
SAS® 9.1
Java Metadata Interface:
User’s Guide

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004. SAS® 9.1 Java Metadata
Interface: User’s Guide. Cary, NC: SAS Institute Inc.

SAS® 9.1 Java Metadata Interface: User’s Guide

Copyright © 2004, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise,
without the prior written permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in
FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, January 2004

SAS Publishing provides a complete selection of books and electronic products to help customers use SAS software
to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit
the SAS Publishing Web site at support.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Table of Contents
SAS Java Metadata Interface: User's Guide..1

Interface Overview..2

Software Installation and JRE Requirements..3

Understanding the Interface..4
Important Terms...5

Overview to Using the SAS Java Metadata Interface...6

Creating a SAS Java Metadata Interface Client..7

Instantiating an Object Factory and Connecting to the Metadata Server..8

Getting Information About Repositories..11

Creating Objects...13

Getting and Updating Existing Objects..16

Deleting Objects..19

Method Classes Summary..21

Working with the MdObjectFactory Class..22
Instantiating the Object Factory...22
Creating Java Objects..22
Invoking the Event Handling Interface..23
Deleting Objects...23
Deleting the Object Factory...23

Working with the MetadataWorkspace Class...24

Working with the CMetadata Class..25

Working with the MdEvent Class...26

Working with the MetadataUtil Class..30
Using the "Get" Methods...30
Using the AddMetadata and UpdateMetadata Methods..31
DoRequest Method..31

Working with the AssociationList Class...32

Working with the MdObjectStore Class...34

SAS 9.1 Java Metadata Interface: User's Guide

i

Table of Contents
Working with the MdServerStore Class...35

Working with the Util Class...36

SAS Java Metadata Interface Program..37

SAS 9.1 Java Metadata Interface: User's Guide

ii

SAS Java Metadata Interface: User's Guide
This document provides usage information about the SAS 9.1 Java Metadata Interface. The SAS Java
Metadata Interface is a Java object interface to the SAS Metadata Server. The interface provides a way to
access SAS metadata repositories through the use of client Java objects that represent server metadata.

Reference information about the interface is provided as class documentation that is shipped with the product.
You can view a web−enabled version of this documentation at
http://java.pc.sas.com/reference/api/sas/jOMA9.1_public/index.html.

Previous
Page

| Next Page | Top of
Page

Copyright 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

SAS Java Metadata Interface: User's Guide 1

Interface Overview
The SAS Java Metadata Interface provides a Java object interface to the SAS Metadata Server. The interface
provides a way to access SAS metadata repositories through the use of client Java objects that represent server
metadata. The interface consists of classes for

connecting to the metadata server•
instantiating an object factory that creates Java objects to represent the SAS Metadata Model•
creating, reading, and writing Java metadata object instances on the client and propagating additions
and changes to the SAS Metadata Server.

•

There are two implementations of the SAS Java Metadata Interface:

a static version for visual applications that use only one Java Virtual Machine. Example applications
include SAS ETL Studio and SAS Management Console plugins.

•

a remote version for applications that have multiple tiers and use more than one Java Virtual Machine.
Example applications include: SAS Report Studio, SAS Information Map Studio, and any application
that uses SAS Foundation Services implementations.

•

The SAS Java Metadata Interface includes the following Java packages:

com.sas.metadata
provides the static Java object interface to the SAS Metadata Server.

com.sas.metadata.impl
provides the implementation of the static interface to the SAS Metadata Server.

com.sas.metadata.remote
provides the remote Java object interface to the SAS Metadata Server.

com.sas.metadata.remote.impl
provides the implementation of the remote interface to the SAS Metadata Server.

The com.sas.metadata.remote packages are typically used in conjunction with com.sas.services.information
package included with SAS Foundation Services 9.1 software. The com.sas.services.information package
provides a generic interface for interacting with heterogeneous data repositories, including SAS Metadata
Repositories, Lightweight Directory Access Protocol (LDAP) repositories, and WebDAV repositories, from
client applications. Using Information Service methods, a client can submit a single query that searches all
available repository sources and returns the results in a "smart object" that provides a uniform interface to
common data elements. The com.sas.services.information package is described in the SAS Foundation
Services 9.1 class documentation. SAS Foundation Services is a component of SAS Integration Technologies.
Both the software and the class documentation are available from the SAS Installation Kit CD−ROM software
media.

Previous
Page

| Next Page | Top of
Page

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

Interface Overview 2

Software Installation and JRE Requirements
SAS Java Metadata Interface software is supported in UNIX and Windows host environments. You can install
the software and class documentation from the SAS Software Installation Kit CD−ROM software media that
is shipped with SAS 9.1.

The current release of the Java client software requires Java 2 Standard Edition Version 1.4 (JDK 1.4). The
Java Runtime Environment can be obtained from the Third Party Software Components CD included in your
SAS Software Installation Kit.

The javadoc can be viewed with Microsoft® Internet Explorer Web Browser or Netscape® Web Browser
versions that support frames.

Previous
Page

| Next Page | Top of
Page

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

Software Installation and JRE Requirements 3

Understanding the Interface
The SAS Java Metadata Interface consists of

an object factory for creating and controlling the lifecycle of objects in the client•
a server store for managing objects created by the object factory•
object stores that serve as work−unit containers for updating object instances and for grouping object
instances that need to be persisted to the server as a unit

•

Java objects for managing a metadata object's properties.•

The object factory and server store represent the SAS Metadata Model in the client and provide an
environment for managing Java objects representing SAS metadata object instances.

The object store serves as a container or work unit for Java objects that users create to add metadata objects or
to modify existing metadata objects on the metadata server. The following figure illustrates the relationship
between the objects in an object store.

A SAS Open Metadata Interface metadata object is defined by two types of properties:

a set of attributes that describe the characteristics of the object instance, including its name,
description, the date it was created, and any unique characteristics

•

association names that describe its relationships with other metadata objects.•

Using the SAS Java Metadata Interface, you view and set a metadata object's attributes by creating a Java
object representing its native type. A native type refers to one of the metadata types defined in the SAS
namespace of the SAS Metadata Model. You view and set associations by creating AssociationList objects.

Understanding the Interface 4

An AssociationList object stores information about the metadata objects related to a given metadata object via
a given association name. For more information about metadata types in the SAS Metadata Model, see SAS
Namespace Types in SAS 9.1 Open Metadata Interface: Reference. For more information about
associations, see Understanding Associations in Understanding Metadata Types in SAS 9.1 Open Metadata
Interface: Reference.

In the previous figure, the squares named 'Object' represent native objects and the squares named
'AssociationList' describe the relationship (associations) between the native objects. Every relationship in the
SAS Metadata Model is a two−way association. That is, there are two sides to every relationship and each
association has a name. For example, if the native objects in the illustration represented a PhysicalTable and a
Column, the PhysicalTable object would have a Columns association to the Column object and the Column
object would have a Table association to the PhysicalTable object.

See Method Classes Summary for an overview of the method classes used to create the factory, stores, and
other objects.

See Overview to Using the SAS Java Metadata Interface for instructions about how to write a SAS Java
Metadata Interface client that reads and writes metadata.

For documentation describing the classes and methods, see the SAS Java Metadata Interface at
http://java.pc.sas.com/reference/api/sas/jOMA9.1_public/index.html.

Important Terms

A metadata type is a template that models the metadata for a particular kind of object.

A metadata object is an instance of a metadata type, such as the metadata describing a particular table or
column.

A namespace is a group of related metadata types and their properties. Names are used to partition metadata
into different contexts.

In SAS 9.1, the SAS Java Metadata Interface provides interfaces for metadata types defined in the SAS
namespace of the SAS Open Metadata Interface. The SAS namespace contains metadata types describing the
most commonly used application elements. These metadata types are described in SAS Namespace Types in
SAS 9.1 Open Metadata Interface: Reference.

Previous
Page

| Next Page | Top of
Page

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

SAS 9.1 Java Metadata Interface: User's Guide

Important Terms 5

Overview to Using the SAS Java Metadata Interface
SAS Java Metadata Interface software is provided to make it as simple as possible to use the functionality of
the SAS Metadata Server in a Java program. Using the SAS Java Metadata Interface, you can write Java client
programs that make use of SAS Open Metadata Architecture XML metadata objects as if they were Java
objects. There is no need to learn SAS Open Metadata Interface method calls or XML, although users must be
familiar with the metadata types in the SAS Metadata Model and flags and options supported by SAS Open
Metadata Interface IOMI Class methods, which are documented in SAS 9.1 Open Metadata Interface:
Reference .

The interface adheres to Java distributed programming standards such as CORBA and JDBC, so that when
you write a Java client program that uses the SAS Metadata Server−−whether that program is an applet, a
stand−alone application, a servlet, or an enterprise JavaBean−−you can focus your attention on exploiting the
features of the SAS Metadata Server rather than figuring out how to communicate with it.

The SAS Java Metadata Interface includes all the tools that you need to work with the SAS Metadata Server
from a Java client. Previous knowledge of distributed programming standards is not required, nor are you
required to license any third−party software.

Previous
Page

| Next Page | Top of
Page

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

Overview to Using the SAS Java Metadata Interface 6

Creating a SAS Java Metadata Interface Client
This section introduces the steps necessary to construct and execute a SAS Java Metadata Interface client that
reads and writes metadata.

The first step in developing and running a client program is to make sure you have access to a properly
configured server. Refer to the SAS 9.1 Metadata Server: Setup Guide for information about server
configuration.

After the metadata server has been configured, you can begin developing a SAS Java Metadata Interface
client that uses it. All SAS Java Metadata Interface clients access a SAS Metadata Server using the following
steps:

Instantiate an object factory that defines Java objects representing the SAS Metadata Model.1.
Invoke event handling and messaging mechanisms.2.
Connect to the metadata server referencing the appropriate SAS Open Metadata Interface method
class.

3.

Create Java metadata object instances representing SAS Open Metadata Interface metadata objects
and get and set attributes and associations as needed.

4.

Issue the UpdateMetadataAll method to persist the changes to the metadata server.5.

To get started, you can put together a simple client application by composing the examples given for each
step. Then you can continue to read the additional documentation in this user's guide and learn about Java
client programming for the SAS Metadata Server in greater detail.

Read the following topics for instructions about how to implement the preceding steps:

Instantiating an Object Factory and Connecting to the Metadata Server1.
Getting Information About Repositories2.
Creating Objects3.
Getting and Updating Existing Objects4.
Deleting Objects5.

Previous
Page

| Next Page | Top of
Page

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

Creating a SAS Java Metadata Interface Client 7

Instantiating an Object Factory and Connecting to the
Metadata Server
This topic contains an example of the SAS Java Metadata Interface calls necessary to instantiate an object
factory and to connect to the SAS Metadata Server.

You create an object factory by instantiating the MdObjectFactory class. This class contains all of the
methods necessary to create Java metadata objects and to invoke Java event handling and messaging
mechanisms.

You create a connection to the server using a method from the MetadataWorkspace class. The
MetadataWorkspace class provides task−oriented methods for connecting to the metadata server. For
example,

if the purpose of the SAS Java Metadata Interface client is to read and write metadata, you use the
makeOMRConnection method. This method implements the SAS Open Metadata Interface IOMI
class.

•

if its purpose is to manage the metadata server, you use the makeIServerConnection method. This
method implements the SAS Open Metadata Interface IServer class.

•

if the purpose is to make an authorization request of the authorization facility, which is part of the
SAS Metadata Server, then you use the makeISecurityConnection method. This method implements
the SAS Open Metadata Interface ISecurity class.

•

Note: In SAS 9.1, the SAS Java Metadata Interface provides an interface to IOMI methods for SAS
namespace metadata types. That is, Java methods are provided for reading, writing, and updating metadata
objects representing application elements. To read or write metadata types in the REPOS namespace
(repository objects) or to issue methods from the other SAS Open Metadata Interface method classes, you can
pass XML−formatted method calls via the Java implementation for the DoRequest method. The Java interface
for the DoRequest method is in the SAS Java Metadata Interface MetadataUtil class.

An object factory is instantiated one time only for a client. Depending on the tasks that you wish to perform,
you might need to disconnect and reconnect to the metadata server using a different connection method. The
following example creates a single connection using the makeOMRConnection method.

Here is the connection code:

 /**
 * This statement instantiates the object factory.
 */
 private MdObjectFactory mdFact = MdObjectFactory.getInstance();

 /**
 * The following statements define variables for server connection properties,
 * instantiate the MetadataWorkspace class, issue a makeOMRConnection method,
 * and check exceptions if there is an error connecting.
 */
 public boolean Example1()
 {
 String serverName = "server_machine_name";
 String serverPort = "8561";
 String serverUser = "username";
 String serverPass = "password";

Instantiating an Object Factory and Connecting to the Metadata Server 8

 MetadataWorkspace workspace = MetadataWorkspace.getWorkspace();

 try
 {
 // This statement passes server connection properties to the makeOMRConnection method.
 workspace.makeOMRConnection(serverName, serverPort , serverUser, serverPass);

 // The following statements define error handling and error reporting messages.
 }catch (MdException e)
 {
 Throwable t = e.getCause();
 if(t != null)
 {
 String ErrorType = e.getSASMessageSeverity();
 String ErrorMsg = e.getSASMessage();
 if(ErrorType == null)
 {
 // If there is no SAS server message, write a Java/CORBA message.
 }else{
 // If there is a message from the server:
 System.out.println(ErrorType + ": " + ErrorMsg);
 }
 if(t instanceof org.omg.CORBA.COMM_FAILURE)
 {
 // If there is an invalid port number or host name:
 System.out.println(e.getLocalizedMessage());
 }else if(t instanceof org.omg.CORBA.NO_PERMISSION)
 {
 // If there is an invalid user ID or password:
 System.out.println(e.getLocalizedMessage());
 }
 }else{
 // If we cannot find a nested exception, get message and print.
 System.out.println(e.getLocalizedMessage());
 }
 // If there is an error, print the entire stack trace.
 e.printStackTrace();
 return false;
 }catch (RemoteException e)
 {
 // Unknown exception.
 e.printStackTrace();
 return false;
 }

 // Set the log and system output locations for the log and output streams.
 try
 {
 Java.io.FileOutputStream mylogFile = new Java.io.FileOutputStream("Testlog.log");
 Java.io.FileOutputStream myoutputFile = new Java.io.FileOutputStream("TestOutput.log");
 Util.setLogStream(mylogFile);
 Util.setOutputStream(myoutputFile);
 }catch (Java.io.FileNotFoundException e)
 {
 // If an error occurs during logging setup, then exit.
 e.printStackTrace();
 return false;
 }

 // If no errors occur, then a connection is made.
 return true;

SAS 9.1 Java Metadata Interface: User's Guide

Instantiating an Object Factory and Connecting to the Metadata Server 9

 }

From this example, we have

a factory in which to create Java objects•
log and output location definitions•
an available connection to the server.•

We can now get information about repositories on the server and create metadata object instances.

Previous
Page

| Next Page | Top of
Page

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

SAS 9.1 Java Metadata Interface: User's Guide

Instantiating an Object Factory and Connecting to the Metadata Server 10

Getting Information About Repositories
Before you can read or write metadata, you must identify the repositories registered on a given metadata
server. You will need to be familiar with the repository identifiers in order to indicate which repository to
update. You can list the repositories on a server by using the getRepositories method. The getRepositories
method exists in the MetadataUtil class.

Here is sample code that issues a getRepositories call:

 public List Example2()
 {
 try{
 // Print a descriptive message about the request.
 System.out.println("The Repositories contained on this SAS Metadata Server are: ");
 // Get a list of repositories.
 List reposList = MetadataUtil.getRepositories();
 Iterator iter = reposList.iterator();
 while(iter.hasNext())
 {
 CMetadata repository = (CMetadata)iter.next();
 Util.printOutputln("Repository: "
 + repository.getName()
 + ", "
 + repository.getFQID());
 }
 CMetadata mainRepos = (CMetadata)reposList.get(0);
 Util.printOutputln("\n");
 return reposList;
 }catch (MdException e)
 {
 e.printStackTrace();
 }
 return new Vector(1);
 }

Here is an example of the output you might receive from the call:

The Repositories contained on this metadata server are:
Repository: DW: Demo Warehouse, A0000001.A5K2EL3N
Repository: ENV: Demo Warehouse, A0000001.A50TC1Z2
Repository: ENV: Codegen Test Env, A0000001.A5V79M59
Repository: DW: Codegen, A0000001.A5SHTOLR

The two−part number in each line is the repository identifier. The first part (A0000001) is the repository
manager identifier and is the same for all repositories. The second part is the unique repository ID. This is the
identifier that we will use to read and write metadata.

The CMetadata interface in this example is the base interface used to describe all metadata objects. These
method parameters take in a CMetadata object to allow for the methods to be used with any SAS Open
Metadata Interface metadata object.

Previous
Page

| Next Page | Top of
Page

Getting Information About Repositories 11

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

SAS 9.1 Java Metadata Interface: User's Guide

Getting Information About Repositories 12

Creating Objects
You can create objects using the methods in the MdObjectFactory class. You must create a Java object
instance for every new metadata object and for every existing metadata object that you want to update or
delete in a SAS Metadata Repository. You must also create an object store in which to hold the objects. The
object store maintains a list of the objects that need to be persisted to the server at the same time.

The following code creates a new PhysicalTable metadata object instance, a new Column metadata object
instance, and a new TextStore metadata object instance; it then creates associations between these object
instances. After they are created, they are persisted to repository A0000001.A5K2EL3N (Demo Warehouse).

Notes:

You can identify the repository in which to persist an object by specifying its repository identifier in
the createComplexMetadataObject method. Or, you can use methods from the CMetadata interface.
The CMetadata interface enables you to determine the identifier of a target repository and reference it
in the createComplexMetadataObject method as a variable.

•

Because these are new objects, they will be assigned metadata object identifiers when they are
persisted to the SAS Metadata Server. A request creating objects to represent existing metadata
objects would need to determine their metadata object instance identifiers prior to persisting the
updates. For more information, see Getting and Updating Existing Objects.

•

 /**
 * This is a good example of how a wizard−style
 * user interface would utilize the MdObjectFactory classes.
 *
 *
 * @param Repository CMetadata Object with id of form: A0000001.A5K2EL3N
 */
 public void Example3(CMetadata Repository)
 {
 if(Repository != null)
 {
 try
 {
 // We have a Repository object.
 // We use the reposFQID method to get its fully qualified ID.
 String reposFQID = Repository.getFQID();

 // The reposFQID method returns the 17−character repository identifier.
 // We need the unique, 8−character repository ID to create an object.
 // We use the substring method to get the unique portion of the identifier.
 String ReposID = reposFQID.substring(reposFQID.indexOf('.') + 1, reposFQID.length());

 // Now we create an object store to hold all of our objects.
 // This will be used to maintain a list of objects to persist to the server.
 MdObjectStore myStore = MdObjectFactory.createObjectStore();

 // We create a PhysicalTable object named "TableTest".
 PhysicalTable myTable = (PhysicalTable)MdObjectFactory.createComplexMetadataObject
 (myStore,
 null,
 "TableTest",
 MdObjectFactory.PHYSICALTABLE,
 ReposID);

Creating Objects 13

 // We create a Column object named "ColumnTest".
 Column myColumn = (Column)MdObjectFactory.createComplexMetadataObject
 (myStore,
 null,
 "ColumnTest",
 MdObjectFactory.COLUMN,
 ReposID);

 // We set attributes of the column.
 myColumn.setColumnName("MyTestColumnName");
 myColumn.setSASColumnName("MyTestSASColumnName");
 myColumn.setDesc("This is a description of a column");

 // We use the get"AssociationName"() method to associate the column with the
 // table. This method creates an AssociationList object for the table object.
 // We could have specified get"AssociationName"(false)" here, but this method
 // does not go to the server for temporary objects. If the object already existed,
 // specifying the "false" flag will tell it not to go to the server to get the
 // list of columns. The Add(MetadataObject) method adds myColumn to the AssociationList.

 myTable.getColumns().add(myColumn);

 // We create a note for the column named "NoteTest".
 TextStore myNote = (TextStore)MdObjectFactory.createComplexMetadataObject
 (myStore,
 null,
 "NoteTest",
 MdObjectFactory.TEXTSTORE,
 ReposID);

 // We use the set"AttributeName" method to set stored text with the note.

 myNote.setStoredText("I have some information about the column");

 // We associate the note with the column.
 myColumn.getNotes().add(myNote);

 // We issue an update request on an object in the object store. When one object
 // is updated, all objects in the store's change list get persisted to the server.

 myTable.updateMetadataAll();

 // Now we need to clean up the objects, if we are no longer using them.
 myStore.dispose();
 }catch (MdException e)
 {
 e.printStackTrace();
 }
 }
 }

For more information about object stores and AssociationList objects, see SAS Java Metadata Interface
Overview.

Previous
Page

| Next Page | Top of
Page

SAS 9.1 Java Metadata Interface: User's Guide

Creating Objects 14

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

SAS 9.1 Java Metadata Interface: User's Guide

Creating Objects 15

Getting and Updating Existing Objects
In order to update an existing metadata object, you must know its metadata object instance identifier. The
SAS Java Metadata Interface provides several ways for getting information about existing objects. This
section provides an example of one way you might read information about the metadata objects created in
Creating Objects. The example uses the getMetadataObjectsSubset method from the MetadataUtil class.

The getMetadataObjectsSubset method gets a list of metadata objects in the repository of a requested type and
enables you to filter the request with SAS Open Metadata Interface templates and XMLSELECT statements.
In the example that follows, flags and templates are used to retrieve all PhysicalTable objects named
"TableTest," their associated Column and Note metadata objects, and specific attributes of all of the objects.

Note: The <TEMPLATES> and <XMLSELECT> elements submit input XML strings to the metadata server
as a string literal (a quoted string). To ensure that the string is parsed correctly, you must escape any
additional double quotation marks specified in the input string, such as those used to denote XML attribute
values, to indicate that they should be treated as characters. In this example, additional quotation marks are
escaped by using a backslash (\) character. For example, "" is specified as \"\".

The objects are returned in an object store and are editable.

 /**
 * This method reads the newly created objects back from the server.
 * @param repository1 identifies the repository from which to read our objects.
 */
 public void Example4(CMetadata repository1)
 {
 if(repository1 != null)
 {
 try
 {
 // First we create an MdObjectStore as a container for all the objects
 // we will create/read/persist to the server as one collection.
 MdObjectStore myStore = MdObjectFactory.createObjectStore();

 // The following statements define GetMetadataObjectsSubset options strings.
 // These XML strings are used in conjunction with SAS Open Metadata Interface
 // flags. The <XMLSELECT> element specifies filter criteria. The <Templates>
 // element specifies the metadata properties to be returned for each object from
 // the server. Note the \ (backslashes) used to escape the quotation marks.
 String sOptions = "<XMLSELECT Search=\"@NAME='TableTest'\"/>"+
 "<TEMPLATES><PhysicalTable Id=\"\" Name=\"\" Desc=\"\">"+
 "<Columns/></PhysicalTable>"+
 "<Column Id=\"\" Name=\"\" Desc=\"\"><Notes/></Column>" +
 "<TextStore Id=\"\" Name=\"\" Desc=\"\" StoredText=\"\"/>" +
 "</TEMPLATES>";
 // The following statements go to the server with a fully qualified repository ID,
 // specify the type of object we are searching for (MdObjectFactory.PHYSICALTABLE),
 // and invoke the OMI_XMLSELECT, OMI_TEMPLATE, and OMI_GET_METADATA flags.
 // OMI_GET_METADATA tells the server to get all of the attributes specified in
 // the template for each object that is returned.
 List PhysicalTableList = (MetadataUtil.getMetadataObjectsSubset(myStore,
 repository1.getFQID(),
 MdObjectFactory.PHYSICALTABLE,
 MetadataUtil.OMI_XMLSELECT |
 MetadataUtil.OMI_TEMPLATE |
 MetadataUtil.OMI_GET_METADATA,

Getting and Updating Existing Objects 16

 sOptions));
 Iterator iter5 = PhysicalTableList.iterator();
 while(iter5.hasNext())
 {
 PhysicalTable ptable = (PhysicalTable)iter5.next();

 Column columnTest = null;
 TextStore noteTest = null;

 // We get the list of columns for this table.
 AssociationList columns = ptable.getColumns();

 // Then get individual columns.
 for(int i=0; i <columns.size(); i++)
 {
 columnTest = (Column)columns.get(i);
 if(columnTest != null)
 {
 // We now have a column, and request to get its notes.
 AssociationList columnNotes = columnTest.getNotes();
 for(int j=0; j <columnNotes.size(); j++)
 {
 if(columnNotes.size() > 0)
 {
 noteTest = (TextStore)columnNotes.get(0);
 if(noteTest != null)
 {
 // We now have a valid note, and request to print its attributes.
 System.out.println("TextStore Object: " +
 noteTest.getName() +
 ", " +
 noteTest.getFQID() +
 ", " +
 noteTest.getStoredText());
 }
 }
 }
 }
 }// end for columns

 // We now have a table, a column, and a note that we can update.
 // These statements modify the descriptions of the three objects.

 ptable.setDesc("The description of the table");
 columnTest.setDesc("The description of the column");
 noteTest.setDesc("The description of the note");

 //This statement persists the objects to the server.
 ptable.updateMetadataAll();
 }

 // We have completed our updates so we will dispose of the objects.
 myStore.dispose();

 }catch (MdException e)
 {
 e.printStackTrace();

 }

 }

SAS 9.1 Java Metadata Interface: User's Guide

Getting and Updating Existing Objects 17

 }

Here is the output of the code:

TextStore Object: NoteTest, A5K2EL3N.AN0000I3, I have some information about the column

The output prints the modified note's metadata type (TextStore), its object name (NoteTest), its object instance
identifier (A5K2EL3N.AN0000I3), and the content of its StoredText attribute ('I have some information about
the column').

Previous
Page

| Next Page | Top of
Page

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

SAS 9.1 Java Metadata Interface: User's Guide

Getting and Updating Existing Objects 18

Deleting Objects
This is an example of how to delete metadata objects. As when updating objects, you must populate Java
objects representing the server objects on the client before you can delete them. When you delete an object, all
of its dependent objects will automatically be deleted as well. A dependent object is an object that has a 1:1
cardinality with the specified object and cannot exist independently of the object. An example of a dependent
object is a Column. A Column object cannot exist in the SAS Metadata Model independently of some type of
table object.

In this example, we use the getMetadataObjectsSubset method to get the objects that we created and updated
in Creating Objects and in Getting and Updating Existing Objects and we use the deleteMetadataObjects
method to delete them. The getMetadataObjectsSubset method is from the MetadataUtil class. The
deleteMetadataObjects method is from the MdObjectFactory class.

/**
 * Delete the objects we just created in repository1.
 * @param repository1
 */
 public void Example6(CMetadata repository1)
 {
 if(repository1 != null)
 {
 try
 {

 MdObjectStore myStore = MdObjectFactory.createObjectStore();
 // The following statements define GetMetadataObjectsSubset options strings.
 // These XML strings are used in conjunction with SAS Open Metadata Interface
 // flags. The <XMLSELECT> element specifies filter criteria.
 // The <Templates> element specifies the metadata properties to be returned
 // for each object from the server.
 String sOptions = "<XMLSELECT Search=\"@NAME='TableTest'\"/>"+
 "<TEMPLATES><PhysicalTable Id=\"\" Name=\"\" Desc=\"\"/>" +
 "</TEMPLATES>";
 // This statement creates a deleteTemplate object.
 String deleteTemplate = "<TEMPLATES><PhysicalTable Id=\"\" Name=\"\">"+
 "<Columns/><Notes/></PhysicalTable>"+
 "<Column><Notes/></Column></TEMPLATES>";

 // The following statements go to the server with a fully qualified repository ID,
 // specify the type of object we are searching for (MdObjectFactory.PHYSICALTABLE),
 // and invoke the OMI_XMLSELECT, OMI_TEMPLATE, and OMI_GET_METADATA flags.
 // OMI_GET_METADATA tells the server to get all of the attributes specified in
 // the template for each object returned.

 List PhysicalTableList = (MetadataUtil.getMetadataObjectsSubset(myStore,
 repository1.getFQID(),
 MdObjectFactory.PHYSICALTABLE,
 MetadataUtil.OMI_XMLSELECT |
 MetadataUtil.OMI_TEMPLATE |
 MetadataUtil.OMI_GET_METADATA,
 sOptions));
 // The following statements remove the objects returned by the preceding query
 // from the client and from the server. The code loops through the list
 // of objects and prints the name of each object before deleting it.
 // An event is sent to all object stores to tell them to delete the objects,
 // and to notify their users of a change in the store.

Deleting Objects 19

 Iterator iter5 = PhysicalTableList.iterator();
 while(iter5.hasNext())
 {
 PhysicalTable ptable = (PhysicalTable)iter5.next();
 Set assocNames = ptable.getAssocs().keySet();
 Iterator iter9 = assocNames.iterator();
 System.out.println("PhysicalTable: Associations");
 while(iter9.hasNext())
 {
 System.out.println((String)iter9.next());
 }
 MdObjectFactory.deleteMetadataObjects(ptable,deleteTemplate);
 }
 myStore.dispose();

 }catch (MdException e)
 }
 }

See SAS Java Metadata Interface Overview to learn more about the object factory and methods for reading
and writing metadata. For an executable version of this example, and the examples in Creating Objects,
Getting and Updating Existing Objects, and a few additional examples, see SAS Java Metadata Interface
Program.

Previous
Page

| Next Page | Top of
Page

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

SAS 9.1 Java Metadata Interface: User's Guide

Deleting Objects 20

Method Classes Summary
A SAS Java Metadata Interface client that reads and writes metadata objects references the following
com.sas.metadata method classes.

com.sas.metadata Method Classes

Class Name Description

MdObjectFactory Instantiates the Java object factory and contains methods for creating and
deleting Java objects representing server metadata. In the remote version,
this class is called MdFactoryImpl.

MetadataWorkspace Contains methods for connecting to the server. In the remote version, this
class is called MdOMRConnection.

CMetadata Specifies the base interface used to describe SAS Open Metadata
Interface objects.

MdEvent Contains event handling methods.

MetadataUtil Contains methods for getting and setting server metadata objects and
their attributes. In the remote version, this class is called MdOMIUtil.

AssociationList Contains methods for defining and maintaining associations.

MdObjectStore Specifies the container for created/modified metadata objects.

MdServerStore Specifies the main object cache for interactions with the metadata server.

Util Contains generic methods, such as debugging methods. In the remote
version, this class is called MdUtil.

Previous
Page

| Next Page | Top of
Page

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

Method Classes Summary 21

Working with the MdObjectFactory Class
The MdObjectFactory class instantiates the Java object factory and provides methods for creating and deleting
Java objects, for invoking the SAS Java Metadata Interface event handling interface, and for deleting the
object factory.

Instantiating the Object Factory

The object factory is instantiated one time only for a SAS Java Metadata Interface client before any other
tasks are performed using the getInstance method:

MdObjectFactory objf = MdObjectFactory.getInstance();

Creating Java Objects

After you have instantiated the object factory and connected to the server (using the makeOMRConnection
method of the MetadataWorkspace class), you can then use the methods in the MdObjectFactory class to
create objects on the client. MdObjectFactory provides two basic methods for creating objects:

createComplexMetadataObject
creates a complex object that stores information about both a metadata object's attributes as well as its
potential associations. You can use this method to create an object representing a new or existing
object that will be persisted to the server.

createSimpleMetadataObject
creates a simple object that consists only of a metadata object's attributes. Simple objects are used
primarily to store information that is read to the client from the server and that cannot be persisted to
the server. In order to edit information returned from the server, you must create a complex version of
the object.

The following are examples of the createComplexMetadataObject method. A method call that creates a
complex object describing a new metadata object has the form:

MdObjectFactory.createComplexMetadataObject(myNewObjectName,
 metadata_type,
 8char_target_repository_identifier)

A method that creates a complex object representing an object that already exists on the metadata server has
the form:

MdObjectFactory.createComplexMetadataObject(myNewObjectName,
 metadata_type,
 identifier_of_existing_metadata_object)

You can obtain the identifiers of all repositories registered on a metadata server by using the getRepositories
method of the MetadataUtil class. You can obtain the identifier of an existing metadata object instance by
using one of the getMetadataObject methods of the MetadataUtil class. For more information about repository
and metadata object instance identifiers, see Identifying Metadata in SAS 9.1 Open Metadata Interface:
Reference.

Working with the MdObjectFactory Class 22

Invoking the Event Handling Interface

The event handling interface is implemented by referencing the addMdObjectFactoryListener method. The
addMdObjectFactoryListener method is instantiated one time only, either directly before or after the server
connection is made. The event handling interface provides action events for all read, write, and delete calls in
the SAS Java Metadata Interface client. It also implements internal messaging between objects in an object
store and between object stores in the server store to ensure consistency between the objects that are persisted
to the server.

The event handling interface operates as follows: the object store that performs a write action to the server
sends action events to all other object stores, indicating which objects have changed. The other object stores
can either veto the action or automatically update their objects to match the object store that was written to the
server.

If a listener is added, it must be removed at the end of use.

Deleting Objects

To delete a metadata object from the server, you must create an object representing it in the SAS Java
Metadata Interface client and then delete both server and client objects by calling the deleteMetadataObject
method of the MdObjectFactory class. Calling this method will removes the object from the server and clears
its object store locally.

A new object that was created on the client and persisted to the server can be deleted from its object store by
calling the CMetadata delete method. The CMetadata delete method marks the client object as deleted, such
that it will be removed the next time the UpdateMetadataAll method is called on the object store.

The object store created to hold the client object will remain available to the client until it is disposed of using
the MdObjectStore.dispose method. After the dispose method is called, all child stores and objects contained
within this object store will be removed from memory.

Deleting the Object Factory

Use the MdObjectFactory dispose method to remove the object factory from memory before closing the client
application. The method will also remove any object stores that were not removed by another means.

Previous
Page

| Next Page | Top of
Page

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

SAS 9.1 Java Metadata Interface: User's Guide

Invoking the Event Handling Interface 23

Working with the MetadataWorkspace Class
The MetadataWorkspace class contains methods for connecting to and disconnecting from the SAS Metadata
Server. Before you can issue a MetadataWorkspace method, you must instantiate a workspace as follows:

MetadataWorkspace workspace = MetadataWorkspace.getWorkspace();
workspace.makeOMRConnection(serverName, serverPort, serverUser,
 serverPassword);

A SAS Java Metadata Interface client that reads and writes metadata uses the makeOMRConnection method
to connect to the metadata server. It disconnects from the server using the closeOMRConnection method.

The MetadataWorkspace class also provides methods for connecting to the server using the SAS Open
Metadata Interface IServer and ISecurity method classes. The IServer method class provides methods for
administering SAS metadata repositories and the metadata server. The ISecurity class contains methods for
defining authorization requests for the SAS Open Metadata Architecture Authorization Facility. The SAS Java
Metadata Interface does not provide wrapper methods for IServer and ISecurity methods in SAS 9.1;
however, XML−formatted IServer and ISecurity method calls can be passed to the server through the
DoRequest method of the MetadataUtilities class.

Previous
Page

| Next Page | Top of
Page

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

Working with the MetadataWorkspace Class 24

Working with the CMetadata Class
The CMetadata class is the intermediate interface used to describe all metadata objects, such as a
PhysicalTable, Column, Person, or a LogicalServer. The CMetadata interface also contains the basic attributes
for all metadata objects, such as Name, Description, FQID, MetadataCreated time, and MetadataUpdated
time. All metadata objects inherit these attributes. They also inherit the routines used to get and set these
attributes. For example, routines such as getName and setName or getDesc and setDesc are all inherited from
CMetadata.

Other frequently used CMetadata methods are summarized in the following table.

Frequently Used CMetadata Methods

Method Name Description

delete Marks an object as deleted in its parent object store and
does not allow for retrieval of that object.

dispose Removes all links to an object and clears it from
memory.

getCMetadataType Returns the metadata type of an object.

getMdObjectAssociation/setMdObjectAssociation Get or set a specific association for an object on the
client.

getObjectStore Gets the object store associated with a named object.

getRepositoryID Returns an object's repository identifier.

UpdateMetadataAll Sends new and modified objects to the server.

Previous
Page

| Next Page | Top of
Page

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

Working with the CMetadata Class 25

Working with the MdEvent Class
An event is a notification of a change in a object store, object, or the state of an object. Events for a store
notify the creation, deletion, and modification of objects as a collection. These are the results of a
client−initiated server operation such as creation, modification, or deletion of objects on the server. Object
events provide notification of modification of an object's attributes or associations. Usually these events are
generated from the object being modified external to the object's store.

There are two types of events: primary events and secondary events. Primary events are generated when
objects are added to the server, when objects are modified on the client and persisted to the server, and when
objects are deleted on the server. Primary events are sent to object stores from the server from the operation in
MetadataUtil and the object store handles the events through its listeners. Primary events are typically the
result of an UpdateMetadataAll or a DeleteMetadataObject method call. For example, when you issue a
MdObjectFactory.deleteMetadataObject(myMetadataObject) call, the client sends a DeleteMetadata method
call to the server and the server returns a list of affected associated objects. This list of associated objects is
processed in the factory and a Delete event is sent to all object stores to notify them of the repercussions of the
deletion.

When objects are created on the server, the events are generated in much the same way. The client sends input
XML to the server, and the server returns output XML. The client compares the identifiers in the client and
server XML and changes the object identifiers on the client to match the newly created server objects. These
objects are updated in all object stores on the client. Created events are generated in each store for the objects
in that store that were persisted to the server and have new identifiers.

Secondary events are events that occur in the client. These are sometimes referred to as vetoable change
events. A VetoableChangeEvent is generated by an object store that is to receive updated objects from its
parent store. This event allows the application to "veto," or disallow, the update of the objects. This is useful
when an application has more than one view of the metadata and you want to override local changes. It is also
useful for determining the objects involved in a change.

The following figure illustrates the object store update/create event cycle.

Working with the MdEvent Class 26

The following figure illustrates the events scenario and write logic.

SAS 9.1 Java Metadata Interface: User's Guide

Working with the MdEvent Class 27

A description of each step follows:

An updateMetadataAll() method is called on an object, such as myTable.updateMetadataAll().1.
The SAS Java Metadata Interface calls the SAS Open Metadata Interface doRequest() method, which
sends input XML to the server and returns output XML.

2.

The SAS Java Metadata Interface retrieves the new object ID from the output XML.3.
Before objects are persisted to the server, they have temporary identifiers on the client. In this step,
the SAS Java Metadata Interface updates the object's temporary identifier to match the identifier
assigned by the server.

4.

The SAS Java Metadata Interface updates the object's associations to reflect the new identifier.5.
The object's identifier is updated in any existing child stores.6.
The object store event listener fires an ObjectModified event to report the modifications to the server
store.

7.

The updated object is flushed to its parent store.8.
The updated object is then copied into the parent store, so that the child store and the parent store
contain the same object.

9.

The object is retrieved from its object store using the new object identifier.10.
The server store event listener fires an ObjectsModified event to notify other object stores of the
updates.

11.

Previous
Page

| Next Page | Top of
Page

SAS 9.1 Java Metadata Interface: User's Guide

Working with the MdEvent Class 28

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

SAS 9.1 Java Metadata Interface: User's Guide

Working with the MdEvent Class 29

Working with the MetadataUtil Class
The MetadataUtil class provides wrapper methods for methods in the SAS Open Metadata Interface IOMI
class. MetadataUtil methods enable you to get the properties of existing metadata objects on the SAS
Metadata Server. You can then create Java objects representing the SAS Open Metadata Interface metadata
objects and get and set additional or modified properties.

The MetadataUtil class also provides AddMetadata, UpdateMetadata, and DoRequest methods. The
AddMetadata and UpdateMetadata methods enable you to pass XML−formatted metadata property strings to
update metadata objects on the server instead of creating Java objects. The DoRequest method enables you to
pass XML−formatted IServer and ISecurity class methods from a SAS Java Metadata Interface client.
Currently, the DoRequest method is the only Java interface for passing methods from these classes.

The following table summarizes the basic methods in the MetadataUtil class.

Basic MetadataUtil Methods

Method Name Description

getRepositories Gets the ID and name of all repositories registered on the metadata
server.

getMetadata Gets the ID and name of a specified metadata object.

getMetadataSimple Gets all attributes of a specified metadata object.

getMetadataAllDepths Gets all of the properties (attributes and associations) of a specified
metadata object.

getMetadataObjects Gets all metadata objects of the requested metadata type.

getMetadataObjectsSubset Gets a subset of the metadata objects of the requested metadata type.

AddMetadata Creates a SAS Open Metadata Interface metadata object on the server
that has the specified properties.

UpdateMetadata Updates a SAS Open Metadata Interface metadata object on the server
with the specified properties.

DoRequest Passes an XML−formatted method call to server.

For reference information about each method, see the SAS Java Metadata Interface at
http://java.pc.sas.com/reference/api/sas/jOMA9.1_public/index.html .

Using the "Get" Methods

The "get" methods allow you to query metadata repositories:

Use the getRepositories method to return the repository identifiers necessary to access a SAS
metadata repository.

•

Working with the MetadataUtil Class 30

If you are not sure of which metadata object you need to update, use the getMetadataObjects*
methods to list all methods of a specified metadata type. The getMetadataObjectsSubset method
enables you to qualify the objects that are retrieved by passing an XML search string.

•

Use the getMetadata* methods to retrieve all or specified sets of properties of a specific object.•

Most of these methods require you to pass SAS Open Metadata Interface flags and options to identify the
information that you want to retrieve. For example, the GetMetadataObjects* methods support the
OMI_XMLSELECT flag and use of an <XMLSelect> option to pass a search string. In addition, the
GetMetadata* methods support the OMI_TEMPLATE flag and a <TEMPLATE> option to enable you to
identify specific attributes and associations to retrieve in the form of a metadata property string, in addition to
other GetMetadata flags. The SAS Java Metadata Interface Get* methods support all of the flags and options
defined for the SAS Open Metadata Interface GetMetadataObjects and GetMetadata methods. Information
about these methods, flags, and options is provided in the IOMI Class documentation section of the SAS 9.1
Open Metadata Interface: Reference. See specifically the Summary Table of IOMI Flags, the Summary
Table of IOMI Options, Using IOMI Flags, and Constructing a Metadata Property String.

Usage information about SAS Open Metadata Interface flags and options is provided in the SAS 9.1 Open
Metadata Interface: User's Guide in the Overview of Querying Metadata Objects section. For information
about writing a search string, see Filtering a GetMetadataObjects Request. For information about creating
templates, see Using Templates. The interface also supports flags that enable you to query multiple
repositories at once. These types of queries are referred to as federated queries. For information about issuing
federated queries, see Retrieving Objects Across Multiple Repositories in the user's guide.

Using the AddMetadata and UpdateMetadata Methods

The AddMetadata and UpdateMetadata methods are wrappers for the SAS Open Metadata Interface
AddMetadata and UpdateMetadata methods. These methods accept an XML−formatted metadata property
string as input. See Constructing a Metadata Property String for information about how to write a metadata
property string.

DoRequest Method

The DoRequest method is a wrapper method for the SAS Open Metadata Interface DoRequest method. The
DoRequest method accepts an XML−formatted method call as input. Instructions for formatting an XML
method call are provided in DoRequest in the SAS 9.1 Open Metadata Interface: Reference.

Previous
Page

| Next Page | Top of
Page

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

SAS 9.1 Java Metadata Interface: User's Guide

Using the AddMetadata and UpdateMetadata Methods 31

Working with the AssociationList Class
The AssociationList class implements the Java List interface to manage the associations between metadata
objects. A SAS Open Metadata Interface metadata object instance is defined by its properties: a set of
attributes describe the characteristics of the object instance, and a set of associations describe its relationships
with other object instances. Native objects representing an instance's attributes are created by using
MdObjectFactory methods. AssociationList objects are created to manage an instance's associations. An
AssociationList object is required to represent each association name.

An AssociationList object is created and associated with a native object in one of two ways. The first way is
to create the AssociationList object and then call the set"AssociationName" method on the native object. For
example, if you want to add a column named "ColumnObject" to a table object named "TableObject" then you
would submit the following statements:

AssociationList Columns = new AssociationList(TableObject.ASSOCIATION_COLUMNS_NAME");
Columns.add(ColumnObject);
TableObject.setColumns(Columns);

In the preceding example,

the first statement creates an AssociationList object for the Columns association and names it
"Columns". ASSOCIATION_ASSOCIATIONNAME_NAME is a static variable representing the valid
association (or attribute) for an object.

•

the second statement adds an object named "ColumnObject" to the Columns AssociationList.•
the third statement associates the Columns AssociationList with object "TableObject" using the
set"AssociationName" method.

•

The second way an AssociationList object is created is by submitting a get"AssociationName" method on the
native object. This is the recommended approach for creating an AssociationList object. The following is an
example of a get"AssociationName" method call:

AssociationList Columns = TableObject.getColumns();
Columns.add(ColumnObject);

In the preceding example,

the first statement specifies to get a list from the server for object "TableObject" all of the objects that
have the Columns association name. If a Columns association does not exist, then an AssociationList
object is created on the client anyway.

•

the second statement adds object "ColumnObject" to the Columns AssociationList that was retrieved
or created.

•

Whenever you create an AssociationList object, the SAS Java Metadata Interface automatically creates an
AssociationList object representing the inverse association. For example, for each column listed by
getColumns above, the SAS Java Metadata Interface creates AssociationList objects in the object store
representing the inverse relationship and persists them to the server along with user−created objects. So, for
the preceding example, the ColumnObject.setTable(TableObject) would be explicitly done for the user by the
SAS Java Metadata Interface.

The default behavior when an AssociationList object is persisted to the server is to append or modify the
associations in the AssociationList object to the appropriate association list on the server. You can specify to

Working with the AssociationList Class 32

replace the entire AssociationList for a given association with a new one by passing the AL_UPDATEALL
flag with the set"AssociationName" method. This is done by setting a State on the AssociationList object as
follows:

TableObject.getColumns().setState(AssociationList.AL_UPDATEALL);

Previous
Page

| Next Page | Top of
Page

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

SAS 9.1 Java Metadata Interface: User's Guide

Working with the AssociationList Class 33

Working with the MdObjectStore Class
All Java objects that you create to add or update metadata on the metadata server must be persisted to the
server in an MdObjectStore object. The MdObjectStore object serves as a working container for objects that
need to be persisted to the server as a group. The object store automatically maintains lists of new, updated,
and deleted metadata objects. These lists are used to persist updates to the server and are also used by the
event handling interface to track changes among object stores.

An object store is created with the statement:

MdObjectStore store = MdObjectFactory.createObjectStore();

An object store should be deleted after its changes are persisted to the server. An object store is deleted using
the MdObjectStore dispose method.

Previous
Page

| Next Page | Top of
Page

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

Working with the MdObjectStore Class 34

Working with the MdServerStore Class
A server store is a special type of object store that is automatically created when you create the object factory.
This store contains a placeholder for all objects created or instantiated on the client in any object store, and for
all object stores. The store serves as a central event mechanism for the interface: all events from object stores
that update or delete objects from the server are sent as events through the server store, and all ID changes are
processed in the server store. A client does not need to query the server store when reading or writing
metadata; however, the store can be used to verify the existence of an object on the client. You can determine
if an object exists in the server store by issuing the following method:

 serverStore.getObject(myTable.getId());

Previous
Page

| Next Page | Top of
Page

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

Working with the MdServerStore Class 35

Working with the Util Class
The Util class contains methods used to invoke logging and to control message display within the SAS Java
Metadata Interface. Two types of logs can be produced: an XML client/server log and a debug log. The
client/server XML log, referred to as 'logging' within the interface documentation, is enabled with
MdObjectFactory.getInstance().setLoggingEnabled(true). The destination of the logging output stream is set
in Util.setLogStream(). By default, the XML client/server log is directed to standard output.

The debug log (referred to as 'debugging' or 'output') is enabled with the
MdObjectFactory.getInstance().setDebug(true). The debug log contains informational messages when an
object store is created or deleted and when an association is sent to the server. In addition, it can print the
content of the SAS Java Metadata Interface object stores. The destination of the debug output stream is set in
Util.setOutputStream.

Other methods in the Util class are used to print information to these logs. The printOutputln() method prints a
line of output to the debug log, and the same type of methods are available for the printLoglnClient/Server()
methods.

Previous
Page

| Next Page | Top of
Page

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

Working with the Util Class 36

SAS Java Metadata Interface Program
The following is an executable file that contains the code samples described in Overview to Using the SAS
Java Metadata Interface. In addition, code is provided that lists the metadata types available on the server, all
PhysicalTable objects on the server, and all of the attributes and associations of a specific PhysicalTable
object.

/**
 * Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513
 */

package com.sas.metadata;

import com.sas.iom.SAS.*;
import com.sas.meta.*;
import com.sas.meta.SASOMI.*;
import java.beans.*;
import java.rmi.*;
import java.text.*;
import java.util.*;
/**
 * This is a test class that contains the examples for SAS Java Metadata Interface.
 *
 */
public class MdTesterExamples
{

 /**
 * This is the object factory used to create objects.
 */
 private MdObjectFactory mdFact = MdObjectFactory.getInstance();

 /**
 * Default constructor
 */
 public MdTesterExamples()
 {
 mdFact.setDebug(true);
 mdFact.setLoggingEnabled(true);
 if(Example1())
 {
 Util.printOutputln("Connected...");//$NON−NLS−1$
 }else{
 Util.printOutputln("Error Connecting...");//$NON−NLS−1$

 }
 List repositories = Example2();
 Example3();
 Example4((CMetadata)repositories.get(0));
 Example5((CMetadata)repositories.get(0));
 Example6((CMetadata)repositories.get(0));
 List tables = Example7((CMetadata)repositories.get(0));
 Example8(tables);
 Example9(((CMetadata)repositories.get(0)).getId());
 System.gc();
 System.exit(1);
 }

SAS Java Metadata Interface Program 37

 /**
 * This example makes a connection to the metadata server and checks
 * exceptions if there is an error connecting. The server name, port,
 * user, and password variables must be substituted with actual values.
 * @return True if the connection was successful
 */
 public boolean Example1()
 {
 String serverName = "MACHINE_NAME";//$NON−NLS−1$
 String serverPort = "9999";//$NON−NLS−1$
 String serverUser = "USERNAME";//$NON−NLS−1$
 String serverPass = "PASSWORD";//$NON−NLS−1$
 MetadataWorkspace workspace = MetadataWorkspace.getWorkspace();

 try
 {
 // This statement makes the connection and sets the handle in the workspace.
 workspace.makeOMRConnection(serverName, serverPort , serverUser, serverPass);

 // The following statements define error handling and error reporting messages.
 }catch (MdException e)
 {
 Throwable t = e.getCause();
 if(t != null)
 {
 String ErrorType = e.getSASMessageSeverity();
 String ErrorMsg = e.getSASMessage();
 if(ErrorType == null)
 {
 // If there is no SAS server message, write a Java/CORBA message.
 }else{
 // If there is a message from the server:
 System.out.println(ErrorType + ": " + ErrorMsg);//$NON−NLS−1$
 }
 if(t instanceof org.omg.CORBA.COMM_FAILURE)
 {
 // If there is an invalid port number or host name:
 System.out.println(e.getLocalizedMessage());
 }else if(t instanceof org.omg.CORBA.NO_PERMISSION)
 {
 // Is there is an invalid user ID or password:
 System.out.println(e.getLocalizedMessage());
 }
 }else{
 // If we cannot find a nested exception, get message and print.
 System.out.println(e.getLocalizedMessage());
 }
 // If there is an error, print the entire stack trace.
 e.printStackTrace();
 return false;
 }catch (RemoteException e)
 {
 // Unknown exception.
 e.printStackTrace();
 return false;
 }

 // if no errors occur, then a connection is made.
 return true;
 }

SAS 9.1 Java Metadata Interface: User's Guide

SAS Java Metadata Interface Program 38

 /**
 * This example retrieves a list of the repositories registered on the server.
 * @return List The list of available repository IDs
 */
 public List Example2()
 {
 try{
 // Get a list of repositories.
 System.out.println("The repositories contained on this server are: ");//$NON−NLS−1$
 List reposList = MetadataUtil.getRepositories();
 Iterator iter = reposList.iterator();
 while(iter.hasNext())
 {
 CMetadata repository = (CMetadata)iter.next();
 Util.printOutputln("Repository: " + //$NON−NLS−1$
 repository.getName()
 + ", "
 + repository.getFQID());//$NON−NLS−1$
 }
 Util.printOutputln("\n");//$NON−NLS−1$
 return reposList;
 }catch (MdException e)
 {
 e.printStackTrace();
 }
 return new Vector(1);
 }

 /**
 * This example lists the metadata types available on the metadata server
 * and their descriptions.
 */
 public void Example3()
 {
 try{
 // Get a list of metadata types available on the server.
 System.out.println("The object types contained on this metadata server are: ");//$NON−NLS−1$
 List Names = new Vector(100);
 List Descs = new Vector(100);
 MetadataUtil.getTypes(Names,Descs);
 Iterator iter2 = Names.iterator();
 Iterator iter3 = Descs.iterator();
 while(iter2.hasNext() &iter3.hasNext())
 {
 String name = (String)iter2.next();
 String desc = (String)iter3.next();
 System.out.println("Type: " + //$NON−NLS−1$
 name +
 ", desc: " + //$NON−NLS−1$
 desc);
 }
 System.out.println("\n");//$NON−NLS−1$
 }catch (MdException e)
 {
 e.printStackTrace();
 }

SAS 9.1 Java Metadata Interface: User's Guide

SAS Java Metadata Interface Program 39

 }

 /**
 * This method creates a table, column, and note on the column, using
 * the store methods. It is a good example of how a wizard−style user interface
 * would utilize the classes would utilize the MdObjectFactory classes.
 *
 * @param Repository CMetadata Object with id of form: A0000001.A5KHUI98
 */
 public void Example4(CMetadata Repository)
 {
 if(Repository != null)
 {
 try
 {
 // We have a Repository object.
 // We use the reposFQID method to get its fully qualified ID.
 String reposFQID = Repository.getFQID();

 // We need the short Repository ID to create an object.
 // We use the ReposId method to get the short ID.
 String ReposID = reposFQID.substring(reposFQID.indexOf('.') + 1, reposFQID.length());

 // Now we create an object store to hold all our objects.
 // This will be used to maintain a list of objects to persist to the server.
 MdObjectStore myStore = mdFact.createObjectStore();

 // We create a PhysicalTable object named "TableTest".
 PhysicalTable myTable = (PhysicalTable)mdFact.createComplexMetadataObject
 (myStore,
 null,
 "TableTest",
 mdFact.PHYSICALTABLE,
 ReposID);//$NON−NLS−1$

 // We create a Column named "ColumnTest".
 Column myColumn = (Column)mdFact.createComplexMetadataObject
 (myStore,
 null,
 "ColumnTest",
 mdFact.COLUMN,
 ReposID);//$NON−NLS−1$

 // We set attributes of the column.
 myColumn.setColumnName("MyTestColumnName");//$NON−NLS−1$
 myColumn.setSASColumnName("MyTestSASColumnName");//$NON−NLS−1$
 myColumn.setDesc("This is a description of a column");//$NON−NLS−1$

 // We use the get"AssociationName"() method to associate the column with the
 // table. This method creates an AssociationList object for the table object.
 // The inverse association will be created automatically. We could have specified
 // "getColumns(false)" here, but it does not go to the server for temporary
 // objects. If the object already existed, specifying the "false" flag will tell
 // it not to go to the server to get the list of columns. The Add(MetadataObject)
 // method adds myColumn to the AssociationList.
 myTable.getColumns().add(myColumn);

 // We create a note for the column named "NoteTest".
 TextStore myNote = (TextStore)mdFact.createComplexMetadataObject

SAS 9.1 Java Metadata Interface: User's Guide

SAS Java Metadata Interface Program 40

 (myStore,
 null,
 "NoteTest",
 mdFact.TEXTSTORE,
 ReposID);//$NON−NLS−1$

 // We use the set"AssociationName" method to associate stored text with the note.
 myNote.setStoredText("I have some information about the column");//$NON−NLS−1$

 // We associate the note with the column.
 myColumn.getNotes().add(myNote);

 // We pick an object and persist all the new information to the server.
 myTable.updateMetadataAll();

 // Now we clean up the objects, if we are no longer using them.
 myStore.dispose();
 }catch (MdException e)
 {
 e.printStackTrace();
 }
 }
 }

 /**
 * This method reads the newly created objects back from the server.
 * @param repository1 identifies the repository from which to read our objects.
 */
 public void Example5(CMetadata repository1)
 {
 if(repository1 != null)
 {
 // First we create an MdObjectStore as a container for all of the objects
 // we will create/read/persist to the server as one collection.
 MdObjectStore myStore = mdFact.createObjectStore();
 try
 {

 // The following statements define GetMetadataObjectsSubset options strings.
 // These XML strings are used in conjunction with SAS Open Metadata Interface
 // flags. The <XMLSELECT> element specifies filter criteria. The <Templates>
 // element specifies the metadata properties to be returned for each object from
 // the server.
 String sOptions = "<XMLSELECT Search=\"@NAME='TableTest'\"/>"+
 "<TEMPLATES><PhysicalTable Id=\"\" Name=\"\" Desc=\"\">"+
 "<Columns/></PhysicalTable>" +
 "<Column Id=\"\" Name=\"\" Desc=\"\"><Notes/></Column>" +
 "<TextStore Id=\"\" Name=\"\" Desc=\"\" StoredText=\"\"/>" +
 "</TEMPLATES>";

 // The following statements go to the server with a fully qualified repository ID,
 // specify the type of object we are searching for (MdObjectFactory.PHYSICALTABLE),
 // and invoke the OMI_XMLSELECT, OMI_TEMPLATE, and OMI_GET_METADATA flags.
 // OMI_GET_METADATA tells the server to get all of the attributes specified in
 // the template for each object that is returned.
 List PhysicalTableList = (MetadataUtil.getMetadataObjectsSubset(myStore,
 repository1.getFQID(),
 mdFact.PHYSICALTABLE,

SAS 9.1 Java Metadata Interface: User's Guide

SAS Java Metadata Interface Program 41

 MetadataUtil.OMI_XMLSELECT |
 MetadataUtil.OMI_TEMPLATE |
 MetadataUtil.OMI_GET_METADATA,
 sOptions));
 Iterator iter5 = PhysicalTableList.iterator();
 while(iter5.hasNext())
 {
 PhysicalTable ptable = (PhysicalTable)iter5.next();

 // The preceding method returned a simple form of the requested objects.
 // Simple objects contain only attributes and cannot be persisted to the
 // server. We may want to change data later on so we will create a complex
 // version of the objects. A complex object allows us to edit the object and
 // persist the changes. It also enables us to work with an object's associations.

 PhysicalTable ptable1 =
 (PhysicalTable)mdFact.createComplexMetadataObject(myStore,
 null,
 ptable.getName(),
 ptable.getCMetadataType(),
 ptable.getId(),
 null);

 // We get a list of columns for this table.
 AssociationList columns = ptable1.getColumns();
 Column column1 = null;
 TextStore columnNote1 = null;
 // Then get individual columns.
 for(int i=0; i <columns.size(); i++)
 {
 Column columnTest = (Column)columns.get(i);
 column1 = (Column)mdFact.createComplexMetadataObject(myStore,
 null,
 columnTest.getName(),
 columnTest.getCMetadataType(),
 columnTest.getId(),
 null);
 if(column1 != null)
 {
 // We now have a column, and request to get its notes.
 AssociationList columnNotes = column1.getNotes();
 for(int j=0; j <columnNotes.size(); j++)
 {
 if(columnNotes.size() > 0)
 {
 TextStore noteTest = (TextStore)columnNotes.get(0);
 columnNote1 = (TextStore)mdFact.createComplexMetadataObject(myStore,
 null ,
 noteTest.getName(),
 noteTest.getCMetadataType(),
 noteTest.getId(),
 null);
 if(columnNote1 != null)
 {
 // We now have a valid note, and request to print its attributes.
 System.out.println("TextStore Object: " + columnNote1.getName() +//$NON−NLS−1$
 ", " +//$NON−NLS−1$
 columnNote1.getFQID() +
 ", " +//$NON−NLS−1$
 columnNote1.getStoredText());
 }

SAS 9.1 Java Metadata Interface: User's Guide

SAS Java Metadata Interface Program 42

 }
 }
 }
 }// End for columns.
 }
 }catch (MdException e)
 {
 e.printStackTrace();

 }

 }
 }

 /**
 * This method deletes the objects we created in repository1.
 * @param repository1
 */
 public void Example6(CMetadata repository1)
 {
 if(repository1 != null)
 {
 try
 {

 MdObjectStore myStore = mdFact.createObjectStore();
 // The following statements define GetMetadataObjectsSubset options strings.
 // These XML strings are used in conjunction with SAS Open Metadata Interface
 // flags. The <XMLSELECT> element specifies filter criteria.
 // The <Templates> element specifies the metadata properties to be returned
 // for each object from the server.

 String sOptions = "<XMLSELECT Search=\"@NAME='TableTest'\"/>"+
 "<TEMPLATES><PhysicalTable Id=\"\" Name=\"\" Desc=\"\"/>" +
 "</TEMPLATES>";
 // This statement creates a deleteTemplate object.
 String deleteTemplate = "<TEMPLATES><PhysicalTable Id=\"\" Name=\"\">"+
 "<Columns/><Notes/></PhysicalTable>"+
 "<Column><Notes/></Column></TEMPLATES>";

 // The following statements go to the server with a fully qualified repository ID,
 // specify the type of object we are searching for (MdObjectFactory.PHYSICALTABLE),
 // and invoke the OMI_XMLSELECT, OMI_TEMPLATE, and OMI_GET_METADATA flags.
 // OMI_GET_METADATA tells the server to get all of the attributes specified in
 // the template for each object returned.
 List PhysicalTableList = (MetadataUtil.getMetadataObjectsSubset(myStore,
 repository1.getFQID(),
 mdFact.PHYSICALTABLE,
 MetadataUtil.OMI_XMLSELECT |
 MetadataUtil.OMI_TEMPLATE |
 MetadataUtil.OMI_GET_METADATA,
 sOptions));

 // The following statements remove the objects returned by the preceding query
 // from the client and from the server. The code loops through the list
 // of objects and prints the name of each object before deleting it.
 // An event is sent to all object stores to tell them to delete the objects,

SAS 9.1 Java Metadata Interface: User's Guide

SAS Java Metadata Interface Program 43

 // and to notify their users of a change in the store.

 Iterator iter5 = PhysicalTableList.iterator();
 while(iter5.hasNext())
 {
 PhysicalTable ptable = (PhysicalTable)iter5.next();
 Set assocNames = ptable.getAssocs().keySet();
 Iterator iter9 = assocNames.iterator();
 System.out.println("PhysicalTable: Associations");//$NON−NLS−1$
 while(iter9.hasNext())
 {
 System.out.println((String)iter9.next());
 }
 mdFact.deleteMetadataObjects(ptable,deleteTemplate);
 }
 myStore.dispose();

 }catch (MdException e)
 {
 e.printStackTrace();
 }
 }
 }

 /**
 * This method lists the PhysicalTable objects contained in repository
 * "A0000001.A5KE4LY8". The method requests a simple form of the requested objects.
 * If you wish to modify them, you will need to create complex objects that
 * describe the objects.
 *
 * @param mainRepos CMetadata identifies the repository from which to read the objects.
 *
 * @return List containing CMetadata objects
 *
 */
 public List Example7(CMetadata mainRepos)
 {
 try
 {
 // Print a descriptive message about the request.
 System.out.println("The PhysicalTables contained in repository " + //$NON−NLS−1$
 mainRepos.getName() +
 " are: ");//$NON−NLS−1$

 // We need the short Repository ID to pass in the method.
 // We use the ReposId method to get the short ID.
 String reposID = mainRepos.getFQID();

 // We get a list of "PhysicalTable" objects.
 List
 physicalTables = MetadataUtil.getMetadataObjectsSubset
 (mdFact.getStore(),
 reposID, // Repository to Search
 mdFact.PHYSICALTABLE, // Type to search for
 MetadataUtil.OMI_GET_METADATA | // Return the object
 MetadataUtil.OMI_ALL_SIMPLE , // Return its simple attributes
 "");//$NON−NLS−1$

SAS 9.1 Java Metadata Interface: User's Guide

SAS Java Metadata Interface Program 44

 // We print information about them.
 Iterator iter4 = physicalTables.iterator();
 while(iter4.hasNext())
 {
 PhysicalTable ptable = (PhysicalTable)iter4.next();
 System.out.println("PhysicalTable: " + //$NON−NLS−1$
 ptable.getName() +
 ", " + //$NON−NLS−1$
 ptable.getFQID() +
 ", " + //$NON−NLS−1$
 ptable.getDesc());
 }
 System.out.println("\n");//$NON−NLS−1$

 // We return the list so that it can be used.
 return physicalTables;
 }catch (MdException e)
 {
 e.printStackTrace();
 }

 // If the method fails, then execute this:
 return new Vector(1);
 }

 /**
 * This method gets all the information for a specific PhysicalTable object.
 *
 *
 * @param physicalTables
 */
 public void Example8(List physicalTables)
 {
 if(physicalTables.size() == 0)
 {
 return;
 }
 MdObjectStore myStore = mdFact.createObjectStore();
 try
 {

 // First we will print a message describing out intentions.
 System.out.println("Get the first PhysicalTable object found and list all of its properties.");
 PhysicalTable testTable = (PhysicalTable)physicalTables.get(0);
 testTable = (PhysicalTable)mdFact.createComplexMetadataObject(myStore,
 null,
 testTable.getName(),
 testTable.getCMetadataType(),
 testTable.getFQID(),
 null);

 // We now build a list of all the complex attributes.
 List complex = new Vector(10);
 for(Iterator iter6 = testTable.getAssocs().keySet().iterator(); iter6.hasNext();)
 {
 complex.add((String)iter6.next());
 }

SAS 9.1 Java Metadata Interface: User's Guide

SAS Java Metadata Interface Program 45

 // We specify templates to get notes and documents defined for our columns.
 String template ="<Templates><Column><Notes/><Documents/></Column>" ;

 // We get the information for our testTable.
 testTable = (PhysicalTable)MetadataUtil.getMetadataAllDepths
 (testTable, // Object to get info for
 null, // Simple attributes to get
 complex, // Associations to get
 template, // Template for returned objects
 MetadataUtil.OMI_ALL | // Get all attributes and associations on returned objects
 MetadataUtil.OMI_ALL_SIMPLE); // Get all simple attributes on returned objects

 System.out.println("PhysicalTable: " +
 testTable.getName() +
 ", " +
 testTable.getFQID() +
 ", " +
 testTable.getDesc());
 System.out.println("The columns in this table are: ");

 // We then list the columns on the table. Specifying 'false' causes a Columns−Table
 // association to be created if one does not already exist; if the association
 // already exists, the software returns the current list on the client.

 AssociationList columns = testTable.getColumns(false);
 for(int i = 0; i <columns.size(); i++)
 {
 Column column = (Column)columns.get(i);
 System.out.println("\tColumn: " + column.getName() + ", " + column.getFQID()); //$NON−NLS−2$
 }
 System.out.println("\n");

 }catch (MdException e)
 {
 e.printStackTrace();
 }
 myStore.dispose();
 }

/**
 * This example gets DeployedComponent objects.
 * @param reposID
 */
 public void Example9(String reposID)
 {
 try
 {
 // We use the <XMLSELECT> option to do an explicit search and use
 // templates to specify the attributes we want to retrieve.
 System.out.println("Do we have a DeployedComponent in this repository that has a classidentifier specified?");
 System.out.println("Using Template: ");
 String sOptions = "<XMLSELECT Search=\"@CLASSIDENTIFIER='440196D4−90F0−11D0−9F41−00A024BB830C'\"/>" +
 "<TEMPLATES><DeployedComponent Id=\"\" Name=\"\" ClassIdentifier=\"\">"+
 "<SourceConnections/></DeployedComponent>"+
 "<TCPIPConnection Id=\"\" HostName=\"\" Port=\"\" CommunicationProtocol=\"\" " +
 "ApplicationProtocol=\"\"/></TEMPLATES>";

 System.out.println(MetadataUtil.formatXML(sOptions));

SAS 9.1 Java Metadata Interface: User's Guide

SAS Java Metadata Interface Program 46

 List DeployedComponentList = (MetadataUtil.getMetadataObjectsSubset(mdFact.getStore(), reposID,
 mdFact.DEPLOYEDCOMPONENT,
 MetadataUtil.OMI_XMLSELECT |
 MetadataUtil.OMI_TEMPLATE |
 MetadataUtil.OMI_GET_METADATA,
 sOptions));
 Iterator iter5 = DeployedComponentList.iterator();
 while(iter5.hasNext())
 {
 DeployedComponent dcomp = (DeployedComponent)iter5.next();
 System.out.println("DeployedComponent: " +
 dcomp.getName() +
 ", " +
 dcomp.getFQID() +
 ", " +
 dcomp.getDesc());
 }
 System.out.println("\n");
 }catch (MdException e)
 {
 e.printStackTrace();
 }
 }

 /**
 * The main method for the class
 */
 public static void main(String[] args)
 {
 new MdTesterExamples();
 }

}

Previous
Page

| Next
Page

| Top of
Page

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS 9.1 Java Metadata Interface: User's Guide

SAS Java Metadata Interface Program 47

	Table of Contents
	SAS Java Metadata Interface: User's Guide
	Interface Overview
	Software Installation and JRE Requirements
	Understanding the Interface
	Important Terms

	Overview to Using the SAS Java Metadata Interface
	Creating a SAS Java Metadata Interface Client
	Instantiating an Object Factory and Connecting to the Metadata Server
	Getting Information About Repositories
	Creating Objects
	Getting and Updating Existing Objects
	Deleting Objects
	Method Classes Summary
	Working with the MdObjectFactory Class
	Instantiating the Object Factory
	Creating Java Objects
	Invoking the Event Handling Interface
	Deleting Objects
	Deleting the Object Factory

	Working with the MetadataWorkspace Class
	Working with the CMetadata Class
	Working with the MdEvent Class
	Working with the MetadataUtil Class
	Using the "Get" Methods
	Using the AddMetadata and UpdateMetadata Methods
	DoRequest Method

	Working with the AssociationList Class
	Working with the MdObjectStore Class
	Working with the MdServerStore Class
	Working with the Util Class
	SAS Java Metadata Interface Program

