
SAS®

9.1
Language Reference: Concepts

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS ® 9.1 Language Reference: Concepts. Cary, NC: SAS Institute Inc.

SAS® 9.1 Language Reference: Concepts
Copyright © 2004 by SAS Institute Inc., Cary, NC, USA
ISBN 1-59047–198–9
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

P A R T 1 SAS System Concepts 1

Chapter 1 � Essential Concepts of Base SAS Software 3
What Is SAS? 3

Overview of Base SAS Software 4

Components of the SAS Language 4

Ways to Run Your SAS Session 7

Customizing Your SAS Session 9

Conceptual Information about Base SAS Software 10

Chapter 2 � SAS Processing 11
Definition of SAS Processing 11

Types of Input to a SAS Program 12

The DATA Step 13

The PROC Step 14

Chapter 3 � Rules for Words and Names in the SAS Language 15
Words in the SAS Language 15

Names in the SAS Language 18

Chapter 4 � SAS Language Elements 23
What Are the SAS Language Elements? 25

Data Set Options 25

Formats and Informats 27

Functions and CALL Routines 38

ARM Macros 55

Statements 69

SAS System Options 71

Chapter 5 � SAS Variables 77
Definition of SAS Variables 78

SAS Variable Attributes 78

Ways to Create Variables 80

Variable Type Conversions 84

Aligning Variable Values 85

Automatic Variables 85

SAS Variable Lists 86

Dropping, Keeping, and Renaming Variables 88

Numeric Precision in SAS Software 90

Chapter 6 � Missing Values 101
Definition of Missing Values 101

iv

Special Missing Values 102

Order of Missing Values 103

When Variable Values Are Automatically Set to Missing by SAS 104

When Missing Values Are Generated by SAS 105

Working with Missing Values 107

Chapter 7 � Expressions 109
Definitions for SAS Expressions 110

Examples of SAS Expressions 110

SAS Constants in Expressions 110

SAS Variables in Expressions 116

SAS Functions in Expressions 117

SAS Operators in Expressions 117

Chapter 8 � Dates, Times, and Intervals 127
About SAS Date, Time, and Datetime Values 127

About Date and Time Intervals 137

Chapter 9 � Error Processing and Debugging 147
Types of Errors in SAS 147

Error Processing in SAS 156

Debugging Logic Errors in the DATA Step 159

Chapter 10 � SAS Output 161
Definitions for SAS Output 162

Routing SAS Output 163

The SAS Log 163

Traditional SAS Listing Output 167

Changing the Destination of the Log and the Output 170

Output Delivery System 170

Chapter 11 � BY-Group Processing in SAS Programs 195
Definition of BY-Group Processing 195

References for BY-Group Processing 195

Chapter 12 � WHERE-Expression Processing 197
Definition of WHERE-Expression Processing 197

Where to Use a WHERE Expression 198

Syntax of WHERE Expression 199

Combining Expressions by Using Logical Operators 207

Constructing Efficient WHERE Expressions 208

Processing a Segment of Data That Is Conditionally Selected 208

Deciding Whether to Use a WHERE Expression or a Subsetting IF Statement 211

Chapter 13 � Optimizing System Performance 213
Definitions for Optimizing System Performance 213

Collecting and Interpreting Performance Statistics 214

v

Techniques for Optimizing I/O 215

Techniques for Optimizing Memory Usage 220

Techniques for Optimizing CPU Performance 220

Calculating Data Set Size 221

Chapter 14 � Support for Parallel Processing 223
Definition of Parallel Processing 223

Threaded I/O 223

Threaded Application Processing 224

Chapter 15 � Monitoring Performance Using Application Response Measurement
(ARM) 225
Introduction to ARM 225

How Does ARM Work? 227

Will ARM Affect an Application’s Performance? 227

Using the ARM Interface 228

Examples of Gathering Performance Data 231

Chapter 16 � The SAS Registry 235
Introduction to the SAS Registry 236

Managing the SAS Registry 238

Configuring Your Registry 246

Chapter 17 � Printing with SAS 251
Introduction to Universal Printing 252

Managing Printing Tasks with the Universal Printing User Interface 254

Configuring Universal Printing with Programming Statements 273

Forms Printing 279

P A R T 2 Windowing Environment Concepts 281

Chapter 18 � Introduction to the SAS Windowing Environment 283
Basic Features of the SAS Windowing Environment 283

Main Windows of the SAS Windowing Environment 288

Chapter 19 � Managing Your Data in the SAS Windowing Environment 307
Introduction to Managing Your Data in the SAS Windowing Environment 307

Copying and Viewing Files in a Data Library 307

Using the Workspace to Manipulate Data in a Data Set 313

Importing and Exporting Data 321

P A R T 3 DATA Step Concepts 327

Chapter 20 � DATA Step Processing 329
Why Use a DATA Step? 329

Overview of DATA Step Processing 330

Processing a DATA Step: A Walkthrough 333

vi

About DATA Step Execution 337

About Creating a SAS Data Set with a DATA Step 342

Writing a Report with a DATA Step 347

The DATA Step and ODS 354

Chapter 21 � Reading Raw Data 357
Definition of Reading Raw Data 357

Ways to Read Raw Data 358

Kinds of Data 358

Sources of Raw Data 361

Reading Raw Data with the INPUT Statement 362

How SAS Handles Invalid Data 367

Reading Missing Values in Raw Data 368

Reading Binary Data 369

Reading Column-Binary Data 371

Chapter 22 � BY-Group Processing in the DATA Step 375
Definitions for BY-Group Processing 375

Syntax for BY-Group Processing 376

Understanding BY Groups 377

Invoking BY-Group Processing 378

Determining Whether the Data Requires Preprocessing for BY-Group Processing 379

Preprocessing Input Data for BY-Group Processing 379

How the DATA Step Identifies BY Groups 380

Processing BY-Groups in the DATA Step 383

Chapter 23 � Reading, Combining, and Modifying SAS Data Sets 387
Definitions for Reading, Combining, and Modifying SAS Data Sets 389

Overview of Tools 389

Reading SAS Data Sets 390

Combining SAS Data Sets: Basic Concepts 391

Combining SAS Data Sets: Methods 402

Error Checking When Using Indexes to Randomly Access or Update Data 428

Chapter 24 � Using DATA Step Component Objects 437
Introduction 437

Using the Hash Object 438

Using the Hash Iterator Object 445

Chapter 25 � Array Processing 449
Definitions for Array Processing 449

A Conceptual View of Arrays 450

Syntax for Defining and Referencing an Array 451

Processing Simple Arrays 452

Variations on Basic Array Processing 456

Multidimensional Arrays: Creating and Processing 457

Specifying Array Bounds 459

vii

Examples of Array Processing 461

P A R T 4 SAS Files Concepts 465

Chapter 26 � SAS Data Libraries 467
Definition of a SAS Data Library 467

Library Engines 469

Library Names 469

Library Concatenation 471

Permanent and Temporary Libraries 473

SAS System Libraries 474

Sequential Data Libraries 476

Tools for Managing Libraries 477

Chapter 27 � SAS Data Sets 481
Definition of a SAS Data Set 481

Descriptor Information for a SAS Data Set 481

Data Set Names 482

Special SAS Data Sets 484

Sorted Data Sets 485

Tools for Managing Data Sets 485

Viewing and Editing SAS Data Sets 486

Chapter 28 � SAS Data Files 487
Definition of a SAS Data File 489

Differences between Data Files and Data Views 489

Understanding an Audit Trail 491

Understanding Generation Data Sets 499

Understanding Integrity Constraints 505

Understanding SAS Indexes 518

Compressing Data Files 537

Chapter 29 � SAS Data Views 539
Definition of SAS Data Views 539

Benefits of Using SAS Data Views 540

When to Use SAS Data Views 541

DATA Step Views 541

PROC SQL Views 545

Comparing DATA Step and PROC SQL Views 545

SAS/ACCESS Views 546

Chapter 30 � Stored Compiled DATA Step Programs 547
Definition of a Stored Compiled DATA Step Program 547

Uses for Stored Compiled DATA Step Programs 547

Restrictions and Requirements for Stored Compiled DATA Step Programs 548

How SAS Processes Stored Compiled DATA Step Programs 548

viii

Creating a Stored Compiled DATA Step Program 549

Executing a Stored Compiled DATA Step Program 550

Differences between Stored Compiled DATA Step Programs and DATA Step Views 554

Examples of DATA Step Programs 554

Chapter 31 � DICTIONARY Tables 557
Definition of a DICTIONARY Table 557

How to View DICTIONARY Tables 557

Chapter 32 � SAS Catalogs 561
Definition of a SAS Catalog 561

SAS Catalog Names 561

Tools for Managing SAS Catalogs 562

Profile Catalog 563

Catalog Concatenation 564

Chapter 33 � About SAS/ACCESS Software 569
Definition of SAS/ACCESS Software 569

Dynamic LIBNAME Engine 569

SQL Procedure Pass-Through Facility 571

ACCESS Procedure and Interface View Engine 572

DBLOAD Procedure 573

Interface DATA Step Engine 573

Chapter 34 � Processing Data Using Cross-Environment Data Access (CEDA) 575
Definition of Cross-Environment Data Access (CEDA) 575

Advantages of CEDA 576

SAS File Processing with CEDA 576

Processing a File with CEDA 578

Alternatives to Using CEDA 580

Creating New Files in a Foreign Data Representation 581

Examples of Using CEDA 581

Chapter 35 � SAS 9.1 Compatibility with SAS Files From Earlier Releases 583
Introduction to Version Compatibility 583

Comparing SAS System 9 to Earlier Releases 583

Using SAS Library Engines 584

Chapter 36 � File Protection 587
Definition of a Password 587

Assigning Passwords 588

Removing or Changing Passwords 590

Using Password-Protected SAS Files in DATA and PROC Steps 590

How SAS Handles Incorrect Passwords 591

Assigning Complete Protection with the PW= Data Set Option 591

Using Passwords with Views 592

SAS Data File Encryption 594

ix

Chapter 37 � SAS Engines 597
Definition of a SAS Engine 597

Specifying an Engine 597

How Engines Work with SAS Files 598

Engine Characteristics 599

About Library Engines 602

Special-Purpose Engines 604

Chapter 38 � SAS File Management 607
Improving Performance of SAS Applications 607

Moving SAS Files Between Operating Environments 607

Repairing Damaged SAS Files 607

Chapter 39 � External Files 611
Definition of External Files 611

Referencing External Files Directly 612

Referencing External Files Indirectly 612

Referencing Many External Files Efficiently 613

Referencing External Files with Other Access Methods 614

Working with External Files 615

P A R T 5 Industry Protocols Used in SAS 617

Chapter 40 � The SMTP E-Mail Interface 619
Sending E-Mail through SMTP 619

System Options That Control SMTP E-Mail 619

Statements That Control SMTP E-mail 620

Chapter 41 � Universal Unique Identifiers 621
Universal Unique Identifiers and the Object Spawner 621

Using SAS Language Elements to Assign UUIDs 623

P A R T 6 Appendices 625

Appendix 1 � Recommended Reading 627
Recommended Reading 627

Index 629

x

1

P A R T1

SAS System Concepts

Chapter 1.Essential Concepts of Base SAS Software 3

Chapter 2.SAS Processing 11

Chapter 3.Rules for Words and Names in the SAS Language 15

Chapter 4.SAS Language Elements 23

Chapter 5.SAS Variables 77

Chapter 6.Missing Values 101

Chapter 7.Expressions 109

Chapter 8.Dates, Times, and Intervals 127

Chapter 9.Error Processing and Debugging 147

Chapter 10.SAS Output 161

Chapter 11.BY-Group Processing in SAS Programs 195

Chapter 12.WHERE-Expression Processing 197

Chapter 13.Optimizing System Performance 213

Chapter 14.Support for Parallel Processing 223

Chapter 15.Monitoring Performance Using Application Response
Measurement (ARM) 225

2

Chapter 16.The SAS Registry 235

Chapter 17.Printing with SAS 251

3

C H A P T E R

1
Essential Concepts of Base SAS
Software

What Is SAS? 3
Overview of Base SAS Software 4

Components of the SAS Language 4

SAS Files 4

SAS Data Sets 5

External Files 5
Database Management System Files 6

SAS Language Elements 6

SAS Macro Facility 6

Ways to Run Your SAS Session 7

Starting a SAS Session 7

Different Types of SAS Sessions 7
SAS Windowing Environment 7

Interactive Line Mode 8

Noninteractive Mode 8

Batch Mode 9

Customizing Your SAS Session 9
Setting Default System Option Settings 9

Executing Statements Automatically 9

Customizing the SAS Windowing Environment 10

Conceptual Information about Base SAS Software 10

SAS System Concepts 10
DATA Step Concepts 10

SAS Files Concepts 10

What Is SAS?
SAS is a set of solutions for enterprise-wide business users as well as a powerful

fourth-generation programming language for performing tasks such as these:
� data entry, retrieval, and management
� report writing and graphics
� statistical and mathematical analysis
� business planning, forecasting, and decision support
� operations research and project management
� quality improvement
� applications development

With Base SAS software as the foundation, you can integrate with SAS many SAS
business solutions that enable you to perform large scale business functions, such as

4 Overview of Base SAS Software � Chapter 1

data warehousing and data mining, human resources management and decision
support, financial management and decision support, and others.

Overview of Base SAS Software

The core of the SAS System is Base SAS software, which consists of the following:

SAS language a programming language that you use to manage your data.

SAS procedures software tools for data analysis and reporting.

macro facility a tool for extending and customizing SAS software programs and for
reducing text in your programs.

DATA step
debugger

a programming tool that helps you find logic problems in DATA step
programs.

Output Delivery
System (ODS)

a system that delivers output in a variety of easy-to-access formats,
such as SAS data sets, listing files, or Hypertext Markup Language
(HTML).

SAS windowing
environment

an interactive, graphical user interface that enables you to easily
run and test your SAS programs.

This document, along with SAS Language Reference: Dictionary, covers only the SAS
language. For a complete guide to Base SAS software functionality, also see these
documents: SAS Output Delivery System: User’s Guide, SAS National Language
Support (NLS): User’s Guide, Base SAS Procedures Guide, SAS Metadata LIBNAME
Engine User’s Guide, SAS XML LIBNAME Engine User’s Guide, Base SAS Glossary,
SAS Macro Language: Reference, and the Getting Started with SAS online tutorial. The
SAS windowing environment is described in the online Help.

Components of the SAS Language

SAS Files
When you work with SAS, you use files that are created and maintained by SAS, as

well as files that are created and maintained by your operating environment, and that
are not related to SAS. Files with formats or structures known to SAS are referred to as
SAS files. All SAS files reside in a SAS data library.

The most commonly used SAS file is a SAS data set. A SAS data set is structured in
a format that SAS can process. Another common type of SAS file is a SAS catalog.
Many different kinds of information that are used in a SAS job are stored in SAS
catalogs, such as instructions for reading and printing data values, or function key
settings that you use in the SAS windowing environment. A SAS stored program is a
type of SAS file that contains compiled code that you create and save for repeated use.

Operating Environment Information: In some operating environments, a SAS data
library is a physical relationship among files; in others, it is a logical relationship. Refer
to the SAS documentation for your operating environment for details about the
characteristics of SAS data libraries in your operating environment. �

Essential Concepts of Base SAS Software � External Files 5

SAS Data Sets
There are two kinds of SAS data sets:

� SAS data file

� SAS data view.

A SAS data file both describes and physically stores your data values. A SAS data
view, on the other hand, does not actually store values. Instead, it is a query that
creates a logical SAS data set that you can use as if it were a single SAS data set. It
enables you to look at data stored in one or more SAS data sets or in other vendors’
software files. SAS data views enable you to create logical SAS data sets without using
the storage space required by SAS data files.

A SAS data set consists of the following:

� descriptor information

� data values.

The descriptor information describes the contents of the SAS data set to SAS. The data
values are data that has been collected or calculated. They are organized into rows,
called observations, and columns, called variables. An observation is a collection of data
values that usually relate to a single object. A variable is the set of data values that
describe a given characteristic. The following figure represents a SAS data set.

Figure 1.1 Representation of a SAS Data Set

descriptor
portion

variables

ID NAME TEAM STRTWGHT ENDWGHT

data
values

observation

1023

1049

1219

1246

1078

David Shaw

Amelia Serrano

Alan Nance

Ravi Sinha

Ashley McKnight

red

yellow

red

yellow

red

189

145

210

194

127

165

124

192

177

118

1

2

3

4

5

descriptive information

Usually, an observation is the data that is associated with an entity such as an
inventory item, a regional sales office, a client, or a patient in a medical clinic.
Variables are characteristics of these entities, such as sale price, number in stock, and
originating vendor. When data values are incomplete, SAS uses a missing value to
represent a missing variable within an observation.

External Files
Data files that you use to read and write data, but which are in a structure unknown

to SAS, are called external files. External files can be used for storing

� raw data that you want to read into a SAS data file

6 Database Management System Files � Chapter 1

� SAS program statements
� procedure output.

Operating Environment Information: Refer to the SAS documentation for your
operating environment for details about the characteristics of external files in your
operating environment. �

Database Management System Files
SAS software is able to read and write data to and from other vendors’ software,

such as many common database management system (DBMS) files. In addition to Base
SAS software, you must license the SAS/ACCESS software for your DBMS and
operating environment.

SAS Language Elements
The SAS language consists of statements, expressions, options, formats, and

functions similar to those of many other programming languages. In SAS, you use
these elements within one of two groups of SAS statements:

� DATA steps
� PROC steps.

A DATA step consists of a group of statements in the SAS language that can
� read data from external files
� write data to external files
� read SAS data sets and data views
� create SAS data sets and data views.

Once your data is accessible as a SAS data set, you can analyze the data and write
reports by using a set of tools known as SAS procedures.

A group of procedure statements is called a PROC step. SAS procedures analyze data
in SAS data sets to produce statistics, tables, reports, charts, and plots, to create SQL
queries, and to perform other analyses and operations on your data. They also provide
ways to manage and print SAS files.

You can also use global SAS statements and options outside of a DATA step or PROC
step.

SAS Macro Facility
Base SAS software includes the SAS Macro Facility, a powerful programming tool for

extending and customizing your SAS programs, and for reducing the amount of code
that you must enter to do common tasks. Macros are SAS files that contain compiled
macro program statements and stored text. You can use macros to automatically
generate SAS statements and commands, write messages to the SAS log, accept input,
or create and change the values of macro variables. For complete documentation, see
SAS Macro Language: Reference.

Essential Concepts of Base SAS Software � SAS Windowing Environment 7

Ways to Run Your SAS Session

Starting a SAS Session
You start a SAS session with the SAS command, which follows the rules for other

commands in your operating environment. In some operating environments, you
include the SAS command in a file of system commands or control statements; in
others, you enter the SAS command at a system prompt or select SAS from a menu.

Different Types of SAS Sessions
You can run SAS in any of several different ways that might be available for your

operating environment:
� SAS windowing environment
� interactive line mode
� noninteractive mode
� batch (or background) mode.

In addition, SAS/ASSIST software provides a menu-driven system for creating and
running your SAS programs. For more information about SAS/ASSIST, see Getting
Started with SAS/ASSIST.

SAS Windowing Environment
In the SAS windowing environment, you can edit and execute programming

statements, display the SAS log, procedure output, and online Help, and more. The
following figure shows the SAS windowing environment.

8 Interactive Line Mode � Chapter 1

Figure 1.2 SAS Windowing Environment

In the Explorer window, you can view and manage your SAS files, which are stored
in libraries, and create shortcuts to external files. The Results window helps you
navigate and manage output from SAS programs that you submit; you can view, save,
and manage individual output items. You use the Program Editor, Log, and Output
windows to enter, edit, and submit SAS programs, view messages about your SAS
session and programs that you submit, and browse output from programs that you
submit. For more detailed information about the SAS windowing environment, see
Chapter 18, “Introduction to the SAS Windowing Environment,” on page 283.

Interactive Line Mode
In interactive line mode, you enter program statements in sequence in response to

prompts from the SAS System. DATA and PROC steps execute when
� a RUN, QUIT, or a semicolon on a line by itself after lines of data are entered
� another DATA or PROC statement is entered
� the ENDSAS statement is encountered.

By default, the SAS log and output are displayed immediately following the program
statements.

Noninteractive Mode
In noninteractive mode, SAS program statements are stored in an external file. The

statements in the file execute immediately after you issue a SAS command referencing
the file. Depending on your operating environment and the SAS system options that you
use, the SAS log and output are either written to separate external files or displayed.

Essential Concepts of Base SAS Software � Executing Statements Automatically 9

Operating Environment Information: Refer to the SAS documentation for your
operating environment for information about how these files are named and where they
are stored. �

Batch Mode
You can run SAS jobs in batch mode in operating environments that support batch or

background execution. Place your SAS statements in a file and submit them for
execution along with the control statements and system commands required at your site.

When you submit a SAS job in batch mode, one file is created to contain the SAS log
for the job, and another is created to hold output that is produced in a PROC step or,
when directed, output that is produced in a DATA step by a PUT statement.

Operating Environment Information: Refer to the SAS documentation for your
operating environment for information about executing SAS jobs in batch mode. Also,
see the documentation specific to your site for local requirements for running jobs in
batch and for viewing output from batch jobs. �

Customizing Your SAS Session

Setting Default System Option Settings
You can use a configuration file to store system options with the settings that you

want. When you invoke SAS, these settings are in effect. SAS system options
determine how SAS initializes its interfaces with your computer hardware and the
operating environment, how it reads and writes data, how output appears, and other
global functions.

By placing SAS system options in a configuration file, you can avoid having to specify
the options every time that you invoke SAS. For example, you can specify the NODATE
system option in your configuration file to prevent the date from appearing at the top of
each page of your output.

Operating Environment Information: See the SAS documentation for your operating
environment for more information about the configuration file. In some operating
environments, you can use both a system-wide and a user-specific configuration file. �

Executing Statements Automatically
To execute SAS statements automatically each time you invoke SAS, store them in

an autoexec file. SAS executes the statements automatically after the system is
initialized. You can activate this file by specifying the AUTOEXEC= system option.

Any SAS statement can be included in an autoexec file. For example, you can set
report titles, footnotes, or create macros or macro variables automatically with an
autoexec file.

Operating Environment Information: See the SAS documentation for your operating
environment for information on how autoexec files should be set up so that they can be
located by SAS. �

10 Customizing the SAS Windowing Environment � Chapter 1

Customizing the SAS Windowing Environment
You can customize many aspects of the SAS windowing environment and store your

settings for use in future sessions. With the SAS windowing environment, you can

� change the appearance and sorting order of items in the Explorer window
� customize the Explorer window by registering member, entry, and file types

� set up favorite folders

� customize the toolbar
� set fonts, colors, and preferences.

See the SAS online Help for more information and for additional ways to customize
your SAS windowing environment.

Conceptual Information about Base SAS Software

SAS System Concepts
SAS system-wide concepts include the building blocks of SAS language: rules for

words and names, variables, missing values, expressions, dates, times, and intervals,
and each of the six SAS language elements — data set options, formats, functions,
informats, statements, and system options.

SAS system-wide concepts also include introductory information that helps you
begin to use SAS, including information about the SAS log, SAS output, error
processing, WHERE processing, and debugging. Information about SAS processing
prepares you to write SAS programs. Information on how to optimize system
performance as well as how to monitor performance.

DATA Step Concepts
Understanding essential DATA step concepts can help you construct DATA step

programs effectively. These concepts include how SAS processes the DATA step, how to
read raw data to create a SAS data set, and how to write a report with a DATA step.

More advanced concepts include how to combine and modify information once you
have created a SAS data set, how to perform BY-group processing of your data, how to
use array processing for more efficient programming, and how to create stored compiled
DATA step programs.

SAS Files Concepts
SAS file concepts include advanced topics that are helpful for advanced applications,

though not strictly necessary for writing simple SAS programs. These topics include the
elements that comprise the physical file structure that SAS uses, including data
libraries, data files, data views, catalogs, file protection, engines, and external files.

Advanced topics for data files include the audit trail, generation data sets, integrity
constraints, indexes, and file compression. In addition, these topics include compatibility
issues with earlier releases and how to process files across operating environments.

11

C H A P T E R

2
SAS Processing

Definition of SAS Processing 11
Types of Input to a SAS Program 12

The DATA Step 13

DATA Step Output 13

The PROC Step 14

PROC Step Output 14

Definition of SAS Processing

SAS processing is the way that the SAS language reads and transforms input data
and generates the kind of output that you request. The DATA step and the procedure
(PROC) step are the two steps in the SAS language. Generally, the DATA step
manipulates data, and the PROC step analyzes data, produces output, or manages SAS
files. These two types of steps, used alone or combined, form the basis of SAS programs.

The following figure shows a high level view of SAS processing using a DATA step
and a PROC step. The figure focuses primarily on the DATA step.

Figure 2.1 SAS Processing

Raw Data:
 External Files
 Instream Data
Remote access through:
 Catalog
 FTP
 TCP/IP socket
 URL

SAS
Data Set

SAS Data Sets:
 SAS Data Files
 SAS Data Views:
 PROC SQL Views (native)
 DATA Step Views (native)
 SAS/ACCESS Views (interface)

DATA
Step

PROC
Step

External Files:
 SAS Log
 Reports
 External Data Files

SAS
Data Set

Report

SAS
Log

12 Types of Input to a SAS Program � Chapter 2

You can use different types of data as input to a DATA step. The DATA step is
composed of SAS statements that you write, which contain instructions for processing
the data. As each DATA step in a SAS program is compiling or executing, SAS
generates a log that contains processing messages and error messages. These messages
can help you debug a SAS program.

Types of Input to a SAS Program
You can use different sources of input data in your SAS program:

SAS data sets can be one of two types:

SAS data files store actual data values. A SAS data file consists
of a descriptor portion that describes the data in
the file, and a data portion.

SAS data views contain references to data stored elsewhere. A
SAS data view uses descriptor information and
data from other files. It allow you to dynamically
combine data from various sources, without
using storage space to create a new data set.
Data views consist of DATA step views, PROC
SQL views, and SAS/ACCESS views. In most
cases, you can use a SAS data view as if it were a
SAS data file.

For more information, see Chapter 28, “SAS Data Files,” on page
487, and Chapter 29, “SAS Data Views,” on page 539.

Raw data specifies unprocessed data that have not been read into a SAS data
set. You can read raw data from two sources:

External files contain records comprised of formatted data
(data are arranged in columns) or free-formatted
data (data that are not arranged in columns).

Instream data is data included in your program. You use the
DATALINES statement at the beginning of your
data to identify the instream data.

For more information about raw data, see Chapter 21, “Reading
Raw Data,” on page 357.

Remote access allows you to read input data from nontraditional sources such as a
TCP/IP socket or a URL. SAS treats this data as if it were coming
from an external file. SAS allows you to access your input data
remotely in the following ways:

SAS catalog specifies the access method that enables you to
reference a SAS catalog as an external file.

FTP specifies the access method that enables you to
use File Transfer Protocol (FTP) to read from or
write to a file from any host machine that is
connected to a network with an FTP server
running.

TCP/IP socket specifies the access method that enables you to
read from or write to a Transmission Control
Protocol/Internet Protocol (TCP/IP) socket.

SAS Processing � DATA Step Output 13

URL specifies the access method that enables you to
use the Universal Resource Locator (URL) to
read from and write to a file from any host
machine that is connected to a network with a
URL server running.

For more information about accessing data remotely, see
FILENAME, CATALOG Access Method; FILENAME, FTP Access
Method; FILENAME, SOCKET Access Method; and FILENAME,
URL Access Method statements in the Statements section of SAS
Language Reference: Dictionary.

The DATA Step
The DATA step processes input data. In a DATA step, you can create a SAS data set,

which can be a SAS data file or a SAS data view. The DATA step uses input from raw
data, remote access, assignment statements, or SAS data sets. The DATA step can, for
example, compute values, select specific input records for processing, and use
conditional logic. The output from the DATA step can be of several types, such as a SAS
data set or a report. You can also write data to the SAS log or to an external data file.
For more information about DATA step processing, see Chapter 20, “DATA Step
Processing,” on page 329.

DATA Step Output
The output from the DATA step can be a SAS data set or an external file such as the

program log, a report, or an external data file. You can also update an existing file in
place, without creating a separate data set. Data must be in the form of a SAS data set
to be processed by many SAS procedures. You can create the following types of DATA
step output:

SAS log contains a list of processing messages and program errors. The SAS
log is produced by default.

SAS data file is a SAS data set that contains two parts: a data portion and a data
descriptor portion.

SAS data view is a SAS data set that uses descriptor information and data from
other files. SAS data views allow you to dynamically combine data
from various sources without using disk space to create a new data
set. While a SAS data file actually contains data values, SAS data
views contain only references to data stored elsewhere. SAS data
views are of member type VIEW. In most cases, you can use a SAS
data view as though it were a SAS data file.

External data
file

contains the results of DATA step processing. These files are data or
text files. The data can be records that are formatted or
free-formatted.

Report contains the results of DATA step processing. Although you usually
generate a report by using a PROC step, you can generate the
following two types of reports from the DATA step:

Listing file contains printed results of DATA step processing,
and usually contains headers and page breaks.

14 The PROC Step � Chapter 2

HTML file contains results that you can display on the
World Wide Web. This type of output is
generated through the Output Delivery System
(ODS). For complete information about ODS, see
SAS Output Delivery System: User’s Guide.

The PROC Step

The PROC step consists of a group of SAS statements that call and execute a
procedure, usually with a SAS data set as input. Use PROCs to analyze the data in a
SAS data set, produce formatted reports or other results, or provide ways to manage
SAS files. You can modify PROCs with minimal effort to generate the output you need.
PROCs can also perform functions such as displaying information about a SAS data set.
For more information about SAS procedures, see Base SAS Procedures Guide.

PROC Step Output
The output from a PROC step can provide univariate descriptive statistics, frequency

tables, cross-tabulation tables, tabular reports consisting of descriptive statistics,
charts, plots, and so on. Output can also be in the form of an updated data set. For
more information about procedure output, see Base SAS Procedures Guide and SAS
Output Delivery System: User’s Guide.

15

C H A P T E R

3
Rules for Words and Names in
the SAS Language

Words in the SAS Language 15
Definition of Word 15

Types of Words or Tokens 16

Placement and Spacing of Words in SAS Statements 17

Spacing Requirements 17

Examples 17
Names in the SAS Language 18

Definition of a SAS Name 18

Rules for User-Supplied SAS Names 18

Rules for Most SAS Names 18

Rules for SAS Variable Names 20

SAS Name Literals 21
Definition of SAS Name Literals 21

Important Restrictions 21

Avoiding Errors When Using Name Literals 21

Examples 21

Words in the SAS Language

Definition of Word
A word or token in the SAS programming language is a collection of characters that

communicates a meaning to SAS and which cannot be divided into smaller units that
can be used independently. A word can contain a maximum of 32,767 characters.

A word or token ends when SAS encounters one of the following:
� the beginning of a new token
� a blank after a name or a number token

� the ending quotation mark of a literal token.

Each word or token in the SAS language belongs to one of four categories:
� names
� literals
� numbers
� special characters.

16 Types of Words or Tokens � Chapter 3

Types of Words or Tokens
There are four basic types of words or tokens:

name
is a series of characters that begin with a letter or an underscore. Later characters
can include letters, underscores, and numeric digits. A name token can contain up
to 32,767 characters. In most contexts, however, SAS names are limited to a
shorter maximum length, such as 32 or 8 characters. See Table 3.1 on page 19.
Here are some examples of name tokens:

� data

� _new

� yearcutoff

� year_99

� descending

� _n_

literal
consists of 1 to 32,767 characters enclosed in single or double quotation marks.
Here are some examples of literals:

� ’Chicago’

� "1990-91"

� ’Amelia Earhart’

� ’Amelia Earhart’’s plane’

� "Report for the Third Quarter"

Note: The surrounding quotation marks identify the token as a literal, but
SAS does not store these marks as part of the literal token. �

number
in general, is composed entirely of numeric digits, with an optional decimal point
and a leading plus or minus sign. SAS also recognizes numeric values in the
following forms as number tokens: scientific (E−) notation, hexadecimal notation,
missing value symbols, and date and time literals. Here are some examples of
number tokens:

� 5683

� 2.35

� 0b0x

� -5

� 5.4E-1

� ’24aug90’d

special character
is usually any single keyboard character other than letters, numbers, the
underscore, and the blank. In general, each special character is a single token,
although some two-character operators, such as ** and <=, form single tokens.
The blank can end a name or a number token, but it is not a token. Here are some
examples of special-character tokens:

� =

Rules for Words and Names in the SAS Language � Placement and Spacing of Words in SAS Statements 17

� ;

� ’

� +

� @

� /

Placement and Spacing of Words in SAS Statements

Spacing Requirements

1 You can begin SAS statements in any column of a line and write several
statements on the same line.

2 You can begin a statement on one line and continue it on another line, but you
cannot split a word between two lines.

3 A blank is not treated as a character in a SAS statement unless it is enclosed in
quotation marks as a literal or part of a literal. Therefore, you can put multiple
blanks any place in a SAS statement where you can put a single blank, with no
effect on the syntax.

4 The rules for recognizing the boundaries of words or tokens determine the use of
spacing between them in SAS programs. If SAS can determine the beginning of
each token due to cues such as operators, you do not need to include blanks. If
SAS cannot determine the beginning of each token, you must use blanks. See
“Examples” on page 17.

Although SAS does not have rigid spacing requirements, SAS programs are easier to
read and maintain if you consistently indent statements. The examples illustrate useful
spacing conventions.

Examples

� In this statement, blanks are not required because SAS can determine the
boundary of every token by examining the beginning of the next token:

total=x+y;

The first special-character token, the equal sign, marks the end of the name
token total. The plus sign, another special-character token, marks the end of the
name token x. The last special-character token, the semicolon, marks the end of
the y token. Though blanks are not needed to end any tokens in this example, you
may add them for readability, as shown here:

total = x + y;

� This statement requires blanks because SAS cannot recognize the individual
tokens without them:

input group 15 room 20;

Without blanks, the entire statement up to the semicolon fits the rules for a
name token: it begins with a letter or underscore, contains letters, digits, or
underscores thereafter, and is less than 32,767 characters long. Therefore, this
statement requires blanks to distinguish individual name and number tokens.

18 Names in the SAS Language � Chapter 3

Names in the SAS Language

Definition of a SAS Name
A SAS name is a name token that represents
� variables
� SAS data sets
� formats or informats
� SAS procedures
� options
� arrays
� statement labels
� SAS macros or macro variables
� SAS catalog entries
� librefs or filerefs.

There are two kinds of names in SAS:
� names of elements of the SAS language
� names supplied by SAS users.

Rules for User-Supplied SAS Names

Rules for Most SAS Names

Note: The rules are more flexible for SAS variable names than for other language
elements. See “Rules for SAS Variable Names” on page 20. �

1 The length of a SAS name depends on the element it is assigned to. Many SAS
names can be 32 characters long; others have a maximum length of 8.

2 The first character must be a letter (A, B, C, . . ., Z) or underscore (_). Subsequent
characters can be letters, numeric digits (0, 1, . . ., 9), or underscores.

3 You can use upper or lowercase letters. SAS processes names as uppercase
regardless of how you type them.

4 Blanks cannot appear in SAS names.
5 Special characters, except for the underscore, are not allowed. In filerefs only, you

can use the dollar sign ($), pound sign (#), and at sign (@).
6 SAS reserves a few names for automatic variables and variable lists, SAS data

sets, and librefs.

a When creating variables, do not use the names of special SAS automatic
variables (for example, _N_ and _ERROR_) or special variable list names (for
example, _CHARACTER_, _NUMERIC_, and _ALL_).

b When associating a libref with a SAS data library, do not use these:
SASHELP

Rules for Words and Names in the SAS Language � Rules for User-Supplied SAS Names 19

SASMSG
SASUSER
WORK

c When you create SAS data sets, do not use these names:
NULL
DATA
LAST

7 When assigning a fileref to an external file, do not use:
SASCAT

8 When you create a macro variable, do not use names that begin with SYS.

Table 3.1 Maximum Length of User-Supplied SAS Names

SAS Language Element Maximum Length

Arrays 32

CALL routines 16

Catalog entries 32

DATA step statement labels 32

DATA step variable labels 256

DATA step variables 32

DATA step windows 32

Engines 8

Filerefs 8

Formats, character 31

Formats, numeric 32

Functions 16

Generation data sets 28

Informats, character 30

Informats, numeric 31

Librefs 8

Macro variables 32

Macro windows 32

Macros 32

Members of SAS data libraries (SAS data sets, views,
catalogs, indexes) except for generation data sets

32

Passwords 8

Procedure names (first 8 characters must be unique, and may
not begin with “SAS”)

16

SCL variables 32

20 Rules for User-Supplied SAS Names � Chapter 3

Rules for SAS Variable Names
The rules for SAS variable names have expanded to provide more functionality. The

setting of the VALIDVARNAME= system option determines what rules apply to the
variables that you can create and process in your SAS session as well as to variables
that you want to read from existing data sets. The VALIDVARNAME= option has three
settings (V7, UPCASE, and ANY), each with varying degrees of flexibility for variable
names:

V7
is the default setting.

Variable name rules are as follows:
1 SAS variable names can be up to 32 characters in length.
2 The first character must begin with an English letter or an underscore.

Subsequent characters can be English letters, numeric digits, or underscores.
3 A variable name cannot contain blanks.
4 A variable name cannot contain any special characters other than the

underscore.
5 A variable name can contain mixed case. Mixed case is remembered and used

for presentation purposes only. (SAS stores the case used in the first
reference to a variable.) When SAS processes variable names, however, it
internally uppercases them. You cannot, therefore, use the same letters with
different combinations of lowercase and uppercase to represent different
variables. For example, cat, Cat, and CAT all represent the same variable.

6 You do not assign the names of special SAS automatic variables (such as _N_
and _ERROR_) or variable list names (such as _NUMERIC_,
CHARACTER, and _ALL_) to variables.

UPCASE
is the same as V7, except that variable names are uppercased, as in earlier
versions of SAS.

ANY
1 SAS variable names can be up to 32 characters in length.
2 The name can start with or contain any characters, including blanks.

CAUTION:
Available for Base SAS procedures and SAS/STAT procedures only.
VALIDVARNAME=ANY has been verified for use with only Base SAS
procedures and SAS/STAT procedures. Any other use of this option is
considered experimental and might cause undetected errors. �

Note: If you use any characters other than English letters, numeric digits,
or underscores, then you must express the variable name as a name literal
and you must set VALIDVARNAME=ANY. If you use either the percent sign
(%) or the ampersand (&), then you must use single quotation marks in the
name literal in order to avoid interaction with the SAS Macro Facility. See
“SAS Name Literals” on page 21. �

3 A variable name can contain mixed case. Mixed case is stored and used for
presentation purposes only. (SAS stores the case that is used in the first
reference to a variable.) When SAS processes variable names, however, it
internally uppercases them. Therefore, you cannot use the same letters with
different combinations of lowercase and uppercase to represent different
variables. For example, cat, Cat, and CAT all represent the same variable.

Rules for Words and Names in the SAS Language � SAS Name Literals 21

SAS Name Literals

Definition of SAS Name Literals
A SAS name literal is a name token that is expressed as a string within quotation

marks, followed by the letter n. Name literals allow you to use special characters (or
blanks) that are not otherwise allowed in SAS names. Name literals are especially
useful for expressing DBMS column and table names that contain special characters.

Important Restrictions
� You can use a name literal only for variables, statement labels, and DBMS column

and table names.
� You can use name literals in a DATA step or a PROC SQL step only.
� When the name literal of a variable or DBMS column contains any characters that

are not allowed when VALIDVARNAME=V7, then you must set the system option
VALIDVARNAME=ANY.

� If you use either the percent sign (%) or the ampersand (&), then you must use
single quotation marks in the name literal in order to avoid interaction with the
SAS Macro Facility.

� When the name literal of a DBMS table or column contains any characters that
are not valid for SAS rules, then you might need to specify a SAS/ACCESS
LIBNAME statement option.

� In a quoted string, SAS preserves and uses leading blanks, but SAS ignores and
trims trailing blanks.

Note: For more details and examples about the SAS/ACCESS LIBNAME statement
and about using DBMS table and column names that do not conform to SAS naming
conventions, see SAS/ACCESS for Relational Databases: Reference. �

Avoiding Errors When Using Name Literals
For information on how to avoid creating name literals in error, see “Avoiding a

Common Error With Constants” on page 115.

Examples
Examples of SAS name literals are
� input ’Bob’’s Asset Number’n;

� input ’Bob"s Asset Number’n;

� libname foo SAS/ACCESS-engine-name
SAS/ACCESS-engine-connection-options;

data foo.’My Table’n;

� input ’Amount Budgeted’n ’Amount Spent’n
’Amount Difference’n;

22

23

C H A P T E R

4
SAS Language Elements

What Are the SAS Language Elements? 25
Data Set Options 25

Definition of Data Set Option 25

Syntax for Data Set Options 25

Using Data Set Options 25

Using Data Set Options with Input or Output SAS Data Sets 25
How Data Set Options Interact with System Options 26

Formats and Informats 27

Formats 27

Definition of a Format 27

Syntax of a Format 27

Ways to Specify Formats 28
Permanent versus Temporary Association 29

Informats 29

Definition of an Informat 29

Syntax of an Informat 29

Ways to Specify Informats 30
Permanent versus Temporary Association 31

User-Defined Formats and Informats 32

Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms 32

Definitions 32

How Bytes Are Ordered 33
Writing Data Generated on Big Endian or Little Endian Platforms 33

Integer Binary Notation and Different Programming Languages 33

Working with Packed Decimal and Zoned Decimal Data 34

Definitions 34

Packed Decimal Data 34

Zoned Decimal Data 35
Packed Julian Dates 35

Platforms Supporting Packed Decimal and Zoned Decimal Data 35

Languages Supporting Packed Decimal and Zoned Decimal Data 35

Summary of Packed Decimal and Zoned Decimal Formats and Informats 36

Data Conversions and Encodings 38
Functions and CALL Routines 38

Definitions of Functions and CALL Routines 38

Definition of Functions 38

Definition of CALL Routines 39

Syntax of Functions and CALL Routines 39
Syntax of Functions 39

Syntax of CALL Routines 40

Using Functions 40

24 Contents � Chapter 4

Restrictions on Function Arguments 40
Notes on Descriptive Statistic Functions 41

Notes on Financial Functions 41

Special Considerations for Depreciation Functions 41

Using DATA Step Functions within Macro Functions 42

Using Functions to Manipulate Files 42
Using Random-Number Functions and CALL Routines 43

Seed Values 43

Comparison of Random-Number Functions and CALL Routines 43

Example 1: Generating Multiple Streams from a CALL Routine 43

Example 2: Assigning Values from a Single Stream to Multiple Variables 44

Pattern Matching Using SAS Regular Expressions (RX) and Perl Regular Expressions (PRX) 45
Definition of Pattern Matching and Regular Expressions 45

Definition of SAS Regular Expression (RX) Functions and CALL Routines 45

Definition of Perl Regular Expression (PRX) Functions and CALL Routines 45

Benefits of Using Perl Regular Expressions in the DATA Step 46

Using Perl Regular Expressions in the DATA Step - License Agreement 46
Syntax of Perl Regular Expressions 47

Example 1: Validating Data 49

Example 2: Replacing Text 51

Example 3: Extracting a Substring from a String 52

Writing Perl Debug Output to the SAS Log 54
Base SAS Functions for Web Applications 55

ARM Macros 55

Definition of ARM Macros 55

Using ARM Macros 56

Overview of ARM Macros 56

Using Variables with ARM Macros 57
ARM API Objects 58

ID Management Using ARM Macros 58

Complex ARM Macro Call Schemes 61

Defining User Metrics in ARM Macros 63

Defining Correlators in ARM Macros 64
Enabling ARM Macro Execution 65

Setting the _ARMEXEC Macro Variable 65

Enabling ARM Macro Execution with SCL 66

Conditional ARM Macro Execution 66

Setting the Macro Environment 67
Using ARM Post-Processing Macros 68

Statements 69

Definition of Statements 69

Executable and Declarative DATA Step Statements 69

Global Statements 70

SAS System Options 71
Definition of SAS System Options 71

Syntax of SAS System Options 71

Using SAS System Options 71

Default Settings 71

Determining Which Settings Are in Effect 71
Determining Which SAS System Options Are Restricted 72

Determining How a SAS System Option Value Was Set 72

Obtaining Descriptive Information about a System Option 73

Changing SAS System Option Settings 73

How Long System Option Settings Are in Effect 74

SAS Language Elements � Using Data Set Options 25

Order of Precedence 75
Interaction with Data Set Options 75

Comparisons 76

What Are the SAS Language Elements?
The major language elements of Base SAS software are as follows:
� data set options
� formats and informats
� functions and CALL routines
� Application Response Measurement (ARM) macros
� statements
� SAS system options

For detailed information on each language element, see SAS Language Reference:
Dictionary.

Data Set Options

Definition of Data Set Option
Data set options specify actions that apply only to the SAS data set with which they

appear. They enable you to perform operations such as these:
� renaming variables
� selecting only the first or last n observations for processing
� dropping variables from processing or from the output data set
� specifying a password for a data set.

Syntax for Data Set Options
Specify a data set option in parentheses after a SAS data set name. To specify

several data set options, separate them with spaces.

(option-1=value-1<...option-n=value-n>)

These examples show data set options in SAS statements:

data scores(keep=team game1 game2 game3);

proc print data=new(drop=year);

set old(rename=(date=Start_Date));

Using Data Set Options

Using Data Set Options with Input or Output SAS Data Sets
Most SAS data set options can apply to either input or output SAS data sets in DATA

steps or procedure (PROC) steps. If a data set option is associated with an input data

26 Using Data Set Options � Chapter 4

set, the action applies to the data set that is being read. If the option appears in the
DATA statement or after an output data set specification in a PROC step, SAS applies
the action to the output data set. In the DATA step, data set options for output data
sets must appear in the DATA statement, not in any OUTPUT statements that might
be present.

Some data set options, such as COMPRESS=, are meaningful only when you create a
SAS data set because they set attributes that exist for the life of the data set. To
change or cancel most data set options, you must re-create the data set. You can change
other options (such as PW= and LABEL=) with PROC DATASETS. For more
information, see “The DATASETS Procedure” in Base SAS Procedures Guide.

When data set options appear on both input and output data sets in the same DATA
or PROC step, SAS applies data set options to input data sets before it evaluates
programming statements or before it applies data set options to output data sets.
Likewise, data set options that are specified for the data set being created are applied
after programming statements are processed. For example, when using the RENAME=
data set option, the new names are not associated with the variables until the DATA
step ends.

In some instances, data set options conflict when they are used in the same
statement. For example, you cannot specify both the DROP= and KEEP= options for
the same variable in the same statement. Timing can also be an issue in some cases.
For example, if using KEEP= and RENAME= on a data set specified in the SET
statement, KEEP= needs to use the original variable names, because SAS will process
KEEP= before the data set is read. The new names specified in RENAME= will apply
to the programming statements that follow the SET statement.

How Data Set Options Interact with System Options
Many system options and data set options share the same name and have the same

function. System options remain in effect for all DATA and PROC steps in a SAS job or
session, unless they are respecified.

The data set option overrides the system option for the data set in the step in which
it appears. In this example, the OBS= system option in the OPTIONS statement
specifies that only the first 100 observations will be processed from any data set within
the SAS job. The OBS= data set option in the SET statement, however, overrides the
system option for data set TWO and specifies that only the first 5 observations will be
read from data set TWO. The PROC PRINT step prints the data set FINAL. This data
set contains the first 5 observations from data set TWO, followed by the first 100
observations from data set THREE:

options obs=100;

data final;
set two(obs=5) three;

run;

proc print data=final;
run;

SAS Language Elements � Formats 27

Formats and Informats

Formats

Definition of a Format
A format is an instruction that SAS uses to write data values. You use formats to

control the written appearance of data values, or, in some cases, to group data values
together for analysis. For example, the WORDS22. format, which converts numeric
values to their equivalent in words, writes the numeric value 692 as six hundred
ninety-two.

Syntax of a Format
SAS formats have the following form:

<$>format<w>.<d>

Here is an explanation of the syntax:

$
indicates a character format; its absence indicates a numeric format.

format
names the format. The format is a SAS format or a user-defined format that was
previously defined with the VALUE statement in PROC FORMAT. For more
information on user-defined formats, see “The FORMAT Procedure” in Base SAS
Procedures Guide.

w
specifies the format width, which for most formats is the number of columns in the
output data.

d
specifies an optional decimal scaling factor in the numeric formats.

Formats always contain a period (.) as a part of the name. If you omit the w and the d
values from the format, SAS uses default values. The d value that you specify with a
format tells SAS to display that many decimal places, regardless of how many decimal
places are in the data. Formats never change or truncate the internally stored data
values.

For example, in DOLLAR10.2, the w value of 10 specifies a maximum of 10 columns
for the value. The d value of 2 specifies that two of these columns are for the decimal
part of the value, which leaves eight columns for all the remaining characters in the
value. This includes the decimal point, the remaining numeric value, a minus sign if
the value is negative, the dollar sign, and commas, if any.

If the format width is too narrow to represent a value, then SAS tries to squeeze the
value into the space available. Character formats truncate values on the right.
Numeric formats sometimes revert to the BESTw.d format. SAS prints asterisks if you
do not specify an adequate width. In the following example, the result is x=**.

x=123;
put x=2.;

If you use an incompatible format, such as using a numeric format to write character
values, first SAS attempts to use an analogous format of the other type. If this is not
feasible, then an error message that describes the problem appears in the SAS log.

28 Formats � Chapter 4

Ways to Specify Formats
You can use formats in the following ways:
� in a PUT statement

The PUT statement with a format after the variable name uses a format to
write data values in a DATA step. For example, this PUT statement uses the
DOLLAR. format to write the numeric value for AMOUNT as a dollar amount:

amount=1145.32;
put amount dollar10.2;

The DOLLARw.d format in the PUT statement produces this result:

$1,145.32

See the “PUT Statement” in SAS Language Reference: Dictionary for more
information.

� with the PUT, PUTC, or PUTN functions
The PUT function writes a numeric variable, a character variable, or a constant

with any valid format and returns the resulting character value. For example, the
following statement converts the value of a numeric variable into a two-character
hexadecimal representation:

num=15;
char=put(num,hex2.);

The PUT function creates a character variable named CHAR that has a value of
0F.

The PUT function is useful for converting a numeric value to a character value.
See the “PUT Function” in SAS Language Reference: Dictionary for more
information.

� with the %SYSFUNC macro function
The %SYSFUNC (or %QSYSFUNC) macro function executes SAS functions or

user-defined functions and applies an optional format to the result of the function
outside a DATA step. For example, the following program writes a numeric value
in a macro variable as a dollar amount.

%macro tst(amount);
%put %sysfunc(putn(&amount,dollar10.2));

%mend tst;

%tst (1154.23);

For more information, see SAS Macro Language: Reference.
� in a FORMAT statement in a DATA step or a PROC step

The FORMAT statement permanently associates a format with a variable. SAS
uses the format to write the values of the variable that you specify. For example,
the following statement in a DATA step associates the COMMAw.d numeric
format with the variables SALES1 through SALES3:

format sales1-sales3 comma10.2;

Because the FORMAT statement permanently associates a format with a
variable, any subsequent DATA step or PROC step uses COMMA10.2 to write the
values of SALES1, SALES2, and SALES3. See the “FORMAT Statement” in SAS
Language Reference: Dictionary for more information.

Note: Formats that you specify in a PUT statement behave differently from those
that you associate with a variable in a FORMAT statement. The major difference

SAS Language Elements � Informats 29

is that formats that are specified in the PUT statement will preserve leading
blanks. If you assign formats with a FORMAT statement prior to a PUT
statement, all leading blanks are trimmed. The result is the same as if you used
the colon (:) format modifier. For details about using the colon (:) format modifier,
see the “PUT Statement, List” in SAS Language Reference: Dictionary. �

� in an ATTRIB statement in a DATA step or a PROC step.

The ATTRIB statement can also associate a format, as well as other attributes,
with one or more variables. For example, in the following statement the ATTRIB
statement permanently associates the COMMAw.d format with the variables
SALES1 through SALES3:

attrib sales1-sales3 format=comma10.2;

Because the ATTRIB statement permanently associates a format with a
variable, any subsequent DATA step or PROC step uses COMMA10.2 to write the
values of SALES1, SALES2, and SALES3. For more information, see the “ATTRIB
Statement” in SAS Language Reference: Dictionary.

Permanent versus Temporary Association
When you specify a format in a PUT statement, SAS uses the format to write data

values during the DATA step but does not permanently associate the format with a
variable. To permanently associate a format with a variable, use a FORMAT statement
or an ATTRIB statement in a DATA step. SAS permanently associates a format with
the variable by modifying the descriptor information in the SAS data set.

Using a FORMAT statement or an ATTRIB statement in a PROC step associates a
format with a variable for that PROC step, as well as for any output data sets that the
procedure creates that contain formatted variables. For more information on using
formats in SAS procedures, see Base SAS Procedures Guide.

Informats

Definition of an Informat
An informat is an instruction that SAS uses to read data values into a variable. For

example, the following value contains a dollar sign and commas:

$1,000,000

To remove the dollar sign ($) and commas (,) before storing the numeric value 1000000
in a variable, read this value with the COMMA11. informat.

Unless you explicitly define a variable first, SAS uses the informat to determine
whether the variable is numeric or character. SAS also uses the informat to determine
the length of character variables.

Syntax of an Informat
SAS informats have the following form:

<$>informat<w>.< d>

Here is an explanation of the syntax:

$
indicates a character informat; its absence indicates a numeric informat.

30 Informats � Chapter 4

informat
names the informat. The informat is a SAS informat or a user-defined informat
that was previously defined with the INVALUE statement in PROC FORMAT. For
more information on user-defined informats, see “The FORMAT Procedure” in
Base SAS Procedures Guide.

w
specifies the informat width, which for most informats is the number of columns in
the input data.

d
specifies an optional decimal scaling factor in the numeric informats. SAS divides
the input data by 10 to the power of d.

Note: Even though SAS can read up to 31 decimal places when you specify some
numeric informats, floating-point numbers with more than 12 decimal places might lose
precision due to the limitations of the eight-byte floating point representation used by
most computers. �

Informats always contain a period (.) as a part of the name. If you omit the w and
the d values from the informat, SAS uses default values. If the data contains decimal
points, SAS ignores the d value and reads the number of decimal places that are
actually in the input data.

If the informat width is too narrow to read all the columns in the input data, you
may get unexpected results. The problem frequently occurs with the date and time
informats. You must adjust the width of the informat to include blanks or special
characters between the day, month, year, or time. For more information about date and
time values, see Chapter 8, “Dates, Times, and Intervals,” on page 127.

When a problem occurs with an informat, SAS writes a note to the SAS log and
assigns a missing value to the variable. Problems occur if you use an incompatible
informat, such as a numeric informat to read character data, or if you specify the width
of a date and time informat that causes SAS to read a special character in the last
column.

Ways to Specify Informats
You can specify informats in the following ways:
� in an INPUT statement

The INPUT statement with an informat after a variable name is the simplest
way to read values into a variable. For example, the following INPUT statement
uses two informats:

input @15 style $3. @21 price 5.2;

The $w. character informat reads values into the variable STYLE. The w.d
numeric informat reads values into the variable PRICE.

For a complete discussion of the “INPUT Statement” , see SAS Language
Reference: Dictionary.

� with the INPUT, INPUTC, and INPUTN functions
The INPUT function reads a SAS character expression using a specified

informat. The informat determines whether the resulting value is numeric or
character. Thus, the INPUT function is useful for converting data. For example,

TempCharacter=’98.6’;
TemperatureNumber=input(TempCharacter,4.);

Here, the INPUT function in combination with the w.d informat reads the
character value of TempCharacter as a numeric value and assigns the numeric
value 98.6 to TemperatureNumber.

SAS Language Elements � Informats 31

Use the PUT function with a SAS format to convert numeric values to character
values. See the “PUT Function” in SAS Language Reference: Dictionary for an
example of a numeric-to-character conversion. For a complete discussion of the
“INPUT Function”, see SAS Language Reference: Dictionary.

� in an INFORMAT statement in a DATA or a PROC step
The INFORMAT statement associates an informat with a variable. SAS uses

the informat in any subsequent INPUT statement to read values into the variable.
For example, in the following statements the INFORMAT statement associates the
DATEw. informat with the variables Birthdate and Interview:

informat Birthdate Interview date9.;
input @63 Birthdate Interview;

An informat that is associated with an INFORMAT statement behaves like an
informat that you specify with a colon (:) format modifier in an INPUT statement.
(For details about using the colon (:) modifier, see the “INPUT Statement, List” in
SAS Language Reference: Dictionary.) Therefore, SAS uses a modified list input to
read the variable so that

� the w value in an informat does not determine column positions or input field
widths in an external file

� the blanks that are embedded in input data are treated as delimiters unless
you change the DELIMITER= option in an INFILE statement

� for character informats, the w value in an informat specifies the length of
character variables

� for numeric informats, the w value is ignored
� for numeric informats, the d value in an informat behaves in the usual way

for numeric informats

If you have coded the INPUT statement to use another style of input, such as
formatted input or column input, that style of input is not used when you use the
INFORMAT statement.

See the “INPUT Statement, List” in SAS Language Reference: Dictionary for
more information about how to use modified list input to read data.

� in an ATTRIB statement in a DATA or a PROC step.
The ATTRIB statement can also associate an informat, as well as other

attributes, with one or more variables. For example, in the following statements,
the ATTRIB statement associates the DATEw. informat with the variables
Birthdate and Interview:

attrib Birthdate Interview informat=date9.;
input @63 Birthdate Interview;

An informat that is associated by using the INFORMAT= option in the ATTRIB
statement behaves like an informat that you specify with a colon (:) format
modifier in an INPUT statement. (For details about using the colon (:) modifier,
see the “INPUT Statement, List” in SAS Language Reference: Dictionary.)
Therefore, SAS uses a modified list input to read the variable in the same way as
it does for the INFORMAT statement.

See the “ATTRIB Statement” in SAS Language Reference: Dictionary for more
information.

Permanent versus Temporary Association
When you specify an informat in an INPUT statement, SAS uses the informat to read

input data values during that DATA step. SAS, however, does not permanently associate

32 User-Defined Formats and Informats � Chapter 4

the informat with the variable. To permanently associate a format with a variable, use
an INFORMAT statement or an ATTRIB statement. SAS permanently associates an
informat with the variable by modifying the descriptor information in the SAS data set.

User-Defined Formats and Informats
In addition to the formats and informats that are supplied with Base SAS software,

you can create your own formats and informats. In Base SAS software, PROC FORMAT
allows you to create your own formats and informats for both character and numeric
variables.

When you execute a SAS program that uses user-defined formats or informats, these
formats and informats should be available. The two ways to make these formats and
informats available are

� to create permanent, not temporary, formats or informats with PROC FORMAT
� to store the source code that creates the formats or informats (the PROC FORMAT

step) with the SAS program that uses them.

To create permanent SAS formats and informats, see “The FORMAT Procedure” in Base
SAS Procedures Guide.

If you execute a program that cannot locate a user-defined format or informat, the
result depends on the setting of the FMTERR system option. If the user-defined format
or informat is not found, then these system options produce these results:

System option Results

FMTERR SAS produces an error that causes the current DATA or
PROC step to stop.

NOFMTERR SAS continues processing and substitutes a default format,
usually the BESTw. or $w. format.

Although using NOFMTERR enables SAS to process a variable, you lose the
information that the user-defined format or informat supplies.

To avoid problems, make sure that your program has access to all of the user-defined
formats and informats that are used in the program.

Byte Ordering for Integer Binary Data on Big Endian and Little Endian
Platforms

Definitions
Integer values for binary integer data are typically stored in one of three sizes:

one-byte, two-byte, or four-byte. The ordering of the bytes for the integer varies
depending on the platform (operating environment) on which the integers were
produced.

The ordering of bytes differs between the “big endian” and “little endian” platforms.
These colloquial terms are used to describe byte ordering for IBM mainframes (big
endian) and for Intel-based platforms (little endian). In SAS, the following platforms
are considered big endian: AIX, HP-UX, IBM mainframe, Macintosh, and Solaris. The
following platforms are considered little endian: OpenVMS Alpha, Digital UNIX, Intel
ABI, and Windows.

SAS Language Elements � Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms 33

How Bytes Are Ordered
On big endian platforms, the value 1 is stored in binary and is represented here in

hexadecimal notation. One byte is stored as 01, two bytes as 00 01, and four bytes as 00
00 00 01. On little endian platforms, the value 1 is stored in one byte as 01 (the same
as big endian), in two bytes as 01 00, and in four bytes as 01 00 00 00.

If an integer is negative, the “two’s complement” representation is used. The
high-order bit of the most significant byte of the integer will be set on. For example, –2
would be represented in one, two, and four bytes on big endian platforms as FE, FF FE,
and FF FF FF FE respectively. On little endian platforms, the representation would be
FE, FE FF, and FE FF FF FF. These representations result from the output of the
integer binary value –2 expressed in hexadecimal representation.

Writing Data Generated on Big Endian or Little Endian Platforms
SAS can read signed and unsigned integers regardless of whether they were

generated on a big endian or a little endian system. Likewise, SAS can write signed
and unsigned integers in both big endian and little endian format. The length of these
integers can be up to eight bytes.

The following table shows which format to use for various combinations of platforms.
In the Sign? column, “no” indicates that the number is unsigned and cannot be
negative. “Yes” indicates that the number can be either negative or positive.

Table 4.1 SAS Formats and Byte Ordering

Data created
for...

Data written
by...

Sign? Format/Informat

big endian big endian yes IB or S370FIB

big endian big endian no PIB, S370FPIB,
S370FIBU

big endian little endian yes S370FIB

big endian little endian no S370FPIB

little endian big endian yes IBR

little endian big endian no PIBR

little endian little endian yes IB or IBR

little endian little endian no PIB or PIBR

big endian either yes S370FIB

big endian either no S370FPIB

little endian either yes IBR

little endian either no PIBR

Integer Binary Notation and Different Programming Languages
The following table compares integer binary notation according to programming

language.

34 Working with Packed Decimal and Zoned Decimal Data � Chapter 4

Table 4.2 Integer Binary Notation and Programming Languages

Language 2 Bytes 4 Bytes

SAS IB2., IBR2., PIB2., PIBR2.,
S370FIB2., S370FIBU2.,
S370FPIB2.

IB4., IBR4., PIB4., PIBR4.,
S370FIB4., S370FIBU4.,
S370FPIB4.

PL/I FIXED BIN(15) FIXED BIN(31)

FORTRAN INTEGER*2 INTEGER*4

COBOL COMP PIC 9(4) COMP PIC 9(8)

IBM assembler H F

C short long

Working with Packed Decimal and Zoned Decimal Data

Definitions

Packed decimal specifies a method of encoding decimal numbers by using each byte
to represent two decimal digits. Packed decimal representation
stores decimal data with exact precision. The fractional part of the
number is determined by the informat or format because there is no
separate mantissa and exponent.

An advantage of using packed decimal data is that exact precision
can be maintained. However, computations involving decimal data
might become inexact due to the lack of native instructions.

Zoned decimal specifies a method of encoding decimal numbers in which each digit
requires one byte of storage. The last byte contains the number’s
sign as well as the last digit. Zoned decimal data produces a
printable representation.

Nibble specifies 1/2 of a byte.

Packed Decimal Data
A packed decimal representation stores decimal digits in each “nibble” of a byte.

Each byte has two nibbles, and each nibble is indicated by a hexadecimal digit. For
example, the value 15 is stored in two nibbles, using the hexadecimal digits 1 and 5.

The sign indication is dependent on your operating environment. On IBM
mainframes, the sign is indicated by the last nibble. With formats, C indicates a
positive value, and D indicates a negative value. With informats, A, C, E, and F
indicate positive values, and B and D indicate negative values. Any other nibble is
invalid for signed packed decimal data. In all other operating environments, the sign is
indicated in its own byte. If the high-order bit is 1, then the number is negative.
Otherwise, it is positive.

The following applies to packed decimal data representation:

� You can use the S370FPD format on all platforms to obtain the IBM mainframe
configuration.

SAS Language Elements � Working with Packed Decimal and Zoned Decimal Data 35

� You can have unsigned packed data with no sign indicator. The packed decimal
format and informat handles the representation. It is consistent between ASCII
and EBCDIC platforms.

� Note that the S370FPDU format and informat expects to have an F in the last
nibble, while packed decimal expects no sign nibble.

Zoned Decimal Data
The following applies to zoned decimal data representation:
� A zoned decimal representation stores a decimal digit in the low order nibble of

each byte. For all but the byte containing the sign, the high-order nibble is the
numeric zone nibble (F on EBCDIC and 3 on ASCII).

� The sign can be merged into a byte with a digit, or it can be separate, depending
on the representation. But the standard zoned decimal format and informat
expects the sign to be merged into the last byte.

� The EBCDIC and ASCII zoned decimal formats produce the same printable
representation of numbers. There are two nibbles per byte, each indicated by a
hexadecimal digit. For example, the value 15 is stored in two bytes. The first byte
contains the hexadecimal value F1 and the second byte contains the hexadecimal
value C5.

Packed Julian Dates
The following applies to packed Julian dates:
� The two formats and informats that handle Julian dates in packed decimal

representation are PDJULI and PDJULG. PDJULI uses the IBM mainframe year
computation, while PDJULG uses the Gregorian computation.

� The IBM mainframe computation considers 1900 to be the base year, and the year
values in the data indicate the offset from 1900. For example, 98 means 1998, 100
means 2000, and 102 means 2002. 1998 would mean 3898.

� The Gregorian computation allows for 2-digit or 4-digit years. If you use 2-digit
years, SAS uses the setting of the YEARCUTOFF= system option to determine the
true year.

Platforms Supporting Packed Decimal and Zoned Decimal Data
Some platforms have native instructions to support packed and zoned decimal data,

while others must use software to emulate the computations. For example, the IBM
mainframe has an Add Pack instruction to add packed decimal data, but the
Intel-based platforms have no such instruction and must convert the decimal data into
some other format.

Languages Supporting Packed Decimal and Zoned Decimal Data
Several different languages support packed decimal and zoned decimal data. The

following table shows how COBOL picture clauses correspond to SAS formats and
informats.

IBM VS COBOL II clauses Corresponding S370Fxxx
formats/informats

PIC S9(X) PACKED-DECIMAL S370FPDw.

PIC 9(X) PACKED-DECIMAL S370FPDUw.

PIC S9(W) DISPLAY S370FZDw.

36 Working with Packed Decimal and Zoned Decimal Data � Chapter 4

IBM VS COBOL II clauses Corresponding S370Fxxx
formats/informats

PIC 9(W) DISPLAY S370FZDUw.

PIC S9(W) DISPLAY SIGN LEADING S370FZDLw.

PIC S9(W) DISPLAY SIGN LEADING SEPARATE S370FZDSw.

PIC S9(W) DISPLAY SIGN TRAILING SEPARATE S370FZDTw.

For the packed decimal representation listed above, X indicates the number of digits
represented, and W is the number of bytes. For PIC S9(X) PACKED-DECIMAL, W is
ceil((x+1)/2). For PIC 9(X) PACKED-DECIMAL, W is ceil (x/2). For example,
PIC S9(5) PACKED-DECIMAL represents five digits. If a sign is included, six nibbles
are needed. ceil((5+1)/2) has a length of three bytes, and the value of W is 3.

Note that you can substitute COMP-3 for PACKED-DECIMAL.
In IBM assembly language, the P directive indicates packed decimal, and the Z

directive indicates zoned decimal. The following shows an excerpt from an assembly
language listing, showing the offset, the value, and the DC statement:

offset value (in hex) inst label directive

+000000 00001C 2 PEX1 DC PL3’1’
+000003 00001D 3 PEX2 DC PL3’-1’
+000006 F0F0C1 4 ZEX1 DC ZL3’1’
+000009 F0F0D1 5 ZEX2 DC ZL3’1’

In PL/I, the FIXED DECIMAL attribute is used in conjunction with packed decimal
data. You must use the PICTURE specification to represent zoned decimal data. There
is no standardized representation of decimal data for the FORTRAN or the C languages.

Summary of Packed Decimal and Zoned Decimal Formats and Informats

SAS uses a group of formats and informats to handle packed and zoned decimal data.
The following table lists the type of data representation for these formats and
informats. Note that the formats and informats that begin with S370 refer to IBM
mainframe representation.

Format Type of data
representation

Corresponding
informat

Comments

PD Packed decimal PD Local signed packed decimal

PK Packed decimal PK Unsigned packed decimal; not
specific to your operating
environment

ZD Zoned decimal ZD Local zoned decimal

none Zoned decimal ZDB Translates EBCDIC blank
(hex 40) to EBCDIC zero (hex
F0), then corresponds to the
informat as zoned decimal

none Zoned decimal ZDV Non-IBM zoned decimal
representation

SAS Language Elements � Working with Packed Decimal and Zoned Decimal Data 37

Format Type of data
representation

Corresponding
informat

Comments

S370FPD Packed decimal S370FPD Last nibble C (positive) or D
(negative)

S370FPDU Packed decimal S370FPDU Last nibble always F
(positive)

S370FZD Zoned decimal S370FZD Last byte contains sign in
upper nibble: C (positive) or
D (negative)

S370FZDU Zoned decimal S370FZDU Unsigned; sign nibble always
F

S370FZDL Zoned decimal S370FZDL Sign nibble in first byte in
informat; separate leading
sign byte of hex C0 (positive)
or D0 (negative) in format

S370FZDS Zoned decimal S370FZDS Leading sign of - (hex 60) or +
(hex 4E)

S370FZDT Zoned decimal S370FZDT Trailing sign of - (hex 60) or +
(hex 4E)

PDJULI Packed decimal PDJULI Julian date in packed
representation - IBM
computation

PDJULG Packed decimal PDJULG Julian date in packed
representation - Gregorian
computation

none Packed decimal RMFDUR Input layout is: mmsstttF

none Packed decimal SHRSTAMP Input layout is:
yyyydddFhhmmssth, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

none Packed decimal SMFSTAMP Input layout is:
xxxxxxxxyyyydddF, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

none Packed decimal PDTIME Input layout is: 0hhmmssF

none Packed decimal RMFSTAMP Input layout is:
0hhmmssFyyyydddF, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

38 Data Conversions and Encodings � Chapter 4

Data Conversions and Encodings
An encoding maps each character in a character set to a unique numeric

representation, resulting in a table of all code points. A single character can have
different numeric representations in different encodings. For example, the ASCII
encoding for the dollar symbol $ is 24hex. The Danish EBCDIC encoding for the dollar
symbol $ is 67hex. In order for a version of SAS that normally uses ASCII to properly
interpret a data set that is encoded in Danish EBCDIC, the data must be transcoded.

Transcoding is the process of moving data from one encoding to another. When
transcoding the ASCII dollar sign to the Danish EBCDIC dollar sign, the hex
representation for the character is converted from the value 24 to a 67.

If you want to know what the encoding of a particular SAS data set is, for SAS 9 and
above follow these steps:

1 Locate the data set with SAS Explorer.

2 Right-click the data set.

3 Select Properties from the menu.

4 Click the Details tab.

5 The encoding of the data set is listed, along with other information.

Some situations where data might commonly be transcoded are:

� when you share data between two different SAS sessions that are running in
different locales or in different operating environments,

� when you perform text-string operations, such as converting to uppercase or
lowercase,

� when you display or print characters from another language,

� when you copy and paste data between SAS sessions running in different locales.

For more information on SAS features designed to handle data conversions from
different encodings or operating environments, see SAS National Language Support
(NLS): User’s Guide.

Functions and CALL Routines

Definitions of Functions and CALL Routines

Definition of Functions
A SAS function performs a computation or system manipulation on arguments and

returns a value. Most functions use arguments supplied by the user, but a few obtain
their arguments from the operating environment.

In Base SAS software, you can use SAS functions in DATA step programming
statements, in a WHERE expression, in macro language statements, in PROC
REPORT, and in Structured Query Language (SQL).

Some statistical procedures also use SAS functions. In addition, some other SAS
software products offer functions that you can use in the DATA step. Refer to the
documentation that pertains to the specific SAS software product for additional
information about these functions.

SAS Language Elements � Syntax of Functions and CALL Routines 39

Definition of CALL Routines
A CALL routine alters variable values or performs other system functions. CALL

routines are similar to functions, but differ from functions in that you cannot use them
in assignment statements.

All SAS CALL routines are invoked with CALL statements; that is, the name of the
routine must appear after the keyword CALL on the CALL statement.

Syntax of Functions and CALL Routines

Syntax of Functions
The syntax of a function is as follows:

function-name (argument-1<...,argument-n>)

function-name (OF variable-list)

function-name (OF array-name{*})

Here is an explanation of the syntax:

function-name
names the function.

argument
can be a variable name, constant, or any SAS expression, including another
function. The number and kind of arguments that SAS allows are described with
individual functions. Multiple arguments are separated by a comma.
Tip: If the value of an argument is invalid (for example, missing or outside the

prescribed range), then SAS writes a note to the log indicating that the
argument is invalid, sets _ERROR_ to 1, and sets the result to a missing value.

Examples:
� x=max(cash,credit);

� x=sqrt(1500);

� NewCity=left(upcase(City));

� x=min(YearTemperature-July,YearTemperature-Dec);

� s=repeat(’----+’,16);

� x=min((enroll-drop),(enroll-fail));

� dollars=int(cash);

� if sum(cash,credit)>1000 then
put ’Goal reached’;

variable-list
can be any form of a SAS variable list, including individual variable names. If
more than one variable list appears, separate them with a space or with a comma
and another OF.
Examples:

� a=sum(of x y z);

� The following two examples are equivalent.

40 Using Functions � Chapter 4

� a=sum(of x1-x10 y1-y10 z1-z10);
a=sum(of x1-x10, of y1-y10, of z1-z10);

� z=sum(of y1-y10);

array-name{*}
names a currently defined array. Specifying an array in this way causes SAS to
treat the array as a list of the variables instead of processing only one element of
the array at a time.
Examples:

� array y{10} y1-y10;
x=sum(of y{*});

Syntax of CALL Routines
The syntax of a CALL routine is as follows:

CALL routine-name (argument-1<, ... argument-n>);

CALL routine-name (OF variable-list);

CALL routine-name (argument-1 | OF variable-list-1 <, ...argument-n | OF
variable-list-n>);

Here is an explanation of the syntax:

routine-name
names a SAS CALL routine.

argument
can be a variable name, a constant, any SAS expression, an external module
name, an array reference, or a function. Multiple arguments are separated by a
comma. The number and kind of arguments that are allowed are described with
individual CALL routines in the SAS Language Reference: Dictionary.
Examples:

� call rxsubstr(rx,string,position);

� call set(dsid);

� call ranbin(Seed_1,n,p,X1);

� call label(abc{j},lab);

variable-list
can be any form of a SAS variable list, including variable names. If more than one
variable list appears, separate them with a space or with a comma and another OF.
Examples:

� call cats(inventory, of y1-y15, of z1-z15);
call catt(of item17-item23 pack17-pack23);

Using Functions

Restrictions on Function Arguments
If the value of an argument is invalid, then SAS prints an error message and sets the

result to a missing value. Here are some common restrictions on function arguments:

SAS Language Elements � Using Functions 41

� Some functions require that their arguments be restricted within a certain range.
For example, the argument of the LOG function must be greater than 0.

� Most functions do not permit missing values as arguments. Exceptions include
some of the descriptive statistics functions and financial functions.

� In general, the allowed range of the arguments is platform-dependent, such as
with the EXP function.

� For some probability functions, combinations of extreme values can cause
convergence problems.

Notes on Descriptive Statistic Functions
SAS provides functions that return descriptive statistics. Except for the MISSING

function, the functions correspond to the statistics produced by the MEANS procedure.
The computing method for each statistic is discussed in “SAS Elementary Statistics
Procedures” in Base SAS Procedures Guide. SAS calculates descriptive statistics for the
nonmissing values of the arguments.

Notes on Financial Functions
SAS provides a group of functions that perform financial calculations. The functions

are grouped into the following types:

Table 4.3 Types of Financial Functions

Function type Functions Description

Cashflow CONVX, CONVXP calculates convexity for cashflows

DUR, DURP calculates modified duration for cashflows

PVP, YIELDP calculates present value and
yield-to-maturity for a periodic cashflow

Parameter calculations COMPOUND calculates compound interest parameters

MORT calculates amortization parameters

Internal rate of return INTRR, IRR calculates the internal rate of return

Net present and future
value

NETPV, NPV calculates net present and future values

SAVING calculates the future value of periodic
saving

Depreciation DACCxx calculates the accumulated depreciation up
to the specified period

DEPxxx calculates depreciation for a single period

Special Considerations for Depreciation Functions
The period argument for depreciation functions can be fractional for all of the

functions except DEPDBSL and DACCDBSL. For fractional arguments, the
depreciation is prorated between the two consecutive time periods preceding and
following the fractional period.

CAUTION:
Verify the depreciation method for fractional periods. You must verify whether this
method is appropriate to use with fractional periods because many depreciation
schedules, specified as tables, have special rules for fractional periods. �

42 Using Functions � Chapter 4

Using DATA Step Functions within Macro Functions

The macro functions %SYSFUNC and %QSYSFUNC can call DATA step functions to
generate text in the macro facility. %SYSFUNC and %QSYSFUNC have one difference:
%QSYSFUNC masks special characters and mnemonics and %SYSFUNC does not. For
more information on these functions, see %QSYSFUNC and %SYSFUNC in SAS Macro
Language: Reference.

%SYSFUNC arguments are a single DATA step function and an optional format, as
shown in the following examples:

%sysfunc(date(),worddate.)
%sysfunc(attrn(&dsid,NOBS))

You cannot nest DATA step functions within %SYSFUNC. However, you can nest
%SYSFUNC functions that call DATA step functions. For example:

%sysfunc(compress(%sysfunc(getoption(sasautos)),
%str(%)%(%’)));

All arguments in DATA step functions within %SYSFUNC must be separated by
commas. You cannot use argument lists that are preceded by the word OF.

Because %SYSFUNC is a macro function, you do not need to enclose character values
in quotation marks as you do in DATA step functions. For example, the arguments to
the OPEN function are enclosed in quotation marks when you use the function alone,
but the arguments do not require quotation marks when used within %SYSFUNC.

dsid=open("sasuser.houses","i");
dsid=open("&mydata","&mode");
%let dsid=%sysfunc(open(sasuser.houses,i));
%let dsid=%sysfunc(open(&mydata,&mode));

You can use these functions to call all of the DATA step SAS functions except those
that pertain to DATA step variables or processing. These prohibited functions are: DIF,
DIM, HBOUND, INPUT, IORCMSG, LAG, LBOUND, MISSING, PUT, RESOLVE,
SYMGET, and all of the variable information functions (for example, VLABEL).

Using Functions to Manipulate Files

SAS manipulates files in different ways, depending on whether you use functions or
statements. If you use functions such as FOPEN, FGET, and FCLOSE, you have more
opportunity to examine and manipulate your data than when you use statements such
as INFILE, INPUT, and PUT.

When you use external files, the FOPEN function allocates a buffer called the File
Data Buffer (FDB) and opens the external file for reading or updating. The FREAD
function reads a record from the external file and copies the data into the FDB. The
FGET function then moves the data to the DATA step variables. The function returns a
value that you can check with statements or other functions in the DATA step to
determine how to further process your data. After the records are processed, the
FWRITE function writes the contents of the FDB to the external file, and the FCLOSE
function closes the file.

When you use SAS data sets, the OPEN function opens the data set. The FETCH
and FETCHOBS functions read observations from an open SAS data set into the Data
Set Data Vector (DDV). The GETVARC and GETVARN functions then move the data to
DATA step variables. The functions return a value that you can check with statements
or other functions in the DATA step to determine how you want to further process your
data. After the data is processed, the CLOSE function closes the data set.

SAS Language Elements � Using Random-Number Functions and CALL Routines 43

For complete descriptions and examples, see the functions and CALL routines in SAS
Language Reference: Dictionary.

Using Random-Number Functions and CALL Routines

Seed Values
Random–number functions and CALL routines generate streams of random numbers

from an initial starting point, called a seed, that either the user or the computer clock
supplies. A seed must be a nonnegative integer with a value less than 231–1 (or
2,147,483,647). If you use a positive seed, you can always replicate the stream of
random numbers by using the same DATA step. If you use zero as the seed, the
computer clock initializes the stream, and the stream of random numbers is not
replicable.

Each random-number function and CALL routine generates pseudo-random numbers
from a specific statistical distribution. Every random-number function requires a seed
value expressed as an integer constant, or a variable that contains the integer constant.
Every CALL routine calls a variable that contains the seed value. Additionally, every
CALL routine requires a variable that contains the generated random numbers.

The seed variable must be initialized prior to the first execution of the function or
CALL routine. After each execution of a function, the current seed is updated
internally, but the value of the seed argument remains unchanged. After each iteration
of the CALL routine, however, the seed variable contains the current seed in the stream
that generates the next random number. With a function, it is not possible to control
the seed values, and, therefore, the random numbers after the initialization.

Comparison of Random-Number Functions and CALL Routines
Except for the NORMAL and UNIFORM functions, which are equivalent to the

RANNOR and RANUNI functions, respectively, SAS provides a CALL routine that has
the same name as each random-number function. Using CALL routines gives you
greater control over the seed values.

With a CALL routine, you can generate multiple streams of random numbers within
a single DATA step. If you supply a different seed value to initialize each of the seed
variables, the streams of the generated random numbers are computationally
independent. With a function, however, you cannot generate more than one stream by
supplying multiple seeds within a DATA step. The following two examples illustrate the
difference.

Example 1: Generating Multiple Streams from a CALL Routine
This example uses the CALL RANUNI routine to generate three streams of random

numbers from the uniform distribution, with ten numbers each. See the results in
Output 4.1.

options nodate pageno=1 linesize=80 pagesize=60;

data multiple(drop=i);
retain Seed_1 1298573062 Seed_2 447801538

Seed_3 631280;
do i=1 to 10;

call ranuni (Seed_1,X1);
call ranuni (Seed_2,X2);

44 Using Random-Number Functions and CALL Routines � Chapter 4

call ranuni (Seed_3,X3);
output;

end;
run;

proc print data=multiple;
title ’Multiple Streams from a CALL Routine’;

run;

Output 4.1 The CALL Routine Example

Multiple Streams from a CALL Routine 1

Obs Seed_1 Seed_2 Seed_3 X1 X2 X3

1 1394231558 512727191 367385659 0.64924 0.23876 0.17108
2 1921384255 1857602268 1297973981 0.89471 0.86501 0.60442
3 902955627 422181009 188867073 0.42047 0.19659 0.08795
4 440711467 761747298 379789529 0.20522 0.35472 0.17685
5 1044485023 1703172173 591320717 0.48638 0.79310 0.27536
6 2136205611 2077746915 870485645 0.99475 0.96753 0.40535
7 1028417321 1800207034 1916469763 0.47889 0.83829 0.89243
8 1163276804 473335603 753297438 0.54169 0.22041 0.35078
9 176629027 1114889939 2089210809 0.08225 0.51916 0.97286
10 1587189112 399894790 284959446 0.73909 0.18622 0.13269

Example 2: Assigning Values from a Single Stream to Multiple Variables
Using the same three seeds that were used in Example 1, this example uses a

function to create three variables. The results that are produced are different from
those in Example 1 because the values of all three variables are generated by the first
seed. When you use an individual function more than once in a DATA step, the function
accepts only the first seed value that you supply and ignores the rest.

options nodate pageno=1 linesize=80 pagesize=60;

data single(drop=i);
do i=1 to 3;

Y1=ranuni(1298573062);
Y2=ranuni(447801538);
Y3=ranuni(631280);
output;

end;
run;

proc print data=single;
title ’A Single Stream across Multiple Variables’;

run;

The following output shows the results. The values of Y1, Y2, and Y3 in this example
come from the same random-number stream generated from the first seed. You can see
this by comparing the values by observation across these three variables with the
values of X1 in Output 4.2.

SAS Language Elements � Pattern Matching Using SAS Regular Expressions (RX) and Perl Regular Expressions (PRX) 45

Output 4.2 The Function Example

A Single Stream across Multiple Variables 1

Obs Y1 Y2 Y3

1 0.64924 0.89471 0.42047
2 0.20522 0.48638 0.99475
3 0.47889 0.54169 0.08225

Pattern Matching Using SAS Regular Expressions (RX) and Perl
Regular Expressions (PRX)

Definition of Pattern Matching and Regular Expressions
Pattern matching enables you to search for and extract multiple matching patterns

from a character string in one step, as well as to make several substitutions in a string
in one step. The DATA step supports two kinds of pattern-matching functions and
CALL routines:

� SAS regular expressions (RX)

� Perl regular expressions (PRX).

Regular expressions are a pattern language which provides fast tools for parsing
large amounts of text. Regular expressions are composed of characters and special
characters that are called metacharacters.

The asterisk (*) and the question mark (?) are two examples of metacharacters. The
asterisk (*) matches zero or more characters, and the question mark (?) matches one or
zero characters. For example, if you issue the ls data*.txt command from a UNIX
shell prompt, UNIX displays all the files in the current directory that begin with the
letters “data” and end with the file extension “txt”.

The asterisk (*) and the question mark (?) are a limited form of regular expressions.
Perl regular expressions build on the asterisk and the question mark to make searching
more powerful and flexible.

Definition of SAS Regular Expression (RX) Functions and CALL Routines
SAS Regular expression (RX) functions and CALL routines refers to a group of

functions and CALL routines that uses SAS’ regular expression pattern matching to
parse character strings. You can search for character strings that have a specific
pattern that you specify, and change a matched substring to a different substring.

SAS regular expressions consist of CALL RXCHANGE, CALL RXFREE, CALL
RXSUBSTR, RXMATCH, and RXPARSE, and are part of the character string matching
category for functions and CALL routines. For more information on these functions and
CALL routines, see SAS Language Reference: Dictionary.

Definition of Perl Regular Expression (PRX) Functions and CALL Routines
Perl regular expression (PRX) functions and CALL routines refers to a group of

functions and CALL routines that uses a modified version of Perl as a pattern matching
language to parse character strings. PRX functions enable you to do the following:

� search for a pattern of characters within a string

46 Pattern Matching Using SAS Regular Expressions (RX) and Perl Regular Expressions (PRX) � Chapter 4

� extract a substring from a string
� search and replace text with other text
� parse large amounts of text, such as Web logs or other text data, more quickly

than with SAS regular expressions.

Perl regular expressions consist of CALL PRXCHANGE, CALL PRXDEBUG, CALL
PRXFREE, CALL PRXNEXT, CALL PRXPOSN, CALL PRXSUBSTR, PRXPAREN,
PRXMATCH, and PRXPARSE, and are part of the character string matching category
for functions and CALL routines. For more information on these functions and CALL
routines, see SAS Language Reference: Dictionary.

Benefits of Using Perl Regular Expressions in the DATA Step
Using Perl regular expressions in the DATA step enhances search and replace

options in text. You can use Perl regular expressions to do the following:
� validate data
� replace text
� extract a substring from a string
� write Perl debug output to the SAS log.

You can write SAS programs that do not use regular expressions to produce the same
results as you do when you use Perl regular expressions. The code without the regular
expressions, however, requires more function calls to handle character positions in a
string and to manipulate parts of the string.

Perl regular expressions combine most, if not all, of these steps into one expression.
The resulting code has the following advantages.

� less prone to error
� easier to maintain
� clearer to read
� more efficient in terms of improving system performance.

Using Perl Regular Expressions in the DATA Step - License Agreement
The following paragraph complies with sections 3 (a) and 4 (c) of the artistic license:
The PRX functions use a modified version of Perl 5.6.1 to perform regular expression

compilation and matching. Perl is compiled into a library for use with SAS. The
modified and original Perl 5.6.1 files are freely available from the SAS Web site at http:/
/support.sas.com/rnd/base. Each of the modified files has a comment block at the top of
the file describing how and when the file was changed. The executables were given
non-standard Perl names. The standard version of Perl can be obtained from http://
www.perl.com.

Only Perl regular expressions are accessible from the PRX functions. Other parts of
the Perl language are not accessible. The modified version of Perl regular expressions
does not support the following:

� Perl variables.
� the regular expression options /c, /g, and /o and the /e option with substitutions.
� named characters, which use the \N{name} syntax.
� the metacharacters \pP, \PP, and \X.
� executing Perl code within a regular expression. This includes the syntax (?{code}),

(??{code}), and (?p{code}).

SAS Language Elements � Pattern Matching Using SAS Regular Expressions (RX) and Perl Regular Expressions (PRX) 47

� unicode pattern matching.

� using ?PATTERN?. The ? metacharacter is treated like a regular expression
start-and-end delimiter.

� the metacharacter \G.

� Perl comments between a pattern and replacement text. For example: s{regexp} #
perl comment {replacement}.

� matching backslashes with m/\\\\/. Instead m/\\/ should be used to match a
backslash.

Syntax of Perl Regular Expressions
Perl regular expressions are composed of characters and special characters that are

called metacharacters. When performing a match, SAS searches a source string for a
substring that matches the Perl regular expression that you specify. Using
metacharacters enables SAS to perform special actions when searching for a match:

� If you use the metacharacter \d, SAS matches a digit between 0–9.

� If you use /\dt/, SAS finds the digits in the string “Raleigh, NC 27506”.

� If you use /world/, SAS finds the substring “world” in the string “Hello world!”.

The following table contains a short list of Perl regular expression metacharacters
that you can use when you build your code. You can find a complete list of
metacharacters on the following Perl man page at http://www.perldoc.com/perl5.6.1/pod/
perlre.html.

Metacharacter Description

\ marks the next character as either a special character, a literal, a back
reference, or an octal escape:

� "n" matches the character "n"

� "\n" matches a new line character

� "\\" matches "\"

� "\(" matches "("

| specifies the or condition when you compare alphanumeric strings.

^ matches the position at the beginning of the input string.

$ matches the position at the end of the input string.

* matches the preceding subexpression zero or more times:

� zo* matches "z" and "zoo"

� * is equivalent to {0}

+ matches the preceding subexpression one or more times:

� "zo+" matches "zo" and "zoo"

� "zo+" does not match "z"

� + is equivalent to {1,}

? matches the preceding subexpression zero or one time:

� "do(es)?" matches the "do" in "do" or "does"

� ? is equivalent to {0,1}

48 Pattern Matching Using SAS Regular Expressions (RX) and Perl Regular Expressions (PRX) � Chapter 4

Metacharacter Description

{n} n is a non-negative integer that matches exactly n times:

� "o{2}" matches the two o’s in "food"

� "o{2}" does not match the "o" in "Bob"

{n,} n is a non-negative integer that matches n or more times:

� "o{2,}" matches all the o’s in "foooood"

� "o{2,}" does not match the "o" in "Bob"

� "o{1,}" is equivalent to "o+"

� "o{0,}" is equivalent to "o*"

{n,m} m and n are non-negative integers, where n<=m. They match at least
n and at most m times:

� "o{1,3}" matches the first three o’s in "fooooood"

� "o{0,1}" is equivalent to "o?"

Note: You cannot put a space between the comma and
the numbers. �

period (.) matches any single character except newline. To match any character
including newline, use a pattern such as "[.\n]".

(pattern) matches a pattern and captures the match. To retrieve the position
and length of the match that is captured, use CALL PRXPOSN. To
match parentheses characters, use "\(" or "\)".

x|y matches either x or y:

� "z|food" matches "z" or "food"

� "(z|f)ood" matches "zood" or "food"

[xyz] specifies a character set that matches any one of the enclosed
characters:

� "[abc]" matches the "a" in "plain"

[^xyz] specifies a negative character set that matches any character that is
not enclosed:

� "[^abc]" matches the "p" in "plain"

[a-z] specifies a range of characters that matches any character in the range:

� "[a-z]" matches any lowercase alphabetic character in the range
"a" through "z"

[^a-z] specifies a range of characters that does not match any character in
the range:

� "[^a-z]" matches any character that is not in the range "a"
through "z"

\b matches a word boundary (the position between a word and a space):

� "er\b" matches the "er" in "never"

� "er\b" does not match the "er" in "verb"

SAS Language Elements � Pattern Matching Using SAS Regular Expressions (RX) and Perl Regular Expressions (PRX) 49

Metacharacter Description

\B matches a non-word boundary:

� "er\B" matches the "er" in "verb"

� "er\B" does not match the "er" in "never"

\d matches a digit character that is equivalent to [0-9].

\D matches a non-digit character that is equivalent to [^0-9].

\s matches any white space character including space, tab, form feed,
and so on, and is equivalent to [\f\n\r\t\v].

\S matches any character that is not a white space character and is
equivalent to [^\f\n\r\t\v].

\t matches a tab character and is equivalent to "\x09".

\w matches any word character including the underscore and is
equivalent to [A-Za-z0-9_].

\W matches any non-word character and is equivalent to [^A-Za-z0-9_].

\num matches num, where num is a positive integer. This is a reference
back to captured matches:

� "(.)\1" matches two consecutive identical characters.

Example 1: Validating Data
You can test for a pattern of characters within a string. For example, you can

examine a string to determine whether it contains a correctly formatted telephone
number. This type of test is called data validation.

The following example validates a list of phone numbers. To be valid, a phone
number must have one of the following forms: (XXX) XXX-XXXX or XXX-XXX-XXXX.

data _null_; u

if _N_ = 1 then
do;

paren = "\([2-9]\d\d\) ?[2-9]\d\d-\d\d\d\d"; v

dash = "[2-9]\d\d-[2-9]\d\d-\d\d\d\d"; w

regexp = "/(" || paren || ")|(" || dash || ")/"; x

retain re;
re = prxparse(regexp); y

if missing(re) then U

do;
putlog "ERROR: Invalid regexp " regexp; V

stop;
end;

end;

length first last home business $ 16;
input first last home business;

if ^prxmatch(re, home) then W

putlog "NOTE: Invalid home phone number for " first last home;

50 Pattern Matching Using SAS Regular Expressions (RX) and Perl Regular Expressions (PRX) � Chapter 4

if ^prxmatch(re, business) then X

putlog "NOTE: Invalid business phone number for " first last business;

datalines;
Jerome Johnson (919)319-1677 (919)846-2198
Romeo Montague 800-899-2164 360-973-6201
Imani Rashid (508)852-2146 (508)366-9821
Palinor Kent . 919-782-3199
Ruby Archuleta . .
Takei Ito 7042982145 .
Tom Joad 209/963/2764 2099-66-8474
;

The following items correspond to the lines that are numbered in the DATA step that
is shown above.

u Create a DATA step.

v Build a Perl regular expression to identify a phone number that matches
(XXX)XXX-XXXX, and assign the variable PAREN to hold the result. Use the
following syntax elements to build the Perl regular expression:

\(matches the open parenthesis in the area code.

[2–9] matches the digits 2–9. This is the first number in the area
code.

\d matches a digit. This is the second number in the area code.

\d matches a digit. This is the third number in the area code.

\) matches the closed parenthesis in the area code.

? matches the space (which is the preceding subexpression) zero
or one time. Spaces are significant in Perl regular expressions.
They match a space in the text that you are searching. If a
space precedes the question mark metacharacter (as it does in
this case), the pattern matches either zero spaces or one space
in this position in the phone number.

w Build a Perl regular expression to identify a phone number that matches
XXX-XXX-XXXX, and assign the variable DASH to hold the result.

x Build a Perl regular expression that concatenates the regular expressions for
(XXX)XXX-XXXX and XXX—XXX—XXXX. The concatenation enables you to
search for both phone number formats from one regular expression.

The PAREN and DASH regular expressions are placed within parentheses. The
bar metacharacter (|) that is located between PAREN and DASH instructs the
compiler to match either pattern. The slashes around the entire pattern tell the
compiler where the start and end of the regular expression is located.

y Pass the Perl regular expression to PRXPARSE and compile the expression.
PRXPARSE returns a value to the compiled pattern. Using the value with other
Perl regular expression functions and CALL routines enables SAS to perform
operations with the compiled Perl regular expression.

U Use the MISSING function to check whether the regular expression was
successfully compiled.

V Use the PUTLOG statement to write an error message to the SAS log if the
regular expression did not compile.

SAS Language Elements � Pattern Matching Using SAS Regular Expressions (RX) and Perl Regular Expressions (PRX) 51

W Search for a valid home phone number. PRXMATCH uses the value from
PRXPARSE along with the search text and returns the position where the regular
expression was found in the search text. If there is no match for the home phone
number, the PUTLOG statement writes a note to the SAS log.

X Search for a valid business phone number. PRXMATCH uses the value from
PRXPARSE along with the search text and returns the position where the regular
expression was found in the search text. If there is no match for the business
phone number, the PUTLOG statement writes a note to the SAS log.

The following lines are written to the SAS log:

NOTE: Invalid home phone number for Palinor Kent
NOTE: Invalid home phone number for Ruby Archuleta
NOTE: Invalid business phone number for Ruby Archuleta
NOTE: Invalid home phone number for Takei Ito 7042982145
NOTE: Invalid business phone number for Takei Ito
NOTE: Invalid home phone number for Tom Joad 209/963/2764
NOTE: Invalid business phone number for Tom Joad 2099-66-8474

Example 2: Replacing Text
You can use Perl regular expressions to find specific characters within a string. You

can then remove the characters or replace them with other characters. In this example,
the two occurrences of the less-than character (<) are replaced by < and the two
occurrences of the greater-than character (>) are replaced by >.

data _null_; u

if _N_ = 1 then
do;

retain lt_re gt_re;
lt_re = prxparse(’s/</</’); v

gt_re = prxparse(’s/>/>/’); w

if missing(lt_re) or missing(gt_re) then x

do;
putlog "ERROR: Invalid regexp."; y

stop;
end;

end;
input;
call prxchange(lt_re, -1, _infile_); U

call prxchange(gt_re, -1, _infile_); V

put _infile_;
datalines4;

The bracketing construct (...) creates capture buffers. To refer to
the digit’th buffer use \<digit> within the match. Outside the match
use "$" instead of "\". (The \<digit> notation works in certain
circumstances outside the match. See the warning below about \1 vs $1
for details.) Referring back to another part of the match is called
backreference.
;;;;

The following items correspond to the numbered lines in the DATA step that is
shown above.

52 Pattern Matching Using SAS Regular Expressions (RX) and Perl Regular Expressions (PRX) � Chapter 4

u Create a DATA step.
v Use metacharacters to create a substitution syntax for a Perl regular expression,

and compile the expression. The substitution syntax specifies that a less-than
character (<) in the input is replaced by the value < in the output.

w Use metacharacters to create a substitution syntax for a Perl regular expression,
and compile the expression. The substitution syntax specifies that a greater-than
character (>) in the input is replaced by the value > in the output.

x Use the MISSING function to check whether the Perl regular expression compiled
without error.

y Use the PUTLOG statement to write an error message to the SAS log if neither of
the regular expressions was found.

U Call the PRXCHANGE routine. Pass the LT_RE pattern-id, and search for and
replace all matching patterns. Put the results in _INFILE_ and write the
observation to the SAS log.

V Call the PRXCHANGE routine. Pass the GT_RE pattern-id, and search for and
replace all matching patterns. Put the results in _INFILE_ and write the
observation to the SAS log.

The following lines are written to the SAS log:

The bracketing construct (...) creates capture buffers. To refer to
the digit’th buffer use \<digit> within the match. Outside the match
use "$" instead of "\". (The \<digit> notation works in certain
circumstances outside the match. See the warning below about \1 vs $1
for details.) Referring back to another part of the match is called a
backreference.

Example 3: Extracting a Substring from a String
You can use Perl regular expressions to find and easily extract text from a string. In

this example, the DATA step creates a subset of North Carolina business phone
numbers. The program extracts the area code and checks it against a list of area codes
for North Carolina.

data _null_; u

if _N_ = 1 then
do;

paren = "\(([2-9]\d\d)\) ?[2-9]\d\d-\d\d\d\d"; v

dash = "([2-9]\d\d)-[2-9]\d\d-\d\d\d\d"; w

regexp = "/(" || paren || ")|(" || dash || ")/"; x

retain re;
re = prxparse(regexp); y

if missing(re) then U

do;
putlog "ERROR: Invalid regexp " regexp; V

stop;
end;

retain areacode_re;
areacode_re = prxparse("/828|336|704|910|919|252/"); W

if missing(areacode_re) then

SAS Language Elements � Pattern Matching Using SAS Regular Expressions (RX) and Perl Regular Expressions (PRX) 53

do;
putlog "ERROR: Invalid area code regexp";
stop;

end;
end;

length first last home business $ 16;
length areacode $ 3;
input first last home business;

if ^prxmatch(re, home) then
putlog "NOTE: Invalid home phone number for " first last home;

if prxmatch(re, business) then X

do;
which_format = prxparen(re); at

call prxposn(re, which_format, pos, len); ak

areacode = substr(business, pos, len);
if prxmatch(areacode_re, areacode) then al

put "In North Carolina: " first last business;
end;
else

putlog "NOTE: Invalid business phone number for " first last business;
datalines;

Jerome Johnson (919)319-1677 (919)846-2198
Romeo Montague 800-899-2164 360-973-6201
Imani Rashid (508)852-2146 (508)366-9821
Palinor Kent 704-782-4673 704-782-3199
Ruby Archuleta 905-384-2839 905-328-3892
Takei Ito 704-298-2145 704-298-4738
Tom Joad 515-372-4829 515-389-2838
;

The following items correspond to the numbered lines in the DATA step that is
shown above.

u Create a DATA step.
v Build a Perl regular expression to identify a phone number that matches

(XXX)XXX-XXXX, and assign the variable PAREN to hold the result. Use the
following syntax elements to build the Perl regular expression:

\(matches the open parenthesis in the area code. The open
parenthesis marks the start of the submatch.

[2–9] matches the digits 2–9. This is the first number in the area
code.

\d matches a digit. This is the second number in the area code.

\d matches a digit. This is the third number in the area code.

\) matches the closed parenthesis in the area code. The closed
parenthesis marks the end of the submatch.

? matches the space (which is the preceding subexpression) zero
or one time. Spaces are significant in Perl regular expressions.
They match a space in the text that you are searching. If a

54 Pattern Matching Using SAS Regular Expressions (RX) and Perl Regular Expressions (PRX) � Chapter 4

space precedes the question mark metacharacter (as it does in
this case), the pattern matches either zero spaces or one space
in this position in the phone number.

w Build a Perl regular expression to identify a phone number that matches
XXX-XXX-XXXX, and assign the variable DASH to hold the result.

x Build a Perl regular expression that concatenates the regular expressions for
(XXX)XXX-XXXX and XXX—XXX—XXXX. The concatenation enables you to
search for both phone number formats from one regular expression.

The PAREN and DASH regular expressions are placed within parentheses. The
bar metacharacter (|) that is located between PAREN and DASH instructs the
compiler to match either pattern. The slashes around the entire pattern tell the
compiler where the start and end of the regular expression is located.

y Pass the Perl regular expression to PRXPARSE and compile the expression.
PRXPARSE returns a value to the compiled pattern. Using the value with other
Perl regular expression functions and CALL routines enables SAS to perform
operations with the compiled Perl regular expression.

U Use the MISSING function to check whether the Perl regular expression compiled
without error.

V Use the PUTLOG statement to write an error message to the SAS log if the
regular expression did not compile.

W Compile a Perl regular expression that searches a string for a valid North
Carolina area code.

X Search for a valid business phone number.
at Use the PRXPAREN function to determine which submatch to use. PRXPAREN

returns the last submatch that was matched. If an area code matches the form
(XXX), PRXPAREN returns the value 2. If an area code matches the form XXX,
PRXPAREN returns the value 4.

ak Call the PRXPOSN routine to retrieve the position and length of the submatch.
al Use the PRXMATCH function to determine whether the area code is a valid North

Carolina area code, and write the observation to the log.

The following lines are written to the SAS log:

In North Carolina: Jerome Johnson (919)846-2198
In North Carolina: Palinor Kent 704-782-3199
In North Carolina: Takei Ito 704-298-4738

Writing Perl Debug Output to the SAS Log
The DATA step provides debugging support with the CALL PRXDEBUG routine.

CALL PRXDEBUG enables you to turn on and off Perl debug output messages that are
sent to the SAS log.

The following example writes Perl debug output to the SAS log.

data _null_;

/* CALL PRXDEBUG(1) turns on Perl debug output. */
call prxdebug(1);
putlog ’PRXPARSE: ’;
re = prxparse(’/[bc]d(ef*g)+h[ij]k$/’);
putlog ’PRXMATCH: ’;
pos = prxmatch(re, ’abcdefg_gh_’);

SAS Language Elements � Definition of ARM Macros 55

/* CALL PRXDEBUG(0) turns off Perl debug output. */
call prxdebug(0);

run;

SAS writes the following output to the log.

Output 4.3 SAS Debugging Output

PRXPARSE:
Compiling REx ‘[bc]d(ef*g)+h[ij]k$’
size 41 first at 1
rarest char g at 0
rarest char d at 0

1: ANYOF[bc](10)
10: EXACT <d>(12)
12: CURLYX[0] {1,32767}(26)
14: OPEN1(16)
16: EXACT <e>(18)
18: STAR(21)
19: EXACT <f>(0)
21: EXACT <g>(23)
23: CLOSE1(25)
25: WHILEM[1/1](0)
26: NOTHING(27)
27: EXACT <h>(29)
29: ANYOF[ij](38)
38: EXACT <k>(40)
40: EOL(41)
41: END(0)

anchored ‘de’ at 1 floating ‘gh’ at 3..2147483647 (checking floating) stclass
‘ANYOF[bc]’ minlen 7

PRXMATCH:
Guessing start of match, REx ‘[bc]d(ef*g)+h[ij]k$’ against ‘abcdefg_gh_’...
Did not find floating substr ‘gh’...
Match rejected by optimizer

For a detailed explanation of Perl debug output, see the “CALL PRXDEBUG
Routine” in SAS Language Reference: Dictionary.

Base SAS Functions for Web Applications
Four functions that manipulate Web-related content are available in Base SAS

software. HTMLENCODE and URLENCODE return encoded strings. HTMLDECODE
and URLDECODE return decoded strings. For information about Web-based SAS tools,
follow the Communities link on the SAS customer support home page, at
support.sas.com.

ARM Macros

Definition of ARM Macros
The ARM macros provide a way to measure the performance of applications as they

are executing. The macros write transaction records to the ARM log. The ARM log is an
external output text file that contains the logged ARM transaction records. You insert

56 Using ARM Macros � Chapter 4

the ARM macros into your SAS program at strategic points in order to generate calls to
the ARM API function calls. The ARM API function calls typically log the time of the
call and other related data to the log file. Measuring the time between these ARM API
function calls yields an approximate response-time measurement.

An ARM macro is self-contained and does not affect any code surrounding it,
provided that the variable name passed as an option to the ARM macro is unique. The
ARM macros are used in open code (code that is not in PROC or DATA steps) and in
DATA step or SCL environments.

There are two categories of ARM macros:

� ARM macros to instrument applications

� ARM post-processing macros to use with the ARM log.

Note: The ARM macros are not part of SAS Macro Facility. They are part of the
SAS ARM interface. See Chapter 15, “Monitoring Performance Using Application
Response Measurement (ARM),” on page 225 for information about the SAS ARM
interface that consists of the implementation of the ARM API as an ARM agent, ARM
macros, and ARM system options. �

Using ARM Macros

Overview of ARM Macros
The ARM macros invoke the ARM API function calls. The ARM macros

automatically manage the returned IDs from the ARM API function calls.
The ARM API function calls are implemented in SAS software with SAS ARM

macros and these function calls provide a way to measure the performance of SAS
applications as they are running. For each ARM API function call, there is a
corresponding macro. The following table shows the relationship among the SAS ARM
macros and the ARM API function calls:

Table 4.4 Relationship among SAS ARM Macros and ARM API Function Calls

SAS ARM Macro ARM API Function Call

%ARMINIT ARM_INIT

%ARMGTID ARM_GETID

%ARMSTRT ARM_START

%ARMUPDT ARM_UPDATE

%ARMSTOP ARM_STOP

%ARMEND ARM_END

The SAS ARM macro invokes the ARM API function call.
The following ARM macros are available:

%ARMINIT
Macro

generates a call to the ARM_INIT function call, which names the
application and optionally the users of the application and initializes
the ARM environment for the application. Typically, you would
insert this macro in your code once.

%ARMGTID
Macro

generates a call to the ARM_GETID function call, which names a
transaction. Use %ARMGTID for each unique transaction in order

SAS Language Elements � Using ARM Macros 57

to describe the type of transactions to be logged. A %ARMGTID is
typically coded for each transaction class in an application.

%ARMSTRT
Macro

generates a call to the ARM_START function call, which signals the
start of a transaction instance. Insert %ARMSTRT before each
transaction that you want to log. Whereas %ARMGTID defines a
transaction class, %ARMSTRT indicates that a transaction is
executing.

%ARMUPDT
Macro

is an optional macro that generates a call to the ARM_UPDATE
function call, which provides additional information about the
progress of a transaction. Insert %ARMUPDT between %ARMSTRT
and %ARMSTOP in order to supply information about the
transaction that is in progress.

%ARMSTOP
Macro

generates a call to the ARM_STOP function call, which signals the
end of a transaction instance. Insert %ARMSTOP where the
transaction is known to be complete.

%ARMEND
Macro

generates a call to the ARM_END function call, which terminates
the ARM environment and signals that the application will not
make any more ARM calls.

The ARM macros permit conditional execution by setting the appropriate macro
options and variables.

Some general points about the ARM macros follow:
� A general recommendation with all ARM macros is to avoid, in the program, the

use of either macro variables or SAS variables beginning with the letters “_ARM.”
� All macro options are keyword parameters. There are no positional parameters.

Values for the macro options should be valid SAS values—that is, a SAS variable,
quoted character string, numeric constant, and so on.

� ARM macros can function either inside a DATA step or in open code. Use the
_ARMACRO global variable or the MACONLY=YES|NO macro option to tell the
macro execution which mode is being used. For more information, see “Setting the
Macro Environment” on page 67.

Using Variables with ARM Macros
The ARM macros use variables to pass IDs and other information from one macro to

another. Because the ARM macros function within the same DATA step, across DATA
steps, and in open code, variables that are used by the macros can take the form of
DATA step variables or macro variables as determined by the macro environment.

SAS DATA step variables are used to pass ID information between two or more ARM
macros in the same DATA step. In the DATA step environment, but not in the SCL
environment, DROP statements are generated for these variables so that they are not
inadvertently included in any output data sets.

If ID information must be passed between two or more ARM macros across separate
DATA steps, then macro global variables are used.

The following SAS DATA step variables and macro variables are considered global:

Table 4.5 Global ARM Macro Variables

Variable Description Set By Used as Input by

_ARMAPID application ID %ARMINIT %ARMEND

_ARMTXID transaction class ID %ARMGTID %ARMSTRT

58 Using ARM Macros � Chapter 4

Variable Description Set By Used as Input by

_ARMSHDL start handle %ARMSTRT %ARMUPDT,
%ARMSTOP

_ARMRC error status %ARMUPDT

%ARMSTOP

%ARMEND

none

_ARMGLVL global level indicator calling program all

_ARMTLVL target level indicator calling program all

_ARMEXEC global enablement calling program all

_ARMACRO open code enablement calling program all

_ARMSCL SCL code enablement calling program all

ARM API Objects
The following three classes of objects are specified in the ARM API:
� applications represent the systems that you are creating, such as an inventory or

order entry application. Because the SAS interface to the ARM API provides totals
on a per application basis, you might want to consider this when you define the
scope of your application.

� transaction classesspecify a unit of work. You should create a transaction class for
each major type of work that you want to create within an application. In concept,
the transaction class is a template for the started transaction.

� transaction instances specify the actual start time for a unit of work. Transaction
instances have response time information that is associated with them.

The ARM API uses numeric identifiers or IDs to uniquely identify the ARM objects
that are input and output from the ARM macro. The three different classes of IDs that
correspond to the three ARM classes are

� application IDs
� transaction class IDs
� start handles (start time) for transaction instances.

ID Management Using ARM Macros
These examples demonstrate how the ARM macros work. The ARM macros

automatically manage application IDs, transaction IDs, and start handles. The default
ID management works best in simple ARM call schemes. See “Complex ARM Macro
Call Schemes” on page 61 for more information. By default, the ARM macros use IDs
that were generated from the most recent macro call. The following example
demonstrates how to use all of the ARM macros:

/*global macro variable to indicate ARM macros are outside the data step*/
%let _armacro=1;

/* start of the application */
%arminit(appname=’Sales App’, appuser=’userxyz’);

/* define the transaction classes */
%armgtid(txnname=’Sales Order’, txndet=’Sales Order Transaction’);

SAS Language Elements � Using ARM Macros 59

/* more arm_getid calls go here for different transaction classes */

/* start of a transaction */
%armstrt;

data _null_;
/* place the actual transaction code here */
/* update the status of the transaction as it is running */

%armupdt(data=’Sales transaction still running...’,maconly=no);
run;

/* place the actual transaction stop here */
/* the transaction has stopped */

%armstop(status=0);

/* end of the application */
%armend;

All ID management is performed by the macros without requiring the calling
program to track IDs. Each macro in the previous example uses the most recently
generated ID values from previous macros. The following example is identical, but the
comments explain the passing of IDs in more detail:

%let _armacro=1;

/*
* This %arminit macro will generate both a SAS
* variable and global macro variable by the name
* of _armapid and set it in the ID that is returned
* from the arm_init() function call that is
* wrapped by the macro.
*/

%arminit(appname=’Sales App’, appuser=’userxyz’);

/*
* This %armgtid macro uses the _armapid SAS variable
* as input to the arm_getid() function call that it wraps.
* It also generates both a SAS variable and global macro
* variable by the name of _armtxid and sets them to the
* ID that is returned from the arm_getid function call that
* it wraps.
*/

%armgtid(txnname=’Sales Order’, txndet=’Sales Order Transaction’);

/*
* Because we are still in the same DATA step, the %armstrt
* macro below will use the _armtxid SAS variable that is
* generated from the previous %armgtid macro as input
* to the arm_start() function call that it wraps. It
* also generates an _armshdl variable.
*/

%armstrt;

/*

60 Using ARM Macros � Chapter 4

* The %armupdt call below uses the _armshdl SAS variable
* that is generated from the previous %armstrt macro.
*/

%armupdt(data=’Sales transaction still running...’);

/*
* The armstop call also uses the same _armshdl SAS
* variable from the %armstrt.
*/

%armstop(status=0);

/*
* The %armend call uses the _armapid SAS variable
* generated by the %arminit macro earlier to end
* the application.
*/

%armend;

run;

You can code the ARM macros across different DATA steps as follows and achieve the
same results:

data _null_;
/* note the end of the application */

%arminit(appname=’Sales App’, appuser=’’userxyz’);
run;

data _null_;
%armgtid(txnname=’Sales Order’, txndet=’Sales Order Transaction’);
/* more arm_getid function calls go here for different transaction classes */

run;

data _null_;
/* note the start of the transaction */

%armstrt;

/* place the actual transaction here */
run;

data _null_;
/* update the status of the transaction as it is running */

%armupdt(data=’Sales transaction still running...’);
run;

data _null_;
/* place the actual transaction stop here */

/* note that the transaction has stopped */
%armstop(status=0);

run;

data _null_;
/* note the end of the application */

%armend;

SAS Language Elements � Using ARM Macros 61

run;

The end result is the same as in the first example, except that the macros are using
the generated macro variables rather than the SAS variables for passing IDs.

Complex ARM Macro Call Schemes
Allowing the macros to automatically use the global variables in basic scenarios

simplifies coding. However, macros that use global variables can lead to misleading
results in more complicated scenarios when you attempt to monitor concurrent
applications or transactions as follows:

data _null_;
%arminit(appname=’App 1’,getid=yes,txnname=’txn 1’);

run;

/* start transaction instance 1*/
data _null_;
%armstrt;

run;

/* start transaction instance 2 */
data _null_;
%armstrt;

run;

/* WRONG! This assumes that the %armupdt is updating
* the first transaction. However, it is actually updating the
* second transaction instance because _armshdl contains the value
* from the last macro call that was executed, which is the second
* transaction.
*/

data _null_;
%armupdt(data=’txn instance 1 still running...’);

run;

To save the IDs use the *var options (APPIDVAR=, TXNIDVAR=, and SHDLVAR=) to
pass or return the IDs in your own named variables. Here is an example that uses the
SHDLVAR= option to save the start handles:

data _null_;
%arminit(appname=’xyz’,getid=YES,txname=’txn 1’);

run;

/* start transaction instance 1 and save the ID using shdlvar= */
data _null_;
%armstrt(shdlvar=savhdl1);

run;

/* start transaction instance 2 and save the ID using shdlvar= */
data _null_;
/*armstrt(shdlvar=savhd12);

run;

/* Now use the shandle= parameter after retrieving the first id. */
data _null_;
%armupdt(data=’updating txn 1’, shdlvar=savhdl1);

62 Using ARM Macros � Chapter 4

run;

/* Use the same technique to stop the transactions */
/* in the order they were started. */

data _null_;
%armstop(shdlvar=savhdl1);
%armstop(shdlvar=savhdl2);
%armend();

run;

As the previous example shows, using the *var option simplifies the code. The
previous technique is recommended for use on all ARM macro calls.

The following example demonstrates how to use all of the *var options to
automatically manage IDs for concurrent applications, transaction classes, transaction
instances, and correlated transaction instances:

data _null_;
%arminit(appname=’Appl 1’, appuser=’userid’, appidvar=app1);
%arminit(appname=’Appl 2’, appuser=’userid’, appidvar=app2);
%arminit(appname=’Appl 3’, appuser=’userid’, appidvar=app3);

run;

data _null_;
%armgtid(txnname=’Txn 1A’, txndet=’Txn Class 1A’,

appidvar=appl,txnidvar=txnidvar=txn1a);
%armgtid(txnname=’Txn 1B’, txndet=’Txn Class 1B’,

appidvar=appl,txnidvar=txnidvar=txn1b);
%armgtid(txnname=’Txn 2A’, txndet=’Txn Class 2A’,

appidvar=app2,txnidvar=txnidvar=txn2a);
%armgtid(txnname=’Txn 2B’, txndet=’Txn Class 2B’,

appidvar=app2,txnidvar=txnidvar=txn2b);
%armgtid(txnname=’Txn 3A’, txndet=’Txn Class 3A’,

appidvar=app3,txnidvar=txnidvar=txn3a);
%armgtid(txnname=’Txn 3B’, txndet=’Txn Class 3B’,

appidvar=app3,txnidvar=txnidvar=txn3b);
run;

data _null_;
%armstrt(txnidvar=txn1a,shdlvar=sh1a);
%armstrt(txnidvar=txn1b,shdlvar=sh1b);
%armstrt(txnidvar=txn2a,shdlvar=sh2a);
%armstrt(txnidvar=txn2b,shdlvar=sh2b);
%armstrt(txnidvar=txn3a,shdlvar=sh3a);
%armstrt(txnidvar=txn3b,shdlvar=sh3b);

run;

data _null_;
%armupdt(data=’Updating txn instance 1a...’, shdlvar=sh1a);
%armupdt(data=’Updating txn instance 1b...’, shdlvar=sh1b);
%armupdt(data=’Updating txn instance 2a...’, shdlvar=sh2a);
%armupdt(data=’Updating txn instance 2b...’, shdlvar=sh2b);
%armupdt(data=’Updating txn instance 3a...’, shdlvar=sh3a);
%armupdt(data=’Updating txn instance 3b...’, shdlvar=sh3b);

run;

SAS Language Elements � Defining User Metrics in ARM Macros 63

data _null_;
%armstop(status=0, shdlvar=sh1a); %armstop(status=1, shdlvar=sh1b);
%armstop(status=0, shdlvar=sh2a); %armstop(status=1, shdlvar=sh2b);
%armstop(status=0, shdlvar=sh3a); %armstop(status=1, shdlvar=sh3b);

run;

data _null_;
%armend(appidvar=app1);
%armend(appidvar=app2);
%armend(appidvar=app3); run;

As the previous example demonstrates, you can establish your own naming
conventions to uniquely identify applications, transaction classes, and transaction
instances across different DATA steps, in open code, or in SCL programs.

The macros support explicit passing of the IDs using the APPID=, TXNID=, and
SHANDLE= options. These options are similar to the *var options, except that they do
not retrieve values across DATA steps using macro variables. The primary use of the
options is to supply numeric constants as ID values to the macros, because the *var
options do not accept numeric constants.

Note: The use of APPID=, TXNID=, and SHANDLE= is not recommended for new
applications. These options are maintained for compatibility with earlier ARM macro
releases only. Use APPIDVAR=, TXNIDVAR=, and SHDLVAR= instead of APPID=,
TXNID=, and SHANDLE=, respectively. �

Because IDs are generated by the ARM agent, to pass a numeric literal requires that
you start a new SAS session. If any SAS subsystems are also functioning, you will not
know what the ID will be at execution time.

The use of APPIDVAR=, TXNIDVAR=, and SHDLVAR= options is recommended
when coding new applications.

Defining User Metrics in ARM Macros
A metric is a counter, gauge, numeric ID, or string that you define. You specify one or

more metrics for each ARM transaction class. When a start handle (instance of the
transaction class) is started, updated, or stopped, the application indicates a value for
the metric and writes it to the ARM log by the ARM agent.

The user metric name and user metric definition must be specified together in the
%ARMGTID. METRNAM1–7= names the user metric and must be a SAS character
variable or quoted literal value up to eight characters in length. METRDEF1–7=
defines the output of the user-defined metric. The value of METRDEF1–6= must be one
of the following:

COUNT32,
COUNT64,
COUNTDIV

use the counter to sum up the values over an interval. A counter
can also calculate average values, maximums, and minimums per
transaction, and other statistical calculations.

GAUGE32,
GAUGE64,
GAUGEDIV

use the gauge when a sum of values is not needed. A gauge can
calculate average values, maximums, and minimums per
transaction, and other statistical calculations.

ID32, ID64 use the numeric ID simply as an identifier but not as a
measurement value, such as an error code or an employee ID. No
calculations can be performed on the numeric ID.

SHORTSTR,
LONGSTR

use the string ID as an identifier. No calculations can be performed
on the string ID.

64 Defining Correlators in ARM Macros � Chapter 4

Restriction: METRDEF7= can only equal LONGSTR and can be
a long string of 32 bytes. METRDEF1–6 cannot equal LONGSTR.

Note: 32 and 64 signify the number of bits in the counter, gauge, divisor, or ID. �

The METRVAL1–7= sends the value of the user-defined metric to the ARM agent for
logging when used in the %ARMSTRT, %ARMUPDT, and %ARMSTOP. The value of the
user-defined metric must conform to the corresponding user metrics defined in the
%ARMGTID. The following example shows the user metrics:

%let _armacro=1;

%arminit(appname=’Sales App’, appuser=’userxyz’);

/* name and define the user defined metrics */
%armgtid(txnname=’Sales Order’, txndet=’Sales Order Transaction’,

metrnam1=aname, metrdef1=count32);
/* aname is the NAME of the metric and can be anything up to 8 characters */

/* start of user defined metric */
/* initial value of the metric */

%armstrt(metrval1=0);

data myfile;
.
. /*some SAS statements*/
.
end=EOF;
run;

/* value of the metric is the automatic observation */
%armupdt(data=’Sales transaction still running...’,maconly=no,

metrval1=_N_);

data myfile;
.
. /*more SAS statements*/
.
if EOF then

/* value of the metric is at the highest observation count */
%armstop(status=0, metrval1=_N_,maconly=no);
run;

%armend;

Defining Correlators in ARM Macros
A primary or parent transaction can contain several component or child transactions

nested within them. Child transactions can also contain other child transactions. It can
be very useful to know how much each child transaction contributes to the total
response time of the parent transaction. If a failure occurs within a parent transaction,
knowing which child transaction contains the failure is also useful information.
Correlators are used to track these parent and child transactions.

The use of correlators requires that multiple transaction start handles be active
simultaneously. This requires the use of the CORR= and SHDLVAR= options in the

SAS Language Elements � Enabling ARM Macro Execution 65

%ARMSTRT macro. You define each parent and child transaction in the %ARMSTRT
macro using the SHDLVAR= option. For each child transaction, you must also define
the parent transaction using the PARNTVAR= option.

Each child transaction is started after the parent transaction starts. Parent or child
transactions can be of the same or different transaction classes. You define the
transaction classes in the %ARMGTID macro using the TXNIDVAR= option.

Both parent and child transactions can have updates specified in the %ARMUPDT
macro. User metrics can be specified for both transaction types in the %ARMSTRT
macro if the user metrics were defined in the corresponding transaction class in the
%ARMGTID macro.

All child transactions must stop in the %ARMSTOP macro before the parent
transaction stops. The sibling (multiple child) transactions can be stopped in any order.

For example, the parent transaction 100 consists of child transactions 110, 120, and
130, each performing a different part of the unit of work represented by the parent
transaction 100. The child transaction 120 contains child transactions 121 and 122.
Transaction 200 has no child transactions. Here is a code fragment used to create these
relationships:

%arminit(appname=’Application",appidvar=appid);
%armgtid(appidvar=appid,txnname=’TranCls’,txndet=’Transaction Class Def’,

txnidvar=txnid);
%armstrt(txnidvar=txnid,corr=1,shdlvar=HDL100);
%armstrt(txnidvar=txnid,corr=0,shdlvar=HDL200<,...user metrics>);
%armstrt(txnidvar=txnid,corr=2,shldvar=HDL110,parntvar=HDL100);
%armstrt(txnidvar=txnid,corr=3,shldvar=HDL120,parntvar=HDL100);
%armstrt(txnidvar=txnid,corr=2,shldvar=HDL130,parntvar=HDL100);
%armstrt(txnidvar=txnid,corr=2,shldvar=HDL121,parntvar=HDL120);
%armstrt(txnidvar=txnid,corr=2,shldvar=HDL122,parntvar=HDL120);
...
%armstop(shdlvar=HDL200);
%armstop(shdlvar=HDL121);
%armstop(shdlvar=HDL122);
%armstop(shdlvar=HDL120);
%armstop(shdlvar=HDL130);
%armstop(shdlvar=HDL110);
%armstop(shdlvar=HDL100);

Enabling ARM Macro Execution

Setting the _ARMEXEC Macro Variable
All ARM macros are disabled by default so that insertion of ARM macros within

created code will not result in inadvertent, unwanted logging. To globally activate
execution of the ARM macros, you must set the _ARMEXEC global macro variable to a
value of 1. Any other value for _ARMEXEC disables the ARM macros.

There are two methods of setting the _ARMEXEC macro variable. The first method
sets the variable during DATA step or SCL program compilation using %LET:

%let _armexec = 1;

If the _ARMEXEC value is not set to 1, then no code is generated and a message is
written in the log:

NOTE: ARMSTRT macro bypassed by _armexec.

66 Enabling ARM Macro Execution � Chapter 4

The second method of setting _ARMEXEC variables is to use SYMPUT during
execution. To set the _ARMEXEC variable during DATA step or SCL program execution:

call symput(’_armexec’, ’1’);

With this technique, the macro checks the _ARMEXEC variable during program
execution and the ARM function call is executed or bypassed as appropriate.

Enabling ARM Macro Execution with SCL

There are two methods of setting the _ARMEXEC macro variable—during
compilation or execution. Both methods are explained in “Setting the _ARMEXEC
Macro Variable” on page 65, or you can use a combination of these methods. For
example, set _ARMEXEC to 1 using the compilation technique (perhaps in an autoexec
at SAS initialization), and then code a drop-down menu option or other means within
the application to turn _ARMEXEC on and off dynamically using CALL SYMPUT.

In SCL, if _ARMEXEC is not 1, when the program compiles, all macros will be set to
null and the ARM interface will be unavailable until it is recompiled with _ARMEXEC
set to 1.

Additionally, to enable proper compilation of the ARM macros within SCL, you must
set the _ARMSCL global macro variable to 1 prior to issuing any ARM macros. This
variable suppresses the generation of DROP statements, which are invalid in SCL.

Conditional ARM Macro Execution

It is useful to code the ARM macros in your program but to execute them only when
needed. All ARM macros support a LEVEL= option that specifies the execution level of
that particular macro.

If it is coded, then the execution level of the macro is compared to two global macro
variables, _ARMGLVL and _ARMTLVL. _ARMGLVL is the global level macro variable.
If the LEVEL= value on the ARM macro is less than or equal to the _ARMGLVL value,
then the macro is executed. If the LEVEL= value on the ARM macro is greater than
the _ARMGLVL value, then macro execution is bypassed:

/* Set the global level to 10 */
%let _armglvl = 10;

data _null_;
%arminit(appname=’Appl 1’, appuser=’userid’);
%armgtid(txnname=’Txn 1’, txndet=’Transaction #1 detail’);

/* These macros are executed */
%armstrt(level=9);
%armstop(level=9);

/* These macros are executed */
%armstrt(level=10);
%armstop(level=10);

/* These macros are NOT executed */
%armstrt(level=11);
%armstop(level=11);

%armend
run;

SAS Language Elements � Setting the Macro Environment 67

_ARMTLVL is the target level macro variable and works similarly to the ARMGLVL,
except the LEVEL= value on the ARM macro must be exactly equal to the _ARMTLVL
value for the macro to execute:

/* Set the target level to 10 */
%let _armtlvl = 10;

data _null_;
%arminit(appname=’Appl 1’, appuser=’userid’);
%armgtid(txnname=’Txn 1’, txndet=’Transaction #1 detail’);

/* These macros are NOT executed */
%armstrt(level=9);
%armstop(level=9);

/* These macros are executed */
%armstrt(level=10);
%armstop(level=10);

/* These macros are NOT executed */
%armstrt(level=11);
%armstop(level=11);

%armend
run;

The LEVEL= option can be placed on any ARM macro and this is highly
recommended. It allows you to design more granular levels of logging that can serve as
an effective filtering device by logging only as much data as you want. If you set both
_ARMGLVL and _ARMTLVL at the same time, then both values are compared to
determine whether the macro should be executed or not.

Setting the Macro Environment

You set the global ARM macro environment by using the _ARMACRO variable with
the value of 1 or 0. The value of 1 specifies that all ARM macros occur in open code and
the value of 0 specifies that the ARM macros occur only in DATA steps. You use the
MACONLY= option if an individual ARM macro is not placed outside of the global
environment that is defined by the _ARMACRO setting. For SCL programs, you specify
_ARMSCL with a value of 1.

The following table shows the global value, the temporary option needed, and the
results.

Table 4.6 Using _ARMACRO and _ARMSCL to Set the ARM Macro Environment

Global Value Temporary Option Result

%let _ARMACRO=0; MACONLY=NO macro is in DATA step

%let _ARMACRO=1; MACONLY=YES macro is in open code

%let _ARMSCL=1; none macro is in SCL

%let _ARMSCL=0; none macro is not in SCL

68 Using ARM Post-Processing Macros � Chapter 4

The following example shows how to set the macro environment in a DATA step:

/* set global environment */
%let _armacro = 1;

data _null_;
%arminit(appname=’Appl 1’, appuser=’user1’,

appidvar=appl, maconly=no);
/* exception to global value */

run;

/* using global setting */
/* maconly= parameter not needed */

%armgtid(txnname=’Txn 1A’, txndet=’Txn Class 1A’,
appidvar=appl, txnidvar=txn1a);

The following example shows how to set the macro environment in SCL using
autoexec:

/* set global environment */
%let _armscl = 1;
%let _armexec = 1;

The following example shows how to set the macro environment in SCL:

init:
%arminit(appname=’Appl 1’, appuser=’user1’,

appidvar=appl);
%armgtid(txnname=’Txn 1A’, txndet=’Txn Class 1A’,

appidvar=appl, txnidvar=txn1a);
return;
main:

%armstrt(txnidvar=txn1a,shdlvar=strt1);
return;
term:

%armstop(shdlvar=strt1);
%armend(appidvar=app1);

return;

Using ARM Post-Processing Macros
Post-processing ARM macros are also available. These ARM macros are specific to

the SAS ARM implementation; they are not part of the ARM API standard.
After logging performance data to the ARM log, you can then use the ARM macros to

read the log and create SAS data sets for reporting and analysis. The default name of
the file is ARMLOG.LOG. To specify a different output file, use the ARMLOC= system
option. There are three ARM post-processing macros:

%ARMCONV
Macro

converts an ARM log created in SAS 9 or later, which uses a simple
format, into the label=item ARM format used in SAS 8.2.

%ARMPROC
Macro

processes the ARM log and outputs six SAS data sets that contain
the information from the log. It processes ARM logs that include
user metadata definitions on class transactions and user data values
on start handles, update, and stop transactions.

SAS Language Elements � Executable and Declarative DATA Step Statements 69

%ARMJOIN
Macro

processes the six SAS data sets that are created by %ARMPROC
and creates data sets and SQL views that contain common
information about applications and transactions.

For SAS 9 or later, the simple format of the ARM log records is comma delimited, which
consists of columns of data separated by commas. The datetime stamp and the call
identifier always appear in the same column location.

The format used in SAS 8.2. is a label=item format and is easier to read.
Unfortunately, SAS spends a lot of time formatting the string, and this affects
performance. In SAS 9 or later, ARM logs can be compared with SAS 8.2 ARM logs by
using the following methods:

1 You can generate the SAS 9 or later ARM log and process it using the SAS 9 or
later %ARMPROC and %ARMJOIN. The resulting data sets contain the complete
statistics for the end of the start handle and the end of the application.

2 To convert SAS 9 or later ARM log format to the SAS 8.2 format you use the SAS
ARM macro %ARMCONV.

Statements

Definition of Statements
A SAS statement is a series of items that may include keywords, SAS names, special

characters, and operators. All SAS statements end with a semicolon. A SAS statement
either requests SAS to perform an operation or gives information to the system.

This section covers two kinds of SAS statements:
� those that are used in DATA step programming
� those that are global in scope and can be used anywhere in a SAS program.

Base SAS Procedures Guide gives detailed descriptions of the SAS statements that
are specific to each SAS procedure. SAS Output Delivery System: User’s Guide gives
detailed descriptions of the Output Delivery System (ODS) statements.

Executable and Declarative DATA Step Statements
DATA step statements are executable or declarative statements that can appear in

the DATA step. Executable statements result in some action during individual iterations
of the DATA step; declarative statements supply information to SAS and take effect
when the system compiles program statements.

The following tables show the SAS executable and declarative statements that you
can use in the DATA step.

Table 4.7 Executable Statements in the DATA Step

Executable Statements

ABORT IF, Subsetting PUT

assignment IF-THEN/ELSE PUT, Column

CALL INFILE PUT, Formatted

CONTINUE INPUT PUT, List

70 Global Statements � Chapter 4

Executable Statements

DECLARE INPUT, Column PUT, Named

DELETE INPUT, Formatted PUT, _ODS_

DESCRIBE INPUT, List PUTLOG

DISPLAY INPUT, Named REDIRECT

DO LEAVE REMOVE

DO, Iterative LINK REPLACE

DO Until LIST RETURN

DO While LOSTCARD SELECT

ERROR MERGE SET

EXECUTE MODIFY STOP

FILE _NEW_ Sum

FILE, ODS Null UPDATE

GO TO OUTPUT

Table 4.8 Declarative Statements in the DATA Step

Declarative Statements

ARRAY DATALINES LABEL

Array Reference DATALINES4 Labels, Statement

ATTRIB DROP LENGTH

BY END RENAME

CARDS FORMAT RETAIN

CARDS4 INFORMAT WHERE

DATA KEEP WINDOW

Global Statements
Global statements generally provide information to SAS, request information or data,

move between different modes of execution, or set values for system options. Other
global statements (ODS statements) deliver output in a variety of formats, such as in
Hypertext Markup Language (HTML). You can use global statements anywhere in a
SAS program. Global statements are not executable; they take effect as soon as SAS
compiles program statements.

Other SAS software products have additional global statements that are used with
those products. For information, see the SAS documentation for those products.

SAS Language Elements � Using SAS System Options 71

SAS System Options

Definition of SAS System Options
System options are instructions that affect your SAS session. They control the way

that SAS performs operations such as SAS System initialization, hardware and
software interfacing, and the input, processing, and output of jobs and SAS files.

Syntax of SAS System Options
The syntax for specifying system options in an OPTIONS statement is

OPTIONS option(s);

Here is an explanation of the syntax:

option
specifies one or more SAS system options that you want to change.

The following example shows how to use the system options NODATE and
LINESIZE= in an OPTIONS statement:

options nodate linesize=72;

Operating Environment Information: On the command line or in a configuration file,
the syntax is specific to your operating environment. For details, see the SAS
documentation for your operating environment. �

Using SAS System Options

Default Settings

Operating Environment Information: SAS system options are initialized with default
settings when SAS is invoked. However, the default settings for some SAS system
options vary both by operating environment and by site. For details, see the SAS
documentation for your operating environment. �

Determining Which Settings Are in Effect
To determine which settings are in effect for SAS system options, use one of the

following:

OPLIST system option
writes to the SAS log the settings that were specified on the SAS invocation
command line. (See the SAS documentation for your operating environment for
more information.)

VERBOSE
writes to the SAS log the system options that were specified in the configuration
file and on the SAS invocation command line.

SAS System Options window
lists all system option settings.

72 Using SAS System Options � Chapter 4

OPTIONS procedure
writes system option settings to the SAS log. To display the settings of system
options with a specific functionality, such as error handling, use the GROUP=
option:

proc options GROUP=errorhandling;
run;

(See Base SAS Procedures Guide for more information.)

GETOPTION function
returns the value of a specified system option.

VOPTION DICTIONARY table
lists in the SASHELP library, all current system option settings. You can view this
table with SAS Explorer, or you can extract information from the VOPTION table
using PROC SQL.

dictionary.options SQL table
accessed with the SQL procedure, lists the system options that are in effect.

Determining Which SAS System Options Are Restricted
To determine which system options are restricted by your system administrator, use

the RESTRICT option of the OPTIONS procedure. The RESTRICT option display the
option’s value, scope, and how it was set. In the following example, the SAS log shows
that only one option, CMPOPT, is restricted:

proc options restrict;
run;

Output 4.4 Restricted Option Information

1 proc options restrict;
2 run;

SAS (r) Proprietary Software Release 9.1 TS1B0

Option Value Information For SAS Option CMPOPT
Option Value: (NOEXTRAMATH NOMISSCHECK NOPRECISE NOGUARDCHECK)
Option Scope: SAS Session
How option value set: Site Administrator Restricted

The OPTIONS procedure will display this information for all options that are
restricted. If your site administrator has not restricted any options, then the following
message will appear in the SAS log:

Your site administrator has not restricted any options.

Determining How a SAS System Option Value Was Set
To determine how a system option value was set, use the OPTIONS procedure with

the VALUE option specified in the OPTIONS statement. The VALUE option displays
the specified option’s value and scope. For example, the following statements write a
message to the SAS log that tells you how the option value for the system option
CENTER was set:

proc options option=center value;
run;

SAS Language Elements � Using SAS System Options 73

The following partial SAS log shows that the option value for CENTER is the default
that was shipped with the product..

Output 4.5 Option Value Information for the System Option CENTER

2 proc options option=center value;
3 run;

Option Value Information for SAS Option CENTER
Option Value: CENTER
Option Scope: NoReb
How option value set: Shipped Default

Obtaining Descriptive Information about a System Option
You can quickly obtain basic descriptive information about a system option by

specifying the DEFINE option in the PROC OPTIONS statement.
The DEFINE option writes the following descriptive information about a system

option to the SAS log:

� description

� type

� when in the SAS session it can be set

For example, the following statements write a message to the SAS log that contains
descriptive information about the system option CENTER:

proc options option=center define;
run;

This partial SAS log tells you specific information about the system option CENTER.

Output 4.6 Descriptive Information for the System Option CENTER

1 proc options option=center define;
2 run;

CENTER
Option Definition Information for SAS Option CENTER

Group= LISTCONTROL
Group Description: Procedure output and display settings
Description: Center SAS procedure output
Type: The option value is of type BOOLEAN
When Can Set: Startup or anytime during the SAS Session
Restricted: Your Site Administrator can restrict modification of this option
Optsave: Proc Optsave or command Dmoptsave will save this option.

Changing SAS System Option Settings
SAS provides default settings for SAS system options. You can override the default

settings of any unrestricted system option. Depending on the function of the system
option, you can specify a setting in any of the following ways:

� on the command line: You can specify any unrestricted SAS system option setting
either on the SAS command line or in a configuration file. If you use the same
option settings frequently, it is usually more convenient to specify the options in a
configuration file, rather than on the command line. Either method sets your SAS
system options during SAS invocation. Many SAS system option settings can be

74 Using SAS System Options � Chapter 4

specified only during SAS invocation. Descriptions of the individual options
provide details.

� in a configuration file: If you use the same option settings frequently, it is usually
more convenient to specify the options in a configuration file, rather than on the
command line.

� in an OPTIONS statement: You can specify an OPTIONS statement at any time
during a session except within data lines or parmcard lines. Settings remain in
effect throughout the current program or process unless you reset them with
another OPTIONS statement or change them in the SAS System Options window.
You can also place an OPTIONS statement in an autoexec file.

� in a SAS System Options window: If you are in a windowing environment, type
options in the toolbox or on the command line to open the SAS System Options
window. The SAS System Options window lists the names of the SAS system
options groups. You can then expand the groups to see the option names and to
change their current settings. Alternatively, you can use the Find Option command
in the Options pop-up menu to go directly to an option. Changes take effect
immediately and remain in effect throughout the session unless you reset them
with an OPTIONS statement or change them in the SAS System Options window.

Operating Environment Information: On UNIX, Open VMS, and z/OS hosts, SAS
system options can be restricted by a site administrator so that they cannot be changed
by a user. Depending upon your operating environment, system options can be restricted
globally, by group, or by user. You can use the OPTIONS procedure to determine which
options are restricted. For more information about how to restrict options, see the SAS
configuration guide for your operating environment. For more information about the
OPTIONS procedure, see the SAS documentation for your operating environment. �

How Long System Option Settings Are in Effect

When you specify a SAS system option setting, the setting applies to all subsequent
steps for the duration of the SAS session or until you reset, as shown:

data one;
set items;

run;

/* option applies to all subsequent steps */
options obs=5;

/* printing ends with the fifth observation */
proc print data=one;
run;

/* the SET statement stops reading
after the fifth observation */

data two;
set items;

run;

To read more than five observations, you must reset the OBS= system option. For
more information about the “OBS= System Option” , see SAS Language Reference:
Dictionary.

SAS Language Elements � Using SAS System Options 75

Order of Precedence
If a system option appears in more than one place, the order of precedence from

highest to lowest is as follows:
1 OPTIONS statement and SAS System Options window
2 autoexec file (that contains an OPTIONS statement)
3 command-line specification
4 configuration file specification
5 SAS system default settings.

Operating Environment Information: In some operating environments, you can specify
system options in other places. See the SAS documentation for your operating
environment. �

Table 4.9 on page 75 shows the order of precedence that SAS uses for execution mode
options. These options are a subset of the SAS invocation options and are specified on
the command line during SAS invocation.

Table 4.9 Order of Precedence for SAS Execution Mode Options

Execution Mode Option Precedence

OBJECTSERVER Highest

DMR 2nd

INITCMD 3rd

DMS 3rd

DMSEXP 3rd

EXPLORER 3rd

The order of precedence of SAS execution mode options consists of the following rules:
� SAS uses the execution mode option with the highest precedence.
� If you specify more than one execution mode option of equal precedence, SAS uses

only the last option listed.

See the descriptions of the individual options for more details.

Interaction with Data Set Options
Some system options share the same name as a data set option that has the same

function. System options remain in effect for all DATA step and PROC steps in a SAS
session until their settings are changed. The data set option, however, overrides a
system option only for the particular data set in the step in which it appears.

In this example, the OBS= system option in the OPTIONS statement specifies that
only the first 100 observations will be read from any data set within the SAS job. The
OBS= data set option in the SET statement, however, overrides the system option and
specifies that only the first five observations will be read from data set TWO. The PROC
PRINT step uses the system option setting and reads and prints the first 100
observations from data set THREE:

options obs=100;

data one;
set two(obs=5);

run;

76 Comparisons � Chapter 4

proc print data=three;
run;

Comparisons
Note the differences between system options, data set options, and statement options.

system options
remain in effect for all DATA and PROC steps in a SAS job or current process
unless they are respecified.

data set options
apply to the processing of the SAS data set with which they appear. Some data set
options have corresponding system options or LIBNAME statement options. For
an individual data set, you can use the data set option to override the setting of
these other options.

statement options
control the action of the statement in which they appear. Options in global
statements, such as in the LIBNAME statement, can have a broader impact.

77

C H A P T E R

5
SAS Variables

Definition of SAS Variables 78
SAS Variable Attributes 78

Ways to Create Variables 80

Overview 80

Using an Assignment Statement 81

Reading Data with the INPUT Statement in a DATA Step 82
Specifying a New Variable in a FORMAT or an INFORMAT Statement 82

Specifying a New Variable in a LENGTH Statement 82

Specifying a New Variable in an ATTRIB Statement 83

Using the IN= Data Set Option 83

Variable Type Conversions 84

Aligning Variable Values 85
Automatic Variables 85

SAS Variable Lists 86

Definition 86

Numbered Range Lists 86

Name Range Lists 87
Name Prefix Lists 87

Special SAS Name Lists 88

Dropping, Keeping, and Renaming Variables 88

Using Statements or Data Set Options 88

Using the Input or Output Data Set 88
Order of Application 89

Examples of Dropping, Keeping, and Renaming Variables 90

Numeric Precision in SAS Software 90

How SAS Stores Numeric Values 90

Troubleshooting Problems Regarding Floating-Point Representation 91

Overview 91
Floating-Point Representation on IBM Mainframes 91

Floating-Point Representation on OpenVMS 93

Floating-Point Representation Using the IEEE Standard 94

Precision Versus Magnitude 94

Computational Considerations of Fractions 94
Numeric Comparison Considerations 95

Storing Numbers with Less Precision 95

Truncating Numbers and Making Comparisons 97

Determining How Many Bytes Are Needed to Store a Number Accurately 97

Double-Precision Versus Single-Precision Floating-Point Numbers 98
Transferring Data between Operating Systems 98

78 Definition of SAS Variables � Chapter 5

Definition of SAS Variables

variables
are containers that you create within a program to store and use character and
numeric values. Variables have attributes, such as name and type, that enable you
to identify them and that define how they can be used.

character variables
are variables of type character that contain alphabetic characters, numeric digits 0
through 9, and other special characters.

numeric variables
are variables of type numeric that are stored as floating-point numbers, including
dates and times.

numeric precision
refers to the degree of accuracy with which numeric variables are stored in your
operating environment.

SAS Variable Attributes

A SAS variable has the attributes that are listed in the following table:

Table 5.1 Variable Attributes

Variable Attribute Possible Values Default Value

Name Any valid SAS name. See Chapter
3, “Rules for Words and Names in
the SAS Language,” on page 15.

None

Type 1 Numeric and character Numeric

Length 1 2 to 8 bytes 2

1 to 32,767 bytes for character

8 bytes for numeric and
character

Format See “Formats and Informats” on
page 27.

BEST12. for numeric,
$w. for character

Informat See “Formats and Informats” on
page 27.

w.d for numeric, $w.for
character

Label Up to 256 characters None

Position in observation 1- n None

Index type NONE, SIMPLE, COMPOSITE, or
BOTH

None

1 If they are not explicitly defined, a variable’s type and length are implicitly defined by its first
occurrence in a DATA step.

2 The minimum length is 2 bytes in some operating environments, 3 bytes in others. See the SAS
documentation for your operating environment.

Note: Starting with SAS 9.1, the maximum number of variables can be greater than
32,767. The maximum number is dependent on your environment and the file’s
attributes. �

SAS Variables � SAS Variable Attributes 79

You can use the CONTENTS procedure, or the functions that are named in the
following definitions, to obtain information about a variable’s attributes:

name
identifies a variable. A variable name must conform to SAS naming rules. A SAS
name can be up to 32 characters long. The first character must be a letter (A, B,
C, . . . , Z) or underscore (_). Subsequent characters can be letters, digits (0 to 9),
or underscores. Note that blanks are not allowed. Mixed case variables are
allowed. See Chapter 3, “Rules for Words and Names in the SAS Language,” on
page 15 for more details on mixed case variables.

The names _N_, _ERROR_, _FILE_, _INFILE_, _MSG_, _IORC_, and _CMD_
are reserved for the variables that are generated automatically for a DATA step.
Note that SAS products use variable names that start and end with an
underscore; it is recommended that you do not use names that start and end with
an underscore in your own applications. See “Automatic Variables” on page 85 for
more information.

To determine the value of this attribute, use the VNAME or VARNAME function.

Note: The rules for variable names that are described in this section apply
when the VALIDVARNAME= system option is set to VALIDVARNAME=V7, which
is the default setting. Other rules apply when this option is set differently. See
Chapter 3, “Rules for Words and Names in the SAS Language,” on page 15 for
more information. �

type
identifies a variable as numeric or character. Within a DATA step, a variable is
assumed to be numeric unless character is indicated. Numeric values represent
numbers, can be read in a variety of ways, and are stored in floating-point format.
Character values can contain letters, numbers, and special characters and can be
from 1 to 32,767 characters long.

To determine the value of this attribute, use the VTYPE or VARTYPE function.

length
refers to the number of bytes used to store each of the variable’s values in a SAS
data set. You can use a LENGTH statement to set the length of both numeric and
character variables. Variable lengths specified in a LENGTH statement affect the
length of numeric variables only in the output data set; during processing, all
numeric variables have a length of 8. Lengths of character variables specified in a
LENGTH statement affect both the length during processing and the length in the
output data set.

In an INPUT statement, you can assign a length other than the default length
to character variables. You can also assign a length to a variable in the ATTRIB
statement. A variable that appears for the first time on the left side of an
assignment statement has the same length as the expression on the right side of
the assignment statement.

To determine the value of this attribute, use the VLENGTH or VARLEN
function.

format
refers to the instructions that SAS uses when printing variable values. If no
format is specified, the default format is BEST12. for a numeric variable, and $w.
for a character variable. You can assign SAS formats to a variable in the FORMAT
or ATTRIB statement. You can use the FORMAT procedure to create your own
format for a variable.

To determine the value of this attribute, use the VFORMAT or VARFMT
function.

80 Ways to Create Variables � Chapter 5

informat
refers to the instructions that SAS uses when reading data values. If no informat
is specified, the default informat is w.d for a numeric variable, and $w. for a
character variable. You can assign SAS informats to a variable in the INFORMAT
or ATTRIB statement. You can use the FORMAT procedure to create your own
informat for a variable.

To determine the value of this attribute, use the VINFORMAT or VARINFMT
function.

label
refers to a descriptive label up to 256 characters long. A variable label, which can
be printed by some SAS procedures, is useful in report writing. You can assign a
label to a variable with a LABEL or ATTRIB statement.

To determine the value of this attribute, use the VLABEL or VARLABEL
function.

position in observation
is determined by the order in which the variables are defined in the DATA step.
You can find the position of a variable in the observations of a SAS data set by
using the CONTENTS procedure. This attribute is generally not important within
the DATA step except in variable lists, such as the following:

var rent-phone;

See “SAS Variable Lists” on page 86 for more information.
The positions of variables in a SAS data set affect the order in which they

appear in the output of SAS procedures, unless you control the order within your
program, for example, with a VAR statement.

To determine the value of this attribute, use the VARNUM function.

index type
indicates whether the variable is part of an index for the data set. See
“Understanding SAS Indexes” on page 518 for more information.

To determine the value of this attribute, use the OUT= option with the
CONTENTS procedure to create an output data set. The IDXUSAGE variable in
the output data set contains one of the following values for each variable:

Table 5.2 Index Type Attribute Values

Value Definition

NONE The variable is not indexed.

SIMPLE The variable is part of a simple index.

COMPOSITE The variable is part of one or more composite indexes.

BOTH The variable is part of both simple and composite indexes.

Ways to Create Variables

Overview
You can create variables in a DATA step in the following ways:
� using an assignment statement
� reading data with the INPUT statement in a DATA step

SAS Variables � Using an Assignment Statement 81

� specifying a new variable in a FORMAT or INFORMAT statement
� specifying a new variable in a LENGTH statement
� specifying a new variable in an ATTRIB statement.

Note: You can also create variables with the FGET function. See SAS Language
Reference: Dictionary for more information. �

Using an Assignment Statement
In a DATA step, you can create a new variable and assign it a value by using it for

the first time on the left side of an assignment statement. SAS determines the length of
a variable from its first occurrence in the DATA step. The new variable gets the same
type and length as the expression on the right side of the assignment statement.

When the type and length of a variable are not explicitly set, SAS gives the variable
a default type and length as shown in the examples in the following table.

Table 5.3 Resulting Variable Types and Lengths Produced When They Are Not
Explicitly Set

Expression Example Resulting
Type of X

Resulting
Length of X

Explanation

Numeric variable length a 4;

x=a;

Numeric
variable

8 Default numeric
length (8 bytes
unless otherwise
specified)

Character
variable

length a $ 4;

x=a;

Character
variable

4 Length of source
variable

Character literal x=’ABC’;

x=’ABCDE’;

Character
variable

3 Length of first
literal encountered

Concatenation of
variables

length a $ 4

b $ 6

c $ 2;

x=a||b||c;

Character
variable

12 Sum of the lengths
of all variables

Concatenation of
variables and
literal

length a $ 4;

x=a||’CAT’;

x=a||’CATNIP’;

Character
variable

7 Sum of the lengths
of variables and
literals
encountered in first
assignment
statement

If a variable appears for the first time on the right side of an assignment statement,
SAS assumes that it is a numeric variable and that its value is missing. If no later
statement gives it a value, SAS prints a note in the log that the variable is uninitialized.

Note: A RETAIN statement initializes a variable and can assign it an initial value,
even if the RETAIN statement appears after the assignment statement. �

82 Reading Data with the INPUT Statement in a DATA Step � Chapter 5

Reading Data with the INPUT Statement in a DATA Step
When you read raw data in SAS by using an INPUT statement, you define variables

based on positions in the raw data. You can use one of the following methods with the
INPUT statement to provide information to SAS about how the raw data is organized:

� column input

� list input (simple or modified)
� formatted input
� named input.

See SAS Language Reference: Dictionary for more information about using each method.
The following example uses simple list input to create a SAS data set named GEMS

and defines four variables based on the data provided:

data gems;
input Name $ Color $ Carats Owner $;
datalines;

emerald green 1 smith
sapphire blue 2 johnson
ruby red 1 clark
;

Specifying a New Variable in a FORMAT or an INFORMAT Statement
You can create a variable and specify its format or informat with a FORMAT or an

INFORMAT statement. For example, the following FORMAT statement creates a
variable named Sale_Price with a format of 6.2 in a new data set named SALES:

data sales;
Sale_Price=49.99;
format Sale_Price 6.2;

run;

SAS creates a numeric variable with the name Sale_Price and a length of 8.
See SAS Language Reference: Dictionary for more information about using the

FORMAT and INFORMAT statements.

Specifying a New Variable in a LENGTH Statement
You can use the LENGTH statement to create a variable and set the length of the

variable, as in the following example:

data sales;
length Salesperson $20;

run;

For character variables, you must allow for the longest possible value in the first
statement that uses the variable, because you cannot change the length with a
subsequent LENGTH statement within the same DATA step. The maximum length of
any character variable in SAS is 32,767 bytes. For numeric variables, you can change
the length of the variable by using a subsequent LENGTH statement.

When SAS assigns a value to a character variable, it pads the value with blanks or
truncates the value on the right side, if necessary, to make it match the length of the
target variable. Consider the following statements:

SAS Variables � Using the IN= Data Set Option 83

length address1 address2 address3 $ 200;
address3=address1||address2;

Because the length of ADDRESS3 is 200 bytes, only the first 200 bytes of the
concatenation (the value of ADDRESS1) are assigned to ADDRESS3. You might be able
to avoid this problem by using the TRIM function to remove trailing blanks from
ADDRESS1 before performing the concatenation, as follows:

address3=trim(address1)||address2;

See SAS Language Reference: Dictionary for more information about using the
LENGTH statement.

Specifying a New Variable in an ATTRIB Statement
The ATTRIB statement enables you to specify one or more of the following variable

attributes for an existing variable:

� FORMAT=

� INFORMAT=

� LABEL=

� LENGTH=.

If the variable does not already exist, one or more of the FORMAT=, INFORMAT=, and
LENGTH= attributes can be used to create a new variable. For example, the following
DATA step creates a variable named Flavor in a data set named LOLLIPOPS:

data lollipops;
Flavor="Cherry";
attrib Flavor format=$10.;

run;

Note: You cannot create a new variable by using a LABEL statement or the
ATTRIB statement’s LABEL= attribute by itself; labels can only be applied to existing
variables. �

See SAS Language Reference: Dictionary for more information about using the
ATTRIB statement.

Using the IN= Data Set Option
The IN= data set option creates a special boolean variable that indicates whether the

data set contributed data to the current observation. The variable has a value of 1
when true, and a value of 0 when false. You can use IN= on the SET, MERGE, and
UPDATE statements in a DATA step.

The following example shows a merge of the OLD and NEW data sets where the IN=
option is used to create a variable named X that indicates whether the NEW data set
contributed data to the observation:

data master missing;
merge old new(in=x);
by id;
if x=0 then output missing;
else output master;

run;

84 Variable Type Conversions � Chapter 5

Variable Type Conversions
If you define a numeric variable and assign the result of a character expression to it,

SAS tries to convert the character result of the expression to a numeric value and to
execute the statement. If the conversion is not possible, SAS prints a note to the log,
assigns the numeric variable a value of missing, and sets the automatic variable
ERROR to 1. For a listing of the rules by which SAS automatically converts character
variables to numeric variables and vice-versa, see “Automatic Numeric-Character
Conversion” on page 116.

If you define a character variable and assign the result of a numeric expression to it,
SAS tries to convert the numeric result of the expression to a character value using the
BESTw. format, where w is the width of the character variable and has a maximum
value of 32. SAS then tries to execute the statement. If the character variable you use is
not long enough to contain a character representation of the number, SAS prints a note
to the log and assigns the character variable asterisks. If the value is too small, SAS
provides no error message and assigns the character variable the character zero (0).

Output 5.1 Automatic Variable Type Conversions (partial SAS log)

4
5 data _null_;
6 x= 3626885;
7 length y $ 4;
8 y=x;
9 put y;

36E5
NOTE: Numeric values have been converted to character

values at the places given by:
(Number of times) at (Line):(Column).
1 at 8:5

10 data _null_;
11 xl= 3626885;
12 length yl $ 1;
13 yl=xl;
14 xs=0.000005;
15 length ys $ 1;
16 ys=xs;
17 put yl= ys=;
18 run;

NOTE: Invalid character data, XL=3626885.00 ,
at line 13 column 6.

YL=* YS=0
XL=3626885 YL=* XS=5E-6 YS=0 _ERROR_=1 _N_=1
NOTE: Numeric values have been converted

to character values at the places
given by: (Number of times) at
(Line):(Column).
1 at 13:6
1 at 16:6

In the first DATA step of the example, SAS is able to fit the value of Y into a 4-byte
field by representing its value in scientific notation. In the second DATA step, SAS
cannot fit the value of YL into a 1-byte field and displays an asterisk (*) instead.

SAS Variables � Automatic Variables 85

Aligning Variable Values
In SAS, numeric variables are automatically aligned. You can further control their

alignment by using a format.
However, when you assign a character value in an assignment statement, SAS stores

the value as it appears in the statement and does not perform any alignment. Output
5.2 illustrates the character value alignment produced by the following program:

data aircode;
input city $1-13;
length airport $ 10;
if city=’San Francisco’ then airport=’SFO’;

else if city=’Honolulu’ then airport=’HNL’;
else if city=’New York’ then airport=’JFK or EWR’;
else if city=’Miami’ then airport=’ MIA ’;

datalines;
San Francisco
Honolulu
New York
Miami
;

proc print data=aircode;
run;

This example produces the following output:

Output 5.2 Output from the PRINT Procedure

The SAS System

OBS CITY AIRPORT

1 San Francisco SFO
2 Honolulu HNL
3 New York JFK or EWR
4 Miami MIA

Automatic Variables

Automatic variables are created automatically by the DATA step or by DATA step
statements. These variables are added to the program data vector but are not output to
the data set being created. The values of automatic variables are retained from one
iteration of the DATA step to the next, rather than set to missing.

Automatic variables that are created by specific statements are documented with
those statements. For examples, see the BY statement, the MODIFY statement, and
the WINDOW statement in SAS Language Reference: Dictionary.

Two automatic variables are created by every DATA step: _N_ and _ERROR_.

86 SAS Variable Lists � Chapter 5

N
is initially set to 1. Each time the DATA step loops past the DATA statement, the
variable _N_ increments by 1. The value of _N_ represents the number of times
the DATA step has iterated.

ERROR
is 0 by default but is set to 1 whenever an error is encountered, such as an input
data error, a conversion error, or a math error, as in division by 0 or a floating
point overflow. You can use the value of this variable to help locate errors in data
records and to print an error message to the SAS log.

For example, either of the two following statements writes to the SAS log,
during each iteration of the DATA step, the contents of an input record in which
an input error is encountered:

if _error_=1 then put _infile_;

if _error_ then put _infile_;

SAS Variable Lists

Definition
A SAS variable list is an abbreviated method of referring to a list of variable names.

SAS allows you to use the following variable lists:

� numbered range lists

� name range lists

� name prefix lists

� special SAS name lists.

With the exception of the numbered range list, you refer to the variables in a
variable list in the same order that SAS uses to keep track of the variables. SAS keeps
track of active variables in the order that the compiler encounters them within a DATA
step, whether they are read from existing data sets, an external file, or created in the
step. In a numbered range list, you can refer to variables that were created in any
order, provided that their names have the same prefix.

You can use variable lists in many SAS statements and data set options, including
those that define variables. However, they are especially useful after you define all of
the variables in your SAS program because they provide a quick way to reference
existing groups of data.

Note: Only the numbered range list is allowed in the RENAME= option. �

Numbered Range Lists
Numbered range lists require you to have a series of variables with the same name,

except for the last character or characters, which are consecutive numbers. For
example, the following two lists refer to the same variables:

x1,x2,x3,...,xn

x1-xn

SAS Variables � Name Prefix Lists 87

In a numbered range list, you can begin with any number and end with any number
as long as you do not violate the rules for user-supplied variable names and the
numbers are consecutive.

For example, suppose you decide to give some of your numeric variables sequential
names, as in VAR1, VAR2, and so on. Then, you can write an INPUT statement as
follows:

input idnum name $ var1-var3;

Note that the character variable NAME is not included in the abbreviated list.

Name Range Lists
Name range lists rely on the order of variable definition, as shown in the following

table:

Table 5.4 Name Range Lists

Variable list Included variables

x-a all variables in order of variable definition, from
X to A inclusive.

x-numeric-a all numeric variables from X to A inclusive.

x-character-a all character variables from X to A inclusive.

You can use the VARNUM option in PROC CONTENTS to print the variables in the
order of definition.

For example, consider the following INPUT statement:

input idnum name $ weight pulse chins;

In later statements you can use these variable lists:

/* keeps only the numeric variables idnum, weight, and pulse */

keep idnum-numeric-pulse;

/* keeps the consecutive variables name, weight, and pulse */

keep name-pulse;

Name Prefix Lists
Some SAS functions and statements allow you to use a name prefix list to refer to all

variables that begin with a specified character string:

sum(of SALES:)

tells SAS to calculate the sum of all the variables that begin with “SALES,” such as
SALES_JAN, SALES_FEB, and SALES_MAR.

88 Special SAS Name Lists � Chapter 5

Special SAS Name Lists
Special SAS name lists include

NUMERIC
specifies all numeric variables that are already defined in the current DATA step.

CHARACTER
specifies all character variables that are currently defined in the current DATA
step.

ALL
specifies all variables that are currently defined in the current DATA step.

Dropping, Keeping, and Renaming Variables

Using Statements or Data Set Options
The DROP, KEEP, and RENAME statements or the DROP=, KEEP=, and RENAME=

data set options control which variables are processed or output during the DATA step.
You can use one or a combination of these statements and data set options to achieve
the results you want. The action taken by SAS depends largely on whether you

� use a statement or data set option or both
� specify the data set options on an input or an output data set.

The following table summarizes the general differences between the DROP, KEEP,
and RENAME statements and the DROP=, KEEP=, and RENAME= data set options.

Table 5.5 Statements versus Data Set Options for Dropping, Keeping, and
Renaming Variables

Statements Data Set Options

apply to output data sets only. apply to output or input data sets.

affect all output data sets. affect individual data sets.

can be used in DATA steps only. can be used in DATA steps and PROC steps.

can appear anywhere in DATA steps. must immediately follow the name of each data
set to which they apply.

Using the Input or Output Data Set
You must also consider whether you want to drop, keep, or rename the variable

before it is read into the program data vector or as it is written to the new SAS data set.
If you use the DROP, KEEP, or RENAME statement, the action always occurs as the
variables are written to the output data set. With SAS data set options, where you use
the option determines when the action occurs. If the option is used on an input data set,
the variable is dropped, kept, or renamed before it is read into the program data vector.
If used on an output data set, the data set option is applied as the variable is written to

SAS Variables � Order of Application 89

the new SAS data set. (In the DATA step, an input data set is one that is specified in a
SET, MERGE, or UPDATE statement. An output data set is one that is specified in the
DATA statement.) Consider the following facts when you make your decision:

� If variables are not written to the output data set and they do not require any
processing, using an input data set option to exclude them from the DATA step is
more efficient.

� If you want to rename a variable before processing it in a DATA step, you must
use the RENAME= data set option in the input data set.

� If the action applies to output data sets, you can use either a statement or a data
set option in the output data set.

The following table summarizes the action of data set options and statements when
they are specified for input and output data sets. The last column of the table tells
whether the variable is available for processing in the DATA step. If you want to
rename the variable, use the information in the last column.

Table 5.6 Status of Variables and Variable Names When Dropping, Keeping, and
Renaming Variables

Where Specified Data Set Option or
Statement

Purpose Status of Variable or
Variable Name

Input data set DROP=

KEEP=

includes or excludes variables
from processing

if excluded, variables are
not available for use in
DATA step

RENAME= changes name of variable
before processing

use new name in program
statements and output data
set options; use old name in
other input data set options

Output data set DROP, KEEP specifies which variables are
written to all output data sets

all variables available for
processing

RENAME changes name of variables in
all output data sets

use old name in program
statements; use new name
in output data set options

DROP=

KEEP=

specifies which variables are
written to individual output
data sets

all variables are available
for processing

RENAME= changes name of variables in
individual output data sets

use old name in program
statements and other
output data set options

Order of Application
If your program requires that you use more than one data set option or a

combination of data set options and statements, it is helpful to know that SAS drops,
keeps, and renames variables in the following order:

� First, options on input data sets are evaluated left to right within SET, MERGE,
and UPDATE statements. DROP= and KEEP= options are applied before the
RENAME= option.

� Next, DROP and KEEP statements are applied, followed by the RENAME
statement.

90 Examples of Dropping, Keeping, and Renaming Variables � Chapter 5

� Finally, options on output data sets are evaluated left to right within the DATA
statement. DROP= and KEEP= options are applied before the RENAME= option.

Examples of Dropping, Keeping, and Renaming Variables
The following examples show specific ways to handle dropping, keeping, and

renaming variables:
� This example uses the DROP= and RENAME= data set options and the INPUT

function to convert the variable POPRANK from character to numeric. The name
POPRANK is changed to TEMPVAR before processing so that a new variable
POPRANK can be written to the output data set. Note that the variable
TEMPVAR is dropped from the output data set and that the new name TEMPVAR
is used in the program statements.

data newstate(drop=tempvar);
length poprank 8;
set state(rename=(poprank=tempvar));
poprank=input(tempvar,8.);

run;

� This example uses the DROP statement and the DROP= data set option to control
the output of variables to two new SAS data sets. The DROP statement applies to
both data sets, CORN and BEAN. You must use the RENAME= data set option to
rename the output variables BEANWT and CORNWT in each data set.

data corn(rename=(cornwt=yield) drop=beanwt)
bean(rename=(beanwt=yield) drop=cornwt);

set harvest;
if crop=’corn’ then output corn;
else if crop=’bean’ then output bean;
drop crop;

run;

� This example shows how to use data set options in the DATA statement and the
RENAME statement together. Note that the new name QTRTOT is used in the
DROP= data set option.

data qtr1 qtr2 ytd(drop=qtrtot);
set ytdsales;
if qtr=1 then output qtr1;
else if qtr=2 then output qtr2;
else output ytd;
rename total=qtrtot;

run;

Numeric Precision in SAS Software

How SAS Stores Numeric Values
To store numbers of large magnitude and to perform computations that require many

digits of precision to the right of the decimal point, SAS stores all numeric values using
floating-point, or real binary, representation. Floating-point representation is an
implementation of what is generally known as scientific notation, in which values are

SAS Variables � Troubleshooting Problems Regarding Floating-Point Representation 91

represented as numbers between 0 and 1 times a power of 10. The following is an
example of a number in scientific notation:

����� � ��
�

Numbers in scientific notation are comprised of the following parts:

� The base is the number raised to a power; in this example, the base is 10.

� The mantissa is the number multiplied by the base; in this example, the mantissa
is .1234.

� The exponent is the power to which the base is raised; in this example, the
exponent is 4.

Floating-point representation is a form of scientific notation, except that on most
operating systems the base is not 10, but is either 2 or 16. The following table
summarizes various representations of floating-point numbers that are stored in 8 bytes.

Table 5.7 Summary of Floating-Point Numbers Stored in 8 Bytes

Representation Base Exponent Bits
Maximum
Mantissa Bits

IBM mainframe 16 7 56

IEEE 2 11 52

SAS allows for truncated floating-point numbers via the LENGTH statement, which
reduces the number of mantissa bits. For more information on the effects of truncated
lengths, see “Storing Numbers with Less Precision” on page 95.

Troubleshooting Problems Regarding Floating-Point Representation

Overview

In most situations, the way that SAS stores numeric values does not affect you as a
user. However, floating-point representation can account for anomalies you might notice
in SAS program behavior. The following sections identify the types of problems that can
occur in various operating environments and how you can anticipate and avoid them.

Floating-Point Representation on IBM Mainframes

SAS for z/OS uses the traditional IBM mainframe floating-point representation as
follows:

SEEEEEEE MMMMMMMM MMMMMMMM MMMMMMMM
byte 1 byte 2 byte 3 byte 4

MMMMMMMM MMMMMMMM MMMMMMMM MMMMMMMM
byte 5 byte 6 byte 7 byte 8

92 Troubleshooting Problems Regarding Floating-Point Representation � Chapter 5

This representation corresponds to bytes of data with each character being 1 bit, as
follows:

� The S in byte 1 is the sign bit of the number. A value of 0 in the sign bit is used to
represent positive numbers.

� The seven E characters in byte 1 represent a binary integer known as the
characteristic. The characteristic represents a signed exponent and is obtained by
adding the bias to the actual exponent. The bias is an offset used to allow for both
negative and positive exponents with the bias representing 0. If a bias is not used,
an additional sign bit for the exponent must be allocated. For example, if a system
employs a bias of 64, a characteristic with the value 66 represents an exponent of
+2, while a characteristic of 61 represents an exponent of -3.

� The remaining M characters in bytes 2 through 8 represent the bits of the
mantissa. There is an implied radix point before the leftmost bit of the mantissa;
therefore, the mantissa is always less than 1. The term radix point is used instead
of decimal point because decimal point implies that you are working with decimal
(base 10) numbers, which might not be the case. The radix point can be thought of
as the generic form of decimal point.

The exponent has a base associated with it. Do not confuse this with the base in which
the exponent is represented; the exponent is always represented in binary, but the
exponent is used to determine how many times the base should be multiplied by the
mantissa. In the case of the IBM mainframes, the exponent’s base is 16. For other
machines, it is commonly either 2 or 16.

Each bit in the mantissa represents a fraction whose numerator is 1 and whose
denominator is a power of 2. For example, the leftmost bit in byte 2 represents

�
�

�

�
� ,

the next bit represents
�
�

�

�
� , and so on. In other words, the mantissa is the sum ofa

series of fractions such as �

�
, �

�
, �

�
, and so on. Therefore, for any floating-point number

to be represented exactly, you must be able to express it as the previously mentioned
sum. For example, 100 is represented as the following expression:

�
�

�
�
�

�
�

�

��

�
� ��

�

To illustrate how the above expression is obtained, two examples follow. The first
example is in base 10. The value 100 is represented as follows:

100.

The period in this number is the radix point. The mantissa must be less than 1;
therefore, you normalize this value by shifting the radix point three places to the right,
which produces the following value:

����

Because the radix point is shifted three places to the right, 3 is the exponent:

����� ��
�
� ���

The second example is in base 16. In hexadecimal notation, 100 (base 10) is written
as follows:

SAS Variables � Troubleshooting Problems Regarding Floating-Point Representation 93

���

Shifting the radix point two places to the left produces the following value:

���

Shifting the radix point also produces an exponent of 2, as in:

���� ��
�

The binary value of this number is .01100100, which can be represented in the
following expression:

�
�

�

�
�
�

�
�

�

�
�
�

�
�

�

�
�
�

�

�
�
�

�
�

�

��

In this example, the exponent is 2. To represent the exponent, you add the bias of 64
to the exponent. The hexadecimal representation of the resulting value, 66, is 42. The
binary representation is as follows:

01000010 01100100 00000000 00000000
00000000 00000000 00000000 00000000

Floating-Point Representation on OpenVMS
On OpenVMS, SAS stores numeric values in the D-floating format, which has the

following scheme:

MMMMMMMM MMMMMMMM MMMMMMMM MMMMMMMM
byte 8 byte 7 byte 6 byte 5

MMMMMMMM MMMMMMMM SEEEEEEE EMMMMMMM
byte 4 byte 3 byte 2 byte 1

In D-floating format, the exponent is 8 bits instead of 7, but uses base 2 instead of
base 16 and a bias of 128, which means the magnitude of the D-floating format is not as
great as the magnitude of the IBM representation. The mantissa of the D-floating
format is, physically, 55 bits. However, all floating-point values under OpenVMS are
normalized, which means it is guaranteed that the high-order bit will always be 1.
Because of this guarantee, there is no need to physically represent the high-order bit in
the mantissa; therefore, the high-order bit is hidden.

For example, the decimal value 100 represented in binary is as follows:

01100100.

This value can be normalized by shifting the radix point as follows:

0.1100100

Because the radix was shifted to the left seven places, the exponent, 7 plus the bias
of 128, is 135. Represented in binary, the number is as follows:

94 Troubleshooting Problems Regarding Floating-Point Representation � Chapter 5

10000111

To represent the mantissa, subtract the hidden bit from the fraction field:

.100100

You can combine the sign (0), the exponent, and the mantissa to produce the
D-floating format:

MMMMMMMM MMMMMMMM MMMMMMMM MMMMMMMM
00000000 00000000 00000000 00000000

MMMMMMMM MMMMMMMM SEEEEEEE EMMMMMMM
00000000 00000000 01000011 11001000

Floating-Point Representation Using the IEEE Standard
The Institute of Electrical and Electronic Engineers (IEEE) representation is used by

many operating systems, including Windows and UNIX. The IEEE representation uses
an 11-bit exponent with a base of 2 and bias of 1023, which means that it has much
greater magnitude than the IBM mainframe representation, but sometimes at the
expense of 3 bits less in the mantissa. The value of 1 represented by the IEEE standard
is as follows:

3F F0 00 00 00 00 00 00

Precision Versus Magnitude
As discussed in previous sections, floating-point representation allows for numbers of

very large magnitude (numbers such as 2 to the 30th power) and high degrees of
precision (many digits to the right of the decimal place). However, operating systems
differ on how much precision and how much magnitude they allow.

In “How SAS Stores Numeric Values” on page 90, you can see that the number of
exponent bits and mantissa bits varies. The more bits that are reserved for the
mantissa, the more precise the number; the more bits that are reserved for the
exponent, the greater the magnitude the number can have.

Whether precision or magnitude is more important depends on the characteristics of
your data. For example, if you are working with physics applications, very large
numbers may be needed, and magnitude is probably more important. However, if you
are working with banking applications, where every digit is important but the number
of digits is not great, then precision is more important. Most often, SAS applications
need a moderate amount of both precision and magnitude, which is sufficiently provided
by floating-point representation.

Computational Considerations of Fractions
Regardless of how much precision is available, there is still the problem that some

numbers cannot be represented exactly. In the decimal number system, the fraction 1/3
cannot be represented exactly in decimal notation. Likewise, most decimal fractions (for
example, .1) cannot be represented exactly in base 2 or base 16 numbering systems.
This is the principle reason for difficulty in storing fractional numbers in floating-point
representation.

Consider the IBM mainframe representation of .1:

40 19 99 99 99 99 99 99

Notice the trailing 9 digit, similar to the trailing 3 digit in the attempted decimal
representation of 1/3 (.3333 …). This lack of precision is aggravated by arithmetic

SAS Variables � Troubleshooting Problems Regarding Floating-Point Representation 95

operations. Consider what would happen if you added the decimal representation of 1/3
several times. When you add .33333 … to .99999 … , the theoretical answer is 1.33333
… 2, but in practice, this answer is not possible. The sums become imprecise as the
values continue.

Likewise, the same process happens when the following DATA step is executed:

data _null_;
do i=-1 to 1 by .1;

if i=0 then put ’AT ZERO’;
end;

run;

The AT ZERO message in the DATA step is never printed because the accumulation
of the imprecise number introduces enough error that the exact value of 0 is never
encountered. The number is close, but never exactly 0. This problem is easily resolved
by explicitly rounding with each iteration, as the following statements illustrate:

data _null_;
i=-1;
do while(i<=1);

i=round(i+.1,.001);
if i=0 then put ’AT ZERO’;

end;
run;

Numeric Comparison Considerations
As discussed in “Computational Considerations of Fractions” on page 94, imprecision

can cause problems with computations. Imprecision can also cause problems with
comparisons. Consider the following example in which the PUT statement is not
executed:

data _null_;
x=1/3;
if x=.33333 then put ’MATCH’;

run;

However, if you add the ROUND function, as in the following example, the PUT
statement is executed:

data _null_;
x=1/3;
if round(x,.00001)=.33333 then put ’MATCH’;

run;

In general, if you are doing comparisons with fractional values, it is good practice to
use the ROUND function.

Storing Numbers with Less Precision
As discussed in “How SAS Stores Numeric Values” on page 90, SAS allows for

numeric values to be stored on disk with less than full precision. Use the LENGTH
statement to dictate the number of bytes that are used to store the floating-point
number. Use the LENGTH statement carefully to avoid significant data loss.

For example, the IBM mainframe representation uses 8 bytes for full precision, but
you can store as few as 2 bytes on disk. The value 1 is represented as 41 10 00 00 00 00
00 00 in 8 bytes. In 2 bytes, it would be truncated to 41 10. You still have the full range
of magnitude because the exponent remains intact; there are simply fewer digits

96 Troubleshooting Problems Regarding Floating-Point Representation � Chapter 5

involved. A decrease in the number of digits means either fewer digits to the right of
the decimal place or fewer digits to the left of the decimal place before trailing zeroes
must be used.

For example, consider the number 1234567890, which would be .1234567890 to the
10th power of 10 (in base 10). If you have only five digits of precision, the number
becomes 123460000 (rounding up). Note that this is the case regardless of the power of
10 that is used (.12346, 12.346, .0000012346, and so on).

The only reason to truncate length by using the LENGTH statement is to save disk
space. All values are expanded to full size to perform computations in DATA and PROC
steps. In addition, you must be careful in your choice of lengths, as the previous
discussion shows.

Consider a length of 2 bytes on an IBM mainframe system. This value allows for 1
byte to store the exponent and sign, and 1 byte for the mantissa. The largest value that
can be stored in 1 byte is 255. Therefore, if the exponent is 0 (meaning 16 to the 0th
power, or 1 multiplied by the mantissa), then the largest integer that can be stored with
complete certainty is 255. However, some larger integers can be stored because they are
multiples of 16. For example, consider the 8-byte representation of the numbers 256 to
272 in the following table:

Table 5.8 Representation of the Numbers 256 to 272 in Eight Bytes

Value Sign/Exp Mantissa 1 Mantissa 2-7 Considerations

256 43 10 000000000000 trailing zeros;
multiple of 16

257 43 10 100000000000 extra byte needed

258 43 10 200000000000

259 43 10 300000000000

.

.

.

271 43 10 F00000000000

272 43 11 000000000000 trailing zeros;
multiple of 16

The numbers from 257 to 271 cannot be stored exactly in the first 2 bytes; a third
byte is needed to store the number precisely. As a result, the following code produces
misleading results:

data temp;
length x 2;
x=257;
y1=x+1;

run;

data _null_;
set temp;
if x=257 then put ’FOUND’;
y2=x+1;

run;

SAS Variables � Troubleshooting Problems Regarding Floating-Point Representation 97

The PUT statement is never executed because the value of X is actually 256 (the
value 257 truncated to 2 bytes). Recall that 256 is stored in 2 bytes as 4310, but 257 is
also stored in 2 bytes as 4310, with the third byte of 10 truncated.

You receive no warning that the value of 257 is truncated in the first DATA step.
Note, however, that Y1 has the value 258 because the values of X are kept in full,
8-byte floating-point representation in the program data vector. The value is only
truncated when stored in a SAS data set. Y2 has the value 257, because X is truncated
before the number is read into the program data vector.

CAUTION:
Do not use the LENGTH statement if your variable values are not integers. Fractional
numbers lose precision if truncated. Also, use the LENGTH statement to truncate
values only when disk space is limited. Refer to the length table in the SAS
documentation for your operating environment for maximum values. �

Truncating Numbers and Making Comparisons
The TRUNC function truncates a number to a requested length and then expands

the number back to full length. The truncation and subsequent expansion duplicate the
effect of storing numbers in less than full length and then reading them. For example,
if the variable

x=1/3;

is stored with a length of 3, then the following comparison is not true:

if x=1/3 then ...;

However, adding the TRUNC function makes the comparison true, as in the following:

if x=trunc(1/3,3) then ...;

Determining How Many Bytes Are Needed to Store a Number Accurately
To determine the minimum number of bytes needed to store a value accurately, you

can use the TRUNC function. For example, the following program finds the minimum
length of bytes (MINLEN) needed for numbers stored in a native SAS data set named
NUMBERS. The data set NUMBERS contains the variable VALUE. VALUE contains a
range of numbers, in this example, from 269 to 272:

data numbers;
input value;
datalines;

269
270
271
272
;

data temp;
set numbers;
x=value;
do L=8 to 1 by -1;

if x NE trunc(x,L) then
do;

minlen=L+1;
output;
return;

98 Troubleshooting Problems Regarding Floating-Point Representation � Chapter 5

end;
end;

run;

proc print noobs;
var value minlen;

run;

The following output shows the results from this code.

Output 5.3 Using the TRUNC Function

The SAS System

VALUE MINLEN

269 3
270 3
271 3
272 2

Note that the minimum length required for the value 271 is greater than the minimum
required for the value 272. This fact illustrates that it is possible for the largest
number in a range of numbers to require fewer bytes of storage than a smaller number.
If precision is needed for all numbers in a range, you should obtain the minimum
length for all the numbers, not just the largest one.

Double-Precision Versus Single-Precision Floating-Point Numbers
You might have data created by an external program that you want to read into a

SAS data set. If the data is in floating-point representation, you can use the RBw.d
informat to read in the data. However, there are exceptions.

The RBw.d informat might truncate double-precision floating-point numbers if the w
value is less than the size of the double-precision floating-point number (8 on all the
operating systems discussed in this section). Therefore, the RB8. informat corresponds
to a full 8-byte floating point. The RB4. informat corresponds to an 8-byte floating point
truncated to 4 bytes, exactly the same as a LENGTH 4 in the DATA step.

An 8-byte floating point that is truncated to 4 bytes might not be the same as float in
a C program. In the C language, an 8-byte floating-point number is called a double. In
FORTRAN, it is a REAL*8. In IBM’s PL/I, it is a FLOAT BINARY(53). A 4-byte
floating-point number is called a float in the C language, REAL*4 in FORTRAN, and
FLOAT BINARY(21) in IBM’s PL/I.

On the IBM mainframes, a single-precision floating-point number is exactly the same
as a double-precision number truncated to 4 bytes. On operating systems that use the
IEEE standard, this is not the case; a single-precision floating-point number uses a
different number of bits for its exponent and uses a different bias, so that reading in
values using the RB4. informat does not produce the expected results.

Transferring Data between Operating Systems
The problems of precision and magnitude when you use floating-point numbers are

not confined to a single operating system. Additional problems can arise when you
move from one operating system to another, unless you use caution. This section
discusses factors to consider when you are transporting data sets with very large or
very small numeric values by using the UPLOAD and DOWNLOAD procedures, the
CPORT and CIMPORT procedures, or transport engines.

SAS Variables � Troubleshooting Problems Regarding Floating-Point Representation 99

Table 5.7 on page 91 shows the maximum number of digits of the base, exponent, and
mantissa. Because there are differences in the maximum values that can be stored in
different operating environments, there might be problems in transferring your
floating-point data from one machine to another.

Consider, for example, transporting data between an IBM mainframe and a PC. The
IBM mainframe has a range limit of approximately .54E−78 to .72E76 (and their
negative equivalents and 0) for its floating-point numbers. Other machines, such as the
PC, have wider limits (the PC has an upper limit of approximately 1E308). Therefore, if
you are transferring numbers in the magnitude of 1E100 from a PC to a mainframe,
you lose that magnitude. During data transfer, the number is set to the minimum or
maximum allowable on that operating system, so 1E100 on a PC is converted to a value
that is approximately .72E76 on an IBM mainframe.

CAUTION:
Transfer of data between machines can affect numeric precision. If you are transferring
data from an IBM mainframe to a PC, notice that the number of bits for the
mantissa is 4 less than that for an IBM mainframe, which means you lose 4 bits
when moving to a PC. This precision and magnitude difference is a factor when
moving from one operating environment to any other where the floating-point
representation is different. �

100

101

C H A P T E R

6
Missing Values

Definition of Missing Values 101
Special Missing Values 102

Definition 102

Tips 102

Example 102

Order of Missing Values 103
Numeric Variables 103

Character Variables 104

When Variable Values Are Automatically Set to Missing by SAS 104

When Reading Raw Data 104

When Reading a SAS Data Set 105

When Missing Values Are Generated by SAS 105
Propagation of Missing Values in Calculations 105

Illegal Operations 105

Illegal Character-to-Numeric Conversions 105

Special Missing Values 106

Preventing Propagation of Missing Values 106
Working with Missing Values 107

How to Represent Missing Values in Raw Data 107

How to Set Variable Values to Missing in a DATA Step 107

How to Check for Missing Values in a DATA Step 108

Definition of Missing Values
missing value

is a value that indicates that no data value is stored for the variable in the current
observation. There are three kinds of missing values:

� numeric
� character
� special numeric.

By default, SAS prints a missing numeric value as a single period (.) and a
missing character value as a blank space. See “Special Missing Values” on page
102 for more information about special numeric missing values.

102 Special Missing Values � Chapter 6

Special Missing Values

Definition
special missing value

is a type of numeric missing value that enables you to represent different
categories of missing data by using the letters A-Z or an underscore.

Tips

� SAS accepts either uppercase or lowercase letters. Values are displayed and
printed as uppercase.

� If you do not begin a special numeric missing value with a period, SAS identifies it
as a variable name. Therefore, to use a special numeric missing value in a SAS
expression or assignment statement, you must begin the value with a period,
followed by the letter or underscore, as in the following example:

x=.d;

� When SAS prints a special missing value, it prints only the letter or underscore.
� When data values contain characters in numeric fields that you want SAS to

interpret as special missing values, use the MISSING statement to specify those
characters. For further information, see the MISSING statement in SAS
Language Reference: Dictionary.

Example
The following example uses data from a marketing research company. Five testers

were hired to test five different products for ease of use and effectiveness. If a tester
was absent, there is no rating to report, and the value is recorded with an X for
“absent.” If the tester was unable to test the product adequately, there is no rating, and
the value is recorded with an I for “incomplete test.” The following program reads the
data and displays the resulting SAS data set. Note the special missing values in the
first and third data lines:

data period_a;
missing X I;
input Id $4. Foodpr1 Foodpr2 Foodpr3 Coffeem1 Coffeem2;
datalines;

1001 115 45 65 I 78
1002 86 27 55 72 86
1004 93 52 X 76 88
1015 73 35 43 112 108
1027 101 127 39 76 79

;

proc print data=period_a;
title ’Results of Test Period A’;
footnote1 ’X indicates TESTER ABSENT’;
footnote2 ’I indicates TEST WAS INCOMPLETE’;

run;

Missing Values � Numeric Variables 103

The following output is produced:

Output 6.1 Output with Multiple Missing Values

Results of Test Period A
Obs Id Foodpr1 Foodpr2 Foodpr3 Coffeem1 Coffeem2

1 1001 115 45 65 I 78
2 1002 86 27 55 72 86
3 1004 93 52 X 76 88
4 1015 73 35 43 112 108
5 1027 101 127 39 76 79

X indicates TESTER ABSENT
I indicates TEST WAS INCOMPLETE

Order of Missing Values

Numeric Variables
Within SAS, a missing value for a numeric variable is smaller than all numbers; if

you sort your data set by a numeric variable, observations with missing values for that
variable appear first in the sorted data set. For numeric variables, you can compare
special missing values with numbers and with each other. Table 6.1 on page 103 shows
the sorting order of numeric values.

Table 6.1 Numeric Value Sort Order

Sort Order Symbol Description

smallest ._ underscore

. period

.A-.Z special missing values A
(smallest) through Z
(largest)

-n negative numbers

0 zero

largest +n positive numbers

For example, the numeric missing value (.) is sorted before the special numeric
missing value .A, and both are sorted before the special missing value .Z. SAS does not
distinguish between lowercase and uppercase letters when sorting special numeric
missing values.

Note: The numeric missing value sort order is the same regardless of whether your
system uses the ASCII or EBCDIC collating sequence. �

104 Character Variables � Chapter 6

Character Variables
Missing values of character variables are smaller than any printable character value.

Therefore, when you sort a data set by a character variable, observations with missing
(blank) values of the BY variable always appear before observations in which values of
the BY variable contain only printable characters. However, some usually unprintable
characters (for example, machine carriage-control characters and real or binary numeric
data that have been read in error as character data) have values less than the blank.
Therefore, when your data includes unprintable characters, missing values may not
appear first in a sorted data set.

When Variable Values Are Automatically Set to Missing by SAS

When Reading Raw Data
At the beginning of each iteration of the DATA step, SAS sets the value of each

variable you create in the DATA step to missing, with the following exceptions:
� variables named in a RETAIN statement
� variables created in a SUM statement
� data elements in a _TEMPORARY_ array
� variables created with options in the FILE or INFILE statements
� variables created by the FGET function
� data elements which are initialized in an ARRAY statement
� automatic variables.

SAS replaces the missing values as it encounters values that you assign to the
variables. Thus, if you use program statements to create new variables, their values in
each observation are missing until you assign the values in an assignment statement,
as shown in the following DATA step:

data new;
input x;
if x=1 then y=2;
datalines;

4
1
3
1
;

This DATA step produces a SAS data set with the following variable values:

OBS X Y
1 4 .
2 1 2
3 3 .
4 1 2

When X equals 1, the value of Y is set to 2. Since no other statements set Y’s value
when X is not equal to 1, Y remains missing (.) for those observations.

Missing Values � Illegal Character-to-Numeric Conversions 105

When Reading a SAS Data Set
When variables are read with a SET, MERGE, or UPDATE statement, SAS sets the

values to missing only before the first iteration of the DATA step. (If you use a BY
statement, the variable values are also set to missing when the BY group changes.) The
variables retain their values until new values become available; for example, through
an assignment statement or through the next execution of the SET, MERGE, or
UPDATE statement. Variables created with options in the SET, MERGE, and UPDATE
statements also retain their values from one iteration to the next.

When all of the rows in a data set in a match-merge operation (with a BY statement)
have been processed, the variables in the output data set retain their values as
described earlier. That is, as long as there is no change in the BY value in effect when
all of the rows in the data set have been processed, the variables in the output data set
retain their values from the final observation. FIRST.variable and LAST.variable, the
automatic variables that are generated by the BY statement, both retain their values.
Their initial value is 1.

When the BY value changes, the variables are set to missing and remain missing
because the data set contains no additional observations to provide replacement values.
When all of the rows in a data set in a one-to-one merge operation (without a BY
statement) have been processed, the variables in the output data set are set to missing
and remain missing.

When Missing Values Are Generated by SAS

Propagation of Missing Values in Calculations
SAS assigns missing values to prevent problems from arising. If you use a missing

value in an arithmetic calculation, SAS sets the result of that calculation to missing.
Then, if you use that result in another calculation, the next result is also missing. This
action is called propagation of missing values. SAS prints notes in the log to notify you
which arithmetic expressions have missing values and when they were created;
however, processing continues.

Illegal Operations
SAS prints a note in the log and assigns a missing value to the result if you try to

perform an illegal operation, such as the following:
� dividing by zero
� taking the logarithm of zero
� using an expression to produce a number too large to be represented as a

floating-point number (known as overflow).

Illegal Character-to-Numeric Conversions
SAS automatically converts character values to numeric values if a character

variable is used in an arithmetic expression. If a character value contains
nonnumerical information and SAS tries to convert it to a numeric value, a note is

106 Special Missing Values � Chapter 6

printed in the log, the result of the conversion is set to missing, and the _ERROR_
automatic variable is set to 1.

Special Missing Values

The result of any numeric missing value in a SAS expression is a period. Thus, both
special missing values and ordinary numeric missing values propagate as a period.

data a;
x=.d;
y=x+1;
put y=;

run;

This DATA step results in the following log:

Output 6.2 SAS Log Results for a Missing Value

1 data a;
2 x= .d;
3 y=x+1;
4 put y=;
5 run;

y=.
NOTE: Missing values were generated as a result of performing an

operation on missing values.
Each place is given by:
(Number of times) at (Line):(Column).
1 at 3:6

NOTE: The data set WORK.A has 1 observations and 2 variables.
NOTE: DATA statement used:

real time 0.58 seconds
cpu time 0.05 seconds

Preventing Propagation of Missing Values

If you do not want missing values to propagate in your arithmetic expressions, you
can omit missing values from computations by using the sample statistic functions. For
a list of these functions, see the descriptive statistics category in “Functions and CALL
Routines by Category” in the SAS Language Reference: Dictionary. For example,
consider the following DATA step:

data test;
x=.;
y=5;
a=x+y;
b=sum(x,y);
c=5;
c+x;
put a= b= c=;

run;

Missing Values � How to Set Variable Values to Missing in a DATA Step 107

Output 6.3 SAS Log Results for a Missing Value in a Statistic Function

1 data test;
2 x=.;
3 y=5;
4 a=x+y;
5 b=sum(x,y);
6 c=5;
7 c+x;
8 put a= b= c=;
9 run;

a=. b=5 c=5
NOTE: Missing values were generated as a result of performing

an operation on missing values.
Each place is given by:
(Number of times) at (Line):(Column).
1 at 4:6

NOTE: The data set WORK.TEST has 1 observations and 5 variables.
NOTE: DATA statement used:

real time 0.11 seconds
cpu time 0.03 seconds

Adding X and Y together in an expression produces a missing result because the value
of X is missing. The value of A, therefore, is missing. However, since the SUM function
ignores missing values, adding X to Y produces the value 5, not a missing value.

Note: The SUM statement also ignores missing values, so the value of C is also 5. �

Working with Missing Values

How to Represent Missing Values in Raw Data
Table 6.2 on page 107 shows how to represent each type of missing value in raw data

so that SAS will read and store the value appropriately.

Table 6.2 Representing Missing Values

These missing values … Are represented by … Explanation

Numeric . a single decimal point

Character ’ ’ a blank enclosed in quotes

Special .letter a decimal point followed by
a letter, for example, .B

Special ._ a decimal point followed by
an underscore

How to Set Variable Values to Missing in a DATA Step
You can set values to missing within your DATA step by using program statements

such as this one:

if age<0 then age=.;

108 How to Check for Missing Values in a DATA Step � Chapter 6

This statement sets the stored value of AGE to a numeric missing value if AGE has a
value less than 0.

Note: You can display a missing numeric value with a character other than a period
by using the DATA step’s MISSING statement or the MISSING= system option. �

The following example sets the stored value of NAME to a missing character value if
NAME has a value of “none”:

if name="none" then name=’ ’;

Alternatively, if you want to set to a missing value for one or more variable values,
you can use the CALL MISSING routine. For example,

call missing(sales, name);

sets both variable values to a missing value.

Note: You can mix character and numeric variables in the CALL MISSING routine
argument list. �

How to Check for Missing Values in a DATA Step
You can use the N and NMISS functions to return the number of nonmissing and

missing values, respectively, from a list of numeric arguments.
When you check for ordinary missing numeric values, you can use code that is

similar to the following:

if numvar=. then do;

If your data contains special missing values, you can check for either an ordinary or
special missing value with a statement that is similar to the following:

if numvar<=.z then do;

To check for a missing character value, you can use a statement that is similar to the
following:

if charvar=’ ’ then do;

The MISSING function enables you to check for either a character or numeric missing
value, as in:

if missing(var) then do;

In each case, SAS checks whether the value of the variable in the current observation
satisfies the condition specified. If it does, SAS executes the DO group.

Note: Missing values have a value of false when you use them with logical
operators such as AND or OR. �

109

C H A P T E R

7
Expressions

Definitions for SAS Expressions 110
Examples of SAS Expressions 110

SAS Constants in Expressions 110

Definition 110

Character Constants 111

Using Quotation Marks With Character Constants 111
Comparing Character Constants and Character Variables 111

Character Constants Expressed in Hexadecimal Notation 112

Numeric Constants 112

Numeric Constants Expressed in Standard Notation 112

Numeric Constants Expressed in Scientific Notation 113

Numeric Constants Expressed in Hexadecimal Notation 113
Date, Time, and Datetime Constants 113

Bit Testing Constants 114

Avoiding a Common Error With Constants 115

SAS Variables in Expressions 116

Definition 116
Automatic Numeric-Character Conversion 116

SAS Functions in Expressions 117

SAS Operators in Expressions 117

Definitions 117

Arithmetic Operators 118
Comparison Operators 118

Numeric Comparisons 119

The IN Operator in Numeric Comparisons 120

Character Comparisons 120

The IN Operator in Character Comparisons 121

Logical (Boolean) Operators and Expressions 121
The AND Operator 121

The OR Operator 122

The NOT Operator 122

Boolean Numeric Expressions 122

The MIN and MAX Operators 123
The Concatenation Operator 123

Order of Evaluation in Compound Expressions 124

110 Definitions for SAS Expressions � Chapter 7

Definitions for SAS Expressions
expression

is generally a sequence of operands and operators that form a set of instructions
that are performed to produce a resulting value. You use expressions in SAS
program statements to create variables, assign values, calculate new values,
transform variables, and perform conditional processing. SAS expressions can
resolve to numeric values, character values, or Boolean values.

operands
are constants or variables that can be numeric or character.

operators
are symbols that represent a comparison, arithmetic calculation, or logical
operation; a SAS function; or grouping parentheses.

simple expression
is an expression with no more than one operator. A simple expression can consist
of a single

� constant
� variable
� function.

compound expression
is an expression that includes several operators. When SAS encounters a
compound expression, it follows rules to determine the order in which to evaluate
each part of the expression.

WHERE expressions
is a type of SAS expression that is used within a WHERE statement or WHERE=
data set option to specify a condition for selecting observations for processing in a
DATA or PROC step. For syntax and further information on WHERE expressions,
see Chapter 12, “WHERE-Expression Processing,” on page 197 and SAS Language
Reference: Dictionary

Examples of SAS Expressions
The following are examples of SAS expressions:
� 3

� x

� x+1

� age<100

� trim(last)||’, ’||first

SAS Constants in Expressions

Definition
A SAS constant is a number or a character string that indicates a fixed value.

Constants can be used as expressions in many SAS statements, including variable

Expressions � Comparing Character Constants and Character Variables 111

assignment and IF-THEN statements. They can also be used as values for certain
options. Constants are also called literals.

The following are types of SAS constants:
� character
� numeric
� date, time, and datetime
� bit testing.

Character Constants
A character constant consists of 1 to 32,767 characters and must be enclosed in

quotation marks. Character constants can also be represented in hexadecimal form.

Using Quotation Marks With Character Constants
In the following SAS statement, Tom is a character constant:

if name=’Tom’ then do;

If a character constant includes a single quotation mark, surround it with double
quotation marks. For example, to specify the character value Tom’s as a constant, enter

name="Tom’s"

Another way to write the same string is to enclose the string in single quotation marks
and to express the apostrophe as two consecutive quotation marks. SAS treats the two
consecutive quotation marks as one quotation mark:

name=’Tom’’s’

The same principle holds true for double quotation marks:

name="Tom""s"

CAUTION:
Matching quotation marks correctly is important. Missing or extraneous quotation marks
cause SAS to misread both the erroneous statement and the statements that follow
it. For example, in name=’O’Brien’;, O is the character value of NAME, Brien is
extraneous, and ’; begins another quoted string. �

Comparing Character Constants and Character Variables
It is important to remember that character constants are enclosed in quotation

marks, but names of character variables are not. This distinction applies wherever you
can use a character constant, such as in titles, footnotes, labels, and other descriptive
strings; in option values; and in operating environment-specific strings, such as file
specifications and commands.

The following statements use character constants:
� x=’abc’;

� if name=’Smith’ then do;

The following statements use character variables:
� x=abc;

� if name=Smith then do;

112 Character Constants Expressed in Hexadecimal Notation � Chapter 7

In the second set of examples, SAS searches for variables named ABC and SMITH,
instead of constants.

Note: SAS distinguishes between uppercase and lowercase when comparing quoted
values. For example, the character values ’Smith’ and ’SMITH’ are not equivalent. �

Character Constants Expressed in Hexadecimal Notation
SAS character constants can be expressed in hexadecimal notation. A character hex

constant is a string of an even number of hex characters enclosed in single or double
quotation marks, followed immediately by an X, as in this example:

’534153’x

A comma can be used to make the string more readable, but it is not part of and does
not alter the hex value. If the string contains a comma, the comma must separate an
even number of hex characters within the string, as in this example:

if value=’3132,3334’x then do;

CAUTION:
Trailing blanks or leading blanks cause an error. Any trailing blanks or leading blanks
within the quotation marks cause an error message to be written to the log. �

Numeric Constants
A numeric constant is a number that appears in a SAS statement. Numeric

constants can be presented in many forms, including
� standard notation
� scientific (E) notation
� hexadecimal notation.

Numeric Constants Expressed in Standard Notation
Most numeric constants are written just as numeric data values are. The numeric

constant in the following expression is 100:

part/all*100

Numeric constants can be expressed in standard notation in the following ways:

Table 7.1 Standard Notation for Numeric Constants

Numeric Constant Description

1 is an unsigned integer

–5 contains a minus sign

+49 contains a plus sign

Expressions � Date, Time, and Datetime Constants 113

Numeric Constant Description

1.23 contains decimal places

01 contains a leading zero which is not significant

Numeric Constants Expressed in Scientific Notation
In scientific notation, the number before the E is multiplied by the power of ten that

is indicated by the number after the E. For example, 2E4 is the same as 2x104 or
20,000. For numeric constants larger than (1032)−1, you must use scientific notation.
Additional examples follow:

� 1.2e23

� 0.5e-10

Numeric Constants Expressed in Hexadecimal Notation
A numeric constant that is expressed as a hexadecimal value starts with a numeric

digit (usually 0), can be followed by more hexadecimal digits, and ends with the letter
X. The constant can contain up to 16 valid hexadecimal digits (0 to 9, A to F). The
following are numeric hex constants:

� 0c1x

� 9x

You can use numeric hex constants in a DATA step, as follows:

data test;
input abend pib2.;
if abend=0c1x or abend=0b0ax then do;
… more SAS statements …

run;

Date, Time, and Datetime Constants
You can create a date constant, time constant, or datetime constant by specifying the

date or time in single or double quotation marks, followed by a D (date), T (time), or DT
(datetime) to indicate the type of value.

Any trailing blanks or leading blanks included within the quotation marks will not
affect the processing of the date constant, time constant, or datetime constant.

Use the following patterns to create date and time constants:

’ddmmm<yy>yy’D or "ddmmm<yy>yy"D represents a SAS date value:
� date=’1jan2006’d;

� date=’01jan04’d;

’hh:mm<:ss.s>’T or "hh:mm<:ss.s>"T represents a SAS time value:
� time=’9:25’t;

� time=’9:25:19pm’t;

’ddmmm<yy>yy:hh:mm<:ss.s>’DT or "ddmmm<yy>yy:hh:mm<:ss.s>"DT represents a
SAS datetime value:

� if begin=’01may04:9:30:00’dt then end=’31dec90:5:00:00’dt;

� dtime=’18jan2003:9:27:05am’dt;

114 Bit Testing Constants � Chapter 7

For more information on SAS dates, refer to Chapter 8, “Dates, Times, and
Intervals,” on page 127.

Bit Testing Constants
Bit masks are used in bit testing to compare internal bits in a value’s representation.

You can perform bit testing on both character and numeric variables. The general form
of the operation is:

expression comparison-operator bit-mask

The following are the components of the bit-testing operation:

expression
can be any valid SAS expression. Both character and numeric variables can be bit
tested. When SAS tests a character value, it aligns the left-most bit of the mask
with the left-most bit of the string; the test proceeds through the corresponding
bits, moving to the right. When SAS tests a numeric value, the value is truncated
from a floating-point number to a 32-bit integer. The right-most bit of the mask is
aligned with the right-most bit of the number, and the test proceeds through the
corresponding bits, moving to the left.

comparison-operator
compares an expression with the bit mask. Refer to “Comparison Operators” on
page 118 for a discussion of these operators.

bit-mask
is a string of 0s, 1s, and periods in quotation marks that is immediately followed
by a B. Zeros test whether the bit is off; ones test whether the bit is on; and
periods ignore the bit. Commas and blanks can be inserted in the bit mask for
readability without affecting its meaning.

CAUTION:
Truncation can occur when SAS uses a bit mask. If the expression is longer than the bit
mask, SAS truncates the expression before it compares it with the bit mask. A false
comparison may result. An expression’s length (in bits) must be less than or equal to
the length of the bit mask. If the bit mask is longer than a character expression, SAS
prints a warning in the log, stating that the bit mask is truncated on the left, and
continues processing. �

The following example tests a character variable:

if a=’..1.0000’b then do;

If the third bit of A (counting from the left) is on, and the fifth through eighth bits are
off, the comparison is true and the expression result is 1. Otherwise, the comparison is
false and the expression result is 0. The following is a more detailed example:

data test;
input @88 bits $char1.;
if bits=’10000000’b
then category=’a’;

else if bits=’01000000’b
then category=’b’;

else if bits=’00100000’b
then category=’c’;
run;

Expressions � Avoiding a Common Error With Constants 115

Note: Bit masks cannot be used as bit literals in assignment statements. For
example, the following statement is not valid:

x=’0101’b; /* incorrect */

�

The $BINARYw. and BINARYw. formats and the $BINARYw., BINARYw.d, and
BITSw.d informats can be useful for bit testing. You can use them to convert character
and numeric values to their binary values, and vice versa, and to extract specified bits
from input data. See SAS Language Reference: Dictionary for complete descriptions of
these formats and informats.

Avoiding a Common Error With Constants
When you use a string in quotation marks followed by a variable name, always put a

blank space between the closing quotation mark and the variable name. Otherwise,
SAS might interpret a character constant followed by a variable name as a special SAS
constant as illustrated in this table.

Table 7.2 Characters That Cause Misinterpretation When Following a Character
Constant

Characters that follow a
character constant Possible interpretation Examples

b bit testing constant ’00100000’b

d date constant ’01jan04’d

dt datetime constant ’18jan2005:9:27:05am’dt

n name literal ’My Table’n

t time constant ’9:25:19pm’t

x hexadecimal notation ’534153’x

In the following example, ’821’t is evaluated as a time constant. For more information
about SAS time constants, see “Date, Time, and Datetime Constants” on page 113.

data work.europe;
set ia.europe;
if flight=’821’then

flight=’230’;
run;

The program writes the following lines to the SAS log:

Output 7.1 Log Results from an Error Caused by a Time Literal Misinterpretation

ERROR: Invalid date/time/datetime constant ’821’t.
ERROR 77--185: Invalid number conversion on ’821’t.

ERROR 388--185: Expecting an arithmetic operator.

Inserting a blank space between the ending quotation mark and the succeeding
character in the IF statement eliminates this misinterpretation. No error message is

116 SAS Variables in Expressions � Chapter 7

generated and all observations with a FLIGHT value of 821 are replaced with a value of
230.

if flight=’821’ then
flight=’230’;

SAS Variables in Expressions

Definition
variable

is a set of data values that describe a given characteristic. A variable can be used
in an expression.

Automatic Numeric-Character Conversion
If you specify a variable in an expression, but the variable value does not match the

type called for, SAS attempts to convert the value to the expected type. SAS
automatically converts character variables to numeric variables and numeric variables
to character variables, according to the following rules:

� If you use a character variable with an operator that requires numeric operands,
such as the plus sign, SAS converts the character variable to numeric.

� If you use a comparison operator, such as the equal sign, to compare a character
variable and a numeric variable, the character variable is converted to numeric.

� If you use a numeric variable with an operator that requires a character value,
such as the concatenation operator, the numeric value is converted to character
using the BEST12. format. Because SAS stores the results of the conversion
beginning with the right-most byte, you must store the converted values in a
variable of sufficient length to accommodate the BEST12. format. You can use the
LEFT function to left-justify a result.

� If you use a numeric variable on the left side of an assignment statement and a
character variable on the right, the character variable is converted to numeric. In
the opposite situation, where the character variable is on the left and the numeric
is on the right, SAS converts the numeric variable to character using the BESTn.
format, where n is the length of the variable on the left.

When SAS performs an automatic conversion, it prints a note in the SAS log
informing you that the conversion took place. If converting a character variable to
numeric produces invalid numeric values, SAS assigns a missing value to the result,
prints an error message in the log, and sets the value of the automatic variable
ERROR to 1.

Note: You can also use the PUT and INPUT functions to convert data values. These
functions can be more efficient than automatic conversion. See “The Concatenation
Operator” on page 123 for an example of the PUT function. See SAS Language
Reference: Dictionary for more details on these functions. �

For more information on SAS variables, see Chapter 5, “SAS Variables,” on page 77
or the SAS Language Reference: Dictionary.

Expressions � Definitions 117

SAS Functions in Expressions
A SAS function is a keyword that you use to perform a specific computation or

system manipulation. Functions return a value, might require one or more arguments,
and can be used in expressions. For further information on SAS functions, see SAS
Language Reference: Dictionary.

SAS Operators in Expressions

Definitions
A SAS operator is a symbol that represents a comparison, arithmetic calculation, or

logical operation; a SAS function; or grouping parentheses. SAS uses two major kinds
of operators:

� prefix operators
� infix operators.

A prefix operator is an operator that is applied to the variable, constant, function, or
parenthetic expression that immediately follows it. The plus sign (+) and minus sign (−)
can be used as prefix operators. The word NOT and its equivalent symbols are also
prefix operators. The following are examples of prefix operators used with variables,
constants, functions, and parenthetic expressions:

� +y

� -25

� -cos(angle1)

� +(x*y)

An infix operator applies to the operands on each side of it, for example, 6<8. Infix
operators include the following:

� arithmetic
� comparison
� logical, or Boolean
� minimum
� maximum
� concatenation.

When used to perform arithmetic operations, the plus and minus signs are infix
operators.

SAS also provides several other operators that are used only with certain SAS
statements. The WHERE statement uses a special group of SAS operators, valid only
when used with WHERE expressions. For a discussion of these operators, see Chapter
12, “WHERE-Expression Processing,” on page 197.

118 Arithmetic Operators � Chapter 7

Arithmetic Operators
Arithmetic operators indicate that an arithmetic calculation is performed, as shown

in the following table:

Table 7.3 Arithmetic Operators

Symbol Definition Example Result

** exponentiation a**3 raise A to the third
power

* multiplication1 2*y multiply 2 by the
value of Y

/ division var/5 divide the value of
VAR by 5

+ addition num+3 add 3 to the value of
NUM

- subtraction sale-discount subtract the value of
DISCOUNT from the
value of SALE

1 The asterisk (*) is always necessary to indicate multiplication; 2Y and 2(Y) are not valid expressions.

If a missing value is an operand for an arithmetic operator, the result is a missing
value. See Chapter 6, “Missing Values,” on page 101 for a discussion of how to prevent
the propagation of missing values.

See “Order of Evaluation in Compound Expressions” on page 124 for the order in
which SAS evaluates these operators.

Comparison Operators
Comparison operators set up a comparison, operation, or calculation with two

variables, constants, or expressions. If the comparison is true, the result is 1. If the
comparison is false, the result is 0.

Comparison operators can be expressed as symbols or with their mnemonic
equivalents, which are shown in the following table:

Table 7.4 Comparison Operators

Symbol Mnemonic
Equivalent

Definition Example

= EQ equal to a=3

^= NE not equal to1 a ne 3

= NE not equal to

~= NE not equal to

> GT greater than num>5

< LT less than num<8

>= GE greater than or equal
to2

sales>=300

Expressions � Numeric Comparisons 119

Symbol Mnemonic
Equivalent

Definition Example

<= LE less than or equal to3 sales<=100

IN equal to one of a list num in (3, 4, 5)

1 The symbol you use for NE depends on your terminal.
2 The symbol => is also accepted for compatibility with previous releases of SAS. It is not supported in

WHERE clauses or in PROC SQL.
3 The symbol =< is also accepted for compatibility with previous releases of SAS. It is not supported in

WHERE clauses or in PROC SQL.

See “Order of Evaluation in Compound Expressions” on page 124 for the order in
which SAS evaluates these operators.

Note: You can add a colon (:) modifier to any of the operators to compare only a
specified prefix of a character string. See “Character Comparisons” on page 120 for
details. �

Note: You can use the IN operator to compare a value that is produced by an
expression on the left of the operator to a list of values that are given on the right. The
form of the comparison is:

expression IN (value-1<...,value-n>)

The components of the comparison are as follows:

expression can be any valid SAS expression, but is usually a variable name
when it is used with the IN operator.

value must be a constant.

For examples of using the IN operator, see “The IN Operator in Numeric
Comparisons” on page 120. �

Numeric Comparisons
SAS makes numeric comparisons that are based on values. In the expression A<=B,

if A has the value 4 and B has the value 3, then A<=B has the value 0, or false. If A is
5 and B is 9, then the expression has the value 1, or true. If A and B each have the
value 47, then the expression is true and has the value 1.

Comparison operators appear frequently in IF-THEN statements, as in this example:

if x<y then c=5;
else c=12;

You can also use comparisons in expressions in assignment statements. For example,
the preceding statements can be recoded as follows:

c=5*(x<y)+12*(x>=y);

Since SAS evaluates quantities inside parentheses before performing any operations,
the expressions (x<y) and (x>=y) are evaluated first and the result (1 or 0) is
substituted for the expressions in parentheses. Therefore, if X=6 and Y=8, the
expression evaluates as follows:

c=5*(1)+12*(0)

The result of this statement is C=5.
You might get an incorrect result when you compare numeric values of different

lengths because values less than 8 bytes have less precision than those longer than 8

120 The IN Operator in Numeric Comparisons � Chapter 7

bytes. Rounding also affects the outcome of numeric comparisons. See Chapter 5, “SAS
Variables,” on page 77 for a complete discussion of numeric precision.

A missing numeric value is smaller than any other numeric value, and missing
numeric values have their own sort order (see Chapter 6, “Missing Values,” on page 101
for more information).

The IN Operator in Numeric Comparisons
You can use the IN operator for specifying sequential integers in an IN list. The

increment value is always +1. The following statements produce the same results:

� y = x in (1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

� y = x in (1:10);

In a DATA step, you can also use a shorthand notation to specify a range of
sequential integers with other values within an IN list, as the following example shows:

if x in (0,9,1:5);

Note: PROC SQL or WHERE clauses do not support this syntax. �

Character Comparisons
You can perform comparisons on character operands, but the comparison always

yields a numeric result (1 or 0). Character operands are compared character by
character from left to right. Character order depends on the collating sequence, usually
ASCII or EBCDIC, used by your computer.

For example, in the EBCDIC and ASCII collating sequences, G is greater than A;
therefore, this expression is true:

’Gray’>’Adams’

Two character values of unequal length are compared as if blanks were attached to
the end of the shorter value before the comparison is made. A blank, or missing
character value, is smaller than any other printable character value. For example,
because . is less than h, this expression is true:

’C. Jones’<’Charles Jones’

Since trailing blanks are ignored in a comparison, ’fox ’ is equivalent to ’fox’.
However, because blanks at the beginning and in the middle of a character value are
significant to SAS, ’ fox’ is not equivalent to ’fox’.

You can compare only a specified prefix of a character string by using a colon (:) after
the comparison operator. In the following example, the colon modifier after the equal
sign tells SAS to look at only the first character of values of the variable LASTNAME
and to select the observations with names beginning with the letter S:

if lastname=:’S’;

Because printable characters are greater than blanks, both of the following
statements select observations with values of LASTNAME that are greater than or
equal to the letter S:

� if lastname>=’S’;

� if lastname>=:’S’;

Expressions � The AND Operator 121

The operations that are discussed in this section show you how to compare entire
character strings and the beginnings of character strings. Several SAS character
functions enable you to search for and extract values from within character strings. See
SAS Language Reference: Dictionary for complete descriptions of all SAS functions.

The IN Operator in Character Comparisons
You can use the IN operator with character strings to determine whether a variable’s

value is among a list of character values. The following statements produce the same
results:

� if state in (’NY’,’NJ’,’PA’) then region+1;

� if state=’NY’ or state=’NJ’ or state=’PA’ then region+1;

Logical (Boolean) Operators and Expressions
Logical operators, also called Boolean operators, are usually used in expressions to

link sequences of comparisons. The logical operators are shown in the following table:

Table 7.5 Logical Operators

Symbol Mnemonic Equivalent Example

& AND (a>b & c>d)

| OR1 (a>b or c>d)

! OR

¦ OR

NOT2 not(a>b)

Nˆ OT

~ NOT

1 The symbol you use for OR depends on your operating environment.
2 The symbol you use for NOT depends on your operating environment.

See “Order of Evaluation in Compound Expressions” on page 124 for the order in
which SAS evaluates these operators.

In addition, a numeric expression without any logical operators can serve as a
Boolean expression. For an example of Boolean numeric expressions, see “Boolean
Numeric Expressions” on page 122.

The AND Operator
If both of the quantities linked by AND are 1 (true), then the result of the AND

operation is 1; otherwise, the result is 0. For example, in the following comparison:

a<b & c>0

the result is true (has a value of 1) only when both A<B and C>0 are 1 (true): that is,
when A is less than B and C is positive.

Two comparisons with a common variable linked by AND can be condensed with an
implied AND. For example, the following two subsetting IF statements produce the
same result:

122 The OR Operator � Chapter 7

� if 16<=age and age<=65;

� if 16<=age<=65;

The OR Operator
If either of the quantities linked by an OR is 1 (true), then the result of the OR

operation is 1 (true); otherwise, the OR operation produces a 0. For example, consider
the following comparison:

a<b|c>0

The result is true (with a value of 1) when A<B is 1 (true) regardless of the value of C.
It is also true when the value of C>0 is 1 (true), regardless of the values of A and B.
Therefore, it is true when either or both of those relationships hold.

Be careful when using the OR operator with a series of comparisons (in an IF,
SELECT, or WHERE statement, for instance). Remember that only one comparison in a
series of OR comparisons must be true to make a condition true, and any nonzero,
nonmissing constant is always evaluated as true (see “Boolean Numeric Expressions”
on page 122). Therefore, the following subsetting IF statement is always true:

if x=1 or 2;

SAS first evaluates X=1, and the result can be either true or false; however, since the 2
is evaluated as nonzero and nonmissing (true), the entire expression is true. In this
statement, however, the condition is not necessarily true because either comparison can
evaluate as true or false:

if x=1 or x=2;

The NOT Operator
The prefix operator NOT is also a logical operator. The result of putting NOT in front

of a quantity whose value is 0 (false) is 1 (true). That is, the result of negating a false
statement is 1 (true). For example, if X=Y is 0 (false) then NOT(X=Y) is 1 (true). The
result of NOT in front of a quantity whose value is missing is also 1 (true). The result
of NOT in front of a quantity with a nonzero, nonmissing value is 0 (false). That is, the
result of negating a true statement is 0 (false).

For example, the following two expressions are equivalent:
� not(name=’SMITH’)

� name ne ’SMITH’

Furthermore, NOT(A&B) is equivalent to NOT A|NOT B, and NOT(A|B) is the
same as NOT A & NOT B. For example, the following two expressions are equivalent:

� not(a=b & c>d)

� a ne b | c le d

Boolean Numeric Expressions
In computing terms, a value of true is a 1 and a value of false is a 0. In SAS, any

numeric value other than 0 or missing is true, and a value of 0 or missing is false.
Therefore, a numeric variable or expression can stand alone in a condition. If its value
is a number other than 0 or missing, the condition is true; if its value is 0 or missing,
the condition is false.

Expressions � The Concatenation Operator 123

0 | . = False
1 = True

For example, suppose that you want to fill in variable REMARKS depending on
whether the value of COST is present for a given observation. You can write the
IF-THEN statement as follows:

if cost then remarks=’Ready to budget’;

This statement is equivalent to:

if cost ne . and cost ne 0
then remarks=’Ready to budget’;

A numeric expression can be simply a numeric constant, as follows:

if 5 then do;

The numeric value that is returned by a function is also a valid numeric expression:

if index(address,’Avenue’) then do;

The MIN and MAX Operators
The MIN and MAX operators are used to find the minimum or maximum value of

two quantities. Surround the operators with the two quantities whose minimum or
maximum value you want to know. The MIN (><) operator returns the lower of the two
values. The MAX (<>) operator returns the higher of the two values. For example, if
A<B, then A><B returns the value of A.

If missing values are part of the comparison, SAS uses the sorting order for missing
values that is described in “Order of Missing Values” on page 103. For example, the
maximum value that is returned by .A<>.Z is the value .Z.

Note: In a WHERE statement or clause, the <> operator is equivalent to NE. �

The Concatenation Operator
The concatenation operator (||) concatenates character values. The results of a

concatenation operation are usually stored in a variable with an assignment statement,
as in level=’grade ’||’A’. The length of the resulting variable is the sum of the
lengths of each variable or constant in the concatenation operation, unless you use a
LENGTH or ATTRIB statement to specify a different length for the new variable.

The concatenation operator does not trim leading or trailing blanks. If variables are
padded with trailing blanks, check the lengths of the variables and use the TRIM
function to trim trailing blanks from values before concatenating them. See SAS
Language Reference: Dictionary for descriptions and examples of additional character
functions.

For example, in this DATA step, the value that results from the concatenation
contains blanks because the length of the COLOR variable is eight:

data namegame;
length color name $8 game $12;
color=’black’;
name=’jack’;
game=color||name;
put game=;

run;

124 Order of Evaluation in Compound Expressions � Chapter 7

The value of GAME is ’black jack’. To correct this problem, use the TRIM
function in the concatenation operation as follows:

game=trim(color)||name;

This statement produces a value of ’blackjack’ for the variable GAME. The following
additional examples demonstrate uses of the concatenation operator:

� If A has the value ’fortune’, B has the value ’five’, and C has the value
’hundred’, then the following statement produces the value
’fortunefivehundred’ for the variable D:

d=a||b||c;

� This example concatenates the value of a variable with a character constant.

newname=’Mr. or Ms. ’ ||oldname;

If the value of OLDNAME is ’Jones’, then NEWNAME will have the value ’Mr.
or Ms. Jones’.

� Because the concatenation operation does not trim blanks, the following
expression produces the value ’JOHN SMITH’:

name=’JOHN ’||’SMITH’;

� This example uses the PUT function to convert a numeric value to a character
value. The TRIM function is used to trim blanks.

month=’sep’;
year=99;
date=trim(month) || left(put(year,8.));

The value of DATE is the character value’sep99’.

Order of Evaluation in Compound Expressions
Table 7.6 on page 125 shows the order of evaluation in compound expressions. The

table contains the following columns:

Priority
lists the priority of evaluation. In compound expressions, SAS evaluates the part
of the expression containing operators in Group I first, then each group in order.

Order of Evaluation
lists the rules governing which part of the expression SAS evaluates first.
Parentheses are often used in compound expressions to group operands;
expressions within parentheses are evaluated before those outside of them. The
rules also list how a compound expression that contains more than one operator
from the same group is evaluated.

Symbols
lists the symbols that you use to request the comparisons, operations, and
calculations.

Mnemonic Equivalent
lists alternate forms of the symbol. In some cases, such as when your keyboard
does not support special symbols, you should use the alternate form.

Definition
defines the symbol.

Expressions � Order of Evaluation in Compound Expressions 125

Example
provides an example of how to use the symbol or mnemonic equivalent in a SAS
expression.

Table 7.6 Order of Evaluation in Compound Expressions

Priority Order of
Evaluation

Symbols Mnemonic
Equivalent

Definition Example

Group I right to
left

** exponentiation1 y=a**2;

+ positive prefix2 y=+(a*b);

- negative prefix3 z=-(a+b);

˜ˆ NOT logical not4 if not z
then put x;

>< MIN minimum5 x=(a><b);

<> MAX maximum x=(a<>b);

Group II left to
right

* multiplication c=a*b;

/ division f=g/h;

Group III left to
right

+ addition c=a+b;

- subtraction f=g-h;

Group IV left to
right

|| ¦¦ !! concatenate
character
values6

name=
’J’||’SMITH’;

Group V7 left to
right8

< LT less than if x<y then
c=5;

<= LE less than or
equal to

if x le
y then a=0;

= EQ equal to if y eq (x+a)
then output;

= NE not equal to if x ne z
then output;

>= GE greater than or
equal to

if y>=a
then output;

> GT greater than if z>a
then output;

IN equal to one of a
list

if state in
(’NY’,’NJ’,’PA’)

then region=’NE’;

y = x in (1:10);

126 Order of Evaluation in Compound Expressions � Chapter 7

Group VI left to
right

& AND logical and if a=b & c=d

then x=1;

Group VII left to
right

| ¦ ! OR logical or9 if y=2 or x=3
then a=d;

1 Because Group I operators are evaluated from right to left, the expression x=2**3**4 is evaluated as x=(2**(3**4)).
2 The plus (+) sign can be either a prefix or arithmetic operator. A plus sign is a prefix operator only when it appears at the

beginning of an expression or when it is immediately preceded by a left parenthesis or another operator.
3 The minus (−) sign can be either a prefix or arithmetic operator. A minus sign is a prefix operator only when it appears at

the beginning of an expression or when it is immediately preceded by a left parenthesis or another operator.
4 Depending on the characters available on your keyboard, the symbol can be the not sign (), tilde (~), or caret (^). The SAS

system option CHARCODE allows various other substitutions for unavailable special characters.
5 For example, the SAS System evaluates -3><-3 as -(3><-3), which is equal to -(-3), which equals +3. This is because

Group I operators are evaluated from right to left.
6 Depending on the characters available on your keyboard, the symbol you use as the concatenation operator can be a double

vertical bar (||), broken vertical bar (¦¦), or exclamation mark (!!).
7 Group V operators are comparison operators. The result of a comparison operation is 1 if the comparison is true and 0 if it is

false. Missing values are the lowest in any comparison operation.The symbols =< (less than or equal to) are also allowed for
compatibility with previous versions of the SAS System.When making character comparisons, you can use a colon (:) after
any of the comparison operators to compare only the first character(s) of the value. SAS truncates the longer value to the
length of the shorter value during the comparison. For example, if name=:’P’ compares the value of the first character of
NAME to the letter P.

8 An exception to this rule occurs when two comparison operators surround a quantity. For example, the expression x<y<z is
evaluated as (x<y) and (y<z).

9 Depending on the characters available on your keyboard, the symbol you use for the logical or can be a single vertical bar (|),
broken vertical bar (¦), or exclamation mark (!). You can also use the mnemonic equivalent OR.

127

C H A P T E R

8
Dates, Times, and Intervals

About SAS Date, Time, and Datetime Values 127
Definitions 127

Two-Digit and Four-Digit Years 128

The Year 2000 128

Using the YEARCUTOFF= System Option 128

Example: How YEARCUTOFF= Affects Two and Four-Digit Years 129
Practices That Help Ensure Date Integrity 130

Working with SAS Dates and Times 131

Informats and Formats 131

Date and Time Tools by Task 131

Examples 136

Example 1: Displaying Date, Time, and Datetime Values as Recognizable Dates and
Times 136

Example 2: Reading, Writing, and Calculating Date Values 137

About Date and Time Intervals 137

Definitions 137

Syntax 138
Intervals By Category 138

Example: Calculating a Duration 140

Boundaries of Intervals 141

Single-Unit Intervals 142

Multiunit Intervals 142
Multiunit Intervals Other Than Multiweek Intervals 142

Multiweek Intervals 143

Shifted Intervals 144

How to Use Shifted Intervals 144

How the SAS System Creates Shifted Intervals 144

About SAS Date, Time, and Datetime Values

Definitions
SAS date value

is a value that represents the number of days between January 1, 1960, and a
specified date. SAS can perform calculations on dates ranging from A.D. 1582 to
A.D. 19,900. Dates before January 1, 1960, are negative numbers; dates after are
positive numbers.

� SAS date values account for all leap year days, including the leap year day in
the year 2000.

128 Two-Digit and Four-Digit Years � Chapter 8

� SAS date values can reliably tell you what day of the week a particular day
fell on as far back as September 1752, when the calendar was adjusted by
dropping several days. SAS day-of-the-week and length-of-time calculations
are accurate in the future to A.D. 19,900.

� Various SAS language elements handle SAS date values: functions, formats
and informats.

SAS time value
is a value representing the number of seconds since midnight of the current day.
SAS time values are between 0 and 86400.

SAS datetime value
is a value representing the number of seconds between January 1, 1960 and an
hour/minute/second within a specified date.

The following figure shows some dates written in calendar form and as SAS date
values.

Figure 8.1 How SAS Converts Calendar Dates to SAS Date Values

Two-Digit and Four-Digit Years
SAS software can read two-digit or four-digit year values. If SAS encounters a

two-digit year, the YEARCUTOFF= option can be used to specify which century within
a 100 year span the two-digit year should be attributed to. For example,
YEARCUTOFF=1950 means that two-digit years 50 through 99 correspond to 1950
through 1999, while two-digit years 00 through 49 correspond to 2000 through 2049.
Note that while the default value of the YEARCUTOFF= option in Version 8 of the SAS
System is 1920, you can adjust the YEARCUTOFF= value in a DATA step to
accommodate the range of date values you are working with at the moment. To correctly
handle 2-digit years representing dates between 2000 and 2099, you should specify an
appropriate YEARCUTOFF= value between 1901 and 2000. For more information, see
the “YEARCUTOFF= System Option” in SAS Language Reference: Dictionary.

The Year 2000

Using the YEARCUTOFF= System Option
SAS software treats the year 2000 like any other leap year. If you use two-digit year

numbers for dates, you’ll probably need to adjust the default setting for the

Dates, Times, and Intervals � The Year 2000 129

YEARCUTOFF= option to work with date ranges for your data, or switch to four-digit
years. The following program changes the YEARCUTOFF= value to 1950. This change
means that all two digit dates are now assumed to fall in the 100-year span from 1950
to 2049.

options yearcutoff=1950;
data _null_;

a=’26oct02’d;
put ’SAS date=’a;
put ’formatted date=’a date9.;

run;

The PUT statement writes the following lines to the SAS log:

SAS date=15639
formated date=26OCT2002

Note: Whenever possible, specify a year using all four digits. Most SAS date and
time language elements support four digit year values. �

Example: How YEARCUTOFF= Affects Two and Four-Digit Years

The following example shows what happens with data that contains both two and
four-digit years. Note how the YEARCUTOFF= option is set to 1920.

options yearcutoff=1920 nodate pageno=1 linesize=80 pagesize=60;

data schedule;
input @1 jobid $ @6 projdate mmddyy10.;
datalines;

A100 01/15/25
A110 03/15/2025
A200 01/30/96
B100 02/05/00
B200 06/15/2000
;

proc print data=schedule;
format projdate mmddyy10.;

run;

The resulting output from the PROC PRINT statement looks like this:

Output 8.1 Output from The Previous DATA Step Showing 4–Digit Years That
Result from Setting YEARCUTOFF= to 1920

The SAS System 1

Obs jobid projdate

1 A100 01/15/1925
2 A110 03/15/2025
3 A200 01/30/1996
4 B100 02/05/2000
5 B200 06/15/2000

130 The Year 2000 � Chapter 8

Here are some facts to note in this example:
� In the datalines in the DATA step, the first record contains a two-digit year of 25,

and the second record contains a four-digit year of 2025. Because the
YEARCUTOFF= system option is set to 1920, the two-digit year defaults to a year
in the 1900s in observation number 1. The four-digit year in observation number 2
is unaffected by the YEARCUTOFF= option.

� The third record is similar to the first and defaults to a year in the 1900s based on
the value of YEARCUTOFF=.

� The output from records 4 and 5 shows results that are similar to records 1 and 2.
The fourth record specifies a two-digit year of 00, and the fifth one specifies a
four-digit year of 2000. Because of the value of the YEARCUTOFF= option, the
years in the two resulting observations are the same.

As you can see, specifying a two-digit year may or may not result in the intended
century prefix. The optimal value of the YEARCUTOFF= option depends on the range
of the dates that you are processing.

In Releases 6.06 through 6.12 of SAS, the default value for the YEARCUTOFF=
system option is 1900; in Version 7 and Version 8, the default value is 1920.

For more information on how SAS handles dates, see the section on dates, times and
datetime values.

Practices That Help Ensure Date Integrity
The following practices help ensure that your date values are correct during all the

conversions that occur during processing:
� Store dates as SAS date values, not as simple numeric or character values.
� Use the YEARCUTOFF= system option when converting two-digit dates to SAS

date values.
� Examine sets of raw data coming into your SAS process to make sure that any

dates containing two-digit years will be correctly interpreted by the
YEARCUTOFF= system option. Look out for

� two-digit years that are distributed over more than a 100-year period. For
dates covering more than a 100-year span, you must either use four digit
years in the data, or use conditional logic in a DATA step to interpret them
correctly.

� two-digit years that need an adjustment to the default YEARCUTOFF=
range. For example, if the default value for YEARCUTOFF= in your
operating environment is 1920 and you have a two-digit date in your data
that represents 1919, you will have to adjust your YEARCUTOFF= value
downward by a year in the SAS program that processes this value.

� Make sure that output SAS data sets represent dates as SAS date values.
� Check your SAS programs to make sure that formats and informats that use

two-digit years, such as DATE7., MMDDYY6., or MMDDYY8., are reading and
writing data correctly.

Note: The YEARCUTOFF= option has no effect on dates that are already stored as
SAS date values. �

Dates, Times, and Intervals � Working with SAS Dates and Times 131

Working with SAS Dates and Times

Informats and Formats
The SAS System converts date, time and datetime values back and forth between

calendar dates and clock times with SAS language elements called formats and
informats.

� Formats present a value, recognized by SAS, such as a time or date value, as a
calendar date or clock time in a variety of lengths and notations.

� Informats read notations or a value, such as a clock time or a calendar date, which
may be in a variety of lengths, and then convert the data to a SAS date, time, or
datetime value.

Date and Time Tools by Task
The following table correlates tasks with various SAS System language elements

that are available for working with time and date data.

Table 8.1 Tasks with Dates and Times, Part 1

To do this Use this List Input Result

Write SAS date values in
recognizable forms

Date formats DATEw. 14686 17MAR00

DATE9. 14686 17MAR2000a

DAYw. 14686 17

DDMMYYw. 14686 17/03/00

DDMMYY10. 14686 17/03/2000

DDMMYYBw. 14686 17 03 00

DDMMYYB10. 14686 17 03 2000

DDMMYYCw. 14686 17:03:20

DDMMYYC10. 14686 17:03:2000

DDMMYYDw. 14686 17-03-00

DDMMYYD10. 14686 17-03-2000

DDMMYYNw. 14686 17MAR00

DDMMYYN10 14686 17MAR2000

DDMMYYPw. 14686 17.03.00

DDMMYYP10. 14686 17.03.2000

DDMMYYSw. 14686 17/03/00

DDMMYYS10. 14686 17/03/2000

DOWNAME. 14686 Friday

JULDAYw. 14686 77

JULIANw. 14686 00077

MMDDYYw. 14686 03/17/00

132 Working with SAS Dates and Times � Chapter 8

To do this Use this List Input Result

MMDDYY10. 14686 03/17/2000

MMDDYYBw. 14686 03 17 00

MMDDYYB10.w. 14686 03 17 2000

MMDDYYCw. 14686 03:17:00

MMDDYYC10 14686 03:17:2000

MMDDYYDw. 14686 03-17-00

MMDDYYD10. 14686 03-17-2000

MMDDYYNw. 14686 031700

MMDDYYN10. 14686 03172000

MMDDYYP 14686 03.17.00

MMDDYYP10. 14686 03.17.2000

MMDDYYS 14686 03/17/00

MMDDYYS10. 14686 03/17/2000

MMYY.xw. 14686 03M2000

MMYYCw. 14686 03:2000

MMYYD. 14686 03-2000

MMYYN. 14686 032000

MMYYP. 14686 03.2000

MMYYS. 14686 03/2000

MONNAME. 14686 March

MONTH. 14686 3

MONYY. 14686 MAR2000

PDJULGw. 14686 2000077F

PDJULIw. 14686 0100077F

QTRw. 14686 1

QTRRw. 14686 I

TIMEw.d 14686 4:04:46

TIMEAMPMw.d 14686 4:04:46 AM

TOD 14686 4:04:46

WEEKDATEw. 14686 Friday, March
17, 2000

WEEKDAYw. 14686 6

WORDDATE.w. 14686 March 17,
2000

WORDDATXw. 14686 17 MARCH
2000

YEARw. 14686 2000

YYMMw. 14686 2000M03

Dates, Times, and Intervals � Working with SAS Dates and Times 133

To do this Use this List Input Result

YYMMCw. 14686 2000:03

YYMMDDw. 14686 2000-03

YYMMPw. 14686 2000.03

YYMMS. 14686 2000/03

YYMMN. 14686 200003

YYMMDDw. 14686 00-03-17

YYMON. 14686 2000MAR

YYQxw. 14686 2000Q1

YYQCw. 14686 2000:1

YYQDw. 14686 2000-1

YYQPw. 14686 2000.1

YYQSw. 14686 2000/1

YYQNw. 14686 20001

YYQRw. 14686 2000QI

YYQRCw. 14686 2000:I

YYQRDw. 14686 2000-I

YYQRPw.w. 14686 2000.I

YYQRSw. 14686 2000/I

YYQRNw. 14686 III

Table 8.2 Tasks with Dates and Times, Part 2

To do this Use this List Input Result

Date Tasks

Read calendar dates as
SAS date

Note:
YEARCUTOFF=1920

Date informats DATEw. 17MAR2000 14686

DATE9. 17MAR2000 14686

DDMMYYw. 170300 14686

DDMMYY8. 17032000 14686

JULIANw. 0077 14686

JULIAN7. 2000077 14686

MMDDYYw. 031700 14686

MMDDYY10. 03172000 14686

MONYYw. MAR00 14670

YYMMDDw. 000317 14686

YYMMDD10. 20000317 14686

YYQw. 00Q1 14610

134 Working with SAS Dates and Times � Chapter 8

To do this Use this List Input Result

Create date values from
pieces

Date functions DATEJUL 2000077 14686

DATETIME ’17MAR2000’D,

00,00,00

1268870400

TIME 14,45,32 53132

MDY 03,17,00 14686

MDY 03,17,2000 14686

YYQ 00,1 14610

Extract a date from a
datetime value

Date functions DATEPART ’17MAR00:00:00

’DT

14686

Return today’s date as a
SAS date

Date functions DATE() or
TODAY()
(equivalent)

() SAS date for
today

Extract calendar dates
from SAS

Date functions DAY 14686 17

HOUR 14686 4

JULDATE 14686 77

JULDATE7 14686 2000077

MINUTE 14686 4

MONTH 14686 3

QTR 14686 3

SECOND 14686 46

WEEKDAY 14686 6

YEAR 14686 2000

Write a date as a
constant in an expression

SAS date
constant

’ddmmmyy’d

or

’ddmmmyyyy’

’17mar00’d

’17mar2000’d

14686

Write today’s date as a
string

SYSDATE
automatic
macro variable

SYSDATE &SYSDATE Date at time
of SAS
initialization
in
DDMMMYY

SYSDATE9 SYSDATE9 &SYSDATE9 Date at time
of SAS
initialization
in
DDMMMYYYY

Time Tasks

Write SAS time values
as time values

time formats HHMM. 53132 14:46

HOUR. 53132 15

Dates, Times, and Intervals � Working with SAS Dates and Times 135

To do this Use this List Input Result

MMSS. 53132 885

TIME. 53132 14:45:32

TOD. 53132 14:45:32

Read time values as SAS
time values

Time informats TIME 14:45:32 53132

Write the current time
as a string

SYSTIME
automatic
macro variable

SYSTIME &SYSTIME Time at
moment of
execution in
HH:MM

Return the current time
of day as a SAS time
value

Time functions TIME() () SAS time
value at
moment of
execution in
NNNNN.NN

Return the time part of a
SAS datetime value

Time functions TIMEPART SAS datetime
value in
NNNNNNNNNN.N

SAS time
value part of
date value in
NNNNN.NN

Datetime Tasks

Write SAS datetime
values as datetime
values

Datetime
formats

DATEAMPM 1217083532 26JUL98:02:45
PM

DATETIME 1268870400 17MAR00:00:00

:00

Read datetime values as
SAS datetime values

Datetime
informats

DATETIME 17MAR00:00:00:00 1268870400

Return the current date
and time of day as a SAS
datetime value

Datetime
functions

DATETIME() () SAS datetime
value at
moment of
execution in
NNNNNNNNNN.N

Interval Tasks

Return the number of
specified time intervals
that lie between the two
date or datetime values

Interval
functions

INTCK week 2

01aug60

01jan01

1055

Advances a date, time,
or datetime value by a
given interval, and
returns a date, time, or
datetime value

Interval
functions

INTNX day

14086

01jan60

14086

The SAS System also supports international formats and informats that are
equivalent to some of the most commonly used English-language date formats and
informats. For details, see the SAS formats and informats in SAS Language Reference:
Dictionary.

136 Examples � Chapter 8

Examples

Example 1: Displaying Date, Time, and Datetime Values as Recognizable
Dates and Times

The following example demonstrates how a value may be displayed as a date, a time,
or a datetime. Remember to select the SAS language element that converts a SAS date,
time, or datetime value to the intended date, time or datetime format. See the previous
tables for examples.

Note:

� Time formats count the number of seconds within a day, so the values will be
between 0 and 86400.

� DATETIME formats count the number of seconds since January 1, 1960, so for
datetimes that are greater than 02JAN1960:00:00:01, (integer of 86401) the
datetime value will always be greater than the time value.

� When in doubt, look at the contents of your data set for clues as to which type of
value you are dealing with.

�

This program uses the DATETIME, DATE and TIMEAMPM formats to display the
value 86399 to a date and time, a calendar date, and a time.

data test;
options nodate pageno=1 linesize=80 pagesize=60;
Time1=86399;
format Time1 datetime.;
Date1=86399;
format Date1 date.;
Time2=86399;
format Time2 timeampm.;
run;
proc print data=test;
title ’Same Number, Different SAS Values’;
footnote1 ’Time1 is a SAS DATETIME value’;
footnote2 ’Date1 is a SAS DATE value’;
footnote3 ’Time2 is a SAS TIME value’.;
run;

Output 8.2 Datetime, Date and Time Values for 86399

Same Number, Different SAS Values 1

Obs Time1 Date1 Time2

1 01JAN60:23:59:59 20JUL96 11:59:59 PM

Time1 is a SAS DATETIME value
Date1 is a SAS DATE value
Time2 is a SAS TIME value.

Dates, Times, and Intervals � Definitions 137

Example 2: Reading, Writing, and Calculating Date Values
This program reads four regional meeting dates and calculates the dates on which

announcements should be mailed.

data meeting;
options nodate pageno=1 linesize=80 pagesize=60;

input region $ mtg : mmddyy8.;
sendmail=mtg-45;
datalines;

N 11-24-99
S 12-28-99
E 12-03-99
W 10-04-99
;

proc print data=meeting;
format mtg sendmail date9.;
title ’When To Send Announcements’;

run;

Output 8.3 Calculated Date Values: When to Send Mail

When To Send Announcements

Obs region mtg sendmail

1 N 24NOV1999 10OCT1999
2 S 28DEC1999 13NOV1999
3 E 03DEC1999 19OCT1999
4 W 04OCT1999 20AUG1999

About Date and Time Intervals

Definitions
duration

is an integer representing the difference between any two dates or times or
datetimes. Date durations are integer values representing the difference, in the
number of days, between two SAS dates. Time durations are decimal values
representing the number of seconds between two times or datetimes.
Tip: Date and datetimes durations can be easily calculated by subtracting the

smaller date or datetime from the larger. When dealing with SAS times, special
care must be taken if the beginning and the end of a duration are on different
calendar days. Whenever possible, the simplest solution is to use datetimes
rather than times.

interval
is a unit of measurement that SAS can count within an elapsed period of time,
such as DAYS, MONTHS, or HOURS. The SAS System determines date and time

138 Syntax � Chapter 8

intervals based on fixed points on the calendar and/or the clock. The starting point
of an interval calculation defaults to the beginning of the period in which the
beginning value falls, which may not be the actual beginning value specified. For
instance, if you are using the INTCK function to count the months between two
dates, regardless of the actual day of the month specified by the date in the
beginning value, SAS treats it as the first of that month.

Syntax
SAS provides date, time, and datetime intervals for counting different periods of

elapsed time. You can create multiples of the intervals and shift their starting point.
Use them with the INTCK and INTNX functions and with procedures that support
numbered lists (such as the PLOT procedure). The form of an interval is

name<multiple>< .starting-point>

The terms in an interval have the following definitions:

name
is the name of the interval. See the following table for a list of intervals and their
definitions.

multiple
creates a multiple of the interval. Multiple can be any positive number. The
default is 1. For example, YEAR2 indicates a two-year interval.

.starting-point
is the starting point of the interval. By default, the starting point is 1. A value
greater than 1 shifts the start to a later point within the interval. The unit for
shifting depends on the interval, as shown in the following table. For example,
YEAR.3 specifies a yearly period from the first of March through the end of
February of the following year.

Intervals By Category

Table 8.3 Intervals Used with Date and Time Functions

Category Interval Definition Default
Starting Point

Shift Period Example Description

Date DAY Daily intervals Each day Days DAY3 Three-day
intervals
starting on
Sunday

WEEK Weekly
intervals of
seven days

Each Sunday Days
(1=Sunday …
7=Saturday)

WEEK.7 Weekly with
Saturday as
the first day
of the week

WEEKDAY

<daysW>

Daily intervals
with Friday-
Saturday-
Sunday

Each day Days WEEKDAY1W Six-day week
with Sunday
as a weekend
day

Dates, Times, and Intervals � Intervals By Category 139

Category Interval Definition Default
Starting Point

Shift Period Example Description

counted as
the same day
(five-day work
week with a
Saturday-
Sunday
weekend).
Days
identifies the
weekend days
by number
(1=Sunday ...
7=Saturday).
By default,
days=17.

WEEKDAY35W Five-day
week with
Tuesday and
Thursday as
weekend days
(W indicates
that day 3
and day 5 are
weekend
days)

TENDAY Ten-day
intervals (a
U.S.
automobile
industry
convention)

First, eleventh,
and
twenty-first of
each month

Ten-day
periods

TENDAY4.2 Four ten-day
periods
starting at
the second
TENDAY
period

SEMIMONTH Half-month
intervals

First and
sixteenth of
each month

Semi-monthly
periods

SEMIMONTH2.2 Intervals
from the
sixteenth of
one month
through the
fifteenth of
the next
month

MONTH Monthly
intervals

First of each
month

Months MONTH2.2 February-
March,
April-May,
June-July,
August-
September,
October-
November,
and
December-
January of
the following
year

January 1

April 1

July 1

QTR Quarterly
(three-month)
intervals

October 1

Months QTR3.2 Three-month
intervals
starting on
April 1, July
1, October 1,
and January
1

140 Example: Calculating a Duration � Chapter 8

Category Interval Definition Default
Starting Point

Shift Period Example Description

January 1SEMIYEAR Semiannual
(six-month)
intervals

July 1

Months SEMIYEAR.3 Six-month
intervals,
March-
August and
September-
February

YEAR Yearly
intervals

January 1 Months

DTMONTHDatetime Add DT To any date
interval

Midnight of
January 1,
1960

DTWEEKDAY

Time SECOND Second
intervals

Start of the
day (midnight)

Seconds

MINUTE Minute
intervals

Start of the
day (midnight)

Minutes

HOUR Hourly
intervals

Start of the
day (midnight)

Hours

Example: Calculating a Duration
This program reads the project start and end dates and calculates the duration

between them.

data projects;
options nodate pageno=1 linesize=80 pagesize=60;

input Projid startdate date9. enddate date9.;
Duration=enddate-startdate;
datalines;

398 17oct1997 02nov1997
942 22jan1998 10mar1998
167 15dec1999 15feb2000
250 04jan2001 11jan2001
;

proc print data=projects;
format startdate enddate date9.;

title ’Days Between Project Start and Project End’;
run;

Dates, Times, and Intervals � Boundaries of Intervals 141

Output 8.4 Output from the PRINT Procedure

Days Between Project Start and Project End run 8

Obs Projid Startdate Enddate Duration

1 398 17OCT1997 02NOV1997 16
2 942 22JAN1998 10MAR1998 47
3 167 15DEC1999 15FEB2000 62
4 250 04JAN2001 11JAN2001 7

Boundaries of Intervals
The SAS System associates date and time intervals with fixed points on the calendar.

For example, the MONTH interval represents the time from the beginning of one
calendar month to the next, not a period of 30 or 31 days. When you use date and time
intervals (for example, with the INTCK or INTNX functions), the SAS System bases its
calculations on the calendar divisions that are present. Consider the following examples:

Table 8.4 Using INTCK And INTNX

Example Results Explanation

mnthnum1=
intck(
’month’,
’25aug2000’d,
’05sep2000’d);

mnthnum1=1

mnthnum2=
intck(
’month’,
’01aug2000’d,
’31aug2000’d);

mnthnum2=0

The number of MONTH
intervals the INTCK function
counts depends on whether the
first day of a month falls
within the period.

next=intnx(
’month’,
’25aug2000’d,1);

next represents 01sep2000 The INTNX function produces
the SAS date value that
corresponds to the beginning of
the next interval.

Note: The only intervals that do not begin on the same date in each year are WEEK
and WEEKDAY. A Sunday can occur on any date because the year is not divided evenly
into weeks. �

142 Single-Unit Intervals � Chapter 8

Single-Unit Intervals
Single-unit intervals begin at the following points on the calendar:

Table 8.5 Single-Unit Intervals

These single-unit intervals Begin at this point on the
calendar

DAY and WEEKDAY each day

WEEK each Sunday

TENDAY the first, eleventh, and
twenty-first of each month

SEMIMONTH the first and sixteenth of each
month

MONTH the first of each month

QTR the first of January, April, July
and October

SEMIYEAR the first of January and July

YEAR the first of January

Single-unit time intervals begin as follows:

Table 8.6 Single-Unit Time Intervals

These single-unit time intervals Begin at this point

SECOND each second

MINUTE each minute

HOUR each hour

Multiunit Intervals

Multiunit Intervals Other Than Multiweek Intervals
Multiunit intervals, such as MONTH2 or DAY50, also depend on calendar measures,

but they introduce a new problem: the SAS System can find the beginning of a unit (for
example, the first of a month), but where does that unit fall in the interval? For
example, does the first of October mark the first or the second month in a two-month
interval?

For all multiunit intervals except multiweek intervals, the SAS System creates an
interval beginning on January 1, 1960, and counts forward from that date to determine
where individual intervals begin on the calendar. As a practical matter, when a year
can be divided evenly by an interval, think of the intervals as beginning with the
current year. Thus, MONTH2 intervals begin with January, March, May, July,
September, and November. Consider this example:

Dates, Times, and Intervals � Multiunit Intervals 143

Table 8.7 Month2 Intervals

SAS statements Results

howmany1=intck
(’month2’,’15feb2000’d,’15mar2000’d);

howmany1=1

count=intck
(’day50’,’01oct2000’d,’01jan2000’d);

count=1

In the above example, the SAS System counts 50 days beginning with January 1, 1960;
then another 50 days; and so on. As part of this count, the SAS System counts one
DAY50 interval between October 1, 1998 and January 1, 1999. As an example, to
determine the date on which the next DAY50 interval begins, use the INTNX function,
as follows:

Table 8.8 Using the INTNX Function

SAS statements Results

start=intnx
(’day50’,’01oct98’d,1);

SAS date value 14200, or Nov 17, 1998

The next interval begins on November 17, 1998.
Time intervals (those that represent divisions of a day) are aligned with the start of

the day, that is, midnight. For example, HOUR8 intervals divide the day into the
periods 00:00 to 08:00, 8:00 to 16:00, and 16:00 to 24:00 (the next midnight).

Multiweek Intervals
Multiweek intervals, such as WEEK2, present a special case. In general, weekly

intervals begin on Sunday, and the SAS System counts a week whenever it passes a
Sunday. However, the SAS System cannot calculate multiweek intervals based on
January 1, 1960, because that date fell on a Friday, as shown:

Figure 8.2 Calculating Multi Week Intervals

Dec

1959

Su Mo Tu We Th Fr Sa Jan

27 28 29 30 31 1 2 1960

Therefore, the SAS System begins the first interval on Sunday of the week containing
January 1, 1960—that is, on Sunday, December 27, 1959. The SAS System counts
multiweek intervals from that point. The following example counts the number of
two-week intervals in the month of August, 1998:

Table 8.9 Counting Two-Week Intervals

SAS statements Results

count=intck
(’week2’,’01aug98’D, ’31aug98’D);

count=3

144 Shifted Intervals � Chapter 8

To see the beginning date of the next interval, use the INTNX function, as shown here:

Table 8.10 Using INTNX to See The Beginning Date of an Interval

SAS statements Results

begin=intnx(’week2’,’01aug1998’d,1); “Begin” represents SAS date 14093 or
August 02, 1998

The next interval begins on August 16.

Shifted Intervals
Shifting the beginning point of an interval is useful when you want to make the

interval represent a period in your data. For example, if your company’s fiscal year
begins on July 1, you can create a year beginning in July by specifying the YEAR.7
interval. Similarly, you can create a period matching U.S. presidential elections by
specifying the YEAR4.11 interval. This section discusses how to use shifted intervals
and how the SAS System creates them.

How to Use Shifted Intervals
When you shift a time interval by a subperiod, the shift value must be less than or

equal to the number of subperiods in the interval. For example, YEAR.12 is valid
(yearly periods beginning in December), but YEAR.13 is not. Similarly, YEAR2.25 is not
valid because there is no twenty-fifth month in the two-year period.

In addition, you cannot shift an interval by itself. For example, you cannot shift the
interval MONTH because the shifting subperiod for MONTH is one month and MONTH
contains only one monthly subperiod. However, you can shift multi-unit intervals by the
subperiod. For example, MONTH2.2 specifies bimonthly periods starting on the first
day of the second month.

How the SAS System Creates Shifted Intervals
For all intervals except those based on weeks, the SAS System creates shifted

intervals by creating the interval based on January 1, 1960, by moving forward the
required number of subperiods, and by counting shifted intervals from that point. For
example, suppose you create a shifted interval called DAY50.5. The SAS System creates
a 50-day interval in which January 1, 1960 is day 1. The SAS System then moves
forward to day 5. (Note that the difference, or amount of movement, is 4 days.) The
SAS System begins counting shifted intervals from that point. The INTNX function
demonstrates that the next interval begins on January 5, 1960:

Table 8.11 Using INTNX to Determine When an Interval Begins

SAS statements Results

start=intnx
(’day50.5’,’01jan1960’d,1);

SAS date value 4, or Jan 5, 1960

For shifted intervals based on weeks, the SAS System first creates an interval based on
Sunday of the week containing January 1, 1960 (that is, December 27, 1959), then
moves forward the required number of days. For example, suppose you want to create

Dates, Times, and Intervals � Shifted Intervals 145

the interval WEEK2.8 (biweekly periods beginning on the second Sunday of the period).
The SAS System measures a two-week interval based on Sunday of the week containing
January 1, 1960, and begins counting shifted intervals on the eighth day of that. The
INTNX function shows the beginning of the next interval:

Table 8.12 Using the INTNX Function to Show the Beginning of the Next Interval

SAS statements Results

start=intnx
(’week2.8’,’01jan1960’d,1);

SAS date value 2, or Jan 3, 1960

You can also shift time intervals. For example, HOUR8.7 intervals divide the day into
the periods 06:00 to 14:00, 14:00 to 22:00, and 22:00 to 06:00.

146

147

C H A P T E R

9
Error Processing and Debugging

Types of Errors in SAS 147
Summary of Types of Errors That SAS Recognizes 147

Syntax Errors 148

Semantic Errors 150

Execution-Time Errors 151

Definition 151
Out-of-Resources Condition 152

Examples 152

Data Errors 154

Format Modifiers for Error Reporting 156

Macro-related Errors 156

Error Processing in SAS 156
Syntax Check Mode 156

Enabling Syntax Check Mode 157

Processing Multiple Errors 157

Using System Options to Control Error Handling 158

Using Return Codes 159
Other Error-Checking Options 159

Debugging Logic Errors in the DATA Step 159

Types of Errors in SAS

Summary of Types of Errors That SAS Recognizes
SAS performs error processing during both the compilation and the execution phases

of SAS processing. You can debug SAS programs by understanding processing messages
in the SAS log and then fixing your code. You can use the DATA Step Debugger to
detect logic errors in a DATA step during execution.

SAS recognizes five types of errors.

Type of error When this error occurs When the error is detected

syntax when programming statements do
not conform to the rules of the SAS
language

compile time

semantic when the language element is
correct, but the element may not be
valid for a particular usage

compile time

148 Syntax Errors � Chapter 9

Type of error When this error occurs When the error is detected

execution-time when SAS attempts to execute a
program and execution fails

execution time

data when data values are invalid execution time

macro-related when you use the macro facility
incorrectly

macro compile time or
execution time, DATA or
PROC step compile time or
execution time

Syntax Errors
Syntax errors occur when program statements do not conform to the rules of the SAS

language. Here are some examples of syntax errors:
� misspelled SAS keyword
� unmatched quotation marks
� missing a semicolon
� invalid statement option
� invalid data set option.

When SAS encounters a syntax error, it first attempts to correct the error by attempting
to interpret what you mean, then continues processing your program based on its
assumptions. If SAS cannot correct the error, it prints an error message to the log.

In the following example, the DATA statement is misspelled, and SAS prints a
warning message to the log. Because SAS could interpret the misspelled word, the
program runs and produces output.

date temp;
x=1;

run;

proc print data=temp;
run;

Error Processing and Debugging � Syntax Errors 149

Output 9.1 SAS Log: Syntax Error (misspelled key word)

1 date temp;

14

WARNING 14-169: Assuming the symbol DATA was misspelled as date.

2 x=1;
3 run;

NOTE: The data set WORK.TEMP has 1 observations and 1 variables.
NOTE: DATA statement used:

real time 0.17 seconds
cpu time 0.04 seconds

4
5 proc print data=temp;
6 run;

NOTE: PROCEDURE PRINT used:
real time 0.14 seconds
cpu time 0.03 seconds

Some errors are explained fully by the message that SAS prints in the log; other
error messages are not as easy to interpret because SAS is not always able to detect
exactly where the error occurred. For example, when you fail to end a SAS statement
with a semicolon, SAS does not always detect the error at the point where it occurs
because SAS statements are free-format (they can begin and end anywhere). In the
following example, the semicolon at the end of the DATA statement is missing. SAS
prints the word ERROR in the log, identifies the possible location of the error, prints an
explanation of the error, and stops processing the DATA step.

data temp
x=1;

run;

proc print data=temp;
run;

150 Semantic Errors � Chapter 9

Output 9.2 SAS Log: Syntax Error (missing semicolon)

1 data temp
2 x=1;

-
76

ERROR 76-322: Syntax error, statement will be ignored.

3 run;

NOTE: The SAS System stopped processing this step because of errors.
NOTE: DATA statement used:

real time 0.11 seconds
cpu time 0.02 seconds

4
5 proc print data=temp;
ERROR: File WORK.TEMP.DATA does not exist.
6 run;

NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE PRINT used:

real time 0.06 seconds
cpu time 0.01 seconds

Whether subsequent steps are executed depends on which method of running SAS
you use, as well as on your operating environment.

Semantic Errors
Semantic errors occur when the form of the elements in a SAS statement is correct,

but the elements are not valid for that usage. Semantic errors are detected at compile
time and can cause SAS to enter syntax check mode. (For a description of syntax check
mode, see “Syntax Check Mode” on page 156.)

Examples of semantic errors include the following:
� specifying the wrong number of arguments for a function
� using a numeric variable name where only a character variable is valid
� using illegal references to an array.

In the following example, SAS detects an illegal reference to the array ALL.

data _null_;
array all{*} x1-x5;
all=3;
datalines;

1 1.5
. 3
2 4.5
3 2 7
3 . .
;

run;

Error Processing and Debugging � Execution-Time Errors 151

Output 9.3 SAS Log: Semantic Error (illegal reference to an array)

cpu time 0.02 seconds

1 data _null_;
2 array all{*} x1-x5;
ERROR: Illegal reference to the array all.
3 all=3;
4 datalines;
NOTE: The SAS System stopped processing this step because of errors.
NOTE: DATA statement used:

real time 2.28 seconds
cpu time 0.06 seconds

10 ;
11

The following is another example of a semantic error. In this DATA step, the libref
SOMELIB has not been previously assigned in a LIBNAME statement.

data test;
set somelib.old;

run;

Output 9.4 SAS Log: Semantic Error (libref not previously assigned)

cpu time 0.00 seconds

1 data test;
ERROR: Libname SOMELIB is not assigned.
2 set somelib.old;
3 run;
NOTE: The SAS System stopped processing this step because of errors.
WARNING: The data set WORK.TEST may be incomplete. When this step was stopped

there were 0 observations and 0 variables.
NOTE: DATA statement used:

real time 0.17 seconds

Execution-Time Errors

Definition
Execution-time errors are errors that occur when SAS executes a program that

processes data values. Most execution-time errors produce warning messages or notes
in the SAS log but allow the program to continue executing. *The location of an
execution-time error is usually given as line and column numbers in a note or error
message.

Common execution-time errors include the following:
� illegal arguments to functions
� illegal mathematical operations (for example, division by 0)
� observations in the wrong order for BY-group processing

* When you run SAS in noninteractive mode, more serious errors can cause SAS to enter syntax check mode and stop
processing the program.

152 Execution-Time Errors � Chapter 9

� reference to a nonexistent member of an array (occurs when the array’s subscript
is out of range)

� open and close errors on SAS data sets and other files in INFILE and FILE
statements

� INPUT statements that do not match the data lines (for example, an INPUT
statement in which you list the wrong columns for a variable or fail to indicate
that the variable is a character variable).

Out-of-Resources Condition
An execution-time error can also occur when you encounter an out-of-resources

condition, such as a full disk, or insufficient memory for a SAS procedure to complete.
When these conditions occur, SAS attempts to find resources for current use. For
example, SAS may ask the user for permission to delete temporary data sets that might
no longer be needed, or to free the memory in which macro variables are stored.

When an out-of-resources condition occurs in a windowing environment, you can use
the SAS CLEANUP system option to display a requestor panel that enables you to
choose how to resolve the error. When you run SAS in batch, noninteractive, or
interactive line mode, the operation of CLEANUP depends on your operating
environment. For more information, see the CLEANUP system option in SAS Language
Reference: Dictionary, and in the SAS documentation for your operating environment.

Examples
In the following example, an execution-time error occurs when SAS uses data values

from the second observation to perform the division operation in the assignment
statement. Division by 0 is an illegal mathematical operation and causes an
execution-time error.

options linesize=64 nodate pageno=1 pagesize=25;

data inventory;
input Item $ 1-14 TotalCost 15-20

UnitsOnHand 21-23;
UnitCost=TotalCost/UnitsOnHand;
datalines;

Hammers 440 55
Nylon cord 35 0
Ceiling fans 1155 30
;

proc print data=inventory;
format TotalCost dollar8.2 UnitCost dollar8.2;

run;

Error Processing and Debugging � Execution-Time Errors 153

Output 9.5 SAS Log: Execution-Time Error (division by 0)

cpu time 0.02 seconds

1
2 options linesize=64 nodate pageno=1 pagesize=25;
3
4 data inventory;
5 input Item $ 1-14 TotalCost 15-20
6 UnitsOnHand 21-23;
7 UnitCost=TotalCost/UnitsOnHand;
8 datalines;
NOTE: Division by zero detected at line 12 column 22.
RULE:----+----1----+----2----+----3----+----4----+----5----+----
10 Nylon cord 35 0
Item=Nylon cord TotalCost=35 UnitsOnHand=0 UnitCost=. _ERROR_=1
N=2
NOTE: Mathematical operations could not be performed at the

following places. The results of the operations have been
set to missing values.
Each place is given by:
(Number of times) at (Line):(Column).
1 at 12:22

NOTE: The data set WORK.INVENTORY has 3 observations and 4
variables.

NOTE: DATA statement used:
real time 2.78 seconds
cpu time 0.08 seconds

12 ;
13
14 proc print data=inventory;
15 format TotalCost dollar8.2 UnitCost dollar8.2;
16 run;
NOTE: There were 3 observations read from the dataset

WORK.INVENTORY.
NOTE: PROCEDURE PRINT used:

real time 2.62 seconds

Output 9.6 SAS Listing Output: Execution-Time Error (division by 0)

The SAS System 1

Total Units
Obs Item Cost OnHand UnitCost

1 Hammers $440.00 55 $8.00
2 Nylon cord $35.00 0 .
3 Ceiling fans $1155.00 30 $38.50

SAS executes the entire step, assigns a missing value for the variable UnitCost in
the output, and writes the following to the SAS log:

� a note that describes the error

� the values that are stored in the input buffer

� the contents of the program data vector at the time the error occurred

� a note explaining the error.

Note that the values that are listed in the program data vector include the _N_ and
ERROR automatic variables. These automatic variables are assigned temporarily to
each observation and are not stored with the data set.

154 Data Errors � Chapter 9

In the following example of an execution-time error, the program processes an array
and SAS encounters a value of the array’s subscript that is out of range. SAS prints an
error message to the log and stops processing.

options linesize=64 nodate pageno=1 pagesize=25;

data test;
array all{*} x1-x3;
input I measure;
if measure > 0 then

all{I} = measure;
datalines;

1 1.5
. 3
2 4.5
;

proc print data=test;
run;

Output 9.7 SAS Log: Execution-Time Error (subscript out of range)

cpu time 0.02 seconds

1 options linesize=64 nodate pageno=1 pagesize=25;
2
3 data test;
4 array all{*} x1-x3;
5 input I measure;
6 if measure > 0 then
7 all{I} = measure;
8 datalines;
ERROR: Array subscript out of range at line 12 column 7.
RULE:----+----1----+----2----+----3----+----4----+----5----+----
10 . 3
x1=. x2=. x3=. I=. measure=3 _ERROR_=1 _N_=2
NOTE: The SAS System stopped processing this step because of

errors.
WARNING: The data set WORK.TEST may be incomplete. When this

step was stopped there were 1 observations and 5
variables.

NOTE: DATA statement used:
real time 0.90 seconds
cpu time 0.09 seconds

12 ;
13
14 proc print data=test;
15 run;
NOTE: There were 1 observations read from the dataset WORK.TEST.
NOTE: PROCEDURE PRINT used:

real time 0.81 seconds

Data Errors

Data errors occur when some data values are not appropriate for the SAS statements
that you have specified in the program. For example, if you define a variable as
numeric, but the data value is actually character, SAS generates a data error. SAS

Error Processing and Debugging � Data Errors 155

detects data errors during program execution and continues to execute the program,
and does the following:

� writes an invalid data note to the SAS log.
� prints the input line and column numbers that contain the invalid value in the

SAS log. Unprintable characters appear in hexadecimal. To help determine
column numbers, SAS prints a rule line above the input line.

� prints the observation under the rule line.
� sets the automatic variable _ERROR_ to 1 for the current observation.

In this example, a character value in the Number variable results in a data error
during program execution:

options linesize=64 nodate pageno=1 pagesize=25;

data age;
input Name $ Number;
datalines;

Sue 35
Joe xx
Steve 22
;

proc print data=age;
run;

The SAS log shows that there is an error in line 8, position 5–6 of the program.

Output 9.8 SAS Log: Data Error

cpu time 0.01 seconds

1
2 options linesize=64 nodate pageno=1 pagesize=25;
3
4 data age;
5 input Name $ Number;
6 datalines;
NOTE: Invalid data for Number in line 8 5-6.
RULE:----+----1----+----2----+----3----+----4----+----5----+----6
8 Joe xx
Name=Joe Number=. _ERROR_=1 _N_=2
NOTE: The data set WORK.AGE has 3 observations and 2 variables.
NOTE: DATA statement used:

real time 0.06 seconds
cpu time 0.02 seconds

10 ;
11
12 proc print data=age;
13 run;
NOTE: There were 3 observations read from the dataset WORK.AGE.
NOTE: PROCEDURE PRINT used:

real time 0.01 seconds

156 Macro-related Errors � Chapter 9

Output 9.9 SAS Listing Output: Data Error

The SAS System 1

Obs Name Number

1 Sue 35
2 Joe .
3 Steve 22

You can also use the INVALIDDATA= system option to assign a value to a variable
when your program encounters invalid data. For more information, see the
INVALIDDATA= system option in SAS Language Reference: Dictionary.

Format Modifiers for Error Reporting
The INPUT statement uses the ? and the ?? format modifiers for error reporting.

The format modifiers control the amount of information that is written to the SAS log.
Both the ? and the ?? modifiers suppress the invalid data message. However, the ??
modifier also sets the automatic variable _ERROR_ to 0. For example, these two sets of
statements are equivalent:

� input x ?? 10-12;

� input x ? 10-12;
error=0;

In either case, SAS sets the invalid values of X to missing values.

Macro-related Errors
Several types of macro-related errors exist:
� macro compile time and macro execution-time errors, generated when you use the

macro facility itself
� errors in the SAS code produced by the macro facility.

For more information about macros, see SAS Macro Language: Reference.

Error Processing in SAS

Syntax Check Mode
If you want processing to stop when a statement in a DATA step has a syntax error,

you can enable SAS to enter syntax check mode. SAS internally sets the OBS= option
to 0 and the REPLACE/NOREPLACE option to NOREPLACE. When these options are
in effect, SAS acts as follows:

� reads the remaining statements in the DATA step or PROC step
� checks that statements are valid SAS statements
� executes global statements

Error Processing and Debugging � Processing Multiple Errors 157

� writes errors to the SAS log
� creates the descriptor portion of any output data sets that are specified in program

statements
� does not write any observations to new data sets that SAS creates
� does not execute most of the subsequent DATA steps or procedures in the program

(exceptions include PROC DATASETS and PROC CONTENTS).

Note: Any data sets that are created after SAS has entered syntax check mode do
not replace existing data sets with the same name. �

When syntax checking is enabled, if SAS encounters a syntax or semantic error in a
DATA step, SAS underlines the point where it detects the error and identifies the error
by number. SAS then enters syntax check mode and remains in this mode until the
program finishes executing. When SAS enters syntax check mode, all DATA step
statements and PROC step statements are validated.

Enabling Syntax Check Mode
You use the SYNTAXCHECK system option to enable syntax check mode when you

run SAS in non-interactive or batch mode. You use the DMSSYNCHK system option to
enable syntax check mode when you run SAS in the windowing environment. To disable
syntax check mode, use the NOSYNTAXCHECK and NODMSSYNCHK system options.

In an OPTIONS statement, place the OPTIONS statement that enables
SYNTAXCHECK or DMSSYNCHK before the step for which you want it to apply. If
you place the OPTIONS statement inside a step, then SYNTAXCHECK or
DMSSYNCHK will not take effect until the beginning of the next step.

For more information about the DMSSYNCHK system option and the
SYNTAXCHECK system option in SAS Language Reference: Dictionary.

Processing Multiple Errors
Depending on the type and severity of the error, the method you use to run SAS, and

your operating environment, SAS either stops program processing or flags errors and
continues processing. SAS continues to check individual statements in procedures after
it finds certain kinds of errors. Thus, in some cases SAS can detect multiple errors in a
single statement and may issue more error messages for a given situation, particularly
if the statement containing the error creates an output SAS data set.

The following example illustrates a statement with two errors:

data temporary;
Item1=4;

run;

proc print data=temporary;
var Item1 Item2 Item3;

run;

158 Using System Options to Control Error Handling � Chapter 9

Output 9.10 SAS Log: Multiple Program Errors

cpu time 0.00 seconds

1 data temporary;
2 Item1=4;
3 run;
NOTE: The data set WORK.TEMPORARY has 1 observations and 1

variables.
NOTE: DATA statement used:

real time 0.10 seconds
cpu time 0.01 seconds

4
5 proc print data=temporary;
ERROR: Variable ITEM2 not found.
ERROR: Variable ITEM3 not found.
6 var Item1 Item2 Item3;
7 run;
NOTE: The SAS System stopped processing this step because of

errors.
NOTE: PROCEDURE PRINT used:

real time 0.53 seconds
cpu time 0.01 seconds

SAS displays two error messages, one for the variable Item2 and one for the variable
Item3.

When you are running debugged production programs that are unlikely to encounter
errors, you might want to force SAS to abend after a single error occurs. You can use
the ERRORABEND system option to do this.

Using System Options to Control Error Handling
You can use the following system options to control error handling (resolve errors) in

your program:

BYERR controls whether SAS generates an error message and sets the error
flag when a _NULL_ data set is used in the SORT procedure.

DKRICOND= controls the level of error detection for input data sets during the
processing of DROP=, KEEP=, and RENAME= data set options.

DKROCOND= controls the level of error detection for output data sets during the
processing of DROP=, KEEP=, and RENAME= data set options and
the corresponding DATA step statements.

DSNFERR controls how SAS responds when a SAS data set is not found.

ERRORABEND specifies how SAS responds to errors.

ERRORCHECK= controls error handling in batch processing.

ERRORS= controls the maximum number of observations for which complete
error messages are printed.

FMTERR determines whether SAS generates an error message when a format
of a variable cannot be found.

INVALIDDATA= specifies the value that SAS assigns to a variable when invalid
numeric data is encountered.

MERROR controls whether SAS issues a warning message when a macro-like
name does not match a macro keyword.

Error Processing and Debugging � Debugging Logic Errors in the DATA Step 159

SERROR controls whether SAS issues a warning message when a defined
macro variable reference does not match a macro variable.

VNFERR controls how SAS responds when a _NULL_ data set is used.

For more information about SAS system options, see SAS Language Reference:
Dictionary.

Using Return Codes
In some operating environments, SAS passes a return code to the system, but the

way in which return codes are accessed is specific to your operating environment.

Operating Environment Information: For more information about return codes, see the
SAS documentation for your operating environment. �

Other Error-Checking Options
To help determine your programming errors, you can use the following methods:

� the _IORC_ automatic variable that SAS creates (and the associated IORCMSG
function) when you use the MODIFY statement or the KEY= data set option in the
SET statement

� the ERROR= system option to limit the number of identical errors that SAS writes
to the log

� the SYSRC and SYSMSG functions to return information when a data set or
external-files access function encounters an error condition

� the SYSRC and SYSERR macro variables

� log control options:

MSGLEVEL= controls the level of detail in messages that are written to the
SAS log.

PRINTMSGLIST controls the printing of extended lists of messages to the SAS
log.

SOURCE controls whether SAS writes source statements to the SAS log.

SOURCE2 controls whether SAS writes source statements included by
%INCLUDE to the SAS log.

Debugging Logic Errors in the DATA Step

To debug logic errors in a DATA step, you can use the DATA step debugger. This tool
enables you to issue commands to execute DATA step statements one by one and then
pause to display the resulting variables’ values in a window. By observing the results
that are displayed, you can determine where the logic error lies. Because the debugger
is interactive, you can repeat the process of issuing commands and observing results as
many times as needed in a single debugging session. To invoke the debugger, add the
DEBUG option to the DATA statement and execute the program. For detailed
information about how to use the DATA step debugger, see SAS Language Reference:
Dictionary.

160

161

C H A P T E R

10
SAS Output

Definitions for SAS Output 162
Routing SAS Output 163

The SAS Log 163

Structure of the Log 163

Writing to the Log 165

Customizing the Log 165
Altering the Contents of the Log 165

Customizing the Appearance of the Log 166

Traditional SAS Listing Output 167

Example of Traditional Listing Output 167

Making Output Descriptive 168

Reformatting Values 169
Printing Missing Values 169

Changing the Destination of the Log and the Output 170

Output Delivery System 170

What Is the Output Delivery System? 170

Gallery of ODS Samples 171
Introduction to the ODS Samples 171

Listing Output 171

PostScript Output 173

HTML Output 173

RTF Output 174
PDF Output 175

XML Output 176

Commonly Used ODS Terminology 178

How Does ODS Work? 179

Components of SAS Output 179

Features of ODS 180
What Are the ODS Destinations? 181

Overview of ODS Destination Categories 181

Definition of Destination-Independent Input 181

The SAS Formatted Destinations 182

The Third-Party Formatted Destinations 183
What Controls the Formatting Features of Third-Party Formats? 184

ODS Destinations and System Resources 185

What Are Table Definitions, Table Elements, and Table Attributes? 185

What Are Style Definitions, Style Elements, and Style Attributes? 185

What Style Definitions Are Shipped with SAS Software? 186
How Do I Use Style Definitions with Base SAS Procedures? 187

Changing SAS Registry Settings for ODS 187

Overview of ODS and the SAS Registry 187

162 Definitions for SAS Output � Chapter 10

Changing Your Default HTML Version Setting 188
Changing ODS Destination Default Settings 189

Customized ODS Output 189

SAS Output 189

Selection and Exclusion Lists 190

How Does ODS Determine the Destinations for an Output Object? 190
Customized Output for an Output Object 191

Summary of ODS 192

Definitions for SAS Output
SAS output is the result of executing SAS programs. Most SAS procedures and some

DATA step applications produce output.
There are three types of SAS output:

SAS log
contains a description of the SAS session and lists the lines of source code that
were executed. Depending on the setting of SAS system options, the method of
running SAS, and the program statements that you specify, the log can include the
following types of information:

� program statements
� names of data sets created by the program
� notes, warnings, or error messages encountered during program execution
� the number of variables and observations each data set contains
� processing time required for each step.

You can write specific information to the SAS log (such as variable values or text
strings) by using the SAS statements that are described in “Writing to the Log” on
page 165.

The log is also used by some of the SAS procedures that perform utility
functions, for example the DATASETS and OPTIONS procedures. See Base SAS
Procedures Guide for more information.

Because the SAS log provides a journal of program processing, it is an essential
debugging tool. However, certain system options must be in effect to make the log
effective for debugging your SAS programs. “Customizing the Log” on page 165
describes several SAS system options that you can use.

program results
contain the results of most SAS procedures and some DATA step applications.
Results can be routed to a file, and printed as a listing. If you use the Output
Delivery System (ODS), you can produce results for a high resolution printer or
create HTML output for use with a web browser. You can customize your output
by modifying or creating your own table definitions, which are descriptions of how
you want to format your output. For more information about the flexibility of
ODS, see SAS Output Delivery System: User’s Guide.

SAS console log
When the SAS log is not active, it contains information, warning, and error
messages. When the SAS log is active, the SAS console log is used only for fatal
system initialization errors or late termination messages.

Operating Environment Information: See the SAS documentation for your
operating environment for specific information on the destination of the SAS
console log. �

SAS Output � Structure of the Log 163

Routing SAS Output

The destination of your output depends on

� the operating environment

� the setting of SAS system options

� whether you use ODS

� the method of running SAS.

There are several ways to route SAS output to a destination other than the default
destination. You can route the output to your terminal, to an external file, or directly to
a printer. If you use ODS, you can route output to a data set for most procedures.

Operating Environment Information: See the SAS documentation for your operating
environment for specific information. �

The following table shows the default destination of SAS output for each method of
operation.

Table 10.1 Default Destinations of SAS Output

Method of Running SAS Destination of SAS Output

windowing mode (Explorer window) the Log window or the output window

interactive line mode the terminal display (as statements are entered)

noninteractive mode depends on the operating environment

batch mode depends on the operating environment

Operating Environment Information: The default destination for SAS output is specific
to your operating environment. For specific information, see the SAS documentation for
your operating environment. �

The SAS Log

Structure of the Log
The SAS log is a record of everything you do in your SAS session or with your SAS

program. Original program statements are identified by line numbers. Interspersed
with SAS statements are messages from SAS. These messages may begin with the
words NOTE, INFO, WARNING, ERROR, or an error number, and they may refer to a
SAS statement by its line number in the log.

For example, in the following output, the number 1 prints to the left of the OPTIONS
statement. This means that it is the first line in the program. In interactive mode, SAS
continues with the sequence of line numbering until you end your session. If you
submit the program again (or submit other programs in your current SAS session), the
first program line number will be the next consecutive number.

Operating Environment Information: The SAS log appears differently depending on
your operating environment. See the SAS documentation for your operating
environment. �

164 Structure of the Log � Chapter 10

Output 10.1 Sample SAS Log

NOTE: Copyright (c) 2002--2003 by SAS Institute Inc., Cary, NC, USA. u
NOTE: SAS (r) 9.1 (TS1B0) v

Licensed to SAS Institute Inc., Site 0000000001. w
NOTE: This session is executing on the HP-UX B.10.20 platform. x

NOTE: SAS initialization used:
real time 4.20 seconds
cpu time 1.18 seconds

1 options pagesize=24 linesize=64 nodate; y
2
3 data logsample; U
4 infile ’/u/abcdef/testdir/sampledata.dat’;
5 input LastName $ 1-12 ID $ Gender $ Birth : date7. V
5 ! score1 score2 score3
6 score
6 ! 4 score5 score6;
7 format Birth mmddyy8.;
8 run;

NOTE: The infile ’/u/abcdef/testdir/sampledata.dat’ is: W
File Name=/u/abcdef/testdir/sampledata.dat,
Owner Name=abcdef,Group Name=pubs,
Access Permission=rw-r--r--,
File Size (bytes)=296

NOTE: 5 records were read from the infile X
’/u/abcdef/testdir/sampledata.dat’.
The minimum record length was 58.
The maximum record length was 59.

NOTE: The data set WORK.LOGSAMPLE has 5 observations and 10
variables. at

NOTE: DATA statement used:
real time 0.44 seconds
cpu time 0.13 seconds

9
10 proc sort data=logsample; ak
11 by LastName;
12

NOTE: There were 5 observations read from the dataset
WORK.LOGSAMPLE.

NOTE: The data set WORK.LOGSAMPLE has 5 observations and 10
variables. al

NOTE: PROCEDURE SORT used:
real time 0.16 seconds
cpu time 0.03 seconds

13 proc print data=logsample; am
14 by LastName;
15 run;

NOTE: There were 5 observations read from the dataset
WORK.LOGSAMPLE.

NOTE: PROCEDURE PRINT used:
real time 0.31 seconds
cpu time 0.05 seconds

The following list corresponds to the circled numbers in the SAS log shown above:

u copyright information.

v SAS system release used to run this program.

w name and site number of the computer installation where the program ran.

SAS Output � Customizing the Log 165

x platform used to run the program.
y OPTIONS statement. This statement uses SAS system options to set a page size

of 24 and a line size of 64, and to suppress the date in the output.
U SAS statements that make up the program (if the SAS system option SOURCE is

enabled).
V long statement continued to the next line. Note that the continuation line is

preceded by an exclamation point (!), and that the line number does not change.
W input file information-notes or warning messages about the raw data and where

they were obtained (if the SAS system option NOTES is enabled).
X the number and record length of records read from the input file (if the SAS

system option NOTES is enabled).
at SAS data set that your program created; notes that contain the number of

observations and variables for each data set created (if the SAS system option
NOTES is enabled).

ak procedure that sorts your data set
al note about the sorted SAS data set
am procedure that prints your data set.

Writing to the Log
You can instruct SAS to write additional information to the log by using the following

statements:

PUT statement
writes selected lines (including text strings and DATA step variable values) to the
SAS log. This behavior of the PUT statement requires that your program does not
execute a FILE statement before the PUT statement in the current iteration of a
DATA step, and that it does not execute a FILE LOG; statement.

%PUT statement
enables you to write a text string or macro variable values to the SAS log. %PUT
is a SAS macro program statement that is independent of the DATA step and can
be used anywhere.

LIST statement
writes to the SAS log the input data records for the data line that is being
processed. The LIST statement operates only on data that are read with an
INPUT statement. It has no effect on data that are read with a SET, MERGE,
MODIFY, or UPDATE statement. Use the LIST statement in a DATA step.

ERROR statement
sets the automatic _ERROR_ variable to 1 and optionally writes to the log a
message that you specify. Use the ERROR statement in a DATA step.

Use the PUT, LIST, and ERROR statements in combination with conditional
processing to debug DATA steps by writing selected information to the log.

Customizing the Log

Altering the Contents of the Log
When you have large SAS production programs or an application that you run on a

regular basis without changes, you might want to suppress part of the log. SAS system

166 Customizing the Log � Chapter 10

options enable you to suppress SAS statements and system messages, as well as to
limit the number of error messages. Note that all SAS system options remain in effect
for the duration of your session or until you change the options. You should not
suppress log messages until you have successfully executed the program without errors.

The following list describes some of the SAS system options that you can use to alter
the contents of the log:

CPUID | NOCPUID
controls whether hardware information is written to the SAS log.

ECHOAUTO | NOECHOAUTO
controls whether autoexec code in an input file is written to the log.

ERRORS=n
specifies the maximum number of observations for which data error messages are
printed.

MPRINT | NOMPRINT
controls whether SAS statements that are generated by macro execution are
written to the SAS log.

MSGLEVEL=N | I
controls the level of detail in messages that are written to the SAS log. If the
MSGLEVEL system option is set to N, the log displays notes, warnings, and error
messages only. If MSGLEVEL is set to I, the log displays additional notes
pertaining to index usage, merge processing, and sort utilities, along with
standard notes, warnings, and error messages.

NEWS=external-file
controls whether news information that is maintained at your site is written to the
SAS log.

NOTES | NONOTES
controls whether notes (messages beginning with NOTE) are written to the SAS
log. NONOTES does not suppress error or warning messages.

OVP | NOOVP
controls whether output lines that are printed by SAS are overprinted.

PRINTMSGLIST | NOPRINTMSGLIST
controls whether extended lists of messages are written to the SAS log.

SOURCE | NOSOURCE
controls whether SAS writes source statements to the SAS log.

SOURCE2 | NOSOURCE2
controls whether SAS writes secondary source statements from files included by
%INCLUDE statements to the SAS log.

SYMBOLGEN | NOSYMBOLGEN
controls whether the results of resolving macro variable references are written to
the SAS log.

See SAS Language Reference: Dictionary for more information about how to use
these and other SAS system options.

Operating Environment Information: See the documentation for your operating
environment for other options that affect log output. �

Customizing the Appearance of the Log
The following SAS statements and SAS system options enable you to customize the

log. Customizing the log is helpful when you use the log for report writing or for
creating a permanent record.

SAS Output � Example of Traditional Listing Output 167

DATE system
option

controls whether the date and time that the SAS job began are
printed at the top of each page of the SAS log and any output
created by SAS.

FILE statement enables you to write the results of PUT statements to an external
file. You can use the following two options in the FILE statement to
customize the log for that report.

LINESIZE=value specifies the maximum number of columns per
line for reports and the maximum record length
for data files.

PAGESIZE=value specifies the maximum number of lines to print
on each page of output.

Note: FILE statement options apply only to the output specified
in the FILE statement, whereas the LINESIZE= and PAGESIZE=
SAS system options apply to all subsequent listings. �

LINESIZE=
system option

specifies the line size (printer line width) for the SAS log and SAS
output that are used by the DATA step and procedures.

MISSING=
system option

specifies the character to be printed for missing numeric variable
values.

NUMBER
system option

controls whether the page number prints on the first title line of
each page of printed output.

PAGE statement skips to a new page in the SAS log and continues printing from
there.

PAGESIZE=
system option

specifies the number of lines that you can print per page of SAS
output.

SKIP statement skips a specified number of lines in the SAS log.

Operating Environment Information: The range of values for the FILE statement and
for SAS system options depends on your operating environment. See the SAS
documentation for your operating environment for more information. �

For more information about how to use these and other SAS system options and
statements, see SAS Language Reference: Dictionary.

Traditional SAS Listing Output

Example of Traditional Listing Output
Many SAS procedures process or analyze data and can produce output as one result.

You can also generate a listing by the DATA step, using a combination of the FILE and
PUT statements.

See the procedure descriptions in Base SAS Procedures Guide for examples of output
from SAS procedures. For a discussion and examples of DATA step output, see the
FILE and PUT statements in SAS Language Reference: Dictionary.

This example produces a listing that is generated by the PUT and FILE statements
in a DATA step. The input file is the SAS data set GRAIN_PRODUCERS.

168 Making Output Descriptive � Chapter 10

options pagesize=60 linesize=64 nodate pageno=1;

title ’Leading Grain Producers’;
title2 ’for 1996’;

data _null_;
set grain_producers;
file print header=newpage;
if year=1996;
format country $cntry.;
label type=’Grain’;
put country @25 type @50 kilotons;
return;
newpage:

put ’Country’ @25 ’Grain’ @50 ’Kilotons’;
put 60*’=’;
return;

run;

Leading Grain Producers 1
for 1996

Country Grain Kilotons
==
Brazil Wheat 3302
Brazil Rice 10035
Brazil Corn 31975
China Wheat 109000
China Rice 190100
China Corn 119350
India Wheat 62620
India Rice 120012
India Corn 8660
Indonesia Wheat .
Indonesia Rice 51165
Indonesia Corn 8925
United States Wheat 62099
United States Rice 7771
United States Corn 236064

Making Output Descriptive
There are several ways to customize SAS procedure output and DATA step output.

You can change the look of output by adding informative titles, footnotes, and labels,
and by changing the way the information is formatted on the page. The following list
describes some of the statements and SAS system options that you can use.

CENTER | NOCENTER system option
controls whether output is centered. By default, SAS centers titles and procedure
output on the page and on the terminal display.

DATE | NODATE system option
controls printing of date and time values. When this option is enabled, SAS prints
on the top of each page of output the date and time the SAS job started. When you
run SAS in interactive mode, the date and time the job started is the date and
time you started your SAS session.

FOOTNOTE statements
print footnotes at the bottom of each output page. You can also use the
FOOTNOTES window for this purpose.

SAS Output � Printing Missing Values 169

FORMCHAR=
specifies the default output formatting characters for some procedures such as
CALENDAR, FREQ, REPORT, and TABULATE.

FORMDLIM=
specifies a character that is used to delimit page breaks in SAS output.

LABEL statement
associates descriptive labels with variables. With most procedure output, SAS
writes the label rather than the variable name.

The LABEL statement also provides descriptive labels when it is used with
certain SAS procedures. See Base SAS Procedures Guide for information on using
the LABEL statement with a specific procedure (for example, the PRINT
procedure).

LINESIZE= and PAGESIZE= system options
can change the default number of lines per page (page size) and characters per
line (line size) for printed output. The default depends on the method of running
SAS and the settings of certain SAS system options. Specify new page and line
sizes in the OPTIONS statement or OPTIONS window. You can also specify line
and page size for DATA step output in the FILE statement.

The values you use for the LINESIZE= and PAGESIZE= system options can
significantly affect the appearance of the output that is produced by some SAS
procedures.

NUMBER | NONUMBER and PAGENO= system options
control page numbering. The NUMBER system option controls whether the page
number prints on the first title line of each page of printed output. You can also
specify a beginning page number for the next page of output produced by SAS by
using the PAGENO= system option.

TITLE statements
print titles at the top of each output page. By default, SAS prints the following
title:

The SAS System

You can use the TITLE statement or TITLES window to replace the default title
or specify other descriptive titles for SAS programs. You can use the null title
statement (title;) to suppress a TITLE statement.

See SAS Language Reference: Dictionary for more information about how to use
these and other SAS system options and statements.

Reformatting Values
Certain SAS statements, procedures, and options enable you to print values using

specified formats. You can apply or change formats with the FORMAT and ATTRIB
statements, or with the VAR window in a windowing environment.

The FORMAT procedure enables you to design your own formats and informats,
giving you added flexibility in displaying values. See the FORMAT procedure in Base
SAS Procedures Guide for more information.

Printing Missing Values
SAS represents ordinary missing numeric values in a SAS listing as a single period,

and missing character values as a blank space. If you specified special missing values

170 Changing the Destination of the Log and the Output � Chapter 10

for numeric variables, SAS writes the letter or the underscore. For character variables,
SAS writes a series of blanks equal to the length of the variable.

The MISSING= system option enables you to specify a character to print in place of
the period for ordinary missing numeric values.

Changing the Destination of the Log and the Output

You can redirect both the SAS log and procedure output to your terminal display, to a
printer, or to an external file. You can redirect output using the following methods:

PRINTTO procedure
routes DATA step, log, or procedure output from the system default destinations to
the destination you choose.

FILENAME statement
associates a fileref with an external file or output device and enables you to specify
file and device attributes.

FILE command
stores the contents of the LOG or OUTPUT windows in files you specify, when the
command is issued from within the windowing environment.

SAS system options
redefine the destination of log and output for an entire SAS program. These
system options are specified when you invoke SAS. The system options used to
route output are the ALTLOG=, ALTPRINT=, LOG=, and PRINT= options.

Operating Environment Information: The way you specify output destinations when
you use SAS system options is dependent on your operating environment. See the SAS
documentation for your operating environment for details. �

Output Delivery System

What Is the Output Delivery System?
The Output Delivery System (ODS) gives you greater flexibility in generating,

storing, and reproducing SAS procedure and DATA step output, with a wide range of
formatting options. ODS provides formatting functionality that is not available from
individual procedures or from the DATA step alone. ODS overcomes these limitations
and enables you to format your output more easily.

Prior to Version 7, most SAS procedures generated output that was designed for a
traditional line-printer. This type of output has limitations that prevents you from
getting the most value from your results:

� Traditional SAS output is limited to monospace fonts. With today’s desktop
document editors and publishing systems, you need more versatility in printed
output.

� Some commonly used procedures do not produce output data sets. Prior to ODS, if
you wanted to use output from one of these procedures as input to another
procedure, then you relied on PROC PRINTTO and the DATA step to retrieve
results.

SAS Output � Gallery of ODS Samples 171

Gallery of ODS Samples

Introduction to the ODS Samples
This section shows you samples of the different kinds of formatted output that you

can produce with ODS. The input file contains sales records for TruBlend Coffee
Makers, a company that distributes coffee machines.

Listing Output
Traditional SAS output is Listing output. You do not need to change your SAS

programs to create listing output. By default, you continue to create this kind of output
even if you also create a type of output that contains more formatting.

172 Gallery of ODS Samples � Chapter 10

Output 10.2 Listing Output

Average Quarterly Sales Amount by Each Sales Representative 1

--------------------------------- Quarter=1 ----------------------------------

The MEANS Procedure

Analysis Variable : AmountSold

N
SalesRep Obs N Mean Std Dev Minimum Maximum
__
Garcia 8 8 14752.5 22806.1 495.0 63333.7

Hollingsworth 5 5 11926.9 12165.2 774.3 31899.1

Jensen 5 5 10015.7 8009.5 3406.7 20904.8
__

Average Quarterly Sales Amount by Each Sales Representative 2

--------------------------------- Quarter=2 ----------------------------------

The MEANS Procedure

Analysis Variable : AmountSold

N
SalesRep Obs N Mean Std Dev Minimum Maximum
__
Garcia 6 6 18143.3 20439.6 1238.8 53113.6

Hollingsworth 6 6 16026.8 14355.0 1237.5 34686.4

Jensen 6 6 12455.1 12713.7 1393.7 34376.7
__

Average Quarterly Sales Amount by Each Sales Representative 3

--------------------------------- Quarter=3 ----------------------------------

The MEANS Procedure

Analysis Variable : AmountSold

N
SalesRep Obs N Mean Std Dev Minimum Maximum
__
Garcia 21 21 10729.8 11457.0 2787.3 38712.5

Hollingsworth 15 15 7313.6 7280.4 1485.0 30970.0

Jensen 21 21 10585.3 7361.7 2227.5 27129.7
__

Average Quarterly Sales Amount by Each Sales Representative 4

--------------------------------- Quarter=4 ----------------------------------

The MEANS Procedure

Analysis Variable : AmountSold

N
SalesRep Obs N Mean Std Dev Minimum Maximum
__
Garcia 5 5 11973.0 10971.8 3716.4 30970.0

Hollingsworth 6 6 13624.4 12624.6 5419.8 38093.1

Jensen 6 6 19010.4 15441.0 1703.4 38836.4
__

SAS Output � Gallery of ODS Samples 173

PostScript Output
With ODS, you can produce output in PostScript format.

Display 10.1 PostScript Output Viewed with Ghostview

HTML Output
With ODS, you can produce output in HTML (Hypertext Markup Language.) You can

browse these files with Internet Explorer, Netscape, or any other browser that fully
supports the HTML 3.2 tagset.

Note: To create HTML 4.0 tagsets, use the ODS HTML4 statement. In SAS 9, the
ODS HTML statement generates HTML 3.2 tagsets. In future releases of SAS, the ODS
HTML statement will support the most current HTML tagsets available. �

174 Gallery of ODS Samples � Chapter 10

Display 10.2 HTML Output Viewed with Microsoft Internet Explorer

RTF Output
With ODS, you can produce RTF (Rich Text Format) output which is used with

Microsoft Word.

SAS Output � Gallery of ODS Samples 175

Display 10.3 RTF Output Viewed with Microsoft Word

PDF Output
With ODS, you can produce output in PDF (Portable Document Format), which can

be viewed with the Adobe Acrobat Reader.

176 Gallery of ODS Samples � Chapter 10

Display 10.4 PDF Output Viewed with Adobe Acrobat Reader

XML Output
With ODS, you can produce output that is tagged with XML (Extensible Markup

Language) tags.

SAS Output � Gallery of ODS Samples 177

Output 10.3 XML Output file

<?xml version="1.0" encoding="windows-1252"?>

<odsxml>

<head>

<meta operator="user"/>

</head>

<body>

<proc name="Print">

<label name="IDX"/>

<title class="SystemTitle" toc-level="1">US Census of Population and Housing</title>

<branch name="Print" label="The Print Procedure" class="ContentProcName" toc-level="1">

<leaf name="Print" label="Data Set SASHELP.CLASS" class="ContentItem" toc-level="2">

<output name="Print" label="Data Set SASHELP.CLASS" clabel="Data Set SASHELP.CLASS">

<output-object type="table" class="Table">

<style>

<border spacing="1" padding="7" rules="groups" frame="box"/>

</style>

<colspecs columns="6">

<colgroup>

<colspec name="1" width="2" align="right" type="int"/>

</colgroup>

<colgroup>

<colspec name="2" width="7" type="string"/>

<colspec name="3" width="1" type="string"/>

<colspec name="4" width="2" align="decimal" type="double"/>

<colspec name="5" width="4" align="decimal" type="double"/>

<colspec name="6" width="5" align="decimal" type="double"/>

</colgroup>

</colspecs>

<output-head>

<row>

<header type="string" class="Header" row="1" column="1">

<value>Obs</value>

</header>

<header type="string" class="Header" row="1" column="2">

<value>Name</value>

</header>

<header type="string" class="Header" row="1" column="3">

<value>Sex</value>

</header>

<header type="string" class="Header" row="1" column="4">

<value>Age</value>

</header>

<header type="string" class="Header" row="1" column="5">

<value>Height</value>

</header>

<header type="string" class="Header" row="1" column="6">

<value>Weight</value>

</header>

</row>

</output-head>

<output-body>

<row>

<header type="double" class="RowHeader" row="2" column="1">

<value> 1</value>

</header>

<data type="string" class="Data" row="2" column="2">

<value>Alfred</value>

</data>

... more xml tagged output...

<

/odsxml>

178 Commonly Used ODS Terminology � Chapter 10

Commonly Used ODS Terminology

data component
is a form, similar to a SAS data set, that contains the results (numbers and
characters) of a DATA step or PROC step that supports ODS.

table definition
is a set of instructions that describes how to format the data. This description
includes but is not limited to

� the order of the columns

� text and order of column headings

� formats for data

� font sizes and font faces.

output object
is an object that contains both the results of a DATA step or PROC step and
information about how to format the results. An output object has a name, label,
and path. For example, the Basic Statistical Measurement table generated from
the UNIVARIATE procedure is an output object. It contains the data component
and formatted presentation of the mean, median, mode, standard deviation,
variance, range, and interquartile range.

Note: Although many output objects include formatting instructions, not all of
them do. In some cases the output object consists of only the data component. �

ODS destinations
are designations that produce specific types of output. ODS supports a number of
destinations, including the following:

LISTING
produces traditional SAS output (monospace format).

Markup Languages
produce SAS output that is formatted using one of many different markup
languages such as HTML (Hypertext Markup Language), XML (Extensible
Markup Language), and LaTeX that you can access with a web browser. SAS
supplies many markup languages for you to use ranging from DOCBOOK to
TROFF. You can specify a markup language that SAS supplies or create one
of your own and store it as a user-defined markup language.

DOCUMENT
produces a hierarchy of output objects that enables you to produce multiple
ODS output formats without rerunning a PROC or DATA step and gives you
more control over the structure of the output.

OUTPUT
produces a SAS data set.

Printer Family
produces output that is formatted for a high-resolution printer such as a
PostScript (PS), PDF, or PCL file.

RTF
produces output that is formatted for use with Microsoft Word.

SAS Output � How Does ODS Work? 179

ODS output
ODS output consists of formatted output from any of the ODS destinations. For
example, the OUTPUT destination produces SAS data sets; the LISTING
destination produces listing output; the HTML destination produces output that is
formatted in Hypertext Markup Language.

How Does ODS Work?

Components of SAS Output
The PROC or DATA step supplies raw data and the name of the table definition that

contains the formatting instructions, and ODS formats the output. You can use the
Output Delivery System to format output from individual procedures and from the
DATA step in many different forms other than the default SAS listing output.

The following figure shows how SAS produces ODS output.

Figure 10.1 ODS Processing: What Goes in and What Comes Out

ODS Processing: What Goes In and What Comes Out

Table
Definition

Data
Component

Output
Object

DOCUMENT LISTING OUTPUT HTML MARKUP PRINTER RTF

SAS Formatted Destinations Third-Party Formatted Destinations

Document
Output

Listing
Output

SAS
Data Set

HTML3.2
Output

SAS
TAGSETS*

User-defined
TAGSETS

RTF
Output

MS
Windows
Printers

PS PCL PDF

ODS
Destinations

ODS
Outputs

+

180 How Does ODS Work? � Chapter 10

* List of Tagsets that SAS Supplies and Supports

Table 10.2 * List of Tagsets that SAS Supplies and Supports

CHTML HTML4 SASIOXML SASXMOH

CSVALL HTMLCSS SASREPORT SASXMOIM

DEFAULT IMODE SASXML SASXMOR

DOCBOOK PHTML SASXMOG WML

EVENT_MAP

* List of Tagsets that SAS Supplies but Does Not Support

Table 10.3 Additional Tagsets that SAS Supplies but Does Not Support

COLORLATEX LATEX SHORT_MAP TPL_STYLE_MAP

CSV LATEX2 STYLE_DISPLAY TROFF

CSVBYLINE NAMEDHTML STYLE_POPUP WMLOLIST

GRAPH ODSSTYLE TEXT_MAP

GTABLEAPPLET PYX TPL_STYLE_LIST

CAUTION:
These tagsets are experimental tagsets. Do not use these tagsets in production jobs. �

Features of ODS
ODS is designed to overcome the limitations of traditional SAS output and to make it

easy to access and create the new formatting options. ODS provides a method of
delivering output in a variety of formats, and makes the formatted output easy to access.

Important features of ODS include the following:
� ODS combines raw data with one or more table definitions to produce one or more

output objects. These objects can be sent to any or all ODS destinations. You
control the specific type of output from ODS by selecting an ODS destination. The
currently available ODS destinations can produce

� traditional monospace output
� an output data set
� an ODS document that contains a hierarchy file of the output objects
� output that is formatted for a high-resolution printer such as PostScript and

PDF
� output that is formatted in various markup languages such as HTML
� RTF output that is formatted for use with Microsoft Word.

� ODS provides table definitions that define the structure of the output from SAS
procedures and from the DATA step. You can customize the output by modifying
these definitions, or by creating your own.

� ODS provides a way for you to choose individual output objects to send to ODS
destinations. For example, PROC UNIVARIATE produces five output objects. You
can easily create HTML output, an output data set, traditional listing output, or
printer output from any or all of these output objects. You can send different
output objects to different destinations.

SAS Output � What Are the ODS Destinations? 181

� In the SAS windowing environment, ODS stores a link to each output object in the
Results folder in the Results window.

� Because formatting is now centralized in ODS, the addition of a new ODS
destination does not affect any procedures or the DATA step. As future
destinations are added to ODS, they will automatically become available to the
DATA step and all procedures that support ODS.

� With ODS, you can produce output for numerous destinations from a single source,
but you do not need to maintain separate sources for each destination. This
feature saves you time and system resources by enabling you to produce multiple
kinds of output with a single run of your procedure or data query.

What Are the ODS Destinations?

Overview of ODS Destination Categories
ODS enables you to produce SAS procedure and DATA step output to many different

destinations. ODS destinations are organized into two categories.

SAS Formatted
destinations

produce output that is controlled and interpreted by SAS, such as a
SAS data set, SAS output listing, or an ODS document.

Third-Party
Formatted
destinations

produce output which enables you to apply styles, markup
languages, or enables you to print to physical printers using page
description languages. For example, you can produce output in
PostScript, HTML, XML, or a style or markup language that you
created.

The following table lists the ODS destination categories, the destination that each
category includes, and the formatted output that results from each destination.

Table 10.4 Destination Category Table

Category Destinations Results

SAS Formatted DOCUMENT ODS document

LISTING SAS output listing

OUTPUT SAS data set

Third-Party Formatted HTML HTML file for online viewing

MARKUP markup language tagsets

PRINTER printable output in one of three
different formats: PCL, PDF,
or PS (PostScript)

RTF output written in Rich Text
Format for use with Microsoft
Word 2000

As future destinations are added to ODS, they automatically will become available to
the DATA step and to all procedures that support ODS.

Definition of Destination-Independent Input
Destination-independent input means that one destination can support a feature

even though another destination does not support it. In this case, the request is ignored

182 What Are the ODS Destinations? � Chapter 10

by the destination that does not support it. Otherwise, ODS would support a small
subset of features that are only common to all destinations. If this was true, then it
would be difficult to move your reports from one output format to another output
format. ODS provides many output formatting options, so that you can use the
appropriate format for the output that you want. It is best to use the appropriate
destination suited for your purpose.

The SAS Formatted Destinations
The SAS formatted destinations create SAS entities such as a SAS data set, a SAS

output listing, or an ODS document. The statements in the ODS SAS Formatted
category create the SAS entities.

The three SAS formatted destinations are:

DOCUMENT Destination
The DOCUMENT destination enables you to restructure, navigate, and replay
your data in different ways and to different destinations as you like without
needing to rerun your analysis or repeat your database query. The DOCUMENT
destination makes your entire output stream available in "raw" form and
accessible to you to customize. The output is kept in the original internal
representation as a data component plus a table definition. When the output is in
a DOCUMENT form, it is possible to rearrange, restructure, and reformat without
rerunning your analysis. Unlike other ODS destinations, the DOCUMENT
destination has a GUI interface. However, everything that you can do through the
GUI, you can also do with batch commands using the ODS DOCUMENT
statement and the DOCUMENT procedure.

Prior to SAS 9, each procedure or DATA step produced output that was sent to
each destination that you specified. While you could always send your output to as
many destinations as you wanted, you needed to rerun your procedure or data
query if you decided to use a destination that you had not originally designated.
The DOCUMENT destination eliminates the need to rerun procedures or repeat
data queries by enabling you to store your output objects and replay them to
different destinations.

LISTING Destination
The LISTING destination produces output that looks the same as the traditional
SAS output. The LISTING destination is the default destination that opens when
you start your SAS session. Thus ODS is always being used, even when you do not
explicitly invoke ODS.

The LISTING destination enables you to produce traditional SAS output with
the same look and presentation as it had in previous versions of SAS.

Because most procedures share some of the same table definitions, the output is
more consistent. For example, if you have two different procedures producing an
ANOVA table, they will both produce it in the same way because each procedure
uses the same template to describe the table. However, there are four procedures
that do not use a default table definition to produce their output: PRINT
procedure, REPORT procedure, TABULATE procedure, and FREQ procedure’s
n-way tables. These procedures use the structure that you specified in your
program code to define their tables.

OUTPUT Destination
The OUTPUT destination produces SAS output data sets. Because ODS already
knows the logical structure of the data and its native form, ODS can output a SAS
data set that represents exactly the same resulting data set that the procedure
worked with internally. The output data sets can be used for further analysis, or
for sophisticated reports in which you want to combine similar statistics across

SAS Output � What Are the ODS Destinations? 183

different data sets into a single table. You can easily access and process your
output data sets using all of the SAS data set features. For example, you can
access your output data using variable names and perform WHERE-expression
processing just as you would process data from any other SAS data set.

The Third-Party Formatted Destinations
The third-party formatted destinations enable you to apply styles to the output

objects that are used by applications other than SAS. For example, these destinations
support attributes such as "font" and "color."

Note: For a list of style elements and valid values, see the style elements table in
the SAS Output Delivery System: User’s Guide. �

The four categories of third-party formatted destinations are:

� HTML (Hypertext Markup Language)

The HTML destination produces HTML 3.2-compatible output. You can,
however, produce (HTML 4 stylesheet) output using the HTML4 tagsets.

The HTML destination can create some or all of the following:

� an HTML file (called the body file) that contains the results from the
procedure

� a table of contents that links to the body file

� a table of pages that links to the body file
� a frame that displays the table of contents, the table of pages, and the body

file.

The body file is required with all ODS HTML output. If you do not want to link
to your output, then you do not have to create a table of contents, a table of pages,
or a frame file. However, if your output is very large, you might want to create a
table of contents and a table of pages for easier reading and transversing through
your file.

The HTML destination is intended only for on-line use, not for printing. To
print hard-copies of the output objects, use the PRINTER destination.

� Markup Languages (MARKUP) Family

Just as table definitions describe how to lay out a table, and style attributes
describe the style of the output, tagsets describe how to produce a markup
language output. You can use a tagset that SAS supplies or you can create your
own using the TEMPLATE procedure. Like table definitions and style attributes,
tagsets enable you to modify your markup language output. For example, each
variety of XML can be specified as a new tagset. SAS supplies you with a
collection of XML tagsets and enables you to produce a customized variety of XML.
The important point is that you can implement a tagset that SAS supplies or a
customized tagset that you created without having to wait for the next release of
SAS. With the addition of modifying and creating your own tagsets by using PROC
TEMPLATE, now you have greater flexibility in customizing your output.

Because the MARKUP destination is so flexible, you can use either the SAS
tagsets or a tagset that you created. For a complete listing of the markup
language tagsets that SAS supplies, see the section on listing tagset names in the
SAS Output Delivery System: User’s Guide. To learn how to define your own
tagsets, see the section on methods to create your own tagsets in the SAS Output
Delivery System: User’s Guide.

The MARKUP destination cannot replace ODS PRINTER or ODS RTF
destinations because it cannot do text measurement. Therefore, it cannot produce

184 What Are the ODS Destinations? � Chapter 10

output for a page description language or a hybrid language like RTF which
requires all of the text to be measured and placed at a specific position on the page.

� PRINTER Family

The PRINTER destination produces output for
� printing to physical printers such as Windows printers under Windows, PCL,

and PostScript printers on other operating systems
� producing portable PostScript, PCL, and PDF files.

The PRINTER destinations produce ODS output that contain page description
languages: they describe precise positions where each line of text, each rule, and
each graphical element are to be placed on the page. In general, you cannot edit or
alter these formats. Therefore, the output from ODS PRINTER is intended to be
the final form of the report.

� Rich Text Format (RTF)

RTF produces output for Microsoft Word. While there are other applications
that can read RTF files, the RTF output might not work successfully with them.

The RTF destination enables you to view and edit the RTF output. ODS does
not define the “vertical measurement," meaning that SAS does not determine the
optimal place to position each item on the page. For example, page breaks are not
always fixed, so when you edit your text, you do not want your RTF output tables
to split at inappropriate places. Your tables can remain whole and intact on one
page or can have logical breaks where you specified.

However, because Microsoft Word needs to know the widths of table columns
and it cannot adjust tables if they are too wide for the page, ODS measures the
width of the text and tables (horizontal measurement). Therefore, all the column
widths can be set properly by SAS and the table can be divided into panels if it is
too wide to fit on a single page.

In short, when producing RTF output for input to Microsoft Word, SAS
determines the horizontal measurement and Microsoft Word controls the vertical
measurement. Because Microsoft Word can determine how much room there is on
the page, your tables will display consistently as you specified even after you
modified your RTF file.

What Controls the Formatting Features of Third-Party Formats?
All of the formatting features that control the appearance of the third-party

formatted destinations beyond what the LISTING destination can do are controlled by
two mechanisms:

� ODS statement options
� ODS style attributes

The ODS statement options control three features:
1 Features that are specific to a given destination, such as stylesheets for HTML.
2 Features that are global to the document, such as AUTHOR and table of contents

generation.
3 Features that we expect users to change on each document, such as the output file

name.

The ODS style attributes control the way that individual elements are created.
Attributes are aspects of a given style, such as type face, weight, font size, and color.
The values of the attributes collectively determine the appearance of each part of the
document to which the style is applied. With style attributes, it is unnecessary to insert

SAS Output � What Are Style Definitions, Style Elements, and Style Attributes? 185

destination-specific code (such as raw HTML) into the document. Each output
destination will interpret the attributes that are necessary to generate the presentation
of the document. Because not all destinations are the same, not all attributes can be
interpreted by all destinations. Style attributes that are incompatible with a selected
destination are ignored. For example, PostScript does not support active links, so the
URL= attribute is ignored when producing PostScript output.

ODS Destinations and System Resources
ODS destinations can be open or closed. You open and close a destination with the

appropriate ODS statement. When a destination is open, ODS sends the output objects
to it. An open destination uses system resources even if you use the selection and
exclusion features of ODS to select or exclude all objects from the destination.
Therefore, to conserve resources, close unnecessary destinations. For more information
about using each destination, see the topic on ODS statements in the SAS Output
Delivery System: User’s Guide.

By default, the LISTING destination is open and all other destinations are closed.
Consequently, if you do nothing, your SAS programs run and produce listing output
looking just as they did in previous releases of SAS before ODS was available.

What Are Table Definitions, Table Elements, and Table Attributes?
A table definition describes how to generate the output for a tabular output object.

(Most ODS output is tabular.) A table definition determines the order of column
headers and the order of variables, as well the overall look of the output object that
uses it. For information about customizing the table definition, see the topic on the
TEMPLATE procedure in the SAS Output Delivery System: User’s Guide.

In addition to the parts of the table definition that order the headers and columns,
each table definition contains or references table elements. A table element is a
collection of table attributes that apply to a particular header, footer, or column.
Typically, a table attribute specifies something about the data rather than about its
presentation. For example, FORMAT specifies the SAS format, such as the number of
decimal places. However, some table attributes describe presentation aspects of the
data, such as how many blank characters to place between columns.

Note: The attributes of table definitions that control the presentation of the data
have no effect on output objects that go to the LISTING or OUTPUT destination.
However, the attributes that control the structure of the table and the data values do
affect listing output. �

For information on table attributes, see the section on table attributes in the SAS
Output Delivery System: User’s Guide.

What Are Style Definitions, Style Elements, and Style Attributes?
To customize the output at the level of your entire output stream in a SAS session,

you specify a style definition. A style definition describes how to generate the
presentation aspects (color, font face, font size, and so on) of the entire SAS output. A
style definition determines the overall look of the documents that use it.

Each style definition is composed of style elements. A style element is a collection of
style attributes that apply to a particular part of the output. For example, a style
element may contain instructions for the presentation of column headers, or for the
presentation of the data inside the cells. Style elements may also specify default colors
and fonts for output that uses the style definition.

186 What Are Style Definitions, Style Elements, and Style Attributes? � Chapter 10

Each style attribute specifies a value for one aspect of the presentation. For example,
the BACKGROUND= attribute specifies the color for the background of an HTML table
or for a colored table in printed output. The FONT_STYLE= attribute specifies whether
to use a Roman or an italic font. For information on style attributes, see the section on
style attributes in the SAS Output Delivery System: User’s Guide.

Note: Because style definitions control the presentation of the data, they have no
effect on output objects that go to the LISTING or OUTPUT destination. �

What Style Definitions Are Shipped with SAS Software?

Base SAS software is shipped with many style definitions. To see a list of these
styles, you can view them in the SAS Explorer Window, use the TEMPLATE procedure,
or use the SQL procedure.

� SAS Explorer Window:

To display a list of the available styles using the SAS Explorer Window, follow
these steps:

1 From any window in an interactive SAS session, select

View � Results

2 In the Results window, select

View � Templates

3 In the Templates window, select and open Sashelp.tmplmst.

4 Select and open the Styles folder, which contains a list of available style
definitions. If you want to view the underlying SAS code for a style
definition, then select the style and open it.

Operating Environment Information: For information on navigating in the
Explorer window without a mouse, see the section on “Window Controls and
General Navigation” in the SAS documentation for your operating
environment. �

� TEMPLATE Procedure:

You can also display a list of the available styles by submitting the following
PROC TEMPLATE statements:

proc template;
list styles;

run;

� SQL Procedure:

You can also display a list of the available styles by submitting the following
PROC SQL statements:

proc sql;
select * from styles.style-name;

The style–name is the name of any style from the template store (for example,
styles.default or styles.beige).

For more information on how ODS destinations use styles and how you can
customize styles, see the section on the DEFINE STYLE statement in the SAS Output
Delivery System: User’s Guide.

SAS Output � Changing SAS Registry Settings for ODS 187

How Do I Use Style Definitions with Base SAS Procedures?
� Most Base SAS Procedures

Most Base SAS procedures that support ODS use one or more table definitions
to produce output objects. These table definitions include definitions for table
elements: columns, headers, and footers. Each table element can specify the use of
one or more style elements for various parts of the output. These style elements
cannot be specified within the syntax of the procedure, but you can use customized
styles for the ODS destinations that you use. For more information about
customizing tables and styles, see the TEMPLATE procedure in the SAS Output
Delivery System: User’s Guide.

� The PRINT, REPORT and TABULATE Procedures

The PRINT, REPORT and TABULATE procedures provide a way for you to
access table elements from the procedure step itself. Accessing the table elements
enables you to do such things as specify background colors for specific cells, change
the font face for column headers, and more. The PRINT, REPORT, and
TABULATE procedures provide a way for you to customize the markup language
and printed output directly from the procedure statements that create the report.
For more information about customizing the styles for these procedures, see the
Base SAS Procedures Guide.

Changing SAS Registry Settings for ODS

Overview of ODS and the SAS Registry
The SAS registry is the central storage area for configuration data that ODS uses.

This configuration data is stored in a hierarchical form, which works in a similar
manner to the way directory-based file structures work under UNIX, Windows, VMS,
and the z/OS UNIX system. However, the SAS registry uses keys and subkeys as the
basis for its structure, instead of using directories and subdirectories, like similar file
systems in DOS or UNIX. A key is a word or a text string that refers to a particular
aspect of SAS. Each key may be a place holder without values or subkeys associated
with it, or it may have many subkeys with associated values. For example, the ODS key
has DESTINATIONS, GUI, ICONS, and PREFERENCES subkeys. A subkey is a key
inside another key. For example, PRINTER is a subkey of the DESTINATIONS subkey.

Display 10.5 SAS Registry of ODS Subkeys

188 Changing SAS Registry Settings for ODS � Chapter 10

Changing Your Default HTML Version Setting

By default, the SAS registry is configured to generate HTML4 output when you
specify the ODS HTML statement. To permanently change the default HTML version,
you can change the setting of the HTML version in the SAS registry.

CAUTION:
If you make a mistake when you modify the SAS registry, then your system might become
unstable or unusable. You will not be warned if an entry is incorrect. Incorrect entries
can cause errors, and can even prevent you from bringing up a SAS session. For
more information about how to configure the SAS registry, see the SAS registry
section in SAS Language Reference: Concepts. �

To change the default setting of the HTML version in the SAS registry:

1 Select

Solutions � Accessories � Registry Editor

or
Issue the command REGEDIT.

2 Select

ODS � Default HMTL Version

3 Select

Edit � Modify

or
Click the right mouse button and select MODIFY. The Edit String Value window
appears.

4 Type the HTML version in the Value Data text box and select OK.

Display 10.6 SAS Registry Showing HTML Version Setting

SAS Output � Customized ODS Output 189

Changing ODS Destination Default Settings
ODS destination subkeys are stored in the SAS registry. To change the values for

these destinations subkeys:

1 Select

ODS � Destinations

2 Select a destination subkey

3 Select a subkey in the Contents of window

4 Select

Edit � Modify

or
Click the right mouse button and select MODIFY.

5 Type in the Value Data entry into the Edit Value String or Edit Signed Integer
Value window and select OK.

Display 10.7 Registry Editor Window

Customized ODS Output

SAS Output
By default, ODS output is formatted according to instructions that a PROC step or

DATA step defines. However, ODS provides ways for you to customize the output. You
can customize the output for an entire SAS job, or you can customize the output for a
single output object.

190 Customized ODS Output � Chapter 10

Selection and Exclusion Lists
You can specify which output objects that you want to produce by selecting or

excluding them in a list. For each ODS destination, ODS maintains either a selection
list or an exclusion list. A selection list is a list of output objects that are sent to the
destination. An exclusion list is a list of output objects that are excluded from the
destination. ODS also maintains an overall selection list or an overall exclusion list. You
can use these lists to control which output objects go to the specified ODS destinations.

To see the contents of the lists use the ODS SHOW statement. The lists are written
to the SAS log. The following table shows the default lists:

Table 10.5 Default List for Each ODS Destination

ODS Destination Default List

OUTPUT EXCLUDE ALL

All others SELECT ALL

How Does ODS Determine the Destinations for an Output Object?
To specify an output object, you need to know which output objects your SAS

program produces. The ODS TRACE statement writes to the SAS log a trace record
that includes the path, the label, and other information about each output object that is
produced. For more information, about the ODS TRACE statement see SAS Output
Delivery System: User’s Guide. You can specify an output object as any of the following:

� a full path. For example,

Univariate.City_Pop_90.TestsForLocation

is the full path of the output object.

� a partial path. A partial path consists of any part of the full path that begins
immediately after a period (.) and continues to the end of the full path. For
example, if the full path is

Univariate.City_Pop_90.TestsForLocation

then the partial paths are:

City_Pop_90.TestsForLocation
TestsForLocation

� a label that is surrounded by quotation marks.

For example,

"Tests For Location"

� a label path. For example, the label path for the output object is

"The UNIVARIATE Procedure"."CityPop_90"."Tests For Location"

Note: The trace record shows the label path only if you specify the LABEL
option in the ODS TRACE statement. �

� a partial label path. A partial label path consists of any part of the label that
begins immediately after a period (.) and continues to the end of the label. For
example, if the label path is

"The UNIVARIATE Procedure"."CityPop_90"."Tests For Location"

SAS Output � Customized ODS Output 191

then the partial label paths are:

"CityPop_90"."Tests For Location"
"Tests For Location"

� a mixture of labels and paths.
� any of the partial path specifications, followed by a pound sign (#) and a number.

For example, TestsForLocation#3 refers to the third output object that is named
TestsForLocation.

As each output object is produced, ODS uses the selection and exclusion lists to
determine which destination or destinations the output object will be sent to. The
following figure illustrates this process:

Figure 10.2 Directing an Output Object to a Destination

For each destination, ODS first asks if the list for that destination includes the object. If it does
not, ODS does not send the output object to that destination. If the list for that destination does
include the object, ODS reads the overall list. If the overall list includes the object, ODS sends
it to the destination. If the overall list does not include the object, ODS does not send it to the
destination.

Does the destination list
include the output object

to the destination?

Does the overall list
include the object ?

ODS doesn't pass the
object to the destination

ODS passes the object
to the destination

yes

no

yes
no

Note: Although you can maintain a selection list for one destination and an
exclusion list for another, it is easier to understand the results if you maintain the same
types of lists for all the destinations where you route output. �

Customized Output for an Output Object
For a procedure, the name of the table definition that is used for an output object

comes from the procedure code. The DATA step uses a default table definition unless
you specify an alternative with the TEMPLATE= suboption in the ODS option in the
FILE statement. For more information, see the section on the TEMPLATE= suboption
in the SAS Output Delivery System: User’s Guide.

192 Summary of ODS � Chapter 10

To find out which table definitions a procedure or the DATA step uses for the output
objects, you must look at a trace record. To produce a trace record in your SAS log,
submit the following SAS statements:

ods trace on;
your-proc-or-DATA-step
ods trace off;

Remember that not all procedures use table definitions. If you produce a trace record
for one of these procedures, no definition appears in the trace record. Conversely, some
procedures use multiple table definitions to produce their output. If you produce a trace
record for one of these procedures, more than one definition appears in the trace record.

The trace record refers to the table definition as a template. For a detailed
explanation of the trace record, see the section on the ODS TRACE statement in the
SAS Output Delivery System: User’s Guide.

You can use PROC TEMPLATE to modify an entire table definition. When a
procedure or DATA step uses a table definition, it uses the elements that are defined or
referenced in its table definition. In general, you cannot directly specify a table element
for your procedure or DATA step to use without modifying the definition itself.

Note: Three Base SAS procedures, PROC PRINT, PROC REPORT and PROC
TABULATE, do provide a way for you to access table elements from the procedure step
itself. Accessing the table elements enables you to customize your report. For more
information about these procedures, see the Base SAS Procedures Guide �

Summary of ODS
In the past, the term “output” has generally referred to the outcome of a SAS

procedure and DATA step. With the advent of the Output Delivery System, “output”
takes on a much broader meaning. ODS is designed to optimize output from SAS
procedures and the DATA step. It provides a wide range of formatting options and
greater flexibility in generating, storing, and reproducing SAS output.

Important features of ODS include the following:
� ODS combines raw data with one or more table definitions to produce one or more

output objects. An output object tells ODS how to format the results of a procedure
or DATA step.

� ODS provides table definitions that define the structure of the output from SAS
procedures and from the DATA step. You can customize the output by modifying
these definitions, or by creating your own definitions.

� ODS provides a way for you to choose individual output objects to send to ODS
destinations.

� ODS stores a link to each output object in the Results folder for easy retrieval and
access.

� As future destinations are added to ODS, they will automatically become available
to the DATA step and all procedures that support ODS.

One of the main goals of ODS is to enable you to produce output for numerous
destinations from a single source, without requiring separate sources for each
destination. ODS supports many destinations:

DOCUMENT
enables you to capture output objects from single run of the analysis and produce
multiple reports in various formats whenever you want without re-running your
SAS programs.

SAS Output � Summary of ODS 193

LISTING
produces output that looks the same as the traditional SAS output.

HTML
produces output for online viewing.

MARKUP
produces output for markup language tagsets.

OUTPUT
produces SAS output data sets, thereby eliminating the need to parse PROC
PRINTTO output.

PRINTER
produces presentation-ready printed reports.

RTF
produces output suitable for Microsoft Word reports.

By default, ODS output is formatted according to instructions that the procedure or
DATA step defines. However, ODS provides ways for you to customize the presentation
of your output. You can customize the presentation of your SAS output, or you can
customize the look of a single output object. ODS gives you greater flexibility in
generating, storing, and reproducing SAS procedure and DATA step output with a wide
range of formatting options.

194

195

C H A P T E R

11
BY-Group Processing in SAS
Programs

Definition of BY-Group Processing 195
References for BY-Group Processing 195

Definition of BY-Group Processing
BY-group processing is a method of processing observations from one or more SAS

data sets that are grouped or ordered by values of one or more common variables. You
can use BY-group processing in both DATA and PROC steps.

The most common use of BY-group processing in the DATA step is to combine two or
more SAS data sets by using the BY statement with a SET, MERGE, MODIFY, or
UPDATE statement. When you create reports or summaries with SAS procedures,
BY-group processing allows you to group information in the output according to values
of one or more variables.

References for BY-Group Processing
� For more information about BY-Group processing, see Chapter 22, “BY-Group

Processing in the DATA Step,” on page 375.

� For information about how to use BY-group processing with SAS procedures, see
“Fundamental Concepts for Using Base SAS Procedures” and individual
procedures in Base SAS Procedures Guide.

� For information about using BY-group processing to combine information from
multiple SAS data sets, see Chapter 23, “Reading, Combining, and Modifying SAS
Data Sets,” on page 387. For even more extensive examples of BY-group
processing, see Combining and Modifying SAS Data Sets: Examples.

� For information about the BY statement, see Statements in SAS Language
Reference: Dictionary.

� For information about how to use BY-group processing with other software
products, see the SAS documentation for those products.

196

197

C H A P T E R

12
WHERE-Expression Processing

Definition of WHERE-Expression Processing 197
Where to Use a WHERE Expression 198

Syntax of WHERE Expression 199

Specifying an Operand 199

Variable 199

SAS Function 200
Constant 200

Specifying an Operator 201

Arithmetic Operators 201

Comparison Operators 201

IN Operator 202

Fully-Bounded Range Condition 202
BETWEEN-AND Operator 203

CONTAINS Operator 203

IS NULL or IS MISSING Operator 204

LIKE Operator 204

Sounds-like Operator 205
SAME-AND Operator 205

MIN and MAX Operators 206

Concatenation Operator 206

Prefix Operators 206

Combining Expressions by Using Logical Operators 207
Syntax 207

Processing Compound Expressions 207

Using Parentheses to Control Order of Evaluation 208

Constructing Efficient WHERE Expressions 208

Processing a Segment of Data That Is Conditionally Selected 208

Applying FIRSTOBS= and OBS= to a Subset of Data 209
Processing a SAS View 209

Deciding Whether to Use a WHERE Expression or a Subsetting IF Statement 211

Definition of WHERE-Expression Processing
WHERE-expression processing

enables you to conditionally select a subset of observations, so that SAS processes
only the observations that meet a set of specified conditions. For example, if you
have a SAS data set containing sales records, you may want to print just the
subset of observations for which the sales are greater than $300,000 but less than
$600,000. In addition, WHERE-expression processing may improve efficiency of a
request. For example, if a WHERE expression can be optimized with an index, it

198 Where to Use a WHERE Expression � Chapter 12

is not necessary for SAS to read all observations in the data set in order to
perform the request.

WHERE expression
defines a condition that selected observations must satisfy in order to be processed.
You can have a single WHERE expression, referred to as a simple expression, such
as the following:

where sales gt 600000;

Or you can have multiple WHERE expressions, referred to as a compound
expression, such as the following:

where sales gt 600000 and salary lt 100000;

Where to Use a WHERE Expression
In SAS, you can use a WHERE expression in the following situations:
� WHERE statement in both DATA and PROC steps. For example, the following

PRINT procedure includes a WHERE statement so that only the observations
where the year is greater than 2001 are printed:

proc print data=employees;
where startdate > ’01jan2001’d;

run;

� WHERE= data set option. The following PRINT procedure includes the WHERE=
data set option:

proc print data=employees (where=(startdate > ’01jan2001’d));
run;

� WHERE clause in the SQL procedure, SCL, and SAS/IML software. For example,
the following SQL procedure includes a WHERE clause to select only the states
where the murder count is greater than seven:

proc sql;
select state from crime
where murder > 7;

� WHERE command in windowing environments like SAS/FSP software:

where age > 15

� SAS view (DATA step view, SAS/ACCESS view, PROC SQL view), stored with the
definition. For example, the following SQL procedure creates an SQL view named
STAT from the data file CRIME and defines a WHERE expression for the SQL
view definition:

proc sql;
create view stat as
select * from crime
where murder > 7;

In some cases, you can combine the methods that you use to specify a WHERE
expression. That is, you can use a WHERE statement as follows:

� in conjunction with a WHERE= data set option
� along with the WHERE= data set option in windowing procedures, and in

conjunction with the WHERE command

WHERE-Expression Processing � Specifying an Operand 199

� on a SAS view that has a stored WHERE expression.

For example, it might be useful to combine methods when you merge data sets. That
is, you might want different criteria to apply to each data set when you create a subset
of data. However, when you combine methods to create a subset of data, there are some
restrictions. For example, in the DATA step, if a WHERE statement and a WHERE=
data set option apply to the same data set, the data set option takes precedence. For
details, see the documentation for the method you are using to specify a WHERE
expression.

Note: By default, a WHERE expression does not evaluate added and modified
observations. To specify whether a WHERE expression should evaluate updates, you
can specify the WHEREUP= data set option. See the WHEREUP= data set option in
SAS Language Reference: Dictionary. �

Syntax of WHERE Expression

A WHERE expression is a type of SAS expression that defines a condition for
selecting observations. A WHERE expression can be as simple as a single variable
name or a constant (which is a fixed value). A WHERE expression can be a SAS
function, or it can be a sequence of operands and operators that define a condition for
selecting observations. In general, the syntax of a WHERE expression is as follows:

WHERE operand <operator> <operand>

operand something to be operated on. An operand can be a variable, a SAS
function, or a constant. See “Specifying an Operand” on page 199.

operator a symbol that requests a comparison, logical operation, or arithmetic
calculation. All SAS expression operators are valid for a WHERE
expression, which include arithmetic, comparison, logical, minimum
and maximum, concatenation, parentheses to control order of
evaluation, and prefix operators. In addition, you can use special
WHERE expression operators, which include BETWEEN-AND,
CONTAINS, IS NULL or IS MISSING, LIKE, sounds-like, and
SAME-AND. See “Specifying an Operator” on page 201.

For more information on SAS expressions, see Chapter 7, “Expressions,” on page 109.

Specifying an Operand

Variable
A variable is a column in a SAS data set. Each SAS variable has attributes like

name and type (character or numeric). The variable type determines how you specify
the value for which you are searching. For example:

where score > 50;
where date >= ’01jan2001’d and time >= ’9:00’t;
where state = ’Texas’;

200 Specifying an Operand � Chapter 12

In a WHERE expression, you cannot use automatic variables created by the DATA
step (for example, FIRST.variable, LAST.variable, _N_, or variables created in
assignment statements).

As in other SAS expressions, the names of numeric variables can stand alone. SAS
treats numeric values of 0 or missing as false; other values are true. For example, the
following WHERE expression returns all values for EMPNUM and ID that are not
missing or that have a value of 0:

where empnum and id;

The names of character variables can also stand alone. SAS selects observations
where the value of the character variable is not blank. For example, the following
WHERE expression returns all values not equal to blank:

where lastname;

SAS Function
A SAS function returns a value from a computation or system manipulation. Most

functions use arguments that you supply, but a few obtain their arguments from the
operating environment. To use a SAS function in a WHERE expression, type its name
and argument(s) enclosed in parentheses. Some functions you may want to specify
include:

� SUBSTR extracts a substring
� TODAY returns the current date
� PUT returns a given value using a given format.

The following DATA step produces a SAS data set that contains only observations
from data set CUSTOMER in which the value of NAME begins with Mac and the value
of variable CITY is Charleston or Atlanta:

data testmacs;
set customer;
where substr (name,1,3) = ’Mac’ and
(city=’Charleston’ or city=’Atlanta’);

run;

Note: SAS functions used in a WHERE expression that can be optimized by an
index are the SUBSTR function and the TRIM function. �

For more information on SAS functions, see “Functions and CALL Routines” on page
38.

Constant
A constant is a fixed value such as a number or quoted character string, that is, the

value for which you are searching. A constant is a value of a variable obtained from the
SAS data set, or values created within the WHERE expression itself. Constants are
also called literals. For example, a constant could be a flight number or the name of a
city. A constant can also be a time, date, or datetime value.

The value will be either numeric or character. Note the following rules regarding
whether to use quotation marks:

� If the value is numeric, do not use quotation marks.

where price > 200;

� If the value is character, use quotation marks.

where lastname eq ’Martin’;

WHERE-Expression Processing � Specifying an Operator 201

� You can use either single or double quotation marks, but do not mix them. Quoted
values must be exact matches, including case.

� It might be necessary to use single quotation marks when double quotation marks
appear in the value, or use double quotation marks when single quotation marks
appear in the value.

where item = ’6" decorative pot’;
where name ? "D’Amico";

� A SAS date constant must be enclosed in quotation marks. When you specify date
values, case is not important. You can use single or double quotation marks. The
following expressions are equivalent:

where birthday = ’24sep1975’d;
where birthday = "24sep1975"d;

Specifying an Operator

Arithmetic Operators
Arithmetic operators allow you to perform a mathematical operation. The arithmetic

operators include the following:

Table 12.1 Arithmetic Operators

Symbol Definition Example

* multiplication where bonus = salary * .10;

/ division where f = g/h;

+ addition where c = a+b;

- subtraction where f = g-h;

** exponentiation where y = a**2;

Comparison Operators
Comparison operators (also called binary operators) compare a variable with a value

or with another variable. Comparison operators propose a relationship and ask SAS to
determine whether that relationship holds. For example, the following WHERE
expression accesses only those observations that have the value 78753 for the numeric
variable ZIPCODE:

where zipcode eq 78753;

The following table lists the comparison operators:

Table 12.2 Comparison Operators

Symbol Mnemonic
Equivalent

Definition Example

= EQ equal to where empnum eq 3374;

^= or ~= or = or
<>

NE not equal to where status ne fulltime;

202 Specifying an Operator � Chapter 12

Symbol Mnemonic
Equivalent

Definition Example

> GT greater than where hiredate gt
’01jun1982’d;

< LT less than where empnum < 2000;

>= GE greater than or equal to where empnum >= 3374;

<= LE less than or equal to where empnum <= 3374;

IN equal to one from a list of
values

where state in (’NC’,’TX’);

When you do character comparisons, you can use the colon (:) modifier to compare
only a specified prefix of a character string. For example, in the following WHERE
expression, the colon modifier, used after the equal sign, tells SAS to look at only the
first character in the values for variable LASTNAME and to select the observations
with names beginning with the letter S:

where lastname=: ’S’;

Note that in the SQL procedure, the colon modifier that is used in conjunction with an
operator is not supported; you can use the LIKE operator instead.

IN Operator

The IN operator, which is a comparison operator, searches for character and numeric
values that are equal to one from a list of values. The list of values must be in
parentheses, with each character value in quotation marks and separated by either a
comma or blank.

For example, suppose you want all sites that are in North Carolina or Texas. You
could specify:

where state = ’NC’ or state = ’TX’;

However, it is easier to use the IN operator, which selects any state in the list:

where state in (’NC’,’TX’);

In addition, you can use the NOT logical operator to exclude a list.

where state not in (’CA’, ’TN’, ’MA’);

Fully-Bounded Range Condition

A fully-bounded range condition consists of a variable between two comparison
operators, specifying both an upper and lower limit. For example, the following
expression returns the employee numbers that fall within the range of 500 to 1000
(inclusive):

where 500 <= empnum <= 1000;

Note that the previous range condition expression is equivalent to the following:

where empnum >= 500 and empnum <= 1000;

You can combine the NOT logical operator with a fully-bounded range condition to
select observations that fall outside the range. Note that parentheses are required:

where not (500 <= empnum <= 1000);

WHERE-Expression Processing � Specifying an Operator 203

BETWEEN-AND Operator
The BETWEEN-AND operator is also considered a fully-bounded range condition

that selects observations in which the value of a variable falls within an inclusive range
of values.

You can specify the limits of the range as constants or expressions. Any range you
specify is an inclusive range, so that a value equal to one of the limits of the range is
within the range. The general syntax for using BETWEEN-AND is as follows:

WHERE variable BETWEEN value AND value;
For example:

where empnum between 500 and 1000;
where taxes between salary*0.30 and salary*0.50;

You can combine the NOT logical operator with the BETWEEN-AND operator to
select observations that fall outside the range:

where empnum not between 500 and 1000;

Note: The BETWEEN-AND operator and a fully-bounded range condition produce
the same results. That is, the following WHERE expressions are equivalent:

where 500 <= empnum <= 1000;
where empnum between 500 and 1000;

�

CONTAINS Operator
The most common usage of the CONTAINS (?) operator is to select observations by

searching for a specified set of characters within the values of a character variable. The
position of the string within the variable’s values does not matter; however, the
operator is case sensitive when making comparisons.

The following examples select observations having the values Mobay and Brisbayne
for the variable COMPANY, but they do not select observations containing Bayview:

where company contains ’bay’;
where company ? ’bay’;

You can combine the NOT logical operator with the CONTAINS operator to select
observations that are not included in a specified string:

where company not contains ’bay’;

You can also use the CONTAINS operator with two variables, that is, to determine if
one variable is contained in another. When you specify two variables, keep in mind the
possibility of trailing spaces, which can be resolved using the TRIM function.

proc sql;
select *
from table1 as a, table2 as b
where a.fullname contains trim(b.lastname) and

a.fullname contains trim(b.firstname);

In addition, the TRIM function is helpful when you search on a macro variable.

proc print;
where fullname contains trim("&lname");

run;

204 Specifying an Operator � Chapter 12

IS NULL or IS MISSING Operator
The IS NULL or IS MISSING operator selects observations in which the value of a

variable is missing. The operator selects observations with both regular or special
missing value characters and can be used for both character and numeric variables.

where idnum is missing;
where name is null;

The following are equivalent for character data:

where name is null;
where name = ’ ’;

And the following is equivalent for numeric data. This statement differentiates missing
values with special missing value characters:

where idnum <= .Z;

You can combine the NOT logical operator with IS NULL or IS MISSING to select
nonmissing values, as follows:

where salary is not missing;

LIKE Operator
The LIKE operator selects observations by comparing the values of a character

variable to a specified pattern, which is referred to as pattern matching. The LIKE
operator is case sensitive. There are two special characters available for specifying a
pattern:

percent sign (%) specifies that any number of characters can occupy that position.
The following WHERE expression selects all employees with a name
that starts with the letter N. The names can be of any length.

where lastname like ’N%’;

underscore (_) matches just one character in the value for each underscore
character. You can specify more than one consecutive underscore
character in a pattern, and you can specify a percent sign and an
underscore in the same pattern. For example, you can use different
forms of the LIKE operator to select character values from this list
of first names:

Diana
Diane
Dianna
Dianthus
Dyan

The following table shows which of these names is selected by using various forms of
the LIKE operator:

Pattern Name Selected

like ’D_an’ Dyan

like ’D_an_’ Diana, Diane

like ’D_an__’ Dianna

like ’D_an%’ all names from list

WHERE-Expression Processing � Specifying an Operator 205

You can use a SAS character expression to specify a pattern, but you cannot use a
SAS character expression that uses a SAS function.

You can combine the NOT logical operator with LIKE to select values that do not
have the specified pattern, such as the following:

where frstname not like ’D_an%’;

Sounds-like Operator
The sounds-like (=*) operator selects observations that contain a spelling variation

of a specified word or words. The operator uses the Soundex algorithm to compare the
variable value and the operand. For more information, see the SOUNDEX function in
SAS Language Reference: Dictionary.

Note: Note that the SOUNDEX algorithm is English-biased, and is less useful for
languages other than English. �

Although the sounds-like operator is useful, it does not always select all possible
values. For example, consider that you want to select observations from the following
list of names that sound like Smith:

Schmitt

Smith

Smithson

Smitt

Smythe

The following WHERE expression selects all the names from this list except Schmitt
and Smithson:

where lastname=* ’Smith’;

You can combine the NOT logical operator with the sounds-like operator to select
values that do not contain a spelling variation of a specified word or words, such as:

where lastname not =* ’Smith’;

Note: The sounds-like operator cannot be optimized with an index. �

SAME-AND Operator
Use the SAME-AND operator to add more conditions to an existing WHERE

expression later in the program without retyping the original conditions. This is useful
with the following:

� interactive SAS procedures
� full-screen SAS procedures that allow you to type a WHERE expression on the

command line
� any kind of RUN-group processing.

Use the SAME-AND operator when you already have a WHERE expression defined
and you want to insert additional conditions. The SAME-AND operator has the
following form:

where-expression-1;
... SAS statements...
WHERE SAME AND where-expression-2;
... SAS statements...
WHERE SAME AND where-expression-n;

206 Specifying an Operator � Chapter 12

SAS selects observations that satisfy the conditions after the SAME-AND operator in
addition to any previously defined conditions. SAS treats all of the existing conditions
as though they were conditions separated by AND operators in a single WHERE
expression.

The following example shows how to use the SAME-AND operator within RUN
groups in the GPLOT procedure. The SAS data set YEARS has three variables and
contains quarterly data for the 1990–1997 period:

proc gplot data=years;
plot unit*quar=year;

run;

where year > ’01jan1991’d;
run;

where same and year < ’01jan1996’d;
run;

The following WHERE expression is equivalent to the preceding code:

where year > ’01jan1991’d and year < ’01jan1996’d;

MIN and MAX Operators
Use the MIN or MAX operators to find the minimum or maximum value of two

quantities. Surround the operators with the two quantities whose minimum or
maximum value you want to know.

� The MIN operator returns the lower of the two values.
� The MAX operator returns the higher of two values.

For example, if A is less than B, then the following would return the value of A:

where x = (a min b);

Note: The symbol representation >< is not supported, and <> is interpreted as “not
equal to.” �

Concatenation Operator
The concatenation operator concatenates character values. You indicate the

concatenation operator as follows:
� || (two OR symbols)
� !! (two explanation marks)
� ¦¦ (two broken vertical bars).

For example,

where name = ’John’||’Smith’;

Prefix Operators
The plus sign (+) and minus sign (–) can be either prefix operators or arithmetic

operators. They are prefix operators when they appear at the beginning of an
expression or immediately preceding a left parentheses. A prefix operator is applied to
the variable, constant, SAS function, or parenthetic expression.

where z = −(x + y);

Note: The NOT operator is also considered a prefix operator. �

WHERE-Expression Processing � Processing Compound Expressions 207

Combining Expressions by Using Logical Operators

Syntax
You can combine or modify WHERE expressions by using the logical operators (also

called Boolean operators) AND, OR, and NOT. The basic syntax of a compound WHERE
expression is as follows:

WHERE where-expression-1 logical-operator where-expression-n ;

AND combines two conditions by finding observations that satisfy both
conditions. For example:

where skill eq ’java’ and years eq 4;

OR combines two conditions by finding observations that satisfy either
condition or both. For example:

where skill eq ’java’ or years eq 4;

NOT modifies a condition by finding the complement of the specified
criteria. You can use the NOT logical operator in combination with
any SAS and WHERE expression operator. And you can combine the
NOT operator with AND and OR. For example:

where skill not eq ’java’ or years not eq 4;

The logical operators and their equivalent symbols are shown in the following table:

Table 12.3 Logical (Boolean) Operators

Symbol Mnemonic Equivalent

& AND

! or | or ¦ OR

^ or ~ or NOT

Processing Compound Expressions
When SAS encounters a compound WHERE expression (multiple conditions), the

software follows rules to determine the order in which to evaluate each expression.
When WHERE expressions are combined, SAS processes the conditions in a specific
order:

1 The NOT expression is processed first.

2 Then the expressions joined by AND are processed.

3 Finally, the expressions joined by OR are processed.

For a complete discussion of the rules for evaluating compound expressions, see
“Order of Evaluation in Compound Expressions” on page 124.

208 Using Parentheses to Control Order of Evaluation � Chapter 12

Using Parentheses to Control Order of Evaluation
Even though SAS evaluates logical operators in a specific order, you can control the

order of evaluation by nesting expressions in parentheses. That is, an expression
enclosed in parentheses is processed before one not enclosed. The expression within the
innermost set of parentheses is processed first, followed by the next deepest, moving
outward until all parentheses have been processed.

For example, suppose you want a list of all the Canadian sites that have both
SAS/GRAPH and SAS/STAT software, so you issue the following expression:

where product=’GRAPH’ or product=’STAT’ and country=’Canada’;

The result, however, includes all sites that license SAS/GRAPH software along with
the Canadian sites that license SAS/STAT software. To obtain the correct results, you
can use parentheses, which causes SAS to evaluate the comparisons within the
parentheses first, providing a list of sites with either product licenses, then the result is
used for the remaining condition:

where (product=’GRAPH’ or product=’STAT’) and country=’Canada’;

Constructing Efficient WHERE Expressions
Indexing a SAS data set can significantly improve the performance of WHERE

processing. An index is an optional file that you can create for SAS data files in order to
provide direct access to specific observations. Processing a WHERE expression without
an index requires SAS to sequentially read every observation to find the ones that
match the selection criteria. Having an index allows the software to determine which
observations satisfy the criteria without having to read all the observations, which is
referred to as optimizing the WHERE expression. However, by default, SAS decides
whether to use the index or read the entire data set sequentially. For details on how
SAS uses an index to process a WHERE expression, see “Using an Index for WHERE
Processing” on page 527.

In addition to creating indexes for the data set, here are some guidelines for writing
efficient WHERE expressions:

Table 12.4 Constructing Efficient WHERE Expressions

Guideline Efficient Inefficient

Avoid using the LIKE operator
that begins with % or _.

where country like ’A%INA’; where country like ’%INA’;

Avoid using arithmetic
expressions.

where salary > 48000; where salary > 12*4000;

Use the IN operator instead of
a compound expression.

where state in (’NC’ , ’PA’ ,
’VA’);

where state =’NC’ or state =
’PA’ or state = ’VA’;

Processing a Segment of Data That Is Conditionally Selected
When you conditionally select a subset of observations with a WHERE expression,

you can also segment that subset by applying FIRSTOBS= and/or OBS= processing
(both as data set options and system options). When used with a WHERE expression,

WHERE-Expression Processing � Processing a SAS View 209

� FIRSTOBS= specifies the observation number within the subset of data selected
by the WHERE expression to begin processing.

� OBS= specifies when to stop processing observations from the subset of data
selected by the WHERE expression.

When used with a WHERE expression, the values specified for OBS= and
FIRSTOBS= are not the physical observation number in the data set, but a logical
number in the subset. For example, obs=3 does not mean the third observation number
in the data set; instead, it means the third observation in the subset of data selected by
the WHERE expression.

Applying OBS= and FIRSTOBS= processing to a subset of data is supported for the
WHERE statement, WHERE= data set option, and WHERE clause in the SQL
procedure.

If you are processing a SAS view that is a view of another view (nested views),
applying OBS= and FIRSTOBS= to a subset of data could produce unexpected results.
For nested views, OBS= and FIRSTOBS= processing is applied to each view, starting
with the root (lowest-level) view, and then filtering observations for each view. The
result could be that no observations meet the subset and segment criteria. See
“Processing a SAS View” on page 209.

Applying FIRSTOBS= and OBS= to a Subset of Data
The following SAS program illustrates how to specify a condition to subset data, and

how to specify a segment of the subset of data to process.

data A; u

do I=1 to 100;
X=I + 1;
output;
end;

run;

proc print data=work.a (firstobs=2 w obs=4 x ;
where I > 90; v

run;

u The DATA step creates a data set named WORK.A containing 100 observations
and two variables: I and X.

v The WHERE expression I > 90 tells SAS to process only the observations that
meet the specified condition, which results in the subset of observations 91
through 100.

w The FIRSTOBS= data set option tells SAS to begin processing with the 2nd
observation in the subset of data, which is observation 92.

x The OBS= data set option tells SAS to stop processing when it reaches the 4th
observation in the subset of data, which is observation 94.

The result of PROC PRINT is observations 92, 93, and 94.

Processing a SAS View
The following SAS program creates a data set, a view for the data set, then a second

view that subsets data from the first view. Both a WHERE statement and the OBS=
system option are used.

210 Processing a SAS View � Chapter 12

data a; u

do I=1 to 100;
X=I + 1;
output;
end;

run;

data viewa/view=viewa; v

set a;
Z = X+1;

run;

data viewb/view=viewb; w

set viewa;
where I > 90;

run;

options obs=3; x

proc print data=work.viewb; y

run;

u The first DATA step creates a data set named WORK.A, which contains 100
observations and two variables: I and X.

v The second DATA step creates a view named WORK.VIEWA containing 100
observations and three variables: I, X (from data set WORK.A), and Z (assigned in
this DATA step).

w The third DATA step creates a view named WORK.VIEWB and subsets the data
with a WHERE statement, which results in the view accessing ten observations.

x The OBS= system option applies to the previous SET VIEWA statement, which
tells SAS to stop processing when it reaches the 3rd observation in the subset of
data being processed.

y When SAS processes the PRINT procedure, the following occurs:
1 First, SAS applies obs=3 to WORK.VIEWA, which stops processing at the 3rd

observation.
2 Next, SAS applies the condition I > 90 to the three observations being

processed. None of the observations meet the criteria.
3 PROC PRINT results in no observations.

To prevent the potential of unexpected results, you can specify obs=max when creating
WORK.VIEWA to force SAS to read all the observations in the root (lowest-level) view:

data viewa/view=viewa;
set a (obs=max);

Z = X+1;
run;

The PRINT procedure processes observations 91, 92, and 93.

WHERE-Expression Processing � Deciding Whether to Use a WHERE Expression or a Subsetting IF Statement 211

Deciding Whether to Use a WHERE Expression or a Subsetting IF
Statement

To conditionally select observations from a SAS data set, you can use either a
WHERE expression or a subsetting IF statement. While they both test a condition to
determine if SAS should process an observation, they differ as follows:

� The subsetting IF statement can be used only in a DATA step. A subsetting IF
statement tests the condition after an observation is read into the Program Data
Vector (PDV). If the condition is true, SAS continues processing the current
observation. Otherwise, the observation is discarded, and processing continues
with the next observation.

� You can use a WHERE expression in both a DATA step and SAS procedures, as
well as in a windowing environment, SCL programs, and as a data set option. A
WHERE expression tests the condition before an observation is read into the PDV.
If the condition is true, the observation is read into the PDV and processed. If the
condition is false, the observation is not read into the PDV, and processing
continues with the next observation, which can yield substantial savings when
observations contain many variables or very long character variables (up to 32K
bytes). Additionally, a WHERE expression can be optimized with an index, and
the WHERE expression allows more operators, such as LIKE and CONTAINS.

Note: Although it is generally more efficient to use a WHERE expression and
avoid the move to the PDV prior to processing, if the data set contains
observations with very few variables, the move to the PDV could be cheap.
However, one variable containing 32K bytes of character data is not cheap, even
though it is only one variable. �

In most cases, you can use either method. However, the following table provides a
list of tasks that require you to use a specific method:

Table 12.5 Tasks Requiring Either WHERE Expression or Subsetting IF Statement

Task Method

Make the selection in a procedure without using a preceding
DATA step

WHERE expression

Take advantage of the efficiency available with an indexed data
set

WHERE expression

Use one of a group of special operators, such as BETWEEN-AND,
CONTAINS, IS MISSING or IS NULL, LIKE, SAME-AND, and
Sounds-Like

WHERE expression

Base the selection on anything other than a variable value that
already exists in a SAS data set. For example, you can select a
value that is read from raw data, or a value that is calculated or
assigned during the course of the DATA step

subsetting IF

Make the selection at some point during a DATA step rather
than at the beginning

subsetting IF

Execute the selection conditionally subsetting IF

212

213

C H A P T E R

13
Optimizing System Performance

Definitions for Optimizing System Performance 213
Collecting and Interpreting Performance Statistics 214

Using the FULLSTIMER and STIMER System Options 214

Interpreting FULLSTIMER and STIMER Statistics 214

Using Application Response Measurement to Monitor Performance 215

Techniques for Optimizing I/O 215
Overview of Techniques for Optimizing I/O 215

Using WHERE Processing 216

Using DROP and KEEP Statements 216

Using LENGTH Statements 216

Using the OBS= and FIRSTOBS= Data Set Options 217

Creating SAS Data Sets 217
Using Indexes 217

Accessing Data Through Views 217

Using Engines Efficiently 218

Setting the BUFNO=, BUFSIZE=, CATCACHE=, and COMPRESS= System Options 218

Using the SASFILE Statement 219
Techniques for Optimizing Memory Usage 220

Techniques for Optimizing CPU Performance 220

Reducing CPU Time by Using More Memory or Reducing I/O 220

Storing a Compiled Program for Computation-Intensive DATA Steps 220

Reducing Search Time for SAS Executable Files 220
Specifying Variable Lengths 221

Using Parallel Processing 221

Calculating Data Set Size 221

Definitions for Optimizing System Performance

performance statistics
are measurements of the total input and output operations (I/O), memory, and
CPU time used to process individual DATA or PROC steps. You can obtain these
statistics by using SAS system options that can help you measure your job’s initial
performance and to determine how to improve performance.

system performance
is measured by the overall amount of I/O, memory, and CPU time that your
system uses to process SAS programs. By using the techniques discussed in the
following sections, you can reduce or reallocate your usage of these three critical
resources to improve system performance. While you may not be able to take

214 Collecting and Interpreting Performance Statistics � Chapter 13

advantage of every technique for every situation, you can choose the ones that are
best suited for a particular situation.

Collecting and Interpreting Performance Statistics

Using the FULLSTIMER and STIMER System Options
The FULLSTIMER and STIMER system options control the printing of performance

statistics in the SAS log. These options produce different results, depending on your
operating environment. See the SAS documentation for your operating environment for
details about the output that SAS generates for these options.

The following output shows an example of the FULLSTIMER output in the SAS log,
as produced in a UNIX operating environment.

Output 13.1 Sample Results of Using the FULLSTIMER Option in a UNIX Operating
Environment

NOTE: DATA statement used:
real time 0.19 seconds
user cpu time 0.06 seconds
system cpu time 0.01 seconds
Memory 460k
Semaphores exclusive 194 shared 9 contended 0
SAS Task context switches 1 splits 0

The STIMER option reports a subset of the FULLSTIMER statistics. The following
output shows an example of the STIMER output in the SAS log in a UNIX operating
environment.

Output 13.2 Sample Results of Using the STIMER Option in a UNIX Operating
Environment

NOTE: DATA statement used:
real time 1.16 seconds
cpu time 0.09 seconds

Operating Environment Information: See the documentation for your operating
environment for information about how STIMER differs from FULLSTIMER in your
operating environment. The information that these options display varies depending on
your operating environment, so statistics that you see might differ from the ones
shown. �

Interpreting FULLSTIMER and STIMER Statistics
Several types of resource usage statistics are reported by the STIMER and

FULLSTIMER options, including real time (elapsed time) and CPU time. Real time
represents the clock time it took to execute a job or step; it is heavily dependent on the
capacity of the system and the current load. As more users share a particular resource,

Optimizing System Performance � Overview of Techniques for Optimizing I/O 215

less of that resource is available to you. CPU time represents the actual processing time
required by the CPU to execute the job, exclusive of capacity and load factors. If you
must wait longer for a resource, your CPU time will not increase, but your real time
will increase. It is not advisable to use real time as the only criterion for the efficiency
of your program because you cannot always control the capacity and load demands on
your system. A more accurate assessment of system performance is CPU time, which
decreases more predictably as you modify your program to become more efficient.

The statistics reported by FULLSTIMER relate to the three critical computer
resources: I/O, memory, and CPU time. Under many circumstances, reducing the use of
any of these three resources usually results in better throughput of a particular job and
a reduction of real time used. However, there are exceptions, as described in the
following sections.

Using Application Response Measurement to Monitor Performance
SAS provides the ability to monitor the performance of your applications using

Application Response Measurement (ARM). ARM enables you to monitor the
availability and performance of transactions within and across diverse applications.
The SAS ARM interface consists of the implementation of the ARM API as ARM
functions and an ARM agent. In addition, SAS supplies ARM macros, which generate
calls to the ARM functions, and new ARM system options, which enable you to manage
the ARM environment and to log internal SAS processing transactions. For
information, see Chapter 15, “Monitoring Performance Using Application Response
Measurement (ARM),” on page 225.

Techniques for Optimizing I/O

Overview of Techniques for Optimizing I/O
I/O is one of the most important factors for optimizing performance. Most SAS jobs

consist of repeated cycles of reading a particular set of data to perform various data
analysis and data manipulation tasks. To improve the performance of a SAS job, you
must reduce the number of times SAS accesses disk or tape devices.

To do this, you can modify your SAS programs to process only the necessary variables
and observations by:

� using WHERE processing
� using DROP and KEEP statements
� using LENGTH statements
� using the OBS= and FIRSTOBS= data set options.

You can also modify your programs to reduce the number of times it processes the
data internally by:

� creating SAS data sets
� using indexes
� accessing data through views
� using engines efficiently.

You can reduce the number of data accesses by processing more data each time a
device is accessed by

� setting the BUFNO=, BUFSIZE=, CATCACHE=, and COMPRESS= system options

216 Using WHERE Processing � Chapter 13

� using the SASFILE global statement to open a SAS data set and allocate enough
buffers to hold the entire data set in memory.

Note: Sometimes you may be able to use more than one method, making your SAS
job even more efficient. �

Using WHERE Processing
You might be able to use a WHERE statement in a procedure in order to perform the

same task as a DATA step with a subsetting IF statement. The WHERE statement can
eliminate extra DATA step processing when performing certain analyses because
unneeded observations are not processed.

For example, the following DATA step creates a data set SEATBELT, which contains
only those observations from the AUTO.SURVEY data set for which the value of
SEATBELT is YES. The new data set is then printed.

libname auto ’/users/autodata’;
data seatbelt;

set auto.survey;
if seatbelt=’yes’;

run;

proc print data=seatbelt;
run;

However, you can get the same output from the PROC PRINT step without creating
a data set if you use a WHERE statement in the PRINT procedure, as in the following
example:

proc print data=auto.survey;
where seatbelt=’yes’;

run;

The WHERE statement can save resources by eliminating the number of times you
process the data. In this example, you might be able to use less time and memory by
eliminating the DATA step. Also, you use less I/O because there is no intermediate data
set. Note that you cannot use a WHERE statement in a DATA step that reads raw data.

The extent of savings that you can achieve depends on many factors, including the
size of the data set. It is recommended that you test your programs to determine which
is the most efficient solution. See “Deciding Whether to Use a WHERE Expression or a
Subsetting IF Statement” on page 211 for more information.

Using DROP and KEEP Statements
Another way to improve efficiency is to use DROP and KEEP statements to reduce

the size of your observations. When you create a temporary data set and include only
the variables that you need, you can reduce the number of I/O operations that are
required to process the data. See SAS Language Reference: Dictionary for more
information on the DROP and KEEP statements.

Using LENGTH Statements
You can also use LENGTH statements to reduce the size of your observations. When

you include only the necessary storage space for each variable, you can reduce the
number of I/O operations that are required to process the data. Before you change the

Optimizing System Performance � Accessing Data Through Views 217

length of a numeric variable, however, see “Specifying Variable Lengths” on page 221.
See SAS Language Reference: Dictionary for more information on the LENGTH
statement.

Using the OBS= and FIRSTOBS= Data Set Options
You can also use the OBS= and FIRSTOBS= data set options to reduce the number of

observations processed. When you create a temporary data set and include only the
necessary observations, you can reduce the number of I/O operations that are required
to process the data. See SAS Language Reference: Dictionary for more information on
the OBS= and FIRSTOBS= data set options.

Creating SAS Data Sets
If you process the same raw data repeatedly, it is usually more efficient to create a

SAS data set. SAS can process SAS data sets more efficiently than it can process raw
data files.

Another consideration involves whether you are using data sets created with
previous releases of SAS. If you frequently process data sets created with previous
releases, it is sometimes more efficient to convert that data set to a new one by creating
it in the most recent version of SAS. See Chapter 35, “SAS 9.1 Compatibility with SAS
Files From Earlier Releases,” on page 583 for more information.

Using Indexes
An index is an optional file that you can create for a SAS data file to provide direct

access to specific observations. The index stores values in ascending value order for a
specific variable or variables and includes information as to the location of those values
within observations in the data file. In other words, an index allows you to locate an
observation by the value of the indexed variable.

Without an index, SAS accesses observations sequentially in the order in which they
are stored in the data file. With an index, SAS accesses the observation directly.
Therefore, by creating and using an index, you can access an observation faster.

In general, SAS can use an index to improve performance in these situations:
� For WHERE processing, an index can provide faster and more efficient access to a

subset of data.
� For BY processing, an index returns observations in the index order, which is in

ascending value order, without using the SORT procedure.
� For the SET and MODIFY statements, the KEY= option allows you to specify an

index in a DATA step to retrieve particular observations in a data file.

Note: An index exists to improve performance. However, an index conserves some
resources at the expense of others. Therefore, you must consider costs associated with
creating, using, and maintaining an index. See “Understanding SAS Indexes” on page
518 for more information about indexes and deciding whether to create one. �

Accessing Data Through Views
You can use the SQL procedure or a DATA step to create views of your data. A view

is a stored set of instructions that subsets your data with fewer statements. Also, you
can use a view to group data from several data sets without creating a new one, saving

218 Using Engines Efficiently � Chapter 13

both processing time and disk space. See Chapter 29, “SAS Data Views,” on page 539
and the Base SAS Procedures Guide for more details.

Using Engines Efficiently
If you do not specify an engine on a LIBNAME statement, SAS must perform extra

processing steps in order to determine which engine to associate with the data library.
SAS must look at all of the files in the directory until it has enough information to
determine which engine to use. For example, the following statement is efficient
because it explicitly tells SAS to use a specific engine for the libref FRUITS:

/* Engine specified. */

libname fruits v9 ’/users/myid/mydir’;

The following statement does not explicitly specify an engine. In the output, notice the
NOTE about mixed engine types that is generated:

/* Engine not specified. */

libname fruits ’/users/myid/mydir’;

Output 13.3 Output From the LIBNAME Statement

NOTE: Directory for library FRUITS contains files of mixed engine types.
NOTE: Libref FRUITS was successfully assigned as follows:

Engine: V9
Physical Name: /users/myid/mydir

Operating Environment Information: In the z/OS operating environment, you do not
need to specify an engine for certain types of libraries. �

See Chapter 37, “SAS Engines,” on page 597 for more information about SAS engines.

Setting the BUFNO=, BUFSIZE=, CATCACHE=, and COMPRESS= System
Options

The following SAS system options can help you reduce the number of disk accesses
that are needed for SAS files, though they might increase memory usage.

BUFNO=
SAS uses the BUFNO= option to adjust the number of open page buffers when it
processes a SAS data set. Increasing this option’s value can improve your
application’s performance by allowing SAS to read more data with fewer passes;
however, your memory usage increases. Experiment with different values for this
option to determine the optimal value for your needs.

Note: You can also use the CBUFNO= system option to control the number of
extra page buffers to allocate for each open SAS catalog. �

See system options in SAS Language Reference: Dictionary and the SAS
documentation for your operating environment for more details on this option.

BUFSIZE=
When the Base SAS engine creates a data set, it uses the BUFSIZE= option to set
the permanent page size for the data set. The page size is the amount of data that

Optimizing System Performance � Using the SASFILE Statement 219

can be transferred for an I/O operation to one buffer. The default value for
BUFSIZE= is determined by your operating environment. Note that the default is
set to optimize the sequential access method. To improve performance for direct
(random) access, you should change the value for BUFSIZE=.

Whether you use your operating environment’s default value or specify a value,
the engine always writes complete pages regardless of how full or empty those
pages are.

If you know that the total amount of data is going to be small, you can set a
small page size with the BUFSIZE= option, so that the total data set size remains
small and you minimize the amount of wasted space on a page. In contrast, if you
know that you are going to have many observations in a data set, you should
optimize BUFSIZE= so that as little overhead as possible is needed. Note that
each page requires some additional overhead.

Large data sets that are accessed sequentially benefit from larger page sizes
because sequential access reduces the number of system calls that are required to
read the data set. Note that because observations cannot span pages, typically
there is unused space on a page.

“Calculating Data Set Size” on page 221 discusses how to estimate data set size.
See system options in SAS Language Reference: Dictionary and the SAS

documentation for your operating environment for more details on this option.

CATCACHE=
SAS uses this option to determine the number of SAS catalogs to keep open at one
time. Increasing its value can use more memory, although this may be warranted
if your application uses catalogs that will be needed relatively soon by other
applications. (The catalogs closed by the first application are cached and can be
accessed more efficiently by subsequent applications.)

See system options in SAS Language Reference: Dictionary and the SAS
documentation for your operating environment for more details on this option.

COMPRESS=
One further technique that can reduce I/O processing is to store your data as
compressed data sets by using the COMPRESS= data set option. However, storing
your data this way means that more CPU time is needed to decompress the
observations as they are made available to SAS. But if your concern is I/O, and not
CPU usage, compressing your data may improve the I/O performance of your
application.

See SAS Language Reference: Dictionary for more details on this option.

Using the SASFILE Statement
The SASFILE global statement opens a SAS data set and allocates enough buffers to

hold the entire data set in memory. Once it is read, data is held in memory, available to
subsequent DATA and PROC steps, until either a second SASFILE statement closes the
file and frees the buffers or the program ends, which automatically closes the file and
frees the buffers.

Using the SASFILE statement can improve performance by
� reducing multiple open/close operations (including allocation and freeing of

memory for buffers) to process a SAS data set to one open/close operation
� reducing I/O processing by holding the data in memory.

If your SAS program consists of steps that read a SAS data set multiple times and
you have an adequate amount of memory so that the entire file can be held in real
memory, the program should benefit from using the SASFILE statement. Also,
SASFILE is especially useful as part of a program that starts a SAS server such as a

220 Techniques for Optimizing Memory Usage � Chapter 13

SAS/SHARE server. See SAS Language Reference: Dictionary for more information on
the SASFILE global statement.

Techniques for Optimizing Memory Usage
If memory is a critical resource, several techniques can reduce your dependence on

increased memory. However, most of them also increase I/O processing or CPU usage.
However, by increasing memory available to SAS by increasing the value of the

MEMSIZE= system option (or by using the MEMLEAVE= option, in some operating
environments), you can decrease processing time because the amount of time that is
spent on paging, or reading pages of data into memory, is reduced. The SORTSIZE=
and SUMSIZE= system options enable you to limit the amount of memory that is
available to sorting and summarization procedures.

You can also make tradeoffs between memory and other resources, as discussed in
“Reducing CPU Time by Using More Memory or Reducing I/O” on page 220. To make
the most of the I/O subsystem, you must use more and larger buffers. However, these
buffers share space with the other memory demands of your SAS session.

Operating Environment Information: The MEMSIZE= system option is not available
in some operating environments. If MEMSIZE= is available in your operating
environment, it might not increase memory. See the documentation for your operating
environment for more information. �

Techniques for Optimizing CPU Performance

Reducing CPU Time by Using More Memory or Reducing I/O
Executing a single stream of code takes approximately the same amount of CPU time

each time that code is executed. Optimizing CPU performance in these instances is
usually a tradeoff. For example, you might be able to reduce CPU time by using more
memory, because more information can be read and stored in one operation, but less
memory is available to other processes.

Also, because the CPU performs all the processing that is needed to perform an I/O
operation, an option or technique that reduces the number of I/O operations can also
have a positive effect on CPU usage.

Storing a Compiled Program for Computation-Intensive DATA Steps
Another technique that can improve CPU performance is to store a DATA step that is

executed repeatedly as a compiled program rather than as SAS statements. This is
especially true for large DATA step jobs that are not I/O-intensive. For more
information on storing compiled DATA steps, see Chapter 30, “Stored Compiled DATA
Step Programs,” on page 547.

Reducing Search Time for SAS Executable Files
The PATH= system option specifies the list of directories (or libraries, in some

operating environments) that contain SAS executable files. Your default configuration

Optimizing System Performance � Calculating Data Set Size 221

file specifies a certain order for these directories. You can rearrange the directory
specifications in the PATH= option so that the most commonly accessed directories are
listed first. Place the least commonly accessed directories last.

Operating Environment Information: The PATH= system option is not available in
some operating environments. See the documentation for your operating environment
for more information. �

Specifying Variable Lengths
When SAS processes the program data vector, it typically moves the data in one

large operation rather than by individual variables. When data is properly aligned (in
8-byte boundaries), data movement can occur in as little as 2 clock cycles (a single load
followed by a single store). SAS moves unaligned data by more complex means, at worst,
a single byte at a time. This would be at least eight times slower for an 8-byte variable.

Many high performance RISC (Reduced Instruction Set Computer) processors pay a
very large performance penalty for movement of unaligned data. When possible, leave
numeric data at full width (eight bytes). Note that SAS must widen short numeric data
for any arithmetic operation. On the other hand, short numeric data can save both
memory and I/O. You must determine which method is most advantageous for your
operating environment and situation.

Note: Alignment can be especially important when you process a data set by
selecting only specific variables or when you use WHERE processing. �

Using Parallel Processing
SAS System 9 supports a new wave of SAS functionality related to parallel

processing. Parallel processing means that processing is handled by multiple CPUs
simultaneously. This technology takes advantage of SMP machines and provides
performance gains for two types of SAS processes: threaded I/O and threaded
application processing.

For information, see Chapter 14, “Support for Parallel Processing,” on page 223.

Calculating Data Set Size
If you have already applied optimization techniques but still experience lengthy

processing times or excessive memory usage, the size of your data sets might be very
large, in which case, further improvement might not be possible.

You can estimate the size of a data set by creating a dummy data set that contains the
same variables as your data set. Run the CONTENTS procedure, which shows the size
of each observation. Multiply the size by the number of observations in your data set to
obtain the total number of bytes that must be processed. You can compare processing
statistics with smaller data sets to determine if the performance of the large data sets
is in proportion to their size. If not, further optimization might still be possible.

Note: When you use this technique to calculate the size of a data set, you obtain
only an estimate. Internal requirements, such as the storage of variable names, might
cause the actual data set size to be slightly different. �

222

223

C H A P T E R

14
Support for Parallel Processing

Definition of Parallel Processing 223
Threaded I/O 223

Threaded Application Processing 224

Definition of Parallel Processing
SAS 9 supports a new wave of SAS functionality related to parallel processing.

Parallel processing refers to processing that is handled by multiple CPUs
simultaneously. This technology takes advantage of hardware that has multiple CPUs,
called SMP machines, and provides performance gains for two types of SAS processes:

� threaded I/O
� threaded application processing.

SMP machines have multiple CPUs and an operating environment that can spawn
and manage multiple pieces of executable code called threads. A thread is a single,
independent flow of control through a program or within a process. Threading takes
advantage of multiple CPUs by dividing processing among the available CPUs. A
thread-enabled operating environment provides support for threads; for example, each
thread needs a context (like a register set and a program counter), a segment of code to
execute, and a piece of memory to use in the process.

Even if your site does not use an SMP machine, SAS 9 can still provide increased
performance. Some types of threading can be performed using a single CPU.

Threaded I/O
Some applications can process data faster than the data can be delivered to the

application. When an application cannot keep the available CPUs busy, the application
is said to be I/O-bound.

SAS supports threaded I/O for SAS applications by providing the SAS Scalable
Performance Data (SPD) engine. The SPD engine boosts the performance of SAS
applications that are I/O bound through parallel processing of partitioned data sets.
Partitioned data sets can span disk drives but still be referenced as a single data set. In
this way, the SPD engine can read many millions of observations into SAS applications
very rapidly by spawning a thread for each data partition and evaluating WHERE
expressions in multiple CPUs. SAS 9.1 support for multiple CPUs, for example on a
Symmetric Multiprocessor (SMP) machine, and support for multiple disks per CPU
make SPD engine’s parallel I/O possible. See SAS Scalable Performance Data Engine:
Reference for full details on this engine’s capabilities.

224 Threaded Application Processing � Chapter 14

The benefits of support for multiple disks in SAS 9.1 is not limited to use by the SPD
engine. Multiple disks can be on an SMP machine, but they can also be a bank of disks
on a single-CPU machine. Increasing the number of disks that can be accessed
simultaneously increases the amount of data that can be delivered to an application.
This is because reading or writing data to and from disk takes much more time than
the associated CPU processing that directs the I/O. Even a single-CPU machine can
support multiple disk drives, which boosts performance. When an SMP machine is
used, the performance gain can be quite significant because each CPU can support
multiple disk drives. However, multiple CPUs cannot speed up I/O from a single disk
drive. The minimum configuration for I/O performance gain is at least one controller
per CPU and at least two disk drives for each controller. For example, a site with four
CPUs should have at least four controllers and eight disk drives.

Threaded Application Processing
Some applications receive data faster than they can perform the necessary processing

on that data. These applications are sometimes referred to as CPU-bound. For
CPU-bound applications, the solution is to increase processing power. Support for SMP
machines provides access to threaded processing for CPU-bound applications. Even if
your application is not currently CPU-bound, if you increase the amount of data that can
be delivered to an application, you will naturally increase the need for faster processing
of that data. Modifying your application to process data in threads solves this problem.

For SAS 9, certain procedures such as SORT and SUMMARY have been modified so
that they can thread the processing through multiple CPUs, if they are available.
In addition, threaded processing is being integrated into a variety of other SAS features
in order to improve performance. For example, when you create an index, if sorting is
required, SAS attempts to sort the data using the thread-enabled sort.

Some types of processing are not suited to threading, while other types of processing
can benefit greatly. For example, sorting can be performed in multiple threads by
dividing the sorting process into separately executable sorting processes. One or more of
these threads can process data in each CPU. The sorted data from each thread is then
joined together and written to the output data set. Sorting can be performed in threads,
but the join process and the output process are nonthreadable processes. Even with
applications that are highly-threadable processes, simply providing additional disks and
CPUs might not improve performance. That is, a particular algorithm can benefit by
using four CPUs but cannot benefit an equal amount by adding four more CPUs.

For SAS procedures that are thread-enabled, new SAS system options are introduced
with SAS 9:

CPUCOUNT=
specifies how many CPUs can be used.

THREAD|NOTHREADS
controls whether to use threads.

For documentation on the SAS system options, see SAS Language Reference:
Dictionary. In addition, the documentation for each thread-enabled procedure provides
more information. See Base SAS Procedures Guide.

225

C H A P T E R

15 Monitoring Performance Using
Application Response
Measurement (ARM)

Introduction to ARM 225
What Is ARM? 225

Why Is ARM Needed? 225

Definitions for ARM 226

How Does ARM Work? 227

Will ARM Affect an Application’s Performance? 227
Using the ARM Interface 228

Overview 228

ARM System Options 228

ARM API Function Calls 228

ARM Macros 229

Logging the Transaction Records: the ARM Log 230
Examples of Gathering Performance Data 231

Logging Internal SAS Processing Transactions 231

Using ARM System Options and ARM Macros to Log Performance Statistics 233

Post Processing an ARM Log 234

Introduction to ARM

What Is ARM?
Application Response Measurement (ARM) enables you to monitor the availability

and performance of transactions within and across diverse applications.

Why Is ARM Needed?
There are many techniques for measuring response times, but only ARM measures

them accurately. Other approaches, although useful in other ways, can only measure
business service levels by making assumptions or guesses about what is a business
transaction, and when it begins and ends. Also, other approaches cannot provide
important information that ARM can, such as whether a transaction completed
successfully.

Using ARM, you can log transaction records from an application in order to
� determine the application response times
� determine the workload/throughput of your applications
� verify that service level objectives are being met
� determine why the application is not available

226 Definitions for ARM � Chapter 15

� verify who is using an application
� determine why a user is having poor response time
� determine what queries are being issued by an application
� determine the subcomponents of an application’s response time
� determine which servers are being used
� calculate the load time for data warehouses.

Definitions for ARM

application
a computer program that processes data for a specific use such as for payroll,
inventory, and billing. It is the program for which you want to monitor
performance.

Application Response Measurement (ARM) API
an application programming interface that is used to implement software in order
to monitor the availability and performance of transactions within and across
diverse applications. The API is an open, vendor-neutral approach to monitor the
performance of distributed and client/server applications. The ARM API consists
of definitions for a standard set of function calls that are callable from an
application. The ARM API was jointly developed by the industry partnership
Computer Measurement Group, Inc. (CMG).

ARM agent
a software vendor’s implementation of the ARM API. Each ARM agent is a set of
executable routines that can be called by applications. The ARM agent runs
concurrently with SAS. The SAS application passes transaction information to the
agent, which collects the ARM transaction records and writes them to the ARM log.

ARM log
an external file that contains records of ARM transactions.

ARM macros
a group of SAS macros that provide user control for identifying transactions that
you want to log. You insert the macro calls into your SAS program at strategic
points; the macros generate calls to the ARM API function calls.

ARM system options
a group of SAS system options that control various aspects of the SAS ARM
interface.

ARM subsystem
a group of internal SAS processing transactions such as PROC and DATA step
processing and file input/output processing. You use the ARM system option
ARMSUBSYS= to turn on a subsystem or all subsystems.

SAS ARM interface
an interface that can be used to monitor the performance of SAS applications. In
the SAS ARM interface, the ARM API is implemented as an ARM agent. In
addition, SAS supplies ARM macros, which generate calls to the ARM API
function calls, and ARM system options, which enable you to manage the ARM
environment and to log internal SAS processing transactions.

transaction
a unit of work that is meaningful for monitoring an application’s performance. A
transaction can be started and stopped one or more times within a single

Monitoring Performance Using Application Response Measurement (ARM) � Will ARM Affect an Application’s Performance? 227

execution of an application. For example, in a SAS application, a transaction could
be a step that updates a customer database. In SAS/MDDB Server software, a
transaction might be a query on a subcube. Another type of transaction might be
internal SAS processing that you want to monitor.

How Does ARM Work?
The ARM API is an application programming interface that a vendor, such as SAS,

can implement in order to monitor the availability and performance of transactions in
distributed or client/server applications. The ARM API consists of definitions for a
standard set of function calls that are callable from an application.

SAS implemented the ARM API as an ARM agent. In addition, SAS supplies ARM
macros, which generate calls to the ARM API function calls, and ARM SAS system
options, which manage the ARM environment and enable you to log internal SAS
processing transactions.

You must determine the transactions within your application that you want to
measure.

� To log internal SAS processing transactions, simply use the ARM system option
ARMSUBSYS= in order to turn on the transactions that you want to log.

� To log transactions that you want to identify, insert ARM macros into the
application’s code.

You insert ARM macros at strategic points in the application’s code so that the
desired transaction response time and other statistics that you want are collected. The
ARM macros generate calls to the ARM API function calls that are contained on the
executable module that contains the ARM agent. The module accepts the function call
parameters, performs error checking, and passes the ARM data to the agent to
calculate the statistics and to log the records to an ARM log.

Typically, an ARM API function call occurs just before a transaction is initiated in
order to signify the beginning of the transaction. Then, an associated ARM API
function call occurs in the application where the transaction is known to be complete.
Basically, the application calls the ARM agent before a transaction starts and then
again after it ends, allowing those transactions to be measured and monitored.

The transaction’s response time and additional statistics are then routed to the ARM
agent, which then logs the information to the ARM log. The ARM API function calls
typically log the data to a file. The time between these ARM API function calls provides
an approximate response time measurement.

Will ARM Affect an Application’s Performance?
ARM is designed to be a high-speed interface that has minimal impact on

applications. An ARM agent is designed to quickly extract the information that is
needed and return control to the application immediately. Processing of the information
is done in a different process that can run when the system is otherwise idle.

228 Using the ARM Interface � Chapter 15

Using the ARM Interface

Overview
The SAS ARM interface provides the ability to monitor the performance of SAS

applications. The interface consists of the implementation of the ARM API as an ARM
agent. In addition, SAS supplies ARM macros, which generate calls to the ARM API
function calls; and ARM system options, which manage the ARM environment and also
enable you to log internal SAS processing transactions.

ARM System Options
SAS provides ARM system options, which are SAS system options that manage the

ARM environment and provide the ability to log internal SAS processing transactions,
such as file opening and closing and DATA step and PROC step response time.

The following ARM SAS system options are available:

ARMAGENT=
specifies another vendor’s ARM agent, which is an executable module that
contains a vendor’s implementation of the ARM API. By default, SAS uses the
SAS ARM agent.

ARMLOC=
specifies the location of the ARM log.

ARMSUBSYS=
initializes the SAS ARM subsystems, which determine the internal SAS processing
transactions to be monitored. Each subsystem is a group of internal SAS
processing transactions.

You can specify the ARM SAS system options

� in a configuration file so that they are set automatically when you invoke SAS

� on the command line when you invoke SAS

� using the global OPTIONS statement either in the SAS program or in an autoexec
file

� from the System Options window.

See SAS system options in SAS Language Reference: Dictionary for details on each
ARM system option.

See “Logging Internal SAS Processing Transactions” on page 231 for an example that
sets the ARM system options.

ARM API Function Calls
The ARM API function calls are contained in the SAS ARM agent. Note that for the

SAS implementation, you do not explicitly insert ARM API function calls in a SAS
application; you insert ARM macros, which generate calls to the ARM API function calls.

These are the six ARM API function calls:

ARM_INIT
names the application and optionally the users of the application and initializes
the ARM environment for the application.

Monitoring Performance Using Application Response Measurement (ARM) � ARM Macros 229

ARM_GETID
names a transaction.

ARM_START
signals the start of a unique transaction.

ARM_UPDATE
provides information (optional) about the progress of a transaction.

ARM_STOP
signals the end of a transaction.

ARM_END
terminates the ARM environment and signals the end of an application.

ARM calls use numeric identifiers (IDs) to uniquely identify the ARM objects that are
input and output from the ARM API function calls. The three classes of IDs are

� application IDs

� transaction class IDs

� start handles (start time) for each instance of a transaction.

IDs are numeric, assigned integers. The agent usually assigns IDs. The scheme for
assigning IDs varies from one vendor’s agent to another, but, at a minimum, a unique
ID within a single session is guaranteed. Some agents allow you to preassign IDs.

ARM Macros
The ARM macros provide an efficient method for you to identify which transactions

in a SAS application you want to log. You insert the ARM macro calls in the SAS
program code, which in turn generate calls to the ARM API function calls in order to
log transaction information. The ARM macros automatically manage the returned IDs
from the ARM API function calls.

The following table shows the relationship between the ARM API function calls and
the ARM macros:

Table 15.1 Relationship Between ARM API Function Calls and ARM Macros

ARM API Function Calls ARM Macro

ARM_INIT %ARMINIT

ARM_GETID %ARMGTID

ARM_START %ARMSTRT

ARM_UPDATE %ARMUPDT

ARM_STOP %ARMSTOP

ARM_END %ARMEND

The following ARM macros are available:

%ARMINIT
generates a call to ARM_INIT, which names the application and optionally the
users of the application and initializes the ARM environment for the application.
Typically, you would insert this macro in your code once.

230 Logging the Transaction Records: the ARM Log � Chapter 15

%ARMGTID
generates a call to ARM_GETID, which names a transaction. Use %ARMGTID for
each unique transaction in order to describe the type of transactions to be logged.
A %ARMGTID is typically coded for each transaction class in an application.

%ARMSTRT
generates a call to ARM_START, which signals the start of an instance of a
transaction. Insert %ARMSTRT before each transaction that you want to log.
Whereas %ARMGTID defines a transaction class, %ARMSTRT indicates that a
transaction is executing.

%ARMUPDT
is an optional macro that generates a call to ARM_UPDATE, which provides
additional information about the progress of a transaction. Insert %ARMUPDT
between %ARMSTRT and %ARMSTOP in order to supply information about the
transaction that is in progress.

%ARMSTOP
generates a call to ARM_STOP, which signals the end of a transaction instance.
Insert %ARMSTOP where the transaction is known to be complete.

%ARMEND
generates a call to ARM_END, which terminates the ARM environment and
signals that the application will not make any more ARM calls.

The following post-processing ARM macros are also available. These macros are
specific to the SAS ARM implementation; they are not part of the ARM API standard.

%ARMCONV
converts an ARM log created in SAS 9 or later, which uses a comma delimited
format, into the ARM log format used in Release 8.2.

%ARMPROC
processes the ARM log and writes six SAS data sets that contain the information
from the log.

%ARMJOIN
processes the six SAS data sets that are created by %ARMPROC and creates data
sets that contain common information about applications and transactions.

For more information, see SAS ARM macros in SAS Language Reference: Dictionary.
See “Using ARM System Options and ARM Macros to Log Performance Statistics” on

page 233 for an example of inserting ARM macros in SAS code.

Logging the Transaction Records: the ARM Log
The SAS ARM agent supplies a basic logger that captures response time and CPU

time statistics and handles logging the information. By default, the logger runs in the
same session as your application and logs all ARM data synchronously to the external
file that is specified with the ARMLOC= SAS system option.

All information that is passed by the application during ARM calls is written to the
log, as well as other calculated statistics.

All ARM records are routed to the file to which the fileref points. Note that in
Release 8.2, the ARM records were either written to the SAS log or to a specified
external file. For SAS 9 or later, all ARM records are written to an external file. To
specify the external output file, use the ARMLOC= SAS system option.

For SAS 9 or later, the format of the log records is comma delimited, which consists
of columns of data separated by commas. The format of the ARM log that is written to
by the logger was designed to be easily readable. The date/time stamp and the call

Monitoring Performance Using Application Response Measurement (ARM) � Logging Internal SAS Processing Transactions 231

identifier always appear in the same column location. Subsequent information appears
as a name=value pair.

Here is a sample of an ARM log:

Output 15.1 ARM Log (SAS 9 or Later Format)

I,1320332339.838000,1,2.814046,5.988611,SAS,xxxxxx
G,1320332339.858000,1,1,MVA_DSIO.OPEN_CLOSE,DATA SET OPEN/CLOSE,LIBNAME,

ShortStr,MEMTYPE,ShortStr,MEMNAME,LongStr
S,1320332347.549000,1,1,1,2.914190,6.669590,WORK ,DATA ,ONE
S,1320332348.390000,1,1,2,2.934219,6.729676,WORK ,DATA ,TWO
P,1320332348.410000,1,1,1,2.954248,6.729676,0,WORK ,DATA ,ONE
P,1320332348.420000,1,1,2,2.964262,6.729676,0,WORK ,DATA ,TWO
S,1320332348.490000,1,1,3,2.994305,6.739691,WORK ,DATA ,THREE
P,1320332348.530000,1,1,3,3.14334,6.749705,0,WORK ,DATA ,THREE
S,1320332359.216000,1,1,4,3.224636,7.661016,WORK ,DATA ,THREE
P,1320332360.948000,1,1,4,3.254680,7.851289,0,WORK ,DATA ,THREE
S,1320332362.170000,1,1,5,3.304752,7.951433,WORK ,DATA ,THREE
P,1320332367.358000,1,1,5,3.334795,8.51577,0,WORK ,DATA ,THREE
S,1320332367.388000,1,1,6,3.354824,8.61592,WORK ,DATA ,THREE
P,1320332367.398000,1,1,6,3.364838,8.61592,0,WORK ,DATA ,THREE
S,1320332367.428000,1,1,7,3.384867,8.71606,WORK ,DATA ,ONE
S,1320332367.438000,1,1,8,3.394881,8.71606,WORK ,DATA ,TWO
P,1320332372.655000,1,1,8,3.424924,8.131692,0,WORK ,DATA ,TWO
P,1320332372.665000,1,1,7,3.424924,8.141707,0,WORK ,DATA ,ONE
S,1320332375.970000,1,1,9,3.454968,8.392067,WORK ,DATA ,THREE
P,1320332377.282000,1,1,9,3.515054,8.562312,0,WORK ,DATA ,THREE
S,1320332377.302000,1,1,10,3.525068,8.572326,WORK ,DATA ,THREE
P,1320332377.923000,1,1,10,3.575140,8.632412,0,WORK ,DATA ,THREE
S,1320332377.953000,1,1,11,3.585155,8.652441,WORK ,DATA ,THREE
P,1320332383.521000,1,1,11,3.655256,8.832700,0,WORK ,DATA ,THREE
S,1320332389.89000,1,1,12,3.715342,8.912816,WORK ,DATA ,THREE
S,1320332389.159000,1,1,13,3.725356,8.922830,SASUSER ,DATA ,THREE
P,1320332391.182000,1,1,12,3.765414,9.32988,0,WORK ,DATA ,THREE
P,1320332391.192000,1,1,13,3.775428,9.32988,0,SASUSER ,DATA ,THREE
E,1320336057.253000,1,4.105904,10.194659

To convert the SAS 9 or later log format into the Release 8.2 format, use the SAS
macro %ARMCONV. For example, you might want to convert SAS 9 or later format to
the Release 8.2 format if you have an application that analyzes the output in Release
8.2 format.

Note: The record layout is described in the ARMSUBSYS= SAS system option in
SAS Language Reference: Dictionary. �

Examples of Gathering Performance Data

Logging Internal SAS Processing Transactions
This example illustrates how to collect transaction statistics on internal SAS

processing. For this example, only file input/output information is logged.
The only additional code that is added to the SAS program is the OPTIONS

statement, which specifies the name of the ARM log output file and the ARMSUBSYS=
system option, which specifies the specific SAS subsystem ARM_DSIO.

The following SAS program does the following:
1 Creates three SAS data sets: WORK.ONE, WORK.TWO, and WORK.THREE.

232 Logging Internal SAS Processing Transactions � Chapter 15

2 Builds an index for the variable A in WORK.THREE.
3 Prints two reports that are subsets of WORK.THREE.
4 Appends WORK.ONE to WORK.TWO.
5 Uses PROC SQL to modify WORK.THREE.
6 Prints the contents of WORK.THREE.
7 Copies all three WORK data sets to the permanent library SASUSER.

options armloc=’myarmlog.txt’ armsubsys=(ARM_DSIO OPENCLOSE);

data work.one work.two;
input a $ b;

datalines;
1 1
2 2
3 3
;

data work.three;
do a = 1 to 200;

b = a;
c = a;
output;

end;
run;

proc datasets library=work;
modify three;
index create a;

run;
quit;

proc print data=work.three;
where a <= 101;

run;

proc print data=work.three;
where a <= 10;

run;

proc append data=work.one base=work.two;
run;

proc sql;
delete from work.three where a > 100;
run;

update work.three set a = 75 where a > 75;
run;

quit;

proc contents data=work.three;
run;

Monitoring Performance Using Application Response Measurement (ARM) � Using ARM System Options and ARM Macros to Log

Performance Statistics 233

proc copy in=work out=sasuser;
select three;

run;

Here is the resulting ARM log:

Output 15.2 ARM Log

I,1320332339.838000,1,2.814046,5.988611,SAS,xxxxxx
G,1320332339.858000,1,1,MVA_DSIO.OPEN_CLOSE,DATA SET OPEN/CLOSE,LIBNAME,

ShortStr,MEMTYPE,ShortStr,MEMNAME,LongStr
S,1320332347.549000,1,1,1,2.914190,6.669590,WORK ,DATA ,ONE
S,1320332348.390000,1,1,2,2.934219,6.729676,WORK ,DATA ,TWO
P,1320332348.410000,1,1,1,2.954248,6.729676,0,WORK ,DATA ,ONE
P,1320332348.420000,1,1,2,2.964262,6.729676,0,WORK ,DATA ,TWO
S,1320332348.490000,1,1,3,2.994305,6.739691,WORK ,DATA ,THREE
P,1320332348.530000,1,1,3,3.14334,6.749705,0,WORK ,DATA ,THREE
S,1320332359.216000,1,1,4,3.224636,7.661016,WORK ,DATA ,THREE
P,1320332360.948000,1,1,4,3.254680,7.851289,0,WORK ,DATA ,THREE
S,1320332362.170000,1,1,5,3.304752,7.951433,WORK ,DATA ,THREE
P,1320332367.358000,1,1,5,3.334795,8.51577,0,WORK ,DATA ,THREE
S,1320332367.388000,1,1,6,3.354824,8.61592,WORK ,DATA ,THREE
P,1320332367.398000,1,1,6,3.364838,8.61592,0,WORK ,DATA ,THREE
S,1320332367.428000,1,1,7,3.384867,8.71606,WORK ,DATA ,ONE
S,1320332367.438000,1,1,8,3.394881,8.71606,WORK ,DATA ,TWO
P,1320332372.655000,1,1,8,3.424924,8.131692,0,WORK ,DATA ,TWO
P,1320332372.665000,1,1,7,3.424924,8.141707,0,WORK ,DATA ,ONE
S,1320332375.970000,1,1,9,3.454968,8.392067,WORK ,DATA ,THREE
P,1320332377.282000,1,1,9,3.515054,8.562312,0,WORK ,DATA ,THREE
S,1320332377.302000,1,1,10,3.525068,8.572326,WORK ,DATA ,THREE
P,1320332377.923000,1,1,10,3.575140,8.632412,0,WORK ,DATA ,THREE
S,1320332377.953000,1,1,11,3.585155,8.652441,WORK ,DATA ,THREE
P,1320332383.521000,1,1,11,3.655256,8.832700,0,WORK ,DATA ,THREE
S,1320332389.89000,1,1,12,3.715342,8.912816,WORK ,DATA ,THREE
S,1320332389.159000,1,1,13,3.725356,8.922830,SASUSER ,DATA ,THREE
P,1320332391.182000,1,1,12,3.765414,9.32988,0,WORK ,DATA ,THREE
P,1320332391.192000,1,1,13,3.775428,9.32988,0,SASUSER ,DATA ,THREE
E,1320336057.253000,1,4.105904,10.194659

Using ARM System Options and ARM Macros to Log Performance
Statistics

This example uses the ARM system options as well as the ARM macros.

/* set up ARM environment with ARM system options */
options

armagent=sasarmmg
armsubsys=arm_all
armloc=mylog;

filename mylog ’C:\MyDocuments\myfiles\ARMlog.txt’;

/* enable ARM macros */
%let _armexec=1;

/* initialize work datasets */
data work1 work2 work3;
do _I_ = 1 to 100;
output;

end;

234 Post Processing an ARM Log � Chapter 15

run;

%arminit(APPNAME=’Sample ARM’,APPUSER=’Arm UserID’,MACONLY=YES);
%armgtid(TXNNAME=’Sample 1’,MACONLY=YES);

/* armgtid and armstrt can be combined */
%armstrt(LEVEL=1,MACONLY=YES);

/* Step 1 */
data one;

set work1;
run;
%armstop(MACONLY=YES);
%armgtid(TXNNAME=’Sample 2’,MACONLY=YES);
%armstrt(LEVEL=1,MACONLY=YES);

/* Step 2 */
data two;

set work2;
run;
%armstop(MACONLY=YES);
%armgtid(TXNNAME=’Sample 3’,MACONLY=YES);
%armstrt(LEVEL=1,MACONLY=YES);

/* Step 3 */
data three;

set work3;
run;
%armstop(MACONLY=YES);
%armend(MACONLY=YES);
run;

Post Processing an ARM Log
The following code uses the post-processing ARM macros in order to convert the

ARM log into SAS data sets.

%armproc;
%armjoin;
run;

/* redirect output to text file */
proc printto print=’F:\arm\armlogs\USWest2ARM.log’;
run;

proc print data=updtview;
title "Results of ARM calls";
sum deltelap deltcpu noncpu;
by txname;
sumby txname;

run;

/* redirect proc output to normal queue */
proc printto print=print;
run;

235

C H A P T E R

16
The SAS Registry

Introduction to the SAS Registry 236
What Is the SAS Registry? 236

Who Should Use the SAS Registry? 236

Where the SAS Registry Is Stored 236

Registry Files in the SASUSER and the SASHELP Libraries 236

How to Restore the Site Defaults 237
How Do I Display the SAS Registry? 237

Definitions for the SAS Registry 237

Managing the SAS Registry 238

Primary Concerns about Managing the SAS Registry 238

Backing Up the SASUSER Registry 239

Why Back Up the SASUSER Registry? 239
When SAS Resets to the Default Settings 239

Ways to Back Up the Registry 239

Using the Explorer to Back Up the SAS Registry 240

Using the Registry Editor to Back Up the SAS Registry 240

Recovering from Registry Failure 241
Using the SAS Registry to Control Color 242

Using the Registry Editor 242

When to Use the Registry Editor 242

Starting the Registry Editor 242

Finding Specific Data in the Registry 243
Changing a Value in the SAS Registry 243

Adding a New Value or Key to the SAS Registry 244

Deleting an Item from the SAS Registry 245

Renaming an Item in the SAS Registry 245

Displaying the SASUSER and SASHELP Registry Items Separately 245

Importing a Registry File 245
Exporting or Save a Registry File 246

When to Use PROC REGISTRY 246

Configuring Your Registry 246

Configuring Universal Printing 246

Configuring SAS Explorer 246
Configuring Libraries and File Shortcuts with the SAS Registry 247

Fixing Library Reference (Libref) Problems with the SAS Registry 249

236 Introduction to the SAS Registry � Chapter 16

Introduction to the SAS Registry

What Is the SAS Registry?
The SAS registry is the central storage area for configuration data for SAS. For

example, the registry stores

� the libraries and file shortcuts that SAS assigns at startup
� the menu definitions for Explorer pop-up menus

� the printers that are defined for use

� configuration data for various SAS products.

This configuration data is stored in a hierarchical form, which works in a similar
manner to the way directory-based file structures work under the operating
environments in UNIX, Windows, VMS and under the z/OS UNIX System Services
(USS).

Who Should Use the SAS Registry?
The SAS registry is designed for use by system administrators and experienced SAS

users. This section provides an overview of registry tools, and describes how to import
and export portions of the registry.

CAUTION:
If you make a mistake when you edit the registry, your system might become unstable or
unusable. �

Wherever possible, use the administrative tools, such as the New Library window,
the PRTDEF procedure, Universal Print windows, and the Explorer Options window, to
make configuration changes, rather than editing the registry directly. Using the
administrative tools ensures that values are stored properly in the registry when you
change the configuration.

CAUTION:
If you use the Registry Editor to change values, you will not be warned if any entry is
incorrect. Incorrect entries can cause errors, and can even prevent you from starting
a SAS session. �

Where the SAS Registry Is Stored

Registry Files in the SASUSER and the SASHELP Libraries
Although the SAS registry is logically one data store, physically it consists of two

different files located in both the SASUSER and SASHELP libraries. The physical
filename for the registry is regstry.sas7bitm. By default, these registry files are hidden
in the SAS Explorer views of the SASHELP and SASUSER libraries.

� The SASHELP library registry file contains the site defaults. The system
administrator usually configures the printers that a site uses, the global file
shortcuts or libraries that will be assigned at startup, and any other configuration
defaults for your site.

The SAS Registry � Definitions for the SAS Registry 237

� The SASUSER library registry file contains the user defaults. When you change
your configuration information through a specialized window such as the Print
Setup window or the Explorer Options window, the settings are stored in the
SASUSER library.

How to Restore the Site Defaults
If you want to restore the original site defaults to your SAS session, delete the

regstry.sas7bitm file from your SASUSER library and restart your SAS session.

How Do I Display the SAS Registry?
You can use one of the following three methods to view the SAS registry:
� Issue the REGEDIT command. This opens the SAS Registry Editor
� Select

Solutions � Accessories � Registry Editor

� Submit the following line of code:

proc registry list;
run;

This method prints the registry to the SAS log, and it produces a large list that
contains all registry entries, including subkeys. Because of the large size, it might
take a few minutes to display the registry using this method.

For more information about how to view the SAS registry, see “The REGISTRY
Procedure” in Base SAS Procedures Guide.

Definitions for the SAS Registry
The SAS registry uses keys and subkeys as the basis for its structure, instead of using

directories and subdirectories like the file systems in DOS or UNIX. These terms and
several others described here are frequently used when discussing the SAS Registry:

key An entry in the registry file that refers to a particular aspect of SAS.
Each entry in the registry file consists of a key name, followed on
the next line by one or more values. Key names are entered on a
single line between square brackets ([and]).

The key can be a place holder without values or subkeys
associated with it, or it can have many subkeys with associated
values. Subkeys are delimited with a backslash (\). The length of a
single key name or a sequence of key names cannot exceed 255
characters (including the square brackets and the backslash). Key
names can contain any character except the backslash and are not
case-sensitive.

The SAS Registry contains only one top-level key, called
SAS_REGISTRY. All the keys under SAS_REGISTRY are subkeys.

subkey A key inside another key. Subkeys are delimited with a backslash
(\). Subkey names are not case-sensitive. The following key
contains one root key and two subkeys:

[SAS_REGISTRY\HKEY_USER_ROOT\CORE]

238 Managing the SAS Registry � Chapter 16

SAS_REGISTRY
is the root key.

HKEY_USER_ROOT
is a subkey of SAS_REGISTRY. In the SAS registry, there is
one other subkey at this level it is HKEY_SYSTEM_ROOT.

CORE
is a subkey of HKEY_USER_ROOT, containing many default
attributes for printers, windowing and so on.

link a value whose contents reference a key. Links are designed for
internal SAS use only. These values always begin with the word
“link:”.

value the names and content associated with a key or subkey. There are
two components to a value, the value name and the value content,
also known as a value datum.

Display 16.1 Section of the Registry Editor Showing Value Names and Value Data for
the Subkey ’HTML’

.SASXREG file a text file with the file extension .SASXREG that contains the text
representation of the actual binary SAS Registry file.

Managing the SAS Registry

Primary Concerns about Managing the SAS Registry

CAUTION:
If you make a mistake when you edit the registry, your system might become unstable or
unusable. Whenever possible, use the administrative tools, such as the New Library
window, the PRTDEF procedure, Universal Print windows, and the Explorer Options
window, to make configuration changes, rather than editing the registry. This is to
insure values are stored properly in the registry when changing the configuration. �

CAUTION:
If you use the Registry Editor to change values, you will not be warned if any entry is
incorrect. Incorrect entries can cause errors, and can even prevent you from starting
a SAS session. �

The SAS Registry � Backing Up the SASUSER Registry 239

Backing Up the SASUSER Registry

Why Back Up the SASUSER Registry?
The SASUSER* part of the registry contains personal settings. It is a good idea to

back up the SASUSER part of the registry if you have made substantial customizations
to your SAS session. Substantial customizations include the following:

� installing new printers

� modifying printer settings from the default printer settings that your system
administrator provides for you

� changing localization settings

� altering translation tables with TRANTAB.

When SAS Resets to the Default Settings
When SAS starts up, it automatically scans the registry file. SAS restores the

registry to its original settings under two conditions:

� If SAS detects that the registry is corrupt, then SAS rebuilds the file.

� If you delete the registry file called regstry.sas7bitm, which is located in the
SASUSER library, then SAS will restore the SASUSER registry to its default
settings.

CAUTION:
Do not delete the registry file that is located in SASHELP; this will prevent SAS from
starting. �

Ways to Back Up the Registry
There are two methods for backing up the registry and each achieves different results:

Method 1: Save a copy of the SASUSER registry file called regstry.sas7bitm.
The result is an exact copy of the registry at the moment you copied it. If you need
to use that copy of the registry to restore a broken copy of the registry, then any
changes to the registry after the copy date are lost. However, it is probably better
to have this backup file than to revert to the original default registry.

Method 2: Use the Registry Editor or PROC REGISTRY to back up the parts of the
SASUSER registry that have changed.

The result is a concatenated copy of the registry, which can be restored from the
backup file. When you create the backup file using the EXPORT= statement in
PROC REGISTRY, or by using the Export Registry File utility in the Registry
Editor, SAS saves any portions of the registry that have been changed. When SAS
restores this backup file to the registry, the backup file is concatenated with the
current registry in the following way:

� Any completely new keys, subkeys or values that were added to the
SASUSER registry after the back up date are retained in the new registry.

* The SASHELP part of the registry contains settings that are common to all users at your site. SASHELP is write protected,
and can only be updated by a system administrator.

240 Backing Up the SASUSER Registry � Chapter 16

� Any existing keys, subkeys or values that were changed after SAS was
initially installed, then changed again after the back up, are overwritten and
revert to the back up file values after the restore.

� Any existing keys, subkeys or values that retain the original default values,
will have the default values after the restore.

Using the Explorer to Back Up the SAS Registry
To use the Explorer to back up the SAS Registry:

1 Start SAS Explorer with the EXPLORER command, or select

View � Explorer

2 Select

Tools � Options � Explorer

The Explorer Options window appears.

3 Select the Members tab

4 Select ITEMSTOR in the Type list.

5 Click Unhide .

If ITEMSTOR does not have an icon associated with it in the Type list, you will be
prompted to select an icon.

6 Open the Sasuser library in the Explorer window.

7 Right-click the Regstry.Itemstor file.

8 Select Copy from the pop-up menu and copy the Regstry file. SAS will name the
file Regstry_copy.

Note: You can also use a copy command from your operating environment to
make a copy of your registry file for back up purposes. When viewed from outside
SAS Explorer, the file name is regstry.sas7bitm. Under z/OS, you cannot use
the environment copy command to copy your registry file unless your SASUSER
library is assigned to an HFS directory. �

Using the Registry Editor to Back Up the SAS Registry
Using the Registry Editor to back up the SAS registry is generally the preferred

backup method, because it retains any new keys or values in case you must restore the
registry from the backup.

To use the Registry Editor to back up the SAS Registry:

1 Open the Registry Editor with the regedit command.

2 Select the top-level key in the left pane of the registry window.

3 From the Registry Editor, select

File � Export Registry File

A Save As window appears.

4 Type a name for your registry backup file in the filename field. (SAS will apply the
proper file extension name for your operating system.)

5 Click Save .

This saves the registry backup file in SASUSER. You can control the location of your
registry backup file by specifying a different location in the Save As window.

The SAS Registry � Recovering from Registry Failure 241

Recovering from Registry Failure
This section gives instructions for restoring the registry with a back up file, and

shows you how to repair a corrupt registry file.
To install the registry backup file that was created using SAS Explorer or an

operating system copy command:

1 Change the name of your corrupt registry file to something else.

2 Rename your backup file to regstry.sas7bitm, which is the name of your registry
file.

3 Copy your renamed registry file to the SASUSER location where your previous
registry file was located.

4 Restart your SAS session.

To restore a registry backup file created with the Registry Editor:

1 Open the Registry Editor with the regedit command.

2 Select

File � Import Registry File

3 Select the registry file that you previously exported.

4 Click Open .

5 Restart SAS.

To restore a registry backup file created with PROC REGISTRY:

1 Open the Program editor and submit the following program to import the registry
file that you created previously.

proc registry import=<registry file specification>;
run;

This imports the registry file to the SASUSER library.

2 If the file is not already properly named, then use Explorer to rename the registry
file to regstry.sas7bitm:

3 Restart SAS.

To attempt to repair a damaged registry

1 Rename the damaged registry file to something other than “regstry”; for example,
temp.

2 Start your SAS session.

3 Define a library pointing to where the temp registry is

libname here ’.’

4 Run the REGISTRY procedure and redefine the SASUSER registry:

proc registry setsasuser="here.temp";
run;

5 Start the Registry Editor with the regedit command. Select

Solutions � Accessories � Registry Editor � View All

6 Edit any damaged fields under the HKEY_USER_ROOT key.

242 Using the SAS Registry to Control Color � Chapter 16

7 Close your SAS session and rename the modified registry back to the original
name.

8 Open a new SAS session to see if the changes fixed the problem.

Using the SAS Registry to Control Color
The SAS registry contains the RGB values for color names that are common to most

web browsers. These colors can be used for ODS and GRAPH output. The RGB value is
a triplet (Red, Green, Blue) with each component having a range of 00 to FF (0 to 255).

The registry values for color are located in the COLORNAMES\HTML subkey. You
can create your own new color values by adding them to the registry in the
COLORNAMES\HTML subkey, using the Registry Editor:

1 Open the SAS Registry Editor using the REGEDIT command.

2 Select the COLORNAMES\HTML subkey.

3 Select

Edit � New Binary Value

A pop-up menu appears.

4 Type the color name in the Value Name field and the RGB value in the Value
Data field.

5 Click OK .

Using the Registry Editor

When to Use the Registry Editor
The best way to view the contents of the registry is using the Registry Editor. The

Registry Editor is a graphical alternative to PROC REGISTRY, an experienced SAS
user might use the Registry Editor to do the following:

� View the contents of the registry, which shows keys and values stored in keys.

� Add, modify, and delete keys and values stored in the registry.

� Import registry files into the registry, starting at any key.

� Export the contents of the registry to a file, starting at any key.

� Uninstall a registry file.

� Compare a registry file to the SAS registry.

Many of the windows in the SAS windowing environment update the registry for you
when you make changes to such items as your printer setting or your color preferences.
Because these windows update the registry using the correct syntax and semantics, it is
often best to use these alternatives when making adjustments to SAS.

Starting the Registry Editor
To run the Registry Editor, issue the regedit command on a SAS command line.

You can also open the registry window by selecting

Solutions � Accessories � Registry Editor

The SAS Registry � Using the Registry Editor 243

Finding Specific Data in the Registry
In the Registry Editor window, double-click a folder icon that contains a registry key.

This displays the contents of that key.
Another way to find things is to use the Find utility.
1 From the Registry Editor, select

Edit � Find

2 Type all or part of the text string that you want to find, and click Options to
specify whether you want to find a key name, a value name, or data.

3 Click Find .

Display 16.2 The Registry Editor Find Utility

Changing a Value in the SAS Registry
CAUTION:

Before modifying registry values, always back up the regstry.sas7bitm file from SASUSER.
�

1 In the left pane of the Registry Editor window, click the key that you want to
change. The values contained in the key appear in the right pane.

2 Double-click the value. The Registry Editor displays several types of windows,
depending on the type of value you are changing.

244 Using the Registry Editor � Chapter 16

Display 16.3 Example Window for Changing a Value in the SAS Registry

Adding a New Value or Key to the SAS Registry
1 In the SAS Registry Editor, right-click the key that you want to add the value to.
2 From the pop-up menu, select the New menu item with the type that you want to

create.
3 Enter the values for the new key or value in the window that is displayed.

Display 16.4 Registry Editor with Pop-up Menu for Adding New Keys and Values

The SAS Registry � Using the Registry Editor 245

Deleting an Item from the SAS Registry

From the SAS Registry Editor:

1 Right-click the item that you want to delete.

2 Select Delete from the pop-up menu and confirm the deletion.

Renaming an Item in the SAS Registry

From the SAS Registry Editor:

1 Right-click the item you want to rename.

2 Select Rename from the context menu and enter the new name.

Displaying the SASUSER and SASHELP Registry Items Separately

After you open the Registry Editor, you can change your view from the default, which
shows the registry contents without regard to the storage location. The other registry
view displays both SASUSER and SASHELP items in separate trees in the Registry
Editor’s left pane.

1 Select

TOOLS � Options � Registry Editor

This opens the Select Registry View group box.

2 Select View All to display the SASUSER and SASHELP items separately in the
Registry Editor’s left pane.

� The SASHELP portion of the registry will be listed under the
HKEY_SYSTEM_ROOT folder in the left pane.

� The SASUSER portion of the registry will be listed under the
HKEY_USER_ROOT folder in the left pane.

Display 16.5 The Registry Editor in View Overlay Mode

Importing a Registry File

You usually import a registry file, or SASXREG file when you are restoring a back-up
registry file. A registry file can contain a complete registry or just part of a registry.

246 When to Use PROC REGISTRY � Chapter 16

To import a registry file using the SAS Registry Editor:

1 Select

File � Import Registry File

2 In the Open window, select the SASXREG file to import.

Note: In order to first create the back-up registry file, you can use the REGISTRY
Procedure or the Export Registry File menu choice in the Registry Editor. �

Exporting or Save a Registry File
You usually export a registry file or SASXREG file, when you are preparing a

back-up registry file. You can export a complete registry or just part of a registry.
To export a registry file using the SAS Registry Editor:

1 In the left hand pane of the Registry Editor, select the key you want to export to a
SASXREG file. To export the entire registry, select the top key.

2 Select

File � Export Registry File

3 In the Save As window, give the export file a name.

4 Click Save .

When to Use PROC REGISTRY
Use PROC REGISTRY to modify the registry using a SAS program. PROC

REGISTRY has basically the same functionality as the Registry Editor in a
noninteractive mode. For detailed information about PROC REGISTRY, see Base SAS
Procedures Guide.

Configuring Your Registry

Configuring Universal Printing
Universal Printers should be configured by using either the PRTDEF procedure or

the Print Setup window. The REGISTRY procedure can to used to back up a printer
definition and to restore a printer definition from a SASXREG file. Any other direct
modification of the registry values should only be done under the guidance of SAS
Technical Support.

Configuring SAS Explorer
While it is best to use the Explorer Options window to configure your Explorer

settings, you can use the Registry Editor to view the current Explorer settings in the
SAS registry. The Explorer Options Window is available from the

TOOLS � Options � Explorer

The SAS Registry � Configuring Libraries and File Shortcuts with the SAS Registry 247

drop-down menu from within the Explorer. All the Explorer configuration data is stored
in the registry under CORE\Explorer. The following table outlines the location of the
most commonly used Explorer configuration data.

Registry Key What portion of the Explorer it configures

CORE\EXPLORER\CONFIGURATION the portions of the Explorer get initialized at
startup.

CORE\EXPLORER\MENUS the context menus that get displayed in the
Explorer.

CORE\EXPLORER\KEYEVENTS the valid key events for the 3270 interface. This
key is only used on the mainframe platforms.

CORE\EXPLORER\ICONS Which icons to display in the Explorer. If the
icon value is ¼-1, this causes the icon to be
hidden in the Explorer.

CORE\EXPLORER\NEWS This subkey controls what types of objects are
available from the

File � New

menu in the Explorer.

Configuring Libraries and File Shortcuts with the SAS Registry
When you use the New Library window or the File Shortcut Assignment window to

create a library reference (libref) or a file reference (fileref), these references are stored
for future use when you click the Enable at Startup check box in either of these two
windows.

Library references (librefs) and file references (filerefs) are saved when you check
“Enable at startup” and they are stored in the SAS registry, where it is possible to
modify or delete them, as follows:

Deleting an "Enable at Startup" library reference
You can use the Registry Editor to delete an "Enable at Startup" library reference
by deleting the corresponding key under CORE\OPTIONS\LIBNAMES\"your
libref". However, it is best to delete your library reference by using the SAS
Explorer, which removes this key from the registry when you delete the library
reference.

Deleting an “Enable at Startup” file shortcut
You can use the Registry Editor to delete an "Enable at Startup" file shortcut by
deleting the corresponding key under CORE\OPTIONS\FILEREFS\“your fileref”.
However, it is best to delete your library reference by using the SAS Explorer,
which removes this key automatically when you delete the file shortcut.

Creating an “Enable at Startup” File Shortcut as a site default
A site administrator might want to create a file shortcut which is available to all
users at a site. To do this, you first create a version of the file shortcut definition
in the SASUSER registry, then modify it so that it can be used in the SASHELP
registry.

Note: You need special permission to write to the SASHELP part of the SAS
registry. �

248 Configuring Libraries and File Shortcuts with the SAS Registry � Chapter 16

1 Type the DMFILEASSIGN command. This opens the File Shortcut Assignment
window.

2 Create the file shortcut that you want to use.

3 Check Enable at Startup.

4 Click OK .

5 Type the command REGEDIT after verifying that the file shortcut was created
successfully.

6 Find and select the key CORE\OPTIONS\FILEREFS\<your fileref>.

7 Select

File � Export Registry File

and export the file.

8 Edit the exported file and replace all instances of HKEY_USER_ROOT with
HKEY_SYSTEM_ROOT.

9 To apply your changes to the site’s SASHELP, use PROC REGISTRY. The
following code will import the file:

proc registry import="yourfile.sasxreg" usesashelp;
run;

Creating an “Enable at Startup” Library as a site default
A site administrator might want to create a library which is available to all users
at a site. To do this, the SASUSER version of the library definition needs to be
migrated to SASHELP.

Note: You need special permission to write to the SASHELP part of the SAS
registry. �

1 Type the dmlibassign command. This opens the New Library window.

2 Create the library reference that you want to use.

3 Select Enable at Startup.

4 Click OK .

5 Issue the regedit command after verifying that the library was created
successfully.

6 Find and select the registry key CORE\OPTIONS\LIBNAMES\<your libref>.

7 Select

File � Export Registry File

The Save As window appears.

8 Select a location to store your registry file.

9 Enter a file name for your registry file in the File name field.

10 Click Save to export the file.

11 Right-click the file and select Edit in Notepad to edit the file.

12 Edit the exported file and replace all instances of “HKEY_USER_ROOT” with
“HKEY_SYSTEM_ROOT”.

13 To apply your changes to the site’s SASHELP use PROC REGISTRY. The
following code will import the file:

proc registry import="yourfile.sasxreg" usesashelp;
run;

The SAS Registry � Fixing Library Reference (Libref) Problems with the SAS Registry 249

Fixing Library Reference (Libref) Problems with the SAS Registry
Library references (librefs) are stored in the SAS Registry. You may encounter a

situation where a libref that previously worked, fails. In some situations, editing the
registry is the fastest way to fix the problem. The following section describes what is
involved in repairing a missing or failed libref.

If any permanent libref that is stored in the SAS Registry fails at startup, then the
following note appears in the SAS Log:

NOTE: One or more library startup assignments were not restored.

The following errors are common causes of library assignment problems:

� Required field values for libref assignment in the SAS Registry are missing
� Required field values for libref assignment in the SAS Registry are invalid. For

example, library names are limited to eight characters, and engine values must
match actual engine names.

� encrypted password data for a libref has changed in the SAS Registry.

Note: You can also use the New Library window to add and delete librefs. You can
open this window by typing LIBASSIGN in the toolbar, or selecting

File � New

from the Explorer window. �

CAUTION:
You can correct many libref assignment errors in the SAS Registry Editor. If you are
unfamiliar with librefs or the SAS Registry Editor, then ask for technical support.
Errors can be made easily in the SAS Registry Editor, and can prevent your libraries
from being assigned at startup. �

To correct a libref assignment error using the SAS Registry Editor:
1 Select

Solutions � Accessories � Registry Editor

or issue the regedit command to open the Registry Editor.
2 Select one of the following paths, depending on your operating environment, and

then make modifications to keys and key values as needed:

CORE\OPTIONS\LIBNAMES

or

CORE\OPTIONS\LIBNAMES\CONCATENATED

For example, if you determine that a key for a permanent, concatenated library has
been renamed to something other than a positive whole number, then you can rename
that key again so that it is in compliance. Select the key, and then select Rename from
the pop-up menu to begin the process.

250

251

C H A P T E R

17
Printing with SAS

Introduction to Universal Printing 252
What Is Universal Printing? 252

Turning Universal Printing On and Off 252

What Type of Print Output Formats Are Available from Universal Printing? 252

Universal Printing and ODS 253

Managing Printing Tasks with the Universal Printing User Interface 254
Overview of the Universal Printing Menu 254

Setting Up Printers 255

Print Setup Window 255

Changing the Default Printer 255

Removing a Printer from the Selection List 255

Defining a New Printer 256
Setting Printer Properties for Your Default Printer 259

How to Specify a Printer for Your Session 264

Printing with Universal Printing 264

Printing a Test Page 264

Printing the Contents of an Active SAS Window 264
Working with Previewers 266

Defining a New Previewer 266

Seeding the Print Previewer Command Box 269

Previewing Print Jobs 270

Setting Page Properties 270
Configuring Universal Printing with Programming Statements 273

Introduction 273

System Options That Control Universal Printing 273

Defining Printers for Batch-Mode 274

Defining New Printers and Previewers with PROC PRTDEF 274

Introduction 274
Creating a Data Set that Defines Multiple Printers 274

Installing a Printer Definition for Multiple Users 275

Adding, Modifying, and Deleting Printer Definitions 275

Creating a Ghostview Previewer Definition for Previewing Postscript Output 276

Exporting and Backing Up Printer Definitions 277
Sample Values for the Device Type, Destination and Host Options Fields 277

Forms Printing 279

Overview of Forms Printing 279

Creating or Editing a Form 279

252 Introduction to Universal Printing � Chapter 17

Introduction to Universal Printing

What Is Universal Printing?
Universal Printing is a printing system that provides both interactive and batch

printing capabilities to SAS applications and procedures on all the operating
environments that are supported by SAS.

When Universal Printing is ON, SAS routes all printing through Universal Printing
services. All Universal Printing features are controlled by system options, thereby
enabling you to control many print features even in batch mode.

Note: Prior to the introduction of Universal Printing, SAS supported a utility for
print jobs known as Forms. Forms printing is still available if you select

File � Print

from the menu, then check the Use Forms check box. This turns off Universal Printing
menus and functionality. For more information, see “Forms Printing” on page 279. �

Turning Universal Printing On and Off
Universal Printing is available on all operating environments that SAS supports. By

default, Universal Printing is turned ON on all operating environments except Windows.
The UNIVERSALPRINT system option (alias UPRINT) must be set for Universal

Printing to be ON and used by SAS. This option can be set only in the SAS configuration
file or at startup. You cannot turn Universal Printing menus on or off after startup.

Note: When you use the PRINTERPATH option to specify a printer, the print job is
controlled by Universal Printing. �

Operating Environment Information: In the Windows operating environment, you
must set an additional system option, UPRINTMENUSWITCH, in order to access the
Universal Printing user interface. You must also set UPRINTMENUSWITCH, in order
to configure all menus in SAS to use the Universal Printing windows. To do this, include

-uprint -uprintmenuswitch

in the string that you use to invoke SAS under Windows. �

What Type of Print Output Formats Are Available from Universal
Printing?

In addition to sending print jobs to a printer, you can also direct output to external
files that are widely recognized by different types of printers and print viewing software
programs. You can use Universal Printing to produce the following commonly
recognized file types:

Printing with SAS � Universal Printing and ODS 253

Table 17.1 Available Print Output Formats

Type Full Name Description

PCL Printer Control
Language

Developed by Hewlett-Packard as a language that applications
use to control a wide range of printer features across a number of
printing devices. Universal Printing currently supports PCL5,
PCL5e and PCL5c levels of the language.

PDF Portable
Document
Format

A file format developed by Adobe Systems for viewing and
printing a formatted document. To view a file in PDF format, you
need Adobe Acrobat Reader, a free application distributed by
Adobe Systems.

Optimized
PDF

Optimized
Portable
Document
Format

A compressed PDF file format developed by Adobe Systems.

PS Postscript A page description language also developed by Adobe Systems.
PostScript is primarily a language for printing documents on laser
printers, but it can be adapted to produce images on other types of
devices.

Universal Printing and ODS
The ODS PRINTER destination uses Universal Printing whether the

UNIVERSALPRINT option is on or off. The PRINTER destinations used by the ODS
PRINTER statement are described in SAS Output Delivery System: User’s Guide.

The Output Delivery System (ODS) uses Universal Printing for the following ODS
statements:

Table 17.2 ODS Destinations that make use of the Universal Printing interface

ODS PRINTER Destination Description

PRINTER= option uses the selected printer

ODS PDF statement uses Universal Printing’s PDF printer

ODS PS statement uses Universal Printing’s Postscript Level 1
printer

ODS PCL statement uses Universal Printing’s PCL5 printer

Operating Environment Information: In the Windows operating environment, the ODS
PRINTER destination will use the Windows system printers unless SAS was started
with the UNIVERSALPRINT option, or when you specify a printer with the
PRINTERPATH option. If Universal Printing is enabled in Windows, SAS will override
the use of the Windows system printer and cause ODS to use Universal Printing. �

For more information on ODS, see SAS Output Delivery System: User’s Guide.

254 Managing Printing Tasks with the Universal Printing User Interface � Chapter 17

Managing Printing Tasks with the Universal Printing User Interface

Overview of the Universal Printing Menu
You can open most Universal Printing windows by entering commands at the

command line or into the command box in the menu bar. The following table lists the
commands that you use to do the most common tasks.

Table 17.3 Commands to Open Universal Printing Windows

To do this... Use this command

Print the current window DMPRINT

Change the default printer DMPRINT, or DMPRINTSETUP

Create a new printer or previewer definition DMPRTCREATE PRINTER, or
DMPRTCREATE PREVIEWER

Modify, add, remove or test printer definitions DMPRINTSETUP

Show default printer properties sheet DMPRINTPROPS

Show page properties sheet DMPAGESETUP

Print preview the current window DMPRTPREVIEW

The SAS Universal Printing windows are also accessible from the File menu.
The following display shows the File menu containing the Universal Printing choices

of Page Setup, Print Setup, Print Preview and Print.

Display 17.1 File Menu Displaying Universal Printing Options

Printing with SAS � Setting Up Printers 255

Table 17.4 Menu choices or commands open Universal Printing windows

Menu Choice Equivalent command

Page Setup DMPAGESETUP

Print Setup DMPRINTSETUP

Print Preview DMPRTPREVIEW

Print DMPRINT

Operating Environment Information: In the Windows operating environment, SAS
uses the Windows print windows as the default. To access the Universal Printing user
interface, UPRINTMENUSWITCH must also be set along with the UNIVERSALPRINT
option to configure all menus in SAS to use the Universal Printing windows. To do this,
include

-uprint -uprintmenuswitch

in the string that you use to invoke SAS in Windows. �

Setting Up Printers

Print Setup Window
The DMPRTSETUP command opens the Print Setup window, where you can

� change the default printer

� remove a printer from the selection list

� print a test page

� open the Printer Properties window

� launch the New Printer wizard.

Changing the Default Printer
To change the default printer device for this SAS session and future SAS sessions,

1 Issue the DMPRTSETUP command. The Print Setup window appears.

2 Select the new default device from the list of printers in the Printer field.

3 Click OK .

Removing a Printer from the Selection List
To remove a printer from the selection list, follow these steps.

1 Issue the DMPRTSETUP command. The Print Setup window appears.

2 Select the printer you want to delete from the list of printers in the Printer field

3 Click Remove

Note: Only your system administrator can remove printers that the administrator
has defined for your site. If you select a printer that was defined by your system
administrator, the Remove button will be unavailable. �

256 Setting Up Printers � Chapter 17

Defining a New Printer
While Universal Printing provides you with predefined printers, you can also add

your own printers with the Define a New Printer wizard, which guides you step-by-step
through the process of installing a printer.

To start the New Printer wizard and define a new printer:
1 Issue the command DMPRTCREATE PRINTER. The following window appears.

Display 17.2 Printer Definition Window to Enter Name and Description

Alternatively, you can issue the DMPRTSETUP command and click New .
2 Enter the name and a description for the new printer (127 character maximum, no

backslashes).
3 Click Next to proceed to Step 2. Select a printer model. If your exact printer

model is not available, select a more general model that is compatible with your
printer. For example, for the HP LaserJet printer series, select PCL5.

Note: More general models might provide fewer options than the more specific
models. �

Printing with SAS � Setting Up Printers 257

Display 17.3 Printer Definition Window to Select Printer Model

4 Click Next to proceed to Step 3. The following window appears:

Display 17.4 Printer Definition Window to Select Ouput Device

258 Setting Up Printers � Chapter 17

5 Select the Device type for your print output. The device type selections are
host-dependent.

If you select Catalog, Disk, Ftp, Socket, or Pipe as the device type, then you
must specify a destination.

If you select a device type of Printer, then a destination might not be required,
because some operating environments use the Host options box to route output.

Note: Examples for your operating system of Device Type, Destination and
Host options are also provided in “Sample Values for the Device Type, Destination
and Host Options Fields” on page 277 �

6 Enter the Destination for your file. The destination is the target location for
your device type. For example, if your device type is disk, then your destination
would be an operating environment-specific file name. With some system device
types, the destination might be blank and you can specify the target location using
the Host options box.

7 Select or enter any host-specific options for the device that you chose. This field
might be optional for your operating environment. For a list of host options, refer
to the FILENAME statement information for your operating environment.

Note: The Destination and Host Options lists can also be populated using
PROC REGISTRY. Click the Help button in step 3 to refer to the “Populating
Destination and Host Option Lists” topic, which contains more details. �

8 Click Next to proceed to Step 4, in which you select from a list of installed print
previewers. If no previewers are defined, proceed to the next step.

Display 17.5 Printer Definition Window to Select Previewer

If the previewer selection box appears, select the previewer for this printer. If
you do not need a previewer, choose None or leave the field blank.

Note: You can add a previewer to any printer through the DMPRTPROPS,
Advanced Tab, Previewer box. See “Defining a New Previewer” on page 266. �

Printing with SAS � Setting Up Printers 259

Note: It is not required that printers and print previewers share a common
language. �

9 Click Next to proceed to Step 5. The following window appears:

Display 17.6 Printer Definition Window to Complete Process

10 Click Previous to change any information. Click Finish when you have completed
your printer definition.

You have now finished setting your default printer.
After you have returned to the Print Setup window, you can test your default printer

by clicking Print Test Page .

Setting Printer Properties for Your Default Printer

Printer properties that you can change include

� the printer name and description

� the printer destination device and its properties

� the default font for the printer

� advanced features such as translation tables, printer resolution and the print
previewer associated with the printer.

To change printer properties for your default printer:

1 Issue the DMPRTPROPS command. The Printer Properties window appears.

2 From the Printer Properties window, select the tab that contains the information
that you need to modify.

� In the Name tab, you can modify the printer name and the printer description.

260 Setting Up Printers � Chapter 17

Display 17.7 Printer Properties Window Displaying Name Tab

� The Destination tab enables you to designate the device type, destination, and
host options for the printer. See “Sample Values for the Device Type,
Destination and Host Options Fields” on page 277 for examples.

Printing with SAS � Setting Up Printers 261

Display 17.8 Printer Properties Window Displaying Destination Tab

� The Font tab controls the available font options. The selections available in the
drop-down boxes are printer specific. The font size is in points.

262 Setting Up Printers � Chapter 17

Display 17.9 Printer Properties Window Displaying Font Tab

� The Advanced tab lists the Resolution, Protocol, Translate table, Buffer size,
Previewer, and Preview command options for the printer. The information in
the drop-down fields is printer specific.

Printing with SAS � Setting Up Printers 263

Display 17.10 Printer Properties Window Displaying Advanced Tab

Resolution
specifies the resolution for the printed output in dots per inch (dpi).

Protocol
provides the mechanism for converting the output to a format that can be
processed by a protocol converter that connects the EBCDIC host
mainframe to an ASCII device. Protocol is required in the z/OS operating
environment, and if you must use one of the protocol converters that are
listed.

Translate table
manages the transfer of data between an EBCDIC host and an ASCII
device. Normally, the driver selects the correct table for your locale; the
translate table needs to be specified only when you require nonstandard
translation.

Buffer size
controls the size of the output buffer or record length. If the buffer size is
left blank, a default size will be used.

Previewer
specifies the Previewer definition to use when Print Preview is requested.
The Previewer box contains the previewer application that you have
defined. See “Defining a New Previewer” on page 266.

Preview command
is the command that will be used to open an external printer language
viewer. For example, if you want Ghostview as your previewer, type
ghostview %s. When a Preview Command is entered into a Printer
definition, the printer definition becomes a previewer definition.

264 Printing with Universal Printing � Chapter 17

Note: The Previewer and Preview Command fields are mutually exclusive.
When you enter a command path into the Preview Command field, the Previewer
box will dim. �

How to Specify a Printer for Your Session
The PRINTERPATH option enables you to specify a printer to use for the current SAS

session. This printer specification is not retained across SAS sessions. PRINTERPATH
is primarily used in batch mode, when there is no windowing environment in which to
set the default printer. This option accepts a character string as its value, for example:

options printerpath="myprinter";
options printerpath="Print PostScript to disk";

You can get a list of valid character strings from two places:
� the list of printers in the Printer field of the Print Setup window.
� the list of defined printers in the registry under

SAS_REGISTRY\\CORE\\PRINTING\\PRINTERS

You can also override the printer destination by specifying a fileref with the
PRINTERPATH= option:

options printerpath= (myprinter printout);
filename printout ...;

Printing with Universal Printing

Printing a Test Page
To print a test page:
1 Issue the DMPRTSETUP command to open the Print Setup window.
2 Select the printer for which you would like a test page from Printer listview.
3 Click Print Test Page .

Printing the Contents of an Active SAS Window
To print the contents of a window in SAS:
1 Click inside the window to make it active.
2 Select

File � Print

A print window appears. Your print window might differ from the window that
follows.

Printing with SAS � Printing with Universal Printing 265

Display 17.11 Print Window

3 If the Use Forms check box is visible, clear it in order to use Universal Printing.
4 From the Printer group box, select the name of the printer definition.
5 Enter the number of copies that you want.
6 If you want to save your print job to a file,

a Select Print to File.
b Select OK ; the File Selection window appears.
c Select an existing file or enter a new filename.

Note: If you print to an already existing file, the contents of the file may be
overwritten or appended, depending on whether you choose replace or append
from the print window that is open. �

7 Set additional printing options.
The fields in the Page Options area provide choices according to the content in

the SAS window that you are trying to print. By default, SAS prints the entire
contents of the selected window.

To print Do this

selected lines of text in a window

Note: not available on OS/390

Select the text that you want to print, and
then open the Print window. In the Page
Options box, check the Print Selected
Text box.

the page that is currently displayed in the
window

Select Current page.

266 Working with Previewers � Chapter 17

To print Do this

a range of pages or other individual pages Select Range and enter the page numbers in
the Pages field. Separate individual page
numbers and page ranges with either a
comma (,) or a blank. You can enter page
ranges in any of these formats:

� n–m prints all pages from n to m,
inclusive.

� –n prints all pages from page 1 to page
n.

� n– prints all pages from page n to the
last page.

in color Check the Print Color box.

line numbers Check the Print Line Numbers box.

page numbers Check the Print Page Numbers box.

a graph Use the DMPRINT command, or select

File � Print

Verify that the Use SAS/GRAPH Drivers
check box is deselected in order to use
Universal Printing.

8 Click OK to print.

Working with Previewers

Defining a New Previewer
Previewers enable you to preview a print job. SAS does not set a default previewer

application. To use the Print Preview feature in SAS, you or your system administrator
must first define a previewer for your system.

Operating Environment Information: Print Previewers are not supported on z/OS �

Previewers can be defined using the New Previewer wizard. To use the New Previewer
wizard to define a new print previewer:

1 Issue the DMPRTCREATE PREVIEWER command. The following window
appears:

Printing with SAS � Working with Previewers 267

Display 17.12 Previewer Definition Window to Enter Name and Description

2 Enter the name and a description for the new previewer (127 character maximum,
no backslashes).

3 Click Next to proceed to Step 2.

Display 17.13 Previewer Definition Window to Enter Previewer Language

268 Working with Previewers � Chapter 17

4 Select the printer model that you want to associate with your previewer definition.
The Postscript, PCL or PDF language generated for the model must be a language
that your external viewer package supports. For best results, select the generic
models such as PostScript Level 1 (Color) or PCL 5.

5 Click Next to proceed to Step 3.

Display 17.14 Previewer Definition Window to Enter Command to Open Previewer Application

6 Enter the command or commands used to open the previewer application, followed
by %s where you would normally put a file name. For example, if the command for
starting your previewer is “ghostview,” then you would type ghostview %s in the
text field.

Note: The %s can be used as many times as needed in the commands for
starting the viewer. �

7 Click Next to proceed to Step 4.

Printing with SAS � Working with Previewers 269

Display 17.15 Previewer Definition Window to Complete Process

8 Click Previous to correct any information. Click Finish when you have finished
defining your default previewer.

The newly defined previewer will display a previewer icon in the Print Setup window.

Display 17.16 Print Setup Window Displaying New Previewer

This previewer application can be tested with the Print Test Page button on the Print
Setup window.

Seeding the Print Previewer Command Box
Print Preview is supported by print previewer applications such as Ghostview, gv,

and Adobe Acrobat. The Preview command box that appears in the Previewer

270 Setting Page Properties � Chapter 17

Definition wizard and on the Advanced tab of the Printer Properties window can be
prepopulated or “seeded” with a list of commands used to invoke print previewer
applications that are available at your site. Users and administrators can manually
update the registry, or define and import a registry file that contains a list of previewer
commands. An example of a registry file is:

[CORE\PRINTING\PREVIEW COMMANDS]
"1"="/usr/local/gv %s"
"2"="/usr/local/ghostview %s"

Previewing Print Jobs
You can use the print preview feature if a print viewer is installed for the designated

printer. Print Preview is always available from the File menu in SAS. You can also
issue the DMPRTPREVIEW command.

Setting Page Properties
For your current SAS session, you can customize how your printed output appears in

the Page Setup window. Depending on which printer you have currently set, some of
the Page Setup options that are described in the following steps may be unavailable.

To customize your printed output:
1 Issue the DMPAGESETUP command. The Page Setup window appears.
2 Select a tab to open windows that control various aspects of your printed output.

Descriptions of the tabbed windows follow.

The Page Setup window consists of four tabs: General, Orientation, Margins, and
Paper.

� The General tab enables you to change the options for Binding, Collate, Duplex,
and Color Printing.

Display 17.17 Page Setup Window Displaying General Tab

Binding
specifies the binding edge (Long Edge or Short Edge) to use with duplexed
output. This sets the BINDING option.

Printing with SAS � Setting Page Properties 271

Collate
specifies whether the printed output should be collated. This sets the COLLATE
option.

Duplex
specifies whether the printed output should be single-sided or double-sided.
This sets the DUPLEX option.

Color Printing
specifies whether output should be printed in color. This sets the
COLORPRINTING option.

� The Orientation tab enables you to change the output’s orientation on the page.
The default is Portrait. This tab sets the ORIENTATION option.

Display 17.18 Page Setup Window Displaying Orientation Tab

� The Margin tab enables you to change the top, bottom, left and right margins for
your pages. The value range depends upon the type of printer that you are using.
The values that are specified on this tab set the TOPMARGIN,
BOTTOMMARGIN, LEFTMARGIN, and RIGHTMARGIN options.

272 Setting Page Properties � Chapter 17

Display 17.19 Page Setup Window Displaying Margins Tab

� The Paper tab specifies the Size, Type, Source, and Destination of the paper used
for the printed output.

Display 17.20 Page Setup Window Displaying Paper Tab

Size
specifies the size of paper to use by setting the PAPERSIZE option. Paper
sizes include Letter, Legal, A4, and so on.

Type
specifies the type of paper to use. Examples of choices include Standard,
Glossy, and Transparency. This sets the PAPERTYPE option.

Source
designates which input paper tray is to be used. This sets the
PAPERSOURCE option.

Printing with SAS � System Options That Control Universal Printing 273

Destination
specifies the bin or output paper tray that is to be used for the resulting
output. This sets the PAPERDEST option.

Note: Although your Page Settings should remain in effect for your current working
session, changing default printers could cause some of the settings to have no effect. If
you change printers during a SAS session, check the Page Setup window to see if any of
your settings are not valid for your new default printer. �

Configuring Universal Printing with Programming Statements

Introduction
Universal Printing windows give you control over most printing functions through a

graphical user interface. (You can also write a program that uses various SAS language
elements to configure your printing environment and to control print jobs.)

System Options That Control Universal Printing
Universal Printing can configured in batch mode and interactive mode by setting

option values within an OPTIONS statement. The following options control Universal
Printing.

Table 17.5 System options that control Universal Printing

System Option Description

BINDING Specifies the binding edge for the printer

BOTTOMMARGIN Specifies the size of the margin at the bottom of
the page for printing

COLLATE Specifies the collation of multiple copies for
output for the printer

COLORPRINTING Specifies color printing, if it is supported

COPIES Specifies the number of copies to make when
printing

DUPLEX Specifies duplexing controls for printing

LEFTMARGIN Specifies the size of the margin on the left side
of the page

ORIENTATION Specifies the paper orientation to use (either
portrait or landscape)

PAPERDEST Specifies the bin or output paper tray to receive
printed output

PAPERSIZE Specifies the paper size to use when printing.

PAPERSOURCE Specifies the input paper tray to use for printing

PAPERTYPE Specifies the type of paper to use for printing.

PRINTERPATH Specifies a printer for Universal Printing print
jobs (see Note on page 274)

274 Defining Printers for Batch-Mode � Chapter 17

System Option Description

RIGHTMARGIN Specifies the size of the margin on the right side
of the page

SYSPRINTFONT Specifies the font to use when printing

TOPMARGIN Specifies the size of the margin at the top of the
page

Note: The PRINTERPATH option specifies which printer will be used.

� If PRINTERPATH is blank, the default printer will be used.

� If PRINTERPATH is not blank, Universal Printing will be used.

In the Windows environment, the default printer is the current Windows system
printer or the printer specified by the SYSPRINT option; therefore, Universal Printing
is not used. In all other operating environments, Universal Printing is used and the
default printer is Postscript Level 1. To change this printer, use the DMPRINTSETUP
command to open the Print Setup window. �

Defining Printers for Batch-Mode
Printer definitions can be created for an individual, or for all SAS users at a site, by

using the PRTDEF procedure. PROC PRTDEF can be used to do many of the same
printer management activities that you can also do with the Universal Printing
windows. PROC PRTDEF is especially useful if you use SAS in batch mode, where the
Universal Printing windows are unavailable.

Only system administrators or others who have write permission to the SASHELP
library can use PROC PRTDEF to create printer definitions for all SAS users at a site.

To define one or more printers with PROC PRTDEF, you first create a SAS data set
that contains variables corresponding to printer attributes. PROC PRTDEF reads the
data set and converts the variable attributes into one or more printer definitions in the
SAS registry.

See Base SAS Procedures Guide for more information about PROC PRTDEF.

Defining New Printers and Previewers with PROC PRTDEF

Introduction
These examples show you how to use PROC PRTDEF to define new printers and to

manage your installed printers and previewers.
After a program statement containing PROC PRINTDEF runs successfully, the

printers or previewers that have been defined will be displayed in the Print Setup
window. A complete set of all available printers and previewers will be displayed in the
Printer name list. Printer definitions can also be seen in the Registry Editor window
under CORE\\PRINTING\\PRINTERS.

Creating a Data Set that Defines Multiple Printers
When you create a data set to use with PROC PRTDEF to define a printer, you must

specify the name, model, device and destination variables.
See the PRTDEF procedure in Base SAS Procedures Guide for the names of the

optional variables that you can also use.

Printing with SAS � Defining New Printers and Previewers with PROC PRTDEF 275

data printers;
input name $& model $& device $& dest $&;
datalines;

Myprinter PostScript Level 1 PRINTER printer1
Laserjet PCL 5 Printer PIPE lp -dprinter5
Color LaserJet PostScript Level 2 PIPE lp -dprinter2
;
run;

After you create the data set containing the variables, you run a SAS program that
contains PROC PRTDEF. PROC PRTDEF defines the printers that are named in the
data set by creating the appropriate entries in the SAS registry.

proc prtdef data=printers usesashelp;
run;

Installing a Printer Definition for Multiple Users
This example creates a Tektronix Phaser 780 printer definition with a Ghostview

print previewer in the SASUSER registry. The bottom margin is set to two centimeters,
the font size to 14 point, and the paper size to A4.

data tek780;
name = "Tek780";
desc = "Test Lab Phaser 780P";
model = "Tek Phaser 780 Plus";
device = "PRINTER";
dest = "testlab3";
preview = "Ghostview";
units = "cm";
bottom = 2;
fontsize = 14;
papersiz = "ISO A4";

run;

proc prtdef data=tek780;
run;

Adding, Modifying, and Deleting Printer Definitions
This example uses the PRINTERS data set to add, modify, and delete printer

definitions. See the PRTDEF procedure in Base SAS Procedures Guide for more
variables that you can use to define a printer. The following list describes the variables
used in the example:

� The MODEL variable specifies the printer prototype to use when defining this
printer.

� The DEVICE variable specifies the type of I/O device to use when sending output
to the printer.

� The DEST variable specifies the output destination for the printer.
� The OPCODE variable specifies what action (Add, Delete, or Modify) to perform on

the printer definition.
� The first Add operation creates a new printer definition for Color Postscript in the

registry and the second Add operation creates a new printer definition for ColorPS
in the registry.

� The Mod operation modifies the existing printer definition for LaserJet 5 in the
registry.

276 Defining New Printers and Previewers with PROC PRTDEF � Chapter 17

� The Del operation deletes the printer definitions for printers named “Gray
Postscript” and “test” from the registry.

The following example creates a printer definition in the SASHELP library. Because
the definition is in SASHELP, the definition becomes available to all users. Special
system administration privileges are required to write to the SASHELP library. An
individual user can create a personal printer definition by specifying the SASUSER
library instead.

data printers;
length name $ 80

model $ 80
device $ 8
dest $ 80
opcode $ 3;

input opcode $ & name $ & model $ & device $ & dest $ &;
datalines;
add Color Postscript PostScript Level 2 (Color) DISK sasprt.ps
mod LaserJet 5 PCL 5 DISK sasprt.pcl
del Gray Postscript PostScript Level 2 (Gray Scale) DISK sasprt.ps
del test PostScript Level 2 (Color) DISK sasprt.ps
add ColorPS PostScript Level 2 (Color) DISK sasprt.ps
;

proc prtdef data=printers list
library=sashelp;
run;

Note: If the end user modifies and saves new attributes for an administrator-defined
printer in the SASHELP library, the printer will become a user-defined printer in the
SASUSER library. Values that are specified by the user will override the values that
were set by the administrator. If the user-defined printer definition is deleted, the
administrator-defined printer will reappear. �

Creating a Ghostview Previewer Definition for Previewing Postscript Output
This example creates the GSVIEW data set. The variables in the GSVIEW data set

have values that PROC PRTDEF uses to produce the print previewer definition in the
SAS registry.

� The NAME variable specifies the printer name that will be associated with the
rest of the attributes in the printer definition data record.

� The DESC variable specifies the description of the printer.

� The MODEL variable specifies the printer prototype to use when defining this
printer.

� The VIEWER variable specifies the host system commands for print preview.

� The DEVICE variable should always be DUMMY.

� DEST should be blank to specify that output is not returned.

data gsview;
name = "Ghostview";
desc = "Print Preview with Ghostview";

Printing with SAS � Defining New Printers and Previewers with PROC PRTDEF 277

model= "PostScript Level 2 (Color)";
viewer = ’ghostview %s’;
device = "dummy";
dest = " ";

run;
proc prtdef data=gsview list replace;
run;

Exporting and Backing Up Printer Definitions
PROC PRTEXP enables you to backup your printer definitions as a SAS data set that

can be restored with PROC PRTDEF.
PROC PRTEXP has the following syntax:

PROC PRTEXP [USESASHELP] [OUT=dataset]
[SELECT | EXCLUDE] printer_1 printer_2 ... printer_n;

The following example shows how to back up four printer definitions (named PDF,
postscript, PCL5 and PCL5c) using PROC PRTEXP.

proc prtexp out=printers;
select PDF postscript PCL5 PCL5c;
run;

For more information, see the PRTEXP procedure in Base SAS Procedures Guide.

Sample Values for the Device Type, Destination and Host Options Fields
The following list provides examples of the printer values for device type, destination

and host options. Because these values can be dependent on each other, and the values
can vary by operating environment, several different examples are shown. You might
want to refer to this list when you are installing or modifying a printer or when you
change the destination of your output.

� Device Type: Printer
� z/OS

� Device type: Printer
� Destination: (leave blank)
� Host options: sysout=class-value dest=printer-name

� UNIX and Windows
� Device type: Printer
� Destination: printer name
� Host options: (leave blank)

� VMS
� Device type: Printer
� Destination: printer name
� Host options: passall=yes queue=printer-name

� Device Type: Pipe

Note: A sample command to send output to an lp-defined printer queue on a
UNIX host is lp -ddest �

� UNIX
� Device Type: Pipe

278 Defining New Printers and Previewers with PROC PRTDEF � Chapter 17

� Destination: command

� Host options: (leave blank)

� Device type: Email

� Windows, UNIX and VMS

� Device Type: Email

� Destination: name@isp.com

� Host options: (leave blank)

� z/OS

� Device Type: Email

� Destination: name@isp.com

� Host options: recfm=vb

� Device Type: FTP

Note: An example of a nodename is pepper.unx �

� z/OS

� Device type: FTP

� Destination: ftp.out

� Host options: host=’nodename’ recfm=vb prompt

� Device type: Printer

� Destination: printer name

� Host options: (leave blank)

� Windows

� Device type: FTP

� Destination: ftp.out

� Host options: host=’nodename’ prompt

� UNIX and VMS

� Device type: FTP

� Destination: host=’nodename’ prompt

� Host options: (leave blank)

� Device Type: Socket

Note: An example of an lp destination queue is lp286nc0.prt:9100 �

� UNIX and VMS

� Device type: Socket

� Destination: destination-queue

� Host options: (leave blank)

Printing with SAS � Creating or Editing a Form 279

Forms Printing

Overview of Forms Printing
Before Universal Printing was introduced, SAS provided a utility for print jobs called

a form. A form was a standard template that let you control such things as line size
and margin information for pages in a print job. While Universal Printing is easier to
use and has more features than the simple controls offered in forms printing, SAS still
supports forms.

Printing with forms is still available through the Print window. You can switch to
forms print mode by selecting

File � Print

and selecting Use Forms.

Note: Forms printing is not available in batch mode. �

Creating or Editing a Form
If your organization has legacy reports that need to be printed using forms, you

might have to use the FORM window to create or edit a form. SAS still supports the
ability to create or edit forms, though Universal Printing provides more features, and is
the recommended method of printing.

You can create or edit a form by entering the FSFORM command:

FSFORM<catalog-name.>form-name

If you do not specify a catalog-name, SAS uses the SASUSER.PROFILE catalog. If the
form name that you specify does not exist, SAS creates a new form.

If you are creating a new form, SAS displays the Printer Selection frame. If you are
editing an existing form, SAS displays the Text Body and Margin Information frame.

To move between the FORMS frames, you can

� use the NEXTSCR command to scroll to the next frame and the PREVSCR
command to scroll to the previous frame.

� enter an equals sign (=) and the number of the frame that you want to go to. For
example, =1 displays the Text Body and Margin Information frame, and =2
displays the Carriage Control Information frame.

� select the name of the frame from the Tools menu.

� select Next Screen or Previous Screen from the Tools menu.

You can move between fields on a frame with the TAB key.
After you have finished defining or editing your form, issue the END command to

save your changes and exit the FORM window.

Note: Turning on Forms by checking the Use Forms checkbox in the print window
turns Universal Printing off for printing non-graphic windows. �

Operating Environment Information: For more information on printing with Forms,
see the documentation for your operating environment. �

280

281

P A R T2

Windowing Environment Concepts

Chapter 18.Introduction to the SAS Windowing Environment 283

Chapter 19.Managing Your Data in the SAS Windowing Environment 307

282

283

C H A P T E R

18
Introduction to the SAS
Windowing Environment

Basic Features of the SAS Windowing Environment 283
What Is the SAS Windowing Environment? 283

Using SAS Window Features 284

Overview of SAS Windowing Environment Features 284

Keyboard Equivalents for z/OS 284

Drop-Down Menus in SAS 285
Pop-Up Menus in SAS 286

Toolbars in SAS 287

Getting Help from the Help Menu in SAS 287

Getting Help from the Toolbar in SAS 288

Main Windows of the SAS Windowing Environment 288

List of SAS Windows and Window Commands 288
The Five Main Windows in the Windowing Environment 290

Overview 290

SAS Explorer Window 291

Exploring Files with the SAS Explorer 291

Using SAS Explorer to Assign File Shortcuts (filerefs) 292
Using SAS Explorer to Copy a SAS Data Set 293

Using SAS Explorer to Rename a File 295

Using SAS Explorer to View Details about Files 295

Using SAS Explorer to Sort Files 296

Using SAS Explorer to Open a File 296
Using SAS Explorer and NOTEPAD to Create and Save a Program 297

Program Editor Window 298

Log Window 299

Output Window 300

Results Window 301

New Library Window 302
Using the New Library Window to Assign a New Library 303

Properties Window 303

Keys Window 304

Valid Commands in the Keys Window 304

Basic Features of the SAS Windowing Environment

What Is the SAS Windowing Environment?
SAS provides a graphical user interface that makes SAS easier to use. Collectively,

all the windows in SAS are called the SAS windowing environment.

284 Using SAS Window Features � Chapter 18

The SAS windowing environment contains the windows that you use to create SAS
programs, but you will also find other windows that enable you to manipulate data or
change your SAS settings without writing a single line of code.

You might find the SAS windowing environment a convenient alternative to writing a
SAS program when you want to work with a SAS data set, or control some aspect of
your SAS session.

Using SAS Window Features

Overview of SAS Windowing Environment Features
SAS windows have several features that operate in a similar manner across all

operating environments: drop-down menus, pop-up menus, toolbars, and online help.
You can customize many features of the SAS windowing environment, including
toolbars, menus, icons, and so on. Select Tools to explore some of the customization
options that are available. The examples in this section are from the Microsoft
Windows operating environment; menus and toolbars in other operating environments
have a similar appearance and behavior.

Operating Environment Information: If you are using Microsoft Windows, the active
window determines what items are available on the main menu bar. If you can not find
an option on the menu where you expect to find it, be sure you have opened the correct
window. �

Keyboard Equivalents for z/OS

Operating Environment Information: The following table shows you how to select
items if you use SAS in the z/OS operating environment. �

Table 18.1 Mouse Actions and Keyboard Equivalents for z/OS

Mouse Action Keyboard Equivalent

double-click the item type an s or an x in the space next to the item,
then press ENTER or RETURN

right-click the item type ? in the space next to the item, then press
ENTER or RETURN.

Operating Environment Information: Other features that are specific to z/OS and
other operating environments are found later in this section. �

Introduction to the SAS Windowing Environment � Using SAS Window Features 285

Display 18.1 SAS z/OS Display

Drop-Down Menus in SAS
A drop-down menu is a list of commands that appears when you click on a menu

name in the menu bar.

Display 18.2 A Typical SAS Menu Bar with a Drop-Down Menu for Help

Drop-down menu choices change as you change the windows you are using.
The following steps demonstrate that selecting View from a menu bar results in a

different drop-down menu, depending on which window you are using when you make
the selection.

1 Select

View � Explorer

from the menu. The Explorer window appears.
2 Select

View

from the menu bar again. The drop-down menu lists the View commands that are
available for the Explorer window.

286 Using SAS Window Features � Chapter 18

Display 18.3 View Commands for Explorer Window

3 Click

Program Editor

The Program Editor window appears.
4 Select View from the menu again and notice that it offers different selections.

Display 18.4 View Commands for Program Editor Window

Pop-Up Menus in SAS
A pop-up menu is a menu that appears when you select an item or an option. In SAS

windows, a pop-up menu displays when you right-click an item. A pop-up menu
remains visible until you make a selection from the menu or until you click something
outside of the pop-up menu area.

Introduction to the SAS Windowing Environment � Using SAS Window Features 287

Display 18.5 A Typical Pop-Up Menu

To see a typical pop-up menu in SAS, perform the following steps:
1 In the Explorer window, right-click the Libraries icon. Notice that Open and New

are available in the pop-up menu. Select Open.
2 Right-click the Sasuser icon. The pop-up menu contains additional selections.

Click anywhere outside the pop-up menu to close it without selecting an action.

Operating Environment Information: To open a pop-up menu using SAS on z/OS, you
select the item by placing a question mark (?) in the space next to the item, and then
press ENTER. See Table 18.1 on page 284 for more information. �

Toolbars in SAS
A toolbar is a block of window buttons or icons. When you click on items in the

toolbar, a function or an action is started. For example, clicking on a picture of a
printer in a toolbar starts a print process. The toolbar displays icons for many of the
actions that you perform most often in a particular window.

Operating Environment Information: SAS on z/OS is not equipped with a toolbar. �

Display 18.6 Typical SAS Toolbar from Microsoft Windows Operating System

To see a typical toolbar menu in SAS, perform the following steps:
1 Click the Explorer window and look at the toolbar. Notice that currently

unavailable tools are grayed.
2 Move your mouse pointer to a tool and hold it there for a moment. A Tool Tip

displays the name of the tool.
3 Click the Editor (or Program Editor) window and view the tools available.

Getting Help from the Help Menu in SAS
There are several ways to access the Help system that comes with SAS. You can

either type help in the menubar, or select different choices from the Help menu. The
following list describes the Help menu choices.

288 Main Windows of the SAS Windowing Environment � Chapter 18

Using This Window
Opens a Help system window that describes the current active window.

SAS Help and Documentation
Opens the SAS Help and documentation system. Help is available for Base SAS
and other SAS products that are installed on your system.

Getting Started with SAS Software
Opens Getting Started with SAS Tutorial. This is a good way to learn the basics of
how to use SAS.

Learning SAS Programming
Opens SAS OnlineTutor sample data sets. SAS OnlineTutor is a separately

licensed product that provides 50–60 hours of instruction for beginning as
well as experienced SAS programmers.

SAS on the Web
If you have web access, then this selection provides links to the SAS web site,
where you can

� contact Technical Support
� read Frequently Asked Questions (FAQs)
� find information about Training Services
� send feedback
� browse the SAS home page.

About SAS System
Provides version and release information about SAS.

Getting Help from the Toolbar in SAS
You can get help when you type help <language element name> in the toolbar or at

the command line. This opens the Help system and displays the documentation for the
language element name that you typed.

Main Windows of the SAS Windowing Environment

List of SAS Windows and Window Commands
The basic SAS windows are the Explorer, Results, Program Editor, Log, and Output

windows, but there are more than thirty other windows to help you with such things as
printing and fine-tuning your SAS session.

The following table lists all portable SAS windows and the commands that open them.

Note: Additional information about how many of these windows work can be found
by clicking the help button inside each window. �

Table 18.2 List of Portable SAS Windows and Window Opening Commands

Window Name Window Command(s)

Define a new previewer“Defining a New
Previewer” on page 266

DMPRTCREATE PREVIEWER

Define a new printer“Defining a New Printer” on
page 256

DMPRTCREATE PRINTER

Distributed Multidimensional Metadata MDMDDB*

Introduction to the SAS Windowing Environment � List of SAS Windows and Window Commands 289

Window Name Window Command(s)

Documents ODSDOCUMENTS

Explorer ACCESS, BUILD, CATALOG, DIR, EXPLORER,
FILENAME, LIBNAME, V6CAT, V6DIR,
V6FILENAME, V6LIBNAME

Explorer Options DMEXPOPTS

EFI (External File Interface) EFI*

File Shortcut Assignment DMFILEASSIGN

Find EXPFIND

Font (host-specific) DLGFONT*

Footnotes FOOTNOTES

FSBrowse FSBROWSE

FSEdit FSEDIT

FSForm FSFORM formname

FSLetter FSLETTER

FSList FSLIST

FSView FSVIEW

Help HELP

Keys KEYS

Log LOG

Metadata Browser METABROWSE*

Metafind METAFIND

Metadata Server Connections METACON

My Favorite Folders EXPROOT FILES*

New Library DMLIBASSIGN

Notepad NOTEPAD, NOTE, FILEPAD filename

Options (SAS system options) OPTIONS

Output OUTPUT, OUT, LISTING, LIST, LST

Page Setup DMPAGESETUP

Password SETPASSWORD (followed by a two-level data
set name)

Preferences (host-specific) DLGPREF*

Print DMPRINT

Print Setup DMPRTSETUP

Printer Properties DMPRTPROPS

Program Editor PROGRAM, PGM

Properties VAR libref.SAS-data-set, V6VAR
libref.SAS-data-set

Query QUERY

290 The Five Main Windows in the Windowing Environment � Chapter 18

Window Name Window Command(s)

Registry Editor REGEDIT

Results ODSRESULTS

SAS/AF AF, AFA

SAS/ASSIST ASSIST

SASCOLOR SASCOLOR

SAS/EIS* EIS

System Options OPTIONS

Templates ODSTEMPLATES

Titles TITLES

Tool Editor (host-specific) TOOLEDIT*

Viewtable VIEWTABLE, VT

Window commands marked with * are not supported under z/OS.

Note: Some additional SAS windows that are specific to your operating environment
may also be available. Refer to the SAS documentation for your operating environment
for more information. �

The Five Main Windows in the Windowing Environment

Overview

The five main windows in SAS are: Explorer, Results, Program Editor, Log, and
Output windows.

Display 18.7 Default View of SAS Windowing Environment (Microsoft Windows)

Operating Environment Information: The arrangement of your SAS windows depends
on your operating environment. For example, in the Microsoft Windows operating
environment, the Editor window appears instead of the Program Editor. �

Introduction to the SAS Windowing Environment � SAS Explorer Window 291

SAS Explorer Window

Use to View, add or delete files, libraries, shortcuts.

Open by Typing EXPLORER in the command line, or select

View � Explorer

Description The Explorer window enables you to manage your files in the
windowing environment. You can use the SAS Explorer to do the
following tasks:

� view lists of your SAS files

� create shortcuts to external files

� create new SAS files

� open any SAS file and view its contents

� move, copy, and delete files

� open related windows, such as the new library window.

You can display the Explorer window with or without a tree view of its contents.

Display 18.8 SAS Explorer, with Tree View, Microsoft Windows Operating Environment

Display 18.9 SAS Explorer, Without Tree View, Microsoft Windows Operating Environment

Note: You can resize the Explorer window by dragging an edge or a corner of the
window. You can resize the left and right panes of the Explorer window by clicking the
split bar between the two panes and dragging it to the right or left. �

Exploring Files with the SAS Explorer
You can use the SAS Explorer to explore and manage SAS files and other files. In the

Explorer window, you can view and manage your SAS files, which are stored in

292 SAS Explorer Window � Chapter 18

libraries. A library is a storage location for SAS files and catalogs. By default, SAS
defines several libraries for you.

This example uses the SAS Explorer to display the contents of a library:

1 In the Explorer window, double-click Libraries. The active libraries are listed.

Display 18.10 Typical Explorer Window, Without Tree View, Showing Active Libraries

2 Double-click the Sashelp library. All members of the Sashelp library are listed.

Display 18.11 Explorer Window, Without Tree View, Showing the Contents of a Sashelp Library

3 Move back up to the top level of the Explorer window by clicking twice on the Up
One Level selection under View on the toolbar.

Using SAS Explorer to Assign File Shortcuts (filerefs)
A file shortcut is also known as a file reference or fileref. Filerefs save you

programming time by enabling you to assign a nickname to a commonly used file. You
can use the FILENAME statement to create a fileref or you can use the file shortcut
assignment window from SAS Explorer.

The following example shows you how to create a file shortcut with SAS Explorer.

1 In the top level of the Explorer window, select File Shortcuts.

Introduction to the SAS Windowing Environment � SAS Explorer Window 293

2 Select

File � New

The File Shortcut Assignment window appears.

Display 18.12 File Shortcut Assignment Window

3 Type a name in the Name field (up to eight alphanumeric characters). This name is
the file shortcut reference (fileref), and you can use it to point to an external file.

4 Select the Method that you want to use for the file shortcut. The devices that are
available from the Method drop-down list depend on your operating environment.
DISK is the default (if available for your operating environment). See your
operating environment documentation for more information.

5 Select Enable at Startup if you want SAS to automatically assign the file
shortcut each time that SAS starts. This option is not available for all file shortcut
methods. If it is not available, the Enable at Startup check box is disabled. If you
want to stop a file shortcut from being enabled at startup, select the file shortcut
in the SAS Explorer window, and then select Delete from the pop-up menu.

6 Fill in the fields of the Method Information area. The fields available in this
area depend on the method that you selected.

Note: Selecting a new method type erases any entries that you may have made
in the Method information field. �

7 Select OK to create the new file shortcut. The file shortcut appears in the File
Shortcut folder of the SAS Explorer window.

Using SAS Explorer to Copy a SAS Data Set

This example shows you how to copy a data set called Prdsale, which is a sample
data file included when you install SAS software.

1 Open the Explorer window by selecting

View � Explorer

294 SAS Explorer Window � Chapter 18

Display 18.13 SAS Explorer in Tree View Mode, Showing Some Members of a Sashelp Library

2 In the left pane, single-click the Sashelp library to show the library contents in
the right pane. Scroll to the icon for the Prdsale data set.

3 Right-click the Prdsale data set.

4 Select Copy from the menu.

5 Right-click the Work Library.

6 Select Paste from the menu.

7 The Prdsale data set appears in the contents of the Work Library.

Display 18.14 SAS Explorer In Tree View Mode, Showing a File in a Work Library

Because the contents of the Work library are temporary, this copy of the Prdsale data
set will be deleted when you end your SAS session.

Introduction to the SAS Windowing Environment � SAS Explorer Window 295

Using SAS Explorer to Rename a File
You can use SAS Explorer to rename anything in a SAS library that is not write

protected. This set of instructions outlines how to use SAS Explorer to rename a data
set:

1 Open SAS Explorer and click on a library. A list of files in the library appears.
2 Select the file you want to rename and right-click it. A pop-up menu appears.
3 Select Rename from the pop-up menu. A Rename window appears, containing the

name of the file you selected, and a blank space for typing in the new name.
4 Type in the new name and click OK .

Note: Changing a file name may cause a SAS program that uses the old file name to
stop working. �

Using SAS Explorer to View Details about Files
You can use the View menu to view the contents of a library with large icons or

small icons, as a list, and with details displayed. This example shows you how use
Explorer to view the details for the Sashelp.Prdsale data set.

1 Open the Sashelp library.
2 Select

View � Details

from the menu. Information about the files is displayed.

Note: The DETAILS system option controls how many details you can see
about a data set. If you enable the DETAILS system option, you can see additional
row and column information in the Explorer window. �

3 Resize the Details columns by moving the pointer over the separator bar between
the detail fields. When the pointer changes to a resizing tool, click and drag the
separator bar to get the desired size.

Display 18.15 Explorer Window with Pointer in Position (between Name and Engine) to Resize Columns.
DETAILS Option Set to NODETAILS

296 SAS Explorer Window � Chapter 18

Display 18.16 Explorer Window with DETAILS Option Enabled

For more information about the DETAILS system option, see the SAS Language
Reference: Dictionary.

Using SAS Explorer to Sort Files
Files in the Explorer window are sorted alphabetically by file name. You can sort by

any column in ascending or descending order:
1 Open the Sashelp library.
2 Click the Type column to sort the files by file type.
3 Click the Type column again to reverse the sort order.
4 To return the files to their original order, select

View � Refresh

Using SAS Explorer to Open a File
You can view the contents of SAS files directly from the Explorer window:
1 Double-click the Sashelp library.
2 Find the Prdsale data set in the list and double-click it to open it. The table

opens in the VIEWTABLE window in browse mode.
3 When you are finished looking at the data in the data set, select

File � Close

from the VIEWTABLE window.
4 Return to the top level of the Explorer window.

Introduction to the SAS Windowing Environment � SAS Explorer Window 297

Display 18.17 Viewtable Window Displaying a Data Set

Using SAS Explorer and NOTEPAD to Create and Save a Program
In addition to the NOTEPAD, which is described here, you can also use the Program

Editor (or Editor in some operating systems) to create and save programs. You can also
use NOTEPAD and the Program Editor to work on two programs in the same session.

The following set of instructions shows you how to create and save a SAS program:
1 In the top level of the Explorer window, select

File � New

2 Select Source Program, and click OK . The NOTEPAD window appears.
3 Type the following program into the NOTEPAD window:

proc options;
run;

4 Select

Run � Submit

As a result, the Log window lists the settings for your system options.
5 Select

File � Save As

6 With the default directory selected, type sysopt.sas in the File name box.
7 Click OK or Save .

298 Program Editor Window � Chapter 18

Display 18.18 SAS Notepad, with a Program

To recall and run the program that you just saved, follow this set of instructions:
1 Select

File � Open

2 From the menu, select the library where you saved your program, if that library is
not already available.

3 Select sysopt.sas (the program you just saved) from the menu. The program
appears in NOTEPAD.

4 Select

Run � Submit

Program Editor Window
Purpose Compose, edit, and submit SAS programs.

To open Type PROGRAM in a command line, or select

View � Program Editor

Details In the Program Editor window, you can enter, edit, and submit SAS
programs. To open your SAS programs in the SAS windowing
environment, you can drag and drop them onto the Program Editor
window.

Introduction to the SAS Windowing Environment � Log Window 299

Display 18.19 Program Editor Window, with a Sample Program

This set of instructions shows you how to use the Program Editor to create and save
a SAS program, submit the program, and view and save your results.

Create and Save a Program
1 In the top level of the Explorer window, select

File � New

2 Select Source Program and click OK .
3 Type the following program into the Editor or Program Editor window:

proc datasets lib=sasuser;
run;
quit;

4 This program prints a listing of the contents of the SASUSER library (or to the log
on z/OS).

5 Click

Run � Submit

to run the program.
6 Click

File � Save as

to save the program.
7 Type a name and select a location for the file in the Save as window.

Operating Environment Information: In the Microsoft Windows operating
environment, the Results window is docked along with the Explorer window. When a
program produces output, the Results window comes to the front and overlays the
Explorer window. �

Log Window

Purpose View messages about your SAS session and SAS programs.

To open Type LOG in a command line, or select

View � Log

300 Output Window � Chapter 18

Details The Log window displays messages about your SAS session and any
SAS programs you submit. If the program you submit has
unexpected results, the SAS log is usually the first place you look to
gather clues about what changes you need to make in order to get
the intended results.

Note: To keep the lines of your log from wrapping when your
window is maximized, use the LINESIZE= system option. �

Display 18.20 Log Window

Output Window

Purpose View the output of SAS programs

To open Type OUTPUT in a command line, or type LISTING in a command
line, or select

View � Output

Details In the Output window, you can browse output from SAS programs
that you submit. By default, the Output window is positioned
behind the other windows. When you create output, the Output
window automatically moves to the front of your display.

Note: To keep the lines of your output from wrapping when your
window is maximized, use the LINESIZE= system option. �

Introduction to the SAS Windowing Environment � Results Window 301

Display 18.21 Output Window

Results Window

Purpose View the output from running a SAS program.

To open Type ODSRESULTS in a command line, or select

View � Results

Details The Results window uses a tree structure to display various types of
output that you may have while you are running SAS. You can view,
save, and print individual items of output. By default, the Results
window is positioned behind the Explorer window and it is empty
until you submit a SAS program that creates output. Then the
Results window moves to the front of your display.

To use the Results window, you first run a SAS program that generates output. You can
run any SAS program that creates output, such as the following program, which creates
a graph with PROC PLOT.

options linesize=80;
data generate;

do x=0 to 100 by 2;
y=2.54+3.83*x;
output;

end;
run;
proc plot data=generate;

plot y*x;
run;

After running a program that produces output, the results window adds a line
indicating that the output was successfully generated. You can then select this output
from the Results Window and view it.

302 New Library Window � Chapter 18

Display 18.22 Results Window, Showing an Output List

New Library Window

Purpose Assign a new library.

To open Type DMLIBASSIGN in a command line, or from the Explorer window,
select

File � New

Details The New Library Window makes it easy to create libraries. After
you create a new library, you can use SAS Explorer to associate SAS
files, such as data sets, catalogs, and programs, with the library. By
default, SAS software defines several libraries for you (including
Sashelp, Sasuser, and Work).

When you define a library, you specify a location for your SAS files. When you
undefine a SAS library, SAS no longer has access to the contents of the library.
However, the contents of the library still exist in your operating environment. After you
create a library, you can manage SAS files within it.

Display 18.23 New Library Window

Operating Environment Information: Depending on your operating environment, you
can create libraries using engines that allow you to read different file formats, including
file formats from other vendors. �

Introduction to the SAS Windowing Environment � Properties Window 303

Using the New Library Window to Assign a New Library

1 In the Explorer window, double-click Libraries.

2 From the Explorer menu, select

File � New

3 In the New Library window, type Mylib for the name, and leave the Default
engine selected.

4 Select Enable at startup so that the library is created each time you start SAS.

5 Click Browse and select a directory to use for this library. In the Select dialog you
must open the directory you want to use so that the full path into that directory is
assigned. Click OK .

6 Click OK to assign the library. Mylib appears in the Active Libraries list.

Properties Window

Purpose View and change the properties of a data set.

To open Type VAR in the command line, followed by the name of the data set
that you want to open, in the form of libref.SAS-data-set, or
right-click on a data set from the SAS Explorer window and select
Properties.

Details When you open the Properties window, you can select tabs that give
you additional information about the data set.

Display 18.24 Properties Window Displaying the Details for Sashelp.Prdsale. Select Other Tabs for More
Information.

304 Keys Window � Chapter 18

Keys Window
Purpose Change or create new keyboard commands.

To open Type KEYS in a command line, or select

Tools � Options � Keys

Details The Keys window displays function key definitions for the current
window. Default function key settings are provided with the SAS
System, but you can easily add, edit, or delete them.

To add new function key definitions:
1 After opening the Keys window, place your cursor next to the key you want to

assign to a command. Make sure your cursor is under the Definition column.
2 Type the name of the command you want to assign.
3 Click

File � Save

to save your changes.

To change existing key functions:
1 Type over the command that is already assigned to a particular key with the name

of a new function.
2 Click

File � Save

to save your changes.

To delete key functions:
1 Type over the command that is already assigned to a particular key.
2 Save the Keys window.

Valid Commands in the Keys Window
In the Keys window you can use these commands:
� SAS windows commands
� the Color, Search, Scrolling, Text Store, Window Management, and Window Size

and Position commands.

Introduction to the SAS Windowing Environment � Keys Window 305

In addition, you can use the following commands:

Table 18.3 Other Commands That You Can Use in the Keys Window

Command Result

CANCEL Cancels any changes made to the current key settings and closes the
Keys window.

COPY <name> Copies another stored set of key definitions into the window. If
<name> is omitted, any changes that are made are cancelled and the
definitions from your user profile catalog are copied.

Note: If you change a key definition in the current
Keys window and then save the Keys window, you must
close and reopen the Keys window before issuing the
COPY command. �

END Saves the definitions and closes the Keys window.

PURGE Removes key definitions that are not shared among devices.

SAVE <name> Stores the current function key settings and lets you continue editing
the keys definitions. If <name> is omitted, the keys are, by default,
stored in the catalog SASUSER.PROFILE.

See SAS Help and Documentation for more information about commands.

306

307

C H A P T E R

19
Managing Your Data in the SAS
Windowing Environment

Introduction to Managing Your Data in the SAS Windowing Environment 307
Copying and Viewing Files in a Data Library 307

Copying a Practice File to the WORK Data Library 307

Viewing the Contents of a Data Set with the VIEWTABLE Window 310

Saving a Data Set as HTML 312

Copying a Data Set to Excel 312
Using the Workspace to Manipulate Data in a Data Set 313

Moving and Labeling Columns with the VIEWTABLE Window 313

Sorting Values of a Column with the VIEWTABLE Window 315

Creating a WHERE Expression with the VIEWTABLE Window 317

Editing Values in a Cell with the VIEWTABLE Window 320

Clearing Subsetted Data from the VIEWTABLE Window 321
Importing and Exporting Data 321

Importing Data into a Data Set 321

Exporting Your Data with the Export Wizard 324

Introduction to Managing Your Data in the SAS Windowing Environment
The SAS windowing environment contains windows that enable you to do common

data manipulation and changes without writing code.
If you are new to SAS and are unfamiliar with writing code in the SAS language, then

you might find the windowing environment helpful. With the windowing environment,
you can open a data set in a window, point to rows and columns in your data, and then
click on menu items to reorganize and perform analyses on the information.

This section shows the main features of the SAS windowing environment, and
demonstrates many of the tools that enable you to view, modify, import and export data.

Operating Environment Information: If you use SAS on z/OS, refer to “Keyboard
Equivalents for z/OS” on page 284 to see the keyboard alternatives to using a mouse. �

Copying and Viewing Files in a Data Library

Copying a Practice File to the WORK Data Library
The following examples use a copy of the SASHELP.PRDSALE data set, which is a

read-only data set in the SASHELP library. In this section, you will learn how to copy

308 Copying a Practice File to the WORK Data Library � Chapter 19

SASHELP.PRDSALE to the WORK library, so that you can use it with the other
examples in this section.

Note: By default, files located in the WORK directory are deleted at the close of a
SAS session. �

To copy the PRDSALE file in the SASHELP library to the WORK library, follow these
steps:

1 Open the Explorer window by selecting

View � Explorer

from the menu.
2 Make sure you are in Tree view mode by enabling

View � Show Tree

The Explorer window now contains two panels.

Display 19.1 Explorer Window Displaying Tree View

3 In the left panel, click the SASHELP library to show the library contents in the
right panel. Scroll to the PRDSALE data set.

4 Right-click the PRDSALE data set and select Copy from the menu.

Managing Your Data in the SAS Windowing Environment � Copying a Practice File to the WORK Data Library 309

Display 19.2 Explorer Window Displaying Copy Menu Option

5 In the left panel, right-click WORK and select Paste.

Display 19.3 Explorer Window Displaying Paste Menu Option

6 Double-click Work and confirm that the data set was copied.

310 Viewing the Contents of a Data Set with the VIEWTABLE Window � Chapter 19

Display 19.4 Explorer Window Displaying Copied PRDSALE Data Set (Icon View)

Viewing the Contents of a Data Set with the VIEWTABLE Window
To quickly view the contents of your SAS data set, you can either
� double-click a file in the SAS Explorer, or
� open the VIEWTABLE window with the VT command, select

File � Open

then select the data set.

For this example, use the SAS data set WORK.PRDSALE, which contains sample data
for product sales. The WORK.PRDSALE data set was created by copying PRDSALE
from the SASUSER library in the previous example. See “Copying a Practice File to the
WORK Data Library” on page 307.

1 Select

Tools � Table Editor

to open the VIEWTABLE window.
2 Select

File � Open

The Open dialog box displays the current SAS libraries.
3 Under Libraries, select WORK. The data sets and views in the WORK library are

displayed on the right.
4 Double-click PRDSALE. The VIEWTABLE window opens.

Managing Your Data in the SAS Windowing Environment � Viewing the Contents of a Data Set with the VIEWTABLE Window 311

Display 19.5 Explorer Window Displaying Copied PRDSALE Data Set (Details View)

5 Scroll the VIEWTABLE window to view the WORK.PRDSALE data.

Display 19.6 VIEWTABLE Window Displaying PRDSALE Data

6 To save a copy of this file to use for practice in the next example, click

File � Save as

The Save As dialog box opens.

312 Saving a Data Set as HTML � Chapter 19

Display 19.7 Data Table Save As Dialog Box

7 Select the WORK library as your storage location and type Mywork in the Member
Name field.

8 Click Save .

Saving a Data Set as HTML
To save a SAS data set as HTML, follow these steps:
1 Right-click the file in the SAS Explorer.
2 Select Save as HTML from the pop-up menu.
3 Select a location in the Save in box or leave it in the default location.
4 If you want to save the file with the default name of table-name.html, select Save.

If you do not want the default name, you can enter a file name and then select
Save.

Copying a Data Set to Excel
To copy a SAS data set to Microsoft Excel, you can right-click a file in the SAS

Explorer and either
� select Copy Contents to Clipboard and then click

File � Paste

in Microsoft Excel, or
� select View in Excel.

Managing Your Data in the SAS Windowing Environment � Moving and Labeling Columns with the VIEWTABLE Window 313

Display 19.8 Explorer Window Displaying Copy to Clipboard Menu Option

Using the Workspace to Manipulate Data in a Data Set

Moving and Labeling Columns with the VIEWTABLE Window

With the VIEWTABLE window, you can rearrange columns and temporarily change
column headings. This example uses the WORK.MYWORK data set that was
previously created in the WORK library (see “ Viewing the Contents of a Data Set with
the VIEWTABLE Window” on page 310):

1 Click the heading for the Country Column.

314 Moving and Labeling Columns with the VIEWTABLE Window � Chapter 19

Display 19.9 VIEWTABLE Window Displaying MYWORK Data Set With Country Column Selected

2 Drag and drop Country onto Actual Sales. The Country column moves to the
right of the Actual Sales column.

Display 19.10 VIEWTABLE Window Showing Country Column Has Moved

3 Right-click the heading for Region and select Column Attributes from the menu.

Managing Your Data in the SAS Windowing Environment � Sorting Values of a Column with the VIEWTABLE Window 315

Display 19.11 VIEWTABLE Window Displaying Column Attributes Menu Option

4 In the Label box, type Sales Region and then click Apply .

Display 19.12 Column Attributes Dialog Box

5 Click Close when you are finished.

Sorting Values of a Column with the VIEWTABLE Window
You can sort a data set in ascending or descending order, based on the values of a

column. You can sort data permanently or create a sorted copy of a data set. This
example creates a sorted copy.

This example continues to use the data set WORK.MYWORK that was created
previously in “ Viewing the Contents of a Data Set with the VIEWTABLE Window” on
page 310.

To sort the values of a column in WORK.MYWORK with the VIEWTABLE window:
1 Make sure that the WORK.MYWORK data set is still available.

� If it is available, open it from SAS Explorer or VIEWTABLE.

316 Sorting Values of a Column with the VIEWTABLE Window � Chapter 19

� If it is not available, recreate it from “ Viewing the Contents of a Data Set
with the VIEWTABLE Window” on page 310.

2 Right-click the heading for Product.
3 Select Sort.

Display 19.13 VIEWTABLE Window Displaying Sort Menu Option

4 Select Descending from the window.
5 When a warning message asks you if you want to create a new table, click Yes to

create a sorted copy of the data set.
6 In the Sort dialog box, Table Name field, type WORK.Mysorted as the name for

the sorted data set.

Managing Your Data in the SAS Windowing Environment � Creating a WHERE Expression with the VIEWTABLE Window 317

Display 19.14 Sort Dialog Box

7 Click OK . Rows in the new data set are sorted in descending order by values of
Product.

Creating a WHERE Expression with the VIEWTABLE Window
You can create a WHERE expression with the VIEWTABLE window. SAS generates the

WHERE expression code automatically, and you can modify or edit the code.
A WHERE expression helps you subset a data set. A WHERE expression in SAS is

modeled after the WHERE clause in SQL.
This example uses the PRDSALE data set that was created at the beginning of this

topic, and shows you how to create a WHERE expression.
To create a WHERE Expression using the SAS workspace:
1 Double-click the WORK.PRDSALE data set created in the previous example. This

opens the PRDSALE data set in the VIEWTABLE window.
2 Right-click any table cell (not a heading) and select Where. The WHERE

EXPRESSION dialog box opens.

318 Creating a WHERE Expression with the VIEWTABLE Window � Chapter 19

Display 19.15 VIEWTABLE Window Displaying Where Menu Option

3 In the Available Columns list, click REGION.

Display 19.16 Where Expression Dialog Box

4 Select EQ (equal to) from the pop-up list.

Display 19.17 Where Expression Dialog Box Displaying EQ Menu Option

Managing Your Data in the SAS Windowing Environment � Creating a WHERE Expression with the VIEWTABLE Window 319

5 Click <Lookup Distinct Values>. This opens a window containing values. You
can select values from the list.

Display 19.18 Where Expression Dialog Box Displaying LOOKUP Option

6 In the Lookup Distinct Values window, select WEST.

Display 19.19 Lookup Distinct Values Dialog Box

7 Notice that the complete Where expression appears in the Where box near the
bottom of the display.

320 Editing Values in a Cell with the VIEWTABLE Window � Chapter 19

Figure 19.1 Where Expression Dialog Box Displaying the Complete Where
Expression

8 Click OK . The VIEWTABLE window now displays only the rows where the value
of Region is WEST.

Editing Values in a Cell with the VIEWTABLE Window
You can edit a cell in a data set by opening the data set in the VIEWTABLE window

and switching to edit mode. These are general instructions for editing cells in a SAS
data set.

1 Open the Explorer window by selecting

View � Explorer

from the menu, or alternatively, by entering the explorer command in the
command line.

2 Select a file that contains the cell that you want to edit.
3 Double-click the selected file to open it in the VIEWTABLE window.
4 Select

Edit � Edit Mode

from the VIEWTABLE menu.

Managing Your Data in the SAS Windowing Environment � Importing Data into a Data Set 321

Display 19.20 Where Expression Dialog Box Displaying Edit Mode Menu Option

5 Click the cell that you want to edit.

6 Highlight the existing value and type a new value.

7 Press ENTER.

8 Select

File � Close

When prompted about saving changes to the data set, click Yes , if you want to
save the change.

Clearing Subsetted Data from the VIEWTABLE Window
If you have subset rows in the VIEWTABLE window, as in the previous example, you

can clear subsets and then redisplay all data in the data set.

1 Right-click anywhere in the data set except a column heading.

2 Select Where Clear. The VIEWTABLE window removes any existing subset(s)
and displays all rows in the data set.

3 Select

File � Close

Importing and Exporting Data

Importing Data into a Data Set
The Import wizard guides you through the steps of importing data from many

different file types into a SAS data set.

Note: The types of files that can be imported depend on your operating system. �

If your data is not in a standard file format, you can use the External File Interface
(EFI) facility to import data. This tool enables you to define your file format, and offers
you a range of format options. To use the EFI, select User-defined formats in the

322 Importing Data into a Data Set � Chapter 19

Import wizard and follow the instructions for describing your data file. This example
shows you how to import a standard file and view the results.

To import a standard file:
1 Select

File � Import Data

to open the Import wizard. Notice that Standard data source is selected by
default.

Display 19.21 Import Wizard Window Displaying Default Values

2 Click the drop-down arrow to see the list of data sources. If you exported data to
Excel, select Excel 97 Spreadsheet (*.xls). Otherwise, select the file format in
which your data are stored.

Display 19.22 Import Wizard Window Displaying List of Data Sources

Managing Your Data in the SAS Windowing Environment � Importing Data into a Data Set 323

3 Click Next to continue.

4 In the Select File dialog box, type the full path for your file, or click Browse to
find it.

Display 19.23 Import Wizard File Selection Window

5 Click Next to continue. The Select library and member dialog box appears.

Display 19.24 Import Wizard Library Selection Window

6 Type WORK for the library name and MyImport for the member name.

7 Click Next to continue. If you are importing data from the Excel 97 Spreadsheet
format, you are asked about saving PROC IMPORT statements. Skip this option
and click Finish . Your data are imported into the SAS data set WORK.MyImport.

324 Exporting Your Data with the Export Wizard � Chapter 19

Exporting Your Data with the Export Wizard
You can easily export SAS data to a variety of file formats, using the Export Wizard.

The formats that are available depend on your operating environment and on the SAS
software products that you have installed. The example uses the PRDSALE data set
that was created in a previous example (see “Copying a Practice File to the WORK Data
Library” on page 307).

To export SAS data, do the following:
1 If it is not already open, double-click the WORK.PRDSALE data set to open it in

the VIEWTABLE window.
2 Select

File � Export Data

The Export Wizard window opens. Note that the LIBRARY and MEMBER lists
contain the name of the data set (WORK.PRDSALE) that is currently displayed in
the VIEWTABLE window.

Display 19.25 Export Wizard Window Displaying Default Values

3 Click Next to proceed to selecting an export type. Notice that Standard data
source is selected by default. In the data source list, select Tab Delimited File
(*.txt), or another format that is available on your operating environment.

Managing Your Data in the SAS Windowing Environment � Exporting Your Data with the Export Wizard 325

Display 19.26 Export Wizard Window Displaying List of Data Sources

4 Click Browse and select a directory.
5 Click Next to proceed to selecting a destination file.

6 Type the file name MYEXPORT and click OK .

7 Click Finish .

The SAS data set is exported to MYEXPORT in the directory that you selected.

326

327

P A R T3

DATA Step Concepts

Chapter 20.DATA Step Processing 329

Chapter 21.Reading Raw Data 357

Chapter 22.BY-Group Processing in the DATA Step 375

Chapter 23.Reading, Combining, and Modifying SAS Data Sets 387

Chapter 24.Using DATA Step Component Objects 437

Chapter 25.Array Processing 449

328

329

C H A P T E R

20
DATA Step Processing

Why Use a DATA Step? 329
Overview of DATA Step Processing 330

Flow of Action 330

The Compilation Phase 332

The Execution Phase 332

Processing a DATA Step: A Walkthrough 333
Sample DATA Step 333

Creating the Input Buffer and the Program Data Vector 333

Reading a Record 334

Writing an Observation to the SAS Data Set 335

Reading the Next Record 336

When the DATA Step Finishes Executing 337
About DATA Step Execution 337

The Default Sequence of Execution in the DATA Step 337

Changing the Default Sequence of Execution 338

Using Statements to Change the Default Sequence of Execution 338

Using Functions to Change the Default Sequence of Execution 339
Altering the Flow for a Given Observation 339

Step Boundary — How To Know When Statements Take Effect 340

What Causes a DATA Step to Stop Executing 341

About Creating a SAS Data Set with a DATA Step 342

Creating a SAS Data File or a SAS Data View 342
Sources of Input Data 343

Reading Raw Data 343

Example 1: Reading External File Data 343

Example 2: Reading Instream Data Lines 343

Example 3: Reading Instream Data Lines with Missing Values 344

Example 4: Using Multiple Input Files in Instream Data 345
Reading Data from SAS Data Sets 346

Generating Data from Programming Statements 346

Writing a Report with a DATA Step 347

Example 1: Creating a Report without Creating a Data Set 347

Example 2: Creating a Customized Report 348
Example 3: Creating a HTML Report Using ODS and the DATA Step 352

The DATA Step and ODS 354

Why Use a DATA Step?
Using the DATA step is the primary method for creating a SAS data set with base

SAS software. A DATA step is a group of SAS language statements that begin with a

330 Overview of DATA Step Processing � Chapter 20

DATA statement and contains other programming statements that manipulate existing
SAS data sets or create SAS data sets from raw data files.

You can use the DATA step for
� creating SAS data sets (SAS data files or SAS data views)
� creating SAS data sets from input files that contain raw data (external files)
� creating new SAS data sets from existing ones by subsetting, merging, modifying,

and updating existing SAS data sets
� analyzing, manipulating, or presenting your data
� computing the values for new variables
� report writing, or writing files to disk or tape
� retrieving information
� file management.

Note: A DATA step creates a SAS data set. This data set can be a SAS data file or a
SAS data view. A SAS data file stores data values while a SAS data view stores
instructions for retrieving and processing data. When you can use a SAS data view as a
SAS data file, as is true in most cases, this documentation uses the broader term SAS
data set. �

Overview of DATA Step Processing

Flow of Action
When you submit a DATA step for execution, it is first compiled and then executed.

The following figure shows the flow of action for a typical SAS DATA step.

DATA Step Processing � Flow of Action 331

Figure 20.1 Flow of Action in the DATA Step

data-reading
statement:
is there a

record to read?

reads

an input record

executes
additional

executable statements

writes
an observation to
the SAS data set

returns
to the beginning of

the DATA step

compiles
SAS statements

(includes syntax checking)

creates
an input buffer
a program data vector
descriptor information

begins
with a DATA statement

(counts iterations)

sets variable values
to missing in the

program data vector

closes data set;
goes on to the next

DATA or PROC step
NO

YES

Compile Phase

Execution Phase

332 The Compilation Phase � Chapter 20

The Compilation Phase
When you submit a DATA step for execution, SAS checks the syntax of the SAS

statements and compiles them, that is, automatically translates the statements into
machine code. In this phase, SAS identifies the type and length of each new variable,
and determines whether a type conversion is necessary for each subsequent reference to
a variable. During the compile phase, SAS creates the following three items:

input buffer is a logical area in memory into which SAS reads each record of raw
data when SAS executes an INPUT statement. Note that this buffer
is created only when the DATA step reads raw data. (When the
DATA step reads a SAS data set, SAS reads the data directly into
the program data vector.)

program data
vector (PDV)

is a logical area in memory where SAS builds a data set, one
observation at a time. When a program executes, SAS reads data
values from the input buffer or creates them by executing SAS
language statements. The data values are assigned to the
appropriate variables in the program data vector. From here, SAS
writes the values to a SAS data set as a single observation.

Along with data set variables and computed variables, the PDV
contains two automatic variables, _N_ and _ERROR_. The _N_
variable counts the number of times the DATA step begins to
iterate. The _ERROR_ variable signals the occurrence of an error
caused by the data during execution. The value of _ERROR_ is
either 0 (indicating no errors exist), or 1 (indicating that one or more
errors have occurred). SAS does not write these variables to the
output data set.

descriptor
information

is information that SAS creates and maintains about each SAS data
set, including data set attributes and variable attributes. It
contains, for example, the name of the data set and its member type,
the date and time that the data set was created, and the number,
names and data types (character or numeric) of the variables.

The Execution Phase
By default, a simple DATA step iterates once for each observation that is being

created. The flow of action in the Execution Phase of a simple DATA step is described
as follows:

1 The DATA step begins with a DATA statement. Each time the DATA statement
executes, a new iteration of the DATA step begins, and the _N_ automatic variable
is incremented by 1.

2 SAS sets the newly created program variables to missing in the program data
vector (PDV).

3 SAS reads a data record from a raw data file into the input buffer, or it reads an
observation from a SAS data set directly into the program data vector. You can use
an INPUT, MERGE, SET, MODIFY, or UPDATE statement to read a record.

4 SAS executes any subsequent programming statements for the current record.
5 At the end of the statements, an output, return, and reset occur automatically.

SAS writes an observation to the SAS data set, the system automatically returns
to the top of the DATA step, and the values of variables created by INPUT and
assignment statements are reset to missing in the program data vector. Note that

DATA Step Processing � Creating the Input Buffer and the Program Data Vector 333

variables that you read with a SET, MERGE, MODIFY, or UPDATE statement are
not reset to missing here.

6 SAS counts another iteration, reads the next record or observation, and executes
the subsequent programming statements for the current observation.

7 The DATA step terminates when SAS encounters the end-of-file in a SAS data set
or a raw data file.

Note: The figure shows the default processing of the DATA step. You can place
data-reading statements (such as INPUT or SET), or data-writing statements (such as
OUTPUT), in any order in your program. �

Processing a DATA Step: A Walkthrough

Sample DATA Step
The following statements provide an example of a DATA step that reads raw data,

calculates totals, and creates a data set:

data total_points (drop=TeamName); u

input TeamName $ ParticipantName $ Event1 Event2 Event3; v

TeamTotal + (Event1 + Event2 + Event3); w

datalines;
Knights Sue 6 8 8
Cardinals Jane 9 7 8
Knights John 7 7 7
Knights Lisa 8 9 9
Knights Fran 7 6 6
Knights Walter 9 8 10
;

u The DROP= data set option prevents the variable TeamName from being written
to the output SAS data set called TOTAL_POINTS.

v The INPUT statement describes the data by giving a name to each variable,
identifying its data type (character or numeric), and identifying its relative
location in the data record.

w The Sum statement accumulates the scores for three events in the variable
TeamTotal.

Creating the Input Buffer and the Program Data Vector
When DATA step statements are compiled, SAS determines whether to create an

input buffer. If the input file contains raw data (as in the example above), SAS creates
an input buffer to hold the data before moving the data to the program data vector
(PDV). (If the input file is a SAS data set, however, SAS does not create an input buffer.
SAS writes the input data directly to the PDV.)

The PDV contains all the variables in the input data set, the variables created in
DATA step statements, and the two variables, _N_ and _ERROR_, that are
automatically generated for every DATA step. The _N_ variable represents the number
of times the DATA step has iterated. The _ERROR_ variable acts like a binary switch
whose value is 0 if no errors exist in the DATA step, or 1 if one or more errors exist.

334 Reading a Record � Chapter 20

The following figure shows the Input Buffer and the program data vector after DATA
step compilation.

Figure 20.2 Input Buffer and Program Data Vector

Input Buffer

1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0

Program Data Vector

TeamName ParticipantName Event1 TeamTotal _N_ _ERROR_

Drop

Event2 Event3

1 0

Drop Drop

1 2 3 4 5

0

Variables that are created by the INPUT and the Sum statements (TeamName,
ParticipantName, Event1, Event2, Event3, and TeamTotal) are set to missing initially.
Note that in this representation, numeric variables are initialized with a period and
character variables are initialized with blanks. The automatic variable _N_ is set to 1;
the automatic variable _ERROR_ is set to 0.

The variable TeamName is marked Drop in the PDV because of the DROP= data set
option in the DATA statement. Dropped variables are not written to the SAS data set.
The _N_ and _ERROR_ variables are dropped because automatic variables created by
the DATA step are not written to a SAS data set. See Chapter 5, “SAS Variables,” on
page 77 for details about automatic variables.

Reading a Record
SAS reads the first data line into the input buffer. The input pointer, which SAS uses

to keep its place as it reads data from the input buffer, is positioned at the beginning of
the buffer, ready to read the data record. The following figure shows the position of the
input pointer in the input buffer before SAS reads the data.

Figure 20.3 Position of the Pointer in the Input Buffer Before SAS Reads Data

Input Buffer

1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5

K n i g h t s S u e 6 8 8

The INPUT statement then reads data values from the record in the input buffer and
writes them to the PDV where they become variable values. The following figure shows
both the position of the pointer in the input buffer, and the values in the PDV after SAS
reads the first record.

DATA Step Processing � Writing an Observation to the SAS Data Set 335

Figure 20.4 Values from the First Record are Read into the Program Data Vector

Program Data Vector

TeamName ParticipantName Event1 TeamTotal _N_ _ERROR_

Drop

Event2 Event3

1 0

Drop Drop

Knights Sue 6 8 8

Input Buffer

1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5

K n i g h t s S u e 6 8 8

0

After the INPUT statement reads a value for each variable, SAS executes the Sum
statement. SAS computes a value for the variable TeamTotal and writes it to the PDV.
The following figure shows the PDV with all of its values before SAS writes the
observation to the data set.

Figure 20.5 Program Data Vector with Computed Value of the Sum Statement

Program Data Vector

TeamName ParticipantName Event1 TeamTotal _N_ _ERROR_

Drop

Event2 Event3

1 0

Drop Drop

Knights Sue 6 8 8 22

Writing an Observation to the SAS Data Set
When SAS executes the last statement in the DATA step, all values in the PDV,

except those marked to be dropped, are written as a single observation to the data set
TOTAL_POINTS. The following figure shows the first observation in the
TOTAL_POINTS data set.

Figure 20.6 The First Observation in Data Set TOTAL_POINTS

Output SAS Data Set TOTAL_POINTS: 1st observation

ParticipantName Event1 TeamTotalEvent2 Event3

Sue 6 8 8 22

SAS then returns to the DATA statement to begin the next iteration. SAS resets the
values in the PDV in the following way:

� The values of variables created by the INPUT statement are set to missing.

336 Reading the Next Record � Chapter 20

� The value created by the Sum statement is automatically retained.

� The value of the automatic variable _N_ is incremented by 1, and the value of
ERROR is reset to 0.

The following figure shows the current values in the PDV.

Figure 20.7 Current Values in the Program Data Vector

222

Program Data Vector

TeamName ParticipantName Event1 TeamTotal _N_ _ERROR_

Drop

Event2 Event3

0

Drop Drop

Reading the Next Record
SAS reads the next record into the input buffer. The INPUT statement reads the

data values from the input buffer and writes them to the PDV. The Sum statement adds
the values of Event1, Event2, and Event3 to TeamTotal. The value of 2 for variable _N_
indicates that SAS is beginning the second iteration of the DATA step. The following
figure shows the input buffer, the PDV for the second record, and the SAS data set with
the first two observations.

Figure 20.8 Input Buffer, Program Data Vector, and First Two Observations

Program Data Vector

TeamName ParticipantName Event1 TeamTotal _N_ _ERROR_

Drop

Event2 Event3

2 0

Drop Drop

Cardinals Jane 9 7 8 46

ParticipantName Event1 TeamTotalEvent2 Event3

Sue 6 8 8 22

Jane 9 7 8 46

Output SAS Data Set TOTAL_POINTS: 1st and 2nd observations

Input Buffer

1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5

C a r d i n a J a n 9 7 8l s e

DATA Step Processing � The Default Sequence of Execution in the DATA Step 337

As SAS continues to read records, the value in TeamTotal grows larger as more
participant scores are added to the variable. _N_ is incremented at the beginning of
each iteration of the DATA step. This process continues until SAS reaches the end of
the input file.

When the DATA Step Finishes Executing
The DATA step stops executing after it processes the last input record. You can use

PROC PRINT to print the output in the TOTAL_POINTS data set:

Output 20.1 Output from the Walkthrough DATA Step

Total Team Scores 1

Participant Team
Obs Name Event1 Event2 Event3 Total

1 Sue 6 8 8 22
2 Jane 9 7 8 46
3 John 7 7 7 67
4 Lisa 8 9 9 93
5 Fran 7 6 6 112
6 Walter 9 8 10 139

About DATA Step Execution

The Default Sequence of Execution in the DATA Step
The following table outlines the default sequence of execution for statements in a

DATA step. The DATA statement begins the step and identifies usually one or more
SAS data sets that the step will create. (You can use the keyword _NULL_ as the data
set name if you do not want to create an output data set.) Optional programming
statements process your data. SAS then performs the default actions at the end of
processing an observation.

Table 20.1 Default Execution for Statements in a DATA Step

Structure of a DATA Step Action Taken

DATA statement begins the step

counts iterations

Data-reading statements: *

INPUT describes the arrangement of values in the input data
record from a raw data source

SET reads an observation from one or more SAS data sets

MERGE joins observations from two or more SAS data sets
into a single observation

MODIFY replaces, deletes, or appends observations in an
existing SAS data set in place

338 Changing the Default Sequence of Execution � Chapter 20

Structure of a DATA Step Action Taken

UPDATE updates a master file by applying transactions

Optional SAS programming statements,
for example:

further processes the data for the current observation.

FirstQuarter=Jan+Feb+Mar;

if RetailPrice < 500;

computes the value for FirstQuarter for the current
observation.

subsets by value of variable RetailPrice for the
current observation

Default actions at the end of processing an
observation

At end of DATA step:

Automatic write, automatic return

At top of DATA step:

Automatic reset

writes an observation to a SAS data set

returns to the DATA statement

resets values to missing in program data vector

* The table shows the default processing of the DATA step. You can alter the sequence of
statements in the DATA step. You can code optional programming statements, such as creating
or reinitializing a constant, before you code a data-reading statement.

Note: You can also use functions to read and process data. For information about
how statements and functions process data differently, see “Using Functions to
Manipulate Files” on page 42. For specific information about SAS functions, see the
SAS I/O Files and External Files categories in “Functions and CALL Routines by
Category” in SAS Language Reference: Dictionary. �

Changing the Default Sequence of Execution

Using Statements to Change the Default Sequence of Execution
You can change the default sequence of execution to control how your program

executes. SAS language statements offer you a lot of flexibility to do this in a DATA
step. The following list shows the most common ways to control the flow of execution in
a DATA step program.

DATA Step Processing � Changing the Default Sequence of Execution 339

Table 20.2 Common Methods that Alter the Sequence of Execution

Task Possible Methods

Read a record merge, modify, join data sets

read multiple records to create a single observation

randomly select records for processing

read from multiple external files

read selected fields from a record by using statement or data set
options

Process data use conditional logic

retain variable values

Write an observation write to a SAS data set or to an external file

control when output is written to a data set

write to multiple files

For more information, see the individual statements in SAS Language Reference:
Dictionary.

Using Functions to Change the Default Sequence of Execution
You can also use functions to read and process data. For information about how

statements and functions process data differently, see “Using Functions to Manipulate
Files” on page 42. For specific information about SAS functions, see the SAS I/O Files
and External Files categories in “Functions and CALL Routines by Category” in SAS
Language Reference: Dictionary.

Altering the Flow for a Given Observation
You can use statements, statement options, and data set options to alter the way SAS

processes specific observations. The following table lists SAS language elements and
their effects on processing.

Table 20.3 Language Elements that Alter Programming Flow

SAS Language Element Function

subsetting IF statement stops the current iteration when a condition is false,
does not write the current observation to the data set,
and returns control to the top of the DATA step.

IF-THEN/ELSE statement stops the current iteration when a conditon is true,
writes the current observation to the data set, and
returns control to the top of the DATA step.

DO loops cause parts of the DATA step to be executed multiple
times.

LINK and RETURN statements alter the flow of control, execute statements following
the label specified, and return control of the program
to the next statement following the LINK statement.

340 Step Boundary — How To Know When Statements Take Effect � Chapter 20

SAS Language Element Function

HEADER= option in the FILE statement alters the flow of control whenever a PUT statement
causes a new page of output to begin; statements
following the label specified in the HEADER= option
are executed until a RETURN statement is
encountered, at which time control returns to the
point from which the HEADER= option was activated.

GO TO statement alters the flow of execution by branching to the label
that is specified in the GO TO statement. SAS
executes subsequent statements then returns control
to the beginning of the DATA step.

EOF= option in an INFILE statement alters the flow of execution when the end of the input
file is reached; statements following the label that is
specified in the EOF= option are executed at that
time.

N automatic variable in an IF-THEN
construct

causes parts of the DATA step to execute only for
particular iterations.

SELECT statement conditionally executes one of a group of SAS
statements.

OUTPUT statement in an IF-THEN
construct

outputs an observation before the end of the DATA
step, based on a condition; prevents automatic output
at the bottom of the DATA step.

DELETE statement in an IF-THEN
construct

deletes an observation based on a condition and
causes a return to the top of the DATA step.

ABORT statement in an IF-THEN
construct

stops execution of the DATA step and instruct SAS to
resume execution with the next DATA or PROC step.
It can also stop executing a SAS program altogether,
depending on the options specified in the ABORT
statement and on the method of operation.

WHERE statement or WHERE= data set
option

causes SAS to read certain observations based on one
or more specified criteria.

Step Boundary — How To Know When Statements Take Effect

Understanding step boundaries is an important concept in SAS programming
because step boundaries determine when SAS statements take effect. SAS executes
program statements only when SAS crosses a default or an explicit step boundary.
Consider the following DATA steps:

data _null_; u

set allscores(drop=score5-score7);
title ’Student Test Scores’; v

data employees; w

set employee_list;
run;

u The DATA statement begins a DATA step and is a step boundary.

DATA Step Processing � What Causes a DATA Step to Stop Executing 341

v The TITLE statement is in effect for both DATA steps because it appears before
the boundary of the first DATA step. (Because the TITLE statement is a global
statement,

w The DATA statement is the default boundary for the first DATA step.

The TITLE statement in this example is in effect for the first DATA step as well as
for the second because the TITLE statement appears before the boundary of the first
DATA step. This example uses the default step boundary data employees;.

The following example shows an OPTIONS statement inserted after a RUN
statement.

data scores; u

set allscores(drop=score5-score7);
run; v

options firstobs=5 obs=55; w

data test;
set alltests;

run;

The OPTIONS statement specifies that the first observation that is read from the
input data set should be the 5th, and the last observation that is read should be the
55th. Inserting a RUN statement immediately before the OPTIONS statement causes
the first DATA step to reach its boundary (run;)before SAS encounters the OPTIONS
statement. In this case, the step boundary is explicit. The OPTIONS statement
settings, therefore, are put into effect for the second DATA step only.

u The DATA statement is a step boundary.
v The RUN statement is the explicit boundary for the first DATA step.
w The OPTIONS statement affects the second DATA step only.

Following the statements in a DATA step with a RUN statement is the simplest way
to make the step begin to execute, but a RUN statement is not always necessary. SAS
recognizes several step boundaries for a SAS step:

� another DATA statement
� a PROC statement
� a RUN statement.

Note: For SAS programs executed in interactive mode, a RUN statement is
required to signal the step boundary for the last step you submit. �

� the semicolon (with a DATALINES or CARDS statement) or four semicolons (with
a DATALINES4 or CARDS4 statement) after data lines

� an ENDSAS statement
� in noninteractive or batch mode, the end of a program file containing SAS

programming statements
� a QUIT statement (for some procedures).

When you submit a DATA step during interactive processing, it does not begin
running until SAS encounters a step boundary. This fact enables you to submit
statements as you write them while preventing a step from executing until you have
entered all the statements.

What Causes a DATA Step to Stop Executing
DATA steps stop executing under different circumstances, depending on the type and

number of sources of input.

342 About Creating a SAS Data Set with a DATA Step � Chapter 20

Table 20.4 Causes that Stop DATA Step Execution

Data Read Data Source SAS Statements DATA Step Stops

no data after only one
iteration

any data when it executes
STOP or ABORT

when the data is
exhausted

raw data instream data lines INPUT statement after the last data
line is read

one external file INPUT and INFILE
statements

when end-of-file is
reached

multiple external
files

INPUT and INFILE
statements

when end-of-file is
first reached on any
of the files

observations sequentially one SAS data set SET and MODIFY
statements

after the last
observation is read

multiple SAS data
sets

one SET, MERGE,
MODIFY, or
UPDATE statement

when all input data
sets are exhausted

multiple SAS data
sets

multiple SET,
MERGE, MODIFY,
or UPDATE
statements

when end-of-file is
reached by any of
the data-reading
statements

A DATA step that reads observations from a SAS data set with a SET statement that
uses the POINT= option has no way to detect the end of the input SAS data set. (This
method is called direct or random access.) Such a DATA step usually requires a STOP
statement.

A DATA step also stops when it executes a STOP or an ABORT statement. Some
system options and data set options, such as OBS=, can cause a DATA step to stop
earlier than it would otherwise.

About Creating a SAS Data Set with a DATA Step

Creating a SAS Data File or a SAS Data View
You can create either a SAS data file, a data set that holds actual data, or a SAS

data view, a data set that references data that is stored elsewhere. By default, you
create a SAS data file. To create a SAS data view instead, use the VIEW= option on the
DATA statement. With a data view you can, for example, process monthly sales figures
without having to edit your DATA step. Whenever you need to create output, the output
from a data view reflects the current input data values.

The following DATA statement creates a data view called MONTHLY_SALES.

data monthly_sales / view=monthly_sales;

DATA Step Processing � Reading Raw Data 343

The following DATA statement creates a data file called TEST_RESULTS.

data test_results;

Sources of Input Data
You select data-reading statements based on the source of your input data. There are

at least six sources of input data:
� raw data in an external file
� raw data in the jobstream (instream data)
� data in SAS data sets
� data that is created by programming statements
� data that you can remotely access through an FTP protocol, TCP/IP socket, a SAS

catalog entry, or through a URL
� data that is stored in a Database Management System (DBMS) or other vendor’s

data files.

Usually DATA steps read input data records from only one of the first three sources
of input. However, DATA steps can use a combination of some or all of the sources.

Reading Raw Data

Example 1: Reading External File Data
The components of a DATA step that produce a SAS data set from raw data stored in

an external file are outlined here.

data weight; u

infile ’your-input-file’; v

input IDnumber $ Week1 Week16; w

WeightLoss=Week1-Week16; x

run; y

proc print data=weight; U

run; V

u Begin the DATA step and create a SAS data set called WEIGHT.
v Specify the external file that contains your data.
w Read a record and assign values to three variables.
x Calculate a value for variable WeightLoss.
y Execute the DATA step.
U Print data set WEIGHT using the PRINT procedure.
V Execute the PRINT procedure.

Example 2: Reading Instream Data Lines
This example reads raw data from instream data lines.

344 Reading Raw Data � Chapter 20

data weight2; u

input IDnumber $ Week1 Week16; v

WeightLoss2=Week1-Week16; w

datalines; x

2477 195 163
2431 220 198
2456 173 155
2412 135 116
; y

proc print data=weight2; U

run; V

u Begin the DATA step and create SAS data set WEIGHT2.

v Read a data line and assign values to three variables.

w Calculate a value for variable WeightLoss2.

x Begin the data lines.

y Signal end of data lines with a semicolon and execute the DATA step.

U Print data set WEIGHT2 using the PRINT procedure.

V Execute the PRINT procedure.

Example 3: Reading Instream Data Lines with Missing Values
You can also take advantage of options on the INFILE statement when you read

instream data lines. This example shows the use of the MISSOVER statement option,
which assigns missing values to variables for records that contain no data for those
variables.

data weight2;
infile datalines missover; u

input IDnumber $ Week1 Week16;
WeightLoss2=Week1-Week16;
datalines; v

2477 195 163
2431
2456 173 155
2412 135 116
; w

proc print data=weight2; x

run; y

u Use the MISSOVER option to assign missing values to variables that do not
contain values.

v Begin data lines.

w Signal end of data lines and execute the DATA step.

x Print data set WEIGHT2 using the PRINT procedure.

y Execute the PRINT procedure.

DATA Step Processing � Reading Raw Data 345

Example 4: Using Multiple Input Files in Instream Data
This example shows how to use multiple input files as instream data to your

program. This example reads the records in each file and creates the ALL_ERRORS
SAS data set. The program then sorts the observations by Station, and creates a sorted
data set called SORTED_ERRORS. The print procedure prints the results.

options pageno=1 nodate linesize=60 pagesize=80;

data all_errors;
length filelocation $ 60;
input filelocation; /* reads instream data */
infile daily filevar=filelocation

filename=daily end=done;
do while (not done);

input Station $ Shift $ Employee $ NumberOfFlaws;
output;

end;
put ’Finished reading ’ daily=;
datalines;

. . .myfile_A. . .

. . .myfile_B. . .

. . .myfile_C. . .
;

proc sort data=all_errors out=sorted_errors;
by Station;

run;

proc print data = sorted_errors;
title ’Flaws Report sorted by Station’;

run;

Output 20.2 Multiple Input Files in Instream Data

Flaws Report sorted by Station 1

Number
Obs Station Shift Employee OfFlaws

1 Amherst 2 Lynne 0
2 Goshen 2 Seth 4
3 Hadley 2 Jon 3
4 Holyoke 1 Walter 0
5 Holyoke 1 Barb 3
6 Orange 2 Carol 5
7 Otis 1 Kay 0
8 Pelham 2 Mike 4
9 Stanford 1 Sam 1
10 Suffield 2 Lisa 1

346 Reading Data from SAS Data Sets � Chapter 20

Reading Data from SAS Data Sets
This example reads data from one SAS data set, generates a value for a new

variable, and creates a new data set.

data average_loss; u

set weight; v

Percent=round((AverageLoss * 100) / Week1); w

run; x

u Begin the DATA step and create a SAS data set called AVERAGE_LOSS.

v Read an observation from SAS data set WEIGHT.

w Calculate a value for variable Percent.

x Execute the DATA step.

Generating Data from Programming Statements
You can create data for a SAS data set by generating observations with programming

statements rather than by reading data. A DATA step that reads no input goes through
only one iteration.

data investment; u

begin=’01JAN1990’d;
end=’31DEC2009’d;
do year=year(begin) to year(end); v

Capital+2000 + .07*(Capital+2000);
output; w

end;
put ’The number of DATA step iterations is ’_n_; x

run; y

proc print data=investment; U

format Capital dollar12.2; V

run; W

u Begin the DATA step and create a SAS data set called INVESTMENT.

v Calculate a value based on a $2,000 capital investment and 7% interest each year
from 1990 to 2009. Calculate variable values for one observation per iteration of
the DO loop.

w Write each observation to data set INVESTMENT.

x Write a note to the SAS log proving that the DATA step iterates only once.

y Execute the DATA step.

U To see your output, print the INVESTMENT data set with the PRINT procedure.

V Use the FORMAT statement to write numeric values with dollar signs, commas,
and decimal points.

W Execute the PRINT procedure.

DATA Step Processing � Example 1: Creating a Report without Creating a Data Set 347

Writing a Report with a DATA Step

Example 1: Creating a Report without Creating a Data Set
You can use a DATA step to generate a report without creating a data set by using

NULL in the DATA statement. This approach saves system resources because SAS
does not create a data set. The report can contain both TITLE statements and
FOOTNOTE statements. If you use a FOOTNOTE statement, be sure to include
FOOTNOTE as an option on the FILE statement in the DATA step.

title1 ’Budget Report’; u

title2 ’Mid-Year Totals by Department’;
footnote ’compiled by Manager,
Documentation Development Department’; v

data _null_; w

set budget; x

file print footnote; y

MidYearTotal=Jan+Feb+Mar+Apr+May+Jun; U

if _n_=1 then V

do;
put @5 ’Department’ @30 ’Mid-Year Total’;

end;
put @7 Department @35 MidYearTotal; W

run; X

u Define titles.
v Define the footnote.
w Begin the DATA step. _NULL_ specifies that no data set will be created.
x Read one observation per iteration from data set BUDGET.
y Name the output file for the PUT statements and use the PRINT fileref. By

default, the PRINT fileref specifies that the file will contain carriage control
characters and titles. The FOOTNOTE option specifies that each page of output
will contain a footnote.

U Calculate a value for the variable MidYearTotal on each iteration.
V Write variable name headings for the report on the first iteration only.
W Write the current values of variables Department and MidYearTotal for each

iteration.
X Execute the DATA step.

The example above uses the FILE statement with the PRINT fileref to produce
listing output. If you want to print to a file, specify a fileref or a complete file name.
Use the PRINT option if you want the file to contain carriage control characters and
titles. The following example shows how to use the FILE statement in this way.

file ’external-file’ footnote print;

You can also use the data _null_; statement to write to an external file. For more
information about writing to external files, see the FILE statement in SAS Language
Reference: Dictionary, and the SAS documentation for your operating environment.

348 Example 2: Creating a Customized Report � Chapter 20

Example 2: Creating a Customized Report
You can create very detailed, fully customized reports by using a DATA step with

PUT statements. The following example shows a customized report that contains three
distinct sections: a header, a table, and a footer. It contains existing SAS variable
values, constant text, and values that are calculated as the report is written.

DATA Step Processing � Example 2: Creating a Customized Report 349

Output 20.3 Sample of a Customized Report

Expense Report 1

Around The World Retailers

EMPLOYEE BUSINESS, TRAVEL, AND TRAINING EXPENSE REPORT

Employee Name: ALEJANDRO MARTINEZ Destination: CARY, NC Departure Date: 11JUL1999

Department: SALES & MARKETING Purpose of Trip/Activity: MARKETING TRAINING Return Date: 16JUL1999

Trip ID#: 93-0002519 Activity from: 11JUL1999

to: 16JUL1999

+-----------------------------------+--------+--------+--------+--------+--------+--------+--------+--------+

| | SUN | MON | TUE | WED | THU | FRI | SAT | | PAID BY PAID BY

| EXPENSE DETAIL | 07/11 | 07/12 | 07/13 | 07/14 | 07/15 | 07/16 | 07/17 | TOTALS | COMPANY EMPLOYEE

|-----------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|

|Lodging, Hotel | 92.96| 92.96| 92.96| 92.96| 92.96| | | 464.80| 464.80

|Telephone | 4.57| 4.73| | | | | | 9.30| 9.30

|Personal Auto 36 miles @.28/mile | 5.04| | | | | 5.04| | 10.08| 10.08

|Car Rental, Taxi, Parking, Tolls | | 35.32| 35.32| 35.32| 35.32| 35.32| | 176.60| 176.60

|Airlines, Bus, Train (Attach Stub) | 485.00| | | | | 485.00| | 970.00| 970.00

|Dues | | | | | | | | |

|Registration Fees | 75.00| | | | | | | 75.00| 75.00

|Other (explain below) | | | | | | 5.00| | 5.00| 5.00

|Tips (excluding meal tips) | 3.00| | | | | 3.00| | 6.00| 6.00

|-----------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|

|Meals | | | | | | | | |

|Breakfast | | | | | | 7.79| | 7.79| 7.79

|Lunch | | | | | | | | |

|Dinner | 36.00| 28.63| 36.00| 36.00| 30.00| | | 166.63| 166.63

|Business Entertainment | | | | | | | | |

|-----------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|

|TOTAL EXPENSES | 641.57| 176.64| 179.28| 179.28| 173.28| 541.15| | 1891.20| 1611.40 279.80

+-----------------------------------+--------+--------+--------+--------+--------+--------+--------+--------+

Travel Advance to Employee .. $0.00

Reimbursement due Employee (or ATWR) .. $279.80

Other: (i.e. miscellaneous expenses and/or names of employees sharing receipt.)

16JUL1999 CAR RENTAL INCLUDE $5.00 FOR GAS

APPROVED FOR PAYMENT BY: Authorizing Manager: ___ Emp. # _______

Employee Signature: ___ Emp. # 1118

Charge to Division: ATW Region: TX Dept: MKT Acct: 6003 Date: 27JUL1999

The code shown below generates the report example (you must create your own input
data). It is beyond the scope of this discussion to fully explain the code that generated
the report example. For a complete explanation of this example, see SAS Guide to
Report Writing: Examples.

350 Example 2: Creating a Customized Report � Chapter 20

options ls=132 ps=66 pageno=1 nodate;

data travel;

/* infile ’SAS-data-set’ missover; */
infile ’/u/lirezn/input_for_concepts.dat’ missover;

input acct div $ region $ deptchg $ rptdate : date9.
other1-other10 /
empid empname & $char35. / dept & $char35. /
purpose & $char35. / dest & $char35. / tripid & $char35. /
actdate2 date9. /
misc1 & $char75. / misc2 & $char75. / misc3 & $char75. /
misc4 & $char75. /
misc5 & $char75. / misc6 & $char75. / misc7 & $char75. /
misc8 & $char75. /
dptdate : date9. rtrndate : date9. automile permile /
hotel1-hotel10 /
phone1-phone10 / peraut1-peraut10 / carrnt1-carrnt10 /
airlin1-airlin10 / dues1-dues10 / regfee1-regfee10 /
tips1-tips10 / meals1-meals10 / bkfst1-bkfst10 /
lunch1-lunch10 / dinner1-dinner10 / busent1-busent10 /
total1-total10 / empadv reimburs actdate1 : date9.;

run;

proc format;
value category 1=’Lodging, Hotel’

2=’Telephone’
3=’Personal Auto’
4=’Car Rental, Taxi, Parking, Tolls’
5=’Airlines, Bus, Train (Attach Stub)’
6=’Dues’
7=’Registration Fees’
8=’Other (explain below)’
9=’Tips (excluding meal tips)’
10=’Meals’
11=’Breakfast’
12=’Lunch’
13=’Dinner’
14=’Business Entertainment’
15=’TOTAL EXPENSES’;

value blanks 0=’ ’
other=(|8.2|);

value $cuscore ’ ’=’________’;
value nuscore . =’________’;

run;

data _null_;
file print;
title ’Expense Report’;
format rptdate actdate1 actdate2 dptdate rtrndate date9.;
set travel;

array expenses{15,10} hotel1-hotel10 phone1-phone10
peraut1-peraut10 carrnt1-carrnt10

DATA Step Processing � Example 2: Creating a Customized Report 351

airlin1-airlin10 dues1-dues10
regfee1-regfee10 other1-other10
tips1-tips10 meals1-meals10
bkfst1-bkfst10 lunch1-lunch10
dinner1-dinner10 busent1-busent10
total1-total10;

array misc{8} $ misc1-misc8;
array mday{7} mday1-mday7;
dptday=weekday(dptdate);
mday{dptday}=dptdate;
if dptday>1 then

do dayofwk=1 to (dptday-1);
mday{dayofwk}=dptdate-(dptday-dayofwk);

end;
if dptday<7 then

do dayofwk=(dptday+1) to 7;
mday{dayofwk}=dptdate+(dayofwk-dptday);

end;
if rptdate=. then rptdate="&sysdate9"d;

tripnum=substr(tripid,4,2)||’-’||substr(scan(tripid,1),6);

put // @1 ’Around The World Retailers’ //

@1 ’EMPLOYEE BUSINESS, TRAVEL, AND TRAINING EXPENSE REPORT’ ///

@1 ’Employee Name: ’ @16 empname
@44 ’Destination: ’ @57 dest
@106 ’Departure Date:’ @122 dptdate /

@4 ’Department: ’ @16 dept
@44 ’Purpose of Trip/Activity: ’ @70 purpose
@109 ’Return Date:’ @122 rtrndate /

@6 ’Trip ID#: ’ @16 tripnum
@107 ’Activity from:’ @122 actdate1 /

@118 ’to:’ @122 actdate2 //
@1 ’+-----------------------------------+--------+--------+’

’--------+--------+--------+--------+--------+--------+’ /

@1 ’| | SUN | MON |’
’ TUE | WED | THU | FRI | SAT | |’
’ PAID BY PAID BY’ /

@1 ’| EXPENSE DETAIL ’
’ | ’ mday1 mmddyy5. ’ | ’ mday2 mmddyy5.
’ | ’ mday3 mmddyy5. ’ | ’ mday4 mmddyy5.
’ | ’ mday5 mmddyy5. ’ | ’ mday6 mmddyy5.
’ | ’ mday7 mmddyy5.

@100 ’| TOTALS | COMPANY EMPLOYEE’ ;
do i=1 to 15;

if i=1 or i=10 or i=15 then

352 Example 3: Creating a HTML Report Using ODS and the DATA Step � Chapter 20

put @1 ’|-----------------------------------|--------|--------|’
’--------|--------|--------|--------|--------|--------|’;

if i=3 then
put @1 ’|’ i category. @16 automile 4.0 @21 ’miles @’

@28 permile 3.2 @31 ’/mile’ @37 ’|’ @;
else put @1 ’|’ i category. @37 ’|’ @;

col=38;
do j=1 to 10;

if j<9 then put @col expenses{i,j} blanks8. ’|’ @;
else if j=9 then put @col expenses{i,j} blanks8. @;
else put @col expenses{i,j} blanks8.;

col+9;
if j=8 then col+2;

end;
end;
Put @1 ’+-----------------------------------+--------+--------+’

’--------+--------+--------+--------+--------+--------+’ //

@1 ’Travel Advance to Employee’
’...’

@121 empadv dollar8.2 //

@1 ’Reimbursement due Employee (or ATWR)’
’...’

@121 reimburs dollar8.2 //

@1 ’Other: (i.e. miscellaneous expenses and/or names of ’
’employees sharing receipt.)’ /;

do j=1 to 8;
put @1 misc{j} ;

end;
put / @1 ’APPROVED FOR PAYMENT BY: Authorizing Manager:’

@48 ’___’
@100 ’Emp. # _______’ ///

@27 ’Employee Signature:’
@48 ’___’
@100 ’Emp. # ’ empid ///

@6 ’Charge to Division:’ @26 div $cuscore.
@39 ’Region:’ @48 region $cuscore.
@59 ’Dept:’ @66 deptchg $cuscore.
@79 ’Acct:’ @86 acct nuscore.
@100 ’Date:’ @107 rptdate /
page;

run;

Example 3: Creating a HTML Report Using ODS and the DATA Step

options nodate pageno=1 linesize=64 pagesize=60;

ods html body=’your_file.html’;

DATA Step Processing � Example 3: Creating a HTML Report Using ODS and the DATA Step 353

title ’Leading Grain Producers’;
title2 ’for 1996’;

proc format;
value $cntry ’BRZ’=’Brazil’

’CHN’=’China’
’IND’=’India’
’INS’=’Indonesia’
’USA’=’United States’;

run;

data _null_;
length Country $ 3 Type $ 5;
input Year country $ type $ Kilotons;
format country $cntry.;
label type=’Grain’;

file print ods=(variables=(country
type
kilotons));

put _ods_;

datalines;
1996 BRZ Wheat 3302
1996 BRZ Rice 10035
1996 BRZ Corn 31975
1996 CHN Wheat 109000
1996 CHN Rice 190100
1996 CHN Corn 119350
1996 IND Wheat 62620
1996 IND Rice 120012
1996 IND Corn 8660
1996 INS Wheat .
1996 INS Rice 51165
1996 INS Corn 8925
1996 USA Wheat 62099
1996 USA Rice 7771
1996 USA Corn 236064
;
run;

ods html close;

354 The DATA Step and ODS � Chapter 20

Display 20.1 HTML File Produced by ODS

The DATA Step and ODS
The Output Delivery System (ODS) is a method of delivering output in a variety of

formats and making these formats easy to access. ODS provides templates that define
the structure of the output from DATA steps and from PROC steps. The DATA step
allows you to use the ODS option in a FILE statement and in a PUT statement.

DATA Step Processing � The DATA Step and ODS 355

ODS combines raw data with one or more templates to produce several types of
output called output objects. Output objects are sent to “destinations” such as the
output destination, the listing destination, the printer destination, or Hypertext Markup
Language (HTML). For more information, see “Output Delivery System” on page 170.
For complete information about ODS, see SAS Output Delivery System: User’s Guide.

356

357

C H A P T E R

21
Reading Raw Data

Definition of Reading Raw Data 357
Ways to Read Raw Data 358

Kinds of Data 358

Definitions 358

Numeric Data 359

Character Data 360
Sources of Raw Data 361

Instream Data 361

Instream Data Containing Semicolons 362

External Files 362

Reading Raw Data with the INPUT Statement 362

Choosing an Input Style 362
List Input 363

Modified List Input 363

Column Input 364

Formatted Input 365

Named Input 365
Additional Data-Reading Features 366

How SAS Handles Invalid Data 367

Reading Missing Values in Raw Data 368

Representing Missing Values in Input Data 368

Special Missing Values in Numeric Input Data 368
Reading Binary Data 369

Definitions 369

Using Binary Informats 370

Reading Column-Binary Data 371

Definition 371

How to Read Column-Binary Data 371
Description of Column-Binary Data Storage 372

Definition of Reading Raw Data
raw data

is unprocessed data that has not been read into a SAS data set. You can use a
DATA step to read raw data into a SAS data set from two sources:

� instream data
� an external file.

358 Ways to Read Raw Data � Chapter 21

CAUTION:
Raw data does not include Database Management System (DBMS) files. You must license
SAS/ACCESS software to access data stored in DBMS files. See Chapter 33, “About
SAS/ACCESS Software,” on page 569 for more information about SAS/ACCESS
features. �

Ways to Read Raw Data

You can read raw data by using:

� SAS statements

� SAS functions

� External File Interface (EFI)

� Import Wizard.

When you read raw data with a DATA step, you can use a combination of the INPUT,
DATALINES, and INFILE statements. SAS automatically reads your data when you
use these statements. For more information on these statements, see “Reading Raw
Data with the INPUT Statement” on page 362.

You can also use SAS functions to manipulate external files and to read records of
raw data. These functions provide more flexibility in handling raw data. For a
description of available functions, see the External File and SAS File I/O categories in
“Functions and CALL Routines by Category” in SAS Language Reference: Dictionary.
For further information about how statements and functions manipulate files
differently, see “Functions and CALL Routines” on page 38.

If your operating environment supports a graphical user interface, you can use the
EFI or the Import Wizard to read raw data. The EFI is a point-and-click graphical
interface that you can use to read and write data that is not in SAS software’s internal
format. By using EFI, you can read data from an external file and write it to a SAS
data set, and you can read data from a SAS data set and write it to an external file. See
SAS/ACCESS for PC Files: Reference for more information about EFI.

The Import Wizard guides you through the steps to read data from an external data
source and write it to a SAS data set. As a wizard, it is a series of windows that
present simple choices to guide you through a process. See SAS/ACCESS for PC Files:
Reference for more information on the wizard.

Operating Environment Information: Using external files with your SAS jobs requires
that you specify file names with syntax that is appropriate to your operating
environment. See the SAS documentation for your operating environment for more
information. �

Kinds of Data

Definitions

data values
are character or numeric values.

numeric value

Reading Raw Data � Numeric Data 359

contains only numbers, and sometimes a decimal point, a minus sign, or both.
When they are read into a SAS data set, numeric values are stored in the
floating-point format native to the operating environment. Nonstandard numeric
values can contain other characters as numbers; you can use formatted input to
enable SAS to read them.

character value
is a sequence of characters.

standard data
are character or numeric values that can be read with list, column, formatted, or
named input. Examples of standard data include:

� ARKANSAS

� 1166.42

nonstandard data
is data that can be read only with the aid of informats. Examples of nonstandard
data include numeric values that contain commas, dollar signs, or blanks; date
and time values; and hexadecimal and binary values.

Numeric Data
Numeric data can be represented in several ways. SAS can read standard numeric

values without any special instructions. To read nonstandard values, SAS requires
special instructions in the form of informats. Table 21.1 on page 359 shows standard,
nonstandard, and invalid numeric data values and the special tools, if any, that are
required to read them. For complete descriptions of all SAS informats, see SAS
Language Reference: Dictionary.

Table 21.1 Reading Different Types of Numeric Data

Example of Numeric Data Description Solution Required to
Read

Standard Numeric Data

23 input right aligned None needed

23 input not aligned None needed

23 input left aligned None needed

00023 input with leading zeroes None needed

23.0 input with decimal point None needed

2.3E1 in E-notation, 2.30 (ss1) None needed

230E-1 in E-notation, 230x10 (ss-1) None needed

-23 minus sign for negative
numbers

None needed

Nonstandard Numeric Data

2 3 embedded blank COMMA. or BZ. informat

- 23 embedded blank COMMA. or BZ. informat

2,341 comma COMMA. informat

(23) parentheses COMMA. informat

360 Character Data � Chapter 21

Example of Numeric Data Description Solution Required to
Read

C4A2 hexadecimal value HEX. informat

1MAR90 date value DATE. informat

Invalid Numeric Data

23 - minus sign follows number Put minus sign before
number or solve
programmatically.1

.. double instead of single periods Code missing values as a
single period or use the ??
modifier in the INPUT
statement to code any
invalid input value as a
missing value.

J23 not a number Read as a character value,
or edit the raw data to
change it to a valid number.

1 It might be possible to use the S370FZDTw.d informat, but positive values require the trailing plus sign
(+).

Remember the following rules for reading numeric data:
� Parentheses or a minus sign preceding the number (without an intervening blank)

indicates a negative value.
� Leading zeros and the placement of a value in the input field do not affect the

value assigned to the variable. Leading zeros and leading and trailing blanks are
not stored with the value. Unlike some languages, SAS does not read trailing
blanks as zeros by default. To cause trailing blanks to be read as zeros, use the
BZ. informat described in SAS Language Reference: Dictionary.

� Numeric data can have leading and trailing blanks but cannot have embedded
blanks (unless they are read with a COMMA. or BZ. informat).

� To read decimal values from input lines that do not contain explicit decimal points,
indicate where the decimal point belongs by using a decimal parameter with
column input or an informat with formatted input. See the full description of the
INPUT statement in SAS Language Reference: Dictionary for more information.
An explicit decimal point in the input data overrides any decimal specification in
the INPUT statement.

Character Data
A value that is read with an INPUT statement is assumed to be a character value if

one of the following is true:
� A dollar sign ($) follows the variable name in the INPUT statement.
� A character informat is used.
� The variable has been previously defined as character: for example, in a LENGTH

statement, in the RETAIN statement, by an assignment statement, or in an
expression.

Input data that you want to store in a character variable can include any character.
Use the guidelines in the following table when your raw data includes leading blanks
and semicolons.

Reading Raw Data � Instream Data 361

Table 21.2 Reading Instream Data and External Files Containing Leading Blanks
and Semicolons

Characters in the Data What to Use Reason

leading or trailing blanks that you
want to preserve

formatted input and the
$CHARw. informat

list input trims leading and
trailing blanks from a
character value before the
value is assigned to a
variable.

semicolons in instream data DATALINES4 or CARDS4
statements and four semicolons
(;;;;) to mark the end of the data

with the normal
DATALINES and CARDS
statements, a semicolon in
the data prematurely
signals the end of the data.

delimiters, blank characters, or
quoted strings

DSD option, with
DELIMITER= option on the
INFILE statement

it enables SAS to read a
character value that
contains a delimiter within
a quoted string; it can also
treat two consecutive
delimiters as a missing
value and remove quotation
marks from character
values.

Remember the following when reading character data:

� In a DATA step, when you place a dollar sign ($) after a variable name in the
INPUT statement, character data that is read from data lines remains in its
original case. If you want SAS to read data from data lines as uppercase, use the
CAPS system option or the $UPCASE informat.

� If the value is shorter than the length of the variable, SAS adds blanks to the end
of the value to give the value the specified length. This process is known as
padding the value with blanks.

Sources of Raw Data

Instream Data
The following example uses the INPUT statement to read in instream data:

data weight;
input PatientID $ Week1 Week8 Week16;
loss=Week1-Week16;
datalines;

2477 195 177 163
2431 220 213 198
2456 173 166 155
2412 135 125 116
;

362 Instream Data Containing Semicolons � Chapter 21

Note: A semicolon appearing alone on the line immediately following the last data
line is the convention that is used in this example. However, a PROC statement, DATA
statement, or global statement ending in a semicolon on the line immediately following
the last data line also submits the previous DATA step. �

Instream Data Containing Semicolons
The following example reads in instream data containing semicolons:

data weight;
input PatientID $ Week1 Week8 Week16;
loss=Week1-Week16;
datalines4;

24;77 195 177 163
24;31 220 213 198
24;56 173 166 155
24;12 135 125 116
;;;;

External Files
The following example shows how to read in raw data from an external file using the

INFILE and INPUT statements:

data weight;
infile file-specification or path-name;
input PatientID $ Week1 Week8 Week16;
loss=Week1-Week16;

run;

Note: See the SAS documentation for your operating environment for information
on how to specify a file with the INFILE statement. �

Reading Raw Data with the INPUT Statement

Choosing an Input Style
The INPUT statement reads raw data from instream data lines or external files into

a SAS data set. You can use the following different input styles, depending on the
layout of data values in the records:

� list input

� column input

� formatted input

� named input.

You can also combine styles of input in a single INPUT statement. For details about the
styles of input, see the INPUT statement in SAS Language Reference: Dictionary.

Reading Raw Data � Modified List Input 363

List Input
List input uses a scanning method for locating data values. Data values are not

required to be aligned in columns but must be separated by at least one blank (or other
defined delimiter). List input requires only that you specify the variable names and a
dollar sign ($), if defining a character variable. You do not have to specify the location of
the data fields.

An example of list input follows:

data scores;
length name $ 12;
input name $ score1 score2;
datalines;

Riley 1132 1187
Henderson 1015 1102
;

List input has several restrictions on the type of data that it can read:
� Input values must be separated by at least one blank (the default delimiter) or by

the delimiter specified with the DELIMITER= option in the INFILE statement. If
you want SAS to read consecutive delimiters as though there is a missing value
between them, specify the DSD option in the INFILE statement.

� Blanks cannot represent missing values. A real value, such as a period, must be
used instead.

� To read and store a character input value longer than 8 bytes, define a variable’s
length by using a LENGTH, INFORMAT, or ATTRIB statement prior to the
INPUT statement, or by using modified list input, which consists of an informat
and the colon modifier on the INPUT statement. See “Modified List Input” on page
363 for more information.

� Character values cannot contain embedded blanks when the file is delimited by
blanks.

� Fields must be read in order.
� Data must be in standard numeric or character format.

Note: Nonstandard numeric values, such as packed decimal data, must use the
formatted style of input. See “Formatted Input” on page 365 for more information. �

Modified List Input
A more flexible version of list input, called modified list input, includes format

modifiers. The following format modifiers enable you to use list input to read
nonstandard data by using SAS informats:

� The & (ampersand) format modifier enables you to read character values that
contain embedded blanks with list input and to specify a character informat. SAS
reads until it encounters multiple blanks.

� The : (colon) format modifier enables you to use list input but also to specify an
informat after a variable name, whether character or numeric. SAS reads until it
encounters a blank column.

� The ~ (tilde) format modifier enables you to read and retain single quotation
marks, double quotation marks, and delimiters within character values.

364 Column Input � Chapter 21

The following is an example of the : and ~ format modifiers:

data scores;
infile datalines dsd;
input Name : $9. Score1-Score3 Team ~ $25. Div $;
datalines;

Smith,12,22,46,"Green Hornets, Atlanta",AAA
Mitchel,23,19,25,"High Volts, Portland",AAA
Jones,09,17,54,"Vulcans, Las Vegas",AA
;

proc print data=scores noobs;
run;

Output 21.1 Output from Example with Format Modifiers

Name Score1 Score2 Score3 Team Div

Smith 12 22 46 "Green Hornets, Atlanta" AAA
Mitchel 23 19 25 "High Volts, Portland" AAA
Jones 9 17 54 "Vulcans, Las Vegas" AA

Column Input
Column input enables you to read standard data values that are aligned in columns

in the data records. Specify the variable name, followed by a dollar sign ($) if it is a
character variable, and specify the columns in which the data values are located in each
record:

data scores;
infile datalines truncover;
input name $ 1-12 score2 17-20 score1 27-30;
datalines;

Riley 1132 987
Henderson 1015 1102
;

Note: Use the TRUNCOVER option on the INFILE statement to ensure that SAS
handles data values of varying lengths appropriately. �

To use column input, data values must be:

� in the same field on all the input lines

� in standard numeric or character form.

Note: You cannot use an informat with column input. �

Features of column input include the following:

� Character values can contain embedded blanks.

� Character values can be from 1 to 32,767 characters long.

� Placeholders, such as a single period (.), are not required for missing data.

Reading Raw Data � Named Input 365

� Input values can be read in any order, regardless of their position in the record.
� Values or parts of values can be reread.
� Both leading and trailing blanks within the field are ignored.

� Values do not need to be separated by blanks or other delimiters.

Formatted Input
Formatted input combines the flexibility of using informats with many of the

features of column input. By using formatted input, you can read nonstandard data for
which SAS requires additional instructions. Formatted input is typically used with
pointer controls that enable you to control the position of the input pointer in the input
buffer when you read data.

The INPUT statement in the following DATA step uses formatted input and pointer
controls. Note that $12. and COMMA5. are informats and +4 and +6 are column
pointer controls.

data scores;
input name $12. +4 score1 comma5. +6 score2 comma5.;
datalines;

Riley 1,132 1,187
Henderson 1,015 1,102
;

Note: You also can use informats to read data that is not aligned in columns. See
“Modified List Input” on page 363 for more information. �

Important points about formatted input are:
� Characters values can contain embedded blanks.

� Character values can be from 1 to 32,767 characters long.
� Placeholders, such as a single period (.), are not required for missing data.

� With the use of pointer controls to position the pointer, input values can be read in
any order, regardless of their positions in the record.

� Values or parts of values can be reread.
� Formatted input enables you to read data stored in nonstandard form, such as

packed decimal or numbers with commas.

Named Input
You can use named input to read records in which data values are preceded by the

name of the variable and an equal sign (=). The following INPUT statement reads the
data lines containing equal signs.

data games;
input name=$ score1= score2=;
datalines;

name=riley score1=1132 score2=1187
;

proc print data=games;
run;

366 Additional Data-Reading Features � Chapter 21

Note: When an equal sign follows a variable in an INPUT statement, SAS expects
that data remaining on the input line contains only named input values. You cannot
switch to another form of input in the same INPUT statement after using named input.

Also, note that any variable that exists in the input data but is not defined in the
INPUT statement generates a note in the SAS log indicating a missing field. �

Additional Data-Reading Features
In addition to different styles of input, there are many tools to meet the needs of

different data-reading situations. You can use options in the INFILE statement in
combination with the INPUT statement to give you additional control over the reading
of data records. Table 21.3 on page 366 lists common data-reading tasks and the
appropriate features available in the INPUT and INFILE statements.

Table 21.3 Additional Data-Reading Features

Input Data Feature Goal Use

multiple records create a single observation #n or / line pointer control
in the INPUT statement
with a DO loop.

a single record create multiple observations trailing @@ in the INPUT
statement.

trailing @ with multiple
INPUT and OUTPUT
statements.

variable-length data fields and
records

read delimited data list input with or without a
format modifier in the
INPUT statement and the
TRUNCOVER,
DELIMITER= and/or DSD
options in the INFILE
statement.

read non-delimited data $VARYINGw. informat in
the INPUT statement and
the LENGTH= and
TRUNCOVER options in
the INFILE statement.

a file with varying record layouts IF-THEN statements with
multiple INPUT
statements, using trailing
@ or @@ as necessary.

hierarchical files IF-THEN statements with
multiple INPUT
statements, using trailing
@ as necessary.

more than one input file or to control
the program flow at EOF

EOF= or END= option in
an INFILE statement.

multiple INFILE and
INPUT statements.

Reading Raw Data � How SAS Handles Invalid Data 367

Input Data Feature Goal Use

FILEVAR=option in an
INFILE statement.

FILENAME statement
with concatenation,
wildcard, or piping.

only part of each record LINESIZE=option in an
INFILE statement.

some but not all records in the file FIRSTOBS=and OBS=
options in an INFILE
statement; FIRSTOBS=
and OBS= system options;
#n line pointer control.

instream datalines control the reading with
special options

INFILE statement with
DATALINES and
appropriate options.

starting at a particular column @ column pointer controls.

leading blanks maintain them $CHARw. informat in an
INPUT statement.

a delimiter other than blanks (with
list input or modified list input with
the colon modifier)

DELIMITER= option and/
or DSD option in an
INFILE statement.

the standard tab character DELIMITER= option in an
INFILE statement; or the
EXPANDTABS option in an
INFILE statement.

missing values (with list input or
modified list input with the colon
modifier)

create observations without
compromising data
integrity; protect data
integrity by overriding the
default behavior

TRUNCOVER option in an
INFILE statement; DSD
and/or DELIMITER=
options might also be
needed.

For further information on data-reading features, see the INPUT and INFILE
statements in SAS Language Reference: Dictionary.

How SAS Handles Invalid Data
An input value is invalid if it has any of the following characteristics:
� It requires an informat that is not specified.
� It does not conform to the informat specified.
� It does not match the input style used; for example, if it is read as standard

numeric data (no dollar sign or informat) but does not conform to the rules for
standard SAS numbers.

� It is out of range (too large or too small).

Operating Environment Information: The range for numeric values is operating
environment-specific. See the SAS documentation for your operating environment for
more information. �

368 Reading Missing Values in Raw Data � Chapter 21

If SAS reads a data value that is incompatible with the type specified for that
variable, SAS tries to convert the value to the specified type, as described in “How SAS
Handles Invalid Data” on page 367. If conversion is not possible, an error occurs, and
SAS performs the following actions:

� sets the value of the variable being read to missing or to the value specified with
the INVALIDDATA= system option

� prints an invalid data note in the SAS log
� sets the automatic variable _ERROR_ to 1 for the current observation.
� prints the input line and column number containing the invalid value in the SAS

log. If a line contains unprintable characters, it is printed in hexadecimal form. A
scale is printed above the input line to help determine column numbers

Reading Missing Values in Raw Data

Representing Missing Values in Input Data
Many collections of data contain some missing values. SAS can recognize these

values as missing when it reads them. You use the following characters to represent
missing values when reading raw data:

numeric missing values
are represented by a single decimal point (.). All input styles except list input also
allow a blank to represent a missing numeric value.

character missing values
are represented by a blank, with one exception: list input requires that you use a
period (.) to represent a missing value.

special numeric missing values
are represented by two characters: a decimal point (.) followed by either a letter or
an underscore (_).

For more information about missing values, see Chapter 6, “Missing Values,” on page
101.

Special Missing Values in Numeric Input Data
SAS enables you to differentiate among classes of missing values in numeric data.

For numeric variables, you can designate up to 27 special missing values by using the
letters A through Z, in either upper- or lowercase, and the underscore character (_).

The following example shows how to code missing values by using a MISSING
statement in a DATA step:

data test_results;
missing a b c;
input name $8. Answer1 Answer2 Answer3;
datalines;

Smith 2 5 9
Jones 4 b 8
Carter a 4 7
Reed 3 5 c
;

Reading Raw Data � Definitions 369

proc print;
run;

Note that you must use a period when you specify a special missing numeric value in
an expression or assignment statement, as in the following:

x=.d;

However, you do not need to specify each special missing numeric data value with a
period in your input data. For example, the following DATA step, which uses periods in
the input data for special missing values, produces the same result as the input data
without periods:

data test_results;
missing a b c;
input name $8. Answer1 Answer2 Answer3;
datalines;

Smith 2 5 9
Jones 4 .b 8
Carter .a 4 7
Reed 3 5 .c
;

proc print;
run;

Output for both examples is shown here:

Output 21.2 Output of Data with Special Missing Numeric Values

The SAS System

Obs name Answer1 Answer2 Answer3

1 Smith 2 5 9
2 Jones 4 B 8
3 Carter A 4 7
4 Reed 3 5 C

Note: SAS displays and prints special missing values that use letters in uppercase. �

Reading Binary Data

Definitions
binary data

is numeric data that is stored in binary form. Binary numbers have a base of two
and are represented with the digits 0 and 1.

packed decimal data
are binary decimal numbers that are encoded by using each byte to represent two
decimal digits. Packed decimal representation stores decimal data with exact

370 Using Binary Informats � Chapter 21

precision; the fractional part of the number must be determined by using an
informat or format because there is no separate mantissa and exponent.

zoned decimal data
are binary decimal numbers that are encoded so that each digit requires one byte
of storage. The last byte contains the number’s sign as well as the last digit.
Zoned decimal data produces a printable representation.

Using Binary Informats
SAS can read binary data with the special instructions supplied by SAS informats.

You can use formatted input and specify the informat in the INPUT statement. The
informat you choose is determined by the following factors:

� the type of number being read: binary, packed decimal, zoned decimal, or a
variation of one of these

� the type of system on which the data was created

� the type of system that you use to read the data.

Different computer platforms store numeric binary data in different forms. The
ordering of bytes differs by platforms that are referred to as either “big endian” or “little
endian.” For more information, see “Byte Ordering for Integer Binary Data on Big
Endian and Little Endian Platforms” on page 32.

SAS provides a number of informats for reading binary data and corresponding
formats for writing binary data. Some of these informats read data in native mode, that
is, by using the byte-ordering system that is standard for the system on which SAS is
running. Other informats force the data to be read by the IBM 370 standard, regardless
of the native mode of the system on which SAS is running. The informats that read in
native or IBM 370 mode are listed in the following table.

Table 21.4 Informats for Native or IBM 370 Mode

Description Native Mode Informats IBM 370 Mode Informats

ASCII Character $w. $ASCIIw.

ASCII Numeric w.d $ASCIIw.

EBCDIC Character $w. $EBCDICw.

EBCDIC Numeric (Standard) w.d S370FFw.d

Integer Binary IBw.d S370FIBw.d

Positive Integer Binary PIBw.d S370FPIBw.d

Real Binary RBw.d S370FRBw.d

Unsigned Integer Binary PIBw.d S370FIBUw.d,
S370FPIBw.d

Packed Decimal PDw.d S370FPDw.d

Unsigned Packed Decimal PKw.d S370FPDUw.d or PKw.d

Zoned Decimal ZDw.d S370FZDw.d

Zoned Decimal Leading Sign S370FZDLw.d S370FZDLw.d

Zoned Decimal Separate Leading
Sign

S370FZDSw.d S370FZDSw.d

Reading Raw Data � How to Read Column-Binary Data 371

Description Native Mode Informats IBM 370 Mode Informats

Zoned Decimal Separate Trailing
Sign

S370FZDTw.d S370FZDTw.d

Unsigned Zoned Decimal ZDw.d S370FZDUw.d

If you write a SAS program that reads binary data and that will be run on only one
type of system, you can use the native mode informats and formats. However, if you
want to write SAS programs that can be run on multiple systems that use different
byte-storage systems, use the IBM 370 informats. The IBM 370 informats enable you to
write SAS programs that can read data in this format and that can be run in any SAS
environment, regardless of the standard for storing numeric data.* The IBM 370
informats can also be used to read data originally written with the corresponding native
mode formats on an IBM mainframe.

For complete descriptions of all SAS formats and informats, including how numeric
binary data is written, see SAS Language Reference: Dictionary.

Reading Column-Binary Data

Definition
column-binary data storage

is an older form of data storage that is no longer widely used and is not needed by
most SAS users. Column-binary data storage compresses data so that more than
80 items of data can be stored on a single punched card. The advantage is that
this method enables you to store more data in the same amount of space. There
are disadvantages, however; special card readers are required and difficulties are
frequently encountered when this type of data is read. Because multi-punched
decks and card-image data sets remain in existence, SAS provides informats for
reading column-binary data. See “Description of Column-Binary Data Storage” on
page 372 for a more detailed explanation of column-binary data storage.

How to Read Column-Binary Data
To read column-binary data with SAS, you need to know:
� how to select the appropriate SAS column-binary informat
� how to set the RECFM= and LRECL= options in the INFILE statement
� how to use pointer controls.

The following table lists and describes SAS column-binary informats.

* For example, using the IBM 370 informats, you could download data that contain binary integers from a mainframe to a PC
and then use the S370FIB informats to read the data.

372 Description of Column-Binary Data Storage � Chapter 21

Table 21.5 SAS Informats for Reading Column-Binary Data

Informat Name Description

$CBw. reads standard character data from column-binary files

CBw. reads standard numeric data from column-binary files

PUNCH.d reads whether a row is punched

ROWw.d reads a column-binary field down a card column

To read column-binary data, you must set two options in the INFILE statement:
� Set RECFM= to F for fixed.
� Set the LRECL= to 160, because each card column of column-binary data is

expanded to two bytes before the fields are read.

For example, to read column-binary data from a file, use an INFILE statement in the
following form before the INPUT statement that reads the data:

infile file-specification or path-name
recfm=f lrecl=160;

Note: The expansion of each column of column-binary data into two bytes does not
affect the position of the column pointer. You use the absolute column pointer control @,
as usual, because the informats automatically compute the true location on the doubled
record. If a value is in column 23, use the pointer control @23 to move the pointer
there. �

Description of Column-Binary Data Storage
The arrangement and numbering of rows in a column on punched cards originated

with the Hollerith system of encoding characters and numbers. It is based on using a
pair of values to represent either a character or a numeric digit. In the Hollerith system,
each column on a card has a maximum of two punches, one punch in the zone portion,
and one in the digit portion. These punches correspond to a pair of values, and each
pair of values corresponds to a specific alphabetic character or sign and numeric digit.

In the zone portion of the punched card, which is the first three rows, the zone
component of the pair can have the values 12, 11, 0 (or 10), or not punched. In the digit
portion of the card, which is the fourth through the twelfth rows, the digit component of
the pair can have the values 1 through 9, or not punched.

The following figure shows the multi-punch combinations corresponding to letters of
the alphabet.

Reading Raw Data � Description of Column-Binary Data Storage 373

Figure 21.1 Columns and Rows in a Punched Card

row punch

zone
portion

digit
portion

alphabetic
character

X X X X X X X X

1

2

3

4

5

6

7

8

9

12

11

10

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

X X X X X X X X X

X X X X X X X X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

SAS stores each column of column-binary data in two bytes. Since each column has
only 12 positions and since 2 bytes contain 16 positions, the 4 extra positions within the
bytes are located at the beginning of each byte. The following figure shows the
correspondence between the rows of a punched card and the positions within 2 bytes
that SAS uses to store them. SAS stores a punched position as a binary 1 bit and an
unpunched position as a binary 0 bit.

374 Description of Column-Binary Data Storage � Chapter 21

Figure 21.2 Column-Binary Representation on a Punched Card

row

byte
positions

1

2

3

4

5

6

7

8

9

12

11

10 (or 0)

not used

1 2 3 4 5 6 7 8

not used

1 2 3 4 5 6 7 8

byte 1 byte 2

375

C H A P T E R

22
BY-Group Processing in the
DATA Step

Definitions for BY-Group Processing 375
Syntax for BY-Group Processing 376

Understanding BY Groups 377

BY Groups with a Single BY Variable 377

BY Groups with Multiple BY Variables 378

Invoking BY-Group Processing 378
Determining Whether the Data Requires Preprocessing for BY-Group Processing 379

Preprocessing Input Data for BY-Group Processing 379

Sorting Observations for BY-Group Processing 379

Indexing for BY-Group Processing 379

How the DATA Step Identifies BY Groups 380

Processing Observations in a BY Group 380
How SAS Determines FIRST.VARIABLE and LAST.VARIABLE 380

Grouping Observations by State, City, Zip Code, and Street 380

Grouping Observations by City, State, Zip Code, and Street 381

Grouping Observations: Another Example 382

Processing BY-Groups in the DATA Step 383
Overview 383

Processing BY-Groups Conditionally 383

Data Not in Alphabetic or Numeric Order 384

Data Grouped by Formatted Values 385

Definitions for BY-Group Processing

BY-group processing
is a method of processing observations from one or more SAS data sets that are
grouped or ordered by values of one or more common variables. The most common
use of BY-group processing in the DATA step is to combine two or more SAS data
sets by using the BY statement with a SET, MERGE, MODIFY, or UPDATE
statement.

BY variable
names a variable or variables by which the data set is sorted or indexed. All data
sets must be ordered or indexed on the values of the BY variable if you use the
SET, MERGE, or UPDATE statements. If you use MODIFY, data does not need to
be ordered. However, your program might run more efficiently with ordered data.
All data sets that are being combined must include one or more BY variables. The
position of the BY variable in the observations does not matter.

376 Syntax for BY-Group Processing � Chapter 22

BY value
is the value or formatted value of the BY variable.

BY group
includes all observations with the same BY value. If you use more than one
variable in a BY statement, a BY group is a group of observations with the same
combination of values for these variables. Each BY group has a unique
combination of values for the variables.

FIRST.variable and LAST.variable
are variables that SAS creates for each BY variable. SAS sets FIRST.variable
when it is processing the first observation in a BY group, and sets LAST.variable
when it is processing the last observation in a BY group. These assignments
enable you to take different actions, based on whether processing is starting for a
new BY group or ending for a BY group. For more information, see “How the
DATA Step Identifies BY Groups” on page 380.

For more information about BY-Group processing, see Chapter 23, “Reading,
Combining, and Modifying SAS Data Sets,” on page 387. See also Combining and
Modifying SAS Data Sets: Examples.

Syntax for BY-Group Processing
Use one of the following forms for BY-group processing:

BY variable(s);

BY <DESCENDING> variable(s) <NOTSORTED> <GROUPFORMAT>;

where

variable
names each variable by which the data set is sorted or indexed.

Note: All data sets must be ordered or indexed on the values of the BY
variable if you process them using the SET, MERGE, or UPDATE statements. If
you use the MODIFY statement, your data does not need to be ordered. However,
your program might run more efficiently with ordered data. All data sets that are
being combined must include the BY variable or variables. The position of the BY
variable in the observations does not matter. �

GROUPFORMAT
uses the formatted values, instead of the internal values, of the BY variables to
determine where BY-groups begin and end, and therefore how FIRST.variable and
LAST.variable are assigned. Although the GROUPFORMAT option can appear
anywhere in the BY statement, the option applies to all variables in the BY
statement.

DESCENDING
indicates that the data sets are sorted in descending order (largest to smallest) by
the variable that is specified. If you have more that one variable in the BY group,
DESCENDING applies only to the variable that immediately follows it.

NOTSORTED
specifies that observations with the same BY value are grouped together but are
not necessarily stored in alphabetical or numeric order.

BY-Group Processing in the DATA Step � BY Groups with a Single BY Variable 377

For complete information about the BY statement, see SAS Language Reference:
Dictionary.

Understanding BY Groups

BY Groups with a Single BY Variable
The following figure represents the results of processing your data with the single BY

variable ZipCode. The input SAS data set contains street names, cities, states, and ZIP
codes that are arranged in an order that you can use with the following BY statement:

by ZipCode;

The figure shows five BY groups each containing the BY variable ZipCode. The data
set is shown with the BY variable ZipCode printed on the left for easy reading, but the
position of the BY variable in the observations does not matter.

Figure 22.1 BY Groups for the Single BY Variable ZipCode

BY group

BY group

BY group

BY Group

BY group

Street

Rice St
Thomas Ave
Surrey Dr
Trade Ave

Nervia St
Corsica St

French Ave

Egret Dr

Domenic Ln
Gleeson Pl

City

Miami
Miami
Miami
Miami

Miami
Miami

Lakeland

Lakeland

Tucson
Tucson

State

FL
FL
FL
FL

FL
FL

FL

FL

AZ
AZ

ZipCode

33133
33133
33133
33133

33146
33146

33801

33809

85730
85730

BY variable

The first BY group contains all observations with the smallest BY value, which is
33133; the second BY group contains all observations with the next smallest BY value,
which is 33146, and so on.

378 BY Groups with Multiple BY Variables � Chapter 22

BY Groups with Multiple BY Variables
The following figure represents the results of processing your data with two BY

variables, State and City. This example uses the same data set as in “BY Groups with a
Single BY Variable” on page 377, and is arranged in an order that you can use with the
following BY statement:

by State City;

The figure shows three BY groups. The data set is shown with the BY variables
State and City printed on the left for easy reading, but the position of the BY variables
in the observations does not matter.

Figure 22.2 BY Groups for the BY Variables State and City

BY group

BY group

StreetCityState ZipCode

Domenic Ln
Gleeson Pl

Tucson
Tucson

85730
85730

French Ave
Egret Dr

Lakeland
Lakeland

33801
33809

Nervia St
Rice St
Corsica St
Thomas Ave
Surrey Dr
Trade Ave

Miami
Miami
Miami
Miami
Miami
Miami

33146
33133
33146
33133
33133
33133

BY group

BY variables

AZ
AZ

FL
FL

FL
FL
FL
FL
FL
FL

The observations are arranged so that the observations for Arizona occur first. The
observations within each value of State are arranged in order of the value of City. Each
BY group has a unique combination of values for the variables State and City. For
example, the BY value of the first BY group is AZ Tucson, and the BY value of the
second BY group is FL Lakeland.

Invoking BY-Group Processing
You can invoke BY-group processing in both DATA steps and PROC steps by using a

BY statement. For example, the following DATA step program uses the SET statement
to combine observations from three SAS data sets by interleaving the files. The BY
statement shows how the data is ordered.

data all_sales;
set region1 region2 region3;
by State City Zip;
… more SAS statements …

run;

BY-Group Processing in the DATA Step � Indexing for BY-Group Processing 379

This section describes BY-group processing for the DATA step. For information about
BY-group processing with procedures, see Base SAS Procedures Guide.

Determining Whether the Data Requires Preprocessing for BY-Group
Processing

Before you process one or more SAS data sets using grouped or ordered data with the
SET, MERGE, or UPDATE statements, you must check the data to determine if they
require preprocessing. They require no preprocessing if the observations in all of the
data sets occur in one of the following patterns:

� ascending or descending numeric order
� ascending or descending character order
� not alphabetically or numerically ordered, but grouped in some way, such as by

calendar month or by a formatted value.

If the observations are not in the order that you want, you must either sort the data
set or create an index for it before using BY-group processing.

If you use the MODIFY statement in BY-group processing, you do not need to presort
the input data. Presorting, however, can make processing more efficient and less costly.

You can use PROC SQL views in BY-group processing. For complete information, see
SAS SQL Procedure User’s Guide.

SAS/ACCESS Users: If you use views or librefs, refer to the SAS/ACCESS
documentation for your operating environment for information about using BY groups
in your SAS programs.

Preprocessing Input Data for BY-Group Processing

Sorting Observations for BY-Group Processing
You can use the SORT procedure to change the physical order of the observations in

the data set. You can either replace the original data set, or create a new, sorted data
set by using the OUT= option of the SORT procedure. In this example, PROC SORT
rearranges the observations in the data set INFORMATION based on ascending values
of the variables State and ZipCode, and replaces the original data set.

proc sort data=information;
by State ZipCode;

run;

As a general rule, when you use PROC SORT, specify the variables in the BY
statement in the same order that you plan to specify them in the BY statement in the
DATA step. For a detailed description of the default sorting orders for numeric and
character variables, see the SORT procedure in Base SAS Procedures Guide.

Indexing for BY-Group Processing
You can also ensure that observations are processed in ascending numeric or

character order by creating an index based on one or more variables in the SAS data set.

380 How the DATA Step Identifies BY Groups � Chapter 22

If you specify a BY statement in a DATA step, SAS looks for an appropriate index. If one
exists, SAS automatically retrieves the observations from the data set in indexed order.

Note: Because indexes require additional resources to create and maintain, you
should determine if their use significantly improves performance. Depending on the
nature of the data in your SAS data set, using PROC SORT to order data values can be
more advantageous than indexing. For an overview of indexes, see “Understanding SAS
Indexes” on page 518. �

How the DATA Step Identifies BY Groups

Processing Observations in a BY Group
In the DATA step, SAS identifies the beginning and end of each BY group by creating

two temporary variables for each BY variable: FIRST.variable and LAST.variable.
These temporary variables are available for DATA step programming but are not added
to the output data set. Their values indicate whether an observation is

� the first one in a BY group
� the last one in a BY group
� neither the first nor the last one in a BY group
� both first and last, as is the case when there is only one observation in a BY group.

You can take actions conditionally, based on whether you are processing the first or the
last observation in a BY group.

How SAS Determines FIRST.VARIABLE and LAST.VARIABLE
When an observation is the first in a BY group, SAS sets the value of FIRST.variable

to 1 for the variable whose value changed, as well as for all of the variables that follow
in the BY statement. For all other observations in the BY group, the value of
FIRST.variable is 0. Likewise, if the observation is the last in a BY group, SAS sets the
value of LAST.variable to 1 for the variable whose value changes on the next
observation, as well as for all of the variables that follow in the BY statement. For all
other observations in the BY group, the value of LAST.variable is 0. For the last
observation in a data set, the value of all LAST.variable variables are set to 1.

Grouping Observations by State, City, Zip Code, and Street
This example shows how SAS uses the FIRST.variable and LAST.variable to flag the

beginning and end of four BY groups: State, City, ZipCode, and Street. Six temporary
variables are created within the program data vector. These variables can be used
during the DATA step, but they do not become variables in the new data set.

BY-Group Processing in the DATA Step � How SAS Determines FIRST.VARIABLE and LAST.VARIABLE 381

In the figure that follows, observations in the SAS data set are arranged in an order
that can be used with this BY statement:

by State City ZipCode;

SAS creates the following temporary variables: FIRST.State, LAST.State,
FIRST.City, LAST.City, FIRST.ZipCode, and LAST.ZipCode.

Observations in Four BY Groups Corresponding FIRST. and LAST. Values

State City ZipCode Street
FIRST.
State

LAST.
State

FIRST.
City

LAST.
City

FIRST.
ZipCode

LAST.
ZipCode

AZ Tucson 85730 Glen Pl 1 1 1 1 1 1

FL Miami 33133 Rice St 1 0 1 0 1 0

FL Miami 33133 Tom Ave 0 0 0 0 0 0

FL Miami 33133 Surrey Dr 0 0 0 0 0 1

FL Miami 33146 Nervia St 0 0 0 0 1 0

FL Miami 33146 Corsica St 0 1 0 1 0 1

OH Miami 45056 Myrtle St 1 1 1 1 1 1

Grouping Observations by City, State, Zip Code, and Street
This example shows how SAS uses the FIRST.variable and LAST.variable to flag the

beginning and end of four BY groups: City, State, ZipCode, and Street. Six temporary
variables are created within the program data vector. These variables can be used
during the DATA step, but they do not become variables in the new data set.

In the figure that follows, observations in the SAS data set are arranged in an order
that can be used with this BY statement:

by City State ZipCode;

SAS creates the following temporary variables: FIRST.City, LAST.City, FIRST.State,
LAST.State, FIRST.ZipCode, and LAST.ZipCode.

Observations in Four BY Groups Corresponding FIRST. and LAST. Values

City State ZipCode Street
FIRST.
City

LAST.
City

FIRST.
State

LAST.
State

FIRST.
ZipCode

LAST.
ZipCode

Miami FL 33133 Rice St 1 0 1 0 1 0

Miami FL 33133 Tom Ave 0 0 0 0 0 0

Miami FL 33133 Surrey Dr 0 0 0 0 0 1

Miami FL 33146 Nervia St 0 0 0 0 1 0

Miami FL 33146 Corsica St 0 0 0 1 0 1

Miami OH 45056 Myrtle St 0 1 1 1 1 1

Tucson AZ 85730 Glen Pl 1 1 1 1 1 1

382 How SAS Determines FIRST.VARIABLE and LAST.VARIABLE � Chapter 22

Grouping Observations: Another Example
The value of FIRST.variable can be affected by a change in a previous value, even if

the current value of the variable remains the same.
In this example, the value of FIRST.variable and LAST.variable are dependent on

sort order, and not just by the value of the BY variable. For observation 3, the value of
FIRST.Y is set to 1 because BLUEBERRY is a new value for Y. This change in Y causes
FIRST.Z to be set to 1 as well, even though the value of Z did not change.

options pageno=1 nodate linesize=80 pagesize=60;

data testfile;
input x $ y $ 9-17 z $ 19-26;
datalines;

apple banana coconut
apple banana coconut
apricot blueberry citron
;

data _null_;
set testfile;
by x y z;
if _N_=1 then put ’Grouped by X Y Z’;
put _N_= x= first.x= last.x= first.y= last.y= first.z= last.z= ;

run;

data _null_;
set testfile;
by y x z;
if _N_=1 then put ’Grouped by Y X Z’;
put _N_= x= first.x= last.x= first.y= last.y= first.z= last.z= ;

run;

Output 22.1 Partial SAS Log Showing the Results of Processing with BY Variables

Grouped by X Y Z
N=1 x=Apple FIRST.x=1 LAST.x=0 FIRST.y=1 LAST.y=0 FIRST.z=1 LAST.z=0
N=2 x=Apple FIRST.x=0 LAST.x=0 FIRST.y=0 LAST.y=1 FIRST.z=0 LAST.z=1
N=3 x=Apple FIRST.x=0 LAST.x=1 FIRST.y=1 LAST.y=1 FIRST.z=1 LAST.z=1
N=4 x=Apricot FIRST.x=1 LAST.x=1 FIRST.y=1 LAST.y=1 FIRST.z=1 LAST.z=1

Grouped by Y X Z
N=1 x=Apple FIRST.x=1 LAST.x=0 FIRST.y=1 LAST.y=0 FIRST.z=1 LAST.z=0
N=2 x=Apple FIRST.x=0 LAST.x=1 FIRST.y=0 LAST.y=1 FIRST.z=0 LAST.z=1
N=3 x=Apple FIRST.x=1 LAST.x=1 FIRST.y=1 LAST.y=0 FIRST.z=1 LAST.z=1
N=4 x=Apricot FIRST.x=1 LAST.x=1 FIRST.y=0 LAST.y=1 FIRST.z=1 LAST.z=1

BY-Group Processing in the DATA Step � Processing BY-Groups Conditionally 383

Processing BY-Groups in the DATA Step

Overview
The most common use of BY-group processing in the DATA step is to combine two or

more SAS data sets using a BY statement with a SET, MERGE, MODIFY, or UPDATE
statement. (If you use a SET, MERGE, or UPDATE statement with the BY statement,
your observations must be grouped or ordered.) When processing these statements, SAS
reads one observation at a time into the program data vector. With BY-group
processing, SAS selects the observations from the data sets according to the values of
the BY variable or variables. After processing all the observations from one BY group,
SAS expects the next observation to be from the next BY group.

The BY statement modifies the action of the SET, MERGE, MODIFY, or UPDATE
statement by controlling when the values in the program data vector are set to missing.
During BY-group processing, SAS retains the values of variables until it has copied the
last observation it finds for that BY group in any of the data sets. Without the BY
statement, the SET statement sets variables to missing when it reads the last
observation from any data set, and the MERGE statement does not set variables to
missing after the DATA step starts reading observations into the program data vector.

Processing BY-Groups Conditionally
You can process observations conditionally by using the subsetting IF or IF-THEN

statements, or the SELECT statement, with the temporary variables FIRST.variable
and LAST.variable (set up during BY-group processing). For example, you can use them
to perform calculations for each BY group and to write an observation when the first or
the last observation of a BY group has been read into the program data vector.

The following example computes annual payroll by department. It uses IF-THEN
statements and the values of FIRST.variable and LAST.variable automatic variables to
reset the value of PAYROLL to 0 at the beginning of each BY group and to write an
observation after the last observation in a BY group is processed.

options pageno=1 nodate linesize=80 pagesize=60;

data salaries;
input Department $ Name $ WageCategory $ WageRate;
datalines;

BAD Carol Salaried 20000
BAD Elizabeth Salaried 5000
BAD Linda Salaried 7000
BAD Thomas Salaried 9000
BAD Lynne Hourly 230
DDG Jason Hourly 200
DDG Paul Salaried 4000
PPD Kevin Salaried 5500
PPD Amber Hourly 150
PPD Tina Salaried 13000
STD Helen Hourly 200
STD Jim Salaried 8000
;

384 Data Not in Alphabetic or Numeric Order � Chapter 22

proc print data=salaries;
run;

proc sort data=salaries out=temp;
by Department;

run;

data budget (keep=Department Payroll);
set temp;
by Department;
if WageCategory=’Salaried’ then YearlyWage=WageRate*12;
else if WageCategory=’Hourly’ then YearlyWage=WageRate*2000;

/* SAS sets FIRST.variable to 1 if this is a new */
/* department in the BY group. */

if first.Department then Payroll=0;
Payroll+YearlyWage;

/* SAS sets LAST.variable to 1 if this is the last */
/* department in the current BY group. */

if last.Department;
run;

proc print data=budget;
format Payroll dollar10.;
title ’Annual Payroll by Department’;

run;

Output 22.2 Output from Conditional BY-Group Processing

Annual Payroll by Department 1

Obs Department Payroll

1 BAD $952,000
2 DDG $448,000
3 PPD $522,000
4 STD $496,000

Data Not in Alphabetic or Numeric Order
In BY-group processing, you can use data that is arranged in an order other than

alphabetic or numeric, such as by calendar month or by category. To do this, use the
NOTSORTED option in a BY statement when you use a SET statement. The
NOTSORTED option in the BY statement tells SAS that the data is not in alphabetic or
numeric order, but that it is arranged in groups by the values of the BY variable. You
cannot use the NOTSORTED option with the MERGE statement, the UPDATE
statement, or when the SET statement lists more than one data set.

BY-Group Processing in the DATA Step � Data Grouped by Formatted Values 385

This example assumes that the data is grouped by the character variable MONTH.
The subsetting IF statement conditionally writes an observation, based on the value of
LAST.month. This DATA step writes an observation only after processing the last
observation in each BY group.

data total_sale(drop=sales);
set region.sales
by month notsorted;
total+sales;
if last.month;

run;

Data Grouped by Formatted Values
Use the GROUPFORMAT option in the BY statement to ensure that
� formatted values are used to group observations when a FORMAT statement and

a BY statement are used together in a DATA step
� the FIRST.variable and LAST.variable are assigned by the formatted values of the

variable.

The GROUPFORMAT option is valid only in the DATA step that creates the SAS
data set. It is particularly useful with user-defined formats. The following example
illustrates the use of the GROUPFORMAT option.

proc format;
value range

low -55 = ’Under 55’
55-60 = ’55 to 60’
60-65 = ’60 to 65’
65-70 = ’65 to 70’
other = ’Over 70’;

run;

proc sort data=class out=sorted_class;
by height;

run;

data _null_;
format height range.;
set sorted_class;

by height groupformat;
if first.height then

put ’Shortest in ’ height ’measures ’ height:best12.;
run;

SAS writes the following output to the log:

Shortest in Under 55 measures 51.3
Shortest in 55 to 60 measures 56.3
Shortest in 60 to 65 measures 62.5
Shortest in 65 to 70 measures 65.3
Shortest in Over 70 measures 72

386

387

C H A P T E R

23
Reading, Combining, and
Modifying SAS Data Sets

Definitions for Reading, Combining, and Modifying SAS Data Sets 389
Overview of Tools 389

Reading SAS Data Sets 390

Reading a Single SAS Data Set 390

Reading from Multiple SAS Data Sets 390

Controlling the Reading and Writing of Variables and Observations 390
Combining SAS Data Sets: Basic Concepts 391

What You Need to Know before Combining Information Stored In Multiple SAS Data Sets 391

The Four Ways That Data Can Be Related 391

One-to-One 392

One-to-Many and Many-to-One 392

Many-to-Many 393
Access Methods: Sequential versus Direct 394

Overview 394

Sequential Access 394

Direct Access 394

Overview of Methods for Combining SAS Data Sets 395
Concatenating 395

Interleaving 395

One-to-One Reading and One-to-One Merging 396

Match-Merging 397

Updating 397
Overview of Tools for Combining SAS Data Sets 398

Using Statements and Procedures 398

Using Error Checking 400

How to Prepare Your Data Sets 400

Knowing the Structure and Contents of the Data Sets 400

Looking at Sources of Common Problems 400
Ensuring Correct Order 401

Testing Your Program 401

Combining SAS Data Sets: Methods 402

Concatenating 402

Definition 402
Syntax 402

DATA Step Processing During Concatenation 402

Example 1: Concatenation Using the DATA Step 403

Example 2: Concatenation Using SQL 404

Appending Files 404
Efficiency 405

Interleaving 405

Definition 405

388 Contents � Chapter 23

Syntax 405
Sort Requirements 406

DATA Step Processing During Interleaving 406

Example 1: Interleaving in the Simplest Case 406

Example 2: Interleaving with Duplicate Values of the BY variable 407

Example 3: Interleaving with Different BY Values in Each Data Set 408
Comments and Comparisons 409

One-to-One Reading 409

Definition 409

Syntax 409

DATA Step Processing During a One-to-One Reading 410

Example 1: One-to-One Reading: Processing an Equal Number of Observations 410
Comments and Comparisons 411

One-to-One Merging 411

Definition 411

Syntax 412

DATA Step Processing During One-to-One Merging 412
Example 1: One-to-One Merging with an Equal Number of Observations 413

Example 2: One-to-One Merging with an Unequal Number of Observations 413

Example 3: One-to-One Merging with Duplicate Values of Common Variables 414

Example 4: One-to-One Merging with Different Values of Common Variables 415

Comments and Comparisons 416
Match-Merging 416

Definition 416

Syntax 416

DATA Step Processing During Match-Merging 417

Example 1: Combining Observations Based on a Criterion 417

Example 2: Match-Merge with Duplicate Values of the BY Variable 418
Example 3: Match-Merge with Nonmatched Observations 419

Updating with the UPDATE and the MODIFY Statements 420

Definitions 420

Syntax of the UPDATE Statement 420

Syntax of the MODIFY Statement 421
DATA Step Processing with the UPDATE Statement 421

Updating with Nonmatched Observations, Missing Values, and New Variables 422

Sort Requirements for the UPDATE Statement 422

Using an Index with the MODIFY Statement 422

Choosing between UPDATE or MODIFY with BY 422
Primary Uses of the MODIFY Statement 423

Example 1: Using UPDATE for Basic Updating 424

Example 2: Using UPDATE with Duplicate Values of the BY Variable 424

Example 3: Using UPDATE for Processing Nonmatched Observations, Missing Values, and
New Variables 425

Example 4: Updating a MASTER Data Set by Adding an Observation 427
Error Checking When Using Indexes to Randomly Access or Update Data 428

The Importance of Error Checking 428

Error-Checking Tools 428

Example 1: Routing Execution When an Unexpected Condition Occurs 429

Overview 429
Input Data Sets 429

Original Program 430

Resulting Log 430

Resulting Data Set 430

Revised Program 431

Reading, Combining, and Modifying SAS Data Sets � Overview of Tools 389

Resulting Log 431
Correctly Updated MASTER Data Set 432

Example 2: Using Error Checking on All Statements That Use KEY= 432

Overview 432

Input Data Sets 432

Original Program with Logic Error 432
Resulting Log 433

Resulting Data Set 434

Revised Program 434

Resulting Log 435

Correctly Created COMBINE Data Set 436

Definitions for Reading, Combining, and Modifying SAS Data Sets
In the context of DATA step processing, the terms reading, combining and modifying

have these meanings:

Reading a SAS data set
refers to opening a SAS data set and bringing an observation into the program
data vector for processing.

Combining SAS data sets
refers to reading data from two or more SAS data sets and processing them by

� concatenating
� interleaving
� one-to-one reading
� one-to-one merging
� match-merging
� updating a master data set with a transaction data set.

The methods for combining SAS data sets are defined in “Combining SAS Data
Sets: Methods” on page 402.

Modifying SAS data sets
refers to using the MODIFY statement to update information in a SAS data set in
place. The MODIFY statement can save disk space because it modifies data in
place, without creating a copy of the data set. You can modify a SAS data set with
programming statements or with information that is stored in another data set.

Overview of Tools
The primary tools that are used for reading, combining, and modifying SAS data sets

are four statements: SET, MERGE, MODIFY, and UPDATE. This section describes
these tools and shows examples. For complete information about these statements see
the SAS Language Reference: Dictionary.

390 Reading SAS Data Sets � Chapter 23

Reading SAS Data Sets

Reading a Single SAS Data Set
To read data from an existing SAS data set, use a SET statement. In this example,

the DATA step creates data set PERM.TOUR155_PEAKCOST by reading data from
data set PERM.TOUR155_BASIC_COST and by calculating values for the three new
variables Total_Cost, Peak_Cost, and Average_Night_Cost.

data perm.tour155_peakcost;
set perm.tour155_basic_cost;
Total_Cost=AirCost+LandCost;
Peak_Cost=(AirCost*1.15);
Average_Night_Cost=LandCost/Nights;

run;

Reading from Multiple SAS Data Sets
You can read from multiple SAS data sets and combine and modify data in different

ways. You can, for example, combine two or more input data sets to create one output
data set, merge data from two or more input data sets that share a common variable,
and update a master file based on transaction records.

For details about reading from multiple SAS data sets, see “Combining SAS Data
Sets: Methods” on page 402.

Controlling the Reading and Writing of Variables and Observations
If you do not instruct it to do otherwise, SAS writes all variables and all observations

from input data sets to output data sets. You can, however, control which variables and
observations you want to read and write by using SAS statements, data set options, and
functions. The statements and data set options that you can use are listed in the
following table.

Table 23.1 Statements and Options That Control Reading and Writing

Task Statements Data set options System options

Control variables DROP DROP=

KEEP KEEP=

RENAME RENAME=

Control observations WHERE WHERE= FIRSTOBS=

subsetting IF FIRSTOBS= OBS=

DELETE OBS=

REMOVE

Reading, Combining, and Modifying SAS Data Sets � The Four Ways That Data Can Be Related 391

Task Statements Data set options System options

OUTPUT

Use statements or data set options (such as KEEP= and DROP=) to control the
variables and observations you want to write to the output data set. The WHERE
statement is an exception: it controls which observations are read into the program
data vector based on the value of a variable. You can use data set options (including
WHERE=) on input or output data sets, depending on their function and what you want
to control. You can also use SAS system options to control your data.

Combining SAS Data Sets: Basic Concepts

What You Need to Know before Combining Information Stored In
Multiple SAS Data Sets

Many applications require input data to be in a specific format before the data can be
processed to produce meaningful results. The data typically comes from multiple
sources and may be in different formats. Therefore, you often, if not always, have to
take intermediate steps to logically relate and process data before you can analyze it or
create reports from it.

Application requirements vary, but there are common factors for all applications that
access, combine, and process data. Once you have determined what you want the
output to look like, you must

� determine how the input data is related
� ensure that the data is properly sorted or indexed, if necessary
� select the appropriate access method to process the input data
� select the appropriate SAS tools to complete the task.

The Four Ways That Data Can Be Related
Relationships among multiple sources of input data exist when each of the sources

contains common data, either at the physical or logical level. For example, employee
data and department data could be related through an employee ID variable that
shares common values. Another data set could contain numeric sequence numbers
whose partial values logically relate it to a separate data set by observation number.

You must be able to identify the existing relationships in your data. This knowledge
is crucial for understanding how to process input data in order to produce desired
results. All related data fall into one of these four categories, characterized by how
observations relate among the data sets:

� one-to-one
� one-to-many
� many-to-one
� many-to-many.

To obtain the results you want, you should understand how each of these methods
combines observations, how each method treats duplicate values of common variables,

392 The Four Ways That Data Can Be Related � Chapter 23

and how each method treats missing values or nonmatched values of common variables.
Some of the methods also require that you preprocess your data sets by sorting them or
by creating indexes. See the description of each method in “Combining SAS Data Sets:
Methods” on page 402.

One-to-One
In a one-to-one relationship, typically a single observation in one data set is related

to a single observation from another based on the values of one or more selected
variables. A one-to-one relationship implies that each value of the selected variable
occurs no more than once in each data set. When you work with multiple selected
variables, this relationship implies that each combination of values occurs no more than
once in each data set.

In the following example, observations in data sets SALARY and TAXES are related
by common values for EmployeeNumber.

Figure 23.1 One-to-One Relationship

SALARY

EmployeeNumber Salary

TAXES

TaxBracket

1234 55000 1111 0.18

3333 72000 1234 0.28

4876 32000 3333 0.32

5489 17000 4222 0.18

4876 0.24

EmployeeNumber

One-to-Many and Many-to-One
A one-to-many or many-to-one relationship between input data sets implies that one

data set has at most one observation with a specific value of the selected variable, but
the other input data set may have more than one occurrence of each value. When you
work with multiple selected variables, this relationship implies that each combination
of values occurs no more than once in one data set, but may occur more than once in
the other data set. The order in which the input data sets are processed determines
whether the relationship is one-to-many or many-to-one.

In the following example, observations in data sets ONE and TWO are related by
common values for variable A. Values of A are unique in data set ONE but not in data
set TWO.

Reading, Combining, and Modifying SAS Data Sets � The Four Ways That Data Can Be Related 393

Figure 23.2 One-to-Many Relationship

ONE TWO

1

3

5

3

6

4

1

1

2

3

0

99

1 4 88

1

2

5

1

77

66

2 2 55

3 4 44

A E FA B C

In the following example, observations in data sets ONE, TWO, and THREE are
related by common values for variable ID. Values of ID are unique in data sets ONE
and THREE but not in TWO. For values 2 and 3 of ID, a one-to-many relationship
exists between observations in data sets ONE and TWO, and a many-to-one
relationship exists between observations in data sets TWO and THREE.

Figure 23.3 One-to-Many and Many-to-One Relationships

TWO

1

2

2

3

3

3

4

5

28000

30000

40000

15000

20000

25000

35000

40000

ID Sales

1

2

3

4

5

15000

7000

15000

5000

8000

ID Quota

THREEONE

1

2

3

4

5

Joe Smith

Sally Smith

Cindy Long

Sue Brown

Mike Jones

ID Name

Many-to-Many
The many-to-many category implies that multiple observations from each input data

set may be related based on values of one or more common variables.
In the following example, observations in data sets BREAKDOWN and

MAINTENANCE are related by common values for variable Vehicle. Values of Vehicle
are not unique in either data set. A many-to-many relationship exists between
observations in these data sets for values AAA and CCC of Vehicle.

394 Access Methods: Sequential versus Direct � Chapter 23

Figure 23.4 Many-to-Many Relationship

BREAKDOWN

AAA

AAA

AAA

AAA

BBB

CCC

CCC

02MAR99

20MAY99

19JUN99

29NOV99

04JUL99

31MAY99

24DEC99

Vehicle BreakDownDate

MAINTENANCE

AAA

AAA

AAA

CCC

CCC

CCC

DDD

DDD

DDD

03JAN99

05APR99

10AUG99

28JAN99

16MAY99

07OCT99

24FEB99

22JUN99

19SEP99

Vehicle MaintenanceDate

Access Methods: Sequential versus Direct

Overview
Once you have established data relationships, the next step is to determine the best

mode of data access to relate the data. You can access observations sequentially in the
order in which they appear in the physical file. Or you can access them directly, that is,
you can go straight to an observation in a SAS data set without having to process each
observation that precedes it.

Sequential Access
The simplest and perhaps most common way to process data with a DATA step is to

read observations in a data set sequentially. You can read observations sequentially
using the SET, MERGE, UPDATE, or MODIFY statements. You can also use the SAS
File I/O functions, such as OPEN, FETCH, and FETCHOBS.

Direct Access
Direct access allows a program to access specific observations based on one of two

methods:
� by an observation number
� by the value of one or more variables through a simple or composite index.

To access observations directly by their observation number, use the POINT= option
with the SET or MODIFY statement. The POINT= option names a variable whose
current value determines which observation a SET or MODIFY statement reads.

To access observations directly based on the values of one or more specified variables,
you must first create an index for the variables and then read the data set using the
KEY= statement option with the SET or MODIFY statement. An index is a separate
structure that contains the data values of the key variable or variables, paired with a
location identifier for the observations containing the value.

Reading, Combining, and Modifying SAS Data Sets � Overview of Methods for Combining SAS Data Sets 395

Note: You can also use the SAS File I/O functions such as CUROBS, NOTE, POINT
and FETCHOBS to access observations by observation number. �

Overview of Methods for Combining SAS Data Sets
You can use these methods to combine SAS data sets:
� concatenating
� interleaving
� one-to-one reading
� one-to-one merging
� match merging
� updating.

Concatenating
The following figure shows the results of concatenating two SAS data sets.

Concatenating the data sets appends the observations from one data set to another data
set. The DATA step reads DATA1 sequentially until all observations have been
processed, and then reads DATA2. Data set COMBINED contains the results of the
concatenation. Note that the data sets are processed in the order in which they are
listed in the SET statement.

Figure 23.5 Concatenating Two Data Sets

COMBINED

1991

1992

1993

1994

1995

1991

1992

1993

1994

1995

Year

DATA2

1991

1992

1993

1994

1995

Year

DATA1

Year

1991

1992

1993

1994

1995

data combined;
 set data1 data2;
run;

+ =

Interleaving
The following figure shows the results of interleaving two SAS data sets.

Interleaving intersperses observations from two or more data sets, based on one or
more common variables. Data set COMBINED shows the result.

396 Overview of Methods for Combining SAS Data Sets � Chapter 23

Figure 23.6 Interleaving Two Data Sets

COMBINED

Year
DATA2

1992

1993

1994

1995

1996

Year

DATA1

Year

1991

1992

1993

1994

1995

data combined;
 set data1 data2;
 by Year;
run;

+ =

1991

1992

1992

1993

1993

1994

1994

1995

1995

1996

One-to-One Reading and One-to-One Merging
The following figure shows the results of one-to-one reading and one-to-one merging.

One-to-one reading combines observations from two or more SAS data sets by creating
observations that contain all of the variables from each contributing data set.
Observations are combined based on their relative position in each data set, that is, the
first observation in one data set with the first in the other, and so on. The DATA step
stops after it has read the last observation from the smallest data set. One-to-one
merging is similar to a one-to-one reading, with two exceptions: you use the MERGE
statement instead of multiple SET statements, and the DATA step reads all
observations from all data sets. Data set COMBINED shows the result.

Figure 23.7 One-to-One Reading and One-to-One Merging

COMBINEDDATA2DATA1

VarXVarYVarX

X1

X2

X3

X4

X5

data combined;
 set data1;
 set data2;
run;

data combined;
 merge data1 data2;
run;

+ =

Y1

Y2

Y3

Y4

Y5

VarY

X1

X2

X3

X4

X5

Y1

Y2

Y3

Y4

Y5

Reading, Combining, and Modifying SAS Data Sets � Overview of Methods for Combining SAS Data Sets 397

Match-Merging
The following figure shows the results of match-merging. Match-merging combines

observations from two or more SAS data sets into a single observation in a new data set
based on the values of one or more common variables. Data set COMBINED shows the
results.

Figure 23.8 Match-Merging Two Data Sets

data combined;
 merge data1 data2;
 by Year;
run;

+ =

COMBINED

1991

1991

1992

1993

1994

1995

Year

X1

X1

X2

X3

X4

X5

Y1

Y2

Y3

Y4

Y5

VarYVarX

DATA2

1991

1991

1993

1994

1995

VarYYear

Y1

Y2

Y3

Y4

Y5

DATA1

VarX

X1

X2

X3

X4

X5

Year

1991

1992

1993

1994

1995

Updating
The following figure shows the results of updating a master data set. Updating uses

information from observations in a transaction data set to delete, add, or alter
information in observations in a master data set. You can update a master data set by
using the UPDATE statement or the MODIFY statement. If you use the UPDATE
statement, your input data sets must be sorted by the values of the variables listed in
the BY statement. (In this example, MASTER and TRANSACTION are both sorted by
Year.) If you use the MODIFY statement, your input data does not need to be sorted.

UPDATE replaces an existing file with a new file, allowing you to add, delete, or
rename columns. MODIFY performs an update in place by rewriting only those records
that have changed, or by appending new records to the end of the file.

Note that by default, UPDATE and MODIFY do not replace nonmissing values in a
master data set with missing values from a transaction data set.

398 Overview of Tools for Combining SAS Data Sets � Chapter 23

Figure 23.9 Updating a Master Data Set

data master;
 update master transaction;
 by Year;
run;

+ =

MASTER

X1

X1

X1

X1

X1

X1

X2

X2

X2

X1

X2

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

Y1

Y1

Y1

Y1

Y1

Y1

Y1

Y2

Y2

Y1

Y2

Year VarYVarX

Y1

Y1

Y1

Y1

Y1

Y1

Y1

Y1

Y1

Y1

MASTER

VarXYear VarY

X1

X1

X1

X1

X1

X1

X1

X1

X1

X1

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

TRANSACTION

1991

1992

1993

1993

1995

Y2

Y2

Y2

X2

X2

X2

X2

VarXYear VarY

Overview of Tools for Combining SAS Data Sets

Using Statements and Procedures
Once you understand the basics of establishing relationships among data, the ways

to access data, and the ways that you can combine SAS data sets, you can choose from a
variety of SAS tools for accessing, combining, and processing your data. The following
table lists and briefly describes the DATA step statements and the procedures that you
can use for combining SAS data sets.

Reading, Combining, and Modifying SAS Data Sets � Overview of Tools for Combining SAS Data Sets 399

Table 23.2 Statements or Procedures for Combining SAS Data Sets

Access Method

Statement or
Procedure Action Performed Sequential Direct

Can Use with
BY statement Comments

BY controls the operation of a
SET, MERGE, UPDATE, or
MODIFY statement in the
DATA step and sets up
special grouping variables.

NA NA NA BY-group processing
is a means of
processing
observations that
have the same values
of one or more
variables.

MERGE reads observations from
two or more SAS data sets
and joins them into a single
observation.

X X When using MERGE
with BY, the data
must be sorted or
indexed on the BY
variable.

MODIFY processes observations in a
SAS data set in place.
(Contrast with UPDATE.)

X X X Sorted or indexed
data are not required
for use with BY, but
are recommended for
performance.

SET reads an observation from
one or more SAS data sets.

X X X Use KEY= or POINT=
statement options for
directly accessing
data.

UPDATE applies transactions to
observations in a master
SAS data set. UPDATE
does not update
observations in place; it
produces an updated copy
of the current data set.

X X Both the master and
transaction data sets
must be sorted by or
indexed on the BY
variable.

PROC
APPEND

adds the observations from
one SAS data set to the end
of another SAS data set.

X

PROC SQL1 reads an observation from
one or more SAS data sets;
reads observations from up
to 32 SAS data sets and
joins them into single
observations; manipulates
observations in a SAS data
set in place; easily produces
a Cartesian product.

X X X All three access
methods are available
in PROC SQL, but the
access method is
chosen by the internal
optimizer.

1 PROC SQL is the SAS implementation of Structured Query Language. In addition to expected SQL capabilities, PROC SQL
includes additional capabilities specific to SAS, such as the use of formats and SAS macro language.

400 How to Prepare Your Data Sets � Chapter 23

Using Error Checking
You can use the _IORC_ automatic variable and the SYSRC autocall macro to perform

error checking in a DATA step. Use these tools with the MODIFY statement or with the
SET statement and the KEY= option. For more information about these tools, see
“Error Checking When Using Indexes to Randomly Access or Update Data” on page 428.

How to Prepare Your Data Sets
Before combining SAS data sets, follow these guidelines to produce the results you

want:

� Know the structure and the contents of the data sets.

� Look at sources of common problems.

� Ensure that observations are in the correct order, or that they can be retrieved in
the correct order (for example, by using an index).

� Test your program.

Knowing the Structure and Contents of the Data Sets
To help determine how your data are related, look at the structure of the data sets.

To see the data set structure, execute the DATASETS procedure, the CONTENTS
procedure, or access the SAS Explorer window in your windowing environment to
display the descriptor information. Descriptor information includes the number of
observations in each data set, the name and attributes of each variable, and which
variables are included in indexes. To print a sample of the observations, use the PRINT
procedure or the REPORT procedure.

You can also use functions such as VTYPE, VLENGTH, and VLENGTHX to show
specific descriptor information. For complete information about these functions, see
SAS Language Reference: Dictionary.

Looking at Sources of Common Problems
If your program does not execute correctly, review your input data for the following

errors:

� variables that have the same name but that represent different data

SAS includes only one variable of a given name in the new data set. If you are
merging two data sets that have variables with the same names but different data,
the values from the last data set that was read are written over the values from
other data sets.

To correct the error, you can rename variables before you combine the data sets
by using the RENAME= data set option in the SET, UPDATE, or MERGE
statement, or you can use the DATASETS procedure.

� common variables with the same data but different attributes

The way SAS handles these differences depends on which attributes are
different:

� type attribute

If the type attribute is different, SAS stops processing the DATA step
and issues an error message stating that the variables are incompatible.

To correct this error, you must use a DATA step to re-create the
variables. The SAS statements you use depend on the nature of the variable.

Reading, Combining, and Modifying SAS Data Sets � How to Prepare Your Data Sets 401

� length attribute

If the length attribute is different, SAS takes the length from the first
data set that contains the variable. In the following example, all data sets
that are listed in the MERGE statement contain the variable Mileage. In
QUARTER1, the length of the variable Mileage is four bytes; in QUARTER2,
it is eight bytes and in QUARTER3 and QUARTER4, it is six bytes. In the
output data set YEARLY, the length of the variable Mileage is four bytes,
which is the length derived from QUARTER1.

data yearly;
merge quarter1 quarter2 quarter3 quarter4;
by Account;

run;

To override the default and set the length yourself, specify the
appropriate length in a LENGTH statement that precedes the SET, MERGE,
or UPDATE statement.

� label, format, and informat attributes

If any of these attributes are different, SAS takes the attribute from the
first data set that contains the variable with that attribute. However, any
label, format, or informat that you explicitly specify overrides a default. If all
data sets contain explicitly specified attributes, the one specified in the first
data set overrides the others. To ensure that the new output data set has the
attributes you prefer, use an ATTRIB statement.

You can also use the SAS File I/O functions such as VLABEL,
VLABELX, and other Variable Information functions to access this
information. For complete information about these functions, see SAS
Language Reference: Dictionary.

Ensuring Correct Order
If you use BY-group processing with the UPDATE, SET, and MERGE statements to

combine data sets, ensure that the observations in the data sets are sorted in the order
of the variables that are listed in the BY statement, or that the data sets have an
appropriate index. If you use BY-group processing in a MODIFY statement, your data
does not need to be sorted, but sorting the data improves efficiency. The BY variable or
variables must be common to both data sets, and they must have the same attributes.
For more information, see Chapter 22, “BY-Group Processing in the DATA Step,” on
page 375.

Testing Your Program
As a final step in preparing your data sets, you should test your program. Create

small temporary SAS data sets that contain a sample of observations that test all of
your program’s logic. If your logic is faulty and you get unexpected output, you can use
the DATA step debugger to debug your program. For complete information about the
DATA Step Debugger, see SAS Language Reference: Dictionary.

402 Combining SAS Data Sets: Methods � Chapter 23

Combining SAS Data Sets: Methods

Concatenating

Definition
Concatenating data sets is the combining of two or more data sets, one after the

other, into a single data set. The number of observations in the new data set is the sum
of the number of observations in the original data sets. The order of observations is
sequential. All observations from the first data set are followed by all observations from
the second data set, and so on.

In the simplest case, all input data sets contain the same variables. If the input data
sets contain different variables, observations from one data set have missing values for
variables defined only in other data sets. In either case, the variables in the new data
set are the same as the variables in the old data sets.

Syntax
Use this form of the SET statement to concatenate data sets:

SET data-set(s);

where

data-set
specifies any valid SAS data set name.

For a complete description of the SET statement, see SAS Language Reference:
Dictionary.

DATA Step Processing During Concatenation
Compilation phase

SAS reads the descriptor information of each data set that is named in the SET
statement and then creates a program data vector that contains all the variables
from all data sets as well as variables created by the DATA step.

Execution — Step 1
SAS reads the first observation from the first data set into the program data vector.
It processes the first observation and executes other statements in the DATA step.
It then writes the contents of the program data vector to the new data set.

The SET statement does not reset the values in the program data vector to
missing, except for variables whose value is calculated or assigned during the
DATA step. Variables that are created by the DATA step are set to missing at the
beginning of each iteration of the DATA step. Variables that are read from a data
set are not.

Execution — Step 2
SAS continues to read one observation at a time from the first data set until it
finds an end-of-file indicator. The values of the variables in the program data

Reading, Combining, and Modifying SAS Data Sets � Concatenating 403

vector are then set to missing, and SAS begins reading observations from the
second data set and so forth until it reads all observations from all data sets.

Example 1: Concatenation Using the DATA Step

In this example, each data set contains the variables Common and Number, and the
observations are arranged in the order of the values of Common. Generally, you
concatenate SAS data sets that have the same variables. In this case, each data set also
contains a unique variable to show the effects of combining data sets more clearly. The
following shows the ANIMAL and the PLANT input data sets in the library that is
referenced by the libref EXAMPLE:

ANIMAL PLANT

OBS Common Animal Number OBS Common Plant Number

1 a Ant 5 1 g Grape 69
2 b Bird 2 h Hazelnut 55
3 c Cat 17 3 i Indigo
4 d Dog 9 4 j Jicama 14
5 e Eagle 5 k Kale 5
6 f Frog 76 6 l Lentil 77

The following program uses a SET statement to concatenate the data sets and then
prints the results:

libname example ’SAS-data-library’;

data example.concatenation;
set example.animal example.plant;

run;

proc print data=example.concatenation;
var Common Animal Plant Number;
title ’Data Set CONCATENATION’;

run;

Output 23.1 Concatenated Data Sets (DATA Step)

Data Set CONCATENATION 1

Obs Common Animal Plant Number

1 a Ant 5
2 b Bird .
3 c Cat 17
4 d Dog 9
5 e Eagle .
6 f Frog 76
7 g Grape 69
8 h Hazelnut 55
9 i Indigo .

10 j Jicama 14
11 k Kale 5
12 l Lentil 77

404 Concatenating � Chapter 23

The resulting data set CONCATENATION has 12 observations, which is the sum of
the observations from the combined data sets. The program data vector contains all
variables from all data sets. The values of variables found in one data set but not in
another are set to missing.

Example 2: Concatenation Using SQL
You can also use the SQL language to concatenate tables. In this example, SQL

reads each row in both tables and creates a new table named COMBINED. The
following shows the YEAR1 and YEAR2 input tables:

YEAR1 YEAR2

Date1 Date2

1996
1997 1997
1998 1998
1999 1999

2000
2001

The following SQL code creates and prints the table COMBINED.

proc sql;
title ’SQL Table COMBINED’;
create table combined as

select * from year1
outer union corr
select * from year2;
select * from combined;

quit;

Output 23.2 Concatenated Tables (SQL)

SQL Table COMBINED 1

Year

1996
1997
1998
1999
1997
1998
1999
2000
2001

Appending Files
Instead of concatenating data sets or tables, you can append them and produce the

same results as concatenation. SAS concatenates data sets (DATA step) and tables
(SQL) by reading each row of data to create a new file. To avoid reading all the records,
you can append the second file to the first file by using the APPEND procedure:

proc append base=year1 data=year2;
run;

Reading, Combining, and Modifying SAS Data Sets � Interleaving 405

The YEAR1 file will contain all rows from both tables.

Note: You cannot use PROC APPEND to add observations to a SAS data set in a
sequential library. �

Efficiency
If no additional processing is necessary, using PROC APPEND or the APPEND

statement in PROC DATASETS is more efficient than using a DATA step to concatenate
data sets.

Interleaving

Definition
Interleaving uses a SET statement and a BY statement to combine multiple data sets

into one new data set. The number of observations in the new data set is the sum of the
number of observations from the original data sets. However, the observations in the
new data set are arranged by the values of the BY variable or variables and, within
each BY group, by the order of the data sets in which they occur. You can interleave
data sets either by using a BY variable or by using an index.

Syntax
Use this form of the SET statement to interleave data sets when you use a BY

variable:

SET data-set(s);

BY variable(s);

where

data-set
specifies a one-level name, a two-level name, or one of the special SAS data set
names.

variable
specifies each variable by which the data set is sorted. These variables are
referred to as BY variables for the current DATA or PROC step.

Use this form of the SET statement to interleave data sets when you use an index:

SET data-set-1 . . . data-set-n KEY= index;

where

data-set
specifies a one-level name, a two-level name, or one of the special SAS data set
names.

index
provides nonsequential access to observations in a SAS data set, which are based
on the value of an index variable or key.

For a complete description of the SET statement, including SET with the KEY=
option, see SAS Language Reference: Dictionary.

406 Interleaving � Chapter 23

Sort Requirements
Before you can interleave data sets, the observations must be sorted or grouped by

the same variable or variables that you use in the BY statement, or you must have an
appropriate index for the data sets.

DATA Step Processing During Interleaving

Compilation phase
� SAS reads the descriptor information of each data set that is named in the

SET statement and then creates a program data vector that contains all the
variables from all data sets as well as variables created by the DATA step.

� SAS creates the FIRST.variable and LAST.variable for each variable listed in
the BY statement.

Execution — Step 1
SAS compares the first observation from each data set that is named in the SET
statement to determine which BY group should appear first in the new data set. It
reads all observations from the first BY group from the selected data set. If this
BY group appears in more than one data set, it reads from the data sets in the
order in which they appear in the SET statement. The values of the variables in
the program data vector are set to missing each time SAS starts to read a new
data set and when the BY group changes.

Execution — Step 2
SAS compares the next observations from each data set to determine the next BY
group and then starts reading observations from the selected data set in the SET
statement that contains observations for this BY group. SAS continues until it has
read all observations from all data sets.

Example 1: Interleaving in the Simplest Case
In this example, each data set contains the BY variable Common, and the

observations are arranged in order of the values of the BY variable. The following
shows the ANIMAL and the PLANT input data sets in the library that is referenced by
the libref EXAMPLE:

ANIMAL PLANT

OBS Common Animal OBS Common Plant
1 a Ant 1 a Apple
2 b Bird 2 b Banana
3 c Cat 3 c Coconut
4 d Dog 4 d Dewberry
5 e Eagle 5 e Eggplant
6 f Frog 6 f Fig

The following program uses SET and BY statements to interleave the data sets, and
prints the results:

data example.interleaving;
set example.animal example.plant;
by Common;

run;

proc print data=example.interleaving;

Reading, Combining, and Modifying SAS Data Sets � Interleaving 407

title ’Data Set INTERLEAVING’;
run;

Output 23.3 Interleaved Data Sets

Data Set INTERLEAVING 1

Obs common animal plant

1 a Ant
2 a Apple
3 b Bird
4 b Banana
5 c Cat
6 c Coconut
7 d Dog
8 d Dewberry
9 e Eagle
10 e Eggplant
11 f Frog
12 f Fig

The resulting data set INTERLEAVING has 12 observations, which is the sum of the
observations from the combined data sets. The new data set contains all variables from
both data sets. The value of variables found in one data set but not in the other are set
to missing, and the observations are arranged by the values of the BY variable.

Example 2: Interleaving with Duplicate Values of the BY variable

If the data sets contain duplicate values of the BY variables, the observations are
written to the new data set in the order in which they occur in the original data sets.
This example contains duplicate values of the BY variable Common. The following
shows the ANIMAL1 and PLANT1 input data sets:

ANIMAL1 PLANT1

OBS Common Animal1 OBS Common Plant1

1 a Ant 1 a Apple
2 a Ape 2 b Banana
3 b Bird 3 c Coconut
4 c Cat 4 c Celery
5 d Dog 5 d Dewberry
6 e Eagle 6 e Eggplant

The following program uses SET and BY statements to interleave the data sets, and
prints the results:

data example.interleaving2;
set example.animal1 example.plant1;
by Common;

run;

proc print data=example.interleaving2;
title ’Data Set INTERLEAVING2: Duplicate BY Values’;

run;

408 Interleaving � Chapter 23

Output 23.4 Interleaved Data Sets with Duplicate Values of the BY Variable

Data Set INTERLEAVING2: Duplicate BY Values 1

Obs Common Animal1 Plant1

1 a Ant
2 a Ape
3 a Apple
4 b Bird
5 b Banana
6 c Cat
7 c Coconut
8 c Celery
9 d Dog
10 d Dewberry
11 e Eagle
12 e Eggplant

The number of observations in the new data set is the sum of the observations in all
the data sets. The observations are written to the new data set in the order in which
they occur in the original data sets.

Example 3: Interleaving with Different BY Values in Each Data Set
The data sets ANIMAL2 and PLANT2 both contain BY values that are present in

one data set but not in the other. The following shows the ANIMAL2 and the PLANT2
input data sets:

ANIMAL2 PLANT2

OBS Common Animal2 OBS Common Plant2

1 a Ant 1 a Apple
2 c Cat 2 b Banana
3 d Dog 3 c Coconut
4 e Eagle 4 e Eggplant

5 f Fig

This program uses SET and BY statements to interleave these data sets, and prints
the results:

data example.interleaving3;
set example.animal2 example.plant2;
by Common;

run;

proc print data=example.interleaving3;
title ’Data Set INTERLEAVING3: Different BY Values’;

run;

Reading, Combining, and Modifying SAS Data Sets � One-to-One Reading 409

Output 23.5 Interleaving Data Sets with Different BY Values

Data Set INTERLEAVING3: Different BY Values 1

Obs Common Animal2 Plant2

1 a Ant
2 a Apple
3 b Banana
4 c Cat
5 c Coconut
6 d Dog
7 e Eagle
8 e Eggplant
9 f Fig

The resulting data set has nine observations arranged by the values of the BY
variable.

Comments and Comparisons
� In other languages, the term merge is often used to mean interleave. SAS reserves

the term merge for the operation in which observations from two or more data sets
are combined into one observation. The observations in interleaved data sets are
not combined; they are copied from the original data sets in the order of the values
of the BY variable.

� If one table has multiple rows with the same BY value, the DATA step preserves
the order of those rows in the result.

� To use the DATA step, the input tables must be appropriately sorted or indexed.
SQL does not require the input tables to be in order.

One-to-One Reading

Definition
One-to-one reading combines observations from two or more data sets into one

observation by using two or more SET statements to read observations independently
from each data set. This process is also called one-to-one matching. The new data set
contains all the variables from all the input data sets. The number of observations in
the new data set is the number of observations in the smallest original data set. If the
data sets contain common variables, the values that are read in from the last data set
replace the values that were read in from earlier data sets.

Syntax
Use this form of the SET statement for one-to-one reading:

SET data-set-1;

SET data-set-2;

where

data-set-1

410 One-to-One Reading � Chapter 23

specifies a one-level name, a two-level name, or one of the special SAS data set
names. data-set-1 is the first file that the DATA step reads.

data-set-2
specifies a one-level name, a two-level name, or one of the special SAS data set
names. data-set-2 is the second file that the DATA step reads.

CAUTION:
Use care when you combine data sets with multiple SET statements. Using multiple SET
statements to combine observations can produce undesirable results. Test your
program on representative samples of the data sets before using this method to
combine them. �

For a complete description of the SET statement, see SAS Language Reference:
Dictionary.

DATA Step Processing During a One-to-One Reading
Compilation phase

SAS reads the descriptor information of each data set named in the SET
statement and then creates a program data vector that contains all the variables
from all data sets as well as variables created by the DATA step.

Execution — Step 1
When SAS executes the first SET statement, SAS reads the first observation from
the first data set into the program data vector. The second SET statement reads
the first observation from the second data set into the program data vector. If both
data sets contain the same variables, the values from the second data set replace
the values from the first data set, even if the value is missing. After reading the
first observation from the last data set and executing any other statements in the
DATA step, SAS writes the contents of the program data vector to the new data
set. The SET statement does not reset the values in the program data vector to
missing, except for those variables that were created or assigned values during the
DATA step.

Execution — Step 2
SAS continues reading from one data set and then the other until it detects an
end-of-file indicator in one of the data sets. SAS stops processing with the last
observation of the shortest data set and does not read the remaining observations
from the longer data set.

Example 1: One-to-One Reading: Processing an Equal Number of
Observations

The SAS data sets ANIMAL and PLANT both contain the variable Common, and are
arranged by the values of that variable. The following shows the ANIMAL and the
PLANT input data sets:

ANIMAL PLANT

OBS Common Animal OBS Common Plant

1 a Ant 1 a Apple
2 b Bird 2 b Banana
3 c Cat 3 c Coconut
4 d Dog 4 d Dewberry

Reading, Combining, and Modifying SAS Data Sets � One-to-One Merging 411

5 e Eagle 5 e Eggplant
6 f Frog 6 g Fig

The following program uses two SET statements to combine observations from
ANIMAL and PLANT, and prints the results:

data twosets;
set animal;
set plant;

run;

proc print data=twosets;
title ’Data Set TWOSETS - Equal Number of Observations’;

run;

Output 23.6 Data Set Created from Two Data Sets That Have Equal Observations

Data Set TWOSETS - Equal Number of Observations 1

Obs Common Animal Plant

1 a Ant Apple
2 b Bird Banana
3 c Cat Coconut
4 d Dog Dewberry
5 e Eagle Eggplant
6 g Frog Fig

Each observation in the new data set contains all the variables from all the data sets.
Note, however, that the Common variable value in observation 6 contains a “g.” The
value of Common in observation 6 of the ANIMAL data set was overwritten by the
value in PLANT, which was the data set that SAS read last.

Comments and Comparisons
� The results that are obtained by reading observations using two or more SET

statements are similar to those that are obtained by using the MERGE statement
with no BY statement. However, with one-to-one reading, SAS stops processing
before all observations are read from all data sets if the number of observations in
the data sets is not equal.

� Using multiple SET statements with other DATA step statements makes the
following applications possible:

� merging one observation with many
� conditionally merging observations
� reading from the same data set twice.

One-to-One Merging

Definition
One-to-one merging combines observations from two or more SAS data sets into a

single observation in a new data set. To perform a one-to-one merge, use the MERGE

412 One-to-One Merging � Chapter 23

statement without a BY statement. SAS combines the first observation from all data
sets in the MERGE statement into the first observation in the new data set, the second
observation from all data sets into the second observation in the new data set, and so
on. In a one-to-one merge, the number of observations in the new data set equals the
number of observations in the largest data set that was named in the MERGE
statement.

If you use the MERGENOBY= SAS system option, you can control whether SAS
issues a message when MERGE processing occurs without an associated BY statement.

Syntax
Use this form of the MERGE statement to merge SAS data sets:

MERGE data-set(s);

where

data-set
names at least two existing SAS data sets.

CAUTION:
Avoid using duplicate values or different values of common variables. One-to-one
merging with data sets that contain duplicate values of common variables can
produce undesirable results. If a variable exists in more than one data set, the value
from the last data set that is read is the one that is written to the new data set. The
variables are combined exactly as they are read from each data set. Using a
one-to-one merge to combine data sets with different values of common variables can
also produce undesirable results. If a variable exists in more than one data set, the
value from the last data set read is the one that is written to the new data set even if
the value is missing. Once SAS has processed all observations in a data set, all
subsequent observations in the new data set have missing values for the variables
that are unique to that data set. �

For a complete description of the MERGE statement, see SAS Language Reference:
Dictionary.

DATA Step Processing During One-to-One Merging

Compilation phase
SAS reads the descriptor information of each data set that is named in the
MERGE statement and then creates a program data vector that contains all the
variables from all data sets as well as variables created by the DATA step.

Execution — Step 1
SAS reads the first observation from each data set into the program data vector,
reading the data sets in the order in which they appear in the MERGE statement.
If two data sets contain the same variables, the values from the second data set
replace the values from the first data set. After reading the first observation from
the last data set and executing any other statements in the DATA step, SAS writes
the contents of the program data vector to the new data set. Only those variables
that are created or assigned values during the DATA step are set to missing.

Execution — Step 2
SAS continues until it has read all observations from all data sets.

Reading, Combining, and Modifying SAS Data Sets � One-to-One Merging 413

Example 1: One-to-One Merging with an Equal Number of Observations
The SAS data sets ANIMAL and PLANT both contain the variable Common, and the

observations are arranged by the values of Common. The following shows the ANIMAL
and the PLANT input data sets:

ANIMAL PLANT

OBS Common Animal OBS Common Plant

1 a Ant 1 a Apple
2 b Bird 2 b Banana
3 c Cat 3 c Coconut
4 d Dog 4 d Dewberry
5 e Eagle 5 e Eggplant
6 f Frog 6 g Fig

The following program merges these data sets and prints the results:

data combined;
merge animal plant;

run;

proc print data=combined;
title ’Data Set COMBINED’;

run;

Output 23.7 Merged Data Sets That Have an Equal Number of Observations

Data Set COMBINED 1

Obs Common Animal Plant

1 a Ant Apple
2 b Bird Banana
3 c Cat Coconut
4 d Dog Dewberry
5 e Eagle Eggplant
6 g Frog Fig

Each observation in the new data set contains all variables from all data sets. If two
data sets contain the same variables, the values from the second data set replace the
values from the first data set, as shown in observation 6.

Example 2: One-to-One Merging with an Unequal Number of Observations
The SAS data sets ANIMAL1 and PLANT1 both contain the variable Common, and

the observations are arranged by the values of Common. The PLANT1 data set has
fewer observations than the ANIMAL1 data set. The following shows the ANIMAL1
and the PLANT1 input data sets:

ANIMAL1 PLANT1

OBS Common Animal OBS Common Plant

1 a Ant 1 a Apple
2 b Bird 2 b Banana

414 One-to-One Merging � Chapter 23

3 c Cat 3 c Coconut
4 d Dog
5 e Eagle
6 f Frog

The following program merges these unequal data sets and prints the results:

data combined1;
merge animal1 plant1;

run;

proc print data=combined1;
title ’Data Set COMBINED1’;

run;

Output 23.8 Merged Data Sets That Have an Unequal Number of Observations

Data Set COMBINED1 1

Obs Common Animal Plant

1 a Ant Apple
2 b Bird Banana
3 c Cat Coconut
4 d Dog
5 e Eagle
6 f Frog

Note that observations 4 through 6 contain missing values for the variable Plant.

Example 3: One-to-One Merging with Duplicate Values of Common Variables

The following example shows the undesirable results that you can obtain by using
one-to-one merging with data sets that contain duplicate values of common variables.
The value from the last data set that is read is the one that is written to the new data
set. The variables are combined exactly as they are read from each data set. In the
following example, the data sets ANIMAL1 and PLANT1 contain the variable Common,
and each data set contains observations with duplicate values of Common. The
following shows the ANIMAL1 and the PLANT1 input data sets:

ANIMAL1 PLANT1

OBS Common Animal OBS Common Plant

1 a Ant 1 a Apple
2 a Ape 2 b Banana
3 b Bird 3 c Coconut
4 c Cat 4 c Celery
5 d Dog 5 d Dewberry
6 e Eagle 6 e Eggplant

The following program produces the data set MERGE1 data set and prints the
results:

Reading, Combining, and Modifying SAS Data Sets � One-to-One Merging 415

/* This program illustrates undesirable results. */
data merge1;

merge animal1 plant1;
run;

proc print data=merge1;
title ’Data Set MERGE1’;

run;

Output 23.9 Undesirable Results with Duplicate Values of Common Variables

Data Set MERGE1 1

Obs Common Animal1 Plant1

1 a Ant Apple
2 b Ape Banana
3 c Bird Coconut
4 c Cat Celery
5 d Dog Dewberry
6 e Eagle Eggplant

The number of observations in the new data set is six. Note that observations 2 and 3
contain undesirable values. SAS reads the second observation from data set ANIMAL1.
It then reads the second observation from data set PLANT1 and replaces the values for
the variables Common and Plant1. The third observation is created in the same way.

Example 4: One-to-One Merging with Different Values of Common Variables

The following example shows the undesirable results obtained from using the
one-to-one merge to combine data sets with different values of common variables. If a
variable exists in more than one data set, the value from the last data set that is read
is the one that is written to the new data set even if the value is missing. Once SAS
processes all observations in a data set, all subsequent observations in the new data set
have missing values for the variables that are unique to that data set. In this example,
the data sets ANIMAL2 and PLANT2 have different values of the Common variable.
The following shows the ANIMAL2 and the PLANT2 input data sets:

ANIMAL2 PLANT2

OBS Common Animal OBS Common Plant

1 a Ant 1 a Apple
2 c Cat 2 b Banana
3 d Dog 3 c Coconut
4 e Eagle 4 e Eggplant

5 f Fig

The following program produces the data set MERGE2 and prints the results:

/* This program illustrates undesirable results. */
data merge2;

merge animal2 plant2;
run;

416 Match-Merging � Chapter 23

proc print data=merge2;
title ’Data Set MERGE2’;

run;

Output 23.10 Undesirable Results with Different Values of Common Variables

Data Set MERGE2 1

Obs Common Animal2 Plant2

1 a Ant Apple
2 b Cat Banana
3 c Dog Coconut
4 e Eagle Eggplant
5 f Fig

Comments and Comparisons
The results from a one-to-one merge are similar to the results obtained from using

two or more SET statements to combine observations. However, with the one-to-one
merge, SAS continues processing all observations in all data sets that were named in
the MERGE statement.

Match-Merging

Definition
Match-merging combines observations from two or more SAS data sets into a single

observation in a new data set according to the values of a common variable. The
number of observations in the new data set is the sum of the largest number of
observations in each BY group in all data sets. To perform a match-merge, use the
MERGE statement with a BY statement. Before you can perform a match-merge, all
data sets must be sorted by the variables that you specify in the BY statement or they
must have an index.

Syntax
Use this form of the MERGE statement to match-merge data sets:

MERGE data-set(s);

BY variable(s);

where

data-set
names at least two existing SAS data sets from which observations are read.

variable
names each variable by which the data set is sorted or indexed. These variables
are referred to as BY variables.

For a complete description of the MERGE and the BY statements, see SAS Language
Reference: Dictionary.

Reading, Combining, and Modifying SAS Data Sets � Match-Merging 417

DATA Step Processing During Match-Merging

Compilation phase
SAS reads the descriptor information of each data set that is named in the
MERGE statement and then creates a program data vector that contains all the
variables from all data sets as well as variables created by the DATA step. SAS
creates the FIRST.variable and LAST.variable for each variable that is listed in
the BY statement.

Execution – Step 1
SAS looks at the first BY group in each data set that is named in the MERGE
statement to determine which BY group should appear first in the new data set.
The DATA step reads into the program data vector the first observation in that BY
group from each data set, reading the data sets in the order in which they appear
in the MERGE statement. If a data set does not have observations in that BY
group, the program data vector contains missing values for the variables unique to
that data set.

Execution – Step 2
After processing the first observation from the last data set and executing other
statements, SAS writes the contents of the program data vector to the new data
set. SAS retains the values of all variables in the program data vector except
those variables that were created by the DATA step; SAS sets those values to
missing. SAS continues to merge observations until it writes all observations from
the first BY group to the new data set. When SAS has read all observations in a
BY group from all data sets, it sets all variables in the program data vector to
missing. SAS looks at the next BY group in each data set to determine which BY
group should appear next in the new data set.

Execution – Step 3
SAS repeats these steps until it reads all observations from all BY groups in all
data sets.

Example 1: Combining Observations Based on a Criterion
The SAS data sets ANIMAL and PLANT each contain the BY variable Common, and

the observations are arranged in order of the values of the BY variable. The following
shows the ANIMAL and the PLANT input data sets:

ANIMAL PLANT

OBS Common Animal OBS Common Plant

1 a Ant 1 a Apple
2 b Bird 2 b Banana
3 c Cat 3 c Coconut
4 d Dog 4 d Dewberry
5 e Eagle 5 e Eggplant
6 f Frog 6 f Fig

The following program merges the data sets according to the values of the BY
variable Common, and prints the results:

data combined;
merge animal plant;
by Common;

run;

418 Match-Merging � Chapter 23

proc print data=combined;
title ’Data Set COMBINED’;

run;

Output 23.11 Data Sets Combined by Match-Merging

Data Set COMBINED 1

Obs Common Animal Plant

1 a Ant Apple
2 b Bird Banana
3 c Cat Coconut
4 d Dog Dewberry
5 e Eagle Eggplant
6 f Frog Fig

Each observation in the new data set contains all the variables from all the data sets.

Example 2: Match-Merge with Duplicate Values of the BY Variable
When SAS reads the last observation from a BY group in one data set, SAS retains its

values in the program data vector for all variables that are unique to that data set until
all observations for that BY group have been read from all data sets. In the following
example, the data sets ANIMAL1 and PLANT1 contain duplicate values of the BY
variable Common. The following shows the ANIMAL1 and the PLANT1 input data sets:

ANIMAL1 PLANT1

OBS Common Animal1 OBS Common Plant1

1 a Ant 1 a Apple
2 a Ape 2 b Banana
3 b Bird 3 c Coconut
4 c Cat 4 c Celery
5 d Dog 5 d Dewberry
6 e Eagle 6 e Eggplant

The following program produces the merged data set MATCH1, and prints the results:

data match1;
merge animal1 plant1;
by Common;

run;

proc print data=match1;
title ’Data Set MATCH1’;

run;

Reading, Combining, and Modifying SAS Data Sets � Match-Merging 419

Output 23.12 Match-Merged Data Set with Duplicate BY Values

Data Set MATCH1 1

Obs Common Animal1 Plant1

1 a Ant Apple
2 a Ape Apple
3 b Bird Banana
4 c Cat Coconut
5 c Cat Celery
6 d Dog Dewberry
7 e Eagle Eggplant

In observation 2 of the output, the value of the variable Plant1 is retained until all
observations in the BY group are written to the new data set. Match-merging also
produced duplicate values in ANIMAL1 for observations 4 and 5.

Example 3: Match-Merge with Nonmatched Observations
When SAS performs a match-merge with nonmatched observations in the input data

sets, SAS retains the values of all variables in the program data vector even if the value
is missing. The data sets ANIMAL2 and PLANT2 do not contain all values of the BY
variable Common. The following shows the ANIMAL2 and the PLANT2 input data sets:

ANIMAL2 PLANT2

OBS Common Animal2 OBS Common Plant2

1 a Ant 1 a Apple
2 c Cat 2 b Banana
3 d Dog 3 c Coconut
4 e Eagle 4 e Eggplant

5 f Fig

The following program produces the merged data set MATCH2, and prints the results:

data match2;
merge animal2 plant2;
by Common;

run;

proc print data=match2;
title ’Data Set MATCH2’;

run;

420 Updating with the UPDATE and the MODIFY Statements � Chapter 23

Output 23.13 Match-Merged Data Set with Nonmatched Observations

Data Set MATCH2 1

Obs Common Animal2 Plant2

1 a Ant Apple
2 b Banana
3 c Cat Coconut
4 d Dog
5 e Eagle Eggplant
6 f Fig

As the output shows, all values of the variable Common are represented in the new
data set, including missing values for the variables that are in one data set but not in
the other.

Updating with the UPDATE and the MODIFY Statements

Definitions
Updating a data set refers to the process of applying changes to a master data set.

To update data sets, you work with two input data sets. The data set containing the
original information is the master data set, and the data set containing the new
information is the transaction data set.

You can update data sets by using the UPDATE statement or the MODIFY statement:

UPDATE uses observations from the transaction data set to change the values
of corresponding observations from the master data set. You must
use a BY statement with the UPDATE statement because all
observations in the transaction data set are keyed to observations in
the master data set according to the values of the BY variable.

MODIFY can replace, delete, and append observations in an existing data set.
Using the MODIFY statement can save disk space because it
modifies data in place, without creating a copy of the data set.

The number of observations in the new data set is the sum of the number of
observations in the master data set and the number of unmatched observations in the
transaction data set.

For complete information about the UPDATE and the MODIFY statements, see SAS
Language Reference: Dictionary.

Syntax of the UPDATE Statement
Use this form of the UPDATE statement to update a master data set:

UPDATE master-data-set transaction-data-set;

BY variable-list;

where

master-data-set
names the SAS data set that is used as the master file.

Reading, Combining, and Modifying SAS Data Sets � Updating with the UPDATE and the MODIFY Statements 421

transaction-data-set
names the SAS data set that contains the changes to be applied to the master data
set.

variable-list
specifies the variables by which observations are matched.

If the transaction data set contains duplicate values of the BY variable, SAS applies
both transactions to the observation. The last values that are copied into the program
data vector are written to the new data set. If your data is in this form, use the
MODIFY statement instead of the UPDATE statement to process your data.

CAUTION:
Values of the BY variable must be unique for each observation in the master data set. If
the master data set contains two observations with the same value of the BY
variable, the first observation is updated and the second observation is ignored. SAS
writes a warning message to the log when the DATA step executes. �

For complete information about the UPDATE statement, see SAS Language
Reference: Dictionary.

Syntax of the MODIFY Statement
This form of the MODIFY statement is used in the examples that follow:

MODIFY master-data–set;

BY variable-list;

where

master-data–set
specifies the SAS data set that you want to modify.

variable-list
names each variable by which the data set is ordered.

Note: The MODIFY statement does not support changing the descriptor portion of a
SAS data set, such as adding a variable. �

For complete information about the MODIFY statement, see SAS Language
Reference: Dictionary.

DATA Step Processing with the UPDATE Statement

Compilation phase
� SAS reads the descriptor information of each data set that is named in the

UPDATE statement and creates a program data vector that contains all the
variables from all data sets as well as variables created by the DATA step.

� SAS creates the FIRST.variable and LAST.variable for each variable that is
listed in the BY statement.

Execution – Step 1
SAS looks at the first observation in each data set that is named in the UPDATE
statement to determine which BY group should appear first. If the transaction BY
value precedes the master BY value, SAS reads from the transaction data set only
and sets the variables from the master data set to missing. If the master BY value
precedes the transaction BY value, SAS reads from the master data set only and
sets the unique variables from the transaction data set to missing. If the BY

422 Updating with the UPDATE and the MODIFY Statements � Chapter 23

values in the master and transaction data sets are equal, it applies the first
transaction by copying the nonmissing values into the program data vector.

Execution – Step 2
After completing the first transaction, SAS looks at the next observation in the
transaction data set. If SAS finds one with the same BY value, it applies that
transaction too. The first observation then contains the new values from both
transactions. If no other transactions exist for that observation, SAS writes the
observation to the new data set and sets the values in the program data vector to
missing. SAS repeats these steps until it has read all observations from all BY
groups in both data sets.

Updating with Nonmatched Observations, Missing Values, and New
Variables

In the UPDATE statement, if an observation in the master data set does not have a
corresponding observation in the transaction data set, SAS writes the observation to the
new data set without modifying it. Any observation from the transaction data set that
does not correspond to an observation in the master data set is written to the program
data vector and becomes the basis for an observation in the new data set. The data in
the program data vector can be modified by other transactions before it is written to the
new data set. If a master data set observation does not need updating, the
corresponding observation can be omitted from the transaction data set.

SAS does not replace existing values in the master data set with missing values if
those values are coded as periods (for numeric variables) or blanks (for character
variables) in the transaction data set. To replace existing values with missing values,
you must either create a transaction data set in which missing values are coded with
the special missing value characters, or use the UPDATEMODE=NOMISSINGCHECK
statement option.

With UPDATE, the transaction data set can contain new variables to be added to all
observations in the master data set.

To view a sample program, see “Example 3: Using UPDATE for Processing
Nonmatched Observations, Missing Values, and New Variables” on page 425.

Sort Requirements for the UPDATE Statement
If you do not use an index, both the master data set and the transaction data set

must be sorted by the same variable or variables that you specify in the BY statement
that accompanies the UPDATE statement. The values of the BY variable should be
unique for each observation in the master data set. If you use more than one BY
variable, the combination of values of all BY variables should be unique for each
observation in the master data set. The BY variable or variables should be ones that
you never need to update.

Note: The MODIFY statement does not require sorted files. However, sorting the
data improves efficiency. �

Using an Index with the MODIFY Statement
The MODIFY statement maintains the index. You do not have to rebuild the index

like you do for the UPDATE statement.

Choosing between UPDATE or MODIFY with BY
Using the UPDATE statement is comparable to using MODIFY with BY to apply

transactions to a data set. While MODIFY is a more powerful tool with several other

Reading, Combining, and Modifying SAS Data Sets � Updating with the UPDATE and the MODIFY Statements 423

applications, UPDATE is still the tool of choice in some cases. The following table helps
you choose whether to use UPDATE or MODIFY with BY.

Table 23.3 MODIFY with BY versus UPDATE

Issue MODIFY with BY UPDATE

Disk space saves disk space because it updates data in
place

requires more disk space because it
produces an updated copy of the data
set

Sort and index sorted input data sets are not required,
although for good performance, it is strongly
recommended that both data sets be sorted
and that the master data set be indexed

requires only that both data sets be
sorted

When to use use only when you expect to process a SMALL
portion of the data set

use if you expect to need to process
most of the data set

Where to specify the
modified data set

specify the updated data set in both the DATA
and the MODIFY statements

specify the updated data set in the
DATA and the UPDATE statements

Duplicate BY-values allows duplicate BY-values in both the master
and the transaction data sets

allows duplicate BY-values in the
transaction data set only (If
duplicates exist in the master data
set, SAS issues a warning.)

Scope of changes cannot change the data set descriptor
information, so changes such as adding or
deleting variables, variable labels, and so on,
are not valid

can make changes that require a
change in the descriptor portion of a
data set, such as adding new
variables, and so on

Error checking has error-checking capabilities using the
IORC automatic variable and the SYSRC
autocall macro

needs no error checking because
transactions without a corresponding
master record are not applied but are
added to the data set

Data set integrity data may only be partially updated due to an
abnormal task termination

no data loss occurs because UPDATE
works on a copy of the data

For more information about tools for combining SAS data sets, see Table 23.2 on
page 399.

Primary Uses of the MODIFY Statement
The MODIFY statement has three primary uses:

� modifying observations in a single SAS data set.

� modifying observations in a single SAS data set directly, either by observation
number or by values in an index.

� modifying observations in a master data set, based on values in a transaction data
set. MODIFY with BY is similar to using the UPDATE statement.

Several of the examples that follow demonstrate these uses.

424 Updating with the UPDATE and the MODIFY Statements � Chapter 23

Example 1: Using UPDATE for Basic Updating

In this example, the data set MASTER contains original values of the variables
Animal and Plant. The data set NEWPLANT is a transaction data set with new values
of the variable Plant. The following shows the MASTER and the NEWPLANT input
data sets:

MASTER NEWPLANT

OBS Common Animal Plant OBS Common Plant

1 a Ant Apple 1 a Apricot
2 b Bird Banana 2 b Barley
3 c Cat Coconut 3 c Cactus
4 d Dog Dewberry 4 d Date
5 e Eagle Eggplant 5 e Escarole
6 f Frog Fig 6 f Fennel

The following program updates MASTER with the transactions in the data set
NEWPLANT, writes the results to UPDATE_FILE, and prints the results:

data update_file;
update master newplant;
by common;

run;

proc print data=update_file;
title ’Data Set Update_File’;

run;

Output 23.14 Master Data Set Updated by Transaction Data Set

Data Set Update_File 1

Obs Common Animal Plant

1 a Ant Apricot
2 b Bird Barley
3 c Cat Cactus
4 d Dog Date
5 e Eagle Escarole
6 f Frog Fennel

Each observation in the new data set contains a new value for the variable Plant.

Example 2: Using UPDATE with Duplicate Values of the BY Variable

If the master data set contains two observations with the same value of the BY
variable, the first observation is updated and the second observation is ignored. SAS
writes a warning message to the log. If the transaction data set contains duplicate
values of the BY variable, SAS applies both transactions to the observation. The last
values copied into the program data vector are written to the new data set. The
following shows the MASTER1 and the DUPPLANT input data sets.

Reading, Combining, and Modifying SAS Data Sets � Updating with the UPDATE and the MODIFY Statements 425

MASTER1 DUPPLANT

OBS Common Animal1 Plant1 OBS Common Plant1

1 a Ant Apple 1 a Apricot
2 b Bird Banana 2 b Barley
3 b Bird Banana 3 c Cactus
4 c Cat Coconut 4 d Date
5 d Dog Dewberry 5 d Dill
6 e Eagle Eggplant 6 e Escarole
7 f Frog Fig 7 f Fennel

The following program applies the transactions in DUPPLANT to MASTER1 and
prints the results:

data update1;
update master1 dupplant;
by Common;

run;

proc print data=update1;
title ’Data Set Update1’;

run;

Output 23.15 Updating Data Sets with Duplicate BY Values

Data Set Update1 1

Obs Common Animal1 Plant1

1 a Ant Apricot
2 b Bird Barley
3 b Bird Banana
4 c Cat Cactus
5 d Dog Dill
6 e Eagle Escarole
7 f Frog Fennel

When this DATA step executes, SAS generates a warning message stating that there
is more than one observation for a BY group. However, the DATA step continues to
process, and the data set UPDATE1 is created.

The resulting data set has seven observations. Observations 2 and 3 have duplicate
values of the BY variable Common. However, the value of the variable PLANT1 was
not updated in the second occurrence of the duplicate BY value.

Example 3: Using UPDATE for Processing Nonmatched Observations,
Missing Values, and New Variables

In this example, the data set MASTER2 is a master data set. It contains a missing
value for the variable Plant2 in the first observation, and not all of the values of the BY
variable Common are included. The transaction data set NONPLANT contains a new
variable Mineral, a new value of the BY variable Common, and missing values for
several observations. The following shows the MASTER2 and the NONPLANT input
data sets:

426 Updating with the UPDATE and the MODIFY Statements � Chapter 23

MASTER2 NONPLANT

OBS Common Animal2 Plant2 OBS Common Plant2 Mineral

1 a Ant 1 a Apricot Amethyst
2 c Cat Coconut 2 b Barley Beryl
3 d Dog Dewberry 3 c Cactus
4 e Eagle Eggplant 4 e
5 f Frog Fig 5 f Fennel

6 g Grape Garnet

The following program updates the data set MASTER2 and prints the results:

data update2_file;
update master2 nonplant;
by Common;

run;

proc print data=update2_file;
title ’Data Set Update2_File’;

run;

Output 23.16 Results of Updating with New Variables, Nonmatched Observations, and Missing Values

Data Set Update2_File 1

Obs Common Animal2 Plant2 Mineral

1 a Ant Apricot Amethyst
2 b Barley Beryl
3 c Cat Cactus
4 d Dog Dewberry
5 e Eagle Eggplant
6 f Frog Fennel
7 g Grape Garnet

As shown, all observations now include values for the variable Mineral. The value of
Mineral is set to missing for some observations. Observations 2 and 6 in the
transaction data set did not have corresponding observations in MASTER2, and they
have become new observations. Observation 3 from the master data set was written to
the new data set without change, and the value for Plant2 in observation 4 was not
changed to missing. Three observations in the new data set have updated values for the
variable Plant2.

The following program uses the UPDATEMODE statement option on the UPDATE
statement, and prints the results:

data update2_file;
update master2 nonplant updatemode=nomissingcheck;
by Common;

run;
proc print data=update2_file;

Reading, Combining, and Modifying SAS Data Sets � Updating with the UPDATE and the MODIFY Statements 427

title ’Data Set Update2_File - UPDATEMODE Option’;
run;

Output 23.17 Results of Updating with the UPDATEMODE Option

Data Set Update2_File - UPDATEMODE Option 1

Obs Common Animal2 Plant2 Mineral

1 a Ant Apricot Amethyst
2 b Barley Beryl
3 c Cat Cactus
4 d Dog Dewberry
5 e Eagle
6 f Frog Fennel
7 g Grape Garnet

The value of Plant2 in observation 5 is set to missing because the
UPDATEMODE=NOMISSINGCHECK option is in effect.

For detailed examples for updating data sets, see Combining and Modifying SAS
Data Sets: Examples.

Example 4: Updating a MASTER Data Set by Adding an Observation
If the transaction data set contains an observation that does not match an

observation in the master data set, you must alter the program. The Year value in
observation 5 of TRANSACTION has no match in MASTER. The following shows the
MASTER and the TRANSACTION input data sets:

MASTER TRANSACTION

OBS Year VarX VarY OBS Year VarX VarY

1 1985 x1 y1 1 1991 x2
2 1986 x1 y1 2 1992 x2 y2
3 1987 x1 y1 3 1993 x2
4 1988 x1 y1 4 1993 y2
5 1989 x1 y1 5 1995 x2 y2
6 1990 x1 y1
7 1991 x1 y1
8 1992 x1 y1
9 1993 x1 y1
10 1994 x1 y1

You must use an explicit OUTPUT statement to write a new observation to a master
data set. (The default action for a DATA step using a MODIFY statement is REPLACE,
not OUTPUT.) Once you specify an explicit OUTPUT statement, you must also specify a
REPLACE statement. The following DATA step updates data set MASTER, based on
values in TRANSACTION, and adds a new observation. This program also uses the
IORC automatic variable for error checking. (For more information about error
checking, see “Error Checking When Using Indexes to Randomly Access or Update
Data” on page 428.

428 Error Checking When Using Indexes to Randomly Access or Update Data � Chapter 23

Output 23.18 Modified MASTER Data Set

Updated Master Data Set -- MODIFY 1
One Observation Added

Obs Year VarX VarY

1 1985 x1 y1
2 1986 x1 y1
3 1987 x1 y1
4 1988 x1 y1
5 1989 x1 y1
6 1990 x1 y1
7 1991 x2 y1
8 1992 x2 y2
9 1993 x2 y2
10 1994 x1 y1
11 1995 x2 y2

SAS added a new observation, observation 11, to the MASTER data set and updated
observations 7, 8, and 9.

Error Checking When Using Indexes to Randomly Access or Update Data

The Importance of Error Checking
When reading observations with the SET statement and KEY= option or with the

MODIFY statement, error checking is imperative for several reasons. The most
important reason is that these tools use nonsequential access methods, and so there is
no guarantee that an observation will be located that satisfies the request. Error
checking enables you to direct execution to specific code paths, depending on the
outcome of the I/O operation. Your program will continue execution for expected
conditions and terminate execution when unexpected results occur.

Error-Checking Tools
Two tools have been created to make error checking easier when you use the MODIFY

statement or the SET statement with the KEY= option to process SAS data sets:

� _IORC_ automatic variable

� SYSRC autocall macro.

IORC is created automatically when you use the MODIFY statement or the SET
statement with KEY=. The value of _IORC_ is a numeric return code that indicates the
status of the I/O operation from the most recently executed MODIFY or SET statement
with KEY=. Checking the value of this variable enables you to detect abnormal I/O
conditions and to direct execution down specific code paths instead of having the
application terminate abnormally. For example, if the KEY= variable value does match
between two observations, you might want to combine them and output an observation.
If they don’t match, however, you may want only to write a note to the log.

Because the values of the _IORC_ automatic variable are internal and subject to
change, the SYSRC macro was created to enable you to test for specific I/O conditions
while protecting your code from future changes in _IORC_ values. When you use

Reading, Combining, and Modifying SAS Data Sets � Example 1: Routing Execution When an Unexpected Condition Occurs 429

SYSRC, you can check the value of _IORC_ by specifying one of the mnemonics listed in
the following table.

Table 23.4 Most Common Mnemonic Values of _IORC_ for DATA Step Processing

Mnemonic value Meaning of return code When return code occurs

_DSENMR The TRANSACTION data set
observation does not exist in the
MASTER data set.

MODIFY with BY is used and no
match occurs.

_DSEMTR Multiple TRANSACTION data set
observations with the same BY
variable value do not exist in the
MASTER data set.

MODIFY with BY is used and
consecutive observations with the
same BY values do not find a match
in the first data set. In this
situation, the first observation that
fails to find a match returns
_DSENMR. The subsequent
observations return _DSEMTR.

_DSENOM No matching observation was
found in the MASTER data set.

SET or MODIFY with KEY= finds
no match.

_SENOCHN The output operation was
unsuccessful.

the KEY= option in a MODIFY
statement contains duplicate
values.

_SOK The I/O operation was successful. a match is found.

Example 1: Routing Execution When an Unexpected Condition Occurs

Overview
This example shows how to prevent an unexpected condition from terminating the

DATA step. The goal is to update a master data set with new information from a
transaction data set. This application assumes that there are no duplicate values for
the common variable in either data set.

Note: This program works as expected only if the master and transaction data sets
contain no consecutive observations with the same value for the common variable. For
an explanation of the behavior of MODIFY with KEY= when duplicates exist, see the
MODIFY statement in SAS Language Reference: Dictionary. �

Input Data Sets
The TRANSACTION data set contains three observations: two updates to

information in MASTER and a new observation about PartNumber value 6 that needs
to be added. MASTER is indexed on PartNumber. There are no duplicate values of
PartNumber in MASTER or TRANSACTION. The following shows the MASTER and
the TRANSACTION input data sets:

MASTER TRANSACTION

OBS PartNumber Quantity OBS PartNumber AddQuantity

1 1 10 1 4 14
2 2 20 2 6 16

430 Example 1: Routing Execution When an Unexpected Condition Occurs � Chapter 23

3 3 30 3 2 12
4 4 40
5 5 50

Original Program
The objective is to update the MASTER data set with information from the

TRANSACTION data set. The program reads TRANSACTION sequentially. MASTER
is read directly, not sequentially, using the MODIFY statement and the KEY= option.
Only observations with matching values for PartNumber, which is the KEY= variable,
are read from MASTER.

data master; u

set transaction; v

modify master key=PartNumber; w

Quantity = Quantity + AddQuantity; x

run;

u Open the MASTER data set for update.
v Read an observation from the TRANSACTION data set.
w Match observations from the MASTER data set based on the values of

PartNumber.
x Update the information on Quantity by adding the new values from the

TRANSACTION data set.

Resulting Log
This program has correctly updated one observation but it stopped when it could not

find a match for PartNumber value 6. The following lines are written to the SAS log:

ERROR: No matching observation was found in MASTER data set.
PartNumber=6 AddQuantity=16 Quantity=70 _ERROR_=1
IORC=1230015 _N_=2
NOTE: The SAS System stopped processing this step because

of errors.
NOTE: The data set WORK.MASTER has been updated. There were

1 observations rewritten, 0 observations added and 0
observations deleted.

Resulting Data Set
The MASTER file was incorrectly updated. The updated master has five observations.

One observation was updated correctly, a new one was not added, and a second update
was not made. The following shows the incorrectly updated MASTER data set:

MASTER

OBS PartNumber Quantity
1 1 10
2 2 20
3 3 30
4 4 54
5 5 50

Reading, Combining, and Modifying SAS Data Sets � Example 1: Routing Execution When an Unexpected Condition Occurs 431

Revised Program

The objective is to apply two updates and one addition to MASTER, preventing the
DATA step from stopping when it does not find a match in MASTER for the
PartNumber value 6 in TRANSACTION. By adding error checking, this DATA step is
allowed to complete normally and produce a correctly revised version of MASTER. This
program uses the _IORC_ automatic variable and the SYSRC autocall macro in a
SELECT group to check the value of the _IORC_ variable and execute the appropriate
code based on whether or not a match is found.

data master; u

set transaction; v

modify master key=PartNumber; w

select(_iorc_); x

when(%sysrc(_sok)) do;
Quantity = Quantity + AddQuantity;
replace;

end;
when(%sysrc(_dsenom)) do;

Quantity = AddQuantity;
error = 0;
output;

end;
otherwise do;

put ’ERROR: Unexpected value for _IORC_= ’ _iorc_;
put ’Program terminating. Data step iteration # ’ _n_;
put _all_;
stop;

end;
end;

run;

u Open the MASTER data set for update.

v Read an observation from the TRANSACTION data set.

w Match observations from the MASTER data set based on the value of PartNumber.

x Take the correct course of action based on whether a matching value for
PartNumber is found in MASTER. Update Quantity by adding the new values
from TRANSACTION. The SELECT group directs execution to the correct code.
When a match occurs (_SOK), update Quantity and replace the original
observation in MASTER. When there is no match (_DSENOM), set Quantity equal
to the AddQuantity amount from TRANSACTION, and append a new observation.
ERROR is reset to 0 to prevent an error condition that would write the contents
of the program data vector to the SAS log. When an unexpected condition occurs,
write messages and the contents of the program data vector to the log, and stop
the DATA step.

Resulting Log

The DATA step executed without error and observations were appropriately updated
and added. The following lines are written to the SAS log:

NOTE: The data set WORK.MASTER has been updated. There were
2 observations rewritten, 1 observations added and 0
observations deleted.

432 Example 2: Using Error Checking on All Statements That Use KEY= � Chapter 23

Correctly Updated MASTER Data Set
MASTER contains updated quantities for PartNumber values 2 and 4 and a new

observation for PartNumber value 6. The following shows the correctly updated
MASTER data set:

MASTER

OBS PartNumber Quantity
1 1 10
2 2 32
3 3 30
4 4 54
5 5 50
6 6 16

Example 2: Using Error Checking on All Statements That Use KEY=

Overview
This example shows how important it is to use error checking on all statements that

use the KEY= option when reading data.

Input Data Sets
The MASTER and DESCRIPTION data sets are both indexed on PartNumber. The

ORDER data set contains values for all parts in a single order. Only ORDER contains
the PartNumber value 8. The following shows the MASTER, ORDER, and
DESCRIPTION input data sets:

MASTER ORDER

OBS PartNumber Quantity OBS PartNumber

1 100 10 1 200
2 200 20 2 400
3 300 30 3 100
4 400 40 4 300
5 500 50 5 800

6 500
7 600

DESCRIPTION

OBS PartNumber PartDescription

1 400 Nuts
2 300 Bolts
3 200 Screws
4 600 Washers

Original Program with Logic Error
The objective is to create a data set that contains the description and number in

stock for each part in a single order, except for the parts that are not found in either of
the two input data sets, MASTER and DESCRIPTION. A transaction data set contains

Reading, Combining, and Modifying SAS Data Sets � Example 2: Using Error Checking on All Statements That Use KEY= 433

the part numbers of all parts in a single order. One data set is read to retrieve the
description of the part and another is read to retrieve the quantity that is in stock.

The program reads the ORDER data set sequentially and then uses SET with the
KEY= option to read the MASTER and DESCRIPTION data sets directly, based on the
key value of PartNumber. When a match occurs, an observation is written that contains
all the necessary information for each value of PartNumber in ORDER. This first
attempt at a solution uses error checking for only one of the two SET statements that
use KEY= to read a data set.

data combine; u

length PartDescription $ 15;
set order; v

set description key=PartNumber; v

set master key=PartNumber; v

select(_iorc_); w

when(%sysrc(_sok)) do;
output;

end;
when(%sysrc(_dsenom)) do;

PartDescription = ’No description’;
error = 0;
output;

end;
otherwise do;

put ’ERROR: Unexpected value for _IORC_= ’ _iorc_;
put ’Program terminating.’;
put _all_;
stop;

end;
end;

run;

u Create the COMBINE data set.
v Read an observation from the ORDER data set. Read an observation from the

DESCRIPTION and the MASTER data sets based on a matching value for
PartNumber, the key variable. Note that no error checking occurs after an
observation is read from DESCRIPTION.

w Take the correct course of action, based on whether a matching value for
PartNumber is found in MASTER or DESCRIPTION. (This logic is based on the
erroneous assumption that this SELECT group performs error checking for both of
the preceding SET statements that contain the KEY= option. It actually performs
error checking for only the most recent one.) The SELECT group directs execution
to the correct code. When a match occurs (_SOK), the value of PartNumber in the
observation that is being read from MASTER matches the current PartNumber
value from ORDER. So, output an observation. When there is no match
(_DSENOM), no observations in MASTER contain the current value of
PartNumber, so set the value of PartDescription appropriately and output an
observation. _ERROR_ is reset to 0 to prevent an error condition that would write
the contents of the program data vector to the SAS log. When an unexpected
condition occurs, write messages and the contents of the program data vector to
the log, and stop the DATA step.

Resulting Log
This program creates an output data set but executes with one error. The following

lines are written to the SAS log:

434 Example 2: Using Error Checking on All Statements That Use KEY= � Chapter 23

PartNumber=1 PartDescription=Nuts Quantity=10 _ERROR_=1
IORC=0 _N_=3
PartNumber=5 PartDescription=No description Quantity=50
ERROR=1 _IORC_=0 _N_=6
NOTE: The data set WORK.COMBINE has 7 observations and 3 variables.

Resulting Data Set
The following shows the incorrectly created COMBINE data set. Observation 5

should not be in this data set. PartNumber value 8 does not exist in either MASTER or
DESCRIPTION, so no Quantity should be listed for it. Also, observations 3 and 7
contain descriptions from observations 2 and 6, respectively.

COMBINE

OBS PartNumber PartDescription Quantity
1 2 Screws 20
2 4 Nuts 40
3 1 Nuts 10
4 3 Bolts 30
5 8 No description 30
6 5 No description 50
7 6 No description 50

Revised Program
To create an accurate output data set, this example performs error checking on both

SET statements that use the KEY= option:

data combine(drop=Foundes); u

length PartDescription $ 15;
set order; v

Foundes = 0; w

set description key=PartNumber; x

select(_iorc_); y

when(%sysrc(_sok)) do;
Foundes = 1;

end;
when(%sysrc(_dsenom)) do;

PartDescription = ’No description’;
error = 0;

end;
otherwise do;

put ’ERROR: Unexpected value for _IORC_= ’ _iorc_;
put ’Program terminating. Data set accessed is DESCRIPTION’;
put _all_;
error = 0;
stop;

end;
end;

set master key=PartNumber; U

select(_iorc_); V

when(%sysrc(_sok)) do;
output;

end;
when(%sysrc(_dsenom)) do;

Reading, Combining, and Modifying SAS Data Sets � Example 2: Using Error Checking on All Statements That Use KEY= 435

if not Foundes then do;
error = 0;
put ’WARNING: PartNumber ’ PartNumber ’is not in’

’ DESCRIPTION or MASTER.’;
end;
else do;

Quantity = 0;
error = 0;
output;

end;
end;
otherwise do;

put ’ERROR: Unexpected value for _IORC_= ’ _iorc_;
put ’Program terminating. Data set accessed is MASTER’;
put _all_;
error = 0;
stop;

end;
end; /* ends the SELECT group */

u Create the COMBINE data set.

v Read an observation from the ORDER data set.

w Create the variable Foundes so that its value can be used later to indicate when a
PartNumber value has a match in the DESCRIPTION data set.

x Read an observation from the DESCRIPTION data set, using PartNumber as the
key variable.

y Take the correct course of action based on whether a matching value for
PartNumber is found in DESCRIPTION. The SELECT group directs execution to
the correct code based on the value of _IORC_. When a match occurs (_SOK), the
value of PartNumber in the observation that is being read from DESCRIPTION
matches the current value from ORDER. Foundes is set to 1 to indicate that
DESCRIPTION contributed to the current observation. When there is no match
(_DSENOM), no observations in DESCRIPTION contain the current value of
PartNumber, so the description is set appropriately. _ERROR_ is reset to 0 to
prevent an error condition that would write the contents of the program data vector
to the SAS log. Any other _IORC_ value indicates that an unexpected condition
has been met, so messages are written to the log and the DATA step is stopped.

U Read an observation from the MASTER data set, using PartNumber as a key
variable.

V Take the correct course of action based on whether a matching value for
PartNumber is found in MASTER. When a match is found (_SOK) between the
current PartNumber value from ORDER and from MASTER, write an observation.
When a match isn’t found (_DSENOM) in MASTER, test the value of Foundes. If
Foundes is not true, then a value wasn’t found in DESCRIPTION either, so write a
message to the log but do not write an observation. If Foundes is true, however,
the value is in DESCRIPTION but not MASTER. So write an observation but set
Quantity to 0. Again, if an unexpected condition occurs, write a message and stop
the DATA step.

Resulting Log
The DATA step executed without error. Six observations were correctly created and

the following message was written to the log:

436 Example 2: Using Error Checking on All Statements That Use KEY= � Chapter 23

WARNING: PartNumber 8 is not in DESCRIPTION or MASTER.
NOTE: The data set WORK.COMBINE has 6 observations

and 3 variables.

Correctly Created COMBINE Data Set
The following shows the correctly updated COMBINE data set. Note that COMBINE

does not contain an observation with the PartNumber value 8. This value does not
occur in either MASTER or DESCRIPTION.

COMBINE

OBS PartNumber PartDescription Quantity

1 2 Screws 20
2 4 Nuts 40
3 1 No description 10
4 3 Bolts 30
5 5 No description 50
6 6 Washers 0

437

C H A P T E R

24
Using DATA Step Component
Objects

Introduction 437
Using the Hash Object 438

Why Use the Hash Object? 438

Declaring and Instantiating a Hash Object 438

Initializing Hash Object Data Using a Constructor 439

Defining Keys and Data 440
Storing and Retrieving Data 441

Example 1: Using the ADD and FIND Methods to Store and Retrieve Data 441

Example 2: Loading a Data Set and Using the FIND Method to Retrieve Data 442

Replacing and Removing Data 442

Saving Hash Object Data in a Data Set 444

Using the Hash Iterator Object 445
Introducing the Hash Iterator Object 445

Declaring and Instantiating a Hash Iterator Object 445

Example: Retrieving Hash Object Data by Using the Hash Iterator 446

Introduction

SAS provides two predefined component objects for use in a DATA step: the hash
object and the hash iterator object. These objects enable you to quickly and efficiently
store, search, and retrieve data based on lookup keys. The hash object keys and data
are DATA step variables. Key and data values can be directly assigned constant values
or values from a SAS data set.

The DATA step Component Interface enables you to create and manipulate these
component objects using statements, attributes, and methods. You use the DATA step
object dot notation to access the component object’s attributes and methods. For
detailed information about dot notation and the DATA step objects’ statements,
attributes, and methods, see “DATA Step Object Attributes and Methods” in SAS
Language Reference: Dictionary.

Note: The hash and hash iterator object attributes and methods are limited to those
defined for these objects. You cannot use the SAS Component Language functionality
with these predefined DATA step objects. �

438 Using the Hash Object � Chapter 24

Using the Hash Object

Why Use the Hash Object?
The hash object provides an efficient, convenient mechanism for quick data storage

and retrieval. The hash object stores and retrieves data based on lookup keys.
To use the DATA step Component Object Interface, follow these steps:
1 Declare the hash object.
2 Create an instance of (instantiate) the hash object.
3 Initialize look-up keys and data.

After you declare and instantiate a hash object, you can perform many tasks,
including the following:

� Store and retrieve data.
� Replace and remove data.
� Output a data set that contains the data in the hash object.

For example, suppose that you have a large data set that contains numeric lab
results that correspond to patient number and weight and a small data set that
contains patient numbers (a subset of those in the large data set). You can load the
large data set into a hash object using the patient number as the key and the weight
values as the data. You can then iterate over the small data set using the patient
number to look up the current patient in the hash object whose weight is over a certain
value and output that data to a different data set.

Depending on the number of lookup keys and the size of the data set, the hash object
lookup can be significantly faster than a standard format lookup.

Declaring and Instantiating a Hash Object
You declare a hash object using the DECLARE statement. After you declare the new

hash object, use the _NEW_ statement to instantiate the object.

declare hash myhash;
myhash = _new_ hash();

The DECLARE statement tells the compiler that the variable MYHASH is of type hash.
At this point, you have only declared the variable MYHASH. It has the potential to hold
a component object of type hash. You should declare the hash object only once. The
NEW statement creates an instance of the hash object and assigns it to the variable
MYHASH.

As an alternative to the two-step process of using the DECLARE and the _NEW_
statement to declare and instantiate a component object, you can use the DECLARE
statement to declare and instantiate the component object in one step.

declare hash myhash();

The above statement is equivalent to the following code:

declare hash myhash;
myhash = _new_ hash();

For more information about the “DECLARE Statement” and the “_NEW_
Statement”, see SAS Language Reference: Dictionary.

Using DATA Step Component Objects � Initializing Hash Object Data Using a Constructor 439

Initializing Hash Object Data Using a Constructor
When you create a hash object, you might want to provide initialization data. A

constructor is a method that you can use to instantiate a hash object and initialize the
hash object data.

The hash object constructor can have either of the following formats:
� declare hash variable_name(argument_tag-1 : value-1

<, ...argument_tag-n: value-n>);

� variable_name = _new_ hash(argument_tag-1: value-1
<, ...argument_tag-n: value-n>);

These are the valid hash object argument tags:

hashexp: n
is the hash object’s internal table size, where the size of the hash table is 2n.

The value of hashexp is used as a power-of-two exponent to create the hash
table size. For example, a value of 4 for hashexp equates to a hash table size of 24,
or 16. The maximum value for hashexp is 16, which equates to a hash table size of
216 or 65536.

The hash table size is not equal to the number of items that can be stored.
Think of the hash table as an array of containers. A hash table size of 16 would
have 16 containers. Each container can hold an infinite number of items. The
efficiency of the hash tables lies in the ability of the hash function to map items to
and retrieve items from the containers.

In order to maximize the efficiency of the hash object lookup routines, you
should set the hash table size according to the amount of data in the hash object.
Try different hashexp values until you get the best result. For example, if the
hash object contains one million items, a hash table size of 16 (hashexp = 4) would
not be very efficient. A hash table size of 512 or 1024 (hashexp = 9 or 10) would
result in better performance.
Default: 8, which equates to a hash table size of 28 or 256.

dataset: ‘dataset_name’
is the name of a SAS data set to load into the hash object.

The name of the SAS data set can be a literal or a character variable. The data
set name must be enclosed in single or double quotation marks. Macro variables
must be in double quotation marks.

Note: If the data set contains duplicate keys, the first instance will be in the
hash object; subsequent instances will be ignored. �

ordered: ‘option’
specifies whether or how the data is returned in key-value order if you use the hash
object with a hash iterator object or if you use the hash object OUTPUT method.

option can be one of the following values:

‘ascending’ | ‘a’ Data is returned in ascending key-value order. Specifying
‘ascending’ is the same as specifying ‘yes’.

‘descending’ | ‘d’ Data is returned in descending key-value order.

‘YES’ | ‘Y’ Data is returned in ascending key-value order. Specifying ‘yes’
is the same as specifying ‘ascending’.

‘NO’ | ‘N’ Data is returned in an undefined order.
Default: NO

The argument can also be enclosed in double quotation marks.

440 Defining Keys and Data � Chapter 24

For more information on the “DECLARE Statement” and the “_NEW_ Statement”,
see SAS Language Reference: Dictionary.

Defining Keys and Data
The hash object uses lookup keys to store and retrieve data. The keys and the data

are DATA step variables that you use to initialize the hash object by using dot notation
method calls. A key is defined by passing the key variable name to the DEFINEKEY
method. Data is defined by passing the data variable name to the DEFINEDATA
method. When all key and data variables have been defined, the DEFINEDONE
method is called. Keys and data can consist of any number of character or numeric
DATA step variables.

For example, the following code initializes a character key and a character data
variable.

length d $20;
length k $20;

if _N_ = 1 then do;
declare hash h(hashexp: 4);
rc = h.defineKey(’k’);
rc = h.defineData(’d’);
rc = h.defineDone();

end;

You can have multiple key and data variables. You can store more than one data item
with a particular key. For example, you could modify the previous example to store
auxiliary numeric values with the character key and data. In this example, each key
and each data item consists of a character value and a numeric value.

length d1 8;
length d2 $20;
length k1 $20;
length k2 8;

if _N_ = 1 then do;
declare hash h(hashexp: 4);
rc = h.defineKey(’k1’, ’k2’);
rc = h.defineData(’d1’, ’d2’);
rc = h.defineDone();

end;

For more information about the “DEFINEDATA Method”, the “DEFINEDONE
Method”, and the “DEFINEKEY Method”, see SAS Language Reference: Dictionary.

Note: The hash object does not assign values to key variables (for example,
h.find(key: ‘abc’)), and the SAS compiler cannot detect the implicit key and data
variable assignments done by the hash object and the hash iterator. Therefore, if no
explicit assignment to a key or data variable appears in the program, SAS will issue a
note stating that the variable is uninitialized. To avoid receiving these notes, you can
perform one of the following actions:

� Set the NONOTES system option.
� Provide an initial assignment statement (typically to a missing value) for each key

and data variable.
� Use the CALL MISSING routine with all the key and data variables as

parameters. Here is an example.

Using DATA Step Component Objects � Storing and Retrieving Data 441

length d $20;
length k $20;

if _N_ = 1 then do;
declare hash h(hashexp: 4);
rc = h.defineKey(‘k’);
rc = h.defineData(’d’);
rc = h.defineDone();

call missing(k, d);
end;

�

Storing and Retrieving Data
After you initialize the hash object’s key and data variables, you can store data in the

hash object using the ADD method, or you can use the dataset argument tag to quickly
load a data set into the hash object.

You can then use the FIND method to search and retrieve data from the hash object.
For more information about the “ADD Method” and the “FIND Method”, see SAS

Language Reference: Dictionary.

Note: You can also use the hash iterator object to retrieve the hash object data, one
data element at a time, in forward and reverse order. For more information, see “Using
the Hash Iterator Object” on page 445. �

Example 1: Using the ADD and FIND Methods to Store and Retrieve Data
The following example uses the ADD method to store the data in the hash object and

associate the data with the key. The FIND method is then used to retrieve the data
that is associated with the key value ‘Homer’.

data _null_;
length d $20;
length k $20;

/* Declare the hash object and key and data variables */
if _N_ = 1 then do;

declare hash h(hashexp: 4);
rc = h.defineKey(’k’);
rc = h.defineData(’d’);
rc = h.defineDone();

end;

/* Define constant value for key and data */
k = ’Homer’;
d = ’Odyssey’;
/* Use the ADD method to add the key and data to the hash object */
rc = h.add();
if (rc ne 0) then

put ’Add failed.’;

/* Define constant value for key and data */
k = ’Joyce’;
d = ’Ulysses’;
/* Use the ADD method to add the key and data to the hash object */

442 Replacing and Removing Data � Chapter 24

rc = h.add();
if (rc ne 0) then

put ’Add failed.’;

k = ’Homer’;
/* Use the FIND method to retrieve the data associated with ’Homer’ key */
rc = h.find();
if (rc = 0) then

put d=;
else

put ’Key Homer not found.’;
run;

The FIND method assigns the data value ‘Odyssey’, which is associated with the key
value ‘Homer’, to the variable D.

Example 2: Loading a Data Set and Using the FIND Method to Retrieve Data

Assume the data set SMALL contains two numeric variables K (key) and S (data)
and another data set, LARGE, contains a corresponding key variable K. The following
code loads the SMALL data set into the hash object, and then searches the hash object
for key matches on the variable K from the LARGE data set.

data match;
length k 8;
length s 8;
if _N_ = 1 then do;

/* load SMALL data set into the hash object */
declare hash h(dataset: "work.small", hashexp: 6);
/* define SMALL data set variable K as key and S as value */
h.defineKey(’k’);
h.defineData(’s’);
h.defineDone();
/* avoid uninitialized variable notes */
call missing(k, s);

end;

/* use the SET statement to iterate over the LARGE data set using */
/* keys in the LARGE data set to match keys in the hash object */
set large;
rc = h.find();
if (rc = 0) then output;
run;

The dataset argument tag specifies the SMALL data set whose keys and data will be
read and loaded by the hash object during the DEFINEDONE method. The FIND
method is then used to retrieve the data.

Replacing and Removing Data

You can remove or replace data in the hash object.
In the following example, the REPLACE method replaces the data ‘Odyssey’ with

‘Iliad’ and the REMOVE method deletes the entire data entry associated with the
‘Joyce’ key from the hash object.

Using DATA Step Component Objects � Replacing and Removing Data 443

data _null_;
length d $20;
length k $20;

/* Declare the hash object and key and data variables */
if _N_ = 1 then do;

declare hash h(hashexp: 4);
rc = h.defineKey(‘k’);
rc = h.defineData(’d’);
rc = h.defineDone();

end;

/* Define constant value for key and data */
k = ’Joyce’;
d = ’Ulysses’;
/* Use the ADD method to add the key and data to the hash object */
rc = h.add();
if (rc ne 0) then

put ’Add failed.’;

/* Define constant value for key and data */
k = ’Homer’;
d = ’Odyssey’;
/* Use the ADD method to add the key and data to the hash object */
rc = h.add();
if (rc ne 0) then

put ’Add failed.’;

/* Use the REPLACE method to replace ’Odyssey’ with ’Iliad’ */
k = ’Homer’;
d = ’Iliad’;
rc = h.replace();
if (rc = 0) then

put d=;
else

put ’Replace not successful.’;

/* Use the REMOVE method to remove the ’Joyce’ key and data */
k = ’Joyce’;
rc = h.remove();
if (rc = 0) then

put k ’removed from hash object’;
else

put ’Deletion not successful.’;

run;

For more information on the “REMOVE Method” and the “REPLACE Method”, see
SAS Language Reference: Dictionary.

444 Saving Hash Object Data in a Data Set � Chapter 24

Saving Hash Object Data in a Data Set
You can create a data set that contains the data in a specified hash object by using

the OUTPUT method. In the following example, two keys and data are added to the
hash object and then output to the Work.out data set.

data test;
length d1 8;
length d2 $20;
length k1 $20;
length k2 8;

/* Declare the hash object and two key and data variables */
if _N_ = 1 then do;

declare hash h(hashexp: 4);
rc = h.defineKey(’k1’, ’k2’);
rc = h.defineData(’d1’, ’d2’);
rc = h.defineDone();

end;

/* Define constant value for key and data */
k1 = ’Joyce’;
k2 = 1001;
d1 = 3;
d2 = ’Ulysses’;
rc = h.add();

/* Define constant value for key and data */
k1 = ’Homer’;
k2 = 1002;
d1 = 5;
d2 = ’Odyssey’;
rc = h.add();

/* Use the OUTPUT method to save the hash object data to the OUT data set */
rc = h.output(dataset: "work.out");
run;

proc print data=work.out;
run;

Using DATA Step Component Objects � Declaring and Instantiating a Hash Iterator Object 445

The following output shows the report that PROC PRINT generates.

Output 24.1 Data Set Created from the Hash Object

The SAS System 1

Obs d1 d2

1 5 Odyssey
2 3 Ulysses

Note that the hash object keys are not stored as part of the output data set. If you
want to include the keys in the output data set, you must define the keys as data in the
DEFINEDATA method. In the previous example, the DEFINEDATA method would be
written this way:

rc = h.defineData(’k1’, ’k2’, ’d1’, ’d2’);

For more information on the “OUTPUT Method” , see SAS Language Reference:
Dictionary.

Using the Hash Iterator Object

Introducing the Hash Iterator Object
Use the hash object to store and search data based on lookup keys. The hash iterator

object enables you to retrieve the hash object data in forward or reverse key order.

Declaring and Instantiating a Hash Iterator Object
You declare a hash iterator object by using the DECLARE statement. After you

declare the new hash iterator object, use the _NEW_ statement to instantiate the
object, using the hash object name as an argument tag. For example:

declare hiter myiter
myiter = _new_ hiter(’h’);

the DECLARE statement tells the compiler that the variable MYITER is of type hash
iterator. At this point, you have only declared the variable MYITER. It has the
potential to hold a component object of type hash iterator. You should declare the hash
iterator object only once. The _NEW_ statement creates an instance of the hash iterator
object and assigns it to the variable MYITER. The hash object, H, is passed as a
constructor argument.

As an alternative to the two-step process of using the DECLARE and the _NEW_
statements to declare and instantiate a component object, you can declare and
instantiate a hash iterator object in one step by using the DECLARE statement as a
constructor method. The syntax is as follows:

declare hiter variable_name(hash_object_name);

446 Example: Retrieving Hash Object Data by Using the Hash Iterator � Chapter 24

In the above example, the hash object name must be enclosed in single or double
quotation marks.

For example:

declare hiter myiter(’h’);

The previous statement is equivalent to these:

declare hiter myiter;
myiter = _new_ hiter(’h’);

Note: You must declare and instantiate a hash object before you create a hash
iterator object. For more information, see “Declaring and Instantiating a Hash Object”
on page 438. �

For example:

if _N_ = 1 then do;
length key $10;
declare hash myhash(hashexp: 4, dataset:"work.x", ordered: ’yes’);
declare hiter myiter(’myhash’);
myhash.defineKey(’key’);
myhash.defineDone();

end;

This code creates an instance of a hash iterator object with the variable name MYITER.
The hash object, MYHASH, is passed as the constructor argument. Because the hash
object was created with the ordered argument tag set to ’yes’, the data will be
returned in ascending key-value order.

For more information about the “DECLARE Statement” and the “_NEW_
Statement”, see SAS Language Reference: Dictionary.

Example: Retrieving Hash Object Data by Using the Hash Iterator
Using the data set ASTRO that contains astronomical data, the following code

creates the data set that contains Messier (OBJ) objects whose right-ascension (RA)
values are greater than 12. The FIRST and NEXT methods are used to sort the data in
ascending order. The FIRST and NEXT methods are used to sort the data. For more
information about the “FIRST Method” and the “NEXT Method”, see SAS Language
Reference: Dictionary.

data astro;
input obj $1-4 ra $6-12 dec $14-19;
datalines;

M31 00 42.7 +41 16
M71 19 53.8 +18 47
M51 13 29.9 +47 12
M98 12 13.8 +14 54
M13 16 41.7 +36 28
M39 21 32.2 +48 26
M81 09 55.6 +69 04
M100 12 22.9 +15 49
M41 06 46.0 -20 44
M44 08 40.1 +19 59
M10 16 57.1 -04 06
M57 18 53.6 +33 02
M3 13 42.2 +28 23

M22 18 36.4 -23 54

Using DATA Step Component Objects � Example: Retrieving Hash Object Data by Using the Hash Iterator 447

M23 17 56.8 -19 01
M49 12 29.8 +08 00
M68 12 39.5 -26 45
M17 18 20.8 -16 11
M14 17 37.6 -03 15
M29 20 23.9 +38 32
M34 02 42.0 +42 47
M82 09 55.8 +69 41
M59 12 42.0 +11 39
M74 01 36.7 +15 47
M25 18 31.6 -19 15
;
run;

data out;
if _N_ = 1 then do;

length obj $10;
length ra $10;
length dec $10;
/* Read ASTRO data set as ordered */
declare hash h(hashexp: 4, dataset:"work.astro", ordered: ’yes’);
/* Define variables RA and OBJ as key and data for hash object */
declare hiter iter(’h’);
h.defineKey(’ra’);
h.defineData(’ra’, ’obj’);
h.defineDone();
/* Avoid uninitialized variable notes */
call missing(obj, ra, dec);

end;
/* Sort hash object by right ascension values */
rc = iter.first();
do while (rc = 0);
/* Find hash object keys greater than 12 and output data */

if ra GE ’12’ then
output;

rc = iter.next();
end;
run;

proc print data=work.out;
var ra obj;
title ’Messier Objects Greater than 12 Sorted by Right Ascension Values’;

run;

The following output shows the report that PROC PRINT generates.

448 Example: Retrieving Hash Object Data by Using the Hash Iterator � Chapter 24

Output 24.2 Messier Objects Greater than 12, Sorted by Right Ascension Values

Messier Objects Greater than 12 Sorted by Right Ascension Values 1

Obs ra obj

1 12 13.8 M98
2 12 22.9 M100
3 12 29.8 M49
4 12 39.5 M68
5 12 42.0 M59
6 13 29.9 M51
7 13 42.2 M3
8 16 41.7 M13
9 16 57.1 M10
10 17 37.6 M14
11 17 56.8 M23
12 18 20.8 M17
13 18 31.6 M25
14 18 36.4 M22
15 18 53.6 M57
16 19 53.8 M71
17 20 23.9 M29
18 21 32.2 M39

449

C H A P T E R

25
Array Processing

Definitions for Array Processing 449
A Conceptual View of Arrays 450

One-Dimensional Array 450

Two-Dimensional Array 451

Syntax for Defining and Referencing an Array 451

Processing Simple Arrays 452
Grouping Variables in a Simple Array 452

Using a DO Loop to Repeat an Action 453

Using a DO Loop to Process Selected Elements in an Array 453

Selecting the Current Variable 453

Defining the Number of Elements in an Array 455

Rules for Referencing Arrays 455
Variations on Basic Array Processing 456

Determining the Number of Elements in an Array Efficiently 456

DO WHILE and DO UNTIL Expressions 456

Using Variable Lists to Define an Array Quickly 456

Multidimensional Arrays: Creating and Processing 457
Grouping Variables in a Multidimensional Array 457

Using Nested DO Loops 457

Specifying Array Bounds 459

Identifying Upper and Lower Bounds 459

Determining Array Bounds: LBOUND and HBOUND Functions 460
When to Use the HBOUND Function instead of the DIM Function 460

Specifying Bounds in a Two-Dimensional Array 460

Examples of Array Processing 461

Example 1: Using Character Variables in an Array 461

Example 2: Assigning Initial Values to the Elements of an Array 462

Example 3: Creating an Array for Temporary Use in the Current DATA Step 463
Example 4: Performing an Action on All Numeric Variables 464

Definitions for Array Processing

array
is a temporary grouping of SAS variables that are arranged in a particular order
and identified by an array-name. The array exists only for the duration of the
current DATA step. The array-name distinguishes it from any other arrays in the
same DATA step; it is not a variable.

450 A Conceptual View of Arrays � Chapter 25

Note: Arrays in SAS are different from those in many other programming
languages. In SAS, an array is not a data structure but is just a convenient way of
temporarily identifying a group of variables. �

array processing
is a method that enables you to perform the same tasks for a series of related
variables.

array reference
is a method to reference the elements of an array.

one-dimensional array
is a simple grouping of variables that, when processed, results in output that can
be represented in simple row format.

multidimensional array
is a more complex grouping of variables that, when processed, results in output
that could have two or more dimensions, such as columns and rows.

Basic array processing involves the following steps:

� grouping variables into arrays

� selecting a current variable for an action

� repeating an action.

A Conceptual View of Arrays

One-Dimensional Array
The following figure is a conceptual representation of two one-dimensional arrays,

MISC and MDAY.

Figure 25.1 One-Dimensional Array

Variables

1

misc1

Arrays

MISC

2

misc2

3

misc3

4

misc4

5

misc5

6

misc6

7

misc7

8

misc8

1

mday1MDAY

2

mday2

3

mday3

4

mday4

5

mday5

6

mday6

7

mday7

MISC contains eight elements, the variables MISC1 through MISC8. To reference
the data in these variables, use the form MISC{n}, where n is the element number in
the array. For example, MISC{6} is the sixth element in the array.

MDAY contains seven elements, the variables MDAY1 through MDAY7. MDAY{3} is
the third element in the array.

Array Processing � Syntax for Defining and Referencing an Array 451

Two-Dimensional Array

The following figure is a conceptual representation of the two-dimensional array
EXPENSES.

Figure 25.2 Example of a Two-Dimensional Array

Hotel

Phone

Pers. Auto

Rental Car

Airfare

Dues

Registration
 Fees
Other

Tips (non-meal)

Meals

1

hotel1

phone1

peraut1

carrnt1

airlin1

dues1

regfee1

other1

tips1

meals1

2

hotel2

phone2

peraut2

carrnt2

airlin2

dues2

regfee2

other2

tips2

meals2

3

hotel3

phone3

peraut3

carrnt3

airlin3

dues3

regfee3

other3

tips3

meals3

4

hotel4

phone4

peraut4

carrnt4

airlin4

dues4

regfee4

other4

tips4

meals4

5

hotel5

phone5

peraut5

carrnt5

airlin5

dues5

regfee5

other5

tips5

meals5

6

hotel6

phone6

peraut6

carrnt6

airlin6

dues6

regfee6

other6

tips6

meals6

7

hotel7

phone7

peraut7

carrnt7

airlin7

dues7

regfee7

other7

tips7

meals7

8

hotel8

phone8

peraut8

carrnt8

airlin8

dues8

regfee8

other8

tips8

meals8

1

2

3

4

5

6

7

8

9

10

First
Dimension

Expense
Categories

Second
Dimension

Days of the Week Total

The EXPENSES array contains ten groups of eight variables each. The ten groups
(expense categories) comprise the first dimension of the array, and the eight variables
(days of the week) comprise the second dimension. To reference the data in the array
variables, use the form EXPENSES{m,n}, where m is the element number in the first
dimension of the array, and n is the element number in the second dimension of the
array. EXPENSES{6,4} references the value of dues for the fourth day (the variable is
DUES4).

Syntax for Defining and Referencing an Array

To define a simple or a multidimensional array, use the ARRAY statement. The
ARRAY statement has the following form:

ARRAY array-name {number-of-elements} <list-of-variables>;

452 Processing Simple Arrays � Chapter 25

where

array-name
is a SAS name that identifies the group of variables.

number-of-elements
is the number of variables in the group. You must enclose this value in
parentheses, braces, or brackets.

list-of-variables
is a list of the names of the variables in the group. All variables that are defined
in a given array must be of the same type-either all character or all numeric.

For complete information about the ARRAY statement, see SAS Language Reference:
Dictionary.

To reference an array that was previously defined in the same DATA step, use an
Array Reference statement. An array reference has the following form:

array-name {subscript}

where

array-name
is the name of an array that was previously defined with an ARRAY statement in
the same DATA step.

subscript
specifies the subscript, which can be a numeric constant, the name of a variable
whose value is the number, a SAS numeric expression, or an asterisk (*).

Note: Subscripts in SAS are 1-based by default, and not 0-based as they are in
some other programming languages. �

For complete information about the Array Reference statement, see SAS Language
Reference: Dictionary.

Processing Simple Arrays

Grouping Variables in a Simple Array
The following ARRAY statement creates an array named BOOKS that contains the

three variables Reference, Usage, and Introduction:

array books{3} Reference Usage Introduction;

When you define an array, SAS assigns each array element an array reference with
the form array-name{subscript}, where subscript is the position of the variable in the
list. The following table lists the array reference assignments for the previous ARRAY
statement:

Variable Array reference

Reference books{1}

Usage books{2}

Introduction books{3}

Array Processing � Selecting the Current Variable 453

Later in the DATA step, when you want to process the variables in the array, you can
refer to a variable by either its name or its array reference. For example, the names
Reference and books{1} are equivalent.

Using a DO Loop to Repeat an Action
To perform the same action several times, use an iterative DO loop. A simple

iterative DO loop that processes an array has the following form:

DO index-variable=1 TO number-of-elements-in-array;
… more SAS statements …

END;

The loop is processed repeatedly (iterates) according to the instructions in the
iterative DO statement. The iterative DO statement contains an index-variable whose
name you specify and whose value changes at each iteration of the loop.

To execute the loop as many times as there are variables in the array, specify that
the values of index-variable are 1 TO number-of-elements-in-array. SAS increases the
value of index-variable by 1 before each new iteration of the loop. When the value
exceeds the number-of-elements-in-array, SAS stops processing the loop. By default,
SAS automatically includes index-variable in the output data set. Use a DROP
statement or the DROP= data set option to prevent the index variable from being
written to your output data set.

An iterative DO loop that executes three times and has an index variable named
count has the following form:

do count=1 to 3;
… more SAS statements …

end;

The first time the loop processes, the value of count is 1; the second time, 2; and the
third time, 3. At the beginning of the fourth iteration, the value of count is 4, which
exceeds the specified range and causes SAS to stop processing the loop.

Using a DO Loop to Process Selected Elements in an Array
To process particular elements of an array, specify those elements as the range of the

iterative DO statement. For example, the following statement creates an array DAYS
that contains seven elements:

array days{7} D1-D7;

The following DO statements process selected elements of the array DAYS:

do i=2 to 4; processes elements 2 through 4

do i=1 to 7 by 2; processes elements 1, 3, 5, and 7

do i=3,5; processes elements 3 and 5

Selecting the Current Variable
You must tell SAS which variable in the array to use in each iteration of the loop.

Recall that you identify variables in an array by their array references and that you use

454 Selecting the Current Variable � Chapter 25

a variable name, a number, or an expression as the subscript of the reference.
Therefore, you can write programming statements so that the index variable of the DO
loop is the subscript of the array reference (for example, array-name{index-variable}).
When the value of the index variable changes, the subscript of the array reference (and
therefore the variable that is referenced) also changes.

The following example uses the index variable count as the subscript of array
references inside a DO loop:

array books{3} Reference Usage Introduction;
do count=1 to 3;

if books{count}=. then books{count}=0;
end;

When the value of count is 1, SAS reads the array reference as books{1} and processes
the IF-THEN statement on books{1}, which is the variable Reference. When count is 2,
SAS processes the statement on books{2}, which is the variable Usage. When count is 3,
SAS processes the statement on books{3}, which is the variable Introduction.

The statements in the example tell SAS to
� perform the actions in the loop three times
� replace the array subscript count with the current value of count for each iteration

of the IF-THEN statement
� locate the variable with that array reference and process the IF-THEN statement

on it
� replace missing values with zero if the condition is true.

The following DATA step defines the array BOOK and processes it with a DO loop.

options nodate pageno=1 linesize=80 pagesize=60;

data changed(drop=count);
input Reference Usage Introduction;
array book{3} Reference Usage Introduction;
do count=1 to 3;

if book{count}=. then book{count}=0;
end;
datalines;

45 63 113
. 75 150
62 . 98
;

proc print data=changed;
title ’Number of Books Sold’;

run;

The following output shows the CHANGED data set.

Output 25.1 Using an Array Statement to Process Missing Data Values

Number of Books Sold 1

Obs Reference Usage Introduction

1 45 63 113
2 0 75 150
3 62 0 98

Array Processing � Rules for Referencing Arrays 455

Defining the Number of Elements in an Array
When you define the number of elements in an array, you can either use an asterisk

enclosed by braces ({*}), brackets ([*]), or parentheses ((*)) to count the number of
elements or to specify the number of elements. You must list each array element if you
use the asterisk to designate the number of elements. In the following example, the
array C1TEMP references five variables with temperature measures.

array c1temp{*} c1t1 c1t2 c1t3 c1t4 c1t5;

If you specify the number of elements explicitly, you can omit the names of the
variables or array elements in the ARRAY statement. SAS then creates variable names
by concatenating the array name with the numbers 1, 2, 3, and so on. If a variable
name in the series already exists, SAS uses that variable instead of creating a new one.
In the following example, the array c1t references five variables: c1t1, c1t2, c1t3, c1t4,
and c1t5.

array c1t{5};

Rules for Referencing Arrays
Before you make any references to an array, an ARRAY statement must appear in

the same DATA step that you used to create the array. Once you have created the
array, you can

� use an array reference anywhere that you can write a SAS expression
� use an array reference as the arguments of some SAS functions
� use a subscript enclosed in braces, brackets, or parentheses to reference an array
� use the special array subscript asterisk (*) to refer to all variables in an array in

an INPUT or PUT statement or in the argument of a function.

Note: You cannot use the asterisk with _TEMPORARY_ arrays. �

An array definition is in effect only for the duration of the DATA step. If you want to
use the same array in several DATA steps, you must redefine the array in each step.
You can, however, redefine the array with the same variables in a later DATA step by
using a macro variable. A macro variable is useful for storing the variable names you
need, as shown in this example:

%let list=NC SC GA VA;

data one;
array state(*) &list;
… more SAS statements …

run;

data two;
array state(*) &list;
… more SAS statements …

run;

456 Variations on Basic Array Processing � Chapter 25

Variations on Basic Array Processing

Determining the Number of Elements in an Array Efficiently
The DIM function in the iterative DO statement returns the number of elements in a

one-dimensional array or the number of elements in a specified dimension of a
multidimensional array, when the lower bound of the dimension is 1. Use the DIM
function to avoid changing the upper bound of an iterative DO group each time you
change the number of elements in the array.

The form of the DIM function is as follows:

DIMn(array-name)

where n is the specified dimension that has a default value of 1.
You can also use the DIM function when you specify the number of elements in the

array with an asterisk. Here are some examples of the DIM function:
� do i=1 to dim(days);

� do i=1 to dim4(days) by 2;

DO WHILE and DO UNTIL Expressions
Arrays are often processed in iterative DO loops that use the array reference in a DO

WHILE or DO UNTIL expression. In this example, the iterative DO loop processes the
elements of the array named TREND.

data test;
array trend{5} x1-x5;
input x1-x5 y;
do i=1 to 5 while(trend{i}<y);
… more SAS statements …
end;
datalines;

… data lines …
;

Using Variable Lists to Define an Array Quickly
SAS reserves the following three names for use as variable list names:
CHARACTER
NUMERIC
ALL

You can use these variable list names to reference variables that have been previously
defined in the same DATA step. The _CHARACTER_ variable lists character values
only. The _NUMERIC_ variable lists numeric values only. The _ALL_ variable lists
either all character or all numeric values, depending on how you previously defined the
variables.

For example, the following INPUT statement reads in variables X1 through X3 as
character values using the $8. informat, and variables X4 through X5 as numeric
variables. The following ARRAY statement uses the variable list _CHARACTER_ to
include only the character variables in the array. The asterisk indicates that SAS will
determine the subscript by counting the variables in the array.

Array Processing � Using Nested DO Loops 457

input (X1-X3) ($8.) X4-X5;
array item {*} _character_;

You can use the _NUMERIC_ variable in your program if, for example, you need to
convert currency. In this application, you do not need to know the variable names. You
need only to convert all values to the new currency.

For more information about variable lists, see the ARRAY statement in SAS
Language Reference: Dictionary.

Multidimensional Arrays: Creating and Processing

Grouping Variables in a Multidimensional Array
To create a multidimensional array, place the number of elements in each dimension

after the array name in the form {n, … } where n is required for each dimension of a
multidimensional array.

From right to left, the rightmost dimension represents columns; the next dimension
represents rows. Each position farther left represents a higher dimension. The
following ARRAY statement defines a two-dimensional array with two rows and five
columns. The array contains ten variables: five temperature measures (t1 through t5)
from two cities (c1 and c2):

array temprg{2,5} c1t1-c1t5 c2t1-c2t5;

SAS places variables into a multidimensional array by filling all rows in order,
beginning at the upper-left corner of the array (known as row-major order). You can
think of the variables as having the following arrangement:

c1t1 c1t2 c1t3 c1t4 c1t5
c2t1 c2t2 c2t3 c2t4 c2t5

To refer to the elements of the array later with an array reference, you can use the
array name and subscripts. The following table lists some of the array references for
the previous example:

Variable Array reference

c1t1 temprg{1,1}

c1t2 temprg{1,2}

c2t2 temprg{2,2}

c2t5 temprg{2,5}

Using Nested DO Loops
Multidimensional arrays are usually processed inside nested DO loops. As an

example, the following is one form that processes a two-dimensional array:

DO index-variable-1=1 TO number-of-rows;

458 Using Nested DO Loops � Chapter 25

DO index-variable-2=1 TO number-of-columns;
... more SAS statements ...

END;

END;

An array reference can use two or more index variables as the subscript to refer to
two or more dimensions of an array. Use the following form:

array-name {index-variable-1, …,index-variable-n}

The following example creates an array that contains ten variables- five temperature
measures (t1 through t5) from two cities (c1 and c2). The DATA step contains two DO
loops.

� The outer DO loop (DO I=1 TO 2) processes the inner DO loop twice.

� The inner DO loop (DO J=1 TO 5) applies the ROUND function to all the variables
in one row.

For each iteration of the DO loops, SAS substitutes the value of the array element
corresponding to the current values of I and J.

options nodate pageno=1 linesize=80 pagesize=60;

data temps;
array temprg{2,5} c1t1-c1t5 c2t1-c2t5;
input c1t1-c1t5 /

c2t1-c2t5;
do i=1 to 2;
do j=1 to 5;

temprg{i,j}=round(temprg{i,j});
end;

end;
datalines;

89.5 65.4 75.3 77.7 89.3
73.7 87.3 89.9 98.2 35.6
75.8 82.1 98.2 93.5 67.7
101.3 86.5 59.2 35.6 75.7
;

proc print data=temps;
title ’Temperature Measures for Two Cities’;

run;

The following data set TEMPS contains the values of the variables rounded to the
nearest whole number.

Output 25.2 Using a Multidimensional Array

Temperature Measures for Two Cities 1

Obs c1t1 c1t2 c1t3 c1t4 c1t5 c2t1 c2t2 c2t3 c2t4 c2t5 i j

1 90 65 75 78 89 74 87 90 98 36 3 6
2 76 82 98 94 68 101 87 59 36 76 3 6

Array Processing � Identifying Upper and Lower Bounds 459

The previous example can also use the DIM function to produce the same result:

do i=1 to dim1(temprg);
do j=1 to dim2(temprg);

temprg{i,j}=round(temprg{i,j});
end;

end;

The value of DIM1(TEMPRG) is 2; the value of DIM2(TEMPRG) is 5.

Specifying Array Bounds

Identifying Upper and Lower Bounds

Typically in an ARRAY statement, the subscript in each dimension of the array
ranges from 1 to n, where n is the number of elements in that dimension. Thus, 1 is the
lower bound and n is the upper bound of that dimension of the array. For example, in
the following array, the lower bound is 1 and the upper bound is 4:

array new{4} Jackson Poulenc Andrew Parson;

In the following ARRAY statement, the bounds of the first dimension are 1 and 2 and
those of the second dimension are 1 and 5:

array test{2,5} test1-test10;

Bounded array dimensions have the following form:

{<lower-1:>upper-1<,…< lower-n:>upper-n>}

Therefore, you can also write the previous ARRAY statements as follows:

array new{1:4} Jackson Poulenc Andrew Parson;
array test{1:2,1:5} test1-test10;

For most arrays, 1 is a convenient lower bound, so you do not need to specify the
lower bound. However, specifying both the lower and the upper bounds is useful when
the array dimensions have beginning points other than 1.

In the following example, ten variables are named Year76 through Year85. The
following ARRAY statements place the variables into two arrays named FIRST and
SECOND:

array first{10} Year76-Year85;
array second{76:85} Year76-Year85;

In the first ARRAY statement, the element first{4} is variable Year79, first{7} is Year82,
and so on. In the second ARRAY statement, element second{79} is Year79 and
second{82} is Year82.

To process the array names SECOND in a DO group, be sure that the range of the
DO loop matches the range of the array as follows:

do i=76 to 85;
if second{i}=9 then second{i}=.;

end;

460 Determining Array Bounds: LBOUND and HBOUND Functions � Chapter 25

Determining Array Bounds: LBOUND and HBOUND Functions
You can use the LBOUND and HBOUND functions to determine array bounds. The

LBOUND function returns the lower bound of a one-dimensional array or the lower
bound of a specified dimension of a multidimensional array. The HBOUND function
returns the upper bound of a one-dimensional array or the upper bound of a specified
dimension of a multidimensional array.

The form of the LBOUND and HBOUND functions is as follows:

LBOUNDn(array-name)

HBOUNDn(array-name)

where

n
is the specified dimension and has a default value of 1.

You can use the LBOUND and HBOUND functions to specify the starting and ending
values of the iterative DO loop to process the elements of the array named SECOND:

do i=lbound{second} to hbound{second};
if second{i}=9 then second{i}=.;

end;

In this example, the index variable in the iterative DO statement ranges from 76 to 85.

When to Use the HBOUND Function instead of the DIM Function
The following ARRAY statement defines an array containing a total of five elements,

a lower bound of 72, and an upper bound of 76. It represents the calendar years 1972
through 1976:

array years{72:76} first second third fourth fifth;

To process the array named YEARS in an iterative DO loop, be sure that the range of
the DO loop matches the range of the array as follows:

do i=lbound(years) to hbound(years);
if years{i}=99 then years{i}=.;

end;

The value of LBOUND(YEARS) is 72; the value of HBOUND(YEARS) is 76.
For this example, the DIM function would return a value of 5, the total count of

elements in the array YEARS. Therefore, if you used the DIM function instead of the
HBOUND function for the upper bound of the array, the statements inside the DO loop
would not have executed.

Specifying Bounds in a Two-Dimensional Array
The following list contains 40 variables named X60 through X99. They represent the

years 1960 through 1999.

X60 X61 X62 X63 X64 X65 X66 X67 X68 X69
X70 X71 X72 X73 X74 X75 X76 X77 X78 X79
X80 X81 X82 X83 X84 X85 X86 X87 X88 X89
X90 X91 X92 X93 X94 X95 X96 X97 X98 X99

Array Processing � Example 1: Using Character Variables in an Array 461

The following ARRAY statement arranges the variables in an array by decades. The
rows range from 6 through 9, and the columns range from 0 through 9.

array X{6:9,0:9} X60-X99;

In array X, variable X63 is element X{6,3} and variable X89 is element X{8,9}. To
process array X with iterative DO loops, use one of these methods:

Method 1:

do i=6 to 9;
do j=0 to 9;

if X{i,j}=0 then X{i,j}=.;
end;

end;

Method 2:

do i=lbound1(X) to hbound1(X);
do j=lbound2(X) to hbound2(X);

if X{i,j}=0 then X{i,j}=.;
end;

end;

Both examples change all values of 0 in variables X60 through X99 to missing. The
first example sets the range of the DO groups explicitly, and the second example uses the
LBOUND and HBOUND functions to return the bounds of each dimension of the array.

Examples of Array Processing

Example 1: Using Character Variables in an Array
You can specify character variables and their lengths in ARRAY statements. The

following example groups variables into two arrays, NAMES and CAPITALS. The dollar
sign ($) tells SAS to create the elements as character variables. If the variables have
already been declared as character variables, a dollar sign in the array is not necessary.
The INPUT statement reads all the variables in array NAMES.

The statement inside the DO loop uses the UPCASE function to change the values of
the variables in array NAMES to uppercase and then store the uppercase values in the
variables in the CAPITALS array.

options nodate pageno=1 linesize=80 pagesize=60;

data text;
array names{*} $ n1-n10;
array capitals{*} $ c1-c10;
input names{*};

do i=1 to 10;
capitals{i}=upcase(names{i});

end;
datalines;

smithers michaels gonzalez hurth frank bleigh
rounder joseph peters sam
;

462 Example 2: Assigning Initial Values to the Elements of an Array � Chapter 25

proc print data=text;
title ’Names Changed from Lowercase to Uppercase’;

run;

The following output shows the TEXT data set.

Output 25.3 Using Character Variables in an Array

Names Changed from Lowercase to Uppercase 1

Obs n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

1 smithers michaels gonzalez hurth frank bleigh rounder joseph peters sam

Obs c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 i

1 SMITHERS MICHAELS GONZALEZ HURTH FRANK BLEIGH ROUNDER JOSEPH PETERS SAM 11

Example 2: Assigning Initial Values to the Elements of an Array
This example creates variables in the array TEST and assigns them the initial

values 90, 80, and 70. It reads values into another array named SCORE and compares
each element of SCORE to the corresponding element of TEST. If the value of the
element in SCORE is greater than or equal to the value of the element in TEST, the
variable NewScore is assigned the value in the element SCORE, and the OUTPUT
statement writes the observation to the SAS data set.

The INPUT statement reads a value for the variable named ID and then reads
values for all the variables in the SCORE array.

options nodate pageno=1 linesize=80 pagesize=60;

data score1(drop=i);
array test{3} t1-t3 (90 80 70);
array score{3} s1-s3;
input id score{*};
do i=1 to 3;

if score{i}>=test{i} then
do;

NewScore=score{i};
output;

end;
end;
datalines;

1234 99 60 82
5678 80 85 75
;

proc print noobs data=score1;
title ’Data Set SCORE1’;

run;

The following output shows the SCORE1 data set.

Array Processing � Example 3: Creating an Array for Temporary Use in the Current DATA Step 463

Output 25.4 Assigning Initial Values to the Elements of an Array

Data Set SCORE1 1

New
t1 t2 t3 s1 s2 s3 id Score

90 80 70 99 60 82 1234 99
90 80 70 99 60 82 1234 82
90 80 70 80 85 75 5678 85
90 80 70 80 85 75 5678 75

Example 3: Creating an Array for Temporary Use in the Current DATA
Step

When elements of an array are constants that are needed only for the duration of the
DATA step, you can omit variables from an array group and instead use temporary
array elements. You refer to temporary data elements by the array name and
dimension. Although they behave like variables, temporary array elements do not have
names, and they do not appear in the output data set. Temporary array elements are
automatically retained, instead of being reset to missing at the beginning of the next
iteration of the DATA step.

To create a temporary array, use the _TEMPORARY_ argument. The following
example creates a temporary array named TEST:

options nodate pageno=1 linesize=80 pagesize=60;

data score2(drop=i);
array test{3} _temporary_ (90 80 70);
array score{3} s1-s3;
input id score{*};

do i=1 to 3;
if score{i}>=test{i} then

do;
NewScore=score{i};
output;

end;
end;

datalines;
1234 99 60 82
5678 80 85 75
;

proc print noobs data=score2;
title ’Data Set SCORE2’;

run;

The following output shows the SCORE2 data set.

464 Example 4: Performing an Action on All Numeric Variables � Chapter 25

Output 25.5 Using _TEMPORARY_ Arrays

Data Set SCORE2 1

New
s1 s2 s3 id Score

99 60 82 1234 99
99 60 82 1234 82
80 85 75 5678 85
80 85 75 5678 75

Example 4: Performing an Action on All Numeric Variables
This example multiplies all the numeric variables in array TEST by 3.

options nodate pageno=1 linesize=80 pagesize=60;

data sales;
infile datalines;
input Value1 Value2 Value3 Value4;
datalines;

11 56 58 61
22 51 57 61
22 49 53 58
;

data convert(drop=i);
set sales;
array test{*} _numeric_;
do i=1 to dim(test);

test{i} = (test{i}*3);
end;

run;

proc print data=convert;
title ’Data Set CONVERT’;

run;

The following output shows the CONVERT data set.

Output 25.6 Output From Using a _NUMERIC_ Variable List

Data Set CONVERT 1

Obs Value1 Value2 Value3 Value4

1 33 168 174 183
2 66 153 171 183
3 66 147 159 174

465

P A R T4

SAS Files Concepts

Chapter 26.SAS Data Libraries 467

Chapter 27.SAS Data Sets 481

Chapter 28.SAS Data Files 487

Chapter 29.SAS Data Views 539

Chapter 30.Stored Compiled DATA Step Programs 547

Chapter 31.DICTIONARY Tables 557

Chapter 32.SAS Catalogs 561

Chapter 33.About SAS/ACCESS Software 569

Chapter 34.Processing Data Using Cross-Environment Data Access
(CEDA) 575

Chapter 35.SAS 9.1 Compatibility with SAS Files From Earlier
Releases 583

Chapter 36.File Protection 587

Chapter 37.SAS Engines 597

Chapter 38.SAS File Management 607

Chapter 39.External Files 611

466

467

C H A P T E R

26
SAS Data Libraries

Definition of a SAS Data Library 467
Library Engines 469

Library Names 469

Physical Names and Logical Names (Librefs) 469

Assigning Librefs 470

Associating and Clearing Logical Names (Librefs) With the LIBNAME Statement 470
Reserved Librefs 471

Library Concatenation 471

Definition of Library Concatenation 471

How SAS Concatenates Library Members 472

Rules for Library Concatenation 472

Permanent and Temporary Libraries 473
SAS System Libraries 474

Introduction to SAS System Libraries 474

WORK Library 474

Definition of WORK Library 474

Using the WORK Library 474
Relation to the USER Library 474

USER Library 475

Definition of USER Library 475

Ways to Assign the USER Libref 475

Relation to WORK Library 476
SASHELP Library 476

SASUSER Library 476

Sequential Data Libraries 476

Tools for Managing Libraries 477

SAS Utilities 477

Library Directories 478
Accessing Permanent SAS Files without a Libref 478

Operating Environment Commands 479

Definition of a SAS Data Library
A SAS data library is a collection of one or more SAS files that are recognized by

SAS and that are referenced and stored as a unit. Each file is a member of the library.
The logical concept of a SAS data library remains constant, regardless of the

operating environment. In any operating environment where SAS can be installed, the
structure for organizing, locating, and managing SAS files is the same.

468 Definition of a SAS Data Library � Chapter 26

At the operating environment level, however, a SAS data library has different
physical implementations. Most SAS data libraries implement the storage of files in a
manner similar to the way the operating environment stores and accesses files.

For instance, in directory-based operating environments, a SAS data library is a
group of SAS files that are stored in the same directory and accessed by the same
engine. Other files can be stored in the directory, but only the files with file extensions
that are assigned by SAS are recognized as part of the SAS data library. Under OS/390
or z/OS, a SAS data library can be implemented as either a bound library in a
traditional OS data set or as a directory under UNIX System Services.

SAS files can be any of the following file types:

� SAS data set (SAS data file or SAS data view)

� SAS catalog

� stored compiled SAS program

� SAS utility file

� access descriptors

� multi-dimensional database files such as MDDB, FDB, and DMDB files

� item store files.

Figure 26.1 Types of Files in a SAS Data Library

Each SAS file, in turn, stores information in smaller units that are characteristic of
the SAS file type. For example, SAS data sets store information as variables and
observations, while SAS catalogs store information in units called entries. SAS
determines the type of a file from the context of the SAS program in which the file is
created or specified; therefore, a library can contain files with the same name but with
different member types.

SAS data libraries can contain files that you create, or they can be one of several
special libraries that SAS provides for convenience, support, and customizing capability
such as the WORK library. SAS does not limit the number of SAS files you can store in
a SAS data library.

SAS Data Libraries � Physical Names and Logical Names (Librefs) 469

Library Engines
Each SAS data library is associated with a library engine. SAS library engines are

software components that form the interface between SAS and the SAS data library. It
is the SAS library engine that locates files in a SAS data library and renders the file
contents to SAS in a form that it can recognize. Library engines perform such tasks as:

� reading and writing data
� listing the files in the library

� deleting and renaming files.

SAS has a Multiple Engine Architecture in order to read to and write from files in
different formats. Each SAS engine has specific processing characteristics, such as the
ability to

� process a SAS file generated by an older version of SAS

� read database files created by other software programs
� store and access files on disk or tape

� determine how variables and observations are placed in a file
� place data into memory from its physical location

� transport SAS files between operating environments.

You generally are not aware of the particular type of engine that is processing data at
any given time. If you issue an instruction that is not supported by the engine, an error
message is displayed in the log. When needed, you can select a specific engine to
perform a task. But usually, you do not have to specify an engine, because SAS
automatically selects the appropriate one.

More than one engine may be involved in processing a DATA step; for example, one
engine may be used to input data, and another engine may be used to write
observations to the output data set.

For more information on library engines, including a list of engines available in Base
SAS, see “About Library Engines” on page 602.

Library Names

Physical Names and Logical Names (Librefs)
Before you can use a SAS data library, you must tell SAS where it is. SAS recognizes

SAS data libraries based on either operating environment naming conventions or SAS
naming conventions. There are two ways to define SAS data libraries.

� a physical location name that the operating environment recognizes
� a logical name (libref) that you assign using the LIBNAME statement, LIBNAME

function, or the New Library window.

The physical location name of the SAS data library is a name that identifies your
SAS files to the operating environment. The physical location name must conform to
the naming conventions of your operating environment. The physical location name
fully identifies the directory, or operating environment data set that contains the SAS
data library.

470 Assigning Librefs � Chapter 26

The logical name, or libref, is the way you identify a group of files to SAS. A libref is
a name that you associate with the physical location of the SAS data library.

Assigning Librefs
Librefs can be assigned using the following methods:
� LIBNAME statement
� LIBNAME function
� New Library window that is available in your toolbar
� operating environment commands.

Once the libref is assigned, you can read, create, or update files in a data library. A
libref is valid only for the current SAS session, unless it is assigned using the New
Library window with the Enable at startup box checked.

A libref can have a maximum length of eight characters. You can use the LIBREF
function to verify that a libref has been assigned. Librefs can be referenced repeatedly
within a SAS session. SAS does not limit the number of librefs you can assign during a
session; however, your operating environment or site may set limitations. If you are
running in batch mode, the library must exist before you can allocate or assign it. In
interactive mode, you may be allowed to create it if it does not already exist.

Operating Environment Information: Here are examples of the LIBNAME statement
for different operating environments. The rules for assigning and using librefs differ
across operating environments. See the SAS documentation for your operating
environment for specific information. �

Table 26.1 Syntax for Assigning a Libref

Operating Environment Examples

DOS, Windows libname mylibref ’c:\root\mystuff\sasstuff\work’;

UNIX libname mylibref ’/u/mystuff/sastuff/work’;

UNIX System Services
under z/OS

libname mylibref ’/mystuff/sastuff/work’;

z/OS libname mylibref ’userid.mystuff.sastuff.work’;

OpenVMS Alpha libname mylibref ’filename filetype filemode’;

You can also access files without using a libref. See “Accessing Permanent SAS Files
without a Libref” on page 478.

Associating and Clearing Logical Names (Librefs) With the LIBNAME
Statement

You can assign or clear a physical name with a libref using the LIBNAME statement
or the LIBNAME function, which are described in the SAS Language Reference:
Dictionary.

Operating Environment Information: For some operating environments, you can use
operating environment commands to associate a libref with a SAS data library. When
using operating environment commands to assign librefs to a SAS data library, the
association may persist beyond the SAS session in which the libref was created. For

SAS Data Libraries � Definition of Library Concatenation 471

some operating environments you can use only the LIBNAME statement or function.
See the SAS documentation for your operating environment for more information on
assigning librefs. �

The most common form of the LIBNAME statement is used in this example to associate
the libref ANNUAL with the physical name of the SAS data library.

libname annual ’SAS-data-library’;

If you use the LIBNAME statement to assign the libref, SAS clears (deassigns) the
libref automatically at the end of each SAS session. If you want to clear the libref
ANNUAL before the end of the session, you can issue the following form of the
LIBNAME statement:

libname annual clear;

SAS also provides a New Library window to assign or clear librefs and SAS Explorer
to view, add or delete SAS data libraries. You can select the New Library or the SAS
Explorer icon from the Toolbar.

Reserved Librefs
SAS reserves a few names for special uses. You should not use SASHELP, SASUSER

or SASWORK as librefs, except as intended. The purpose and content of these libraries
are discussed in “Permanent and Temporary Libraries” on page 473.

Operating Environment Information: There are other librefs reserved for SAS under
some operating environments. In addition, your operating environment may have
reserved certain words that cannot be used as librefs. See the SAS documentation for
your operating environment for more information. �

Library Concatenation

Definition of Library Concatenation
Concatenation is the logical combining of two or more libraries. Concatenation allows

you to access the SAS data sets in several libraries with one libref.
You can concatenate two or more libraries by specifying their librefs or physical

names in the LIBNAME statement or function.
Physical names must be enclosed in single or double quotation marks in a LIBNAME

statement. Otherwise SAS looks for a previously assigned libref with the same name.
In the following examples, summer, winter, spring, fall, and annual are previously

defined librefs:

libname annual (summer winter spring fall);

libname annual (’path1’ ’path2’ ’path3’);

libname annual (’path’ winter spring fall);

libname total (annual ’path’);

472 How SAS Concatenates Library Members � Chapter 26

How SAS Concatenates Library Members

When there are members of the same name in more than one library, the first
occurrence of the member is used for input and update processes. Output will always go
to the first library.

This example contains three SAS data libraries, and each library contains two SAS
data files:

LIB1 APPLES and PEARS

LIB2 APPLES and ORANGES

LIB3 ORANGES and PLUMS

The LIBNAME statement concatenates LIB1, LIB2, and LIB3:

libname fruit (lib1 lib2 lib3);

The concatenated library FRUIT has the following members:
APPLES
PEARS
ORANGES
PLUMS

Note: Output will always go to the first library. For example, the following
statement writes to the first library in the concatenation, LIB1:

data fruit.oranges;

�

Note that in this example, if the file APPLES in LIB1 was different from the file
APPLES in LIB2, and if an update to APPLES was specified, it will only be updated in
LIB1 because that is the first occurrence of the member APPLES.

For complete documentation on library concatenation, see the LIBNAME statement
or function in SAS Language Reference: Dictionary.

Operating Environment Information: For more information about how specific
operating environments handle concatenation, see the SAS documentation for your
operating environment. �

Rules for Library Concatenation
After you create a library concatenation, you can specify the libref in any context

that accepts a simple (nonconcatenated) libref. These rules determine how SAS files
(that is, members of SAS libraries) are located among the concatenated libraries:

� If you specify any options or an engine, the options apply only to the libraries that
you specified with the physical name, not to any library that you specified with a
libref.

� When a SAS file is opened for input or update, the concatenated libraries are
searched and the first occurrence of the specified file is used.

� When a SAS file is opened for output, it is created in the first library that is listed
in the concatenation.

Note: A new SAS file is created in the first library even if there is a file with
the same name in another part of the concatenation. �

SAS Data Libraries � Permanent and Temporary Libraries 473

� When you delete or rename a SAS file, only the first occurrence of the file is
affected.

� Any time a list of SAS files is displayed, only one occurrence of a filename is
shown, even if the name occurs multiple times in the concatenation. For example,
if library ONE contains A.DATA and library TWO contains A.DATA, only A.DATA
from library ONE is listed because it is the first occurrence of the filename.

In addition, a SAS file that is logically connected to another file (such as an
index to a data file) is listed only if the parent file is the first (or only) occurrence
of the filename. For example, if library ONE contains A.DATA and library TWO
contains A.DATA and A.INDEX, only A.DATA from library ONE is listed. A.DATA
and A.INDEX from library TWO are not listed.

� If any library in the concatenation is sequential, then the concatenated library is
considered sequential by applications that require random access. The DATASETS
procedure, for example, cannot process sequential libraries, and therefore cannot
process a concatenated library that contains one or more sequential libraries.

� The attributes of the first library that is specified determine the attributes of the
concatenation. For example, if the first SAS data library that is listed is “read
only,” then the entire concatenated library is “read only.”

� Once a libref has been assigned in a concatenation, any changes made to the libref
will not affect the concatenation.

Permanent and Temporary Libraries
SAS data libraries are generally stored as permanent data libraries; however, SAS

provides a temporary or scratch library where you can store files for the duration of a
SAS session or job.

A permanent SAS data library is one that resides on the external storage medium of
your computer and is not deleted when the SAS session terminates. Permanent SAS
data libraries are stored until you delete them. The library is available for processing in
subsequent SAS sessions. When working with files in a permanent SAS data library,
you generally specify a libref as the first part of a two-level SAS filename. The libref
tells SAS where to find or store the file.

Note: You can also skip using a libref and point directly to the file you want to use,
using syntax that your operating system understands. An example of this in the
Windows environment is

data ’C:\root\sasfiles\myfile.ext’;

Operating Environment Information: Files are specified differently in various
operating environments. See the SAS documentation for your operating environment
for more information. �

�

A temporary SAS data library is one that exists only for the current SAS session or job.
SAS files that are created during the session or job are held in a special work space
that may or may not be an external storage medium. This work space is generally
assigned the default libref WORK. Files in the temporary WORK library can be used in
any DATA step or SAS procedure during the SAS session, but they are typically not
available for subsequent SAS sessions. Normally, you specify that data sets be stored in
or retrieved from this library by specifying a one-level name. Files held in the WORK
library are deleted at the end of the SAS session if it ends normally.

There are a number of SAS system options that enable you to customize the way you
name and work with your permanent and temporary SAS data libraries. See the

474 SAS System Libraries � Chapter 26

USER=, WORK=, WORKINIT, and WORKTERM system options in SAS Language
Reference: Dictionary for more information.

SAS System Libraries

Introduction to SAS System Libraries
Four special SAS-supplied libraries provide convenience, support, and customization

capability:
� WORK
� USER
� SASHELP
� SASUSER

WORK Library

Definition of WORK Library
The WORK library is the temporary (scratch) library that is automatically defined by

SAS at the beginning of each SAS session. The WORK library stores two types of
temporary files: those that you create and those that are created internally by SAS as
part of normal processing. Typically, the WORK library is deleted at the end of each
SAS session if the session terminates normally.

Using the WORK Library
To store or retrieve SAS files in the WORK library, specify a one-level name in your

SAS program statements. The libref WORK is automatically assigned to these files as a
system default unless you have assigned the USER libref. The following examples
contain valid names for SAS data sets stored in the WORK library:

� data test2;

� data work.test2;

� proc contents data=testdata;

� proc contents data=work.testdata;

Operating Environment Information: The WORK library is implemented differently in
various operating environments. See the SAS documentation for your operating
environment for more information. �

Relation to the USER Library
While the WORK library is designed to hold temporary files used during the current

SAS session, the USER library is designed to hold files after the SAS session is over. If
you associate the libref USER with a SAS data library, use a one-level name to create
and access files that are not deleted at the end of your SAS session. When SAS

SAS Data Libraries � USER Library 475

encounters a one-level filename, it looks first in the USER library, if it has been defined,
and then it looks in WORK. If you wish to place a file in the USER library, so that it is
not deleted after your SAS session is over, any single-level file goes there by default. At
that point, if you want to create a temporary file in WORK, you must use a two-level
name, such as WORK.NAME.

USER Library

Definition of USER Library
The USER library allows you to read, create, and write to files in a SAS data library

other than WORK without specifying a libref as part of the SAS filename. Once you
associate the libref USER with a SAS data library, SAS stores any file with a one-level
name in that library. Unlike the WORK library, files stored in this library are not
deleted by SAS when the session terminates.

Ways to Assign the USER Libref
You can assign the USER libref using one of the following methods:
� LIBNAME statement
� LIBNAME function
� USER= system option
� operating environment command.

In this example, the LIBNAME statement is used with a DATA step, which stores
the data set REGION in a permanent SAS data library.

libname user ’SAS-data-library’;
data region;
… more DATA step statements …
run;

In this example, the LIBNAME function assigns the USER libref:

data _null_;
x=libname (’user’, ’SAS-data-library’);

run;

When assigning a libref using the USER= system option, you must first assign a
libref to a SAS data library, then use the USER= system option to specify that library
as the default for one-level names. In this example, the DATA step stores the data set
PROCHLOR in the SAS data library TESTLIB.

libname testlib ’SAS-data-library’;
options user=testlib;
data prochlor;
… more DATA step statements …
run;

Operating Environment Information: The methods and results of assigning the USER
libref vary slightly from one operating environment to another. See the SAS
documentation for your operating environment for more information. �

476 SASHELP Library � Chapter 26

Relation to WORK Library
The USER libref overrides the default libref WORK for one-level names. When you

refer to a file by a one-level name, SAS looks first for the libref USER. If USER is
assigned to a SAS data library, files with one-level names are stored there. If you have
not assigned the libref USER to a library, the files with one-level names are stored in
the temporary library WORK. To refer to SAS files in the WORK library while the
USER libref is assigned, you must specify a two-level name with WORK as the libref.
Data files that SAS creates internally still go to the WORK library.

SASHELP Library
Each SAS site receives the SASHELP library, which contains a group of catalogs and

other files containing information that is used to control various aspects of your SAS
session. The defaults stored in this library are for everyone using SAS at your
installation. Your personal settings are stored in the SASUSER library, which is
discussed later in this section.

If SAS products other than Base SAS are installed at your site, the SASHELP
library contains catalogs that are used by those products. In many instances, the
defaults in this library are tailored to your site by your SAS Software Representative.
You can list the catalogs stored at your site by using one of the file management
utilities discussed later in this section.

SASUSER Library
The SASUSER library contains SAS catalogs that enable you to tailor features of

SAS for your needs. If the defaults in the SASHELP library are not suitable for your
applications, you can modify them and store your personalized defaults in your
SASUSER library. For example, in Base SAS, you can store your own defaults for
function key settings or window attributes in a personal profile catalog named
SASUSER.PROFILE.

SAS assigns the SASUSER library during system initialization, according to the
information supplied by the SASUSER system option.

A system option called RSASUSER allows the system administrator to control the
mode of access to the SASUSER library at installations that have one SASUSER
library for all users and that want to prevent users from modifying it.

Operating Environment Information: In most operating environments, the SASUSER
data library is created if it does not already exist. However, the SASUSER library is
implemented differently in various operating environments. See the SAS
documentation for your operating environment for more information. �

Sequential Data Libraries
SAS provides a number of features and procedures for reading from and writing to

files that are stored on sequential format devices, either disk or tape. Before you store
SAS data libraries in sequential format, you should consider the following:

� You cannot use random access methods with sequential SAS data sets.
� You can access only one of the SAS files in a sequential library, or only one of the

SAS files on a tape, at any point in a SAS job.
For example, you cannot read two or more SAS data sets in the same library or

on the same tape at the same time in a single DATA step. However, you can access

SAS Data Libraries � SAS Utilities 477

� two or more SAS files in different sequential libraries, or on different tapes at
the same time, if there are enough tape drives available

� a SAS file during one DATA or PROC step, then access another SAS file in
the same sequential library or on the same tape during a later DATA or
PROC step.

Also, when you have more than one SAS data set on a tape or in a sequential
library in the same DATA or PROC step, one SAS data set file may be opened
during the compilation phase, and the additional SAS data sets are opened during
the execution phase. For more information, see the SET statement OPEN= option
in SAS Language Reference: Dictionary.

� For some operating environments, you can only read from or write to SAS data
sets during a DATA or PROC step. However, you can always use the COPY
procedure to transfer all members of a SAS data library to tape for storage and
backup purposes.

� Considerations specific to your site can affect your use of tape. For example, it
may be necessary to manually mount a tape before the SAS data libraries become
available. Consult your operations staff if you are not familiar with using tape
storage at your location.

For information on sequential engines, see Chapter 37, “SAS Engines,” on page 597.

Operating Environment Information: The details for storing and accessing SAS files in
sequential format vary with the operating environment. See the SAS documentation for
your operating environment for more information. �

Tools for Managing Libraries

SAS Utilities
The SAS utilities that are available for SAS file management enable you to work

with more than one SAS file at a time, as long as the files belong to the same library.
The advantage of learning and using SAS Explorer, functions, options, and procedures
is that they automatically copy, rename, or delete any index files or integrity
constraints, audit trails, backups, and generation data sets that are associated with
your SAS data files. Another advantage is that SAS utility procedures work on any
operating environment at any level.

There are several SAS window options, functions, and procedures available for
performing file management tasks. You can use the following features alone or in
combination, depending on what works best for you. See “Choosing the Right
Procedure” in Base SAS Procedures Guide for detailed information on SAS utility
procedures. The SAS windowing environment and how to use it for managing SAS files
is discussed in Chapter 18, “Introduction to the SAS Windowing Environment,” on page
283 and Chapter 19, “Managing Your Data in the SAS Windowing Environment,” on
page 307 as well as in the online Help.

CATALOG procedure
provides catalog management utilities with the COPY, CONTENTS, and APPEND
procedures.

478 Library Directories � Chapter 26

DATASETS procedure
provides all library management functions for all member types except catalogs. If
your site does not use the SAS Explorer, or if SAS executes in batch or interactive
line mode, using this procedure can save you time and resources.

SAS Explorer
includes windows that enable you to perform most file management tasks without
submitting SAS program statements. Type LIBNAME, CATALOG, or DIR in the
Toolbar window to use SAS Explorer, or select the Explorer icon from the Toolbar
menu.

DETAILS system option
Sets the default display for file information when using the CONTENTS, or
DATASETS procedure. When enabled, DETAILS provides additional information
about files, depending on which procedure or window you use.

Library Directories
SAS Explorer and SAS procedures enable you to obtain a list, or directory, of the

members in a SAS data library. Each directory contains the name of each member and
its member type. For the member type DATA, the directory indicates whether an index,
audit trail, backup, or generation data set is associated with the data set. The directory
also describes some attributes of the library, but the amount and nature of this
information vary with the operating environment.

Note: SAS data libraries can also contain various SAS utility files. These files are
not listed in the library directory and are for internal processing. �

Accessing Permanent SAS Files without a Libref
SAS provides another method of accessing files in addition to assigning a libref with

the LIBNAME statement or using the New Library window. To use this method,
enclose the filename, or the filename and path, in single quotation marks.

For example, in a directory based system, if you want to create a data set named
MYDATA in your default directory, that is, in the directory that you are running SAS
in, you can write the following line of code:

data ’mydata’;

SAS creates the data set and remembers its location for the duration of the SAS session.
If you omit the single quotation marks, SAS creates the data set MYDATA in the

temporary WORK subdirectory, named WORK.MYDATA:

data mydata;

If you want to create a data set named MYDATA in a library other than the directory in
which you are running SAS, enclose the entire path in quotation marks, following the
naming conventions of your operating environment. For example, the following DATA
step creates a data set named FOO in the directory C:\sasrun\mydata.

data ’c:\sasrun\mydata\foo’;

This method of accessing files works on all operating environments and in most
contexts where a libref.data-set-name is accepted as a SAS data set. Most data set
options can be specified with a quoted name.

You cannot use quoted names for

� SAS catalogs

SAS Data Libraries � Operating Environment Commands 479

� MDDB and FDB references
� contexts that do not accept a libref, such as the SELECT statement of PROC

COPY and most PROC DATASETS statements
� PROC SQL
� DATA step, stored programs, or views
� SAS Component Language (SCL) open function.

Operating Environment Examples

DOS, Windows data ’c:\root\mystuff\sasstuff\work\myfile’;

UNIX data ’/u/root/mystuff/sastuff/work/myfile’;

z/OS data ’user489.mystuff.saslib(member1)’;
/* bound data library */

data ’/mystuff/sasstuff/work/myfile’;
/* UNIX file system library */

Open VMS Alpha data ’filename filetype filemode’;

Operating Environment Commands
You can use operating environment commands to copy, rename, and delete the

operating environment file or files that make up a SAS data library. However, to
maintain the integrity of your files, you must know how the SAS data library model is
implemented in your operating environment. For example, in some operating
environments, SAS data sets and their associated indexes can be copied, deleted, or
renamed as separate files. If you rename the file containing the SAS data set, but not
its index, the data set will be marked as damaged.

CAUTION:
Using operating environment commands can damage files. You can avoid problems by
always using SAS utilities to manage SAS files. �

480

481

C H A P T E R

27
SAS Data Sets

Definition of a SAS Data Set 481
Descriptor Information for a SAS Data Set 481

Data Set Names 482

Where to Use Data Set Names 482

How and When SAS Data Set Names Are Assigned 483

Parts of a Data Set Name 483
Two-level SAS Data Set Names 484

One-level SAS Data Set Names 484

Special SAS Data Sets 484

Null Data Sets 484

Default Data Sets 485

Automatic Naming Convention 485
Sorted Data Sets 485

Tools for Managing Data Sets 485

Viewing and Editing SAS Data Sets 486

Definition of a SAS Data Set
A SAS data set is a SAS file stored in a SAS data library that SAS creates and

processes. A SAS data set contains data values that are organized as a table of
observations (rows) and variables (columns) that can be processed by SAS software. A
SAS data set also contains descriptor information such as the data types and lengths of
the variables, as well as which engine was used to create the data.

A SAS data set can be one of the following:

SAS data file contains both the data and the descriptor information. SAS data
files have a member type of DATA. For specific information, see
Chapter 28, “SAS Data Files,” on page 487

SAS data view is a virtual data set that points to data from other sources. SAS
data views have a member type of VIEW. For specific information,
see Chapter 29, “SAS Data Views,” on page 539.

Note: The term SAS data set is used when a SAS data view and a SAS data file can
be used in the same manner. �

Descriptor Information for a SAS Data Set
The descriptor information for a SAS data set makes the file self-documenting; that

is, each data set can supply the attributes of the data set and of its variables. Once the

482 Data Set Names � Chapter 27

data is in the form of a SAS data set, you do not have to specify the attributes of the
data set or the variables in your program statements. SAS obtains the information
directly from the data set.

Descriptor information includes the number of observations, the observation length,
the date that the data set was last modified, and other facts. Descriptor information for
individual variables includes attributes such as name, type, length, format, label, and
whether the variable is indexed.

The following figure illustrates the logical components of a SAS data set:

Figure 27.1 Logical Components of a SAS Data Set

Descriptor
Information

Data
Values

Index

(such as variable attributes, number of observations,
or last date that the data was updated)

variables

observations

1

2

3

The following items correspond to the numbers in the figure above:

1 A SAS data view (member type VIEW) contains descriptor information and uses
data values from one or more data sets.

2 A SAS data file (member type DATA) contains descriptor information and data
values. SAS data sets may be of member type DATA (SAS data file) or VIEW (SAS
data view).

3 An index is a separate file that you can create for a SAS data file in order to
provide direct access to specific observations. The index file has the same name as
its data file and a member type of INDEX. Indexes can provide faster access to
specific observations, particularly when you have a large data set.

Data Set Names

Where to Use Data Set Names
You can use SAS data sets as input for DATA or PROC steps by specifying the name

of the data set in

� a SET statement

SAS Data Sets � Parts of a Data Set Name 483

� a MERGE statement

� an UPDATE statement

� a MODIFY statement

� the DATA= option of a SAS procedure

� the OPEN function.

How and When SAS Data Set Names Are Assigned
You name SAS data sets when you create them. Output data sets that you create in

a DATA step are named in the DATA statement. SAS data sets that you create in a
procedure step are usually given a name in the procedure statement or an OUTPUT
statement. If you do not specify a name for an output data set, SAS assigns a default
name.

If you are creating SAS data views, you assign the data set name using one of the
following:

� the SQL procedure

� the ACCESS procedure

� the VIEW= option in the DATA statement.

Note: Because you can specify both SAS data files and SAS data views in the same
program statements but cannot specify the member type, SAS cannot determine from
the program statement which one you want to process. This is why SAS prevents you
from giving the same name to SAS data views and SAS data sets in the same library. �

Parts of a Data Set Name
The complete name of every SAS data set has three elements. You assign the first

two; SAS supplies the third. The form for SAS data set names is as follows:

libref.SAS-data-set.membertype

The elements of a SAS data set name include the following:

libref
is the logical name that is associated with the physical location of the SAS data
library.

SAS-data-set
is the data set name, which can be up to 32 bytes long for the Base SAS engine
starting in Version 7. Earlier SAS versions are limited to 8-byte names.

membertype
is assigned by SAS. The member type is DATA for SAS data files and VIEW for
SAS data views.

When you refer to SAS data sets in your program statements, use a one- or two-level
name. You can use a one-level name when the data set is in the temporary library
WORK. In addition, if the reserved libref USER is assigned, you can use a one-level
name when the data set is in the permanent library USER. Use a two-level name when
the data set is in some other permanent library you have established. A two-level name
consists of both the libref and the data set name. A one-level name consists of just the
data set name.

484 Two-level SAS Data Set Names � Chapter 27

Two-level SAS Data Set Names
The form most commonly used to create, read, or write to SAS data sets in

permanent SAS data libraries is the two-level name as shown here:

libref.SAS-data-set

When you create a new SAS data set, the libref indicates where it is to be stored.
When you reference an existing data set, the libref tells SAS where to find it. The
following examples show the use of two-level names in SAS statements:

data revenue.sales;

proc sort data=revenue.sales;

One-level SAS Data Set Names
You can omit the libref, and refer to data sets with a one-level name in the following

form:

SAS-data-set

Data sets with one-level names are automatically assigned to one of two SAS
libraries: WORK or USER. Most commonly, they are assigned to the temporary library
WORK and are deleted at the end of a SAS job or session. If you have associated the
libref USER with a SAS data library or used the USER= system option to set the USER
library, data sets with one-level names are stored in that library. See Chapter 26, “SAS
Data Libraries,” on page 467 for more information on using the USER and WORK
libraries. The following examples show how one-level names are used in SAS
statements:

data ’test3’;

set ’stratifiedsample1’;

Special SAS Data Sets

Null Data Sets
If you want to execute a DATA step but do not want to create a SAS data set, you

can specify the keyword _NULL_ as the data set name. The following statement begins
a DATA step that does not create a data set:

data _null_;

Using _NULL_ causes SAS to execute the DATA step as if it were creating a new
data set, but no observations or variables are written to an output data set. This
process can be a more efficient use of computer resources if you are using the DATA
step for some function, such as report writing, for which the output of the DATA step
does not need to be stored as a SAS data set.

SAS Data Sets � Tools for Managing Data Sets 485

Default Data Sets
SAS keeps track of the most recently created SAS data set through the reserved

name _LAST_. When you execute a DATA or PROC step without specifying an input
data set, by default, SAS uses the _LAST_ data set. Some functions use the _LAST_
default as well.

The _LAST_= system option enables you to designate a data set as the _LAST_ data
set. The name you specify is used as the default data set until you create a new data set.
You can use the _LAST_= system option when you want to use an existing permanent
data set for a SAS job that contains a number of procedure steps. Issuing the _LAST_=
system option enables you to avoid specifying the SAS data set name in each procedure
statement. The following OPTIONS statement specifies a default SAS data set:

options _last_=schedule.january;

Automatic Naming Convention
If you do not specify a SAS data set name or the reserved name _NULL_ in a DATA

statement, SAS automatically creates data sets with the names DATA1, DATA2, and so
on, to successive data sets in the WORK or USER library. This feature is referred to as
the DATAn naming convention. The following statement produces a SAS data set using
the DATAn naming convention:

data;

Sorted Data Sets
A sort indicator is stored with SAS data sets. The sort indicator expresses how the

data is sorted. Sort information is used internally for performance improvements, for
example, during index creation. For details, see the SORTEDBY data set option in SAS
Language Reference: Dictionary and the PROC SORT procedure in Base SAS
Procedures Guide.

Use PROC CONTENTS to view information for a data set.

Tools for Managing Data Sets
To copy, rename, delete, or obtain information about the contents of SAS data sets,

use the same windows, procedures, functions and options you do for SAS data libraries.
For a list of those windows and procedures, see Chapter 26, “SAS Data Libraries,” on
page 467.

There are also functions available that allow you to work with your SAS data set.
See each individual function for more complete information.

486 Viewing and Editing SAS Data Sets � Chapter 27

Viewing and Editing SAS Data Sets
The VIEWTABLE window enables you to browse, edit, or create data sets. This

window provides two viewing modes:

Table View uses a tabular format to display multiple observations in the data
set.

Form View displays data one observation at a time in a form layout.

You can customize your view of a data set, for example, by sorting your data, changing
the color and fonts of columns, displaying variable labels instead of variable names, or
removing or adding variables. You can also load an existing DATAFORM catalog entry
in order to apply a previously-defined variable, data set, and viewer attributes.

To view a data set, select the following:

Tools � Table Editor

This brings up VIEWTABLE or FSVIEW (z/OS). You can also double-click on the data
set in the Explorer window.

SAS files supported within the VIEWTABLE window are:

� SAS data files

� SAS data views
� MDDB files.

For more information, see the SAS System Help for VIEWTABLE in Base SAS.

487

C H A P T E R

28
SAS Data Files

Definition of a SAS Data File 489
Differences between Data Files and Data Views 489

Understanding an Audit Trail 491

Definition of an Audit Trail 491

Audit Trail Description 491

Operation in a Shared Environment 493
Performance Implications 493

Preservation by Other Operations 493

Programming Considerations 493

Other Considerations 493

Initiating an Audit Trail 494

Controlling the Audit Trail 494
Reading and Determining the Status of the Audit Trail 494

Examples of Using Audit Trails 495

Example of Initiating an Audit Trail 495

Example of a Data File Update 496

Example of Using the Audit Trail to Capture Rejected Observations 497
Understanding Generation Data Sets 499

Definition of Generation Data Set 499

Terminology for Generation Data Sets 499

Invoking Generation Data Sets 500

Understanding How a Generation Group Is Maintained 500
Processing Specific Versions of a Generation Group 502

Managing Generation Groups 502

Introduction 502

Displaying Data Set Information 503

Copying Generation Groups 503

Appending Generation Groups 503
Modifying the Number of Versions 503

Deleting Versions in a Generation Group 504

Renaming Versions in a Generation Group 504

Using Passwords in a Generation Group 505

Understanding Integrity Constraints 505
Definition of Integrity Constraints 505

General Integrity Constraints 505

Referential Integrity Constraints 505

Overlapping Primary Key and Foreign Key Constraints 506

Preservation of Integrity Constraints 507
Indexes and Integrity Constraints 508

Locking Integrity Constraints 508

Passwords and Integrity Constraints 508

488 Contents � Chapter 28

Specifying Integrity Constraints 511
Listing Integrity Constraints 511

Rejected Observations 511

Examples 511

Creating Integrity Constraints with the DATASETS Procedure 511

Creating Integrity Constraints with the SQL Procedure 512
Creating Integrity Constraints by Using SCL 513

Removing Integrity Constraints 516

Reactivating an Inactive Integrity Constraint 517

Defining Overlapping Primary Key and Foreign Key Constraints 517

Understanding SAS Indexes 518

Definition of SAS Indexes 518
Benefits of an Index 518

The Index File 519

Types of Indexes 520

Simple Index 520

Composite Index 520
Unique Values 521

Missing Values 521

Deciding Whether to Create an Index 522

Costs of an Index 522

CPU Cost 522
I/O Cost 522

Buffer Requirements 523

Disk Space Requirements 523

Guidelines for Creating Indexes 524

Data File Considerations 524

Index Use Considerations 524
Key Variable Candidates 524

Creating an Index 525

Overview of Creating Indexes 525

Using the DATASETS Procedure 526

Using the INDEX= Data Set Option 526
Using the SQL Procedure 526

Using Other SAS Products 527

Using an Index for WHERE Processing 527

Identifying Available Index or Indexes 527

Compound Optimization 528
Estimating the Number of Qualified Observations 529

Comparing Resource Usage 530

Controlling WHERE Processing Index Usage with Data Set Options 531

Displaying Index Usage Information in the SAS Log 531

Using an Index with Views 532

Using an Index for BY Processing 532
Using an Index for Both WHERE and BY Processing 533

Specifying an Index with the KEY= Option for SET and MODIFY Statements 534

Taking Advantage of an Index 534

Maintaining Indexes 534

Displaying Data File Information 534
Copying an Indexed Data File 535

Updating an Indexed Data File 536

Sorting an Indexed Data File 536

Adding Observations to an Indexed Data File 536

Multiple Occurrences of Values 536

SAS Data Files � Differences between Data Files and Data Views 489

Appending Data to an Indexed Data File 537
Recovering a Damaged Index 537

Indexes and Integrity Constraints 537

Compressing Data Files 537

Definition of Compression 537

Requesting Compression 538
Disabling a Compression Request 538

Definition of a SAS Data File
A SAS data file is a type of SAS data set that contains both the data values and the

descriptor information. SAS data files have the member type of DATA. There are two
general types of SAS data files:

native SAS data file
stores the data values and descriptor information in a file that is formatted by SAS.

interface SAS data file
stores the data in a file that was formatted by software other than SAS. SAS
provides engines for reading and writing data from files that were formatted by
software such as ORACLE, DB2, SYBASE, ODBC, BMDP, SPSS, and OSIRIS.
These files are interface SAS data files, and when their data values are accessed
through an engine, SAS recognizes them as SAS data sets.

Note: The availability of engines that can access different types of interface
data files is determined by your site licensing agreement. See your system
administrator to determine which engines are available. For more information
about SAS multiple engine architecture, see Chapter 37, “SAS Engines,” on page
597. �

Differences between Data Files and Data Views
While the terms “SAS data files” and “SAS data views” can often be used

interchangeably, here are a few differences to consider:
� The main difference is where the values are stored. A SAS data file is a type of SAS

data set that contains both descriptor information about the data and the data
values themselves. SAS views contain only descriptor information and instructions
for retrieving data that is stored elsewhere. Once the data is retrieved by SAS, it
can be manipulated in a DATA step.

� A data file is static; a view is dynamic. When you reference a data file in a later
PROC step, you see the data values as they were when the data file was created or
last updated. When you reference a view in a PROC step, the view executes and
provides you with an image of the data values as they currently exist, not as they
existed when the view was defined.

� SAS data files can be created on tape or on any other storage medium.
SAS data views cannot be stored on tape. Because of their dynamic nature, SAS

data views must derive their information from data files on random-access storage
devices, such as disk drives. Views cannot derive their information from files
stored on sequentially accessed storage devices, such as tape drives.

� SAS data views are read only. You cannot write to a view, but some SQL views can
be updated.

490 Differences between Data Files and Data Views � Chapter 28

� SAS data files can have an audit trail. The audit trail is an optional SAS file that
logs modifications to a SAS data file. Each time an observation is added, deleted,
or updated, information is written to the audit trail about who made the
modification, what was modified, and when.

� SAS data files can have generations. Generations provide the ability to keep
multiple copies of a SAS data file. The multiple copies represent versions of the
same data file, which is archived each time it is replaced.

� SAS data files can have integrity constraints. When you update a SAS data file,
you can ensure that the data conforms to certain standards by using integrity
constraints. With views, this may only be done indirectly, by assigning integrity
constraints to the data files that the views reference.

� SAS data files can be indexed. Indexing might enable SAS to find data in a SAS
data file more quickly. SAS data views cannot be indexed.

� SAS data files can be encrypted. Encryption provides an extra layer of security to
physical files. SAS data views cannot be encrypted.

� SAS data files can be compressed. Compression makes it possible to store physical
files in less space. SAS data views cannot be compressed.

The following figure illustrates native and interface SAS data files and their
relationship to SAS views.

Figure 28.1 Types of SAS Data Sets

SAS Data Views
(contain descriptor

information that points to
data stored elsewhere)

SAS Data Files
(contain data and

descriptor information)

Native Data Files
(formatted by SAS)

Interface Data Files
(formatted by other

software)

Native Data Views
(formatted by SAS)

Interface Data Views
(formatted by other

software)

PROC SQL Views DATA Step Views

SAS Data Sets

SAS Data Files � Audit Trail Description 491

Understanding an Audit Trail

Definition of an Audit Trail
The audit trail is an optional SAS file that you can create in order to log

modifications to a SAS data file. Each time an observation is added, deleted, or
updated, information is written to the audit trail about who made the modification,
what was modified, and when.

Many businesses and organizations require an audit trail for security reasons. The
audit trail maintains historical information about the data, which gives you the
opportunity to develop usage statistics and patterns. The historical information enables
you to track individual pieces of data from the moment they enter the data file to the
time they leave.

The audit trail is also the only facility in SAS that stores observations from failed
append operations and that were rejected by integrity constraints. (The integrity
constraints feature is described in “Understanding Integrity Constraints” on page 505.)
The audit trail enables you to write a DATA step to extract the failed or rejected
observations, use information describing why the observations failed to correct them,
and then reapply the observations to the data file.

Audit Trail Description
The audit trail is created by the default Base SAS engine and has the same libref

and member name as the data file, but has a data set type of AUDIT. It replicates the
variables in the data file and additionally stores two types of audit variables:

� _AT*_ variables, which automatically store modification data

� user variables, which are optional variables you can define to collect modification
data.

The _AT*_ variables are described in the following table.

Table 28.1 _AT* Variables

AT* Variable Description

ATDATETIME Stores the date and time of a modification

ATUSERID Stores the logon userid that is associated with a modification

ATOBSNO Stores the observation number that is affected by the
modification, except when REUSE=YES (because the observation
number is always 0)

ATRETURNCODE Stores the event return code

ATMESSAGE Stores the SAS log message at the time of the modification

ATOPCODE Stores a code that describes the type of modification

The _ATOPCODE_ values are listed in the following table.

492 Audit Trail Description � Chapter 28

Table 28.2 _ATOPCODE_ Values

Code Modification

AL Auditing is resumed

AS Auditing is suspended

DA Added data record image

DD Deleted data record image

DR Before-update record image

DW After-update record image

EA Observation add failed

ED Observation delete failed

EU Observation update failed

The type of entries stored in the audit trail, along with their corresponding
ATOPCODE values, are determined by the options specified in the LOG statement
when the audit trail is initiated. Note that if the LOG statement is omitted when the
audit trail is initiated, the default behavior is to log all images.

� The A operation codes are controlled by the ADMIN_IMAGE option.

� The DR operation code is controlled by the BEFORE_IMAGE option.

� All other D operation codes are controlled with the DATA_IMAGE option.

� The E operation codes are controlled by the ERROR_IMAGE option.

The user variable is a variable that associates data values with the data file without
making them part of the data file. That is, the data values are stored in the audit file,
but you update them in the data file like any other variable. You may want to define a
user variable to enable end users to enter a reason for each update.

User variables are defined at audit trail initiation with the USER_VAR statement.
For example, the following code initiates an audit trail and creates a user variable
REASON_CODE for data file MYLIB.SALES:

proc datasets lib=mylib;
audit sales;

initiate;
user_var reason_code $ 20;

run;

After the audit trail is initiated, the Base SAS engine retrieves the user variables
from the audit trail and displays them when the data file is opened for update. You can
enter data values for the user variables as you would for any data variable. The data
values are saved to the audit trail as each observation is saved. (In applications like
FSEDIT, which save observations as you scroll through them, it may appear that the
data values have disappeared.) The user variables are not available when the data file
is opened for browsing or printing. However, to rename a user variable or modify its
attributes, you modify the data file, not the audit file. The following example uses
PROC DATASETS to rename the user variable:

proc datasets lib=mylib;
modify sales;
rename reason_code = Reason;

run;
quit;

SAS Data Files � Audit Trail Description 493

You must also define attributes such as format and informat in the data file with PROC
DATASETS. If you define user variables, you must store values in them for the
variables to be meaningful.

A data file can have one audit file, and the audit file must reside in the same SAS
library as the data file.

Operation in a Shared Environment

The audit trail operates similarly in local and remote environments. The only
difference for applications and users networking with SAS/CONNECT and SAS/SHARE
is that the audit trail logs events when the observation is written to permanent storage;
that is, when the data is written to the remote SAS session or server. Therefore, the
time that the transaction is logged might be different than the user’s SAS session.

Performance Implications

Because each update to the data file is also written to the audit file, the audit trail
can negatively impact system performance. You might want to consider suspending the
audit trail for large, regularly scheduled batch updates. Note that the audit variables
are unavailable when the audit trail is suspended.

Preservation by Other Operations

The audit trail is not recommended for data files that are copied, moved, sorted in
place, replaced, or transferred to another operating environment, because those
operations do not preserve the audit trail. In a copy operation on the same host, you
can preserve the data file and audit trail by renaming them using the generation data
sets feature; however, logging will stop because neither the auditing process nor the
generation data sets feature saves the source program that caused the replacement.
For more information about generation data sets, see “Understanding Generation Data
Sets” on page 499.

Programming Considerations

For data files whose audit file contains user variables, the variable list is different
when browsing and updating the data file. The user variables are selected for update
but not for browsing. You should be aware of this difference when you are developing
your own full-screen applications.

Other Considerations

Data values that are entered for user variables are not stored in the audit trail for
delete operations.

If the audit file becomes damaged, you will not be able to process the data file until
you terminate the audit trail. Then you can initiate a new audit trail or process the
data file without one. To terminate the audit trail for a generation data set, use the
GENNUM= data set option in the AUDIT statement. You cannot initiate an audit trail
for a generation data set.

In indexed data sets, the fast-append feature may cause some observations to be
written to the audit trail twice, first with a DA operation code and then with an EA
operation code. The observations with EA represent those rejected by index restrictions.
For more information, see “Appending to an Indexed Data Set” in the PROC
DATASETS APPEND statement documentation in Base SAS Procedures Guide.

494 Initiating an Audit Trail � Chapter 28

Initiating an Audit Trail
You initiate an audit trail in the DATASETS procedure with the AUDIT statement.

Consult the “PROC DATASETS AUDIT Statement” in the Base SAS Procedures Guide
for syntax information.

The audit file will use the SAS password assigned to its associated data file;
therefore, it is recommended that the data file have an ALTER password. An
ALTER-level password restricts read and edit access to SAS files. If a password other
than ALTER is used, or no password is used, the software will generate a warning
message that the files are not protected from accidental update or deletion.

Controlling the Audit Trail
Once active, you can suspend and resume logging, and terminate (delete) the audit

trail. The syntax for controlling the audit trail is described in the PROC DATASETS
AUDIT statement documentation. Note that replacing the associated data file will also
delete the audit trail.

Reading and Determining the Status of the Audit Trail
The audit trail is read-only. You can read the audit trail with any component of SAS

that reads a data set. To refer to the audit trail, use the TYPE= data set option. For
example, to view the contents of the audit trail, issue the following statement. Note
that the parentheses around the TYPE= option are required.

proc contents data=mylib.sales (type=audit);
run;

The PROC CONTENTS output is shown below. Notice that the listing contains all of
the variables from the corresponding data file, the _AT*_ variables, and the user
variable.

SAS Data Files � Examples of Using Audit Trails 495

Output 28.1 PROC CONTENTS Listing for Data File MYLIB.SALES

The CONTENTS Procedure

Data Set Name MYLIB.SALES.AUDIT Observations 0

Member Type AUDIT Variables 10

Engine V9 Indexes 0

Created 12:34 Wednesday, January 22, 2003 Observation Length 111

Last Modified 12:34 Wednesday, January 22, 2003 Deleted Observations 0

Protection Compressed NO

Data Set Type AUDIT Sorted NO

Label

Data Representation WINDOWS

Encoding Default

Engine/Host Dependent Information

Data Set Page Size 4096

Number of Data Set Pages 1

First Data Page 1

Max Obs per Page 33

Obs in First Data Page 0

Number of Data Set Repairs 0

File Name C:\My Documents\myfiles\sales.sas7baud

Release Created 9.0000A0

Host Created WIN_NT

Alphabetic List of Variables and Attributes

Variable Type Len Format

5 _ATDATETIME_ Num 8 DATETIME19.

10 _ATMESSAGE_ Char 8

6 _ATOBSNO_ Num 8

9 _ATOPCODE_ Char 2

7 _ATRETURNCODE_ Num 8

8 _ATUSERID_ Char 32

2 invoice Num 8

1 product Char 9

4 reason_code Char 20

3 renewal Num 8

You can also use your favorite reporting tool, such as PROC REPORT or PROC
TABULATE, on the audit trail.

Examples of Using Audit Trails

Example of Initiating an Audit Trail

The following example shows the data and code that are used to create and initiate
an audit trail for the data file MYLIB.SALES that is used in earlier examples in this
section. MYLIB.SALES stores fictional invoice and renewal figures for SAS products.
The audit trail will record all events and will store one user variable, REASON_CODE,
for users to enter a reason for the update.

Subsequent examples will illustrate the effect of a data file update on the audit trail
and how to use audit variables to capture observations that are rejected by integrity
constraints. The system option LINESIZE is set in advance for the integrity constraints

496 Examples of Using Audit Trails � Chapter 28

example. A large LINESIZE value is recommended to display the content of the
ATMESSAGE variable. The output examples have been modified to fit on the page.

options linesize=250;
/*------------------------------------*/
/* Create SALES data set. */
/*------------------------------------*/

data mylib.sales;
length product $9;
input product invoice renewal;

datalines;
FSP 1270.00 570
SAS 1650.00 850
STAT 570.00 0
STAT 970.82 600
OR 239.36 0
SAS 7478.71 1100
SAS 800.00 800
;

/*----------------------------------*/
/* Create an audit trail with a */
/* user variable. */
/*----------------------------------*/

proc datasets lib=mylib nolist;
audit sales;
initiate;
user_var reason_code $ 20;

run;

Example of a Data File Update
The following example inserts an observation into MYLIB.SALES.DATA and prints

the update data in the MYLIB.SALES.AUDIT.

/*----------------------------------*/
/* Do an update. */
/*----------------------------------*/

proc sql;
insert into mylib.sales

set product = ’AUDIT’,
invoice = 2000,
renewal = 970,

reason_code = "Add new product";
quit;

/*--*/
/* Print the audit trail. */
/*--*/

proc sql;
select product,

reason_code,
atopcode,

SAS Data Files � Examples of Using Audit Trails 497

atuserid format=$6.,
atdatetime
from mylib.sales(type=audit);

quit;

Output 28.2 Updated Data in MYLIB.SALES.AUDIT

The SAS System

product reason_code _ATOPCODE_ _ATUSERID_ _ATDATETIME_
__
AUDIT Add new product DA xxxxxx 31OCT2002:11:24:32

Example of Using the Audit Trail to Capture Rejected Observations
The following example adds integrity constraints to MYLIB.SALES.DATA and

records observations that are rejected as a result of the integrity constraints in
MYLIB.SALES.AUDIT. For more information about integrity constraints, see
“Understanding Integrity Constraints” on page 505.

/*----------------------------------*/
/* Create integrity constraints. */
/*----------------------------------*/

proc datasets lib=mylib;
modify sales;
ic create null_renewal = not null (invoice)

message = "Invoice must have a value.";
ic create invoice_amt = check (where=((invoice > 0) and

(renewal <= invoice)))
message = "Invoice and/or renewal are invalid.";

run;

/*----------------------------------*/
/* Do some updates. */
/*----------------------------------*/

proc sql; /* this update works */
update mylib.sales
set invoice = invoice * .9,
reason_code = "10% price cut"
where renewal > 800;

proc sql; /* this update fails */
insert into mylib.sales

set product = ’AUDIT’,
renewal = 970,

reason_code = "Add new product";

proc sql; /* this update works */
insert into mylib.sales

set product = ’AUDIT’,
invoice = 10000,
renewal = 970,

reason_code = "Add new product";

proc sql; /* this update fails */

498 Examples of Using Audit Trails � Chapter 28

insert into mylib.sales
set product = ’AUDIT’,

invoice = 100,
renewal = 970,

reason_code = "Add new product";
quit;

/*--*/
/* Print the audit trail. */
/*--*/

proc print data=mylib.sales(type=audit);
format _atuserid_ $6.;
var product reason_code _atopcode_ _atuserid_ _atdatetime_;

title ’Contents of the Audit Trail’;
run;

/*--*/
/* Print the rejected records. */
/*--*/

proc print data=mylib.sales(type=audit);
where _atopcode_ eq "EA";
format _atmessage_ $250.;
var product invoice renewal _atmessage_ ;

title ’Rejected Records’;
run;

Output 28.3 shows the contents of MYLIB.SALES.AUDIT after several updates of
MYLIB.SALES.DATA were attempted. Integrity constraints were added to the file, then
updates were attempted. Output 28.4 prints information about the rejected
observations on the audit trail.

Output 28.3 Contents of MYLIB.SALES.AUDIT After an Update with Integrity Constraints

Contents of the Audit Trail

Obs product reason_code _ATOPCODE_ _ATUSERID_ _ATDATETIME_

1 AUDIT Add new product DA xxxxxx 22JAN2003:12:43:27

2 SAS DR xxxxxx 22JAN2003:13:02:02

3 SAS 10% price cut DW xxxxxx 22JAN2003:13:02:02

4 SAS DR xxxxxx 22JAN2003:13:02:02

5 SAS 10% price cut DW xxxxxx 22JAN2003:13:02:02

6 AUDIT DR xxxxxx 22JAN2003:13:02:02

7 AUDIT 10% price cut DW xxxxxx 22JAN2003:13:02:02

8 AUDIT Add new product EA xxxxxx 22JAN2003:13:02:02

9 AUDIT Add new product DA xxxxxx 22JAN2003:13:02:02

10 AUDIT Add new product EA xxxxxx 22JAN2003:13:02:02

SAS Data Files � Terminology for Generation Data Sets 499

Output 28.4 Rejected Records on the Audit Trail

Rejected Records

Obs product invoice renewal _ATMESSAGE_

1 AUDIT . 970 ERROR: Invoice must have a value. Add/Update

failed for data set MYLIB.SALES because data

value(s) do not comply with integrity constraint

null_renewal.

2 AUDIT 100 970 ERROR: Invoice and/or renewal are invalid.

Add/update failed for data set MYLIB.SALES

because data value(s) do not comply with

integrity constraint invoice_amt.

Understanding Generation Data Sets

Definition of Generation Data Set
A generation data set is an archived version of a SAS data set that is stored as part

of a generation group. A generation data set is created each time the file is updated.
Each generation data set in a generation group has the same root member name, but
each has a different version number. The most recent version of the generation data set
is called the base version.

You can request generations for a SAS data file only. You cannot request generations
for a SAS view.

Note: Generation data sets provide historical versions of a data set; they do not
track observation updates for an individual data set. To log each time an observation is
added, deleted, or updated, see “Understanding an Audit Trail” on page 491. �

Terminology for Generation Data Sets
The following terms are relevant to generation data sets:

base version
is the most recently created version of a data set. Its name does not have the
four-character suffix for the generation number.

generation group
is a group of data sets that represent a series of replacements to the original data
set. The generation group consists of the base version and a set of historical
versions.

generation number
is a monotonically increasing number that identifies one of the historical versions
in a generation group. For example, the data set named AIR#272 has a generation
number of 272.

GENMAX=
is an output data set option that requests generations for a data set and specifies
the maximum number of versions (including the base version and all historical
versions) to keep for a given data set. The default is GENMAX=0, which means
that generations is not in effect.

500 Invoking Generation Data Sets � Chapter 28

GENNUM=
is an input data set option that references a specific version from a generation
group. Positive numbers are absolute references to a historical version by its
generation number. Negative numbers are a relative reference to historical
versions. For example, GENNUM=-1 refers to the youngest version.

historical versions
are the older copies of the base version of a data set. Names for historical versions
have a four-character suffix for the generation number, such as #003.

oldest version
is the oldest version in a generation group.

rolling over
specifies the process of the version number moving from 999 to 000. When the
generation number reaches 999, its next value is 000.

youngest version
is the version that is chronologically closest to the base version.

Invoking Generation Data Sets
To invoke generation data sets and to specify the maximum number of versions to

maintain, include the output data set option GENMAX= when creating or replacing a
data set. For example, the following DATA step creates a new data set and requests
that up to four copies be kept (one base version and three historical versions):

data a (genmax=4);
x=1;
output;

run;

Once the GENMAX= data set option is in effect, the data set member name is limited
to 28 characters (rather than 32), because the last four characters are reserved for a
version number. When the GENMAX= data set option is not in effect, the member
name can be up to 32 characters. See the GENMAX= data set option in SAS Language
Reference: Dictionary.

Understanding How a Generation Group Is Maintained
The first time a data set with generations in effect is replaced, SAS keeps the

replaced data set and appends a four-character version number to its member name,
which includes # and a three-digit number. That is, for a data set named A, the
replaced data set becomes A#001. When the data set is replaced for the second time,
the replaced data set becomes A#002; that is, A#002 is the version that is
chronologically closest to the base version. After three replacements, the result is:

A base (current) version

A#003 most recent (youngest) historical version

A#002 second most recent historical version

A#001 oldest historical version.

With GENMAX=4, a fourth replacement deletes the oldest version, which is A#001.
As replacements occur, SAS will always keep four copies. For example, after ten
replacements, the result is:

SAS Data Files � Understanding How a Generation Group Is Maintained 501

A base (current) version

A#010 most recent (youngest) historical version

A#009 2nd most recent historical version

A#008 oldest historical version

The limit for version numbers that SAS can append is #999. After 999 replacements,
the youngest version is #999. After 1,000 replacements, SAS rolls over the youngest
version number to #000. After 1,001 replacements, the youngest version number is
#001. For example, using data set A with GENNUM=4, the results would be:

999
replacements

A (current)

A#999 (most recent)

A#998 (2nd most recent)

A#997 (oldest)

1,000
replacements

A (current)

A#000 (most recent)

A#999 (2nd most recent)

A#998 (oldest)

1,001
replacements

A (current)

A#001 (most recent)

A#000 (2nd most recent)

A#999 (oldest)

The following table shows how names are assigned to a generation group:

Table 28.3 Naming Generation Group Data Sets

Time SAS Code Data Set
Name(s)

GENNUM=
Absolute
Reference

GENNUM=
Relative
Reference

Explanation

1 data air
(genmax=3);

AIR 1 0 The AIR data set is created, and
three generations are requested

2 data air; AIR

AIR#001

2

1

0

-1

AIR is replaced. AIR from time 1 is
renamed AIR#001.

3 data air; AIR

AIR#002

AIR#001

3

2

1

0

-1

-2

AIR is replaced. AIR from time 2 is
renamed AIR#002.

4 data air; AIR

AIR#003

AIR#002

4

3

2

0

-1

-2

AIR is replaced. AIR from time 3 is
renamed AIR#003. AIR#001 from
time 1, which is the oldest, is
deleted.

5 data air
(genmax=2);

AIR

AIR#004

5

4

0

-1

AIR is replaced, and the number of
generations is changed to two. AIR
from time 4 is renamed AIR#004.
The two oldest versions are deleted.

502 Processing Specific Versions of a Generation Group � Chapter 28

Processing Specific Versions of a Generation Group
When a generation group exists, SAS processes the base version by default. For

example, the following PRINT procedure prints the base version:

proc print data=a;
run;

To request a specific version from a generation group, use the GENNUM= input data
set option. There are two methods that you can use:

� A positive integer (excluding zero) references a specific historical version number.
For example, the following statement prints the historical version #003:

proc print data=a(gennum=3);
run;

Note: After 1,000 replacements, if you want historical version #000, specify
GENNUM=1000. �

� A negative integer is a relative reference to a version in relation to the base
version, from the youngest predecessor to the oldest. For example, GENNUM=-1
refers to the youngest version. The following statement prints the data set that is
three versions previous to the base version:

proc print data=a(gennum=-3);
run;

Table 28.4 Requesting Specific Generation Data Sets

SAS statement Result

proc print data=air (gennum=0);

proc print data=air;

Prints the current (base) version of the AIR data set.

proc print data=air (gennum=-2); Prints the version two generations back from the
current version.

proc print data=air (gennum=3); Prints the file AIR#003.

proc print data=air (gennum=1000); After 1,000 replacements, prints the file AIR#000,
which is the file that is created after AIR#999.

Managing Generation Groups

Introduction

The DATASETS procedure provides a variety of statements for managing generation
groups. Note that for the DATASETS procedure, GENNUM= has the following
additional functionality:

� For the PROC DATASETS and DELETE statements, GENNUM= supports the
additional values ALL, HIST, and REVERT.

� For the CHANGE statement, GENNUM= supports the additional value ALL.

� For the CHANGE statement, specifying GENNUM=0 refers to all versions rather
than just the base version.

SAS Data Files � Managing Generation Groups 503

Displaying Data Set Information
A variety of statements in the DATASETS procedure can process a specific historical

version. For example, you can display data set version numbers for historical copies
using the CONTENTS statement in PROC DATASETS:

proc datasets library=myfiles;
contents data=test (gennum=2);

run;

Copying Generation Groups
You can use the COPY statement in the DATASETS procedure or the COPY

procedure to copy a generation group. However, you cannot copy an individual version.
For example, the following DATASETS procedure uses the COPY statement to copy a

generation group for data set MYGEN1 from library MYLIB1 to library MYLIB2.

libname mylib1 ’SAS-data-library-1’;
libname mylib2 ’SAS-data-library-2’;

proc datasets;
copy in=mylib1 out=mylib2;
select mygen1;

run;

Appending Generation Groups
You can use the GENNUM= data set option to append a specific historical version.

For example, the following DATASETS procedure uses the APPEND statement to
append a historical version of data set B to data set A. Note that by default, SAS uses
the base version for the BASE= data set.

proc datasets;
append base=a data=b(gennum=2);

run;

Modifying the Number of Versions
When you modify the attributes of a data set, you can increase or decrease the

number of versions for an existing generation group.
For example, the following MODIFY statement in the DATASETS procedure changes

the number of generations for data set MYLIB.AIR to 4:

libname mylib ’SAS-data-library’;

proc datasets library=mylib;
modify air(genmax=4);

run;

504 Managing Generation Groups � Chapter 28

CAUTION:
If you decrease the number of versions, SAS will delete the oldest version(s) so as not to
exceed the new maximum. For example, the following MODIFY statement decreases
the number of versions for MYLIB.AIR from 4 to 0, which causes SAS to
automatically delete the three historical versions:

proc datasets library=mylib;
modify air (genmax=0);

run;

�

Deleting Versions in a Generation Group

When you delete data sets, you can specify a specific version or an entire generation
group to delete. The following table shows the types of delete operations and their
effects when you delete versions of a generation group.

The following examples assume that the base version of AIR and two historical
versions (AIR#001 and AIR#002) exist for each command.

SAS statement in PROC DATASETS Results

delete air;

delete air(gennum=0);

Deletes the base version and shifts up historical versions.
AIR#002 is renamed to AIR and becomes the new base
version.

delete air(gennum=2); Deletes historical version AIR#002.

delete air(gennum=-2); Deletes the second youngest historical version (AIR#001).

delete air(gennum=all); Deletes all data sets in the generation group, including the
base version.

delete air(gennum=hist); Deletes all data sets in the generation group, except the
base version.

Note: Both an absolute reference and a relative reference refer to a specific version.
A relative reference does not skip deleted versions. Therefore, when you are working
with a generation group that includes one or more deleted versions, using a relative
reference will result in an error if the referenced version has been deleted. For
example, if you have the base version AIR and three historical versions (AIR#001,
AIR#002, and AIR#003) and you delete AIR#002, the following statements return an
error, because AIR#002 does not exist. SAS does not assume that you mean AIR#003:

proc print data=air (gennum= -2);
run;

�

Renaming Versions in a Generation Group

When you rename a data set, you can rename an entire generation group:

proc datasets;
change a=newa;

run;

SAS Data Files � Definition of Integrity Constraints 505

You can also rename a single version by including GENNUM=:

proc datasets;
change a(gennum=2)=newa;

Note: For the CHANGE statement in PROC DATASETS, specifying GENNUM=0
refers to the entire generation group. �

Using Passwords in a Generation Group
Passwords for versions in a generation group are maintained as follows:
� If you assign a password to the base version, the password is maintained in

subsequent historical versions. However, the password is not applied to any
existing historical versions.

� If you assign a password to a historical version, the password applies to that
individual data set only.

Understanding Integrity Constraints

Definition of Integrity Constraints
Integrity constraints are a set of data validation rules that you can specify in order to

restrict the data values that can be stored for a variable in a SAS data file. Integrity
constraints help you preserve the validity and consistency of your data. SAS enforces
the integrity constraints when the values associated with an integrity constraint
variable are added, updated, or deleted.

There are two categories of integrity constraints: general and referential.

General Integrity Constraints
General integrity constraints enable you to restrict the values of variables within a

single file. There are four types of general constraints:

check limits the data values of variables to a specific set, range, or list of
values. Check constraints can also be used to ensure that the data
values in one variable within an observation are contingent on the
data values of another variable in the same observation.

not null requires that a variable contain a data value. Null (missing) values
are not allowed.

unique requires that the specified variable(s) contain unique data values. A
null data value is allowed but is limited to a single instance, given
the unique nature of the constraint.

primary key requires that the specified variable(s) contain unique data values
and that null data values are not allowed. Only one primary key can
exist in a data file.

Note: A primary key is a general integrity constraint as long as
it does not have any foreign key constraints referencing it. �

Referential Integrity Constraints
A referential integrity constraint is created when a primary key integrity constraint

in one data file is referenced by a foreign key integrity constraint in another data file.

506 Definition of Integrity Constraints � Chapter 28

The foreign key constraint links the data values of one or more variables in the
foreign key data file to corresponding variables and values in the primary key data file.
Data values in the foreign key data file must have a matching value in the primary key
data file, or they must be null. When data is updated or deleted in the primary key
data file, the modifications are controlled by a referential action that is defined as part
of the foreign key constraint.

Separate referential actions can be defined for the update and delete operations.
There are three types of referential actions:

restrict prevents the data values of the primary key variables from being
updated or deleted if there is a matching value in one of the foreign
key data file’s corresponding foreign key variables. The restrict
referential action is the default action if one is not specified.

set null enables the data values of the primary key variables to be updated
or deleted, but matching data values in the foreign key data files are
changed to null (missing) values.

cascade enables the data values in the primary key variables to be updated,
and additionally updates matching data values in the foreign key
data files to the same value. Cascade is currently supported only for
update operations.

The requirements for establishing a referential relationship are as follows:

� The primary key and foreign key must reference the same number of variables,
and the variables must be in the same order.

� The variables must be of the same type (character or numeric) and length.

� If the foreign key is being added to a data file that already contains data, the data
values in the foreign key data file must match existing values in the primary key
data file or be null.

The foreign key data file can exist in the same SAS library as the referenced primary
key data file or in a different one. However, if the library that contains the foreign key
data file is temporary, then the library containing the primary key data file must be
temporary as well. In addition, referential integrity constraints cannot be assigned to
data files in concatenated libraries.

There is no limit to the number of foreign keys that can reference a primary key.
However, additional foreign keys can adversely impact the performance of update and
delete operations.

When a referential constraint exists, a primary key integrity constraint will not be
deleted until all of the foreign keys that reference it have been deleted. There are no
restrictions on deleting foreign keys.

Overlapping Primary Key and Foreign Key Constraints
Variables in a SAS data file can be part of both a primary key (general integrity

constraint) and a foreign key (referential integrity constraint). However, there are
restrictions when you define a primary key and a foreign key constraint that use the
same variables:

� The foreign key’s update and delete referential actions must both be RESTRICT.

� When the same variables are used in a primary key and foreign key definition, the
variables must be defined in a different order.

For an example, see “Defining Overlapping Primary Key and Foreign Key
Constraints” on page 517.

SAS Data Files � Preservation of Integrity Constraints 507

Preservation of Integrity Constraints
These procedures preserve integrity constraints when their operation results in a

copy of the original data file:

� in Base SAS software, the APPEND, COPY, CPORT, CIMPORT and SORT
procedures

� in SAS/CONNECT software, the UPLOAD and DOWNLOAD procedures

� PROC APPEND

� for an existing BASE= data file, integrity constraints in the BASE= file are
preserved, but integrity constraints in the DATA= file that is being appended
to the BASE= file are not preserved.

� for a non-existent BASE= data file, general integrity constraints in the
DATA= file that is being appended to the new BASE= file are preserved.
Referential constraints in the DATA= file are not preserved.

� PROC SORT, and PROC UPLOAD, and PROC DOWNLOAD, when an OUT= data
file is not specified

� the SAS Explorer window.

You can also use the CONSTRAINT option in order to control when integrity
constraints are preserved for the COPY, CPORT, CIMPORT, UPLOAD, and
DOWNLOAD procedures.

General integrity constraints are preserved in an active state. The state in which
referential constraints are preserved depends on whether the procedure causes the
primary key and foreign key data files to be written to the same or different SAS
libraries (intra-libref versus inter-libref integrity constraints). Intra-libref constraints
are preserved in an active state. Inter-libref constraints are preserved in an inactive
state; that is, the primary key portion of the integrity constraint is enforced as a general
integrity constraint but the foreign key portion is inactive. You must use the DATASETS
procedure statement IC REACTIVATE to reactivate the inactive foreign keys.

The following table summarizes the circumstances under which integrity constraints
are preserved.

Table 28.5 Circumstances That Cause Integrity Constraints to Be Preserved

Procedure Condition Constraints That Are
Preserved

APPEND DATA= data set does not exist General

Referential constraints are not
affected

COPY CONSTRAINT=yes General

Intra-libref are referential in
an active state

Inter-libref are referential in
an inactive state

CPORT/CIMPORT CONSTRAINT=yes General

Intra-libref are referential in
an active state

Inter-libref are referential in
an inactive state

508 Indexes and Integrity Constraints � Chapter 28

Procedure Condition Constraints That Are
Preserved

SORT OUT= data set is not specified General

Referential constraints are not
affected

UPLOAD/DOWNLOAD CONSTRAINT=yes and OUT=
data set is not specified

General

Intra-libref are referential in
an active state

Inter-libref are referential in
an inactive state

SAS Explorer window General

Indexes and Integrity Constraints
The unique, primary key, and foreign key integrity constraints store data values in

an index file. If an index file already exists, it is used; otherwise, one is created.
Consider the following points when you create or delete an integrity constraint:

� When a user-defined index exists, the index’s attributes must be compatible with
the integrity constraint in order for the integrity constraint to be created. For
example, when you add a primary key integrity constraint, the existing index
must have the UNIQUE attribute. When you add a foreign key integrity
constraint, the index must not have the UNIQUE attribute.

� The unique integrity constraint has the same effect as the UNIQUE index
attribute; therefore, when one is used, the other is not necessary.

� The NOMISS index attribute and the not-null integrity constraint have different
effects. The integrity constraint prevents missing values from being written to the
SAS data file and cannot be added to an existing data file that contains missing
values. The index attribute allows missing data values in the data file but
excludes them from the index.

� When any index is created, it is marked as being “owned” by the user and/or by
the integrity constraint. A user cannot delete an index that is also owned by an
integrity constraint and vice versa. If an index is owned by both, then the index is
deleted only after both the integrity constraint and the user have requested the
index’s deletion. A note in the log indicates when an index cannot be deleted.

Locking Integrity Constraints
Integrity constraints support both member-level and record-level locking. You can

override the default locking level with the CNTLLEV= data set option. For more
information, see the CNTLLEV= data set option in SAS Language Reference: Dictionary.

Passwords and Integrity Constraints
The behavior of a SAS data file that is password protected does not change if the file

also has defined integrity constraints. However, for referential integrity constraints,
some SAS requests require that both files be open in order to process the request. If
both files are password-protected, then both passwords must be provided.

For example, to execute the CONTENTS procedure for a data file with a primary key
that is referenced by a foreign key, you must provide both the password for the primary

SAS Data Files � Passwords and Integrity Constraints 509

key data file as well as the password for the referential data file, because in order to
obtain the information for the CONTENTS output for the primary key data file, SAS
must open both files.

For example, the data file SINGERS1 has a primary key that is referenced by a
foreign key in data file SINGERS2. Both data sets are read-password protected. In an
interactive session, when you submit the following PROC CONTENTS, SAS prompts
you to provide the password for the data file with the foreign key that references the
primary key in SINGERS1:

proc contents data=Singers1 (read=luke);
run;

After you submit the above procedure, SAS displays the Missing SAS Password
window, with the request:

READ access denied. Enter the password for file WORK.SINGERS2.DATA.
After you enter the password for SINGERS2 and press OK , the output that is

displayed contains information from both SINGERS1 (contains the primary key) and
SINGERS2 (contains the foreign key):

510 Passwords and Integrity Constraints � Chapter 28

Output 28.5 PROC CONTENTS Output Showing Primary Key and Referential Integrity Constraints

The SAS System

The CONTENTS Procedure

Data Set Name WORK.SINGERS1 Observations 6

Member Type DATA Variables 3

Engine V9 Indexes 1

Created Friday, October 25, 2002 01:29:41 Integrity Constraints 1

Last Modified Friday, October 25, 2002 01:29:42 Observation Length 24

Protection READ Deleted Observations 0

Data Set Type Compressed NO

Label Sorted NO

Data Representation WINDOWS_32

Encoding wlatin1 Western (Windows)

Engine/Host Dependent Information

Data Set Page Size 4096

Number of Data Set Pages 2

First Data Page 1

Max Obs per Page 168

Obs in First Data Page 6

Index File Page Size 4096

Number of Index File Pages 2

Number of Data Set Repairs 0

File Name C:\DOCUME~1\xxxxxx\LOCALS~1\Temp\SAS Temporary

Files_TD3500\singers1.sas7bdat

Release Created 9.0100A0

Host Created XP_PRO

Alphabetic List of Variables and Attributes

Variable Type Len

3 Age Num 8

1 FirstName Char 8

2 LastName Char 8

Alphabetic List of Integrity Constraints

Integrity On On

Constraint Type Variables Reference Delete Update

1 _PK0001_ Primary Key FirstName LastName

FK0001 Referential FirstName LastName WORK.SINGERS2 Restrict Restrict

Alphabetic List of Indexes and Attributes

of

Unique Owned Unique

Index Option by IC Values Variables

1 _PK0001_ YES YES 6 FirstName LastName

Note: If you cannot be prompted like in a batch environment, then when the
CONTENTS procedure is executed for a data file with a primary key that is referenced
by a foreign key, a warning message states that information for the file containing the
referencing foreign key cannot be obtained. �

SAS Data Files � Examples 511

Specifying Integrity Constraints
You create integrity constraints in the SQL procedure, the DATASETS procedure, or

in SCL (SAS Component Language). The constraints can be specified when the data file
is created or added to an existing data file. When you add integrity constraints to an
existing file, SAS first verifies that the data values to which the integrity constraints
have been assigned conform to the constraints.

When specifying integrity constraints, you must specify a separate statement for
each constraint. In addition, you must specify a separate statement for each variable
that you want to have the not null integrity constraint. When multiple variables are
included in the specification for a primary key, foreign key, or unique integrity
constraint, a composite index is created and the integrity constraint will enforce the
combination of variable values. The relationship between SAS indexes and integrity
constraints is described in “Indexes and Integrity Constraints” on page 508. For more
information, see “Understanding SAS Indexes” on page 518.

When you add an integrity constraint in SCL, open the data set in utility mode. See
“Creating Integrity Constraints by Using SCL” on page 513 for an example. Integrity
constraints must be deleted in utility open mode. For detailed syntax information, see
SAS Component Language: Reference.

When generation data sets are used, you must create the integrity constraints in
each data set generation that includes protected variables.

Listing Integrity Constraints
PROC CONTENTS and PROC DATASETS report integrity constraint information

without special options. In addition, you can print information about integrity
constraints and indexes to a data set by using the OUT2= option. In PROC SQL, the
DESCRIBE TABLE and DESCRIBE TABLE CONSTRAINTS statements report
integrity constraint characteristics as part of the data file definition or alone,
respectively. SCL provides the ICTYPE, ICVALUE, and ICDESCRIBE functions for
getting information about integrity constraints. Refer to the Base SAS Procedures
Guide and SAS Component Language: Reference for more information.

Rejected Observations
You can customize the error message associated with an integrity constraint when

you create the constraint by using the MESSAGE= and MSGTYPE= options. The
MESSAGE= option enables you to prepend a user-defined message to the SAS error
message associated with an integrity constraint. The MSGTYPE= option enables you to
suppress the SAS portion of the message. For more information, see the PROC
DATASETS, PROC SQL, and SCL documentation.

Rejected observations can be collected in a special file by using an audit trail.

Examples

Creating Integrity Constraints with the DATASETS Procedure
The following sample code creates integrity constraints by means of the DATASETS

procedure. The data file TV_SURVEY checks the percentage of viewing time spent on
networks, PBS, and other channels, with the following integrity constraints:

� The viewership percentage cannot exceed 100 percent.

512 Examples � Chapter 28

� Only adults can participate in the survey.
� GENDER can be male or female.

data tv_survey(label=’Validity checking’);
length idnum age 4 gender $1;
input idnum gender age network pbs other;

datalines;
1 M 55 80 . 20
2 F 36 50 40 10
3 M 42 20 5 75
4 F 18 30 0 70
5 F 84 0 100 0
;

proc datasets nolist;
modify tv_survey;
ic create val_gender = check(where=(gender in (’M’,’F’)))

message = "Valid values for variable GENDER are
either ’M’ or ’F’.";

ic create val_age = check(where=(age >= 18 and age <= 120))
message = "An invalid AGE has been provided.";

ic create val_new = check(where=(network <= 100));
ic create val_pbs = check(where=(pbs <= 100));
ic create val_ot = check(where=(other <= 100));
ic create val_max = check(where=((network+pbs+other)<= 100));

quit;

Creating Integrity Constraints with the SQL Procedure
The following sample program creates integrity constraints by means of the SQL

procedure. The data file PEOPLE lists employees and contains employment
information. The data file SALARY contains salary and bonus information. The
integrity constraints are as follows:

� The names of employees receiving bonuses must be found in the PEOPLE data file.
� The names identified in the primary key must be unique.
� GENDER can be male or female.
� Job status can be permanent, temporary, or terminated.

proc sql;
create table people
(
name char(14),
gender char(6),
hired num,
jobtype char(1) not null,
status char(10),

constraint prim_key primary key(name),
constraint gender check(gender in (’male’ ’female’)),
constraint status check(status in (’permanent’

’temporary’ ’terminated’))
);

SAS Data Files � Examples 513

create table salary
(
name char(14),
salary num not null,
bonus num,

constraint for_key foreign key(name) references people
on delete restrict on update set null

);
quit;

Creating Integrity Constraints by Using SCL

To add integrity constraints to a data file by using SCL, you must create and build
an SCL catalog entry. The following sample program creates and compiles catalog entry
EXAMPLE.IC_CAT.ALLICS.SCL.

INIT:
put "Test SCL integrity constraint functions start.";

return;

MAIN:
put "Opening WORK.ONE in utility mode.";
dsid = open(’work.one’, ’V’);/* Utility mode.*/
if (dsid = 0) then
do;
msg=sysmsg();
put _msg_=;
end;
else do;
if (dsid > 0) then

put "Successfully opened WORK.ONE in"
"UTILITY mode.";

end;

put "Create a check integrity constraint named teen.";
rc = iccreate(dsid, ’teen’, ’check’,
’(age > 12) && (age < 20)’);

if (rc > 0) then
do;
put rc=;
msg=sysmsg();
put _msg_=;

end;
else do;
put "Successfully created a check"

"integrity constraint.";
end;

put "Create a not-null integrity constraint named nn.";
rc = iccreate(dsid, ’nn’, ’not-null’, ’age’);

if (rc > 0) then

514 Examples � Chapter 28

do;
put rc=;
msg=sysmsg();
put _msg_=;

end;
else do;
put "Successfully created a not-null"

"integrity constraint.";
end;

put "Create a unique integrity constraint named uq.";
rc = iccreate(dsid, ’uq’, ’unique’, ’age’);

if (rc > 0) then
do;
put rc=;
msg=sysmsg();
put _msg_=;

end;
else do;
put "Successfully created a unique"

"integrity constraint.";
end;

put "Create a primary key integrity constraint named pk.";
rc = iccreate(dsid, ’pk’, ’Primary’, ’name’);

if (rc > 0) then
do;
put rc=;
msg=sysmsg();
put _msg_=;

end;
else do;
put "Successfully created a primary key"

"integrity constraint.";
end;

put "Closing WORK.ONE.";
rc = close(dsid);
if (rc > 0) then
do;
put rc=;
msg=sysmsg();
put _msg_=;

end;

put "Opening WORK.TWO in utility mode.";
dsid2 = open(’work.two’, ’V’);

/*Utility mode */
if (dsid2 = 0) then
do;
msg=sysmsg();

put _msg_=;

SAS Data Files � Examples 515

end;
else do;
if (dsid2 > 0) then

put "Successfully opened WORK.TWO in"
"UTILITY mode.";

end;

put "Create a foreign key integrity constraint named fk.";
rc = iccreate(dsid2, ’fk’, ’foreign’, ’name’,
’work.one’,’null’, ’restrict’);

if (rc > 0) then
do;
put rc=;
msg=sysmsg();
put _msg_=;

end;
else do;
put "Successfully created a foreign key"

"integrity constraint.";
end;

put "Closing WORK.TWO.";
rc = close(dsid2);
if (rc > 0) then
do;
put rc=;
msg=sysmsg();
put _msg_=;
end;

return;

TERM:
put "End of test SCL integrity constraint"

"functions.";
return;

The previous code creates the SCL catalog entry. The following code creates two data
files, ONE and TWO, and executes the SCL entry EXAMPLE.IC_CAT.ALLICS.SCL:

/* Submit to create data files. */

data one two;
input name $ age;

datalines;
Morris 13
Elaine 14
Tina 15
;

/* after compiling, run the SCL program */

proc display catalog= example.ic_cat.allics.scl;
run;

516 Examples � Chapter 28

Removing Integrity Constraints
The following sample program segments remove integrity constraints. In those that

delete a primary key integrity constraint, note that the foreign key integrity constraint
is deleted first.

This program segment deletes integrity constraints using PROC SQL.

proc sql;
alter table salary
DROP CONSTRAINT for_key;

alter table people
DROP CONSTRAINT gender
DROP CONSTRAINT _nm0001_
DROP CONSTRAINT status
DROP CONSTRAINT prim_key

;
quit;

This program segment removes integrity constraints using PROC DATASETS.

proc datasets nolist;
modify tv_survey;

ic delete val_max;
ic delete val_gender;
ic delete val_age;

run;
quit;

This program segment removes integrity constraints using SCL.

TERM:
put "Opening WORK.TWO in utility mode.";
dsid2 = open(’work.two’ , ’V’); /* Utility mode. */
if (dsid2 = 0) then
do;
msg=sysmsg();
put _msg_=;

end;
else do;
if (dsid2 > 0) then

put "Successfully opened WORK.TWO in Utility mode.";
end;

rc = icdelete(dsid2, ’fk’);
if (rc > 0) then

do;
put rc=;
msg=sysmsg();
end;

else
do;
put "Successfully deleted a foreign key integrity constraint.";
end;

rc = close(dsid2);
return;

SAS Data Files � Examples 517

Reactivating an Inactive Integrity Constraint
The following program segment reactivates a foreign key integrity constraint that

has been inactivated as a result of a COPY, CPORT, CIMPORT, UPLOAD, or
DOWNLOAD procedure.

proc datasets;
modify SAS-data-set;

ic reactivate fkname references libref;
run;

quit;

Defining Overlapping Primary Key and Foreign Key Constraints
The following code illustrates defining overlapping primary key and foreign key

constraints:

data Singers1;
input FirstName $ LastName $ Age;
datalines;

Tom Jones 62
Kris Kristofferson 66
Willie Nelson 69
Barbra Streisand 60
Paul McCartney 60
Randy Travis 43
;
data Singers2;

input FirstName $ LastName $ Style $;
datalines;

Tom Jones Rock
Kris Kristofferson Country
Willie Nelson Country
Barbra Streisand Contemporary
Paul McCartney Rock
Randy Travis Country
;
proc datasets library=work nolist;

modify Singers1;
ic create primary key (FirstName LastName); u

run;
modify Singers2;

ic create foreign key (FirstName LastName) references Singers1
on delete restrict on update restrict; v

run;
modify Singers2;

ic create primary key (LastName FirstName); w

run;
modify Singers1;

ic create foreign key (LastName FirstName) references Singers2
on delete restrict on update restrict; x

run;

quit;

u Defines a primary key constraint for data set Singers1, for variables FirstName
and LastName.

518 Understanding SAS Indexes � Chapter 28

v Defines a foreign key constraint for data set Singers2 for variables FirstName and
LastName that references the primary key defined in Step 1. Because the
intention is to define a primary key using the same variables, the foreign key
update and delete referential actions must both be RESTRICT.

w Defines a primary key constraint for data set Singers2 for variables LastName
and FirstName. Because those exact same variables are already defined as a
foreign key, the order must be different.

x Defines a foreign key constraint for data set Singers1 for variables LastName and
FirstName that references the primary key defined in Step 3. Because those exact
same variables are already defined as a primary key, the order must be different.
Because a primary key is already defined using the same variables, the foreign
key’s update and delete referential actions must both be RESTRICT.

Understanding SAS Indexes

Definition of SAS Indexes
An index is an optional file that you can create for a SAS data file to provide direct

access to specific observations. The index stores values in ascending value order for a
specific variable or variables and includes information as to the location of those values
within observations in the data file. In other words, an index enables you to locate an
observation by value.

For example, suppose you want the observation with SSN (social security number)
equal to 465-33-8613:

� Without an index, SAS accesses observations sequentially in the order in which
they are stored in the data file. SAS reads each observation, looking for
SSN=465-33-8613 until the value is found or all observations are read.

� With an index on variable SSN, SAS accesses the observation directly. SAS
satisfies the condition using the index and goes straight to the observation that
contains the value without having to read each observation.

You can either create an index when you create a data file or create an index for an
existing data file. The data file can be either compressed or uncompressed. For each
data file, you can create one or multiple indexes. Once an index exists, SAS treats it as
part of the data file. That is, if you add or delete observations or modify values, the
index is automatically updated.

Benefits of an Index
In general, SAS can use an index to improve performance in the following situations:

� For WHERE processing, an index can provide faster and more efficient access to a
subset of data. Note that to process a WHERE expression, SAS decides whether to
use an index or to read the data file sequentially.

� For BY processing, an index returns observations in the index order, which is in
ascending value order, without using the SORT procedure even when the data file
is not stored in that order.

Note: If you use the SORT procedure, the index is not used. �

SAS Data Files � The Index File 519

� For the SET and MODIFY statements, the KEY= option enables you to specify an
index in a DATA step to retrieve particular observations in a data file.

In addition, an index can benefit other areas of SAS. In SCL (SAS Component
Language), an index improves the performance of table lookup operations. For the SQL
procedure, an index enables the software to process certain classes of queries more
efficiently, for example, join queries. For the SAS/IML software, you can explicitly
specify that an index be used for read, delete, list, or append operations.

Even though an index can reduce the time required to locate a set of observations,
especially for a large data file, there are costs associated with creating, storing, and
maintaining the index. When deciding whether to create an index, you must consider
increased resource usage, along with the performance improvement.

Note: An index is never used for the subsetting IF statement in a DATA step, or for
the FIND and SEARCH commands in the FSEDIT procedure. �

The Index File
The index file is a SAS file that has the same name as its associated data file, and

that has a member type of INDEX. There is only one index file per data file; that is, all
indexes for a data file are stored in a single file.

The index file might be a separate file, or be part of the data file, depending on the
operating environment. In any case, the index file is stored in the same SAS data
library as its data file.

The index file consists of entries that are organized hierarchically and connected by
pointers, all of which are maintained by SAS. The lowest level in the index file
hierarchy consists of entries that represent each distinct value for an indexed variable,
in ascending value order. Each entry contains this information:

� a distinct value
� one or more unique record identifiers (referred to as a RID) that identifies each

observation containing the value. (Think of the RID as an internal observation
number.)

That is, in an index file, each value is followed by one or more RIDs, which identify
the observations in the data file that contains the value. (Multiple RIDs result from
multiple occurrences of the same value.) For example, the following represents index
file entries for the variable LASTNAME:

Value RID
======= =====
Avery 10
Brown 6,22,43
Craig 5,50
Dunn 1

When an index is used to process a request, such as a WHERE expression, SAS
performs a binary search on the index file and positions the index to the first entry that
contains a qualified value. SAS then uses the value’s RID to read the observation that
contains the value. If a value has more than one RID (such as in the value for Brown in
the above example), SAS reads the observation that is pointed to by the next RID in the
list. The result is that SAS can quickly locate the observations that are associated with
a value or range of values.

For example, using an index to process the WHERE expression, SAS positions the
index to the index entry for the first value greater than 20 and uses the value’s RID(s)
to read the observation(s) where age > 20 and age < 35;. SAS then moves
sequentially through the index entries reading observations until it reaches the index
entry for the value that is equal to or greater than 35.

520 Types of Indexes � Chapter 28

SAS automatically keeps the index file balanced as updates are made, which means
that it ensures a uniform cost to access any index entry, and all space that is occupied
by deleted values is recovered and reused.

Types of Indexes
When you create an index, you designate which variable(s) to index. An indexed

variable is called a key variable. You can create two types of indexes:
� A simple index, which consists of the values of one variable.
� A composite index, which consists of the values of more than one variable, with the

values concatenated to form a single value.

In addition to deciding whether you want a simple index or a composite index, you
can also limit an index (and its data file) to unique values and exclude from the index
missing values.

Simple Index
The most common index is a simple index, which is an index of values for one key

variable. The variable can be numeric or character. When you create a simple index,
SAS assigns to the index the name of the key variable.

The following example shows the DATASETS procedure statements that are used to
create two simple indexes for variables CLASS and MAJOR in data file
COLLEGE.SURVEY:

proc datasets library=college;
modify survey;

index create class;
index create major;

run;

To process a WHERE expression using an index, SAS uses only one index. When the
WHERE expression has multiple conditions using multiple key variables, SAS
determines which condition qualifies the smallest subset. For example, suppose that
COLLEGE.SURVEY contains the following data:

� 42,000 observations contain CLASS=97.
� 6,000 observations contain MAJOR=’Biology’.
� 350 observations contain both CLASS=97 and MAJOR=’Biology’.

With simple indexes on CLASS and MAJOR, SAS would select MAJOR to process the
following WHERE expression:

where class=97 and major=’Biology’;

Composite Index
A composite index is an index of two or more key variables with their values

concatenated to form a single value. The variables can be numeric, character, or a
combination. An example is a composite index for the variables LASTNAME and
FRSTNAME. A value for this index is composed of the value for LASTNAME
immediately followed by the value for FRSTNAME from the same observation. When
you create a composite index, you must specify a unique index name.

The following example shows the DATASETS procedure statements that are used to
create a composite index for the data file COLLEGE.MAILLIST, specifying two key
variables: ZIPCODE and SCHOOLID.

SAS Data Files � Types of Indexes 521

proc datasets library=college;
modify maillist;

index create zipid=(zipcode schoolid);
run;

Often, only the first variable of a composite index is used. For example, for a
composite index on ZIPCODE and SCHOOLID, the following WHERE expression can
use the composite index for the variable ZIPCODE because it is the first key variable in
the composite index:

where zipcode = 78753;

However, you can take advantage of all key variables in a composite index by the
way you construct the WHERE expression, which is referred to as compound
optimization. Compound optimization is the process of optimizing multiple conditions
on multiple variables, which are joined with a logical operator such as AND, using a
composite index. If you issue the following WHERE expression, the composite index is
used to find all occurrences of ZIPCODE=’78753’ and SCHOOLID=’55’. In this way, all
of the conditions are satisfied with a single search of the index:

where zipcode = 78753 and schoolid = 55;

When you are deciding whether to create a simple index or a composite index,
consider how you will access the data. If you often access data for a single variable, a
simple index will do. But if you frequently access data for multiple variables, a
composite index could be beneficial.

Unique Values
Often it is important to require that values for a variable be unique, like social

security number and employee number. You can declare unique values for a variable by
creating an index for the variable and including the UNIQUE option. A unique index
guarantees that values for one variable or the combination of a composite group of
variables remain unique for every observation in the data file. If an update tries to add
a duplicate value to that variable, the update is rejected.

The following example creates a simple index for the variable IDNUM and requires
that all values for IDNUM be unique:

proc datasets library=college;
modify student;

index create idnum / unique;
run;

Missing Values
If a variable has a large number of missing values, it might be desirable to keep them

from using space in the index. Therefore, when you create an index, you can include the
NOMISS option to specify that missing values are not maintained by the index.

The following example creates a simple index for the variable RELIGION and
specifies that the index does not maintain missing values for the variable:

proc datasets library=college;
modify student;

index create religion / nomiss;
run;

In contrast to the UNIQUE option, observations with missing values for the key
variable can be added to the data file, even though the missing values are not added to
the index.

522 Deciding Whether to Create an Index � Chapter 28

SAS will not use an index that was created with the NOMISS option to process a BY
statement or to process a WHERE expression that qualifies observations that contain
missing values. If no missing values are present, SAS will consider using the index in
processing the BY statement or WHERE expression.

In the following example, the index AGE was created with the NOMISS option and
observations exist that contain missing values for the variable AGE. In this case, SAS
will not use the index:

proc print data=mydata.employee;
where age < 35;

run;

Deciding Whether to Create an Index

Costs of an Index
An index exists to improve performance. However, an index conserves some

resources at the expense of others. Therefore, you must consider costs associated with
creating, using, and maintaining an index. The following topics provide information on
resource usage and give you some guidelines for creating indexes.

When you are deciding whether to create an index, you must consider CPU cost, I/O
cost, buffer requirements, and disk space requirements.

CPU Cost
Additional CPU time is necessary to create an index as well as to maintain the index

when the data file is modified. That is, for an indexed data file, when a value is added,
deleted, or modified, it must also be added, deleted, or modified in the appropriate
index(es).

When SAS uses an index to read an observation from a data file, there is also
increased CPU usage. The increased usage results from SAS using a more complicated
process than is used when SAS retrieves data sequentially. Although CPU usage is
greater, you benefit from SAS reading only those observations that meet the conditions.
Note that this is why using an index is more expensive when there is a larger number
of observations that meet the conditions.

Note: To compare CPU usage with and without an index, for some operating
environments, you can issue the STIMER or FULLSTIMER system options to write
performance statistics to the SAS log. �

I/O Cost
Using an index to read observations from a data file may increase the number of I/O

(input/output) requests compared to reading the data file sequentially. For example,
processing a BY statement with an index may increase I/O count, but you save in not
having to issue the SORT procedure. For WHERE processing, SAS considers I/O count
when deciding whether to use an index.

To process a request using an index, the following occurs:
1 SAS does a binary search on the index file and positions the index to the first

entry that contains a qualified value.
2 SAS uses the value’s RID (identifier) to directly access the observation containing

the value. SAS transfers the observation between external storage to a buffer,
which is the memory into which data is read or from which data is written. The
data is transferred in pages, which is the amount of data (the number of

SAS Data Files � Deciding Whether to Create an Index 523

observations) that can be transferred for one I/O request; each data file has a
specified page size.

3 SAS then continues the process until the WHERE expression is satisfied. Each
time SAS accesses an observation, the data file page containing the observation
must be read into memory if it is not already there. Therefore, if the observations
are on multiple data file pages, an I/O operation is performed for each observation.

The result is that the more random the data, the more I/Os are required to use the
index. If the data is ordered more like the index, which is in ascending value order,
fewer I/Os are required to access the data.

The number of buffers determines how many pages of data can simultaneously be in
memory. Frequently, the larger the number of buffers, the fewer number of I/Os will be
required. For example, if the page size is 4096 bytes and one buffer is allocated, then
one I/O transfers 4096 bytes of data (or one page). To reduce I/Os, you can increase the
page size but you will need a larger buffer. To reduce the buffer size, you can decrease
the page size but you will use more I/Os.

For information on data file characteristics like the data file page size and the
number of data file pages, issue the CONTENTS procedure (or use the CONTENTS
statement in the DATASETS procedure). With this information, you can determine the
data file page size and experiment with different sizes. Note that the information that
is available from PROC CONTENTS depends on the operating environment.

The BUFSIZE= data set option (or system option) sets the permanent page size for a
data file when it is created. The page size is the amount of data that can be transferred
for an I/O operation to one buffer. The BUFNO= data set option (or system option)
specifies how many buffers to allocate for a data file and for the overall system for a
given execution of SAS; that is, BUFNO= is not stored as a data set attribute.

Buffer Requirements
In addition to the resources that are used to create and maintain an index, SAS also

requires additional memory for buffers when an index is actually used. Opening the
data file opens the index file but none of the indexes. The buffers are not required
unless SAS uses the index but they must be allocated in preparation for the index that
is being used. The number of buffers that are allocated depends on the number of levels
in the index tree and in the data file open mode. If the data file is open for input, the
maximum number of buffers is three; for update, the maximum number is four. (Note
that these buffers are available for other uses; they are not dedicated to indexes.)

Disk Space Requirements
Additional disk space is required to store the index file, which may show up as a

separate file or may appear to be part of the data file, depending on the operating
environment.

For information on the index file size, issue the CONTENTS procedure (or the
CONTENTS statement in the DATASETS procedure). Note that the available
information from PROC CONTENTS depends on the operating environment.

524 Guidelines for Creating Indexes � Chapter 28

Guidelines for Creating Indexes

Data File Considerations

� For a small data file, sequential processing is often just as efficient as index
processing. Do not create an index if the data file page count is less than three
pages. It would be faster to access the data sequentially. To see how many pages
are in a data file, use the CONTENTS procedure (or use the CONTENTS
statement in the DATASETS procedure). Note that the information that is
available from PROC CONTENTS depends on the operating environment.

� Consider the cost of an index for a data file that is frequently changed. If you have
a data file that changes often, the overhead associated with updating the index
after each change can outweigh the processing advantages you gain from accessing
the data with an index.

� Create an index when you intend to retrieve a small subset of observations from a
large data file (for example, less than 25% of all observations). When this occurs,
the cost of processing data file pages is lower than the overhead of sequentially
reading the entire data file. The smaller the subset, the larger the performance
gains.

� To reduce the number of I/Os performed when you create an index, first sort the
data by the key variable. Then to improve performance, maintain the data file in
sorted order by the key variable. This technique will reduce the I/Os by grouping
like values together. That is, the more ordered the data file is with respect to the
key variable, the more efficient the use of the index. If the data file has more than
one index, sort the data by the most frequently used key variable.

Index Use Considerations

� Keep the number of indexes per data file to a minimum to reduce disk storage and
to reduce update costs.

� Consider how often your applications will use an index. An index must be used
often in order to make up for the resources that are used in creating and
maintaining it. That is, do not rely solely on resource savings from processing a
WHERE expression. Take into consideration the resources it takes to actually
create the index and to maintain it every time the data file is changed.

� When you create an index to process a WHERE expression, do not try to create
one index that is used to satisfy all queries. If there are several variables that
appear in queries, then those queries may be best satisfied with simple indexes on
the most discriminating of those variables.

Key Variable Candidates
In most cases, multiple variables are used to query a data file. However, it probably

would be a mistake to index all variables in a data file, as certain variables are better
candidates than others:

� The variables to be indexed should be those that are used in queries. That is, your
application should require selecting small subsets from a large file, and the most
common selection variables should be considered as candidate key variables.

SAS Data Files � Creating an Index 525

� A variable is a good candidate for indexing when the variable can be used to
precisely identify the observations that satisfy a WHERE expression. That is, the
variable should be discriminating, which means that the index should select the
fewest possible observations. For example, variables such as AGE, FRSTNAME,
and GENDER are not discriminating because it is very possible for a large
representation of the data to have the same age, first name, and gender. However,
a variable such as LASTNAME is a good choice because it is less likely that many
employees share the same last name.

For example, consider a data file with variables LASTNAME and GENDER.
� If many queries against the data file include LASTNAME, then indexing

LASTNAME could prove to be beneficial because the values are usually
discriminating. However, the same reasoning would not apply if you issued a
large number of queries that included GENDER. The GENDER variable is
not discriminating (because perhaps half the population are male and half
are female).

� However, if queries against the data file most often include both LASTNAME
and GENDER as shown in the following WHERE expression, then creating a
composite index on LASTNAME and GENDER could improve performance.

where lastname=’LeVoux’ and gender=’F’;

Note that when you create a composite index, the first key variable should be
the most discriminating.

Creating an Index

Overview of Creating Indexes
You can create one index for a data file, which can be either a simple index or a

composite index, and you can create multiple indexes, which can be multiple simple
indexes, multiple composite indexes, or a combination of both simple and composite.

In general, the process of creating an index is as follows:
1 You request to create an index for one or multiple variables using a method such

as the INDEX CREATE statement in the DATASETS procedure.
2 SAS reads the data file one observation at a time, extracts values and RID(s) for

each key variable, and places them in the index file. The process to create the
index always ensures that the values that are placed in the index are successively
the same or increasing. The values cannot decrease, therefore, SAS examines the
data file to determine the following:

� if the data is already sorted by the key variable(s) in ascending order. If the
values are in ascending order, SAS does not have to sort the values for the
index file and avoids the resource cost.

� the file’s sort assertion, which is set from a previous SORT procedure or from
a SORTEDBY= data set option. If the file’s sort assertion is set from a
SORTEDBY= data set option, SAS validates that the data is sorted as
specified by the data set option. If the data is not sorted as asserted, the
index will not be created, and a message appears telling you that the index
was not created because values are not sorted in asserted order.

If the values are not in ascending order, SAS sorts the data that is included in
the index file in ascending value order. To sort the data, SAS follows this
procedure:

526 Creating an Index � Chapter 28

a SAS first attempts to sort the data using the thread-enabled sort. By dividing
the sorting into separately executable processes, the time to sort the data can
be reduced. However, in order to use the thread-enabled sort, the size of the
index must be sufficiently large (which is determined by SAS), the SAS
system option CPUCOUNT= must be set to more than one processor, and the
THREADS system option must be enabled.

Note: Adequate memory must be available for the thread-enabled sort. If
not enough memory is available, SAS reduces the number of threads to one
and begins the sort process again, which will increase the time to create the
index. �

b If the thread-enabled sort cannot be done, SAS uses the unthreaded sort.

Note: To display messages regarding what type of sort is used, memory and
resource information, and the status of the index being created, set the SAS system
option MSGLEVEL=I. �

Using the DATASETS Procedure
The DATASETS procedure provides statements that enable you to create and delete

indexes. In the following example, the MODIFY statement identifies the data file, the
INDEX DELETE statement deletes two indexes, and the two INDEX CREATE
statements specify the variables to index, with the first INDEX CREATE statement
specifying the options UNIQUE and NOMISS:

proc datasets library=mylib;
modify employee;

index delete salary age;
index create empnum / unique nomiss;
index create names=(lastname frstname);

Note: If you delete and create indexes in the same step, place the INDEX DELETE
statement before the INDEX CREATE statement so that space occupied by deleted
indexes can be reused during index creation. �

Using the INDEX= Data Set Option
To create indexes in a DATA step when you create the data file, use the INDEX=

data set option. The INDEX= data set option also enables you to include the NOMISS
and UNIQUE options. The following example creates a simple index on the variable
STOCK and specifies UNIQUE:

data finances(index=(stock /unique));

The next example uses the variables SSN, CITY, and STATE to create a simple index
named SSN and a composite index named CITYST:

data employee(index=(ssn cityst=(city state)));

Using the SQL Procedure
The SQL procedure supports index creation and deletion and the UNIQUE option.

Note that the variable list requires that variable names be separated by commas (which
is an SQL convention) instead of blanks (which is a SAS convention).

The DROP INDEX statement deletes indexes. The CREATE INDEX statement
specifies the UNIQUE option, the name of the index, the target data file, and the
variable(s) to be indexed. For example:

SAS Data Files � Using an Index for WHERE Processing 527

drop index salary from employee;
create unique index empnum on employee (empnum);
create index names on employee (lastname, frstname);

Using Other SAS Products
You can also create and delete indexes using other SAS utilities and products, such

as SAS/IML software, SAS Component Language, and SAS/Warehouse Administrator
software.

Using an Index for WHERE Processing
WHERE processing conditionally selects observations for processing when you issue

a WHERE expression. Using an index to process a WHERE expression improves
performance and is referred to as optimizing the WHERE expression.

To process a WHERE expression, by default SAS decides whether to use an index or
read all the observations in the data file sequentially. To make this decision, SAS does
the following:

1 Identifies an available index or indexes.
2 Estimates the number of observations that would be qualified. If multiple indexes

are available, SAS selects the index that returns the smallest subset of
observations.

3 Compares resource usage to decide whether it is more efficient to satisfy the
WHERE expression by using the index or by reading all the observations
sequentially.

Identifying Available Index or Indexes
The first step for SAS in deciding whether to use an index to process a WHERE

expression is to identify if the variable or variables included in the WHERE expression
are key variables (that is, have an index). Even though a WHERE expression can
consist of multiple conditions specifying different variables, SAS uses only one index to
process the WHERE expression. SAS tries to select the index that satisfies the most
conditions and selects the smallest subset:

� For the most part, SAS selects one condition. The variable specified in the
condition will have either a simple index or be the first key variable in a composite
index.

� However, you can take advantage of multiple key variables in a composite index by
constructing an appropriate WHERE expression, referred to as compound
optimization.

SAS attempts to use an index for the following types of conditions:

Table 28.6 WHERE Conditions That Can Be Optimized

Condition Examples

comparison operators, which include the EQ
operator; directional comparisons like less
than or greater than; and the IN operator

where empnum eq 3374;

where empnum < 2000;

where state in (’NC’,’TX’);

comparison operators with NOT where empnum ^= 3374;

where x not in (5,10);

comparison operators with the colon
modifier

where lastname gt: ’Sm’;

528 Using an Index for WHERE Processing � Chapter 28

Condition Examples

CONTAINS operator where lastname contains ’Sm’;

fully-bounded range conditions specifying
both an upper and lower limit, which
includes the BETWEEN-AND operator

where 1 < x < 10;

where empnum between 500 and 1000;

pattern-matching operators LIKE and NOT
LIKE

where frstname like ’%Rob_%’

IS NULL or IS MISSING operator where name is null;

where idnum is missing;

TRIM function where trim(state)=’Texas’;

SUBSTR function in the form of:

WHERE SUBSTR (variable, position,
length)=’string’;

when the following conditions are met:

position is equal to 1, length is less than or
equal to the length of variable, and length
is equal to the length of string

where substr (name,1,3)=’Mac’ and (city=’Charleston’
or city=’Atlanta’);

The following examples illustrate optimizing a single condition:

� The following WHERE expressions could use a simple index on the variable
MAJOR:

where major in (’Biology’, ’Chemistry’, ’Agriculture’);
where class=90 and major in (’Biology’, ’Agriculture’);

� With a composite index on variables ZIPCODE and SCHOOLID, SAS could use
the composite index to satisfy the following conditions because ZIPCODE is the
first key variable in the composite index:

where zipcode = 78753;

However, the following condition cannot use the composite index because the
variable SCHOOLID is not the first key variable in the composite index:

where schoolid gt 1000;

Note: An index is not supported for arithmetic operators, a variable-to-variable
condition, and the sounds-like operator. �

Compound Optimization
Compound optimization is the process of optimizing multiple conditions specifying

different variables, which are joined with logical operators such as AND or OR, using a
composite index. Using a single index to optimize the conditions can greatly improve
performance.

For example, suppose you have a composite index for LASTNAME and FRSTNAME.
If you issue the following WHERE expression, SAS uses the concatenated values for the
first two variables, then SAS further evaluates each qualified observation for the
EMPID value:

where lastname eq ’Smith’ and frstname eq ’John’ and empid=3374;

For compound optimization to occur, all of the following must be true.

SAS Data Files � Using an Index for WHERE Processing 529

� At least the first two key variables in the composite index must be used in the
WHERE conditions.

� The conditions are connected using the AND logical operator:

where lastname eq ’Smith’ and frstname eq ’John’;

Any conditions connected using the OR logical operator must specify the same
variable:

where frstname eq ’John’ and (lastname=’Smith’
or lastname = ’Jones’);

� At least one condition must be the EQ or IN operator; you cannot have, for
example, all fully-bounded range conditions.

Note: The same conditions that are acceptable for optimizing a single condition are
acceptable for compound optimization except for the CONTAINS operator, the
pattern-matching operators LIKE and NOT LIKE, and the IS NULL and IS MISSING
operators. Also, functions are not supported. �

For the following examples, assume there is a composite index named IJK for
variables I, J, and K:

1 The following conditions are compound optimized because every condition specifies
a variable that is in the composite index, and each condition uses one of the
supported operators. SAS will position the composite index to the first entry that
meets all three conditions and will retrieve only observations that satisfy all three
conditions:

where i = 1 and j not in (3,4) and 10 < k < 12;

2 This WHERE expression cannot be compound optimized because the range
condition for variable I is not fully bounded. In a fully-bounded condition, both an
upper and lower bound must be specified. The condition I < 5 only specifies an
upper bound. In this case, the composite index can still be used to optimize the
single condition I < 5:

where i < 5 and j in (3,4) and k =3;

3 For the following WHERE expression, only the first two conditions are optimized
with index IJK. After retrieving a subset of observations that satisfy the first two
conditions, SAS examines the subset and eliminates any observations that fail to
match the third condition.

where i in (1,4) and j = 5 and k like ’%c’l

4 The following WHERE expression cannot be optimized with index IJK because J
and K are not the first two key variables in the composite index:

where j = 1 and k = 2;

5 This WHERE expression can be optimized for variables I and J. After retrieving
observations that satisfy the second and third conditions, SAS examines the subset
and eliminates those observations that do not satisfy the first condition.

where x < 5 and i = 1 and j = 2;

Estimating the Number of Qualified Observations
Once SAS identifies the index or indexes that can satisfy the WHERE expression, the

software estimates the number of observations that will be qualified by an available
index. When multiple indexes exist, SAS selects the one that appears to produce the
fewest qualified observations.

530 Using an Index for WHERE Processing � Chapter 28

The software’s ability to estimate the number of observations that will be qualified is
improved because the software stores additional statistics called cumulative percentiles
(or centiles for short). Centiles information represents the distribution of values in an
index so that SAS does not have to assume a uniform distribution as in prior releases.
To print centiles information for an indexed data file, include the CENTILES option in
PROC CONTENTS (or in the CONTENTS statement in the DATASETS procedure).

Note that, by default, SAS does not update centiles information after every data file
change. When you create an index, you can include the UPDATECENTILES option to
specify when centiles information is updated. That is, you can specify that centiles
information be updated every time the data file is closed, when a certain percent of
values for the key variable have been changed, or never. In addition, you can also
request that centiles information is updated immediately, regardless of the value of
UPDATECENTILES, by issuing the INDEX CENTILES statement in PROC
DATASETS.

As a general rule, SAS uses an index if it estimates that the WHERE expression will
select approximately one-third or fewer of the total number of observations in the data
file.

Note: If SAS estimates that the number of qualified observations is less than 3% of
the data file (or if no observations are qualified), SAS automatically uses the index. In
other words, in this case, SAS does not bother comparing resource usage. �

Comparing Resource Usage
Once SAS estimates the number of qualified observations and selects the index that

qualifies the fewest observations, SAS must then decide if it is faster (cheaper) to
satisfy the WHERE expression by using the index or by reading all of the observations
sequentially. SAS makes this determination as follows:

� If only a few observations are qualified, it is more efficient to use the index than to
do a sequential search of the entire data file.

� If most or all of the observations qualify, then it is more efficient to simply
sequentially search the data file than to use the index.

This decision is much like a reader deciding whether to use an index at the back of a
document. A document’s index is designed to enable a reader to locate a topic along
with the specific page number(s). Using the index, the reader would go to the specific
page number(s) and read only about a specific topic. If the document covers 42 topics
and the reader is interested in only a couple of topics, then the index saves time by
preventing the reader from reading other topics. However, if the reader is interested in
39 topics, searching the index for each topic would take more time than simply reading
the entire document.

To compare resource usage, SAS does the following:

1 First, SAS predicts the number of I/Os it will take to satisfy the WHERE
expression using the index. To do so, SAS positions the index to the first entry
that contains a qualified value. In a buffer management simulation that takes into
account the current number of available buffers, the RIDs (identifiers) on that
index page are processed, indicating how many I/Os it will take to read the
observations in the data file.

If the observations are randomly distributed throughout the data file, the
observations will be located on multiple data file pages. This means an I/O will be
needed for each page. Therefore, the more random the data in the data file, the
more I/Os it takes to use the index. If the data in the data file is ordered more like
the index, which is in ascending value order, fewer I/Os are needed to use the
index.

SAS Data Files � Using an Index for WHERE Processing 531

2 Then SAS calculates the I/O cost of a sequential pass of the entire data file and
compares the two resource costs.

Factors that affect the comparison include the size of the subset relative to the size of
the data file, data file value order, data file page size, the number of allocated buffers,
and the cost to uncompress a compressed data file for a sequential read.

Note: If comparing resource costs results in a tie, SAS chooses the index. �

Controlling WHERE Processing Index Usage with Data Set Options
You can control index usage for WHERE processing with the IDXWHERE= and

IDXNAME= data set options.
The IDXWHERE= data set option overrides the software’s decision regarding

whether to use an index to satisfy the conditions of a WHERE expression as follows:
� IDXWHERE=YES tells SAS to decide which index is the best for optimizing a

WHERE expression, disregarding the possibility that a sequential search of the
data file might be more resource efficient.

� IDXWHERE=NO tells SAS to ignore all indexes and satisfy the conditions of a
WHERE expression by sequentially searching the data file.

� Using an index to process a BY statement cannot be overridden with
IDXWHERE=.

The following example tells SAS to decide which index is the best for optimizing the
WHERE expression. SAS will disregard the possibility that a sequential search of the
data file might be more resource efficient.

data mydata.empnew;
set mydata.employee (idxwhere=yes);
where empnum < 2000;

For details, see the IDXWHERE data set option in SAS Language Reference:
Dictionary.

The IDXNAME= data set option directs SAS to use a specific index in order to satisfy
the conditions of a WHERE expression.

By specifying IDXNAME=index-name, you are specifying the name of a simple or
composite index for the data file.

The following example uses the IDXNAME= data set option to direct SAS to use a
specific index to optimize the WHERE expression. SAS will disregard the possibility
that a sequential search of the data file might be more resource efficient and does not
attempt to determine if the specified index is the best one. (Note that the EMPNUM
index was not created with the NOMISS option.)

data mydata.empnew;
set mydata.employee (idxname=empnum);
where empnum < 2000;

For details, see the IDXNAME data set option in SAS Language Reference:
Dictionary.

Note: IDXWHERE= and IDXNAME= are mutually exclusive. Using both will result
in an error. �

Displaying Index Usage Information in the SAS Log
To display information in the SAS log regarding index usage, change the value of the

MSGLEVEL= system option from its default value of N to I. When you issue options
msglevel=i;, the following occurs:

532 Using an Index for BY Processing � Chapter 28

� If an index is used, a message displays specifying the name of the index.
� If an index is not used but one exists that could optimize at least one condition in

the WHERE expression, messages provide suggestions as to what you can do to
influence SAS to use the index; for example, a message could suggest sorting the
data file into index order or specifying more buffers.

� A message displays the IDXWHERE= or IDXNAME= data set option value if the
setting can affect index processing.

Using an Index with Views
You cannot create an index for a data view; it must be a data file. However, if a data

view is created from an indexed data file, index usage is available. That is, if the view
definition includes a WHERE expression using a key variable, then SAS will attempt to
use the index. Additionally, there are other ways to take advantage of a key variable
when using a view.

In this example, you create an SQL view named STAT from data file CRIME, which
has the key variable STATE. In addition, the view definition includes a WHERE
expression:

proc sql;
create view stat as
select * from crime
where murder > 7;

quit;

If you issue the following PRINT procedure, which refers to the SQL view, along with
a WHERE statement that specifies the key variable STATE, SAS cannot optimize the
WHERE statement with the index. SQL views cannot join a WHERE expression that
was defined in the view to a WHERE expression that was specified in another
procedure, DATA step, or SCL:

proc print data=stat;
where state > 42;

run;

However, if you issue PROC SQL with an SQL WHERE clause that specifies the key
variable STATE, then the SQL view can join the two conditions, which enables SAS to
use the index STATE:

proc sql;
select * from stat where state > 42;
quit;

Using an Index for BY Processing
BY processing enables you to process observations in a specific order according to the

values of one or more variables that are specified in a BY statement. Indexing a data
file enables you to use a BY statement without sorting the data file. By creating an
index based on one or more variables, you can ensure that observations are processed in
ascending numeric or character order. Simply specify in the BY statement the variable
or list of variables that are indexed.

For example, if an index exists for LASTNAME, the following BY statement would
use the index to order the values by last names:

proc print;
by lastname;

SAS Data Files � Using an Index for Both WHERE and BY Processing 533

When you specify a BY statement, SAS looks for an appropriate index. If one exists,
the software automatically retrieves the observations from the data file in indexed order.

A BY statement will use an index in the following situations:
� The BY statement consists of one variable that is the key variable for a simple

index or the first key variable in a composite index.
� The BY statement consists of two or more variables and the first variable is the

key variable for a simple index or the first key variable in a composite index.

For example, if the variable MAJOR has a simple index, the following BY statements
use the index to order the values by MAJOR:

by major;
by major state;

If a composite index named ZIPID exists consisting of the variables ZIPCODE and
SCHOOLID, the following BY statements use the index:

by zipcode;
by zipcode schoolid;
by zipcode schoolid name;

However, the composite index ZIPID is not used for these BY statements:

by schoolid;
by schoolid zipcode;

In addition, a BY statement will not use an index in these situations:
� The BY statement includes the DESCENDING or NOTSORTED option.
� The index was created with the NOMISS option.
� The data file is physically stored in sorted order based on the variables specified in

the BY statement.

Note: Using an index to process a BY statement may not always be more efficient
than simply sorting the data file, particularly if the data file has a high blocking factor
of observations per page. Therefore, using an index for a BY statement is generally for
convenience, not performance. �

Using an Index for Both WHERE and BY Processing
If both a WHERE expression and a BY statement are specified, SAS looks for one

index that satisfies requirements for both. If such an index is not found, the BY
statement takes precedence.

With a BY statement, SAS cannot use an index to optimize a WHERE expression if
the optimization would invalidate the BY order. For example, the following statements
could use an index on the variable LASTNAME to optimize the WHERE expression
because the order of the observations returned by the index does not conflict with the
order required by the BY statement:

proc print;
by lastname;
where lastname >= ’Smith’;

run;

However, the following statements cannot use an index on LASTNAME to optimize
the WHERE expression because the BY statement requires that the observations be
returned in EMPID order:

proc print;
by empid;

534 Specifying an Index with the KEY= Option for SET and MODIFY Statements � Chapter 28

where lastname = ’Smith’;
run;

Specifying an Index with the KEY= Option for SET and MODIFY
Statements

The SET and MODIFY statements provide the KEY= option, which enables you to
specify an index in a DATA step to retrieve particular observations in a data file.

The following MODIFY statement shows how to use the KEY= option to take
advantage of the fact that the data file INVTY.STOCK has an index on the variable
PARTNO. Using the KEY= option tells SAS to use the index to directly access the
correct observations to modify.

modify invty.stock key=partno;

Note: A BY statement is not allowed in the same DATA step with the KEY= option,
and WHERE processing is not allowed for a data file with the KEY= option. �

Taking Advantage of an Index
Applications that typically do not use indexes can be rewritten to take advantage of

an index. For example:
� Consider replacing a subsetting IF statement (which never uses an index) with a

WHERE statement.

CAUTION:
However, be careful because IF and WHERE statements are processed differently and
may produce different results in DATA steps that use the SET, MERGE, or UPDATE
statements. This is because the WHERE statement selects observations before
they are brought into the Program Data Vector (PDV), whereas the subsetting
IF statement selects observations after they are read into the PDV. �

� Consider using the WHERE command in the FSEDIT procedure in place of the
SEARCH and FIND commands.

Maintaining Indexes
SAS provides several procedures that you can issue to maintain indexes, and there

are several operations within SAS that automatically maintain indexes for you.

Displaying Data File Information
The CONTENTS procedure (or the CONTENTS statement in PROC DATASETS)

reports the following types of information.
� number and names of indexes for a data file
� the names of key variables
� the options in effect for each key variable
� data file page size
� number of data file pages
� centiles information (using the CENTILES option)
� amount of disk space used by the index file.

Note: The available information depends on the operating environment. �

SAS Data Files � Maintaining Indexes 535

Output 28.6 Output of PROC CONTENTS

The CONTENTS Procedure

Data Set Name SASUSER.STAFF Observations 148

Member Type DATA Variables 6

Engine V9 Indexes 2

Created 13:23 Wednesday, January 22, 2003 Observation Length 63

Last Modified 13:31 Wednesday, January 22, 2003 Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label

Data Representation WINDOWS_32

Encoding wlatin1 Western (Windows)

Engine/Host Dependent Information

Data Set Page Size 8192

Number of Data Set Pages 3

First Data Page 1

Max Obs per Page 129

Obs in First Data Page 104

Index File Page Size 4096

Number of Index File Pages 5

Number of Data Set Repairs 0

File Name c:\winnt\profiles\sasxxx\sasuser\staff.sas7bdat

Release Created 9.0000A0

Host Created WIN_NT

Alphabetic List of Variables and Attributes

Variable Type Len

4 city Char 15

3 fname Char 15

6 hphone Char 12

1 idnum Char 4

2 lname Char 15

5 state Char 2

Alphabetic List of Indexes and Attributes

of

Unique Unique

Index Option Values Variables

1 idnum YES 148

2 name 148 fname lname

Copying an Indexed Data File

When you copy an indexed data file with the COPY procedure (or the COPY
statement of the DATASETS procedure), you can specify whether the procedure also
recreates the index file for the new data file with the INDEX=YES|NO option; the
default is YES, which recreates the index. However, recreating the index does increase
the processing time for the PROC COPY step.

If you copy from disk to disk, the index is recreated. If you copy from disk to tape,
the index is not recreated on tape. However, after copying from disk to tape, if you then
copy back from tape to disk, the index can be recreated. Note that if you move a data
file with the MOVE option in PROC COPY, the index file is deleted from IN= library
and recreated in OUT= library.

536 Maintaining Indexes � Chapter 28

The CPORT procedure also has INDEX=YES|NO to specify whether to export
indexes with indexed data files. By default, PROC CPORT exports indexes with
indexed data files. The CIMPORT procedure, however, does not handle the index file at
all, and the index(es) must be recreated.

Updating an Indexed Data File
Each time that values in an indexed data file are added, modified, or deleted, SAS

automatically updates the index. The following activities affect an index as indicated:

Table 28.7 Maintenance Tasks and Index Results

Task Result

delete a data set index file is deleted

rename a data set index file is renamed

rename key variable simple index is renamed

delete key variable simple index is deleted

add observation index entries are added

delete observations index entries are deleted and space is recovered for reuse

update observations index entries are deleted and new ones are inserted

Note: Use SAS to perform additions, modifications and deletions to your data sets.
Using operating environment commands to perform these operations will make your
files unusable. �

Sorting an Indexed Data File
You can sort an indexed data file only if you direct the output of the SORT procedure

to a new data file so that the original data file remains unchanged. However, the new
data file is not automatically indexed.

Note: If you sort an indexed data file with the FORCE option, the index file is
deleted. �

Adding Observations to an Indexed Data File
Adding observations to an indexed data file requires additional processing. SAS

automatically keeps the values in the index consistent with the values in the data file.

Multiple Occurrences of Values
An index that is created without the UNIQUE option can result in multiple

occurrences of the same value, which results in multiple RIDs for one value. For large
data files with many multiple occurrences, the list of RIDs for a given value may
require several pages in the index file. Because the RIDs are stored in physical order,
any new observation added to the data file with the given value is stored at the end of
the list of RIDs. Navigating through the index to find the end of the RID list can cause
many I/O operations.

SAS remembers the previous position in the index so that when inserting more
occurrences of the same value, the end of the RID list is found quickly.

SAS Data Files � Definition of Compression 537

Appending Data to an Indexed Data File
SAS provides performance improvements when appending a data file to an indexed

data file. SAS suspends index updates until all observations are added, then updates
the index with data from the newly added observations. See the APPEND statement in
the DATASETS procedure in Base SAS Procedures Guide.

Recovering a Damaged Index
An index can become damaged for many of the same reasons that a data file or catalog

can become damaged. If a data file becomes damaged, use the REPAIR statement in
PROC DATASETS to repair the data file or recreate any missing indexes. For example,

proc datasets library=mylib;
repair mydata;

run;

Indexes and Integrity Constraints
Integrity constraints can also use indexes. When an integrity constraint is created

that uses an index, if a suitable index already exists, it is used; otherwise, a new index
is created. When an index is created, it is marked as being "owned" by the creator,
which can be either the user or an integrity constraint.

If either the user or an integrity constraint requests creation of an index that already
exists and is owned by the other, the requestor is also marked as an “owner” of the
index. If an index is owned by both, then a request by either to delete the index results
in removing only the requestor as owner. The index is deleted only after both the
integrity constraint and the user have requested the index’s deletion. A note in the log
indicates when an index cannot be deleted.

Compressing Data Files

Definition of Compression
Compressing a file is a process that reduces the number of bytes required to

represent each observation. In a compressed file, each observation is a variable-length
record, while in an uncompressed file, each observation is a fixed-length record.

Advantages of compressing a file include
� reduced storage requirements for the file
� fewer I/O operations necessary to read from or write to the data during processing.

However, disadvantages of compressing a file are that
� more CPU resources are required to read a compressed file because of the

overhead of uncompressing each observation
� there are situations when the resulting file size may increase rather than decrease.

538 Requesting Compression � Chapter 28

Requesting Compression
By default, a SAS data file is not compressed. To compress, you can use these options:
� COMPRESS= system option to compress all data files that are created during a

SAS session
� COMPRESS= option on the LIBNAME statement to compress all data files for a

particular SAS data library
� COMPRESS= data set option to compress an individual data file.

To compress a data file, you can specify the following:
� COMPRESS=CHAR to use the RLE (Run Length Encoding) compression

algorithm.
� COMPRESS=BINARY to use the RDC (Ross Data Compression) algorithm.

When you create a compressed data file, SAS writes a note to the log indicating the
percentage of reduction that is obtained by compressing the file. SAS obtains the
compression percentage by comparing the size of the compressed file with the size of an
uncompressed file of the same page size and record count.

After a file is compressed, the setting is a permanent attribute of the file, which
means that to change the setting, you must re-create the file. That is, to uncompress a
file, specify COMPRESS=NO for a DATA step that copies the compressed data file.

For more information on the COMPRESS= data set option, the COMPRESS= option
on the LIBNAME statement, and the COMPRESS= system option, see SAS Language
Reference: Dictionary.

Disabling a Compression Request
Compressing a file adds a fixed-length block of data to each observation. Because of

the additional block of data (12 bytes for a 32-bit host and 24 bytes for a 64-bit host per
observation), some files could result in a larger file size. For example, files with
extremely short record lengths could result in a larger file size if compressed.

When a request is made to compress a data set, SAS attempts to determine if
compression will increase the size of the file. SAS examines the lengths of the
variables. If, due to the number and lengths of the variables, it is not possible for the
compressed file to be at least 12 bytes (for a 32-bit host) or 24 bytes (for a 64-bit host)
per observation smaller than an uncompressed version, compression is disabled and a
message is written to the SAS log.

For example, here is a simple data set for which SAS determines that it is not
possible for the compressed file to be smaller than an uncompressed one:

data one (compress=char);
length x y $2;
input x y;
datalines;

ab cd
;

The following output is written to the SAS log:

Output 28.7 SAS Log Output When Compression Request is Disabled

NOTE: Compression was disabled for data set WORK.ONE because compression overhead
would increase the size of the data set.

NOTE: The data set WORK.ONE has 1 observations and 2 variables.

539

C H A P T E R

29
SAS Data Views

Definition of SAS Data Views 539
Benefits of Using SAS Data Views 540

When to Use SAS Data Views 541

DATA Step Views 541

Definition of a DATA Step View 541

Creating DATA Step Views 541
What Can You Do with a DATA Step View? 542

Differences between DATA Step Views and Stored Compiled DATA Step Programs 542

Restrictions and Requirements 542

Performance Considerations 542

Example 1: Merging Data to Produce Reports 543

Example 2: Producing Additional Output Files 543
PROC SQL Views 545

Comparing DATA Step and PROC SQL Views 545

SAS/ACCESS Views 546

Definition of SAS Data Views
A SAS data view is a type of SAS data set that retrieves data values from other files.

A SAS data view contains only descriptor information such as the data types and
lengths of the variables (columns), plus information that is required for retrieving data
values from other SAS data sets or from files that are stored in other software vendors’
file formats. SAS data views are of member type VIEW. In most cases, you can use a
SAS data view as though it were a SAS data file.

There are two general types of SAS data views:

native view
is a SAS data view that is created either with a DATA step or with PROC SQL.

interface view
is a SAS data view that is created with SAS/ACCESS software. An interface view
can read data from or write data to a database management system (DBMS) such
as DB2 or ORACLE. Interface views are also referred to as SAS/ACCESS views.
In order to use SAS/ACCESS views, you must have a license for SAS/ACCESS
software.

Note: You can create native views that access certain DBMS data by using a
SAS/ACCESS dynamic LIBNAME engine. See “SAS/ACCESS Views” on page 546,
or the SAS/ACCESS documentation for your DBMS for more information. �

540 Benefits of Using SAS Data Views � Chapter 29

Benefits of Using SAS Data Views
SAS data views provide the following benefits:
� Instead of using multiple DATA steps to merge SAS data sets by common

variables, you can construct a view that performs a multi-table join.
� You can save disk space by storing a view definition, which stores only the

instructions for where to find the data and how it is formatted, not the actual data.
� Views can ensure that the input data sets are always current because data is

derived from views at execution time.
� Since views can select data from many sources, once a view is created, it can

provide prepackaged information to the information community without the need
for additional programming.

� Views can reduce the impact of data design changes on users. For example, you
can change a query that is stored in a view without changing the characteristics of
the view’s result.

� With SAS/CONNECT software, a view can join SAS data sets that reside on
different host computers, presenting you with an integrated view of distributed
company data.

The following figure shows native and interface SAS data views and their relationship
to SAS data files:

Figure 29.1 Native and Interface SAS Data Views

SAS Data Files
(Data)

SAS Data Views
(View)

DATA Step View
(DATA Step)

Native
(PROC SQL)

Interface
(SAS/ACCESS)

SAS Data Sets

You can use views in the following ways:
� as input to other DATA steps or PROC steps
� to migrate data to SAS data files or to database management systems that are

supported by SAS

SAS Data Views � Creating DATA Step Views 541

� in combination with other data sources using PROC SQL
� as pre-assembled sets of data for users of SAS/ASSIST software, enabling them to

perform data management, analysis, and reporting tasks regardless of how the
data is stored.

When to Use SAS Data Views
Consider the following in order to determine whether a SAS data file or a SAS data

view is better for your purposes:
� Data files use additional disk space; data views use additional processing time.
� Data file variables can be sorted and indexed prior to use; data views must process

data in its existing form during execution.

DATA Step Views

Definition of a DATA Step View
A DATA step view is a native view that has the broadest scope of any SAS data view.

It contains stored DATA step programs that can read data from a variety of sources,
including:

� raw data files
� SAS data files
� PROC SQL views
� SAS/ACCESS views
� DB2, ORACLE, or other DBMS data.

Creating DATA Step Views
In order to create a DATA step view, specify the VIEW= option after the final data

set name in the DATA statement. The VIEW= option tells SAS to compile, but not to
execute, the source program and to store the compiled code in the input DATA step view
that is named in the option.

For example, the following statements create a DATA step view named DEPT.A:

libname dept ’SAS-data-library’;

data dept.a / view=dept.a;
… more SAS statements …

run;

Note that if the SAS data view exists in a SAS data library, and if you use the same
member name to create a new view definition, then the old data view is overwritten.

Beginning with Version 8, DATA step views retain source statements. You can
retrieve these statements using the DESCRIBE statement. The following example uses
the DESCRIBE statement in a DATA step view in order to write a copy of the source
code to the SAS log:

data viewname view=inventory;
describe;

542 What Can You Do with a DATA Step View? � Chapter 29

run;

For more information on how to create data views and use the DESCRIBE
statement, see the DATA statement in SAS Language Reference: Dictionary.

What Can You Do with a DATA Step View?
Using a DATA step view, you can do the following:
� directly process any file that can be read with an INPUT statement
� read other SAS data sets
� generate data without using any external data sources and without creating an

intermediate SAS data file.

Because DATA step views are generated by the DATA step, they can manipulate and
manage input data from a variety of sources including data from external files and data
from existing SAS data sets. The scope of what you can do with a DATA step view,
therefore, is much broader than that of other types of SAS data views.

Differences between DATA Step Views and Stored Compiled DATA Step
Programs

DATA step views and stored compiled DATA step programs differ in the following
ways:

� a DATA step view is implicitly executed when it is referenced as an input data set
by another DATA or PROC step. Its main purpose is to provide data, one record at
a time, to the invoking procedure or DATA step.

� a stored compiled DATA step program is explicitly executed when it is specified by
the PGM= option on a DATA statement. Its purpose is usually a more specific
task, such as creating SAS data files, or originating a report.

For more information on stored compiled DATA step programs, see Chapter 30, “Stored
Compiled DATA Step Programs,” on page 547.

Restrictions and Requirements
Global statements do not to apply to a DATA step view. Global statements such as

the FILENAME, FOOTNOTE, LIBNAME, OPTIONS, and TITLE statements, even if
included in the DATA step that created the data view, have no effect on the data view.
If you do include global statements in your source program statements, SAS stores the
DATA step view but not the global statements. When the view is referenced, actual
execution may differ from the intended execution.

For information on using DATA step views created in an earlier release, see Chapter
35, “SAS 9.1 Compatibility with SAS Files From Earlier Releases,” on page 583.

Performance Considerations
� DATA step code executes each time that you use a view. This may add

considerable system overhead. In addition, you run the risk of having your data
change between steps.

� Depending on how many reads or passes on the data are required, processing
overhead increases.

SAS Data Views � Example 2: Producing Additional Output Files 543

� When one pass is requested, no data set is created. Compared to traditional
methods of processing, making one pass improves performance by decreasing
the number of input/output operations and elapsed time.

� When multiple passes are requested, the view must build a spill file that
contains all generated observations so that subsequent passes can read the
same data that was read by previous passes.

Example 1: Merging Data to Produce Reports
If you want to merge data from multiple files but you do not need to create a file that

contains the combined data, you can create a DATA step view of the combination for use
in subsequent applications.

For example, the following statements define DATA step view MYV9LIB.QTR1,
which merges the sales figures in the data file V9LR.CLOTHES with the sales figures
in the data file V9LR.EQUIP. The data files are merged by date, and the value of the
variable Total is computed for each date.

libname myv9lib ’SAS-data-library’;
libname v9lr ’SAS-data-library’;

data myv9lib.qtr1 / view=myv9lib.qtr1;
merge v9lr.clothes v9lr.equip;

by date;
total = cl_v9lr + eq_v9lr;

run;

The following PRINT procedure executes the view:

proc print data=myv9lib.qtr1;
run;

Example 2: Producing Additional Output Files
In this example, the DATA step reads an external file named STUDENT, which

contains student data, then writes observations that contain known problems to data
set MYV9LIB.PROBLEMS. The DATA step also defines the DATA step view
MYV9LIB.CLASS. The DATA step does not create a SAS data file named
MYV9LIB.CLASS.

The FILENAME and the LIBNAME statements are both global statements and must
exist outside of the code that defines the view, because views cannot contain global
statements.

Here are the contents of the external file STUDENT:

dutterono MAT 3
lyndenall MAT
frisbee MAT 94

SCI 95
zymeco ART 96
dimette 94
mesipho SCI 55
merlbeest ART 97
scafernia 91
gilhoolie ART 303
misqualle ART 44
xylotone SCI 96

544 Example 2: Producing Additional Output Files � Chapter 29

Here is the DATA step that produces the output files:

libname myv9lib ’SAS-data-library’;
filename student ’external-file-specification’; u

data myv9lib.class(keep=name major credits)
myv9lib.problems(keep=code date) / view=myv9lib.class; v

infile student;
input name $ 1-10 major $ 12-14 credits 16-18; w

select;
when (name=’ ’ or major=’ ’ or credits=.)

do code=01;
date=datetime();
output myv9lib.problems;

end; x

when (0<credits<90)
do code=02;

date=datetime();
output myv9lib.problems;

end; y

otherwise
output myv9lib.class;

end;
run; U

The following example shows how to print the files created previously. The data view
MYV9LIB.CLASS contains the observations from STUDENT that were processed
without errors. The data file MYV9LIB.PROBLEMS contains the observations that
contain errors.

If the data frequently changes in the source data file STUDENT, there would be
different effects on the returned values in the SAS data view and the SAS data file:

� New records, if error free, that are added to the source data file STUDENT
between the time you run the DATA step in the previous example and the time
you execute PROC PRINT in the following example, will appear in the data view
MYV9LIB.CLASS.

� On the other hand, if any new records, failing the error tests, were added to
STUDENT, the new records would not show up in the SAS data file
MYV9LIB.PROBLEM, until you run the DATA step again.

A SAS data view dynamically updates from its source files each time it is used. A
SAS data file, each time it is used, remains the same, unless new data is written
directly to the file.

filename student ’external-file-specification’;
libname myv9lib ’SAS-data--library’; V

proc print data=myv9lib.class;
run; W

proc print data=myv9lib.problems;
format date datetime18.;

run; X

u Reference a library called MYV9LIB. Tell SAS where a file that associated with
the fileref STUDENT is stored.

SAS Data Views � Comparing DATA Step and PROC SQL Views 545

v Create a data file called PROBLEMS and a data view called CLASS and specify
the column names for both data sets.

w Select the file that is referenced by the fileref STUDENT and select the data in
character format that resides in the specified positions in the file. Assign column
names.

x When data in the columns NAME, MAJOR or CREDITS is blank or missing,
assign a code of 01 to the observation where the missing value occurred. Also
assign a SAS datetime code to the error and place the information in a file called
PROBLEMS.

y When the amount of credits is greater than zero, but less than ninety, list the
observations as code 02 in the file called PROBLEMS and assign a SAS datetime
code to the observation.

U Place all other observations, which have none of the specified errors, in the SAS
data view called MYV9LIB.CLASS.

V The FILENAME statement assigns the fileref STUDENT to an external file. The
LIBNAME statement assigns the libref MYV9LIB to a SAS data library.

W The first PROC PRINT calls the data view MYV9LIB.CLASS. The data view
extracts data on the fly from the file referenced as STUDENT.

X This PROC PRINT prints the contents of the data file MYV9LIB.PROBLEMS.

PROC SQL Views
A PROC SQL view is a PROC SQL query-expression that is given a name and stored

for later use. When you use a PROC SQL view in a SAS program, the view derives its
data from the data sets (often referred to as tables) or views listed in its FROM clause.
The data that is accessed by the view is a subset or superset of the data in its
underlying data set(s) or view(s).

A PROC SQL view can read or write data from:
� DATA step views
� SAS data files
� other PROC SQL views
� SAS/ACCESS views
� DB2, ORACLE, or other DBMS data.

For complete documentation on how to create and use PROC SQL views, see Base
SAS Procedures Guide.

For information on using PROC SQL views created in an earlier release, see Chapter
35, “SAS 9.1 Compatibility with SAS Files From Earlier Releases,” on page 583.

Comparing DATA Step and PROC SQL Views
To help you decide between a DATA step view and a PROC SQL view, consider the

characteristics of each type of view:
� DATA step views

� DATA step views are versatile because they use DATA step processing,
including DO loops and IF-THEN/ELSE statements.

� DATA step views do not have write capability; that is, they cannot directly
change the data that they access.

546 SAS/ACCESS Views � Chapter 29

� There is no way to qualify the data in a DATA step view prior to using it.
Therefore, even if you need only part of the data in your data view, you must
load into memory the entire DATA step view and discard everything that you
do not need.

� PROC SQL views
� PROC SQL views can combine data from many different file formats.
� PROC SQL views can both read and update the data that they reference.
� PROC SQL supports more types of WHERE clauses than are available in

DATA step processing and has a CONNECT TO component that allows you to
easily send SQL statements and pass data to a DBMS by using the
Pass-Through Facility.

� You can also use the power of the SQL language to subset your data prior to
processing it. This saves memory when you have a large view, but need to
select only a small portion of the data contained in the view.

� PROC SQL views do not use DATA step programming.

SAS/ACCESS Views
A SAS/ACCESS view is an interface view, also called a view descriptor, which

accesses DBMS data that is defined in a corresponding access descriptor.
Using SAS/ACCESS software, you can create an access descriptor and one or more

view descriptors in order to define and access some or all of the data described by one
DBMS table or DBMS view. You can also use view descriptors in order to update DBMS
data, with certain restrictions.

In addition, some SAS/ACCESS products provide a dynamic LIBNAME engine
interface. If available, it is recommended that you use SAS/ACCESS LIBNAME
statement to assign a SAS libref to your DBMS data because it is more efficient and
easier to use than access descriptors and view descriptors. The SAS/ACCESS dynamic
LIBNAME engine enables you to treat DBMS data as if it were SAS data by assigning
a SAS libref to DBMS objects. This means that you can use both native DATA step
views and native PROC SQL views to access DBMS data instead of view descriptors.

See Chapter 33, “About SAS/ACCESS Software,” on page 569 or the SAS/ACCESS
documentation for your database for more information about SAS/ACCESS features.

For information on using SAS/ACCESS view descriptors created in an earlier release,
see Chapter 35, “SAS 9.1 Compatibility with SAS Files From Earlier Releases,” on page
583.

Note: Starting in SAS 9, PROC SQL views are the preferred way to access
relational DBMS data. You can convert existing SAS/ACCESS view descriptors into
PROC SQL views by using the CV2VIEW procedure, enabling you to use the LIBNAME
statement to access your data. See the CV2VIEW Procedure in SAS/ACCESS for
Relational Databases: Reference. �

547

C H A P T E R

30
Stored Compiled DATA Step
Programs

Definition of a Stored Compiled DATA Step Program 547
Uses for Stored Compiled DATA Step Programs 547

Restrictions and Requirements for Stored Compiled DATA Step Programs 548

How SAS Processes Stored Compiled DATA Step Programs 548

Creating a Stored Compiled DATA Step Program 549

Syntax for Creating a Stored Compiled DATA Step Program 549
Process to Compile and Store a DATA Step Program 549

Example: Creating a Stored Compiled DATA Step Program 549

Executing a Stored Compiled DATA Step Program 550

Syntax for Executing a Stored Compiled DATA Step Program 550

Process to Execute a Stored Compiled DATA Step Program 551

Using Global Statements 552
Redirecting Output 552

Printing the Source Code of a Stored Compiled DATA Step Program 552

Example: Executing a Stored Compiled DATA Step Program 553

Differences between Stored Compiled DATA Step Programs and DATA Step Views 554

Examples of DATA Step Programs 554
Example of DATA Step Program: Quality Control Application 554

Definition of a Stored Compiled DATA Step Program
A stored compiled DATA step program is a SAS file that contains a DATA step

program that has been compiled and then stored in a SAS data library. You can execute
stored compiled programs as needed, without having to recompile them. Stored
compiled DATA step programs are of member type PROGRAM.

Note: Stored compiled programs are available for DATA step applications only. Your
stored programs can contain all SAS language elements except global statements. If
you do include global statements in your source program, SAS stores the compiled
program but not the global statements, and does not display a warning message in the
SAS log. �

Uses for Stored Compiled DATA Step Programs
The primary use of stored compiled DATA step programs is for executing production

jobs. The advantage of using these DATA step programs is that you can execute them
as needed without investing the resources required for repeated compilation. The
savings are especially significant if the DATA step contains many statements. If you
install a new version of SAS, you do not need to recompile your source code.

548 Restrictions and Requirements for Stored Compiled DATA Step Programs � Chapter 30

Restrictions and Requirements for Stored Compiled DATA Step Programs
The following restrictions and requirements apply for using stored compiled DATA

step programs:
� Stored compiled DATA step programs are available for DATA step applications

only.
� Stored compiled DATA step program cannot contain global statements. If you do

include global statements such as FILENAME, FOOTNOTE, LIBNAME,
OPTIONS, and TITLE in your source program, SAS stores the compiled program
but not the global statements. SAS does not display a warning message in the
SAS log.

� SAS does not store raw data in the compiled program.

Operating Environment Information: You cannot move a compiled program to an
operating environment that has an incompatible machine architecture. You must,
instead, recompile your source code and store your new compiled program.

You can, however, move your compiled program to a different host machine that
has a compatible architecture. �

How SAS Processes Stored Compiled DATA Step Programs
You first compile the SAS source program and store the compiled code. Then you

execute the compiled code, redirecting the input and output as necessary.
SAS processes the DATA step through the compilation phase and then stores an

intermediate code representation of the program and associated data tables in a SAS
file. SAS processes the intermediate code when it executes the stored program. The
following figure shows the process for creating a stored compiled DATA step program.

Figure 30.1 Creating a Stored Compiled Program

Stored Compiled
DATA Step
Program

DATA Step
Compiler

DATA Step
Source Code

When SAS executes the stored program, it resolves the intermediate code produced
by the compiler and generates the executable machine code for that operating
environment. The following figure shows the process for executing a stored compiled
DATA step program.

Figure 30.2 Executing a Stored Compiled Program

Executable DATA
Step Program

DATA Step
Code Generator

Stored Compiled
DATA Step
Program

To move, copy, rename, or delete stored programs, use the DATASETS procedure or
the utility windows in your windowing environment.

Stored Compiled DATA Step Programs � Example: Creating a Stored Compiled DATA Step Program 549

Creating a Stored Compiled DATA Step Program

Syntax for Creating a Stored Compiled DATA Step Program
The syntax for creating a stored compiled DATA step program is as follows:

DATA data-set-name(s) / PGM=stored-program-name
<(<password-option><SOURCE=source-option>)>;

where

data-set-name
specifies a valid SAS name for the output data set created by the source program.
The name can be a one-level name or a two-level name. You can specify more than
one data set name in the DATA statement.

stored-program-name
specifies a valid SAS name for the SAS file containing the stored program. The
name can be a one-level name, but it is usually a two-level name. Stored programs
are assigned the member type PROGRAM in the SAS data library.

password-option
assigns a password to a stored compiled DATA step program.

source-option
allows you to save or encrypt the source code.

For complete information about the DATA statement, see SAS Language Reference:
Dictionary.

Process to Compile and Store a DATA Step Program
To compile and store a DATA step program, do the following:
1 Write, test, and debug the DATA step program you want to store.

If you are reading external raw data files or if you output raw data to an
external file, use a fileref rather than the actual file name in your INFILE and
FILE statements so that you can redirect your input and output when the stored
program executes.

2 When the program runs correctly, submit it using the PGM= option in the DATA
statement.

The PGM= option tells SAS to compile, but not execute, the program and to
store the compiled code in the SAS file named in the option. SAS sends a message
to the log when the program is stored.

Note: The default SOURCE=SAVE or SOURCE=ENCRYPT options automatically
save your source code. �

Note: If you move your application to another operating environment, you need to
recompile your source code and store your new compiled program. �

Example: Creating a Stored Compiled DATA Step Program
The following example uses the information in the input SAS data set IN.SAMPLE

to assign a plant type based on a plant code. Note that the global LIBNAME

550 Executing a Stored Compiled DATA Step Program � Chapter 30

statements are necessary to identify the storage location for your files, but are not part
of STORED.SAMPLE, the DATA step that SAS stores.

libname in ’SAS-data-library’;
libname stored ’SAS-data-library’;

data out.sample / pgm=stored.sample;
set in.sample;
if code = 1 then

do;
Type=’Perennial’;
number+4;

end;
else
if code = 2 then

do;
Type=’Annual’;
number+10;

end;
else

do;
Type=’ERROR’;
Number=0;

end;
run;

Output 30.1 Partial SAS Log Identifying the Stored DATA Step Program

.

.

.
NOTE: DATA STEP program saved on file STORED.SAMPLE.
NOTE: A stored DATA STEP program cannot run under a different operating system.
NOTE: DATA statement used:

real time 1.14 seconds
cpu time 0.12 seconds

Executing a Stored Compiled DATA Step Program

Syntax for Executing a Stored Compiled DATA Step Program
The syntax for executing a stored compiled DATA step program, optionally retrieving

source code, and optionally redirecting input or output, is as follows:

global SAS statements

DATA PGM=stored-program-name <(password-option)>;
<DESCRIBE;>
<REDIRECT INPUT | OUTPUT old-name-1 = new-name-1<. . . old-name-n =

new-name-n>;>

Stored Compiled DATA Step Programs � Process to Execute a Stored Compiled DATA Step Program 551

<EXECUTE;>

where

global SAS statements
specifies any global SAS statements that are needed by the program when it
executes, such as a FILENAME or a LIBNAME statement that points to input
files or routes output.

stored-program-name
specifies a valid SAS name for the SAS file containing the stored program. The
name can be a one-level name or a two-level name.

password-option
specifies a password that you use to access the stored compiled DATA step
program.

DESCRIBE
is a SAS statement that retrieves source code from a stored compiled DATA step
program or a DATA step view.

INPUT | OUTPUT
specifies whether you are redirecting input or output data sets. When you specify
INPUT, the REDIRECT statement associates the name of the input data set in the
source program with the name of another SAS data set. When you specify
OUTPUT, the REDIRECT statement associates the name of the output data set
with the name of another SAS data set.

old-name
specifies the name of the input or output data set in the source program.

new-name
specifies the name of the input or output data set that you want SAS to process for
the current execution.

EXECUTE
is a SAS statement that executes a stored compiled DATA step program.

For complete information about the DATA statement, see SAS Language Reference:
Dictionary.

Process to Execute a Stored Compiled DATA Step Program
To execute a stored compiled DATA step program, follow these steps:

1 Write a DATA step for each execution of the stored program. In this DATA step,
specify the name of the stored program in the PGM= option of the DATA
statement and include an optional password. You can

� submit this DATA step as a separate program

� include it as part of a larger SAS program that can include other DATA and
procedure (PROC) steps

� point to different input and output SAS data sets each time you execute the
stored program by using the REDIRECT statement.

2 Submit the DATA steps. Be sure to end each one with a RUN statement or other
step boundary.

552 Using Global Statements � Chapter 30

Using Global Statements
You can use global SAS statements such as FILENAME or LIBNAME when you

store or execute a stored compiled DATA step program. However, the global statements
that you use to compile and store a DATA step program are not stored with the DATA
step code.

Redirecting Output
You can redirect external files using filerefs. You can use the REDIRECT statement

for renaming input and output SAS data sets.
You can use the REDIRECT statement to redirect input and output data to data sets

you specify. Note that the REDIRECT statement is available only for use with stored
compiled DATA step programs.

Note: To redirect input and output stored in external files, include a FILENAME
statement at execution time to associate the fileref in the source program with different
external files. �

CAUTION:
Use caution when you redirect input data sets. The number and attributes of variables
in the input SAS data sets that you read with the REDIRECT statement should
match those of the input data sets in the SET, MERGE, MODIFY, or UPDATE
statements of the source code. If they do not match, the following occurs:

� If the variable length attributes differ, the length of the variable in the source
code data set determines the length of the variable in the redirected data set.

� If extra variables are present in the redirected data sets, the stored program will
continue to execute but the results of your program may not be what you expect.

� If the variable type attributes are different, the stored program stops processing
and an error message is sent to the SAS log.

�

Printing the Source Code of a Stored Compiled DATA Step Program
If you use both the DESCRIBE and the EXECUTE statements when you execute a

stored compiled DATA step program, SAS writes the source code to the log. The
following example executes a stored compiled DATA step program. The DESCRIBE
statement in the program writes the source code to the SAS log.

data pgm=stored.sample;
describe;
execute;

run;

Stored Compiled DATA Step Programs � Example: Executing a Stored Compiled DATA Step Program 553

Output 30.2 Partial SAS Log Showing the Source Code Generated by the DESCRIBE
Statement

.

.

.
26
27 data pgm=stored.sample;
28 describe;
29 execute;
30 run;
NOTE: DATA step stored program STORED.SAMPLE is defined as:

data out.sample / pgm=stored.sample;
set in.sample;
if code = 1 then

do;
Type=’Perennial’;
number+4;

end;
else

if code = 2 then
do;

Type=’Annual’;
number+10;

end;
else

do;
Type=’ERROR’;
Number=0;

end;
run;

NOTE: DATA STEP program loaded from file STORED.SAMPLE.
NOTE: There were 7 observations read from the dataset IN.SAMPLE.
NOTE: The data set OUT.SAMPLE has 7 observations and 4 variables.
NOTE: DATA statement used:

real time 0.80 seconds
cpu time 0.15 seconds

For more information about the DESCRIBE statement, see SAS Language Reference:
Dictionary.

Example: Executing a Stored Compiled DATA Step Program
The following DATA step executes the stored program STORED.SAMPLE created in

“Example: Creating a Stored Compiled DATA Step Program” on page 549. The
REDIRECT statement specifies the source of the input data as BASE.SAMPLE. The
output from this execution of the program is redirected and stored in a data set named
TOTALS.SAMPLE. Output 30.3 shows part of the SAS log.

libname in ’SAS-data-library’;
libname base ’SAS-data-library’;
libname totals ’SAS-data-library’;
libname stored ’SAS-data-library’;

data pgm=stored.sample;
redirect input in.sample=base.sample;

554 Differences between Stored Compiled DATA Step Programs and DATA Step Views � Chapter 30

redirect output out.sample=totals.sample;
run;

Output 30.3 Partial SAS Log Identifying the Redirected Output File

cpu time 0.00 seconds
.
.
.
6
7 data pgm=stored.sample;
8 redirect input in.sample=base.sample;
9 redirect output out.sample=totals.sample;
10 run;
NOTE: DATA STEP program loaded from file STORED.SAMPLE.
NOTE: The data set TOTALS.SAMPLE has 7 observations and 4 variables.
NOTE: DATA statement used:

real time 0.67 seconds

Differences between Stored Compiled DATA Step Programs and DATA
Step Views

Stored compiled DATA step programs and DATA step views are similar in function.
They both store DATA step programs that can retrieve and process data stored in other
files. Both have the same restrictions and requirements (see “Restrictions and
Requirements for Stored Compiled DATA Step Programs” on page 548). For information
about DATA step views, see Chapter 29, “SAS Data Views,” on page 539.

Stored compiled DATA step programs and DATA step views differ in the following
ways:

� A stored compiled DATA step program is explicitly executed when it is specified by
the PGM= option on a DATA statement. The stored compiled DATA step is used
primarily in production jobs.

� A DATA step view is implicitly executed when the view is referenced as an input
data set by another DATA or procedure (PROC) step. Its main purpose is to
provide data one record at a time to the invoking procedure or DATA step.

� You can use the REDIRECT statement when you execute a stored compiled DATA
step. You can not use this statement with DATA step views.

Examples of DATA Step Programs

Example of DATA Step Program: Quality Control Application
This example illustrates how to use a stored compiled DATA step program for a

simple quality control application. This application processes several raw data files.
The source program uses the fileref DAILY in the INFILE statement. Each DATA step
that is used to execute the stored program can include a FILENAME statement to
associate the fileref DAILY with a different external file.

The following statements compile and store the program:

libname stored ’SAS-data-library-1’;

Stored Compiled DATA Step Programs � Example of DATA Step Program: Quality Control Application 555

data flaws / pgm=stored.flaws;
length Station $ 15;
infile daily;
input Station $ Shift $ Employee $ NumberOfFlaws;
TotalNumber + NumberOfFlaws;

run;

The following statements execute the stored compiled program, redirect the output,
and print the results:

libname stored ’SAS-data-library-1’;
libname testlib ’SAS-data-library-2’;

data pgm=stored.flaws;
redirect output flaws=testlib.daily;

run;

proc print data=testlib.daily;
title ’Quality Control Report’;

run;

Output 30.4 Quality Control Application Output

Quality Control Report 1

Number Total
Obs Station Shift Employee OfFlaws Number

1 Cambridge 1 Lin 3 3
2 Northampton 1 Kay 0 3
3 Springfiled 2 Sam 9 12

Note that you can use the TITLE statement when you execute a stored compiled
DATA step program or when you print the results.

556

557

C H A P T E R

31
DICTIONARY Tables

Definition of a DICTIONARY Table 557
How to View DICTIONARY Tables 557

How to View a DICTIONARY Table 558

How to View a Summary of a DICTIONARY Table 558

How to View a Subset of a DICTIONARY Table 559

DICTIONARY Tables and Performance 559

Definition of a DICTIONARY Table
A DICTIONARY table is a read-only SAS data view that contains information about

SAS data libraries, SAS data sets, SAS macros, and external files that are in use or
available in the current SAS session. A DICTIONARY table also contains the settings
for SAS system options that are currently in effect.

When you access a DICTIONARY table, SAS determines the current state of the SAS
session and returns the desired information accordingly. This process is performed each
time a DICTIONARY table is accessed, so that you always have current information.

DICTIONARY tables can be accessed by a SAS program by using either of these
methods:

� run a PROC SQL query against the table, using the DICTIONARY libref
� use any SAS procedure or the DATA step, referring to the PROC SQL view of the

table in the SASHELP library.

For more information on DICTIONARY tables, including a list of available
DICTIONARY tables and their associated SASHELP views, see the Base SAS
Procedures Guide.

How to View DICTIONARY Tables
You might want to view the contents of DICTIONARY tables in order to see

information about your current SAS session, prior to actually using the table in a DATA
step or a SAS procedure.

Some DICTIONARY tables can become quite large. In this case, you might want to
view a part of a DICTIONARY table that contains only the data that you are interested
in. The best way to view part of a DICTIONARY table is to subset the table using a
PROC SQL WHERE clause.

558 How to View a DICTIONARY Table � Chapter 31

How to View a DICTIONARY Table
Each DICTIONARY table has an associated PROC SQL view in the SASHELP

library. You can see the entire contents of a DICTIONARY table by opening its
SASHELP view with the VIEWTABLE or FSVIEW utilities. This method provides more
detail than you receive in the output of the DESCRIBE TABLE statement, as shown in
“How to View a Summary of a DICTIONARY Table” on page 558.

The following steps describe how to use the VIEWTABLE or FSVIEW utilities to
view a DICTIONARY table in a windowing environment.

1 Invoke the Explorer window in your SAS session.
2 Select the SASHELP library. A list of members in the SASHELP library appears.
3 Select a view with a name that starts with V, for example, VMEMBER. A

VIEWTABLE window appears that contains its contents. (For z/OS, type the letter
’O’ in the command field for the desired member and press ENTER. The FSVIEW
window appears with the contents of the view.)

In the VIEWTABLE window the column headings are labels. To see the column
names, select

View � Column Names

How to View a Summary of a DICTIONARY Table
The DESCRIBE TABLE statement in PROC SQL produces a summary of the

contents of a DICTIONARY table. The following example uses the DESCRIBE TABLE
statement in order to generate a summary for the table DICTIONARY.INDEXES. (The
SASHELP view for this table is SASHELP.VINDEX).

proc sql;
describe table dictionary.indexes;

The result of the DESCRIBE TABLE statement appears in the SAS log:

NOTE: SQL table DICTIONARY.INDEXES was created like:

create table DICTIONARY.INDEXES
(
libname char(8) label=’Library Name’,
memname char(32) label=’Member Name’,
memtype char(8) label=’Member Type’,
name char(32) label=’Column Name’,
idxusage char(9) label=’Column Index Type’,
indxname char(32) label=’Index Name’,
indxpos num label=’Position of Column in Concatenated Key’,
nomiss char(3) label=’Nomiss Option’,
unique char(3) label=’Unique Option
);

� The first word on each line is the column (or variable) name, the name that you
need to use when writing a SAS statement that refers to the column (or variable).

� Following the column name is the specification for the type of variable and the
width of the column.

� The name that follows label= is the column (or variable) label.

After you know how a table is defined, you can use the processing ability of the
PROC SQL WHERE clause in a PROC SQL step in order to extract a portion of a view.

DICTIONARY Tables � DICTIONARY Tables and Performance 559

How to View a Subset of a DICTIONARY Table
When you know that you are accessing a large DICTIONARY and you need to use

only a portion of it, use a PROC SQL WHERE clause in order to extract a subset of the
original. The following PROC SQL statement demonstrates the use of a PROC SQL
WHERE clause in order to extract lines from DICTIONARY.INDEXES.

proc sql;
title ’Subset of the DICTIONARY.INDEX View’;
title2 ’Rows with Column Name equal to STATE’;
select * from dictionary.indexes

where name = ’STATE’;
quit;

The results are shown in the following output:

Output 31.1 Result of the PROC SQL Subsetting WHERE Statement

Subset of the DICTIONARY.INDEX View

Rows with Column Name equal to STATE

Column

Library Member Index

Name Member Name Type Column Name Type Index Name

Position of

Column in

Concatenated Nomiss Unique

Key Option Option

MAPS USAAC DATA STATE COMPOSITE SC000000

0

MAPS USAAC DATA STATE COMPOSITE CS000000

8

MAPS USAAS DATA STATE SIMPLE STATE

.

Note that many character values in the DICTIONARY tables are stored as
all-uppercase characters; you should design your queries accordingly.

DICTIONARY Tables and Performance
When you query a DICTIONARY table, SAS gathers information that is pertinent to

that table. Depending on the DICTIONARY table that is being queried, this process can
include searching libraries, opening tables, and executing views. Unlike other SAS
procedures and the DATA step, PROC SQL can improve this process by optimizing the
query before the select process is launched. Therefore, although it is possible to access
DICTIONARY table information with SAS procedures or the DATA step by using the
SASHELP views, it is often more efficient to use PROC SQL instead.

560 DICTIONARY Tables and Performance � Chapter 31

For example, the following programs both produce the same result, but the PROC
SQL step runs much faster because the WHERE clause is processed prior to opening
the tables that are referenced by the SASHELP.VCOLUMN view:

data mytable;
set sashelp.vcolumn;
where libname=’WORK’ and memname=’SALES’;

run;

proc sql;
create table mytable as

select * from sashelp.vcolumn
where libname=’WORK’ and memname=’SALES’;

quit;

Note: SAS does not maintain DICTIONARY table information between queries.
Each query of a DICTIONARY table launches a new discovery process. �

If you are querying the same DICTIONARY table several times in a row, you can get
even faster performance by creating a temporary SAS data set (with the DATA step
SET statement or PROC SQL CREATE TABLE AS statement) with the information
that you desire and run your query against that data set.

561

C H A P T E R

32
SAS Catalogs

Definition of a SAS Catalog 561
SAS Catalog Names 561

Parts of a Catalog Name 561

Accessing Information in Catalogs 562

Tools for Managing SAS Catalogs 562

Profile Catalog 563
Definition 563

How the Information Is Used 563

How Sasuser.Profile Is Created 563

Default Settings 563

Catalog Concatenation 564

Definitions 564
Example 1: Implicit Concatenation 564

Example 2: Explicit Concatenation 565

Rules for Catalog Concatenation 567

Definition of a SAS Catalog
SAS catalogs are special SAS files that store many different kinds of information in

smaller units called catalog entries. Each entry has an entry type that identifies its
purpose to SAS. A single SAS catalog can contain several different types of catalog
entries. Some catalog entries contain system information such as key definitions. Other
catalog entries contain application information such as window definitions, help
windows, formats, informats, macros, or graphics output. You can list the contents of a
catalog using various SAS features, such as SAS Explorer and PROC CATALOG.

SAS Catalog Names

Parts of a Catalog Name
SAS catalog entries are fully identified by a four-level name in the following form:

libref.catalog.entry-name.entry-type

You commonly specify the two-level name for an entire catalog, as follows:

libref.catalog

562 Accessing Information in Catalogs � Chapter 32

libref
is the logical name of the SAS data library to which the catalog belongs.

catalog
is a valid SAS name for the file.

The entry name and entry type are required by some SAS procedures. If the entry
type has been specified elsewhere or if it can be determined from context, you can use
the entry name alone. To specify entry names and entry types, use this form:

entry-name.entry-type

entry-name
is a valid SAS name for the catalog entry.

entry-type
is assigned by SAS when the entry is created.

Accessing Information in Catalogs
In Base SAS software, SAS catalog entries are generally accessed automatically by

SAS when the information stored in them is required for processing. In other SAS
software products, you must specify the catalog entry in various procedures. Because
the requirements differ with the SAS procedure or software product, refer to the
appropriate procedure or product documentation for details.

Tools for Managing SAS Catalogs
There are several SAS features to help you manage the entries in catalogs. The

CATALOG procedure and the CEXIST function are two features of Base SAS software.
Another tool is SAS Explorer, which enables you to view the contents of SAS catalogs.
Many interactive windowing procedures contain a catalog directory window for
managing entries. The following list summarizes the tools that are available for
managing catalogs:

CATALOG procedure
is similar to the DATASETS procedure. Use the CATALOG procedure to copy,
delete, list, and rename entries in catalogs.

CEXIST function
enables you to verify the existence of a SAS catalog or catalog entry. See the
CEXIST function in SAS Language Reference: Dictionary for more information.

CATALOG window
is a window that you can access at any time in an interactive windowing
environment. It displays the name, type, description, and date of last update for
each entry in the specified catalog. CATALOG window commands enable you to
edit catalog entries. You can also view and edit catalog entries after
double-clicking on a catalog file in SAS Explorer.

catalog directory windows
are available in some procedures in SAS/AF, SAS/FSP, and SAS/GRAPH software.
A catalog directory window lists the same kind of information that the CATALOG

SAS Catalogs � Default Settings 563

window provides: entry name, type, description, and date of last update. See the
description of each interactive windowing procedure for details about the catalog
directory window for that procedure.

Profile Catalog

Definition

Profile catalog (Sasuser.Profile)
is a catalog that is available for customizing the way you work with SAS. SAS
uses this catalog to store function key definitions, fonts for graphics applications,
window attributes, and other information from interactive windowing procedures.

How the Information Is Used
The information in the Sasuser.Profile catalog is accessed automatically by SAS when

you need it for processing. For example, each time you enter the KEYS window and
change the settings, SAS stores the new settings with the KEYS entry type. Similarly,
if you change and save the attributes for interactive window procedures, the changes
are stored under the appropriate entry name and type. When you use the window or
procedure, SAS then looks for information in the Profile catalog.

How Sasuser.Profile Is Created
SAS creates the Profile catalog the first time it tries to refer to it and discovers that

it does not exist. If you are using an interactive windowing environment, this occurs
during system initialization in your first SAS session. If you use one of the other modes
of execution, the Profile catalog is created the first time you execute a SAS procedure
that requires it.

Operating Environment Information: The Sasuser library is implemented differently
in various operating environments. See the SAS documentation for your host system for
more information about how the SAS user library is created. �

Default Settings
The default settings for your SAS session are stored in several catalogs in the

Sashelp installation library. If you do not make any changes to key settings or other
options, SAS uses the default settings. If you make changes, the new information is
stored in your Profile catalog. To restore the original default settings, use the CATALOG
procedure or the CATALOG window to delete the appropriate entries from your Profile
catalog. By default, SAS then uses the corresponding entry from the Sashelp library.

During SAS sessions, you can make customizations, such as window resizing and
positioning, and save them to Sasuser.Profile. If your Profile catalog is locked or
corrupted, the customizations will be saved in Work.Profile instead of in Sasuser.Profile.
The following notes will appear in the SAS log:

564 Catalog Concatenation � Chapter 32

NOTE: Unable to open SASUSER.PROFILE. WORK.PROFILE will be opened instead.
NOTE: All profile changes will be lost at the end of the session.

The notes will appear at invocation and again the first time the SAS session writes a
member to the WORK.PROFILE catalog.

Catalog Concatenation

Definitions
You can logically combine two or more SAS catalogs by concatenating them. This

allows you to access the contents of several catalogs, using one catalog name. There are
two types of concatenation, explicit and implicit.

Implicit catalog concatenation
results from a concatenation of libraries through a LIBNAME statement. When
two or more libraries are logically combined through concatenation, any catalogs
with the same name in each library become logically combined as well.

Explicit catalog concatenation
is a concatenation that is specified by the global CATNAME statement in which
the catalogs to be concatenated are specifically (or explicitly) named. During
explicit catalog concatenation, the CATNAME statement sets up a logical catalog
in memory.

Example 1: Implicit Concatenation
This LIBNAME statement concatenates the two SAS data libraries:

libname both (’SAS-data-library 1’’SAS-data-library 2’);

Members of library1 Members of library2

MYCAT.CATALOG MYCAT.CATALOG

TABLE1.DATA MYCAT2.CATALOG

TABLE3.DATA TABLE1.DATA

TABLE1.INDEX

TABLE2.DATA

TABLE2.INDEX

The concatenated libref BOTH would have the following:

Concatenated libref BOTH

MYCAT.CATALOG (from path 1 and 2)

MYCAT2.CATALOG (from path 2)

TABLE1.DATA (from path 1)

SAS Catalogs � Example 2: Explicit Concatenation 565

Concatenated libref BOTH

TABLE2.DATA (from path 2)

TABLE2.INDEX (from path 2)

TABLE3.DATA (from path 1)

Notice that TABLE1.INDEX does not appear in the concatenation but TABLE2.INDEX
does appear. SAS suppresses listing the index when its associated data file is not part
of the concatenation.

So what happened to the catalogs when the libraries were concatenated? A resulting
catalog now exists logically in memory, with the full name BOTH.MYCAT.CATALOG.
This catalog combines each of the two physical catalogs residing in ’library 1’ and
’library2’, called MYCAT.CATALOG.

To understand the contents of the concatenation BOTH.MYCAT, first look at the
contents of both parts of the concatenation. Assume that the two original
MYCAT.CATALOG files contain the following:

Contents of MYCAT.CATALOG in library1 Contents of MYCAT.CATALOG in library 2

A.FRAME A.GRSEG

C.FRAME B.FRAME

C.FRAME

Then the combined catalog BOTH.MYCAT contains the following:

BOTH.MYCAT

A.GRSEG (from path 2)

A.FRAME (from path 1)

B.FRAME (from path 2)

C.FRAME (from path 1)

Example 2: Explicit Concatenation
The syntax of the CATNAME statement is:

CATNAME libref.catref
(libref-1.catalog-1 (ACCESS=READONLY)
libref-n.catalog-n (ACCESS=READONLY));

To disassociate a concatenated catalog the syntax is:

CATNAME libref.catref | _ALL_ clear;

In the following example, there must be a libref that is defined and named CATDOG.
The libref CATDOG establishes the scope for the explicit concatenation definition.

566 Example 2: Explicit Concatenation � Chapter 32

Note: If a file in CATDOG named COMBINED.CATALOG already exists, it becomes
inaccessible until the explicit concatenation CATDOG.COMBINED is cleared.
�

Members of library1 Members of library2

MYCAT.CATALOG MYDOG.CATALOG

TABLE1.DATA MYCAT2.CATALOG

TABLE3.DATA TABLE1.DATA

TABLE1.INDEX

TABLE2.DATA

TABLE2.INDEX

If we issue the following statement,

CATNAME catdog.combined
(library1.mycat (ACCESS=READONLY)
library2.mydog (ACCESS=READONLY));

then the concatenated catalog CATDOG.COMBINED combines the following catalogs:

Concatenated catalog CATALOG.COMBINED

MYCAT.CATALOG (from library 1)

MYDOG.CATALOG (from library 2)

Note: In explicit concatenation only the named catalogs are combined. In implicit
concatenation, any catalogs that have the same name in their respective libraries are
concatenated when those libraries are concatenated. �

The previous CATNAME statement creates a catalog that exists logically in memory.
This catalog, named CATDOG.COMBINED.CATALOG, combines the two physical
catalogs residing in library1 and library2, called MYCAT.CATALOG and
MYDOG.CATALOG respectively.

To understand the contents of the concatenation COMBINED.CATALOG, first look at
the contents of both parts of the concatenation. The two original catalog files contain
the following entries:

MYCAT.CATALOG

library 1

MYDOG.CATALOG

library 2

A.FRAME A.GRSEG

C.FRAME B.FRAME

C.FRAME

SAS Catalogs � Rules for Catalog Concatenation 567

The concatenated catalog COMBINED contains:

COMBINED.CATALOG contents

A.GRSEG (from MYDOG)

A.FRAME (from MYCAT)

B.FRAME (from MYDOG)

C.FRAME (from MYCAT)

Rules for Catalog Concatenation
The rules for catalog concatenation are the same, whether the catalogs are implicitly

or explicitly concatenated.
� When a catalog entry is open for input or update, the parts are searched and the

first occurrence of the specified entry is used.
� When an item is open for output, it will be created in the catalog that is listed first

in the concatenation.

Note: A new catalog entry is created in the first catalog even if there is an item
with the same name in another part of the concatenation. �

Note: If the first catalog in a concatenation that is opened for update does not
exist, the item will be written to the next catalog that exists in the concatenation. �

� When you want to delete or rename a catalog entry, only the first occurrence of the
entry is affected.

� Any time a list of catalog entries is displayed, only one occurrence of the catalog
entry is shown.

Note: Even if a catalog entry occurs multiple times in the concatenation, only the
first occurrence is shown. �

568

569

C H A P T E R

33
About SAS/ACCESS Software

Definition of SAS/ACCESS Software 569
Dynamic LIBNAME Engine 569

SAS/ACCESS LIBNAME Statement 569

Using Data Set Options with SAS/ACCESS Librefs 570

Embedding a SAS/ACCESS LIBNAME Statement in a PROC SQL View 570

SQL Procedure Pass-Through Facility 571
ACCESS Procedure and Interface View Engine 572

DBLOAD Procedure 573

Interface DATA Step Engine 573

Definition of SAS/ACCESS Software
SAS/ACCESS software

allows you to read and write data to and from other vendors’ database
management systems (DBMS), as well as from some PC file formats. Depending on
your DBMS, a SAS/ACCESS product might provide one or more of the following:

� a dynamic LIBNAME engine
� the SQL Pass-Through Facility
� the ACCESS procedure and interface view engine
� the DBLOAD procedure
� an interface DATA step engine.

These interfaces are described in this section. Each SAS/ACCESS product
provides one or more of these interfaces for each supported DBMS. See Chapter
37, “SAS Engines,” on page 597 for more information about SAS engines.

Note: To use the SAS/ACCESS features described in this section, you must license
SAS/ACCESS software. See the SAS/ACCESS documentation for your DBMS for full
documentation of the features described in this section. �

Dynamic LIBNAME Engine

SAS/ACCESS LIBNAME Statement
Beginning in Version 7, you can associate a SAS libref directly with a database,

schema, server, or group of tables and views, depending on your DBMS. To assign a

570 Using Data Set Options with SAS/ACCESS Librefs � Chapter 33

libref to DBMS data, you must use the SAS/ACCESS LIBNAME statement, which has
syntax and options that are different from the Base SAS LIBNAME statement. For
example, to connect to an ORACLE database, you might use the following SAS/ACCESS
LIBNAME statement:

libname mydblib oracle user=smith password=secret
path=’myoracleserver’;

This LIBNAME statement connects to ORACLE by specifying the ORACLE connection
options: USER=, PASSWORD=, and PATH=. In addition to the connection options, you
can specify SAS/ACCESS LIBNAME options that control the type of database
connection that is made. You can use additional options to control how your data is
processed.

You can use a DATA step, SAS procedures, or the Explorer window to view and
update the DBMS data associated with the libref, or use the DATASETS and
CONTENTS procedures to view information about the DBMS objects.

See your SAS/ACCESS documentation for a full listing of the SAS/ACCESS
LIBNAME options that can be used with librefs that refer to DBMS data.

Using Data Set Options with SAS/ACCESS Librefs
After you have assigned a libref to your DBMS data, you can use SAS/ACCESS data

set options, and some of the Base SAS data set options, on the data. The following
example associates a libref with DB2 data and uses the SQL procedure to query the
data:

libname mydb2lib db2;

proc sql;
select *

from mydb2lib.employees(drop=salary)
where dept=’Accounting’;

quit;

The LIBNAME statement connects to DB2. You can reference a DBMS object, in this
case, a DB2 table, by specifying a two-level name that is comprised of the libref and the
DBMS object name. The DROP= data set option causes the SALARY column of the
EMPLOYEES table on DB2 to be excluded from the data that is returned by the query.

See your SAS/ACCESS documentation for a full listing of the SAS/ACCESS data set
options and the Base SAS data set options that can be used on data sets that refer to
DBMS data.

Embedding a SAS/ACCESS LIBNAME Statement in a PROC SQL View
You can issue a SAS/ACCESS LIBNAME statement by itself, as shown in the

previous examples, or as part of a CREATE VIEW statement in PROC SQL. The
USING clause of the CREATE VIEW statement allows you to store DBMS connection
information in a view by embedding a SAS/ACCESS LIBNAME statement inside the
view. The following example uses an embedded SAS/ACCESS LIBNAME statement:

libname viewlib ’SAS-data-library’;

proc sql;
create view viewlib.emp_view as

select *
from mydblib.employees

About SAS/ACCESS Software � SQL Procedure Pass-Through Facility 571

using libname mydblib oracle user=smith password=secret
path=’myoraclepath’;

quit;

When PROC SQL executes the view, the SELECT statement assigns the libref and
establishes the connection to the DBMS. The scope of the libref is local to the view and
does not conflict with identically named librefs that might exist in the SAS session.
When the query finishes, the connection is terminated and the libref is deassigned.

Note: You can also embed a Base SAS LIBNAME statement in a PROC SQL view. �

SQL Procedure Pass-Through Facility
The SQL Procedure Pass-Through Facility is an extension of the SQL procedure that

enables you to send DBMS-specific statements to a DBMS and to retrieve DBMS data.
You specify DBMS SQL syntax instead of SAS SQL syntax when you use the
Pass-Through Facility. You can use Pass-Through Facility statements in a PROC SQL
query or store them in a PROC SQL view.

The Pass-Through Facility consists of three statements and one component:
� The CONNECT statement establishes a connection to the DBMS.
� The EXECUTE statement sends dynamic, non-query DBMS-specific SQL

statements to the DBMS.
� The CONNECTION TO component in the FROM clause of a PROC SQL SELECT

statement retrieves data directly from a DBMS.
� The DISCONNECT statement terminates the connection to the DBMS.

The following Pass-Through Facility example sends a query to an ORACLE database
for processing:

proc sql;
connect to oracle as myconn (user=smith password=secret

path=’myoracleserver’);

select *
from connection to myconn

(select empid, lastname, firstname, salary
from employees
where salary>75000);

disconnect from myconn;
quit;

The example uses the Pass-Through CONNECT statement to establish a connection
with an ORACLE database with the specified values for the USER=, PASSWORD=, and
PATH= arguments. The CONNECTION TO component in the FROM clause of the
SELECT statement allows data to be retrieved from the database. The DBMS-specific
statement that is sent to ORACLE is enclosed in parentheses. The DISCONNECT
statement terminates the connection to ORACLE.

To store the same query in a PROC SQL view, use the CREATE VIEW statement:

libname viewlib ’SAS-data-library’;

proc sql;
connect to oracle as myconn (user=smith password=secret

path=’myoracleserver’);

572 ACCESS Procedure and Interface View Engine � Chapter 33

create view viewlib.salary as
select *

from connection to myconn
(select empid, lastname, firstname, salary

from employees
where salary>75000);

disconnect from myconn;
quit;

ACCESS Procedure and Interface View Engine
The ACCESS procedure enables you to create access descriptors, which are SAS files

of member type ACCESS. They describe data that is stored in a DBMS in a format that
SAS can understand. Access descriptors enable you to create SAS/ACCESS views,
called view descriptors. View descriptors are files of member type VIEW that function in
the same way as SAS data views that are created with PROC SQL, as described in
“Embedding a SAS/ACCESS LIBNAME Statement in a PROC SQL View” on page 570
and “SQL Procedure Pass-Through Facility” on page 571.

Note: If a dynamic LIBNAME engine is available for your DBMS, it is recommended
that you use the SAS/ACCESS LIBNAME statement to access your DBMS data instead
of access descriptors and view descriptors; however, descriptors continue to work in SAS
software if they were available for your DBMS in Version 6. Some new SAS features,
such as long variable names, are not supported when you use descriptors. �

The following example creates an access descriptor and a view descriptor in the same
PROC step to retrieve data from a DB2 table:

libname adlib ’SAS-data-library’;
libname vlib ’SAS’-data-library’;

proc access dbms=db2;
create adlib.order.access;
table=sasdemo.orders;
assign=no;
list all;

create vlib.custord.view;
select ordernum stocknum shipto;
format ordernum 5.

stocknum 4.;
run;

proc print data=vlib.custord;
run;

When you want to use access descriptors and view descriptors, both types of descriptors
must be created before you can retrieve your DBMS data. The first step, creating the
access descriptor, allows SAS to store information about the specific DBMS table that
you want to query.

After you have created the access descriptor, the second step is to create one or more
view descriptors to retrieve some or all of the DBMS data described by the access

About SAS/ACCESS Software � Interface DATA Step Engine 573

descriptor. In the view descriptor, you select variables and apply formats to manipulate
the data for viewing, printing, or storing in SAS. You use only the view descriptors, and
not the access descriptors, in your SAS programs.

The interface view engine enables you to reference your view with a two-level SAS
name in a DATA or PROC step, such as the PROC PRINT step in the example.

See Chapter 29, “SAS Data Views,” on page 539 for more information about views.
See the SAS/ACCESS documentation for your DBMS for more detailed information
about creating and using access descriptors and SAS/ACCESS views.

DBLOAD Procedure
The DBLOAD procedure enables you to create and load data into a DBMS table from

a SAS data set, data file, data view, or another DBMS table, or to append rows to an
existing table. It also enables you to submit non-query DBMS-specific SQL statements
to the DBMS from your SAS session.

Note: If a dynamic LIBNAME engine is available for your DBMS, it is recommended
that you use the SAS/ACCESS LIBNAME statement to create your DBMS data instead
of the DBLOAD procedure; however, DBLOAD continues to work in SAS software if it
was available for your DBMS in Version 6. Some new SAS features, such as long
variable names, are not supported when you use the DBLOAD procedure. �

The following example appends data from a previously created SAS data set named
INVDATA into a table in an ORACLE database named INVOICE:

proc dbload dbms=oracle data=invdata append;
user=smith;
password=secret;
path=’myoracleserver’;
table=invoice;
load;

run;

See the SAS/ACCESS documentation for your DBMS for more detailed information
about the DBLOAD procedure.

Interface DATA Step Engine
Some SAS/ACCESS software products support a DATA step interface, which allows

you to read data from your DBMS by using DATA step programs. Some products
support both reading and writing in the DATA step interface.

The DATA step interface consists of four statements:
� The INFILE statement identifies the database or message queue to be accessed.
� The INPUT statement is used with the INFILE statement to issue a GET call to

retrieve DBMS data.

� The FILE statement identifies the database or message queue to be updated, if
writing to the DBMS is supported.

� The PUT statement is used with the FILE statement to issue an UPDATE call, if
writing to the DBMS is supported.

The following example updates data in an IMS database by using the FILE and
INFILE statements in a DATA step. The statements generate calls to the database in

574 Interface DATA Step Engine � Chapter 33

the IMS native language, DL/I. The DATA step reads BANK.CUSTOMER, an existing
SAS data set that contains information on new customers, and then it updates the
ACCOUNT database with the data in the SAS data set.

data _null_;
set bank.customer;
length ssa1 $9;
infile accupdt dli call=func dbname=db ssa=ssa1;
file accupdt dli;
func = ’isrt’;
db = ’account’;
ssa1 = ’customer’;
put @1 ssnumber $char11.

@12 custname $char40.
@52 addr1 $char30.
@82 addr2 $char30.
@112 custcity $char28.
@140 custstat $char2.
@142 custland $char20.
@162 custzip $char10.
@172 h_phone $char12.
@184 o_phone $char12.;

if _error_ = 1 then
abort abend 888;

run;

In SAS/ACCESS products that provide a DATA step interface, the INFILE statement
has special DBMS-specific options that allow you to specify DBMS variable values and
to format calls to the DBMS appropriately. See the SAS/ACCESS documentation for
your DBMS for a full listing of the DBMS-specific INFILE statement options and the
Base SAS INFILE statement options that can be used with your DBMS.

575

C H A P T E R

34 Processing Data Using
Cross-Environment Data Access
(CEDA)

Definition of Cross-Environment Data Access (CEDA) 575
Advantages of CEDA 576

SAS File Processing with CEDA 576

What Types of Processing Does CEDA Support? 576

Behavioral Differences for Output Processing 577

Restrictions for CEDA 577
Processing a File with CEDA 578

Understanding When CEDA Is Used to Process a File 578

Determining Whether Update Processing Is Allowed 579

Alternatives to Using CEDA 580

Creating New Files in a Foreign Data Representation 581

Examples of Using CEDA 581
Example 1: Automatically Processing a Foreign File 581

Example 2: Creating a New File in a Foreign Environment 582

Definition of Cross-Environment Data Access (CEDA)

Cross-environment data access (CEDA) is a Base SAS feature that enables a SAS file
that was created in a directory-based operating environment (for example, UNIX,
Windows, OpenVMS Alpha) to be processed as follows:

� by a SAS session that is running in another directory-based environment. For
example, if you move a file from one operating environment like Windows to a
different operating environment like UNIX, CEDA translates the file, which
eliminates the need for you to convert the file.

� on a platform that is different from the platform on which the file was created. For
example, CEDA is useful if you have upgraded to a 64-bit platform from a 32-bit
platform.

� by a SAS session in which the session encoding is incompatible with the encoding
for the SAS file.

With CEDA, you do not need to create a transport file, use other SAS procedures, or
change your SAS program. CEDA is available for files that are created with SAS 7 and
later releases.

Here are a few terms and definitions to help you understand CEDA:

data
representation

is the format in which data is represented on a computer
architecture or in an operating environment. For example, on an
IBM PC, character data is represented by its ASCII encoding and
byte-swapped integers.

576 Advantages of CEDA � Chapter 34

encoding is a set of characters (letters, logograms, digits, punctuation,
symbols, control characters, and so on) that have been mapped to
numeric values (called code points) that can be used by computers.
The code points are assigned to the characters in the character set
by applying an encoding method. Some examples of encodings are
Wlatin1 and Danish EBCDIC.

foreign refers to a file or an environment for which the data representation
contrasts with the CPU that is processing the file. For example, the
data representation that is created by an IBM mainframe is
considered foreign to that of a Windows environment.

native refers to a file or an environment for which the data representation
is comparable with the CPU that is processing the file. For example,
a file that is in Windows data representation is native to a Windows
environment.

Advantages of CEDA
CEDA offers these advantages:
� You can transparently process a supported SAS file with no knowledge of the file’s

data representation or character encoding.
� System performance is maximized, because a read operation requires a single

translation between native and foreign representations, rather than a translation
from native representation to transport file to native representation.

� No interim transport files are created.
� CEDA eliminates the need to perform explicit steps in order to process the file.
� The internal numeric representation that is provided by CEDA is more precise

than that provided by the XPORT engine with PROC COPY. CEDA uses a
one-step translation from the native representation of the source environment to
the native representation of the target environment, whereas the XPORT engine
uses a two-step transformation from a file’s native representation to the target
environment by means of a transport format.

SAS File Processing with CEDA

What Types of Processing Does CEDA Support?
CEDA supports SAS 7 and later SAS files that are created in directory-based

operating environments like UNIX, Windows, and OpenVMS Alpha. CEDA provides the
following SAS file processing for these SAS engines:

BASE default engine for Base SAS in SAS 9 (V9), SAS 8 (V8), and SAS 7
(V7).

SOCKET TCP/IP port engine for SAS/CONNECT.

TAPE sequential engine for SAS 9 (V9TAPE), SAS 8 (V8TAPE), and SAS 7
(V7TAPE).

Processing Data Using Cross-Environment Data Access (CEDA) � Restrictions for CEDA 577

Table 34.1 SAS File Processing Provided by CEDA

SAS File Type Engine Supported Processing

SAS data file BASE, TAPE, SOCKET input and output 1 processing

PROC SQL view BASE input processing

SAS/ACCESS view for Oracle
or SYBASE

BASE input processing

MDDB file2 BASE input processing

1 For output processing that replaces an existing SAS data file, there are behavioral differences. See
“Behavioral Differences for Output Processing” on page 577.

2 CEDA supports SAS 8 and later MDDB files.

Behavioral Differences for Output Processing
For output processing that replaces an existing SAS data file, there are behavioral

differences regarding these attributes:

encoding

� The BASE engine uses the encoding of the existing file; that is, the encoding
is cloned.

� The TAPE engine uses the current SAS session encoding.

� For both the BASE and TAPE engines, the COPY procedure uses the
encoding of the file from the source library (that is, the file being copied),
regardless of whether the file existed in the target library.

data representation
The BASE and TAPE engines use the data representation of the native
environment, except with the COPY procedure, which by default uses the data
representation of the file being copied.

Restrictions for CEDA
CEDA has the following restrictions:

� CEDA does not support DATA step views, SAS/ACCESS views that are not for
SAS/ACCESS for Oracle or SYBASE, SAS catalogs, stored compiled DATA step
programs, item stores, DMDB files, FDB files, or any SAS file that was created
with a version of SAS prior to SAS 7.

� Update processing is not supported.

� Indexes are not supported. Therefore, WHERE optimization with an index is not
supported.

� CEDA is supported only for directory-based file systems. On OS/390 or z/OS, only
HFS or zFS (UNIX file systems) libraries support CEDA. In particular, CEDA is
not supported for bound libraries on z/OS. For additional information, see “Library
Implementation Types for Base and Sequential Engines” in SAS Companion for z/
OS.

� Because the BASE engine translates the data as the data is read, multiple
procedures require SAS to read and translate the data multiple times. In this way,
the translation could affect system performance.

578 Processing a File with CEDA � Chapter 34

� If a foreign data set is damaged, CEDA cannot process the file in order to repair it.
CEDA does not support update processing, which is required in order to repair a
damaged data set. To repair the foreign file, you must move it back to its native
environment. For information on how to repair a damaged data set, see the
REPAIR statement in the DATASETS procedure in Base SAS Procedures Guide.

Processing a File with CEDA

Understanding When CEDA Is Used to Process a File
Because CEDA translation is transparent, you might not be aware when CEDA is

being used. However, knowing when CEDA is used could be helpful, for example,
because CEDA translation may require additional resources.

CEDA is used in these situations:
� when the data representation of the SAS file differs from the data representation

that is used by SAS for the operating environment and platform. This can occur,
for example, if you move a file from one operating environment like Windows to a
different operating environment like UNIX, or if you have upgraded to a 64-bit
platform from a 32-bit platform.

Note: Processing a foreign file could result in numeric data loss during data
translation. For example, if you move a file that contains a very large or small
number from 64-bit UNIX to 32-bit z/OS, the value could lose precision or be
significantly reduced in value due to differences in the data representation on the
hosts. �

The following table groups (within a single cell) the compatible data
representation values and environments. (Environments are named by the
operating system and platform on which SAS is executed.) With the noted
exception, CEDA is used if you access a SAS file with a data representation value
in one group from an environment in another group.

Table 34.2 Compatibility Across Environments

Data Representation
Value

Environment

ALPHA_TRU64 Compaq Tru64 UNIX

ALPHA_VMS_32 OpenVMS Alpha on 32-bit platform 1

ALPHA_VMS_64 OpenVMS Alpha on 64-bit platform 1

HP_IA64

HP_UX_64

RS_6000_AIX_64

SOLARIS_64

HP UX on Itanium 64-bit platform

HP UX on 64-bit platform

AIX UNIX on 64-bit RS/6000

Sun Solaris on 64-bit platform

HP_UX_32

MIPS_ABI

RS_6000_AIX_32

SOLARIS_32

HP UX on 32-bit platform

ABI UNIX on 32-bit platform

AIX UNIX on 32-bit RS/6000

Sun Solaris on 32-bit platform

LINUX_32

INTEL_ABI

Linux for Intel Architecture on 32-bit platform

ABI UNIX on Intel 32-bit platform

Processing Data Using Cross-Environment Data Access (CEDA) � Determining Whether Update Processing Is Allowed 579

Data Representation
Value

Environment

MVS_32 z/OS on 32-bit platform

OS2 OS/2 on Intel 32-bit platform

VAX_VMS VAX VMS

WINDOWS_32 Microsoft Windows on 32-bit platform

WINDOWS_64 Microsoft Windows 64-Bit Edition

1 Although these 32-bit and 64-bit OpenVMS Alpha systems have different data
representations for some compiler data types, SAS data sets that are created by
the BASE engine do not store the data types that are different; therefore, CEDA is not
required between these two groups.

� when the encoding of character values for the SAS file is incompatible with the
currently executing SAS session encoding.

Note: Transcoding could result in character data loss. For information about
encoding and transcoding, see SAS National Language Support (NLS): User’s
Guide. �

Note: Starting in SAS 9, you can tell SAS to display a message when CEDA is being
used by setting the SAS system option MSGLEVEL=I:

options msglevel=i;

Here is an example of the message:

INFO: Data file HEALTH.GRADES.DATA is in a format native to another
host or the file encoding does not match the session encoding.
Cross Environment Data Access will be used, which may require additional
CPU resources and reduce performance.

�

Determining Whether Update Processing Is Allowed
If a file’s data representation is the same as that of the processing environment, and

if the encoding is compatible with the currently executing SAS session encoding, then
you can manually update the file, because CEDA is not needed in order to translate the
file. For example, in a Windows environment, if a file was created in a Windows
environment or if the OUTREP= option was used to designate the file in Windows data
representation, then you can update the file.

Otherwise, if CEDA is used to translate the file, you cannot update it. If you attempt
to update the file, then you will receive an error message that says that updating is not
allowed. For example:

ERROR: File HEALTH.OXYGEN cannot be updated because its encoding does
not match the session encoding or the file is in a format native to another
host, such as SOLARIS_32, HP_UX_32, RS_6000_AIX_32, MIPS_ABI.

To determine the data representation and the encoding of a file, you can use the
CONTENTS procedure (or the CONTENTS statement in PROC DATASETS). For
example, the data set HEALTH.OXYGEN was created in a UNIX environment in SAS
9. The file was moved to a SAS 9 Windows environment, in which the following
CONTENTS output was requested:

580 Alternatives to Using CEDA � Chapter 34

Output 34.1 CONTENTS Output Showing Data Representation

The SAS System 1

The CONTENTS Procedure

Data Set Name HEALTH.OXYGEN Observations 31

Member Type DATA Variables 7

Engine V9 Indexes 0

Created Wednesday, January 22, 2003 10:11:39 Observation Length 56

Last Modified Wednesday, January 22, 2003 10:11:33 Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label

Data Representation SOLARIS_32, HP_UX_32, RS_6000_AIX_32, MIPS_ABI

Encoding latin1 Western (ISO)

Engine/Host Dependent Information

Data Set Page Size 5120

Number of Data Set Pages 1

First Data Page 1

Max Obs per Page 90

Obs in First Data Page 31

Number of Data Set Repairs 0

File Name /u/xxxxxx/myfiles/health/\oxygen.sas7bdat

Release Created 9.0100A0

Host Created HP-UX

Alphabetic List of Variables and Attributes

Variable Type Len

1 AGE Num 8

6 MAXPULSE Num 8

7 OXYGEN Num 8

4 RSTPULSE Num 8

5 RUNPULSE Num 8

3 RUNTIME Num 8

2 WEIGHT Num 8

Alternatives to Using CEDA

Because of the restrictions, it might not be feasible to use CEDA. You can use the
following methods in order to move files across operating environments:

XPORT engine with the DATA step or PROC COPY
In the source environment, the LIBNAME statement with the XPORT engine and
either the DATA step or PROC COPY creates a transport file from a SAS data set.
In the target environment, the same method translates the transport file into the
target environment’s native format. Note that the XPORT engine does not support
SAS 7 and later features, such as long file and variable names.

XML engine with the DATA step or PROC COPY
In the source environment, the LIBNAME statement with the XML engine and
either the DATA step or PROC COPY creates an XML document from a SAS data
set. In the target environment, the same method translates the XML document
into the target environment’s native format.

Processing Data Using Cross-Environment Data Access (CEDA) � Example 1: Automatically Processing a Foreign File 581

CPORT and CIMPORT procedures
In the source environment, PROC CPORT writes data sets or catalogs to transport
format. In the target environment, PROC CIMPORT translates the transport file
into the target environment’s native format.

Data transfer services in SAS/CONNECT software
Data transfer services is a bulk data transfer mechanism that transfers a disk
copy of the data and performs the necessary conversion of the data from one
environment’s representation to another’s, as well as any necessary conversion
between SAS releases. This requires that a connection be established between two
SAS sessions by using the SIGNON command and then executing either PROC
UPLOAD or PROC DOWNLOAD to move the data.

Remote library services in both SAS/SHARE software and SAS/CONNECT software
This gives you transparent access to remote data through the use of the
LIBNAME statement.

Creating New Files in a Foreign Data Representation
By default, SAS creates new files by using the native data representation of the CPU

that is running SAS. For example, when using a PC, SAS creates a file that has ASCII
characters and byte-swapped integers.

You can specify the OUTREP= option for flexibility when using CEDA. This option
exists as both a SAS data set option and as a LIBNAME statement option. As a data
set option, it applies to an individual file. As a LIBNAME statement option, it applies
to the entire library.

To create new files in a foreign data representation, use the OUTREP= option. This
option enables you to create a file within the native environment using a foreign data
representation. For example, in a UNIX environment, you can create a SAS data set in
Windows data representation. For a list of values, see the OUTREP= option for the
LIBNAME statement or the OUTREP= data set option in SAS Language Reference:
Dictionary.

Examples of Using CEDA

Example 1: Automatically Processing a Foreign File
This example shows how simple it is to move a SAS data set from one operating

environment to another and to process the file in the new environment without any
conversion steps.

First, the SAS data set is moved, using FTP, from an HP UNIX environment to a
Windows PC.

C:\>ftp my.unix.node.com
FTP>binary
FTP>get unxdata.sas7bdat
FTP>quit

Then, using CEDA, SAS automatically recognizes the foreign data representation
(which is HP UNIX) and translates it to the native data representation for the Windows

582 Example 2: Creating a New File in a Foreign Environment � Chapter 34

environment. Because the SAS system option MSGLEVEL=I is specified, the log output
displays a message that the file is being processed using CEDA.

options msglevel=i;
libname unx ’.’;

proc print data=unx.unxdata;
run;

Output 34.2 Log Output from Processing a Foreign File

INFO: Data file UNX.UNXDATA is in a format native to another host or the file
encoding which does not match the session encoding. Cross Environment Data Access
will be used, which may require additional CPU resources and may reduce
performance.

Example 2: Creating a New File in a Foreign Environment
In this example, an administrator who works in a z/OS operating environment wants

to create a file on an HFS system so that the file can be processed in an HP UNIX
environment. Specifying OUTREP=HP_UX_32 as a data set option forces the data
representation to match the data representation of the UNIX operating environment
that will process the file. This method of creating the file can enhance system
performance because the file does not require data conversion when being read by an
HP UNIX machine.

libname foreign v9 ’HFS-file-spec’;

data foreign.a (outrep=HP_UX_32);
infile file-specifications;
input student $ test1 test2 test3 final;
total = test1+test2+test3+final;
grade = total/4.0;

run;

583

C H A P T E R

35
SAS 9.1 Compatibility with SAS
Files From Earlier Releases

Introduction to Version Compatibility 583
Comparing SAS System 9 to Earlier Releases 583

SAS 9 File Format 583

SAS 9 Filename Extensions 584

Using SAS Library Engines 584

Introduction to Version Compatibility
SAS recognizes that SAS 9 customers often have existing data and programs. You

want to seamlessly process your existing files, and possibly to simultaneously operate
both SAS 9 and an earlier release of SAS. In many cases, you can use SAS 9 to process
SAS files that were created in versions 8, 7, and 6 of SAS without first converting the
files; however, there are some limitations.

Compatibility between versions will vary depending on the type of SAS file, the SAS
release that you are running, the operating environment in which the file was created,
and the type of processing you need to do. Compatibility issues are generally handled
automatically by SAS. However, there are situations that require you to specify an
engine name or to migrate the file.

The additional information in this topic provides general, overview information
regarding compatibility.

For specific processing information and guidelines for migration issues, see the
Migration Community at support.sas.com/rnd/migration.

The Migration Community is your guide to migrating files from previous versions of
SAS to SAS 9. Refer to this community for planning and cost analysis information,
known compatibility issues and their resolutions, and step-by-step instructions. In
addition, the Migration Community provides documentation for the MIGRATE
procedure, which provides a simple way to migrate a library of SAS files from previous
releases of SAS.

Comparing SAS System 9 to Earlier Releases

SAS 9 File Format
In order to provide longer file names and variable names, the file format used in SAS

7 and 8 is different from the file format used in SAS 6.

584 SAS 9 Filename Extensions � Chapter 35

For SAS 9, the file format is basically the same as in SAS 7 and 8. The Base SAS
engine is the same engine, except that for SAS 9, you can define and use longer format
and informat names. You cannot use longer format and informat names in SAS 7 or 8.

SAS files created with SAS 7 and 8 are compatible with SAS 9. However, a SAS file
that is created with a 32-bit version of SAS has a different data representation than a
SAS file from a 64-bit version of SAS. The data representation is the format in which
data is represented on a computer architecture or in an operating environment.
Therefore, if you have SAS files that were created on a 32-bit version of SAS and you
have upgraded to a 64-bit version of SAS, you will have processing limitations due to
the different data representation.

SAS 9 Filename Extensions
A filename extension reflects the engine that was used to create both the file and the

SAS file member type.
Because SAS needs to distinguish among the different file types and versions, SAS

automatically assigns a specific extension to each file when the file is created. For
example, in order to distinguish SAS 7 and 8 files from SAS 6 files, the extensions are
different.

For SAS 9, the file extensions are the same as the file extensions in SAS 7 and 8.
The following table lists the file extensions for a SAS data file (SAS data set with

member type DATA) in SAS 6, 7, 8, and 9 for different operating environments:

Table 35.1 File Extensions for a SAS Data File in Different Operating Environments

Engine Name UNIX OpenVMS Alpha Windows z/OS1

V6 .ssd01 .SASEB$DATA .sd2 not available

V7 .sas7bdat .sas7bdat .sas7bdat .sas7bdat

V8 .sas7bdat .sas7bdat .sas7bdat .sas7bdat

V9 .sas7bdat .sas7bdat .sas7bdat .sas7bdat

1 applies to SAS data sets that reside in the hierarchical file system of UNIX System Services.

Operating Environment Information: For a complete list of SAS member types and
extensions, see the SAS documentation for your operating environment. �

Using SAS Library Engines
In order to access a SAS data library, SAS needs a libref and a library engine name.

For example, you assign a libref to the SAS data library with the LIBNAME statement
or the New Library window, but usually you do not have to specify an engine name
because SAS automatically selects the appropriate engine.

If you do not specify an engine, SAS automatically assigns one based on the contents
of the SAS data library. For example, SAS is able to differentiate between a SAS 6
library and a SAS 9 library. Note that in SAS 9, a SAS library containing SAS 7 and 8
files is the same as a SAS 9 library, because the engine that creates a SAS file
determines its format, and the file format for SAS 7, 8, and 9 is the same.

For example, in a SAS 9 session, if you issue the following LIBNAME statement to
assign a libref to a data library containing SAS 8 SAS files, SAS automatically uses the
SAS 9 engine:

libname mylib ’v8-SAS-data-library’;

SAS 9.1 Compatibility with SAS Files From Earlier Releases � Using SAS Library Engines 585

In a SAS 9 session, if you issue the following LIBNAME statement to assign a libref
to a data library that contains only SAS 6 files, SAS automatically uses the Version 6
compatibility engine:

libname mylib ’v6-SAS-data-library’;

SAS automatically assigns an engine based on the contents of the data library as
shown in the following table:

Table 35.2 Default Library Engine Assignment in SAS 9

Engine Assignment Data Library Contents

V9 No SAS files; the library is empty

V9 Only SAS 9 SAS files

V9 Only SAS 8 SAS files

V9 Only SAS 7 SAS files

V6 Only SAS 6 SAS files

V9 Both SAS 9 SAS files and SAS files from earlier releases

Note: Even though SAS will automatically assign an engine based on the library
contents, it is more efficient for you to specify the engine. For example, specifying the
engine name in the following LIBNAME statement saves SAS from determining which
engine to use:

libname mylib v6 ’v6-SAS-data-library’;

�

For more information about SAS engines, see Chapter 37, “SAS Engines,” on page
597.

586

587

C H A P T E R

36
File Protection

Definition of a Password 587
Assigning Passwords 588

Syntax 588

Assigning a Password with a DATA Step 589

Assigning a Password to an Existing Data Set 589

Assigning a Password with a Procedure 589
Assigning a Password with the SAS Windowing Environment 590

Assigning a Password Outside of SAS 590

Removing or Changing Passwords 590

Using Password-Protected SAS Files in DATA and PROC Steps 590

How SAS Handles Incorrect Passwords 591

Assigning Complete Protection with the PW= Data Set Option 591
Using Passwords with Views 592

How the Level of Protection Differs from SAS Views 592

PROC SQL Views 593

SAS/ACCESS Views 593

DATA Step Views 593
SAS Data File Encryption 594

Example 594

Passwords and Encryption with Generation Data Sets, Audit Trails, Indexes, and Copies 595

Definition of a Password

SAS software enables you to restrict access to members of SAS data libraries by
assigning passwords to the members. You can assign passwords to all member types
except catalogs. You can specify three levels of protection: read, write, and alter. When
a password is assigned, it appears as uppercase Xs in the log.

Note: This document uses the terms SAS data file and SAS data view to distinguish
between the two types of SAS data sets. Passwords work differently for type VIEW
than they do for type DATA. The term “SAS data set” is used when the distinction is
not necessary. �

read protects against reading the file.

write protects against changing the data in the file. For SAS data files,
write protection prevents adding, modifying, or deleting
observations.

588 Assigning Passwords � Chapter 36

alter protects against deleting or replacing the entire file. For SAS data
files, alter protection also prevents modifying variable attributes and
creating or deleting indexes.

Alter protection does not require a password for read or write access; write protection
does not require a password for read access. For example, you can read an
alter-protected or write-protected SAS data file without knowing the alter or write
password. Conversely, read and write protection do not prevent any operation that
requires alter protection. For example, you can delete a SAS data set that is only read-
or write-protected without knowing the read or write password.

To protect a file from being read, written to, deleted, or replaced by anyone who does
not have the proper authority, assign read, write, and alter protection. To allow others
to read the file without knowing the password, but not change its data or delete it,
assign just write and alter protection. To completely protect a file with one password,
use the PW= data set option. See “Assigning Complete Protection with the PW= Data
Set Option” on page 591 for details.

Note: Because of the way SAS opens files, you must specify the read password to
update a SAS data set that is only read-protected. �

Note: The levels of protection differ somewhat for the member type VIEW. See
“Using Passwords with Views” on page 592. �

Assigning Passwords

Syntax
To set a password, first specify a SAS data set in one of the following:

� a DATA statement

� the MODIFY statement of the DATASETS procedure

� an OUT = statement in PROC SQL

� the CREATE VIEW statement in PROC SQL

� the ToolBox.

Then assign one or more password types to the data set. The data set may already
exist, or the data set may be one that you create. An example of syntax follows:

password-type=password <... password-type=password>)

where password is a valid eight-character SAS name and password-type can be one of
the following SAS data set options:

ALTER=

PW=

READ=

WRITE=

CAUTION:
Keep a record of any passwords you assign! If you forget or do not know the password,
you cannot get the password from SAS. �

File Protection � Assigning a Password with a Procedure 589

Assigning a Password with a DATA Step
You can use data set options to assign passwords to unprotected members in the

DATA step when you create a new SAS data file.
This example prevents deletion or modification of the data set without a password.

/* assign a write and an alter password to MYLIB.STUDENTS */
data mylib.students(write=yellow alter=red);

input name $ sex $ age;
datalines;

Amy f 25
… more data lines …
;

This example prevents reading or deleting a stored program without a password and
also prevents changing the source program.

/* assign a read and an alter password to the view ROSTER */
data mylib.roster(read=green alter=red) /

view=mylib.roster;
set mylib.students;

run;

.

libname stored ’SAS-data-library-2’;

/* assign a read and alter password to the program file SOURCE */
data mylib.schedule / pgm=stored.source(read=green alter=red);

… DATA step statements …
run;

Note: When you replace a SAS data set that is alter-protected, the new data set
inherits the alter password. To change the alter password for the new data set, use the
MODIFY statement in the DATASETS procedure. �

Assigning a Password to an Existing Data Set
You can use the MODIFY statement in the DATASET procedure to assign passwords

to unprotected members if the SAS data file already exists.

/* assign an alter password to STUDENTS */
proc datasets library=mylib;

modify students(alter=red);
run;

Assigning a Password with a Procedure
You can assign a password after an OUT= data set specification in PROC SQL.

/* assign a write and an alter password to SCORE */
proc sort data=mylib.math

out=mylib.score(write=yellow alter=red);
by number;

run;

590 Assigning a Password with the SAS Windowing Environment � Chapter 36

You can use a CREATE VIEW statement in PROC SQL to assign a password.

/* assign an alter password to the view BDAY */
proc sql;

create view mylib.bday(alter=red) as
query-expression;

Assigning a Password with the SAS Windowing Environment
You can create or change passwords for any data file using the Password Window in

the SAS windowing environment. To invoke the Password Window from the ToolBox,
use the global command SETPASSWORD followed by the file name. This opens the
password window for the specified data file.

Assigning a Password Outside of SAS
A SAS password does not control access to a SAS file beyond the SAS system. You

should use the operating system-supplied utilities and file-system security controls in
order to control access to SAS files outside of SAS.

Removing or Changing Passwords

To remove or change a password, use the MODIFY statement in the DATASETS
procedure. For more information, see the DATASETS procedure in Base SAS
Procedures Guide.

Using Password-Protected SAS Files in DATA and PROC Steps

To access password-protected files, use the same data set options that you use to
assign protection.

�

/* Assign a read and alter password
/* to the stored program file*/ /*STORED.SOURCE */
data mylib.schedule / pgm=stored.source

(read=green alter=red);
<… more data step statements …>

run;

/*Access password-protected file*/
proc sort data=mylib.score(write=yellow alter=red);

by number;
run;

�

/* Print read-protected data set MYLIB.AUTOS */
proc print data=mylib.autos(read=green); run;

File Protection � Assigning Complete Protection with the PW= Data Set Option 591

�

/* Append ANIMALS to the write-protected */
/* data set ZOO */

proc append base=mylib.zoo(write=yellow)
data=mylib.animals;

run;

�

/* Delete alter-protected data set MYLIB.BOTANY */
proc datasets library=mylib;

delete botany(alter=red);
run;

Passwords are hierarchical in terms of gaining access. For example, specifying the
ALTER password gives you read and write access. The following example creates the
data set STATES, with three different passwords, and then reads the data set to
produce a plot:

data mylib.states(read=green write=yellow alter=red);
input density crime name $;
datalines;

151.4 6451.3 Colorado
… more data lines …
;

proc plot data=mylib.states(alter=red);
plot crime*density;

run;

How SAS Handles Incorrect Passwords

If you are using the SAS windowing environment and you try to access a
password-protected member without specifying the correct password, you receive a
requestor window that prompts you for the appropriate password. The text you enter in
this window is not displayed. You can use the PWREQ= data set option to control
whether a requestor window appears after a user enters a missing or incorrect
password. PWREQ= is most useful in SCL applications.

If you are using batch or noninteractive mode, you receive an error message in the
SAS log if you try to access a password-protected member without specifying the correct
password.

If you are using interactive line mode, you are also prompted for the password if you
do not specify the correct password. When you enter the password and press ENTER,
processing continues. If you cannot give the correct password, you receive an error
message in the SAS log.

Assigning Complete Protection with the PW= Data Set Option

The PW= data set option assigns the same password for each level of protection. This
data set option is convenient for thoroughly protecting a member with just one
password. If you use the PW= data set option, those who have access only need to
remember one password for total access.

592 Using Passwords with Views � Chapter 36

� To access a member whose password is assigned using the PW= data set option,
use the PW= data set option or the data set option that equates to the specific
level of access you need:

/* create a data set using PW=,
then use READ= to print the data set */

data mylib.states(pw=orange);
input density crime name $;
datalines;

151.4 6451.3 Colorado
… more data lines …
;

proc print data=mylib.states(read=orange);
run;

� PW= can be an alias for other password options:

/* Use PW= as an alias for ALTER=. */
data mylib.college(alter=red);

input name $ 1-10 location $ 12-25;
datalines;

Vanderbilt Nashville
Rice Houston
Duke Durham
Tulane New Orleans
… more data lines …
;

proc datasets library=mylib;
delete college(pw=red);

run;

Using Passwords with Views

How the Level of Protection Differs from SAS Views
The levels of protection for views and stored programs differ slightly from other types

of SAS files. Passwords affect the actual view definition or view descriptor as well as
the underlying data. Unless otherwise noted, the term “view” can refer to any type of
view. Also, the term “underlying data” refers to the data that is accessed by the view:

read � protects against reading the view’s underlying data.

� allows source statements to be written to the SAS log, using
DESCRIBE.

� allows replacement of the view.

write � protects the underlying data associated with a view by
insisting that a write password is given.

� allows source statements to be written to the SAS log using
DESCRIBE

� allows replacement of the view

File Protection � DATA Step Views 593

alter � protects against source statements being written to the SAS
log, using DESCRIBE.

� protects against replacement of the view.

An important difference between views and other types of SAS files is that you need
alter access to DESCRIBE an alter-protected view. For example, to use an
alter-protected PROC SQL view in a DESCRIBE VIEW statement, you must specify the
alter password.

In most DATA and PROC steps, the way you use password-protected views is
consistent with the way you use other types of password-protected SAS files. For
example, the following PROC PRINT prints a read-protected view:

proc print data=mylib.grade(read=green);
run;

Note: You might experience unexpected results when you place protection on a view
if some type of protection has already been placed on the underlying data set. �

PROC SQL Views

Typically, when you create a PROC SQL view from a password-protected SAS data
set, you specify the password in the FROM clause in the CREATE VIEW statement
using a data set option. In this way, when you use the view later, you can access the
underlying data without re-specifying the password. For example, the following
statements create a PROC SQL view from a read-protected SAS data set, and drop a
sensitive variable:

proc sql;
create view mylib.emp as

select * from mylib.employee(pw=orange drop=salary);
quit;

Note: If you create a PROC SQL view from password-protected SAS data sets
without specifying their passwords, when you try to use the view you are prompted for
the passwords of the SAS data sets named in the FROM clause. If you are running SAS
in batch or noninteractive mode, you receive an error message. �

SAS/ACCESS Views

SAS/ACCESS software enables you to edit view descriptors and, in some interfaces,
the underlying data. To prevent someone from editing or reading (browsing) the view
descriptor, assign alter protection to the view. To prevent someone from updating the
underlying data, assign write protection to the view. For more information, see the
SAS/ACCESS documentation for your DBMS.

DATA Step Views

When you create a DATA step view using a password-protected SAS data set, specify
the password in the view definition. In this way, when you use the view, you can access
the underlying data without respecifying the password.

594 SAS Data File Encryption � Chapter 36

The following statements create a DATA step view using a password-protected SAS
data set, and drop a sensitive variable:

data mylib.emp / view=mylib.emp;
set mylib.employee(pw=orange drop=salary);

run;

Note that you can use the view without a password, but access to the underlying
data requires a password. This is one way to protect a particular column of data. In the
above example, proc print data=mylib.emp; will execute, but proc print
data=mylib.employee; will fail without the password.

SAS Data File Encryption
SAS passwords restrict access to SAS data files within SAS, but SAS passwords

cannot prevent SAS data files from being viewed at the operating environment system
level or from being read by an external program.

Encryption provides security of your SAS data outside of SAS by writing to disk the
encrypted data that represents the SAS data. The data is decrypted as it is read from
the disk.

Encryption does not affect file access. However, SAS honors all host security
mechanisms that control file access. You can use encryption and host security
mechanisms together.

Encryption is implemented with the ENCRYPT= data set option. You can use the
ENCRYPT= data set option only when you are creating a SAS data file. You must also
assign a password when encrypting a file. At a minimum, you must specify the READ=
or the PW= data set option at the same time you specify ENCRYPT=YES. Because
passwords are used in the encryption method, you cannot change any password on an
encrypted data set without re-creating the data set.

The following rules apply to data file encryption:
� To copy an encrypted SAS data file, the output engine must support encryption.

Otherwise, the data file is not copied.
� Previous releases of SAS cannot use an encrypted SAS data file. Encrypted files

work only in Release 6.11 or in later releases of SAS.
� You cannot encrypt SAS data views, because they contain no data.
� If the data file is encrypted, all associated indexes are also encrypted.
� Encryption requires roughly the same amount of CPU resources as compression.
� You cannot use PROC CPORT on encrypted SAS data files.

Example

This example creates an encrypted SAS data set:

data salary(encrypt=yes read=green);
input name $ yrsal bonuspct;
datalines;

Muriel 34567 3.2
Bjorn 74644 2.5
Freda 38755 4.1
Benny 29855 3.5
Agnetha 70998 4.1
;

File Protection � Passwords and Encryption with Generation Data Sets, Audit Trails, Indexes, and Copies 595

To print this data set, specify the read password:

proc print data=salary(read=green);
run;

Passwords and Encryption with Generation Data Sets, Audit Trails,
Indexes, and Copies

SAS extends password protection and encryption to other files associated with the
original protected file. This includes generation data sets, indexes, audit trails, and
copies. When accessing protected or encrypted generation data sets, indexes, audit
trails, and copies of the original file, the same rules, syntax, and behavior for invoking
the original password protected or encrypted files apply. Data views cannot have
generation data sets, indexes, and audit trails.

596

597

C H A P T E R

37
SAS Engines

Definition of a SAS Engine 597
Specifying an Engine 597

How Engines Work with SAS Files 598

Engine Characteristics 599

Read/Write Activity 600

Access Patterns 600
Levels of Locking 600

Asynchronous I/O or Task Switching 601

Indexing 601

About Library Engines 602

Definition of a Library Engine 602

Native Library Engines 602
Definition of Native Library Engine 602

Default Base SAS Engine 602

Remote Engine 602

SASESOCK Engine 603

SAS Scalable Performance Data (SPD) Engine 603
Sequential Engines 603

Transport Engine 603

V6 Compatibility Engine 603

Interface Library Engines 603

Special-Purpose Engines 604
Character Variable Padding (CVP) Engine 604

SAS Metadata LIBNAME Engine 605

SAS XML LIBNAME Engine 605

Definition of a SAS Engine
An engine is a component of SAS software that reads from or writes to a file. Each

engine enables SAS to access files that are in a particular format. There are several
types of engines.

Specifying an Engine
Usually you do not have to specify an engine. If you do not specify an engine, SAS

automatically assigns one based on the contents of the SAS data library.
However, even though SAS will automatically assign an engine based on the library

contents, it is more efficient for you to specify the engine. In some operating

598 How Engines Work with SAS Files � Chapter 37

environments, in order to determine the contents of a library, SAS must perform extra
processing steps by looking at all of the files in the directory until it has enough
information to determine which engine to use.

For example, if you explicitly specify the engine name as in the following LIBNAME
statement, SAS does not need to determine which engine to use:

libname mylib v9 ’SAS-data-library’;

In order to use some engines, you must specify the engine name. For example, in
order to use engines like the XML engine or the metadata engine, you must explicitly
specify the engine name and specify specific arguments and options for that engine. For
example, the following LIBNAME statement specifies the XML engine in order to
import or export an XML document:

libname myxml xml ’c:\Myfiles\XML\Myxmlfile.xml’ xmltype=generic;

You can specify an engine name in the LIBNAME statement, the ENGINE= system
option, and in the New Library window.

How Engines Work with SAS Files
The following figure shows how SAS data sets are accessed through an engine.

Figure 37.1 How SAS Data Sets Are Accessed

Data

SAS Files

Other Files
Oracle, DBMS

Engine A

Engine C

Engine B

Engine D

SAS Data
Set

DATA Step PROC Step

� Your data is stored in files for which SAS provides an engine. When you specify a
SAS data set name, the engine locates the appropriate file or files.

SAS Engines � Engine Characteristics 599

� The engine opens the file and obtains the descriptive information that is required
by SAS, for example, which variables are available and what attributes they have,
whether the file has special processing characteristics such as indexes or
compressed observations, and whether other engines are required for processing.
The engine uses this information to organize the data in the standard logical form
for SAS processing.

� This standard form is called the SAS data file, which consists of the descriptor
information and the data values organized into columns (variables) and rows
(observations).

� SAS procedures and DATA step statements access and process the data only in its
logical form. During processing, the engine executes whatever instructions are
necessary to open and close physical files and to read and write data in
appropriate formats.

Data that is accessed by an engine is organized into the SAS data set model, and in
the same way, groups of files that are accessed by an engine are organized in the correct
logical form for SAS processing. Once files are accessed as a SAS data library, you can
use SAS utility windows and procedures to list their contents and to manage them. See
Chapter 26, “SAS Data Libraries,” on page 467 for more information about SAS data
libraries. The following figure shows the relationship of engines to SAS data libraries.

Figure 37.2 Relationship of Engines to SAS Data Libraries

files

engine

SAS utility
windows and procedures

SAS data library model

Engine Characteristics
The engine that is used to access a SAS data set determines its processing

characteristics. Different statements and procedures require different processing
characteristics. For example, the FSEDIT procedure requires the ability to update
selected data values, and the POINT= option in the SET statement requires random
access to observations as well as the ability to calculate observation numbers from
record identifiers within the file.

The following figure describes the types of activities that engines regulate.

600 Read/Write Activity � Chapter 37

Figure 37.3 Activities That Engines Regulate

ACCESS
PATTERNS

Engine

READ/WRITE
ACTIVITY

LOCKING
LEVELS

INDEXING

INTEGRITY
CONSTRAINTS

COMPRESSION/REUSE

GENERATIONSDATA COMPATIBILITY
 Cross Platform
 Cross Release

Read/Write Activity
An engine can
� limit read/write activity for a SAS data set to read-only
� fully support updating, deleting, renaming, or redefining the attributes of the data

set and its variables
� support only some of these functions.

For example, the engines that process BMDP, OSIRIS, or SPSS files support read-only
processing. Some engines that process SAS views permit SAS procedures to modify
existing observations while others do not.

Access Patterns
SAS procedures and statements can read observations in SAS data sets in one of four

general patterns:

sequential
access

processes observations one after the other, starting at the beginning
of the file and continuing in sequence to the end of the file.

random access processes observations according to the value of some indicator
variable without processing previous observations.

BY-group access groups and processes observations in order of the values of the
variables that are specified in a BY statement.

multiple-pass performs two or more passes on data when required by SAS
statements or procedures.

If a SAS statement or procedure tries to access a SAS data set whose engine does not
support the required access pattern, SAS prints an appropriate error message in the
SAS log.

Levels of Locking
Some features of SAS require that data sets support different levels at which update

access is allowed. When a SAS data set can be opened concurrently by more than one
SAS session or by more than one statement or procedure within a single session, the
level of locking determines how many sessions, procedures, or statements can read and
write to the file at the same time. For example, with the FSEDIT procedure, you can
request two windows on the same SAS data set in one session. Some engines support
this capability; others do not.

SAS Engines � Indexing 601

The levels that are supported are record level and member (data set) level.
Member-level locking allows read access to many sessions, statements, or procedures,
but restricts all other access to the SAS data set when a session, statement, or
procedure acquires update access. Record-level locking allows concurrent read access
and update access to the SAS data set by more than one session, statement, or
procedure, but prevents concurrent update access to the same observation. Not all
engines support both levels.

By default, SAS provides the greatest possible level of concurrent access, while
guaranteeing the integrity of the data. In some cases, you might want to guarantee the
integrity of your data by controlling the levels of update access yourself. Use the
CNTLLEV= data set option to control levels of locking. CNTLLEV= allows locking at
three levels:

� library

� data set

� observation.

Here are some situations in which you should consider using the CNTLLEV= data
set option:

� your application controls access to the data, such as in SAS Component Language
(SCL), SAS/IML software, or DATA step programming

� you access data through an interface engine that does not provide member-level
control of the data.

For more information on the CNTLLEV= data set option, see SAS Language Reference:
Dictionary.

You can also acquire an exclusive lock on an existing SAS file by issuing the LOCK
global statement. After an exclusive lock is obtained, no other SAS session can read or
write to the file until the lock is released. For more information on the LOCK
statement, see SAS Language Reference: Dictionary.

Note: SAS products, such as SAS/ACCESS and SAS/SHARE, contain engines that
support enhanced session management services and file locking capabilities. �

Asynchronous I/O or Task Switching
The Base SAS engine and other engines are able to process several different tasks

concurrently. For example, you can enter statements into the Program Editor at the
same time that PROC SORT is processing a large file. The reason that this is possible
is that the engine allows task switching.

Task switching is possible because the engine architecture supports the ability to
start one task before another task is finished, or to handle work “asynchronously.” This
ability allows for greater efficiencies during processing and often results in faster
processing time. The ASYNCHIO system option controls this activity. For more
information, see the ASYNCHIO system option in SAS Language Reference: Dictionary.

Indexing
A major processing feature of SAS is the ability to access observations by the values

of key variables with indexes. See “Understanding SAS Indexes” on page 518 for more
information on using indexes for SAS data files. Note that not all engines support
indexing.

602 About Library Engines � Chapter 37

About Library Engines

Definition of a Library Engine
A library engine is an engine that accesses groups of files and puts them into a logical

form for processing by SAS utility procedures and windows. A library engine also
determines the fundamental processing characteristics of the library and presents lists
of files for the library directory. Library engines can be classified as native or interface.

Native Library Engines

Definition of Native Library Engine
A native library engine is an engine that accesses forms of SAS files that are created

and processed only by SAS.

Operating Environment Information: Engine availability is host dependent. See the
SAS documentation for your operating environment. Also, specific products provide
additional engines. �

Default Base SAS Engine
The default Base SAS engine writes SAS data libraries in disk format. The engine

processes SAS 7, 8, and 9 files. If you do not specify an engine name when you are
creating a new SAS data library, the Base SAS engine, which for SAS 9 is named V9, is
automatically selected.

When accessing existing SAS data sets on disk, SAS assigns an engine based on the
contents of the library. The Base SAS engine

� is the only engine that supports the full functionality of the SAS data set and the
SAS data library.

� supports view engines.
� meets all the processing characteristics required by SAS statements and

procedures.
� creates, maintains, and uses indexes.
� reads and writes compressed (variable-length) observations. SAS data sets created

by other engines have fixed-length observations.
� assigns a permanent page size to data sets and temporarily assigns the number of

buffers to be used when processing them.
� repairs damaged SAS data sets, indexes, and catalogs.
� enforces integrity constraints, creates backup files, and creates audit trails.

Note: SAS files created in SAS 7, 8, and 9 have the same file format. �

Remote Engine
The REMOTE engine is a SAS library engine for SAS/SHARE software. Using it

enables a SAS session to access shared data by communicating with a SAS server. See
SAS/SHARE User’s Guide for more information.

SAS Engines � Interface Library Engines 603

SASESOCK Engine
The SASESOCK engine processes input to and output from TCP/IP ports instead of

physical disk devices. The SASESOCK engine is required for SAS/CONNECT
applications that implement MP CONNECT processing with the piping mechanisms.
See SAS/CONNECT User’s Guide for more information.

SAS Scalable Performance Data (SPD) Engine
The SAS Scalable Performance Data Engine (SPD Engine) provides parallel I/O,

using multiple CPUs to read SAS data and deliver it rapidly to applications. The SPD
Engine can process very large data sets because the data can span volumes but can be
referenced as a single data set. The data in these data sets is also partitioned, allowing
the data to be read in multiple threads per CPU. The SPD Engine is not intended to
replace the default Base SAS engine for processing data sets that do not span volumes.

See SAS Scalable Performance Data Engine: Reference for details about this engine’s
capabilities.

Sequential Engines
A sequential engine processes SAS files on storage media that do not allow random

access methods, for example, tape or sequential format on disk. A sequential engine
requires less overhead than the default Base SAS engine because sequential access is
simpler than random access. However, a sequential engine does not support some Base
SAS features like indexing.

The sequential engine supports some file types for backup and restore purposes only,
such as CATALOG, VIEW, and MDDB. ITEMSTOR is the only file type that the
sequential engine does not support. DATA is the only file type that is useful for
purposes other than backup and restore.

The following sequential engines are available:

V9TAPE (TAPE) processes SAS 7, 8, and 9 files.

V6TAPE processes SAS 6 SAS files without requiring you to convert the file
to the SAS 9 format.

For more information, see “Sequential Data Libraries” on page 476.

Transport Engine
The XPORT engine processes transport files. The engine transforms a SAS file from

its operating environment-specific internal representation to a transport file, which is a
machine-independent format that can be used for all hosts. In order to create a
transport file, explicitly specify the XPORT engine in the LIBNAME statement, then
use the DATA step or COPY procedure.

For information about using the XPORT engine, see Moving and Accessing SAS Files.

V6 Compatibility Engine
The V6 compatibility engine processes SAS 6 files in SAS 9 without requiring you to

convert the file to the SAS 9 format.

Interface Library Engines
An interface library engine is a SAS engine that accesses files formatted by other

software. Interface library engines are not transparent to the user and must be
explicitly specified, for example, in the LIBNAME statement.

604 Special-Purpose Engines � Chapter 37

The following are interface library engines:

SPSS
reads SPSS portable file format, which is analogous to the transport format for
SAS data sets. The SPSS portable files (also called an export file) must be created
by using the SPSS EXPORT command. Under z/OS, the SPSS engine also reads
SPSS Release 9 files and SPSS-X files in either compressed or uncompressed
format.

OSIRIS
reads OSIRIS data and dictionary files in EBCDIC format.

BMDP
reads BMDP save files.

In addition, a view engine is an interface library engine that is used by SAS/ACCESS
software in order to retrieve data from files formatted by another vendor’s software.
These engines enable you to read and write data directly to and from files formatted by
a database management system (DBMS), such as DB2 and ORACLE.

View engines enable you to use SAS procedures and statements in order to process
data values stored in these files without the cost of converting and storing them in files
formatted by SAS. Contact your SAS software representative for a list of the SAS/
ACCESS interfaces available at your site. For more information about SAS/ACCESS
features, see Chapter 33, “About SAS/ACCESS Software,” on page 569 and the SAS/
ACCESS documentation for your DBMS.

Operating Environment Information: The capabilities and support of these engines
vary depending on your operating environment. See the SAS documentation for your
operating environment for more complete information. �

Special-Purpose Engines

Character Variable Padding (CVP) Engine
The character variable padding (CVP) engine expands character variable lengths,

using a specified expansion amount, so that character data truncation does not occur
when a file requires transcoding. Character data truncation can occur when the number
of bytes for a character in one encoding is different from the number of bytes for the
same character in another encoding, such as when a single byte character set (SBCS) is
transcoded to a double byte character set (DBCS) or a multibyte character set (MBCS).

The CVP engine is a read-only engine for SAS data files only. You can request
character variable expansion by either of the following methods:

� You can explicitly specify the CVP engine, for example, with the LIBNAME
statement, and using the default expansion of 1.5 times the variable lengths.

� You can implicitly specify the CVP engine with the LIBNAME statement options
CVPBYTES= or CVPMULTIPLIER=. The options specify the expansion amount.
In addition, you can use the CVPENGINE= option to specify the primary engine to
use for processing the SAS file; the default is the default Base SAS engine.

For more information about using the CVP engine to avoid character data truncation
and for details on the CVP engine options on the LIBNAME statement, see SAS
National Language Support (NLS): User’s Guide.

SAS Engines � SAS XML LIBNAME Engine 605

SAS Metadata LIBNAME Engine
The metadata engine accesses metadata that is stored on the SAS Metadata Server

within a specific SAS Metadata Repository. The metadata is information about the
structure and content of data, and about the applications that process and manipulate
that data. The metadata contains details such as the location of the data and the SAS
engine that is used to process the data.

The metadata engine works in a similar way to other SAS engines. That is, you
execute a LIBNAME statement in order to assign a libref and specify an engine. You
then use that libref throughout the SAS session where a libref is valid. However,
instead of the libref being associated with the physical location of a SAS data library,
the metadata libref is associated with specific metadata objects that are stored in a
specific repository on the metadata server. The metadata objects define the SAS engine
and options that are necessary to process a SAS data library and its members.

When you execute the LIBNAME statement for the metadata engine, the metadata
engine retrieves information about the target SAS data library from the metadata. The
metadata engine uses this information in order to construct a LIBNAME statement for
the underlying engine and assigns it with the appropriate options. Then, when the
metadata engine needs to access your data, the metadata engine uses the underlying
engine to process the data.

You invoke the metadata engine by explicitly specifying the engine name META,
along with specific arguments and options for the metadata engine, for example, in the
LIBNAME statement or in the New Library window.

For information about how to use the metadata engine, see SAS Metadata LIBNAME
Engine User’s Guide.

SAS XML LIBNAME Engine
The SAS XML engine imports an XML document as one or more SAS data sets and

exports a SAS data set as an XML document.
� The engine imports (reads from an input file) an external XML document by

translating the XML markup into SAS proprietary format.
� The engine exports (writes to an output file) an XML document from a SAS data

set by translating SAS proprietary format to XML markup.

To use the XML engine, you must explicitly specify XML as the engine name, along
with specific arguments and options, for example, in the LIBNAME statement or in the
New Library window.

For information about how to use the XML engine, see SAS XML LIBNAME Engine
User’s Guide.

606

607

C H A P T E R

38
SAS File Management

Improving Performance of SAS Applications 607
Moving SAS Files Between Operating Environments 607

Repairing Damaged SAS Files 607

Recovering SAS Data Files 608

Recovering Indexes 609

Recovering Catalogs 610

Improving Performance of SAS Applications
SAS offers tools to control the use of memory and other computer resources. Most

SAS applications will run efficiently in your operating environment without using these
features. However, if you develop applications under the following circumstances, you
may want to experiment with tuning performance:

� You work with large data sets.
� You create production jobs that run repeatedly.
� You are responsible for establishing performance guidelines for a data center.
� You do interactive queries on large SAS data sets using SAS/FSP software.

For information on improving performance, see Chapter 13, “Optimizing System
Performance,” on page 213.

Moving SAS Files Between Operating Environments
The procedures for moving SAS files from one operating environment to another vary

according to your operating environment, the member type and version of the SAS files
you want to move, and the methods you have available for moving the files.

For details on this subject, see Moving and Accessing SAS Files.

Repairing Damaged SAS Files
The Base SAS engine detects possible damage to SAS data files (including indexes,

integrity constraints, and the audit file) and SAS catalogs and provides a means for
repairing some of the damage. If one of the following events occurs while you are
updating a SAS file, SAS can recover the file and repair some of the damage:

� A system failure occurs while the data file or catalog is being updated.

608 Recovering SAS Data Files � Chapter 38

� Damage occurs to the storage device where a data file resides. In this case, you can
restore the damaged data file, the index, and the audit file from a backup device.

� The disk where the data file (including the index file and audit file) or catalog is
stored becomes full before the file is completely written to it.

� An input/output error occurs while writing to the data file, index file, audit file, or
catalog.

When the failure occurs, the observations or records that were not written to the
data file or catalog are lost and some of the information about where values are stored
is inconsistent. The next time SAS reads the file, it recognizes that the file’s contents
are damaged and repairs it to the extent possible in accordance with the setting for the
DLDMGACTION= data set option or system option, unless the data set is truncated. In
this case, use the REPAIR statement to restore the data set.

Note: SAS is unable to repair or recover a view (a DATA step view, an SQL view, or
a SAS/ACCESS view) or a stored compiled DATA step program. If a SAS file of type
VIEW or PROGRAM is damaged, you must recreate it. �

Note: If the audit file for a SAS data file becomes damaged, you will not be able to
process the data file until you terminate the audit trail. Then, you can initiate a new
audit file or process the data file without one. �

Recovering SAS Data Files
To determine the type of action SAS will take when it tries to open a SAS data file

that is damaged, set the DLDMGACTION= data set option or system option. That is,
when a data file is detected as damaged, SAS will automatically respond based on your
specification as follows:

DLDMGACTION=FAIL
tells SAS to stop the step without a prompt and issue an error message to the log
indicating that the requested file is damaged. This specification gives the
application control over the repair decision and provides awareness that a problem
occurred.

To recover the damaged data file, you can issue the REPAIR statement in PROC
DATASETS, which is documented in Base SAS Procedures Guide.

DLDMGACTION=ABORT
tells SAS to terminate the step, issue an error message to the log indicating that
the request file is damaged, and abort the SAS session.

DLDMGACTION=REPAIR
tells SAS to automatically repair the file and rebuild indexes, integrity constraints,
and the audit file as well. If the repair is successful, a message is issued to the log
indicating that the open and repair were successful. If the repair is unsuccessful,
processing stops without a prompt and an error message is issued to the log
indicating the requested file is damaged.

Note: If the data file is large, the time needed to repair it can be long. �

DLDMGACTION=PROMPT
tells SAS to provide the same behavior that exists in Version 6 for both interactive
mode and batch mode. For interactive mode, SAS displays a requestor window
that asks you to select the FAIL, ABORT, or REPAIR action. For batch mode, the
files fail to open.

For a data file, the date and time of the last repair and a count of the total number of
repairs is automatically maintained. To display the damage log, use PROC CONTENTS
as shown below:

SAS File Management � Recovering Indexes 609

proc contents data=sasuser.census;
run;

Output 38.1 Output of CONTENTS Procedure

The CONTENTS Procedure

Data Set Name SASUSER.CENSUS Observations 27

Member Type DATA Variables 4

Engine V9 Indexes 0

Created 10:06 Wednesday, January 22, 2003 Observation Length 32

Last Modified 10:06 Wednesday, January 22, 2003 Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label

Data Representation WINDOWS

Encoding wlatin1 Western (Windows)

Engine/Host Dependent Information

Data Set Page Size 4096

Number of Data Set Pages 1

First Data Page 1

Max Obs per Page 126

Obs in First Data Page 27

Number of Data Set Repairs 0

File Name c:\winnt\profiles\sasxxx\sasuser\census.sas7bdat

Release Created 9.0000A0

Host Created WIN_NT

Alphabetic List of Variables and Attributes

Variable Type Len

2 CrimeRate Num 8

1 Density Num 8

4 PostalCode Char 2

Recovering Indexes
In addition to the failures listed earlier, you can damage the indexes for SAS data

files by using an operating environment command to delete, copy, or rename a SAS data
file, but not its associated index file. The index is repaired similarly to the
DLDMGACTION= option as described for SAS data files, or you can use the REPAIR
statement in PROC DATASETS to rebuild composite and simple indexes that were
damaged.

You cannot use the REPAIR statement to recover indexes that were deleted by one of
the following actions:

� copying a SAS data file by some means other than PROC COPY or PROC
DATASETS, for example, using a DATA step

� using the FORCE option in the SORT procedure to write over the original data file.

In the above cases, the index must be rebuilt explicitly using the PROC DATASETS
INDEX CREATE statement.

610 Recovering Catalogs � Chapter 38

Recovering Catalogs
To determine the type of action that SAS will take when it tries to open a SAS

catalog that is damaged, set the DLDMGACTION= data set option or system option.
Then when a catalog is detected as damaged, SAS will automatically respond based on
your specification.

Note: There are two types of catalog damage:
� localized damage is caused by a disk condition, which results in some data in

memory not being flushed to disk. The catalog entries that are currently open for
update are marked as damaged. Each damaged entry is checked to determine if
all the records can be read without error.

� severe damage is caused by a severe I/O error. The entire catalog is marked as
damaged.

�

DLDMGACTION=FAIL
tells SAS to stop the step without a prompt and issue an error message to the log
indicating that the requested file is damaged. This specification gives the
application control over the repair decision and provides awareness that a problem
occurred.

To recover the damaged catalog, you can issue the REPAIR statement in PROC
DATASETS, which is documented in the SAS Procedures Guide. Note that when
you use the REPAIR statement to restore a catalog, you receive a warning for
entries that have possible damage. Entries that have been restored may not
include updates that were not written to disk before the damage occurred.

DLDMGACTION=ABORT
tells SAS to terminate the step, issue an error message to the log indicating that
the requested file is damaged, and abort the SAS session.

DLDMGACTION=REPAIR
for localized damage, tells SAS to automatically check the catalog to see which
entries are damaged. If there is an error reading an entry, the entry is copied. If
an error occurs during the copy process, then the entry is automatically deleted.
For severe damage, the entire catalog is copied to a new catalog.

DLDMGACTION=PROMPT
for localized damage, tells SAS to provide the same behavior that exists in Version
6 for both interactive mode and batch mode. For interactive mode, SAS displays a
requestor window that asks you to select the FAIL, ABORT, or REPAIR action.
For batch mode, the files fail to open. For severe damage, the entire catalog is
copied to a new catalog.

Unlike data files, a damaged log is not maintained for a catalog.

611

C H A P T E R

39
External Files

Definition of External Files 611
Referencing External Files Directly 612

Referencing External Files Indirectly 612

Referencing Many External Files Efficiently 613

Referencing External Files with Other Access Methods 614

Working with External Files 615
Reading External Files 615

Writing to External Files 615

Processing External Files 616

Definition of External Files
external files

are files that are managed and maintained by your operating system, not by SAS.
They contain data or text or are files in which you want to store data or text. They
can also be SAS catalogs or output devices. Every SAS job creates at least one
external file, the SAS log. Most SAS jobs create external files in the form of
procedure output or output created by a DATA step.

External files used in a SAS session can store input for your SAS job as:
� records of raw data that you want to use as input to a DATA step
� SAS programming statements that you want to submit to the system for

execution.

External files can also store output from your SAS job as:
� a SAS log (a record of your SAS job)
� a report written by a DATA step.
� procedure output created by SAS procedures, including regular list output,

and, beginning in Version 7, HTML and PostScript output from the Output
Delivery System (ODS).

The PRINTTO procedure also enables you to direct procedure output to an
external file. For more information, see Base SAS Procedures Guide. See Chapter
10, “SAS Output,” on page 161 for more information about ODS.

Note: Database management system (DBMS) files are a special category of
files that can be read with SAS/ACCESS software. For more information on
DBMS files, see Chapter 33, “About SAS/ACCESS Software,” on page 569 and the
SAS/ACCESS documentation for your DBMS. �

Operating Environment Information: Using external files with your SAS jobs
entails significant operating-environment-specific information. Refer to the SAS
documentation for your operating environment for more information. �

612 Referencing External Files Directly � Chapter 39

Referencing External Files Directly
To reference a file directly in a SAS statement or command, specify in quotation

marks its physical name, which is the name by which the operating environment
recognizes it, as shown in the following table:

Table 39.1 Referencing External Files Directly

External File
Task Tool Example

Specify the
file that
contains
input data.

INFILE data weight;
infile ’input-file’;
input idno $ week1 week16;
loss=week1-week16;

Identify the
file that the
PUT
statement
writes to.

FILE file ’output-file’;
if loss ge 5 and loss le 9 then

put idno loss ’AWARD STATUS=3’;
else if loss ge 10 and loss le 14 then

put idno loss ’AWARD STATUS=2’;
else if loss ge 15 then

put idno loss ’AWARD STATUS=1’;
run;

Bring
statements or
raw data
from another
file into your
SAS job and
execute them.

%INCLUDE %include ’source-file’;

Referencing External Files Indirectly
If you want to reference a file in only one place in a program so that you can easily

change it for another job or a later run, you can reference a filename indirectly. Use a
FILENAME statement, the FILENAME function, or an appropriate operating system
command to assign a fileref or nickname, to a file.* Note that you can assign a fileref to
a SAS catalog that is an external file, or to an output device, as shown in the following
table.

* In some operating environments, you can also use the command ’&’ to assign a fileref.

External Files � Referencing Many External Files Efficiently 613

Table 39.2 Referencing External Files Indirectly

External File
Task Tool Example

Assign a fileref to
a file that
contains input
data.

FILENAME filename mydata ’input-file’;

Assign a fileref to
a file for output
data.

FILENAME filename myreport ’output-file’;

Assign a fileref to
a file that
contains program
statements.

FILENAME filename mypgm ’source-file’;

Assign a fileref to
an output device.

FILENAME filename myprinter <device-type> <host-options>;

Specify the file
that contains
input data.

INFILE data weight;
infile mydata;
input idno $ week1 week16;
loss=week1-week16;

Specify the file
that the PUT
statement writes
to.

FILE file myreport;
if loss ge 5 and loss le 9 then

put idno loss ’AWARD STATUS=3’;
else if loss ge 10 and loss le 14 then

put idno loss ’AWARD STATUS=2’;
else if loss ge 15 then

put idno loss ’AWARD STATUS=1’;
run;

Bring statements
or raw data from
another file into
your SAS job and
execute them.

%INCLUDE %include mypgm;

Referencing Many External Files Efficiently
When you use many files from a single aggregate storage location, such as a directory

or partitioned data set (PDS or MACLIB), you can use a single fileref, followed by a
filename enclosed in parentheses, to access the individual files. This saves time by
eliminating the need to type a long file storage location name repeatedly. It also makes
changing the program easier later if you change the file storage location. The following
table shows an example of assigning a fileref to an aggregate storage location:

614 Referencing External Files with Other Access Methods � Chapter 39

Table 39.3 Referencing Many Files Efficiently

External File Task Tool Example

Assign a fileref to
aggregate storage
location.

FILENAME filename mydir ’directory-or-PDS-name’;

Specify the file that
contains input data.

INFILE data weight;
infile mydir(qrt1.data);
input idno $ week1 week16;
loss=week1-week16;

Specify the file that
the PUT statement
writes to.1

FILE file mydir(awards);
if loss ge 5 then put idno loss

’AWARD STATUS=3’;
else if loss ge 10

then put idno loss ’AWARD STATUS=2’;
else if loss ge 15

then put idno loss ’AWARD STATUS=1’;
run;

Bring statements or
raw data from
another file into
your SAS job and
execute them.

%INCLUDE %include mydir(whole.program);

1 SAS creates a file that is named with the appropriate extension for your operating environment.

Referencing External Files with Other Access Methods

You can assign filerefs to external files that you access with the following
FILENAME access methods:

� CATALOG

� FTP

� TCP/IP SOCKET

� URL.

Examples of how to use each method are shown in the following table:

Table 39.4 Referencing External Files with Other Access Methods

External File
Task Tool Example

Assign a fileref
to a SAS catalog
that is an
aggregate
storage location.

FILENAME with
CATALOG
specifier

filename mycat catalog ’catalog’
<catalog-options>;

Assign a fileref
to an external
file accessed
with FTP.

FILENAME with
FTP specifier

filename myfile FTP ’external-file’
<ftp-options>;

External Files � Writing to External Files 615

External File
Task Tool Example

Assign a fileref
to an external
file accessed by
TCP/IP SOCKET
in either client
or server mode.

FILENAME with
SOCKET specifier

filename myfile SOCKET ’hostname: portno’
<tcpip-options>;

or

filename myfile SOCKET ’:portno’ SERVER
<tcpip-options>;

Assign a fileref
to an external
file accessed by
URL.

FILENAME with
URL specifier

filename myfile URL ’external-file’
<url-options>;

See SAS Language Reference: Dictionary for detailed information about each of these
statements.

Working with External Files

Reading External Files
The primary reason for reading an external file in a SAS job is to create a SAS data

set from raw data. This topic is covered in Chapter 21, “Reading Raw Data,” on page
357.

Writing to External Files
You can write to an external file by using:
� a SAS DATA step
� the External File Interface (EFI)
� the Export Wizard.

When you use a DATA step to write a customized report, you write it to an external
file. In its simplest form, a DATA step that writes a report looks like this:

data _null_;
set budget;
file ’your-file-name’;
put variables-and-text;

run;

For examples of writing reports with a DATA step, see Chapter 21, “Reading Raw
Data,” on page 357.

If your operating environment supports a graphical user interface, you can use the
EFI or the Export Wizard to write to an external file. The EFI is a point-and-click
graphical interface that you can use to read and write data that is not in SAS internal
format. By using the EFI, you can read data from a SAS data set and write it to an
external file, and you can read data from an external file and write it to a SAS data set.
See the SAS online Help for more information on the EFI.

The Export Wizard guides you through the steps to read data from a SAS data set
and write it to an external file. As a wizard, it is a series of windows that present

616 Processing External Files � Chapter 39

simple choices to guide you through the process. See the SAS online Help for more
information on the wizard.

Processing External Files
When reading data from or to a file, you can also use a DATA step to:
� copy only parts of each record to another file
� copy a file and add fields to each record
� process multiple files in the same way in a single DATA step

� create a subset of a file
� update an external file in place
� write data to a file that can be read in different computer environments
� correct errors in a file at the bit level.

For examples of using a DATA step to process external files, see Chapter 21,
“Reading Raw Data,” on page 357.

617

P A R T5

Industry Protocols Used in SAS

Chapter 40.The SMTP E-Mail Interface 619

Chapter 41.Universal Unique Identifiers 621

618

619

C H A P T E R

40
The SMTP E-Mail Interface

Sending E-Mail through SMTP 619
System Options That Control SMTP E-Mail 619

Statements That Control SMTP E-mail 620

FILENAME STATEMENT 620

FILE and PUT Statements 620

Sending E-Mail through SMTP
You can send electronic mail programmatically from SAS using the SMTP (Simple

Mail Transfer Protocol) e-mail interface. SMTP is available for all operating
environments in which SAS runs. To send SMTP e-mail with SAS e-mail support, you
must have an intranet or internet connection that supports SMTP. For more
information on sending e-mail from SAS, refer to the SAS documentation for your
operating environment.

System Options That Control SMTP E-Mail
Several SAS system options control SMTP e-mail. Depending on your operating

environment and whether the SMTP e-mail interface is supported at your site, you
might need to specify these options at start up or in your SAS configuration file.

Operating Environment Information: To determine the default e-mail interface for
your operating environment and to determine the correct syntax for setting system
options, refer to the SAS documentation for your operating environment. �

The EMAILSYS system option specifies which email system to use for sending
electronic mail from within SAS. For more information about the EMAILSYS system
option, refer to the SAS documentation for your operating environment.

The following system options are only specified when the SMTP e-mail interface is
supported at your site:

EMAILAUTHPROTOCOL=
specifies the authentication protocol for SMTP E-mail. For more information, see
the “EMAILAUTHPROTOCOL= System Option” in SAS Language Reference:
Dictionary.

EMAILHOST
specifies the SMTP server that supports e-mail access for your site. For more
information, see the “EMAILHOST System Option” in SAS Language Reference:
Dictionary.

620 Statements That Control SMTP E-mail � Chapter 40

EMAILPORT
specifies the port to which the SMTP server is attached. For more information, see
the “EMAILPORT System Option” in SAS Language Reference: Dictionary.

The following system options are specified with other e-mail systems, as well as
SMTP:

EMAILID=
specifies the identity of the individual sending e-mail from within SAS. For more
information, see the “EMAILID= System Option” in SAS Language Reference:
Dictionary.

EMAILPW=
specifies your e-mail login password. For more information, see the “EMAILPW=
System Option” in SAS Language Reference: Dictionary.

Statements That Control SMTP E-mail

FILENAME STATEMENT
In the FILENAME statement, the EMAIL (SMTP) access method enables you to send

e-mail programmatically from SAS using the SMTP e-mail interface. For more
information, see the “FILENAME Statement, EMAIL (SMTP) Access Method” in SAS
Language Reference: Dictionary.

FILE and PUT Statements
You can specify e-mail options in the FILE statement. E-mail options that you

specify in the FILE statement override any corresponding e-mail options that you
specified in the FILENAME statement.

In the DATA step, after using the FILE statement to define your e-mail fileref as the
output destination, use PUT statements to define the body of the message. The PUT
statement directives override any other e-mail options in the FILE and FILENAME
statements.

621

C H A P T E R

41
Universal Unique Identifiers

Universal Unique Identifiers and the Object Spawner 621
What Is a Universal Unique Identifier? 621

What Is the Object Spawner? 621

Defining the UUID Generator Daemon 621

Installing the UUID Generator Daemon 622

Using SAS Language Elements to Assign UUIDs 623
UUIDGEN Function 623

UUIDCOUNT= System Option 623

UUIDGENDHOST System Option 623

Universal Unique Identifiers and the Object Spawner

What Is a Universal Unique Identifier?
A Universal Unique Identifier (UUID) is a 128-bit identifier that consists of date and

time information, and the IEEE node address of a host. UUIDs are useful when objects
such as rows or other components of a SAS application must be uniquely identified. For
example, if SAS is running as a server and is distributing objects to several clients
concurrently, you can associate a UUID with each object to ensure that a particular
client and SAS are referencing the same object.

What Is the Object Spawner?
The object spawner is a program that runs on the server and listens for requests.

When a request is received, the object spawner accepts the connection and performs the
action that is associated with the port or service on which the connection was made.
The object spawner can be configured to be a UUID Generator Daemon (UUIDGEND),
which creates UUIDs for the requesting program. Currently, SAS can generate UUIDs
only in the Windows operating environment. UUIDGEND generates UUIDs for SAS
sessions that execute on hosts that do not have native UUID generation support.

Defining the UUID Generator Daemon
The definition of UUIDGEND is contained in a setup configuration file that you

specify when you invoke the object spawner. This configuration file identifies the port
that listens for UUID requests, and, in operating environments other than Windows,
the configuration file also identifies the UUID node. If you install UUIDGEND in an

622 Installing the UUID Generator Daemon � Chapter 41

operating environment other than Windows, contact SAS Technical Support (http://
support.sas.com/techsup/contact/index.htm) to obtain a UUID node. The UUID node
must be unique for each UUIDGEND installation in order for UUIDGEND to guarantee
truly unique UUIDs.

Here is an example of a UUIDGEND setup configuration file for an operating
environment other than Windows:

#
Define our UUID Generator Daemon. Since this UUIDGEND is
executing on a UNIX host, we contacted SAS Technical
Support to get the specified sasUUIDNode.
#
dn: sasSpawnercn=UUIDGEND,sascomponent=sasServer,cn=SAS,o=ABC Inc,c=US
objectClass: sasSpawner
sasSpawnercn: UUIDGEND
sasDomainName: unx.abc.com
sasMachineDNSName: medium.unx.abc.com
sasOperatorPassword: myPassword
sasOperatorPort: 6340
sasUUIDNode: 0123456789ab
sasUUIDPort: 6341
description: SAS Session UUID Generator Daemon on UNIX

Here is an example of a UUIDGEND setup configuration file for Windows:

#
Define our UUID Generator Daemon. Since this UUIDGEND is
executing in a Windows NT operating environment, we do not need to specify
the sasUUIDNode.
#
dn: sasSpawnercn=UUIDGEND,sascomponent=sasServer,cn=SAS,o=ABC Inc,
c=US
objectClass: sasSpawner
sasSpawnercn: UUIDGEND
sasDomainName: wnt.abc.com
sasMachineDNSName: little.wnt.abc.com
sasOperatorPassword: myPassword
sasOperatorPort: 6340
sasUUIDPort: 6341
description: SAS Session UUID Generator Daemon on NT

Installing the UUID Generator Daemon
When you have created the setup configuration file, you can install UUIDGEND by

starting the object spawner program (objspawn), and specifying the setup configuration
file with the following syntax:

objspawn -configFile filename
The configFile option may be abbreviated as -cf.

filename specifies a fully qualified path to the UUIDGEND setup configuration
file. Enclose pathnames that contain embedded blanks in single or double
quotation marks. On Windows, enclose pathnames that contain embedded blanks
in double quotation marks. On z/OS, specify the configuration file as follows:

Universal Unique Identifiers � UUIDGENDHOST System Option 623

//dsn:myid.objspawn.log for MVS files.
//hfs:filename.ext for OpenEdition files.

On Windows, the objspawn.exe file is installed in the core\sasext folder in your
installed SAS folder.

On UNIX, the objspawn file is installed in the utilities/bin directory in your installed
SAS directory.

In the Alpha/VMS operating environment, the OBJSPAWN_STARTUP.COM file
executes the OBJSPAWN.COM file as a detached process. The OBJSPAWN.COM file
runs the object spawner. The OBJSPAWN.COM file also includes other commands that
your site might need in order to run the appropriate version of the spawner, to set the
display node, to define a process level logical name that points to a template DCL file
(OBJSPAWN_TEMPLATE.COM), and to perform any other necessary actions before the
object spawner is started. The OBJSPAWN_TEMPLATE.COM file performs setup that
is needed in order for the client process to execute. The object spawner first checks to
see if the logical name SAS$OBJSPAWN_TEMPLATE is defined. If it is, the commands
in the template file are executed as part of the command sequence used when starting
the client session. You do not have to define the logical name.

Using SAS Language Elements to Assign UUIDs
If your SAS application executes on a platform other than Windows and you have

installed UUIDGEND, you can use the following to assign UUIDs:
� UUIDGEN function
� UUIDCOUNT= system option
� UUIDGENDHOST systems option.

UUIDGEN Function
The UUIDGEN function returns a UUID for each cell. For more information, see the

“UUIDGEN Function” in SAS Language Reference: Dictionary.

UUIDCOUNT= System Option
The UUIDCOUNT= system option specifies the number of UUIDs to acquire each

time the UUID Generator Daemon is used. For more information, see the
“UUIDCOUNT= System Option” in SAS Language Reference: Dictionary.

UUIDGENDHOST System Option
The UUIDGENDHOST system option identifies the operating environment and the

port of the UUID Generator Daemon. For more information, see the
“UUIDGENDHOST System Option” in SAS Language Reference: Dictionary.

624

625

P A R T6

Appendices

Appendix 1.Recommended Reading 627

626

627

A P P E N D I X

1
Recommended Reading

Recommended Reading 627

Recommended Reading
Here is the recommended reading list for this title:
� SAS Language Reference: Dictionary
� Base SAS Procedures Guide

� SAS Output Delivery System: User’s Guide
� SAS National Language Support (NLS): User’s Guide
� SAS Metadata LIBNAME Engine User’s Guide

� SAS Scalable Performance Data Engine: Reference
� SAS XML LIBNAME Engine User’s Guide

The recommended reading list from Books By Users includes:
� The Little SAS Book: A Primer, Revised Second Edition
� Output Delivery System: The Basics

� SAS Programming by Example

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=59216
http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=58087
http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=55126

628

Index 629

Index

A
access descriptors 546, 572
ACCESS procedure

interface view engine and 572
ALL name lists 88
alter protection 588, 593
AND operator 121
appending files 404
Application Response Measurement

See ARM
applications

ARM 226
ARM and performance of 227
ARM API objects 58
peformance of 607
threaded processing 224

arithmetic operators 118, 201
ARM 215, 225

examples 231
how it works 227
need for 225
performance and 227
terminology 226

ARM agent 226
ARM API 226
ARM API function calls 56, 228
ARM API objects 58
ARM interface 226, 228
ARM log 226, 230

internal SAS processing statistics 231
post processing 234

ARM macro variables 57
ARM macros 55, 56, 226, 229

ARM API function calls and 56
%ARMEND 57
%ARMGTID 56
%ARMINIT 56
%ARMSTOP 57
%ARMSTRT 57
%ARMUPDT 57
complex call schemes 61
conditional execution 66
correlators in 64
enabling execution 65
enabling execution with SCL 66
ID management with 58
logging performance statistics 233
macro variables with 57
post-processing 68

setting macro environment 67
user metrics in 63
variables with 57

ARM subsystem 226
ARM system options 226, 228

logging performance statistics 233
ARMAGENT= system option 228
%ARMCONV macro 68, 230
ARM_END function call 229
%ARMEND macro 57, 230
_ARMEXEC macro variable 65
ARM_GETID function call 229
%ARMGTID macro 56, 230
ARM_INIT function call 228
%ARMINIT macro 56, 229
%ARMJOIN macro 69, 230
ARMLOC= system option 228
%ARMPROC macro 68, 230
ARM_START function call 229
ARM_STOP function call 229
%ARMSTOP macro 57, 230
%ARMSTRT macro 57, 230
ARMSUBSYS= system option 228
ARM_UPDATE function call 229
%ARMUPDT macro 230
%ARMUPTD macro 57
array bounds 459

determining 460
HBOUND function 460
HBOUND function vs. DIM function 460
identifying upper and lower bounds 459
LBOUND function 460
two-dimensional arrays 460

array processing 449
definition 450
examples 461
terminology 449

array reference
definition 450

ARRAY statement 451
arrays

action on all numeric variables 464
assigning initial values to elements 462
character variables in 461
conceptual view of 450
defining 451, 455
defining quickly 456
definition 449
determining number of elements 456
DO loops 453

DO loops for selected elements 453
DO UNTIL expressions 456
DO WHILE expressions 456
grouping variables, simple array 452
multidimensional 450, 457
one-dimensional 450
referencing 451
referencing, rules for 455
selecting current variable 453
temporary 463
two-dimensional 451
variable lists 456

assignment statement
creating variables 81

asynchronous I/O 601
AT* variables 491
ATOPCODE values 491
ATTRIB statement

creating variables 83
specifying formats 29
specifying informats 31

audit trails 491
capturing rejected observations 497
considerations 493
data file update 496
definition 491
description 491
encryption with 595
examples 495
fast-append feature and 493
in shared environment 493
initiating 494, 495
passwords with 595
performance 493
preservation by other operations 493
programming considerations 493
reading 494
resuming 494
status of 494
suspending 494
terminating 494

audit variables 491
autoexec files 9
automatic naming convention 485
automatic numeric-character conversion 116
automatic variables 85

630 Index

B
base number 91
Base SAS

concepts 10
DATA step concepts 10
overview 4
SAS concepts 10
SAS files concepts 10

Base SAS engine 602
base version 499
batch mode 9

Universal Printing 274
BETWEEN-AND operator 203
bias 92
big endian platforms 32
binary data 369
binary informats 370
bit masks 114
bit testing constants 114
BMDP engine 604
Boolean numeric expressions 122
Boolean operators 121
buffers

index requirements for 523
BUFNO= system option

I/O optimization and 218
BUFSIZE= system option

I/O optimization and 218
BY-group access

engines 600
BY-group processing 195

BY groups 377
data grouped by formatted values 385
data not in alphabetic or numeric order 384
DATA step identification of BY groups 380
definition 375
in DATA step 383
indexing for 379
invoking 378
preprocessing input data 379
preprocessing needs 379
sorting observations for 379
syntax 376
terminology 375

BY groups 377
definition 376
multiple BY variables 378
processing conditionally 383
processing observations in 380
single BY variable 377

BY processing
indexes for 532
indexes for, with WHERE processing 533

BY values
definition 376

BY variables
definition 375

byte ordering 32

C
CALL routines 39

PRX call routines 45
random-number routines 43
RX functions and CALL routines 45

syntax 40
catalog concatenation 564

definition 564
explicit 565
implicit 564
rules for 567

catalog directory windows 562
CATALOG window 562
catalogs 4, 561

accessing information in 562
catalog concatenation 564
management tools 562
names of 561
Profile catalog 563
recovering 610
remote access and 12

CATCACHE= system option
I/O optimization and 218

CEDA (Cross-Environment Data Access) 575
advantages of 576
alternatives to 580
compatibility across environments 578
creating files in foreign data representa-

tion 581
examples 581
file processing with 576, 578
output processing 577
restrictions 577
update processing 579

cells
editing values 320

character comparisons 120
IN operator in 121

character constants 111
compared with character variables 111
in hexadecimal notation 112
quotation marks with 111

character data
reading raw data 360

CHARACTER name lists 88
character values 359
character variable padding (CVP) engine 604
character variables 78, 79

compared with character constants 111
converting to numeric variables 84
in arrays 461
missing values 104

characteristic (binary integer) 92
collating sequence

character comparisons and 120
color values

registry and 242
column-binary data 371
column-binary data storage 371, 372
column input 364
columns

labeling 313
moving 313
sorting values 315

combining data sets 389, 391
access methods 394
concatenating 395, 402
data relationships 391
direct access 394
error checking 400
interleaving 395, 405
match-merging 397, 416

methods for 395, 402
one-to-one merging 396, 411
one-to-one reading 396, 409
preparing data sets 400
procedures for 398
sequential access 394
statements for 398
tools for 389, 398
updating 397, 420

comparison operators 118, 201
compatibility

See version compatibility
compilation phase (DATA step) 332
composite indexes 520
compound expressions 110

order of evaluation 124
compound optimization 521, 528
COMPRESS= system option

I/O optimization and 218
compressing data files 537

definition of compression 537
disabling compression requests 538
requesting compression 538

concatenating catalogs 564
concatenating data libraries 471
concatenating data sets 395, 402

efficiency 405
examples 403

concatenation operator 123, 206
configuration files 9
console log 162
constants 110

bit testing constants 114
blank space in 115
character constants 111
date constants 113
datetime constants 113
in WHERE expressions 200
misinterpretation of 115
numeric constants 112
time constants 113

constructors
initializing hash objects 439

CONTAINS operator 203
copies

encryption with 595
passwords with 595

correlators
in ARM macros 64

CPU-bound applications 224
CPU performance 220

increasing memory 220
parallel processing and 221
reducing I/O 220
search time for executables 220
storing compiled programs 220
variable lengths and 221

CPU time 214
Cross-Environment Data Access

See CEDA (Cross-Environment Data Access)
customized output 189

for output objects 191
CVP engine 604

Index 631

D
D-floating format 93
damaged files 607
data components

definition 178
data conversions 38
data errors 154

format modifiers for reporting 156
data files 5, 481, 489

as DATA step output 13
audit trails 491
compressing 537
creating with DATA step 342
definition 489
encryption 594
generation data sets 499
indexes 518
input to SAS programs 12
integrity constraints 505
recovering 608
vs. data views 489

data libraries 4, 467
accessing permanent files without libref 478
copying files 307
definition 467
file types in 468
library concatenation 471
library directories 478
library engines 469
library names 469
librefs 469
logical names 469
management tools 477
managing with operating environment com-

mands 479
permanent 473
physical names 469
SAS system libraries 474
sequential libraries 476
temporary 473
utilities for 477
viewing files 307

data relationships 391
many-to-many 393
many-to-one 392
one-to-many 392
one-to-one 392

data set names 482
how and when assigned 483
one-level 484
parts of 483
two-level 484
where to use 482

data set options 25
compared with system options 76
controlling index usage 531
interaction with system options 26, 75
SAS/ACCESS librefs with 570
syntax 25
with input data sets 25
with output data sets 25

data sets 5, 481
assigning passwords to 589
automatic naming convention 485
calculating size 221
combining 389, 391

concatenating 395, 402
copying to Excel 312
copying with Explorer window 293
creating for I/O optimization 217
default data sets 485
definition 481
descriptor information for 481
editing 486
generation data sets 499
importing data into 321
input to SAS programs 12
interleaving 395, 405
labeling columns 313
management tools 485
match-merging 397, 416
missing values when reading 105
modifying 389
moving columns 313
names for 482
null data sets 484
one-to-one merging 396, 411
one-to-one reading 396, 409
reading 346, 389, 390
SAS files and 4
saving as HTML 312
saving hash object data in 444
sorted data sets 485
sorting column values 315
updating 397, 420
viewing 310, 486
writing observations to 335

DATA step 6, 329
assigning passwords 589
changing default execution sequence 338
checking for missing values 108
concepts 10
creating data files 342
creating data views 342
creating HTML reports 352
generating data from programming state-

ments 346
identifying BY groups 380
input data 343
ODS and 354
output 13
processing BY groups in 383
reading from data sets 346
reading raw data 343
report writing with 347
SAS processing and 13
setting values to missing 107

DATA step Component Interface 437
DATA step debugger 4, 159
DATA step objects 437

hash iterator object 445
hash object 438

DATA step processing 330
altering flow for given observation 339
compilation phase 332
concatenating data sets 402
default execution for statements 337
execution phase 332
flow of action 330
interleaving data sets 406
match-merging 417
one-to-one merging 412
one-to-one reading 410

sample DATA step 333
step boundaries 340
troubleshooting execution 341
updating data sets 421

DATA step statements 69
declarative 69
executable 69

DATA step views 541
additional output files 543
creating 541
definition 541
examples 543
merging data for reports 543
passwords 593
performance 542
restrictions and requirements 542
uses for 542
vs. PROC SQL views 545
vs. stored compiled programs 542, 554

data values 5, 334, 358
data views 481, 539

benefits of 540
creating with DATA step 342
DATA step views 541
PROC SQL views 545
SAS/ACCESS views 546
vs. data files 489
when to use 541

DATASETS procedure
creating indexes 526
creating integrity constraints 511

date constants 113
date intervals 137

boundaries of 141
by category 138
multiunit 142
multiweek 143
shifted intervals 144
single-unit 142
syntax 138

date values 127
as recognizable dates 136
calculating 137
formats/informats and 131
integrity of 130
reading 137
tools by task 131
writing 137
year 2000 and 128
year digits 128, 129

datetime constants 113
datetime intervals 137

boundaries of 141
by category 138
multiunit 142
multiweek 143
shifted intervals 144
single-unit 142
syntax 138

datetime values 128
as recognizable dates and times 136
formats/informats and 131
integrity of 130
tools by task 131
year 2000 and 128
year digits 128, 129

DBLOAD procedure 573

632 Index

DBMS files 6
debugging 147

logic errors 159
declarative statements 69
default Base SAS engine 602
default data sets 485
depreciation functions 41
descriptive statistic functions 41
descriptor information 332

for data sets 481
destination-independent input 181
DICTIONARY tables 557

performance 559
viewing 557
viewing subset of 559
viewing summary of 558

DIM function
determining number of array elements 456
vs. HBOUND function 460

direct access
combining data sets 394

directory of library members 478
disk space

index requirements for 523
DO loops 453

nested 457
processing selected array elements 453

DO UNTIL expressions 456
DO WHILE expressions 456
DOCUMENT destination 182

definition 178
drop-down menus 285
DROP statement

I/O optimization and 216
dropping variables 88

examples 90
input or output data sets for 88
order of application 89
statements vs. data set options 88

duration integer 137, 140

E
e-mail

sending through SMTP 619
encodings 38
encryption 594

audit trails with 595
copies with 595
example 594
generation data sets with 595
indexes with 595

engines
access patterns 600
asynchronous I/O 601
characteristics of 599
CVP engine 604
data set access 598
definition 597
files and 598
I/O optimization and 218
indexing 601
interface DATA step engine 573
levels of locking 600
LIBNAME engine 569
library engines 602

metadata LIBNAME engine 605
read/write activity 600
SAS XML LIBNAME engine 605
specifying 597
task switching 601

entries 468
ERROR automatic variable 85
error checking

combining data sets 400
examples 429, 432
indexes and 428
KEY= option and 432
tools for 428

error processing 147, 156
log control options 159
multiple errors 157
return codes 159
syntax check mode 156
system options for 158

ERROR statement
writing to log with 165

errors
data errors 154
execution-time errors 151
format modifiers for error reporting 156
logic errors 159
macro-related errors 156
semantic errors 150
summary of 147
syntax errors 148
types of 147

Excel
copying data sets to 312

exclusion lists 190
destinations for output objects 191

executable files
reducing search time for 220

executable statements 69
execution phase (DATA step) 332
execution-time errors 151

out-of-resources condition 152
explicit catalog concatenation 564
Explorer

backing up SASUSER registry 240
configuring with registry 246

Explorer window 291
assigning filerefs 292
copying data sets 293
creating and saving programs 297
opening files 296
renaming files 295
sorting files 296
viewing file details 295

exponent 91
Export Wizard 324
exporting data

Export Wizard for 324
expressions 110

automatic numeric-character conversion 116
Boolean numeric expressions 122
character comparisons 120
compound expressions 110
constants in 110
examples 110
functions 117
logical (Boolean) operators and 121
operators in 117

order of evaluation 124
regular expressions (RX) 45
simple expressions 110
variables in 116
WHERE expressions 110

external files 5, 611
as DATA step output 13
input to SAS programs 12
processing 616
reading 615
reading raw data 362
referencing directly 612
referencing indirectly 612
referencing multiple files 613
referencing with FILENAME access meth-

ods 614
writing 615

F
file formats

SAS 9 583
file protection

See also passwords
assigning with PW= data set option 591
complete protection 591
encryption 594

file shortcuts
configuring with registry 247

File Transfer Protocol (FTP) 12
filename extensions

SAS 9 584
filerefs

assigning with Explorer window 292
configuring with registry 247

files 4
accessing without librefs 478
moving between operating environments 607
opening with Explorer window 296
renaming 295
repairing damaged files 607
sorting 296

financial functions 41
FIRSTOBS= data set option

I/O optimization and 217
segmenting a subset 209

FIRST.variable 376, 380
floating-point representation 90

double-precision vs. single-precision 98
fractions 94
IBM mainframes 91
IEEE standard 94
minimum number of bytes 97
numeric comparisons 95
OpenVMS 93
precision vs. magnitude 94
storing numbers with less precision 95
transferring data between operating sys-

tems 98
troubleshooting 91
truncating numbers 97

foreign key integrity constraints 505
format modifiers

for error reporting 156
FORMAT statement

creating variables 82

Index 633

specifying formats 28
formats 27, 79

byte ordering for integer binary data 32
data conversions 38
date values and 131
datetime values and 131
encodings 38
packed decimal data 34
permanent 29
specifying 28
specifying with ATTRIB statement 29
specifying with FORMAT statement 28
specifying with PUT functions 28
specifying with PUT statement 28
specifying with %SYSFUNC function 28
syntax 27
temporary 29
time values and 131
user-defined 32
zoned decimal data 34

formatted input 365
fractions

floating-point representation 94
FTP (File Transfer Protocol) 12
FULLSTIMER system option 214
fully-bounded range condition 202
functions 38

argument restrictions 40
changing DATA step execution sequence 339
depreciation functions 41
descriptive statistic functions 41
file manipulation 42
financial functions 41
in expressions 117
in WHERE expressions 200
PRX functions 45
random-number functions 43
syntax 39
Web application functions 55
within macro functions 42

G
general integrity constraints 505
generation data sets 499

base version 499
definition 499
deleting 504
encryption with 595
generation numbers 499
generaton groups 499
GENMAX= data set option 499
GENNUM= data set option 500
historical versions 500
invoking 500
maintaining 500
oldest version 500
passwords with 595
rolling over 500
terminology 499
youngest version 500

generation groups 499
appending 503
copying 503
deleting versions 504
displaying data set information 503

managing 502
modifying number of versions 503
passwords in 505
processing specific versions 502
renaming versions 504

generation numbers 499
GENMAX= data set option 499
GENNUM= data set option 500
Ghostview previewer 276
global statements 70

executing stored compiled programs 552

H
hash iterator object 445

declaring and instantiating 445
retrieving hash object data 446

hash object 438
declaring and instantiating 438
defining keys and data 440
initializing with constructor 439
replacing and removing data 442
retrieving data with hash iterator 446
saving data in data sets 444
storing and retrieving data 441

HBOUND function 460
vs. DIM function 460

help
from toolbar 288

Help menu 287
hexadecimal notation

character constants in 112
numeric constants in 113

historical versions 500
HTML

saving data sets as 312
HTML destination 183
HTML output

sample 173
HTML reports

creating with ODS and DATA step 352
HTML version setting 188

I
I/O

reducing for CPU performance 220
threaded I/O 223

I/O-bound applications 223
I/O optimization 215

BUFNO= system option 218
BUFSIZE= system option 218
CATCACHE= system option 218
COMPRESS= system option 218
creating data sets 217
DROP statement 216
engine efficiency 218
FIRSTOBS= data set option 217
indexes 217
KEEP statement 216
LENGTH statement 216
OBS= data set option 217
SASFILE statement 219
views for data access 217

WHERE processing 216
IBM mainframes

floating-point representation 91
ID management

ARM macros for 58
IEEE standard

floating-point representation 94
illegal operations

missing values and 105
implicit catalog concatenation 564
importing data

into data sets 321
IN= data set option

creating variables 83
IN operator 202

in character comparisons 121
in numeric comparisons 120

INDEX= data set option
creating indexes 526

index files 519
index type 80
indexed data files

adding observations to 536
appending data to 537
copying 535
sorting 536
updating 536

indexes 518
benefits of 518
buffer requirements 523
BY processing with 532
composite indexes 520
compound optimization 521
costs of 522
CPU cost 522
creating 524, 525
creating with DATASETS procedure 526
creating with INDEX= data set option 526
creating with SQL procedure 526
data file considerations 524
definition 518
disk space requirements 523
displaying data file information 534
encryption with 595
engines and 601
error checking 428
for BY-group processing 379
I/O cost 522
I/O optimization and 217
index files 519
integrity constraints and 508, 537
key variable candidates 524
maintaining 534
missing values 521
multiple occurrences of values 536
passwords with 595
recovering 537, 609
simple indexes 520
specifying with KEY= option 534
taking advantage of 534
types of 520
unique values 521
updating data sets 422, 428
use considerations 524
WHERE and BY processing with 533
WHERE processing with 527

634 Index

INFILE statement
data-reading features 366

infix operators 117
INFORMAT statement

creating variables 82
specifying informats 31

informats 29, 80
binary informats 370
byte ordering for integer binary data 32
data conversions 38
date values and 131
datetime values and 131
encodings 38
packed decimal data 34
permanent 31
specifying 30
specifying with ATTRIB statement 31
specifying with INFORMAT statement 31
specifying with INPUT functions 30
specifying with INPUT statement 30
syntax 29
temporary 31
time values and 131
user-defined 32
zoned decimal data 34

input buffers 332
creating 333

input data sets
data set options with 25
dropping variables 88
keeping variables 88

input data sources 12
INPUT functions

specifying informats 30
input pointer 334
INPUT statement

column input 364
data-reading features 366
defining variables when reading raw data 82
formatted input 365
input style 362
list input 363
modified list input 363
named input 365
reading raw data 362
specifying informats 30

input style
choosing 362
column input 364
formatted input 365
list input 363
modified list input 363
named input 365

instream data 361
input to SAS programs 12
semicolons in 362

INTCK function
interval boundaries and 141

integer binary data
byte ordering 32

integer binary notation 33
integrity constraints 505

creating with DATASETS procedure 511
creating with SCL 513
creating with SQL procedure 512
definition 505
examples 511

foreign key constraints 505
general constraints 505

indexes and 508, 537
listing 511

locking 508
overlapping primary key and foreign key con-

straints 506, 517
passwords and 508

preservation of 507
reactivating 517

referential constraints 505
rejected observations 511

removing 516
specifying 511

interactive line mode 8
interface data files 489

interface DATA step engine 573
interface library engines 603

interface view engine 604
ACCESS procedure and 572

interface views 539
interleaving data sets 395, 405

comments and comparisons 409
examples 406

sort requirements 406
internal SAS processing transactions 231

interval 137
INTNX function

interval boundaries and 141
invalid data 367

IORC automatic variable 428
error-checking with 159

IS MISSING operator 204
IS NULL operator 204

iterative DO loops 453
processing selected array elements 453

J
Julian dates

packed 35

K
KEEP statement

I/O optimization and 216

keeping variables 88
examples 90

input or output data sets for 88
order of application 89

statements vs. data set options 88
KEY= option

error checking and 432
MODIFY statement 534

SET statement 534
key variables 520, 524

keys
registry and 237

Keys window 304

L
LABEL= option

ODS TRACE statement 190
labels 80
LAST.variable 376, 380
LBOUND function 460
LENGTH statement

creating variables 82
I/O optimization and 216

LIBNAME engine 569
LIBNAME statement

associating librefs 470
clearing librefs 470

library concatenation 471
library directories 478
library engines 469, 602

definition 602
interface library engines 603
native library engines 602
version compatibility and 584
view engines 604

librefs 469
accessing files without 478
assigning 470
associating with LIBNAME statement 470
clearing with LIBNAME statement 470
configuring with registry 247
fixing libref problems with registry 249
reserved names 471
SAS/ACCESS 570

LIKE operator 204
links

registry and 238
list input 363
LIST statement

writing to log with 165
LISTING destination 182

definition 178
Listing output

sample 171
literals 16, 110
little endian platforms 32
log 162

altering contents of 165
as DATA step output 13
changing destination of 170
console log 162
customizing 165, 166
structure of 163
suppressing parts of 165
writing to 165

log control options 159
Log window 299
logic errors 159
logical names 469
logical operators 121

combining WHERE expressions 207
syntax for WHERE expressions 207

M
macro environment

ARM macros 67
macro facility 6

Index 635

macro functions
DATA step functions within 42

macro-related errors 156
macro variables

ARM macros with 57
_ARMEXEC 65

macros
ARM macros 55

mantissa 91
many-to-many relationships 393
many-to-one relationships 392
MARKUP destination 183

definition 178
markup languages 178
master data set 420, 427
match-merging data sets 397, 416
MAX operator 123, 206
memory

increasing for CPU performance 220
optimizing usage 220

menus
drop-down menus 285
pop-up menus 286

MERGE statement
match-merging 416
one-to-one merging 412

merging
match-merging 397, 416
one-to-one 396, 411

metadata LIBNAME engine 605
metrics

user metrics in ARM macros 63
MIN operator 123, 206

in WHERE expressions 206
missing values 5, 101

automatically set by SAS 104
character variables 104
checking for, in DATA step 108
generated by SAS 105
illegal character-to-numeric conversions

and 105
illegal operations and 105
in raw data 107, 368
indexes 521
numeric variables 103
order of 103
printing in output 169
propagation of 105, 106
representing 368
setting values to missing in DATA step 107
special missing values 102, 106
special values in numeric data 368
updating data sets 422

modified list input 363
MODIFY statement

updating data sets 420
modifying data sets 389

tools for 389
multidimensional arrays 450, 457

grouping variables in 457
nested DO loops 457

Multiple Engine Architecture 469
multiple-pass access

engines 600
multiweek intervals 143

N
N automatic variable 85
name literals 21
name prefix lists 87
name range lists 87
named input 365
names 16

data set names 482
reserved names 18
SAS names 18
user-supplied 18

naming conventions
automatic, for data sets 485
SAS names 18
variable names 20

native data files 489
native library engines 602

default Base SAS engine 602
definition 602
REMOTE engine 602
SAS Scalable Performance Data Engine 603
SASESOCK engine 603
sequential engines 603
transport engine 603
V6 compatibility engine 603

native views 539
nested DO loops 457
New Library window 302
nibbles 34
noninteractive line mode 8
nonstandard data 359
NOT operator 122
NOTEPAD 297
null data sets 484
numbered range lists 86
numbers 16
numeric-character conversion 116
numeric comparisons 119

IN operator in 120
numeric constants 112

hexadecimal notation 113
scientific notation 113
standard notation 112

numeric data
reading raw data 359
special missing values in 368

NUMERIC name lists 88
numeric precision 78, 90
numeric values 358
numeric variables 78, 79

converting to character variables 84
missing values 103
precision 78, 90
storing values 90

O
object spawner 621
OBS= data set option

I/O optimization and 217
segmenting a subset 209

observations 5
position of variables in 80
processing in BY groups 380
reading data sets 390

sorting for BY-group processing 379
writing to data sets 335

ODS destinations
categories of 181
changing default settings 189
definition 178
destination-independent input 181
exclusion lists 190
SAS formatted destinations 182
selection lists 190
system resources and 185
third-party formatted destinations 183

ODS output
definition 179

ODS (Output Delivery System) 4, 170
customized output 189
DATA step and 354
how it works 179
processing 179
registry and 187
samples 171
summary of 192
terminology 178
Universal Printing and 253

ODS TRACE statement
LABEL= option 190
purpose 190

oldest version 500
one-dimensional arrays 450
one-level data set names 484
one-to-many relationships 392
one-to-one merging 396, 411

comments and comparisons 416
examples 413

one-to-one reading 396, 409
comments and comparisons 411
examples 410

one-to-one relationships 392
OpenVMS

floating-point representation 93
operands 110

in WHERE expressions 199
operating environment commands

managing data libraries with 479
operators 110, 117

AND 121
arithmetic operators 118, 201
BETWEEN-AND 203
comparison operators 118, 201
concatenation operator 123, 206
CONTAINS 203
fully-bounded range condition 202
IN 202
in WHERE expressions 201
infix operators 117
IS MISSING 204
IS NULL 204
LIKE 204
logical (Boolean) operators 121
MAX 123, 206
MIN 123, 206
NOT 122
numeric comparisons 119
OR 122
prefix operators 117, 206
SAME-AND 205
sounds-like 205

636 Index

OR operator 122
OSIRIS engine 604
out-of-resources condition 152
output 162

See also log
centering 168
changing destination of 170
console log 162
date and time values 168
default destinations 163
footnotes 168
formatting characters for 169
labels 169
line size 169
page breaks 169
page numbering 169
page size 169
printing missing values 169
program results 162
reformatting values 169
routing 163
titles 169
traditional listing output 167

output data sets
data set options with 25

OUTPUT destination 182
definition 178

output objects
customized output for 191
definition 178
determining destinations for 190, 191

Output window 300

P
packed decimal data 34

definition 369
languages supporting 35
platforms supporting 35

packed Julian dates 35
parallel processing 223

CPU performance and 221
password-protected files 590
passwords 587

See also passwords, assigning
audit trails with 595
changing 590
copies with 595
DATA step views with 593
definition 587
generation data sets with 595
in generation groups 505
incorrect 591
indexes with 595
integrity constraints and 508
level of protection 587, 592
PROC SQL views with 593
removing 590
SAS/ACCESS views with 593
views with 592

passwords, assigning 588
outside of SAS 590
syntax 588
to data sets 589
with DATA step 589
with procedures 589

with SAS windowing environment 590
pattern matching

LIKE operator 204
RX and PRX for 45

PDF output
sample 175

PDV (program data vector) 332
input buffer and 333

performance
ARM and 227
audit trails 493
DATA step views 542
DICTIONARY tables 559
of applications 607
system performance 213

performance statistics 213
Application Response Measurement

(ARM) 215, 231
collecting 214
FULLSTIMER system option 214
interpreting 214
STIMER system option 214

Perl regular expression (PRX) functions and
CALL routines

license agreement 46
pattern matching and 45
syntax 47

permanent data libraries 473
permanent files

accessing without libref 478
permanent formats 29
permanent informats 31
physical names 469
pop-up menus 286
position in observations 80
PostScript output

sample 173
Universal Printing 276

prefix operators 117, 206
Preview command box 269
previewers 266
print previewers 266
PRINT procedure

style definitions with 187
Print Setup window 255
PRINTER destination 184

definition 178
printers

See Universal Printing
PROC SQL views 545

embedding SAS/ACCESS LIBNAME state-
ment in 570

passwords 593
vs. DATA step views 545

PROC steps 6, 14
output 14

procedures 4
assigning passwords with 589
combining data sets with 398
style definitions with 187

Profile catalog 563
program data vector (PDV) 332

input buffer and 333
Program Editor window 298
program results 162
programming statements

generating data from 346

propagation of missing values 105
Properties window 303
PRTDEF procedure

Universal Printing and 274
PRX functions and CALL routines

license agreement 46
pattern matching and 45
syntax 47

punched cards 372
PUT functions

specifying formats 28
PUT statement

specifying formats 28
writing to log with 165

%PUT statement
writing to log with 165

PW= data set option
assigning complete file protection 591

Q
quotation marks

character constants with 111

R
radix point 92
random access 428

engines 600
random-number CALL routines 43
random-number functions 43
raw data

definition 357
input to SAS programs 12
missing values in 107
missing values when reading 104

raw data, reading 357
binary data 369
character data 360
column-binary data 371
DATA step for 343
data types 358
external files 362
INPUT statement for 362
instream data 361
instream data with semicolons 362
invalid data 367
methods for 358
missing values 368
numeric data 359
sources of raw data 361

read protection 587, 592
reading data sets 389, 390

multiple data sets 390
reading/writing observations 390
reading/writing variables 390
single data set 390
tools for 389

reading raw data
See raw data, reading

real binary representation 90
real time 214
records

DATA step processing of 334, 336

Index 637

recovering catalogs 610
recovering data files 608
recovering indexes 609
referential integrity constraints 505
registry 236

adding values or keys to 244
backing up SASUSER registry 239
changing default HTML version setting 188
changing ODS destination default set-

tings 189
color control with 242
configuring 246
configuring file shortcuts 247
configuring libraries 247
configuring SAS Explorer 246
configuring Universal Printing 246
creating values in 243
deleting items from 245
displaying 237
editing 236
finding data in 243
fixing libref problems with 249
managing 238
ODS and 187
recovering from failure 241
restoring 241
storage location 236
terminology 237

Registry Editor 242
adding values or keys 244
backing up SASUSER registry 240
changing the view 245
creating values in registry 243
deleting items from registry 245
exporting registry files 246
finding data in registry 243
importing registry files 245
renaming items in registry 245
saving registry files 246
starting 242
when to use 242

registry files
exporting 246
importing 245
in SASHELP library 236
in SASUSER library 236
saving 246

REGISTRY procedure 246
regular expressions (RX)

pattern matching and 45
remote access

input to SAS programs 12
REMOTE engine 602
renaming files

with Explorer window 295
renaming variables 88

examples 90
input or output data sets for 88
order of application 89
statements vs. data set options 88

repairing damaged files 607
REPORT procedure

style definitions with 187
reports

as DATA step output 13
creating with DATA step 347

reserved librefs 471

reserved names 18
resource usage 214
Results window 301
return codes 159
rolling over 500
routing output 163

changing destination 170
default destinations 163

RTF destination 184
definition 178

RTF output
sample 174

RX (regular expressions)
pattern matching and 45

S
SAME-AND operator 205
SAS

Base SAS and 3
concepts 10

SAS/ACCESS LIBNAME statement 569
embedding in PROC SQL views 570

SAS/ACCESS software
definition 569

SAS/ACCESS views 546
passwords with 593

SAS ARM interface 226, 228
SAS catalogs

See catalogs
SAS data files

See data files
SAS data libraries

See data libraries
SAS data sets

See data sets
SAS data views 5, 481

See also data views
as DATA step output 13
input to SAS programs 12

SAS Explorer window
list of available styles 186

SAS file types 468
SAS files 4

concepts 10
SAS formatted destinations 181, 182
SAS indexes

See indexes
SAS language 4

components of 4
data sets 5
DBMS files 6
elements 6, 25
external files 5
files 4
macro facility 6

SAS log
See log

SAS name lists 88
SAS output

See output
SAS processing 11

DATA step 13
input data sources 12
PROC steps 14

SAS registry

See registry
SAS regular expression (RX) functions and

CALL routines 45
SAS Scalable Performance Data Engine 603
SAS sessions 7

batch mode 9
customizing 9
customizing windowing environment 10
default system option settings 9
executing statements automatically 9
interactive line mode 8
noninteractive line mode 8
starting 7
types of 7
windowing environment 7

SAS statements
See statements

SAS system libraries 474
SAS utilities

for data libraries 477
SAS windowing environment 7, 283, 307

assigning passwords with 590
customizing 10
drop-down menus 285
Explorer window 291
features 284
help 287, 288
keyboard equivalents, z/OS 284
Keys window 304
Log window 299
New Library window 302
Output window 300
pop-up menus 286
Program Editor window 298
Properties window 303
Results window 301
toolbars 287
window commands 288
windows 288, 290

SAS XML LIBNAME engine 605
SASESOCK engine 603
SASFILE statement

I/O optimization and 219
SASHELP library 476

registry files in 236
SASUSER library 476

registry files in 236
SASUSER registry

backing up 239
Sasuser.Profile catalog 563
SASXREG file 238
scientific notation 90

numeric constants in 113
SCL

creating integrity constraints 513
enabling ARM macro execution 66

search time
reducing for executables 220

seed values 43
selection lists 190

destinations for output objects 191
semantic errors 150
sequential access

combining data sets 394
engines 600

sequential data libraries 476
sequential engines 603

638 Index

SET statement
concatenating data sets 402
interleaving data sets 405
one-to-one reading 409

shifted intervals 144
sign bit 92
simple expressions 110
simple indexes 520
SMP machines 223
SMTP e-mail 619

statements for controlling 620
system options for 619

sorted data sets 485
sorting column values 315
sorting files 296
sorting indexed data files 536
sorting observations

for BY-group processing 379
sounds-like operator 205
SPD Engine 603
special characters 16
special missing values 106
special SAS name lists 88
SPSS engine 604
SQL

concatenating data sets 404
SQL procedure

creating indexes 526
creating integrity constraints 512
list of available styles 186

SQL Procedure Pass-Through Facility 571
standard data 359
statements 69

changing DATA step execution sequence 338
combining data sets with 398
DATA step statements 69
declarative 69
default execution in DATA step 337
executable 69
executing automatically 9
global, definition 70
options compared with system options 76
step boundaries 340
word spacing in 17

statistics
performance statistics 213

step boundaries 340
STIMER system option 214
stored compiled programs 4, 547

CPU performance and 220
creating 549
examples 549, 553, 554
executing 550
global statements for execution 552
printing source code 552
processing 548
quality control application 554
redirecting output 552
restrictions and requirements 548
uses for 547
vs. DATA step views 542, 554

style attributes 184
definition 186

style definitions
definition of 185
procedures with 187
SAS-supplied 186

style elements
definition 185

subkeys
registry and 237

subsetting IF statement
vs. WHERE expression 211

syntax check mode 156
enabling 157

syntax errors 148
%SYSFUNC function

specifying formats 28
SYSRC autocall macro 428
system libraries 474

SASHELP 476
SASUSER 476
USER 475
WORK 474

system options 71
altering log contents with 166
ARM 226, 228
changing settings 73
compared with data set options 76
compared with statement options 76
customizing log appearance with 166
default settings 9, 71
determining how value was set 72
determining settings in effect 71
duration of settings 74
for error handling 158
getting descriptive information about 73
interaction with data set options 26, 75
order of precedence 75
restricted options 72
syntax 71
Universal Printing 273

system performance 213
calculating data set size 221
CPU performance 220
memory usage 220
optimizing I/O 215
performance statistics 214

T
table attributes

definition 185
table definitions

definition of 178, 185
table elements

definition 185
TABULATE procedure

style definitions with 187
tagsets 183

list of 179
task switching 601
TCP/IP socket 12
TEMPLATE procedure

list of available styles 186
temporary data libraries 473
temporary formats 29
temporary informats 31
third-party formatted destinations 183

definition 181
formatting control and 184

threaded application processing 224
threaded I/O 223

threads 223
time constants 113
time intervals 137

boundaries of 141
by category 138
multiunit 142
shifted intervals 144
single-unit 142
syntax 138

time values 128
as recognizable times 136
formats/informats and 131
tools by task 131

tokens
See words

toolbars 287
help from 288

traditional listing output 167
transaction classes 58
transaction data set 420
transaction instances 58
transaction monitoring

See ARM
transaction records 230
transactions

ARM 226
internal SAS processing 231

transport engine 603
two-dimensional arrays 451

bounds in 460
two-level data set names 484

U
unexpected conditions 429
Universal Printing 252

changing default printer 255
configuring 273
configuring with registry 246
defining printers 256
defining printers for batch mode 274
forms printing 279
Ghostview previewer 276
multiple printers 274
multiple users 275
ODS and 253
page properties 270
previewers 266
previewing Postscript output 276
print output formats 252
printer definitions 275, 277
printer for current SAS session 264
printer properties 259
printing 264
printing a test page 264
printing window contents 264
PRTDEF procedure for 274
removing printer from selection list 255
setting up printers 255
system options for 273
turning on/off 252
windows 254

Universal Unique Identifiers
See UUIDs (Universal Unique Identifiers)

UPDATE statement
updating data sets 420

Index 639

updating data sets 397, 420
error checking 428
examples 424
indexes with MODIFY statement 422
missing values 422
new variables 422
nonmatched observations 422
sort requirements for UPDATE statement 422
UPDATE vs. MODIFY with BY 422

URLs
remote access and 13

user-defined formats 32
user-defined informats 32
USER library 475

assigning USER libref 475
relation to WORK library 476

user metrics 63

user-supplied SAS names 18
utilities

for data libraries 477
UUID Generator Daemon 621

installing 622
UUIDCOUNT= system option 623
UUIDGEN function 623
UUIDHOST system option 623
UUIDs (Universal Unique Identifiers) 621

assigning 623
object spawner 621

V
V6 compatibility engine 603
values

registry and 238
variable attributes 78

format 79
index type 80
informat 80
label 80
length 79

name 79
position in observation 80
type 79

variable labels 80
variable length 79

CPU performance and 221
not explicitly set 81

variable lists 86, 456
name prefix 87

name range 87
numbered range 86
special SAS name 88

variable names 79
naming conventions 20

variable types 79
converting 84
not explicitly set 81

variable values 334
variables 5, 78

aligning values 85

ARM macros with 57

automatic variables 85

character variables 78
creating 80

creating with assignment statement 81

creating with ATTRIB statement 83

creating with FORMAT statement 82

creating with IN= data set option 83

creating with INFORMAT statement 82

creating with LENGTH statement 82

defining with INPUT statement 82

dropping 88

in expressions 116

in WHERE expressions 199

keeping 88

maximum number of 78

numeric variables 78

reading data sets 390

renaming 88

setting values to missing in DATA step 107

version compatibility 583

comparing SAS 9 to earlier releases 583

library engines and 584

SAS 9 file format 583

SAS 9 filename extensions 584

view descriptors 546, 572

views

I/O optimization and 217

level of protection 592

passwords with 592

WHERE expessions and 209

VIEWTABLE window 486

clearing subsetted data 321

creating WHERE expressions 317

editing cell values 320
labeling columns 313

moving columns 313

sorting column values 315

viewing data set contents 310

W
Web applications

functions for 55

WHERE-expression processing 197

WHERE expressions 110, 198

combining with logical operators 207

compound expressions 198

compound optimization 528

constants in 200

creating with VIEWTABLE window 317

efficient expressions 208

functions in 200

operand specification 199

operators in 201

optimizing 527

order of evaluation 208

processing compound expressions 207

processing views 209

segmenting a subset 208
simple expressions 198

syntax 199

variables in 199

vs. subsetting IF statement 211
where to use 198

WHERE processing

comparing resource usage 530

compound optimization 528
controlling index usage 531

displaying index usage information 531

estimating qualified observations 529

I/O optimization and 216

indentifying available indexes 527
indexes for 527

indexes for, with BY processing 533

indexes with views 532

windowing environment
See SAS windowing environment

words 15

literals 16

name literals 21
names 16

numbers 16

spacing in statements 17

special characters 16

types of 16
variable names 20

WORK library 474

copying files to 307

relation to USER library 474
write protection 587, 592

X
XML LIBNAME engine 605

XML output

sample 176

Y
year 2000 128
YEARCUTOFF= system option

year 2000 and 128

year digits and 128, 129

years

four-digit 128, 129
two-digit 128, 129

youngest version 500

Z
z/OS

keyboard equivalents 284
zoned decimal data 34

definition 370

languages supporting 35

platforms supporting 35

Your Turn

If you have comments or suggestions about SAS® 9.1 Language Reference: Concepts,
please send them to us on a photocopy of this page, or send us electronic mail.

For comments about this book, please return the photocopy to
SAS Publishing
SAS Campus Drive
Cary, NC 27513
email: yourturn@sas.com

For suggestions about the software, please return the photocopy to
SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
email: suggest@sas.com

	Table of Contents
	Contents

	SAS System Concepts
	Essential Concepts of Base SAS Software
	What Is SAS?
	Overview of Base SAS Software
	Components of the SAS Language
	SAS Files
	SAS Data Sets
	External Files
	Database Management System Files
	SAS Language Elements
	SAS Macro Facility

	Ways to Run Your SAS Session
	Starting a SAS Session
	Different Types of SAS Sessions
	SAS Windowing Environment
	Interactive Line Mode
	Noninteractive Mode
	Batch Mode

	Customizing Your SAS Session
	Setting Default System Option Settings
	Executing Statements Automatically
	Customizing the SAS Windowing Environment

	Conceptual Information about Base SAS Software
	SAS System Concepts
	DATA Step Concepts
	SAS Files Concepts

	SAS Processing
	Definition of SAS Processing
	Types of Input to a SAS Program
	The DATA Step
	DATA Step Output

	The PROC Step
	PROC Step Output

	Rules for Words and Names in the SAS Language
	Words in the SAS Language
	Definition of Word
	Types of Words or Tokens
	Placement and Spacing of Words in SAS Statements

	Names in the SAS Language
	Definition of a SAS Name
	Rules for User-Supplied SAS Names
	SAS Name Literals

	SAS Language Elements
	What Are the SAS Language Elements?
	Data Set Options
	Definition of Data Set Option
	Syntax for Data Set Options
	Using Data Set Options

	Formats and Informats
	Formats
	Informats
	User-Defined Formats and Informats
	Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms
	Working with Packed Decimal and Zoned Decimal Data
	Data Conversions and Encodings

	Functions and CALL Routines
	Definitions of Functions and CALL Routines
	Syntax of Functions and CALL Routines
	Using Functions
	Using Random-Number Functions and CALL Routines
	Pattern Matching Using SAS Regular Expressions (RX) and Perl Regular Expressions (PRX)
	Base SAS Functions for Web Applications

	ARM Macros
	Definition of ARM Macros
	Using ARM Macros
	Defining User Metrics in ARM Macros
	Defining Correlators in ARM Macros
	Enabling ARM Macro Execution
	Setting the Macro Environment
	Using ARM Post-Processing Macros

	Statements
	Definition of Statements
	Executable and Declarative DATA Step Statements
	Global Statements

	SAS System Options
	Definition of SAS System Options
	Syntax of SAS System Options
	Using SAS System Options
	Comparisons

	SAS Variables
	Definition of SAS Variables
	SAS Variable Attributes
	Ways to Create Variables
	Overview
	Using an Assignment Statement
	Reading Data with the INPUT Statement in a DATA Step
	Specifying a New Variable in a FORMAT or an INFORMAT Statement
	Specifying a New Variable in a LENGTH Statement
	Specifying a New Variable in an ATTRIB Statement
	Using the IN= Data Set Option

	Variable Type Conversions
	Aligning Variable Values
	Automatic Variables
	SAS Variable Lists
	Definition
	Numbered Range Lists
	Name Range Lists
	Name Prefix Lists
	Special SAS Name Lists

	Dropping, Keeping, and Renaming Variables
	Using Statements or Data Set Options
	Using the Input or Output Data Set
	Order of Application
	Examples of Dropping, Keeping, and Renaming Variables

	Numeric Precision in SAS Software
	How SAS Stores Numeric Values
	Troubleshooting Problems Regarding Floating-Point Representation

	Missing Values
	Definition of Missing Values
	Special Missing Values
	Definition
	Tips
	Example

	Order of Missing Values
	Numeric Variables
	Character Variables

	When Variable Values Are Automatically Set to Missing by SAS
	When Reading Raw Data
	When Reading a SAS Data Set

	When Missing Values Are Generated by SAS
	Propagation of Missing Values in Calculations
	Illegal Operations
	Illegal Character-to-Numeric Conversions
	Special Missing Values
	Preventing Propagation of Missing Values

	Working with Missing Values
	How to Represent Missing Values in Raw Data
	How to Set Variable Values to Missing in a DATA Step
	How to Check for Missing Values in a DATA Step

	Expressions
	Definitions for SAS Expressions
	Examples of SAS Expressions
	SAS Constants in Expressions
	Definition
	Character Constants
	Using Quotation Marks With Character Constants
	Comparing Character Constants and Character Variables
	Character Constants Expressed in Hexadecimal Notation
	Numeric Constants
	Numeric Constants Expressed in Standard Notation
	Numeric Constants Expressed in Scientific Notation
	Numeric Constants Expressed in Hexadecimal Notation
	Date, Time, and Datetime Constants
	Bit Testing Constants
	Avoiding a Common Error With Constants

	SAS Variables in Expressions
	Definition
	Automatic Numeric-Character Conversion

	SAS Functions in Expressions
	SAS Operators in Expressions
	Definitions
	Arithmetic Operators
	Comparison Operators
	Numeric Comparisons
	The IN Operator in Numeric Comparisons
	Character Comparisons
	The IN Operator in Character Comparisons
	Logical (Boolean) Operators and Expressions
	The AND Operator
	The OR Operator
	The NOT Operator
	Boolean Numeric Expressions
	The MIN and MAX Operators
	The Concatenation Operator
	Order of Evaluation in Compound Expressions

	Dates, Times, and Intervals
	About SAS Date, Time, and Datetime Values
	Definitions
	Two-Digit and Four-Digit Years
	The Year 2000
	Working with SAS Dates and Times
	Examples

	About Date and Time Intervals
	Definitions
	Syntax
	Intervals By Category
	Example: Calculating a Duration
	Boundaries of Intervals
	Single-Unit Intervals
	Multiunit Intervals
	Shifted Intervals

	Error Processing and Debugging
	Types of Errors in SAS
	Summary of Types of Errors That SAS Recognizes
	Syntax Errors
	Semantic Errors
	Execution-Time Errors
	Data Errors
	Macro-related Errors

	Error Processing in SAS
	Syntax Check Mode
	Enabling Syntax Check Mode
	Processing Multiple Errors
	Using System Options to Control Error Handling
	Using Return Codes
	Other Error-Checking Options

	Debugging Logic Errors in the DATA Step

	SAS Output
	Definitions for SAS Output
	Routing SAS Output
	The SAS Log
	Structure of the Log
	Writing to the Log
	Customizing the Log

	Traditional SAS Listing Output
	Example of Traditional Listing Output
	Making Output Descriptive
	Reformatting Values
	Printing Missing Values

	Changing the Destination of the Log and the Output
	Output Delivery System
	What Is the Output Delivery System?
	Gallery of ODS Samples
	Commonly Used ODS Terminology
	How Does ODS Work?
	What Are the ODS Destinations?
	What Are Table Definitions, Table Elements, and Table Attributes?
	What Are Style Definitions, Style Elements, and Style Attributes?
	Changing SAS Registry Settings for ODS
	Customized ODS Output
	Summary of ODS

	BY-Group Processing in SAS Programs
	Definition of BY-Group Processing
	References for BY-Group Processing

	WHERE-Expression Processing
	Definition of WHERE-Expression Processing
	Where to Use a WHERE Expression
	Syntax of WHERE Expression
	Specifying an Operand
	Specifying an Operator

	Combining Expressions by Using Logical Operators
	Syntax
	Processing Compound Expressions
	Using Parentheses to Control Order of Evaluation

	Constructing Efficient WHERE Expressions
	Processing a Segment of Data That Is Conditionally Selected
	Applying FIRSTOBS= and OBS= to a Subset of Data
	Processing a SAS View

	Deciding Whether to Use a WHERE Expression or a Subsetting IF Statement

	Optimizing System Performance
	Definitions for Optimizing System Performance
	Collecting and Interpreting Performance Statistics
	Using the FULLSTIMER and STIMER System Options
	Interpreting FULLSTIMER and STIMER Statistics
	Using Application Response Measurement to Monitor Performance

	Techniques for Optimizing I/O
	Overview of Techniques for Optimizing I/O
	Using WHERE Processing
	Using DROP and KEEP Statements
	Using LENGTH Statements
	Using the OBS= and FIRSTOBS= Data Set Options
	Creating SAS Data Sets
	Using Indexes
	Accessing Data Through Views
	Using Engines Efficiently
	Setting the BUFNO=, BUFSIZE=, CATCACHE=, and COMPRESS= System Options
	Using the SASFILE Statement

	Techniques for Optimizing Memory Usage
	Techniques for Optimizing CPU Performance
	Reducing CPU Time by Using More Memory or Reducing I/O
	Storing a Compiled Program for Computation-Intensive DATA Steps
	Reducing Search Time for SAS Executable Files
	Specifying Variable Lengths
	Using Parallel Processing

	Calculating Data Set Size

	Support for Parallel Processing
	Definition of Parallel Processing
	Threaded I/O
	Threaded Application Processing

	Monitoring Performance Using Application Response Measurement (ARM)
	Introduction to ARM
	What Is ARM?
	Why Is ARM Needed?
	Definitions for ARM

	How Does ARM Work?
	Will ARM Affect an Application’s Performance?
	Using the ARM Interface
	Overview
	ARM System Options
	ARM API Function Calls
	ARM Macros
	Logging the Transaction Records: the ARM Log

	Examples of Gathering Performance Data
	Logging Internal SAS Processing Transactions
	Using ARM System Options and ARM Macros to Log Performance Statistics
	Post Processing an ARM Log

	The SAS Registry
	Introduction to the SAS Registry
	What Is the SAS Registry?
	Who Should Use the SAS Registry?
	Where the SAS Registry Is Stored
	How Do I Display the SAS Registry?
	Definitions for the SAS Registry

	Managing the SAS Registry
	Primary Concerns about Managing the SAS Registry
	Backing Up the SASUSER Registry
	Recovering from Registry Failure
	Using the SAS Registry to Control Color
	Using the Registry Editor
	When to Use PROC REGISTRY

	Configuring Your Registry
	Configuring Universal Printing
	Configuring SAS Explorer
	Configuring Libraries and File Shortcuts with the SAS Registry
	Fixing Library Reference (Libref) Problems with the SAS Registry

	Printing with SAS
	Introduction to Universal Printing
	What Is Universal Printing?
	Turning Universal Printing On and Off
	What Type of Print Output Formats Are Available from Universal Printing?
	Universal Printing and ODS

	Managing Printing Tasks with the Universal Printing User Interface
	Overview of the Universal Printing Menu
	Setting Up Printers
	Printing with Universal Printing
	Working with Previewers
	Setting Page Properties

	Configuring Universal Printing with Programming Statements
	Introduction
	System Options That Control Universal Printing
	Defining Printers for Batch-Mode
	Defining New Printers and Previewers with PROC PRTDEF

	Forms Printing
	Overview of Forms Printing
	Creating or Editing a Form

	Windowing Environment Concepts
	Introduction to the SAS Windowing Environment
	Basic Features of the SAS Windowing Environment
	What Is the SAS Windowing Environment?
	Using SAS Window Features

	Main Windows of the SAS Windowing Environment
	List of SAS Windows and Window Commands
	The Five Main Windows in the Windowing Environment
	SAS Explorer Window
	Program Editor Window
	Log Window
	Output Window
	Results Window
	New Library Window
	Properties Window
	Keys Window

	Managing Your Data in the SAS Windowing Environment
	Introduction to Managing Your Data in the SAS Windowing Environment
	Copying and Viewing Files in a Data Library
	Copying a Practice File to the WORK Data Library
	Viewing the Contents of a Data Set with the VIEWTABLE Window
	Saving a Data Set as HTML
	Copying a Data Set to Excel

	Using the Workspace to Manipulate Data in a Data Set
	Moving and Labeling Columns with the VIEWTABLE Window
	Sorting Values of a Column with the VIEWTABLE Window
	Creating a WHERE Expression with the VIEWTABLE Window
	Editing Values in a Cell with the VIEWTABLE Window
	Clearing Subsetted Data from the VIEWTABLE Window

	Importing and Exporting Data
	Importing Data into a Data Set
	Exporting Your Data with the Export Wizard

	DATA Step Concepts
	DATA Step Processing
	Why Use a DATA Step?
	Overview of DATA Step Processing
	Flow of Action
	The Compilation Phase
	The Execution Phase

	Processing a DATA Step: A Walkthrough
	Sample DATA Step
	Creating the Input Buffer and the Program Data Vector
	Reading a Record
	Writing an Observation to the SAS Data Set
	Reading the Next Record
	When the DATA Step Finishes Executing

	About DATA Step Execution
	The Default Sequence of Execution in the DATA Step
	Changing the Default Sequence of Execution
	Step Boundary — How To Know When Statements Take Effect
	What Causes a DATA Step to Stop Executing

	About Creating a SAS Data Set with a DATA Step
	Creating a SAS Data File or a SAS Data View
	Sources of Input Data
	Reading Raw Data
	Reading Data from SAS Data Sets
	Generating Data from Programming Statements

	Writing a Report with a DATA Step
	Example 1: Creating a Report without Creating a Data Set
	Example 2: Creating a Customized Report
	Example 3: Creating a HTML Report Using ODS and the DATA Step

	The DATA Step and ODS

	Reading Raw Data
	Definition of Reading Raw Data
	Ways to Read Raw Data
	Kinds of Data
	Definitions
	Numeric Data
	Character Data

	Sources of Raw Data
	Instream Data
	Instream Data Containing Semicolons
	External Files

	Reading Raw Data with the INPUT Statement
	Choosing an Input Style
	List Input
	Modified List Input
	Column Input
	Formatted Input
	Named Input
	Additional Data-Reading Features

	How SAS Handles Invalid Data
	Reading Missing Values in Raw Data
	Representing Missing Values in Input Data
	Special Missing Values in Numeric Input Data

	Reading Binary Data
	Definitions
	Using Binary Informats

	Reading Column-Binary Data
	Definition
	How to Read Column-Binary Data
	Description of Column-Binary Data Storage

	BY-Group Processing in the DATA Step
	Definitions for BY-Group Processing
	Syntax for BY-Group Processing
	Understanding BY Groups
	BY Groups with a Single BY Variable
	BY Groups with Multiple BY Variables

	Invoking BY-Group Processing
	Determining Whether the Data Requires Preprocessing for BY-Group Processing
	Preprocessing Input Data for BY-Group Processing
	Sorting Observations for BY-Group Processing
	Indexing for BY-Group Processing

	How the DATA Step Identifies BY Groups
	Processing Observations in a BY Group
	How SAS Determines FIRST.VARIABLE and LAST.VARIABLE

	Processing BY-Groups in the DATA Step
	Overview
	Processing BY-Groups Conditionally
	Data Not in Alphabetic or Numeric Order
	Data Grouped by Formatted Values

	Reading, Combining, and Modifying SAS Data Sets
	Definitions for Reading, Combining, and Modifying SAS Data Sets
	Overview of Tools
	Reading SAS Data Sets
	Reading a Single SAS Data Set
	Reading from Multiple SAS Data Sets
	Controlling the Reading and Writing of Variables and Observations

	Combining SAS Data Sets: Basic Concepts
	What You Need to Know before Combining Information Stored In Multiple SAS Data Sets
	The Four Ways That Data Can Be Related
	Access Methods: Sequential versus Direct
	Overview of Methods for Combining SAS Data Sets
	Overview of Tools for Combining SAS Data Sets
	How to Prepare Your Data Sets

	Combining SAS Data Sets: Methods
	Concatenating
	Interleaving
	One-to-One Reading
	One-to-One Merging
	Match-Merging
	Updating with the UPDATE and the MODIFY Statements

	Error Checking When Using Indexes to Randomly Access or Update Data
	The Importance of Error Checking
	Error-Checking Tools
	Example 1: Routing Execution When an Unexpected Condition Occurs
	Example 2: Using Error Checking on All Statements That Use KEY=

	Using DATA Step Component Objects
	Introduction
	Using the Hash Object
	Why Use the Hash Object?
	Declaring and Instantiating a Hash Object
	Initializing Hash Object Data Using a Constructor
	Defining Keys and Data
	Storing and Retrieving Data
	Replacing and Removing Data
	Saving Hash Object Data in a Data Set

	Using the Hash Iterator Object
	Introducing the Hash Iterator Object
	Declaring and Instantiating a Hash Iterator Object
	Example: Retrieving Hash Object Data by Using the Hash Iterator

	Array Processing
	Definitions for Array Processing
	A Conceptual View of Arrays
	One-Dimensional Array
	Two-Dimensional Array

	Syntax for Defining and Referencing an Array
	Processing Simple Arrays
	Grouping Variables in a Simple Array
	Using a DO Loop to Repeat an Action
	Using a DO Loop to Process Selected Elements in an Array
	Selecting the Current Variable
	Defining the Number of Elements in an Array
	Rules for Referencing Arrays

	Variations on Basic Array Processing
	Determining the Number of Elements in an Array Efficiently
	DO WHILE and DO UNTIL Expressions
	Using Variable Lists to Define an Array Quickly

	Multidimensional Arrays: Creating and Processing
	Grouping Variables in a Multidimensional Array
	Using Nested DO Loops

	Specifying Array Bounds
	Identifying Upper and Lower Bounds
	Determining Array Bounds: LBOUND and HBOUND Functions
	When to Use the HBOUND Function instead of the DIM Function
	Specifying Bounds in a Two-Dimensional Array

	Examples of Array Processing
	Example 1: Using Character Variables in an Array
	Example 2: Assigning Initial Values to the Elements of an Array
	Example 3: Creating an Array for Temporary Use in the Current DATA Step
	Example 4: Performing an Action on All Numeric Variables

	SAS Files Concepts
	SAS Data Libraries
	Definition of a SAS Data Library
	Library Engines
	Library Names
	Physical Names and Logical Names (Librefs)
	Assigning Librefs
	Associating and Clearing Logical Names (Librefs) With the LIBNAME Statement
	Reserved Librefs

	Library Concatenation
	Definition of Library Concatenation
	How SAS Concatenates Library Members
	Rules for Library Concatenation

	Permanent and Temporary Libraries
	SAS System Libraries
	Introduction to SAS System Libraries
	WORK Library
	USER Library
	SASHELP Library
	SASUSER Library

	Sequential Data Libraries
	Tools for Managing Libraries
	SAS Utilities
	Library Directories
	Accessing Permanent SAS Files without a Libref
	Operating Environment Commands

	SAS Data Sets
	Definition of a SAS Data Set
	Descriptor Information for a SAS Data Set
	Data Set Names
	Where to Use Data Set Names
	How and When SAS Data Set Names Are Assigned
	Parts of a Data Set Name
	Two-level SAS Data Set Names
	One-level SAS Data Set Names

	Special SAS Data Sets
	Null Data Sets
	Default Data Sets
	Automatic Naming Convention

	Sorted Data Sets
	Tools for Managing Data Sets
	Viewing and Editing SAS Data Sets

	SAS Data Files
	Definition of a SAS Data File
	Differences between Data Files and Data Views
	Understanding an Audit Trail
	Definition of an Audit Trail
	Audit Trail Description
	Initiating an Audit Trail
	Controlling the Audit Trail
	Reading and Determining the Status of the Audit Trail
	Examples of Using Audit Trails

	Understanding Generation Data Sets
	Definition of Generation Data Set
	Terminology for Generation Data Sets
	Invoking Generation Data Sets
	Understanding How a Generation Group Is Maintained
	Processing Specific Versions of a Generation Group
	Managing Generation Groups

	Understanding Integrity Constraints
	Definition of Integrity Constraints
	Preservation of Integrity Constraints
	Indexes and Integrity Constraints
	Locking Integrity Constraints
	Passwords and Integrity Constraints
	Specifying Integrity Constraints
	Listing Integrity Constraints
	Rejected Observations
	Examples

	Understanding SAS Indexes
	Definition of SAS Indexes
	Benefits of an Index
	The Index File
	Types of Indexes
	Deciding Whether to Create an Index
	Guidelines for Creating Indexes
	Creating an Index
	Using an Index for WHERE Processing
	Using an Index for BY Processing
	Using an Index for Both WHERE and BY Processing
	Specifying an Index with the KEY= Option for SET and MODIFY Statements
	Taking Advantage of an Index
	Maintaining Indexes

	Compressing Data Files
	Definition of Compression
	Requesting Compression
	Disabling a Compression Request

	SAS Data Views
	Definition of SAS Data Views
	Benefits of Using SAS Data Views
	When to Use SAS Data Views
	DATA Step Views
	Definition of a DATA Step View
	Creating DATA Step Views
	What Can You Do with a DATA Step View?
	Differences between DATA Step Views and Stored Compiled DATA Step Programs
	Restrictions and Requirements
	Performance Considerations
	Example 1: Merging Data to Produce Reports
	Example 2: Producing Additional Output Files

	PROC SQL Views
	Comparing DATA Step and PROC SQL Views
	SAS/ACCESS Views

	Stored Compiled DATA Step Programs
	Definition of a Stored Compiled DATA Step Program
	Uses for Stored Compiled DATA Step Programs
	Restrictions and Requirements for Stored Compiled DATA Step Programs
	How SAS Processes Stored Compiled DATA Step Programs
	Creating a Stored Compiled DATA Step Program
	Syntax for Creating a Stored Compiled DATA Step Program
	Process to Compile and Store a DATA Step Program
	Example: Creating a Stored Compiled DATA Step Program

	Executing a Stored Compiled DATA Step Program
	Syntax for Executing a Stored Compiled DATA Step Program
	Process to Execute a Stored Compiled DATA Step Program
	Using Global Statements
	Redirecting Output
	Example: Executing a Stored Compiled DATA Step Program

	Differences between Stored Compiled DATA Step Programs and DATA Step Views
	Examples of DATA Step Programs
	Example of DATA Step Program: Quality Control Application

	DICTIONARY Tables
	Definition of a DICTIONARY Table
	How to View DICTIONARY Tables
	How to View a DICTIONARY Table
	How to View a Summary of a DICTIONARY Table
	How to View a Subset of a DICTIONARY Table
	DICTIONARY Tables and Performance

	SAS Catalogs
	Definition of a SAS Catalog
	SAS Catalog Names
	Parts of a Catalog Name
	Accessing Information in Catalogs

	Tools for Managing SAS Catalogs
	Profile Catalog
	Definition
	How the Information Is Used
	How Sasuser.Profile Is Created
	Default Settings

	Catalog Concatenation
	Definitions
	Example 1: Implicit Concatenation
	Example 2: Explicit Concatenation
	Rules for Catalog Concatenation

	About SAS/ACCESS Software
	Definition of SAS/ACCESS Software
	Dynamic LIBNAME Engine
	SAS/ACCESS LIBNAME Statement
	Using Data Set Options with SAS/ACCESS Librefs
	Embedding a SAS/ACCESS LIBNAME Statement in a PROC SQL View

	SQL Procedure Pass-Through Facility
	ACCESS Procedure and Interface View Engine
	DBLOAD Procedure
	Interface DATA Step Engine

	Processing Data Using Cross- Environment Data Access (CEDA)
	Definition of Cross-Environment Data Access (CEDA)
	Advantages of CEDA
	SAS File Processing with CEDA
	What Types of Processing Does CEDA Support?
	Behavioral Differences for Output Processing
	Restrictions for CEDA

	Processing a File with CEDA
	Understanding When CEDA Is Used to Process a File
	Determining Whether Update Processing Is Allowed

	Alternatives to Using CEDA
	Creating New Files in a Foreign Data Representation
	Examples of Using CEDA
	Example 1: Automatically Processing a Foreign File
	Example 2: Creating a New File in a Foreign Environment

	SAS 9.1 Compatibility with SAS Files From Earlier Releases
	Introduction to Version Compatibility
	Comparing SAS System 9 to Earlier Releases
	SAS 9 File Format
	SAS 9 Filename Extensions

	Using SAS Library Engines

	File Protection
	Definition of a Password
	Assigning Passwords
	Syntax
	Assigning a Password with a DATA Step
	Assigning a Password to an Existing Data Set
	Assigning a Password with a Procedure
	Assigning a Password with the SAS Windowing Environment
	Assigning a Password Outside of SAS

	Removing or Changing Passwords
	Using Password-Protected SAS Files in DATA and PROC Steps
	How SAS Handles Incorrect Passwords
	Assigning Complete Protection with the PW= Data Set Option
	Using Passwords with Views
	How the Level of Protection Differs from SAS Views
	PROC SQL Views
	SAS/ACCESS Views
	DATA Step Views

	SAS Data File Encryption
	Example
	Passwords and Encryption with Generation Data Sets, Audit Trails, Indexes, and Copies

	SAS Engines
	Definition of a SAS Engine
	Specifying an Engine
	How Engines Work with SAS Files
	Engine Characteristics
	Read/Write Activity
	Access Patterns
	Levels of Locking
	Asynchronous I/O or Task Switching
	Indexing

	About Library Engines
	Definition of a Library Engine
	Native Library Engines
	Interface Library Engines

	Special-Purpose Engines
	Character Variable Padding (CVP) Engine
	SAS Metadata LIBNAME Engine
	SAS XML LIBNAME Engine

	SAS File Management
	Improving Performance of SAS Applications
	Moving SAS Files Between Operating Environments
	Repairing Damaged SAS Files
	Recovering SAS Data Files
	Recovering Indexes
	Recovering Catalogs

	External Files
	Definition of External Files
	Referencing External Files Directly
	Referencing External Files Indirectly
	Referencing Many External Files Efficiently
	Referencing External Files with Other Access Methods
	Working with External Files
	Reading External Files
	Writing to External Files
	Processing External Files

	Industry Protocols Used in SAS
	The SMTP E-Mail Interface
	Sending E-Mail through SMTP
	System Options That Control SMTP E-Mail
	Statements That Control SMTP E-mail
	FILENAME STATEMENT
	FILE and PUT Statements

	Universal Unique Identifiers
	Universal Unique Identifiers and the Object Spawner
	What Is a Universal Unique Identifier?
	What Is the Object Spawner?
	Defining the UUID Generator Daemon
	Installing the UUID Generator Daemon

	Using SAS Language Elements to Assign UUIDs
	UUIDGEN Function
	UUIDCOUNT= System Option
	UUIDGENDHOST System Option

	Appendices
	Recommended Reading
	Recommended Reading

	Index

