram. By default, HREFLABPOS=1.

INFONT=font
specifies a software font to use for text inside the framed areas of the histogram.
The INFONT= option takes precedence over the FTEXT= option in the GOPTIONS
statement. For a list of fonts, seeSAS/GRAPH Reference.

INHEIGHT=value
specifies the height, in percentage screen units, of text used inside the framed areas
of the histogram. By default, the height specified by the HEIGHT= option is used.
If you do not specify the HEIGHT= option, the height specified with the HTEXT=
option in the GOPTIONS statement is used.

INTERTILE=value
specifies the distance, in horizontal percentage screen units, between the framed ar-
eas, which are calledtiles. By default, INTERTILE=0.75 percentage screen units.
This option is not available unless you use the CLASS statement. You can specify
INTERTILE=0 to create contiguous tiles.

K=NORMAL | QUADRATIC | TRIANGULAR
specifies the kernel function (normal, quadratic, or triangular) used to compute a ker-
nel density estimate. You can specify up to five values to request multiple estimates.
You must enclose this option in parentheses after the KERNEL option. You can also
use the K=kernel-option with the C= kernel-option, which specifies standardized
bandwidths. If you specify more kernel functions than bandwidths, the procedure
repeats the last bandwidth in the list for the remaining estimates. Likewise, if you
specify more bandwidths than kernel functions, the procedure repeats the last kernel
function for the remaining estimates. By default, K=NORMAL.

KERNEL<(kernel-options)>
superimposes up to five kernel density estimates on the histogram. By default, the
procedure uses the AMISE method to compute kernel density estimates. To request
multiple kernel density estimates on the same histogram, specify a list of values for
either the C=kernel-option or K= kernel-option. Table 3.10(page 215) lists options
you can specify with the KERNEL option. SeeExample 3.23.



224 � Chapter 3. The UNIVARIATE Procedure

L=linetype
specifies the line type used for fitted density curves. Enclose the L= option in paren-
theses after the distribution option or the KERNEL option. If you use the L= option
with the KERNEL option, you can specify a list of up to five line types for multi-
ple kernel density estimates. See the entries for the C= and K= options for details
on specifying multiple kernel density estimates. By default, L=1, which produces a
solid line.

LGRID=linetype
specifies the line type for the grid when a grid displays on the histogram. By default,
LGRID=1, which produces a solid line. This option also creates a grid.

LHREF=linetype
LH=linetype

specifies the line type for the reference lines that you request with the HREF= option.
By default, LHREF=2, which produces a dashed line.

LOGNORMAL<(lognormal-options)>
displays a fitted lognormal density curve on the histogram. The LOGNORMAL op-
tion can occur only once in a HISTOGRAM statement. The parameterθ must be less
than the minimum data value. Use the THETA=lognormal-option to specifyθ. By
default, THETA=0. You can specify THETA=EST to request the maximum likeli-
hood estimate forθ. Use the SIGMA= and ZETA=lognormal-options to specifyσ
andζ. By default, the procedure computes maximum likelihood estimates forσ and
ζ. Table 3.3(page 214) andTable 3.7(page 215) list options you can specify with the
LOGNORMAL option. SeeExample 3.22andExample 3.24.

LOWER=value-list
specifies lower bounds for kernel density estimates requested with the KERNEL op-
tion. Enclose the LOWER= option in parentheses after the KERNEL option. You can
specify up to five lower bounds for multiple kernel density estimates. If you specify
more kernel estimates than lower bounds, the last lower bound is repeated for the
remaining estimates. The default is a missing value, indicating no lower bounds for
fitted kernel density curves.

LVREF=linetype
LV=linetype

specifies the line type for lines requested with the VREF= option. By default,
LVREF=2, which produces a dashed line.

MAXNBIN=n
specifies the maximum number of bins displayed in the comparative histogram. This
option is useful when the scales or ranges of the data distributions differ greatly from
cell to cell. By default, the bin size and midpoints are determined for the key cell, and
then the midpoint list is extended to accommodate the data ranges for the remaining
cells. However, if the cell scales differ considerably, the resulting number of bins
may be so great that each cell histogram is scaled into a narrow region. By using
MAXNBIN= to limit the number of bins, you can narrow the window about the data
distribution in the key cell. This option is not available unless you specify the CLASS
statement. The MAXNBIN= option is an alternative to the MAXSIGMAS= option.



HISTOGRAM Statement � 225

MAXSIGMAS=value
limits the number of bins displayed in the comparative histogram to a range ofvalue
standard deviations (of the data in the key cell) above and below the mean of the data
in the key cell. This option is useful when the scales or ranges of the data distributions
differ greatly from cell to cell. By default, the bin size and midpoints are determined
for the key cell, and then the midpoint list is extended to accommodate the data ranges
for the remaining cells. However, if the cell scales differ considerably, the resulting
number of bins may be so great that each cell histogram is scaled into a narrow region.
By using MAXSIGMAS= to limit the number of bins, you can narrow the window
that surrounds the data distribution in the key cell. This option is not available unless
you specify the CLASS statement.

MIDPERCENTS
requests a table listing the midpoints and percentage of observations in each his-
togram interval. If you specify MIDPERCENTS in parentheses after a density es-
timate option, the procedure displays a table that lists the midpoints, the observed
percentage of observations, and the estimated percentage of the population in each
interval (estimated from the fitted distribution). SeeExample 3.18.

MIDPOINTS=values | KEY | UNIFORM
specifies how to determine the midpoints for the histogram intervals, wherevalues
determines the width of the histogram bars as the difference between consecutive
midpoints. The procedure uses the same values for all variables.

The range of midpoints, extended at each end by half of the bar width, must cover the
range of the data. For example, if you specify

midpoints=2 to 10 by 0.5

then all of the observations should fall between 1.75 and 10.25. You must use evenly
spaced midpoints listed in increasing order.

KEY determines the midpoints for the data in the key cell. The initial
number of midpoints is based on the number of observations in the
key cell that use the method of Terrell and Scott (1985). The pro-
cedure extends the midpoint list for the key cell in either direction
as necessary until it spans the data in the remaining cells.

UNIFORM determines the midpoints by using all the observations as if there
were no cells. In other words, the number of midpoints is based
on the total sample size by using the method of Terrell and Scott
(1985).

Neither KEY nor UNIFORM apply unless you use the CLASS statement. By default,
if you use a CLASS statement, MIDPOINTS=KEY; however, if the key cell is empty
then MIDPOINTS=UNIFORM. Otherwise, the procedure computes the midpoints by
using an algorithm (Terrell and Scott 1985) that is primarily applicable to continuous
data that are approximately normally distributed.



226 � Chapter 3. The UNIVARIATE Procedure

MU=value
specifies the parameterµ for normal density curves requested with the NORMAL
option. Enclose the MU= option in parentheses after the NORMAL option. By
default, the procedure uses the sample mean forµ.

NAME=’string’
specifies a name for the plot, up to eight characters long, that appears in the PROC
GREPLAY master menu. The default value is ’UNIVAR’.

NCOLS=n
NCOL=n

specifies the number of columns in a comparative histogram. By default, NCOLS=1
if you specify only one class variable, and NCOLS=2 if you specify two class vari-
ables. This option is not available unless you use the CLASS statement. If you specify
two class variables, you can use the NCOLS= option with the NROWS= option.

NOBARS
suppresses drawing of histogram bars, which is useful for viewing fitted curves only.

NOFRAME
suppresses the frame around the subplot area.

NOHLABEL
suppresses the label for the horizontal axis. You can use this option to reduce clutter.

NOPLOT
NOCHART

suppresses the creation of a plot. Use this option when you only want to tabulate
summary statistics for a fitted density or create an OUTHISTOGRAM= data set.

NOPRINT
suppresses tables summarizing the fitted curve. Enclose the NOPRINT option in
parentheses following the distribution option.

NORMAL<(normal-options)>
displays a fitted normal density curve on the histogram. The NORMAL option can
occur only once in a HISTOGRAM statement. Use the MU= and SIGMA=normal-
options to specifyµ andσ. By default, the procedure uses the sample mean and
sample standard deviation forµ andσ. Table 3.3(page 214) andTable 3.8(page 215)
list options you can specify with the NORMAL option. SeeExample 3.19.

NOVLABEL
suppresses the label for the vertical axis. You can use this option to reduce clutter.

NOVTICK
suppresses the tick marks and tick mark labels for the vertical axis. This option also
suppresses the label for the vertical axis.

NROWS=n
NROW=n

specifies the number of rows in a comparative histogram. By default, NROWS=2.
This option is not available unless you use the CLASS statement. If you specify two
class variables, you can use the NCOLS= option with the NROWS= option.



HISTOGRAM Statement � 227

OUTHISTOGRAM=SAS-data-set
OUTHIST=SAS-data-set

creates a SAS data set that contains information about histogram intervals.
Specifically, the data set contains the midpoints of the histogram intervals, the
observed percentage of observations in each interval, and the estimated percentage
of observations in each interval (estimated from each of the specified fitted curves).

PERCENTS=values
PERCENT=values

specifies a list of percents for which quantiles calculated from the data and quantiles
estimated from the fitted curve are tabulated. The percents must be between 0 and
100. Enclose the PERCENTS= option in parentheses after the curve option. The
default percents are 1, 5, 10, 25, 50, 75, 90, 95, and 99.

PFILL=pattern
specifies a pattern used to fill the bars of the histograms (or the areas under a fitted
curve if you also specify the FILL option). See the entries for the CFILL= and FILL
options for additional details. Refer toSAS/GRAPH Software: Referencefor a list of
pattern values. By default, the bars and curve areas are not filled.

RTINCLUDE
includes the right endpoint of each histogram interval in that interval. By default, the
left endpoint is included in the histogram interval.

SCALE=value
is an alias for the SIGMA= option for curves requested by the BETA,
EXPONENTIAL, GAMMA, and WEIBULL options and an alias for the ZETA=
option for curves requested by the LOGNORMAL option.

SHAPE=value
is an alias for the ALPHA= option for curves requested with the GAMMA option, an
alias for the SIGMA= option for curves requested with the LOGNORMAL option,
and an alias for the C= option for curves requested with the WEIBULL option.

SIGMA=value | EST
specifies the parameterσ for the fitted density curve when you request the BETA,
EXPONENTIAL, GAMMA, LOGNORMAL, NORMAL, and WEIBULL options.

SeeTable 3.13for a summary of how to use the SIGMA= option. You must enclose
this option in parentheses after the density curve option. As abeta-option, you can
specify SIGMA=EST to request a maximum likelihood estimate forσ.

Table 3.13. Uses of the SIGMA= Option
Distribution Keyword SIGMA= Specifies Default Value Alias
BETA Scale parameterσ 1 SCALE=
EXPONENTIAL Scale parameterσ Maximum likelihood estimate SCALE=
GAMMA Scale parameterσ Maximum likelihood estimate SCALE=
WEIBULL Scale parameterσ Maximum likelihood estimate SCALE=
LOGNORMAL Shape parameterσ Maximum likelihood estimate SCALE=
NORMAL Scale parameterσ Standard deviation SHAPE=
WEIBULL Scale parameterσ Maximum likelihood estimate SCALE=



228 � Chapter 3. The UNIVARIATE Procedure

THETA=value | EST
specifies the lower threshold parameterθ for curves requested with the BETA,
EXPONENTIAL, GAMMA, LOGNORMAL, and WEIBULL options. Enclose the
THETA= option in parentheses after the curve option. By default, THETA=0. If you
specify THETA=EST, an estimate is computed forθ.

THRESHOLD= value
is an alias for the THETA= option. See the preceding entry for the THETA= option.

TURNVLABELS
TURNVLABEL

turns the characters in the vertical axis labels so that they display vertically. This
happens by default when you use a hardware font.

UPPER=value-list
specifies upper bounds for kernel density estimates requested with the KERNEL op-
tion. Enclose the UPPER= option in parentheses after the KERNEL option. You can
specify up to five upper bounds for multiple kernel density estimates. If you specify
more kernel estimates than upper bounds, the last upper bound is repeated for the
remaining estimates. The default is a missing value, indicating no upper bounds for
fitted kernel density curves.

VAXIS=name|value-list
specifies the name of an AXIS statement describing the vertical axis. Alternatively,
you can specify avalue-list for the vertical axis.

VAXISLABEL= ’label’
specifies a label for the vertical axis. Labels can have up to 40 characters.

VMINOR=n
VM=n

specifies the number of minor tick marks between each major tick mark on the vertical
axis. Minor tick marks are not labeled. The default is zero.

VOFFSET=value
specifies the offset, in percentage screen units, at the upper end of the vertical axis.

VREF=value-list
draws reference lines perpendicular to the vertical axis at the values specified. Also
see the CVREF=, LVREF=, and VREFCHAR= options. If a reference line is almost
completely obscured, then use the FRONTREF option to draw the reference lines in
front of the histogram bars.

VREFLABELS=’ label1’. . . ’labeln’
VREFLABEL=’ label1’. . . ’labeln’
VREFLAB=’ label1’. . . ’labeln’

specifies labels for the lines requested by the VREF= option. The number of labels
must equal the number of lines. Enclose each label in quotes. Labels can have up to
16 characters.



HISTOGRAM Statement � 229

VREFLABPOS= n
specifies the horizontal position of VREFLABELS= labels. If you specify
VREFLABPOS=1, the labels are positioned at the left of the histogram. If you
specify VREFLABPOS=2, the labels are positioned at the right of the histogram. By
default, VREFLABPOS=1.

VSCALE=COUNT | PERCENT | PROPORTION
specifies the scale of the vertical axis for a histogram. The value COUNT requests
the data be scaled in units of the number of observations per data unit. The value
PERCENT requests the data be scaled in units of percent of observations per data
unit. The value PROPORTION requests the data be scaled in units of proportion of
observations per data unit. The default is PERCENT.

W=n
specifies the width, in pixels, of the fitted density curve or the kernel density estimate
curve. By default, W=1. You must enclose this option in parentheses after the density
curve option or the KERNEL option. As akernel-option, you can specify a list of up
to five W= values.

WAXIS=n
specifies the line thickness, in pixels, for the axes and frame. By default, WAXIS=1.

WBARLINE= n
specifies the width of bar outlines. By default, WBARLINE=1.

WEIBULL<(Weibull-options)>
displays a fitted Weibull density curve on the histogram. The WEIBULL option can
occur only once in a HISTOGRAM statement. The parameterθ must be less than
the minimum data value. Use the THETA=Weibull-option to specifyθ. By default,
THETA=0. You can specify THETA=EST to request the maximum likelihood esti-
mate forθ. Use the C= and SIGMA=Weibull-options to specify the shape parameter
c and the scale parameterσ. By default, the procedure computes the maximum likeli-
hood estimates forc andσ. Table 3.3(page 214) andTable 3.9(page 215) list option
you can specify with the WEIBULL option. SeeExample 3.22.

PROC UNIVARIATE calculates the maximum likelihood estimate ofa iteratively by
using the Newton-Raphson approximation. See also the C=, SIGMA=, and THETA=
Weibull-options.

WGRID=n
specifies the line thickness for the grid.

ZETA= value
specifies a value for the scale parameterζ for lognormal density curves requested
with the LOGNORMAL option. Enclose the ZETA=lognormal-option in parentheses
after the LOGNORMAL option. By default, the procedure calculates a maximum
likelihood estimate forζ. You can specify the SCALE= option as an alias for the
ZETA= option.



230 � Chapter 3. The UNIVARIATE Procedure

ID Statement
ID variables ;

The ID statement specifies one or more variables to include in the table of extreme
observations. The corresponding values of the ID variables appear beside then
largest andn smallest observations, wheren is the value of NEXTROBS= option.
SeeExample 3.3.

INSET Statement
INSET keyword-list < / options > ;

The INSET statement places a box or table of summary statistics, called aninset,
directly in a high-resolution graph created with the HISTOGRAM, PROBPLOT, or
QQPLOT statement.

The INSET statement must follow the HISTOGRAM, PROBPLOT, or QQPLOT
statement that creates the plot that you want to augment. The inset appears in all
the graphs that the preceding plot statement produces.

You can use multiple INSET statements after a plot statement to add multiple insets
to a plot. SeeExample 3.17.

In an INSET statement, you specify one or morekeywords that identify the informa-
tion to display in the inset. The information is displayed in the order that you request
thekeywords. Keywords can be any of the following:

• statistical keywords
• primary keywords
• secondary keywords

The availablestatistical keywords are:

Table 3.14. Descriptive Statistic Keywords
CSS Corrected sum of squares
CV Coefficient of variation
KURTOSIS Kurtosis
MAX Largest value
MEAN Sample mean
MIN Smallest value
MODE Most frequent value
N Sample size
NMISS Number of missing values
NOBS Number of observations
RANGE Range
SKEWNESS Skewness
STD Standard deviation
STDMEAN Standard error of the mean
SUM Sum of the observations
SUMWGT Sum of the weights
USS Uncorrected sum of squares
VAR Variance



INSET Statement � 231

Table 3.15. Percentile Statistic Keywords
P1 1st percentile
P5 5th percentile
P10 10th percentile
Q1 Lower quartile (25th percentile)
MEDIAN Median (50th percentile)
Q3 Upper quartile (75th percentile)
P90 90th percentile
P95 95th percentile
P99 99th percentile
QRANGE Interquartile range (Q3 - Q1)

Table 3.16. Robust Statistics Keywords
GINI Gini’s mean difference
MAD Median absolute difference about the

median
QN Qn, alternative to MAD
SN Sn, alternative to MAD
STD–GINI Gini’s standard deviation
STD–MAD MAD standard deviation
STD–QN Qn standard deviation
STD–QRANGE Interquartile range standard deviation
STD–SN Sn standard deviation

Table 3.17. Hypothesis Testing Keywords
MSIGN Sign statistic
NORMALTEST Test statistic for normality
PNORMAL Probability value for the test of normality
SIGNRANK Signed rank statistic
PROBM Probability of greater absolute value for

the sign statistic
PROBN Probability value for the test of normality
PROBS Probability value for the signed rank test
PROBT Probability value for the Student’st test
T Statistics for Student’st test

A primary keyword enables you to specifysecondary keywords in parentheses imme-
diately after the primary keyword.Primary keywords are BETA, EXPONENTIAL,
GAMMA, LOGNORMAL, NORMAL, WEIBULL, WEIBULL2, KERNEL, and
KERNELn. If you specify aprimary keyword but omit asecondary keyword, the
inset displays a colored line and the distribution name as a key for the density curve.

By default, PROC UNIVARIATE identifies inset statistics with appropriate labels and
prints numeric values using appropriate formats. To customize the label, specify the
keyword followed by an equal sign (=) and the desired label in quotes. To customize
the format, specify a numeric format in parentheses after thekeyword. Labels can
have up to 24 characters.



232 � Chapter 3. The UNIVARIATE Procedure

If you specify both a label and a format for a statistic, the label must appear before
the format. For example,

inset n=’Sample Size’ std=’Std Dev’ (5.2);

requests customized labels for two statistics and displays the standard deviation with
a field width of 5 and two decimal places.

The following tables listprimary keywords:

Table 3.18. Parametric Density Primary Keywords
Keyword Distribution Plot Statement Availability
BETA Beta All plot statements

EXPONENTIAL Exponential All plot statements

GAMMA Gamma All plot statements

LOGNORMAL Lognormal All plot statements

NORMAL Normal All plot statements

WEIBULL Weibull(3-
parameter)

All plot statements

WEIBULL2 Weibull(2-
parameter)

PROBPLOT and QQPLOT

Table 3.19. Kernel Density Estimate Primary Keywords
Keyword Description
KERNEL Displays statistics for all kernel estimates
KERNELn Displays statistics for only thenth kernel density estimate

n = 1, 2, 3, 4,or 5

Table 3.20throughTable 3.28list the secondary keywords available withprimary
keywords in Table 3.18andTable 3.19.

Table 3.20. Secondary Keywords Available with the BETA Keyword
Secondary Keyword Alias Description
ALPHA SHAPE1 First shape parameterα
BETA SHAPE2 Second shape parameterβ
SIGMA SCALE Scale parameterσ
THETA THRESHOLD Lower threshold parameterθ
MEAN Mean of the fitted distribution
STD Standard deviation of the fitted distribution

Table 3.21. Secondary Keywords Available with the EXP Keyword
Secondary Keyword Alias Description
SIGMA SCALE Scale parameterσ
THETA THRESHOLD Threshold parameterθ
MEAN Mean of the fitted distribution
STD Standard deviation of the fitted distribution



INSET Statement � 233

Table 3.22. Secondary Keywords Available with the GAMMA Keyword
Secondary Keyword Alias Description
ALPHA SHAPE Shape parameterα
SIGMA SCALE Scale parameterσ
THETA THRESHOLD Threshold parameterθ
MEAN Mean of the fitted distribution
STD Standard deviation of the fitted distribution

Table 3.23. Secondary Keywords Available with the LOGNORMAL Keyword
Secondary Keyword Alias Description
SIGMA SHAPE Shape parameterσ
THETA THRESHOLD Threshold parameterθ
ZETA SCALE Scale parameterζ
MEAN Mean of the fitted distribution
STD Standard deviation of the fitted distribution

Table 3.24. Secondary Keywords Available with the NORMAL Keyword
Secondary Keyword Alias Description
MU MEAN Mean parameterµ
SIGMA STD Scale parameterσ

Table 3.25. Secondary Keywords Available with the WEIBULL Keyword
Secondary Keyword Alias Description
C SHAPE Shape parameterc
SIGMA SCALE Scale parameterσ
THETA THRESHOLD Threshold parameterθ
MEAN Mean of the fitted distribution
STD Standard deviation of the fitted distribution

Table 3.26. Secondary Keywords Available with the WEIBULL2 Keyword
Secondary Keyword Alias Description
C SHAPE Shape parameterc
SIGMA SCALE Scale parameterσ
THETA THRESHOLD Known lower thresholdθ0
MEAN Mean of the fitted distribution
STD Standard deviation of the fitted distribution

Table 3.27. Secondary Keywords Available with the KERNEL Keyword
Secondary Keyword Description
TYPE Kernel type: normal, quadratic, or triangular
BANDWIDTH Bandwidthλ for the density estimate
BWIDTH Alias for BANDWIDTH
C Standardized bandwidthc for the density estimate:

c = λ
Qn

1
5 wheren = sample size,λ = bandwidth, and

Q = interquartile range
AMISE Approximate mean integrated square error (MISE) for the

kernel density



234 � Chapter 3. The UNIVARIATE Procedure

Table 3.28. Goodness-of-Fit Statistics for Fitted Curves
Secondary Keyword Description
AD Anderson-Darling EDF test statistic
ADPVAL Anderson-Darling EDF testp-value
CVM Cramér-von Mises EDF test statistic
CVMPVAL Cramér-von Mises EDF testp-value
KSD Kolmogorov-Smirnov EDF test statistic
KSDPVAL Kolmogorov-Smirnov EDF testp-value

The inset statistics listed inTable 3.18throughTable 3.28are not available unless
you request a plot statement and options that calculate these statistics. For example,

proc univariate data=score;
histogram final / normal;
inset mean std normal(ad adpval);

run;

The MEAN and STDkeywords display the sample mean and standard deviation of
FINAL. The NORMAL keyword with the secondary keywords AD and ADPVAL
display the Anderson-Darling goodness-of-fit test statistic andp-value. The statis-
tics that are specified with the NORMALkeyword are available only because the
NORMAL option is requested in the HISTOGRAM statement.

The KERNEL or KERNELn keyword is available only if you request a kernel density
estimate in a HISTOGRAM statement. The WEIBULL2keyword is available only
if you request a two-parameter Weibull distribution in the PROBPLOT or QQPLOT
statement.

Summary of Options

The following table lists INSET statementoptions, which are specified after the slash
(/) in the INSET statement. For complete descriptions, see the section“Dictionary of
Options”on page 235.

Table 3.29. INSET Options

CFILL=color | BLANK Specifies color of inset background

CFILLH=color Specifies color of header background

CFRAME=color Specifies color of frame

CHEADER=color Specifies color of header text

CSHADOW=color Specifies color of drop shadow

CTEXT=color Specifies color of inset text

DATA Specifies data units for POSITION=(x, y) coordinates

DATA=SAS-data-set Specifies data set for statistics in the inset table

FONT=font Specifies font of text

FORMAT=format Specifies format of values in inset

HEADER=’quoted string’ Specifies header text

HEIGHT=value Specifies height of inset text

NOFRAME Suppresses frame around inset



INSET Statement � 235

Table 3.29. (continued)

POSITION=position Specifies position of inset

REFPOINT=BR | BL | TR | TL Specifies reference point of inset positioned with
POSITION=(x, y) coordinates

Dictionary of Options

The following entries provide detailed descriptions of options for the INSET state-
ment.

To specify the same format for all the statistics in the INSET statement, use the
FORMAT= option.

To create a completely customized inset, use a DATA= data set. The data set contains
the label and the value that you want to display in the inset.

If you specify multiple kernel density estimates, you can request inset statistics for
all the estimates with the KERNELkeyword. Alternatively, you can display inset
statistics for individual curves with the KERNELn keyword, wheren is the curve
number between 1 and 5.

CFILL=color | BLANK
specifies the color of the background. If you omit the CFILLH= option the header
background is included. By default, the background is empty, which causes items
that overlap the inset (such as curves or histogram bars) to show through the inset.

If you specify a value for CFILL= option, then overlapping items no longer show
through the inset. Use CFILL=BLANK to leave the background uncolored and to
prevent items from showing through the inset.

CFILLH=color
specifies the color of the header background. The default value is the CFILL= color.

CFRAME=color
specifies the color of the frame. The default value is the same color as the axis of the
plot.

CHEADER=color
specifies the color of the header text. The default value is the CTEXT= color.

CSHADOW=color
specifies the color of the drop shadow. By default, if a CSHADOW= option is not
specified, a drop shadow is not displayed.

CTEXT=color
specifies the color of the text. The default value is the same color as the other text on
the plot.

DATA
specifies that data coordinates are to be used in positioning the inset with the
POSITION= option. The DATA option is available only when you specify
POSITION=(x,y). You must place DATA immediately after the coordinates (x,y).



236 � Chapter 3. The UNIVARIATE Procedure

DATA=SAS-data-set
requests that PROC UNIVARIATE display customized statistics from a SAS data set
in the inset table. The data set must contain two variables:

–LABEL– a character variable whose values provide labels for inset entries.

–VALUE– a variable that is either character or numeric and whose values pro-
vide values for inset entries.

The label and value from each observation in the data set occupy one line in the inset.
The position of the DATA= keyword in the keyword list determines the position of its
lines in the inset.

FONT=font
specifies the font of the text. By default, if you locate the inset in the interior of the
plot then the font is SIMPLEX. If you locate the inset in the exterior of the plot then
the font is the same as the other text on the plot.

FORMAT=format
specifies a format for all the values in the inset. If you specify a format for a particular
statistic, then this format overrides FORMAT= format. For more information about
SAS formats, seeSAS Language Reference: Dictionary

HEADER=string
specifies the header text. Thestring cannot exceed 40 characters. By default, no
header line appears in the inset. If all the keywords that you list in the INSET state-
ment are secondary keywords that correspond to a fitted curve on a histogram, PROC
UNIVARIATE displays a default header that indicates the distribution and identifies
the curve.

HEIGHT=value
specifies the height of the text.

NOFRAME
suppresses the frame drawn around the text.

POSITION=position
POS=position

determines the position of the inset. The position is a compass point keyword, a
margin keyword, or a pair of coordinates (x,y). You can specify coordinates in axis
percent units or axis data units. The default value is NW, which positions the inset
in the upper left (northwest) corner of the display. See the section“Positioning the
Inset”on page 285.

REFPOINT=BR | BL | TR | TL
specifies the reference point for an inset that PROC UNIVARIATE positions by a pair
of coordinates with the POSITION= option. The REFPOINT= option specifies which
corner of the inset frame that you want to position at coordinates (x,y). Thekeywords
are BL, BR, TL, and TR, which correspond to bottom left, bottom right, top left, and
top right. The default value is BL. You must use REFPOINT= with POSITION=(x,y)
coordinates.



OUTPUT Statement � 237

OUTPUT Statement

OUTPUT < OUT=SAS-data-set >
< keyword1=names. . .keywordk=names >< percentile-options >;

The OUTPUT statement saves statistics and BY variables in an output data set. When
you use a BY statement, each observation in the OUT= data set corresponds to one
of the BY groups. Otherwise, the OUT= data set contains only one observation.

You can use any number of OUTPUT statements in the UNIVARIATE procedure.
Each OUTPUT statement creates a new data set containing the statistics specified in
that statement. You must use the VAR statement with the OUTPUT statement. The
OUTPUT statement must contain a specification of the formkeyword=names or the
PCTLPTS= and PCTLPRE= specifications. SeeExample 3.7andExample 3.8.

OUT=SAS-data-set
identifies the output data set. IfSAS-data-set does not exist, PROC UNIVARIATE
creates it. If you omit OUT=, the data set is named DATAn, wheren is the smallest
integer that makes the name unique. The defaultSAS-data-set is DATAn.

keyword=name
specifies the statistics to include in the output data set and gives names to the new
variables that contain the statistics. Specify akeyword for each desired statistic, an
equal sign, and thenames of the variables to contain the statistic. In the output
data set, the first variable listed after a keyword in the OUTPUT statement contains
the statistic for the first variable listed in the VAR statement; the second variable
contains the statistic for the second variable in the VAR statement, and so on. If the
list of names following the equal sign is shorter than the list of variables in the VAR
statement, the procedure uses thenames in the order in which the variables are listed
in the VAR statement. The available keywords are listed in the following tables:

Table 3.30. Descriptive Statistic Keywords
CSS Corrected sum of squares
CV Coefficient of variation
KURTOSIS Kurtosis
MAX Largest value
MEAN Sample mean
MIN Smallest value
MODE Most frequent value
N Sample size
NMISS Number of missing values
NOBS Number of observations
RANGE Range
SKEWNESS Skewness
STD Standard deviation
STDMEAN Standard error of the mean
SUM Sum of the observations
SUMWGT Sum of the weights
USS Uncorrected sum of squares
VAR Variance



238 � Chapter 3. The UNIVARIATE Procedure

Table 3.31. Quantile Statistic Keywords
P1 1st percentile
P5 5th percentile
P10 10th percentile
Q1 Lower quartile (25th percentile)
MEDIAN Median (50th percentile)
Q3 Upper quartile (75th percentile)
P90 90th percentile
P95 95th percentile
P99 99th percentile
QRANGE Interquartile range (Q3 - Q1)

Table 3.32. Robust Statistics Keywords
GINI Gini’s mean difference
MAD Median absolute difference about the

median
QN Qn, alternative to MAD
SN Sn, alternative to MAD
STD–GINI Gini’s standard deviation
STD–MAD MAD standard deviation
STD–QN Qn standard deviation
STD–QRANGE Interquartile range standard deviation
STD–SN Sn standard deviation

Table 3.33. Hypothesis Testing Keywords
MSIGN Sign statistic
NORMALTEST Test statistic for normality
SIGNRANK Signed rank statistic
PROBM Probability of a greater absolute value for

the sign statistic
PROBN Probability value for the test of normality
PROBS Probability value for the signed rank test
PROBT Probability value for the Student’st test
T Statistic for the Student’st test

To store the same statistic for several analysis variables, specify a list ofnames. The
order of the names corresponds to the order of the analysis variables in the VAR
statement. PROC UNIVARIATE uses the first name to create a variable that contains
the statistic for the first analysis variable, the next name to create a variable that
contains the statistic for the second analysis variable, and so on. If you do not want
to output statistics for all the analysis variables, specify fewer names than the number
of analysis variables.

The UNIVARIATE procedure automatically computes the 1st, 5th, 10th, 25th, 50th,
75th, 90th, 95th, and 99th percentiles for the data. These can be saved in an output
data set usingkeyword=names specifications. For additional percentiles, you can use
the followingpercentile-options:



OUTPUT Statement � 239

PCTLPTS=percentiles
specifies one or more percentiles that are not automatically computed by the
UNIVARIATE procedure. The PCTLPRE= and PCTLPTS= options must be used
together. You can specify percentiles with the expression start TO stop BY increment
where start is a starting number, stop is an ending number, and increment is a number
to increment by. The PCTLPTS= option generates additional percentiles and outputs
them to a data set; these additional percentiles are not printed.

To compute the 50th, 95th, 97.5th, and 100th percentiles, submit the statement

output pctlpre=P_ pctlpts=50,95 to 100 by 2.5;

You can use PCTLPTS= to output percentiles that are not in the list of quantile statis-
tics. PROC UNIVARIATE computes the requested percentiles based on the method
that you specify with the PCTLDEF= option in the PROC UNIVARIATE statement.
You must use PCTLPRE=, and optionally PCTLNAME=, to specify variable names
for the percentiles. For example, the following statements create an output data set
that is namedPctls that contains the 20th and 40th percentiles of the analysis vari-
ablesPreTest andPostTest:

proc univariate data=Score;
var PreTest PostTest;
output out=Pctls pctlpts=20 40 pctlpre=PreTest_ PostTest_

pctlname=P20 P40;
run;

PROC UNIVARIATE saves the 20th and 40th percentiles for PreTest and PostTest in
the variables PreTest–P20, PostTest–P20, PreTest–P40, and PostTest–P40.

PCTLPRE=prefixes
specifies one or more prefixes to create the variable names for the variables that con-
tain the PCTLPTS= percentiles. To save the same percentiles for more than one
analysis variable, specify a list of prefixes. The order of the prefixes corresponds
to the order of the analysis variables in the VAR statement. The PCTLPRE= and
PCTLPTS= options must be used together.

The procedure generates new variable names using theprefix and the percentile val-
ues. If the specified percentile is an integer, the variable name is simply theprefix
followed by the value. If the specified value is not an integer, an underscore replaces
the decimal point in the variable name, and decimal values are truncated to one dec-
imal place. For example, the following statements create the variables PWID20,
PWID33–3, PWID66–6, and PWID80 for the 20th, 33.33rd, 66.67th, and 80th per-
centiles ofWidth, respectively:

proc univariate noprint;
var Width;
output pctlpts=20 33.33 66.67 80 pctlpre=pwid;

run;



240 � Chapter 3. The UNIVARIATE Procedure

If you request percentiles for more than one variable, you should list prefixes in the
same order in which the variables appear in the VAR statement. If combining the
prefix and percentile value results in a name longer than 32 characters, the prefix is
truncated so that the variable name is 32 characters.

PCTLNAME=suffixes
specifies one or more suffixes to create the names for the variables that contain the
PCTLPTS= percentiles. PROC UNIVARIATE creates a variable name by combin-
ing the PCTLPRE= value and suffix-name. Because the suffix names are associated
with the percentiles that are requested, list the suffix names in the same order as the
PCTLPTS= percentiles. If you specifyn suffixes with the PCTLNAME= option and
m percentile values with the PCTLPTS= option, wherem > n, thesuffixes are used
to name the firstn percentiles, and the default names are used for the remainingm−n
percentiles. For example, consider the following statements:

proc univariate;
var Length Width Height;
output pctlpts = 20 40

pctlpre = pl pw ph
pctlname = twenty;

run;

The value TWENTY in the PCTLNAME= option is used for only the first percentile
in the PCTLPTS= list. This suffix is appended to the values in the PCTLPRE= option
to generate the new variable names PLTWENTY, PWTWENTY, and PHTWENTY,
which contain the 20th percentiles forLength, Width, and Height, respectively.
Since a second PCTLNAME= suffix is not specified, variable names for the 40th
percentiles forLength, Width, andHeight are generated using the prefixes and per-
centile values. Thus, the output data set contains the variables PLTWENTY, PL40,
PWTWENTY, PW40, PHTWENTY, and PH40.

You must specify PCTLPRE= to supply prefix names for the variables that contain
the PCTLPTS= percentiles.

If the number of PCTLNAME= values is fewer than the number of percentiles, or
if you omit PCTLNAME=, PROC UNIVARIATE uses the percentile as the suffix to
create the name of the variable that contains the percentile. For an integer percentile,
PROC UNIVARIATE uses the percentile. Otherwise, PROC UNIVARIATE truncates
decimal values of percentiles to two decimal places and replaces the decimal point
with an underscore.

If either the prefix and suffix name combination or the prefix and percentile name
combination is longer than 32 characters, PROC UNIVARIATE truncates the prefix
name so that the variable name is 32 characters.



PROBPLOT Statement � 241

PROBPLOT Statement

PROBPLOT < variables >< / options >;

The PROBPLOT statement creates a probability plot, which compares ordered vari-
able values with the percentiles of a specified theoretical distribution. If the data
distribution matches the theoretical distribution, the points on the plot form a lin-
ear pattern. Consequently, you can use a probability plot to determine how well a
theoretical distribution models a set of measurements.

Probability plots are similar to Q-Q plots, which you can create with theQQPLOT
statement. Probability plots are preferable for graphical estimation of percentiles,
whereas Q-Q plots are preferable for graphical estimation of distribution parameters.

You can use any number of PROBPLOT statements in theUNIVARIATE procedure.
The components of the PROBPLOT statement are described as follows.

variables
are the variables for which to create probability plots. If you specify a VAR statement,
thevariables must also be listed in the VAR statement. Otherwise, thevariables can
be any numeric variables in the input data set. If you do not specify a list ofvariables,
then by default the procedure creates a probability plot for each variable listed in the
VAR statement, or for each numeric variable in the DATA= data set if you do not
specify a VAR statement. For example, each of the following PROBPLOT statements
produces two probability plots, one forLength and one forWidth:

proc univariate data=Measures;
var Length Width;
probplot;

proc univariate data=Measures;
probplot Length Width;

run;

options
specify the theoretical distribution for the plot or add features to the plot. If you
specify more than one variable, theoptions apply equally to each variable. Specify
all options after the slash (/) in the PROBPLOT statement. You can specify only
oneoption naming a distribution in each PROBPLOT statement, but you can specify
any number of otheroptions. The distributions available are the beta, exponential,
gamma, lognormal, normal, two-parameter Weibull, and three-parameter Weibull.
By default, the procedure produces a plot for the normal distribution.

In the following example, the NORMAL option requests a normal probability plot
for each variable, while the MU= and SIGMA=normal-options request a distribution
reference line corresponding to the normal distribution withµ = 10 andσ = 0.3.
The SQUARE option displays the plot in a square frame, and the CTEXT= option
specifies the text color.

proc univariate data=Measures;
probplot Length1 Length2 / normal(mu=10 sigma=0.3)

square ctext=blue;
run;



242 � Chapter 3. The UNIVARIATE Procedure

Table 3.34throughTable 3.43list the PROBPLOToptions by function. For complete
descriptions, see the section“Dictionary of Options”on page 245.Options can be
any of the following:

• primary options
• secondary options
• general options

Distribution Options

Table 3.34lists options for requesting a theoretical distribution.

Table 3.34. Primary Options for Theoretical Distributions
BETA(beta-options) Specifies beta probability plot for

shape parametersα and β speci-
fied with mandatory ALPHA= and
BETA= beta-options

EXPONENTIAL(exponential-options) Specifies exponential probability plot

GAMMA( gamma-options) Specifies gamma probability plot for
shape parameterα specified with
mandatory ALPHA=gamma-option

LOGNORMAL(lognormal-options) Specifies lognormal probability plot
for shape parameterσ specified
with mandatory SIGMA=lognormal-
option

NORMAL(normal-options) Specifies normal probability plot

WEIBULL(Weibull-options) Specifies three-parameter Weibull
probability plot for shape parame-
ter c specified with mandatory C=
Weibull-option

WEIBULL2(Weibull2-options) Specifies two-parameter Weibull
probability plot

Table 3.35throughTable 3.42list secondary options that specify distribution param-
eters and control the display of a distribution reference line. Specify these options in
parentheses after the distribution keyword. For example, you can request a normal
probability plot with a distribution reference line by specifying the NORMAL option
as follows:

proc univariate;
probplot Length / normal(mu=10 sigma=0.3 color=red);

run;

The MU= and SIGMA=normal-options display a distribution reference line that
corresponds to the normal distribution with meanµ0 = 10 and standard deviation
σ0 = 0.3, and the COLOR=normal-option specifies the color for the line.



PROBPLOT Statement � 243

Table 3.35. Secondary Reference Line Options Used with All Distributions
COLOR=color Specifies color of distribution reference line

L=linetype Specifies line type of distribution reference line

W=n Specifies width of distribution reference line

Table 3.36. Secondary Beta-Options
ALPHA=value-list | EST Specifies mandatory shape parameterα

BETA=value-list | EST Specifies mandatory shape parameterβ

SIGMA=value | EST Specifiesσ0 for distribution reference line

THETA=value | EST Specifiesθ0 for distribution reference line

Table 3.37. Secondary Exponential-Options
SIGMA=value | EST Specifiesσ0 for distribution reference line

THETA=value | EST Specifiesθ0 for distribution reference line

Table 3.38. Secondary Gamma-Options
ALPHA=value-list | EST Specifies mandatory shape parameterα

SIGMA=value | EST Specifiesσ0 for distribution reference line

THETA=value | EST Specifiesθ0 for distribution reference line

Table 3.39. Secondary Lognormal-Options
SIGMA=value Specifies mandatory shape parameterσ

SLOPE=value | EST Specifies slope of distribution reference line

THETA=value|EST Specifiesθ0 for distribution reference line

ZETA=value Specifies ζ0 for distribution reference line (slope is
exp(ζ0))

Table 3.40. Secondary Normal-Options
MU=value | EST Specifiesµ0 for distribution reference line

SIGMA=value | EST Specifiesσ0 for distribution reference line

Table 3.41. Secondary Weibull-Options
C=value-list | EST Specifies mandatory shape parameterc

SIGMA=value | EST Specifiesσ0 for distribution reference line

THETA=value | EST Specifiesθ0 for distribution reference line

Table 3.42. Secondary Weibull2-Options
C=value | EST Specifiesc0 for distribution reference line (slope is1/c0)

SIGMA=value | EST Specifiesσ0 for distribution reference line (intercept is
log(σ0))

SLOPE=value | EST Specifies slope of distribution reference line

THETA=value Specifies known lower thresholdθ0



244 � Chapter 3. The UNIVARIATE Procedure

General Graphics Options

Table 3.43summarizes general options for enhancing probability plots.

Table 3.43. General Graphics Options

Option Description
ANNOKEY Applies annotation requested in ANNOTATE= data set to key cell only
ANNOTATE= Specifies annotate data set
CAXIS= Specifies color for axis
CFRAME= Specifies color for frame
CFRAMESIDE= Specifies color for filling frame for row labels
CFRAMETOP= Specifies color for filling frame for column labels
CGRID= Specifies color for grid lines
CHREF= Specifies color for HREF= lines
CTEXT= Specifies color for text
CVREF= Specifies color for VREF= lines
DESCRIPTION= Specifies description for plot in graphics catalog
FONT= Specifies software font for text
GRID Creates a grid
HEIGHT= Specifies height of text used outside framed areas
HMINOR= Specifies number of horizontal minor tick marks
HREF= Specifies reference lines perpendicular to the horizontal axis
HREFLABELS= Specifies labels for HREF= lines
INFONT= Specifies software font for text inside framed areas
INHEIGHT= Specifies height of text inside framed areas
INTERTILE= Specifies distance between tiles
LGRID= Specifies a line type for grid lines
LHREF= Specifies line style for HREF= lines
LVREF= Specifies line style for VREF= lines
NADJ= Adjusts sample size when computing percentiles
NAME= Specifies name for plot in graphics catalog
NCOLS= Specifies number of columns in comparative probability plot
NOFRAME Suppresses frame around plotting area
NOHLABEL Suppresses label for horizontal axis
NOVLABEL Suppresses label for vertical axis
NOVTICK Suppresses tick marks and tick mark labels for vertical axis
NROWS= Specifies number of rows in comparative probability plot
PCTLMINOR Requests minor tick marks for percentile axis
PCTLORDER= Specifies tick mark labels for percentile axis
RANKADJ= Adjusts ranks when computing percentiles
SQUARE Displays plot in square format
VAXISLABEL= Specifies label for vertical axis
VMINOR= Specifies number of vertical minor tick marks
VREF= Specifies reference lines perpendicular to the vertical axis
VREFLABELS= Specifies labels for VREF= lines
VREFLABPOS= Specifies horizontal position of labels for VREF= lines
WAXIS= Specifies line thickness for axes and frame



PROBPLOT Statement � 245

Dictionary of Options

The following entries provide detailed descriptions ofoptions in the PROBPLOT
statement.

ALPHA= value | EST
specifies the mandatory shape parameterα for probability plots requested with the
BETA and GAMMA options. Enclose the ALPHA= option in parentheses after the
BETA or GAMMA options. If you specify ALPHA=EST, a maximum likelihood
estimate is computed forα.

ANNOKEY
applies the annotation requested with the ANNOTATE= option to the key cell only.
By default, the procedure applies annotation to all of the cells. This option is not
available unless you use the CLASS statement. Specify the KEYLEVEL= option in
the CLASS statement to specify the key cell.

ANNOTATE=SAS-data-set
ANNO=SAS-data-set

specifies an input data set containing annotate variables as described inSAS/GRAPH
Software: Reference. The ANNOTATE= data set you specify in the HISTOGRAM
statement is used for all plots created by the statement. You can also specify an
ANNOTATE= data set in the PROC UNIVARIATE statement to enhance all plots
created by the procedure.

BETA(ALPHA= value | EST BETA=value | EST <beta-options>)
creates a beta probability plot for each combination of the required shape parameters
α andβ specified by the required ALPHA= and BETA=beta-options. If you specify
ALPHA=EST and BETA=EST, the procedure creates a plot based on maximum like-
lihood estimates forα andβ. You can specify the SCALE=beta-option as an alias
for the SIGMA=beta-option and the THRESHOLD=beta-option as an alias for the
THETA= beta-option. To create a plot that is based on maximum likelihood estimates
for α andβ, specify ALPHA=EST and BETA=EST.

To obtain graphical estimates ofα andβ, specify lists of values in the ALPHA= and
BETA= beta-options, and select the combination ofα andβ that most nearly lin-
earizes the point pattern. To assess the point pattern, you can add a diagonal distribu-
tion reference line corresponding to lower threshold parameterθ0 and scale parameter
σ0 with the THETA= and SIGMA=beta-options. Alternatively, you can add a line
that corresponds to estimated values ofθ0 andσ0 with thebeta-options THETA=EST
and SIGMA=EST. Agreement between the reference line and the point pattern indi-
cates that the beta distribution with parametersα, β, θ0, andσ0 is a good fit.

BETA=value | EST
B=value | EST

specifies the mandatory shape parameterβ for probability plots requested with the
BETA option. Enclose the BETA= option in parentheses after the BETA option. If
you specify BETA=EST, a maximum likelihood estimate is computed forβ.



246 � Chapter 3. The UNIVARIATE Procedure

C=value | EST
specifies the shape parameterc for probability plots requested with the WEIBULL
and WEIBULL2 options. Enclose this option in parentheses after the WEIBULL
or WEIBULL2 option. C= is a requiredWeibull-option in the WEIBULL option; in
this situation, it accepts a list of values, or if you specify C=EST, a maximum like-
lihood estimate is computed forc. You can optionally specify C=value or C=EST
as aWeibull2-option with the WEIBULL2 option to request a distribution refer-
ence line; in this situation, you must also specifyWeibull2-option SIGMA=value or
SIGMA=EST.

CAXIS=color
CAXES=color

specifies the color for the axes. This option overrides any COLOR= specifications in
an AXIS statement. The default value is the first color in the device color list.

CFRAME=color
specifies the color for the area that is enclosed by the axes and frame. The area is not
filled by default.

CFRAMESIDE=color
specifies the color to fill the frame area for the row labels that display along the left
side of a comparative probability plot. This color also fills the frame area for the
label of the corresponding class variable (if you associate a label with the variable).
By default, these areas are not filled. This option is not available unless you use the
CLASS statement.

CFRAMETOP=color
specifies the color to fill the frame area for the column labels that display across the
top of a comparative probability plot. This color also fills the frame area for the
label of the corresponding class variable (if you associate a label with the variable).
By default, these areas are not filled. This option does not apply unless you use the
CLASS statement.

CGRID=color
specifies the color for grid lines when a grid displays on the plot. The defaultcolor is
the first color in the device color list. This option also produces a grid.

CHREF=color
CH=color

specifies the color for horizontal axis reference lines requested by the HREF= option.
The defaultcolor is the first color in the device color list.

COLOR=color
specifies the color of the diagonal distribution reference line. The defaultcolor is the
first color in the device color list. Enclose the COLOR= option in parentheses after a
distribution option keyword.



PROBPLOT Statement � 247

CTEXT=color
specifies the color for tick mark values and axis labels. The defaultcolor is the color
that you specify for the CTEXT= option in the GOPTIONS statement. If you omit
the GOPTIONS statement, the default is the first color in the device color list.

CVREF=color
CV=color

specifies the color for the reference lines requested by the VREF= option. The default
color is the first color in the device color list.

DESCRIPTION=’string’
DES=’string’

specifies a description, up to 40 characters long, that appears in the PROC GREPLAY
master menu. The defaultstring is the variable name.

EXPONENTIAL<(exponential-options)>
EXP<(exponential-options)>

creates an exponential probability plot. To assess the point pattern, add a diagonal dis-
tribution reference line corresponding toθ0 andσ0 with the THETA= and SIGMA=
exponential-options. Alternatively, you can add a line corresponding to estimated
values of the threshold parameterθ0 and the scale parameterσ with theexponential-
options THETA=EST and SIGMA=EST. Agreement between the reference line and
the point pattern indicates that the exponential distribution with parametersθ0 and
σ0 is a good fit. You can specify the SCALE=exponential-option as an alias for the
SIGMA= exponential-option and the THRESHOLD=exponential-option as an alias
for the THETA=exponential-option.

FONT=font
specifies a software font for the reference lines and axis labels. You can also specify
fonts for axis labels in an AXIS statement. The FONT= font takes precedence over
the FTEXT= font specified in the GOPTIONS statement. Hardware characters are
used by default.

GAMMA(ALPHA= value | EST <gamma-options>)
creates a gamma probability plot for each value of the shape parameterα given by
the mandatory ALPHA=gamma-option. If you specify ALPHA=EST, the procedure
creates a plot based on a maximum likelihood estimate forα. To obtain a graphical
estimate ofα, specify a list of values for the ALPHA=gamma-option, and select the
value that most nearly linearizes the point pattern. To assess the point pattern, add
a diagonal distribution reference line corresponding toθ0 andσ0 with the THETA=
and SIGMA=gamma-options. Alternatively, you can add a line corresponding to
estimated values of the threshold parameterθ0 and the scale parameterσ with the
gamma-options THETA=EST and SIGMA=EST. Agreement between the reference
line and the point pattern indicates that the gamma distribution with parametersα, θ0
andσ0 is a good fit. You can specify the SCALE=gamma-option as an alias for the
SIGMA= gamma-option and the THRESHOLD=gamma-option as an alias for the
THETA= gamma-option.



248 � Chapter 3. The UNIVARIATE Procedure

GRID
displays a grid. Grid lines are reference lines that are perpendicular to the percentile
axis at major tick marks.

HEIGHT=value
specifies the height, in percentage screen units, of text for axis labels, tick mark
labels, and legends. This option takes precedence over the HTEXT= option in the
GOPTIONS statement.

HMINOR=n
HM=n

specifies the number of minor tick marks between each major tick mark on the hori-
zontal axis. Minor tick marks are not labeled. By default, HMINOR=0.

HREF=values
draws reference lines that are perpendicular to the horizontal axis at the values you
specify.

HREFLABELS=’ label1’ . . . ’ labeln’
HREFLABEL=’ label1’ . . . ’ labeln’
HREFLAB=’ label1’ . . . ’ labeln’

specifies labels for the reference lines requested by the HREF= option. The number of
labels must equal the number of reference lines. Labels can have up to 16 characters.

HREFLABPOS= n
specifies the vertical position of HREFLABELS= labels. If you specify
HREFLABPOS=1, the labels are positioned along the top of the plot. If you
specify HREFLABPOS=2, the labels are staggered from top to bottom of the plot.
If you specify HREFLABPOS=3, the labels are positioned along the bottom of the
plot. By default, HREFLABPOS=1.

INFONT=font
specifies a software font to use for text inside the framed areas of the plot. The
INFONT= option takes precedence over the FTEXT= option in the GOPTIONS state-
ment. For a list of fonts, seeSAS/GRAPH Reference.

INHEIGHT=value
specifies the height, in percentage screen units, of text used inside the framed areas
of the plot. By default, the height specified by the HEIGHT= option is used. If you
do not specify the HEIGHT= option, the height specified with the HTEXT= option
in the GOPTIONS statement is used.

INTERTILE=value
specifies the distance, in horizontal percentage screen units, between the framed ar-
eas, which are calledtiles. By default, the tiles are contiguous. This option is not
available unless you use the CLASS statement.

L=linetype
specifies the line type for a diagonal distribution reference line. Enclose the L= option
in parentheses after a distribution option. By default, L=1, which produces a solid
line.



PROBPLOT Statement � 249

LGRID=linetype
specifies the line type for the grid requested by the GRID= option. By default,
LGRID=1, which produces a solid line.

LHREF=linetype
LH=linetype

specifies the line type for the reference lines that you request with the HREF= option.
By default, LHREF=2, which produces a dashed line.

LOGNORMAL(SIGMA= value | EST <lognormal-options>)
LNORM(SIGMA=value | EST <lognormal-options>)

creates a lognormal probability plot for each value of the shape parameterσ given by
the mandatory SIGMA=lognormal-option. If you specify SIGMA=EST, the proce-
dure creates a plot based on a maximum likelihood estimate forσ. To obtain a graphi-
cal estimate ofσ, specify a list of values for the SIGMA=lognormal-option, and select
the value that most nearly linearizes the point pattern. To assess the point pattern, add
a diagonal distribution reference line corresponding toθ0 andζ0 with the THETA=
and ZETA= lognormal-options. Alternatively, you can add a line corresponding to
estimated values of the threshold parameterθ0 and the scale parameterζ0 with the
lognormal-options THETA=EST and ZETA=EST. Agreement between the reference
line and the point pattern indicates that the lognormal distribution with parameters
σ, θ0 andζ0 is a good fit. You can specify the THRESHOLD=lognormal-option as
an alias for the THETA=lognormal-option and the SCALE=lognormal-option as an
alias for the ZETA=lognormal-option. SeeExample 3.26.

LVREF=linetype
specifies the line type for the reference lines requested with the VREF= option. By
default, LVREF=2, which produces a dashed line.

MU=value | EST
specifies the meanµ0 for a normal probability plot requested with the NORMAL
option. Enclose the MU=normal-option in parentheses after the NORMAL option.
The MU= normal-option must be specified with the SIGMA=normal-option, and
they request a distribution reference line. You can specify MU=EST to request a
distribution reference line withµ0 equal to the sample mean.

NADJ=value
specifies the adjustment value added to the sample size in the calculation of theoreti-
cal percentiles. By default, NADJ=14 . Refer to Chambers et al. (1983).

NAME=’string’
specifies a name for the plot, up to eight characters long, that appears in the PROC
GREPLAY master menu. The default value is ’UNIVAR’.

NCOLS=n
NCOL=n

specifies the number of columns in a comparative probability plot. By default,
NCOLS=1 if you specify only one class variable, and NCOLS=2 if you specify two
class variables. This option is not available unless you use the CLASS statement. If
you specify two class variables, you can use the NCOLS= option with the NROWS=
option.



250 � Chapter 3. The UNIVARIATE Procedure

NOFRAME
suppresses the frame around the subplot area.

NOHLABEL
suppresses the label for the horizontal axis. You can use this option to reduce clutter.

NORMAL<(normal-options)>
creates a normal probability plot. This is the default if you omit a distribution option.
To assess the point pattern, you can add a diagonal distribution reference line corre-
sponding toµ0 andσ0 with the MU= and SIGMA=normal-options. Alternatively,
you can add a line corresponding to estimated values ofµ0 andσ0 with thenormal-
options MU=EST and SIGMA=EST; the estimates of the meanµ0 and the standard
deviationσ0 are the sample mean and sample standard deviation. Agreement be-
tween the reference line and the point pattern indicates that the normal distribution
with parametersµ0 andσ0 is a good fit.

NOVLABEL
suppresses the label for the vertical axis. You can use this option to reduce clutter.

NOVTICK
suppresses the tick marks and tick mark labels for the vertical axis. This option also
suppresses the label for the vertical axis.

NROWS=n
NROW=n

specifies the number of rows in a comparative probability plot. By default,
NROWS=2. This option is not available unless you use the CLASS statement. If
you specify two class variables, you can use the NCOLS= option with the NROWS=
option.

PCTLMINOR
requests minor tick marks for the percentile axis. The HMINOR option overrides the
minor tick marks requested by the PCTLMINOR option.

PCTLORDER=values
specifies the tick marks that are labeled on the theoretical percentile axis. Since
the values are percentiles, the labels must be between 0 and 100, exclusive. The
values must be listed in increasing order and must cover the plotted percentile range.
Otherwise, the default values of 1, 5, 10, 25, 50, 75, 90, 95, and 99 are used.

RANKADJ= value
specifies the adjustment value added to the ranks in the calculation of theoretical
percentiles. By default, RANKADJ=−3

8 , as recommended by Blom (1958). Refer to
Chambers et al. (1983) for additional information.

SCALE=value | EST
is an alias for the SIGMA= option for plots requested by the BETA, EXPONENTIAL,
GAMMA, and WEIBULL options and for the ZETA= option when you request the
LOGNORMAL option. See the entries for the SIGMA= and ZETA= options.



PROBPLOT Statement � 251

SHAPE=value | EST
is an alias for the ALPHA= option with the GAMMA option, for the SIGMA= op-
tion with the LOGNORMAL option, and for the C= option with the WEIBULL and
WEIBULL2 options. See the entries for the ALPHA=, SIGMA=, and C= options.

SIGMA=value | EST
specifies the parameterσ, whereσ > 0. Alternatively, you can specify SIGMA=EST
to request a maximum likelihood estimate forσ0. The interpretation and use of the
SIGMA= option depend on the distribution option with which it is used. SeeTable
3.44for a summary of how to use the SIGMA= option. You must enclose this option
in parentheses after the distribution option.

Table 3.44. Uses of the SIGMA= Option
Distribution Option Use of the SIGMA= Option

BETA
EXPONENTIAL
GAMMA
WEIBULL

THETA=θ0 and SIGMA=σ0 request a distribution reference
line corresponding toθ0 andσ0.

LOGNORMAL SIGMA=σ1 . . . σn requestsn probability plots with shape pa-
rametersσ1 . . . σn. The SIGMA= option must be specified.

NORMAL MU=µ0 and SIGMA=σ0 request a distribution reference line
corresponding toµ0 andσ0. SIGMA=EST requests a line with
σ0 equal to the sample standard deviation.

WEIBULL2 SIGMA=σ0 and C=c0 request a distribution reference line cor-
responding toσ0 andc0.

SLOPE=value | EST
specifies the slope for a distribution reference line requested with the LOGNORMAL
and WEIBULL2 options. Enclose the SLOPE= option in parentheses after the distri-
bution option. When you use the SLOPE=lognormal-option with the LOGNORMAL
option, you must also specify a threshold parameter valueθ0 with the THETA=
lognormal-option to request the line. The SLOPE=lognormal-option is an alternative
to the ZETA=lognormal-option for specifyingζ0, since the slope is equal toexp(ζ0).

When you use the SLOPE=Weibull2-option with the WEIBULL2 option, you must
also specify a scale parameter valueσ0 with the SIGMA=Weibull2-option to request
the line. The SLOPE=Weibull2-option is an alternative to the C=Weibull2-option for
specifyingc0, since the slope is equal to1c0 .

For example, the first and second PROBPLOT statements produce the same proba-
bility plots and the third and fourth PROBPLOT statements produce the same proba-
bility plots:

proc univariate data=Measures;
probplot Width / lognormal(sigma=2 theta=0 zeta=0);
probplot Width / lognormal(sigma=2 theta=0 slope=1);
probplot Width / weibull2(sigma=2 theta=0 c=.25);
probplot Width / weibull2(sigma=2 theta=0 slope=4);

run;



252 � Chapter 3. The UNIVARIATE Procedure

SQUARE
displays the probability plot in a square frame. By default, the plot is in a rectangular
frame.

THETA=value | EST
specifies the lower threshold parameterθ for plots requested with the BETA,
EXPONENTIAL, GAMMA, LOGNORMAL, WEIBULL, and WEIBULL2 options.
Enclose the THETA= option in parentheses after a distribution option. When used
with the WEIBULL2 option, the THETA= option specifies the known lower thresh-
old θ0, for which the default is 0. When used with the other distribution options, the
THETA= option specifiesθ0 for a distribution reference line; alternatively in this sit-
uation, you can specify THETA=EST to request a maximum likelihood estimate for
θ0. To request the line, you must also specify a scale parameter.

THRESHOLD=value | EST
is an alias for the THETA= option.

VAXISLABEL= ’label’
specifies a label for the vertical axis. Labels can have up to 40 characters.

VMINOR=n
VM=n

specifies the number of minor tick marks between each major tick mark on the vertical
axis. Minor tick marks are not labeled. The default is zero.

VREF=values
draws reference lines perpendicular to the vertical axis at the values specified. Also
see the CVREF=, LVREF=, and VREFCHAR= options.

VREFLABELS=’ label1’. . . ’labeln’
VREFLABEL=’ label1’. . . ’labeln’
VREFLAB=’ label1’. . . ’labeln’

specifies labels for the reference lines requested by the VREF= option. The number
of labels must equal the number of reference lines. Enclose each label in quotes.
Labels can have up to 16 characters.

VREFLABPOS= n
specifies the horizontal position of VREFLABELS= labels. If you specify
VREFLABPOS=1, the labels are positioned at the left of the histogram. If you
specify VREFLABPOS=2, the labels are positioned at the right of the histogram. By
default, VREFLABPOS=1.

W=n
specifies the width, in pixels, for a diagonal distribution line. Enclose the W= option
in parentheses after the distribution option. By default, W=1.

WAXIS=n
specifies the line thickness, in pixels, for the axes and frame. By default, WAXIS=1.



QQPLOT Statement � 253

WEIBULL(C= value | EST <Weibull-options>)
WEIB(C=value | EST <Weibull-options>)

creates a three-parameter Weibull probability plot for each value of the required shape
parameterc specified by the mandatory C=Weibull-option. To create a plot that is
based on a maximum likelihood estimate forc, specify C=EST. To obtain a graphical
estimate ofc, specify a list of values in the C=Weibull-option, and select the value
that most nearly linearizes the point pattern. To assess the point pattern, add a di-
agonal distribution reference line corresponding toθ0 andσ0 with the THETA= and
SIGMA= Weibull-options. Alternatively, you can add a line corresponding to esti-
mated values ofθ0 andσ0 with theWeibull-options THETA=EST and SIGMA=EST.
Agreement between the reference line and the point pattern indicates that the Weibull
distribution with parametersc, θ0, andσ0 is a good fit. You can specify the SCALE=
Weibull-option as an alias for the SIGMA=Weibull-option and the THRESHOLD=
Weibull-option as an alias for the THETA=Weibull-option.

WEIBULL2<(Weibull2-options)>
W2<(Weibull2-options)>

creates a two-parameter Weibull probability plot. You should use the WEIBULL2 op-
tion when your data have aknown lower thresholdθ0, which is 0 by default. To spec-
ify the threshold valueθ0, use the THETA=Weibull2-option. By default, THETA=0.
An advantage of the two-parameter Weibull plot over the three-parameter Weibull
plot is that the parametersc andσ can be estimated from the slope and intercept of
the point pattern. A disadvantage is that the two-parameter Weibull distribution ap-
plies only in situations where the threshold parameter is known. To obtain a graphical
estimate ofθ0, specify a list of values for the THETA=Weibull2-option, and select
the value that most nearly linearizes the point pattern. To assess the point pattern, add
a diagonal distribution reference line corresponding toσ0 andc0 with the SIGMA=
and C=Weibull2-options. Alternatively, you can add a distribution reference line cor-
responding to estimated values ofσ0 andc0 with theWeibull2-options SIGMA=EST
and C=EST. Agreement between the reference line and the point pattern indicates that
the Weibull distribution with parametersc0, θ0, andσ0 is a good fit. You can specify
the SCALE=Weibull2-option as an alias for the SIGMA=Weibull2-option and the
SHAPE=Weibull2-option as an alias for the C=Weibull2-option.

ZETA=value | EST
specifies a value for the scale parameterζ for the lognormal probability plots re-
quested with the LOGNORMAL option. Enclose the ZETA=lognormal-option in
parentheses after the LOGNORMAL option. To request a distribution reference line
with interceptθ0 and slopeexp(ζ0), specify the THETA=θ0 and ZETA=ζ0.

QQPLOT Statement

QQPLOT < variables >< / options >;

The QQPLOT statement creates quantile-quantile plots (Q-Q plots) using high-
resolution graphics and compares ordered variable values with quantiles of a specified
theoretical distribution. If the data distribution matches the theoretical distribution,
the points on the plot form a linear pattern. Thus, you can use a Q-Q plot to determine
how well a theoretical distribution models a set of measurements.



254 � Chapter 3. The UNIVARIATE Procedure

Q-Q plots are similar to probability plots, which you can create with thePROBPLOT
statement. Q-Q plots are preferable for graphical estimation of distribution parame-
ters, whereas probability plots are preferable for graphical estimation of percentiles.

You can use any number of QQPLOT statements in theUNIVARIATE procedure.
The components of the QQPLOT statement are described as follows.

variables
are the variables for which to create Q-Q plots. If you specify a VAR statement, the
variables must also be listed in the VAR statement. Otherwise, thevariables can be
any numeric variables in the input data set. If you do not specify a list ofvariables,
then by default the procedure creates a Q-Q plot for each variable listed in the VAR
statement, or for each numeric variable in the DATA= data set if you do not specify
a VAR statement. For example, each of the following QQPLOT statements produces
two Q-Q plots, one forLength and one forWidth:

proc univariate data=Measures;
var Length Width;
qqplot;

proc univariate data=Measures;
qqplot Length Width;

run;

options
specify the theoretical distribution for the plot or add features to the plot. If you spec-
ify more than one variable, theoptions apply equally to each variable. Specify all
options after the slash (/) in the QQPLOT statement. You can specify only oneoption
naming the distribution in each QQPLOT statement, but you can specify any num-
ber of otheroptions. The distributions available are the beta, exponential, gamma,
lognormal, normal, two-parameter Weibull, and three-parameter Weibull. By default,
the procedure produces a plot for the normal distribution.

In the following example, the NORMAL option requests a normal Q-Q plot for each
variable. The MU= and SIGMA=normal-options request a distribution reference line
with intercept 10 and slope 0.3 for each plot, corresponding to a normal distribution
with meanµ = 10 and standard deviationσ = 0.3. The SQUARE option displays
the plot in a square frame, and the CTEXT= option specifies the text color.

proc univariate data=measures;
qqplot length1 length2 / normal(mu=10 sigma=0.3)

square ctext=blue;
run;

Table 3.45throughTable 3.54list the QQPLOToptions by function. For complete
descriptions, see the section“Dictionary of Options”on page 258.

Options can be any of the following:

• primary options
• secondary options
• general options



QQPLOT Statement � 255

Distribution Options

Table 3.45lists primary options for requesting a theoretical distribution.

Table 3.45. Primary Options for Theoretical Distributions
BETA(beta-options) Specifies beta Q-Q plot for shape

parametersα and β specified with
mandatory ALPHA= and BETA=
beta-options

EXPONENTIAL(exponential-options) Specifies exponential Q-Q plot

GAMMA( gamma-options) Specifies gamma Q-Q plot for shape
parameterα specified with manda-
tory ALPHA= gamma-option

LOGNORMAL(lognormal-options) Specifies lognormal Q-Q plot for
shape parameterσ specified with
mandatory SIGMA= lognormal-
option

NORMAL(normal-options) Specifies normal Q-Q plot

WEIBULL(Weibull-options) Specifies three-parameter Weibull Q-
Q plot for shape parameterc specified
with mandatory C=Weibull-option

WEIBULL2(Weibull2-options) Specifies two-parameter Weibull Q-
Q plot

Table 3.46throughTable 3.53list secondary options that specify distribution param-
eters and control the display of a distribution reference line. Specify these options in
parentheses after the distribution keyword. For example, you can request a normal
Q-Q plot with a distribution reference line by specifying the NORMAL option as
follows:

proc univariate;
qqplot Length / normal(mu=10 sigma=0.3 color=red);

run;

The MU= and SIGMA=normal-options display a distribution reference line that
corresponds to the normal distribution with meanµ0 = 10 and standard deviation
σ0 = 0.3, and the COLOR=normal-option specifies the color for the line.

Table 3.46. Secondary Reference Line Options Used with All Distributions
COLOR=color Specifies color of distribution reference line

L=linetype Specifies line type of distribution reference line

W=n Specifies width of distribution reference line



256 � Chapter 3. The UNIVARIATE Procedure

Table 3.47. Secondary Beta-Options
ALPHA=value-list | EST Specifies mandatory shape parameterα

BETA=value-list | EST Specifies mandatory shape parameterβ

SIGMA=value | EST Specifiesσ0 for distribution reference line

THETA=value | EST Specifiesθ0 for distribution reference line

Table 3.48. Secondary Exponential-Options
SIGMA=value | EST Specifiesσ0 for distribution reference line

THETA=value | EST Specifiesθ0 for distribution reference line

Table 3.49. Secondary Gamma-Options
ALPHA=value-list | EST Specifies mandatory shape parameterα

SIGMA=value | EST Specifiesσ0 for distribution reference line

THETA=value | EST Specifiesθ0 for distribution reference line

Table 3.50. Secondary Lognormal-Options
SIGMA=value-list | EST Specifies mandatory shape parameterσ

SLOPE=value | EST Specifies slope of distribution reference line

THETA=value|EST Specifiesθ0 for distribution reference line

ZETA=value Specifies ζ0 for distribution reference line (slope is
exp(ζ0))

Table 3.51. Secondary Normal-Options
MU=value | EST Specifiesµ0 for distribution reference line

SIGMA=value | EST Specifiesσ0 for distribution reference line

Table 3.52. Secondary Weibull-Options
C=value-list | EST Specifies mandatory shape parameterc

SIGMA=value | EST Specifiesσ0 for distribution reference line

THETA=value | EST Specifiesθ0 for distribution reference line

Table 3.53. Secondary Weibull2-Options
C=value | EST Specifiesc0 for distribution reference line (slope is1/c0)

SIGMA=value | EST Specifiesσ0 for distribution reference line (intercept is
log(σ0))

SLOPE=value | EST Specifies slope of distribution reference line

THETA=value Specifies known lower thresholdθ0

General Options

Table 3.54summarizesgeneral options for enhancing Q-Q plots.

Table 3.54. General Graphics Options

Option Description
ANNOKEY Applies annotation requested in ANNOTATE= data set to key cell only
ANNOTATE= Specifies annotate data set



QQPLOT Statement � 257

Table 3.54. (continued)

Option Description
CAXIS= Specifies color for axis
CFRAME= Specifies color for frame
CFRAMESIDE= Specifies color for filling frame for row labels
CFRAMETOP= Specifies color for filling frame for column labels
CGRID= Specifies color for grid lines
CHREF= Specifies color for HREF= lines
CTEXT= Specifies color for text
CVREF= Specifies color for VREF= lines
DESCRIPTION= Specifies description for plot in graphics catalog
FONT= Specifies software font for text
GRID Creates a grid
HEIGHT= Specifies height of text used outside framed areas
HMINOR= Specifies number of horizontal minor tick marks
HREF= Specifies reference lines perpendicular to the horizontal axis
HREFLABELS= Specifies labels for HREF= lines
HREFLABPOS= Specifies vertical position of labels for HREF= lines
INFONT= Specifies software font for text inside framed areas
INHEIGHT= Specifies height of text inside framed areas
INTERTILE= Specifies distance between tiles
LGRID= Specifies a line type for grid lines
LHREF= Specifies line style for HREF= lines
LVREF= Specifies line style for VREF= lines
NADJ= Adjusts sample size when computing percentiles
NAME= Specifies name for plot in graphics catalog
NCOLS= Specifies number of columns in comparative Q-Q plot
NOFRAME Suppresses frame around plotting area
NOHLABEL Suppresses label for horizontal axis
NOVLABEL Suppresses label for vertical axis
NOVTICK Suppresses tick marks and tick mark labels for vertical axis
NROWS= Specifies number of rows in comparative Q-Q plot
PCTLAXIS Displays a nonlinear percentile axis
PCTLMINOR Requests minor tick marks for percentile axis
PCTLSCALE Replaces theoretical quantiles with percentiles
RANKADJ= Adjusts ranks when computing percentiles
SQUARE Displays plot in square format
VAXISLABEL= Specifies label for vertical axis
VMINOR= Specifies number of vertical minor tick marks
VREF= Specifies reference lines perpendicular to the vertical axis
VREFLABELS= Specifies labels for VREF= lines
VREFLABPOS= Specifies horizontal position of labels for VREF= lines
WAXIS= Specifies line thickness for axes and frame



258 � Chapter 3. The UNIVARIATE Procedure

Dictionary of Options

The following entries provide detailed descriptions ofoptions in the QQPLOT state-
ment.

ALPHA= value | EST
specifies the mandatory shape parameterα for quantile plots requested with the BETA
and GAMMA options. Enclose the ALPHA= option in parentheses after the BETA
or GAMMA options. If you specify ALPHA=EST, a maximum likelihood estimate
is computed forα.

ANNOKEY
applies the annotation requested with the ANNOTATE= option to the key cell only.
By default, the procedure applies annotation to all of the cells. This option is not
available unless you use the CLASS statement. Specify the KEYLEVEL= option in
the CLASS statement to specify the key cell.

ANNOTATE=SAS-data-set
ANNO=SAS-data-set

specifies an input data set containing annotate variables as described inSAS/GRAPH
Software: Reference. The ANNOTATE= data set you specify in the HISTOGRAM
statement is used for all plots created by the statement. You can also specify an
ANNOTATE= data set in the PROC UNIVARIATE statement to enhance all plots
created by the procedure.

BETA(ALPHA= value | EST BETA=value | EST <beta-options>)
creates a beta quantile plot for each combination of the required shape parametersα
andβ specified by the required ALPHA= and BETA=beta-options. If you specify
ALPHA=EST and BETA=EST, the procedure creates a plot based on maximum like-
lihood estimates forα andβ. You can specify the SCALE=beta-option as an alias
for the SIGMA=beta-option and the THRESHOLD=beta-option as an alias for the
THETA= beta-option. To create a plot that is based on maximum likelihood estimates
for α andβ, specify ALPHA=EST and BETA=EST.

To obtain graphical estimates ofα andβ, specify lists of values in the ALPHA= and
BETA= beta-options, and select the combination ofα andβ that most nearly lin-
earizes the point pattern. To assess the point pattern, you can add a diagonal distribu-
tion reference line corresponding to lower threshold parameterθ0 and scale parameter
σ0 with the THETA= and SIGMA=beta-options. Alternatively, you can add a line
that corresponds to estimated values ofθ0 andσ0 with thebeta-options THETA=EST
and SIGMA=EST. Agreement between the reference line and the point pattern indi-
cates that the beta distribution with parametersα, β, θ0, andσ0 is a good fit.

BETA=value | EST
B=value | EST

specifies the mandatory shape parameterβ for quantile plots requested with the BETA
option. Enclose the BETA= option in parentheses after the BETA option. If you
specify BETA=EST, a maximum likelihood estimate is computed forβ.



QQPLOT Statement � 259

C=value | EST
specifies the shape parameterc for quantile plots requested with the WEIBULL and
WEIBULL2 options. Enclose this option in parentheses after the WEIBULL or
WEIBULL2 option. C= is a requiredWeibull-option in the WEIBULL option; in
this situation, it accepts a list of values, or if you specify C=EST, a maximum like-
lihood estimate is computed forc. You can optionally specify C=value or C=EST
as aWeibull2-option with the WEIBULL2 option to request a distribution refer-
ence line; in this situation, you must also specifyWeibull2-option SIGMA=value or
SIGMA=EST.

CAXIS=color
CAXES=color

specifies the color for the axes. This option overrides any COLOR= specifications in
an AXIS statement. The default value is the first color in the device color list.

CFRAME=color
specifies the color for the area that is enclosed by the axes and frame. The area is not
filled by default.

CFRAMESIDE=color
specifies the color to fill the frame area for the row labels that display along the left
side of a comparative quantile plot. This color also fills the frame area for the label
of the corresponding class variable (if you associate a label with the variable). By
default, these areas are not filled. This option is not available unless you use the
CLASS statement.

CFRAMETOP=color
specifies the color to fill the frame area for the column labels that display across the
top of a comparative quantile plot. This color also fills the frame area for the label
of the corresponding class variable (if you associate a label with the variable). By
default, these areas are not filled. This option does not apply unless you use the
CLASS statement.

CGRID=color
specifies the color for grid lines when a grid displays on the plot. The defaultcolor is
the first color in the device color list. This option also produces a grid.

CHREF=color
CH=color

specifies the color for horizontal axis reference lines requested by the HREF= option.
The defaultcolor is the first color in the device color list.

COLOR=color
specifies the color of the diagonal distribution reference line. The defaultcolor is the
first color in the device color list. Enclose the COLOR= option in parentheses after a
distribution option keyword.

CTEXT=color
specifies the color for tick mark values and axis labels. The defaultcolor is the color
that you specify for the CTEXT= option in the GOPTIONS statement. If you omit
the GOPTIONS statement, the default is the first color in the device color list.



260 � Chapter 3. The UNIVARIATE Procedure

CVREF=color
CV=color

specifies the color for the reference lines requested by the VREF= option. The default
color is the first color in the device color list.

DESCRIPTION=’string’
DES=’string’

specifies a description, up to 40 characters long, that appears in the PROC GREPLAY
master menu. The defaultstring is the variable name.

EXPONENTIAL<(exponential-options)>
EXP<(exponential-options)>

creates an exponential quantile plot. To assess the point pattern, add a diagonal dis-
tribution reference line corresponding toθ0 andσ0 with the THETA= and SIGMA=
exponential-options. Alternatively, you can add a line corresponding to estimated
values of the threshold parameterθ0 and the scale parameterσ with theexponential-
options THETA=EST and SIGMA=EST. Agreement between the reference line and
the point pattern indicates that the exponential distribution with parametersθ0 and
σ0 is a good fit. You can specify the SCALE=exponential-option as an alias for the
SIGMA= exponential-option and the THRESHOLD=exponential-option as an alias
for the THETA=exponential-option.

FONT=font
specifies a software font for the reference lines and axis labels. You can also specify
fonts for axis labels in an AXIS statement. The FONT= font takes precedence over
the FTEXT= font specified in the GOPTIONS statement. Hardware characters are
used by default.

GAMMA(ALPHA= value | EST <gamma-options>)
creates a gamma quantile plot for each value of the shape parameterα given by the
mandatory ALPHA=gamma-option. If you specify ALPHA=EST, the procedure
creates a plot based on a maximum likelihood estimate forα. To obtain a graphical
estimate ofα, specify a list of values for the ALPHA=gamma-option, and select the
value that most nearly linearizes the point pattern. To assess the point pattern, add
a diagonal distribution reference line corresponding toθ0 andσ0 with the THETA=
and SIGMA=gamma-options. Alternatively, you can add a line corresponding to
estimated values of the threshold parameterθ0 and the scale parameterσ with the
gamma-options THETA=EST and SIGMA=EST. Agreement between the reference
line and the point pattern indicates that the gamma distribution with parametersα, θ0
andσ0 is a good fit. You can specify the SCALE=gamma-option as an alias for the
SIGMA= gamma-option and the THRESHOLD=gamma-option as an alias for the
THETA= gamma-option.

GRID
displays a grid of horizontal lines positioned at major tick marks on the vertical axis.

HEIGHT=value
specifies the height, in percentage screen units, of text for axis labels, tick mark
labels, and legends. This option takes precedence over the HTEXT= option in the
GOPTIONS statement.



QQPLOT Statement � 261

HMINOR=n
HM=n

specifies the number of minor tick marks between each major tick mark on the hori-
zontal axis. Minor tick marks are not labeled. By default, HMINOR=0.

HREF=values
draws reference lines that are perpendicular to the horizontal axis at specified values.
When you use the PCTLAXIS option, HREF=values must be in quantile units.

HREFLABELS=’ label1’ . . . ’ labeln’
HREFLABEL=’ label1’ . . . ’ labeln’
HREFLAB=’ label1’ . . . ’ labeln’

specifies labels for the reference lines requested by the HREF= option. The number of
labels must equal the number of reference lines. Labels can have up to 16 characters.

HREFLABPOS= n
specifies the vertical position of HREFLABELS= labels. If you specify
HREFLABPOS=1, the labels are positioned along the top of the plot. If you
specify HREFLABPOS=2, the labels are staggered from top to bottom of the plot.
If you specify HREFLABPOS=3, the labels are positioned along the bottom of the
plot. By default, HREFLABPOS=1.

INFONT=font
specifies a software font to use for text inside the framed areas of the plot. The
INFONT= option takes precedence over the FTEXT= option in the GOPTIONS state-
ment. For a list of fonts, seeSAS/GRAPH Reference.

INHEIGHT=value
specifies the height, in percentage screen units, of text used inside the framed areas
of the plot. By default, the height specified by the HEIGHT= option is used. If you
do not specify the HEIGHT= option, the height specified with the HTEXT= option
in the GOPTIONS statement is used.

INTERTILE=value
specifies the distance, in horizontal percentage screen units, between the framed ar-
eas, which are calledtiles. By default, INTERTILE=0.75 percentage screen units.
This option is not available unless you use the CLASS statement. You can specify
INTERTILE=0 to create contiguous tiles.

L=linetype
specifies the line type for a diagonal distribution reference line. Enclose the L= option
in parentheses after a distribution option. By default, L=1, which produces a solid
line.

LGRID=linetype
specifies the line type for the grid requested by the GRID option. By default,
LGRID=1, which produces a solid line. The LGRID= option also produces a grid.

LHREF=linetype
LH=linetype

specifies the line type for the reference lines that you request with the HREF= option.
By default, LHREF=2, which produces a dashed line.



262 � Chapter 3. The UNIVARIATE Procedure

LOGNORMAL(SIGMA= value | EST <lognormal-options>)
LNORM(SIGMA=value | EST <lognormal-options>)

creates a lognormal quantile plot for each value of the shape parameterσ given by the
mandatory SIGMA=lognormal-option. If you specify SIGMA=EST, the procedure
creates a plot based on a maximum likelihood estimate forσ. To obtain a graphical
estimate ofσ, specify a list of values for the SIGMA=lognormal-option, and select
the value that most nearly linearizes the point pattern. To assess the point pattern, add
a diagonal distribution reference line corresponding toθ0 andζ0 with the THETA=
and ZETA= lognormal-options. Alternatively, you can add a line corresponding to
estimated values of the threshold parameterθ0 and the scale parameterζ0 with the
lognormal-options THETA=EST and ZETA=EST. Agreement between the reference
line and the point pattern indicates that the lognormal distribution with parameters
σ, θ0 andζ0 is a good fit. You can specify the THRESHOLD=lognormal-option as
an alias for the THETA=lognormal-option and the SCALE=lognormal-option as an
alias for the ZETA=lognormal-option. SeeExample 3.31throughExample 3.33.

LVREF=linetype
specifies the line type for the reference lines requested with the VREF= option. By
default, LVREF=2, which produces a dashed line.

MU=value | EST
specifies the meanµ0 for a normal quantile plot requested with the NORMAL op-
tion. Enclose the MU=normal-option in parentheses after the NORMAL option. The
MU= normal-option must be specified with the SIGMA=normal-option, and they re-
quest a distribution reference line. You can specify MU=EST to request a distribution
reference line withµ0 equal to the sample mean.

NADJ=value
specifies the adjustment value added to the sample size in the calculation of theoreti-
cal percentiles. By default, NADJ=14 . Refer to Chambers et al. (1983) for additional
information.

NAME=’string’
specifies a name for the plot, up to eight characters long, that appears in the PROC
GREPLAY master menu. The default value is ’UNIVAR’.

NCOLS=n
NCOL=n

specifies the number of columns in a comparative quantile plot. By default,
NCOLS=1 if you specify only one class variable, and NCOLS=2 if you specify two
class variables. This option is not available unless you use the CLASS statement. If
you specify two class variables, you can use the NCOLS= option with the NROWS=
option.

NOFRAME
suppresses the frame around the subplot area. If you specify the PCTLAXIS option,
then you cannot specify the NOFRAME option.

NOHLABEL
suppresses the label for the horizontal axis. You can use this option to reduce clutter.



QQPLOT Statement � 263

NORMAL<(normal-options)>
creates a normal quantile plot. This is the default if you omit a distribution option.
To assess the point pattern, you can add a diagonal distribution reference line corre-
sponding toµ0 andσ0 with the MU= and SIGMA=normal-options. Alternatively,
you can add a line corresponding to estimated values ofµ0 andσ0 with thenormal-
options MU=EST and SIGMA=EST; the estimates of the meanµ0 and the standard
deviationσ0 are the sample mean and sample standard deviation. Agreement be-
tween the reference line and the point pattern indicates that the normal distribution
with parametersµ0 andσ0 is a good fit. SeeExample 3.28andExample 3.30.

NOVLABEL
suppresses the label for the vertical axis. You can use this option to reduce clutter.

NOVTICK
suppresses the tick marks and tick mark labels for the vertical axis. This option also
suppresses the label for the vertical axis.

NROWS=n
NROW=n

specifies the number of rows in a comparative quantile plot. By default, NROWS=2.
This option is not available unless you use the CLASS statement. If you specify two
class variables, you can use the NCOLS= option with the NROWS= option.

PCTLAXIS<(axis-options)>
adds a nonlinear percentile axis along the frame of the Q-Q plot opposite the theoreti-
cal quantile axis. The added axis is identical to the axis for probability plots produced
with the PROBPLOT statement. When using the PCTLAXIS option, you must spec-
ify HREF= values in quantile units, and you cannot use the NOFRAME option. You
can specify the followingaxis-options:

Table 3.55. Axis Options
GRID Draws vertical grid lines at major percentiles

GRIDCHAR=’character’ Specifies grid line plotting character on line printer

LABEL=’ string’ Specifies label for percentile axis

LGRID=linetype Specifies line type for grid

PCTLMINOR
requests minor tick marks for the percentile axis when you specify PCTLAXIS. The
HMINOR option overrides the PCTLMINOR option.

PCTLSCALE
requests scale labels for the theoretical quantile axis in percentile units, resulting in
a nonlinear axis scale. Tick marks are drawn uniformly across the axis based on the
quantile scale. In all other respects, the plot remains the same, and you must specify
HREF= values in quantile units. For a true nonlinear axis, use the PCTLAXIS option
or use the PROBPLOT statement.

RANKADJ= value
specifies the adjustment value added to the ranks in the calculation of theoretical
percentiles. By default, RANKADJ=−3

8 , as recommended by Blom (1958). Refer to
Chambers et al. (1983) for additional information.



264 � Chapter 3. The UNIVARIATE Procedure

SCALE=value | EST
is an alias for the SIGMA= option for plots requested by the BETA, EXPONENTIAL,
GAMMA, WEIBULL, and WEIBULL2 options and for the ZETA= option with the
LOGNORMAL option. See the entries for the SIGMA= and ZETA= options.

SHAPE=value | EST
is an alias for the ALPHA= option with the GAMMA option, for the SIGMA= op-
tion with the LOGNORMAL option, and for the C= option with the WEIBULL and
WEIBULL2 options. See the entries for the ALPHA=, SIGMA=, and C= options.

SIGMA=value | EST
specifies the parameterσ, whereσ > 0. Alternatively, you can specify SIGMA=EST
to request a maximum likelihood estimate forσ0. The interpretation and use of the
SIGMA= option depend on the distribution option with which it is used, as summa-
rized inTable 3.56. Enclose this option in parentheses after the distribution option.

Table 3.56. Uses of the SIGMA= Option
Distribution Option Use of the SIGMA= Option

BETA
EXPONENTIAL
GAMMA
WEIBULL

THETA=θ0 and SIGMA=σ0 request a distribution reference
line corresponding toθ0 andσ0.

LOGNORMAL SIGMA=σ1 . . . σn requestsn quantile plots with shape param-
etersσ1 . . . σn. The SIGMA= option must be specified.

NORMAL MU=µ0 and SIGMA=σ0 request a distribution reference line
corresponding toµ0 andσ0. SIGMA=EST requests a line with
σ0 equal to the sample standard deviation.

WEIBULL2 SIGMA=σ0 and C=c0 request a distribution reference line cor-
responding toσ0 andc0.

SLOPE=value | EST
specifies the slope for a distribution reference line requested with the LOGNORMAL
and WEIBULL2 options. Enclose the SLOPE= option in parentheses after the distri-
bution option. When you use the SLOPE=lognormal-option with the LOGNORMAL
option, you must also specify a threshold parameter valueθ0 with the THETA=
lognormal-option to request the line. The SLOPE=lognormal-option is an alternative
to the ZETA=lognormal-option for specifyingζ0, since the slope is equal toexp(ζ0).

When you use the SLOPE=Weibull2-option with the WEIBULL2 option, you must
also specify a scale parameter valueσ0 with the SIGMA=Weibull2-option to request
the line. The SLOPE=Weibull2-option is an alternative to the C=Weibull2-option for
specifyingc0, since the slope is equal to1c0 .

For example, the first and second QQPLOT statements produce the same quantile
plots and the third and fourth QQPLOT statements produce the same quantile plots:

proc univariate data=Measures;
qqplot Width / lognormal(sigma=2 theta=0 zeta=0);
qqplot Width / lognormal(sigma=2 theta=0 slope=1);
qqplot Width / weibull2(sigma=2 theta=0 c=.25);
qqplot Width / weibull2(sigma=2 theta=0 slope=4);



QQPLOT Statement � 265

SQUARE
displays the quantile plot in a square frame. By default, the frame is rectangular.

THETA=value | EST
specifies the lower threshold parameterθ for plots requested with the BETA,
EXPONENTIAL, GAMMA, LOGNORMAL, WEIBULL, and WEIBULL2 options.
Enclose the THETA= option in parentheses after a distribution option. When used
with the WEIBULL2 option, the THETA= option specifies the known lower thresh-
old θ0, for which the default is 0. When used with the other distribution options, the
THETA= option specifiesθ0 for a distribution reference line; alternatively in this sit-
uation, you can specify THETA=EST to request a maximum likelihood estimate for
θ0. To request the line, you must also specify a scale parameter.

THRESHOLD=value | EST
is an alias for the THETA= option.

VAXISLABEL= ’label’
specifies a label for the vertical axis. Labels can have up to 40 characters.

VMINOR=n
VM=n

specifies the number of minor tick marks between each major tick mark on the vertical
axis. Minor tick marks are not labeled. The default is zero.

VREF=values
draws reference lines perpendicular to the vertical axis at the values specified. Also
see the CVREF=, LVREF=, and VREFCHAR= options.

VREFLABELS=’ label1’. . . ’labeln’
VREFLABEL=’ label1’. . . ’labeln’
VREFLAB=’ label1’. . . ’labeln’

specifies labels for the reference lines requested by the VREF= option. The number
of labels must equal the number of reference lines. Enclose each label in quotes.
Labels can have up to 16 characters.

VREFLABPOS= n
specifies the horizontal position of VREFLABELS= labels. If you specify
VREFLABPOS=1, the labels are positioned at the left of the histogram. If you
specify VREFLABPOS=2, the labels are positioned at the right of the histogram. By
default, VREFLABPOS=1.

W=n
specifies the width, in pixels, for a diagonal distribution line. Enclose the W= option
in parentheses after the distribution option. By default, W=1.

WAXIS=n
specifies the line thickness, in pixels, for the axes and frame. By default, WAXIS=1.



266 � Chapter 3. The UNIVARIATE Procedure

WEIBULL(C= value | EST <Weibull-options>)
WEIB(C=value | EST <Weibull-options>)

creates a three-parameter Weibull quantile plot for each value of the required shape
parameterc specified by the mandatory C=Weibull-option. To create a plot that is
based on a maximum likelihood estimate forc, specify C=EST. To obtain a graphical
estimate ofc, specify a list of values in the C=Weibull-option, and select the value
that most nearly linearizes the point pattern. To assess the point pattern, add a di-
agonal distribution reference line corresponding toθ0 andσ0 with the THETA= and
SIGMA= Weibull-options. Alternatively, you can add a line corresponding to esti-
mated values ofθ0 andσ0 with theWeibull-options THETA=EST and SIGMA=EST.
Agreement between the reference line and the point pattern indicates that the Weibull
distribution with parametersc, θ0, andσ0 is a good fit. You can specify the SCALE=
Weibull-option as an alias for the SIGMA=Weibull-option and the THRESHOLD=
Weibull-option as an alias for the THETA=Weibull-option. SeeExample 3.34.

WEIBULL2<(Weibull2-options)>
W2<(Weibull2-options)>

creates a two-parameter Weibull quantile plot. You should use the WEIBULL2 option
when your data have aknown lower thresholdθ0, which is 0 by default. To specify
the threshold valueθ0, use the THETA=Weibull2-option. By default, THETA=0. An
advantage of the two-parameter Weibull plot over the three-parameter Weibull plot
is that the parametersc andσ can be estimated from the slope and intercept of the
point pattern. A disadvantage is that the two-parameter Weibull distribution applies
only in situations where the threshold parameter is known. To obtain a graphical es-
timate ofθ0, specify a list of values for the THETA=Weibull2-option, and select the
value that most nearly linearizes the point pattern. To assess the point pattern, add
a diagonal distribution reference line corresponding toσ0 andc0 with the SIGMA=
and C=Weibull2-options. Alternatively, you can add a distribution reference line cor-
responding to estimated values ofσ0 andc0 with theWeibull2-options SIGMA=EST
and C=EST. Agreement between the reference line and the point pattern indicates that
the Weibull distribution with parametersc0, θ0, andσ0 is a good fit. You can specify
the SCALE=Weibull2-option as an alias for the SIGMA=Weibull2-option and the
SHAPE=Weibull2-option as an alias for the C=Weibull2-option. SeeExample 3.34.

ZETA=value | EST
specifies a value for the scale parameterζ for the lognormal quantile plots requested
with the LOGNORMAL option. Enclose the ZETA=lognormal-option in parenthe-
ses after the LOGNORMAL option. To request a distribution reference line with
interceptθ0 and slopeexp(ζ0), specify the THETA=θ0 and ZETA=ζ0.

VAR Statement

VAR variables ;

The VAR statement specifies the analysis variables and their order in the results. By
default, if you omit the VAR statement, PROC UNIVARIATE analyzes all numeric
variables that are not listed in the other statements.



WEIGHT Statement � 267

Using the Output Statement with the VAR Statement

You must provide a VAR statement when you use an OUTPUT statement. To store
the same statistic for several analysis variables in the OUT= data set, you specify a
list of names in the OUTPUT statement. PROC UNIVARIATE makes a one-to-one
correspondence between the order of the analysis variables in the VAR statement and
the list of names that follow a statistic keyword.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement specifies numeric weights for analysis variables in the statis-
tical calculations. The UNIVARIATE procedure uses the valueswi of the WEIGHT
variable to modify the computation of a number of summary statistics by assuming
that the variance of theith valuexi of the analysis variable is equal toσ2/wi, whereσ
is an unknown parameter. The values of the WEIGHT variable do not have to be inte-
gers and are typically positive. By default, observations with nonpositive or missing
values of the WEIGHT variable are handled as follows:∗

• If the value is zero, the observation is counted in the total number of observa-
tions.

• If the value is negative, it is converted to zero, and the observation is counted
in the total number of observations.

• If the value is missing, the observation is excluded from the analysis.

To exclude observations that contain negative and zero weights from the analysis, use
EXCLNPWGT. Note that most SAS/STAT procedures, such as PROC GLM, exclude
negative and zero weights by default. The weight variable does not change how
the procedure determines the range, mode, extreme values, extreme observations, or
number of missing values. When you specify a WEIGHT statement, the procedure
also computes a weighted standard error and a weighted version of Student’st test.
The Student’st test is the only test of location that PROC UNIVARIATE computes
when you weight the analysis variables.

When you specify a WEIGHT variable, the procedure uses its values,wi, to compute
weighted versions of the statistics† provided in the Moments table. For example, the
procedure computes a weighted meanxw and a weighted variances2w as

xw =
∑

iwixi∑
iwi

and

s2w =
1
d

∑
i

wi(xi − xw)2

∗In Release 6.12 and earlier releases, observations were used in the analysis if and only if the
WEIGHT variable value was greater than zero.

†In Release 6.12 and earlier releases, weighted skewness and kurtosis were not computed.



268 � Chapter 3. The UNIVARIATE Procedure

wherexi is theith variable value. The divisord is controlled by the VARDEF= option
in the PROC UNIVARIATE statement.

The WEIGHT statement does not affect the determination of the mode, extreme val-
ues, extreme observations, or the number of missing values of the analysis variables.
However, the weightswi are used to compute weighted percentiles.∗ The WEIGHT
variable has no effect on graphical displays produced with the plot statements.

The CIPCTLDF, CIPCTLNORMAL, LOCCOUNT, NORMAL, ROBUSTSCALE,
TRIMMED=, and WINSORIZED= options are not available with the WEIGHT state-
ment.

To compute weighted skewness or kurtosis, use VARDEF=DF or VARDEF=N in the
PROC statement.

You cannot specify the HISTOGRAM, PROBPLOT, or QQPLOT statements with the
WEIGHT statement.

When you use the WEIGHT statement, consider which value of the VARDEF= option
is appropriate. See VARDEF= and the calculation of weighted statistics in for more
information.

Details

Missing Values
PROC UNIVARIATE excludes missing values for an analysis variable before calcu-
lating statistics. Each analysis variable is treated individually; a missing value for an
observation in one variable does not affect the calculations for other variables. The
statements handle missing values as follows:

• If a BY or an ID variable value is missing, PROC UNIVARIATE treats it like
any other BY or ID variable value. The missing values form a separate BY
group.

• If the FREQ variable value is missing or nonpositive, PROC UNIVARIATE
excludes the observation from the analysis.

• If the WEIGHT variable value is missing, PROC UNIVARIATE excludes the
observation from the analysis.

PROC UNIVARIATE tabulates the number of missing values and reports this infor-
mation in the ODS table named Missing Values; see the section“ODS Table Names”
on page 309. Before the number of missing values is tabulated, PROC UNIVARIATE
excludes observations when

• you use the FREQ statement and the frequencies are nonpositive.

• you use the WEIGHT statement and the weights are missing or nonpositive
(you must specify the EXCLNPWGT option).

∗In Release 6.12 and earlier releases, the weights did not affect the computation of percentiles and
the procedure did not exclude the observations with missing weights from the count of observations.



Descriptive Statistics � 269

Rounding

When you specify ROUND=u, PROC UNIVARIATE rounds a variable by using the
rounding unit to divide the number line into intervals with midpoints of the form
ui, whereu is the nonnegative rounding unit andi is an integer. The interval width
is u. Any variable value that falls in an interval is rounded to the midpoint of that
interval. A variable value that is midway between two midpoints, and is therefore on
the boundary of two intervals, rounds to the even midpoint. Even midpoints occur
wheni is an even integer(0,±2,±4, . . .).

When ROUND=1 and the analysis variable values are between−2.5 and 2.5, the
intervals are as follows:

Table 3.57. Intervals for Rounding When ROUND=1
i Interval Midpoint Left endpt rounds to Right endpt rounds to
−2 [−2.5,−1.5] −2 −2 −2
−1 [−1.5,−0.5] −1 −2 0
0 [−0.5,0.5] 0 0 0
1 [0.5,1.5] 1 0 2
2 [1.5,2.5] 2 2 2

When ROUND=.5 and the analysis variable values are between−1.25 and 1.25, the
intervals are as follows:

Table 3.58. Intervals for Rounding When ROUND=0.5
i Interval Midpoint Left endpt rounds to Right endpt rounds to
−2 [−1.25,−0.75] −1.0 −1 −1
−1 [−0.75,−0.25] −0.5 −1 0
0 [−0.25,0.25] 0.0 0 0
1 [0.25,0.75] 0.5 0 1
2 [0.75,1.25] 1.0 1 1

As the rounding unit increases, the interval width also increases. This reduces
the number of unique values and decreases the amount of memory that PROC
UNIVARIATE needs.

Descriptive Statistics

This section provides computational details for the descriptive statistics that are com-
puted with the PROC UNIVARIATE statement. These statistics can also be saved in
the OUT= data set by specifying the keywords listed inTable 3.30on page 237 in the
OUTPUT statement.

Standard algorithms (Fisher 1973) are used to compute the moment statistics. The
computational methods used by the UNIVARIATE procedure are consistent with
those used by other SAS procedures for calculating descriptive statistics.

The following sections give specific details on a number of statistics calculated by
the UNIVARIATE procedure.



270 � Chapter 3. The UNIVARIATE Procedure

Mean

The sample mean is calculated as

x̄w =
∑n

i=1wixi∑n
i=1wi

wheren is the number of nonmissing values for a variable,xi is theith value of the
variable, andwi is the weight associated with theith value of the variable. If there is
no WEIGHT variable, the formula reduces to

x̄ =
1
n

n∑
i=1

xi

Sum

The sum is calculated as
∑n

i=1wixi, wheren is the number of nonmissing values
for a variable,xi is theith value of the variable, andwi is the weight associated with
theith value of the variable. If there is no WEIGHT variable, the formula reduces to∑n

i=1 xi.

Sum of the Weights

The sum of the weights is calculated as
∑n

i=1wi, wheren is the number of non-
missing values for a variable andwi is the weight associated with theith value of the
variable. If there is no WEIGHT variable, the sum of the weights isn.

Variance

The variance is calculated as

1
d

n∑
i=1

wi(xi − x̄w)2

wheren is the number of nonmissing values for a variable,xi is theith value of the
variable,x̄w is the weighted mean,wi is the weight associated with theith value of
the variable, andd is the divisor controlled by the VARDEF= option in the PROC
UNIVARIATE statement:

d =


n− 1 if VARDEF=DF (default)
n if VARDEF=N

(
∑

iwi)− 1 if VARDEF=WDF∑
iwi if VARDEF=WEIGHT|WGT

If there is no WEIGHT variable, the formula reduces to

1
d

n∑
i=1

(xi − x̄)2



Descriptive Statistics � 271

Standard Deviation

The standard deviation is calculated as

sw =

√√√√1
d

n∑
i=1

wi(xi − x̄w)2

wheren is the number of nonmissing values for a variable,xi is theith value of the
variable,x̄w is the weighted mean,wi is the weight associated with theith value of
the variable, andd is the divisor controlled by the VARDEF= option in the PROC
UNIVARIATE statement. If there is no WEIGHT variable, the formula reduces to

s =

√√√√1
d

n∑
i=1

(xi − x̄)2

Skewness

The sample skewness, which measures the tendency of the deviations to be larger in
one direction than in the other, is calculated as follows depending on the VARDEF=
option:

Table 3.59. Formulas for Skewness
VARDEF Formula

DF (default)
n

(n− 1)(n− 2)

n∑
i=1

w
3/2
i

(
xi − x̄w

sw

)3

N
1
n

n∑
i=1

w
3/2
i

(
xi − x̄w

sw

)3

WDF missing

WEIGHT|WGT missing

wheren is the number of nonmissing values for a variable,xi is theith value of the
variable,x̄w is the sample average,s is the sample standard deviation, andwi is the
weight associated with theith value of the variable. If VARDEF=DF, thenn must be
greater than 2. If there is no WEIGHT variable, thenwi = 1 for all i = 1, . . . , n.

The sample skewness can be positive or negative; it measures the asymmetry of the

data distribution and estimates the theoretical skewness
√
β1 = µ3µ

− 3
2

2 , whereµ2

andµ3 are the second and third central moments. Observations that are normally
distributed should have a skewness near zero.



272 � Chapter 3. The UNIVARIATE Procedure

Kurtosis

The sample kurtosis, which measures the heaviness of tails, is calculated as follows
depending on the VARDEF= option:

Table 3.60. Formulas for Kurtosis
VARDEF Formula

DF (default)
n(n+ 1)

(n− 1)(n− 2)(n− 3)

n∑
i=1

w2
i

(
xi − x̄w

sw

)4

− 3(n− 1)2

(n− 2)(n− 3)

N
1
n

n∑
i=1

w2
i

(
xi − x̄w

sw

)4

− 3

WDF missing

WEIGHT|WGT missing

wheren is the number of nonmissing values for a variable,xi is theith value of the
variable,x̄w is the sample average,sw is the sample standard deviation, andwi is the
weight associated with theith value of the variable. If VARDEF=DF, thenn must be
greater than 3. If there is no WEIGHT variable, thenwi = 1 for all i = 1, . . . , n.

The sample kurtosis measures the heaviness of the tails of the data distribution. It
estimates the adjusted theoretical kurtosis denoted asβ2 − 3, whereβ2 = µ4

µ2
2 , and

µ4 is the fourth central moment. Observations that are normally distributed should
have a kurtosis near zero.

Coefficient of Variation (CV)

The coefficient of variation is calculated as

CV =
100× sw

x̄w

Calculating the Mode

The mode is the value that occurs most often in the data. PROC UNIVARIATE counts
repetitions of the values of the analysis variables or, if you specify the ROUND=
option, the rounded values. If a tie occurs for the most frequent value, the proce-
dure reports the lowest mode in the table labeled “Basic Statistical Measures” in the
statistical output. To list all possible modes, use the MODES option in the PROC
UNIVARIATE statement. When no repetitions occur in the data (as with truly con-
tinuous data), the procedure does not report the mode. The WEIGHT statement has
no effect on the mode. SeeExample 3.2.



Calculating Percentiles � 273

Calculating Percentiles

The UNIVARIATE procedure automatically computes the 1st, 5th, 10th, 25th, 50th,
75th, 90th, 95th, and 99th percentiles (quantiles), as well as the minimum and max-
imum of each analysis variable. To compute percentiles other than these default
percentiles, use the PCTLPTS= and PCTLPRE= options in the OUTPUT statement.

You can specify one of five definitions for computing the percentiles with the
PCTLDEF= option. Letn be the number of nonmissing values for a variable, and
let x1, x2, . . . , xn represent the ordered values of the variable. Let thetth percentile
bey, setp = t

100 , and let

np = j + g when PCTLDEF=1, 2, 3, or 5
(n+ 1)p = j + g when PCTLDEF=4

where j is the integer part ofnp, and g is the fractional part ofnp. Then the
PCTLDEF= option defines thetth percentile,y, as described in the following table:

Table 3.61. Percentile Definitions
PCTLDEF Description Formula

1 Weighted average atxnp y = (1− g)xj + gxj+1

wherex0 is taken to bex1

2 Observation numbered
closest tonp

y = xj if g < 1
2

y = xj if g = 1
2 andj is even

y = xj+1 if g = 1
2 andj is odd

y = xj+1 if g > 1
2

3 Empirical distribution function
y = xj if g = 0
y = xj+1 if g > 0

4 Weighted average aimed y = (1− g)xj + gxj+1

atx(n+1)p wherexn+1 is taken to bexn

5 Empirical distribution function
with averaging

y = 1
2(xj + xj+1) if g = 0

y = xj+1 if g > 0

Weighted Percentiles

When you use a WEIGHT statement, the percentiles are computed differently. The
100pth weighted percentiley is computed from the empirical distribution function
with averaging

y =

{
1
2(xi + xi+1) if

∑i
j=1wj = pW

xi+1 if
∑i

j=1wj < pW <
∑i+1

j=1wj

wherewi is the weight associated withxi, and whereW =
∑n

i=1wi is the sum of
the weights.

Note that the PCTLDEF= option is not applicable when a WEIGHT statement is
used. However, in this case, if all the weights are identical, the weighted percentiles
are the same as the percentiles that would be computed without a WEIGHT statement
and with PCTLDEF=5.



274 � Chapter 3. The UNIVARIATE Procedure

Confidence Limits for Percentiles

You can use the CIPCTLNORMAL option to request confidence limits for per-
centiles, assuming the data are normally distributed. These limits are described
in Section 4.4.1 of Hahn and Meeker (1991). When0 < p < 1

2 , the two-sided
100(1− α)% confidence limits for the100pth percentile are

lower limit = X̄ − g′(α
2 ; 1− p, n)s

upper limit = X̄ − g′(1− α
2 ; p, n)s

wheren is the sample size. When12 ≤ p < 1, the two-sided100(1−α)% confidence
limits for the100pth percentile are

lower limit = X̄ + g′(α
2 ; 1− p, n)s

upper limit = X̄ + g′(1− α
2 ; p, n)s

One-sided100(1−α)% confidence bounds are computed by replacingα
2 byα in the

appropriate preceding equation. The factorg′(γ, p, n) is related to the noncentralt
distribution and is described in Owen and Hua (1977) and Odeh and Owen (1980).
SeeExample 3.10.

You can use the CIPCTLDF option to request distribution-free confidence limits for
percentiles. In particular, it is not necessary to assume that the data are normally
distributed. These limits are described in Section 5.2 of Hahn and Meeker (1991).
The two-sided100(1− α)% confidence limits for the100pth percentile are

lower limit = X(l)

upper limit = X(u)

whereX(j) is thejth order statistic when the data values are arranged in increasing
order:

X(1) ≤ X(2) ≤ . . . ≤ X(n)

The lower rankl and upper ranku are integers that are symmetric (or nearly symmet-
ric) around[np] + 1 where[np] is the integer part ofnp, and wheren is the sample
size. Furthermore,l andu are chosen so thatX(l) andX(u) are as close toX[n+1]p as
possible while satisfying the coverage probability requirement

Q(u− 1;n, p)−Q(l − 1;n, p) ≥ 1− α

whereQ(k;n, p) is the cumulative binomial probability

Q(k;n, p) =
k∑

i=0

(
n
i

)
pi(1− p)n−i



Tests for Location � 275

In some cases, the coverage requirement cannot be met, particularly whenn is
small andp is near 0 or 1. To relax the requirement of symmetry, you can specify
CIPCTLDF(TYPE = ASYMMETRIC). This option requests symmetric limits when
the coverage requirement can be met, and asymmetric limits otherwise.

If you specify CIPCTLDF(TYPE = LOWER), a one-sided100(1 − α)% lower con-
fidence bound is computed asX(l), wherel is the largest integer that satisfies the
inequality

1−Q(l − 1;n, p) ≥ 1− α

with 0 < l ≤ n. Likewise, if you specify CIPCTLDF(TYPE = UPPER), a one-sided
100(1 − α)% lower confidence bound is computed asX(u), whereu is the largest
integer that satisfies the inequality

Q(u− 1;n, p) ≥ 1− α where0 < u ≤ n

Note that confidence limits for percentiles are not computed when a WEIGHT state-
ment is specified. SeeExample 3.10.

Tests for Location

PROC UNIVARIATE provides three tests for location: Student’st test, the sign test,
and the Wilcoxon signed rank test. All three tests produce a test statistic for the
null hypothesis that the mean or median is equal to a given valueµ0 against the
two-sided alternative that the mean or median is not equal toµ0. By default, PROC
UNIVARIATE sets the value ofµ0 to zero. You can use the MU0= option in the
PROC UNIVARIATE statement to specify the value ofµ0. Student’st test is appro-
priate when the data are from an approximately normal population; otherwise, use
nonparametric tests such as the sign test or the signed rank test. For large sample
situations, thet test is asymptotically equivalent to az test. If you use the WEIGHT
statement, PROC UNIVARIATE computes only one weighted test for location, thet
test. You must use the default value for the VARDEF= option in the PROC statement
(VARDEF=DF). SeeExample 3.12.

You can also use these tests to compare means or medians ofpaired data. Data are
said to be paired when subjects or units are matched in pairs according to one or more
variables, such as pairs of subjects with the same age and gender. Paired data also
occur when each subject or unit is measured at two times or under two conditions. To
compare the means or medians of the two times, create an analysis variable that is the
difference between the two measures. The test that the mean or the median difference
of the variables equals zero is equivalent to the test that the means or medians of the
two original variables are equal. Note that you can also carry out these tests using
the PAIRED statement in the TTEST procedure; refer to Chapter 77, “The TTEST
Procedure,” inSAS/STAT User’s Guide. Also seeExample 3.13.



276 � Chapter 3. The UNIVARIATE Procedure

Student’s t Test

PROC UNIVARIATE calculates thet statistic as

t =
x̄− µ0

s/
√
n

wherex̄ is the sample mean,n is the number of nonmissing values for a variable, and
s is the sample standard deviation. The null hypothesis is that the population mean
equalsµ0. When the data values are approximately normally distributed, the prob-
ability under the null hypothesis of at statistic that is as extreme, or more extreme,
than the observed value (thep-value) is obtained from thet distribution withn − 1
degrees of freedom. For largen, thet statistic is asymptotically equivalent to az test.
When you use the WEIGHT statement and the default value of VARDEF=, which is
DF, thet statistic is calculated as

tw =
x̄w − µ0

sw/
√∑n

i=1wi

wherex̄w is the weighted mean,sw is the weighted standard deviation, andwi is
the weight forith observation. Thetw statistic is treated as having a Student’st
distribution withn− 1 degrees of freedom. If you specify the EXCLNPWGT option
in the PROC statement,n is the number of nonmissing observations when the value
of the WEIGHT variable is positive. By default,n is the number of nonmissing
observations for the WEIGHT variable.

Sign Test

PROC UNIVARIATE calculates the sign test statistic as

M = (n+ − n−)/2

wheren+ is the number of values that are greater thanµ0, andn− is the number
of values that are less thanµ0. Values equal toµ0 are discarded. Under the null
hypothesis that the population median is equal toµ0, thep-value for the observed
statisticMobs is

Pr(|Mobs| ≥ |M |) = 0.5(nt−1)

min(n+,n−)∑
j=0

(
nt

j

)

wherent = n+ + n− is the number ofxi values not equal toµ0.

Note: If n+ andn− are equal, thep-value is equal to one.



Confidence Limits for Parameters of the Normal Distribution � 277

Wilcoxon Signed Rank Test

The signed rank statisticS is computed as

S =
∑

i:xi>0

r+i − nt(nt + 1)
4

wherer+i is the rank of|xi − µ0| after discarding values ofxi = µ0, andnt is the
number ofxi values not equal toµ0. Average ranks are used for tied values.

If n ≤ 20, the significance ofS is computed from the exact distribution ofS, where
the distribution is a convolution of scaled binomial distributions. Whenn > 20, the
significance ofS is computed by treating

S

√
n− 1

nV − S2

as a Student’st variate withn− 1 degrees of freedom.V is computed as

V =
1
24
n(n+ 1)(2n+ 1)− 1

48

∑
ti(ti + 1)(ti − 1)

where the sum is over groups tied in absolute value and whereti is the number of
values in theith group (Iman 1974; Conover 1999). The null hypothesis tested is that
the mean (or median) is zero, assuming that the distribution is symmetric. Refer to
Lehmann (1998).

Confidence Limits for Parameters of the Normal Distribution

The two-sided100(1 − α)% confidence interval for the mean has upper and lower
limits

x̄± t1−α
2 ;n−1

s√
n

wheres2 = 1
n−1

∑
(xi − x̄)2 andt1−α

2 ;n−1 is the(1 − α
2 ) percentile of thet distri-

bution withn− 1 degrees of freedom. The one-sided upper100(1−α)% confidence
limit is computed as̄x+ s√

n
t1−α;n−1 and the one-sided lower100(1−α)% confidence

limit is computed as̄x− s√
n
t1−α;n−1. SeeExample 3.9.

The two-sided100(1− α)% confidence interval for the standard deviation has lower
and upper limits

s
√

n−1
χ2

1−
α
2 ;n−1

and s
√

n−1
χ2

α
2 ;n−1



278 � Chapter 3. The UNIVARIATE Procedure

respectively, whereχ2
1−α

2 ;n−1
andχ2

α
2 ;n−1

are the(1 − α
2 ) and α

2 percentiles of the

chi-square distribution withn − 1 degrees of freedom. A one-sided100(1 − α)%
confidence limit has lower and upper limits

s
√

n−1
χ2

1−α;n−1
and s

√
n−1

χ2
α;n−1

respectively. The100(1 − α)% confidence interval for the variance has upper and
lower limits equal to the squares of the corresponding upper and lower limits for the
standard deviation. When you use the WEIGHT statement and specify VARDEF=DF
in the PROC statement, the100(1− α)% confidence interval for the weighted mean
is

x̄w ± t1−α
2

sw√∑n
i=1wi

where x̄w is the weighted mean,sw is the weighted standard deviation,wi is the
weight for ith observation, andt1−α

2
is the(1 − α

2 ) percentile for thet distribution

with n− 1 degrees of freedom.

Robust Estimators

A statistical method is robust if it is insensitive to moderate or even large departures
from the assumptions that justify the method. PROC UNIVARIATE provides several
methods for robust estimation of location and scale. SeeExample 3.11.

Winsorized Means

The Winsorized mean is a robust estimator of the location that is relatively insensitive
to outliers. Thek-times Winsorized mean is calculated as

x̄wk =
1
n

(
(k + 1)x(k+1) +

n−k−1∑
i=k+2

x(i) + (k + 1)x(n−k)

)

wheren is the number of observations, andx(i) is the ith order statistic when the
observations are arranged in increasing order:

x(1) ≤ x(2) ≤ . . . ≤ x(n)

The Winsorized mean is computed as the ordinary mean after thek smallest observa-
tions are replaced by the(k+1)st smallest observation, and thek largest observations
are replaced by the(k + 1)st largest observation.

For data from a symmetric distribution, the Winsorized mean is an unbiased estimate
of the population mean. However, the Winsorized mean does not have a normal
distribution even if the data are from a normal population.



Robust Estimators � 279

The Winsorized sum of squared deviations is defined as

s2wk = (k + 1)(x(k+1) − x̄wk)2 +
n−k−1∑
i=k+2

(x(i) − x̄wk)2 + (k + 1)(x(n−k) − x̄wk)2

The Winsorizedt statistic is given by

twk =
x̄wk − µ0

SE(x̄wk)

whereµ0 denotes the location under the null hypothesis, and the standard error of the
Winsorized mean is

SE(x̄wk) =
n− 1

n− 2k − 1
× swk√

n(n− 1)

When the data are from a symmetric distribution, the distribution oftwk is approxi-
mated by a Student’st distribution withn − 2k − 1 degrees of freedom (Tukey and
McLaughlin 1963; Dixon and Tukey 1968).

The “Winsorized”100(1 − α
2 )% confidence interval for the location parameter has

upper and lower limits

x̄wk ± t1−α
2 ;n−2k−1SE(x̄wk)

wheret1−α
2 ;n−2k−1 is the(1− α

2 )100th percentile of the Student’st distribution with

n− 2k − 1 degrees of freedom.

Trimmed Means

Like the Winsorized mean, the trimmed mean is a robust estimator of the location
that is relatively insensitive to outliers. Thek-times trimmed mean is calculated as

x̄tk =
1

n− 2k

n−k∑
i=k+1

x(i)

wheren is the number of observations, andx(i) is the ith order statistic when the
observations are arranged in increasing order:

x(1) ≤ x(2) ≤ . . . ≤ x(n)

The trimmed mean is computed after thek smallest andk largest observations are
deleted from the sample. In other words, the observations are trimmed at each end.



280 � Chapter 3. The UNIVARIATE Procedure

For a symmetric distribution, the symmetrically trimmed mean is an unbiased esti-
mate of the population mean. However, the trimmed mean does not have a normal
distribution even if the data are from a normal population.

A robust estimate of the variance of the trimmed meanttk can be based on
the Winsorized sum of squared deviationss2wk, which is defined in the section
“Winsorized Means”on page 278; refer to Tukey and McLaughlin (1963). This can
be used to compute a trimmedt test which is based on the test statistic

ttk =
(x̄tk − µ0)
SE(x̄tk)

where the standard error of the trimmed mean is

SE(x̄tk) =
swk√

(n− 2k)(n− 2k − 1)

When the data are from a symmetric distribution, the distribution ofttk is approxi-
mated by a Student’st distribution withn − 2k − 1 degrees of freedom (Tukey and
McLaughlin 1963; Dixon and Tukey 1968).

The “trimmed”100(1−α)% confidence interval for the location parameter has upper
and lower limits

x̄tk ± t1−α
2 ;n−2k−1SE(x̄tk)

wheret1−α
2 ;n−2k−1 is the(1− α

2 )100th percentile of the Student’st distribution with

n− 2k − 1 degrees of freedom.

Robust Estimates of Scale

The sample standard deviation, which is the most commonly used estimator of scale,
is sensitive to outliers. Robust scale estimators, on the other hand, remain bounded
when a single data value is replaced by an arbitrarily large or small value. The
UNIVARIATE procedure computes several robust measures of scale, including the
interquartile range, Gini’s mean differenceG, the median absolute deviation about
the median (MAD),Qn, andSn. In addition, the procedure computes estimates of
the normal standard deviationσ derived from each of these measures.

The interquartile range (IQR) is simply the difference between the upper and lower
quartiles. For a normal population,σ can be estimated as IQR/1.34898.

Gini’s mean difference is computed as

G =
1(
n
2

)∑
i<j

|xi − xj |



Creating Line Printer Plots � 281

For a normal population, the expected value ofG is 2σ/
√
π. ThusG

√
π/2 is a robust

estimator ofσ when the data are from a normal sample. For the normal distribution,
this estimator has high efficiency relative to the usual sample standard deviation, and
it is also less sensitive to the presence of outliers.

A very robust scale estimator is the MAD, the median absolute deviation from the
median (Hampel 1974), which is computed as

MAD = medi(|xi −medj(xj)|)

where the inner median,medj(xj), is the median of then observations, and the outer
median (taken overi) is the median of then absolute values of the deviations about
the inner median. For a normal population,1.4826MAD is an estimator ofσ.

The MAD has low efficiency for normal distributions, and it may not always be ap-
propriate for symmetric distributions. Rousseeuw and Croux (1993) proposed two
statistics as alternatives to the MAD. The first is

Sn = 1.1926medi(medj(|xi − xj |))

where the outer median (taken overi) is the median of then medians of|xi − xj |,
j = 1, 2, . . . , n. To reduce small-sample bias,csnSn is used to estimateσ, wherecsn
is a correction factor; refer to Croux and Rousseeuw (1992).

The second statistic proposed by Rousseeuw and Croux (1993) is

Qn = 2.219{|xi − xj |; i < j}(k)

where

k =
([

n
2

]
+ 1

2

)

In other words,Qn is 2.219 times thekth order statistic of the

(
n
2

)
distances between

the data points. The bias-corrected statisticcqnQn is used to estimateσ, wherecqn is
a correction factor; refer to Croux and Rousseeuw (1992).

Creating Line Printer Plots

The PLOTS option in the PROC UNIVARIATE statement provides up to four diag-
nostic line printer plots to examine the data distribution. These plots are the stem-
and-leaf plot or horizontal bar chart, the box plot, the normal probability plot, and the
side-by-side box plots. If you specify the WEIGHT statement, PROC UNIVARIATE
provides a weighted histogram, a weighted box plot based on the weighted quantiles,
and a weighted normal probability plot.



282 � Chapter 3. The UNIVARIATE Procedure

Note that these plots are a legacy feature of the UNIVARIATE procedure in earlier
versions of SAS. They predate the addition of the HISTOGRAM, PROBPLOT, and
QQPLOT statements, which provide high-resolution graphics displays. Also note
that line printer plots requested with the PLOTS option are mainly intended for use
with the ODS LISTING destination. SeeExample 3.5.

Stem-and-Leaf Plot

The first plot in the output is either a stem-and-leaf plot (Tukey 1977) or a horizontal
bar chart. If any single interval contains more than 49 observations, the horizontal bar
chart appears. Otherwise, the stem-and-leaf plot appears. The stem-and-leaf plot is
like a horizontal bar chart in that both plots provide a method to visualize the overall
distribution of the data. The stem-and-leaf plot provides more detail because each
point in the plot represents an individual data value.

To change the number of stems that the plot displays, use PLOTSIZE= to increase or
decrease the number of rows. Instructions that appear below the plot explain how to
determine the values of the variable. If no instructions appear, you multiplyStem.Leaf
by 1 to determine the values of the variable. For example, if the stem value is 10 and
the leaf value is 1, then the variable value is approximately 10.1. For the stem-and-
leaf plot, the procedure rounds a variable value to the nearest leaf. If the variable
value is exactly halfway between two leaves, the value rounds to the nearest leaf with
an even integer value. For example, a variable value of 3.15 has a stem value of 3 and
a leaf value of 2.

Box Plot

The box plot, also known as a schematic box plot, appears beside the stem-and-leaf
plot. Both plots use the same vertical scale. The box plot provides a visual summary
of the data and identifies outliers. The bottom and top edges of the box correspond to
the sample 25th (Q1) and 75th (Q3) percentiles. The box length is oneinterquartile
range(Q3 - Q1). The center horizontal line with asterisk endpoints corresponds to
the sample median. The central plus sign (+) corresponds to the sample mean. If the
mean and median are equal, the plus sign falls on the line inside the box. The vertical
lines that project out from the box, calledwhiskers, extend as far as the data extend,
up to a distance of 1.5 interquartile ranges. Values farther away are potential outliers.
The procedure identifies the extreme values with a zero or an asterisk (*). If zero
appears, the value is between 1.5 and 3 interquartile ranges from the top or bottom
edge of the box. If an asterisk appears, the value is more extreme.

Note: To produce box plots using high-resolution graphics, use the BOXPLOT pro-
cedure in SAS/STAT software; refer to Chapter 18, “The BOXPLOT Procedure,” in
SAS/STAT User’s Guide.

Normal Probability Plot

The normal probability plot plots the empirical quantiles against the quantiles of a
standard normal distribution. Asterisks (*) indicate the data values. The plus signs
(+) provide a straight reference line that is drawn by using the sample mean and
standard deviation. If the data are from a normal distribution, the asterisks tend to fall



Creating Line Printer Plots � 283

along the reference line. The vertical coordinate is the data value, and the horizontal
coordinate isΦ−1(vi) where

vi = ri− 3
8

n+ 1
4

Φ−1(·) = inverse of the standard normal distribution function
ri = rank of theith data value when ordered from smallest to largest
n = number of nonmissing observations

For a weighted normal probability plot, theith ordered observation is plotted against
Φ−1(vi) where

vi =
(1− 3

8i
)
∑i

j=1 w(j)

(1+ 1
4n

)
∑n

i=1 wi

w(j) = weight associated with thejth ordered observation

When each observation has an identical weight,wj = w, the formula forvi reduces
to the expression forvi in the unweighted normal probability plot:

vi =
i− 3

8

n+ 1
4

When the value of VARDEF= is WDF or WEIGHT, a reference line with interceptµ̂
and slopêσ is added to the plot. When the value of VARDEF= is DF or N, the slope

is σ̂√
w̄

wherew̄ =
∑n

i=1 wi

n is the average weight.

When each observation has an identical weight and the value of VARDEF= is DF, N,
or WEIGHT, the reference line reduces to the usual reference line with interceptµ̂
and slopêσ in the unweighted normal probability plot.

If the data are normally distributed with meanµ, standard deviationσ, and each obser-
vation has an identical weightw, then the points on the plot should lie approximately
on a straight line. The intercept for this line isµ. The slope isσ when VARDEF= is
WDF or WEIGHT, and the slope isσ√

w
when VARDEF= is DF or N.

Note: To produce probability plots using high-resolution graphics, use the
PROBPLOT statement in PROC UNIVARIATE; see the section“PROBPLOT
Statement”on page 241.

Side-by-Side Box Plots

When you use a BY statement with the PLOT option, PROC UNIVARIATE pro-
duces side-by-side box plots, one for each BY group. The box plots (also known
as schematic plots) use a common scale that enables you to compare the data distri-
bution across BY groups. This plot appears after the univariate analyses of all BY
groups. Use the NOBYPLOT option to suppress this plot.

Note: To produce side-by-side box plots using high-resolution graphics, use the
BOXPLOT procedure in SAS/STAT software; refer to Chapter 18, “The BOXPLOT
Procedure,” inSAS/STAT User’s Guide.



284 � Chapter 3. The UNIVARIATE Procedure

Creating High-Resolution Graphics

If your site licenses SAS/GRAPH software, you can use the HISTOGRAM,
PROBPLOT, and QQPLOT statements to create high-resolution graphs. The
HISTOGRAM statement creates histograms that enable you to examine the data dis-
tribution. You can optionally fit families of density curves and superimpose kernel
density estimates on the histograms. For additional information about the fitted distri-
butions and kernel density estimates, see the section“Formulas for Fitted Continuous
Distributions”on page 288 and the section“Kernel Density Estimates”on page 297.

The PROBPLOT statement creates a probability plot, which compares ordered val-
ues of a variable with percentiles of a specified theoretical distribution. The QQPLOT
statement creates a quantile-quantile plot, which compares ordered values of a vari-
able with quantiles of a specified theoretical distribution. You can use these plots to
determine how well a theoretical distribution models a data distribution.

Note: You can use the CLASS statement with the HISTOGRAM, PROBPLOT, or
QQPLOT statements to create comparative histograms, probability plots, or Q-Q
plots, respectively.

Using the CLASS Statement to Create Comparative Plots

When you use the CLASS statement with the HISTOGRAM, PROBPLOT, or
QQPLOT statement, PROC UNIVARIATE creates comparative histograms, compar-
ative probability plots, or comparative quantile-quantile plots. You can use these plot
statements with the CLASS statement to create one-way and two-way comparative
plots. When you use one class variable, PROC UNIVARIATE displays an array of
component plots (stacked or side-by-side), one for each level of the classification
variable. When you use two class variables, PROC UNIVARIATE displays a matrix
of component plots, one for each combination of levels of the classification variables.
The observations in a given level are referred to collectively as acell.

When you create a one-way comparative plot, the observations in the input data set
are sorted by the method specified in the ORDER= option. PROC UNIVARIATE
creates a separate plot for the analysis variable values in each level, and arranges these
component plots in an array to form the comparative plot with uniform horizontal and
vertical axes. SeeExample 3.15.

When you create a two-way comparative plot, the observations in the input data
set are cross-classified according to the values (levels) of these variables. PROC
UNIVARIATE creates a separate plot for the analysis variable values in each cell of
the cross-classification and arranges these component plots in a matrix to form the
comparative plot with uniform horizontal and vertical axes. The levels of the first
class variable are the labels for the rows of the matrix, and the levels of the second
class variable are the labels for the columns of the matrix. SeeExample 3.16.

PROC UNIVARIATE determines the layout of a two-way comparative plot by us-
ing the order for the first class variable to obtain the order of the rows from top
to bottom. Then it applies the order for the second class variable to the observa-
tions that correspond to the first row to obtain the order of the columns from left to



Positioning the Inset � 285

right. If any columns remain unordered (that is, the categories are unbalanced), PROC
UNIVARIATE applies the order for the second class variable to the observations in
the second row, and so on, until all the columns have been ordered.

If you associate a label with a variable, PROC UNIVARIATE displays the variable
label in the comparative plot and this label is parallel to the column (or row) labels.

Use the MISSING option to treat missing values as valid levels.

To reduce the number of classification levels, use a FORMAT statement to combine
variable values.

Positioning the Inset
Positioning the Inset Using Compass Point Values

To position the inset by using a compass point position, specify the value N, NE, E,
SE, S, SW, W, or NW with the POSITION= option. The default position of the inset
is NW. The following statements produce a histogram to show the position of the
inset for the eight compass points:

data Score;
input Student $ PreTest PostTest @@;
label ScoreChange = ’Change in Test Scores’;
ScoreChange = PostTest - PreTest;

datalines;
Capalleti 94 91 Dubose 51 65
Engles 95 97 Grant 63 75
Krupski 80 75 Lundsford 92 55
Mcbane 75 78 Mullen 89 82
Nguyen 79 76 Patel 71 77
Si 75 70 Tanaka 87 73
;
run;

title ’Test Scores for a College Course’;
proc univariate data=Score noprint;

histogram PreTest / midpoints = 45 to 95 by 10;
inset n / cfill=blank

header=’Position = NW’ pos=nw;
inset mean / cfill=blank

header=’Position = N ’ pos=n ;
inset sum / cfill=blank

header=’Position = NE’ pos=ne;
inset max / cfill=blank

header=’Position = E ’ pos=e ;
inset min / cfill=blank

header=’Position = SE’ pos=se;
inset nobs / cfill=blank

header=’Position = S ’ pos=s ;
inset range / cfill=blank

header=’Position = SW’ pos=sw;
inset mode / cfill=blank

header=’Position = W ’ pos=w ;
label PreTest = ’Pretest Score’;

run;



286 � Chapter 3. The UNIVARIATE Procedure

Figure 3.7. Compass Positions for Inset

Positioning the Inset in the Margins

To position the inset in one of the four margins that surround the plot area, specify
the value LM, RM, TM, or BM with the POSITION= option.

Locating the Inset in the Margins

Margin positions are recommended if you list a large number of statistics in the
INSET statement. If you attempt to display a lengthy inset in the interior of the
plot, it is most likely that the inset will collide with the data display.

Positioning the Inset Using Coordinates

To position the inset with coordinates, use POSITION=(x,y). You specify the coor-
dinates in axis data units or in axis percentage units (the default).

If you specify the DATA option immediately following the coordinates, PROC
UNIVARIATE positions the inset by using axis data units. For example, the fol-
lowing statements place the bottom left corner of the inset at 45 on the horizontal
axis and 10 on the vertical axis:

title ’Test Scores for a College Course’;
proc univariate data=Score noprint;

histogram PreTest / midpoints = 45 to 95 by 10;
inset n / header = ’Position=(45,10)’

position = (45,10) data;
run;



Positioning the Inset � 287

Figure 3.8. Coordinate Position for Inset

By default, the specified coordinates determine the position of the bottom left corner
of the inset. To change this reference point, use the REFPOINT= option (see the next
example).

If you omit the DATA option, PROC UNIVARIATE positions the inset by using axis
percentage units. The coordinates in axis percentage units must be between 0 and
100. The coordinates of the bottom left corner of the display are (0,0), while the
upper right corner is (100, 100). For example, the following statements create a
histogram and use coordinates in axis percentage units to position the two insets:

title ’Test Scores for a College Course’;
proc univariate data=Score noprint;

histogram PreTest / midpoints = 45 to 95 by 10;
inset min / position = (5,25)

header = ’Position=(5,25)’
refpoint = tl;

inset max / position = (95,95)
header = ’Position=(95,95)’
refpoint = tr;

run;

The REFPOINT= option determines which corner of the inset to place at the co-
ordinates that are specified with the POSITION= option. The first inset uses
REFPOINT=TL, so that the top left corner of the inset is positioned 5% of the way
across the horizontal axis and 25% of the way up the vertical axis. The second inset
uses REFPOINT=TR, so that the top right corner of the inset is positioned 95% of
the way across the horizontal axis and 95% of the way up the vertical axis.



288 � Chapter 3. The UNIVARIATE Procedure

Figure 3.9. Reference Point for Inset

A sample program,univar3.sas, for these examples is available in the SAS Sample
Library for Base SAS software.

Formulas for Fitted Continuous Distributions

The following sections provide information on the families of parametric distribu-
tions that you can fit with the HISTOGRAM statement. Properties of these distribu-
tions are discussed by Johnson, Kotz, and Balakrishnan (1994, 1995).

Beta Distribution

The fitted density function is

p(x) =

{
100h% (x−θ)α−1(σ+θ−x)β−1

B(α,β)σ(α+β−1) for θ < x < θ + σ

0 for x ≤ θ or x ≥ θ + σ

whereB(α, β) = Γ(α)Γ(β)
Γ(α+β) and

θ = lower threshold parameter (lower endpoint parameter)
σ = scale parameter(σ > 0)
α = shape parameter(α > 0)
β = shape parameter(β > 0)
h = width of histogram interval



Formulas for Fitted Continuous Distributions � 289

Note: This notation is consistent with that of other distributions that you can fit with
the HISTOGRAM statement. However, many texts, including Johnson, Kotz, and
Balakrishnan (1995), write the beta density function as

p(x) =

{
(x−a)p−1(b−x)q−1

B(p,q)(b−a)p+q−1 for a < x < b

0 for x ≤ a or x ≥ b

The two parameterizations are related as follows:

σ = b− a
θ = a
α = p
β = q

The range of the beta distribution is bounded below by a threshold parameterθ = a
and above byθ + σ = b. If you specify a fitted beta curve using the BETA option,
θ must be less than the minimum data value, andθ + σ must be greater than the
maximum data value. You can specifyθ andσ with the THETA= and SIGMA=
beta-options in parentheses after the keyword BETA. By default,σ = 1 andθ = 0.
If you specify THETA=EST and SIGMA=EST, maximum likelihood estimates are
computed forθ andσ. However, three- and four-parameter maximum likelihood
estimation may not always converge.

In addition, you can specifyα andβ with the ALPHA= and BETA=beta-options,
respectively. By default, the procedure calculates maximum likelihood estimates for
α andβ. For example, to fit a beta density curve to a set of data bounded below by 32
and above by 212 with maximum likelihood estimates forα andβ, use the following
statement:

histogram Length / beta(theta=32 sigma=180);

The beta distributions are also referred to as Pearson Type I or II distributions. These
include the power-function distribution (β = 1), the arc-sine distribution (α = β =
1
2 ), and the generalized arc-sine distributions (α+ β = 1, β 6= 1

2 ).

You can use the DATA step function BETAINV to compute beta quantiles and the
DATA step function PROBBETA to compute beta probabilities.

Exponential Distribution

The fitted density function is

p(x) =
{

100h%
σ exp(−(x−θ

σ )) for x ≥ θ
0 for x < θ

where

θ = threshold parameter
σ = scale parameter(σ > 0)
h = width of histogram interval



290 � Chapter 3. The UNIVARIATE Procedure

The threshold parameterθ must be less than or equal to the minimum data value. You
can specifyθ with the THRESHOLD=exponential-option. By default,θ = 0. If you
specify THETA=EST, a maximum likelihood estimate is computed forθ. In addition,
you can specifyσ with the SCALE=exponential-option. By default, the procedure
calculates a maximum likelihood estimate forσ. Note that some authors define the
scale parameter as1σ .

The exponential distribution is a special case of both the gamma distribution (with
α = 1) and the Weibull distribution (withc = 1). A related distribution is the
extreme value distribution. IfY = exp(−X) has an exponential distribution, thenX
has an extreme value distribution.

Gamma Distribution

The fitted density function is

p(x) =

{
100h%
Γ(α)σ (x−θ

σ )α−1 exp(−(x−θ
σ )) for x > θ

0 for x ≤ θ

where

θ = threshold parameter
σ = scale parameter(σ > 0)
α = shape parameter(α > 0)
h = width of histogram interval

The threshold parameterθ must be less than the minimum data value. You can spec-
ify θ with the THRESHOLD=gamma-option. By default,θ = 0. If you specify
THETA=EST, a maximum likelihood estimate is computed forθ. In addition, you
can specifyσ andα with the SCALE= and ALPHA=gamma-options. By default,
the procedure calculates maximum likelihood estimates forσ andα.

The gamma distributions are also referred to as Pearson Type III distributions, and
they include the chi-square, exponential, and Erlang distributions. The probability
density function for the chi-square distribution is

p(x) =

{
1

2Γ( ν
2
)

(
x
2

) ν
2
−1 exp(−x

2 ) for x > 0
0 for x ≤ 0

Notice that this is a gamma distribution withα = ν
2 , σ = 2, andθ = 0. The expo-

nential distribution is a gamma distribution withα = 1, and the Erlang distribution
is a gamma distribution withα being a positive integer. A related distribution is the
Rayleigh distribution. IfR = max(X1,...,Xn)

min(X1,...,Xn) where theXi’s are independentχ2
ν vari-

ables, thenlogR is distributed with aχν distribution having a probability density
function of

p(x) =

{ [
2

ν
2
−1Γ(ν

2 )
]−1

xν−1 exp(−x2

2 ) for x > 0
0 for x ≤ 0



Formulas for Fitted Continuous Distributions � 291

If ν = 2, the preceding distribution is referred to as the Rayleigh distribution.

You can use the DATA step function GAMINV to compute gamma quantiles and the
DATA step function PROBGAM to compute gamma probabilities.

Lognormal Distribution

The fitted density function is

p(x) =

{
100h%

σ
√

2π(x−θ)
exp

(
− (log(x−θ)−ζ)2

2σ2

)
for x > θ

0 for x ≤ θ

where

θ = threshold parameter
ζ = scale parameter(−∞ < ζ <∞)
σ = shape parameter(σ > 0)
h = width of histogram interval

The threshold parameterθmust be less than the minimum data value. You can specify
θ with the THRESHOLD=lognormal-option. By default,θ = 0. If you specify
THETA=EST, a maximum likelihood estimate is computed forθ. You can specifyζ
andσ with the SCALE= and SHAPE=lognormal-options, respectively. By default,
the procedure calculates maximum likelihood estimates for these parameters.

Note: The lognormal distribution is also referred to as theSL distribution in the
Johnson system of distributions.

Note: This book usesσ to denote the shape parameter of the lognormal distribution,
whereasσ is used to denote the scale parameter of the beta, exponential, gamma,
normal, and Weibull distributions. The use ofσ to denote the lognormal shape pa-
rameter is based on the fact that1

σ (log(X−θ)−ζ) has a standard normal distribution
if X is lognormally distributed. Based on this relationship, you can use the DATA
step function PROBIT to compute lognormal quantiles and the DATA step function
PROBNORM to compute probabilities.

Normal Distribution

The fitted density function is

p(x) = 100h%
σ
√

2π
exp

(
−1

2(x−µ
σ )2

)
for −∞ < x <∞

where

µ = mean
σ = standard deviation(σ > 0)
h = width of histogram interval



292 � Chapter 3. The UNIVARIATE Procedure

You can specifyµ andσ with the MU= and SIGMA=normal-options, respectively.
By default, the procedure estimatesµ with the sample mean andσ with the sample
standard deviation.

You can use the DATA step function PROBIT to compute normal quantiles and the
DATA step function PROBNORM to compute probabilities.

Note: The normal distribution is also referred to as theSN distribution in the Johnson
system of distributions.

Weibull Distribution

The fitted density function is

p(x) =
{

100h% c
σ (x−θ

σ )c−1 exp(−(x−θ
σ )c) for x > θ

0 for x ≤ θ

where

θ = threshold parameter
σ = scale parameter(σ > 0)
c = shape parameter(c > 0)
h = width of histogram interval

The threshold parameterθ must be less than the minimum data value. You can spec-
ify θ with the THRESHOLD=Weibull-option. By default,θ = 0. If you specify
THETA=EST, a maximum likelihood estimate is computed forθ. You can specifyσ
andc with the SCALE= and SHAPE=Weibull-options, respectively. By default, the
procedure calculates maximum likelihood estimates forσ andc.

The exponential distribution is a special case of the Weibull distribution wherec = 1.

Goodness-of-Fit Tests

When you specify the NORMAL option in the PROC UNIVARIATE statement or you
request a fitted parametric distribution in the HISTOGRAM statement, the procedure
computes goodness-of-fit tests for the null hypothesis that the values of the analysis
variable are a random sample from the specified theoretical distribution. SeeExample
3.22.

When you specify the NORMAL option, these tests, which are summarized in the
output table labeled “Tests for Normality,” include the following:

• Shapiro-Wilk test

• Kolmogorov-Smirnov test

• Anderson-Darling test

• Cramér-von Mises test



Goodness-of-Fit Tests � 293

The Kolmogorov-SmirnovD statistic, the Anderson-Darling statistic, and the
Cramér-von Mises statistic are based on the empirical distribution function (EDF).
However, some EDF tests are not supported when certain combinations of the pa-
rameters of a specified distribution are estimated. SeeTable 3.62on page 296 for a
list of the EDF tests available. You determine whether to reject the null hypothesis
by examining thep-value that is associated with a goodness-of-fit statistic. When the
p-value is less than the predetermined critical value (α), you reject the null hypothesis
and conclude that the data did not come from the specified distribution.

If you want to test the normality assumptions for analysis of variance methods, be-
ware of using a statistical test for normality alone. A test’s ability to reject the null
hypothesis (known as thepowerof the test) increases with the sample size. As the
sample size becomes larger, increasingly smaller departures from normality can be
detected. Since small deviations from normality do not severely affect the valid-
ity of analysis of variance tests, it is important to examine other statistics and plots
to make a final assessment of normality. The skewness and kurtosis measures and
the plots that are provided by the PLOTS option, the HISTOGRAM statement, the
PROBPLOT statement, and the QQPLOT statement can be very helpful. For small
sample sizes, power is low for detecting larger departures from normality that may
be important. To increase the test’s ability to detect such deviations, you may want to
declare significance at higher levels, such as 0.15 or 0.20, rather than the often-used
0.05 level. Again, consulting plots and additional statistics will help you assess the
severity of the deviations from normality.

Shapiro-Wilk Statistic

If the sample size is less than or equal to 2000 and you specify the NORMAL option,
PROC UNIVARIATE computes the Shapiro-Wilk statistic,W (also denoted asWn

to emphasize its dependence on the sample sizen). TheW statistic is the ratio of
the best estimator of the variance (based on the square of a linear combination of
the order statistics) to the usual corrected sum of squares estimator of the variance
(Shapiro and Wilk 1965). Whenn is greater than three, the coefficients to com-
pute the linear combination of the order statistics are approximated by the method of
Royston (1992). The statisticW is always greater than zero and less than or equal to
one(0 < W ≤ 1).

Small values ofW lead to the rejection of the null hypothesis of normality. The
distribution of W is highly skewed. Seemingly large values ofW (such as 0.90)
may be considered small and lead you to reject the null hypothesis. The method for
computing thep-value (the probability of obtaining aW statistic less than or equal
to the observed value) depends onn. Forn = 3, the probability distribution ofW is
known and is used to determine thep-value. Forn > 4, a normalizing transformation
is computed:

Zn =
{

(− log(γ − log(1−Wn))− µ)/σ if 4 ≤ n ≤ 11
(log(1−Wn)− µ)/σ if 12 ≤ n ≤ 2000



294 � Chapter 3. The UNIVARIATE Procedure

The values ofσ, γ, andµ are functions ofn obtained from simulation results. Large
values ofZn indicate departure from normality, and since the statisticZn has an
approximately standard normal distribution, this distribution is used to determine the
p-values forn > 4.

EDF Goodness-of-Fit Tests

When you fit a parametric distribution, PROC UNIVARIATE provides a series of
goodness-of-fit tests based on the empirical distribution function (EDF). The EDF
tests offer advantages over traditional chi-square goodness-of-fit test, including im-
proved power and invariance with respect to the histogram midpoints. For a thorough
discussion, refer to D’Agostino and Stephens (1986).

The empirical distribution function is defined for a set ofn independent observations
X1, . . . , Xn with a common distribution functionF (x). Denote the observations or-
dered from smallest to largest asX(1), . . . , X(n). The empirical distribution function,
Fn(x), is defined as

Fn(x) = 0, x < X(1)

Fn(x) = i
n , X(i) ≤ x < X(i+1) i = 1, . . . , n− 1

Fn(x) = 1, X(n) ≤ x

Note thatFn(x) is a step function that takes a step of height1
n at each observation.

This function estimates the distribution functionF (x). At any valuex, Fn(x) is the
proportion of observations less than or equal tox, whileF (x) is the probability of an
observation less than or equal tox. EDF statistics measure the discrepancy between
Fn(x) andF (x).

The computational formulas for the EDF statistics make use of the probability integral
transformationU = F (X). If F (X) is the distribution function ofX, the random
variableU is uniformly distributed between 0 and 1.

Givenn observationsX(1), . . . , X(n), the valuesU(i) = F (X(i)) are computed by
applying the transformation, as discussed in the next three sections.

PROC UNIVARIATE provides three EDF tests:

• Kolmogorov-Smirnov
• Anderson-Darling
• Cramér-von Mises

The following sections provide formal definitions of these EDF statistics.

Kolmogorov D Statistic

The Kolmogorov-Smirnov statistic (D) is defined as

D = supx|Fn(x)− F (x)|

The Kolmogorov-Smirnov statistic belongs to the supremum class of EDF statistics.
This class of statistics is based on the largest vertical difference betweenF (x) and
Fn(x).



Goodness-of-Fit Tests � 295

The Kolmogorov-Smirnov statistic is computed as the maximum ofD+ andD−,
whereD+ is the largest vertical distance between the EDF and the distribution func-
tion when the EDF is greater than the distribution function, andD− is the largest
vertical distance when the EDF is less than the distribution function.

D+ = maxi

(
i
n − U(i)

)
D− = maxi

(
U(i) − i−1

n

)
D = max (D+, D−)

PROC UNIVARIATE uses a modified KolmogorovD statistic to test the data against
a normal distribution with mean and variance equal to the sample mean and variance.

Anderson-Darling Statistic

The Anderson-Darling statistic and the Cramér-von Mises statistic belong to the
quadratic class of EDF statistics. This class of statistics is based on the squared
difference(Fn(x)− F (x))2. Quadratic statistics have the following general form:

Q = n

∫ +∞

−∞
(Fn(x)− F (x))2ψ(x)dF (x)

The functionψ(x) weights the squared difference(Fn(x)− F (x))2.

The Anderson-Darling statistic (A2) is defined as

A2 = n

∫ +∞

−∞
(Fn(x)− F (x))2 [F (x) (1− F (x))]−1 dF (x)

Here the weight function isψ(x) = [F (x) (1− F (x))]−1.

The Anderson-Darling statistic is computed as

A2 = −n− 1
n

n∑
i=1

[
(2i− 1) logU(i) + (2n+ 1− 2i) log(1− U(i))

]
Cramér-von Mises Statistic

The Cramér-von Mises statistic (W 2) is defined as

W 2 = n

∫ +∞

−∞
(Fn(x)− F (x))2dF (x)

Here the weight function isψ(x) = 1.

The Cramér-von Mises statistic is computed as

W 2 =
n∑

i=1

(
U(i) −

2i− 1
2n

)2

+
1

12n



296 � Chapter 3. The UNIVARIATE Procedure

Probability Values of EDF Tests

Once the EDF test statistics are computed, PROC UNIVARIATE computes the asso-
ciated probability values (p-values). The UNIVARIATE procedure uses internal ta-
bles of probability levels similar to those given by D’Agostino and Stephens (1986).
If the value is between two probability levels, then linear interpolation is used to
estimate the probability value.

The probability value depends upon the parameters that are known and the parameters
that are estimated for the distribution.Table 3.62summarizes different combinations
fitted for which EDF tests are available.

Table 3.62. Availability of EDF Tests
Distribution Parameters Tests Available

Threshold Scale Shape
Beta θ known σ known α, β known all

θ known σ known α, β < 5 unknown all
Exponential θ known, σ known all

θ known σ unknown all
θ unknown σ known all
θ unknown σ unknown all

Gamma θ known σ known α known all
θ known σ unknown α known all
θ known σ known α unknown all
θ known σ unknown α unknown all
θ unknown σ known α > 1 known all
θ unknown σ unknown α > 1 known all
θ unknown σ known α > 1 unknown all
θ unknown σ unknown α > 1 unknown all

Lognormal θ known ζ known σ known all
θ known ζ known σ unknown A2 andW 2

θ known ζ unknown σ known A2 andW 2

θ known ζ unknown σ unknown all
θ unknown ζ known σ < 3 known all
θ unknown ζ known σ < 3 unknown all
θ unknown ζ unknown σ < 3 known all
θ unknown ζ unknown σ < 3 unknown all

Normal θ known σ known all
θ known σ unknown A2 andW 2

θ unknown σ known A2 andW 2

θ unknown σ unknown all
Weibull θ known σ known c known all

θ known σ unknown c known A2 andW 2

θ known σ known c unknown A2 andW 2

θ known σ unknown c unknown A2 andW 2

θ unknown σ known c > 2 known all
θ unknown σ unknown c > 2 known all
θ unknown σ known c > 2 unknown all
θ unknown σ unknown c > 2 unknown all



Kernel Density Estimates � 297

Kernel Density Estimates

You can use the KERNEL option to superimpose kernel density estimates on his-
tograms. Smoothing the data distribution with a kernel density estimate can be more
effective than using a histogram to identify features that might be obscured by the
choice of histogram bins or sampling variation. A kernel density estimate can also
be more effective than a parametric curve fit when the process distribution is multi-
modal. SeeExample 3.23.

The general form of the kernel density estimator is

f̂λ(x) =
100h%
nλ

n∑
i=1

K0

(
x− xi

λ

)

whereK0(·) is the kernel function,λ is the bandwidth,n is the sample size andxi is
theith observation.

The KERNEL option provides three kernel functions (K0): normal, quadratic, and
triangular. You can specify the function with the K=kernel-option in parentheses
after the KERNEL option. Values for the K= option are NORMAL, QUADRATIC,
and TRIANGULAR (with aliases of N, Q, and T, respectively). By default, a normal
kernel is used. The formulas for the kernel functions are

Normal K0(t) = 1√
2π

exp(−1
2 t

2) for −∞ < t <∞

Quadratic K0(t) = 3
4(1− t2) for |t| ≤ 1

Triangular K0(t) = 1− |t| for |t| ≤ 1

The value ofλ, referred to as the bandwidth parameter, determines the degree of
smoothness in the estimated density function. You specifyλ indirectly by specifying
a standardized bandwidthc with the C=kernel-option. If Q is the interquartile range,
andn is the sample size, thenc is related toλ by the formula

λ = cQn−
1
5

For a specific kernel function, the discrepancy between the density estimatorf̂λ(x)
and the true densityf(x) is measured by the mean integrated square error (MISE):

MISE(λ) =
∫

x
{E(f̂λ(x))− f(x)}2dx+

∫
x
var(f̂λ(x))dx

The MISE is the sum of the integrated squared bias and the variance. An approximate
mean integrated square error (AMISE) is

AMISE(λ) =
1
4
λ4

(∫
t
t2K(t)dt

)2 ∫
x

(
f ′′(x)

)2
dx+

1
nλ

∫
t
K(t)2dt



298 � Chapter 3. The UNIVARIATE Procedure

A bandwidth that minimizes AMISE can be derived by treatingf(x) as the normal
density having parametersµ andσ estimated by the sample mean and standard de-
viation. If you do not specify a bandwidth parameter or if you specify C=MISE, the
bandwidth that minimizes AMISE is used. The value of AMISE can be used to com-
pare different density estimates. For each estimate, the bandwidth parameterc, the
kernel function type, and the value of AMISE are reported in the SAS log.

The general kernel density estimates assume that the domain of the density to estimate
can take on all values on a real line. However, sometimes the domain of a density is an
interval bounded on one or both sides. For example, if a variable Y is a measurement
of only positive values, then the kernel density curve should be bounded so that is
zero for negative Y values. You can use the LOWER= and UPPER=kernel-options
to specify the bounds.

The UNIVARIATE procedure uses a reflection technique to create the bounded kernel
density curve, as described in Silverman (1986, pp. 30-31). It adds the reflections
of the kernel density that are outside the boundary to the bounded kernel estimates.
The general form of the bounded kernel density estimator is computed by replacing
K0

(
x−xi

λ

)
in the original equation with

{
K0

(
x− xi

λ

)
+K0

(
(x− xl) + (xi − xl)

λ

)
+K0

(
(xu − x) + (xu − xi)

λ

)}
wherexl is the lower bound andxu is the upper bound.

Without a lower bound,xl = −∞ andK0

(
(x−xl)+(xi−xl)

λ

)
equals zero. Similarly,

without an upper bound,xu = ∞ andK0

(
(xu−x)+(xu−xi)

λ

)
equals zero.

When C=MISE is used with a bounded kernel density, the UNIVARIATE procedure
uses a bandwidth that minimizes the AMISE for its corresponding unbounded kernel.

Construction of Quantile-Quantile and Probability Plots

Figure 3.10illustrates how a Q-Q plot is constructed for a specified theoretical dis-
tribution. First, then nonmissing values of the variable are ordered from smallest to
largest:

x(1) ≤ x(2) ≤ · · · ≤ x(n)

Then theith ordered valuex(i) is plotted as a point whosey-coordinate isx(i) and

whosex-coordinate isF−1
(

i−0.375
n+0.25

)
, whereF (·) is the specified distribution with

zero location parameter and unit scale parameter.

You can modify the adjustment constants−0.375 and 0.25 with the RANKADJ= and
NADJ= options. This default combination is recommended by Blom (1958). For
additional information, refer to Chambers et al. (1983). Sincex(i) is a quantile of the
empirical cumulative distribution function (ecdf), a Q-Q plot compares quantiles of
the ecdf with quantiles of a theoretical distribution. Probability plots (see the section
“PROBPLOT Statement”on page 241) are constructed the same way, except that the
x-axis is scaled nonlinearly in percentiles.



Interpretation of Quantile-Quantile and Probability Plots � 299

F   (            )

i    pointth

Y

X

x (i)

i - 0.375

n + 0.25

-1

Figure 3.10. Construction of a Q-Q Plot

Interpretation of Quantile-Quantile and Probability Plots

The following properties of Q-Q plots and probability plots make them useful diag-
nostics of how well a specified theoretical distribution fits a set of measurements:

• If the quantiles of the theoretical and data distributions agree, the plotted points
fall on or near the liney = x.

• If the theoretical and data distributions differ only in their location or scale, the
points on the plot fall on or near the liney = ax+ b. The slopea and intercept
b are visual estimates of the scale and location parameters of the theoretical
distribution.

Q-Q plots are more convenient than probability plots for graphical estimation of the
location and scale parameters since thex-axis of a Q-Q plot is scaled linearly. On
the other hand, probability plots are more convenient for estimating percentiles or
probabilities.

There are many reasons why the point pattern in a Q-Q plot may not be linear.
Chambers et al. (1983) and Fowlkes (1987) discuss the interpretations of commonly
encountered departures from linearity, and these are summarized inTable 3.63.

In some applications, a nonlinear pattern may be more revealing than a linear pattern.
However, Chambers et al. (1983) note that departures from linearity can also be due
to chance variation.



300 � Chapter 3. The UNIVARIATE Procedure

Table 3.63. Quantile-Quantile Plot Diagnostics
Description of Point Pattern Possible Interpretation

All but a few points fall on a line Outliers in the data

Left end of pattern is below the line;
right end of pattern is above the line

Long tails at both ends of the data
distribution

Left end of pattern is above the line;
right end of pattern is below the line

Short tails at both ends of the data
distribution

Curved pattern with slope increasing
from left to right

Data distribution is skewed to the right

Curved pattern with slope decreasing
from left to right

Data distribution is skewed to the left

Staircase pattern (plateaus and gaps)Data have been rounded or are discrete

When the pattern is linear, you can use Q-Q plots to estimate shape, location, and
scale parameters and to estimate percentiles. SeeExample 3.26throughExample
3.34.

Distributions for Probability and Q-Q Plots

You can use the PROBPLOT and QQPLOT statements to request probability and Q-Q
plots that are based on the theoretical distributions summarized inTable 3.64.

Table 3.64. Distributions and Parameters
Parameters

Distribution Density Functionp(x) Range Location Scale Shape

Beta (x−θ)α−1(θ+σ−x)β−1

B(α,β)σ(α+β−1) θ < x < θ + σ θ σ α, β

Exponential 1
σ exp

(
−x−θ

σ

)
x ≥ θ θ σ

Gamma 1
σΓ(α)

(
x−θ
σ

)α−1
exp

(
−x−θ

σ

)
x > θ θ σ α

Lognormal 1
σ
√

2π(x−θ)
exp

(
− (log(x−θ)−ζ)2

2σ2

)
x > θ θ ζ σ

(3-parameter)

Normal 1
σ
√

2π
exp

(
− (x−µ)2

2σ2

)
all x µ σ

Weibull c
σ

(
x−θ
σ

)c−1
exp

(
−
(

x−θ
σ

)c)
x > θ θ σ c

(3-parameter)

Weibull c
σ

(
x−θ0

σ

)c−1
exp

(
−
(

x−θ0
σ

)c)
x > θ0 θ0 σ c

(2-parameter) (known)



Distributions for Probability and Q-Q Plots � 301

You can request these distributions with the BETA, EXPONENTIAL, GAMMA,
LOGNORMAL, NORMAL, WEIBULL, and WEIBULL2 options, respectively. If
you do not specify a distribution option, a normal probability plot or a normal Q-Q
plot is created.

The following sections provide details for constructing Q-Q plots that are based on
these distributions. Probability plots are constructed similarly except that the hori-
zontal axis is scaled in percentile units.

Beta Distribution

To create the plot, the observations are ordered from smallest to largest, and theith or-

dered observation is plotted against the quantileB−1
αβ

(
i−0.375
n+0.25

)
, whereB−1

αβ (·) is the

inverse normalized incomplete beta function,n is the number of nonmissing observa-
tions, andα andβ are the shape parameters of the beta distribution. In a probability
plot, the horizontal axis is scaled in percentile units.

The pattern on the plot for ALPHA=α and BETA=β tends to be linear with intercept
θ and slopeσ if the data are beta distributed with the specific density function

p(x) =

{
(x−θ)α−1(θ+σ−x)β−1

B(α,β)σ(α+β−1) for θ < x < θ + σ

0 for x ≤ θ or x ≥ θ + σ

whereB(α, β) = Γ(α)Γ(β)
Γ(α+β) and

θ = lower threshold parameter
σ = scale parameter(σ > 0)
α = first shape parameter(α > 0)
β = second shape parameter(β > 0)

Exponential Distribution

To create the plot, the observations are ordered from smallest to largest, and theith

ordered observation is plotted against the quantile− log
(
1− i−0.375

n+0.25

)
, wheren is

the number of nonmissing observations. In a probability plot, the horizontal axis is
scaled in percentile units.

The pattern on the plot tends to be linear with interceptθ and slopeσ if the data are
exponentially distributed with the specific density function

p(x) =
{

1
σ exp

(
−x−θ

σ

)
for x ≥ θ

0 for x < θ

whereθ is a threshold parameter, andσ is a positive scale parameter.

Gamma Distribution

To create the plot, the observations are ordered from smallest to largest, and theith

ordered observation is plotted against the quantileG−1
α

(
i−0.375
n+0.25

)
, whereG−1

α (·) is

the inverse normalized incomplete gamma function,n is the number of nonmissing
observations, andα is the shape parameter of the gamma distribution. In a probability
plot, the horizontal axis is scaled in percentile units.



302 � Chapter 3. The UNIVARIATE Procedure

The pattern on the plot for ALPHA=α tends to be linear with interceptθ and slopeσ
if the data are gamma distributed with the specific density function

p(x) =

{
1

σΓ(α)

(
x−θ
σ

)α−1
exp

(
−x−θ

σ

)
for x > θ

0 for x ≤ θ

where
θ = threshold parameter
σ = scale parameter(σ > 0)
α = shape parameter(α > 0)

Lognormal Distribution

To create the plot, the observations are ordered from smallest to largest, and the

ith ordered observation is plotted against the quantileexp
(
σΦ−1

(
i−0.375
n+0.25

))
, where

Φ−1(·) is the inverse cumulative standard normal distribution,n is the number of
nonmissing observations, andσ is the shape parameter of the lognormal distribution.
In a probability plot, the horizontal axis is scaled in percentile units.

The pattern on the plot for SIGMA=σ tends to be linear with interceptθ and slope
exp(ζ) if the data are lognormally distributed with the specific density function

p(x) =

{
1

σ
√

2π(x−θ)
exp

(
− (log(x−θ)−ζ)2

2σ2

)
for x > θ

0 for x ≤ θ

where
θ = threshold parameter
ζ = scale parameter
σ = shape parameter(σ > 0)

SeeExample 3.26andExample 3.33.

Normal Distribution

To create the plot, the observations are ordered from smallest to largest, and theith

ordered observation is plotted against the quantileΦ−1
(

i−0.375
n+0.25

)
, whereΦ−1(·) is the

inverse cumulative standard normal distribution, andn is the number of nonmissing
observations. In a probability plot, the horizontal axis is scaled in percentile units.

The point pattern on the plot tends to be linear with interceptµ and slopeσ if the data
are normally distributed with the specific density function

p(x) = 1
σ
√

2π
exp

(
− (x−µ)2

2σ2

)
for all x

whereµ is the mean, andσ is the standard deviation (σ > 0).

Three-Parameter Weibull Distribution

To create the plot, the observations are ordered from smallest to largest, and theith

ordered observation is plotted against the quantile
(
− log

(
1− i−0.375

n+0.25

)) 1
c
, where

n is the number of nonmissing observations, andc is the Weibull distribution shape
parameter. In a probability plot, the horizontal axis is scaled in percentile units.



Estimating Shape Parameters Using Q-Q Plots � 303

The pattern on the plot for C=c tends to be linear with interceptθ and slopeσ if the
data are Weibull distributed with the specific density function

p(x) =

{
c
σ

(
x−θ
σ

)c−1
exp

(
−
(

x−θ
σ

)c)
for x > θ

0 for x ≤ θ
where

θ = threshold parameter
σ = scale parameter(σ > 0)
c = shape parameter(c > 0)

SeeExample 3.34.

Two-Parameter Weibull Distribution

To create the plot, the observations are ordered from smallest to largest, and the log of
the shiftedith ordered observationx(i), denoted bylog(x(i) − θ0), is plotted against

the quantilelog
(
− log

(
1− i−0.375

n+0.25

))
, wheren is the number of nonmissing obser-

vations. In a probability plot, the horizontal axis is scaled in percentile units.

Unlike the three-parameter Weibull quantile, the preceding expression is free of dis-
tribution parameters. Consequently, the C= shape parameter is not mandatory with
the WEIBULL2 distribution option.

The pattern on the plot for THETA=θ0 tends to be linear with interceptlog(σ) and
slope1

c if the data are Weibull distributed with the specific density function

p(x) =

{
c
σ

(
x−θ0

σ

)c−1
exp

(
−
(

x−θ0
σ

)c)
for x > θ0

0 for x ≤ θ0
where

θ0 = known lower threshold
σ = scale parameter(σ > 0)
c = shape parameter(c > 0)

SeeExample 3.34.

Estimating Shape Parameters Using Q-Q Plots

Some of the distribution options in the PROBPLOT or QQPLOT statements require
you to specify one or two shape parameters in parentheses after the distribution key-
word. These are summarized inTable 3.65.

You can visually estimate the value of a shape parameter by specifying a list of val-
ues for the shape parameter option. A separate plot is produced for each value, and
you can then select the value of the shape parameter that produces the most nearly
linear point pattern. Alternatively, you can request that the plot be created using an
estimated shape parameter. See the entries for the distribution options in the sec-
tion “Dictionary of Options”on page 245 (for the PROBPLOT statement) and in the
section“Dictionary of Options”on page 258 (for the QQPLOT statement).

Note: For Q-Q plots created with the WEIBULL2 option, you can estimate the shape
parameterc from a linear pattern using the fact that the slope of the pattern is1

c .



304 � Chapter 3. The UNIVARIATE Procedure

Table 3.65. Shape Parameter Options
Distribution Keyword Mandatory Shape Parameter Option Range

BETA ALPHA=α, BETA=β α > 0, β > 0

EXPONENTIAL None

GAMMA ALPHA=α α > 0

LOGNORMAL SIGMA=σ σ > 0

NORMAL None

WEIBULL C=c c > 0

WEIBULL2 None

Estimating Location and Scale Parameters Using Q-Q Plots

If you specify location and scale parameters for a distribution in a PROBPLOT or
QQPLOT statement (or if you request estimates for these parameters), a diagonal dis-
tribution reference line is displayed on the plot. (An exception is the two-parameter
Weibull distribution, for which a line is displayed when you specify or estimate the
scale and shape parameters.) Agreement between this line and the point pattern indi-
cates that the distribution with these parameters is a good fit.

When the point pattern on a Q-Q plot is linear, its intercept and slope provide es-
timates of the location and scale parameters. (An exception to this rule is the two-
parameter Weibull distribution, for which the intercept and slope are related to the
scale and shape parameters.)

Table 3.66shows how the specified parameters determine the intercept and slope of
the line. The intercept and slope are based on the quantile scale for the horizontal
axis, which is used in Q-Q plots.

Table 3.66. Intercept and Slope of Distribution Reference Line
Parameters Linear Pattern

Distribution Location Scale Shape Intercept Slope
Beta θ σ α , β θ σ

Exponential θ σ θ σ
Gamma θ σ α θ σ

Lognormal θ ζ σ θ exp(ζ)
Normal µ σ µ σ

Weibull (3-parameter) θ σ c θ σ
Weibull (2-parameter) θ0 (known) σ c log(σ) 1

c

For instance, specifying MU=3 and SIGMA=2 with the NORMAL option requests
a line with intercept 3 and slope 2. Specifying SIGMA=1 and C=2 with the
WEIBULL2 option requests a line with interceptlog(1) = 0 and slope1

2 . On a
probability plot with the LOGNORMAL and WEIBULL2 options, you can specify
the slope directly with the SLOPE= option. That is, for the LOGNORMAL option,
specifying THETA=θ0 and SLOPE=exp(ζ0) displays the same line as specifying
THETA= θ0 and ZETA=ζ0. For the WEIBULL2 option, specifying SIGMA=σ0 and
SLOPE= 1

c0
displays the same line as specifying SIGMA=σ0 and C=c0.



Input Data Sets � 305

Estimating Percentiles Using Q-Q Plots

There are two ways to estimate percentiles from a Q-Q plot:

• Specify the PCTLAXIS option, which adds a percentile axis opposite the the-
oretical quantile axis. The scale for the percentile axis ranges between 0 and
100 with tick marks at percentile values such as 1, 5, 10, 25, 50, 75, 90, 95,
and 99.

• Specify the PCTLSCALE option, which relabels the horizontal axis tick marks
with their percentile equivalents but does not alter their spacing. For example,
on a normal Q-Q plot, the tick mark labeled “0” is relabeled as “50” since the
50th percentile corresponds to the zero quantile.

You can also estimate percentiles using probability plots created with the PROBPLOT
statement. SeeExample 3.32.

Input Data Sets

DATA= Data Set

The DATA= data set provides the set of variables that are analyzed. The
UNIVARIATE procedure must have a DATA= data set. If you do not specify one
with the DATA= option in the PROC UNIVARIATE statement, the procedure uses
the last data set created.

ANNOTATE= Data Sets

You can add features to plots by specifying ANNOTATE= data sets either in the
PROC UNIVARIATE statement or in individual plot statements.

Information contained in an ANNOTATE= data set specified in the PROC
UNIVARIATE statement is used for all plots produced in a given PROC step; this
is a “global” ANNOTATE= data set. By using this global data set, you can keep
information common to all high-resolution plots in one data set.

Information contained in the ANNOTATE= data set specified in a plot statement is
used only for plots produced by that statement; this is a “local” ANNOTATE= data
set. By using this data set, you can add statement-specific features to plots. For
example, you can add different features to plots produced by the HISTOGRAM and
QQPLOT statements by specifying an ANNOTATE= data set in each plot statement.

You can specify an ANNOTATE= data set in the PROC UNIVARIATE statement and
in plot statements. This enables you to add some features to all plots and also add
statement-specific features to plots. SeeExample 3.25.



306 � Chapter 3. The UNIVARIATE Procedure

OUT= Output Data Set in the OUTPUT Statement

PROC UNIVARIATE creates an OUT= data set for each OUTPUT statement. This
data set contains an observation for each combination of levels of the variables in the
BY statement, or a single observation if you do not specify a BY statement. Thus
the number of observations in the new data set corresponds to the number of groups
for which statistics are calculated. Without a BY statement, the procedure computes
statistics and percentiles by using all the observations in the input data set. With a BY
statement, the procedure computes statistics and percentiles by using the observations
within each BY group.

The variables in the OUT= data set are as follows:

• BY statement variables. The values of these variables match the values in the
corresponding BY group in the DATA= data set and indicate which BY group
each observation summarizes.

• variables created by selecting statistics in the OUTPUT statement. The statis-
tics are computed using all the nonmissing data, or they are computed for each
BY group if you use a BY statement.

• variables created by requesting new percentiles with the PCTLPTS= option.
The names of these new variables depend on the values of the PCTLPRE= and
PCTLNAME= options.

If the output data set contains a percentile variable or a quartile variable, the per-
centile definition assigned with the PCTLDEF= option in the PROC UNIVARIATE
statement is recorded in the output data set label. SeeExample 3.8.

The following table lists variables available in the OUT= data set.

Table 3.67. Variables Available in the OUT= Data Set

Variable Name Description
Descriptive Statistics
CSS Sum of squares corrected for the mean
CV Percent coefficient of variation
KURTOSIS Measurement of the heaviness of tails
MAX Largest (maximum) value
MEAN Arithmetic mean
MIN Smallest (minimum) value
MODE Most frequent value (if not unique, the smallest mode)
N Number of observations on which calculations are based
NMISS Number of missing observations
NOBS Total number of observations
RANGE Difference between the maximum and minimum values
SKEWNESS Measurement of the tendency of the deviations to be larger in one di-

rection than in the other
STD Standard deviation
STDMEAN Standard error of the mean
SUM Sum
SUMWGT Sum of the weights



OUT= Output Data Set in the OUTPUT Statement � 307

Table 3.67. (continued)

Variable Name Description
USS Uncorrected sum of squares
VAR Variance
Quantile Statistics
MEDIAN|P50 Middle value (50th percentile)
P1 1st percentile
P5 5th percentile
P10 10th percentile
P90 90th percentile
P95 95th percentile
P99 99th percentile
Q1|P25 Lower quartile (25th percentile)
Q3|P75 Upper quartile (75th percentile)
QRANGE Difference between the upper and lower quartiles (also known as the

inner quartile range)
Robust Statistics
GINI Gini’s mean difference
MAD Median absolute difference
QN 2nd variation of median absolute difference
SN 1st variation of median absolute difference
STD–GINI Standard deviation for Gini’s mean difference
STD–MAD Standard deviation for median absolute difference
STD–QN Standard deviation for the second variation of the median absolute dif-

ference
STD–QRANGE Estimate of the standard deviation, based on interquartile range
STD–SN Standard deviation for the first variation of the median absolute differ-

ence
Hypothesis Test Statistics
MSIGN Sign statistic
NORMAL Test statistic for normality. If the sample size is less than or equal

to 2000, this is the Shapiro-WilkW statistic. Otherwise, it is the
KolmogorovD statistic.

PROBM Probability of a greater absolute value for the sign statistic
PROBN Probability that the data came from a normal distribution
PROBS Probability of a greater absolute value for the signed rank statistic
PROBT Two-tailedp-value for Student’st statistic withn− 1 degrees of free-

dom
SIGNRANK Signed rank statistic
T Student’st statistic to test the null hypothesis that the population mean

is equal toµ0



308 � Chapter 3. The UNIVARIATE Procedure

OUTHISTOGRAM= Output Data Set

You can create an OUTHISTOGRAM= data set with the HISTOGRAM statement.
This data set contains information about histogram intervals. Since you can specify
multiple HISTOGRAM statements with the UNIVARIATE procedure, you can create
multiple OUTHISTOGRAM= data sets.

An OUTHISTOGRAM= data set contains a group of observations for each variable
in the HISTOGRAM statement. The group contains an observation for each interval
of the histogram, beginning with the leftmost interval that contains a value of the vari-
able and ending with the rightmost interval that contains a value of the variable. These
intervals will not necessarily coincide with the intervals displayed in the histogram
since the histogram may be padded with empty intervals at either end. If you super-
impose one or more fitted curves on the histogram, the OUTHISTOGRAM= data set
contains multiple groups of observations for each variable (one group for each curve).
If you use a BY statement, the OUTHISTOGRAM= data set contains groups of ob-
servations for each BY group. ID variables are not saved in an OUTHISTOGRAM=
data set.

By default, an OUTHISTOGRAM= data set contains the–MIDPT– variable, whose
values identify histogram intervals by their midpoints. When the ENDPOINTS= or
NENDPOINTS option is specified, intervals are identified by endpoint values instead.
If the RTINCLUDE option is specified, the–MAXPT– variable contains upper end-
point values. Otherwise, the–MINPT– variable contains lower endpoint values. See
Example 3.18.

Table 3.68. Variables in the OUTHISTOGRAM= Data Set
Variable Description

–CURVE– Name of fitted distribution (if requested in HISTOGRAM
statement)

–EXPPCT– Estimated percent of population in histogram interval determined
from optional fitted distribution

–MAXPT– Upper endpoint of histogram interval

–MIDPT– Midpoint of histogram interval

–MINPT– Lower endpoint of histogram interval

–OBSPCT– Percent of variable values in histogram interval

–VAR– Variable name

Tables for Summary Statistics

By default, PROC UNIVARIATE produces ODS tables of moments, basic statistical
measures, tests for location, quantiles, and extreme observations. You must specify
options in the PROC UNIVARIATE statement to request other statistics and tables.
The CIBASIC option produces a table that displays confidence limits for the mean,
standard deviation, and variance. The CIPCTLDF and CIPCTLNORMAL options
request tables of confidence limits for the quantiles. The LOCCOUNT option re-
quests a table that shows the number of values greater than, not equal to, and less
than the value of MU0=. The FREQ option requests a table of frequencies counts.



ODS Table Names � 309

The NEXTRVAL= option requests a table of extreme values. The NORMAL option
requests a table with tests for normality.

The TRIMMED=, WINSORIZED=, and ROBUSTCALE options request tables with
robust estimators. The table of trimmed or Winsorized means includes the percentage
and the number of observations that are trimmed or Winsorized at each end, the mean
and standard error, confidence limits, and the Student’st test. The table with robust
measures of scale includes interquartile range, Gini’s mean differenceG, MAD, Qn,
andSn, with their corresponding estimates ofσ.

See the section“ODS Table Names”on page 309 for the names of ODS tables created
by PROC UNIVARIATE.

ODS Table Names

PROC UNIVARIATE assigns a name to each table that it creates. You can use these
names to reference the table when using the Output Delivery System (ODS) to select
tables and create output data sets.

Table 3.69. ODS Tables Produced with the PROC UNIVARIATE Statement

ODS Table Name Description Option
BasicIntervals Confidence intervals for mean,

standard deviation, variance
CIBASIC

BasicMeasures Measures of location and vari-
ability

Default

ExtremeObs Extreme observations Default
ExtremeValues Extreme values NEXTRVAL=
Frequencies Frequencies FREQ
LocationCounts Counts used for sign test and

signed rank test
LOCCOUNT

MissingValues Missing values Default, if missing val-
ues exist

Modes Modes MODES
Moments Sample moments Default
Plots Line printer plots PLOTS
Quantiles Quantiles Default
RobustScale Robust measures of scale ROBUSTSCALE
SSPlots Line printer side-by-side box

plots
PLOTS (with BY state-
ment)

TestsForLocation Tests for location Default
TestsForNormality Tests for normality NORMALTEST
TrimmedMeans Trimmed means TRIMMED=
WinsorizedMeans Winsorized means WINSORIZED=



310 � Chapter 3. The UNIVARIATE Procedure

Table 3.70. ODS Tables Produced with the HISTOGRAM Statement

ODS Table Name Description Option
Bins Histogram bins MIDPERCENTS sec-

ondary option
FitQuantiles Quantiles of fitted distribution Any distribution option
GoodnessOfFit Goodness-of-fit tests for fitted

distribution
Any distribution option

HistogramBins Histogram bins MIDPERCENTS option
ParameterEstimates Parameter estimates for fitted

distribution
Any distribution option

ODS Tables for Fitted Distributions

If you request a fitted parametric distribution with a HISTOGRAM statement, PROC
UNIVARIATE creates a summary that is organized into the ODS tables described in
this section.

Parameters

The ParameterEstimates table lists the estimated (or specified) parameters for the
fitted curve as well as the estimated mean and estimated standard deviation. See
“Formulas for Fitted Continuous Distributions”on page 288.

EDF Goodness-of-Fit Tests

When you fit a parametric distribution, the HISTOGRAM statement provides a series
of goodness-of-fit tests based on the empirical distribution function (EDF). See“EDF
Goodness-of-Fit Tests”on page 294. These are displayed in the GoodnessOfFit table.

Histogram Intervals

The Bins table is included in the summary only if you specify the MIDPERCENTS
option in parentheses after the distribution option. This table lists the midpoints for
the histogram bins along with the observed and estimated percentages of the ob-
servations that lie in each bin. The estimated percentages are based on the fitted
distribution.

If you specify the MIDPERCENTS option without requesting a fitted distribution,
the HistogramBins table is included in the summary. This table lists the interval
midpoints with the observed percent of observations that lie in the interval. See the
entry for theMIDPERCENTS optionon page 225.

Quantiles

The FitQuantiles table lists observed and estimated quantiles. You can use the
PERCENTS= option to specify the list of quantiles in this table. See the entry for the
PERCENTS= optionon page 227. By default, the table lists observed and estimated
quantiles for the 1, 5, 10, 25, 50, 75, 90, 95, and 99 percent of a fitted parametric
distribution.



Computational Resources � 311

Computational Resources

Because the UNIVARIATE procedure computes quantile statistics, it requires ad-
ditional memory to store a copy of the data in memory. By default, the MEANS,
SUMMARY, and TABULATE procedures require less memory because they do not
automatically compute quantiles. These procedures also provide an option to use a
new fixed-memory quantiles estimation method that is usually less memory intensive.

In the UNIVARIATE procedure, the only factor that limits the number of variables
that you can analyze is the computer resources that are available. The amount of
temporary storage and CPU time required depends on the statements and the options
that you specify. To calculate the computer resources the procedure needs, let

N be the number of observations in the data set
V be the number of variables in the VAR statement
Ui be the number of unique values for theith variable

Then the minimum memory requirement in bytes to process all variables isM =
24
∑

i Ui. If M bytes are not available, PROC UNIVARIATE must process the data
multiple times to compute all the statistics. This reduces the minimum memory re-
quirement toM = 24max(Ui).

Using the ROUND= option reduces the number of unique values(Ui), thereby re-
ducing memory requirements. The ROBUSTSCALE option requires40Ui bytes of
temporary storage.

Several factors affect the CPU time:

• The time to createV tree structures to internally store the observations is pro-
portional toNV log(N).

• The time to compute moments and quantiles for theith variable is proportional
toUi.

• The time to compute the NORMAL option test statistics is proportional toN .

• The time to compute the ROBUSTSCALE option test statistics is proportional
toUi log(Ui).

• The time to compute the exact significance level of the sign rank statistic may
increase when the number of nonzero values is less than or equal to 20.

Each of these factors has a different constant of proportionality. For additional infor-
mation on optimizing CPU performance and memory usage, see the SAS documen-
tation for your operating environment.



312 � Chapter 3. The UNIVARIATE Procedure

Examples

Example 3.1. Computing Descriptive Statistics for Multiple
Variables

This example computes univariate statistics for two variables. The following state-
ments create the data setBPressure, which contains the systolic (Systolic) and di-
astolic (Diastolic) blood pressure readings for 22 patients:

data BPressure;
length PatientID $2;
input PatientID $ Systolic Diastolic @@;
datalines;

CK 120 50 SS 96 60 FR 100 70
CP 120 75 BL 140 90 ES 120 70
CP 165 110 JI 110 40 MC 119 66
FC 125 76 RW 133 60 KD 108 54
DS 110 50 JW 130 80 BH 120 65
JW 134 80 SB 118 76 NS 122 78
GS 122 70 AB 122 78 EC 112 62
HH 122 82
;
run;

The following statements produce descriptive statistics and quantiles for the variables
Systolic andDiastolic:

title ’Systolic and Diastolic Blood Pressure’;
ods select BasicMeasures Quantiles;
proc univariate data=BPressure;

var Systolic Diastolic;
run;

The ODS SELECT statement restricts the output, which is shown inOutput 3.1.1, to
the “BasicMeasures” and “Quantiles” tables; see the section“ODS Table Names”
on page 309. You use the PROC UNIVARIATE statement to request univariate
statistics for the variables listed in the VAR statement, which specifies the analysis
variables and their order in the output. Formulas for computing the statistics in the
“BasicMeasures” table are provided in the section“Descriptive Statistics”on page
269. The quantiles are calculated usingDefinition 5, which is the default definition;
see the section“Calculating Percentiles”on page 273.

A sample program,uniex01.sas, for this example is available in the SAS Sample
Library for Base SAS software.



Example 3.1. Computing Descriptive Statistics for Multiple Variables � 313

Output 3.1.1. Display Basic Measures and Quantiles

Systolic and Diastolic Blood Pressure

The UNIVARIATE Procedure
Variable: Systolic

Basic Statistical Measures

Location Variability

Mean 121.2727 Std Deviation 14.28346
Median 120.0000 Variance 204.01732
Mode 120.0000 Range 69.00000

Interquartile Range 13.00000

NOTE: The mode displayed is the smallest of 2 modes with a count of 4.

Quantiles (Definition 5)

Quantile Estimate

100% Max 165
99% 165
95% 140
90% 134
75% Q3 125
50% Median 120
25% Q1 112
10% 108
5% 100
1% 96
0% Min 96

Systolic and Diastolic Blood Pressure

The UNIVARIATE Procedure
Variable: Diastolic

Basic Statistical Measures

Location Variability

Mean 70.09091 Std Deviation 15.16547
Median 70.00000 Variance 229.99134
Mode 70.00000 Range 70.00000

Interquartile Range 18.00000

Quantiles (Definition 5)

Quantile Estimate

100% Max 110
99% 110
95% 90
90% 82
75% Q3 78
50% Median 70
25% Q1 60
10% 50
5% 50
1% 40
0% Min 40



314 � Chapter 3. The UNIVARIATE Procedure

Example 3.2. Calculating Modes
An instructor is interested in calculating all the modes of the scores on a recent exam.
The following statements create a data set namedExam, which contains the exam
scores in the variableScore:

data Exam;
label Score = ’Exam Score’;
input Score @@;
datalines;

81 97 78 99 77 81 84 86 86 97
85 86 94 76 75 42 91 90 88 86
97 97 89 69 72 82 83 81 80 81
;
run;

The following statements use the MODES option to request a table of all possible
modes:

title ’Table of Modes for Exam Scores’;
ods select Modes;
proc univariate data=Exam modes;

var Score;
run;

The ODS SELECT statement restricts the output to the “Modes” table; see the section
“ODS Table Names”on page 309.

Output 3.2.1. Table of Modes Display

Table of Modes for Exam Scores

The UNIVARIATE Procedure
Variable: Score (Exam Score)

Modes

Mode Count

81 4
86 4
97 4

By default, when the MODES option is used, and there is more than one mode, the
lowest mode is displayed in the “BasicMeasures” table. The following statements
illustrate the default behavior:

title ’Default Output’;
ods select BasicMeasures;
proc univariate data=Exam;

var Score;
run;



Example 3.3. Identifying Extreme Observations and Extreme Values � 315

Output 3.2.2. Default Output (Without MODES Option)

Default Output

The UNIVARIATE Procedure
Variable: Score (Exam Score)

Basic Statistical Measures

Location Variability

Mean 83.66667 Std Deviation 11.08069
Median 84.50000 Variance 122.78161
Mode 81.00000 Range 57.00000

Interquartile Range 10.00000

NOTE: The mode displayed is the smallest of 3 modes with a count of 4.

The default output displays a mode of 81 and includes a note regarding the number of
modes; the modes 86 and 97 are not displayed. The ODS SELECT statement restricts
the output to the “BasicMeasures” table; see the section“ODS Table Names”on page
309.

A sample program,uniex02.sas, for this example is available in the SAS Sample
Library for Base SAS software.

Example 3.3. Identifying Extreme Observations and Extreme
Values

This example, which uses the data setBPressure introduced inExample 3.1, illus-
trates how to produce a table of the extreme observations and a table of the extreme
values in a data set. The following statements generate the “Extreme Observations”
tables forSystolic andDiastolic, which enable you to identify the extreme observa-
tions for each variable:

title ’Extreme Blood Pressure Observations’;
ods select ExtremeObs;
proc univariate data=BPressure;

var Systolic Diastolic;
id PatientID;

run;

The ODS SELECT statement restricts the output to the “ExtremeObs” table; see
the section“ODS Table Names”on page 309. The ID statement requests that the
extreme observations are to be identified using the value ofPatientID as well as the
observation number. By default, the five lowest and five highest observations are
displayed. You can use the NEXTROBS= option to request a different number of
extreme observations.

Output 3.3.1shows that the patient identified as ‘CP’ (Observation 7) has the highest
values for bothSystolic andDiastolic. To visualize extreme observations, you can
create histograms; seeExample 3.14.



316 � Chapter 3. The UNIVARIATE Procedure

Output 3.3.1. Blood Pressure Extreme Observations

Extreme Blood Pressure Observations

The UNIVARIATE Procedure
Variable: Systolic

Extreme Observations

---------Lowest--------- ---------Highest--------

Patient Patient
Value ID Obs Value ID Obs

96 SS 2 130 JW 14
100 FR 3 133 RW 11
108 KD 12 134 JW 16
110 DS 13 140 BL 5
110 JI 8 165 CP 7

Extreme Blood Pressure Observations

The UNIVARIATE Procedure
Variable: Diastolic

Extreme Observations

---------Lowest--------- ---------Highest--------

Patient Patient
Value ID Obs Value ID Obs

40 JI 8 80 JW 14
50 DS 13 80 JW 16
50 CK 1 82 HH 22
54 KD 12 90 BL 5
60 RW 11 110 CP 7

The following statements generate the “Extreme Values” tables forSystolic and
Diastolic, which tabulate the tails of the distributions:

title ’Extreme Blood Pressure Values’;
ods select ExtremeValues;
proc univariate data=BPressure nextrval=5;

var Systolic Diastolic;
run;

The ODS SELECT statement restricts the output to the “ExtremeValues” table; see
the section“ODS Table Names”on page 309. The NEXTRVAL= option specifies the
number of extreme values at each end of the distribution to be shown in the tables in
Output 3.3.2.

Output 3.3.2shows that the values78 and80 occurred twice forDiastolic and the
maximum ofDiastolic is 110 . Note thatOutput 3.3.1displays the value of80 twice
for Diastolic because there are two observations with that value. InOutput 3.3.2, the
value80 is only displayed once.



Example 3.4. Creating a Frequency Table � 317

Output 3.3.2. Blood Pressure Extreme Values

Extreme Blood Pressure Values

The UNIVARIATE Procedure
Variable: Systolic

Extreme Values

---------Lowest-------- --------Highest--------

Order Value Freq Order Value Freq

1 96 1 11 130 1
2 100 1 12 133 1
3 108 1 13 134 1
4 110 2 14 140 1
5 112 1 15 165 1

Extreme Blood Pressure Values

The UNIVARIATE Procedure
Variable: Diastolic

Extreme Values

---------Lowest-------- --------Highest--------

Order Value Freq Order Value Freq

1 40 1 11 78 2
2 50 2 12 80 2
3 54 1 13 82 1
4 60 2 14 90 1
5 62 1 15 110 1

A sample program,uniex01.sas, for this example is available in the SAS Sample
Library for Base SAS software.

Example 3.4. Creating a Frequency Table

An instructor is interested in creating a frequency table of score changes between a
pair of tests given in one of his college courses. The data setScore contains test
scores for his students who took a pretest and a posttest on the same material. The
variableScoreChange contains the difference between the two test scores. The
following statements create the data set:



318 � Chapter 3. The UNIVARIATE Procedure

data Score;
input Student $ PreTest PostTest @@;
label ScoreChange = ’Change in Test Scores’;
ScoreChange = PostTest - PreTest;
datalines;

Capalleti 94 91 Dubose 51 65
Engles 95 97 Grant 63 75
Krupski 80 75 Lundsford 92 55
Mcbane 75 78 Mullen 89 82
Nguyen 79 76 Patel 71 77
Si 75 70 Tanaka 87 73
;
run;

The following statements produce a frequency table for the variableScoreChange:

title ’Analysis of Score Changes’;
ods select Frequencies;
proc univariate data=Score freq;

var ScoreChange;
run;

The ODS SELECT statement restricts the output to the “Frequencies” table; see
the section“ODS Table Names”on page 309. The FREQ option on the PROC
UNIVARIATE statement requests the table of frequencies shown inOutput 3.4.1.

Output 3.4.1. Table of Frequencies

Analysis of Score Changes

The UNIVARIATE Procedure
Variable: ScoreChange (Change in Test Scores)

Frequency Counts

Percents Percents Percents
Value Count Cell Cum Value Count Cell Cum Value Count Cell Cum

-37 1 8.3 8.3 -3 2 16.7 58.3 6 1 8.3 83.3
-14 1 8.3 16.7 2 1 8.3 66.7 12 1 8.3 91.7

-7 1 8.3 25.0 3 1 8.3 75.0 14 1 8.3 100.0
-5 2 16.7 41.7

FromOutput 3.4.1, the instructor sees that only score changes of−3 and−5 occurred
more than once.

A sample program,uniex03.sas, for this example is available in the SAS Sample
Library for Base SAS software.



Example 3.5. Creating Plots for Line Printer Output � 319

Example 3.5. Creating Plots for Line Printer Output

The PLOT option in the PROC UNIVARIATE statement requests several basic plots
for display in line printer output. For more information on plots created by the PLOT
option, see the section“Creating Line Printer Plots”on page 281. This example illus-
trates the use of the PLOT option as well as BY processing in PROC UNIVARIATE.

A researcher is analyzing a data set consisting of air pollution data from three dif-
ferent measurement sites. The data setAirPoll, created by the following statements,
contains the variablesSite andOzone, which are the site number and ozone level,
respectively.

data AirPoll (keep = Site Ozone);
label Site = ’Site Number’

Ozone = ’Ozone level (in ppb)’;
do i = 1 to 3;

input Site @@;
do j = 1 to 15;

input Ozone @@;
output;

end;
end;
datalines;

102 4 6 3 4 7 8 2 3 4 1 3 8 9 5 6
134 5 3 6 2 1 2 4 3 2 4 6 4 6 3 1
137 8 9 7 8 6 7 6 7 9 8 9 8 7 8 5
;
run;

The following statements produce stem-and-leaf plots, box plots, and normal proba-
bility plots for each site in theAirPoll data set:

ods select Plots SSPlots;
proc univariate data=AirPoll plot;

by Site;
var Ozone;

run;

The PLOT option produces a stem-and-leaf plot, a box plot, and a normal probability
plot for theOzone variable at each site. Since the BY statement is used, a side-by-
side box plot is also created to compare the ozone levels across sites. Note thatAirPoll
is sorted bySite; in general, the data set should be sorted by the BY variable using
the SORT procedure. The ODS SELECT statement restricts the output to the “Plots”
and “SSPlots” tables; see the section“ODS Table Names”on page 309. Optionally,
you can specify the PLOTSIZE=n option to control the approximate number of rows
(between 8 and the page size) that the plots occupy.

Output 3.5.1through Output 3.5.3show the plots produced for each BY group.
Output 3.5.4shows the side-by-side box plot for comparingOzone values across
sites.



320 � Chapter 3. The UNIVARIATE Procedure

Output 3.5.1. Ozone Plots for BY Group Site = 102

------------------------------- Site Number=102 --------------------------------

The UNIVARIATE Procedure
Variable: Ozone (Ozone level (in ppb))

Stem Leaf # Boxplot
9 0 1 |
8 00 2 |
7 0 1 +-----+
6 00 2 | |
5 0 1 | |
4 000 3 *--+--*
3 000 3 +-----+
2 0 1 |
1 0 1 |

----+----+----+----+

Normal Probability Plot
9.5+ *++++

| * * ++++
| * +++++
| * *+++

5.5+ +*++
| **+*
| * *+*+
| *++++

1.5+ *++++
+----+----+----+----+----+----+----+----+----+----+

-2 -1 0 +1 +2

Output 3.5.2. Ozone Plots for BY Group Site = 134

------------------------------- Site Number=134 --------------------------------

The UNIVARIATE Procedure
Variable: Ozone (Ozone level (in ppb))

Stem Leaf # Boxplot
6 000 3 |
5 0 1 +-----+
4 000 3 | |
3 000 3 *--+--*
2 000 3 +-----+
1 00 2 |

----+----+----+----+

Normal Probability Plot
6.5+ * * ++*+++

| * ++++++
| **+*+++
| **+*+++
| *+*+*++

1.5+ * ++*+++
+----+----+----+----+----+----+----+----+----+----+

-2 -1 0 +1 +2



Example 3.5. Creating Plots for Line Printer Output � 321

Output 3.5.3. Ozone Plots for BY Group Site = 137

------------------------------- Site Number=137 --------------------------------

The UNIVARIATE Procedure
Variable: Ozone (Ozone level (in ppb))

Stem Leaf # Boxplot
9 000 3 |
8 00000 5 +-----+
7 0000 4 +--+--+
6 00 2 |
5 0 1 0

----+----+----+----+

Normal Probability Plot
9.5+ * *++++*++++

| * ** *+*+++++
7.5+ * * **++++++

| *++*+++++
5.5+ +++*++++

+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2

Output 3.5.4. Ozone Side-by-Side Boxplot for All BY Groups

The UNIVARIATE Procedure
Variable: Ozone (Ozone level (in ppb))

Schematic Plots

|
10 +

|
| | |
| | |

8 + | *-----*
| | | + |
| +-----+ +-----+
| | | |

6 + | | | |
| | | |
| | + | +-----+ 0
| | | | |

4 + *-----* | |
| | | | + |
| +-----+ *-----*
| | | |

2 + | +-----+
| | |
| | |
|

0 +
------------+-----------+-----------+-----------

Site 102 134 137



322 � Chapter 3. The UNIVARIATE Procedure

Note that you can use the PROBPLOT statement with the NORMAL option to pro-
duce high-resolution normal probability plots; see the section“Modeling a Data
Distribution” on page 200.

Note that you can use the BOXPLOT procedure to produce box plots using high-
resolution graphics; refer to Chapter 18, “The BOXPLOT Procedure,” inSAS/STAT
User’s Guide.

A sample program,uniex04.sas, for this example is available in the SAS Sample
Library for Base SAS software.

Example 3.6. Analyzing a Data Set With a FREQ Variable

This example illustrates how to use PROC UNIVARIATE to analyze a data set with
a variable that contains the frequency of each observation. The data setSpeeding
contains data on the number of cars pulled over for speeding on a stretch of highway
with a 65 mile per hour speed limit.Speed is the speed at which the cars were
traveling, andNumber is the number of cars at each speed. The following statements
create the data set:

data Speeding;
label Speed = ’Speed (in miles per hour)’;
do Speed = 66 to 85;

input Number @@;
output;

end;
datalines;

2 3 2 1 3 6 8 9 10 13
12 14 6 2 0 0 1 1 0 1
;
run;

The following statements create a table of moments for the variableSpeed:

title ’Analysis of Speeding Data’;
ods select Moments;
proc univariate data=Speeding;

freq Number;
var Speed;

run;

The ODS SELECT statement restricts the output, which is shown inOutput 3.6.1, to
the “Moments” table; see the section“ODS Table Names”on page 309. The FREQ
statement specifies that the value of the variableNumber represents the frequency of
each observation.

For the formulas used to compute these moments, see the section“Descriptive
Statistics”on page 269. A sample program,uniex05.sas, for this example is avail-
able in the SAS Sample Library for Base SAS software.



Example 3.7. Saving Summary Statistics in an OUT= Output Data Set � 323

Output 3.6.1. Table of Moments

Analysis of Speeding Data

The UNIVARIATE Procedure
Variable: Speed (Speed (in miles per hour))

Freq: Number

Moments

N 94 Sum Weights 94
Mean 74.3404255 Sum Observations 6988
Std Deviation 3.44403237 Variance 11.861359
Skewness -0.1275543 Kurtosis 0.92002287
Uncorrected SS 520594 Corrected SS 1103.10638
Coeff Variation 4.63278538 Std Error Mean 0.35522482

Example 3.7. Saving Summary Statistics in an OUT= Output
Data Set

This example illustrates how to save summary statistics in an output data set. The
following statements create a data set namedBelts, which contains the breaking
strengths (Strength) and widths (Width) of a sample of 50 automotive seat belts:

data Belts;
label Strength = ’Breaking Strength (lb/in)’

Width = ’Width in Inches’;
input Strength Width @@;
datalines;

1243.51 3.036 1221.95 2.995 1131.67 2.983 1129.70 3.019
1198.08 3.106 1273.31 2.947 1250.24 3.018 1225.47 2.980
1126.78 2.965 1174.62 3.033 1250.79 2.941 1216.75 3.037
1285.30 2.893 1214.14 3.035 1270.24 2.957 1249.55 2.958
1166.02 3.067 1278.85 3.037 1280.74 2.984 1201.96 3.002
1101.73 2.961 1165.79 3.075 1186.19 3.058 1124.46 2.929
1213.62 2.984 1213.93 3.029 1289.59 2.956 1208.27 3.029
1247.48 3.027 1284.34 3.073 1209.09 3.004 1146.78 3.061
1224.03 2.915 1200.43 2.974 1183.42 3.033 1195.66 2.995
1258.31 2.958 1136.05 3.022 1177.44 3.090 1246.13 3.022
1183.67 3.045 1206.50 3.024 1195.69 3.005 1223.49 2.971
1147.47 2.944 1171.76 3.005 1207.28 3.065 1131.33 2.984
1215.92 3.003 1202.17 3.058
;
run;

The following statements produce two output data sets containing summary statistics:

proc univariate data=Belts noprint;
var Strength Width;
output out=Means mean=StrengthMean WidthMean;
output out=StrengthStats mean=StrengthMean std=StrengthSD

min=StrengthMin max=StrengthMax;
run;



324 � Chapter 3. The UNIVARIATE Procedure

When you specify an OUTPUT statement, you must also specify a VAR statement.
You can use multiple OUTPUT statements with a single procedure statement. Each
OUTPUT statement creates a new data set with the name specified by the OUT=
option. In this example, two data sets,Means andStrengthStats, are created. See
Output 3.7.1for a listing ofMeans andOutput 3.7.2for a listing ofStrengthStats.

Output 3.7.1. Listing of Output Data Set Means

Strength Width
Obs Mean Mean

1 1205.75 3.00584

Output 3.7.2. Listing of Output Data Set StrengthStats

Strength Strength Strength Strength
Obs Mean SD Max Min

1 1205.75 48.3290 1289.59 1101.73

Summary statistics are saved in an output data set by specifyingkeyword=names
after the OUT= option. In the preceding statements, the first OUTPUT state-
ment specifies thekeyword MEAN followed by the names StrengthMean and
WidthMean. The second OUTPUT statement specifies thekeywords MEAN, STD,
MAX, and MIN, for which thenames StrengthMean, StrengthSD, StrengthMax,
andStrengthMin are given.

Thekeyword specifies the statistic to be saved in the output data set, and thenames
determine the names for the new variables. The firstname listed after a keyword
contains that statistic for the first variable listed in the VAR statement; the second
name contains that statistic for the second variable in the VAR statement, and so on.

The data setMeans contains the mean ofStrength in a variable named
StrengthMean and the mean ofWidth in a variable namedWidthMean. The
data setStrengthStats contains the mean, standard deviation, maximum value,
and minimum value ofStrength in the variablesStrengthMean, StrengthSD,
StrengthMax, andStrengthMin, respectively.

See the section“OUT= Output Data Set in the OUTPUT Statement”on page 306 for
more information on OUT= output data sets.

A sample program,uniex06.sas, for this example is available in the SAS Sample
Library for Base SAS software.



Example 3.8. Saving Percentiles in an Output Data Set � 325

Example 3.8. Saving Percentiles in an Output Data Set

This example, which uses theBelts data set from the previous example, illustrates
how to save percentiles in an output data set. The UNIVARIATE procedure auto-
matically computes the 1st, 5th, 10th, 25th, 75th, 90th, 95th, and 99th percentiles for
each variable. You can save these percentiles in an output data set by specifying the
appropriate keywords. For example, the following statements create an output data
set namedPctlStrength, which contains the 5th and 95th percentiles of the variable
Strength:

proc univariate data=Belts noprint;
var Strength Width;
output out=PctlStrength p5=p5str p95=p95str;

run;

The output data setPctlStrength is listed inOutput 3.8.1.

Output 3.8.1. Listing of Output Data Set PctlStrength

Obs p95str p5str

1 1284.34 1126.78

You can use the PCTLPTS=, PCTLPRE=, and PCTLNAME= options to save per-
centiles not automatically computed by the UNIVARIATE procedure. For example,
the following statements create an output data set namedPctls, which contains the
20th and 40th percentiles of the variablesStrength andWidth:

proc univariate data=Belts noprint;
var Strength Width;
output out=Pctls pctlpts = 20 40

pctlpre = Strength Width
pctlname = pct20 pct40;

run;

The PCTLPTS= option specifies the percentiles to compute (in this case, the 20th
and 40th percentiles). The PCTLPRE= and PCTLNAME= options build the names
for the variables containing the percentiles. The PCTLPRE= option gives prefixes
for the new variables, and the PCTLNAME= option gives a suffix to add to the pre-
fix. When you use the PCTLPTS= specification, you must also use the PCTLPRE=
specification.

The OUTPUT statement saves the 20th and 40th percentiles ofStrength andWidth
in the variablesStrengthpct20, Widthpct20, Strengthpct40, andWeightpct40.
The output data setPctls is listed inOutput 3.8.2.



326 � Chapter 3. The UNIVARIATE Procedure

Output 3.8.2. Listing of Output Data Set Pctls

Obs Strengthpct20 Strengthpct40 Widthpct20 Widthpct40

1 1165.91 1199.26 2.9595 2.995

A sample program,uniex06.sas, for this example is available in the SAS Sample
Library for Base SAS software.

Example 3.9. Computing Confidence Limits for the Mean,
Standard Deviation, and Variance

This example illustrates how to compute confidence limits for the mean, standard
deviation, and variance of a population. A researcher is studying the heights of a
certain population of adult females. She has collected a random sample of heights of
75 females, which are saved in the data setHeights:

data Heights;
label Height = ’Height (in)’;
input Height @@;
datalines;

64.1 60.9 64.1 64.7 66.7 65.0 63.7 67.4 64.9 63.7
64.0 67.5 62.8 63.9 65.9 62.3 64.1 60.6 68.6 68.6
63.7 63.0 64.7 68.2 66.7 62.8 64.0 64.1 62.1 62.9
62.7 60.9 61.6 64.6 65.7 66.6 66.7 66.0 68.5 64.4
60.5 63.0 60.0 61.6 64.3 60.2 63.5 64.7 66.0 65.1
63.6 62.0 63.6 65.8 66.0 65.4 63.5 66.3 66.2 67.5
65.8 63.1 65.8 64.4 64.0 64.9 65.7 61.0 64.1 65.5
68.6 66.6 65.7 65.1 70.0
;
run;

The following statements produce confidence limits for the mean, standard deviation,
and variance of the population of heights:

title ’Analysis of Female Heights’;
ods select BasicIntervals;
proc univariate data=Heights cibasic;

var Height;
run;

The CIBASIC option requests confidence limits for the mean, standard deviation, and
variance. For example,Output 3.9.1shows that the 95% confidence interval for the
population mean is(64.06, 65.07). The ODS SELECT statement restricts the output
to the “BasicIntervals” table; see the section“ODS Table Names”on page 309.

The confidence limits inOutput 3.9.1assume that the heights are normally dis-
tributed, so you should check this assumption before using these confidence limits.



Example 3.9. Computing Confidence Limits for the Mean, Standard Deviation, and
Variance � 327

See the section“Shapiro-Wilk Statistic”on page 293 for information on the Shapiro-
Wilk test for normality in PROC UNIVARIATE. SeeExample 3.19for an example
using the test for normality.

Output 3.9.1. Default 95% Confidence Limits

Analysis of Female Heights

The UNIVARIATE Procedure
Variable: Height (Height (in))

Basic Confidence Limits Assuming Normality

Parameter Estimate 95% Confidence Limits

Mean 64.56667 64.06302 65.07031
Std Deviation 2.18900 1.88608 2.60874
Variance 4.79171 3.55731 6.80552

By default, the confidence limits produced by the CIBASIC option produce 95%
confidence intervals. You can request different level confidence limits by using the
ALPHA= option in parentheses after the CIBASIC option. The following statements
produce 90% confidence limits:

title ’Analysis of Female Heights’;
ods select BasicIntervals;
proc univariate data=Heights cibasic(alpha=.1);

var Height;
run;

The 90% confidence limits are displayed inOutput 3.9.2.

Output 3.9.2. 90% Confidence Limits

Analysis of Female Heights

The UNIVARIATE Procedure
Variable: Height (Height (in))

Basic Confidence Limits Assuming Normality

Parameter Estimate 90% Confidence Limits

Mean 64.56667 64.14564 64.98770
Std Deviation 2.18900 1.93114 2.53474
Variance 4.79171 3.72929 6.42492

For the formulas used to compute these limits, see the section“Confidence Limits for
Parameters of the Normal Distribution”on page 277.

A sample program,uniex07.sas, for this example is available in the SAS Sample
Library for Base SAS software.



328 � Chapter 3. The UNIVARIATE Procedure

Example 3.10. Computing Confidence Limits for Quantiles
and Percentiles

This example, which is a continuation ofExample 3.9, illustrates how to compute
confidence limits for quantiles and percentiles. A second researcher is more inter-
ested in summarizing the heights with quantiles than the mean and standard devia-
tion. He is also interested in computing 90% confidence intervals for the quantiles.
The following statements produce estimated quantiles and confidence limits for the
population quantiles:

title ’Analysis of Female Heights’;
ods select Quantiles;
proc univariate data=Heights ciquantnormal(alpha=.1);

var Height;
run;

The ODS SELECT statement restricts the output to the “Quantiles” table; see the sec-
tion “ODS Table Names”on page 309. The CIQUANTNORMAL option produces
confidence limits for the quantiles. As noted inOutput 3.10.1, these limits assume
that the data are normally distributed. You should check this assumption before us-
ing these confidence limits. See the section“Shapiro-Wilk Statistic”on page 293
for information on the Shapiro-Wilk test for normality in PROC UNIVARIATE; see
Example 3.19for an example using the test for normality.

Output 3.10.1. Normal-Based Quantile Confidence Limits

Analysis of Female Heights

The UNIVARIATE Procedure
Variable: Height (Height (in))

Quantiles (Definition 5)

90% Confidence Limits
Quantile Estimate Assuming Normality

100% Max 70.0
99% 70.0 68.94553 70.58228
95% 68.6 67.59184 68.89311
90% 67.5 66.85981 68.00273
75% Q3 66.0 65.60757 66.54262
50% Median 64.4 64.14564 64.98770
25% Q1 63.1 62.59071 63.52576
10% 61.6 61.13060 62.27352
5% 60.6 60.24022 61.54149
1% 60.0 58.55106 60.18781
0% Min 60.0

It is also possible to use PROC UNIVARIATE to compute confidence limits for quan-
tiles without assuming normality. The following statements use the CIQUANTDF
option to request distribution-free confidence limits for the quantiles of the popula-
tion of heights:



Example 3.11. Computing Robust Estimates � 329

title ’Analysis of Female Heights’;
ods select Quantiles;
proc univariate data=Heights ciquantdf(alpha=.1);

var Height;
run;

The distribution-free confidence limits are shown inOutput 3.10.2.

Output 3.10.2. Distribution-Free Quantile Confidence Limits

Analysis of Female Heights

The UNIVARIATE Procedure
Variable: Height (Height (in))

Quantiles (Definition 5)

90% Confidence Limits -------Order Statistics-------
Quantile Estimate Distribution Free LCL Rank UCL Rank Coverage

100% Max 70.0
99% 70.0 68.6 70.0 73 75 48.97
95% 68.6 67.5 70.0 68 75 94.50
90% 67.5 66.6 68.6 63 72 91.53
75% Q3 66.0 65.7 66.6 50 63 91.77
50% Median 64.4 64.1 65.1 31 46 91.54
25% Q1 63.1 62.7 63.7 13 26 91.77
10% 61.6 60.6 62.7 4 13 91.53
5% 60.6 60.0 61.6 1 8 94.50
1% 60.0 60.0 60.5 1 3 48.97
0% Min 60.0

The table inOutput 3.10.2includes the ranks from which the confidence limits are
computed. For more information on how these confidence limits are calculated, see
the section“Confidence Limits for Percentiles”on page 274. Note that confidence
limits for quantiles are not produced when the WEIGHT statement is used.

A sample program,uniex07.sas, for this example is available in the SAS Sample
Library for Base SAS software.

Example 3.11. Computing Robust Estimates

This example illustrates how you can use the UNIVARIATE procedure to compute
robust estimates of location and scale. The following statements compute these esti-
mates for the variableSystolic in the data setBPressure, which was introduced in
Example 3.1:

title ’Robust Estimates for Blood Pressure Data’;
ods select TrimmedMeans WinsorizedMeans RobustScale;
proc univariate data=BPressure trimmed=1 .1

winsorized=.1 robustscale;
var Systolic;

run;

The ODS SELECT statement restricts the output to the “TrimmedMeans,”
“WinsorizedMeans,” and “RobustScale” tables; see the section“ODS Table Names”



330 � Chapter 3. The UNIVARIATE Procedure

on page 309. The TRIMMED= option computes two trimmed means, the first after
removing one observation and the second after removing 10% of the observations.
If the value of TRIMMED= is greater than or equal to one, it is interpreted as the
number of observations to be trimmed. The WINSORIZED= option computes a
Winsorized mean that replaces three observations from the tails with the next closest
observations. (Three observations are replaced becausenp = (22)(.1) = 2.2, and
three is the smallest integer greater than 2.2.) The trimmed and Winsorized means
for Systolic are displayed inOutput 3.11.1.

Output 3.11.1. Computation of Trimmed and Winsorized Means

Robust Estimates for Blood Pressure Data

The UNIVARIATE Procedure
Variable: Systolic

Trimmed Means

Percent Number Std Error
Trimmed Trimmed Trimmed Trimmed 95% Confidence t for H0:
in Tail in Tail Mean Mean Limits DF Mu0=0.00 Pr > |t|

4.55 1 120.3500 2.573536 114.9635 125.7365 19 46.76446 <.0001
13.64 3 120.3125 2.395387 115.2069 125.4181 15 50.22675 <.0001

Winsorized Means

Percent Number Std Error
Winsorized Winsorized Winsorized Winsorized 95% Confidence t for H0:

in Tail in Tail Mean Mean Limits DF Mu0=0.00 Pr > |t|

13.64 3 120.6364 2.417065 115.4845 125.7882 15 49.91027 <.0001

Output 3.11.1shows the trimmed mean forSystolic is 120.35 after one observation
has been trimmed, and 120.31 after 3 observations are trimmed. The Winsorized
mean forSystolic is 120.64. For details on trimmed and Winsorized means, see the
section“Robust Estimators”on page 278. The trimmed means can be compared with
the means shown inOutput 3.1.1(from Example 3.1), which displays the mean for
Systolic as 121.273.

The ROBUSTSCALE option requests a table, displayed inOutput 3.11.2, which in-
cludes the interquartile range, Gini’s mean difference, the median absolute deviation
about the median,Qn, andSn.

Output 3.11.2shows the robust estimates of scale forSystolic. For instance, the
interquartile range is 13. The estimates ofσ range from 9.54 to 13.32. See the
section“Robust Estimators”on page 278.

A sample program,uniex01.sas, for this example is available in the SAS Sample
Library for Base SAS software.



Example 3.13. Testing for Location � 331

Output 3.11.2. Computation of Robust Estimates of Scale

Robust Estimates for Blood Pressure Data

Variable: Systolic

Robust Measures of Scale

Estimate
Measure Value of Sigma

Interquartile Range 13.00000 9.63691
Gini’s Mean Difference 15.03030 13.32026
MAD 6.50000 9.63690
Sn 9.54080 9.54080
Qn 13.33140 11.36786

Example 3.12. Testing for Location

This example, which is a continuation ofExample 3.9, illustrates how to carry out
three tests for location: the Student’st test, the sign test, and the Wilcoxon signed
rank test. These tests are discussed in the section“Tests for Location”on page 275.

The following statements demonstrate the tests for location using theHeights data
set introduced inExample 3.9. Since the data consists of adult female heights, the
researchers are not interested in testing if the mean of the population is equal to zero
inches, which is the defaultµ0 value. Instead, they are interested in testing if the mean
is equal to 66 inches. The following statements test the null hypothesisH0:µ0 = 66:

title ’Analysis of Female Height Data’;
ods select TestsForLocation LocationCounts;
proc univariate data=Heights mu0=66 loccount;

var Height;
run;

The ODS SELECT statement restricts the output to the “TestsForLocation” and
“LocationCounts” tables; see the section“ODS Table Names”on page 309. The
MU0= option specifies the null hypothesis value ofµ0 for the tests for location; by
default,µ0 = 0. The LOCCOUNT option produces the table of the number of obser-
vations greater than, not equal to, and less than 66 inches.

Output 3.12.1contains the results of the tests for location. All three tests are highly
significant, causing the researchers to reject the hypothesis that the mean is 66 inches.

A sample program,uniex07.sas, for this example is available in the SAS Sample
Library for Base SAS software.



332 � Chapter 3. The UNIVARIATE Procedure

Output 3.12.1. Tests for Location with MU0=66 and LOCCOUNT

Analysis of Female Height Data

The UNIVARIATE Procedure
Variable: Height (Height (in))

Tests for Location: Mu0=66

Test -Statistic- -----p Value------

Student’s t t -5.67065 Pr > |t| <.0001
Sign M -20 Pr >= |M| <.0001
Signed Rank S -849 Pr >= |S| <.0001

Location Counts: Mu0=66.00

Count Value

Num Obs > Mu0 16
Num Obs ^= Mu0 72
Num Obs < Mu0 56

Example 3.13. Performing a Sign Test Using Paired Data

This example demonstrates a sign test for paired data, which is a specific application
of the Tests for Location discussed inExample 3.12.

The instructor fromExample 3.4is now interested in performing a sign test for the
pairs of test scores in his college course. The following statements request basic
statistical measures and tests for location:

title ’Test Scores for a College Course’;
ods select BasicMeasures TestsForLocation;
proc univariate data=Score;

var ScoreChange;
run;

The ODS SELECT statement restricts the output to the “BasicMeasures” and
“TestsForLocation” tables; see the section“ODS Table Names”on page 309. The
instructor is not willing to assume theScoreChange variable is normal or even
symmetric, so he decides to examine the sign test. The largep-value (0.7744) of the
sign test provides insufficient evidence of a difference in test score medians.



Example 3.14. Creating a Histogram � 333

Output 3.13.1. Sign Test for ScoreChange

Test Scores for a College Course

The UNIVARIATE Procedure
Variable: ScoreChange (Change in Test Scores)

Basic Statistical Measures

Location Variability

Mean -3.08333 Std Deviation 13.33797
Median -3.00000 Variance 177.90152
Mode -5.00000 Range 51.00000

Interquartile Range 10.50000

NOTE: The mode displayed is the smallest of 2 modes with a count of 2.

Tests for Location: Mu0=0

Test -Statistic- -----p Value------

Student’s t t -0.80079 Pr > |t| 0.4402
Sign M -1 Pr >= |M| 0.7744
Signed Rank S -8.5 Pr >= |S| 0.5278

A sample program,uniex03.sas, for this example is available in the SAS Sample
Library for Base SAS software.

Example 3.14. Creating a Histogram

This example illustrates how to create a histogram. A semiconductor manufacturer
produces printed circuit boards that are sampled to determine the thickness of their
copper plating. The following statements create a data set namedTrans, which con-
tains the plating thicknesses (Thick) of 100 boards:

data Trans;
input Thick @@;
label Thick = ’Plating Thickness (mils)’;
datalines;

3.468 3.428 3.509 3.516 3.461 3.492 3.478 3.556 3.482 3.512
3.490 3.467 3.498 3.519 3.504 3.469 3.497 3.495 3.518 3.523
3.458 3.478 3.443 3.500 3.449 3.525 3.461 3.489 3.514 3.470
3.561 3.506 3.444 3.479 3.524 3.531 3.501 3.495 3.443 3.458
3.481 3.497 3.461 3.513 3.528 3.496 3.533 3.450 3.516 3.476
3.512 3.550 3.441 3.541 3.569 3.531 3.468 3.564 3.522 3.520
3.505 3.523 3.475 3.470 3.457 3.536 3.528 3.477 3.536 3.491
3.510 3.461 3.431 3.502 3.491 3.506 3.439 3.513 3.496 3.539
3.469 3.481 3.515 3.535 3.460 3.575 3.488 3.515 3.484 3.482
3.517 3.483 3.467 3.467 3.502 3.471 3.516 3.474 3.500 3.466
;
run;



334 � Chapter 3. The UNIVARIATE Procedure

The following statements create the histogram shown inOutput 3.14.1.

title ’Analysis of Plating Thickness’;
proc univariate data=Trans noprint;

histogram Thick;
run;

The NOPRINT option in the PROC UNIVARIATE statement suppresses tables of
summary statistics for the variableThick that would be displayed by default. A his-
togram is created for each variable listed in the HISTOGRAM statement.

Output 3.14.1. Histogram for Plating Thickness

A sample program,uniex08.sas, for this example is available in the SAS Sample
Library for Base SAS software.

Example 3.15. Creating a One-Way Comparative Histogram

This example illustrates how to create a comparative histogram. The effective channel
length (in microns) is measured for 1225 field effect transistors. The channel lengths
(Length) are stored in a data set namedChannel, which is partially listed inOutput
3.15.1:



Example 3.15. Creating a One-Way Comparative Histogram � 335

Output 3.15.1. Partial Listing of Data Set Channel

The Data Set Channel

Lot Length

Lot 1 0.91
. .

Lot 1 1.17
Lot 2 1.47

. .
Lot 2 1.39
Lot 3 2.04

. .
Lot 3 1.91

The following statements request a histogram, which is shown inOutput 3.15.2of
Length ignoring the lot source:

title ’Histogram of Length Ignoring Lot Source’;
proc univariate data=Channel noprint;

histogram Length;
run;

Output 3.15.2. Histogram for Length Ignoring Lot Source



336 � Chapter 3. The UNIVARIATE Procedure

To investigate whether the peaks (modes) inOutput 3.15.2are related to the lot
source, you can create a comparative histogram usingLot as a classification variable.
The following statements create the histogram shown inOutput 3.15.3:

title ’Comparative Analysis of Lot Source’;
proc univariate data=Channel noprint;

class Lot;
histogram Length / nrows = 3;

run;

The CLASS statement requests comparisons for each level (distinct value) of the
classification variableLot. The HISTOGRAM statement requests a comparative his-
togram for the variableLength. The NROWS= option specifies the number of rows
in the comparative histogram. By default, comparative histograms are displayed in
two rows per panel.

Output 3.15.3. Comparison by Lot Source

Output 3.15.3reveals that the distributions ofLength are similarly distributed except
for shifts in mean.

A sample program,uniex09.sas, for this example is available in the SAS Sample
Library for Base SAS software.



Example 3.16. Creating a Two-Way Comparative Histogram � 337

Example 3.16. Creating a Two-Way Comparative Histogram

This example illustrates how to create a two-way comparative histogram. Two sup-
pliers (A and B) provide disk drives for a computer manufacturer. The manufacturer
measures the disk drive opening width to determine whether there has been a change
in variability from 2002 to 2003 for each supplier.

The following statements save the measurements in a data set namedDisk. There are
two classification variables,Supplier andYear, and a user-defined format is associ-
ated withYear.

proc format ;
value mytime 1 = ’2002’ 2 = ’2003’;

data Disk;
input @1 Supplier $10. Year Width;
label Width = ’Opening Width (inches)’;
format Year mytime.;

datalines;
Supplier A 1 1.8932

. . .
Supplier B 1 1.8986
Supplier A 2 1.8978

. . .
Supplier B 2 1.8997
;

The following statements create the comparative histogram inOutput 3.16.1:

title ’Results of Supplier Training Program’;
proc univariate data=Disk noprint;

class Supplier Year / keylevel = (’Supplier A’ ’2003’);
histogram Width / intertile = 1.0

vaxis = 0 10 20 30
ncols = 2
nrows = 2
cfill = ligr
cframetop = yellow
cframeside = yellow;

run;

The KEYLEVEL= option specifies the key cell as the cell for whichSupplier is equal
to ‘SUPPLIER A’ andYear is equal to ‘2003.’ This cell determines the binning for
the other cells, and the columns are arranged so that this cell is displayed in the upper
left corner. Without the KEYLEVEL= option, the default key cell would be the
cell for whichSupplier is equal to ‘SUPPLIER A’ andYear is equal to ‘2002’; the
column labeled ‘2002’ would be displayed to the left of the column labeled ‘2003.’

The VAXIS= option specifies the tick mark labels for the vertical axis. The
NROWS=2 and NCOLS=2 options specify a2 × 2 arrangement for the tiles. The
CFRAMESIDE= and CFRAMETOP= options specify fill colors for the row and col-
umn labels, and the CFILL= option specifies a fill color for the bars.Output 3.16.1
provides evidence that both suppliers have reduced variability from 2002 to 2003.



338 � Chapter 3. The UNIVARIATE Procedure

Output 3.16.1. Two-Way Comparative Histogram

A sample program,uniex10.sas, for this example is available in the SAS Sample
Library for Base SAS software.

Example 3.17. Adding Insets with Descriptive Statistics

This example illustrates how to add insets with descriptive statistics to a comparative
histogram; seeOutput 3.17.1. Three similar machines are used to attach a part to an
assembly. One hundred assemblies are sampled from the output of each machine,
and a part position is measured in millimeters. The following statements create the
data setMachines, which contains the measurements in a variable namedPosition:

data Machines;
input Position @@;
label Position = ’Position in Millimeters’;
if (_n_ <= 100) then Machine = ’Machine 1’;
else if (_n_ <= 200) then Machine = ’Machine 2’;
else Machine = ’Machine 3’;
datalines;

-0.17 -0.19 -0.24 -0.24 -0.12 0.07 -0.61 0.22 1.91 -0.08
-0.59 0.05 -0.38 0.82 -0.14 0.32 0.12 -0.02 0.26 0.19

...

0.48 0.41 0.78 0.58 0.43 0.07 0.27 0.49 0.79 0.92
0.79 0.66 0.22 0.71 0.53 0.57 0.90 0.48 1.17 1.03

;
run;



Example 3.17. Adding Insets with Descriptive Statistics � 339

The following statements create the comparative histogram inOutput 3.17.1:

title ’Machine Comparision Study’;
proc univariate data=Machines noprint;

class Machine;
histogram Position / nrows = 3

intertile = 1
midpoints = -1.2 to 2.2 by 0.1
vaxis = 0 to 16 by 4
cfill = ligr;

inset mean std="Std Dev" / pos = ne format = 6.3;
run;

The INSET statement requests insets containing the sample mean and standard devi-
ation for each machine in the corresponding tile. The MIDPOINTS= option specifies
the midpoints of the histogram bins.

Output 3.17.1. Comparative Histograms

Output 3.17.1shows that the average position for Machines 2 and 3 are similar and
that the spread for Machine 1 is much larger than for Machines 2 and 3.

A sample program,uniex11.sas, for this example is available in the SAS Sample
Library for Base SAS software.



340 � Chapter 3. The UNIVARIATE Procedure

Example 3.18. Binning a Histogram

This example, which is a continuation ofExample 3.14, demonstrates various meth-
ods for binning a histogram. This example also illustrates how to save bin percentages
in an OUTHISTOGRAM= data set.

The manufacturer fromExample 3.14now wants to enhance the histogram by chang-
ing the endpoints of the bins using the ENDPOINTS= option. The following state-
ments create a histogram with bins that have end points 3.425 and 3.6 and width
0.025:

title ’Enhancing a Histogram’;
ods select HistogramBins MyHist;
proc univariate data=Trans;

histogram Thick / midpercents name=’MyHist’
endpoints = 3.425 to 3.6 by .025;

run;

The ODS SELECT statement restricts the output to the “HistogramBins” table and
the “MyHist” histogram; see the section“ODS Table Names”on page 309. The
ENDPOINTS= option specifies the endpoints for the histogram bins. By default, if
the ENDPOINTS= option is not specified, the automatic binning algorithm computes
values for the midpoints of the bins. The MIDPERCENTS option requests a table
of the midpoints of each histogram bin and the percent of the observations that fall
in each bin. This table is displayed inOutput 3.18.1; the histogram is displayed in
Output 3.18.2. The NAME= option specifies a name for the histogram that can be
used in the ODS SELECT statement.

Output 3.18.1. Table of Bin Percentages Requested with MIDPERCENTS Option

Enhancing a Histogram

The UNIVARIATE Procedure
Variable: Thick

Histogram Bins for Thick

Bin
Minimum Observed

Point Percent

3.425 8.000
3.450 21.000
3.475 25.000
3.500 29.000
3.525 11.000
3.550 5.000
3.575 1.000



Example 3.18. Binning a Histogram � 341

Output 3.18.2. Histogram with ENDPOINTS= Option

The MIDPOINTS= option is an alternative to the ENDPOINTS= option for speci-
fying histogram bins. The following statements create a similar histogram, which is
shown inOutput 3.18.3, to the one inOutput 3.18.2:

title ’Enhancing a Histogram’;
proc univariate data=Trans noprint;

histogram Thick / midpoints = 3.4375 to 3.5875 by .025
rtinclude
outhistogram = OutMdpts;

run;

Output 3.18.3differs fromOutput 3.18.2in two ways:

• The MIDPOINTS= option specifies the bins for the histogram by specifying
the midpoints of the bins instead of specifying the endpoints. Note that the
histogram displays midpoints instead of endpoints.

• The RTINCLUDE option request that the right endpoint of each bin be in-
cluded in the histogram interval instead of the default, which is to include the
left endpoint in the interval. This changes the histogram slightly fromOutput
3.18.2. Six observations have a thickness equal to an endpoint of an interval.
For instance, there is one observation with a thickness of 3.45 mils. InOutput
3.18.3, this observation is included in the bin from 3.425 to 3.45.



342 � Chapter 3. The UNIVARIATE Procedure

Output 3.18.3. Histogram with MIDPOINTS= and RTINCLUDE Options

The OUTHISTOGRAM= option produces an output data set namedOutMdpts, dis-
played inOutput 3.18.4. This data set provides information on the bins of the his-
togram. For more information, see the section“OUTHISTOGRAM= Output Data
Set”on page 308.

Output 3.18.4. The OUTHISTOGRAM= Data Set OutMdpts

OUTHISTOGRAM= Data Set

Obs _VAR_ _MIDPT_ _OBSPCT_

1 Thick 3.4375 9
2 Thick 3.4625 21
3 Thick 3.4875 26
4 Thick 3.5125 28
5 Thick 3.5375 11
6 Thick 3.5625 5
7 Thick 3.5875 0

A sample program,uniex08.sas, for this example is available in the SAS Sample
Library for Base SAS software.



Example 3.19. Adding a Normal Curve to a Histogram � 343

Example 3.19. Adding a Normal Curve to a Histogram

This example is a continuation ofExample 3.14. The following statements fit a nor-
mal distribution to the thickness measurements in theTrans data set and superimpose
the fitted density curve on the histogram:

title ’Analysis of Plating Thickness’;
ods select ParameterEstimates GoodnessOfFit FitQuantiles Bins MyPlot;
proc univariate data=Trans;

histogram Thick / normal(percents=20 40 60 80 midpercents)
name=’MyPlot’;

inset n normal(ksdpval) / pos = ne format = 6.3;
run;

The ODS SELECT statement restricts the output to the “ParameterEstimates,”
“GoodnessOfFit,” “FitQuantiles,” and “Bins” tables; see the section“ODS Table
Names” on page 309. The NORMAL option requests specifies that the normal
curve is to be displayed on the histogram shown inOutput 3.19.3. It also requests
a summary of the fitted distribution, which is shown inOutput 3.19.1andOutput
3.19.2. This summary includes goodness-of-fit tests, parameter estimates, and quan-
tiles of the fitted distribution. (If you specify the NORMALTEST option in the PROC
UNIVARIATE statement, the Shapiro-Wilk test for normality will be included in the
tables of statistical output.)

Two secondary options are specified in parentheses after the NORMAL primary op-
tion. The PERCENTS= option specifies quantiles, which are to be displayed in the
“FitQuantiles” table. The MIDPERCENTS option requests a table that lists the mid-
points, the observed percentage of observations, and the estimated percentage of the
population in each interval (estimated from the fitted normal distribution). SeeTable
3.3 on page 214 andTable 3.8on page 215 for the secondary options that can be
specified with after the NORMAL primary option.

Output 3.19.1. Summary of Fitted Normal Distribution

Analysis of Plating Thickness

The UNIVARIATE Procedure
Fitted Distribution for Thick

Parameters for Normal Distribution

Parameter Symbol Estimate

Mean Mu 3.49533
Std Dev Sigma 0.032117

Goodness-of-Fit Tests for Normal Distribution

Test ---Statistic---- -----p Value-----

Kolmogorov-Smirnov D 0.05563823 Pr > D >0.150
Cramer-von Mises W-Sq 0.04307548 Pr > W-Sq >0.250
Anderson-Darling A-Sq 0.27840748 Pr > A-Sq >0.250



344 � Chapter 3. The UNIVARIATE Procedure

Output 3.19.2. Summary of Fitted Normal Distribution (cont.)

Analysis of Plating Thickness

Fitted Distribution for Thick

Histogram Bin Percents for Normal Distribution

Bin -------Percent------
Midpoint Observed Estimated

3.43 3.000 3.296
3.45 9.000 9.319
3.47 23.000 18.091
3.49 19.000 24.124
3.51 24.000 22.099
3.53 15.000 13.907
3.55 3.000 6.011
3.57 4.000 1.784

Quantiles for Normal Distribution

------Quantile------
Percent Observed Estimated

20.0 3.46700 3.46830
40.0 3.48350 3.48719
60.0 3.50450 3.50347
80.0 3.52250 3.52236

Output 3.19.3. Histogram Superimposed with Normal Curve



Example 3.20. Adding Fitted Normal Curves to a Comparative Histogram � 345

The histogram of the variableThick with a superimposed normal curve is shown in
Output 3.19.3.

The estimated parameters for the normal curve (µ̂ = 3.50 andσ̂ = 0.03) are shown
in Output 3.19.1. By default, the parameters are estimated unless you specify values
with the MU= and SIGMA= secondary options after the NORMAL primary option.
The results of three goodness-of-fit tests based on the empirical distribution function
(EDF) are displayed inOutput 3.19.1. Since thep-values are all greater than 0.15,
the hypothesis of normality is not rejected.

A sample program,uniex08.sas, for this example is available in the SAS Sample
Library for Base SAS software.

Example 3.20. Adding Fitted Normal Curves to a Comparative
Histogram

This example is a continuation ofExample 3.15, which introduced the data set
Channel on page 334. InOutput 3.15.3, it appears that the channel lengths in each
lot are normally distributed. The following statements use the NORMAL option to
fit a normal distribution for each lot:

title ’Comparative Analysis of Lot Source’;
proc univariate data=Channel noprint;

class Lot;
histogram Length / nrows = 3

intertile = 1
cprop = orange
normal(color = black noprint);

inset n = "N" / pos = nw;
run;

The NOPRINT option in the PROC UNIVARIATE statement suppresses the tables
of statistical output produced by default; the NOPRINT option in parentheses after
the NORMAL option suppresses the tables of statistical output related to the fit of the
normal distribution. The normal parameters are estimated from the data for each lot,
and the curves are superimposed on each component histogram. The INTERTILE=
option specifies the space between the framed areas, which are referred to as tiles. The
CPROP= option requests the shaded bars above each tile, which represent the relative
frequencies of observations in each lot. The comparative histogram is displayed in
Output 3.20.1.

A sample program,uniex09.sas, for this example is available in the SAS Sample
Library for Base SAS software.



346 � Chapter 3. The UNIVARIATE Procedure

Output 3.20.1. Fitting Normal Curves to a Comparative Histogram

Example 3.21. Fitting a Beta Curve

You can use a beta distribution to model the distribution of a variable that is known
to vary between lower and upper bounds. In this example, a manufacturing company
uses a robotic arm to attach hinges on metal sheets. The attachment point should be
offset 10.1 mm from the left edge of the sheet. The actual offset varies between 10.0
and 10.5 mm due to variation in the arm. The following statements save the offsets
for 50 attachment points as the values of the variableLength in the data setRobots:

data Robots;
input Length @@;
label Length = ’Attachment Point Offset (in mm)’;
datalines;

10.147 10.070 10.032 10.042 10.102
10.034 10.143 10.278 10.114 10.127
10.122 10.018 10.271 10.293 10.136
10.240 10.205 10.186 10.186 10.080
10.158 10.114 10.018 10.201 10.065
10.061 10.133 10.153 10.201 10.109
10.122 10.139 10.090 10.136 10.066
10.074 10.175 10.052 10.059 10.077
10.211 10.122 10.031 10.322 10.187
10.094 10.067 10.094 10.051 10.174
;
run;



Example 3.21. Fitting a Beta Curve � 347

The following statements create a histogram with a fitted beta density curve, shown
in Output 3.21.1:

title ’Fitted Beta Distribution of Offsets’;
ods select ParameterEstimates FitQuantiles MyHist;
proc univariate data=Robots;

histogram Length /
beta(theta=10 scale=0.5 color=red fill)
cfill = yellow
cframe = ligr
href = 10
hreflabel = ’Lower Bound’
lhref = 2
vaxis = axis1
name = ’MyHist’;

axis1 label=(a=90 r=0);
inset n = ’Sample Size’

beta / pos=ne cfill=blank;
run;

The ODS SELECT statement restricts the output to the “ParameterEstimates” and
“FitQuantiles” tables; see the section“ODS Table Names”on page 309. The BETA
primary option requests a fitted beta distribution. The THETA= secondary option
specifies the lower threshold. The SCALE= secondary option specifies the range
between the lower threshold and the upper threshold. Note that the default THETA=
and SCALE= values are zero and one, respectively.

Output 3.21.1. Superimposing a Histogram with a Fitted Beta Curve



348 � Chapter 3. The UNIVARIATE Procedure

The FILL secondary option specifies that the area under the curve is to be filled with
the CFILL= color. (If FILL were omitted, the CFILL= color would be used to fill the
histogram bars instead.)

The HREF= option draws a reference line at the lower bound, and the HREFLABEL=
option adds the labelLower Bound. The LHREF= option specifies a dashed line
type for the reference line. The INSET statement adds an inset with the sample size
positioned in the northeast corner of the plot.

In addition to displaying the beta curve, the BETA option requests a summary of the
curve fit. This summary, which includes parameters for the curve and the observed
and estimated quantiles, is shown inOutput 3.21.2. A sample program,uniex12.sas,
for this example is available in the SAS Sample Library for Base SAS software.

Output 3.21.2. Summary of Fitted Beta Distribution

Fitted Beta Distribution of Offsets

Fitted Distribution for Length

Parameters for Beta Distribution

Parameter Symbol Estimate

Threshold Theta 10
Scale Sigma 0.5
Shape Alpha 2.06832
Shape Beta 6.022479
Mean 10.12782
Std Dev 0.072339

Quantiles for Beta Distribution

------Quantile------
Percent Observed Estimated

1.0 10.0180 10.0124
5.0 10.0310 10.0285

10.0 10.0380 10.0416
25.0 10.0670 10.0718
50.0 10.1220 10.1174
75.0 10.1750 10.1735
90.0 10.2255 10.2292
95.0 10.2780 10.2630
99.0 10.3220 10.3237

Example 3.22. Fitting Lognormal, Weibull, and Gamma
Curves

To determine an appropriate model for a data distribution, you should consider
curves from several distribution families. As shown in this example, you can use
the HISTOGRAM statement to fit more than one distribution and display the density
curves on a histogram.



Example 3.22. Fitting Lognormal, Weibull, and Gamma Curves � 349

The gap between two plates is measured (in cm) for each of 50 welded assemblies
selected at random from the output of a welding process. The following statements
save the measurements (Gap) in a data set namedPlates:

data Plates;
label Gap = ’Plate Gap in cm’;
input Gap @@;
datalines;

0.746 0.357 0.376 0.327 0.485 1.741 0.241 0.777 0.768 0.409
0.252 0.512 0.534 1.656 0.742 0.378 0.714 1.121 0.597 0.231
0.541 0.805 0.682 0.418 0.506 0.501 0.247 0.922 0.880 0.344
0.519 1.302 0.275 0.601 0.388 0.450 0.845 0.319 0.486 0.529
1.547 0.690 0.676 0.314 0.736 0.643 0.483 0.352 0.636 1.080
;
run;

The following statements fit three distributions (lognormal, Weibull, and gamma) and
display their density curves on a single histogram:

title ’Distribution of Plate Gaps’;
ods select ParameterEstimates GoodnessOfFit FitQuantiles MyHist;
proc univariate data=Plates;

var Gap;
histogram / midpoints=0.2 to 1.8 by 0.2

lognormal (l=1)
weibull (l=2)
gamma (l=8)
vaxis = axis1
name = ’MyHist’;

inset n mean(5.3) std=’Std Dev’(5.3) skewness(5.3)
/ pos = ne header = ’Summary Statistics’;

axis1 label=(a=90 r=0);
run;

The ODS SELECT statement restricts the output to the “ParameterEstimates,”
“GoodnessOfFit,” and “FitQuantiles” tables; see the section“ODS Table Names”on
page 309. The LOGNORMAL, WEIBULL, and GAMMA primary options request
superimposed fitted curves on the histogram inOutput 3.22.1. The L= secondary op-
tions specify distinct line types for the curves. Note that a threshold parameterθ = 0
is assumed for each curve. In applications where the threshold is not zero, you can
specifyθ with the THETA= secondary option.

The LOGNORMAL, WEIBULL, and GAMMA options also produce the summaries
for the fitted distributions shown inOutput 3.22.2throughOutput 3.22.5.

Output 3.22.2provides three EDF goodness-of-fit tests for the lognormal distribu-
tion: the Anderson-Darling, the Cramér-von Mises, and the Kolmogorov-Smirnov
tests. At theα = 0.10 significance level, all tests support the conclusion that the
two-parameter lognormal distribution with scale parameterζ̂ = −0.58 and shape
parameter̂σ = 0.50 provides a good model for the distribution of plate gaps.



350 � Chapter 3. The UNIVARIATE Procedure

Output 3.22.1. Superimposing a Histogram with Fitted Curves

Output 3.22.2. Summary of Fitted Lognormal Distribution

Distribution of Plate Gaps

Fitted Distributions for Gap

Parameters for Lognormal Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Zeta -0.58375
Shape Sigma 0.499546
Mean 0.631932
Std Dev 0.336436

Goodness-of-Fit Tests for Lognormal Distribution

Test ---Statistic---- -----p Value-----

Kolmogorov-Smirnov D 0.06441431 Pr > D >0.150
Cramer-von Mises W-Sq 0.02823022 Pr > W-Sq >0.500
Anderson-Darling A-Sq 0.24308402 Pr > A-Sq >0.500



Example 3.22. Fitting Lognormal, Weibull, and Gamma Curves � 351

Output 3.22.3. Summary of Fitted Lognormal Distribution (cont.)

Distribution of Plate Gaps

Fitted Distributions for Gap

Quantiles for Lognormal Distribution

------Quantile------
Percent Observed Estimated

1.0 0.23100 0.17449
5.0 0.24700 0.24526

10.0 0.29450 0.29407
25.0 0.37800 0.39825
50.0 0.53150 0.55780
75.0 0.74600 0.78129
90.0 1.10050 1.05807
95.0 1.54700 1.26862
99.0 1.74100 1.78313

Output 3.22.4. Summary of Fitted Weibull Distribution

Distribution of Plate Gaps

Fitted Distributions for Gap

Parameters for Weibull Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Sigma 0.719208
Shape C 1.961159
Mean 0.637641
Std Dev 0.339248

Goodness-of-Fit Tests for Weibull Distribution

Test ---Statistic---- -----p Value-----

Cramer-von Mises W-Sq 0.15937281 Pr > W-Sq 0.016
Anderson-Darling A-Sq 1.15693542 Pr > A-Sq <0.010

Quantiles for Weibull Distribution

------Quantile------
Percent Observed Estimated

1.0 0.23100 0.06889
5.0 0.24700 0.15817

10.0 0.29450 0.22831
25.0 0.37800 0.38102
50.0 0.53150 0.59661
75.0 0.74600 0.84955
90.0 1.10050 1.10040
95.0 1.54700 1.25842
99.0 1.74100 1.56691



352 � Chapter 3. The UNIVARIATE Procedure

Output 3.22.4provides two EDF goodness-of-fit tests for the Weibull distribution: the
Anderson-Darling and the Cramér-von Mises tests. Thep-values for the EDF tests
are all less than 0.10, indicating that the data do not support a Weibull model.

Output 3.22.5. Summary of Fitted Gamma Distribution

Distribution of Plate Gaps

Fitted Distributions for Gap

Parameters for Gamma Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Sigma 0.155198
Shape Alpha 4.082646
Mean 0.63362
Std Dev 0.313587

Goodness-of-Fit Tests for Gamma Distribution

Test ---Statistic---- -----p Value-----

Kolmogorov-Smirnov D 0.09695325 Pr > D >0.250
Cramer-von Mises W-Sq 0.07398467 Pr > W-Sq >0.250
Anderson-Darling A-Sq 0.58106613 Pr > A-Sq 0.137

Quantiles for Gamma Distribution

------Quantile------
Percent Observed Estimated

1.0 0.23100 0.13326
5.0 0.24700 0.21951

10.0 0.29450 0.27938
25.0 0.37800 0.40404
50.0 0.53150 0.58271
75.0 0.74600 0.80804
90.0 1.10050 1.05392
95.0 1.54700 1.22160
99.0 1.74100 1.57939

Output 3.22.5provides three EDF goodness-of-fit tests for the gamma distribution:
the Anderson-Darling, the Cramér-von Mises, and the Kolmogorov-Smirnov tests.
At the α = 0.10 significance level, all tests support the conclusion that the gamma
distribution with scale parameterσ = 0.16 and shape parameterα = 4.08 provides a
good model for the distribution of plate gaps.

Based on this analysis, the fitted lognormal distribution and the fitted gamma distri-
bution are both good models for the distribution of plate gaps. A sample program,
uniex13.sas, for this example is available in the SAS Sample Library for Base SAS
software.

Example 3.23. Computing Kernel Density Estimates

This example illustrates the use of kernel density estimates to visualize a nonnormal
data distribution. This example uses the data setChannel, which is introduced in
Example 3.15.

When you compute kernel density estimates, you should try several choices for the
bandwidth parameterc since this determines the smoothness and closeness of the fit.



Example 3.23. Computing Kernel Density Estimates � 353

You can specify a list of up to five C= values with the KERNEL option to request
multiple density estimates, as shown in the following statements:

title ’FET Channel Length Analysis’;
proc univariate data=Channel noprint;

histogram Length / kernel(c = 0.25 0.50 0.75 1.00
l = 1 20 2 34
color=red
noprint);

run;

The L= secondary option specifies distinct line types for the curves (the L= values are
paired with the C= values in the order listed).Output 3.23.1demonstrates the effect
of c. In general, larger values ofc yield smoother density estimates, and smaller
values yield estimates that more closely fit the data distribution.

Output 3.23.1. Multiple Kernel Density Estimates

Output 3.23.1reveals strong trimodality in the data, which is displayed with compar-
ative histograms inExample 3.15.

A sample program,uniex09.sas, for this example is available in the SAS Sample
Library for Base SAS software.



354 � Chapter 3. The UNIVARIATE Procedure

Example 3.24. Fitting a Three-Parameter Lognormal Curve

If you request a lognormal fit with the LOGNORMAL primary option, a two-
parameter lognormal distribution is assumed. This means that the shape parameterσ
and the scale parameterζ are unknown (unless specified) and that the thresholdθ is
known (it is either specified with the THETA= option or assumed to be zero).

If it is necessary to estimateθ in addition toζ andσ, the distribution is referred to as
a three-parameter lognormal distribution. This example shows how you can request
a three-parameter lognormal distribution.

A manufacturing process produces a plastic laminate whose strength must exceed a
minimum of 25 psi. Samples are tested, and a lognormal distribution is observed for
the strengths. It is important to estimateθ to determine whether the process meets the
strength requirement. The following statements save the strengths for 49 samples in
the data setPlastic:

data Plastic;
label Strength = ’Strength in psi’;
input Strength @@;
datalines;

30.26 31.23 71.96 47.39 33.93 76.15 42.21
81.37 78.48 72.65 61.63 34.90 24.83 68.93
43.27 41.76 57.24 23.80 34.03 33.38 21.87
31.29 32.48 51.54 44.06 42.66 47.98 33.73
25.80 29.95 60.89 55.33 39.44 34.50 73.51
43.41 54.67 99.43 50.76 48.81 31.86 33.88
35.57 60.41 54.92 35.66 59.30 41.96 45.32
;
run;

The following statements use the LOGNORMAL primary option in the
HISTOGRAM statement to display the fitted three-parameter lognormal curve
shown inOutput 3.24.1:

title ’Three-Parameter Lognormal Fit’;
proc univariate data=Plastic noprint;

histogram Strength / lognormal(fill theta = est noprint)
cfill = white;

inset lognormal / format=6.2 pos=ne;
run;

The NOPRINT option suppresses the tables of statistical output produced by default.
Specifying THETA=EST requests a local maximum likelihood estimate (LMLE) for
θ, as described by Cohen (1951). This estimate is then used to compute maximum
likelihood estimates forσ andζ.

Note: You can also specify THETA=EST with the WEIBULL primary option to fit a
three-parameter Weibull distribution.

A sample program,uniex14.sas, for this example is available in the SAS Sample
Library for Base SAS software.



Example 3.25. Annotating a Folded Normal Curve � 355

Output 3.24.1. Three-Parameter Lognormal Fit

Example 3.25. Annotating a Folded Normal Curve
This example shows how to display a fitted curve that is not supported by the
HISTOGRAM statement. The offset of an attachment point is measured (in mm) for
a number of manufactured assemblies, and the measurements (Offset) are saved in a
data set namedAssembly. The following statements create the data setAssembly:

data Assembly;
label Offset = ’Offset (in mm)’;
input Offset @@;
datalines;

11.11 13.07 11.42 3.92 11.08 5.40 11.22 14.69 6.27 9.76
9.18 5.07 3.51 16.65 14.10 9.69 16.61 5.67 2.89 8.13
9.97 3.28 13.03 13.78 3.13 9.53 4.58 7.94 13.51 11.43

11.98 3.90 7.67 4.32 12.69 6.17 11.48 2.82 20.42 1.01
3.18 6.02 6.63 1.72 2.42 11.32 16.49 1.22 9.13 3.34
1.29 1.70 0.65 2.62 2.04 11.08 18.85 11.94 8.34 2.07
0.31 8.91 13.62 14.94 4.83 16.84 7.09 3.37 0.49 15.19
5.16 4.14 1.92 12.70 1.97 2.10 9.38 3.18 4.18 7.22

15.84 10.85 2.35 1.93 9.19 1.39 11.40 12.20 16.07 9.23
0.05 2.15 1.95 4.39 0.48 10.16 4.81 8.28 5.68 22.81
0.23 0.38 12.71 0.06 10.11 18.38 5.53 9.36 9.32 3.63

12.93 10.39 2.05 15.49 8.12 9.52 7.77 10.70 6.37 1.91
8.60 22.22 1.74 5.84 12.90 13.06 5.08 2.09 6.41 1.40

15.60 2.36 3.97 6.17 0.62 8.56 9.36 10.19 7.16 2.37
12.91 0.95 0.89 3.82 7.86 5.33 12.92 2.64 7.92 14.06
;
run;



356 � Chapter 3. The UNIVARIATE Procedure

It is decided to fit afolded normal distributionto the offset measurements. A variable
X has a folded normal distribution ifX = |Y |, whereY is distributed asN(µ, σ).
The fitted density is

h(x) =
1√
2πσ

[
exp

(
−(x− µ)2

2σ2

)
+ exp

(
−(x+ µ)2

2σ2

)]
, x ≥ 0

You can use SAS/IML to compute preliminary estimates ofµ and σ based on a
method of moments given by Elandt (1961). These estimates are computed by solv-
ing equation (19) of Elandt (1961), which is given by

f(θ) =

(
2√
2π
e−θ2/2 − θ [1− 2Φ(θ)]

)2

1 + θ2
= A

whereΦ(·) is the standard normal distribution function, and

A =
x̄2

1
n

∑n
i=1 x

2
i

Then the estimates ofσ andµ are given by

σ̂0 =

√
1
n

∑n
i=1 x2

i

1+θ̂2

µ̂0 = θ̂ · σ̂0

Begin by using PROC MEANS to compute the first and second moments and using
the following DATA step to compute the constantA:

proc means data = Assembly noprint;
var Offset;
output out=stat mean=m1 var=var n=n min = min;

run;

* Compute constant A from equation (19) of Elandt (1961);
data stat;

keep m2 a min;
set stat;
a = (m1*m1);
m2 = ((n-1)/n)*var + a;
a = a/m2;

run;

Next, use the SAS/IML subroutine NLPDD to solve equation (19) by minimizing
(f(θ)−A)2, and computêµ0 andσ̂0:



Example 3.25. Annotating a Folded Normal Curve � 357

proc iml;
use stat;
read all var {m2} into m2;
read all var {a} into a;
read all var {min} into min;

* f(t) is the function in equation (19) of Elandt (1961);
start f(t) global(a);

y = .39894*exp(-0.5*t*t);
y = (2*y-(t*(1-2*probnorm(t))))**2/(1+t*t);
y = (y-a)**2;
return(y);

finish;

* Minimize (f(t)-A)**2 and estimate mu and sigma;
if ( min < 0 ) then do;

print "Warning: Observations are not all nonnegative.";
print " The folded normal is inappropriate.";
stop;
end;

if ( a < 0.637 ) then do;
print "Warning: the folded normal may be inappropriate";
end;

opt = { 0 0 };
con = { 1e-6 };
x0 = { 2.0 };
tc = { . . . . . 1e-8 . . . . . . .};
call nlpdd(rc,etheta0,"f",x0,opt,con,tc);
esig0 = sqrt(m2/(1+etheta0*etheta0));
emu0 = etheta0*esig0;

create prelim var {emu0 esig0 etheta0};
append;
close prelim;

The preliminary estimates are saved in the data setPrelim, as shown inOutput 3.25.1:

Output 3.25.1. Preliminary Estimates of µ, σ, and θ

The Data Set Prelim

EMU0 ESIG0 ETHETA0

6.51735 6.54953 0.99509

Now, usingµ̂0 andσ̂0 as initial estimates, call the NLPDD subroutine to maximize
the log likelihood,l(µ, σ), of the folded normal distribution, where, up to a constant,

l(µ, σ) = −n log σ +
n∑

i=1

log
[
exp

(
−(xi − µ)2

2σ2

)
+ exp

(
−(xi + µ)2

2σ2

)]



358 � Chapter 3. The UNIVARIATE Procedure

* Define the log likelihood of the folded normal;
start g(p) global(x);

y = 0.0;
do i = 1 to nrow(x);

z = exp( (-0.5/p[2])*(x[i]-p[1])*(x[i]-p[1]) );
z = z + exp( (-0.5/p[2])*(x[i]+p[1])*(x[i]+p[1]) );
y = y + log(z);

end;
y = y - nrow(x)*log( sqrt( p[2] ) );
return(y);

finish;

* Maximize the log likelihood with subroutine NLPDD;
use assembly;
read all var {offset} into x;
esig0sq = esig0*esig0;
x0 = emu0||esig0sq;
opt = { 1 0 };
con = { . 0.0, . . };
call nlpdd(rc,xr,"g",x0,opt,con);
emu = xr[1];
esig = sqrt(xr[2]);
etheta = emu/esig;

create parmest var{emu esig etheta};
append;
close parmest;
quit;

The data setParmEst contains the maximum likelihood estimatesµ̂ andσ̂ (as well
asµ̂/σ̂), as shown inOutput 3.25.2:

Output 3.25.2. Final Estimates of µ, σ, and θ

The Data Set ParmEst

EMU ESIG ETHETA

6.66761 6.39650 1.04239

To annotate the curve on a histogram, begin by computing the width and endpoints
of the histogram intervals. The following statements save these values in a data set
calledOutCalc. Note that a plot is not produced at this point.



Example 3.25. Annotating a Folded Normal Curve � 359

proc univariate data = Assembly noprint;
histogram Offset / outhistogram = out normal(noprint) noplot;

run;

data OutCalc (drop = _MIDPT_);
set out (keep = _MIDPT_) end = eof;
retain _MIDPT1_ _WIDTH_;
if _N_ = 1 then _MIDPT1_ = _MIDPT_;
if eof then do;

_MIDPTN_ = _MIDPT_;
_WIDTH_ = (_MIDPTN_ - _MIDPT1_) / (_N_ - 1);
output;
end;

run;

Output 3.25.3provides a listing of the data setOutCalc. The width of the histogram
bars is saved as the value of the variable–WIDTH– ; the midpoints of the first and last
histogram bars are saved as the values of the variables–MIDPT1– and–MIDPTN– .

Output 3.25.3. The Data Set OutCalc

Data Set OutCalc

_MIDPT1_ _WIDTH_ _MIDPTN_

1.5 3 22.5

The following statements create an annotate data set namedAnno, which contains
the coordinates of the fitted curve:

data Anno;
merge ParmEst OutCalc;
length function color $ 8;
function = ’point’;
color = ’black’;
size = 2;
xsys = ’2’;
ysys = ’2’;
when = ’a’;
constant = 39.894*_width_;;
left = _midpt1_ - .5*_width_;
right = _midptn_ + .5*_width_;
inc = (right-left)/100;
do x = left to right by inc;

z1 = (x-emu)/esig;
z2 = (x+emu)/esig;
y = (constant/esig)*(exp(-0.5*z1*z1)+exp(-0.5*z2*z2));
output;
function = ’draw’;

end;
run;

The following statements read the ANNOTATE= data set and display the histogram
and fitted curve:



360 � Chapter 3. The UNIVARIATE Procedure

title ’Folded Normal Distribution’;
proc univariate data=assembly noprint;

histogram Offset / annotate = anno
cbarline = black
cfill = ligr;

run;

Output 3.25.4displays the histogram and fitted curve:

Output 3.25.4. Histogram with Annotated Folded Normal Curve

A sample program,uniex15.sas, for this example is available in the SAS Sample
Library for Base SAS software.

Example 3.26. Creating Lognormal Probability Plots

This example is a continuation of the example explored in the section“Modeling a
Data Distribution”on page 200.

In the normal probability plot shown inFigure 3.6, the nonlinearity of the point pat-
tern indicates a departure from normality in the distribution ofDeviation. Since the
point pattern is curved with slope increasing from left to right, a theoretical distri-
bution that is skewed to the right, such as a lognormal distribution, should provide
a better fit than the normal distribution. See the section“Interpretation of Quantile-
Quantile and Probability Plots”on page 299.



Example 3.26. Creating Lognormal Probability Plots � 361

You can explore the possibility of a lognormal fit with a lognormal probability plot.
When you request such a plot, you must specify the shape parameterσ for the log-
normal distribution. This value must be positive, and typical values ofσ range from
0.1 to 1.0. You can specify values forσ with the SIGMA= secondary option in the
LOGNORMAL primary option, or you can specify thatσ is to be estimated from the
data.

The following statements illustrate the first approach by creating a series of three
lognormal probability plots for the variableDeviation introduced in the section
“Modeling a Data Distribution”on page 200:

symbol v=plus height=3.5pct;
title ’Lognormal Probability Plot for Position Deviations’;
proc univariate data=Aircraft noprint;

probplot Deviation /
lognormal(theta=est zeta=est sigma=0.7 0.9 1.1)
href = 95
lhref = 1
square;

run;

The LOGNORMAL primary option requests plots based on the lognormal family of
distributions, and the SIGMA= secondary option requests plots forσ equal to 0.7,
0.9, and 1.1. These plots are displayed inOutput 3.26.1, Output 3.26.2, andOutput
3.26.3, respectively. Alternatively, you can specifyσ to be estimated using the sample
standard deviation by using the option SIGMA=EST.

The SQUARE option displays the probability plot in a square format, the HREF=
option requests a reference line at the 95th percentile, and the LHREF= option
specifies the line type for the reference line.

Output 3.26.1. Probability Plot Based on Lognormal Distribution with σ =0.7



362 � Chapter 3. The UNIVARIATE Procedure

Output 3.26.2. Probability Plot Based on Lognormal Distribution with σ =0.9

Output 3.26.3. Probability Plot Based on Lognormal Distribution with σ =1.1

The valueσ = 0.9 in Output 3.26.2most nearly linearizes the point pattern.
The 95th percentile of the position deviation distribution seen inOutput 3.26.2is
approximately 0.001, since this is the value corresponding to the intersection of the
point pattern with the reference line.



Example 3.27. Creating a Histogram to Display Lognormal Fit � 363

Note: Once theσ that produces the most linear fit is found, you can then estimate the
threshold parameterθ and the scale parameterζ. SeeExample 3.31.

The following statements illustrate how you can create a lognormal probability plot
for Deviation using a local maximum likelihood estimate forσ.

symbol v=plus height=3.5pct;
title ’Lognormal Probability Plot for Position Deviations’;
proc univariate data=Aircraft noprint;

probplot Deviation / lognormal(theta=est zeta=est sigma=est)
href = 95
lhref = 1
square;

run;

The plot is displayed inOutput 3.26.4. Note that the maximum likelihood estimate
of σ (in this case 0.882) does not necessarily produce the most linear point pattern.

Output 3.26.4. Probability Plot Based on Lognormal Distribution with Estimated σ

A sample program,uniex16.sas, for this example is available in the SAS Sample
Library for Base SAS software.

Example 3.27. Creating a Histogram to Display Lognormal Fit

This example uses the data setAircraft from the previous example to illustrate how
to display a lognormal fit with a histogram. To determine whether the lognormal dis-
tribution is an appropriate model for a distribution, you should consider the graphical
fit as well as conduct goodness-of-fit tests.



364 � Chapter 3. The UNIVARIATE Procedure

The following statements fit a lognormal distribution and display the density curve
on a histogram:

title ’Distribution of Position Deviations’;
ods select Lognormal.ParameterEstimates Lognormal.GoodnessOfFit MyPlot;
proc univariate data=Aircraft;

var Deviation;
histogram / lognormal(w=3 theta=est)

vaxis = axis1
name = ’MyPlot’;

inset n mean (5.3) std=’Std Dev’ (5.3) skewness (5.3) /
pos = ne header = ’Summary Statistics’;

axis1 label=(a=90 r=0);
run;

The ODS SELECT statement restricts the output to the “ParameterEstimates” and
“GoodnessOfFit” tables; see the section“ODS Table Names”on page 309. The
LOGNORMAL primary option superimposes a fitted curve on the histogram in
Output 3.27.1. The W= option specifies the line width for the curve. The INSET
statement specifies that the mean, standard deviation, and skewness be displayed in
an inset in the northeast corner of the plot. Note that the default value of the threshold
parameterθ is zero. In applications where the threshold is not zero, you can specify
θ with the THETA= option. The variableDeviation includes values that are less than
the default threshold; therefore, the option THETA= EST is used.

Output 3.27.1. Normal Probability Plot Created with Graphics Device

Output 3.27.2provides three EDF goodness-of-fit tests for the lognormal distribu-
tion: the Anderson-Darling, the Cramér-von Mises, and the Kolmogorov-Smirnov
tests. The null hypothesis for the three tests is that a lognormal distribution holds for
the sample data.



Example 3.28. Creating a Normal Quantile Plot � 365

Output 3.27.2. Summary of Fitted Lognormal Distribution

Distribution of Position Deviations

Fitted Distribution for Deviation

Parameters for Lognormal Distribution

Parameter Symbol Estimate

Threshold Theta -0.00834
Scale Zeta -6.14382
Shape Sigma 0.882225
Mean -0.00517
Std Dev 0.003438

Goodness-of-Fit Tests for Lognormal Distribution

Test ---Statistic---- -----p Value-----

Kolmogorov-Smirnov D 0.09419634 Pr > D >0.500
Cramer-von Mises W-Sq 0.02919815 Pr > W-Sq >0.500
Anderson-Darling A-Sq 0.21606642 Pr > A-Sq >0.500

The p-values for all three tests are greater than 0.5, so the null hypothesis is not
rejected. The tests support the conclusion that the two-parameter lognormal distri-
bution with scale parameter̂ζ = −6.14, and shape parameterσ̂ = 0.88 provides
a good model for the distribution of position deviations. For further discussion of
goodness-of-fit interpretation, see the section“Goodness-of-Fit Tests”on page 292.

A sample program,uniex16.sas, for this example is available in the SAS Sample
Library for Base SAS software.

Example 3.28. Creating a Normal Quantile Plot

This example illustrates how to create a normal quantile plot. An engineer is ana-
lyzing the distribution of distances between holes cut in steel sheets. The following
statements save measurements of the distance between two holes cut into 50 steel
sheets as values of the variableDistance in the data setSheets:

data Sheets;
input Distance @@;
label Distance = ’Hole Distance (cm)’;
datalines;

9.80 10.20 10.27 9.70 9.76
10.11 10.24 10.20 10.24 9.63

9.99 9.78 10.10 10.21 10.00
9.96 9.79 10.08 9.79 10.06

10.10 9.95 9.84 10.11 9.93
10.56 10.47 9.42 10.44 10.16
10.11 10.36 9.94 9.77 9.36

9.89 9.62 10.05 9.72 9.82
9.99 10.16 10.58 10.70 9.54

10.31 10.07 10.33 9.98 10.15
;
run;



366 � Chapter 3. The UNIVARIATE Procedure

The engineer decides to check whether the distribution of distances is normal. The
following statements create a Q-Q plot forDistance, shown inOutput 3.28.1:

symbol v=plus;
title ’Normal Quantile-Quantile Plot for Hole Distance’;
proc univariate data=Sheets noprint;

qqplot Distance;
run;

The plot compares the ordered values ofDistance with quantiles of the normal distri-
bution. The linearity of the point pattern indicates that the measurements are normally
distributed. Note that a normal Q-Q plot is created by default.

Output 3.28.1. Normal Quantile-Quantile Plot for Distance

A sample program,uniex17.sas, for this example is available in the SAS Sample
Library for Base SAS software.

Example 3.29. Adding a Distribution Reference Line

This example, which is a continuation ofExample 3.28, illustrates how to add a
reference line to a normal Q-Q plot, which represents the normal distribution with
meanµ0 and standard deviationσ0. The following statements reproduce the Q-Q
plot in Output 3.28.1and add the reference line:



Example 3.29. Adding a Distribution Reference Line � 367

symbol v=plus;
title ’Normal Quantile-Quantile Plot for Hole Distance’;
proc univariate data=Sheets noprint;

qqplot Distance / normal(mu=est sigma=est color=red
l=2 noprint)

square;
run;

The plot is displayed inOutput 3.29.1.

Specifying MU=EST and SIGMA=EST with the NORMAL primary option requests
the reference line for whichµ0 andσ0 are estimated by the sample mean and standard
deviation. Alternatively, you can specify numeric values forµ0 andσ0 with the MU=
and SIGMA= secondary options. The COLOR= and L= options specify the color and
type of the line, and the SQUARE option displays the plot in a square format. The
NOPRINT options in the PROC UNIVARIATE statement and after the NORMAL
option suppress all the tables of statistical output produced by default.

Output 3.29.1. Adding a Distribution Reference Line to a Q-Q Plot

The data clearly follow the line, which indicates that the distribution of the distances
is normal.

A sample program,uniex17.sas, for this example is available in the SAS Sample
Library for Base SAS software.



368 � Chapter 3. The UNIVARIATE Procedure

Example 3.30. Interpreting a Normal Quantile Plot

This example illustrates how to interpret a normal quantile plot when the data
are from a non-normal distribution. The following statements create the data set
Measures, which contains the measurements of the diameters of 50 steel rods in the
variableDiameter:

data Measures;
input Diameter @@;
label Diameter = ’Diameter (mm)’;
datalines;

5.501 5.251 5.404 5.366 5.445 5.576 5.607
5.200 5.977 5.177 5.332 5.399 5.661 5.512
5.252 5.404 5.739 5.525 5.160 5.410 5.823
5.376 5.202 5.470 5.410 5.394 5.146 5.244
5.309 5.480 5.388 5.399 5.360 5.368 5.394
5.248 5.409 5.304 6.239 5.781 5.247 5.907
5.208 5.143 5.304 5.603 5.164 5.209 5.475
5.223
;
run;

The following statements request the normal Q-Q plot inOutput 3.30.1:

symbol v=plus;
title ’Normal Q-Q Plot for Diameters’;
proc univariate data=Measures noprint;

qqplot Diameter / normal(noprint)
square
vaxis=axis1;

axis1 label=(a=90 r=0);
run;

The nonlinearity of the points inOutput 3.30.1indicates a departure from normality.
Since the point pattern is curved with slope increasing from left to right, a theoreti-
cal distribution that is skewed to the right, such as a lognormal distribution, should
provide a better fit than the normal distribution. The mild curvature suggests that you
should examine the data with a series of lognormal Q-Q plots for small values of the
shape parameterσ, as illustrated inExample 3.31. For details on interpreting a Q-Q
plot, see the section“Interpretation of Quantile-Quantile and Probability Plots”on
page 299.



Example 3.31. Estimating Three Parameters from Lognormal Quantile Plots � 369

Output 3.30.1. Normal Quantile-Quantile Plot of Nonnormal Data

A sample program,uniex18.sas, for this example is available in the SAS Sample
Library for Base SAS software.

Example 3.31. Estimating Three Parameters from Lognormal
Quantile Plots

This example, which is a continuation ofExample 3.30, demonstrates techniques for
estimating the shape, location, and scale parameters, and the theoretical percentiles
for a three-parameter lognormal distribution.

The three-parameter lognormal distribution depends on a threshold parameterθ, a
scale parameterζ, and a shape parameterσ. You can estimateσ from a series of
lognormal Q-Q plots which use the SIGMA= secondary option to specify different
values ofσ; the estimate ofσ is the value that linearizes the point pattern. You can
then estimate the threshold and scale parameters from the intercept and slope of the
point pattern. The following statements create the series of plots inOutput 3.31.1,
Output 3.31.2, andOutput 3.31.3for σ values of 0.2, 0.5, and 0.8, respectively:

symbol v=plus;
title ’Lognormal Q-Q Plot for Diameters’;
proc univariate data=Measures noprint;

qqplot Diameter / lognormal(sigma=0.2 0.5 0.8 noprint)
square;

run;



370 � Chapter 3. The UNIVARIATE Procedure

Note: You must specify a value for the shape parameterσ for a lognormal Q-Q plot
with the SIGMA= option or its alias, the SHAPE= option.

Output 3.31.1. Lognormal Quantile-Quantile Plot (σ =0.2)

Output 3.31.2. Lognormal Quantile-Quantile Plot (σ =0.5)



Example 3.31. Estimating Three Parameters from Lognormal Quantile Plots � 371

Output 3.31.3. Lognormal Quantile-Quantile Plot (σ =0.8)

The plot inOutput 3.31.2displays the most linear point pattern, indicating that the
lognormal distribution withσ = 0.5 provides a reasonable fit for the data distribution.

Data with this particular lognormal distribution have the following density function:

p(x) =

{ √
2√

π(x−θ)
exp

(
−2(log(x− θ)− ζ)2

)
for x > θ

0 for x ≤ θ

The points in the plot fall on or near the line with interceptθ and slopeexp(ζ). Based
onOutput 3.31.2, θ ≈ 5 andexp(ζ) ≈ 1.2

3 = 0.4, giving ζ ≈ log(0.4) ≈ −0.92.

You can also request a reference line using the SIGMA=, THETA=, and ZETA=
options together. The following statements produce the lognormal Q-Q plot inOutput
3.31.4:

symbol v=plus;
title ’Lognormal Q-Q Plot for Diameters’;
proc univariate data=Measures noprint;

qqplot Diameter / lognormal(theta=5 zeta=est sigma=est
color=black l=2 noprint)

square;
run;

Output 3.31.1throughOutput 3.31.3show that the threshold parameterθ is not equal
to zero. Specifying THETA=5 overrides the default value of zero. The SIGMA=EST
and ZETA=EST secondary options request estimates forσ andexp ζ using the sample
mean and standard deviation.



372 � Chapter 3. The UNIVARIATE Procedure

Output 3.31.4. Lognormal Quantile-Quantile Plot (σ =est, ζ =est, θ =5)

From the plot inOutput 3.31.2, σ can be estimated as 0.51, which is consistent with
the estimate of 0.5 derived from the plot inOutput 3.31.2. The next example illus-
trates how to estimate percentiles using lognormal Q-Q plots.

A sample program,uniex18.sas, for this example is available in the SAS Sample
Library for Base SAS software.

Example 3.32. Estimating Percentiles from Lognormal
Quantile Plots

This example, which is a continuation of the previous example, shows how to use a Q-
Q plot to estimate percentiles such as the 95th percentile of the lognormal distribution.
A probability plot can also be used for this purpose, as illustrated inExample 3.26.

The point pattern inOutput 3.31.4has a slope of approximately 0.39 and an intercept
of 5. The following statements reproduce this plot, adding a lognormal reference line
with this slope and intercept:

symbol v=plus;
title ’Lognormal Q-Q Plot for Diameters’;
proc univariate data=Measures noprint;

qqplot Diameter / lognormal(sigma=0.5 theta=5 slope=0.39 noprint)
pctlaxis(grid)
vref = 5.8 5.9 6.0
square;

run;

The result is shown inOutput 3.32.1:



Example 3.33. Estimating Parameters from Lognormal Quantile Plots � 373

Output 3.32.1. Lognormal Q-Q Plot Identifying Percentiles

The PCTLAXIS option labels the major percentiles, and the GRID option draws
percentile axis reference lines. The 95th percentile is 5.9, since the intersection of
the distribution reference line and the 95th reference line occurs at this value on the
vertical axis.

Alternatively, you can compute this percentile from the estimated lognormal param-
eters. Theαth percentile of the lognormal distribution is

Pα = exp(σΦ−1(α) + ζ) + θ

whereΦ−1(·) is the inverse cumulative standard normal distribution. Consequently,

P̂0.95 = exp
(

1
2Φ−1(0.95) + log(0.39)

)
+ 5 = 5.89

A sample program,uniex18.sas, for this example is available in the SAS Sample
Library for Base SAS software.

Example 3.33. Estimating Parameters from Lognormal
Quantile Plots

This example, which is a continuation ofExample 3.31, demonstrates techniques for
estimating the shape, location, and scale parameters, and the theoretical percentiles
for a two-parameter lognormal distribution.

If the threshold parameter is known, you can construct a two-parameter lognormal
Q-Q plot by subtracting the threshold from the data values and making a normal Q-Q
plot of the log-transformed differences, as illustrated in the following statements:



374 � Chapter 3. The UNIVARIATE Procedure

data ModifiedMeasures;
set Measures;
LogDiameter = log(Diameter-5);
label LogDiameter = ’log(Diameter-5)’;

run;

symbol v=plus;
title ’Two-Parameter Lognormal Q-Q Plot for Diameters’;
proc univariate data=ModifiedMeasures noprint;

qqplot LogDiameter / normal(mu=est sigma=est noprint)
square
vaxis=axis1;

inset n mean (5.3) std (5.3)
/ pos = nw header = ’Summary Statistics’;

axis1 label=(a=90 r=0);
run;

Output 3.33.1. Two-Parameter Lognormal Q-Q Plot for Diameters

Because the point pattern inOutput 3.33.1is linear, you can estimate the lognormal
parametersζ andσ as the normal plot estimates ofµ andσ, which are−0.99 and
0.51. These values correspond to the previous estimates of−0.92 forζ and 0.5 forσ
from Example 3.31. A sample program,uniex18.sas, for this example is available
in the SAS Sample Library for Base SAS software.



Example 3.34. Comparing Weibull Quantile Plots � 375

Example 3.34. Comparing Weibull Quantile Plots

This example compares the use of three-parameter and two-parameter Weibull Q-Q
plots for the failure times in months for 48 integrated circuits. The times are assumed
to follow a Weibull distribution. The following statements save the failure times as
the values of the variableTime in the data setFailures:

data Failures;
input Time @@;
label Time = ’Time in Months’;
datalines;

29.42 32.14 30.58 27.50 26.08 29.06 25.10 31.34
29.14 33.96 30.64 27.32 29.86 26.28 29.68 33.76
29.32 30.82 27.26 27.92 30.92 24.64 32.90 35.46
30.28 28.36 25.86 31.36 25.26 36.32 28.58 28.88
26.72 27.42 29.02 27.54 31.60 33.46 26.78 27.82
29.18 27.94 27.66 26.42 31.00 26.64 31.44 32.52
;
run;

If no assumption is made about the parameters of this distribution, you can use the
WEIBULL option to request a three-parameter Weibull plot. As in the previous exam-
ple, you can visually estimate the shape parameterc by requesting plots for different
values ofc and choosing the value ofc that linearizes the point pattern. Alternatively,
you can request a maximum likelihood estimate forc, as illustrated in the following
statements:

symbol v=plus;
title ’Three-Parameter Weibull Q-Q Plot for Failure Times’;
proc univariate data=Failures noprint;

qqplot Time / weibull(c=est theta=est sigma=est noprint)
square
href=0.5 1 1.5 2
vref=25 27.5 30 32.5 35
lhref=4 lvref=4
chref=tan cvref=tan;

run;

Note: When using the WEIBULL option, you must either specify a list of values for
the Weibull shape parameterc with the C= option, or you must specify C=EST.

Output 3.34.1displays the plot for the estimated valueĉ = 1.99. The reference
line corresponds to the estimated values for the threshold and scale parameters of
θ̂0 = 24.19 andσ̂0 = 5.83, respectively.



376 � Chapter 3. The UNIVARIATE Procedure

Output 3.34.1. Three-Parameter Weibull Q-Q Plot

Now, suppose it is known that the circuit lifetime is at least 24 months. The following
statements use the known threshold valueθ0 = 24 to produce the two-parameter
Weibull Q-Q plot shown inOutput 3.31.4:

symbol v=plus;
title ’Two-Parameter Weibull Q-Q Plot for Failure Times’;
proc univariate data=Failures noprint;

qqplot Time / weibull(theta=24 c=est sigma=est noprint)
square
vref= 25 to 35 by 2.5
href= 0.5 to 2.0 by 0.5
lhref=4 lvref=4
chref=tan cvref=tan;

run;

The reference line is based on maximum likelihood estimatesĉ = 2.08 andσ̂ = 6.05.



References � 377

Output 3.34.2. Two-Parameter Weibull Q-Q Plot for θ0 = 24

A sample program,uniex19.sas, for this example is available in the SAS Sample
Library for Base SAS software.

References

Blom, G. (1958),Statistical Estimates and Transformed Beta-Variables, New York:
John Wiley & Sons, Inc.

Chambers, J. M., Cleveland, W. S., Kleiner, B., and Tukey, P. A. (1983),Graphical
Methods for Data Analysis, Belmont, Calif.: Wadsworth International Group.

Cohen, A. C., Jr. (1951), “Estimating Parameters of Logarithmic-Normal
Distributions by Maximum Likelihood,”Journal of the American Statistical
Association, 46, 206–212.

Conover, W. J. (1999),Practical Nonparametric Statistics, Third Edition, New York:
John Wiley & Sons, Inc.

Croux, C. and Rousseeuw, P. J. (1992), “Time-Efficient Algorithms for Two Highly
Robust Estimators of Scale,”Computational Statistics, Vol. 1, 411–428.

D’Agostino, R. B. and Stephens, M. (1986),Goodness-of-Fit Techniques, New York:
Marcel Dekker, Inc.

Dixon, W. J. and Tukey, J. W. (1968), “Approximate Behavior of the Distribution of
Winsorizedt (Trimming/Winsorization 2),”Technometrics, 10, 83–98.



378 � Chapter 3. The UNIVARIATE Procedure

Elandt, R. C. (1961), “The Folded Normal Distribution: Two Methods of Estimating
Parameters from Moments,”Technometrics, 3, 551–562.

Fisher, R. A. (1973),Statistical Methods and Scientific Inference, New York: Hafner
Press.

Fowlkes, E. B. (1987),A Folio of Distributions: A Collection of Theoretical Quantile-
Quantile Plots, New York: Marcel Dekker, Inc.

Hahn, G. J. and Meeker, W. Q. (1991),Statistical Intervals: A Guide for
Practitioners, New York: John Wiley & Sons, Inc.

Hampel, F. R. (1974), “The Influence Curve and Its Role in Robust Estimation,”
Journal of the American Statistical Association, 69, 383–393.

Iman, R. L. (1974), “Use of at-statistic as an Approximation to the Exact Distribution
of the Wilcoxon Signed Ranks Test Statistic,”Communications in Statistics, 3,
795–806.

Johnson, N. L., Kotz, S., and Balakrishnan, N. (1994),Continuous Univariate
Distributions, Vol. 1, New York: John Wiley & Sons, Inc.

Johnson, N. L., Kotz, S., and Balakrishnan, N. (1995),Continuous Univariate
Distributions, Vol. 2, New York: John Wiley & Sons, Inc.

Lehmann, E. L. (1998),Nonparametrics: Statistical Methods Based on Ranks, New
Jersey: Prentice Hall.

Odeh, R. E. and Owen, D. B. (1980),Tables for Normal Tolerance Limits, Sampling
Plans, and Screening, New York: Marcel Dekker, Inc.

Owen, D. B. and Hua, T. A. (1977), “Tables of Confidence Limits on the Tail Area of
the Normal Distribution,”Communication and Statistics, Part B–Simulation and
Computation, 6, 285–311.

Rousseeuw, P. J. and Croux, C. (1993), “Alternatives to the Median Absolute
Deviation,”Journal of the American Statistical Association. 88, 1273–1283.

Royston, J. P. (1992), “Approximating the Shapiro-Wilk W-Test for Non-normality,”
Statistics and Computing, 2, 117–119.

Shapiro, S. S. and Wilk, M. B. (1965), “An Analysis of Variance Test for Normality
(complete samples),”Biometrika, 52, 591–611.

Silverman, B. W. (1986),Density Estimation for Statistics and Data Analysis, New
York: Chapman and Hall.

Terrell, G. R. and Scott, D. W. (1985), “Oversmoothed Nonparametric Density
Estimates,”Journal of the American Statistical Association, 80, 209–214.

Tukey, J. W. (1977),Exploratory Data Analysis, Reading, Massachusetts: Addison-
Wesley.

Tukey, J. W. and McLaughlin, D. H. (1963), “Less Vulnerable Confidence
and Significance Procedures for Location Based on a Single Sample:
Trimming/Winsorization 1,”Sankhya A, 25, 331–352.



Subject Index

A
adjusted odds ratio,137
agreement, measures of,127
alpha level

FREQ procedure,79, 87
Anderson-Darling statistic,295
Anderson-Darling test,206
annotating

histograms,218
probability plots,245
quantile plots,258

ANOVA (row mean scores) statistic,136
association, measures of

FREQ procedure,108
asymmetric lambda,108, 116

B
beta distribution,288, 301

deviation from theoretical distribution,294
EDF goodness-of-fit test,294
estimation of parameters,218
fitting, 218, 288
formulas for,288
probability plots,245, 301
quantile plots,258, 301

binomial proportion test,118
examples,166

Bowker’s test of symmetry,127, 128
box plots, line printer,207, 282

side-by-side,206, 283
Breslow-Day test,142

C
case-control studies

odds ratio,122, 137, 138
cell count data,98

example (FREQ),161
chi-square tests

examples (FREQ),164, 169, 172
FREQ procedure,103, 104

Cicchetti-Allison weights,131
Cochran’sQ test,127, 133, 182
Cochran-Armitage test for trend,124, 177
Cochran-Mantel-Haenszel statistics (FREQ),81, 134,

See also chi-square tests
ANOVA (row mean scores) statistic,136
correlation statistic,135
examples,174

general association statistic,136
cohort studies,174

relative risk,123, 141
comparative plots,210–212, 284

histograms,224, 226, 249, 334, 337, 345
probability plots,250
quantile plots,262, 263

concordant observations,108
confidence limits

asymptotic (FREQ),109
exact (FREQ),77
for percentiles,274
means, for,277
parameters of normal distribution, for,277
standard deviations, for,277
variances, for,278

confidence limits for the correlation
Fisher’sz transformation,22

contingency coefficient,103, 108
contingency tables,65, 84
continuity-adjusted chi-square,103, 105
CORR procedure

computer resources,28
concepts,14
details,14
examples,34
missing values,26
ODS graph names,34
ODS table names,30
output,26
output data sets,27
overview,3
results,26
syntax,6
task tables,7

corrected sums of squares and crossproducts,8
correlation coefficients,3

limited combinations of,14
printing, for each variable,8
suppressing probabilities,8

correlation statistic,135
covariances,8
Cramer’sV statistic,103, 108
Cramér-von Mises statistic,295
Cramér-von Mises test,206
Cronbach’s coefficient alpha,24

calculating and printing,8
example,48



380 � Subject Index

for estimating reliability,3
crosstabulation tables,65, 84

D
data summarization tools,196
density estimation,

See kernel density estimation
descriptive statistics

computing,269
discordant observations,108
distribution of variables,196

E
EDF,

See empirical distribution function
EDF goodness-of-fit tests,294

probability values of,296
empirical distribution function

definition of,294
EDF test statistics,294

exact tests
computational algorithms (FREQ),143
computational resources (FREQ),145
confidence limits,77
FREQ procedure,142, 177
network algorithm (FREQ),143
p-value, definitions,144

exponential distribution,289, 301
deviation from theoretical distribution,294
EDF goodness-of-fit test,294
estimation of parameters,221
fitting, 289
formulas for,289
probability plots,247, 301
quantile plots,260, 301

extreme observations,230, 315
extreme values,315

F
Fisher’s exact test

FREQ procedure,103, 106, 107
Fisher’sz transformation,8, 21

applications,23
confidence limits for the correlation,22

fitted parametric distributions,288
beta distribution,288
exponential distribution,289
folded normal distribution,355
gamma distribution,290
lognormal distribution,291
normal distribution,291
Weibull distribution,292

Fleiss-Cohen weights,131
folded normal distribution,355
Freeman-Halton test,107
FREQ procedure

alpha level,79, 87
binomial proportion,118, 166
Bowker’s test of symmetry,127

Breslow-Day test,142
cell count data,98, 161
chi-square tests,103–105, 164, 169
Cochran’sQ test,127
Cochran-Mantel-Haenszel statistics,174
computation time, limiting,79
computational methods,143
computational resources,145, 147
contingency coefficient,103
contingency table,169
continuity-adjusted chi-square,103, 105
correlation statistic,135
Cramer’sV statistic,103
default tables,84
displayed output,151
exactp-values,144
EXACT statement, used with TABLES,80
exact tests,77, 142, 177
Fisher’s exact test,103
Friedman’s chi-square statistic,180
gamma statistic,108
general association statistic,136
grouping variables,99
input data sets,75, 98
kappa coefficient,131, 132
Kendall’s tau-b statistic,108
lambda asymmetric,108
lambda symmetric,108
likelihood-ratio chi-square test,103
Mantel-Haenszel chi-square test,103
McNemar’s test,127
measures of association,108
missing values,100
Monte Carlo estimation,77, 79, 146
multiway tables,152, 154, 155
network algorithm,143
odds ratio,122, 137, 138
ODS table names,158
one-way frequency tables,103, 104, 151, 152,

164
order of variables,76
output data sets,80, 148–150, 161, 172
output variable prefixes,150
OUTPUT, used with TABLES or EXACT,83
overall kappa coefficient,127
Pearson chi-square test,103, 105
Pearson correlation coefficient,108
phi coefficient,103
polychoric correlation coefficient,108
relative risk,123, 137, 141
row mean scores statistic,136
scores,102
simple kappa coefficient,127
Somers’D statistics,108
Spearman rank correlation coefficient,108
statistical computations,102
stratified table,174
Stuart’s tau-c statistic,108
two-way frequency tables,104, 105, 169



Subject Index � 381

uncertainty coefficients,108
weighted kappa coefficient,127

frequency tables,65, 84
creating (UNIVARIATE),317
one-way (FREQ),103, 104, 151, 152, 164
two-way (FREQ),104, 105, 169

Friedman’s chi-square statistic,180

G
gamma distribution,290, 301

deviation from theoretical distribution,294
EDF goodness-of-fit test,294
estimation of parameters,222
fitting, 222, 290
formulas for,290
probability plots,247, 301
quantile plots,260, 301

gamma statistic,108, 110
general association statistic,136
Gini’s mean difference,280
goodness-of-fit tests,206, 292, 348,

See empirical distribution function
Anderson-Darling,295
Cramér-von Mises,295
EDF,294, 296
KolmogorovD, 294
Shapiro-Wilk,293

graphics,196
annotating,204
descriptions,220, 247, 260
high-resolution,196, 284
insets,230, 285, 286
line printer,281
naming,226
probability plots,241
quantile plots,253
saving,205

H
high-resolution graphics,196, 284
histograms,212, 310

adding a grid,222
annotating,218
appearance,218–224, 226–229
axis color,219
axis scaling,229
bar width,218, 225
bars, suppressing,226
beta curve, superimposed,218
binning,340
color, options,219, 220
comparative,224, 226, 334, 337, 345
creating,333
endpoints of intervals,227
exponential curve, superimposed,221
extreme observations,315
filling area under density curve,221
gamma curve, superimposed,222
insets,338

intervals,227, 310
kernel density estimation, options,218, 223,

224, 228, 229
kernel density estimation, superimposed,297,

352
line type,224
lognormal curve, superimposed,224
lognormal distribution,363
midpoints,225
multiple distributions, example,348
normal curve, superimposed,226
normal distribution,226
options summarized by function,214
output data sets,308
parameters for fitted density curves,217, 218,

226–229
plots, suppressing,226
quantiles,310
reference lines, options,219, 220, 222–224, 228,

229
saving histogram intervals,227
tables of statistical output,310
tables of statistical output, suppressing,226
three-parameter lognormal distribution, super-

imposed,354
three-parameter Weibull distribution, superim-

posed,354
tick marks on horizontal axis,222
tiles for comparative plots,223
Weibull curve, superimposed,229

Hoeffding’s measure of dependence,3, 18
calculating and printing,8
example,34
output data set with,8
probability values,18

hypothesis tests
exact (FREQ),77

I
insets,230, 338

appearance,236
appearance, color,235
positioning,235, 236, 285
positioning in margins,286
positioning with compass point,285
positioning with coordinates,286
statistics associated with distributions,232, 233

insets for descriptive statistics,
See insets

interquartile range,280

J
Jonckheere-Terpstra test,125

K
kappa coefficient,129, 130

tests,132
weights,131

Kendall correlation statistics,8



382 � Subject Index

Kendall’s partial tau-b,3, 13
Kendall’s tau-b,3, 16
probability values,17

Kendall’s tau-b statistic,108, 111
kernel density estimation,297, 352

adding density curve to histogram,223
bandwidth parameter, specifying,218
color,219
density curve, width of,229
kernel function, specifying type of,223
line type for density curve,224
lower bound, specifying,224
upper bound, specifying,228

kernel function,
See kernel density estimation

key cell for comparative plots,211
KolmogorovD statistic,294
Kolmogorov-Smirnov test,206

L
lambda asymmetric,108, 116
lambda symmetric,108, 117
likelihood-ratio chi-square test,103
likelihood-ratio test

chi-square (FREQ),105
line printer plots,281

box plots,282, 283
normal probability plots,282
stem-and-leaf plots,282

listwise deletion,26
location estimates

robust,207, 209
location parameters,304

probability plots, estimation with,304
quantile plots, estimation with,304

location, tests for
UNIVARIATE procedure,331

lognormal distribution,291, 302
deviation from theoretical distribution,294
EDF goodness-of-fit test,294
estimation of parameters,224
fitting, 224, 291
formulas for,291
histograms,354, 363
probability plots,249, 302, 360
quantile plots,261, 302, 373

M
Mantel-Haenszel chi-square test,103, 106
McNemar’s test,127, 128
measures of agreement,127
measures of association,34

nonparametric,3
measures of location

means,270
modes,272, 314
trimmed means,279
Winsorized means,278

median absolute deviation (MAD),280

Mehta and Patel, network algorithm,143
missing values

UNIVARIATE procedure,268
mode calculation,272
modified ridit scores,103
Monte Carlo estimation

FREQ procedure,77, 79, 146

N
network algorithm,143
nonparametric density estimation,

See kernel density estimation
nonparametric measures of association,3
normal distribution,291, 302

deviation from theoretical distribution,294
EDF goodness-of-fit test,294
estimation of parameters,226
fitting, 226, 291
formulas for,291
histograms,226
probability plots,241, 250, 302
quantile plots,262, 302, 365

normal probability plots,
See probability plots
line printer,207, 282

O
odds ratio

adjusted,137
Breslow-Day test,142
case-control studies,122, 137, 138
logit estimate,138
Mantel-Haenszel estimate,137

ODS (Output Delivery System)
CORR procedure and,30
UNIVARIATE procedure table names,309

ODS graph names
CORR procedure,34

output data sets
saving correlations in,52

overall kappa coefficient,127, 132

P
paired data,275, 332
pairwise deletion,26
parameters for fitted density curves,217, 218, 226–

229
partial correlations,18

probability values,21
Pearson chi-square test,103, 105
Pearson correlation coefficient,108, 113
Pearson correlation statistics,3

example,34
in output data set,8
Pearson partial correlation,3, 13
Pearson product-moment correlation,3, 8, 14, 34
Pearson weighted product-moment correlation,

3, 13
probability values,16



Subject Index � 383

suppressing,8
percentiles

axes, quantile plots,263, 305
calculating,273
confidence limits for,274, 328
defining,207, 273
empirical distribution function,273
options,239, 240
probability plots and,241
quantile plots and,253
saving to an output data set,325
visual estimates, probability plots,305
visual estimates, quantile plots,305
weighted,273
weighted average,273

phi coefficient,103, 108
plot statements, UNIVARIATE procedure,195
plots

box plots,206, 207, 282, 283
comparative,210–212, 284
comparative histograms,224, 226, 249, 334,

337, 345
comparative probability plots,250
comparative quantile plots,262, 263
line printer plots,281
normal probability plots,207, 282
probability plots,241, 300
quantile plots,253, 300
size of,207
stem-and-leaf,207, 282
suppressing,226

polychoric correlation coefficient,94, 108, 116
probability plots,241

annotating,245
appearance,246–250, 252
axis color,246
beta distribution,245, 301
comparative,249, 250
distribution reference lines,251
distributions for,300
exponential distribution,247, 301
frame, color,246
gamma distribution,247, 301
location parameters, estimation of,304
lognormal distribution,249, 302, 360, 363
normal distribution,241, 250, 302
options summarized by function,243
overview,241
parameters for distributions,243, 245, 246, 249–

253
percentile axis,250
percentiles, estimates of,305
reference lines,247, 248
reference lines, options,246, 248–250, 252
scale parameters, estimation of,304
shape parameters,251, 303
three-parameter Weibull distribution,302
threshold parameter,252
threshold parameters, estimation of,304

tick marks on horizontal axis,248
tiles for comparative plots,248
two-parameter Weibull distribution,303
Weibull distribution,253

prospective study,174

Q
Q-Q plots,

See quantile plots
Qn, 280
quantile plots,253

appearance,259–263, 265
axes, percentile scale,263, 305
axis color,259
beta distribution,258, 301
comparative,262, 263
creating,298
diagnostics,299
distribution reference lines,264, 366
distributions for,300
exponential distribution,260, 301
frame, color,259
gamma distribution,260, 301
interpreting,299
legends, suppressing (UNIVARIATE),366
location parameters, estimation of,304
lognormal distribution,261, 302, 369, 373
lognormal distribution, percentiles,372
nonnormal data,368
normal distribution,262, 302, 365
options summarized by function,255
overview,253
parameters for distributions,255, 258, 259, 262–

266
percentiles, estimates of,305
reference lines,259, 260, 263
reference lines, options,259, 261–263, 265
scale parameters, estimation of,304
shape parameters,264, 303
three-parameter Weibull distribution,302
threshold parameter,265
threshold parameters, estimation of,304
tick marks on horizontal axis,260
tiles for comparative plots,261
two-parameter Weibull distribution,303
Weibull distribution,266, 375

quantile-quantile plots,
See quantile plots

quantiles
defining,273
empirical distribution function,273
histograms and,310
weighted average,273

R
rank scores,103
relative risk,137

cohort studies,123
logit estimate,141



384 � Subject Index

Mantel-Haenszel estimate,141
reliability estimation,3
ridit scores,103
risks and risk differences,120
robust estimates,207, 209
robust estimators,278, 329

Gini’s mean difference,280
interquartile range,280
median absolute deviation (MAD),280
Qn, 280
Sn, 280
trimmed means,279
Winsorized means,278

robust measures of scale,280
rounding,207, 269

UNIVARIATE procedure,269
row mean scores statistic,136

S
saving correlations

example,52
scale estimates

robust,207
scale parameters,304

probability plots,304
quantile plots,304

shape parameters,303
probability plots,251
quantile plots,264

Shapiro-Wilk statistic,293
Shapiro-Wilk test,206
sign test,275, 276

paired data and,332
signed rank statistic, computing,277
simple kappa coefficient,127, 129
singularity of variables,8
smoothing data distribution,

See kernel density estimation
Sn, 280
Somers’D statistics,108, 112
Spearman correlation statistics,8

probability values,16
Spearman partial correlation,3, 13
Spearman rank-order correlation,3, 16, 34

Spearman rank correlation coefficient,108, 114
standard deviation,8
stem-and-leaf plots,207, 282
stratified analysis

FREQ procedure,65, 84
stratified table

example,174
Stuart’s tau-c statistic,108, 112
Student’st test,275, 276
summary statistics

insets of,230
sums of squares and crossproducts,8

T
t test

Student’s,275, 276
table scores,103
tables

frequency and crosstabulation (FREQ),65, 84
multiway,152, 154, 155
one-way frequency,151, 152
one-way, tests,103, 104
two-way, tests,104, 105

Tarone’s adjustment
Breslow-Day test,142

tests for location,275, 331
paired data,275, 332
sign test,276
Student’st test,276
Wilcoxon signed rank test,277

tetrachoric correlation coefficient,94, 116
theoretical distributions,300
three-parameter Weibull distribution,302

probability plots,302
quantile plots,302

threshold parameter
probability plots,252
quantile plots,265

threshold parameters
probability plots,304
quantile plots,304

tiles for comparative plots,248, 261
histograms,223
probability plots,248
quantile plots,261

trend test,124, 177
trimmed means,207, 279
two-parameter Weibull distribution,303

probability plots,303
quantile plots,303

U
uncertainty coefficients,108, 117, 118
univariate analysis

for multiple variables,312
UNIVARIATE procedure

calculating modes,314
classification levels,210
comparative plots,210–212, 284
computational resources,311
concepts,268
confidence limits,204, 277, 326
descriptive statistics,269, 312
examples,312
extreme observations,230, 315
extreme values,315
fitted continuous distributions,288
frequency variables,322
goodness-of-fit tests,292
high-resolution graphics,284
histograms,310, 315
insets for descriptive statistics,230
keywords for insets,230
keywords for output data sets,237



Subject Index � 385

line printer plots,281, 319
missing values,210, 268
mode calculation,272
normal probability plots,282
ODS table names,309
output data sets,237, 306, 323
overview,196
percentiles,241, 253, 273
percentiles, confidence limits,204, 205, 328
plot statements,195
probability plots,241, 300
quantile plots,253, 300
quantiles, confidence limits,204, 205
results,308
robust estimates,329
robust estimators,278
robust location estimates,207, 209
robust scale estimates,207
rounding,269
sign test,276, 332
specifying analysis variables,266
task tables,253
testing for location,331
tests for location,275
weight variables,267

UNIVARIATE procedure, OUTPUT statement
output data set,306

V
variances,8

W
Weibull distribution,292

deviation from theoretical distribution,294
EDF goodness-of-fit test,294
estimation of parameters,229
fitting, 229, 292
formulas for,292
histograms,354
probability plots,253
quantile plots,266, 375
three-parameter,302
two-parameter,303

weight values,205
weighted kappa coefficient,127, 130
weighted percentiles,273
Wilcoxon signed rank test,275, 277
Winsorized means,209, 278

Y
Yule’s Q statistic,110

Z
zeros, structural and random

FREQ procedure,133



386 � Subject Index



Syntax Index

A
AGREE option

EXACT statement (FREQ),78
OUTPUT statement (FREQ),81
TABLES statement (FREQ),87
TEST statement (FREQ),97

AJCHI option
OUTPUT statement (FREQ),81

ALL option
OUTPUT statement (FREQ),81
PROC UNIVARIATE statement,204
TABLES statement (FREQ),87

ALPHA option
PROC CORR statement,8

ALPHA= option
EXACT statement (FREQ),79
HISTOGRAM statement (UNIVARIATE),217,

289
PLOTS=SCATTER option (CORR),32
PROBPLOT statement (UNIVARIATE),245
PROC UNIVARIATE statement,204
QQPLOT statement (UNIVARIATE),258
TABLES statement (FREQ),87

ANNOKEY option
HISTOGRAM statement (UNIVARIATE),217
PROBPLOT statement (UNIVARIATE),245
QQPLOT statement (UNIVARIATE),258

ANNOTATE= option
HISTOGRAM statement (UNIVARIATE),218,

355
PROBPLOT statement (UNIVARIATE),245
PROC UNIVARIATE statement,204, 305
QQPLOT statement (UNIVARIATE),258

B
BARWIDTH= option

HISTOGRAM statement (UNIVARIATE),218
BDCHI option

OUTPUT statement (FREQ),81
BDT option

TABLES statement (FREQ),87
BEST= option

PROC CORR statement,8
BETA option

HISTOGRAM statement (UNIVARIATE),218,
288, 346

PROBPLOT statement (UNIVARIATE),245,
301

QQPLOT statement (UNIVARIATE),258, 301

BETA= option
HISTOGRAM statement (UNIVARIATE),218,

289
PROBPLOT statement (UNIVARIATE),245
QQPLOT statement (UNIVARIATE),258

BINOMIAL option
EXACT statement (FREQ),78
OUTPUT statement (FREQ),81
TABLES statement (FREQ),87, 166

BINOMIALC option
TABLES statement (FREQ),88

BY statement
CORR procedure,12
FREQ procedure,77
UNIVARIATE procedure,209

C
C= option

HISTOGRAM statement (UNIVARIATE),218,
297, 352

PROBPLOT statement (UNIVARIATE),246
QQPLOT statement (UNIVARIATE),259, 375

CAXIS= option
HISTOGRAM statement (UNIVARIATE),219
PROBPLOT statement (UNIVARIATE),246
QQPLOT statement (UNIVARIATE),259

CBARLINE= option
HISTOGRAM statement (UNIVARIATE),219

CELLCHI2 option
TABLES statement (FREQ),88

CFILL= option
HISTOGRAM statement (UNIVARIATE),219
INSET statement (UNIVARIATE),235

CFILLH= option
INSET statement (UNIVARIATE),235

CFRAME= option
HISTOGRAM statement (UNIVARIATE),219
INSET statement (UNIVARIATE),235
PROBPLOT statement (UNIVARIATE),246
QQPLOT statement (UNIVARIATE),259

CFRAMESIDE= option
HISTOGRAM statement (UNIVARIATE),219
PROBPLOT statement (UNIVARIATE),246
QQPLOT statement (UNIVARIATE),259

CFRAMETOP= option
HISTOGRAM statement (UNIVARIATE),219
PROBPLOT statement (UNIVARIATE),246
QQPLOT statement (UNIVARIATE),259



388 � Syntax Index

CGRID= option
HISTOGRAM statement (UNIVARIATE),219
PROBPLOT statement (UNIVARIATE),246
QQPLOT statement (UNIVARIATE),259

CHEADER= option
INSET statement (UNIVARIATE),235

CHISQ option
EXACT statement (FREQ),78, 169
OUTPUT statement (FREQ),81
TABLES statement (FREQ),88, 104, 169

CHREF= option
HISTOGRAM statement (UNIVARIATE),219
PROBPLOT statement (UNIVARIATE),246
QQPLOT statement (UNIVARIATE),259

CIBASIC option
PROC UNIVARIATE statement,204, 326

CIPCTLDF option
PROC UNIVARIATE statement,204

CIPCTLNORMAL option
PROC UNIVARIATE statement,205

CIQUANTDF option
PROC UNIVARIATE statement,328

CIQUANTNORMAL option
PROC UNIVARIATE statement,205, 328

CL option
TABLES statement (FREQ),89

CLASS statement
UNIVARIATE procedure,210

CMH option
OUTPUT statement (FREQ),81
TABLES statement (FREQ),89

CMH1 option
OUTPUT statement (FREQ),81
TABLES statement (FREQ),89

CMH2 option
OUTPUT statement (FREQ),81
TABLES statement (FREQ),89

CMHCOR option
OUTPUT statement (FREQ),81

CMHGA option
OUTPUT statement (FREQ),81

CMHRMS option
OUTPUT statement (FREQ),81

COCHQ option
OUTPUT statement (FREQ),81

COLOR= option
HISTOGRAM statement (UNIVARIATE),219
PROBPLOT statement (UNIVARIATE),246
QQPLOT statement (UNIVARIATE),259

COMOR option
EXACT statement (FREQ),78

COMPRESS option
PROC FREQ statement,75

CONTENTS= option
TABLES statement (FREQ),89

CONTGY option
OUTPUT statement (FREQ),82

CONVERGE= option
TABLES statement (FREQ),90

CORR procedure
syntax,6

CORR procedure, BY statement,12
CORR procedure, FREQ statement,13
CORR procedure, PARTIAL statement,13
CORR procedure, PLOTS option

NMAXVAR= option, 31, 32
NMAXWITH= option, 31, 32

CORR procedure, PLOTS=SCATTER option
ALPHA= option,32
ELLIPSE= option,32
NOINSET,32
NOLEGEND,32

CORR procedure, PROC CORR statement,7
ALPHA option,8
BEST= option,8
COV option,8
CSSCP option,8
DATA= option, 9
EXCLNPWGT option,9
FISHER option,9
HOEFFDING option,9
KENDALL option, 9
NOCORR option,10
NOMISS option,10
NOPRINT option,10
NOPROB option,10
NOSIMPLE option,10
OUT= option,10
OUTH= option,10
OUTK= option,10
OUTP= option,10
OUTS= option,10
PEARSON option,11
RANK option,11
SINGULAR= option,11
SPEARMAN option,11
SSCP option,11
VARDEF= option,11

CORR procedure, VAR statement,13
CORR procedure, WEIGHT statement,13
CORR procedure, WITH statement,14
COV option

PROC CORR statement,8
CPROP= option

HISTOGRAM statement (UNIVARIATE),220,
345

CRAMV option
OUTPUT statement (FREQ),82

CROSSLIST option
TABLES statement (FREQ),90

CSHADOW= option
INSET statement (UNIVARIATE),235

CSSCP option
PROC CORR statement,8

CTEXT= option
HISTOGRAM statement (UNIVARIATE),220
INSET statement (UNIVARIATE),235
PROBPLOT statement (UNIVARIATE),247



Syntax Index � 389

QQPLOT statement (UNIVARIATE),259
CTEXTSIDE= option

HISTOGRAM statement (UNIVARIATE),220
CTEXTTOP= option

HISTOGRAM statement (UNIVARIATE),220
CUMCOL option

TABLES statement (FREQ),91
CVREF= option

HISTOGRAM statement (UNIVARIATE),220
PROBPLOT statement (UNIVARIATE),247
QQPLOT statement (UNIVARIATE),259

D
DATA option

INSET statement (UNIVARIATE),235
DATA= option

INSET statement (UNIVARIATE),235
PROC CORR statement,9
PROC FREQ statement,75
PROC UNIVARIATE statement,205, 305

DESCENDING option
BY statement (UNIVARIATE),209

DESCRIPTION= option
HISTOGRAM statement (UNIVARIATE),220
PROBPLOT statement (UNIVARIATE),247
QQPLOT statement (UNIVARIATE),260

DEVIATION option
TABLES statement (FREQ),91

E
ELLIPSE= option

PLOTS=SCATTER option (CORR),32
ENDPOINTS= option

HISTOGRAM statement (UNIVARIATE),220,
340

EQKAP option
OUTPUT statement (FREQ),82

EQWKP option
OUTPUT statement (FREQ),82

EXACT option
OUTPUT statement (FREQ),82

EXACT statement
FREQ procedure,77

EXCLNPWGT option
PROC CORR statement,9
PROC UNIVARIATE statement,205

EXPECTED option
TABLES statement (FREQ),91

EXPONENTIAL option
HISTOGRAM statement (UNIVARIATE),221,

289
PROBPLOT statement (UNIVARIATE),247,

301
QQPLOT statement (UNIVARIATE),260, 301

F
FILL option

HISTOGRAM statement (UNIVARIATE),221
FISHER option

EXACT statement (FREQ),78
OUTPUT statement (FREQ),82
PROC CORR statement,9
TABLES statement (FREQ),91

FONT= option
HISTOGRAM statement (UNIVARIATE),221
INSET statement (UNIVARIATE),236
PROBPLOT statement (UNIVARIATE),247
QQPLOT statement (UNIVARIATE),260

FORCEHIST option
HISTOGRAM statement (UNIVARIATE),222

FORMAT= option
INSET statement (UNIVARIATE),236
TABLES statement (FREQ),91

FORMCHAR= option
PROC FREQ statement,75

FREQ option
PROC UNIVARIATE statement,205, 317

FREQ procedure
syntax,74

FREQ procedure, BY statement,77
FREQ procedure, EXACT statement,77

AGREE option,78
ALPHA= option,79
BINOMIAL option, 78
CHISQ option,78, 169
COMOR option,78
FISHER option,78
JT option,78
KAPPA option,78
LRCHI option,78
MAXTIME= option, 79
MC option,79
MCNEM option,78
MEASURES option,78
MHCHI option,78
N= option,79
OR option,78, 169
PCHI option,78
PCORR option,78
POINT option,79
SCORR option,78
SEED= option,79
TREND option,78, 177
WTKAP option,78

FREQ procedure, OUTPUT statement,80
AGREE option,81
AJCHI option,81
ALL option, 81
BDCHI option,81
BINOMIAL option, 81
CHISQ option,81
CMH option,81
CMH1 option,81
CMH2 option,81
CMHCOR option,81
CMHGA option,81
CMHRMS option,81
COCHQ option,81



390 � Syntax Index

CONTGY option,82
CRAMV option,82
EQKAP option,82
EQWKP option,82
EXACT option,82
FISHER option,82
GAMMA option, 82
JT option,82
KAPPA option,82
KENTB option,82
LAMCR option,82
LAMDAS option, 82
LAMRC option,82
LGOR option,82
LGRRC1 option,82
LGRRC2 option,82
LRCHI option,82, 173
MCNEM option,82
MEASURES option,82
MHCHI option,82
MHOR option,82
MHRRC1 option,82
MHRRC2 option,82
N option,82
NMISS option,82
OR option,83
OUT= option,80
PCHI option,83, 173
PCORR option,83
PHI option,83
PLCORR option,83
RDIF1 option,83
RDIF2 option,83
RELRISK option,83
RISKDIFF option,83
RISKDIFF1 option,83
RISKDIFF2 option,83
RRC1 option,83
RRC2 option,83
RSK1 option,83
RSK11 option,83
RSK12 option,83
RSK2 option,83
RSK21 option,83
RSK22 option,83
SCORR option,83
SMDCR option,83
SMDRC option,83
STUTC option,83
TREND option,83
TSYMM option,83
U option,83
UCR option,83
URC option,83
WTKAP option,83

FREQ procedure, PROC FREQ statement,75
COMPRESS option,75
DATA= option, 75
FORMCHAR= option,75

NLEVELS option,76
NOPRINT option,76
ORDER= option,76
PAGE option,77

FREQ procedure, TABLES statement,84
ALL option, 87
ALPHA= option,87
BDT option,87
BINOMIAL option, 87, 166
BINOMIALC option, 88
CELLCHI2 option,88
CHISQ option,88, 104, 169
CL option,89
CMH option,89
CMH1 option,89
CMH2 option,89
CONTENTS= option,89
CONVERGE= option,90
CROSSLIST option,90
CUMCOL option,91
DEVIATION option, 91
EXPECTED option,91
FISHER option,91
FORMAT= option,91
JT option,91
LIST option,91
MAXITER= option, 92
MEASURES option,92
MISSING option,92
MISSPRINT option,92
NOCOL option,92
NOCUM option,92
NOFREQ option,92
NOPERCENT option,92
NOPRINT option,93
NOROW option,93
NOSPARSE option,93
NOWARN option,93
option,87
OUT= option,93
OUTCUM option,93
OUTEXPECT option,93, 161
OUTPCT option,94
PLCORR option,94
PRINTKWT option,94
RELRISK option,94, 169
RISKDIFF option,94
RISKDIFFC option,94
SCORES= option,95, 181
SCOROUT option,95
SPARSE option,95, 161
TESTF= option,96, 104
TESTP= option,96, 104, 164
TOTPCT option,96
TREND option,96, 177

FREQ procedure, TEST statement,96
AGREE option,97
GAMMA option, 97
KAPPA option,97



Syntax Index � 391

KENTB option,97
MEASURES option,97
PCORR option,97
SCORR option,97
SMDCR option,97, 177
SMDRC option,97
STUTC option,97
WTKAP option,97

FREQ procedure, WEIGHT statement,97
ZEROS option,98

FREQ statement
CORR procedure,13
UNIVARIATE procedure,212

FRONTREF option
HISTOGRAM statement (UNIVARIATE),222

G
GAMMA option

HISTOGRAM statement (UNIVARIATE),222,
290, 348

OUTPUT statement (FREQ),82
PROBPLOT statement (UNIVARIATE),247,

301
QQPLOT statement (UNIVARIATE),260, 301
TEST statement (FREQ),97

GOUT= option
PROC UNIVARIATE statement,205

GRID option
HISTOGRAM statement (UNIVARIATE),222
PROBPLOT statement (UNIVARIATE),248
QQPLOT statement (UNIVARIATE),260, 263,

372
GRIDCHAR= option

QQPLOT statement (UNIVARIATE),263

H
HEADER= option

INSET statement (UNIVARIATE),236
HEIGHT= option

HISTOGRAM statement (UNIVARIATE),222
INSET statement (UNIVARIATE),236
PROBPLOT statement (UNIVARIATE),248
QQPLOT statement (UNIVARIATE),260

HISTOGRAM statement
UNIVARIATE procedure,212

HMINOR= option
HISTOGRAM statement (UNIVARIATE),222
PROBPLOT statement (UNIVARIATE),248
QQPLOT statement (UNIVARIATE),260

HOEFFDING option
PROC CORR statement,9

HOFFSET= option
HISTOGRAM statement (UNIVARIATE),222

HREF= option
HISTOGRAM statement (UNIVARIATE),222
PROBPLOT statement (UNIVARIATE),248
QQPLOT statement (UNIVARIATE),261

HREFLABELS= option
HISTOGRAM statement (UNIVARIATE),222

PROBPLOT statement (UNIVARIATE),248
QQPLOT statement (UNIVARIATE),261

HREFLABPOS= option
HISTOGRAM statement (UNIVARIATE),223
PROBPLOT statement (UNIVARIATE),248
QQPLOT statement (UNIVARIATE),261

I
ID statement

UNIVARIATE procedure,230
INFONT= option

HISTOGRAM statement (UNIVARIATE),223
PROBPLOT statement (UNIVARIATE),248
QQPLOT statement (UNIVARIATE),261

INHEIGHT= option
HISTOGRAM statement (UNIVARIATE),223
PROBPLOT statement (UNIVARIATE),248
QQPLOT statement (UNIVARIATE),261

INSET statement
UNIVARIATE procedure,230

INTERTILE= option
HISTOGRAM statement (UNIVARIATE),223,

345
PROBPLOT statement (UNIVARIATE),248
QQPLOT statement (UNIVARIATE),261

J
JT option

EXACT statement (FREQ),78
OUTPUT statement (FREQ),82
TABLES statement (FREQ),91

K
K= option

HISTOGRAM statement (UNIVARIATE),223,
297

KAPPA option
EXACT statement (FREQ),78
OUTPUT statement (FREQ),82
TEST statement (FREQ),97

KENDALL option
PROC CORR statement,9

KENTB option
OUTPUT statement (FREQ),82
TEST statement (FREQ),97

KERNEL option
HISTOGRAM statement (UNIVARIATE),223,

297, 352
KEYLEVEL= option

CLASS statement (UNIVARIATE),211
PROC UNIVARIATE statement,337

L
L= option

HISTOGRAM statement (UNIVARIATE),224
PROBPLOT statement (UNIVARIATE),248
QQPLOT statement (UNIVARIATE),261

LABEL= option
QQPLOT statement (UNIVARIATE),263



392 � Syntax Index

LAMCR option
OUTPUT statement (FREQ),82

LAMDAS option
OUTPUT statement (FREQ),82

LAMRC option
OUTPUT statement (FREQ),82

LGOR option
OUTPUT statement (FREQ),82

LGRID= option
HISTOGRAM statement (UNIVARIATE),224
PROBPLOT statement (UNIVARIATE),248
QQPLOT statement (UNIVARIATE),261, 263

LGRRC1 option
OUTPUT statement (FREQ),82

LGRRC2 option
OUTPUT statement (FREQ),82

LHREF= option
HISTOGRAM statement (UNIVARIATE),224
PROBPLOT statement (UNIVARIATE),249
QQPLOT statement (UNIVARIATE),261

LIST option
TABLES statement (FREQ),91

LOCCOUNT option
PROC UNIVARIATE statement,205, 331

LOGNORMAL option
HISTOGRAM statement (UNIVARIATE),224,

291, 348, 354, 363
PROBPLOT statement (UNIVARIATE),249,

302, 360
QQPLOT statement (UNIVARIATE),261, 302

LOWER= option
HISTOGRAM statement (UNIVARIATE),224

LRCHI option
EXACT statement (FREQ),78
OUTPUT statement (FREQ),82, 173

LVREF= option
HISTOGRAM statement (UNIVARIATE),224
PROBPLOT statement (UNIVARIATE),249
QQPLOT statement (UNIVARIATE),262

M
MAXITER= option

TABLES statement (FREQ),92
MAXNBIN= option

HISTOGRAM statement (UNIVARIATE),224
MAXSIGMAS= option

HISTOGRAM statement (UNIVARIATE),224
MAXTIME= option

EXACT statement (FREQ),79
MC option

EXACT statement (FREQ),79
MCNEM option

EXACT statement (FREQ),78
OUTPUT statement (FREQ),82

MEASURES option
EXACT statement (FREQ),78
OUTPUT statement (FREQ),82
TABLES statement (FREQ),92
TEST statement (FREQ),97

MHCHI option
EXACT statement (FREQ),78
OUTPUT statement (FREQ),82

MHOR option
OUTPUT statement (FREQ),82

MHRRC1 option
OUTPUT statement (FREQ),82

MHRRC2 option
OUTPUT statement (FREQ),82

MIDPERCENTS option
HISTOGRAM statement (UNIVARIATE),225,

343
MIDPOINTS= option

HISTOGRAM statement (UNIVARIATE),225,
338, 340

MISSING option
CLASS statement (UNIVARIATE),210
TABLES statement (FREQ),92

MISSPRINT option
TABLES statement (FREQ),92

MODES option
PROC UNIVARIATE statement,206, 314

MU0= option
PROC UNIVARIATE statement,206

MU= option
HISTOGRAM statement (UNIVARIATE),226,

343
PROBPLOT statement (UNIVARIATE),249
QQPLOT statement (UNIVARIATE),262, 366

N
N option

OUTPUT statement (FREQ),82
N= option

EXACT statement (FREQ),79
NADJ= option

PROBPLOT statement (UNIVARIATE),249
QQPLOT statement (UNIVARIATE),262, 298

NAME= option
HISTOGRAM statement (UNIVARIATE),226
PROBPLOT statement (UNIVARIATE),249
QQPLOT statement (UNIVARIATE),262

NCOLS= option
HISTOGRAM statement (UNIVARIATE),226
PROBPLOT statement (UNIVARIATE),249
QQPLOT statement (UNIVARIATE),262

NEXTROBS= option
PROC UNIVARIATE statement,206, 315

NEXTRVAL= option
PROC UNIVARIATE statement,206, 315

NLEVELS option
PROC FREQ statement,76

NMAXVAR= option
PLOTS option (CORR),31
PLOTS=SCATTER option (CORR),32

NMAXWIDTH= option
PLOTS option (CORR),31
PLOTS=SCATTER option (CORR),32

NMISS option



Syntax Index � 393

OUTPUT statement (FREQ),82
NOBARS option

HISTOGRAM statement (UNIVARIATE),226
NOBYPLOT option

PROC UNIVARIATE statement,206
NOCOL option

TABLES statement (FREQ),92
NOCORR option

PROC CORR statement,10
NOCUM option

TABLES statement (FREQ),92
NOFRAME option

HISTOGRAM statement (UNIVARIATE),226
INSET statement (UNIVARIATE),236
PROBPLOT statement (UNIVARIATE),249
QQPLOT statement (UNIVARIATE),262

NOFREQ option
TABLES statement (FREQ),92

NOHLABEL option
HISTOGRAM statement (UNIVARIATE),226
PROBPLOT statement (UNIVARIATE),250
QQPLOT statement (UNIVARIATE),262

NOINSET option
PLOTS=SCATTER option (CORR),32

NOLEGEND option
PLOTS=SCATTER option (CORR),32

NOMISS option
PROC CORR statement,10

NOPERCENT option
TABLES statement (FREQ),92

NOPLOT option
HISTOGRAM statement (UNIVARIATE),226

NOPRINT option
HISTOGRAM statement (UNIVARIATE),226
PROC CORR statement,10
PROC FREQ statement,76
PROC UNIVARIATE statement,206
TABLES statement (FREQ),93

NOPROB option
PROC CORR statement,10

NORMAL option
HISTOGRAM statement (UNIVARIATE),226,

291, 343
PROBPLOT statement (UNIVARIATE),250,

302
PROC UNIVARIATE statement,206
QQPLOT statement (UNIVARIATE),262, 302

NORMALTEST option
PROC UNIVARIATE statement,206

NOROW option
TABLES statement (FREQ),93

NOSIMPLE option
PROC CORR statement,10

NOSPARSE option
TABLES statement (FREQ),93

NOTSORTED option
BY statement (UNIVARIATE),209

NOVLABEL option
HISTOGRAM statement (UNIVARIATE),226

PROBPLOT statement (UNIVARIATE),250
QQPLOT statement (UNIVARIATE),263

NOVTICK option
HISTOGRAM statement (UNIVARIATE),226
PROBPLOT statement (UNIVARIATE),250
QQPLOT statement (UNIVARIATE),263

NOWARN option
TABLES statement (FREQ),93

NROWS= option
HISTOGRAM statement (UNIVARIATE),226,

334
PROBPLOT statement (UNIVARIATE),250
QQPLOT statement (UNIVARIATE),263

O
OR option

EXACT statement (FREQ),78, 169
OUTPUT statement (FREQ),83

ORDER= option
CLASS statement (UNIVARIATE),210
PROC FREQ statement,76

OUT= option
OUTPUT statement (FREQ),80
OUTPUT statement (UNIVARIATE),237
PROC CORR statement,10
TABLES statement (FREQ),93

OUTCUM option
TABLES statement (FREQ),93

OUTEXPECT option
TABLES statement (FREQ),93, 161

OUTH= option
PROC CORR statement,10

OUTHISTOGRAM= option
HISTOGRAM statement (UNIVARIATE),227,

308, 340
OUTK= option

PROC CORR statement,10
OUTP= option

PROC CORR statement,10
OUTPCT option

TABLES statement (FREQ),94
OUTPUT statement

FREQ procedure,80
UNIVARIATE procedure,237, 267

OUTS= option
PROC CORR statement,10

P
PAGE option

PROC FREQ statement,77
PARTIAL statement

CORR procedure,13
PCHI option

EXACT statement (FREQ),78
OUTPUT statement (FREQ),83, 173

PCORR option
EXACT statement (FREQ),78
OUTPUT statement (FREQ),83
TEST statement (FREQ),97



394 � Syntax Index

PCTLAXIS option
QQPLOT statement (UNIVARIATE),263, 305,

372
PCTLDEF= option

PROC UNIVARIATE statement,207, 273
PCTLMINOR option

PROBPLOT statement (UNIVARIATE),250
QQPLOT statement (UNIVARIATE),263

PCTLNAME= option
OUTPUT statement (UNIVARIATE),240

PCTLORDER= option
PROBPLOT statement (UNIVARIATE),250

PCTLPRE= option
OUTPUT statement (UNIVARIATE),239

PCTLPTS= option
OUTPUT statement (UNIVARIATE),239

PCTLSCALE option
QQPLOT statement (UNIVARIATE),263, 305

PEARSON option
PROC CORR statement,11

PERCENTS= option
HISTOGRAM statement (UNIVARIATE),227

PFILL= option
HISTOGRAM statement (UNIVARIATE),227

PHI option
OUTPUT statement (FREQ),83

PLCORR option
OUTPUT statement (FREQ),83
TABLES statement (FREQ),94

PLOT option
PROC UNIVARIATE statement,319

PLOTS option
PROC UNIVARIATE statement,207

PLOTSIZE= option
PROC UNIVARIATE statement,207

POINT option
EXACT statement (FREQ),79

POSITION= option
INSET statement (UNIVARIATE),236

PRINTKWT option
TABLES statement (FREQ),94

PROBPLOT statement
UNIVARIATE procedure,241

PROC CORR statement,7,
See CORR procedure
CORR procedure,7

PROC FREQ statement,
See FREQ procedure

PROC UNIVARIATE statement,203,
See UNIVARIATE procedure

Q
QQPLOT statement

UNIVARIATE procedure,253

R
RANK option

PROC CORR statement,11
RANKADJ= option

PROBPLOT statement (UNIVARIATE),250
QQPLOT statement (UNIVARIATE),263, 298

RDIF1 option
OUTPUT statement (FREQ),83

RDIF2 option
OUTPUT statement (FREQ),83

REFPOINT= option
INSET statement (UNIVARIATE),236

RELRISK option
OUTPUT statement (FREQ),83
TABLES statement (FREQ),94, 169

RISKDIFF option
OUTPUT statement (FREQ),83
TABLES statement (FREQ),94

RISKDIFF1 option
OUTPUT statement (FREQ),83

RISKDIFF2 option
OUTPUT statement (FREQ),83

RISKDIFFC option
TABLES statement (FREQ),94

ROBUSTSCALE option
PROC UNIVARIATE statement,207, 329

ROUND= option
PROC UNIVARIATE statement,207

RRC1 option
OUTPUT statement (FREQ),83

RRC2 option
OUTPUT statement (FREQ),83

RSK1 option
OUTPUT statement (FREQ),83

RSK11 option
OUTPUT statement (FREQ),83

RSK12 option
OUTPUT statement (FREQ),83

RSK2 option
OUTPUT statement (FREQ),83

RSK21 option
OUTPUT statement (FREQ),83

RSK22 option
OUTPUT statement (FREQ),83

RTINCLUDE option
HISTOGRAM statement (UNIVARIATE),227,

340

S
SCALE= option

HISTOGRAM statement (UNIVARIATE),227,
289, 290, 346

PROBPLOT statement (UNIVARIATE),250
QQPLOT statement (UNIVARIATE),263

SCORES= option
TABLES statement (FREQ),95, 181

SCOROUT option
TABLES statement (FREQ),95

SCORR option
EXACT statement (FREQ),78
OUTPUT statement (FREQ),83
TEST statement (FREQ),97

SEED= option



Syntax Index � 395

EXACT statement (FREQ),79
SHAPE= option

HISTOGRAM statement (UNIVARIATE),227
PROBPLOT statement (UNIVARIATE),251
QQPLOT statement (UNIVARIATE),264

SIGMA= option
HISTOGRAM statement (UNIVARIATE),227,

289, 343
PROBPLOT statement (UNIVARIATE),251,

360
QQPLOT statement (UNIVARIATE),264, 366,

369
SINGULAR= option

PROC CORR statement,11
SLOPE= option

PROBPLOT statement (UNIVARIATE),251
QQPLOT statement (UNIVARIATE),264

SMDCR option
OUTPUT statement (FREQ),83
TEST statement (FREQ),97, 177

SMDRC option
OUTPUT statement (FREQ),83
TEST statement (FREQ),97

SPARSE option
TABLES statement (FREQ),95, 161

SPEARMAN option
PROC CORR statement,11

SQUARE option
PROBPLOT statement (UNIVARIATE),251,

360
QQPLOT statement,366
QQPLOT statement (UNIVARIATE),265

SSCP option
PROC CORR statement,11

STUTC option
OUTPUT statement (FREQ),83
TEST statement (FREQ),97

T
TABLES statement

FREQ procedure,84
TEST statement

FREQ procedure,96
TESTF= option

TABLES statement (FREQ),96, 104
TESTP= option

TABLES statement (FREQ),96, 104, 164
THETA= option

HISTOGRAM statement (UNIVARIATE),227,
289, 346, 354, 363

PROBPLOT statement (UNIVARIATE),252
QQPLOT statement (UNIVARIATE),265

THRESHOLD= option
HISTOGRAM statement (UNIVARIATE),228,

290
PROBPLOT statement (UNIVARIATE),252
QQPLOT statement (UNIVARIATE),265

TOTPCT option
TABLES statement (FREQ),96

TREND option
EXACT statement (FREQ),78, 177
OUTPUT statement (FREQ),83
TABLES statement (FREQ),96, 177

TRIMMED= option
PROC UNIVARIATE statement,207, 329

TSYMM option
OUTPUT statement (FREQ),83

TURNVLABELS option
HISTOGRAM statement (UNIVARIATE),228

U
U option

OUTPUT statement (FREQ),83
UCR option

OUTPUT statement (FREQ),83
UNIVARIATE procedure

syntax,202
UNIVARIATE procedure, BY statement,209

DESCENDING option,209
NOTSORTED option,209

UNIVARIATE procedure, CLASS statement,210
KEYLEVEL= option, 211
MISSING option,210
ORDER= option,210

UNIVARIATE procedure, FREQ statement,212
UNIVARIATE procedure, HISTOGRAM statement,

212
ALPHA= option,217, 289
ANNOKEY option,217
ANNOTATE= option,218, 355
BARWIDTH= option,218
BETA option,218, 288, 346
BETA= option,218, 289
C= option,218, 297, 352
CAXIS= option,219
CBARLINE= option,219
CFILL= option,219
CFRAME= option,219
CFRAMESIDE= option,219
CFRAMETOP= option,219
CGRID= option,219
CHREF= option,219
COLOR= option,219
CPROP= option,220, 345
CTEXT= option,220
CTEXTSIDE= option,220
CTEXTTOP= option,220
CVREF= option,220
DESCRIPTION= option,220
ENDPOINTS= option,220, 340
EXPONENTIAL option,221, 289
FILL option, 221
FONT= option,221
FORCEHIST option,222
FRONTREF option,222
GAMMA option, 222, 290, 348
GRID option,222
HEIGHT= option,222



396 � Syntax Index

HMINOR= option,222
HOFFSET= option,222
HREF= option,222
HREFLABELS= option,222
HREFLABPOS= option,223
INFONT= option,223
INHEIGHT= option,223
INTERTILE= option,223, 345
K= option,223, 297
KERNEL option,223, 297, 352
L= option,224
LGRID= option,224
LHREF= option,224
LOGNORMAL option,224, 291, 348, 354, 363
LOWER= option,224
LVREF= option,224
MAXNBIN= option, 224
MAXSIGMAS= option,224
MIDPERCENTS option,225, 343
MIDPOINTS= option,225, 338, 340
MU= option,226, 343
NAME= option,226
NCOLS= option,226
NOBARS option,226
NOFRAME option,226
NOHLABEL option,226
NOPLOT option,226
NOPRINT option,226
NORMAL option,226, 291, 343
NOVLABEL option, 226
NOVTICK option,226
NROWS= option,226, 334
OUTHISTOGRAM= option,227, 308, 340
PERCENTS= option,227
PFILL= option,227
RTINCLUDE option,227, 340
SCALE= option,227, 289, 290, 346
SHAPE= option,227
SIGMA= option,227, 289, 343
THETA= option,227, 289, 346, 354, 363
THRESHOLD= option,228, 290
TURNVLABELS option,228
UPPER= option,228
VAXIS= option, 228
VAXISLABEL= option, 228
VMINOR= option,228
VOFFSET= option,228
VREF= option,228
VREFLABELS= option,228
VREFLABPOS= option,229
VSCALE= option,229
W= option,229
WAXIS= option,229
WBARLINE= option,229
WEIBULL option, 229, 292, 348
WGRID= option,229
ZETA= option,229

UNIVARIATE procedure, ID statement,230
UNIVARIATE procedure, INSET statement,230

CFILL= option,235
CFILLH= option,235
CFRAME= option,235
CHEADER= option,235
CSHADOW= option,235
CTEXT= option,235
DATA option, 235
DATA= option, 235
FONT= option,236
FORMAT= option,236
HEADER= option,236
HEIGHT= option,236
NOFRAME option,236
POSITION= option,236
REFPOINT= option,236

UNIVARIATE procedure, OUTPUT statement,237,
267

OUT= option,237
PCTLNAME= option,240
PCTLPRE= option,239
PCTLPTS= option,239

UNIVARIATE procedure, PROBPLOT statement,241
ALPHA= option,245
ANNOKEY option,245
ANNOTATE= option,245
BETA option,245, 301
BETA= option,245
C= option,246
CAXIS= option,246
CFRAME= option,246
CFRAMESIDE= option,246
CFRAMETOP= option,246
CGRID= option,246
CHREF= option,246
COLOR= option,246
CTEXT= option,247
CVREF= option,247
DESCRIPTION= option,247
EXPONENTIAL option,247, 301
FONT= option,247
GAMMA option, 247, 301
GRID option,248
HEIGHT= option,248
HMINOR= option,248
HREF= option,248
HREFLABELS= option,248
HREFLABPOS= option,248
INFONT= option,248
INHEIGHT= option,248
INTERTILE= option,248
L= option,248
LGRID= option,248
LHREF= option,249
LOGNORMAL option,249, 302, 360
LVREF= option,249
MU= option,249
NADJ= option,249
NAME= option,249
NCOLS= option,249



Syntax Index � 397

NOFRAME option,249
NOHLABEL option,250
NORMAL option,250, 302
NOVLABEL option, 250
NOVTICK option,250
NROWS= option,250
PCTLMINOR option,250
PCTORDER= option,250
RANKADJ= option,250
SCALE= option,250
SHAPE= option,251
SIGMA= option,251, 360
SLOPE= option,251
SQUARE option,251, 360
THETA= option,252
THRESHOLD= option,252
VAXISLABEL= option, 252
VMINOR= option,252
VREF= option,252
VREFLABELS= option,252
VREFLABPOS= option,252
W= option,252
WAXIS= option,252
WEIBULL option, 253, 302
WEIBULL2 option,303
WEIBULL2 statement,253
ZETA= option,253

UNIVARIATE procedure, PROC UNIVARIATE
statement,203

ALL option, 204
ALPHA= option,204
ANNOTATE= option,204, 305
CIBASIC option,204, 326
CIPCTLDF option,204
CIPCTLNORMAL option,205
CIQUANTDF option,328
CIQUANTNORMAL option,205, 328
DATA= option, 205, 305
EXCLNPWGT option,205
FREQ option,205, 317
GOUT= option,205
KEYLEVEL= option, 337
LOCCOUNT option,205, 331
MODES option,206, 314
MU0= option,206
NEXTROBS= option,206, 315
NEXTRVAL= option, 206, 315
NOBYPLOT option,206
NOPRINT option,206
NORMAL option,206
NORMALTEST option,206
PCTLDEF= option,207, 273
PLOT option,319
PLOTS option,207
PLOTSIZE= option,207
ROBUSTSCALE option,207, 329
ROUND= option,207
TRIMMED= option,207, 329
VARDEF= option,208

WINSORIZED= option,209, 329
UNIVARIATE procedure, QQPLOT statement,253

ALPHA= option,258
ANNOKEY option,258
ANNOTATE= option,258
BETA option,258, 301
BETA= option,258
C= option,259, 375
CAXIS= option,259
CFRAME= option,259
CFRAMESIDE= option,259
CFRAMETOP= option,259
CGRID= option,259
CHREF= option,259
COLOR= option,259
CTEXT= option,259
CVREF= option,259
DESCRIPTION= option,260
EXPONENTIAL option,260, 301
FONT= option,260
GAMMA option, 260, 301
GRID option,260, 263, 372
GRIDCHAR= option,263
HEIGHT= option,260
HMINOR= option,260
HREF= option,261
HREFLABELS= option,261
HREFLABPOS= option,261
INFONT= option,261
INHEIGHT= option,261
INTERTILE= option,261
L= option,261
LABEL= option, 263
LGRID= option,261, 263
LHREF= option,261
LOGNORMAL option,261, 302
LVREF= option,262
MU= option,262, 366
NADJ= option,262, 298
NAME= option,262
NCOLS= option,262
NOFRAME option,262
NOHLABEL option,262
NORMAL option,262, 302
NOVLABEL option, 263
NOVTICK option,263
NROWS= option,263
PCTLAXIS option,263, 305, 372
PCTLMINOR option,263
PCTLSCALE option,263, 305
RANKADJ= option,263, 298
SCALE= option,263
SHAPE= option,264
SIGMA= option,264, 366, 369
SLOPE= option,264
SQUARE option,265, 366
THETA= option,265
THRESHOLD= option,265
VAXISLABEL= option, 265



398 � Syntax Index

VMINOR= option,265
VREF= option,265
VREFLABELS= option,265
VREFLABPOS= option,265
W= option,265
WAXIS= option,265
WEIBULL option, 266, 302, 375
WEIBULL2 option,303
WEIBULL2 statement,266
ZETA= option,266, 369

UNIVARIATE procedure, VAR statement,266
UNIVARIATE procedure, WEIGHT statement,267
UPPER= option

HISTOGRAM statement (UNIVARIATE),228
URC option

OUTPUT statement (FREQ),83

V
VAR statement

CORR procedure,13
UNIVARIATE procedure,266

VARDEF= option
PROC CORR statement,11
PROC UNIVARIATE statement,208

VAXIS= option
HISTOGRAM statement (UNIVARIATE),228

VAXISLABEL= option
HISTOGRAM statement (UNIVARIATE),228
PROBPLOT statement (UNIVARIATE),252
QQPLOT statement (UNIVARIATE),265

VMINOR= option
HISTOGRAM statement (UNIVARIATE),228
PROBPLOT statement (UNIVARIATE),252
QQPLOT statement (UNIVARIATE),265

VOFFSET= option
HISTOGRAM statement (UNIVARIATE),228

VREF= option
HISTOGRAM statement (UNIVARIATE),228
PROBPLOT statement (UNIVARIATE),252
QQPLOT statement (UNIVARIATE),265

VREFLABELS= option
HISTOGRAM statement (UNIVARIATE),228
PROBPLOT statement (UNIVARIATE),252
QQPLOT statement (UNIVARIATE),265

VREFLABPOS= option
HISTOGRAM statement (UNIVARIATE),229
PROBPLOT statement (UNIVARIATE),252
QQPLOT statement (UNIVARIATE),265

VSCALE= option
HISTOGRAM statement (UNIVARIATE),229

W
W= option

HISTOGRAM statement (UNIVARIATE),229
PROBPLOT statement (UNIVARIATE),252
QQPLOT statement (UNIVARIATE),265

WAXIS= option
HISTOGRAM statement (UNIVARIATE),229
PROBPLOT statement (UNIVARIATE),252

QQPLOT statement (UNIVARIATE),265
WBARLINE= option

HISTOGRAM statement (UNIVARIATE),229
WEIBULL option

HISTOGRAM statement (UNIVARIATE),229,
292, 348

PROBPLOT statement (UNIVARIATE),253,
302

QQPLOT statement (UNIVARIATE),266, 302,
375

WEIBULL2 option
PROBPLOT statement (UNIVARIATE),253,

303
QQPLOT statement (UNIVARIATE),266, 303

WEIGHT statement
CORR procedure,13
FREQ procedure,97
UNIVARIATE procedure,267

WGRID= option
HISTOGRAM statement (UNIVARIATE),229

WINSORIZED= option
PROC UNIVARIATE statement,209, 329

WITH statement
CORR procedure,14

WTKAP option
EXACT statement (FREQ),78
OUTPUT statement (FREQ),83
TEST statement (FREQ),97

Z
ZEROS option

WEIGHT statement (FREQ),98
ZETA= option

HISTOGRAM statement (UNIVARIATE),229
PROBPLOT statement (UNIVARIATE),253
QQPLOT statement (UNIVARIATE),266, 369


	Table of Contents
	Contents

	What’s New
	Overview
	Details
	The CONTENTS Procedure
	The COPY Procedure
	The CORR Procedure
	The DATASETS Procedure
	The DOCUMENT Procedure
	The EXPORT Procedure
	The FCMP Procedure (Experimental)
	The FONTREG Procedure
	The FORMAT Procedure
	The FREQ Procedure
	The IMPORT Procedure
	The MEANS and SUMMARY Procedures
	The MIGRATE Procedure
	The PROTO Procedure
	The PRTDEF Procedure
	The PRTEXP Procedure
	The PWENCODE Procedure
	The REGISTRY Procedure
	The REPORT Procedure
	The SORT Procedure
	The SQL Procedure
	The SYLK Procedure (Experimental)
	The TABULATE Procedure
	The TEMPLATE Procedure
	The TIMEPLOT Procedure
	The UNIVARIATE Procedure


	Concepts
	Choosing the Right Procedure
	Functional Categories of Base SAS Procedures
	Report Writing
	Statistics
	Utilities

	Report-Writing Procedures
	Statistical Procedures
	Available Statistical Procedures
	Efficiency Issues
	Additional Information about the Statistical Procedures

	Utility Procedures
	Brief Descriptions of Base SAS Procedures

	Fundamental Concepts for Using Base SAS Procedures
	Language Concepts
	Temporary and Permanent SAS Data Sets
	SAS System Options
	Data Set Options
	Global Statements

	Procedure Concepts
	Input Data Sets
	RUN-Group Processing
	Creating Titles That Contain BY-Group Information
	Shortcuts for Specifying Lists of Variable Names
	Formatted Values
	Processing All the Data Sets in a Library
	Operating Environment-Specific Procedures
	Statistic Descriptions
	Computational Requirements for Statistics

	Output Delivery System
	What Is the Output Delivery System?
	Gallery of ODS Samples
	Commonly Used ODS Terminology
	How Does ODS Work?
	What Are the ODS Destinations?
	What Are Table Definitions, Table Elements, and Table Attributes?
	What Are Style Definitions, Style Elements, and Style Attributes?
	Changing SAS Registry Settings for ODS
	Customized ODS Output
	Summary of ODS


	Statements with the Same Function in Multiple Procedures
	Overview
	Statements

	Procedures
	The APPEND Procedure
	Overview: APPEND Procedure
	Syntax: APPEND Procedure

	The CALENDAR Procedure
	Overview: CALENDAR Procedure
	What Does the CALENDAR Procedure Do?
	What Types of Calendars Can PROC CALENDAR Produce?
	Advanced Scheduling and Project Management Tasks

	Syntax: CALENDAR Procedure
	Concepts: CALENDAR Procedure
	Type of Calendars
	Schedule Calendar
	Summary Calendar
	The Default Calendars
	Calendars and Multiple Calendars
	Input Data Sets
	Activities Data Set
	Holidays Data Set
	Calendar Data Set
	Workdays Data Set
	Missing Values in Input Data Sets

	Results: CALENDAR Procedure
	What Affects the Quantity of PROC CALENDAR Output
	How Size Affects the Format of PROC CALENDAR Output
	What Affects the Lines That Show Activity Duration
	Customizing the Calendar Appearance
	Portability of ODS Output with PROC CALENDAR

	Examples: CALENDAR Procedure

	The CATALOG Procedure
	Overview: CATALOG Procedure
	Syntax: CATALOG Procedure
	Concepts: CATALOG Procedure
	Interactive Processing with RUN Groups
	Specifying an Entry Type
	Catalog Concatenation

	Results: CATALOG Procedure
	Examples: CATALOG Procedure

	The CHART Procedure
	Overview: CHART Procedure
	What Does the CHART Procedure Do?
	What Types of Charts Can PROC CHART Create?

	Syntax: CHART Procedure
	Concepts: CHART Procedure
	Results: CHART Procedure
	Missing Values
	ODS Table Names
	Portability of ODS Output with PROC CHART

	Examples: CHART Procedure
	References

	The CIMPORT Procedure
	Overview: CIMPORT Procedure
	What Does the CIMPORT Procedure Do?
	General File Transport Process

	Syntax: CIMPORT Procedure
	Results: CIMPORT Procedure
	Examples: CIMPORT Procedure

	The COMPARE Procedure
	Overview: COMPARE Procedure
	What Does the COMPARE Procedure Do?
	What Information Does PROC COMPARE Provide?
	How Can PROC COMPARE Output Be Customized?

	Syntax: COMPARE Procedure
	Concepts: COMPARE Procedure
	Comparisons Using PROC COMPARE
	A Comparison by Position of Observations
	A Comparison with an ID Variable
	The Equality Criterion
	How PROC COMPARE Handles Variable Formats

	Results: COMPARE Procedure
	Results Reporting
	SAS Log
	Macro Return Codes (SYSINFO)
	Procedure Output
	ODS Table Names
	Output Data Set (OUT=)
	Output Statistics Data Set (OUTSTATS=)

	Examples: COMPARE Procedure

	The CONTENTS Procedure
	Overview: CONTENTS Procedure
	Syntax: CONTENTS Procedure

	The COPY Procedure
	Overview: COPY Procedure
	Syntax: COPY Procedure
	Concepts: COPY Procedure
	Transporting SAS Data Sets between Hosts

	Example: COPY Procedure

	The CORR Procedure
	Information about the CORR Procedure

	The CPORT Procedure
	Overview: CPORT Procedure
	What Does the CPORT Procedure Do?
	General File Transport Process

	Syntax: CPORT Procedure
	Concepts: CPORT Procedure
	Results: CPORT Procedure
	Examples: CPORT Procedure

	The CV2VIEW Procedure
	Information about the CV2VIEW Procedure

	The DATASETS Procedure
	Overview: DATASETS Procedure
	What Does the DATASETS Procedure Do?
	Sample PROC DATASETS Output
	Notes

	Syntax: DATASETS Procedure
	Concepts: DATASETS Procedure
	Procedure Execution
	Using Passwords with the DATASETS Procedure
	Restricting Member Types for Processing
	Restricting Processing for Generation Data Sets

	Results: DATASETS Procedure
	Directory Listing to the SAS Log
	Directory Listing as SAS Output
	Procedure Output
	PROC DATASETS and the Output Delivery System (ODS)
	ODS Table Names
	Output Data Sets

	Examples: DATASETS Procedure

	The DBCSTAB Procedure
	Information about the DBCSTAB Procedure

	The DISPLAY Procedure
	Overview: DISPLAY Procedure
	Syntax: DISPLAY Procedure
	Example: DISPLAY Procedure

	The DOCUMENT Procedure
	Information about the DOCUMENT Procedure

	The EXPLODE Procedure
	Information about the EXPLODE Procedure

	The EXPORT Procedure
	Overview: EXPORT Procedure
	Syntax: EXPORT Procedure
	Examples: EXPORT Procedure

	The FONTREG Procedure
	Overview: FONTREG Procedure
	Syntax: FONTREG Procedure
	Concepts: FONTREG Procedure
	Supported Font Types and Font Naming Conventions
	Removing Fonts from the SAS Registry
	Modifying SAS/GRAPH Device Drivers to Use System Fonts

	Examples: FONTREG Procedure
	See Also

	The FORMAT Procedure
	Overview: FORMAT Procedure
	What Does the FORMAT Procedure Do?
	What Are Formats and Informats?
	How Are Formats and Informats Associated with a Variable?

	Syntax: FORMAT Procedure
	Informat and Format Options
	Specifying Values or Ranges
	Concepts: FORMAT Procedure
	Associating Informats and Formats with Variables
	Storing Informats and Formats

	Results: FORMAT Procedure
	Output Control Data Set
	Input Control Data Set
	Procedure Output

	Examples: FORMAT Procedure
	See Also

	The FORMS Procedure
	Information about the FORMS Procedure

	The FREQ Procedure
	Information about the FREQ Procedure

	The FSLIST Procedure
	Overview: FSLIST Procedure
	Syntax: FSLIST Procedure
	Using the FSLIST Window
	General Information about the FSLIST Window
	FSLIST Window Commands


	The IMPORT Procedure
	Overview: IMPORT Procedure
	Syntax: IMPORT Procedure
	Examples: IMPORT Procedure

	The MEANS Procedure
	Overview: MEANS Procedure
	What Does the MEANS Procedure Do?
	What Types of Output Does PROC MEANS Produce?

	Syntax: MEANS Procedure
	Concepts: MEANS Procedure
	Using Class Variables
	Computational Resources

	Statistical Computations: MEANS Procedure
	Computation of Moment Statistics
	Confidence Limits
	Student’s
	Test
	Quantiles

	Results: MEANS Procedure
	Missing Values
	Column Width for the Output
	The N Obs Statistic
	Output Data Set

	Examples: MEANS Procedure
	References

	The MIGRATE Procedure
	Information about the MIGRATE Procedure

	The OPTIONS Procedure
	Overview: OPTIONS Procedure
	What Does the OPTIONS Procedure Do?
	What Types of Output Does PROC OPTIONS Produce?
	Displaying the Settings of a Group of Options

	Syntax: OPTIONS Procedure
	Results: OPTIONS Procedure
	Examples: OPTIONS Procedure

	The OPTLOAD Procedure
	Overview: OPTLOAD Procedure
	What Does the OPTLOAD Procedure Do?

	Syntax: OPTLOAD Procedure

	The OPTSAVE Procedure
	Overview: OPTSAVE Procedure
	What Does the OPTSAVE Procedure Do?

	Syntax: OPTSAVE Procedure

	The PLOT Procedure
	Overview: PLOT Procedure
	Syntax: PLOT Procedure
	Concepts: PLOT Procedure
	RUN Groups
	Generating Data with Program Statements
	Labeling Plot Points with Values of a Variable

	Results: PLOT Procedure
	Scale of the Axes
	Printed Output
	ODS Table Names
	Portability of ODS Output with PROC PLOT
	Missing Values
	Hidden Observations

	Examples: PLOT Procedure

	The PMENU Procedure
	Overview: PMENU Procedure
	Syntax: PMENU Procedure
	Concepts: PMENU Procedure
	Procedure Execution
	Steps for Building and Using PMENU Catalog Entries
	Templates for Coding PROC PMENU Steps

	Examples: PMENU Procedure

	The PRINT Procedure
	Overview: PRINT Procedure
	What Does the PRINT Procedure Do?
	Simple Listing Report
	Customized Report

	Syntax: PRINT Procedure
	Results: Print Procedure
	Procedure Output
	Page Layout

	Examples: PRINT Procedure

	The PRINTTO Procedure
	Overview: PRINTTO Procedure
	Syntax: PRINTTO Procedure
	Concepts: PRINTTO Procedure
	Page Numbering
	Routing SAS Log or Procedure Output Directly to a Printer

	Examples: PRINTTO Procedure

	The PROTO Procedure
	Information about the PROTO Procedure

	The PRTDEF Procedure
	Overview: PRTDEF Procedure
	Syntax: PRTDEF Procedure
	Input Data Set: PRTDEF Procedure
	Summary of Valid Variables
	Required Variables
	Optional Variables

	Examples: PRTDEF Procedure
	See Also

	The PRTEXP Procedure
	Overview: PRTEXP Procedure
	Syntax: PRTEXP Procedure
	Concepts: PRTEXP Procedure
	Examples: PRTEXP Procedure
	See Also

	The PWENCODE Procedure
	Overview: PWENCODE Procedure
	Syntax: PWENCODE Procedure
	Concepts: PWENCODE Procedure
	Using Encoded Passwords in SAS Programs
	Encoding versus Encryption

	Examples: PWENCODE Procedure

	The RANK Procedure
	Overview: RANK Procedure
	What Does the RANK Procedure Do?
	Ranking Data

	Syntax: RANK Procedure
	Concepts: RANK Procedure
	Computer Resources
	Statistical Applications

	Results: RANK Procedure
	Missing Values
	Output Data Set

	Examples: RANK Procedure
	References

	The REGISTRY Procedure
	Overview: REGISTRY Procedure
	Syntax: REGISTRY Procedure
	Creating Registry Files with the REGISTRY Procedure
	Structure of a Registry File
	Specifying Key Names
	Specifying Values for Keys
	Sample Registry Entries

	Examples: REGISTRY Procedure
	See Also

	The REPORT Procedure
	Overview: REPORT Procedure
	What Does the REPORT Procedure Do?
	What Types of Reports Can PROC REPORT Produce?
	What Do the Various Types of Reports Look Like?

	Concepts: REPORT Procedure
	Laying Out a Report
	Using Compute Blocks
	Using Break Lines
	Using Compound Names
	Using Style Elements in PROC REPORT
	Printing a Report
	Storing and Reusing a Report Definition

	Syntax: REPORT Procedure
	REPORT Procedure Windows
	How PROC REPORT Builds a Report
	Sequence of Events
	Construction of Summary Lines
	Report-Building Examples

	Examples: REPORT Procedure

	The SORT Procedure
	Overview: SORT Procedure
	What Does the SORT Procedure Do?
	Sorting SAS Data Sets

	Syntax: SORT Procedure
	Concepts: SORT Procedure
	Multi-threaded Sorting
	Using PROC SORT with a DBMS
	Sorting Orders for Numeric Variables
	Sorting Orders for Character Variables
	Stored Sort Information

	Integrity Constraints: SORT Procedure
	Results: SORT Procedure
	Procedure Output
	Output Data Set

	Examples: SORT Procedure

	The SQL Procedure
	Overview: SQL Procedure
	What Is the SQL Procedure?
	What Are PROC SQL Tables?
	What Are Views?
	SQL Procedure Coding Conventions

	Syntax: SQL Procedure
	SELECT Clause
	INTO Clause
	FROM Clause
	WHERE Clause
	GROUP BY Clause
	HAVING Clause
	ORDER BY Clause

	SQL Procedure Component Dictionary
	Concepts: SQL Procedure
	Using SAS Data Set Options with PROC SQL
	Connecting to a DBMS Using the SQL Procedure Pass-Through Facility
	Connecting to a DBMS Using the LIBNAME Statement
	Using the DICTIONARY Tables
	Using Macro Variables Set by PROC SQL
	Updating PROC SQL and SAS/ACCESS Views

	PROC SQL and the ANSI Standard
	Compliance
	SQL Procedure Enhancements
	SQL Procedure Omissions

	Examples: SQL Procedure

	The STANDARD Procedure
	Overview: STANDARD Procedure
	What Does the STANDARD Procedure Do?
	Standardizing Data

	Syntax: STANDARD Procedure
	Results: STANDARD Procedure
	Missing Values
	Output Data Set

	Statistical Computations: STANDARD Procedure
	Examples: STANDARD Procedure

	The SUMMARY Procedure
	Overview: SUMMARY Procedure
	Syntax: SUMMARY Procedure

	The TABULATE Procedure
	Overview: TABULATE Procedure
	What Does the TABULATE Procedure Do?
	Simple Tables
	Complex Tables
	PROC TABULATE and the Output Delivery System

	Terminology: TABULATE Procedure
	Syntax: TABULATE Procedure
	Concepts: TABULATE Procedure
	Statistics That Are Available in PROC TABULATE
	Formatting Class Variables
	Formatting Values in Tables
	How Using BY-Group Processing Differs from Using the Page Dimension
	Calculating Percentages
	Using Style Elements in PROC TABULATE

	Results: TABULATE Procedure
	Missing Values
	Understanding the Order of Headings with ORDER=DATA
	Portability of ODS Output with PROC TABULATE

	Examples: TABULATE Procedure
	References

	The TEMPLATE Procedure
	Information about the TEMPLATE Procedure

	The TIMEPLOT Procedure
	Overview: TIMEPLOT Procedure
	Syntax: TIMEPLOT Procedure
	Results: TIMEPLOT Procedure
	Data Considerations
	Procedure Output
	ODS Table Names
	Missing Values

	Examples: TIMEPLOT Procedure

	The TRANSPOSE Procedure
	Overview: TRANSPOSE Procedure
	What Does the TRANSPOSE Procedure Do?
	What Types of Transpositions Can PROC TRANSPOSE Perform?

	Syntax: TRANSPOSE Procedure
	Results: TRANSPOSE Procedure
	Output Data Set
	Output Data Set Variables
	Attributes of Transposed Variables
	Names of Transposed Variables

	Examples: TRANSPOSE Procedure

	The TRANTAB Procedure
	Information about the TRANTAB Procedure

	The UNIVARIATE Procedure
	Information about the UNIVARIATE Procedure

	Appendices
	SAS Elementary Statistics Procedures
	Overview
	Keywords and Formulas
	Simple Statistics
	Descriptive Statistics
	Quantile and Related Statistics
	Hypothesis Testing Statistics
	Confidence Limits for the Mean
	Using Weights
	Data Requirements for Summarization Procedures

	Statistical Background
	Populations and Parameters
	Samples and Statistics
	Measures of Location
	Percentiles
	Quantiles
	Measures of Variability
	Measures of Shape
	The Normal Distribution
	Sampling Distribution of the Mean
	Testing Hypotheses

	References

	Operating Environment-Specific Procedures
	Descriptions of Operating Environment-Specific Procedures

	Raw Data and DATA Steps
	Overview
	CENSUS
	CHARITY
	CUSTOMER_RESPONSE
	DJIA
	EDUCATION
	EMPDATA
	ENERGY
	GROC
	MATCH_11
	PROCLIB.DELAY
	PROCLIB.EMP95
	PROCLIB.EMP96
	PROCLIB.INTERNAT
	PROCLIB.LAKES
	PROCLIB.MARCH
	PROCLIB.PAYLIST2
	PROCLIB.PAYROLL
	PROCLIB.PAYROLL2
	PROCLIB.SCHEDULE
	PROCLIB.STAFF
	PROCLIB.SUPERV
	RADIO

	Recommended Reading
	Recommended Reading

	Index
	Volume 3
	Table of Contents
	Chapter 1
	The CORR Procedure
	Overview
	Getting Started
	Syntax
	Details
	Examples
	References


	Chapter 2
	The FREQ Procedure
	Overview
	Getting Started
	Syntax
	Details
	Examples
	References


	Chapter 3
	The UNIVARIATE Procedure
	Overview
	Getting Started
	Syntax
	Details
	Examples
	References


	Subject Index
	Syntax Index




