
SAS®

9.1
Metadata LIBNAME Engine
User’s Guide

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS ® 9.1 Metadata LIBNAME Engine User’s Guide. Cary, NC: SAS Institute Inc.

SAS® 9.1 Metadata LIBNAME Engine User’s Guide
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
ISBN 1-59047-177-6
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New v

Overview v

Details v

P A R T 1 Usage 1

Chapter 1 Using the Metadata LIBNAME Engine 3
What Does the Metadata Engine Do? 3

Understanding How the Metadata Engine Works 3

Advantages of Using the Metadata Engine 5

What Is Supported? 6

Performance Considerations 7

Chapter 2 Understanding the Metadata 9
What Metadata Is Used by the Metadata Engine? 9

What Is Required to Use the Metadata Engine? 9

Chapter 3 Examples of Using the Metadata Engine 11
Submitting the LIBNAME Statement for the Metadata Engine 11

Accessing Data Using an Engine Directly Compared to Using the Metadata Engine 12

Using the Metadata Engine to Create a New Table 14

Using the Metadata Engine to Delete a Table 15

Controlling the Results of Output Processing Using the Metadata Engine 16

P A R T 2 Metadata Requirements 19

Chapter 4 SAS Metadata Model Requirements for the Metadata Engine 21
Understanding the Model Requirements 21

Chapter 5 Metadata Requirements to Construct the LIBNAME Statement for the
Underlying Engine 27
Understanding How the Metadata Engine Constructs a LIBNAME Statement 27

Metadata Requirements to Construct a LIBNAME Statement for a Base SAS
Engine 28

Metadata Requirements to Construct a LIBNAME Statement for a DBMS SAS/
ACCESS Engine 30

Metadata Requirements to Construct a LIBNAME Statement for the Remote
Engine 32

Chapter 6 Metadata Engine’s Usage of the SAS Open Metadata Architecture SAS
Namespace Types 35
What Is a SAS Namespace Type? 35

How the Metadata Engine Uses SAS Namespace Types 35

iv

Chapter 7 Metadata Requirements for Using the SAS Open Metadata Architecture
Authorization Facility to Control Data Access 45
What Is the SAS Open Metadata Architecture Authorization Facility? 45

Understanding Access Controls 46

Associating Access Controls with a Resource 46

How the SAS Metadata Server Enforces Access Controls 47

How the Metadata Engine Enforces Permissions 47

Frequently Asked Questions about the Authorization Facility 49

P A R T 3 Reference for the Metadata Engine 53

Chapter 8 LIBNAME Statement for the Metadata Engine 55
Using the LIBNAME Statement 55

LIBNAME Statement Syntax 56

Chapter 9 SAS Data Set Options for the Metadata Engine 63
Using Data Set Options 63

METAOUT= Data Set Option 63

OPTSET= Data Set Option 65

P A R T 4 Appendix 67

Appendix 1 Recommended Reading 69
Recommended Reading 69

Glossary 71

Index 73

v

What’s New

Overview
The metadata engine provides secure access to SAS data. By incorporating metadata,

the metadata engine can augment and control access to the data.

Note: This section describes the features of the metadata engine that are new or
enhanced since SAS 9. �

Details
� The metadata engine can now create a new table in a data source and create its

associated metadata. It can also delete a table in a data source and delete its
associated metadata.

� The metadata engine, in conjunction with the SAS Open Metadata Architecture
Authorization Facility, enables an administrator to control which data users are
allowed to access. Chapter 7, “Metadata Requirements for Using the SAS Open
Metadata Architecture Authorization Facility to Control Data Access,” on page 45
provides information about the metadata requirements.

� In the LIBNAME statement, the new LIBURI= and LIBRARY= arguments provide
additional methods for referencing the SASLibrary metadata object, and the new
METAOUT= option enables you to control the results of output processing for a
library. See the LIBURI= and LIBRARY= arguments and the METAOUT= option
in “LIBNAME Statement Syntax” on page 56.

� The new METAOUT= data set option enables you to control the results of output
processing for a specific table. See “METAOUT= Data Set Option” on page 63.

vi What’s New

1

P A R T1

Usage

Chapter 1.Using the Metadata LIBNAME Engine 3

Chapter 2.Understanding the Metadata 9

Chapter 3.Examples of Using the Metadata Engine 11

2

3

C H A P T E R

1
Using the Metadata LIBNAME
Engine

What Does the Metadata Engine Do? 3

Understanding How the Metadata Engine Works 3
Advantages of Using the Metadata Engine 5

What Is Supported? 6

Performance Considerations 7

What Does the Metadata Engine Do?

The metadata engine enables you to use metadata in order to process and augment
data that is identified by the metadata. The metadata engine retrieves information
about a target SAS data library from metadata objects in a specified SAS Metadata
Repository.

The metadata is information about the structure and content of data and the
applications that process and manipulate that data. The metadata contains details such
as the location of the data and the SAS engine that is used to process the data.

The metadata engine provides a consistent method for accessing many data sources.
For example, because SAS provides different engines, with different options, behavior,
and tuning requirements, it can be difficult to keep track of how each SAS engine
works. By taking advantage of metadata, the necessary information required to access
data can be created in one central location so that applications can simply use the
metadata engine in order to access different sources of data, without having to
understand the differences and details of each SAS engine.

Understanding How the Metadata Engine Works

The metadata engine works much like other SAS engines. That is, you execute a
LIBNAME statement in order to assign a libref and to specify an engine. You then use
that libref throughout the SAS session where a libref is valid.

However, instead of the libref being associated with the physical location of a SAS
data library, the metadata libref is associated with a set of metadata objects. The
metadata objects identify the SAS engine that provides access to the data and options
that are necessary to process the SAS data library and its members.

4 Understanding How the Metadata Engine Works Chapter 1

Here is an example of a LIBNAME statement for the metadata engine and a
description of what happens when you execute the statement:

libname oralib meta libid=A8000001 repid=AWPKT800
userid=metaid pw=metapw
ipaddr=myip.us.org.com port=6401
protocol=bridge liboptset=myopts;

1 The metadata engine retrieves information about the target SAS data library from
the metadata.

2 The metadata engine uses the retrieved information to construct a LIBNAME
statement for the engine that is specified in the metadata (referred to as the
underlying engine) and assigns it the appropriate options.

3 Then, when the metadata engine needs to access data, the metadata engine uses
the underlying engine to process the data.

For example, if you have an Oracle data library defined in metadata and you
reference the library with the LIBNAME statement for the metadata engine, the
metadata engine constructs a LIBNAME statement that assigns the Oracle
SAS/ACCESS engine. When the metadata engine needs to process a member of the
library, such as with the PRINT procedure, the metadata engine issues a request to the
metadata repository for the metadata that is associated with that member and uses the
Oracle engine. The metadata includes PhysicalTable, Column, and Property objects.

The following diagram illustrates the metadata engine process.

Using the Metadata LIBNAME Engine Advantages of Using the Metadata Engine 5

Figure 1.1 Metadata Engine Process

Oracle RDBMS

Metadata Engine

Oracle Engine

Oracle RDBMS

PROC PRINT

THE SAS SYSTEM

DBMS

SAS Metadata
Repository

SAS METADATA SERVER

Advantages of Using the Metadata Engine
Using the metadata engine provides the following advantages:
� The metadata engine provides a single point of access to many heterogeneous data

sources. You do not have to be aware of any of the engine-specific details.
� The metadata engine, in conjunction with the SAS Open Metadata Architecture

Authorization facility, enables an administrator to control what data users are
allowed to access in three ways:

� The administrator can associate authorization metadata to any metadata
resource in a repository using the SAS Open Metadata Architecture
Authorization Facility. The metadata engine enforces the decision returned
by the authorization facility for libraries and tables.

� The administrator can include only those libraries, tables, and columns that
users are allowed to access in the metadata. In this way, only those libraries,
tables, and columns can be accessed by the metadata engine. For example, if
a data source has five tables but only two are defined in the repository, the
metadata engine provides access to only those two tables. In another
situation, if a table has 20 columns but only five columns are defined in the

6 What Is Supported? Chapter 1

repository, the metadata engine provides access to only those five columns. In
this context, the metadata engine acts as a filter, providing member- and
column-level security.

� An administrator can associate authorization metadata to a metadata
resource that prevents the user from accessing the resource in the data
source. For example, if a library has 20 tables and all 20 tables are defined in
the repository, then the administrator can associate authorization metadata
with five tables, which prevents the user from accessing those tables.
Therefore, the user will have access to only 15 tables. Again, the metadata
engine acts as a filter, providing member-level security.

An advantage of this behavior is that an administrator can use the metadata
engine as a means to provide library and table security. See Chapter 7, “Metadata
Requirements for Using the SAS Open Metadata Architecture Authorization
Facility to Control Data Access,” on page 45.

� The SAS Open Metadata Architecture, which is a general-purpose metadata
management facility that provides common metadata services to SAS applications,
provides a permanent storage location to maintain column formats, informats,
labels, and other information that cannot currently be saved with some data
sources.

� Changing the type of data source you use does not require changing SAS code or
other applications. SAS Open Metadata Architecture provides a centralized
location for storing information about your data environment. Because the
metadata engine uses this environment to access your data, you are insulated
from these changes. It does not matter if your data changes from Oracle to DB2 to
SAS; the SAS code remains the same.

What Is Supported?

The metadata engine supports the following:

� The metadata engine accesses metadata in a SAS Metadata Repository in order to
process data that the metadata identifies. Using the metadata engine and SAS
code, you can

� read data from a data source table (input processing).

� create a new table (SAS data set or database management system (DBMS)
table) in a data source and create its associated metadata in a repository
(output processing).

� delete a table in a data source and delete its associated metadata in the
repository.

� update data in a data source table (update processing). However, the
metadata engine does not support creating indexes.

Note: The metadata engine supports only tables (SAS data sets and DBMS
tables). The metadata engine does not support other SAS files such as catalogs or
views. �

See Chapter 3, “Examples of Using the Metadata Engine,” on page 11.

� The metadata engine in conjunction with the SAS Open Metadata Architecture
Authorization facility enables an administrator to control what data users are
allowed to access.

Using the Metadata LIBNAME Engine Performance Considerations 7

� The metadata engine can augment your data. For example, if you execute the
DATASETS procedure in order to get a listing of all the members in a library, the
metadata engine sends a request to the metadata repository for this information.
The metadata engine does not use the underlying engine. You get a listing of only
those members that have been populated in the repository. When you execute the
CONTENTS procedure, the table and column attributes that are returned are
from the repository, not a result of the underlying engine processing the data. Any
formats, informats, or labels that are stored in the metadata are applied to the
underlying data. Any columns that are not populated in metadata are not
available to the user.

� The metadata engine does not support LIBNAME statement options or data set
options that are for the underlying engine. All of the LIBNAME statement options
that are needed by the underlying engine must be defined in the Property objects
that are associated with the specified SASLibrary object and SASClientConnection
object. Likewise, any data set options that are needed for a member of the library
must be defined in Property objects that are associated with the PhysicalTable
objects that represent the members of the library. For example, you cannot specify
SAS/ACCESS engine options in the LIBNAME statement for the metadata engine.
The SAS/ACCESS engine options must be defined in the metadata.

� The metadata engine does not support the concatenation of libraries in SAS Open
Metadata Architecture.

� The metadata must be consistent with the identified data source. For example, it
is invalid to have metadata for a SAS data set where a variable is defined as
numeric data, but the actual data source defines it as character data.

Performance Considerations

Because the metadata engine uses the underlying engine to process data,
performance is no better than directly using the underlying engine. The metadata
engine requests metadata, interprets metadata, applies metadata, and drives the
engine to access the data (not necessarily in that order). All of these functions add
overhead to the data access process.

The most significant overhead is in additional network requests. When requesting
metadata, a query must be sent to the repository indicating which metadata is needed.
Typically, the repository will be on a different network node. Therefore, each time a
request is made for metadata, additional network overhead is incurred.

Each of the following situations requires one metadata request:

� assigning the libref.

� accessing a data member.

� acquiring index information.

� acquiring repository names. This occurs only when the REPID= value is not
specified in the LIBNAME statement for the metadata engine. The metadata
engine must query the metadata server for all available repositories in order to
find the one that matches the REPNAME= value.

� acquiring a list of the members in a library.

Fortunately, most of the extra processing overhead incurred by the metadata engine
is front loaded. The same number of metadata requests that are made for large tables
are made for small tables. So the larger the table, the less significance the network
overhead will have on the total processing time. For small tables, the opposite is true.

8

9

C H A P T E R

2
Understanding the Metadata

What Metadata Is Used by the Metadata Engine? 9

What Is Required to Use the Metadata Engine? 9

What Metadata Is Used by the Metadata Engine?

The metadata engine uses metadata that is stored in a specific SAS Metadata
Repository on the SAS Metadata Server. The SAS Metadata Server provides metadata
management services to one or more client applications. A SAS Metadata Repository is
a collection of related metadata objects, such as the metadata for a set of tables and
columns that are maintained by an application.

There are several methods to create metadata in a SAS Metadata Repository. For
example, from the SAS Management Console, you can use a Library wizard in order to
create the metadata objects in a repository that are necessary for the metadata engine
to construct a LIBNAME statement. SAS ETL Studio enables you to define the table
that you want to be a member in a library and any options that you want associated
with that table. You provide information to SAS ETL Studio, and SAS ETL Studio
generates corresponding metadata.

What Is Required to Use the Metadata Engine?

To use the metadata engine, the following is required:

� For the metadata engine to process data, the metadata must be available from an
existing SASLibrary metadata object in a SAS Metadata Repository and must
conform to specific metadata engine model requirements. See Chapter 4, “SAS
Metadata Model Requirements for the Metadata Engine,” on page 21.

� For the metadata engine to access members in a SAS data library, the SASLibrary
object must have an associated DatabaseSchema object for a DBMS SAS/ACCESS
engine or a Directory object for a Base SAS data library.

� For the metadata engine to construct a LIBNAME statement for the underlying
engine, appropriate metadata must be available. See Chapter 5, “Metadata
Requirements to Construct the LIBNAME Statement for the Underlying Engine,”
on page 27.

� To use the SAS Open Metadata Architecture Authorization Facility, authorization
metadata can be defined that controls both the availability of specific metadata
(ReadMetadata permission) as well as the actions that can be taken on the
resource that a metadata object describes (Read, Write, Create, and Delete

10 What Is Required to Use the Metadata Engine? Chapter 2

permissions). See Chapter 7, “Metadata Requirements for Using the SAS Open
Metadata Architecture Authorization Facility to Control Data Access,” on page 45.

� Metadata does not support some character data such as the ampersand (&)
character. If the data that you want to add to a repository includes special
characters like & (for example, in a column name or a label), you must represent
the character as &. For example, if a table named Customer has the label My
Account Names & Addresses, you must change it to My Account Names &
Addresses.

For information on the SAS Open Metadata Architecture and a SAS Metadata
Repository, see

� Getting Started with the SAS Open Metadata Interface

� SAS Open Metadata Interface: User’s Guide

� SAS Open Metadata Interface: Reference.

For information on the SAS Metadata Server, see

� SAS Metadata Server: Setup Guide

which is available from the SAS Community support.sas.com/rnd/eai/openmeta.

11

C H A P T E R

3
Examples of Using the Metadata
Engine

Submitting the LIBNAME Statement for the Metadata Engine 11

Accessing Data Using an Engine Directly Compared to Using the Metadata Engine 12
Overview 12

Using the Oracle SAS/ACCESS Engine Directly 12

Using the Metadata Engine 12
Using the Metadata Engine to Create a New Table 14

Using the Metadata Engine to Delete a Table 15

Controlling the Results of Output Processing Using the Metadata Engine 16
Overview 16

Creating Metadata for an Existing Data Source Table 16
Creating Only a Table in a Data Source 17

Deleting Only a Table or Only Metadata 17

Submitting the LIBNAME Statement for the Metadata Engine
This example shows two LIBNAME statements—one statement that uses defaults

and one statement that specifies all of the LIBNAME statement options.
� The following LIBNAME statement uses all defaults. The metadata server

connection information is obtained from the metadata server system options, and
the default set of options are used:

libname metaeng meta libid=AC000001;

� This example specifies all of the LIBNAME statement options for the metadata
engine in order to connect to the metadata server. It also specifies particular
PropertySet objects:

libname metaeng meta libid=AC000001
repid=AA32V87R9 ipaddr=’d5112.us.sas.com’ port=6789 protocol=bridge
userid=sasxyz pw=abcdefg
liboptset=’libset2’ conoptset=’conset2’;

12 Accessing Data Using an Engine Directly Compared to Using the Metadata Engine Chapter 3

Accessing Data Using an Engine Directly Compared to Using the
Metadata Engine

Overview
This example compares the process of accessing data using the Oracle SAS/ACCESS

engine versus accessing the same data using the metadata engine. The goal is to access
data that resides in an Oracle database, determine which tables exist in the data
source, and print the contents of one of the tables.

Using the Oracle SAS/ACCESS Engine Directly
First, using the Oracle SAS/ACCESS engine directly to access the data, you would

submit the following statements, which require that you know to use the Oracle engine
and that you know the options that are needed to access the data:

libname oralib oracle user=myuser pw=mypw
path=ora_dbms preserve_tab_names=yes
connection=sharedread schema=myschema; u

proc datasets library=oralib; v

quit;

proc print data=oralib.Sales (readbuff=1000); w

run;

data work.temp;
set oralib.Sales (dbindex=myindex); x

run;

1 Identifies an Oracle library that contains the Oracle tables that you want to
process.

2 Lists all of the Oracle tables that are available.

3 Displays the Oracle Sales table.

4 Attempts to use the specified index to improve performance.

Using the Metadata Engine
You can access the same data using the metadata engine. However, using the

metadata engine, you do not have to know that you are using an Oracle database, and
you do not have to know any of the Oracle SAS/ACCESS engine details.

Using the SAS Management Console and SAS ETL Studio, you create metadata in a
repository for your Oracle environment. The metadata engine will interpret this
metadata and locate your data. In addition, you do not have to know how to connect to
the repository or know the values for the connection options. (These details can be
provided using the metadata system options.)

Examples of Using the Metadata Engine Using the Metadata Engine 13

Here is what happens when you use the metadata engine in order to access the
Oracle data:

1 You submit the following LIBNAME statement for the metadata engine. LIBID= is
the unique identifier of the SASLibrary object that defines information about the
Oracle library and serves as an anchor point for obtaining other metadata.
LIBID= is a required argument.

libname metaeng meta libid=A8000001 repid=AWPKT800
userid=metaid pw=metapw
ipaddr=myip.us.org.com port=6401
protocol=bridge liboptset=myopts;

2 Using the information acquired from the LIBNAME statement, the metadata
engine queries the repository that is specified by the REPID= value, on the server
that is specified by the IPADDR= and PORT= values. The query results in
information about the SASLibrary object that is specified by the LIBID= and other
objects that are associated with the SASLibrary metadata object such as
DatabaseSchema, SASClientConnection, Login, or Property objects.

Below are the objects that are returned from the query. The objects that appear
display only those attributes that are used by the metadata engine and do not
include the SASClientConnection objects and PropertySet objects that are included
in the model.

Table 3.1 SASLibrary Object Query Results

SASLibrary DatabaseSchema Login Property Property Property

Libref: oralib SchemaName:
myschema

Userid:
myuser

PropertyName:
preserve_tab_
names

PropertyName:
path

PropertyName:
Connection

Engine:
oracle

Password:
mypw

DefaultValue:
yes

DefaultValue:
ora_dbms

DefaultValue:
sharedread

isDBMSLibname:
TRUE

Delimiter: = Delimiter: = Delimiter: =

UseValueOnly:
False

UseValueOnly:
False

UseValueOnly:
False

Note: See the relational DBMS model in Chapter 4, “SAS Metadata Model
Requirements for the Metadata Engine,” on page 21 in order to determine how to
associate these objects with one another. �

3 From the information embedded in the objects and from information that is
implied in the relational DBMS model, the metadata engine is able to generate the
following LIBNAME statement, which is the same LIBNAME statement that is
shown at the beginning of this example:

libname oralib oracle user=myuser pw=mypw
path=ora_dbms preserve_tab_names=yes
connection=sharedread schema=myschema;

14 Using the Metadata Engine to Create a New Table Chapter 3

4 With the generated LIBNAME statement, the metadata engine uses the Oracle
engine anytime it needs to access the Oracle data. For example, to view the tables
that exist, you would submit

proc datasets library=metaeng;
quit;

The metadata engine sends a query to the repository that requests all members
of the SASLibrary that were specified by LIBID=. The metadata engine returns
only those members that are defined in the repository. Any Oracle table that does
not exist in the metadata is not displayed. A benefit of this behavior is that
administrators can control which data their users can access. Any attempt to use
a member that does not have corresponding metadata in the repository will return
an error.

5 For the following PRINT procedure, the metadata engine sends a request to the
repository for the metadata that is associated with the particular table. The
metadata includes PhysicalTable, Column, and Property object information. The
OPTSET= data set option, a metadata engine option, tells the metadata engine to
return those properties that are a part of the MYOPTS property set. Within this
property set are data set options that have been customized for this table. These
data set options are used by the Oracle engine while processing the data:

proc print data=metaeng.Sales (optset=myopts);
run;

The metadata engine returns those columns that are defined in the metadata.
Therefore, if the Oracle table Sales has 20 columns and only five columns are
defined in the metadata, then you see only five columns. This is another way in
which an administrator can use the metadata engine in order to control access to
data.

6 The relational DBMS model allows you to store index information for given tables.
Each Index object is associated with a table and with the columns that make up
the index. Any use of the metadata engine that uses indexes results in a query to
the repository that requests index information. The index metadata must match
the physical index on the table. In the following statements, the OPTSET= data
set option specifies to use indexes to process the table. The metadata engine uses
the index information that is stored in the repository:

data work.temp;
set metaeng.Sales (optset=index_opts);

run;

Using the Metadata Engine to Create a New Table

This example uses the metadata engine in order to create a new table in a data
source and to create its associated metadata for an existing SAS data library that is
defined in an existing SAS Metadata Repository. The following code contains the
LIBNAME statement for the Oracle SAS/ACCESS engine, the LIBNAME statement for
the metadata engine, and a DATA step in order to create a new table:

libname oralib oracle user=myuser pw=mypw
path=ora_dbms preserve_tab_names=yes
connection=sharedread schema=myschema; u

Examples of Using the Metadata Engine Using the Metadata Engine to Delete a Table 15

libname metaeng meta libid=A8000001 repid=AWPKT800
userid=metaid pw=metapw
ipaddr=myip.us.org.com port=6401
protocol=bridge; v

data metaeng.newtable;
set oralib.Sales (drop=customer);

run; w

1 The LIBNAME statement for the Oracle SAS/ACCESS engine directly accesses the
Oracle library that contains Oracle tables.

2 The LIBNAME statement for the metadata engine uses the argument LIBID= in
order to identify the existing SASLibrary object that defines information about an
Oracle library and serves as an anchor point for obtaining other metadata.

Using the information acquired through the LIBNAME statement, the
metadata engine queries the repository that is specified by the REPID= value, on
the server that is specified by the IPADDR= and PORT= values. This query
results in information about the SASLibrary object that is specified by LIBID= and
other objects that are associated with the SASLibrary object such as
DatabaseSchema, SASClientConnection, Login, or Property objects.

From the information embedded in the objects and from information that is
implied in the relational DBMS model, the metadata engine generates a
LIBNAME statement for the Oracle engine.

With the generated LIBNAME statement, the metadata engine uses the Oracle
engine to access the Oracle data.

3 Using the Oracle SAS/ACCESS engine, the DATA step reads in the new table for
the existing SAS data library. The metadata engine creates the new data source as
well as associated metadata. For example, the metadata engine creates a
PhysicalTable object and Column objects.

Using the Metadata Engine to Delete a Table

This example uses the metadata engine in order to delete a table in a data source
and to delete its associated metadata in a SAS Metadata Repository. The following code
contains the LIBNAME statement for the metadata engine and the DATASETS
procedure:

libname metaeng meta libid=A8000001 repid=AWPKT800
userid=metaid pw=metapw
ipaddr=myip.us.org.com port=6401
protocol=bridge; u

proc datasets library=metaeng;
delete Sales;

run; v

1 The LIBNAME statement for the metadata engine uses the argument LIBID= in
order to identify the existing SASLibrary object that defines information about an
Oracle library and serves as an anchor point for obtaining other metadata.

2 The metadata engine deletes the metadata in the repository, then requests the
Oracle SAS/ACCESS engine to delete the table in the data source.

16 Controlling the Results of Output Processing Using the Metadata Engine Chapter 3

Controlling the Results of Output Processing Using the Metadata Engine

Overview
In addition to using the metadata engine for output processing that creates both a

table in a data source and associated metadata in a repository, you can control the
results of the output processing. For example:

� If a physical table exists in the data source but there is no metadata describing the
table, you can use the metadata engine to create only the metadata for the table.

� If you have table metadata available in a repository but do not have the physical
data source table, you can use the metadata engine to create only the table in the
data source.

To control the behavior, use the METAOUT= option, either as a LIBNAME statement
option or as a data set option. If you want to specify behavior for a library, use the
LIBNAME statement option. Note that the behavior applies to all members in the
library and exists for the duration of the library. To specify behavior for a particular
table, use the data set option.

Creating Metadata for an Existing Data Source Table
The following code illustrates how to create metadata for an existing data source

table using the METAOUT=META option on the LIBNAME statement. For this
example, the Sales table exists in the Oracle library.

libname oralib oracle user=myuser pw=mypw
path=ora_dbms preserve_tab_names=yes
connection=sharedread schema=myschema; u

libname metaeng meta libid=A8000001 repid=AWPKT800
userid=metaid pw=metapw
ipaddr=myip.us.org.com port=6401
protocol=bridge (metaout=meta); v

data metaeng.New ;
set oralib.Sales (obs=0);
stop;

run; w

1 The LIBNAME statement for the Oracle SAS/ACCESS engine directly accesses the
Oracle library that contains the Sales table.

2 The LIBNAME statement for the metadata engine uses the argument LIBID= in
order to identify the existing SASLibrary object that defines information about the
Oracle library and serves as an anchor point for obtaining other metadata. With
the METAOUT=META option specified, the behavior for the library will be to
create only metadata for output processing.

3 Using the Oracle SAS/ACCESS engine, the DATA step creates metadata in the
repository based on the existing Sales table.

Note: Use OBS=0 to prevent rows from being inserted, or use the STOP
statement to stop processing the DATA step. If you do not use either technique,
unnecessary Oracle processing occurs. �

Examples of Using the Metadata Engine Deleting Only a Table or Only Metadata 17

Creating Only a Table in a Data Source
The following code illustrates how to create only a table in the data source using the

METAOUT=DATA data set option; the table’s metadata is available in the repository.
For this example, using the data set option overrides the behavior for the library for the
Sales table:

data metaeng.New (metaout=data);
set oralib.Sales;

run;

Deleting Only a Table or Only Metadata
If you need to delete only the table in a data source but not its metadata, use

METAOUT=DATA. To delete metadata but not the table in the data source, use
METAOUT=META. The following code deletes only the table in the data source:

libname metaeng meta libid=A8000001 repid=AWPKT800
userid=metaid pw=metapw
ipaddr=myip.us.org.com port=6401
protocol=bridge (metaout=data);

proc datasets library=metaeng;
delete New;

run;

Note: For library utility procedures such as PROC DATASETS, you must specify
METAOUT= as a LIBNAME statement option. You cannot specify it as a data set
option. �

18

19

P A R T2

Metadata Requirements

Chapter 4.SAS Metadata Model Requirements for the Metadata
Engine 21

Chapter 5.Metadata Requirements to Construct the LIBNAME
Statement for the Underlying Engine 27

Chapter 6.Metadata Engine’s Usage of the SAS Open Metadata
Architecture SAS Namespace Types 35

Chapter 7.Metadata Requirements for Using the SAS Open Metadata
Architecture Authorization Facility to Control Data
Access 45

20

21

C H A P T E R

4 SAS Metadata Model
Requirements for the Metadata
Engine

Understanding the Model Requirements 21

Understanding the Model Requirements
The SAS Metadata Model provides classes and objects that define different types of

application metadata that is stored in a repository. The metadata engine uses the SAS
Metadata Model as a framework and a common format for metadata modeling. In order
for the metadata engine to access metadata objects that are stored in a metadata
repository, the library metadata must be configured so that the metadata engine can
process it.

The metadata engine supports the following models:

Relational
DBMS Model

models a DBMS library, which uses a DBMS SAS/ACCESS engine.

SAS Data Set
Model

models a Base SAS data library, which uses a Base SAS engine.

Remote
Relational
DBMS Model

models a remote DBMS library, which uses a SAS/ACCESS engine
and the remote engine.

Remote SAS
Data Set Model

models a remote Base SAS data library, which uses a Base SAS
engine and the remote engine.

The following diagrams illustrate the associations between related metadata types in
each supported model. The purpose of the diagrams is to help you understand the
relationships among the metadata types in the SAS namespace.

22 Understanding the Model Requirements Chapter 4

Figure 4.1 Relational DBMS Model

SAS Metadata Model Requirements for the Metadata Engine Understanding the Model Requirements 23

Figure 4.2 SAS Data Set Model

24 Understanding the Model Requirements Chapter 4

Figure 4.3 Remote Relational DBMS Model

SAS Metadata Model Requirements for the Metadata Engine Understanding the Model Requirements 25

Figure 4.4 Remote SAS Data Set Model

26

27

C H A P T E R

5 Metadata Requirements to
Construct the LIBNAME
Statement for the Underlying
Engine

Understanding How the Metadata Engine Constructs a LIBNAME Statement 27

Metadata Requirements to Construct a LIBNAME Statement for a Base SAS Engine 28
Metadata Requirements to Construct a LIBNAME Statement for a DBMS SAS/ACCESS Engine 30

Metadata Requirements to Construct a LIBNAME Statement for the Remote Engine 32

Understanding How the Metadata Engine Constructs a LIBNAME
Statement

When you submit a LIBNAME statement for the metadata engine, the engine
constructs a LIBNAME statement for a SAS data library. The primary object is the
SASLibrary object specified by the LIBID=, LIBURI=, or LIBRARY= argument. Any
other object that the metadata engine needs in order to construct the LIBNAME
statement is associated directly or indirectly with the SASLibrary object.

The SASLibrary object represents a SAS data library and provides the metadata
engine with information about which engine processes the library and how it should be
assigned. The SASLibrary object contains the following attributes that are relevant to
the metadata engine:

Libref is the libref to be used when assigning the SAS data library.

Engine is the engine name to be used when assigning the SAS data library.

IsDBMSLibname indicates whether the SAS data library will be used with a DBMS
engine.

Options, in SAS Open Metadata Architecture, are represented with Property objects.
One or more Property objects can be associated directly with an owning object (a
SASLibrary, SASClientConnection, or PhysicalTable object) as the default set of options.
One or more Property objects can be grouped using a PropertySet object. One or more
PropertySet objects can be associated with an owning object. Either the default set of
options or one PropertySet object can be used with an owning object at a particular
time. The LIBOPTSET=, CONOPTSET=, and OPTSET= metadata engine options are
used to specify a PropertySet object. No metadata engine option is needed to use the
default set of options.

The Property object contains the following attributes that are relevant to the
metadata engine:

PropertyName is the name of the option.

Delimiter is the delimiter to be used between the option name and value, that
is, =.

28 Metadata Requirements to Construct a LIBNAME Statement for a Base SAS Engine Chapter 5

DefaultValue is the value of the option.

UseValueOnly indicates whether to use the option value as the option (a boolean
option) or to use a name-value pair.

Metadata Requirements to Construct a LIBNAME Statement for a Base
SAS Engine

In order for the metadata engine to construct a LIBNAME statement for a Base SAS
engine as shown in the following syntax, the metadata must be available.

Note: The metadata engine constructs a LIBNAME statement based on the stored
metadata and uses this LIBNAME statement in order to access your data. This
operation is transparent; however, it is important to understand the components of the
LIBNAME statement so that you can configure the metadata appropriately using the
SAS Management Console. �

LIBNAME libref <engine> ’SAS-data-library’ <options>;

libref
is any valid libref, as documented in SAS Language Reference: Dictionary. The
libref references the SAS data library that the Base SAS engine will process. The
value for the libref is obtained from the Libref attribute in the SASLibrary object.

engine
is the name of the Base SAS engine that will process the SAS data library. The
engine name is obtained from the Engine attribute in the SASLibrary object.

’SAS-data-library’
is the physical name for the SAS data library. In SAS Open Metadata
Architecture, physical names are represented with Directory objects. The value is
obtained from the DirectoryName attribute in the Directory object that is
associated with the SASLibrary object. The DirectoryName attribute should
include any operating environment specific delimiters. The Directory object
contains the following attributes that are relevant to the metadata engine:

DirectoryName is the physical name for the directory or SASlibrary object.

IsRelative indicates whether the value in the DirectoryName attribute is
the complete physical name or is relative to a parent directory.

If the DirectoryName attribute does not contain the complete physical name
and is relative to a parent directory, the metadata engine will retrieve the parent
directory. Then it will append the value in the DirectoryName attribute for the
parent directory to the beginning of the value in the DirectoryName attribute of
the subdirectory (the physical name is complete when the IsRelative attribute is
set to false). There might be several parent directories involved before the physical
name is completely constructed. After the metadata engine has constructed a
complete physical name, it is included as the SAS data library argument in the
LIBNAME statement for the Base SAS engine.

options
are the LIBNAME statement options for the Base SAS engine. These options are
represented by groups of Property objects that are associated directly with the
SASLibrary object. PropertySet objects are used to associate different groups of
Property objects with the SASLibrary object. Each option is generated using the
PropertyName, Delimiter, and DefaultValue attributes in a Property object.

Metadata Requirements to Construct the LIBNAME Statement for the Underlying Engine For a Base SAS Engine 29

The following table shows how options are represented by individual Property objects
associated with a property set. The BASELIB PropertySet object is associated with a
SASLibrary object.

Table 5.1 BASELIB PropertySet Object

SAS Option PropertyName
Attribute

Delimiter
Attribute

DefaultValue Attribute UseValueOnly
Attribute

REPEMTY=NO REPEMPTY = NO 0

ACCESS=READONLY ACCESS = READONLY 0

NODLTRUNCHK NODLTRUNCHK 1

EXTEND EXTEND 1

For example, the metadata engine would construct the following LIBNAME
statement for the Base SAS engine using the SAS Open Metadata Architecture
metadata that is shown in the subsequent table. (The NODLTRUNCHK and EXTEND
z/OS options are included only to show how Property objects represent boolean options.)

libname sas9 v9 ’C:\sales’ repempty=no access=readonly nodltrunchk extend;

Table 5.2 Metadata for Base SAS Engine LIBNAME Statement

Parameter Value Metadata Object Object Attribute

libref sas9 SASLibrary (unique
identifier = AD000001)

Libref=’sas9’

engine V9 SASLibrary (same object
as above)

Engine=’V9’

’SAS-data-library’ sales Directory DirectoryName=’sales’

IsRelative=’1’

’SAS-data-library’ C:\ Directory DirectoryName=’C:\’

IsRelative=’0’

options repempty Property PropertyName=’repempty’

Delimiter=’=’

DefaultValue=’no’

UseValueOnly=’0’

options access Property PropertyName=’access’

Delimiter=’=’

DefaultValue=’readonly’

UseValueOnly=’0’

options nodltrunchk Property DefaultValue=’nodltrunchk’

UseValueOnly=’1’

options extend Property DefaultValue=’extend’

UseValueOnly=’1’

30 Metadata Requirements to Construct a LIBNAME Statement for a DBMS SAS/ACCESS Engine Chapter 5

The previous Base SAS engine LIBNAME statement would be constructed when one
of the following LIBNAME statements for the metadata engine is submitted:

� This LIBNAME statement would be submitted if the default set of Property
objects representing the REPEMPTY, ACCESS, NODLTRUNCHK, and EXTEND
LIBNAME options are associated with the SASLibrary object:

libname y meta libid=AD000001 repname=sasrepos
ipaddr=’D5678.us.sas.com’ port=1234
userid=sasabc pw=srvpw;

� This LIBNAME statement would be submitted if the Property objects representing
the REPEMPTY, ACCESS, NODLTRUNCHK, and EXTEND options are associated
with the BASELIB PropertySet object:

libname y meta libid=AD000001 repname=sasrepos
ipaddr=’D5678.us.sas.com’ port=1234
userid=sasabc pw=srvpw liboptset=baselib;

Metadata Requirements to Construct a LIBNAME Statement for a DBMS
SAS/ACCESS Engine

In order for the metadata engine to construct a LIBNAME statement for a DBMS
SAS/ACCESS engine as shown in the following syntax, the metadata must be available.

Note: The metadata engine constructs a LIBNAME statement based on the stored
metadata and uses this LIBNAME statement in order to access your data. This
operation is transparent; however, it is important to understand the components of the
LIBNAME statement so that you can configure the metadata appropriately using the
SAS Management Console. �

LIBNAME libref SAS/ACCESS-engine-name<SAS/
ACCESS-engine-connection-options> <SAS/ACCESS-LIBNAME-options>;

libref
is any valid libref, as documented in SAS Language Reference: Dictionary. The
libref references the SAS data library that the SAS/ACCESS engine will process.
The value for the libref is obtained from the Libref attribute in the SASLibrary
object.

SAS/ACCESS-engine-name
is the name of the underlying engine that will process the SAS data library. The
engine name is obtained from the Engine attribute in the SASLibrary object.

SAS/ACCESS-engine-connection-options
are the engine-specific connection options for the LIBNAME statement for the
SAS/ACCESS engine. These options are represented by groups of Property objects
that are associated directly with the SASClientConnection object associated with
the SASLibrary object. PropertySet objects are used to associate different groups
of Property objects with the SASClientConnection object. Each connection option
is generated using the PropertyName, Delimiter, and DefaultValue attributes in a
Property object.
Exception: The values for USERID= and PASSWORD= connection options are

obtained from a Login object. The Login object can be associated with the
SASLibrary object. If no Login object is associated with the SASLibrary object,
a Login object is retrieved from the AuthenticationDomain that is associated
with the SASClientConnection object.

Metadata Requirements to Construct the LIBNAME Statement for the Underlying Engine For a SAS/ACCESS Engine 31

SAS/ACCESS-LIBNAME-options
are the LIBNAME statement options for the SAS/ACCESS engine. These options
are represented by groups of Property objects that are associated directly with the
SASLibrary object. PropertySet objects are used to associate different groups of
Property objects with the SASLibrary object. Each LIBNAME option is generated
using the PropertyName, Delimiter, and DefaultValue attributes in a Property
object.

Exception: The value for the SCHEMA= option is obtained from a
DatabaseSchema object. This DatabaseSchema object must be associated with
the SASLibrary object if the SAS data library will be processed by a DBMS
engine.

The following tables show how SAS/ACCESS options are represented in individual
Property objects associated with a property set. The READCON PropertySet object
would be associated with a SASClientConnection object, and the READLIB PropertySet
object would be associated with a SASLibrary object.

Table 5.3 READCON Connection PropertySet Object

SAS/ACCESS Option PropertyName
Attribute

Delimiter
Attribute

DefaultValue
Attribute

UseValueOnly
Attribute

CONNECTION=SHAREDREAD CONNECTION = SHAREDREAD 0

PATH=ORACLEV8 PATH = ORACLEV8 0

Table 5.4 READLIB LIBNAME PropertySet Object

SAS/ACCESS Option PropertyName
Attribute

Delimiter
Attribute

DefaultValue
Attribute

UseValueOnly
Attribute

ACCESS=READONLY ACCESS = READONLY 0

DBINDEX=YES DBINDEX = YES 0

For example, the metadata engine would construct the following LIBNAME
statement for the Oracle SAS/ACCESS engine using the SAS Open Metadata
Architecture metadata that is shown in the subsequent table:

libname oralib user=scott password=tiger path=oraclev8
schema=sales dbindex=yes
connection=sharedread access=readonly;

Table 5.5 Metadata for SAS/ACCESS Engine LIBNAME Statement

Parameter Value Metadata Object Object Attribute

libref oralib SASLibrary (Unique
identifier = AC000001)

Libref=’oralib’

SAS/
ACCESS-engine-name

oracle SASLibrary (same
object as above)

Engine = ’oracle’

SAS/ACCESS-engine-
connection-option

user Login Userid=’scott’

SAS/ACCESS-engine-
connection-option

password Login (same object as
above)

Password=’tiger’

32 Metadata Requirements to Construct a LIBNAME Statement for the Remote Engine Chapter 5

Parameter Value Metadata Object Object Attribute

SAS/ACCESS-engine-
connection-option

path Property PropertyName=’path’

Delimiter=’=’

DefaultValue=’oraclev8’

UseValueOnly=’0’

SAS/ACCESS-
LIBNAME-option

schema DatabaseSchema SchemaName=’sales’

SAS/ACCESS-
LIBNAME-option

dbindex Property PropertyName=’dbindex’

Delimiter=’=’

DefaultValue=’yes’

UseValueOnly=’0’

SAS/ACCESS-engine-
connection-option

connection Property PropertyName=’connection’

Delimiter=’=’

DefaultValue=’sharedread’

UseValueOnly=’0’

SAS/ACCESS-
LIBNAME-option

access Property PropertyName=’access’

Delimiter=’=’

DefaultValue=’readonly’

UseValueOnly=’0’

The previous SAS/ACCESS LIBNAME statement would be constructed when one of
the following LIBNAME statements for the metadata engine is submitted:

� This LIBNAME statement would be submitted if the default set of Property
objects representing the PATH and CONNECTION options is associated with the
SASClientConnection object, and the default set of Property objects representing
the DBINDEX and ACCESS LIBNAME options is associated with the SASLibrary
object:

libname x meta libid=AC000001 repname=orarepos
ipaddr=’D5678.us.sas.com’ port=1234
userid=sasabc pw=srvpw;

� This LIBNAME statement would be submitted if the Property objects representing
the PATH and CONNECTION connection options are associated with the
READCON PropertySet object (shown above) and the Property objects
representing the DBINDEX and ACCESS LIBNAME options are associated with
the READLIB PropertySet object:

libname x meta libid=AC000001 repname=orarepos
ipaddr=’D5678.us.sas.com’ port=1234
userid=sasabc pw=srvpw
conoptset=readcon liboptset=readlib;

Metadata Requirements to Construct a LIBNAME Statement for the
Remote Engine

In order for the metadata engine to construct a LIBNAME statement for the remote
engine as shown in the following syntax, the metadata must be available.

Metadata Requirements to Construct the LIBNAME Statement for the Underlying Engine For the Remote Engine 33

Note: The metadata engine constructs a LIBNAME statement based on the stored
metadata and uses this LIBNAME statement in order to access your data. This
operation is transparent; however, it is important to understand the components of the
LIBNAME statement so that you can configure the metadata appropriately. �

LIBNAME libref SERVER=serverid <ACCESS=READONLY> <OUTREP=format>
<USER=userid> <PASSWORD=password> <SAPW=server-access-password>
<SLIBREF=server-libref> ;

libref
is any valid libref, as documented in SAS Language Reference: Dictionary. The
value for the libref is obtained from the Libref attribute in the SASLibrary object
that represents the local SAS data library. This value can be the same or different
from the libref included in the SASLibrary object that represents the remote SAS
data library.

SERVER=serverid
specifies a name for the SAS server. The option is obtained from the
PropertyName, Delimiter, and DefaultValue attributes in a Property object that is
associated with the client connection for the SAS server.

ACCESS=READONLY
controls read access to a data library, in this case, through the SAS server. The
option is obtained from the PropertyName, Delimiter, and DefaultValue attributes
in a Property object that is associated with the local SAS data library.

OUTREP=format
creates new files in a foreign host format. The option is obtained from the
PropertyName, Delimiter, and DefaultValue attributes in a Property object that is
associated with the local SAS data library.

USER=username
specifies the user ID of the accessing client on the server. The value is obtained
from the Userid attribute in a Login object.

PASSWORD=server-access password
specifies the password for the accessing client on the server. The value is obtained
from the Password attribute in a Login object.

SAPW=password
specifies a server access password, which is used to gain access to the SAS server.
The value is obtained from the Password attribute in a SASPassword object that is
associated with the client connection for the SAS server.

SLIBREF=server-libref
specifies the libref that is used by the server to identify a SAS data library. The
value is obtained from the Libref attribute in the SASLibrary object that
represents the remote SAS data library.

For example, the following LIBNAME statements are for a remote library:

libname A server=BOB userid=TOM password=MLE sapw=alpha slibref=A;

libname B server=BOB userid=TOM password=MLE sapw=alpha slibref=A;

34

35

C H A P T E R

6 Metadata Engine’s Usage of the
SAS Open Metadata Architecture
SAS Namespace Types

What Is a SAS Namespace Type? 35

How the Metadata Engine Uses SAS Namespace Types 35

What Is a SAS Namespace Type?

A SAS namespace defines metadata types for the most commonly used SAS
applications. A namespace is a group of metadata types and their properties. Names
are used to partition metadata into different contexts.

The SAS namespace contains metadata types for application elements such as SAS
data sets and variables. A metadata type is a template that models the metadata for a
particular object. For example, the metadata type Column models the metadata for a
SAS data set variable (column), and the metadata type RepositoryBase models the
metadata for a repository. Each metadata object is an instance of a metadata type, such
as the metadata for a particular data store or the metadata for a particular repository.

How the Metadata Engine Uses SAS Namespace Types

The following describes how the metadata engine uses the SAS Open Metadata
Architecture SAS namespace types that are configured in the models used by the
metadata engine:

AuthenticationDomain
represents the domain that controls user access to the server for the underlying
engine. User login information will be retrieved from the authentication domain
when no default login information has been provided with the SAS data library.
This user login information will be included in the LIBNAME statement
constructed for the underlying engine. An AuthenticationDomain object will not
exist if user IDs and passwords are not used to connect to the server, or if a Base
SAS engine is the underlying engine.

Attributes: N/A

Associations: Logins (0..n)

This association from the AuthenticationDomain object to
Login object(s) is used to retrieve only the user logins (Login
objects) the user is authorized (via SAS Open Metadata
Architecture security) to use. The logic for retrieving user login
information is located under the description for the Login

36 How the Metadata Engine Uses SAS Namespace Types Chapter 6

object. The cardinality on this association enables an
authentication domain to control several user logins.

Column
represents a column on a library member. Column metadata is retrieved when
opening a library member and when retrieving indexes on an opened library
member.

Attributes: The metadata engine uses the following attributes from the
Column object:

� Desc—The SAS column label field.
� SASColumnName—The column name that will be used by

SAS. This attribute must be populated.
� SASColumnType—The column type that will be used by

SAS. This attribute must be populated.
� SASColumnLength—The column length that will be used

by SAS. This attribute must be populated.
� SASFormat—The SAS format that will be applied to the

column.
� SASInformat—The SAS informat that will be applied to

the column.

Associations: N/A

DatabaseSchema
represents a DBMS schema. The SCHEMA= option cannot be represented with a
Property object. The DBMS schema must be represented with a DatabaseSchema
object. The DatabaseSchema object, if available, must be associated with a
SASLibrary object. Only one schema can be associated with the SAS data library.
If more than one schema is retrieved, the first one is used.

DBMS schema metadata is retrieved to obtain the name of the DBMS schema
that will be included in the LIBNAME statement for the underlying engine. The
DBMS schema metadata is retrieved after the LIBNAME statement for the
metadata engine is executed. The DBMS schema is used as a point of reference
when retrieving library member information and opening a library member.

Attributes: SchemaName—The name of the DBMS schema. The metadata
engine will include this schema name as the value for the
SCHEMA= option in the LIBNAME statement for the
underlying engine. This attribute must be populated.
Exception: The SAS/ACCESS engines for ODBC, OLE DB,

ACCESS, and EXCEL will not use a schema when their
underlying data source does not support schemas. In these
cases, this SchemaName attribute will be blank.

Associations: Tables(0..n)

This association from the DatabaseSchema object to
PhysicalTable object(s) will be used to obtain all DBMS tables
that are associated with the DBMS schema in a SAS Metadata
Repository. The set of tables that is associated with the schema
might differ from the tables that are under the schema in the
DBMS. The cardinality on this association enables the DBMS
schema to have many DBMS tables.

Directory
represents a file system directory. Directory metadata is retrieved after the
LIBNAME statement for the metadata engine is executed. Directory metadata is

Metadata Engine’s Usage of the SAS OMA SAS Namespace Types How the Metadata Engine Uses SAS Namespace Types 37

retrieved to obtain the physical name to be included as library specifications in the
LIBNAME statement for the underlying engine. No library members are
associated with a Directory object. The library members are associated with the
SASLibrary object that is using this Directory object.

Attributes: � DirectoryName—Directory name including any file system
specific delimiters. The metadata engine treats the value
of this attribute as a string, including the total string in
the LIBNAME statement for the underlying engine.

Note: For the metadata engine, do not use quotation
marks in the directory path. �

� IsRelative—Indicates this directory is a subdirectory and
has a parent directory. When this attribute is true, the
DirectoryName attribute does not contain the complete
name. The parent directory must be retrieved to complete
the name. There could be several subdirectories involved
in constructing a complete directory name.

Associations: Parent(0..1)

This association from the Directory object to another
Directory object is used to obtain the remaining name when a
directory is relative to another directory. In order to construct a
complete directory name, the value of the DirectoryName
attribute in the parent directory is appended to the beginning
of the value of the DirectoryName attribute of the subdirectory.
The cardinality on this association enables a subdirectory to
have (at most) one parent directory. However, a chain of many
subdirectories and parents might have to be traversed before
the directory name is complete.

Index
represents an index on a library member. When index information is requested for
an opened library member, index metadata is retrieved to obtain the name of the
index and column(s) that comprise the index.

Attributes: � IndexName—The name of the index on the library
member. This attribute must be populated.

Associations: � Columns(0..n)
This association from the Index object to column

object(s) will be used to obtain the columns that make up
the index. The cardinality on this association enables the
index to be a simple index (of one column) or a composite
index (made up of more than one column).

Login
represents a user’s login information (user ID/password) that will be used to log on
to a server. This user login information is retrieved after the LIBNAME statement
for the metadata engine is executed and will be included in the LIBNAME
statement constructed for the underlying engine. When possible, a Login object
should be associated with the SASLibrary object as the default login to use to
connect to the server. If no Login object is associated with the SASLibrary object,
the login information is retrieved via the AuthenticationDomain object.

The logic for retrieving user login information via the AuthenticationDomain
object is as follows:

� If no Login object is retrieved for the user, no user login information will be
included in the LIBNAME statement for the underlying engine. It will be

38 How the Metadata Engine Uses SAS Namespace Types Chapter 6

assumed that either no user login information is required to connect to the
server for the underlying engine or the user login information has been
stored in a location according to the setup for the underlying engine. A
connection will be attempted without user login information and the user will
be notified of any connection failures.

� If there is only one Login object retrieved, this user ID/password will be
included in the LIBNAME statement for the underlying engine as values for
the USERID= and PASSWORD= connection options.

� If there is more than one Login object retrieved, there is nothing to indicate
which Login object to use. Therefore, no user login information will be
included in the LIBNAME statement for the underlying engine.

Attributes: The following attributes must be populated in the Login object.
� Userid—A user’s ID that will be used to log on to a server

for the underlying engine.
� Password—The password that will enable a user to access

a server for the underlying engine.

Associations: N/A

PhysicalTable
represents a member in a SAS data library. Metadata for a library member is
retrieved when a member listing is requested, a library member is being opened
for use, or when the use of an index has been requested. Metadata for a library
member is retrieved in order to obtain the name and type of the member and, in
some cases, the column on the library member.

Attributes: � Desc—The SAS label field.
� SASTableName—The SAS name for a library member

(that is, DBMS table, SAS data set, and so on). This
attribute must be populated.

� MemberType—The SAS type for a library member (for
example, DATA or VIEW). This attribute must be
populated.

Associations: � Columns(0..n)
This association from the PhysicalTable object to

Column object(s) will be used to obtain the columns on an
opened library member. The cardinality on this association
enables a library member to have many columns.

� Indexes(0..n)
This association from the PhysicalTable object to Index

object(s) will be used to identify the indexes on an opened
library member. The cardinality on this association
enables a library member to have several indexes.

� Properties(0..n)
This association from the PhysicalTable object to

Property object(s) will be used to obtain the data set
options to be used when accessing a library member.
These options will be considered the default set of data set
options and will be applied each time the library member
is opened unless a property set is specified in the
metadata engine data set option OPTSET=. The

Metadata Engine’s Usage of the SAS OMA SAS Namespace Types How the Metadata Engine Uses SAS Namespace Types 39

cardinality on this association enables a library member
to have an unlimited number of data set options.

� PropertySets(0..n)

This association from the PhysicalTable object to
PropertySet object(s) is used to obtain a set of data set
options to be used when opening a library member. This
association is used when a property set name is specified
in the metadata engine data set option OPTSET=. If
OPTSET= is not specified, any default data set options
from the Properties association is applied. The cardinality
on this association enables a library member to have
many property sets.

� SASPasswords(0..n)
This association from the PhysicalTable object to

SASPassword object(s) is used to obtain the READ=,
WRITE=, ALTER=, and PW= passwords for a SAS data
set. This association is valid only when a Base SAS
engine is assigned as the underlying engine for the
metadata engine. This association is used each time the
SAS data set is opened for use. The cardinality on this
association enables a SAS data set to have more than one
SAS password.

� TablePackage(1)
This association from the PhysicalTable object to a

DatabaseSchema or SASLibrary object is used to identify
the DBMS schema or SAS data library, respectively, to
which this library member belongs. The cardinality on
this association enables a library member to belong to one
DBMS schema or SAS data library.

Property
represents a SAS option. A Property object can be associated with a SASLibrary
object for LIBNAME options and a SASClientConnection object for server
connection options. These options will be the default set of options that are
included in the LIBNAME statement for the underlying engine. A Property object
can also be associated with a PhysicalTable object for data set options. These
options will be the default set options that are applied when the associated library
member is referenced. A Property object can also be associated with a PropertySet
object. In this case, these options are applied only when the property set name is
included as a value on the metadata engine LIBNAME statement options
LIBOPTSET=, CONOPTSET=, or the metadata engine data set option OPTSET=.
When options within a PropertySet object are used, default options are not be used.

The USERID=, PASSWORD=, and SCHEMA= options cannot be represented
with a Property object. User IDs and passwords must be represented with a Login
object. A DBMS schema must be represented with a DatabaseSchema object. The
READ=, WRITE=, ALTER=, and PW= data set password options cannot be
represented with a Property object. The SAPW= remote server access password
option cannot be represented with a Property object. These passwords must be
represented with a SASPassword object.

Attributes: � DefaultValue—Value for the option. This attribute must
be populated.

� Delimiter—The delimiter between the option name and
the option value. For most SAS options, this is generally

40 How the Metadata Engine Uses SAS Namespace Types Chapter 6

an equal sign (=). This attribute will not be used if the
UseValueOnly attribute is true.

� PropertyName—Name of the option. This attribute will
not be used if the UseValueOnly attribute is true.

� UseValueOnly—Indicates a boolean option. When this
attribute is set to true, only the DefaultValue attribute is
used to specify the option. When this attribute is set to
false, the PropertyName, Delimiter, and DefaultValue
attributes are used to specify the option.

Associations: N/A

PropertySet
groups a set of Property objects, representing SAS options, to be used in a
particular context. Property sets can be used to group a set of LIBNAME
statement, connection, or data set options. The metadata engine will include a set
of LIBNAME options in the LIBNAME statement for the underlying engine when
a property set name is specified in the LIBOPTSET= option in the metadata
engine LIBNAME statement. The owning object for these sets of Property objects
is a SASLibrary object. A set of connections options are included in the LIBNAME
statement for the underlying engine when a property set name is specified in the
CONOPTSET= option in the metadata engine LIBNAME statement. The owning
object for these sets of Property objects is a SASClientConnection object.

Here is an example of a metadata engine LIBNAME statement:

libname x meta repid=’A5B4UB5O’ libid=’AB000002’
userid=sunday pw=morning
ipaddr=’d1234.us.sas.com’
port=9999 protocol=bridge
liboptset=libset1
conoptset=readset2
;

The metadata engine will apply a set of data set options when a property set name
is specified in the OPTSET= data set option. The owning object for this set of
Property objects is a PhysicalTable object.

data a;
set x.b(optset=ds1);

run;

Only one set of Property objects will be used for an owning object, which is either
the set of Property objects that are associated directly with the owning object or
the set of Property objects that are associated with the PropertySet object specified
for an owning object.

Attributes: � Name—Name of the PropertySet object. This name is the
value specified for the LIBOPTSET=, CONOPTSET=, and
OPTSET= metadata engine options. This attribute must
be populated.

Associations: � SetProperties(0..n)

This association from the PropertySet object to
Property object(s) is used to obtain the options defined in
the property set. The cardinality of this association
enables the property set to contain many options.

Metadata Engine’s Usage of the SAS OMA SAS Namespace Types How the Metadata Engine Uses SAS Namespace Types 41

SASClientConnection
represents information needed by SAS in order to connect to a server for the
underlying engine.

Attributes: N/A

Associations: � Domain(0..1)
This association from the SASClientConnection object

to an AuthenticationDomain object will be used to access
the authorization domain that maintains the user
identities (user IDs/passwords) used to access the server.
The cardinality on this association enables the client
connection to be associated with (at most) one
authentication domain.

� Properties(0..n)
This association from the SASClientConnection to

Property object(s) is used to obtain the connection options
to be included in the LIBNAME statement for the
underlying engine. These options will be considered the
default set of connection options and will be applied each
time a LIBNAME statement is constructed for the
underlying engine, unless a property set name is specified
in the metadata engine LIBNAME statement option
CONOPTSET= . The cardinality of this association
enables a connection to have many connection options.

� PropertySets(0..n)
This association from the SASClientConnection to

PropertySet object(s) will be used to obtain a set of
connection options to be included in the LIBNAME
statement for the underlying engine. This association is
used when a property set name is specified in the
metadata engine LIBNAME statement option
CONOPTSET= . If CONOPTSET= is not specified, any
default connection options from the Properties association
will be applied. The cardinality of this association enables
a connection to have many sets of connection options.

� SAPW(0..1)
This association from the SASClientConnection to a

SASPassword object is used to obtain a SAS server access
password option to be included in the LIBNAME
statement for the underlying engine. The cardinality of
this association enables a connection to have (at most) one
SAS password.

SASLibrary
represents a SAS data library. A SASLibrary object is required in order to use the
metadata engine. The unique identifier for the SASLibrary object must be
specified by the LIBID=, LIBRARY=, or LIBURI= argument in the LIBNAME
statement for the metadata engine. The metadata engine will exit with an error if
the SASLibrary identifier is not included in the LIBNAME statement. Metadata
included in this library will be used to construct a LIBNAME statement for the
underlying engine.

Attributes: � Engine—The engine that is used with this library. This
attribute tells the metadata engine which engine to assign

42 How the Metadata Engine Uses SAS Namespace Types Chapter 6

as the underlying engine. A SAS data library will be
associated with only one engine. This attribute must be
populated.

� Libref—The libref that is used to assign the underlying
engine. This attribute must be populated.

� IsDBMSLibname—Indicates whether this library will be
used to construct a LIBNAME statement for a DBMS
engine. If this attribute is true, there must be a
DatabaseSchema object associated with this library
(’UsingPackages’ association).

Associations: � DefaultLogin(0..1)
This association from the SASLibrary object to a Login

object is used to obtain the user login (user ID and
password) metadata that will be used as values for the
user ID and password parameters in the LIBNAME
statement. However, many engines do not require user
login metadata; therefore, this association might not exist.
If this association does not exist, the metadata engine will
attempt to obtain login metadata from the
AuthenticationDomain object through the
SASClientConnection object. If user login metadata
cannot be obtained through the AuthenticationDomain
object, the metadata engine will attempt to assign the
underlying engine via a LIBNAME statement without any
user login information. The cardinality of this association
enables the SAS data library to use (at most) one user ID/
password for the LIBNAME statement.

� LibraryConnection(0..1)
This association from the SASLibrary object to a

SASClientConnection object is used to obtain engine
connection options. These options are represented as
Property objects associated with either the
SASClientConnection object or a PropertySet object that
is associated with the SASClientConnection object. This
association will also be used to retrieve user login
metadata, where applicable, through the
SASClientConnection and AuthenticationDomain objects.
The cardinality on this association enables the SAS data
library access to (at most) one SASClientConnection object.

� Properties(0..n)
This association from the SASLibrary object to Property

object(s) is used to obtain library options that should be
included in the LIBNAME statement for the underlying
engine. These options will be considered the default set of
options and will be applied each time a LIBNAME
statement is constructed for the underlying engine unless
a property set name is specified in the metadata engine
LIBNAME option LIBOPTSET= . The cardinality on this
association enables a SAS data library to have many
library options.

� PropertySets(0..n)
This association from the SASLibrary object to

PropertySet object(s) will be used to obtain a set of

Metadata Engine’s Usage of the SAS OMA SAS Namespace Types How the Metadata Engine Uses SAS Namespace Types 43

LIBNAME options to be included in the LIBNAME
statement for the underlying engine. This association is
used when a property set name is specified in the
metadata engine LIBNAME option LIBOPTSET= . If no
LIBNAME option is specified, any default LIBNAME
options from the Properties association will be applied.
The cardinality of this association enables a SAS data
library to have many sets of options.

� UsingPackages(0..1)
This association from the SASLibrary object to either a

DatabaseSchema or Directory is used to obtain metadata
concerning a DBMS schema or a system directory,
respectively. There should be only one DatabaseSchema or
Directory associated with a SASLibrary object.

SASPassword
represents a SAS password. The READ=, WRITE=, ALTER=, and PW= data set
password options cannot be represented with a Property object. The SAPW=
remote engine server password option cannot be represented with a Property
object. These options must be represented with a SASPassword object. SAS
passwords are retrieved when the underlying engine for the metadata engine is a
Base SAS engine and a password-protected SAS data set is opened . A
SASPassword can also be retrieved when the LIBNAME statement is executed for
the metadata engine.

Attributes: The following attributes must be populated in the
SASPassword object:

� SASPassword—The value for a SAS data set password
option or a SAS server password.

� Type—The name of the SAS password option. Valid values
for this attribute are READ, WRITE, ALTER, PW, and
SAPW.

Associations: N/A

44

45

C H A P T E R

7 Metadata Requirements for
Using the SAS Open Metadata
Architecture Authorization
Facility to Control Data Access

What Is the SAS Open Metadata Architecture Authorization Facility? 45

Understanding Access Controls 46
Associating Access Controls with a Resource 46

How the SAS Metadata Server Enforces Access Controls 47

How the Metadata Engine Enforces Permissions 47
Frequently Asked Questions about the Authorization Facility 49

What Is the SAS Open Metadata Architecture Authorization Facility?

The SAS Open Metadata Architecture Authorization Facility is a subsystem of the
SAS Metadata Server that renders decisions about whether an individual user or a
group can take a specific action on a computing resource. The authorization facility
controls access to metadata objects on the server. It can also be used to control access to
the data and other actions that can be taken on the resources that the metadata objects
describe.

The authorization facility uses four categories of metadata in order to render
authorization decisions:

1 Identity metadata (Person, IdentityGroup, and Login metadata types) registers
users on the metadata server and enables them to be associated with resources
and permissions.

2 Permission metadata identifies the actions that can be taken on a resource.
Repositories that are created using SAS Management Console have metadata
automatically created in them that defines ReadMetadata, WriteMetadata, Read,
Write, Create, and Delete permissions.

3 Resource metadata identifies the resource (for example, a library or table) that will
be controlled.

4 Access control metadata relates identity and permission metadata to resource
metadata to create the actual access control.

An administrator must explicitly create identity, resource, and access control
metadata. The recommended method is to use SAS Management Console. Identity
metadata is created in the SAS Management Console User Manager. Resource
metadata is created in the Library Manager. Access control metadata is created in the
Authorization Manager. Identity metadata must exist before access control metadata
can be created.

For more information, see “Understanding the SAS Open Metadata Architecture
Authorization Facility” in the SAS Metadata Server: Setup Guide , which is available
from support.sas.com/rnd/eai/openmeta.

46 Understanding Access Controls Chapter 7

Understanding Access Controls
An access control is a set of metadata that grants or denies a specific identity one or

more permissions to a given resource. The identity can be an individual user or a
group. The resource can be a repository or a specific metadata object in a repository.
The permissions that can be assigned on a metadata resource include:

READMETADATA
specifies whether a metadata resource is available to a user.

WRITEMETADATA
specifies whether a user can update a metadata resource; also specifies whether a
user can create or delete a metadata resource in a repository.

READ
specifies whether the data described by the metadata resource can be read by a
user.

WRITE
specifies whether the data described by the metadata resource can be updated by a
user.

CREATE
specifies whether a user can add data to the resource described by the metadata
object.

DELETE
specifies whether a user can delete data in the resource described by the metadata
object.

The metadata server enforces the ReadMetadata and WriteMetadata permissions.
This set of permissions is typically reserved for the metadata administrator.

The metadata engine enforces the Read, Write, Create, and Delete permissions. The
Read, Write, Create, and Delete permissions are enforced on SASLibrary and
PhysicalTable metadata. In order to act on the data described by a given metadata
object, a user needs ReadMetadata permission and some combination of Read plus
Write, Create, and Delete permissions.

For a summary of how the metadata engine enforces the Read, Write, Create, and
Delete permissions, see “How the Metadata Engine Enforces Permissions” on page 47.
Tables summarize how the Read, Write, Create, and Delete permissions are enforced
when permission to a given object is denied and how the metadata engine behaves
when the ReadMetadata and WriteMetadata permissions enforced by the SAS
Metadata Server are denied.

Associating Access Controls with a Resource
An administrator can associate access controls with a resource in three ways:
� Access control information for a given resource can be defined when other

properties for the resource are defined. In this way, the access control is stored
directly with the resource.

� Access control information can be stored in an access control template (ACT) that
can be referenced by a number of resources. The template is stored independently
of any metadata resource and updated independently of any metadata resource.

� Permissions can be assigned in the default repository ACT. The default repository
ACT controls who can access the repository and applies those permissions (as
default permissions) to all of the objects in the repository.

Using the SAS OMA Authorization Facility to Control Data Access How the Metadata Engine Enforces Permissions 47

A direct control is defined in the Authorization tab of a resource’s Properties window.
A user-defined ACT is created in the Authorization Manager and then associated with
one or more resources in the Authorization tab of each resource’s Properties window.
The default repository ACT is maintained in the access control template folder of the
Authorization Manager.

When defining access controls on a resource, you are encouraged to specify all
permissions that apply to a given identity. For example, if you want to allow John Doe
to read data described by a metadata object but not to create, update, or delete data,
then grant John Doe ReadMetadata and Read permission, but deny him
WriteMetadata, Create, Write, and Delete permissions. If you want to allow Jane Doe
full access to the data described by a metadata object, grant Jane Doe ReadMetadata,
Read, Write, Create, and Delete permissions on the metadata object, but deny her
WriteMetadata permission.

How the SAS Metadata Server Enforces Access Controls
The SAS Metadata Server supports an AUTHCHCK configuration option that

determines whether authorization decisions will be made by the authorization facility
on access controls defined in a repository. The default authorization mode (INHERIT)
specifies to look for access controls that are associated directly with a resource first and,
if a pertinent control is not found, to search parent objects for any access controls that
might pertain to the requesting user and the requested action, and then, if no inherited
controls are found, to use the permissions assigned in the Default Repository ACT. The
inheritance structure is defined in a set of default inheritance rules.

If the AUTHCHCK configuration option is set to NONE, authorization decisions are
not made by the authorization facility on access controls defined in a repository. You
will want to be aware of the AUTHCHCK setting at your site, because it will determine
whether the access controls you have defined are enforced.

How the Metadata Engine Enforces Permissions
The Read, Write, Create, and Delete permissions are not available to any user until

an administrator sets them in the Default Repository ACT, a user-defined ACT, or in a
resource’s properties. If no explicit permissions are set for a user, the user inherits the
permissions from the PUBLIC group in the Default Repository ACT. The metadata
engine enforces Read, Write, Create, and Delete permissions on SASLibrary and
PhysicalTable metadata objects. If the authorization mode is set so that the repository
is secure, the metadata engine will enforce a user’s permission.

The following table summarizes how the metadata engine enforces the Read, Write,
Create, and Delete permissions for these objects when the permission is denied.

48 How the Metadata Engine Enforces Permissions Chapter 7

Table 7.1 Resource Authorization Behavior of the Metadata Engine

Metadata Object CREATE Permission
Behavior

READ Permission
Behavior

WRITE Permission
Behavior

DELETE Permission
Behavior

SASLibrary The user will not be
able to add tables to
the library. A
message is issued
stating that the user
is not authorized to
add tables to the
library and
processing
terminates.

Behavior is not
applicable for this
object.

Behavior is not
applicable for this
object.

The user will not be
able to delete tables
from the library. A
message is issued
stating that the user
is not authorized to
delete tables from
the library and
processing
terminates.

PhysicalTable The user will not be
able to add rows to
the table. A message
is issued stating that
the user is not
authorized to add
data to the table and
processing
terminates.

The user will be able
to see the contents of
the table.

The user will be able
to read data in the
table (if READ
permission is
GRANT.)

The user will not be
able to read data in
the table. A message
is issued stating that
the user is not
authorized to read
data in the table and
processing
terminates.

The user will not be
able to update data,
delete data, and in
some cases add data
to the table (any
application that
reads the data after
it is added).

The user will be able
to see the contents of
the table.

The user will not be
able to update rows
in the table. A
message is issued
stating that the user
is not authorized to
update data in the
table and processing
terminates.

The user will be able
to see the contents of
the table.

The user will be able
to read data in the
table (if READ
permission is
GRANT).

The user will not be
able to delete rows
from the table. A
message is issued
stating that the user
is not authorized to
delete data from the
table and processing
terminates.

The user will be able
to see the contents of
the table.

The user will be able
to read data in the
table (if READ
permission is
GRANT).

The following table summarizes the metadata engine’s behavior when a
ReadMetadata or WriteMetadata permission for these objects is defined.

Using the SAS OMA Authorization Facility to Control Data Access FAQs about the Authorization Facility 49

Table 7.2 Permissions Behavior of the Metadata Engine

Metadata Object ReadMetadata Permission Behavior WriteMetadata Permission Behavior

SASLibrary The user will not be able to retrieve
the SASLibrary object from the
repository. The user will not be able
to execute a LIBNAME statement
for the metadata engine. A message
states that metadata cannot be
retrieved or that no metadata objects
are found and processing terminates.

Behavior is not applicable for this
object.

PhysicalTable The user will not be able to retrieve
the PhysicalTable object from the
repository. A message states that the
table does not exist and processing
terminates.

Behavior is not applicable for this
object.

Default ACT The user will not be able to retrieve
metadata from the repository. The
user will not be able to execute a
LIBNAME statement for the
metadata engine. A message states
that metadata cannot be retrieved or
that no metadata objects are found
and processing terminates.

The user will not be able to create
tables in or delete tables from the
repository. A message states that the
user is not authorized to perform this
action and processing terminates.

Frequently Asked Questions about the Authorization Facility
� How do I secure my whole repository?

Default user and repository permissions pertaining to all of the objects in a
repository can be set on the default repository ACT under the Authorization
Manager in the SAS Management Console.

� How do I secure an individual object in my repository?
Individual objects can be secured under the Authorization tab in an object’s

Properties window in the SAS Management Console.
� What security does a user get if the user is not registered in the repository?

If a user is not registered in the repository, the user has no identity in the
repository. Therefore, the user’s permissions will be the permissions of the
PUBLIC group.

� How do I prevent a user from creating or deleting tables in my repository?
Creating and deleting objects in a repository is controlled by the user’s

WRITEMETADATA permission on the default repository ACT. Set the user’s
WRITEMETADATA permission on the default repository ACT to DENY.

� For a user to delete or update data in a table, what permissions must be granted on
the table?

For a user to delete data from a table, the user’s READ and DELETE
permissions on the table must be GRANT. For a user to update data in a table, the
user’s READ and WRITE permission on the table must be GRANT.

� Can a user read the data in a table and not have permission to update the data in
the table?

50 FAQs about the Authorization Facility Chapter 7

Yes. The user’s READ permission on the table can be GRANT while the user’s
WRITE permission on the table is DENY.

� How do I allow a user to add data to a table?
To add data to a table, the user’s READ and CREATE permissions on the table

must be GRANT.
� Can a user have permissions on a library that pertain to the tables in the library?

Permissions are either explicitly set on a resource or inherited from a parent. If
no permissions are explicitly set on a table for a user, the user’s permissions for
the table can be inherited from the library since the library can be a parent of a
table. In this case, the user’s permissions on the library will control the user’s
activities on the table, as well as in the library. For example, if a user’s CREATE
permission on a library is GRANT and the user’s CREATE permission on the table
is not explicitly set, the user’s CREATE permission for the table can be inherited
from the library and the user will be able to add data to a table as well as add
tables to the library.

� Even though the metadata engine does not enforce security on a DBMS schema, can
I secure a schema instead of the individual tables in the schema?

Since a DBMS schema is a parent of a table, a user’s permissions for a table can
be inherited from the permissions on the schema. In this case, the user’s
permissions for each table in the schema will be the same.

� How do I prevent a user from seeing a table in a library?
To hide a table in a library from a user, the user’s READMETADATA

permission on the table must be DENY. For the user, this table does not exist.
� Can a user update the data in a table that the user cannot see in a library?

No. If a user’s READMETADATA permission on the table is DENY, no metadata
for the table is retrieved from the repository. When the user attempts to update
the data in the table, a message is issued stating that the table does not exist.

� Does granting a user WRITE permission on a library allow the user to update data
in a table in the library?

No. To update data in a table in the library, the user’s WRITE permission on
the table, along with the READ permission, must be GRANT. The WRITE
permission on the library pertains to updating the table, such as renaming the
table, which is not supported by the metadata engine. Therefore, the WRITE
permission on the library is not enforced by the metadata engine.

� Can I prevent a user from viewing the contents of a library by denying the user
READ permission on the library?

No. The READ permission on the library is not enforced. Any user, with a
READMETADATA permission of GRANT on the library, can execute a LIBNAME
statement for the library and view the contents of the library. To prevent the user
from viewing the contents of a library, the user’s READMETADATA permission on
the library must be DENY.

� If I deny a user WRITEMETADATA permission on a library, can the user add or
delete tables in the library?

To prevent a user from adding or deleting tables in a library, the user’s
CREATE or DELETE permission on the library must be set to DENY.

� If a user is denied READ permission on the whole repository but granted READ on
a table, can the user read the data in the table?

Yes. Assuming the user’s READMETADATA permission on the library and table
is GRANT, the user will be able to execute a LIBNAME statement for the library
and read the data in the table. The READ permission on the library is not
enforced by the metadata engine.

Using the SAS OMA Authorization Facility to Control Data Access FAQs about the Authorization Facility 51

� How can I prevent a user from viewing the contents of a specific column on a table?

Security on a Column object is not enforced in the metadata engine. Therefore,
the metadata engine cannot prevent a user from viewing the contents of a specific
column on a table.

� How can I hide a column from a user?

To hide a column on a table from a user, the user’s READMETADATA
permission on the column must be DENY. The READMETADATA permission is
enforced by the SAS Metadata Server.

� If I secure the Directory object, does that prevent a user from accessing the library?

No. The metadata engine does not enforce security on a Directory object.

52

53

P A R T3

Reference for the Metadata Engine

Chapter 8.LIBNAME Statement for the Metadata Engine 55

Chapter 9.SAS Data Set Options for the Metadata Engine 63

54

55

C H A P T E R

8
LIBNAME Statement for the
Metadata Engine

Using the LIBNAME Statement 55

LIBNAME Statement Syntax 56
Required Arguments 57

LIBNAME Statement Options for Connecting to the SAS Metadata Server 58

LIBNAME Statement Options for the Metadata Engine 59
Metadata Engine Options to Control Output Processing 59

Metadata Engine Options to Control Data Set Options 60

Using the LIBNAME Statement

The LIBNAME statement for the metadata engine associates a SAS libref with
metadata stored on a SAS Metadata Repository in order to use the metadata engine to
access data.

You must have a repository available on the SAS Metadata Server that contains
metadata that defines the data to be accessed. For the necessary repository identifiers
and metadata object names and identifiers, see the documentation for your application.
For example, the SAS/Warehouse Administrator stores metadata for a warehouse
definition. Use SAS/Warehouse Administrator as a tool in order to determine the
metadata you need to identify.

The SAS Metadata Server, which is a multi-user server that stores metadata from
one or more repositories, must be running in order to execute the LIBNAME statement
for the metadata engine. For information about starting the server, see SAS Metadata
Server: Setup Guide, which is available from the SAS Community
support.sas.com/rnd/eai/openmeta.

The metadata must conform to specific metadata engine models. See Chapter 4,
“SAS Metadata Model Requirements for the Metadata Engine,” on page 21. For
information about each metadata type, see SAS Open Metadata Interface: Reference.

To access the metadata, the metadata engine uses the following information that you
provide on the LIBNAME statement:

IPADDR= and PORT= options
identifies the SAS Metadata Server.

REPID= or REPNAME= option
identifies the specific SAS Metadata Repository.

LIBID=, LIBURI=, or LIBRARY= argument
identifies the particular SASLibrary metadata object. The metadata engine locates
the information by using the value as an anchor point into the metadata. From
that starting point, the metadata engine traverses the remaining metadata, using
the rules of one of the supported metadata engine models as its guide.

56 LIBNAME Statement Syntax Chapter 8

There are several methods that you can use in order to identify the metadata that
you want to access. The following table illustrates the different modes of syntax.

Table 8.1 Specifying a Metadata Object Using the LIBNAME Statement for the Metadata Engine

Method Example Description

By identifier libname byid meta libid=A9000001
repid=A32V87R9;

Searches for the SASLibrary object
by the ID A32V87R9.A9000001.

By name libname byname meta library=mylib
repname=myrepos;

Searches for the SASLibrary object
by resolving the name into the ID.
This is the recommended method,
because metadata object identifiers
are not guaranteed to be constant if
your repository or SASLibrary object
needs to be modified.

By URI format libname byuri meta liburi="SASLibrary/
A32V87R9.A9000001";

Searches for the SASLibrary object
by resolving the URI format search
criteria.

By identifier and name libname byidnam meta libid=A9000001
repname=myrepos;

Searches for the SASLibrary object
by resolving the repository name
MYREPOS into the 8-character
repository ID and combining it with
the LIBID= identifier.

By identifier and URI
format

libname byiduri meta repid=A32V87R9
liburi="SASLibrary?@name=’mylib’";

Searches for the SASLibrary object
by resolving the LIBURI= value into
the Unique Identifier of the
SASLibrary object that exists in the
repository identified by REPID=.

By name and URI
format

libname byvaluri meta repname=myrepos
liburi="SASLibrary?@name=’mylib’";

Searches for the SASLibrary object
by resolving the LIBURI= value into
the Unique Identifier of the
SASLibrary object that exists in the
repository identified by REPNAME=.

See “LIBNAME Statement Syntax” on page 56 for details on the LIBNAME
statement.

LIBNAME Statement Syntax

LIBNAME libref META LIBID=id | LIBURI=URI-format | LIBRARY=name
<connection-options> <engine-options>;

LIBNAME Statement for the Metadata Engine Required Arguments 57

Required Arguments

libref
is a valid SAS name that serves as a shortcut name to associate with metadata
that is in a SAS Metadata Repository on the SAS Metadata Server. This name
must conform to the rules for SAS names. A libref cannot exceed eight characters.

META
is the engine name for the metadata engine that reads metadata on the SAS
Metadata Server.

LIBID=id
is the unique instance identifier that is assigned to a particular SASLibrary
metadata object in a SAS Metadata Repository. The SASLibrary object is the
anchor point from which all other metadata is obtained. The object defines the
SAS data library, the engine that is used to process the data, and how it should be
assigned. (The engine that is defined in the metadata is referred to as the
underlying engine to the metadata engine.)

The ID can be up to 17 characters. For example, libid=A8000001 or
libid="A8000001.A8000002". Using single or double quotation marks to enclose
the identifier is optional.

LIBRARY | LIBRNAME=name
is the name that is assigned to a particular SASLibrary metadata object in a SAS
Metadata Repository. The SASLibrary object is the anchor point from which all
other metadata is obtained. The object defines the SAS data library, the engine
that is used to process the data, and how it should be assigned. (The engine that
is defined in the metadata is referred to as the underlying engine to the metadata
engine.)

The name can be up to 60 characters. For example, library=mylib. Using
single or double quotation marks to enclose the name is optional.

LIBURI=URI-format
references the particular SASLibrary metadata object in a SAS Metadata
Repository using one of the SAS Open Metadata Architecture Uniform Resource
Identifier (URI) formats. The SASLibrary object is the anchor point from which all
other metadata is obtained. The object defines the SAS data library, the engine
that is used to process the data, and how it should be assigned. (The engine that
is defined in the metadata is referred to as the underlying engine to the metadata
engine.)

The URI formats are as follows:

id is the unique instance identifier that is assigned to the
metadata object. This format is the same as specifying LIBID=.
The ID can be up to 17 characters. Using single or double
quotation marks to enclose the identifier is optional.

type/id is the metadata object type and the unique instance identifier
that is assigned to the metadata object. For the metadata
engine, since the object type is always SASLibrary, this format
is basically the same as specifying LIBID=. Using single or
double quotation marks to enclose the identifier is optional. For
example, liburi="SASLibrary/A32V87R9.A9000001".

type?@search-
criteria

is the metadata object type and an attribute value, such as the
name, engine, or libref.

58 LIBNAME Statement Options for Connecting to the SAS Metadata Server Chapter 8

Requirement: You must enclose this URI format in double
quotation marks and the attribute value in single quotation
marks. For example,
liburi="SASLibrary?@name=’oralib’" or
liburi="SASLibrary?@engine=’base’".

LIBNAME Statement Options for Connecting to the SAS Metadata
Server

The following LIBNAME statement options for the metadata engine establish a
connection to the SAS Metadata Server and identify the metadata resources.

Note: If appropriate values are not available in order to connect to the metadata
server and you execute the LIBNAME statement in the SAS windowing environment,
you will be prompted for the values. �

IPADDR | HOST=address
is the network IP (Internet Protocol) address of the computer that hosts the SAS
Metadata Server, such as ipaddr=d6292.us.sas.com. Using single or double
quotation marks to enclose the address is optional.

The network protocol determines whether an IP address is required. If the
protocol is COM and the server is on a local machine, an IP address is not
required. If the protocol is COM and the server is not local (DCOM services) or the
protocol is BRIDGE, an IP address is required. If this option is not specified and
the protocol is specified as COM on the LIBNAME statement, this indicates a local
server and no IP address will be used to connect to the server. Otherwise, if this
option is not specified, the value is obtained from the METASERVER= system
option. See the METASERVER= system option in SAS Language Reference:
Dictionary.

PORT=number
is the TCP port that the SAS Metadata Server is listening to for connections. For
example, port=5282. Using single or double quotation marks to enclose the
number is optional.

The network protocol determines whether a port number is required. If the
protocol is COM, a port number is not required. If the protocol is BRIDGE, a port
number is required. If this option is not specified and the protocol is BRIDGE, the
value is obtained from the METAPORT= system option or defaults to 9999. See
the METAPORT= system option in SAS Language Reference: Dictionary.

PROTOCOL=BRIDGE | COM
specifies the network protocol for communicating with the SAS Metadata Server.
If this option is not specified, the value is obtained from the METAPROTOCOL=
system option or defaults to BRIDGE. See the METAPROTOCOL= system option
in SAS Language Reference: Dictionary.

BRIDGE
specifies that the connection use the SAS Bridge protocol. This is the default.

COM
specifies that the connection use Microsoft COM/DCOM services.

Note: When using COM services, no IP address is needed. When using
DCOM services, an IP address is needed. �

PW | PASSWORD=password
is the password that corresponds to the user identification on the SAS Metadata
Server. Using single or double quotation marks to enclose the password is optional.

LIBNAME Statement for the Metadata Engine LIBNAME Statement Options for the Metadata Engine 59

The network protocol determines whether a password is required. If the
protocol is COM, a password is not required; if the protocol is BRIDGE, a
password is required. If this option is not specified and the protocol is BRIDGE,
the value is obtained from the METAPASS= system option. See the METAPASS=
system option in SAS Language Reference: Dictionary.

REPID=id
is an identifier that is assigned to a particular SAS Metadata Repository. The ID
is a string that identifies the repository that stores the SASLibrary object that is
specified by the LIBID= or LIBURI= argument. The ID can be up to 17 characters.
Using single or double quotation marks to enclose the identifier is optional. For
example, repid=A32V87R9.
Interaction: You cannot specify both REPID= and REPNAME=. If neither is

specified, the value is obtained from the METAREPOSITORY= system option.
See the METAREPOSITORY= system option in SAS Language Reference:
Dictionary.

REPNAME=name
is a name that is assigned to a particular SAS Metadata Repository. Using single
or double quotation marks to enclose the name is optional. For example,
repname=myrepos.
Interaction: You cannot specify both REPNAME= and REPID=. If neither is

specified, the value is obtained from the METAREPOSITORY= system option.
See the METAREPOSITORY= system option in SAS Language Reference:
Dictionary.

USERID | USER=id
is the user identification for logging in to the SAS Metadata Server. Using single
or double quotation marks to enclose the identifier is optional.

The network protocol determines whether a user identification is required. If
the protocol is COM, a user identification is not required; if the protocol is
BRIDGE, a user identification is required. If this option is not specified and the
protocol is BRIDGE, the value is obtained from the METAUSER= system option.
See the METAUSER= system option in SAS Language Reference: Dictionary.

LIBNAME Statement Options for the Metadata Engine

Metadata Engine Options to Control Output Processing
METAOUT=ALL | META | DATA

for output processing, determines whether both the table and metadata are
created or whether just the table or just the metadata is created.
Default: ALL
Restriction: As a LIBNAME statement option, the behavior applies to all

members in the library and remains for the duration of the library. To specify
METAOUT= behavior for individual tables, use the METAOUT= data set option.

Featured in: “Controlling the Results of Output Processing Using the Metadata
Engine” on page 16.

ALL
creates tables in the data source as well as associated metadata in the
repository. METAOUT=ALL provides input, update, and output processing.
This is the default behavior.

60 LIBNAME Statement Options for the Metadata Engine Chapter 8

META
creates just the metadata in the repository and does not affect the data
source. If the table does not exist in the data source, the metadata engine
creates the metadata based on the information specified in the application
for the output table. When deleting a table, this option deletes the
metadata from the repository but does not delete the table from the data
source.

Restriction: With METAOUT=META, you cannot read or update tables in
a data source, that is, input and update processing are not available.

DATA
creates tables in the data source. For example, you can use this behavior if
the metadata exists in the repository, but the table does not exist in the
data source. When deleting a table, this option deletes the table from the
data source but does not delete the metadata from the repository.
METAOUT=DATA provides input, update, and output processing.

Interaction: If the metadata for the table being read or updated exists in
the repository, the metadata engine uses the default METAOUT=ALL
behavior. If you attempt to create a table and the metadata exists in the
repository, the metadata engine will not verify that the data matches
the metadata. Note that if the table has security assigned, it is enforced
for input and update.

Metadata Engine Options to Control Data Set Options

The following options enable you to specify which set of options to use in order to
construct the LIBNAME statement for the underlying engine. In SAS Open Metadata
Architecture metadata, the LIBNAME statement options for the constructed LIBNAME
statement are represented using Property objects. You can use a PropertySet object to
group a set of options.

If you do not specify the following options for the metadata engine, the default set of
options for the constructed LIBNAME statement are used. The default set of options
consist of Property objects that are directly associated to SASLibrary and
SASClientConnection objects through the Properties association. For example, if you do
not specify the LIBOPTSET= option, the metadata engine looks for any Property objects
that are directly associated with the SASLibrary object that is specified by the LIBID=
or LIBURI= argument. The metadata engine uses this default set of properties as
options when constructing the LIBNAME statement for the underlying engine.

CONOPTSET=’propertyset-object’
is a name of a PropertySet object that is associated with the SASClientConnection
object that corresponds to the SASLibrary object specified by the LIBID= or
LIBURI= argument. The Property objects that are associated with this
PropertySet object will be used as connection options for the constructed LIBNAME
statement for the underlying engine. The name can be up to 60 characters long.

For example, in the following LIBNAME statement for the metadata engine, the
PropertySet object OPTS1 represents the option CONNECTION=SHAREDREAD:

libname shared meta libid=a8000001 conoptset=’opts1’;

In this example, the PropertySet object OPTS2 represents the option
CONNECTION=GLOBALREAD:

libname global meta libid=a8000001 conoptset=’opts2’;

Note: A Connection object exists only for engines that connect to a server. �

LIBNAME Statement for the Metadata Engine LIBNAME Statement Options for the Metadata Engine 61

LIBOPTSET=’propertyset-object’
is a name of a PropertySet object that is associated with the SASLibrary object
specified by the LIBID= or LIBURI= argument. The Property objects that are
associated with this PropertySet object will be used as statement options for the
constructed LIBNAME statement for the underlying engine. The name can be up
to 60 characters long.

For example, in the following LIBNAME statement for the metadata engine, the
PropertySet object OPTS1 represents the options PRESERVE_COL_NAMES=YES
and PRESERVE_TAB_NAMES=YES:

libname upcase meta libid=a8000001 liboptset=’opts1’;

In this example, the PropertySet object OPTS2 represents the options
PRESERVE_COL_NAMES=NO and PRESERVE_TAB_NAMES=NO:

libname lowcase meta libid=a8000001 liboptset=’opts2’;

62

63

C H A P T E R

9
SAS Data Set Options for the
Metadata Engine

Using Data Set Options 63

METAOUT= Data Set Option 63
OPTSET= Data Set Option 65

Using Data Set Options

In a SAS Metadata Repository, a PhysicalTable object represents a library member
(for example, a DBMS table or a SAS data set). Property objects that are associated
directly with the PhysicalTable object are used by the metadata engine as data set
options. These options represent the default set of data set options that will be applied
to the library member when it is processed by the underlying engine.

The following tables show how data set options are represented by individual
Property objects associated with a property set. The NULLSET and IDXSET
PropertySet objects are associated with a PhysicalTable object.

Table 9.1 NULLSET Data PropertySet

Data Set Option PropertyName
Attribute

Delimiter
Attribute

DefaultValue
Attribute

UseValueOnly
Attribute

DBNULL=(EMPID=NO
JOBCODE=NO)

DBNULL = (EMPID=NO
JOBCODE=NO)

0

Table 9.2 IDXSET Data Set Property Set

Data Set Option PropertyName
Attribute

Delimiter
Attribute

DefaultValue
Attribute

UseValueOnly
Attribute

IDXNAME=COIN_IDX IDXNAME = COIN_IDX 0

METAOUT= Data Set Option

The METAOUT= data set option for the metadata engine determines, for output
processing, whether both the table and metadata are created or whether just the table
or just the metadata is created.

Note: While the METAOUT= data set option enables you to specify behavior for
individual tables, you can use the METAOUT= option for the LIBNAME statement in

64 METAOUT= Data Set Option Chapter 9

order to specify behavior for a library. However, for a library, the behavior applies to all
members in the library and remains for the duration of the library. �

Note: For library procedures such as PROC DATASETS, you must specify
METAOUT= as a LIBNAME statement option. You cannot specify it as a data set
option. �

The syntax for the METAOUT= data set option is as follows:

METAOUT=ALL | META | DATA

ALL
creates the table in the data source as well as associated metadata in the
repository. METAOUT=ALL provides input, update, and output processing.
This is the default behavior.

META
creates just the metadata in the repository and does not affect the data
source. If the table does not exist in the data source, the metadata engine
creates the metadata based on the information specified in the application for
the output table. When deleting a table, this option deletes the metadata
from the repository but does not delete the table from the data source.

Restriction: With METAOUT=META, you cannot read or update a table in a
data source, that is, input and update processing are not available.

DATA
creates the table in the data source. For example, you can use this behavior
if the metadata exists in the repository, but the table does not exist in the
data source. When deleting a table, this option deletes the table from the
data source but does not delete the metadata from the repository.
METAOUT=DATA provides input, update, and output processing.

Interaction: If the metadata for the table being read or updated exists in the
repository, the metadata engine uses the default METAOUT=ALL
behavior. If you attempt to create a table and the metadata exists in the
repository, the metadata engine will not verify that the data matches the
metadata. Note that if the table has security assigned, it is enforced for
input and update.

Here are some examples of using the METAOUT= data set option:

� In this example, the library has the default behavior, which is METAOUT=ALL.
However, for this DATA step, the user wants to create just metadata for this
particular table:

data metaeng.new (metaout=meta);
length x $5;
stop;

run;

� In this example, the table New is created in the data source, but no metadata is
created:

data metaeng.new (metaout=data);
x=1;
output;

run;

For additional examples of using the METAOUT= data set option, see “Controlling
the Results of Output Processing Using the Metadata Engine” on page 16.

SAS Data Set Options for the Metadata Engine OPTSET= Data Set Option 65

OPTSET= Data Set Option
The OPTSET= data set option for the metadata engine identifies a specific set of

metadata objects in order to use specific data set options that are identified by the
metadata. When the OPTSET= data set option is specified, the group of options
represented by the specified PropertySet object will be applied to the library member
when processed by the underlying engine. The metadata engine will retrieve the data
set options from the repository so that the underlying engine can apply them.

If you do not use OPTSET=, the default set of options is used. The default set of
options consist of Property objects that are directly associated with PhysicalTable
objects through the Properties association.

Note: Data set options that are to be applied to referenced data must be defined in
the metadata. �

The syntax for the OPTSET= data set option is as follows:

OPTSET=propertyset-object
is the name of a PropertySet metadata object that is associated with the
PhysicalTable object that corresponds to the table that is being referenced. This
metadata engine data set option is used to specify a set of data set options that
will be applied to the referenced data.

Here are some examples of using the OPTSET= data set option:
� The following PRINT procedures use the Oracle SAS/ACCESS engine and the

Base SAS engine:

proc print data=oralib.dept (dbnull=(empid=no jobcode=no));
run;

proc print data=sas9.survey (idxname=coin_idx);
run;

The metadata engine will retrieve the objects shown in the following table and
use the corresponding metadata in the attributes.

Table 9.3 Metadata for Data Set Options

Procedure Parameter/
Option

Metadata Object Object Attribute

dept PhysicalTable SASTableName=’dept’

MemberType=’DATA’

dbnull Property (associated with
the dept PhysicalTable

PropertyName=’dbnull’

Delimiter=’=’

DefaultValue=’(empid=no
jobcode=no)’

UseValueOnly=’0’

66 OPTSET= Data Set Option Chapter 9

Procedure Parameter/
Option

Metadata Object Object Attribute

survey PhysicalTable SASTableName=’survey’

MemberTYpe=’DATA’

idxname Property (associated with
the survey PhysicalTable)

PropertyName=’idxname’

Delimiter=’=’

DefaultValue=’coin_idx’

UseValueOnly=’0’

� In the following PRINT procedures, the metadata engine uses the Oracle
SAS/ACCESS engine as its underlying engine. For this PROC PRINT, the default
set of Property objects representing the DBNULL data set option is associated
with the PhysicalTable object:

proc print data=x.dept;
run;

Then, for this PROC PRINT, the Property object representing the DBNULL data
set option is associated with the NULLSET PropertySet object:

proc print data=x.dept (optset=nullset);
run;

� In the following PRINT procedures, the metadata engine uses the Base SAS
engine as its underlying engine. For this PROC PRINT, the default set of Property
objects representing the IDXNAME= data set option is associated with the
PhysicalTable object:

proc print data=y.survey;
run;

Then, for this PROC PRINT, the Property object representing the IDXNAME=
data set option is associated with the IDXSET PropertySet object:

proc print data=y.survey (optset=idxset);
run;

� In the following PRINT procedure, the PropertySet object OPTS1 represents the
data set options READBUFF=1000 and DBLABEL=NO:

libname mymeta meta libid=a8000001;

proc print data=mymeta.bigtable (optset=’opts1’);
run;

� In the following APPEND procedure, the PropertySet object OPTS2 represents the
data set option DBSASTYPE=(C1=’CHAR(11)’):

proc append base=work.sasbig data=mymeta.bigtable (optset=’opts2’);
run;

67

P A R T4

Appendix

Appendix 1.Recommended Reading 69

68

69

A P P E N D I X

1
Recommended Reading

Recommended Reading 69

Recommended Reading

Here is the recommended reading list for this title:
� The Little SAS Book: A Primer
� SAS Language Reference: Concepts
� SAS Companion that is specific to your operating environment
� Base SAS Community web site at support.sas.com/rnd/base
� Enterprise Integration Community web site for the SAS Open Metadata

Architecture at support.sas.com/rnd/eai/openmeta

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=59216

70

71

Glossary

engine
a component of SAS software that reads from or writes to a file. Each engine enables
SAS to access files that are in a particular file format.

libref (library reference)
a valid SAS name that serves as a shortcut name to associate with metadata objects
that are in a metadata repository.

metadata
a description or definition of data or information.

metadata LIBNAME engine
the SAS engine that processes and augments data that is identified by metadata.
The metadata engine retrieves information about a target SAS data library from
metadata objects in a specified metadata repository.

metadata object
a set of attributes that describe a table, a server, a user, or another resource on a
network. The specific attributes that a metadata object includes vary depending on
which metadata model is being used.

metadata repository
a collection of related metadata objects, such as the metadata for a set of tables and
columns that are maintained by an application. A SAS Metadata Repository is an
example.

metadata server
a server that provides metadata management services to one or more client
applications. A SAS Metadata Server is an example.

observation
a row in a SAS data set. All of the data values in an observation are associated with
a single entity such as a customer or a state. Each observation contains one data
value for each variable.

SAS data file
a type of SAS data set that contains data values as well as descriptor information
that is associated with the data. The descriptor information includes information
such as the data types and lengths of the variables, as well as the name of the engine
that was used to create the data. See also SAS data set, SAS data view.

72 Glossary

SAS data library
one or more SAS files that are accessed by the same library engine and which are
referenced and stored as a unit.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS data set option
an option that appears in parentheses after a SAS data set name. Data set options
specify actions that apply only to the processing of that SAS data set.

SAS data view
a type of SAS data set that retrieves data values from other files. A SAS data view
contains only descriptor information such as the data types and lengths of the
variables (columns), plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors’ file
formats. SAS data views can be created by the ACCESS and SQL procedures, as well
as by the SAS DATA step.

variable
a column in a SAS data set or in a SAS data view. The data values for each variable
describe a single characteristic for all observations.

Index 73

Index

A
access controls 46

associating with resources 46
enforcing 47

AuthenticationDomain namespace type 35
Authorization Facility 45, 49

B
Base SAS engine LIBNAME statement 28

metadata for 29
BASELIB PropertySet object 29

C
character data 10
Column namespace type 36
CONOPTSET= option

LIBNAME statement, metadata engine 60
CREATE access control 46

D
data access 5

Oracle SAS/ACCESS engine vs. metadata en-
gine 12

data security 5
data set options

metadata engine 63
data source tables

creating metadata for 16
DatabaseSchema namespace type 36
DELETE access control 46
Directory namespace type 36

H
HOST= option

LIBNAME statement, metadata engine 58

I
IDXSET PropertySet object 63

Index namespace type 37
IPADDR= option

LIBNAME statement, metadata engine 58

L
LIBID= argument

LIBNAME statement, metadata engine 57
LIBNAME statement, metadata engine 11, 55

Base SAS engines 28
constructing 27
options 58, 59
remote engine 32
SAS/ACCESS engines 30
specifying metadata objects 56
syntax 56

LIBOPTSET= option
LIBNAME statement, metadata engine 61

LIBRARY= argument
LIBNAME statement, metadata engine 57

LIBURI= argument
LIBNAME statement, metadata engine 57

Login namespace type 37

M
META argument

LIBNAME statement, metadata engine 57
metadata 3

creating for data source tables 16
for Base SAS engine LIBNAME statement 29
for metadata engine 9
for SAS/ACCESS engine LIBNAME state-

ment 31
metadata engine 3

advantages of 5
controlling results of output processing 16
creating tables 14
deleting tables 15
enforcing permissions 47
LIBNAME statement 27
metadata for 9
namespace types and 35
performance 7
process for 3
requirements for 9
resource authorization behavior 47
supported/unsupported features 6

vs. Oracle SAS/ACCESS engine 12
Metadata Model 21
metadata objects

specifying for metadata engine 56
metadata resources

access controls 46
associating access controls with 46

METAOUT= data set option 63
METAOUT= option

LIBNAME statement, metadata engine 59

N
namespace types 35

metadata engine and 35
NULLSET PropertySet object 63

O
Open Metadata Architecture 6
Open Metadata Architecture Authorization Facil-

ity 45, 49
OPTSET= data set option 65
Oracle SAS/ACCESS engine

vs. metadata engine 12
output processing

controlling with metadata engine 16

P
PASSWORD= option

LIBNAME statement, metadata engine 58
performance

metadata engine 7
permissions

enforcing 47
PhysicalTable namespace type 38
PORT= option

LIBNAME statement, metadata engine 58
Property namespace type 39
Property objects 27

BASELIB PropertySet object 29
READCON PropertySet object 31
READLIB PropertySet object 31

PropertySet namespace type 40
PROTOCOL= option

LIBNAME statement, metadata engine 58

74 Index

R
READ access control 46
READCON PropertySet object 31
READLIB PropertySet object 31
READMETADATA access control 46
Relational DBMS Model 21
remote engine

metadata engine LIBNAME statement for 32
Remote Relational DBMS Model 21
Remote SAS Data Set Model 21
REPID= option

LIBNAME statement, metadata engine 59
REPNAME= option

LIBNAME statement, metadata engine 59
resource authorization 47

S
SAS/ACCESS engine LIBNAME statement 30

metadata for 31

SAS Data Set Model 21
SAS Metadata Model 21
SAS Metadata Server

enforcing access controls 47
SAS Open Metadata Architecture Authorization

Facility 45, 49
SASClientConnection namespace type 41
SASLibrary namespace type 41
SASLibrary object 27
SASPassword namespace type 43

T
tables

creating with metadata engine 14
deleting with metadata engine 15

U
USERID= option

LIBNAME statement, metadata engine 59

W
WRITE access control 46
WRITEMETADATA access control 46

Your Turn

If you have comments or suggestions about SAS 9.1 Metadata LIBNAME Engine
User’s Guide, please send them to us on a photocopy of this page, or send us electronic
mail.

For comments about this book, please return the photocopy to
SAS Publishing
SAS Campus Drive
Cary, NC 27513
email: yourturn@sas.com

For suggestions about the software, please return the photocopy to
SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
email: suggest@sas.com

	Table of Contents
	Contents

	What’s New
	Overview
	Details

	Usage
	Using the Metadata LIBNAME Engine
	What Does the Metadata Engine Do?
	Understanding How the Metadata Engine Works
	Advantages of Using the Metadata Engine
	What Is Supported?
	Performance Considerations

	Understanding the Metadata
	What Metadata Is Used by the Metadata Engine?
	What Is Required to Use the Metadata Engine?

	Examples of Using the Metadata Engine
	Submitting the LIBNAME Statement for the Metadata Engine
	Accessing Data Using an Engine Directly Compared to Using the Metadata Engine
	Overview
	Using the Oracle SAS/ACCESS Engine Directly
	Using the Metadata Engine

	Using the Metadata Engine to Create a New Table
	Using the Metadata Engine to Delete a Table
	Controlling the Results of Output Processing Using the Metadata Engine
	Overview
	Creating Metadata for an Existing Data Source Table
	Creating Only a Table in a Data Source
	Deleting Only a Table or Only Metadata

	Metadata Requirements
	SAS Metadata Model Requirements for the Metadata Engine
	Understanding the Model Requirements

	Metadata Requirements to Construct the LIBNAME Statement for the Underlying Engine
	Understanding How the Metadata Engine Constructs a LIBNAME Statement
	Metadata Requirements to Construct a LIBNAME Statement for a Base SAS Engine
	Metadata Requirements to Construct a LIBNAME Statement for a DBMS SAS/ ACCESS Engine
	Metadata Requirements to Construct a LIBNAME Statement for the Remote Engine

	Metadata Engine’s Usage of the SAS Open Metadata Architecture SAS Namespace Types
	What Is a SAS Namespace Type?
	How the Metadata Engine Uses SAS Namespace Types

	Metadata Requirements for Using the SAS Open Metadata Architecture Authorization Facility to Control Data Access
	What Is the SAS Open Metadata Architecture Authorization Facility?
	Understanding Access Controls
	Associating Access Controls with a Resource
	How the SAS Metadata Server Enforces Access Controls
	How the Metadata Engine Enforces Permissions
	Frequently Asked Questions about the Authorization Facility

	Reference for the Metadata Engine
	LIBNAME Statement for the Metadata Engine
	Using the LIBNAME Statement
	LIBNAME Statement Syntax
	Required Arguments
	LIBNAME Statement Options for Connecting to the SAS Metadata Server
	LIBNAME Statement Options for the Metadata Engine

	SAS Data Set Options for the Metadata Engine
	Using Data Set Options
	METAOUT= Data Set Option
	OPTSET= Data Set Option

	Appendix
	Recommended Reading
	Recommended Reading

	Glossary
	Index

