
Moving and Accessing
SAS®

9.1 Files

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
Moving and Accessing SAS ® 9.1 Files. Cary, NC: SAS Institute Inc.

Moving and Accessing SAS® 9.1 Files
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
ISBN 1–59047–230–6
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New vii

Overview vii

Details vii

P A R T 1 Introduction 1

Chapter 1 Moving and Accessing SAS Files between Operating Environments 3
Deciding to Move a SAS File between Operating Environments 3

Deciding to Access a SAS File across Operating Environments 3

Strategies for Moving and Accessing SAS Files 4

Summary of Strategy Features 5

Moving and Accessing SAS Files in International Environments 7

The Data Set Used for Examples 7

Naming Conventions Used for Examples 8

P A R T 2 Strategies for Moving and Accessing SAS Files 9

Chapter 2 Cross-Environment Data Access (CEDA) 11
Overview of CEDA 11

CEDA Advantages 12

CEDA Limitations 12

Changing SAS File Formats 13

Transferring a SAS File between Machines 15

Identifying the Format of a SAS File 15

Reading and Writing a Foreign File 16

Chapter 3 PROC CPORT and PROC CIMPORT 17
Overview of PROC CPORT and PROC CIMPORT 17

PROC CPORT and PROC CIMPORT Advantage 18

PROC CPORT and PROC CIMPORT Limitations 18

Creating a Transport File at the Source Machine 18

Transferring Transport Files to a Target Machine 20

Restoring Transport Files at the Target Machine 20

Chapter 4 XPORT Engine with DATA Step or PROC COPY 25
Overview of the XPORT Engine 25

XPORT Engine Advantages 25

XPORT Engine Limitations 26

Regressing SAS Data Sets to SAS 6 Format 26

Creating a Transport File at the Source Machine 27

Transferring Transport Files across a Network 29

Restoring Transport Files at the Target Machine 29

iv

Chapter 5 XML Engine with DATA Step or PROC COPY 31
Overview of the XML Engine 31

XML Engine Advantages 31

XML Engine Limitations 32

Creating an XML Document at the Source Machine 32

Transferring an XML Document across a Network 33

Restoring an XML Document as a Data Set at a Target Machine 34

P A R T 3 Transferring Transport Files and Foreign Files 35

Chapter 6 Transferring Files 37
Overview of File Transfers 37

Attributes for Transport Files 37

Using the FILENAME Statement or the FTP Utility for Foreign Files and Transport
Files 38

P A R T 4 Operating Environment Specifics 43

Chapter 7 OpenVMS Operating Environment 45
Listing OpenVMS System File Attributes 45

Specifying File Attributes for OpenVMS 46

Identifying the SAS Version Used to Create a Member Under OpenVMS 46

Mounting a Tape Device on OpenVMS 47

OpenVMS Error Messages 47

Chapter 8 z/OS Operating Environment 51
Listing z/OS File Attributes 51

Identifying the SAS Version Used to Create a Member under z/OS 51

Organizing z/OS Files with the SAS 8 and Later UNIX System Services Directory 52

Using z/OS Batch Statements for File Transport 52

Transferring a Transport File over the Network 52

Reading Transport Files in z/OS Operating Environments 53

Chapter 9 UNIX Operating Environment 55
Specifying File Attributes for UNIX 55

Identifying the SAS Version Used to Create a Member under UNIX 55

Creating a Transport File on Tape 56

Copying the Transport File from Disk to Tape at the UNIX Source Machine 57

Copying the Transport File from Tape to Disk at the Target Machine 57

Chapter 10 Windows Operating Environment 59
Specifying File Attributes for Windows 59

Identifying the SAS Version Used to Create a Member under Windows 59

Error Message 60

Chapter 11 SAS Filename Extensions and File Headers 61

v

Using Filename Extensions to Identify Which SAS Engine and Operating Environment
Were Used to Create a SAS File 61

Using PROC CONTENTS to Identify Which SAS Base Engine Was Used to Create a
SAS File 62

Using File Headers to Identify Which Strategy Was Used to Create a Transport
File 62

P A R T 5 Troubleshooting 65

Chapter 12 Preventing and Fixing Problems 67
Problems Transferring and Restoring Transport files 68

Error and Warning Messages 71

Verifying Transfer Format and Transport File Attributes 77

Reblocking a Transport File 78

P A R T 6 Samples and Logs 81

Chapter 13 Examples of Moving SAS Files 83
The Examples of Moving SAS Files 84

OpenVMS Alpha to UNIX File Transport 84

z/OS to Windows File Transport 91

z/OS JCL Batch to UNIX File Transport 96

Strategies for Verifying Transport Files 104

P A R T 7 Appendix 107

Appendix 1 Recommended Reading 109
Recommended Reading 109

Glossary 111

Index 119

vi

vii

What’s New

Overview
The following strategies in Base SAS are available for moving and accessing SAS

files between operating environments that run different releases of SAS:
� Cross-Environment Data Access (CEDA)
� CPORT and CIMPORT procedures
� XPORT engine with the DATA step or the COPY procedure
� XML engine with the DATA step or the COPY procedure.

Note: This section describes the features that are new to the topic of moving SAS
files since SAS 8.2. Using SAS CONNECT and SAS/SHARE to move or access SAS files
are discussed in the SAS/CONNECT User’s Guide and the SAS/SHARE User’s
Guide. �

Details

Cross-Environment Data Access (CEDA)
CEDA is a simple strategy for file access across a network. CEDA enables you to

read a network-mounted SAS file from any directory-based operating environment that
runs SAS 8 or later, regardless of the file format of the SAS file being accessed.

CEDA dynamically converts between the native formats of the source and target
operating environments that run under different architectures (for example, UNIX and
Windows). CEDA eliminates having to convert a file to transport format.

CPORT and CIMPORT Procedures
In most cases, in order to move a SAS file between operating environments, you can

use the CPORT and CIMPORT procedures and FTP (File Transfer Protocol) to create a
transport file at the source machine, transfer that file across the network, and restore
the transport file to native format at the target machine.

viii What’s New

CAUTION:
Moving or accessing SAS files is not the same as migrating SAS files. Migration of SAS
files (data and applications) is not discussed in this documentation. For details about
migrating SAS files, see the Migration Community at support.sas.com/rnd/
migration. �

XPORT Engine with the DATA Step or the COPY Procedure
The XPORT engine creates files in transport format that can be transferred across

operating environments, and directed to multiple target operating environments that
run different releases of SAS. Transport files that are created by the XPORT engine can
be transferred across operating environments and read using the XPORT engine with
the DATA step or PROC COPY.

XML Engine with the DATA Step or the COPY Procedure
The XML engine imports and exports XML documents. The XML format provides

increased cross-architectural compatibility by storing numeric values as character data
and by identifying the character encoding in a file header. XML files can be transferred
across operating environments and read using the XML engine with the DATA step or
with PROC COPY.

The XML engine was introduced in SAS 8.2 and is completely documented in the
SAS 9.1 XML LIBNAME Engine User’s Guide. Using the XML engine as a strategy for
moving SAS files across operating environments is introduced in this documentation for
SAS 9.1.

1

P A R T1

Introduction

Chapter 1.Moving and Accessing SAS Files between Operating
Environments 3

2

3

C H A P T E R

1
Moving and Accessing SAS Files
between Operating Environments

Deciding to Move a SAS File between Operating Environments 3

Deciding to Access a SAS File across Operating Environments 3
Strategies for Moving and Accessing SAS Files 4

Summary of Strategy Features 5

Moving and Accessing SAS Files in International Environments 7
The Data Set Used for Examples 7

Naming Conventions Used for Examples 8

Deciding to Move a SAS File between Operating Environments

Moving SAS files between operating environments is a common work task. Reasons
for moving a SAS file between operating environments include:

� To move SAS files to a new operating environment on a different machine; for
example, HP-UX files to a RedHat Linux operating environment.

� To move a file and its processing to a high-performance operating environment
that will be returned to the requesting operating environment.

� To make a static copy of a SAS file available to a physically separate operating
environment for continued data processing. Files are duplicated for use in the
receiving operating environment because the SAS files are not available to the
receiving operating environment by means of NFS-mounted file systems.

In all of these scenarios, the move operations recognize differences between machine
architectures and SAS releases, allowing the original files to be used in the receiving
operating environment.

Deciding to Access a SAS File across Operating Environments

In some instances, accessing instead of owning and maintaining your own copy of a
file might be preferable. Alternatively, you might need to read data from a locally
mounted tape that was created elsewhere, or you might need to read, write, or update
data that is remotely mounted on your network.

Note: Do not confuse the term access with the product SAS/ACCESS. In the context
of moving or accessing SAS files across operating environments, access means to reach
and process SAS files. SAS/ACCESS enables users to use third-party DBMS files. For a
list of products that SAS/ACCESS supports, see the list on page 6. �

4 Strategies for Moving and Accessing SAS Files Chapter 1

You can use the following methods to access remote SAS files:

� CEDA (Cross-Environment Data Access) enables you to process SAS 8 and later
SAS files.

� use SAS/SHARE on your client to access a remote SAS file that resides on an
operating environment that a SAS/SHARE server runs under. SAS/SHARE
facilitates a transparent concurrent access to remote data among multiple users.
Restrictions apply to cross-release access of SAS data.

In addition, SAS/SHARE enables you to access certain third-party DBMS files
by means of engines that are supported by SAS/ACCESS.

� without the aid of SAS/SHARE or CEDA, you can rely upon network services for
access to remote files (both SAS files and third-party DBMS files). Usually, the
client and the server must share a compatible architecture, and they must run the
same release of SAS software. The operating environment, the network software,
and the security software might control users’ permissions to access specific
remote files. For more information, see the SAS companion documentation that is
appropriate to your operating environment, and see the third-party documentation
for the network software and security software that you use.

Strategies for Moving and Accessing SAS Files

Cross-Environment Data Access (CEDA)
This feature of SAS enables a SAS file that was created in any directory-based
operating environment (for example, Solaris, Windows, HP-UX, OpenVMS) to be
processed by a SAS session that is running in another directory-based
environment.

CPORT and CIMPORT procedures
In the source environment, you can use PROC CPORT to write data sets or
catalogs to transport format. In the target environment, PROC CIMPORT can be
used to translate the transport file into the target environment’s native format.

XPORT engine with DATA step or PROC COPY
In the source environment, you can use the LIBNAME statement with the XPORT
engine and either the DATA step or PROC COPY to create a transport file from a
SAS data set. In the target environment, the same method can be used to
translate the transport file into the target environment’s native format.

Note: The XPORT engine does not support SAS 8 and later features, such as
long file and variable names. �

XML engine with DATA step or PROC COPY
In the source environment, you can use the LIBNAME statement with the XML
engine and either the DATA step or PROC COPY to create an XML document from
a SAS data set. In the target environment, the same method can be used to
translate the XML document into the target environment’s native format.

Data Transfer Services (DTS) in SAS/CONNECT
This feature enables you to transfer data sets and catalogs from the source
environment to the target environment. DTS dynamically translates the data
between operating environment representations and SAS versions, as necessary.
The transfer is accomplished using the SIGNON statement to connect two SAS
sessions and then the PROC UPLOAD or PROC DOWNLOAD to move the data.

Moving and Accessing SAS Files Summary of Strategy Features 5

REMOTE engine and Remote Library Services in SAS/SHARE and SAS/CONNECT
These features give you transparent access to remote data using the REMOTE
engine and the LIBNAME statement.

Summary of Strategy Features

Table 1.1 Summary of Strategy Features for Moving or Accessing SAS Files

Strategies That Can Be UsedFeatures

CEDA PROC
CPORT/
PROC
CIMPORT

XPORT
Engine

XML
Engine

SAS/CONNECT
DTS

SAS/CONNECT
RLS and
SAS/SHARE
RLS

SAS
Member
Types
Supported

Data File,
PROC SQL
views*,
SAS/ACCESS
views (Oracle
and
SYBASE),
MDDB*

Library,
Data Set,
Catalog,
Catalog
entry

Library,
Data
Set

Data
File

Library, Data
Set, Catalog,
Catalog entry,
PROC SQL
view, MDDB,
External
third-party
databases***

Library, Data
Set, Catalog**,
Catalog
entry**, PROC
SQL view,
MDDB, DATA
Step view,

SAS/ACCESS
view, External
third-party
databases***

* Data set (files) can have read, write, and update access. PROC SQL views and MDDBs are
read-only.

** SAS 9 does not support cross-operating environment access to catalog entries or catalogs in
operating environments that are incompatible. For information about architecture groups, see
SAS/CONNECT User’s Guide or SAS/SHARE User’s Guide.

***SAS/CONNECT supports external text files and binary files. SAS/CONNECT and SAS/SHARE
support third-party external databases by means of the Remote SQL Pass-Through Facility, but
you must have a SAS/ACCESS license to access these databases. Here is a list of external files
that SAS/CONNECT and SAS/SHARE support:

� Relational databases

� CA-OpenIngres, DB2 for OS/390, DB2 for UNIX and PC operating environments,
Informix, ODBC, Oracle, Oracle Rdb, and SYBASE

� Nonrelational databases

� ADABAS, CA-IDMS, IMS-DL/I, and SYSTEM 2000

� PC files

� PC file formats Excel and Lotus

6 Summary of Strategy Features Chapter 1

Strategies That Can Be UsedFeatures

CEDA PROC
CPORT/
PROC
CIMPORT

XPORT
Engine

XML
Engine

SAS/CONNECT
DTS

SAS/CONNECT
RLS and
SAS/SHARE
RLS

Dynamic
Translation
or Create a
File
Format

Dynamic Transport**** Transport****XML Dynamic Dynamic

SAS
Versions
Supported

SAS 8 and
later

SAS 6 and
later

SAS 6 and
later****

SAS 8.2
and
later

SAS 6 and
later

SAS 6 and
later

Regression
from a
Later to an
Earlier
SAS
Release

No No Yes No Yes Yes

Limited to
Operating
Environments
that Use
Directory-
Based File
Structures

Yes No No No No No

SAS
Product
License
Required

Base SAS Base SAS Base SAS Base
SAS

SAS/CONNECT SAS/CONNECT
or
SAS/SHARE

****The XPORT engine does not support features that were introduced in SAS 8 (such as long file
and variable names). If the XPORT engine is used to regress a SAS 8 or later SAS file to an
earlier release, the features that are exclusive to SAS 8 and later are removed from the SAS
file. Also, the transport formats that are produced by the XPORT engine and PROC CPORT
are not interchangeable.

For complete details about relational databases, see SAS/ACCESS for Relational
Databases: Reference. For details about nonrelational databases, see SAS/ACCESS
Interface to CA-Datacom/DB: Reference, SAS/ACCESS Interface to IMS: Reference,
SAS/ACCESS DATA Step Interface to CA-IDMS: Reference, or SAS/ACCESS Interface
to SYSTEM 2000: Reference, as appropriate.

Moving and Accessing SAS Files The Data Set Used for Examples 7

Moving and Accessing SAS Files in International Environments
SAS provides National Language Support (NLS) for SAS applications and data that

are created in supported operating environments. Customers who use the English
language can use SAS applications and data that are created in the United States.
However, without NLS, customers in other geographic regions of the world such as Asia
and Europe would not be able to run SAS applications and read and write data that
was created in the United States. NLS features enable customers to process data
successfully in their native languages and environments, regardless of the language
that the application and data were created in.

As an example, a source SAS session runs a SAS application and creates a data set,
which is written in the English language, on a SAS 8 PC. A target SAS session runs a
different SAS application, which is written in the German language, on a SAS 6
mainframe that needs to read from and write to the SAS data set that was created in
the English language.

Before the data can be moved or accessed using the preferred strategy, (for example,
CEDA or PROC CPORT and PROC CIMPORT), locale or encoding must be specified at
the source session and target session to enable the source data to be translated to the
format of the target session. If encodings are not accounted for in an international
environment, source and target sessions cannot read and write the data. Strategies for
specifying locale or encoding vary according to the version of SAS that is running on the
source and target machines.

If you are moving or accessing SAS files in an international environment, see SAS
National Language Support (NLS): User’s Guide.

The Data Set Used for Examples
If you choose to experiment, you can create several simple data sets in a library.

Here is a sample SAS program that creates the data set GRADES:

data grades;
input student $ test1 test2 final;
datalines;

Fred 66 80 70
Wilma 97 91 98
;
proc print data=grades;
run;

Here is the output:

The SAS System 10:59 Friday, April 25, 2003

Obs student test1 test2 final
1 Fred 66 80 70
2 Wilma 97 91 98

8 Naming Conventions Used for Examples Chapter 1

Naming Conventions Used for Examples
The following consistent naming conventions are used in the examples in this

documentation:

WORK
is the default libref that points to the library that contains the data set GRADES.

XPORTOUT
is the libref that points to the location where the transport file is created with the
XPORT engine.

XPORTIN
is the libref that points to the location on the target machine that you transferred
the transport file to.

XMLOUT
is the libref that points to the location where the XML file is created with the XML
engine.

XMLIN
is the libref that points to the location on the target machine that you transferred
the XML file to.

CPORTOUT
is the fileref that points to the location where the transport file is created with
PROC CPORT.

IMPORTIN
is the fileref that points to the location on the target machine that you transferred
the transport file to.

SOURCE
is the libref that points to the location of the source file that is translated into
transport or XML format.

LIST
is a catalog entry type.

GRADES
is the name of a data set.

TARGET
is the libref that points to the location where the restored SAS file is created.

TESTCAT
is the name of a catalog.

TESTNPGM
is the name of a catalog entry.

9

P A R T2

Strategies for Moving and Accessing SAS
Files

Chapter 2.Cross-Environment Data Access (CEDA) 11

Chapter 3.PROC CPORT and PROC CIMPORT 17

Chapter 4.XPORT Engine with DATA Step or PROC COPY 25

Chapter 5.XML Engine with DATA Step or PROC COPY 31

10

11

C H A P T E R

2
Cross-Environment Data Access
(CEDA)

Overview of CEDA 11

CEDA Advantages 12
CEDA Limitations 12

Changing SAS File Formats 13

Changing a File’s Format at the Source or Target Machine 13
Using the OUTREP= Option in the LIBNAME Statement 13

Using the OUTREP= Data Set Option in the DATA Step 13

Viewing the SAS Log at the Source Machine 14
Transferring a SAS File between Machines 15

Identifying the Format of a SAS File 15
Setting the MSGLEVEL= System Option 15

Using PROC CONTENTS to Identify a File’s Format 15

Updating a Foreign File 16
Reading and Writing a Foreign File 16

Overview of CEDA
CEDA is a simple strategy for file access across a network. CEDA enables you to read

a network-mounted SAS file from any directory-based operating environment that runs
SAS 8 or later, regardless of the file format of the SAS file being accessed. For example,
CEDA enables a PC to read network-mounted SAS files that are in UNIX file format.

Note: Prior to SAS 8.2, CEDA was packaged with SAS/CONNECT, which requires a
separate license. CEDA is now included as part of Base SAS. �

CEDA runs transparently. You can access a supported SAS file without knowing the
file’s format. CEDA detects the format of the accessing machine and automatically
translates the “native” format to the representation of the “foreign,” or accessing,
machine.

CEDA is most useful in a heterogeneous networked enterprise in which multiple
applications read data from a centralized SAS file, process the data, and then generate
reports. For example, a SAS data set can reside on a UNIX machine and be accessed by
machines that represent data in a format that is “foreign” to the UNIX machine. For
example, UNIX and Windows machines represent data differently. Without CEDA, a
SAS file could not be dynamically translated when accessed. Instead, a transport file or
a file in “foreign” format would have to be generated for the accessing machine.

12 CEDA Advantages Chapter 2

CEDA Advantages
CEDA provides the following advantages:

� CEDA runs transparently. The user can read a data set without knowing the
native format of the file.

� System performance is maximized because a read operation requires a single
translation between native and non-native formats versus multiple translations
from native format to transport format to native format.

� No interim transport files are created.

� CEDA eliminates the need to perform explicit steps in order to access the file.

� CEDA does not require a dedicated server as is needed in SAS/SHARE or an
explicit sign on as is needed in SAS/CONNECT.

� The internal numeric representation provided by CEDA is more precise than that
provided by the XPORT engine with PROC COPY. CEDA uses a one-step
translation from the native format of the source operating environment to the
native format of the target operating environment, whereas the XPORT engine
uses a two-step transformation from a file’s native format to the target operating
environment format using a transport format.

CEDA Limitations
CEDA is not the preferred strategy for network file access in all situations. CEDA

has the following limitations:

� CEDA features are implemented for SAS 9 or 8 data sets, PROC SQL views, SAS/
ACCESS views for Oracle and SYBASE, and MDDBs. CEDA does not support
SAS 9 or 8 stored programs or catalogs, nor does it support any SAS 6 or earlier
files. The type of access that CEDA has to a SAS file depends on the engine used
and the type of file access requested (read, write, update). For more information
about file access limitations, see the topic in SAS Language Reference: Concepts
that discusses when CEDA is supported.

� CEDA does not support update processing for any SAS files.

� CEDA does not support subsetting by means of an index.

� CEDA is available only for operating environments that use directory-based file
structures. Under OS/390, CEDA is available only for SAS data sets that reside in
a UNIX System Services Directory. Bound libraries that are traditionally used on
the OS/390 operating environment do not implement CEDA.

� Network resources are consumed each time CEDA translates a SAS file.

If you have performance problems, analyze file access patterns to determine whether
the data set is located on the correct machine. For example, if the SAS data set is
represented in UNIX data format and most of the read operations originate from
Windows machines, you might consider moving the data set to a Windows machine and
changing the data set’s UNIX file format to Windows format. Windows access to a
network-mounted file in Windows format would not require CEDA. However, CEDA
would be used to translate between the native Windows format of the SAS file being
accessed and the accessing machines other than Windows (such as UNIX, z/OS, and
OpenVMS).

For complete details about the types of data that CEDA supports and restrictions on
using CEDA, see “Processing Data Using Cross-Environment Data Access” in SAS
Language Reference: Concepts.

CEDA Using the OUTREP= Data Set Option in the DATA Step 13

To overcome limited access and network impact limitations, you can change the
format of the SAS file from its native format to a foreign format and transfer the SAS
file to a different machine. For example, if you determine that a SAS file that was
created in HP_UX representation is primarily accessed by PCs, then you might change
the format of the SAS file to Windows format and transfer it to a Windows machine.
Changing the file’s format will improve performance and allow write and update access.

Changing SAS File Formats

Changing a File’s Format at the Source or Target Machine
You can change a SAS file’s format at the source or target machine.
At the Source Machine
Create a SAS file in the format of the “foreign” target machine. Transfer the file to

the target machine.
At the Target Machine
Transfer the file from the source machine to the target machine. At the target

machine, change the file to the format of the native target machine.

Using the OUTREP= Option in the LIBNAME Statement
In order to create a SAS file in a “foreign” format for a supported member type, use

the OUTREP= option in the LIBNAME statement.
The OUTREP= option applies the designated format to all SAS files that are created

in the specified library.

Note: Whereas the OUTREP= option in the LIBNAME statement applies to all files
being created in the specified library, the OUTREP= option in the DATA step applies
only to the specific data set being created. �

Note: MDDB files cannot be updated on a target machine. CEDA supports MDDB
files for read-only access. �

Example:

libname grades ’/dev/app/unc’ outrep=windows;

The libref GRADES points to the location for the application and its data sets. The
data set output is represented in Windows format.

For supported values for the OUTREP= option, see the LIBNAME statement in SAS
Language Reference: Dictionary.

Using the OUTREP= Data Set Option in the DATA Step
In order to create a SAS file in a “foreign” format for a supported member type, use

the OUTREP= option in the DATA step.
The OUTREP= option applies the designated format to the specified data set.

14 Viewing the SAS Log at the Source Machine Chapter 2

Note: Whereas the OUTREP= option in the DATA step applies only to the specific
data set being created, the OUTREP= option in the LIBNAME statement applies to all
files being created in the specified library. �

Example:

data chem.grades (outrep=HP_UX);
input student $ test1 test2 final;
datalines;

Fred 66 80 70
Wilma 97 91 98

run;

The data set GRADES is created in HP_UX format.
For supported values for the OUTREP= option, see the DATA step in SAS Language

Reference: Dictionary.

Viewing the SAS Log at the Source Machine
Viewing the SAS log verifies that the output of the data set (UNIX) is in a format

that is foreign to the native environment (Windows).

Output 2.1 Data Representation Specified in the SAS Log

The SAS System 10:15 Friday, December 19, 2003 1

The CONTENTS Procedure

Data Set Name WORK.GRADES Observations 1
Member Type DATA Variables 4
Engine V9 Indexes 0
Created 11:03 Friday, December 19, 2003 Observation Length 32
Last Modified 11:03 Friday, December 19, 2003 Deleted Observations 0
Protection Compressed NO
Data Set Type Sorted NO
Label
Data Representation HP_UX_64, RS_6000_AIX_64, SOLARIS_64, HP_IA64 u
Encoding latin1 Western (ISO)

Engine/Host Dependent Information

Data Set Page Size 4096
Number of Data Set Pages 1
First Data Page 1
Max Obs per Page 126
Obs in First Data Page 1
Number of Data Set Repairs 0
File Name C:\TEMP\SAS Temporary Files_TD228\grades.sas7bdat
Release Created 9.0000M0
Host Created WIN_NT v

Alphabetic List of Variables and Attributes

Variable Type Len

4 final Num 8
1 student Char 8
2 test1 Num 8
3 test2 Num 8

CEDA Using PROC CONTENTS to Identify a File’s Format 15

u The data set is represented in HP_UX format, which is “foreign” to the native
Windows environment.

v The native format is WIN_NT.

Transferring a SAS File between Machines
You can use either of the following methods to make a SAS file available for access at

the target machine:
� NFS (Network File Services) to mount the file on the network for operating

environment access. See the documentation for NFS and for your operating
environment.

� FTP (File Transfer Protocol) services to copy a file in binary format to a specific
target operating environment. For information about FTP, see “Example: Using
FTP to Transfer Foreign Files and Transport Files” on page 40.

CAUTION:
A “foreign” file must be transferred in BINARY format. �

Identifying the Format of a SAS File

Setting the MSGLEVEL= System Option
In SAS 9 and later, you can set the MSGLEVEL= system option to specify that SAS

inform you when CEDA is being used.
Set MSGLEVEL=1 to enable messages.

options msglevel=i;

If you try to process a “foreign” file, an informational message is displayed. An
example follows:

INFO: Data set HEALTH.GRADES.DATA is in a format native to
another host or the file encoding does not match the session encoding.
Cross Environment Data Access will be used, which might require
additional CPU resources and reduce performance.

Note: Additional resources are consumed each time you read a foreign file. �

Using PROC CONTENTS to Identify a File’s Format
You can use the CONTENTS procedure (or the CONTENTS statement in PROC

DATASETS) to find out what format is used in a file.
For example,

proc contents data=grades;
run;

An excerpt of the output follows:

Data Representation HP_UX_64, RS_6000_AIX_64, SOLARIS_64, HP_IA64

16 Updating a Foreign File Chapter 2

In the preceding example, the output shows that the file is represented in UNIX
format.

If the target machine uses a format that is the same as the file format, then you can
read, write, and update the file.

Note: No additional resources are consumed. �

If the target machine uses a format that is different from the file format (in this
example, UNIX), you can read and write, but you cannot update the files.

Note: Additional resources are consumed each time you read a foreign file. �

Updating a Foreign File
You cannot update a foreign file. However, you can:

� read the file

Note: Additional resources are consumed each time you read a foreign file.

� change the file’s foreign format (for example, UNIX) to the format of the native
(accessing) machine (for example, Windows). Changing from a foreign to a native
format allows you full access (read, write, and update) to the file without any
intermediate translation.

Note: After you change the file’s format, no additional resources are consumed
when you access the file.

If you try to update a SAS file that has a format that is foreign to the accessing
machine, an error message is displayed.

Note: The type of access that CEDA is permitted depends on the engine used and
the type of file access requested (read, write, update). For more information about file
access limitations, see the topic in SAS Language Reference: Concepts that discusses
when CEDA is supported. �

A typical error message follows:

ERROR: Updating not allowed for file TEST.CMVS because it is in a
format native to another host, such as SOLARIS, HP_UX, RS_6000_AIX,
MIPS_ABI.

Reading and Writing a Foreign File

After a “foreign” file has been transferred across the network to the target machine,
and if the target machine runs SAS 8 or later, the target machine can read and write
the SAS file. A target machine can transparently access a “foreign” file for reading or
writing, but not for updating the files.

You can read and write, but you cannot update the files.

Note: Additional resources are consumed each time you read or write a foreign file.
�

17

C H A P T E R

3
PROC CPORT and PROC CIMPORT

Overview of PROC CPORT and PROC CIMPORT 17

PROC CPORT and PROC CIMPORT Advantage 18
PROC CPORT and PROC CIMPORT Limitations 18

Creating a Transport File at the Source Machine 18

Using PROC CPORT to Create a Transport File for Data Sets 18
Using PROC CPORT to Create a Transport File for Catalogs 19

Using PROC CPORT to Create a Transport File for Multiple Catalogs 19

Using PROC CPORT to Create a Transport File for an Entire Catalog 19
Using PROC CPORT to Create a Transport File for a Specific Catalog Entry Type 19

Using PROC CPORT to Create a Transport File for Catalog Entries 20
Transferring Transport Files to a Target Machine 20

Restoring Transport Files at the Target Machine 20

Identifying the Content of the Transport File 20
Using PROC CIMPORT to Import Data Sets from a Transport File 21

Using PROC CIMPORT to Import Catalogs from a Transport File 22

Using Compatible Destination Member Types in PROC CPORT and PROC CIMPORT 22
Using PROC CIMPORT to Import Multiple Catalogs from a Transport File 22

Using PROC CIMPORT to Import a Single Catalog from a Transport File 23
Using PROC CIMPORT to Import a Single Catalog Entry Type from a Transport File 23

Using PROC CIMPORT to Import Selected Catalog Entries from a Transport File 23

Overview of PROC CPORT and PROC CIMPORT
PROC CPORT creates files in transport format, which uses an

environment-independent standard for character encoding and numeric representation.
Transport files that are created by PROC CPORT can be transferred across operating
environments and read with PROC CIMPORT.

The process for creating a transport file at the source machine and reading it at a
target machine follows:

1 A transport file is created at the source machine using PROC CPORT.
2 The file is transferred from the source machine to the target machine.
3 The transport file is read at the target machine using PROC CIMPORT.

Note: Transport files that are created using PROC CPORT are not interchangeable
with transport files that are created using the XPORT engine. �

18 PROC CPORT and PROC CIMPORT Advantage Chapter 3

PROC CPORT and PROC CIMPORT Advantage
The CPORT and CIMPORT procedures are preferable for moving members of both

DATA and CATALOG types. PROC COPY is used to move members of type DATA only.

PROC CPORT and PROC CIMPORT Limitations
The disadvantage of using PROC CPORT and PROC CIMPORT is that they do not

allow file transport from a later version to an earlier version, which is known as
regressing (for example, from SAS 9 to SAS 6). PROC CPORT and PROC CIMPORT
move files only from an earlier version to a later version (for example, from SAS 6 to
SAS 9) or between the same versions (for example, from one SAS 9 operating
environment to another SAS 9 operating environment).

However, you can move files between releases of SAS 6; for example, from SAS 6.12
to SAS 6.08. For more information about the syntax for these procedures, see PROC
CPORT and PROC CIMPORT in the Base SAS Procedures Guide.

PROC CPORT and PROC CIMPORT do not support the transport of any type of view
or MDDB.

Creating a Transport File at the Source Machine

Using PROC CPORT to Create a Transport File for Data Sets
This example uses the CPORT procedure to create a transport file for one data set.

libname source ’SAS-data-library’;
filename cportout ’transport-file’;
proc cport data=source.grades file=cportout;
run;

In the preceding example, the libref SOURCE points to the original location of the
data set that is on the source operating environment. The fileref CPORTOUT points to
a new location where the transport file will be created. The PROC CPORT statement
copies, as its source, the file that is identified in the DATA= option to the new transport
file that is identified in the FILE= option. The DATA= option specifies only one data set
to be transported.

To include the entire contents of a library, which can contain multiple catalogs and
data sets, specify the LIBRARY= option instead of the DATA= option in PROC CPORT.

Here is an example of PROC CPORT that specifies that all data sets in the library be
transported:

proc cport library=source file=cportout memtype=data;

PROC CPORT and PROC CIMPORT Using PROC CPORT to Create a Transport File for Catalogs 19

Using PROC CPORT to Create a Transport File for Catalogs

Using PROC CPORT to Create a Transport File for Multiple Catalogs
This example uses the CPORT procedure to create a transport file for multiple

catalogs in a library.

libname source ’SAS-data-library’;
filename cportout ’transport-file’;
proc cport library=source file=cportout memtype=catalog;
run;

In the preceding example, the libref SOURCE points to the library that contains the
catalogs that are on the source operating environment. The fileref CPORTOUT points
to a new location where the transport file will be created. The PROC CPORT statement
copies from the specified library all members of the types that are identified in the
MEMTYPE= option to the new transport file that is identified in the FILE= option.

You can use the EXCLUDE statement in PROC CPORT to omit explicitly the catalog
entries that you do not want, or use the SELECT statement in PROC CPORT to specify
the catalog entries that you want.

Using PROC CPORT to Create a Transport File for an Entire Catalog
This example uses the CPORT procedure to create a transport file for an entire

catalog.

libname source ’SAS-data-library’;
filename cportout ’transport-file’;
proc cport catalog=source.testcat file=cportout;
run;

In the preceding example, the libref SOURCE points to the original location of the
catalog that is on the source operating environment. The fileref CPORTOUT points to a
new location where the transport file will be created. The PROC CPORT statement
copies, as its source, the file that is identified in the CATALOG= option to the new
transport file that is identified in the FILE= option. SOURCE specifies the libref and
TESTCAT specifies the catalog name. The omission of the SELECT or EXCLUDE
statements in PROC CPORT indicates that the entire catalog should be copied.

Using PROC CPORT to Create a Transport File for a Specific Catalog Entry
Type

This example uses the CPORT procedure to create a transport file for a specific
catalog entry type:

libname source ’SAS-data-library’;
filename cportout ’transport-file’;
proc cport catalog=source.testcat file=cportout et=list;
run;

In the preceding example, the libref SOURCE points to the original location of the
catalog that is on the source operating environment. The fileref CPORTOUT points to a
new location where the transport file will be created. The PROC CPORT statement
copies, as its source, the file that is identified in the CATALOG= option to the new
transport file that is identified in the FILE= option. The ET= option in PROC CPORT

20 Transferring Transport Files to a Target Machine Chapter 3

specifies that all catalog entries of type LIST be written to the new library.
Alternatively, you can use the EET= option to exclude an entire entry type.

Using PROC CPORT to Create a Transport File for Catalog Entries
This example uses the CPORT procedure to create a transport file for one or more

catalog entries:

libname source ’SAS-data-library’;
filename cportout ’transport-file’;
proc cport catalog=source.mycat file=cportout;

select testnpgm.list;
run;

In the preceding example, the libref SOURCE points to the original location of the
catalog that is on the source operating environment. The fileref CPORTOUT points to a
new location where the transport file will be created. The PROC CPORT statement
copies as its source the file that is identified in the CATALOG= option to the new
transport file that is identified in the FILE= option.

In this example, SELECT TESTNPGM.LIST explicitly names a single catalog entry.
However, you can specify one or more catalog entries by name.

You can use the EXCLUDE statement in PROC CPORT to omit explicitly the catalog
entries that you do not want, or use the SELECT statement in PROC CPORT to specify
catalog entries that you want.

Transferring Transport Files to a Target Machine
You can use either of the following methods to make a transport file available for

access:
� NFS (Network File Services) to mount the file on the network for operating

environment access. See the documentation for NFS and for your operating
environment.

� FTP (File Transfer Protocol) services to copy a file in binary format to a specific
target machine. For details about FTP, see “Using FTP to Transfer Files in
Foreign Format and Transport Files across the Network” on page 39.

Restoring Transport Files at the Target Machine

Identifying the Content of the Transport File
If the person who restores the transport file at the target operating environment is

different from the person who creates the transport file at the source operating
environment, make sure you obtain information about the transport file in advance of
the file restore operation. Here is an example of the type of information that might be
useful for restoring the transport file to native format at the target operating
environment:

PROC CPORT and PROC CIMPORT Using PROC CIMPORT to Import Data Sets from a Transport File 21

Table 3.1 Description of Transport File

Type of Source
Operating
Environment and
SAS Release Used

Strategy
Used to
Create
Transport
File

Transport
Filename

Data Sets Catalogs Catalog
Entries

z/OS

SAS 9

PROC CPORT TPORT.DAT TEST.CITY

TEST.CLASS

TEST.FORMATS REGFMT

SALEFMT

SIZEFMT

You can find out which strategy was used to create the transport file by using a text
editor or by using an operating environment read or view command to read the
transport file. The XPORT engine and PROC CPORT create transport files whose
headers look different. For details, see “Using File Headers to Identify Which Strategy
Was Used to Create a Transport File” on page 62.

Also, you can use these procedures to list the contents of the transport file: PROC
CATALOG, PROC CONTENTS, and PROC DATASETS. For details about these
procedures, see the Base SAS Procedures Guide.

Using PROC CIMPORT to Import Data Sets from a Transport File
This example uses the CIMPORT procedure to import multiple data sets from a

transport file.

filename importin ’transport-file’;
libname target ’SAS-data-library’;
proc cimport infile=importin library=target memtype=data;
run;

In the preceding example, the fileref IMPORTIN points to the location where the
transport file was transferred to the target operating environment. The libref TARGET
points to a new location where the transport file will be copied. The PROC CIMPORT
statement copies as its source the file that is identified in the INFILE= option to the
location identified in the LIBRARY= option. The PROC CIMPORT statement implicitly
translates the transport file into the target operating environment native format.

Because the LIBRARY= option permits both data sets and catalogs to be copied to
the library, you need to specify MEMTYPE=DATA to restrict the operation only to data
sets in the library. Omitting the MEMTYPE= option permits both data sets and
catalogs, in the file referenced by the fileref IMPORTIN, to be copied to the location
referenced by the libref TARGET.

In order to subset the destination member in PROC CIMPORT, use either the
SELECT statement, the EXCLUDE statement, or the MEMTYPE= option. Here is an
example of subsetting:

filename importin ’transport-file’;
libname target ’SAS-data-library’;
proc cimport infile=importin library=target memtype=data;

select grades;
run;

In the preceding example, the libref TARGET and the MEMTYPE= option point to
the new location where the transport file will be copied. The fileref IMPORTIN points
to the location where the transport file was transferred to the target operating
environment. The PROC CIMPORT statement copies as its source the file that is

22 Using PROC CIMPORT to Import Catalogs from a Transport File Chapter 3

identified in the INFILE= option to the location identified in the LIBRARY= option.
The PROC CIMPORT statement implicitly translates the transport file into the target
operating environment native format.

The SELECT statement selects only the data set GRADES for the library TARGET.

Using PROC CIMPORT to Import Catalogs from a Transport File

Using Compatible Destination Member Types in PROC CPORT and PROC
CIMPORT

To import catalogs from a transport file make sure that you use compatible
destination member types in PROC CPORT and PROC CIMPORT.

For statements at the source operating
environment, use:

For statements at the target operating
environment, you are limited to:

CPORT LIBNAME= CIMPORT LIBNAME= or DATA=

CPORT DATA= CIMPORT LIBNAME= or DATA=

CPORT CATALOG= CIMPORT LIBNAME= or CATALOG=

If destination members are incompatible, you receive either an error or a warning
message. See Chapter 12, “Preventing and Fixing Problems,” on page 67 for recovery
actions that can be taken to fix common errors. For complete details about PROC
CPORT and PROC CIMPORT syntax, see the Base SAS Procedures Guide.

Using PROC CIMPORT to Import Multiple Catalogs from a Transport File
This example uses the CIMPORT procedure to import multiple catalogs from a

transport file. To import multiple catalogs, specify the LIBRARY= option and
MEMTYPE=CATALOG in PROC CIMPORT.

filename importin ’transport-file’;
libname target ’SAS-data-library’;
proc cimport infile=importin library=target memtype=catalog;
run;

In the preceding example, the fileref IMPORTIN points to the location where the
transport file was transferred to the target operating environment. The libref TARGET
points to a new location where the transport file will be copied. The PROC CIMPORT
statement copies, as its source, the file that is identified in the INFILE= option to the
location identified in the LIBRARY= option. Because the destination is a library, only
the libref is specified. The MEMTYPE= option restricts the import to catalogs. PROC
CIMPORT implicitly translates the transport file into the target operating environment
native format.

PROC CPORT and PROC CIMPORT Using PROC CIMPORT to Import Catalogs from a Transport File 23

Using PROC CIMPORT to Import a Single Catalog from a Transport File
This example uses the CIMPORT procedure to import a single catalog from a

transport file. To import a single catalog, specify the CATALOG= option in PROC
CIMPORT.

filename importin ’transport-file’;
libname target ’SAS-data-library’;
proc cimport infile=importin catalog=target.testcat;
run;

Using PROC CIMPORT to Import a Single Catalog Entry Type from a
Transport File

This example uses the CIMPORT procedure to import a single catalog entry type
from a transport file. To import a single catalog entry type, specify the ET= option and
the CATALOG= option in PROC CIMPORT.

filename importin ’transport-file’;
libname target ’SAS-data-library’;
proc cimport infile=importin catalog=target.testcat et=list;
run;

Using PROC CIMPORT to Import Selected Catalog Entries from a Transport
File

This example uses the CIMPORT procedure to import selected catalog entries from a
transport file. Use a SELECT statement to specify the names of the catalog entries that
you want. In this example, SELECT TESTNPGM.LIST ONE.SCL explicitly names the
selected catalog entries. Also, the CATALOG= option in PROC CIMPORT must be
specified.

filename importin ’transport-file’;
libname target ’SAS-data-library’;
proc cimport infile=importin catalog=target.testcat;
select testnpgm.list one.scl;
run;

As an alternative, you can use the EXCLUDE statement in PROC CIMPORT to omit
explicitly catalog entries that you do not want.

24

25

C H A P T E R

4
XPORT Engine with DATA Step or
PROC COPY

Overview of the XPORT Engine 25

XPORT Engine Advantages 25
XPORT Engine Limitations 26

Regressing SAS Data Sets to SAS 6 Format 26

Creating a Transport File at the Source Machine 27
Using the DATA Step to Create a Transport File for One Data Set 27

Using PROC COPY to Create a Transport File for One or More Data Sets 28

Transferring Transport Files across a Network 29
Restoring Transport Files at the Target Machine 29

Identifying the Content of the Transport File 29
Using a DATA Step to Restore a Single Data Set from a Transport File 29

Using PROC COPY to Restore Data Sets from a Transport File 30

Overview of the XPORT Engine
The XPORT engine creates files in transport format, which uses an

environment-independent standard for character encoding and numeric representation.
Transport files that are created by the XPORT engine can be transferred across
operating environments and read using the XPORT engine with the DATA step or
PROC COPY.

The process for creating a transport file at the source machine and reading it on a
target machine follows:

1 A transport file is created at the source machine using the XPORT engine with the
DATA step or PROC COPY.

2 The file is transferred from the source machine to the target machine.

3 The transport file is read at the target machine using the XPORT engine with the
DATA step or PROC COPY.

Note: Transport files that are created using PROC CPORT are not interchangeable
with transport files that are created using the XPORT engine. �

XPORT Engine Advantages

Using the XPORT engine (with either the DATA step or the COPY procedure)
provides the following advantages:

� the ability to move files between operating environments, regardless of whether
you are moving the transport file to a later or an earlier SAS release.

26 XPORT Engine Limitations Chapter 4

Note: Regressing a data set (moving from a later release to an earlier release)
eliminates the features that are specific to the later release. For example, when
moving from SAS 9 to SAS 6, the long variable names in SAS 9 are truncated to 8
bytes. For details about file regression, see “Regressing SAS Data Sets to SAS 6
Format” on page 26. �

� You can use the XPORT engine when sending a transport file to a destination
operating environment when the SAS release is unknown.

� you can create the transport file one time and direct it to multiple target operating
environments that run different SAS releases.

The primary reason for using the XPORT engine with the DATA step is to
dynamically create one or more data sets, to order them, and then to translate them to
transport format. By contrast, PROC COPY allows you to translate multiple data sets
that already exist in a library.

XPORT Engine Limitations

Using the XPORT engine has the following limitations:

� The XPORT engine supports only members of type DATA. It does not support
members of type CATALOG or VIEW.

� The XPORT engine supports a Version 6-compatible feature set. The XPORT
engine cannot support SAS 9 features, such as long variable names. Warning or
error messages report limitations that are encountered during the transport
operation. For information about typical error messages and recovery actions, see
“File library.member.DATA has too long a member name for the XPORT engine”
on page 73.

� The XPORT engine with PROC COPY does not support the transport of any type
of view or MDDB.

Regressing SAS Data Sets to SAS 6 Format

The UPLOAD and DOWNLOAD procedures in SAS/CONNECT and PROC COPY
with the XPORT engine are the only strategies available for regressing a data set to
SAS 6.

Note: SAS/CONNECT requires a separate license. �

SAS 9 and 8 support of long variable names, long variable labels, and long data set
labels can make SAS 9 and 8 data sets incompatible with SAS 6 data sets. In order to
revert back to SAS 6, these long names must be truncated to a length that is supported
in SAS 6. Here are the truncation rules:

SAS 9 and 8 Data Set Object Names to Regress Truncates to x characters for SAS 6

Data set labels 40

Variable labels 40

Variable names 8

XPORT Engine with DATA Step or PROC COPY Using the DATA Step to Create a Transport File for One Data Set 27

In order to transport SAS 9 and 8 files back to SAS 6, set the portable
VALIDVARNAME system option to the value V6 in the SAS session in which you are
transporting the file. Here are examples, which are specified in the form of a SAS
system option and a macro variable:

options VALIDVARNAME=V6
%let VALIDVARNAME=V6;

For details about setting the VALIDVARNAME system option, see SAS Language
Reference: Dictionary.

The truncation algorithm that is used to produce the 8-character variable name also
resolves conflicting names:

� The first name that is greater than 8 characters is truncated to 8 characters. A
truncation from PROPERTYTAXRATE to PROPERTY is the first truncation.

� The next name that is greater than 8 characters is truncated to 8 characters. If it
conflicts with an existing variable name, it is truncated to 7 characters, and a suffix
of 2 is added. For example, PROPERTYTAXRATE is truncated to PROPERT2.

� The suffix is increased by 1 for each truncated name that conflicts with an existing
name. If the suffix reaches 9, the next conflicting variable name is truncated to 6
characters, and a suffix of 10 is appended. For example, PROPERTYTAXRATE is
truncated to PROPER10.

The VALIDVARNAME option solves the long variable name truncation problem.
However, there are no techniques for regressing the following SAS 9 or 8 features to
SAS 6:

� Data set names that exceed 8 characters
� Integrity constraints
� Data set generations
� Audit trail.

The solution to regressing data sets that have these features is to re-create the data
sets without the SAS 9 or 8 features in a SAS 9 or 8 session.

Note: SAS/CONNECT does support uploading or downloading some catalog entries
from SAS 9 or 8 to SAS 6. For more information, see PROC UPLOAD and PROC
DOWNLOAD in the SAS/CONNECT User’s Guide. �

Creating a Transport File at the Source Machine

Using the DATA Step to Create a Transport File for One Data Set
This example uses the DATA step to create a transport file for one data set.

libname source ’SAS-data-library’;
libname xportout xport ’transport-file’;
data xportout.grades;

set source.grades;
run;

In the preceding example, the libref SOURCE points to the original location of the
data set that is on the source operating environment. The libref XPORTOUT points to a
new location where the transport file will be created. The XPORT engine in this

28 Using PROC COPY to Create a Transport File for One or More Data Sets Chapter 4

LIBNAME statement specifies that the data set is to be created in transport format.
The SET statement reads the data set GRADES and re-creates it in transport format at
the location specified in the DATA statement.

Using PROC COPY to Create a Transport File for One or More Data Sets
This example uses the COPY procedure to create a transport file for multiple data

sets.

libname source ’SAS-data-library’;
libname xportout xport ’transport-file’;
proc copy in=source out=xportout memtype=data;
run;

In the preceding example, the libref SOURCE points to the original location of the
library that is on the source operating environment. The libref XPORTOUT points to a
new location to which the transport file will be copied. The XPORT engine in this
LIBNAME statement specifies that the library is to be created in transport format. The
PROC COPY statement copies all data sets in the library that are identified in the IN=
option to the new library that is identified in the OUT= option. The MEMTYPE=DATA
option limits the files that are copied to type DATA, which excludes catalogs and views.

CAUTION:
Do not omit the MEMTYPE=DATA option. Otherwise, SAS attempts to copy the entire
contents of the library (including catalogs and views) to the transport file. The
XPORT engine does not support the CATALOG or the VIEW member type. Error and
warning messages are written to the SAS log. �

This example uses PROC COPY to create a transport file for one data set:

libname source ’SAS-data-library’;
libname xportout xport ’transport-file’;
proc copy in=source out=xportout memtype=data;

select grades;
run;

In the preceding example, the libref SOURCE points to the original location of the
data set that is on the source operating environment. The libref XPORTOUT points to a
new location where the transport file will be copied. The XPORT engine in this
LIBNAME statement specifies that the data set is to be created in transport format.
The PROC COPY statement copies all data sets that are identified in the IN= option to
the new library that is identified in the OUT= option. The MEMTYPE=DATA option
limits the files that are copied to type DATA, which excludes catalogs and views. The
SELECT statement specifies that only the data set GRADES be copied to the new
library. However, you could specify more than one data set here. If you omit the
SELECT statement, all data sets will be copied to the transport file.

Note: You can use the EXCLUDE statement to omit explicitly the data sets that you
do not want instead of using the SELECT statement to specify the data sets that you
want. �

XPORT Engine with DATA Step or PROC COPY Using a DATA Step to Restore a Single Data Set from a Transport File 29

Transferring Transport Files across a Network

You can use either of the following methods to make a transport file available for
access:

� NFS (Network File Services) to mount the file on the network for operating
environment access. See the documentation for NFS and for your operating
environment.

� FTP (File Transfer Protocol) services to copy a file in binary format to a specific
target machine. For details about FTP, see Chapter 6, “Transferring Files,” on
page 37.

Restoring Transport Files at the Target Machine

Identifying the Content of the Transport File
If the person who restores the transport file at the target operating environment is

different from the person who creates the transport file at the source operating
environment, make sure you obtain information about the transport file in advance of
the file restore operation. Here is an example of the type of information that might be
useful for restoring the transport file to native format at the target operating
environment:

Table 4.1 Description of Transport File

Type of Source
Operating
Environment and
SAS Release Used

Strategy Used to
Create Transport
File

Transport Filename Data Sets

z/OS

SAS 9

XPORT Engine TPORT.DAT TEST.CITY

TEST.CLASS

You can find out which strategy was used to create the transport file by examining
the file header. The XPORT engine and PROC CPORT create transport files whose
headers look different. For details, see “Using File Headers to Identify Which Strategy
Was Used to Create a Transport File” on page 62.

Also, you can use PROC CONTENTS and PROC DATASETS to list the contents of the
transport file. For details about these procedures, see the Base SAS Procedures Guide.

Using a DATA Step to Restore a Single Data Set from a Transport File
This example uses the DATA step to restore a data set from a transport file.

libname xportin xport ’transport-file’;
libname target ’SAS-data-library’;
data target.grades;

set xportin.grades;
run;

30 Using PROC COPY to Restore Data Sets from a Transport File Chapter 4

In the preceding example, the libref XPORTIN points to the location of the exported
data set that was transferred to the target operating environment. The XPORT engine
specifies that the data set is to be read in transport format. The libref TARGET points
to a new location where the translated file will be copied. The SET statement reads the
data set XPORTIN.GRADES in transport format and translates it and copies it to the
location specified in the DATA statement. Because a DATA step with the XPORT
engine was used at the source operating environment to create the transport file for a
single data set, only a data set can be restored at the target operating environment.

Using PROC COPY to Restore Data Sets from a Transport File
This example uses the COPY procedure to restore one or more data sets from a

transport file.

libname xportin xport ’transport-file’;
libname target ’SAS-data-library’;
proc copy in=xportin out=target;

select grades;
run;

In the preceding example, the libref XPORTIN points to the location where the
transport file was transferred to the target operating environment. The XPORT engine
in this LIBNAME statement specifies that the transport file at this location is to be
read in transport format. The libref TARGET points to a new location where the
transport file will be copied in native format. The PROC COPY statement copies the
selected data set GRADES from the library that is identified in the IN= option to the
new library that is identified in the OUT= option.

Using a SELECT statement, you specify one or more specific data sets to be copied to
the new library. To specify that all data sets in the transport file be copied, omit the
SELECT statement from PROC COPY.

Note: You can use the EXCLUDE statement in PROC COPY to omit explicitly the
data sets that you do not want instead of using the SELECT statement to specify the
data sets that you want. �

31

C H A P T E R

5
XML Engine with DATA Step or
PROC COPY

Overview of the XML Engine 31

XML Engine Advantages 31
XML Engine Limitations 32

Creating an XML Document at the Source Machine 32

Using the DATA Step to Create an XML Document from a Data Set 32
Using PROC COPY to Create an XML Document from a Data Set 33

Transferring an XML Document across a Network 33

Restoring an XML Document as a Data Set at a Target Machine 34
Using a DATA Step to Restore a Data Set from an XML Document 34

Using PROC COPY to Restore a Data Set from an XML Document 34

Overview of the XML Engine
The XML engine enables you to export XML documents from SAS data sets and to

restore XML documents as SAS data sets. XML documents can be transported across
operating environments and read using the XML engine with the DATA step or PROC
COPY.

The process for creating an XML document at the source machine and reading it on a
target machine follows:

1 An XML document is created at the source machine using the XML engine with
the DATA step or PROC COPY.

2 The file is transferred from the source machine to the target machine.
3 The XML document is read at the target machine using the XML engine with the

DATA step or PROC COPY.

For complete details about the XML engine, see the SAS 9.1 XML LIBNAME Engine
User’s Guide.

XML Engine Advantages
Using the XML engine with the DATA step or with PROC COPY provides the

following advantages:
� XML data is stored as text. Unlike SAS files, XML documents can be read and

updated by using a text editor.
� XML documents can be imported into applications other than SAS applications.

For example, an XML document can be input to an Oracle application or it can be
delivered to the Web. It can also be restored as a SAS data set for continued

32 XML Engine Limitations Chapter 5

processing. If compatibility with other programs is important for your data, the
XML engine is recommended.

� The XML engine supports SAS 8 and later features. Unlike the XPORT engine,
the XML engine supports SAS 8 features such as long names.

XML Engine Limitations
The XML engine has the following limitations:
� The XML engine supports only data sets. Libraries, views, and other data types

are not supported.
� The XML engine is not supported in SAS 6 and earlier releases. If you are moving

to or from SAS 6, you must use the XPORT engine.
� The XML engine uses more processing time than the other strategies. If

processing time is an issue, XML is not recommended.
� XML documents can be large. If disk space or network bandwidth is an issue,

XML is not recommended.
� The XML engine is dependent on the transfer method for character translation. If

you transfer an XML document as a binary file, it might not be readable at the
target operating environment.

Creating an XML Document at the Source Machine

Using the DATA Step to Create an XML Document from a Data Set
This example uses the DATA step with the XML engine to create an XML document

from a data set.

libname source ’SAS-data-library’;
libname xmlout xml ’XML-document’;
data xmlout.grades;

set source.grades;
run;

In the preceding example, the libref SOURCE points to the location of the library
that is on the source machine. The libref XMLOUT points to the location where the
XML document will be created. The XML engine in this LIBNAME statement specifies
that the file is to be created in XML markup. The SET statement reads the data set
GRADES and generates XML markup at the location that is specified in the LIBNAME
statement.

XML Engine with DATA Step or PROC COPY Transferring an XML Document across a Network 33

Here are the contents of the resulting XML document:

Output 5.1 XML Output Generated from Data Set GRADES

<?xml version="1.0" encoding="windows-1252" ?>
<TABLE>

<GRADES>
<student> Fred </student>
<test1> 66 </test1>
<test2> 80 </test2>
<final> 90 </final>

</GRADES>
<GRADES>

<student> Wilma </student>
<test1> 97 </test1>
<test2> 91 </test2>
<final> 98 </final>

</GRADES>
</TABLE>

Using PROC COPY to Create an XML Document from a Data Set
This example uses the COPY procedure to create an XML document from a data set.

libname source ’SAS-data-library’;
libname xmlout xml ’XML-document’;
proc copy in=source out=xmlout;

select grades;
run;

In the preceding example, the libref SOURCE points to the location of the library
that is on the source machine. The libref XMLOUT points to the location where the
XML document will be created. The XML engine in this LIBNAME statement specifies
that the file is to be created in XML markup. The PROC COPY statement copies data
from the library that is identified in the IN= option to the library that is identified in
the OUT= option. The SELECT statement specifies which data set will be copied from
the input library.

Note: If you do not specify a single data set in the SELECT statement, the XML
engine will process all members of the input library. However, because an XML
document can contain only one data set, only the last data set that is processed remains
in the resulting XML document. �

Transferring an XML Document across a Network
You can use either of the following methods to make an XML document available for

access:
� NFS (Network File Services) to mount the file on the network for operating

environment access. See the documentation for NFS and for your operating
environment.

� FTP (File Transfer Protocol) to copy a file to a specific target machine. For details
about FTP, see Chapter 6, “Transferring Files,” on page 37.

When transferring the resulting XML document, if you used the default encoding,
transfer the file in ASCII (text) mode. If you specified an explicit encoding value,
transfer the file in binary mode.

34 Restoring an XML Document as a Data Set at a Target Machine Chapter 5

Restoring an XML Document as a Data Set at a Target Machine

Using a DATA Step to Restore a Data Set from an XML Document
The following example uses the DATA step to restore a data set from an XML

document.

libname xmlin xml ’XML-document’;
libname target ’SAS-data-library’;
data target.grades;

set xmlin.grades;
run;

In the preceding example, the libref XMLIN points to the location of an XML
document. The XML engine specifies that a SAS data set is to be read. The libref
TARGET points to the location where the converted SAS data set will be copied to. The
SET statement reads the data set XMLIN.GRADES in XML format, translates it, and
copies it to the location that is specified in the DATA statement.

Using PROC COPY to Restore a Data Set from an XML Document
The following example uses the COPY procedure to restore a data set from an XML

document.

libname xmlin xml ’XML-document’;
libname target ’SAS-data-library’;
proc copy in=xmlin out=target;
run;

In the preceding example, the libref XMLIN points to the location of an XML
document. The XML engine specifies that the XML document is to be read in XML
format. The libref TARGET points to the location where the contents of the XML
document will be copied to. The PROC COPY statement copies the contents of the
library that is specified in the IN= option to the library that is specified in the OUT=
option.

35

P A R T3

Transferring Transport Files and Foreign
Files

Chapter 6.Transferring Files 37

36

37

C H A P T E R

6
Transferring Files

Overview of File Transfers 37

Attributes for Transport Files 37
Using the FILENAME Statement or the FTP Utility for Foreign Files and Transport Files 38

Example: Using the FILENAME Statement to Specify Transport File Attributes for All Target
Machines 38

Using FTP to Transfer Files in Foreign Format and Transport Files across the Network 39

Using a Magnetic Medium for Tansferring Files in Foreign Format and Transport Files 39

Example: Using FTP to Transfer Foreign Files and Transport Files 40

Overview of File Transfers

Transfer is the process of conveying a file between operating environments across a
network. Various third-party products are available for performing this operation. This
example uses FTP (File Transfer Protocol) to illustrate the transfer operation.

You perform a transfer operation either by:

pushing a file from the source machine, use the FTP put command to copy a file
from the source machine to the target machine.

pulling a file from the target machine, use the FTP get command to copy a file
from the source machine to the target machine.

Your ability to push a file from the source to the target machine will depend on
whether your access permission allows you to write to the target machine. For complete
details, see your network documentation.

Attributes for Transport Files

File attributes describe the organization and format of the data in the transport file
that is transferred to a target machine. A transport file must have these attribute
values:

Logical record length (LRECL) 80

Block size (BLKSIZE) 8000 bytes

Record format (RECFM) Fixed block

38 Using the FILENAME Statement or the FTP Utility for Foreign Files and Transport Files Chapter 6

Note: In some cases, a Block Size value of less than 8000 bytes might be more
efficient for your storage device. The Block Size value must be an exact multiple of the
Logical Record Length value. �

CAUTION:
For z/OS only you must specify a Block Size that is 80 or a multiple of 80, for example,
160, 240, 320. �

Although not required, file attributes can be set for all other source machines. How
file attributes are declared depends on the source machine that the transport file is
created on and the transfer method used.

In addition, you must specify file attributes for files in operating environments that
require them by using the communications software protocol. For example, if you
transfer a transport file from a UNIX operating environment to a z/OS operating
environment, you must specify file attributes through the communications software.

Besides setting file attributes for those operating environments that require it, be
sure that your communications software does not alter the default file attribute settings
for any operating environment.

Alternatively, in order to transfer a transport file from a source machine to tape and
then from tape to disk at the target machine, you use operating environment-specific
commands that define the input and output devices for the operating environments
involved in the transfer.

After the transport file is created, it must then be transferred to the target machine
either across the network or by means of a mountable magnetic medium such as a
floppy disk or a tape.

For details about setting file attributes or using tape commands for these operating
environments, see the appropriate topic:

Chapter 7, “OpenVMS Operating Environment,” on page 45
Chapter 8, “z/OS Operating Environment,” on page 51
Chapter 9, “UNIX Operating Environment,” on page 55
Chapter 10, “Windows Operating Environment,” on page 59

File attributes that are set incorrectly can corrupt or invalidate a transport file.

Using the FILENAME Statement or the FTP Utility for Foreign Files and
Transport Files

Example: Using the FILENAME Statement to Specify Transport File
Attributes for All Target Machines
CAUTION:

Use the FILENAME statement only for transport files, not foreign files. �

Here is an example of using the FILENAME statement with the FTP access method
to specify file attributes and to transfer a transport file over the network to a target
machine:

filename tranfile ftp ’tport.dat’ lrecl=80 blocksize=8000
recfm=f cd=’mydir’ host=’myhost.mycompany.com’
user=’myuser’ pass=’mypass’
rcmd=’site umask 022’ recfm=s;

Transferring Files Using a Magnetic Medium for Tansferring Files in Foreign Format and Transport Files 39

The FILENAME statement specifies the fileref TRANFILE, which specifies the
external file TPORT.DAT for transfer over the network. FTP options specify values for
the record attributes: record length, block size, and record format. Also, FTP options
identify the location for the file transfer on the target machine and the user ID and
password that permit access to the target machine. Finally, the file mode creation mask
on the target machine and a binary transfer are specified. For complete information, see
the FILENAME Statement, FTP Access Method in SAS Language Reference: Dictionary
and the companion documentation that is appropriate to your operating environment.

Note: Besides the FTP access method, you can also use the SOCKET, URL, or
SMTP access method in the FILENAME statement. FTP directs the file to a hard disk,
SOCKET directs the file to a TCP/IP port, URL directs the file to the Web, and SMTP
directs the file to e-mail. For complete information, see the FILENAME Statement,
SOCKET Access Method in SAS Language Reference: Dictionary; the FILENAME
Statement, URL Access Method in SAS Language Reference: Dictionary; and the
FILENAME Statement, SMTP Access Method in SAS Language Reference:
Dictionary. �

Using FTP to Transfer Files in Foreign Format and Transport Files
across the Network

FTP is a user interface to the File Transfer Protocol. FTP copies files across a
network connection between the source machine and a target machine. FTP runs from
the initiating machine, which can be either the source machine or the target machine.

In order to transfer a file to a target machine across a network, a binary (or image)
format transfer must be specified. This format guarantees a consistent file structure for
any operating environment that runs SAS. For example, you must use the
FTP BINARY command to declare binary format. For typical FTP command syntax, see
“Example: Using FTP to Transfer Foreign Files and Transport Files” on page 40.

Transferring a file in ASCII format places extra characters in the transport file on
the target machine. Usually, these characters are line feeds, carriage returns,
end-of-record markers, and other characters that some operating environments use to
define file characteristics.

Target machines that run SAS expect a transport file to be formatted in a certain
structure, without these characters. The introduction of these characters into a file
causes corruption, which prevents the file from being successfully restored at the target
machine. Error messages usually warn of file corruption. For information about file
corruption and how to recover from this condition, see Chapter 12, “Preventing and
Fixing Problems,” on page 67.

Note: SAS 6.11 through 9 support the FILENAME statement with the FTP access
method, which specifies file attributes for file transfer. Releases prior to 6.11 do not
support the FILENAME statement with the FTP access method. �

Using a Magnetic Medium for Tansferring Files in Foreign Format and
Transport Files

When transferring a transport file by means of tape, always use an unlabeled tape.
Although using a standard labeled tape is possible, it usually requires extra work to
read the file at the target machine.

Also, if the transport file exceeds the capacity of one tape, then problems might occur
during the restoration process. Rather than using multi-volume tapes, you should
divide the original library into two or more libraries and create a separate tape for each
one. The original library can be rebuilt at the target machine.

40 Example: Using FTP to Transfer Foreign Files and Transport Files Chapter 6

At the source machine, use the LIBNAME statement to assign the transport file to a
magnetic medium.

Examples:

UNIX libname tranfile xport ’/dev/tape’;

Windows libname tran xport ’a:\test’;

Specification of the file path varies by operating environment.
The method used to move the transport file to a physical tape also varies by

operating environment.
A UNIX example follows:

dd if=tranfile of=/dev/tape1 bs=8000;

The UNIX dd command copies the specified input file to the specified output device.
Block size is 8000.

At the target machine, you must copy the transport file from tape to disk.
A UNIX example follows:

dd if=/dev/tape1 of=tranfile bs=8000;

At the target machine, you use the LIBNAME statement to translate the transport
file to native format, assigning the resulting translated file to a specific file location.

A UNIX example follows:

libname tranfile xport ’/dev/tape1’;

Example: Using FTP to Transfer Foreign Files and Transport Files

You transfer a foreign file in the same way that you transfer a transport file. The
only difference between the two is the filename. SAS appends a transport filename with
an appropriate member type extension, such as .DAT for a data set. A file that was
created with CEDA features is appended with an appropriate SAS 9 or 8 filename
extension; for example, .SAS9BDAT for a data set.

In the following examples, TRANFILE specifies the name of the transport file that is
transferred across the network. TARGET specifies the destination for the file in foreign
format or the transport file on the target machine.

Example Code 6.1 on page 40 shows FTP commands used at the source machine to
put a foreign file or a transport file on the target machine:

Example Code 6.1 FTP PUT Commands

/* putting transport file on the target machine */
> open target-machine
> binary
> put tranfile target-machine-filename
> close
> quit

Example Code 6.2 on page 41 shows FTP commands used at the target machine to
get a foreign file or a transport file from the source machine:

Transferring Files Example: Using FTP to Transfer Foreign Files and Transport Files 41

Example Code 6.2 FTP GET Commands

/* At the target machine, getting transport file from */
/* the source machine */

> open source-machine
> binary
> get tranfile source-machine-filename
> close
> quit

If you have access to a UNIX system, see the ftp(1) manual page for more details.

Note: In order to copy a file with the FTP put command to a server location, you
must have write permission to the target location on the server. Because a local user’s
permission to put a file at a server location is uncertain, it is recommended that the
remote user use the FTP get command to obtain the file from the client instead. The
local user must give read and write permission to the file that the remote user
accesses. �

The following code shows an example of user JOE at the target machine getting two
transport files from an OpenVMS Alpha source machine:

Example Code 6.3 Typical FTP Session

hp> ftp myhost.mycompany.com u

Connected to myhost.mycompany.com
220 myhost.mycompany.com MultiNet FTP Server Process V4.0(15)

at Mon 13-Jan-03 12:59PM-EDT
Name (myhost.mycompany.com:): joe
331 User name (joe) ok. Password, please.
Password:
230 User JOE logged into DISK01:[JOE] at Mon 13-Jan-03

12:59PM-EDT, job 27a34cef.
Remote system type is VMS.
ftp> cd [.xpttest] v

250 Connected to DISK01:[JOE.XPTTEST].
ftp> binary 80 w

200 Type I ok.
ftp> get xptds.dat xptds.dat x

200 Port 14.83 at Host 10.26.2.45 accepted.
150 IMAGE retrieve of DISK01:[JOE.XPTTEST]XPTDS.DAT;1 started.
226 Transfer completed. 1360 (8) bytes transferred. y

1360 bytes received in 0.02 seconds (87.59 Kbytes/s)
ftp> get xptlib.dat xptlib.dat U

200 Port 14.84 at Host 10.26.2.45 accepted.
150 IMAGE retrieve of DISK01:[JOE.XPTTEST]XPTLIB.DAT;1 started.
226 Transfer completed. 3120 (8) bytes transferred. V

3120 bytes received in 0.04 seconds (85.81 Kbytes/s)
ftp> quit W

u From an HP-UX operating environment, the user invokes FTP to connect to the
OpenVMS Alpha operating environment MYHOST.MYCOMPANY.COM.

42 Example: Using FTP to Transfer Foreign Files and Transport Files Chapter 6

v After a connection is established between the HP-UX source machine and the
OpenVMS Alpha target machine, at the FTP prompt, the user JOE changes to the
directory on the target machine that contains transport file XPTTEST.

w Transport file attributes BINARY 80 indicate that the OpenVMS transport file be
transferred to the source machine in BINARY format in 80-byte records.

x The FTP command gets the transport file named XPTDS.DAT from the target
machine and copies it to a new file that has the same name, XPTDS.DAT, in the
current directory.

y Messages indicate that the transfer was successful and that the length of the
transport file was 1360 bytes.

U The FTP command gets another transport file named XPTLIB.DAT from the
target machine and copies it to a new file that has the same name, XPTLIB.DAT,
in the current directory.

V Messages indicate that the transfer was successful and that the length of the
transport file was 3120 bytes.

W The user quits the FTP session.

43

P A R T4

Operating Environment Specifics

Chapter 7.OpenVMS Operating Environment 45

Chapter 8.z/OS Operating Environment 51

Chapter 9.UNIX Operating Environment 55

Chapter 10.Windows Operating Environment 59

Chapter 11.SAS Filename Extensions and File Headers 61

44

45

C H A P T E R

7
OpenVMS Operating Environment

Listing OpenVMS System File Attributes 45

Specifying File Attributes for OpenVMS 46
Identifying the SAS Version Used to Create a Member Under OpenVMS 46

Mounting a Tape Device on OpenVMS 47

OpenVMS Error Messages 47
Given transport file is bad 47

Member or library unavailable for use in file file 48

Truncated record 48
Internal error from getting data 49

Listing OpenVMS System File Attributes

To list the attributes of a file created on an OpenVMS Alpha system, issue this
command:

DIR/FULL transport-file

Typical output is:

Directory DISK01:[JOE.XPTTEST]

XPTLIB.DAT;1 File ID: 31223,952,0)
Size: 7/8 Owner: [DISK01,JOE]
Created: 30-SEP-1999 16:47:31.34
Revised: 30-SEP-1999 16:47:31.69 (1)
Expires: <No backup recorded>
Effective: <None specified>
Recording: <None specified>
File organization: Sequential
Shelved state: Online
File attributes: Allocation: 8, Extend: 0,

Global buffer count: 0 Version limit: 2
Record format:Fixed length 512 byte records u

Record attributes: None v

RMS attributes: None
Journaling enabled: None
File protection: System:RWED, Owner:RWED,

Group:RE, World:
Access Cntrl List: None

Total of 1 file, 7/8 blocks.

46 Specifying File Attributes for OpenVMS Chapter 7

$ dir/size xptlib.dat

Directory DISK01:[JOE.XPTTEST]

XPTLIB.DAT;1 7

Total of 1 file, 7 blocks.

u The OpenVMS Alpha RECORD FORMAT attribute indicates a fixed record type
and a record length of 512 bytes.

v The RECORD ATTRIBUTES field can contain the value NONE.

CAUTION:
If this field contains the value CARRIAGE RETURN CARRIAGE CONTROL, file
corruption results. To prevent corruption before you transfer the transport file,
remove this value from the RECORD ATTRIBUTES field. An error message
alerts you to this condition after you try to transfer the corrupted file. �

Specifying File Attributes for OpenVMS

You can specify transport file attributes by using FTP or FTP access method options
in the FILENAME statement, whichever is applicable. For details about syntax for the
FILENAME statement, see SAS Companion for OpenVMS Alpha. For details about
specifying file attributes, see “Example: Using the FILENAME Statement to Specify
Transport File Attributes for All Target Machines” on page 38.

Identifying the SAS Version Used to Create a Member Under OpenVMS

Table 7.1 on page 46 identifies the supported file types that are created under the
OpenVMS system by member and SAS version.

Table 7.1 OpenVMS Filename Extensions by Member and SAS Version

Member Type SAS 6 Filename Extension SAS 8 and Later
Filename Extension

SAS .SAS .SAS

PROGRAM (DATA step) .SASEB$PROGRAM .sas7bpgm

DATA .SASEB$DATA .sas7bdat

INDEX .SASEB$INDEX .sas7bndx

CATALOG .SASEB$CATALOG .sas7bcat

MDDB .SASEB$MDDB .sas7bmdb

PROC SQL view .SASEB$VIEW .sas7bvew

Furthermore, you can use the CONTENTS procedure to display information about
the data.

OpenVMS Operating Environment Given transport file is bad 47

Here is an excerpt of typical PROC CONTENTS output, which identifies the member
and the engine that was used to create it:

The SAS System
The CONTENTS Procedure

Data Set Name: TEST.RECORDS
Member Type: DATA
Engine: V9

This output reports that the data set TEST.RECORDS is a member of type DATA, and
that it was created with the V9 engine.

Mounting a Tape Device on OpenVMS

In order to move a transport file from disk to tape at the source system and to move
a transport file from tape to disk at the target computer, issue the following DCL
commands to assign the tape device before starting a SAS session:

Note: Use the INITIALIZE command only if you have a new tape. The INITIALIZE
command destroys any files that already might be on the tape. �

$ DEFINE TRANFILE tape-name
$ ALLOCATE TRANFILE
$ INITIALIZE TRANFILE DUMMY
$ MOUNT/FOREIGN/BLOCKSIZE=8000 TRANFILE

Note: TRANFILE in the DCL commands is identical to the libref that points to the
location of the transport file. �

OpenVMS Error Messages

Given transport file is bad
For general recovery actions for this error message, see “Bad Transport File” on page

71.
The transport file is suspected to be corrupt. When checking file attributes, the

output confirms that the transport file contains a corrupting character:

$DIR/FULL transport-file

Output includes:

Record attributes: Carriage return Carriage control

If your operating environment has the NFTCOPY (Network File Transfer Copy)
command and you are moving the transport file to a DOS target computer, remove the
carriage return (CC) attribute from the transport file and move the transport file again
to the target machine:

NFTCOPY/IMAGE/FIXED/CC=NONE NODE"userid password"
::disk:[dir] tranfile target

48 Member or library unavailable for use in file file Chapter 7

Here is an example:

NFTCOPY/IMAGE/FIXED/CC=NONE CHEX "brown bird":
dua0[brown]tranfile c:\blue\target

If your source machine is running SAS 6.08 at maintenance level TS405 or later, set
the NONE value to the CC= option in the LIBNAME or FILENAME statement,
whichever is appropriate.

Note: See the top of the SAS log for the SAS release and maintenance level. �

Here is an example.

libname grades ’file-path’;
libname tranfile xport ’file-path’ cc=none;
proc copy in=grades out=tranfile;
run;

If you are running a SAS release that precedes SAS 6.08 at maintenance level TS405,
you must post-process the transport file to remove the carriage returns.

Create a new file named REMCC.FDL to contain these entries, including
CARRIAGE_CONTROL to NONE.

RECORD
BLOCK_SPAN YES
CARRIAGE_CONTROL NONE
FORMAT FIXED
SIZE 80

Issue this DCL command to create a new file named NEWTRAN.SEQ:

$ CONVERT/FDL=REMCC.FDL TRAN.SEQ NEWTRAN.SEQ
$ DELETE TRAN.SEQ

Verify that the file attributes of the new transport file do not include carriage returns:

$ DIR/FULL NEWTRAN.SEQ

At the source machine, transfer the transport file to the target machine again.
If you are still unable to import a transport file that has the correct attributes, you

can try using the re-blocking program in “Reblocking a Transport File” on page 78.

Member or library unavailable for use in file file
The transport file is suspected to be corrupt. See “Given transport file is bad” on

page 47 for recovery actions.

Truncated record
For general recovery actions for this error message, see “Truncated record” on page

76.
Usually, this message is displayed when the transport file is moved to a virtual disk

or a shared disk with other operating environments such as DOS, Macintosh, or UNIX.
Virtual disk or shared disk directories often have a record format of STREAM instead of
FIXED.

Verify the transport file attributes by using the DIR/FULL command.
To set record attributes correctly, create a new file named FIXREC.FDL file to

contain these entries.

OpenVMS Operating Environment Internal error from getting data 49

RECORD
BLOCK_SPAN YES
CARRIAGE_CONTROL NONE
FORMAT FIXED
SIZE 80

Issue the following DCL command to create a new file named NEWTRAN.FDL:

$ EXCHANGE/NETWORK/TRANSFER_MOD=BLOCK/FDL=TRAN.FDL
TRAN.SEQ NEWTRAN.SEQ

Verify that the new transport file attributes do not include carriage returns:

$ DIR/FULL NEWTRAN.SEQ

At the source machine, transfer the transport file to the target computer again.

Internal error from getting data
The transport file is suspected to be corrupt. See “Truncated record” on page 48 for

recovery actions.

50

51

C H A P T E R

8
z/OS Operating Environment

Listing z/OS File Attributes 51

Identifying the SAS Version Used to Create a Member under z/OS 51
Organizing z/OS Files with the SAS 8 and Later UNIX System Services Directory 52

Using z/OS Batch Statements for File Transport 52

Transferring a Transport File over the Network 52
Record Length Issues 52

FTP 52

Attachmate 53
Reading Transport Files in z/OS Operating Environments 53

Interpreting Transport Files in SAS 53
Reading Transport File as Hexadecimal Data 54

Listing z/OS File Attributes

Issue the following command under TSO to verify the file attributes that are required
by the z/OS target machine:

listd ’file-name’

The following is an example of the output from this command:

The transport file should have the following attributes:
RECFM: FB
LRECL: 80
BLKSIZE: 8000
DSORG: PS

Identifying the SAS Version Used to Create a Member under z/OS

You can use the CONTENTS procedure to display information about the data.
Here is an excerpt of typical PROC CONTENTS output, which identifies the member

and the engine that was used to create it:

The SAS System
The CONTENTS Procedure

Data Set Name: TEST.CONTENTS
Member Type: DATA
Engine: V9

52 Organizing z/OS Files with the SAS 8 and Later UNIX System Services Directory Chapter 8

This output shows that the data set TEST.CONTENTS is a member of type DATA,
and it was created with the V9 engine.

Organizing z/OS Files with the SAS 8 and Later UNIX System Services
Directory

SAS 8 introduced the UNIX System Services Directory as an alternative to the bound
library method of file organization under the z/OS operating environment. Features of
CEDA can be used to create files under a z/OS operating environment that uses the
UNIX System Services Directory. For details about CEDA, see Chapter 2,
“Cross-Environment Data Access (CEDA),” on page 11.

Using z/OS Batch Statements for File Transport
You can use a SAS batch job to create a transport file. For an example, see “z/OS

JCL Batch to UNIX File Transport” on page 96. For complete details about JCL
statements, see the SAS Companion for z/OS.

Transferring a Transport File over the Network

Record Length Issues
In some instances, a transport file that is transferred to a z/OS target machine has

the correct file format, but it has an incorrect record length. For recovery actions for this
problem, see “Verifying That the Transport File Has Not Been Corrupted” on page 68.

FTP
Here is an FTP example in which the z/OS target machine gets the transport file

from the source machine:

> ftp
> open source-host
> binary
> locsite recfm=fb blksize=8000 lrecl=80
> get xportout target
> close
> quit

Here is an FTP example in which the source machine puts the transport file on the
z/OS target machine:

> ftp
> open target-host
> binary 80
> quote site recfm=fb blksize=8000 lrecl=80

z/OS Operating Environment Interpreting Transport Files in SAS 53

> put xportout target
> close
> quit

Note: In order to transfer a transport file to any directory-based operating
environment such as Windows or UNIX, do not use the FTP QUOTE SITE or the FTP
LOCSITE command to declare file attributes. �

Attachmate
If you use Extra for Windows, select translation NONE and verify that the File

Transfer dialog box contains this information:

send a:grades xportout lrecl(80) blksize(8000)
recfm(f) space(10,10)

See your operating environment documentation for details.

Reading Transport Files in z/OS Operating Environments
Note: The transport format uses ASCII encoding, which is foreign to z/OS operating

environments. Because of this incompatibility, you cannot read transport files correctly
in a text editor under the z/OS operating environment. �

Interpreting Transport Files in SAS
The following SAS code enables you to read the first few lines of a transport file

under the z/OS operating environment.

Note: This program does not translate the file to EBCDIC. It only interprets the
first five records in the file and writes them to the SAS log. The transport file remains
unchanged. �

Example Code 8.1 Code That Interprets the Header of the Transport File

//PEEK JOB (,X101),’SMITH,B.’,TIME=(,3)
/*JOBPARM FETCH
//STEP1 EXEC SAS
//transport-file DD DSN=USERID.XPT6.FILE,DISP=SHR
//SYSIN DD *
data _null_;

infile tranfile obs=5;
input theline $ascii80.;
put theline;

run;
/*

Log output indicates whether the XPORT engine or PROC CPORT created the
transport file.

Example Code 8.2 on page 53 shows the first 40 characters of the transport file that
the XPORT engine creates.

Example Code 8.2 Transport Header for the XPORT Engine

HEADER RECORD*******LIBRARY HEADER RECORD!!!!!!!00

54 Reading Transport File as Hexadecimal Data Chapter 8

Example Code 8.3 on page 54 shows the first 40 characters of a transport file that
PROC CPORT creates.

Example Code 8.3 Transport Header for the CPORT Procedure

COMPRESSED **COMPRESSED** **COMPRESSED** **COM

Note: If you set the NOCOMPRESS option in the CPORT procedure, compression is
suppressed, which prevents the display of the preceding text in a transport file. �

For technical details about the transport format that is used for a data set, see
Technical Support article TS-140, The Record Layout of a SAS Transport Data Set.

Reading Transport File as Hexadecimal Data
You can use ISPF to browse a transport file that has a hexadecimal format.

Alternatively, you can use the following SAS code to display the first twenty 80-byte
records of a transport file in hexadecimal format:

Example Code 8.4 Code That Reads a Transport File That Has a Hexadecimal Format

data _null_;
infile ’transport-file’;
input;

list;
put ’-------------------’;

if _n_ > 20 then stop;
run;

Example Code 8.5 on page 54 shows the hexadecimal representation of the first 40
ASCII characters in a transport file that the XPORT engine creates.

Example Code 8.5 Transport Header for the XPORT Engine: Hexadecimal Representation

484541444552205245434F52442A2A2A2A2A2A2A
4C5920484541444552205245434F524421212121

This hexadecimal representation is equivalent to Example Code 8.2 on page 53.
Example Code 8.6 on page 54 shows the hexadecimal representation of the first 40

ASCII characters in a transport file that PROC CPORT creates.

Example Code 8.6 Transport Header for the CPORT Procedure: Hexadecimal Representation

2A2A434F4D505245535345442A2A202A2A434F4D
50442A2A202A2A434F4D505245535345442A2A20

This hexadecimal representation is equivalent to Example Code 8.3 on page 54.

55

C H A P T E R

9
UNIX Operating Environment

Specifying File Attributes for UNIX 55

Identifying the SAS Version Used to Create a Member under UNIX 55
Creating a Transport File on Tape 56

Copying the Transport File from Disk to Tape at the UNIX Source Machine 57

Copying the Transport File from Tape to Disk at the Target Machine 57

Specifying File Attributes for UNIX
You may specify transport file attributes by using FTP or FTP access method options

in the FILENAME statement, whichever is applicable. For details about the syntax for
the FILENAME statement, see SAS Companion for UNIX Environments. For details
about using FTP, see “Example: Using the FILENAME Statement to Specify Transport
File Attributes for All Target Machines” on page 38.

Identifying the SAS Version Used to Create a Member under UNIX
This table identifies the supported file types that are created under the UNIX

operating environment by member and SAS version:

Table 9.1 UNIX Filename Extensions by Member and SAS Version

Member Type SAS 6 Filename Extension SAS 8 and Later Filename
Extension

SAS .sas .sas

PROGRAM (DATA step) .sspnn .sas7bpgm

DATA .ssdnn .sas7bdat

INDEX .snxnn .sas7bndx

CATALOG .sctnn .sas7bcat

MDDB .ssmnn .sas7bmdb

PROC SQL view .snvnn .sas7bvew

56 Creating a Transport File on Tape Chapter 9

where: nn is an extension that is used to differentiate among UNIX machine
architectures. Here are the extensions and UNIX operating environment groups:

Table 9.2 UNIX Operating Environment Filename Extensions

Supported by SASSAS
Filename
Extension
nn

UNIX Operating
Environment Group 6.09 6.10 6.11 6.12

01 HP-UX • n/a • •

Sun • n/a • •

Solaris • n/a • •

AIX • n/a • •

MIPS ABI n/a • • n/a

ULTRIX • n/a n/a n/a02

INTEL-ABI • n/a • •

04 COMPAQ Digital UNIX n/a • • •

SAS 9 and 8 filename extensions are identical.
Because data sets are interchangeable among HP-UX, Sun, Solaris, AIX, and MIPS

operating environments, the creation of a transport file for moving among them is not
necessary. Catalogs are also interchangeable among AIX, HP-UX, Sun, Solaris, and
MIPS operating environments.

Furthermore, you can use the CONTENTS procedure to display information about
the data.

Here is an excerpt of typical PROC CONTENTS output, which identifies the member
and the engine that was used to create it:

The SAS System
The CONTENTS Procedure

Data Set Name: TEST.RECORDS
Member Type: DATA
Engine: V9

The output shows that the data set TEST.RECORDS is a member of type DATA, and
that it was created with the V9 engine.

Creating a Transport File on Tape
In order to create a transport file on tape, at the source machine, use either the

LIBNAME statement or the FILENAME statement, whichever is appropriate, to
designate the file path as a tape device. Here are examples:

libname tranfile xport ’/dev/tape1’;
filename tranfile ’/dev/tape1’;

UNIX Operating Environment Copying the Transport File from Tape to Disk at the Target Machine 57

Copying the Transport File from Disk to Tape at the UNIX Source
Machine

In order to copy a transport file from disk to tape at the source machine, issue the
UNIX dd command. Here is an example:

dd if=tranfile of=/dev/tape1 bs=8000

where:

dd
copies the specified input file to the specified output device.

if=tranfile
specifies the input file (or transport file).

of=/dev/tape1
specifies the output file (or tape device).

bs=8000
specifies the input file and output file block size as 8000.

See the UNIX dd(1) manual page for more details.

Copying the Transport File from Tape to Disk at the Target Machine
In order to copy a transport file from tape to disk at the target machine, issue the

UNIX dd command. Here is an example:

dd if=/dev/tape1 of=tranfile bs=8000

where:

dd
copies the specified input file to the specified output device.

if=/dev/tape1
specifies the input file (or tape device).

of=tranfile
specifies the output file.

bs=8000
specifies the input file and output file block size as 8000.

See the UNIX dd(1) manual page for more details.

58

59

C H A P T E R

10
Windows Operating Environment

Specifying File Attributes for Windows 59

Identifying the SAS Version Used to Create a Member under Windows 59
Error Message 60

Encrypted data is invalid 60

Specifying File Attributes for Windows

You can apply file attributes by using FTP or the FTP access method options in the
FILENAME statement, whichever is applicable. For details about the syntax for the
FILENAME statement, see SAS Language Reference: Dictionary. For details, see
“Example: Using the FILENAME Statement to Specify Transport File Attributes for All
Target Machines” on page 38.

Identifying the SAS Version Used to Create a Member under Windows

Table 10.1 on page 59 identifies the supported file types that are created on the
Windows operating environment by member and SAS version:

Table 10.1 Windows Filename Extension by Member and SAS Version

Member Type SAS 6 Filename Extension SAS 8 and Later Filename
Extension

SAS .sas .sas

PROGRAM (DATA step) .ss2 .sas7bpgm

DATA .sd2 .sas7bdat

INDEX .si2 .sas7bndx

CATALOG .sc2 .sas7bcat

MDDB .sm2 .sas7bmdb

PROC SQL view .sv2 .sas7bvew

SAS 9 and 8 filename extensions are identical.
Furthermore, you can use the CONTENTS procedure to display information about

the data.

60 Error Message Chapter 10

Here is an excerpt of typical PROC CONTENTS output, which identifies the member
and the engine that was used to create it:

The SAS System
The CONTENTS Procedure

Data Set Name: TEST.CONTENTS
Member Type: DATA
Engine: V9

This output shows that the data set TEST.CONTENTS is a member of type DATA,
and that it was created with the V9 engine.

Error Message

Encrypted data is invalid
Usually, this message results when using PROC CPORT and PROC CIMPORT to

move files whose name extensions have been changed. For example, an extension on at
least one filename in the directory was replaced with an extension that conflicts with
the version of SAS that was used to create the file. The filename extension could have
been changed using either the DOS rename command or the Windows File Manager.
For a list of valid Windows filename extensions by SAS version, see Chapter 11, “SAS
Filename Extensions and File Headers,” on page 61.

Use the following command syntax to verify a questionable filename extension:

type filename.extension

You can pipe the output through the more command.
Here is an example:

type xportout.sd2 | more

You suspect that the filename extension for the SAS 9 data set xportout was
incorrectly changed from .sas7bdat to .sd2.

Note: SAS 9 and 8 filename extensions are identical. �

Output is:

SAS 9.00 WIN 6.09

The right column shows that a filename extension appropriate for SAS 6.09 was
incorrectly applied to a SAS 9 file. To fix the problem, you must re-apply the .sas7bdat
extension to the filename using the DOS rename command or the Windows File
Manager.

61

C H A P T E R

11
SAS Filename Extensions and
File Headers

Using Filename Extensions to Identify Which SAS Engine and Operating Environment Were Used to
Create a SAS File 61

Using PROC CONTENTS to Identify Which SAS Base Engine Was Used to Create a SAS File 62

Using File Headers to Identify Which Strategy Was Used to Create a Transport File 62

Using Filename Extensions to Identify Which SAS Engine and Operating
Environment Were Used to Create a SAS File

For SAS 6 and later, these operating environments use filename extensions to reflect
the SAS engine and the SAS member that is created:

� OpenVMS
� z/OS (SAS 8 and later UNIX System Services Directory)
� UNIX
� Windows

Table 11.1 on page 61 lists SAS filename extensions for members by operating
environment and SAS version.

Table 11.1 SAS Filename Extension by Operating Environment Type and SAS Version

SAS Filename Extensions

SAS 6 SAS 8 and Later

Member

UNIX OpenVMS Windows UNIX, OpenVMS,
z/OS1, and Windows

.SAS .sas .SAS .sas .sas

PROGRAM

(DATA step)

.sspnn .SASEB$PROGRAM .ss2 sas7bpgm

DATA .ssdnn .SASEB$DATA .sd2 .sas7bdat

INDEX .snxnn .SASEB$INDEX .si2 .sas7bndx

CATALOG .sctnn .SASEB$CATALOG .sc2 .sas7bcat

MDDB .ssmnn .SASEB$MDDB .sm2 .sas7bmdb

62 Using PROC CONTENTS to Identify Which SAS Base Engine Was Used to Create a SAS File Chapter 11

SAS Filename Extensions

SAS 6 SAS 8 and Later

Member

UNIX OpenVMS Windows UNIX, OpenVMS,
z/OS1, and Windows

PROC SQL view .snvnn SASEB$VIEW .sv2 .sas7bvew

ITEMSTORE n/a n/a n/a .sas7bitm

nn is an extension that is used to differentiate among UNIX machine architectures.
To find out the values for nn under UNIX operating environments, see Table 9.2 on
page 56.

1 refers to SAS 8 and later z/OS UNIX System Services Directory.

Using PROC CONTENTS to Identify Which SAS Base Engine Was Used to
Create a SAS File

You can use the CONTENTS procedure on all operating environments that use SAS
6 and later to find which Base SAS engine was used to create a SAS file.

Note: Because z/OS operating environments do not use filename extensions, you
must use PROC CONTENTS to identify the SAS base engine that was used to create
SAS files under these operating environments. �

Here is an example of using PROC CONTENTS on a data set in the z/OS
environment:

proc contents data=test.records;
run;

Here is an excerpt of the output:

The SAS System
The CONTENTS Procedure

Data Set Name: TEST.RECORDS
Member Type: DATA
Engine: V9

The output shows that the data set RECORDS is a member of type DATA, and that
it was created with the V9 engine.

You can also use PROC CONTENTS to find out whether a data set’s operating
environment format is foreign or native to the accessing operating environment. For
more information, see “Identifying the Format of a SAS File” on page 15.

Using File Headers to Identify Which Strategy Was Used to Create a
Transport File

How you identify the traditional strategy (XPORT engine with PROC COPY or
PROC CPORT and PROC CIMPORT) that was used to create a transport file depends
on your operating environment.

� Under operating environments that store character data in ASCII format, use a
text editor or an operating environment read or view command to read the file.

File Extensions and Headers Using File Headers to Identify Which Strategy Was Used to Create a Transport File 63

The XPORT engine creates a file whose first 40 characters contain this ASCII
text:

HEADER RECORD*******LIBRARY HEADER RECORD!!!!!!!00

PROC CPORT creates a file whose first 40 characters contain this ASCII text:
COMPRESSED **COMPRESSED** **COMPRESSED** **COM

Note: If you set the NOCOMPRESS option in PROC CPORT, compression is
suppressed, which prevents the display of the preceding text in a transport file.

For technical details about the transport format that is used for a data set, see
Technical Support article TS-140, The Record Layout of a SAS Transport Data Set.

� Under z/OS, because the transport format uses ASCII encoding, non-ASCII
operating environments such as z/OS cannot read them in a text editor. For
details about how to read transport files in z/OS operating environments, see
“Reading Transport Files in z/OS Operating Environments” on page 53.

64

65

P A R T5

Troubleshooting

Chapter 12.Preventing and Fixing Problems 67

66

67

C H A P T E R

12
Preventing and Fixing Problems

Problems Transferring and Restoring Transport files 68

Troubleshooting Checklist 68
Transferring the Transport File in Binary Format 68

Verifying That the Transport File Has Not Been Corrupted 68

Verifying That the Communications Software Has Not Changed File Attributes 69
Invoking the Communications Software at the Target Operating Environment 69

Using Compatible Transport Strategies at the Source and Target Operating Environments 69

Validating the Integrity of the Transport File 70
Using an Unlabeled Tape 70

Dividing a Large Transport File into Smaller Files for Tape 71
Error and Warning Messages 71

Bad Transport File 71

Catalog file open function is not supported by the XPORT engine 72
DATA= or LIBRARY= parameter expected instead of CATALOG= 72

filename is not a SAS file 72

Entry type catalog-entry-type is not supported by CPORT 73
Entry type catalog-entry-type is not compatible to earlier release 73

File library.member.DATA has too long a member name for the XPORT engine 73
File library.member.DATA has too long a member name for the V6 engine 73

File libref.ALL is damaged. I/O processing did not complete 74

Given transport file is bad 74
Internal error from getting data 74

Invalid data length 75

Member or library unavailable for use in file filename 75
More library members exist in the input file. For all of them to get converted, please specify

LIBRARY=libref parameter in the PROC statement 75
PROC SQL will not store a V9 view into a V6 library 76

Requested function is not supported 76

Truncated record 76
Updating not allowed for libref.member-name because it was created for a different operating

system 76

UTILITY FILE OPEN function is not supported by the XPORT engine 76
The value y code is not a valid SAS name; Skipping data set due to error 77

Variable name XXXXXXXXX is illegal for file Version-6-data-set 77
Verifying Transfer Format and Transport File Attributes 77

Reblocking a Transport File 78

68 Problems Transferring and Restoring Transport files Chapter 12

Problems Transferring and Restoring Transport files

Troubleshooting Checklist
To avoid potential problems when transferring a transport file to the target operating

environment, ensure that these conditions have been met.
1 If transferring across the network, verify that the transport file is transferred in

binary format. See “Transferring the Transport File in Binary Format” on page 68
for more information.

2 Verify that the transport file has not been corrupted. See “Verifying That the
Transport File Has Not Been Corrupted” on page 68 for more information.

3 Verify that the communications software does not change file attributes. See
“Verifying That the Communications Software Has Not Changed File Attributes”
on page 69 for more information.

4 Consider invoking the communications software at the target operating
environment and getting the transport file from the source operating environment.
See “Invoking the Communications Software at the Target Operating
Environment” on page 69 for more information.

5 Do not mix methods to create the transport file at the source Operating
Environment and then restore the transport file at the target operating
environment. See “Using Compatible Transport Strategies at the Source and
Target Operating Environments” on page 69 for more information.

6 Before you transfer a transport file to the target operating environment, validate
the integrity of the transport file by restoring it to the source operating
environment that created it. See “Validating the Integrity of the Transport File” on
page 70 for more information.

7 If transferring by means of tape, use an unlabeled tape. See “Using an Unlabeled
Tape” on page 70 for more information.

8 If transferring a large transport file by means of tape, break up the library into
multiple libraries and transport each one to tape. See “Dividing a Large Transport
File into Smaller Files for Tape” on page 71 for more information.

The following sections explain these topics in detail.

Transferring the Transport File in Binary Format
When transferring a transport file using the communications software, verify that

the file is transferred in binary (or image) format. The content of the file must be
transferred in sequential bytes without modification.

If you use FTP to move a transport file to the target operating environment, you
should first specify BINARY 80 before transferring the file.

If you use PATHWORKS, use the SEQUENTIAL_FIXED attribute when you set the
file_server service using PCSA_MANAGER. The default attribute is STREAM, which is
not appropriate for moving transport files.

Verifying That the Transport File Has Not Been Corrupted
Verify that your communications software does not insert a carriage return to mark

an end of record in the transport file during transfer to the target operating

Troubleshooting Using Compatible Transport Strategies at the Source and Target Operating Environments 69

environment. The insertion of carriage returns and line feeds corrupts the transport file
and makes it impossible to restore the file at the target operating environment. For
details about how to identify this condition, see the recovery actions for “File libref.ALL
is damaged. I/O processing did not complete” on page 74.

Verifying That the Communications Software Has Not Changed File
Attributes

Verify that your communications software does not change file attributes. Here are
the required attributes with values:

Logical record length (LRECL) 80 or an integer that is a multiple of 80, for example,
160, 240,320.

Block size (BLKSIZE) 8000 blocks

Record format (RECFM) Fixed block

See your communications software documentation for information about controlling
these attributes.

At the target operating environment, if you have a transport file that has not been
corrupted (that is, carriage returns or line feeds have not been inserted), but its record
block size is incorrect and you are unable to obtain a correctly blocked transport file,
you may run a reblocking program to fix the blocks to the correct size. For details, see
“Reblocking a Transport File” on page 78.

Invoking the Communications Software at the Target Operating
Environment

To transfer the transport file to the target operating environment, you might be more
successful if you invoke the communications software at the target operating
environment instead of invoking it at the source operating environment. You probably
cannot put a file in a location on the target operating environment because you do not
have write permission. If transferring a transport file from UNIX to z/OS, it is
recommended that you invoke the communications software at the z/OS operating
environment. Because you probably have read permission at the UNIX operating
environment, you can get the transport file and write it to your z/OS operating
environment.

Using Compatible Transport Strategies at the Source and Target
Operating Environments

Do not mix strategies to create the transport file at the source operating environment
and then restore the transport file at the target operating environment. The strategies
that you use must be identical or be a companion pair. For example, create and restore
a transport file using the XPORT engine and PROC COPY at both the source and
target operating environments. You can also create a transport file using PROC CPORT
at the source operating environment and import the transport file using PROC
CIMPORT at the target operating environment. Do not create a transport file using the

70 Validating the Integrity of the Transport File Chapter 12

XPORT engine and PROC COPY at the source operating environment and then try to
use PROC CIMPORT to restore the transport file at the target operating environment.

To identify the strategy that was used to create a transport file, use a text editor or
an operating environment read or view command to read the file in SAS 9 on any
operating environment that represents character data as ASCII.

Note: For information about viewing transport files on operating environments that
represent character data as EBCDIC, see “Reading Transport Files in z/OS Operating
Environments” on page 53. �

The XPORT engine creates a file whose first line contains this ASCII text:

HEADER RECORD*******LIBRARY HEADER RECORD!!!!!!!00

PROC CPORT creates a file whose first line contains this text:

COMPRESSED **COMPRESSED** **COMPRESSED**

Note: If you set the NOCOMPRESS option in PROC CPORT, compression is
suppressed, which prevents the display of the preceding text in a transport file. �

Validating the Integrity of the Transport File
To validate the integrity of the transport file before it is transferred to the target

operating environment, using the appropriate strategy, try to read it back into native
format at the source operating environment.

Here is a PROC COPY example:

/* This PROC COPY creates the transport file TRAN. */
libname tran xport ’transport-file’;
libname grades ’SAS-data-library’;
proc copy in=grades out=tran memtype=data;
run;
/* This PROC COPY reads back transport file TRAN. */
libname grades ’SAS-data-library’;
libname tran xport ’transport-file’;
proc copy in=tran out=test;
run;

Here is a PROC CPORT and PROC CIMPORT example:

/* This PROC CPORT creates the transport file. */
libname grades ’SAS-data-library’;
filename tran ’transport-file’;
proc cport library=grades file=tran;
run;
/* This PROC CIMPORT reads back the transport file. */
filename tran ’transport-file’;
libname grades ’SAS-data-library’;
proc cimport library=grades infile=tran;
run;

For both examples, check the log for error messages.

Using an Unlabeled Tape
When transferring a transport file by means of tape, use an unlabeled tape. Because

tape labels are processed differently in different operating environments, reading a file

Troubleshooting Bad Transport File 71

from a standard label tape might be somewhat complicated at the target operating
environment.

Dividing a Large Transport File into Smaller Files for Tape
When transferring a transport file by means of tape, if the transport file exceeds the

capacity of one tape, you should divide the original library into two or more libraries
and create a separate, unlabeled tape for each one. The original library can be restored
at the target operating environment.

Error and Warning Messages

Bad Transport File
This message appears when one of the following occurs:

� You are attempting to use PROC CIMPORT to move a transport file that was
created in SAS 9 to an operating environment that is running SAS 6. You cannot
move a transport file from a SAS 9 session on a source operating environment to a
SAS 6 session on a target operating environment.

� A file was transported in a format other than BINARY or the attributes of the
transport file changed while in transit to the target operating environment. See
“Verifying Transfer Format and Transport File Attributes” on page 77 for recovery
actions.

� Your site is using a translation table other than the default. A customized
translation table is set with the TRANTAB= system option. See SAS Language
Reference: Dictionary for details about setting this option. To verify the value of
the TRANTAB= system option, submit the following statements:

proc options option=trantab;
run;

If you find that your site is using an alternative translation table, you must
restore the option to its default value by using the following:
options trantab=();

Then create the transport file again, transfer it to the target operating
environment, and import the file at the target operating environment.

� A source operating environment that runs SAS 6.12 and a target operating
environment that imports the file at the target operating environment runs SAS
6.08, 6.09E, or 6.10. Data set sort features (specified by using the SORTEDBY=
data set option) are included in the SAS 6.12 CPORT procedure but not in the SAS
6.08 CIMPORT procedure.

Use either of the following to recover from this problem:
� Disable the sorting feature by using the SORTINFO= option in the SAS 6.12

CPORT procedure. Here is an example:

proc cport data=grades.junior
file=’xgrades.junior’
sortinfo=no;

72 Catalog file open function is not supported by the XPORT engine Chapter 12

� Disable the SAS 6.12 sorting feature by using the V608 or V609 engine
option in the SAS 6.12 CPORT procedure. Here is an example:

proc cport data=grades.junior
file=’xgrades.junior’ v609;

The SORTEDBY= data set option information is included in SAS 6.12
PROC CPORT.

Catalog file open function is not supported by the XPORT engine
This message appears when you attempt to create a transport file for a catalog or

catalog entry by using PROC COPY with the XPORT engine. You must use PROC
CPORT to create a transport file for a catalog or catalog entry and use PROC
CIMPORT to import them at the target operating environment.

DATA= or LIBRARY= parameter expected instead of CATALOG=
This message is displayed at the target operating environment when PROC

CIMPORT contains a CATALOG= destination member and the source operating
environment used PROC CPORT with the LIBRARY= destination member. The target
operating environment must use either the DATA= or LIBRARY= member type. Here is
an example:

proc cport file=in libname=out;
proc cimport infile=in catalog=new;

Because the LIBNAME= option in PROC CPORT specifies a destination member of
type LIBRARY, PROC CIMPORT must also specify either a LIBNAME= or a DATA=
option.

In order to select only a catalog entry type from an imported library, specify the ET=
option in PROC CIMPORT. To exclude a catalog entry type, use the EET= option. Here
are examples:

proc cimport infile=in library=new et=program memtype=catalog;
proc cimport infile=in library=new eet=program memtype=catalog;

In the first example, only catalog entries of type PROGRAM are imported. In the
second example, only catalog entries of type PROGRAM are excluded.
MEMTYPE=CATALOG restricts the import to catalogs only.

filename is not a SAS file
Usually, this message appears when you use the CIMPORT procedure to import a

data set at the target operating environment. There are two possible explanations.
The transport file that you are trying to import by using PROC CIMPORT might

have been created by using the XPORT engine with either the COPY procedure or the
DATA step. Read the beginning of the file to find out how the transport file was created.
If the XPORT engine created the transport file, the beginning of the file contains this
ASCII text:

HEADER RECORD*******LIBRARY HEADER RECORD!!!!!!!00

If the CPORT procedure created the transport file, the beginning of the file contains
this ASCII text:

Troubleshooting File library.member.DATA has too long a member name for the V6 engine 73

COMPRESSED **COMPRESSED** **COMPRESSED** **COM

Note: If you set the NOCOMPRESS option in PROC CPORT, compression is
suppressed, which prevents the display of the preceding text in a transport file. �

If incompatible strategies were used to create and then restore the transport file,
then use the correct strategy to restore the transport file.

This message might also appear if your site is using a translation table other than
the default. For recovery actions for this problem, see “Bad Transport File” on page 71.

Entry type catalog-entry-type is not supported by CPORT
This message means that transporting this catalog entry type between operating

environments and across SAS releases is not supported.
Because you cannot retrieve the definitions from the module itself, you can try to

move the SAS statements that defined the entry type (such as IML modules) to the
target operating environment and then re-create the modules.

Entry type catalog-entry-type is not compatible to earlier release
This message appears when you attempt to use PROC CPORT to move a catalog

entry from SAS 9 back to SAS 6. SAS 9 does not support the backward compatibility of
this catalog entry.

File library.member.DATA has too long a member name for the XPORT
engine

This message appears when you use the XPORT engine with PROC COPY to move a
data set whose name exceeds 8 characters from a source operating environment that is
running SAS 9 to a SAS 6 library. Here is an explicit example of such a message:

ERROR: The file OUT.THIS_IS_LONG_NAMED_DATA.DATA
has too long a member name for the XPORT engine.

The member name THIS_IS_LONG_NAMED_DATA exceeds the 8-character member
name length, which is enforced by the Version 5 feature set in which the XPORT engine
was introduced.

The VALIDVARNAME system option and the assigned value of V6, which enables
automatic truncation of long variable names, does not support member names. To
recover, copy the member to another member whose name does not exceed 8 characters
and try the transport operation again.

File library.member.DATA has too long a member name for the V6
engine

This message appears when you use PROC COPY to move a data set whose name
exceeds 8 characters from a source operating environment that is running SAS 9 to a
SAS 6 library. Here is an explicit example of such a message:

ERROR: The file V6LIBMYDATABASE.DATA
has too long a member name for the V6 engine.

The SAS 9 data set name MYDATABASE exceeds the maximum member name length of
8 characters that is supported in SAS 6. SAS 6 interprets the data set name
MYDATABASE as containing 10 characters, which exceeds its maximum length of 8.

74 File libref.ALL is damaged. I/O processing did not complete Chapter 12

The VALIDVARNAME system option and the assigned value of V6, which enables
automatic truncation of long variable names, does not support member names. To
recover, rename the member or copy it to another member whose name does not exceed
8 characters and try the transport operation again.

File libref.ALL is damaged. I/O processing did not complete
Usually, this message indicates a file corruption. The most likely explanation is that

your site’s communications software inserted carriage returns into the transport file.
At the target operating environment, you can use an operating environment-specific

utility (such as the UNIX hexadecimal dump utility xd) to view the transport file in
hexadecimal format to find out if carriage returns were inserted. See the UNIX xd(1)
manual page for details. As another example, for z/OS, use the SPF 1 command for
browsing, select a data set, and enter hex on in the command line.

Example Code 12.1 on page 74 shows an example of a transport file that contains a
carriage-return character (0D) and a line-feed character (0A) toward the end of the first
record. See the 0D and 0A hex values in the first two positions of the last line.

Example Code 12.1 Hexadecimal Representation of a Transport File

48 45 41 44 45 52 20 52 45 43 4F 52 44 2A 2A 2A HEADER R ECORD***
2A 2A 2A 2A 4C 49 42 52 41 52 59 20 48 45 41 44 ****LIBR ARY HEAD
45 52 20 52 45 43 4F 52 44 21 21 21 21 21 21 21 ER RECOR D!!!!!
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 00000000 000000
30 30 30 30 30 30 30 30 30 30 30 30 30 30 20 20 00000000 0000
0D 0A 53 41 53 20 20 20 20 20 53 41 53 20 20 20 ...SAS SAS

If you do not see carriage-return or line-feed characters, another form of corruption
that is not immediately apparent might have occurred. To test this possibility, at the
target operating environment, create another transport file from a member of the same
type and then view its hexadecimal representation. Compare the appearance of the
assumed uncorrupted file that you just created with the suspected corrupted file that
you are trying to restore. A visual comparison might prove that the transport file that
you are trying to restore is corrupt. In this case, re-create the transport file at the source
operating environment, transfer it, and restore it at the target operating environment.

At the source operating environment, find out whether the transport file’s attributes
include carriage returns. For information about listing and correcting file attributes,
see the appropriate operating environment chapter.

At the source operating environment, transfer the transport file to the target
operating environment again.

If you are still unable to restore a transport file that has the correct file attributes,
try using the reblocking program in “Reblocking a Transport File” on page 78.

Given transport file is bad
See “Bad Transport File” on page 71 for recovery actions.

Internal error from getting data
Usually, this message appears because either a file was transported in a format other

than BINARY or the attributes of the transport file changed while in transit to the
target operating environment.

Troubleshooting Converting library members in the input file with LIBRARY=libref in the PROC statement 75

See “Verifying Transfer Format and Transport File Attributes” on page 77 for
recovery actions.

Invalid data length
Usually, this message appears because either a file was transported in a format other

than BINARY or the attributes of the transport file changed while in transit to the
target operating environment.

See “Verifying Transfer Format and Transport File Attributes” on page 77 for
recovery actions.

Member or library unavailable for use in file filename
Usually, this message appears because either a file was transported in a format other

than BINARY or the attributes of the transport file changed while in transit to the
target operating environment.

See “Verifying Transfer Format and Transport File Attributes” on page 77 for
recovery actions.

Another possible explanation applies to a SAS 6.12 session on a source operating
environment and a SAS 6.08 session on a target operating environment. Data set sort
features (specified by using the SORTEDBY= data set option) are included in the SAS
6.12 CPORT procedure but not in the SAS 6.08 CIMPORT procedure.

Use either of the following to recover from this problem:

� Disable the sorting feature by using the SORTINFO= option in the SAS 6.12
CPORT procedure. Here is an example:

proc cport data=grades.jr file=’tranfile.jr’ sortinfo=no;

� Disable the SAS 6.12 sorting feature by using the V608 engine explicitly in the
SAS 6.12 CPORT procedure. Here is an example:

proc cport data=grades.jr file=’tranfile.j v608;

The SORTEDBY= data set option information is included in SAS 6.12 PROC CPORT.

More library members exist in the input file. For all of them to get
converted, please specify LIBRARY=libref parameter in the PROC
statement

This warning message is displayed at the target operating environment when PROC
CIMPORT contains a DATA= destination member and the source operating
environment used PROC CPORT with the LIBRARY= destination member. Although,
the target operating environment successfully imports only one data set, the message
indicates that other members are contained in the library that can also be imported.
Here is an example:

proc cport file=in library=out;
proc cimport infile=in data=new;

In order to expand the import operation to include the entire contents of the
destination library, specify the LIBRARY= option instead of the DATA= option in
PROC CIMPORT.

76 PROC SQL will not store a V9 view into a V6 library Chapter 12

PROC SQL will not store a V9 view into a V6 library
Usually, this message appears when you use the XPORT engine to create a SAS 9

PROC SQL view in transport format in a SAS 6 library. However, you can use the
XPORT engine to create an SQL table.

To recover, transport the data set that contains the SQL table to the target operating
environment and re-create the PROC SQL view there.

Requested function is not supported
This message indicates a failure to move a library from a source operating

environment that is running SAS 9 to a library on a target operating environment that
is running SAS 6 because of cross-version incompatibilities. For example, SAS 9
features such as generations data sets and integrity constraints are not supported.

To recover, you must remove SAS 9 features from the library or the member to be
moved to the library on the operating environment that is running SAS 6 and try the
transport operation again. Preceding notes in the log can give a hint about the
offending SAS 9 feature that is not supported. Here is an example:

NOTE: Integrity constraint mc defined.

You can infer from this message that SAS 6 does not support integrity constraints.
For tips about removing SAS 9 features, see the recovery actions for these messages:

“File library.member.DATA has too long a member name for the V6 engine” on page 73
and “Variable name XXXXXXXXX is illegal for file Version-6-data-set ”on page 77.

Truncated record
Usually, this message appears because either a file was transported in a format other

than BINARY or the attributes of the transport file changed in transit to the target
operating environment.

See “Verifying Transfer Format and Transport File Attributes” on page 77 for
recovery actions.

This message can indicate that the transport file was moved to a virtual disk or
shared disk with other operating environments such as DOS, Macintosh, or UNIX. For
recovery actions, see the appropriate operating environment chapter.

Updating not allowed for libref.member-name because it was created
for a different operating system

This message appears when an operating environment attempts to update a file
whose format is foreign to that of the accessing operating environment. Use PROC
CONTENTS on the file to verify the file’s data representation. A data representation of
FOREIGN proves that the formats of the file and the accessing operating environment
are incompatible.

UTILITY FILE OPEN function is not supported by the XPORT engine
This message appears when you attempt to use PROC COPY with the XPORT engine

to create a transport file for a utility file, such as an MDDB. The XPORT engine does
not support utility files.

Troubleshooting Verifying Transfer Format and Transport File Attributes 77

The value y code is not a valid SAS name; Skipping data set due to
error

These error and warning messages appear when you use PROC CIMPORT in SAS 8
to read a transport file that was created using PROC CPORT in SAS 9.

The PROCS CPORT and CIMPORT are forward compatible (SAS 9 CIMPORT can
read a SAS file created using SAS 8 CPORT), but they are not backward compatible
(SAS 8 CIMPORT cannot read a SAS file created using SAS 9 CPORT).

To identify the version of SAS that was used to create the transport file, use the
following SAS program, specifying the appropriate transport file.

data _null_;
infile ’transport-file-path’;
input @109 rel $7.;
put rel=;
stop;
run;

The output shows which version of SAS was used to create the transport file.

Variable name XXXXXXXXX is illegal for file Version-6-data-set
This message appears when using PROC CIMPORT to move a SAS 9 data set that

contains long variable names to a SAS 6 data set. Here is an explicit example of such a
message:

ERROR: The variable name Region_Of_The_Country
is illegal for file V6LIB.CITY.DATA.

The SAS 9 variable name Region_Of_The_Country exceeds the maximum variable
name length of 8 characters that is supported in SAS 6. To recover, in the SAS session
on the client, set the VALIDVARNAME system option to V6 to enable automatic
truncation of long variable names and try the transport operation again. Here is an
example:

options validvarname=v6;

In this example, Region_Of_The_Country truncates to Region_O. However, if the data
set contains multiple variables names in which the first 8 characters conflict, SAS 9
uses a truncation algorithm that ensures uniquely truncated variable names. For
details, see “Regressing SAS Data Sets to SAS 6 Format” on page 26.

Verifying Transfer Format and Transport File Attributes

Verify that the communications software that you use to transfer the transport file is
in BINARY format. If you use FTP, for example, you would explicitly enter the FTP
BINARY command. Here is a sample invocation of FTP:

ftp
> open host
> binary
> get file file
> close
> quit

78 Reblocking a Transport File Chapter 12

For details about FTP, see Chapter 6, “Transferring Files,” on page 37.
Even if your communications software claims to submit transport files in an

appropriate format by default, always be certain of binary format by explicitly
specifying it. For details about how to specify the transfer format, consult your
communications software documentation.

Also, verify the file attributes of the transport file, which are required in order to
restore the file at the target operating environment. Although some target operating
environments might not need file attributes, the transfer method (tape and network)
always does. See “Attributes for Transport Files” on page 37 for a list of operating
environments that require file attributes. Problems can result when the file attributes
that are required by the target operating environment and those applied by the transfer
method are incompatible.

Verify file attributes that are required by the target operating environment. How you
list and set file attributes varies by operating environment. See the appropriate
operating environment chapter for this information.

Also verify the file attributes that the transfer method sets. For example, if using
FTP, you set file attributes in an FTP command. Here is a sample invocation of FTP:

ftp
> open host
> binary
> locsite recfm=fb blocksize=8000 lrecl=80
> get file file
> close
> quit

If transferring a transport file across a network, see your communications software
documentation. For information about transferring a file by means of tape, see the
appropriate operating environment chapter.

If you can correct the problem, re-create the transport file at the source operating
environment, transfer it to the target, and restore it again.

If the problem persists, try to reblock the transport file and try transporting it again.
See “Reblocking a Transport File” on page 78.

Reblocking a Transport File

At the target operating environment, if you find out that the transport file has an
incorrect block size and you are unable to obtain a transport file that contains the
correct block size, then use the reblocking program to reblock the transport file.

Note: The transport file against which the reblocking program is run must be
uncorrupted; that is, no extra carriage returns or line feeds can be inserted. If the
transport file is known to be corrupted, the reblocking program will fail. �

This program copies the transport file and produces a new transport file that
contains 80-byte fixed block records.

Example Code 12.2 Program that Reblocks a Transport File

data _null_;

/* Note: the INFILE and FILE statements must */
/* be modified. Substitute your file names. */
infile ’your_transport.dat’ eof=wrapup;
file ’new_transport.dat’ recfm=f lrecl=80;

Troubleshooting Reblocking a Transport File 79

length irec $16 outrec $80 nullrec $80;
retain count 1 outrec nullrec;
input inrec $char16. @@;
substr(outrec, count, 16) = inrec;
count + 16;
if (count > 80) then do;

put outrec $char80.;
count=1;

end;
return;

wrapup:;
file log;
nullrec = repeat(’00’x,80);
if outrec = nullrec then do;

put ’ WARNING: Null characters may have been’
’ added at the end of transport file by’
’ communications software or by a copy’
’ utility. For a data set transport file,’
’ this could result in extra null’
’ observations being added at the end’
’ of the last data set.’;

end;
run;

In this example, the record format of the original transport file is fixed and the
record length is evenly divisible by 16.

If your record type is fixed but the record length is not evenly divisible by 16, then
find the greatest common denominator that is divisible by both 80 and the transport file
record length. Substitute this number for all occurrences of 16 in the preceding program.

For example, 80 is evenly divisible by 1, 2, 5, 8, and 10. A fixed record length of 99
for a transport file is evenly divisible by 1, 3, 9, and 11. The only common denominator
is 1. Therefore, 1 is both the lowest common denominator and the greatest common
denominator.

Note: If the transport file has a variable length record type, then use 1 instead of 16
as the greatest common denominator. �

CAUTION:
For a transport file that contains data sets, some communications software pads the final
record with null characters. The reblocking program might add extra observations
that contain all 0 values to the end of the final data set in a library. �

80

81

P A R T6

Samples and Logs

Chapter 13.Examples of Moving SAS Files 83

82

83

C H A P T E R

13
Examples of Moving SAS Files

The Examples of Moving SAS Files 84

Overview to Examples of Moving SAS Files 84
OpenVMS Alpha to UNIX File Transport 84

Using PROC COPY at the Source Operating Environment to Create Transport Files 84

Viewing the SAS Log at the Source Operating Environment 85
Verifying Transport Files 87

Transferring the Transport Files to the Target Operating Environment 87

Using PROC COPY at the Target Operating Environment to Restore Transport Files into Native
Format 89

Viewing the SAS Log at the Target Operating Environment 90
z/OS to Windows File Transport 91

Using PROC CPORT at the Source Operating Environment to Create Transport Files 91

Viewing the SAS Log at the Source Operating Environment 92
Verifying Transport Files 93

Transferring Transport Files to the Target Operating Environment 93

Using PROC CIMPORT at the Target Operating Environment to Import Transport Files into
Native Format 94

Viewing the SAS Log at the Target Operating Environment 95
z/OS JCL Batch to UNIX File Transport 96

The z/OS JCL Batch Program 96

Using PROC COPY to Create a Transport File 96
Transferring the Transport File across the Network 98

Verifying the Accuracy of the Transport File 98

Using PROC COPY to Restore the Transport File 99
Recording the Creation of Data Sets and Transport Files in the SAS Log 100

Recording the Transfer of the Transport File to the Target Operating Environment in the SAS
Log 102

Recording the Verification of the Transport File in the SAS Log 103

Recording the Restoration of the Transport File to the Source Operating Environment in the SAS
Log 103

Strategies for Verifying Transport Files 104

Restoring the Transport File at the Source Operating Environment 104
Verifying the Size of a Transport File 105

Comparing the Original Data Set with the Restored Data Set 106

84 The Examples of Moving SAS Files Chapter 13

The Examples of Moving SAS Files

Overview to Examples of Moving SAS Files
This chapter gives detailed examples that show how to create, transfer, and restore

transport files between two operating environments. Table 13.1 on page 84 describes
the basic characteristics of each example:

Table 13.1 Summary of the Examples

Members to Move From Source
Machine and SAS
Version

To Target Machine
and SAS Version

Using Strategy

Data sets OpenVMS Alpha 6.12 UNIX 8 XPORT engine with
PROC COPY

Data sets and catalogs z/OS 6.09 Windows 8 PROC CPORT and
PROC CIMPORT

Data sets JCL Batch z/OS 6.09 UNIX 9 XPORT engine with
PROC COPY

Although the examples are operating environment-specific, the fundamental SAS
command syntax for all transport methods is identical across operating environment
types. The noteworthy syntax difference among operating environment types is how
you specify the SAS data library name in the LIBNAME statement. For complete
details about the syntax for the LIBNAME statement, see your operating environment
companion documentation.

OpenVMS Alpha to UNIX File Transport

Using PROC COPY at the Source Operating Environment to Create
Transport Files

The following example shows a SAS program that creates three data sets in
OpenVMS Alpha format and translates them to transport format.

Example Code 13.1 SAS Program That Creates Data Sets and Transport Files

libname xptlib xport ’xptlib.dat’; u

libname xptds xport ’xptds.dat’; v

/* creates data set GRADES; contains numeric and */
/* character data */

data grades; w

input student $ test1 test2 final;
datalines;
Fred 66 80 70
Wilma 97 91 98
;

Examples Viewing the SAS Log at the Source Operating Environment 85

/* creates data set SIMPLE; contains */
/* character data only */

data simple; x

x=’dog’;
y=’cat’;
z=’fish’;

run;

/* creates data set NUMBERS; contains */
/* numeric data only */

data numbers; y

do i=1 to 10;
output;

end;
run;

/* create a transport file for the entire library */
proc copy in=work out=xptlib; U

run;

/* create a transport file for a data set */
proc copy in=work out=xptds; V

select grades;
run;

u The LIBNAME statement assigns the libref XPTLIB to the physical location
XPTLIB.DAT, which stores the entire library to be created. The XPORT engine
creates XPTLIB.DAT.

v The LIBNAME statement assigns the libref XPTDS to the physical location
XPTDS.DAT, which stores the single data set to be created. The XPORT engine
creates XPTDS.DAT.

w The DATA step creates the data set, WORK.GRADES, which contains two
observations. Each observation contains four variables (one character and three
numeric values).

x The DATA step creates a second data set, WORK.SIMPLE, which contains a
single observation. The observation contains three character values.

y The DATA step creates a third data set, WORK.NUMBERS, which contains ten
observations. Each observation contains a single numeric value.

U PROC COPY copies all three data sets from the default WORK library to the new
library XPTLIB. The WORK data sets are written to the output library XPTLIB in
transport format.

V PROC COPY copies the selected data set GRADES to the new library XPTDS. The
data set GRADES is written to output library XPTDS in transport format.

Viewing the SAS Log at the Source Operating Environment
The following example shows a SAS log that documents the successful execution of

the SAS program in “Using PROC COPY at the Source Operating Environment to
Create Transport Files” on page 84.

86 Viewing the SAS Log at the Source Operating Environment Chapter 13

Example Code 13.2 Source Operating Environment SAS Log

NOTE: SAS (r) Proprietary Software Release 6.12 TS050 u

NOTE: Running on DEC Model 7000 MODEL 740 Serial Number 80000000. v

NOTE: Libref XPTLIB was successfully assigned as follows: w

Engine: XPORT
Physical Name: Device:system-specific file/pathname XPTLIB.DAT

NOTE: Libref XPTDS was successfully assigned as follows: x

Engine: XPORT
Physical Name:system-specific file/pathname XPTDS.DAT

NOTE: The data set WORK.GRADES has 2 observations and 4 variables. y

NOTE: The data set WORK.SIMPLE has 1 observations and 3 variables.
NOTE: The data set WORK.NUMBERS has 10 observations and 1 variables.
NOTE: Copying WORK.GRADES to XPTLIB.GRADES (MEMTYPE=DATA). U

NOTE: BUFSIZE is not cloned when copying across dissimilar engines.
System Option for BUFSIZE was used.

NOTE: The data set XPTLIB.GRADES has 2 observations and 4 variables.
NOTE: Copying WORK.NUMBERS to XPTLIB.NUMBERS (MEMTYPE=DATA).
NOTE: BUFSIZE is not cloned when copying across dissimilar engines.

System Option for BUFSIZE was used.
NOTE: The data set XPTLIB.NUMBERS has 10 observations and 1 variables.
NOTE: Copying WORK.SIMPLE to XPTLIB.SIMPLE (MEMTYPE=DATA).
NOTE: BUFSIZE is not cloned when copying across dissimilar engines.

System Option for BUFSIZE was used.
NOTE: The data set XPTLIB.SIMPLE has 1 observations and 3 variables.
NOTE: Copying WORK.GRADES to XPTDS.GRADES (MEMTYPE=DATA). V

NOTE: BUFSIZE is not cloned when copying across dissimilar engines.
System Option for BUFSIZE was used.

NOTE: The data set XPTDS.GRADES has 2 observations and 4 variables.

u The source operating environment runs SAS 6.12, which means that the SAS
session default library engine is V612.

v The source operating environment is a DEC Model 7000, which refers to AX7000
(OpenVMS Alpha).

w SAS assigns the libref XPTLIB to the physical device whose specification is
platform-dependent. The XPORT engine creates XPTLIB.

x SAS assigns the libref XPTDS to the physical device whose specification is
platform-dependent. The XPORT engine creates XPTDS.

y The first three notes in this series report the creation of the data sets
WORK.GRADES, WORK.SIMPLE, and WORK.NUMBERS.

U The next series of notes report that SAS copies WORK.GRADES to
XPTLIB.GRADES, WORK.NUMBERS to XPTLIB.NUMBERS, and
WORK.SIMPLE to XPTLIB.SIMPLE. The XPORT engine translates each data set
from OpenVMS Alpha format to transport format.

Note: The following notes about the SAS system option BUFSIZE do not indicate
an error condition. BUFSIZE specifies the permanent buffer size for an output
data set, which can be adjusted to improve system performance. The system value
that is assigned to the BUFSIZE option is used because the XPORT engine does
not support the BUFSIZE= option. See your operating environment companion
documentation for details.

V SAS copies WORK.GRADES to XPTDS.GRADES. The XPORT engine translates
the data set from OpenVMS Alpha format to transport format.

Examples Transferring the Transport Files to the Target Operating Environment 87

Verifying Transport Files
It is recommended that you verify the integrity of your transport files at the source

operating environment before the files are transferred to the target operating
environment. A successful verification at the source operating environment can
eliminate the possibility that the transport file was created incorrectly. Also, after you
transfer the transport file to the target operating environment, you can compare the
transport file that was sent from the source operating environment with the file that
was received at the target operating environment. See “Strategies for Verifying
Transport Files” on page 104 for details.

Transferring the Transport Files to the Target Operating Environment
Before you transfer a transport file to the target operating environment, verify its file

attributes. The following example shows typical output:

Example Code 13.3 Using DIR/FULL to Verify the Attributes of the Transport File

vms> DIR/FULL xptlib.dat
Directory HOSTVAX:[JOE.XPTTEST]

XPTLIB.DAT;1 File ID: (31223,952,0)
Size: 7/8 Owner: [HOSTVAX,JOE]
Created: 30-SEP-1999 16:47:31.34
Revised: 30-SEP-1999 16:47:31.69 (1)
Expires: Effective: File organization: Sequential
Shelved state: Online
File attributes: Allocation: 8, Extend: 0, Global buffer count: 0

Version limit: 2
Record format: Fixed length 80 byte records u

Record attributes: None v

RMS attributes: None
Journaling enabled: None
File protection: System:RWED, Owner:RWED, Group:RE, World:
Access Cntrl List: None

Total of 1 file, 7/8 blocks.
$ dir/size xptlib.dat

Directory HOSTVAX:[JOE.XPTTEST]

XPTLIB.DAT;1 7

Total of 1 file, 7 blocks.

u The RECORD FORMAT attribute indicates a fixed record type and an 80-byte
record size. These values are required for a successful file transfer across the
network.

v The RECORD ATTRIBUTES field should contain the value NONE.

CAUTION:
If this field contains CARRIAGE RETURN CARRIAGE CONTROL, file corruption results. To
prevent corruption before you transfer the transport file, remove this value from the
RECORD ATTRIBUTES field. An error message alerts you to this condition after you
attempt to transfer the corrupted file. �

88 Transferring the Transport Files to the Target Operating Environment Chapter 13

After you verify the attributes of a transport file, use FTP to transfer the transport
file to the target operating environment.

In this example, the target operating environment retrieves the transport file from
the source operating environment because the source operating environment does not
have permission to write to the target operating environment directory. A source
operating environment is unlikely to have permission to write a transport file to a
target operating environment.

At the target operating environment, change the directory to the location where the
transport file will be copied. The following example shows how to use FTP commands to
get the transport files.

Example Code 13.4 FTP Dialog

hp> ftp ax7000.vms.sas.com u

Connected to ax7000.vms.com.
220 ax7000.vms.com MultiNet FTP Server Process V4.0(15) at Thu-Sep 30-99

12:59PM-EDT
Name (ax7000.vms.com:): joe
331 User name (joe) ok. Password, please.
Password:
230 User JOE logged into HOSTVAX:[JOE] at Thu 30-Sep-99 12:59PM-EDT, job

27a34cef.
Remote system type is VMS.

ftp> cd [.xpttest] v

250 Connected to system-specific file/pathname.
ftp> binary w

200 Type I ok.
ftp> get xptds.dat xptds.dat x

200 Port 14.83 at Host 10.26.2.45 accepted.
150 IMAGE retrieve of system-specific file/pathname XPTDS.DAT;1 started.

226 Transfer completed. 1360 (8) bytes transferred. y

1360 bytes received in 0.02 seconds (87.59 Kbytes/s)
ftp> get xptlib.dat xptlib.dat U

200 Port 14.84 at Host 10.26.2.45 accepted.
150 IMAGE retrieve of system-specific file/pathname XPTLIB.DAT;1 started.

226 Transfer completed. 3120 (8) bytes transferred. V

3120 bytes received in 0.04 seconds (85.81 Kbytes/s)
ftp> quit W

u From the UNIX target operating environment, the user invokes FTP to connect to
the OpenVMS Alpha source operating environment AX7000.VMS.SAS.COM.

v After a connection is established, at the FTP prompt, user JOE changes to the
subdirectory on the source operating environment that contains the transport files.

w The transport file attribute BINARY indicates that the OpenVMS transport file
should be transferred from the source operating environment in BINARY format.

x The FTP get command obtains the transport file named XPTDS.DAT from the
source operating environment and copies it to a new file that has the same name,
XPTDS.DAT, in the target operating environment current directory.

y Messages indicate that the transfer was successful and that the size of the
transport file was 1360 bytes. Compare the sizes of the transport files at the
source operating environment and the target operating environment. If the sizes
are identical, then the network successfully transferred the file. For details about
listing file size, see “Verifying the Size of a Transport File” on page 105.

Examples Using PROC COPY at the Target Operating Environment to Restore Transport Files into Native Format 89

U The FTP get command obtains another transport file named XPTLIB.DAT from
the source operating environment and copies it to a new file that has the same
name, XPTLIB.DAT, in the target operating environment current directory.

V Messages indicate that the transfer was successful. Compare the sizes of the
transport files at the source operating environment and the target operating
environment.

W The user quits the FTP session.

For complete details about using the file transfer utility, see your FTP documentation.

Using PROC COPY at the Target Operating Environment to Restore
Transport Files into Native Format

The following example shows a SAS program that translates a transport file to
native file format.

Example Code 13.5 SAS Program That Restores Transport Files into Native File Format

libname xptlib xport ’xptlib.dat’; u

libname xptds xport ’xptds.dat’; v

libname natvlib v7 ’natvlib’ w

libname natvds v7 ’natvds’; x

/* translate transport file for library */
/* to native format on target operating environment. */

proc copy in=xptlib out=natvlib; y

run;

/* translate transport file for data set*/
/* to native format on target operating environment */

proc copy in=xptds out=natvds; U

select grades;
run;

u The LIBNAME statement assigns the libref XPTLIB to the physical location
XPTLIB.DAT, which stores the entire library that was transferred to the target
operating environment. The XPORT engine reads XPTLIB.

v The LIBNAME statement assigns the libref XPTDS to the physical location
XPTDS.DAT, which stores the single data set that was transferred to the target
operating environment. The XPORT engine reads XPTDS.

w The LIBNAME statement assigns the libref NATVLIB to the physical location
NATVLIB, which stores the entire library to be translated from transport format
to native format. The V7 engine creates NATVLIB.

x The LIBNAME statement assigns the libref NATVDS to the physical location
NATVDS, which stores the single data set to be translated from transport format
to native format. The V7 engine creates NATVDS.

y PROC COPY copies all three data sets from the libref XPTLIB to the new libref
NATVLIB. The XPORT engine reads all data sets from XPTLIB in transport
format. The V7 engine writes the data sets to the output libref NATVLIB in native
UNIX format.

90 Viewing the SAS Log at the Target Operating Environment Chapter 13

U PROC COPY selects the data set GRADES to copy to the new library NATVDS.
The XPORT engine reads the data set GRADES in transport format. The V7
engine writes the output library XPTDS in native UNIX format.

Viewing the SAS Log at the Target Operating Environment
The following example shows a SAS log that documents the successful execution of

the SAS program shown in “Using PROC COPY at the Target Operating Environment
to Restore Transport Files into Native Format” on page 89.

Example Code 13.6 Target Operating Environment SAS Log

NOTE: Copyright (c) 1999 by SAS Institute Inc., Cary, NC, USA.
NOTE: SAS (r) Proprietary Software Version 8 (TS00.00P1D090398) u

Licensed to SAS Institute Inc., Site 0000000001.
NOTE: This session is executing on the UNIX B.10.20 platform. v

NOTE: Running on HP Model 9000/715 Serial Number 2005516582.
libname xptlib xport ’xptlib.dat’; w

NOTE: Libref XPTLIB was successfully assigned as follows:
Engine: XPORT
Physical Name: system-specific file/pathname/xptlib.dat

libname xptds xport ’xptds.dat’; x

NOTE: Libref XPTDS was successfully assigned as follows:
Engine: XPORT
Physical Name:
system-specific file/pathname/xptds.dat

libname natvlib v7 ’natvlib’; y

NOTE: Libref NATVLIB was successfully assigned as follows:
Engine: V7
Physical Name:
system-specific file/pathname/natvlib

libname natvds v7 ’natvds’; U

NOTE: Libref NATVDS was successfully assigned as follows:
Engine: V7
Physical Name:
system-specific file/pathname/natvds

/* translate transport file for library to native */
/* format on target operating environment. */
proc copy in=xptlib out=natvlib;
run;
NOTE: Input library XPTLIB is sequential.
NOTE: Copying XPTLIB.GRADES to NATVLIB.GRADES (memtype=DATA). V

NOTE: BUFSIZE is not cloned when copying across different engines.
System Option for BUFSIZE was used.

NOTE: The data set NATVLIB.GRADES has 2 observations and 4 variables.
NOTE: Copying XPTLIB.NUMBERS to NATVLIB.NUMBERS (memtype=DATA). W

NOTE: BUFSIZE is not cloned when copying across different engines.
System Option for BUFSIZE was used.

NOTE: The data set NATVLIB.NUMBERS has 10 observations and 1 variables.
NOTE: Copying XPTLIB.SIMPLE to NATVLIB.SIMPLE (memtype=DATA). X

NOTE: BUFSIZE is not cloned when copying across different engines.
System Option for BUFSIZE was used.

NOTE: The data set NATVLIB.SIMPLE has 1 observations and 3 variables.

Examples Using PROC CPORT at the Source Operating Environment to Create Transport Files 91

/* translate transport file for data set to native */
/* on target operating environment */
proc copy in=xptds out=natvds;

select grades;
run;
NOTE: Input library XPTDS is sequential.
NOTE: Copying XPTDS.GRADES to NATVDS.GRADES (memtype=DATA). at

NOTE: BUFSIZE is not cloned when copying across different engines.
System Option for BUFSIZE was used.

NOTE: The data set NATVDS.GRADES has 2 observations and 4 variables

u The target operating environment runs SAS 8, which means that the SAS session
on the target operating environment uses the default library engine V8.

v The target operating environment runs UNIX.
w The LIBNAME statement assigns the libref XPTLIB to the physical device whose

specification is platform-dependent. In this example, the physical device indicates
a UNIX operating environment. The XPORT engine reads XPTLIB.

x The LIBNAME statement assigns the libref XPTDS to the physical device whose
specification is platform-dependent. The XPORT engine reads XPTDS.

y The LIBNAME statement assigns the libref NATVLIB to the physical device
whose specification is platform-dependent. In this example, the physical device
indicates a UNIX operating environment. The V7 engine writes to NATVLIB.

U The LIBNAME assigns the libref NATVDS to the physical device whose
specification is platform-dependent. In this example, the physical device indicates
a UNIX operating environment. The V7 engine writes to NATVDS.

V PROC COPY copies XPTLIB.GRADES to NATVLIB.GRADES. The NATVLIB data
set is written in V7 format.

W PROC COPY copies XPTLIB.NUMBERS to NATVLIB.NUMBERS. The NATVLIB
data set is written in V7 format.

X PROC COPY copies XPTLIB.SIMPLE to NATVLIB.SIMPLE. The NATVLIB data
set is written in V7 format.

at PROC COPY copies XPTDS.GRADES to NATVDS.GRADES. The NATVDS data
set is written in V7 format.

z/OS to Windows File Transport

Using PROC CPORT at the Source Operating Environment to Create
Transport Files

The following example shows a SAS program that copies two data sets and two
catalogs from a library in z/OS format and writes them to a default output file in
transport format.

Example Code 13.7 SAS Program That Copies Data Sets and Catalogs to a Transport File

filename tport ’joe.mytest.data’ disp=rep;
libname test ’joe.mytest.sas’;

92 Viewing the SAS Log at the Source Operating Environment Chapter 13

proc cport library=test file=tport;
run;

The LIBNAME statement assigns the libref TEST to the physical location
JOE.MYTEST.SAS, which points to the library to be transported. JOE is the userid
that is associated with the SAS session in which the transport operation is performed.
The FILENAME statement assigns the fileref TPORT to the transport file
JOE.MYTEST.DATA. DISP=REP will create a new file or replace an existing file.

Viewing the SAS Log at the Source Operating Environment
The following example shows a SAS log that documents the successful execution of

the SAS program shown in “Using PROC CPORT at the Source Operating Environment
to Create Transport Files” on page 91.

Example Code 13.8 Source Operating Environment SAS Log File

filename tport ’joe.mytest.data’;
libname test ’joe.mytest.sas’;
proc cport lib=test file=tport;
run;
WARNING: No output file is specified. Default output
file JOE.SASCAT.DATA is used.

NOTE: Proc CPORT begins to transport data set TEST.CITY
NOTE: The data set contains 7 variables and 72 observations.
NOTE: Transporting data set index information.

NOTE: Proc CPORT begins to transport catalog TEST.FORMATS
NOTE: The catalog has 3 entries
NOTE: Transporting entry REGFMT .FORMATC
NOTE: Transporting entry SALEFMT .FORMATC
NOTE: Transporting entry SIZEFMT .FORMATC

NOTE: Proc CPORT begins to transport catalog TEST.TEST
NOTE: The catalog has 11 entries
NOTE: Transporting entry ABOUT .CBT
NOTE: Transporting entry APPEND .CBT
NOTE: Transporting entry BOOKMENU.CBT
NOTE: Transporting entry DEFAULT .FORM
NOTE: Transporting entry HELP .HELP
NOTE: Transporting entry CLIST .LIST
NOTE: Transporting entry ENTRYTYP.LIST
NOTE: Transporting entry SPELLALL.PMENU
NOTE: Transporting entry SPELLSUG.PMENU
NOTE: Transporting entry ADDON1 .PROGRAM
NOTE: Transporting entry ADDON2 .PROGRAM
NOTE: Proc CPORT begins to transport data set TEST.VARNUM
NOTE: The data set contains 10 variables and 100 observations.

Note: Default output filenames are operating environment specific. �

PROC CPORT reads the contents of the entire library that is referenced by the libref
TEST and writes to the default transport file. The remaining series of notes indicate
that PROC CPORT transports the data set TEST.CITY, the catalog TEST.FORMATS,

Examples Transferring Transport Files to the Target Operating Environment 93

the catalog TEST.TEST, and the data set TEST.VARNUM into the transport file
JOE.MYTEST.DATA.

Verifying Transport Files
It is recommended that you verify the integrity of your transport files at the source

operating environment before the files are transferred to the target operating
environment. A successful verification at the source operating environment can
eliminate the possibility that the transport file was created incorrectly. Also, after you
transfer a file to the target operating environment, you can compare the transport file
that was sent from the source operating environment with the file that was received at
the target operating environment. See “Strategies for Verifying Transport Files” on
page 104 for details.

Transferring Transport Files to the Target Operating Environment
Verify the file attributes of the transport files before they are transferred to the

target operating environment. The following example shows typical output for TSO.

Example Code 13.9 Using TSO LISTD Command to Verify the Attributes of the Transport File

listd "userid.mytest.data"
USERID.MYTEST.DATA
--RECFM-LRECL-BLKSIZE-DSORG

FB 80 8000 PS
--VOLUMES--

APP009

After you verify the attributes of the transport files, you can use FTP to transfer
them over the network. Change the default DCB attributes, as necessary, in the FTP
dialog. In this example, because the user on the source operating environment has
permission to write to the target operating environment, the FTP put command is used
to write the transport file to the target operating environment.

The following example shows the FTP commands you specify at the source operating
environment to write the transport files to the target operating environment.

Example Code 13.10 FTP Dialog

ftp mypc u

EZA1450I MVS TCP/IP FTP V3R2
EZA1554I Connecting to SPIDER 10.24.2.32, port 21
220 spider FTP server (Version 4.162 Tue Nov 1
10:50:37 PST 1988) ready.

EZA1459I USER (identify yourself to the host):
userid password
EZA1701I >>>USER joe
331 Password required for joe.
EZA1701I >>>PASS ********
230 User joe logged in.
EZA1460I Command: v

binary
EZA1701I >>>TYPE i
200 Type set to I.
EZA1460I Command: w

put ’joe.mytest.data’ c:\tport.dat

94 Using PROC CIMPORT at the Target Operating Environment to Import Transport Files into Native Format Chapter 13

EZA1701I >>>SITE VARrecfm Lrecl=80 x

Recfm=FB BLKSIZE=8000
500 ’SITE VARRECFM Lrecl=80 Recfm=FB BLKSIZE=23440’:
EZA1701I >>>PORT 10,253,1,2,129,50
200 PORT command
EZA1701I >>>STOR c:\tport.dat y

150 Opening BINARY mode data connection for c:\tport.dat
226 Transfer complete. U

EZA2517I 6071600 bytes transferred in 13 seconds.
Transfer rate 466.18 Kbytes/sec.
EZA1460I Command: V

quit
EZA1701I >>>QUIT
221 Goodbye.
READY

u From the z/OS source operating environment, the user invokes FTP to connect to
the Windows target operating environment MYPC.

v The transport file attribute BINARY indicates that the z/OS transport file should
be transferred from the source operating environment in BINARY format.

w The FTP put command copies the transport file named JOE.MYTEST.DATA from
the source operating environment to the target operating environment physical
location C:\TPORT.DAT.

x The FTP file attribute commands indicate a record length of 80 bytes, a fixed
record type, and a block size of 8000.

y TPORT.DAT is saved to drive C.
U Messages indicate that the transfer was successful. For details about listing a file

size, see “Verifying the Size of a Transport File” on page 105.
V The user quits the FTP session.

Using PROC CIMPORT at the Target Operating Environment to Import
Transport Files into Native Format

The following example shows a SAS program that translates the transport file from
transport format into native format.

Example Code 13.11 SAS Program That Imports Transport Files into Native Format

libname newlib ’c:\mylib’;
proc cimport infile=’c:\tport.dat’ library=newlib;
run;

This LIBNAME statement assigns the libref NEWLIB to the physical location
c:\mylib, which stores the entire V7 library. PROC CIMPORT reads the entire content
of the transport file that is identified in the INFILE= option and writes it to the output
location that is identified in the LIBNAME= option.

As an alternative to importing the entire contents of the library into native V7
format, you can select or exclude specific entities from the transport library.

Here are examples:

Example Code 13.12 Selecting One or More Data Sets

filename target ’c:\tport.dat’;
libname newlib ’c:\mylib’;

Examples Viewing the SAS Log at the Target Operating Environment 95

proc cimport infile=target library=newlib;
select varnum;

run;

In the preceding example, the fileref TARGET points to the location where the
transport file was transferred to the target operating environment. The libref NEWLIB
points to the location to store the selected member. PROC CIMPORT reads the entire
content of the transport file that is identified in the INFILE= option and writes only the
member that is identified in the SELECT statement. The data set VARNUM is written
to the library NEWLIB in Windows format.

Example Code 13.13 Selecting a Catalog Entry Type

filename target ’c:\tport.dat’;
libname newlib ’c:\mylib’;
proc cimport infile=target library=newlib

memtype=catalog et=program;
run;

In the preceding example, PROC CIMPORT reads the entire content of the transport
file that is identified in the INFILE= option and writes only members of type CATALOG
and entries of type PROGRAM to the library NEWLIB in Windows format.

Example Code 13.14 Selecting Catalog Entries

filename target ’c:\tport.dat’;
libname newlib ’c:\mylib’;
proc cimport infile=target library=newlib memtype=cat;

select spellsug.pmenu addon1.program;
run;

In the preceding example, PROC CIMPORT reads the entire content of the transport
file that is identified in the INFILE= option and writes only the entries
SPELLSUG.PMENU and ADDON1.PROGRAM of member type CATALOG to the
library NEWLIB in Windows format.

Viewing the SAS Log at the Target Operating Environment
The following example shows a SAS log that documents the successful execution of

the SAS program that is shown in “Using PROC CIMPORT at the Target Operating
Environment to Import Transport Files into Native Format” on page 94.

Example Code 13.15 Target Operating Environment Log File

NOTE: Proc CIMPORT begins to create/update data set NEWLIB.CITY
NOTE: The data set index REGION is defined.
NOTE: Data set contains 7 variables and 72 observations.
NOTE: Proc CIMPORT begins to create/update catalog NEWLIB.FORMATS
NOTE: Entry REGFMT.FORMATC has been imported.
NOTE: Entry SALEFMT.FORMATC has been imported.
NOTE: Entry SIZEFMT.FORMATC has been imported.
NOTE: Total number of entries processed in catalog NEWLIB.FORMATS: 3

NOTE: Proc CIMPORT begins to create/update catalog NEWLIB.TEST
NOTE: Entry ABOUT.CBT has been imported.
NOTE: Entry APPEND.CBT has been imported.
NOTE: Entry BOOKMENU.CBT has been imported.

96 z/OS JCL Batch to UNIX File Transport Chapter 13

NOTE: Entry DEFAULT.FORM has been imported.
NOTE: Entry HELP.HELP has been imported.
NOTE: Entry CLIST.LIST has been imported.
NOTE: Entry ENTRYTYP.LIST has been imported.
NOTE: Entry SPELLALL.PMENU has been imported.
NOTE: Entry SPELLSUG.PMENU has been imported.
NOTE: Entry ADDON1.PROGRAM has been imported.
NOTE: Entry ADDON2.PROGRAM has been imported.
NOTE: Total number of entries processed in catalog NEWLIB.TEST: 11

NOTE: Proc CIMPORT begins to create/update data set NEWLIB.VARNUM
NOTE: Data set contains 10 variables and 100 observations.

PROC CIMPORT creates the data set NEWLIB.CITY, the catalog
NEWLIB.FORMATS, the catalog NEWLIB.TEST, and the data set NEWLIB.VARNUM
at the target operating environment, Windows, in Windows format.

z/OS JCL Batch to UNIX File Transport

The z/OS JCL Batch Program
Although presented in four parts, the following program is designed as a single

program. The parts perform these tasks:
1 Use PROC COPY to create a transport file on the z/OS source operating

environment.

2 Transfer the transport file over the network to the UNIX target operating
environment.

3 Verify the accuracy of the transport file.

4 Use PROC COPY to restore the transport file to the z/OS source operating
environment.

Embedded comments document the program.

Using PROC COPY to Create a Transport File
The following example shows the first part of the program that creates three data

sets in z/OS format and translates them to transport format. For details in the SAS log
that documents the execution of this program part, see “Recording the Creation of Data
Sets and Transport Files in the SAS Log” on page 100.

Example Code 13.16 Creating Data Sets and Transport Files

//XPORTTST JOB job-card-information
//*--
//* Run SAS step that creates a transport library
//* for the three SAS test data sets.

//*--
//SASOUT EXEC SAS
//*--
//* Allocate the SAS XPORTOUT library.

Examples Using PROC COPY to Create a Transport File 97

//* The XPORTOUT library should have the
//* following data set information:
//* Record format: FB
//* Record length: 80
//* Block size: 8000
//* Organization: PS
//*--

//XPORTOUT DD DSN=userid.XPORTOUT.DAT, DISP=(NEW,CATLG,DELETE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000),
// SPACE=(TRK,(1,1))
//SYSIN DD *
/*--*/
/* Assign the SAS test xport library */
/*--*/
libname xportout xport;

/*--*/
/* Creates data set GRADES which contains */
/* numeric and character data. */
/*--*/
data grades;

input student $ test1 test2 final;
datalines;

Fred 66 80 70
Wilma 97 91 98
;

/*-----------------------------------*/
/* Creates data set SIMPLE which */
/* contains character data only. */
/*-----------------------------------*/
data simple;

x=’dog’;
y=’cat’;
z=’fish’;

run;

/*------------------------------------*/
/* Creates data set NUMBERS which */
/* contains numeric data only. */
/*------------------------------------*/
data numbers;

do i=1 to 10;
output;

end;
run;
/*------------------------------------*/
/* Copy the three test data sets to */
/* the XPORT library. */
/*------------------------------------*/
proc copy in=work out=xportout;
run;
/*

98 Transferring the Transport File across the Network Chapter 13

Transferring the Transport File across the Network
The following example shows the generation of the FTP command file and the

transfer of the transport file over the network to the target operating environment. For
details in the SAS log that documents the execution of this program part, see
“Recording the Transfer of the Transport File to the Target Operating Environment in
the SAS Log” on page 102.

Example Code 13.17 Using FTP to Transfer Transport Files

//*---
//* Generate FTP command file for sending XPORTOUT
//* test library to the target operating environment.
//*---
//FTPCMDO EXEC PGM=IEBGENER,COND=EVEN
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=userid.FTP.OUT,
// UNIT=DISK,DISP=(NEW,CATLG),
// SPACE=(TRK,(1,1)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160)
//*---
//* Ensure that the FTP commands specify a BINARY
//* mode transfer.
//*---
//SYSUT1 DD *
userid password
cd mydir
binary
put ’userid.xportout.dat’ xportout.dat
quit
/*
//*--
//* FTP library XPORTOUT to the target operating environment.
//*--
//FTPXEQO EXEC PGM=IKJEFT01,REGION=2048K,DYNAMNBR=50,COND=EVEN
//SYSPRINT DD SYSOUT=*
//SYSTSOUT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
ALLOC FI(input) DA(’userid.FTP.OUT’) SHR
FTP target-host (EXIT
/*

Verifying the Accuracy of the Transport File
The following example shows the verification of the transport file by transferring it

from the UNIX target operating environment to the z/OS source operating environment
in native format. A successful translation from transport format to native z/OS format
verifies the accuracy of the transport file. For details in the SAS log that document the
execution of this program part, see “Recording the Verification of the Transport File in
the SAS Log” on page 103.

Examples Using PROC COPY to Restore the Transport File 99

Example Code 13.18 Verifying Transport Files

//*---
//* The following steps retrieve the XPORTOUT library
//* from the target operating environment and read the three test
//* data sets back into the WORK library.
//*---
//* Generates the FTP command file for getting
//* the test library XPORTOUT from the target operating environment.
//*---
//FTPCMDI EXEC PGM=IEBGENER,COND=EVEN
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=userid.FTP.IN,
// UNIT=DISK,DISP=(NEW,CATLG),
// SPACE=(TRK,(1,1)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160)
//*---
//* The FTP commands specify a BINARY mode
//* transfer. Uses the LOCSITE command to define
//* the correct XPORT library data set information.
//*---
//SYSUT1 DD *
userid password
cd mydir
locsite recfm=fb blocksize=8000 lrecl=80
binary
get xportout.dat ’userid.xportin.dat’
quit
/*
//*--
//* Connects to the target operating environment and retrieves
//* the library XPORTOUT.
//*--
//FTPXEQI EXEC PGM=IKJEFT01,REGION=2048K,DYNAMNBR=50,COND=EVEN
//SYSPRINT DD SYSOUT=*
//SYSTSOUT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
ALLOC FI(input) DA(’userid.FTP.IN’) SHR
FTP target-host (EXIT
/*

Using PROC COPY to Restore the Transport File
The following example restores the transport file to native format on the z/OS source

operating environment. For details in the SAS log that document the execution of this
program part, see “Recording the Restoration of the Transport File to the Source
Operating Environment in the SAS Log” on page 103.

Example Code 13.19 Restoring the Transport File to Native Format

//*--
//* Runs SAS step that reads the transport library
//* and writes the three SAS test data sets to
//* library WORK.

100 Recording the Creation of Data Sets and Transport Files in the SAS Log Chapter 13

//*--
//SASIN EXEC SAS
//XPORTIN DD DSN=userid.XPORTIN.DAT,DISP=SHR
//SYSIN DD *
/*--*/
/* Assigns the SAS test library XPORTIN. */
/*--*/

libname xportin xport;

/*--*/
/* Reads the transport file and writes the test */
/* data sets to library WORK. */
/*--*/

proc copy in=xportin out=work;
run;
/*

Recording the Creation of Data Sets and Transport Files in the SAS Log
The following example shows the SAS log that documents the creation of the data

sets and corresponding transport files.

Example Code 13.20 Viewing the SAS Log at the z/OS Source Operating Environment (Part 1 of 4)

The SAS System
11:03 Monday, October 26, 1999

NOTE: Copyright (c) 1999 by SAS Institute Inc.,
Cary, NC, USA.
NOTE: SAS (r) Proprietary Software Version 6.09.0460P0304986

Licensed to SAS INSTITUTE INC., Site 0000000001.

NOTE: Running on IBM Model 9672,
IBM Model 9672,
IBM Model 9672.

NOTE: No options specified.

/*--*/
/* Assigns the SAS test library XPORTOUT. */
/*--*/
libname xportout xport;
NOTE: Libref XPORTOUT was successfully assigned

as follows:
Engine: XPORT
Physical Name: JOE.XPORTOUT.DAT

/*---*/
/* Creates data set GRADES which contains */
/* numeric and character data. */
/*---*/
data grades;

Examples Recording the Creation of Data Sets and Transport Files in the SAS Log 101

input student $ test1 test2 final;
datalines;

NOTE: The data set WORK.GRADES has 2 observations
and 4 variables.

/*------------------------------------*/
/* Creates data set SIMPLE which */
/* contains character data only. */
/*------------------------------------*/
data simple;

x=’dog’;
y=’cat’;
z=’fish’;

run;

NOTE: The data set WORK.SIMPLE has
1 observations and 3 variables.

/*------------------------------------*/
/* Creates data set NUMBERS which */
/* contains numeric data only. */
/*------------------------------------*/
data numbers;

do i=1 to 10;
output;
end;

run;
NOTE: The data set WORK.NUMBERS has
10 observations and 1 variables.

/*------------------------------------*/
/* Copies the three test data sets to */
/* the XPORTOUT library. */
/*------------------------------------*/
proc copy in=work out=xportout;
run;

NOTE: Copying WORK.GRADES to XPORTOUT.GRADES
(MEMTYPE=DATA).

NOTE: BUFSIZE is not cloned when copying across different engines.
System Option for BUFSIZE was used.

NOTE: The data set XPORTOUT.GRADES has
2 observations and 4 variables.

NOTE: Copying WORK.NUMBERS to XPORTOUT.NUMBERS
(MEMTYPE=DATA).
NOTE: BUFSIZE is not cloned when copying across different engines.

System Option for BUFSIZE was used.
NOTE: The data set XPORTOUT.NUMBERS has
10 observations and 1 variables.

NOTE: Copying WORK.SIMPLE to XPORTOUT.SIMPLE
(MEMTYPE=DATA).
NOTE: BUFSIZE is not cloned when copying across different engines.

System Option for BUFSIZE was used.
NOTE: The data set XPORTOUT.SIMPLE has 1 observations and 3 variables.

102 Recording the Transfer of the Transport File to the Target Operating Environment in the SAS Log Chapter 13

Note: The notes about the SAS system option BUFSIZE do not indicate an error
condition. BUFSIZE specifies the permanent buffer size for an output data set, which
can be adjusted to improve system performance. The system value that is assigned to
the BUFSIZE option is used because the XPORT engine does not support the BUFSIZE=
option. See your operating environment companion documentation for details. �

Recording the Transfer of the Transport File to the Target Operating
Environment in the SAS Log

The following example shows the SAS log that documents the transfer of the
transport file to the target operating environment.

Example Code 13.21 Viewing the SAS Log at the z/OS Source Operating Environment (Part 2 of 4)

EZA1450I MVS TCP/IP FTP V3R2
EZA1772I FTP: EXIT has been set.
EZA1736I conn MYHOST.MYCOMPANY.COM
EZA1554I Connecting to MYHOST.MYCOMPANY.COM

10.26.11.235, port 21
220 myhost FTP server (Version 4.162 Tue Nov 1 10:50:37 PST 1988)

ready.
EZA1459I USER (identify yourself to the host):
EZA1701I >>>USER joe
331 Password required for joe.
EZA1701I >>>PASS ********
230 User joe logged in.
EZA1460I Command:
EZA1736I cd joe
EZA1701I >>>CWD joe
250 CWD command successful.
EZA1460I Command:
EZA1736I binary
EZA1701I >>>TYPE i
200 Type set to I.
EZA1460I Command:
EZA1736I put ’joe.xportout.dat’

xportout.dat
EZA1701I >>>SITE VARrecfm Lrecl=80

Recfm=FB BLKSIZE=8000
500 ’SITE VARrecfm Lrecl=80 Recfm=FB

BLKSIZE=8000’: command not understood
EZA1701I >>>PORT 10,253,1,2,33,182
200 PORT command.
EZA1701I >>>STOR xportout.dat
150 Opening BINARY mode data connection for

xportout.dat.
226 Transfer complete.
EZA1460I Command:
EZA1736I quit
EZA1701I >>>QUIT

Examples Recording the Restoration of the Transport File to the Source Operating Environment in the SAS Log 103

Recording the Verification of the Transport File in the SAS Log
The following example shows the SAS log that documents the portion of the program

that verifies the accuracy of the transport files that were transferred.

Example Code 13.22 Viewing the SAS Log at the z/OS Source Operating Environment (Part 3 of 4)

EZA1450I MVS TCP/IP FTP V3R2
EZA1772I FTP: EXIT has been set.
EZA1736I conn MYHOST.MYCOMPANY.COM
EZA1554I Connecting to MYHOST.MYCOMPANY.COM

10.26.11.235, port 21
220 myhost FTP server (Version 4.162 Tue Nov 1 10:50:37 PST 1988)

ready.
EZA1459I USER (identify yourself to the host):
EZA1701I >>>USER joe
331 Password required for joe.
EZA1701I >>>PASS ********
230 User joe logged in.
EZA1460I Command:
EZA1736I cd joe
EZA1701I >>>CWD joe
250 CWD command successful.
EZA1460I Command:
EZA1736I locsite recfm=fb blocksize=8000 lrecl=80
EZA1460I Command:
EZA1736I binary
EZA1701I >>>TYPE i
200 Type set to I.
EZA1460I Command:
EZA1736I get xportout.dat ’joe.xportin.dat’
EZA1701I >>>PORT 10,253,1,2,33,184
200 PORT command
EZA1701I >>>RETR xportout.dat
150 Opening BINARY mode data connection for

xportout.dat(3120 bytes).
226 Transfer complete.
EZA1617I 3120 bytes transferred in 0.198 seconds.Transfer rate

9.12 Kbytes/sec.
EZA1460I Command:
EZA1736I quit
EZA1701I >>>QUIT

Recording the Restoration of the Transport File to the Source
Operating Environment in the SAS Log

The following example shows the SAS log that documents the part of the program
that copies the transport file to native format on the z/OS operating environment.

Example Code 13.23 Viewing the SAS Log at the z/OS Source Operating Environment (Part 4 of 4)

NOTE: SAS (r) Proprietary Software Release 6.09.0460P030498
Licensed to SAS INSTITUTE INC., Site 0000000001.

NOTE: Running on IBM Model 9672,

104 Strategies for Verifying Transport Files Chapter 13

IBM Model 9672,
IBM Model 9672.

NOTE: No options specified.

/*---------------------------------------*/
/* Assigns the SAS test library XPORTIN. */
/*---------------------------------------*/
libname xportin xport;
NOTE: Libref XPORTIN was successfully assigned

as follows:
Engine: XPORT
Physical Name: JOE.XPORTIN.DAT

/*---*/
/* Reads the transport file and writes the */
/* test data sets to the library WORK. */
/*---*/
proc copy in=xportin out=work;
run;

NOTE: Input library XPORTIN is sequential.
NOTE: Copying XPORTIN.GRADES to WORK.GRADES

(MEMTYPE=DATA).
NOTE: BUFSIZE is not cloned when copying across

different engines. System Option for BUFSIZE was used.
NOTE: The data set WORK.GRADES has 2 observations

and 4 variables.
NOTE: Copying XPORTIN.NUMBERS to WORK.NUMBERS

(MEMTYPE=DATA).
NOTE: BUFSIZE is not cloned when copying across

different engines. System Option for BUFSIZE was used.
NOTE: The data set WORK.NUMBERS has 10 observations

and 1 variables.
NOTE: Copying XPORTIN.SIMPLE to WORK.SIMPLE

(MEMTYPE=DATA).

Note: The notes about the SAS system option BUFSIZE do not indicate an error
condition. BUFSIZE specifies the permanent buffer size for an output data set, which
can be adjusted to improve system performance. The system value that is assigned to
the BUFSIZE option is used because the XPORT engine does not support the BUFSIZE=
option. See your operating environment companion documentation for details. �

Strategies for Verifying Transport Files

Restoring the Transport File at the Source Operating Environment

Use the appropriate strategy (PROC COPY or PROC CIMPORT) to restore the
transport file to your source operating environment. A successful translation of the
transport file to native format on the source operating environment verifies the
integrity of the transport file to be transferred.

Examples Verifying the Size of a Transport File 105

This example shows the creation of a transport file:

libname xptlib xport ’xptlib.dat’;
/* create a transport file for the entire library */
proc copy in=work out=xptlib;
run;

PROC COPY reads the library from the libref WORK and writes the transport file to
the libref XPTLIB.

This example restores the transport file that was just created to the source operating
environment:

libname test ’test’;
/* restore the transport file at the source operating environment */
proc copy in=xptlib out=test;
run;

The value for the OUT= option in the example that creates the transport file becomes
the value for the IN= option in the example that restores the transport file to the source
operating environment. To protect against overwriting the original data library that is
created in WORK, direct output to the library TEST. The transport file is read from the
libref XPTLIB and restored to the libref TEST in native format by PROC COPY.

For complete details about the syntax for these procedures, see the Base SAS
Procedures Guide.

Verify the outcome of this test by viewing the SAS log at the source operating
environment. If the transport operation succeeded at the source operating environment,
then you can assume that the transport file content is correct. If the transport
operation failed, then you can assume that the transport file was not created correctly.
In this case, re-create the transport file and restore it again at the source operating
environment.

Verifying the Size of a Transport File
Use your operating environment’s list command to verify that the transport file was

successfully created. Here is an OpenVMS Alpha example:

vms> dir/size=all *dat

Directory HOSTVAX:[JOE.XPTTEST]

XPTDS.DAT;1 7/8
XPTLIB.DAT;1 7/8

The sizes of both files are 7/8 of a block, which is equivalent to 448 bytes.
Here is a UNIX example:

$ ls -l *dat
-rw-r--r-- 1 joe mkt 448 Oct 13 14:24 xptds.dat
-rw-r--r-- 1 joe mkt 890 Oct 13 14:24 xptlib.dat

The size of XPTDS.DAT is 448 bytes; XPTLIB.DAT, 890 bytes.
The method for listing a file size varies according to operating environment.
Compare the size of the transport file on the source operating environment with the

size of the transport file that is transferred to the target operating environment. If the
sizes of the transport files are identical, then you can assume that the network
successfully transferred these files. If the sizes are not the same, you can assume that
the network transfer failed. In this case, review the transfer options and try the
transfer again.

106 Comparing the Original Data Set with the Restored Data Set Chapter 13

Comparing the Original Data Set with the Restored Data Set
You can use the CONTENTS procedure to reveal discrepancies between the original

data set at the source operating environment and the restored data set at the target
operating environment. A comparison could reveal a misconception about the
transported data. For example, upon examination of the data set, you might learn that
an entire library of data sets was mistakenly transported instead of only the intended
data set.

Use the CONTENTS procedure or the PRINT procedure to list the contents of
members of type DATA.

In this example, PROC CONTENTS shows the contents of a single data set in a
library:

Example Code 13.24 Using PROC CONTENTS to Show the Contents of a Data Set

proc contents data=xptds._all_;
CONTENTS PROCEDURE

Data Set Name: XPTDS.GRADES Observations: .
Member Type: DATA Variables: 4
Engine: XPORT Indexes: 0
Created: . Observation Length: 32
Last Modified: . Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos

4 FINAL Num 8 24
1 STUDENT Char 8 0
2 TEST1 Num 8 8
3 TEST2 Num 8 16

DATAPROG: Creates datasets for TRANSPORTING

CONTENTS PROCEDURE

-----Directory-----

Libref: XPTDS
Engine: XPORT
Physical Name: 1DUA330:[HOSTVAX.JOE.XPTTEST]XPTDS.DAT

Name Memtype Indexes

1 GRADES DATA

If you detect problems, re-create the transport file and restore it again at the source
operating environment.

107

P A R T7

Appendix

Appendix 1.Recommended Reading 109

108

109

A P P E N D I X

1
Recommended Reading

Recommended Reading 109

Recommended Reading

Here is the recommended reading list for this title:
� SAS/CONNECT User’s Guide
� SAS/SHARE User’s Guide
� SAS Language Reference: Dictionary
� Base SAS Procedures Guide
� SAS Language Reference: Concepts
� Communications Access Methods for SAS/CONNECT and SAS/SHARE
� SAS XML LIBNAME Engine User’s Guide
� SAS Companion that is specific to your operating environment

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

110

111

Glossary

accessing SAS files
the process whereby a user reads, writes, or updates SAS files that are stored on a
different operating environment across a network. Such a user typically does not
own the files.

architectural compatibility
a characteristic shared by two or more operating environments that use identical
internal representations for storing numeric data, character data, or both.
Compatible operating environments use the same standards or conventions for
storing floating-point numbers (IEEE or IBM 390); for character encoding (ASCII or
EBCDIC); for the ordering of bytes in memory (big Endian or little Endian); for word
alignment (4-byte boundaries or 8-byte boundaries); and for data-type length (16-bit,
32-bit, or 64-bit).

backward compatibility
the ability of a SAS client that runs a particular version of SAS (such as SAS 9 or
SAS Version 8) to read, write, and update a SAS file that was created using an
earlier version of SAS (such as Version 6) as long as the client’s application does not
implement new features such as long names. The SAS client and application that
run the later version are said to be backward compatible with the SAS file that was
created using the earlier version. See also forward compatibility.

binary file
a file that is stored in binary format, which cannot be edited with a text editor.
Binary files are usually executable, but they can contain only data.

catalog
See SAS catalog.

catalog entry
See SAS catalog entry.

CEDA (Cross-Environment Data Access)
a feature of SAS software that enables a SAS data file that was created in any
directory-based operating environment (for example, Solaris, Windows, HP-UX,
OpenVMS) to be read by a SAS session that is running in another directory-based
environment. You can access the SAS data files without using any intermediate
conversion steps. See also native file format, foreign file format.

112 Glossary

client session
a SAS session that is running on a client computer. A client session accepts SAS
statements and passes those that are remote-submitted to the server for processing.
The client session manages the output and messages from both the client session and
the server session.

communications access method
the method that a client uses to communicate with a server. You can use the
COMAMID= system option to specify the communications access method.

compatible operating environments
See architectural compatibility.

converting SAS files
the process of changing the format of SAS files to the format that is used by SAS in
the target operating environment. See also copying SAS files, target operating
environment.

copying SAS files
the process of transferring SAS files between compatible operating environments,
either by means of a magnetic medium or across a network. No transporting or
converting is performed. See also converting SAS files, moving SAS files,
transporting SAS files.

Cross-Environment Data Access (CEDA)
See CEDA (Cross-Environment Data Access).

cross-version environment
a computing environment in which SAS clients and servers use different versions or
releases of SAS software. The following factors control whether a SAS file can be
accessed for reading, writing, or updating: 1) the version of SAS run by the server, 2)
the version of SAS run by the client, 3) the version of SAS that was used to create
the file that is being accessed, and 4) the member type that is being accessed. See
also member type.

data control block (DCB)
See DCB (data control block).

data file
See SAS data file.

data precision
the reliability of numeric data in a SAS file that is exchanged between operating
environments. Compatible operating environments, which use the same internal
representation for storing floating-point numeric data, exchange numeric data with
no loss of precision. Precision is lost when numeric data is passed between
incompatible operating environments. See also architectural compatibility.

data set
See SAS data set.

data view
See SAS data view.

DCB (data control block)
the OS/390 control block that contains information about the physical characteristics
of an operating system data set.

descriptor information
information about the contents and attributes of a SAS data set. For example, the
descriptor information includes the data types and lengths of the variables, as well

Glossary 113

as which engine was used to create the data. SAS creates and maintains descriptor
information within every SAS data set.

engine
a component of SAS that reads from or writes to a file. Each engine enables SAS to
access files that are in a particular format. There are several types of engines. See
also V9 engine, V8 engine, V7 engine, V6 engine, transport engine.

entry type
a characteristic of a SAS catalog entry that identifies the catalog entry’s structure
and attributes to SAS. When you create an entry, SAS automatically assigns the
entry type as part of the name.

external file
a file that is created and maintained by a host operating system or by another
vendor’s software application. SAS can read data from and route output to external
files. External files can contain raw data, SAS programming statements, procedure
output, or output that was created by the PUT statement. A SAS data set is not an
external file. See also fileref.

file corruption
the result of an operation that changes a file’s data or the file’s header, causing the
file’s structure or contents to be inaccessible. A common cause of corruption during
file transport is that the transport file contains one or more incorrectly placed
carriage returns or line feeds to mark the end of record, which makes the entire file
unreadable after it is transferred across a network. Communications software can
also cause corruption if it changes file attributes such as logical record length, block
size, or record format.

File Transfer Protocol (FTP)
See FTP (File Transfer Protocol).

fileref (file reference)
a name that is temporarily assigned to an external file or to an aggregate storage
location such as a directory or folder. The fileref identifies the file or the storage
location to SAS. See also libref.

foreign file format
a relative term that contrasts the internal data representation of a file with that of
an operating environment. If the internal formats are not the same, the file format is
considered to be foreign to the operating environment. For example, the format of a
file that is created in an OS/390 operating environment is considered to be foreign to
Windows operating environments. An operating environment can read a file that has
a foreign format, but it cannot write to or update the file. Foreign file formats are
also referred to as non-native file formats. See also native file format.

forward compatibility
the ability of a SAS client that runs a particular version of SAS to read, write, and
update a SAS file that was created using a later version of SAS as long as the SAS
file does not implement features such as long names that are specific to the later
version. The accessing SAS client and the application that run the earlier version of
SAS are said to be forward compatible with the SAS file that was created using the
later version. See also backward compatibility.

FTP (File Transfer Protocol)
a TCP/IP-specific application protocol that is used for transferring files across a
network. FTP requires a user to supply a user ID and usually a password in order to
access a server.

114 Glossary

generation data set
an archived copy of a SAS data set. Multiple copies of a SAS data set can be kept by
requesting the generations feature. The multiple copies represent versions of the
same data set, which are archived each time the data set is replaced. The copies are
referred to as a generation group and are a collection of data sets that have the same
root member name but different version numbers. There is a base version, which is
the most recent version, plus a set of historical versions.

importing transport files
the process of returning SAS transport files to their original form (SAS data library,
SAS catalog, or SAS data set) in a format that is appropriate to the target operating
environment. The terms ’import’ and ’restore’ can both be used to describe this
process, but ’import’ usually refers to the use of the CIMPORT procedure. See also
restoring transport files.

incompatible operating environments
See architectural compatibility.

integrity constraints
a set of data validation rules that you can specify in order to restrict the data values
that can be stored for a variable in a SAS data file. Integrity constraints help you
preserve the validity and consistency of your data.

itemstore
a SAS data set that consists of pieces of information that can be accessed
independently. The contents of an itemstore are organized in a directory tree
structure, which is similar to the directory structures that are used by UNIX System
Services or by DOS. For example, a particular value might be stored and located
using a directory path (root_dir/sub_dir/value). The SAS Registry is an example of an
itemstore.

JCL (Job Control Language)
a language that is used in the z/OS operating environment to communicate
information about a job to the operating system, including information about the
data sets, execution time, and amount of memory that the job needs.

Job Control Language (JCL)
See JCL (Job Control Language).

library concatenation
a logical combination of two or more libraries that enables the SAS data sets in the
combined libraries to be accessed using a single libref.

library reference
See libref.

libref (library reference)
a name that is temporarily associated with a SAS data library. The complete name of
a SAS file consists of two words, separated by a period. The libref, which is the first
word, indicates the library. The second word is the name of the specific SAS file. For
example, in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the
file NEWBDAY. You assign a libref with a LIBNAME statement or with an operating
system command.

long names
an enhancement that was implemented in SAS Version 7 to extend the maximum
length of names from the maximum lengths that were applicable in Version 6. This
enhancement applies to the names of variables, data sets, procedures, options,
statement labels, librefs, and filerefs. Maximum lengths for long names vary
according to the type of name. Truncation rules are applied to long names when a file

Glossary 115

that was created using Version 7 or later is used in a Version 6 operating
environment.

MDDB (multidimensional database)
a specialized data storage structure in which data is presummarized and
cross-tabulated and then stored as individual cells in a matrix format, rather than in
the row-and-column format of relational database tables. The source data can come
either from a data warehouse or from other data sources. MDDBs can give users
quick, unlimited views of multiple relationships in large quantities of summarized
data.

member type
a SAS name that identifies the type of information that is stored in a SAS file.
Member types include ACCESS, DATA, CATALOG, ITEMSTOR, MDDB, PROGRAM,
and VIEW.

migrating SAS files
the process of moving SAS files (data and applications) from an operating
environment that runs a particular version of SAS to another operating environment
that runs a later version of SAS. Files are migrated in order to take advantage of
features from the later version. See also moving SAS files.

mixed library
a SAS data library that contains Version 6 SAS files as well as SAS files that were
created using Version 7 or later. Although mixed libraries are permitted, their
maintenance can be difficult. See also SAS filename extension, V9 engine, V8 engine,
V7 engine, V6 engine.

moving SAS files
the process of passing SAS files from one operating environment to another operating
environment, either by means of magnetic media or across a network. Three specific
variations of moving a SAS file are converting, copying, and transporting. See also
converting SAS files, copying SAS files, transporting SAS files.

multidimensional database (MDDB)
See MDDB (multidimensional database).

native file format
a relative term that compares the internal data representation of a file with that of
an operating environment. If the internal formats are the same, the file format is
considered to be native to the operating environment. For example, the format of a
file that is created in a Windows operating environment is considered to be native to
Windows operating environments. An operating environment can read, write, and
update files that have a native format. See also foreign file format.

precision
See data precision.

regressing SAS files
the process of moving SAS files from a particular version of SAS to an earlier version
– for example, from SAS 9 to SAS Release 6.12. If the files created in the later
version contain features such as integrity constraints that are not supported in the
earlier version, then you cannot regress the files. Instead, you re-create the files in
an operating environment that runs the later version of SAS.

restoring transport files
the process of returning SAS transport files to their original form (SAS data library,
SAS catalog, or SAS data set) in the format that is appropriate to the target operating
environment. Restoration is performed using either of two techniques, as appropriate:
1) the COPY procedure to restore a SAS transport file that was created by the COPY

116 Glossary

procedure with the XPORT engine, 2) the CIMPORT procedure to restore a SAS
transport file that was created by the CPORT procedure. Restoring is also referred to
as reading or importing transport files. See also importing transport files.

SAS catalog
a SAS file that stores many different kinds of information in smaller units called
catalog entries. A single SAS catalog can contain several different types of catalog
entries. See also SAS catalog entry.

SAS catalog entry
a separate storage unit within a SAS catalog. Each entry has an entry type that
identifies its purpose to SAS. Some catalog entries contain system information such
as key definitions. Other catalog entries contain application information such as
window definitions, Help windows, formats, informats, macros, or graphics output.
See also entry type.

SAS data file
a type of SAS data set that contains data values as well as descriptor information
that is associated with the data. The descriptor information includes information
such as the data types and lengths of the variables, as well as the name of the engine
that was used to create the data. SAS data files are of member type DATA. See also
SAS data set, SAS data view.

SAS data library
a collection of one or more SAS files that are recognized by SAS and which are
referenced and stored as a unit. Each file is a member of the library.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats. See also descriptor information.

SAS data view
a type of SAS data set that retrieves data values from other files. A SAS data view
contains only descriptor information such as the data types and lengths of the
variables (columns), plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors’ file
formats. SAS data views are of member type VIEW.

SAS filename extension
a standard filename identifier that conveys information about these file attributes: 1)
the SAS engine that was used to create the file, 2) the architecture of the operating
environment in which the file was created, and 3) the member type. SAS uses
filename extensions to identify the appropriate files for access. See also architectural
compatibility, member type, V9 engine, V8 engine, V7 engine.

SAS/SHARE client
a SAS session that requests access to remote data by means of a SAS/SHARE server.
See also SAS/SHARE server.

SAS/SHARE server
the result of an execution of the SERVER procedure. The SERVER procedure is part
of SAS/SHARE software. A server runs in a separate SAS execution that services
users’ SAS sessions by controlling and executing input and output requests to one or
more SAS data libraries.

Glossary 117

source operating environment
the operating environment from which you move a SAS file.

target operating environment
the operating environment to which you move a SAS file.

transferring SAS files
the process of delivering SAS files from a source operating environment to a target
operating environment, either by means of a magnetic medium or across a network.
See also copying SAS files.

translation table
an operating environment-specific SAS catalog entry that is used to translate the
value of one character to another. Translation tables often are needed to support the
use of multiple national languages in an application. An example of a translation
table is one that converts characters from EBCDIC to ASCII-ISO.

transport engine
a facility that transforms a SAS file from its operating environment-specific internal
representation to transport format. See also transport format, transport file,
transporting SAS files.

transport file
a sequential file that contains a SAS data library, a SAS catalog, or a SAS data set in
transport format. You can use transport files to move SAS data libraries, SAS
catalogs, and SAS data sets from one operating environment to another. See also
transporting SAS files.

transport format
either of two file formats that are used to move SAS data sets, SAS data libraries,
and SAS catalogs from one operating environment to another. One transport format
is produced when the COPY procedure is used with the XPORT engine. The other
transport format is produced by the CPORT and CIMPORT procedures. Each of
these transport formats is the same in all operating environments. See also
transporting SAS files, transport file, transport engine.

transporting SAS files
the process of putting SAS files into transport format and moving them between
incompatible operating environments. The transport process creates a transport file
in the source operating environment, transfers the transport file to the target
operating environment, and restores the transport file to the native format in the
target operating environment. If the source and target operating environments run
different versions of SAS, the transport process implicitly converts the file only from
an earlier version of SAS to a later version. See also architectural compatibility,
transport file, transport format, converting SAS files, transferring SAS files.

universal header
a line attached to the beginning of a SAS file that was created with CEDA. The
header contains architectural attributes such as number size, number alignment,
data representation, and character encoding. By accessing the universal header, the
remote operating environment can determine whether the file’s format is native or
foreign to that of the accessing operating environment. If the file’s format is native,
then the operating environment can read, write, and update the file. If the file’s
format is foreign, then the operating environment can only read the file. See also
architectural compatibility, CEDA (Cross-Environment Data Access), foreign file
format, native file format.

V6 engine
the default engine for SAS Version 6. This engine accesses SAS files in Version 6
SAS data libraries.

118 Glossary

V7 engine
the default engine for SAS Version 7. This engine accesses SAS files in Version 7
SAS data libraries. The SAS 9, SAS Version 8, and SAS Version 7 file formats are
identical.

V8 engine
the default engine for SAS Version 8. This engine accesses SAS files in Version 8
SAS data libraries. The SAS 9, SAS Version 8, and SAS Version 7 file formats are
identical.

V9 engine
the default engine for SAS 9. This engine accesses SAS files in SAS 9 data libraries.
The SAS 9, SAS Version 8, and SAS Version 7 file formats are identical.

XML (Extensible Markup Language)
a markup language that enables you to define tags that identify the types of data
and information in XML documents.

XML engine
See XML LIBNAME engine.

XML LIBNAME engine
the SAS engine that processes XML documents. The engine exports an XML
document from a SAS data set by translating the proprietary SAS file format to XML
markup. The engine also imports an external XML document by translating XML
markup to a SAS data set.

XPORT engine
the SAS transport engine. This engine accesses SAS files in transport format. An
alternate name for this engine is SASV5XPT.

Index 119

Index

A
accessing SAS files 3

CEDA 11
international environments 7
reading and writing foreign files 16
strategies for 4, 5
troubleshooting 68
updating foreign files 16

attributes of transport files
See transport file attributes

B
Bad transport file 71
batch statements

z/OS file transport 52
BINARY command (FTP) 39
binary format 68
block size 38

reblocking transport files 78
BLOCKSIZE= option

FILENAME statement 39

C
carriage returns 68
catalog entries, transport files for

CIMPORT procedure 23
CPORT procedure 19, 91

Catalog file open function is not supported 72
CATALOG= option

CIMPORT procedure 22, 23
CPORT procedure 19

CATALOG= parameter
CIMPORT procedure 72

catalogs, transport files for
CPORT procedure 19, 91
importing from transport files 22
troubleshooting 73

CC= option
FILENAME statement 48
LIBNAME statement 48

CEDA (cross-environment data access) 11
advantages of 12
changing file formats 13
identifying file formats 15
limitations of 12

reading and writing foreign files 16
transferring files 15

CIMPORT procedure 17
CATALOG= option 22, 23
CATALOG= parameter 72
DATA= option 22, 75
EET= option 72
ET= option 72
EXCLUDE statement 21, 23
importing catalogs and entries 22
importing data sets from transport files 21
INFILE= option 21
LIBNAME= option 22, 72
LIBRARY= option 21
LIBRARY= parameter 72
MEMTYPE= option 21, 72
mixing transport strategies 69
moving files, z/OS to Windows 94
regressing not allowed 18
SELECT statement 21, 23
validating transport file integrity 70

communications software 69
CONTENTS procedure 15, 106

identifying SAS engine 62
identifying SAS version 46, 51, 56, 60

CONTENTS statement
DATASETS procedure 15

COPY procedure 26
creating transport files 28
creating XML documents from data sets 33
EXCLUDE statement 28, 30
IN= option 28, 30
JCL batch to UNIX transport 99
MEMTYPE= option 28
moving files, OpenVMS to UNIX 84, 89
moving files, z/OS to Windows 96
OUT= option 28, 30
restoring data sets 30, 34
SELECT statement 28, 30, 33
validating transport file integrity 70

corruption, checking for 68, 74
CPORT procedure 17

CATALOG= option 19
DATA= option 18
EET= option 19
entry type not supported by 73
ET= option 19
EXCLUDE statement 19, 20
file headers 63
FILE= option 18

LIBNAME= option 72
LIBRARY= option 18, 75
MEMTYPE= option 19
mixing transport strategies 69
moving files, z/OS to Windows 91
NOCOMPRESS option 63, 73
regressing not allowed 18
SELECT statement 20
SORTINFO= option 71
transport files 18, 19
validating transport file integrity 70

cross-environment data access
See CEDA (cross-environment data access)

D
damaged files 74
data corruption, checking for 68, 74
DATA= option

CIMPORT procedure 22, 75
CPORT procedure 18

DATA= or LIBRARY= parameter expected 72
DATA= parameter

CIMPORT procedure 72
data sets

creating XML documents from 32, 33
discrepancies between original and re-

stored 106
exporting XML documents from 31
for examples 7
importing from transport files 21, 29, 94
regressing to SAS 6 format 26
restoring from transport files 29, 30
restoring XML documents as 34
transport files for 18, 27

DATA step
creating transport files 27, 84, 89, 96, 99
creating XML documents from data sets 32
restoring data sets from XML documents 34
restoring transport files 29

DATASETS procedure
CONTENTS statement 15

dd command (UNIX) 40, 57
discrepancies, between original and restored data

sets 106
DOWNLOAD procedure 26

120 Index

E
EET= option

CIMPORT procedure 72
CPORT procedure 19

Encrypted data is invalid (Windows) 60
engines

identifying engine used 61
identifying version 62

Entry type is not compatible 73
Entry type is not supported 73
error messages 71

OpenVMS Alpha 47
Windows 60

ET= option
CIMPORT procedure 72
CPORT procedure 19

examples
data set for 7
naming conventions 8

EXCLUDE statement
CIMPORT procedure 21, 23
COPY procedure 28, 30
CPORT procedure 19, 20

exporting XML documents
from data sets 31

F
file formats

binary format 68
changing 13
identifying 15
magnetic media 39, 47, 56
reading and writing foreign files 16
transport files, creating 25
transport files, transferring 17
updating foreign files 16
verifying 77

File has too long a member name 73
file headers 62
File is damaged 74
FILE= option

CPORT procedure 18
filename extensions

identifying operating environment used 61
identifying SAS engine used 61

FILENAME statement
BLOCKSIZE= option 39
CC= option 48
creating transport files on tape 56
FTP option 39
HOST= option 39
LRECL= option 39
PASS= option 39
RCMD= option 39
RECFM= option 39
SMTP option 39
SOCKET option 39
specifying transport file attributes 38
UMASK= option 39
URL option 39
USER= option 39

foreign files
reading and writing 16
updating 16

FTP (File Transfer Protocol) 39
transferring files with 98
transferring foreign files 40
z/OS 52

FTP option
FILENAME statement 39

G
GET command (FTP) 40
Given transport file is bad (OpenVMS) 47
GRADES data set (example) 7

H
hexadecimal data

reading z/OS transport files as 54
HOST= option

FILENAME statement 39

I
I/O processing incomplete 74
importing catalogs 22
importing data sets 21, 29
IN= option

COPY procedure 28, 30
INFILE= option

CIMPORT procedure 21
INITIALIZE command (DCL) 47
integrity of transport files 70
Internal error from getting data 49, 74
international environments 7
Invalid data length 75

J
JCL batch to UNIX transport (z/OS) 96

L
large transport files

dividing into smaller files for tape 71
LIBNAME= option

CIMPORT procedure 22, 72
CPORT procedure 72

LIBNAME statement
CC= option 48
creating transport files on tape 56
OUTREP= option 13
transferring files, magnetic media 40

LIBRARY= option
CIMPORT procedure 21
CPORT procedure 18, 75

LIBRARY= parameter
CIMPORT procedure 72

LISTD command (TSO) 51, 93
log

OpenVMS to UNIX transport 85, 90
viewing at source machine 14
z/OS JCL batch to UNIX 100, 102, 103

z/OS to Windows transport 92, 95
logical record length 38
long variable names

truncating 26
LRECL= option

FILENAME statement 39

M
magnetic media 39

dividing large files 71
mounting on OpenVMS Alpha 47
UNIX 56
unlabeled tape 39, 70

Member or library unavailable for use in file 48,
75

MEMTYPE= option
CIMPORT procedure 21, 72
COPY procedure 28
CPORT procedure 19

More library members exist in the input file 75
moving files

See transferring SAS files
MSGLEVEL= system option 15

N
naming conventions 8, 77
National Language Support (NLS) 7
NFTCOPY command (DCL) 47
NLS (National Language Support) 7
NOCOMPRESS option

CPORT procedure 63, 73
Not a SAS file 72

O
OpenVMS Alpha 45

error messages 47
identifying SAS version used 46
listing file attributes 45
mounting tape device on 47
moving files to UNIX 84, 89
specifying file attributes 46
transport file attributes 45
transport files 47

operating environment
identifying 61
invoking communications software 69

OUT= option
COPY procedure 28, 30

OUTREP= data set option 13
OUTREP= option

LIBNAME statement 13

P
PASS= option

FILENAME statement 39
PATHWORKS 68
PROC SQL will not store a V9 view 76
PUT command (FTP) 40

Index 121

R
RCMD= option

FILENAME statement 39
reading foreign files 16
reading transport files

z/OS 53
reblocking transport files 78
RECFM= option

FILENAME statement 39
RECORD FORMAT attribute (OpenVMS) 46
record length

z/OS 52
Record truncated 76
regressing 18, 77

data sets to SAS 6 format 26
rename command (DOS) 60
Requested function is not supported 76
restoring data sets 29, 30
restoring transport files

at target machine 20, 29
CIMPORT procedure for 21
identifying file content 20, 29
JCL batch to UNIX transport 99
troubleshooting 68
verifying 104
XPORT engine for 89

restoring XML documents
as data sets 34

S
SAS engines

identifying 61
identifying version used 62

SAS names 77
SAS version, identifying

OpenVMS Alpha 46
UNIX 55
Windows 59
z/OS 51

SELECT statement
CIMPORT procedure 21, 23
COPY procedure 28, 30, 33
CPORT procedure 20

SEQUENTIAL_FIXED attribute 68
size of transport file 105
SMTP option

FILENAME statement 39
SOCKET option

FILENAME statement 39
SORTINFO= option

CPORT procedure 71
SQL procedure 76
strategies

compatibility of 69
determining the strategy used 62
moving and accessing files 4, 5
verifying transport files 104

T
tape

See magnetic media

TRANFILE command (DCL) 47
transfer files

creating for data sets 27
transferring SAS files 3, 15, 37

CPORT and CIMPORT procedures 17
examples 84
exporting XML documents from data sets 31
FILENAME statement 38
FTP 38, 39
international environments 7
magnetic media for 39, 47, 56, 70
OpenVMS Alpha to UNIX 84, 89
strategies for 4, 5
troubleshooting 68
XML documents across network 33
XPORT engine 25
z/OS JCL batch to UNIX 96
z/OS to Windows 91

transport file attributes 37
changed by communications software 69
OpenVMS Alpha 45
specifying with FILENAME statement 38
UNIX 55
verifying 77
Windows 59
z/OS 51

transport files 17, 20, 29, 68
accuracy of 98
bad transport file 71, 74
binary format 68
corruption, checking for 74
creating 28
creating at source machine 18
creating for catalogs and entries 19, 91
creating for data sets 18, 27, 91
creating on tape 56
dividing large files 71
file headers 62
identifying content of 20, 29
importing catalogs and entries 22
importing data sets 21, 29
OpenVMS Alpha 47
reading as hexadecimal data 54
reading in z/OS 53
reblocking 78
restoring at target machine 20, 29
restoring data sets from 21, 29, 30
size of, verifying 105
troubleshooting 68
validating integrity 70
verifying, strategies for 104
verifying format and file attributes 77
Windows 60
XPORT engine 25
z/OS 52

transport format 25
transport strategies 4, 5

compatibility of 69
determining the strategy used 62

troubleshooting
error and warning messages 71
reblocking transport files 78
restoring transport files 68
transferring transport files 68
verifying format 77
verifying transport file attributes 77

Truncated record error 48, 76

truncating long variable names 26, 73, 77
type command (DOS) 60

U
UMASK= option

FILENAME statement 39
UNIX

copying transport files 57
creating transport files on tape 56
identifying SAS version used 55
JCL batch to UNIX transport 96
moving files from OpenVMS 84, 89
specifying file attributes 55

UNIX System Services Directory 52
unlabeled tape 39, 70
updating foreign files 16
Updating not allowed 76
UPLOAD procedure 26
URL option

FILENAME statement 39
USER= option

FILENAME statement 39
UTILITY FILE OPEN function is not sup-

ported 76

V
V6 engine

member name too long 73
V9 views 76
validating integrity of transport files 70
VALIDVARNAME system option 27, 73, 74, 77
Value y code is not a valid SAS name 77
Variable name is illegal 77
variable names

truncating 26
verifying transfer format and file attributes 77
verifying transport files 104
views 76

W
warning messages 71
Windows

encrypted data 60
error messages 60
identifying SAS version used 59
moving files from z/OS 91
specifying file attributes 59
transport files 60

writing foreign files 16

X
XML documents

creating at source machine 32
creating from data sets 32, 33
exporting from data sets 31
restoring as data sets 34
transferring across network 33

122 Index

XML engine 31
advantages of 31
limitations of 32

XPORT engine 25
advantages of 25
catalog file open function 72
creating transport files 27
file headers 63
limitations of 26
member name too long 73
moving files, OpenVMS to UNIX 84, 89, 96
regressing data sets 26

restoring data sets 29
restoring transport files 29
transferring transport files across network 29
truncating variable names 26
UTILITY FILE OPEN function not sup-

ported 76

Z
z/OS

batch statements for file transport 52
FTP 52
hexadecimal transport files 54
identifying SAS version used 51
JCL batch to UNIX transport 96
listing file attributes 51
moving files to Windows 91
reading transport files 53
record length 52
transferring transport files 52
transport file attributes 51
UNIX System Services Directory and 52

Your Turn

If you have comments or suggestions about Moving and Accessing SAS 9.1 Files,
please send them to us on a photocopy of this page, or send us electronic mail.

For comments about this book, please return the photocopy to
SAS Publishing
SAS Campus Drive
Cary, NC 27513
email: yourturn@sas.com

For suggestions about the software, please return the photocopy to
SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
email: suggest@sas.com

	Table of Contents
	Contents

	What’s New
	Overview
	Details
	Cross-Environment Data Access (CEDA)
	CPORT and CIMPORT Procedures
	XPORT Engine with the DATA Step or the COPY Procedure
	XML Engine with the DATA Step or the COPY Procedure

	Introduction
	Moving and Accessing SAS Files between Operating Environments
	Deciding to Move a SAS File between Operating Environments
	Deciding to Access a SAS File across Operating Environments
	Strategies for Moving and Accessing SAS Files
	Summary of Strategy Features
	Moving and Accessing SAS Files in International Environments
	The Data Set Used for Examples
	Naming Conventions Used for Examples

	Strategies for Moving and Accessing SAS Files
	Cross-Environment Data Access (CEDA)
	Overview of CEDA
	CEDA Advantages
	CEDA Limitations
	Changing SAS File Formats
	Changing a File’s Format at the Source or Target Machine
	Using the OUTREP= Option in the LIBNAME Statement
	Using the OUTREP= Data Set Option in the DATA Step
	Viewing the SAS Log at the Source Machine

	Transferring a SAS File between Machines
	Identifying the Format of a SAS File
	Setting the MSGLEVEL= System Option
	Using PROC CONTENTS to Identify a File’s Format
	Updating a Foreign File

	Reading and Writing a Foreign File

	PROC CPORT and PROC CIMPORT
	Overview of PROC CPORT and PROC CIMPORT
	PROC CPORT and PROC CIMPORT Advantage
	PROC CPORT and PROC CIMPORT Limitations
	Creating a Transport File at the Source Machine
	Using PROC CPORT to Create a Transport File for Data Sets
	Using PROC CPORT to Create a Transport File for Catalogs

	Transferring Transport Files to a Target Machine
	Restoring Transport Files at the Target Machine
	Identifying the Content of the Transport File
	Using PROC CIMPORT to Import Data Sets from a Transport File
	Using PROC CIMPORT to Import Catalogs from a Transport File

	XPORT Engine with DATA Step or PROC COPY
	Overview of the XPORT Engine
	XPORT Engine Advantages
	XPORT Engine Limitations
	Regressing SAS Data Sets to SAS 6 Format
	Creating a Transport File at the Source Machine
	Using the DATA Step to Create a Transport File for One Data Set
	Using PROC COPY to Create a Transport File for One or More Data Sets

	Transferring Transport Files across a Network
	Restoring Transport Files at the Target Machine
	Identifying the Content of the Transport File
	Using a DATA Step to Restore a Single Data Set from a Transport File
	Using PROC COPY to Restore Data Sets from a Transport File

	XML Engine with DATA Step or PROC COPY
	Overview of the XML Engine
	XML Engine Advantages
	XML Engine Limitations
	Creating an XML Document at the Source Machine
	Using the DATA Step to Create an XML Document from a Data Set
	Using PROC COPY to Create an XML Document from a Data Set

	Transferring an XML Document across a Network
	Restoring an XML Document as a Data Set at a Target Machine
	Using a DATA Step to Restore a Data Set from an XML Document
	Using PROC COPY to Restore a Data Set from an XML Document

	Transferring Transport Files and Foreign Files
	Transferring Files
	Overview of File Transfers
	Attributes for Transport Files
	Using the FILENAME Statement or the FTP Utility for Foreign Files and Transport Files
	Example: Using the FILENAME Statement to Specify Transport File Attributes for All Target Machines
	Using FTP to Transfer Files in Foreign Format and Transport Files across the Network
	Using a Magnetic Medium for Tansferring Files in Foreign Format and Transport Files
	Example: Using FTP to Transfer Foreign Files and Transport Files

	Operating Environment Specifics
	OpenVMS Operating Environment
	Listing OpenVMS System File Attributes
	Specifying File Attributes for OpenVMS
	Identifying the SAS Version Used to Create a Member Under OpenVMS
	Mounting a Tape Device on OpenVMS
	OpenVMS Error Messages
	Given transport file is bad
	Member or library unavailable for use in file
	Truncated record
	Internal error from getting data

	z/OS Operating Environment
	Listing z/OS File Attributes
	Identifying the SAS Version Used to Create a Member under z/OS
	Organizing z/OS Files with the SAS 8 and Later UNIX System Services Directory
	Using z/OS Batch Statements for File Transport
	Transferring a Transport File over the Network
	Record Length Issues
	FTP
	Attachmate

	Reading Transport Files in z/OS Operating Environments
	Interpreting Transport Files in SAS
	Reading Transport File as Hexadecimal Data

	UNIX Operating Environment
	Specifying File Attributes for UNIX
	Identifying the SAS Version Used to Create a Member under UNIX
	Creating a Transport File on Tape
	Copying the Transport File from Disk to Tape at the UNIX Source Machine
	Copying the Transport File from Tape to Disk at the Target Machine

	Windows Operating Environment
	Specifying File Attributes for Windows
	Identifying the SAS Version Used to Create a Member under Windows
	Error Message
	Encrypted data is invalid

	SAS Filename Extensions and File Headers
	Using Filename Extensions to Identify Which SAS Engine and Operating Environment Were Used to Create a SAS File
	Using PROC CONTENTS to Identify Which SAS Base Engine Was Used to Create a SAS File
	Using File Headers to Identify Which Strategy Was Used to Create a Transport File

	Troubleshooting
	Preventing and Fixing Problems
	Problems Transferring and Restoring Transport files
	Troubleshooting Checklist
	Transferring the Transport File in Binary Format
	Verifying That the Transport File Has Not Been Corrupted
	Verifying That the Communications Software Has Not Changed File Attributes
	Invoking the Communications Software at the Target Operating Environment
	Using Compatible Transport Strategies at the Source and Target Operating Environments
	Validating the Integrity of the Transport File
	Using an Unlabeled Tape
	Dividing a Large Transport File into Smaller Files for Tape

	Error and Warning Messages
	Bad Transport File
	Catalog file open function is not supported by the XPORT engine
	DATA= or LIBRARY= parameter expected instead of CATALOG=
	is not a SAS file
	Entry type
	is not supported by CPORT
	Entry type
	is not compatible to earlier release
	File
	DATA
	has too long a member name for the XPORT
	engine
	File
	DATA
	has too long a member name for the V6
	engine
	File
	ALL
	is damaged. I/O processing did not complete
	Given transport file is bad
	Internal error from getting data
	Invalid data length
	Member or library unavailable for use in file
	More library members exist in the input file. For all of them to get converted, please specify LIBRARY= libref parameter in the PROC statement
	PROC SQL will not store a V9 view into a V6 library
	Requested function is not supported
	Truncated record
	Updating not allowed for
	because it was created
	for a different operating system
	UTILITY FILE OPEN function is not supported by the XPORT engine
	The value
	code is not a valid SAS name; Skipping data set due to
	error
	Variable name
	is illegal for file

	Verifying Transfer Format and Transport File Attributes
	Reblocking a Transport File

	Samples and Logs
	Examples of Moving SAS Files
	The Examples of Moving SAS Files
	Overview to Examples of Moving SAS Files

	OpenVMS Alpha to UNIX File Transport
	Using PROC COPY at the Source Operating Environment to Create Transport Files
	Viewing the SAS Log at the Source Operating Environment
	Verifying Transport Files
	Transferring the Transport Files to the Target Operating Environment
	Using PROC COPY at the Target Operating Environment to Restore Transport Files into Native Format
	Viewing the SAS Log at the Target Operating Environment

	z/OS to Windows File Transport
	Using PROC CPORT at the Source Operating Environment to Create Transport Files
	Viewing the SAS Log at the Source Operating Environment
	Verifying Transport Files
	Transferring Transport Files to the Target Operating Environment
	Using PROC CIMPORT at the Target Operating Environment to Import Transport Files into Native Format
	Viewing the SAS Log at the Target Operating Environment

	z/OS JCL Batch to UNIX File Transport
	The z/OS JCL Batch Program
	Using PROC COPY to Create a Transport File
	Transferring the Transport File across the Network
	Verifying the Accuracy of the Transport File
	Using PROC COPY to Restore the Transport File
	Recording the Creation of Data Sets and Transport Files in the SAS Log
	Recording the Transfer of the Transport File to the Target Operating Environment in the SAS Log
	Recording the Verification of the Transport File in the SAS Log
	Recording the Restoration of the Transport File to the Source Operating Environment in the SAS Log

	Strategies for Verifying Transport Files
	Restoring the Transport File at the Source Operating Environment
	Verifying the Size of a Transport File
	Comparing the Original Data Set with the Restored Data Set

	Appendix
	Recommended Reading
	Recommended Reading

	Glossary
	Index

