
SAS®

9.1 Companion for z/OS

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004
SAS ® 9.1 Companion for z/OS. Cary, NC: SAS Institute Inc.

SAS® 9.1 Companion for z/OS
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
ISBN 1-59047-196-2
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New vii

Overview vii

Details vii

P A R T 1 Running SAS Software under z/OS 1

Chapter 1 Initializing and Configuring SAS Software 3
Invoking SAS in the z/OS Environment 4

Connecting to SAS under z/OS 6

Customizing Your SAS Session 7

Specifying Physical Files 14

SAS Software Files 15

Transporting SAS Data Sets between Operating Environments 25

Accessing SAS Files in Other Operating Environments 25

Utilizing Input/Output Features 26

Reserved z/OS DDnames 26

Setting Up the Remote Help System 27

Exiting or Terminating Your SAS Session in the z/OS Environment 28

Support for SAS Software 29

Solving Problems under z/OS 31

Chapter 2 Using SAS Data Libraries 37
Introduction 38

SAS Library Engines 38

SAS View Engines 41

Library Implementation Types for Base and Sequential Engines 42

Assigning SAS Data Libraries 55

Chapter 3 Accessing BMDP, SPSS, and OSIRIS Files 69
Introduction to the BMDP, SPSS, and OSIRIS Engines 69

Accessing BMDP Files 70

Accessing SPSS Files 71

Accessing OSIRIS Files 72

Chapter 4 Allocating External Files 75
Introduction to External Files 75

Ways of Allocating External Files 75

Using the FILENAME Statement or Function to Allocate External Files 76

Using the JCL DD Statement to Allocate External Files 78

Using the TSO Allocate Command to Allocate External Files 79

Allocating External Files on Tape 79

Allocating External Files to a Pipe 80

iv

Allocating Generation Data Sets 81

Allocating Nonstandard External Files 82

Concatenating External Files 82

Displaying Information about External Files 83

Deallocating External Files 83

Chapter 5 Accessing External Files 85
Referring to External Files 86

How SAS Determines Device Types 87

Writing to External Files 87

Reading from External Files 94

Accessing Nonstandard Files 99

Accessing UNIX System Services Files 102

Writing Your Own I/O Access Methods 109

Accessing SAS Statements from a Program 109

Using the INFILE/FILE User Exit Facility 109

Chapter 6 Directing SAS Log and SAS Procedure Output 111
Types of SAS Output 112

Directing Output to External Files with the PRINTTO Procedure 114

Directing Output to External Files with System Options 115

Directing Output to External Files with the DMPRINT Command 117

Directing Output to External Files with the FILE Command 117

Directing Output to External Files with DD Statements 117

Directing Output to a Printer 118

Directing Output to a Remote Destination 124

Directing Procedure Output: ODS Examples 125

Sending E-Mail from within SAS Software 134

Chapter 7 Universal Printing 149
Introduction to Universal Printing 150

Using Universal Printing in the Windowing Environment 150

Using Universal Printing in a Batch Environment 157

Sample Programs and Summary 163

The SASLIB.HOUSES Data Set 178

P A R T 2 Application Considerations 181

Chapter 8 SAS Interfaces to ISPF and REXX 183
SAS Interface to ISPF 184

SAS Interface to REXX 199

Chapter 9 Data Representation 207
Representation of Numeric Variables 207

Using the LENGTH Statement to Save Storage Space 207

How Character Values Are Stored 208

v

Line-Feed Characters and Transferring Data between EBCDIC and ASCII 209

Chapter 10 Optimizing Performance 211
Introduction to Optimizing Performance 212

Collecting Performance Statistics 212

Optimizing I/O 213

Efficient Sorting 218

Some SAS System Options That Can Affect Performance 218

Managing Memory 219

Loading SAS Modules Efficiently 221

Other Considerations for Improving Performance 221

P A R T 3 Host-Specific Features of the SAS Language 223

Chapter 11 Data Set Options under z/OS 225
Data Set Options in the z/OS Environment 225

Summary of SAS Data Set Options in the z/OS Environment 228

Chapter 12 Formats under z/OS 233
Formats in the z/OS Environment 233

Considerations for Using Formats in the z/OS Environment 233

Chapter 13 Functions and CALL Routines under z/OS 245
Functions and CALL Routines under z/OS 245

Chapter 14 Informats under z/OS 277
Informats in the z/OS Environment 277

Considerations for Using Informats under z/OS 277

Chapter 15 Macros under z/OS 287
Macros in the z/OS Environment 287

Automatic Macro Variables 287

Macro Statements 289

Macro Functions 290

Autocall Libraries 290

Stored Compiled Macro Facility 291

Other Host-Specific Aspects of the Macro Facility 293

Additional Sources of Information 293

Chapter 16 Procedures under z/OS 295
Procedures in the z/OS Environment 295

Chapter 17 Statements under z/OS 359
Statements in the z/OS Environment 359

Chapter 18 System Options under z/OS 407
System Options in the z/OS Environment 410

Summary Table of SAS System Options 528

vi

Chapter 19 Windows and Commands in z/OS Environments 545
Windows and Commands in the z/OS Environment 546

Using the Graphical Interface 546

Host-Specific Windows in the z/OS Environment 549

Host-Specific Windows of the FORM Subsystem 555

Host-Specific Window Commands 557

SAS System Options That Affect the z/OS Windowing Environment 567

Terminal Support in the z/OS Environment 568

P A R T 4 Appendixes 573

Appendix 1 Using the INFILE/FILE User Exit Facility 575
Introduction 575

Writing a User Exit Module 575

Function Descriptions 579

SAS Service Routines 585

Building Your User Exit Module 587

Activating an INFILE/FILE User Exit 587

Sample Program 588

Appendix 2 Host-System Subgroup Error Messages 599
Introduction 599

Messages from the SASCP Command Processor 599

Messages from the TSO Command Executor 601

Messages from the Internal CALL Command Processor 603

Appendix 3 Recommended Reading 605
Recommended Reading 605

Glossary 607

Index 615

vii

What’s New

Overview
New features in SAS 9 and 9.1 under z/OS include support for
� long format names
� remote help
� record-level sharing (RLS) for VSAM data sets and extended-format VSAM data

sets.

Note:

� This section describes the features of SAS software under z/OS that are new or
enhanced since SAS 8.2.

� z/OS is the successor to the OS/390 operating system. SAS 9.1 for z/OS is
supported on both OS/390 and z/OS operating systems and, throughout this
document, any reference to z/OS also applies to OS/390, unless otherwise stated.

� For important information on new developments for SAS 9.1 for z/OS, see
support.sas.com.

�

Details

Long Format Names
SAS System 9 and 9.1 support “Long Format Names” on page 40 up to a maximum

length of 32 bytes. Because earlier versions of SAS support format names that are only
a maximum length of 8 bytes, you will not be able to read a SAS 9 or 9.1 data set that
has a long format name with earlier versions of SAS.

viii What’s New

Remote Help
The “Setting Up the Remote Help System” on page 27 enables users who access SAS

by using a z/OS emulator (or a real 3270) to view SAS documentation from a Web
browser on a PC that is running Microsoft Windows. Previously, all documentation was
displayed by the itemstore help in the SAS Help browser window in the z/OS emulator.
By displaying this documentation in your Windows Web browser, you have better
browsing capability and more complete documentation content.

SAS Language Elements
� The following SAS statements have been enhanced:

� The NRLS option in the INFILE statement instructs SAS not to attempt to
open a VSAM data set in record-level sharing (RLS) mode, even if the data set
is defined as RLS eligible.

� The libref argument in the LIBNAME statement now supports library names
that contain underscores (_).

� The following SAS system options are new:
� DLEXCPCOUNT reports EXCPs to direct access bound libraries.
� DLMSGLEVEL specifies the level of messages to generate for SAS data

libraries.

1

P A R T1

Running SAS Software under z/OS

Chapter 1.Initializing and Configuring SAS Software 3

Chapter 2.Using SAS Data Libraries 37

Chapter 3.Accessing BMDP, SPSS, and OSIRIS Files 69

Chapter 4.Allocating External Files 75

Chapter 5.Accessing External Files 85

Chapter 6.Directing SAS Log and SAS Procedure Output 111

Chapter 7.Universal Printing 149

2

3

C H A P T E R

1
Initializing and Configuring SAS
Software

Invoking SAS in the z/OS Environment 4

Invoking SAS under TSO: the SAS CLIST 4
Invoking SAS in Batch Mode: the SAS Cataloged Procedure 5

Logging On to SAS Software Directly 5

What If SAS Doesn’t Start? 6
Connecting to SAS under z/OS 6

Customizing Your SAS Session 7

Configuration Files 7
Creating a User Configuration File 8

Specifying a User Configuration File 8
Autoexec Files 9

Displaying Autoexec Statements in the SAS Log 9

Using an Autoexec File under TSO 9
Using an Autoexec File in Batch Mode 9

SASUSER Library 9

Creating Your Own SASUSER Libraries 10
Specifying Your Own SASUSER Library 10

SAS System Options 11
Specifying or Changing System Option Settings 11

Determining How an Option Was Set 12

Default Options Table and Restricted Options Table 12
Displaying System Option Settings 13

OPTIONS Procedure 13

OPTIONS Window 13
Precedence for Option Specifications 13

Specifying Physical Files 14
Specifying Physical Files with the INCLUDE Command 14

Handling of Nonstandard Member Names 15

SAS Software Files 15
WORK Library 15

Increasing the Size of the WORK Library 17

Deleting Temporary SAS Data Sets 17
Directing Temporary SAS Data Sets to the USER Library 17

SAS Log File 18
Changing the Contents of the SAS Log 19

Changing the Appearance of the SAS Log 20

SAS Procedure Output File 20
Changing the Appearance of Procedure Output 20

Console Log File 21

Parmcards File 21
TKMVSENV File 21

4 Invoking SAS in the z/OS Environment Chapter 1

Summary Table of SAS Software Files 23

Transporting SAS Data Sets between Operating Environments 25
Accessing SAS Files in Other Operating Environments 25

Utilizing Input/Output Features 26

Reserved z/OS DDnames 26
Setting Up the Remote Help System 27

What Is the Remote Help System? 27

Starting the Remote Help Browser Server 27
How to Set Up the Remote Help 28

Example 1: Setting Up the Remote Help at SAS Invocation 28
Example 2: Setting Up the Remote Help during a SAS Session 28

Exiting or Terminating Your SAS Session in the z/OS Environment 28

Preferred Methods for Exiting SAS 28
Additional Methods for Terminating SAS 29

What If SAS Doesn’t Start? 29

Support for SAS Software 29
Working with Your SAS Support Consultant 30

SAS Technical Support 30
Generating a System Dump for SAS Technical Support 30

Solving Problems under z/OS 31

Problems Associated with the z/OS Operating Environment 31
Solving Problems within SAS Software 31

Examining the SAS Log 32

Checking the Condition Code 32
Using SAS Online Help 32

Using User-Defined Help 32
Developing User-Defined Help 33

Using the SAS OnlineDoc CD-ROM 34

DATA Step Debugger 34
Using SAS Statements, Procedures, and System Options to Identify Problems 34

Host-System Subgroup Error Messages 35

Invoking SAS in the z/OS Environment
You can invoke SAS with any of the following methods:
� in interactive mode under TSO using the SAS CLIST
� in batch mode with the SAS cataloged procedure
� by logging on to SAS directly and bypassing the TSO terminal monitor program.

Invoking SAS under TSO: the SAS CLIST
To invoke SAS under TSO, you execute the SAS CLIST by typing a command

(usually SAS) at the READY prompt. The SAS CLIST is an external file that contains
TSO commands and control instructions.

At each site, the command that you use and the SAS CLIST itself might have been
modified by your local SAS Support Consultant. Ask your consultant for site-specific
information about the CLIST.

The SAS CLIST starts a SAS windowing environment session, an Explorer session,
an interactive line mode session, or a noninteractive session, depending on the defaults
that have been specified in the CLIST. To override the mode of running SAS that is
specified in the CLIST, you use commands similar to those shown in Table 1.1 on page
5. (Again, the exact commands that you use may be site-specific.)

Initializing and Configuring SAS Software Logging On to SAS Software Directly 5

Table 1.1 Commands for Invoking SAS

Mode How to Invoke
How to
Terminate Description

SAS
windowing
environment

sas options(’dms’) bye or
endsas

enables you to write and execute SAS programs and to
view the SAS log and SAS procedure output in an
interactive windowing environment. If this is the
default at your site, then you can invoke it by entering
sas with no options.

Explorer sas
options(’explorer’)

bye or
endsas

enables you to manipulate SAS data and files visually,
launch SAS applications, and access SAS windowing
environment windows and Output Delivery System
hierarchies.

interactive
line mode

sas options(’nodms’) /* or
endsas;
statement

prompts you to enter SAS statements at your terminal,
one line at a time.

noninteractive
mode

sas input(‘‘‘

my.sas.program’’’)

n/a executes interactively, but it is called noninteractive
because the program runs with no intervention from
the terminal.

Invoking SAS in Batch Mode: the SAS Cataloged Procedure
To invoke SAS during a batch job, use a JCL EXEC statement that executes the SAS

cataloged procedure. The SAS cataloged procedure invokes SAS. By specifying
parameters in the JCL EXEC statement, you can modify the way in which SAS is
invoked.

At each site, the JCL EXEC statement that you use and the cataloged procedure
itself might have been modified by your local SAS Support Consultant. Ask your
consultant for site-specific information.

Logging On to SAS Software Directly
z/OS* sites can choose to substitute SAS for the standard TSO terminal monitor

program, enabling users to log on to SAS directly. If SAS comes up automatically when
you log in, then your system may have already been set up to log on to SAS directly.

By automatically invoking SAS software or a SAS application when users log on, site
administrators can insulate users from the TSO environment. Because SAS is running
as its own terminal monitor program, TSO commands are not accessible to users. This
reduces memory usage slightly.

This method of invoking SAS also provides the following advantages:

� Sites can restrict user access to the TSO environment.

� Novice users do not have to learn how to work in the TSO environment.

Your local SAS Support Consultant will find complete information about this method
of invoking SAS in the installation instructions for SAS in the z/OS environment.

* z/OS is the successor to the OS/390 operating system. SAS 9.1 for z/OS is supported on both z/OS and OS/390 operating
systems and, throughout this document, any reference to z/OS also applies to OS/390, unless otherwise stated.

6 What If SAS Doesn’t Start? Chapter 1

What If SAS Doesn’t Start?

If SAS does not start, the SAS log may contain error messages that explain the failure.
Any error messages that SAS issues before the SAS log is initialized are written to the
SAS Console Log, which is the SASCLOG ddname destination. Under TSO, the
SASCLOG ddname destination is normally the terminal, but the destination might be
changed by the SAS Support consultant by changing the CLIST that invoked SAS.
Similarly, a batch job or started task will normally assign the SASCLOG ddname to a
spooled SYSOUT class, but the destination may have been changed by the SAS Support
consultant by changing the catalog procedure used to invoke SAS. Spooled SYSOUT
data can be printed or viewed online with a JES spool viewer such as SDSF, IOF, or
EJES.

Connecting to SAS under z/OS

Under z/OS, you can access or connect to a SAS session in any of the following ways:

3270 terminals
You can use devices that support extended data streams as well as those that do
not. See “Terminal Support in the z/OS Environment” on page 568 for more
information about terminal support.

terminal emulators
Terminal emulators that you can use to access SAS on z/OS include Attachmate
Extra!, Hummingbird Host Explorer, and others.

Note: SAS best supports those terminal emulators that closely adhere to the
original IBM specifications for the 3270 terminal. If you are having difficulties
with the SAS vector graphics in your emulator session, make sure that the
settings for your emulator match these specifications as closely as possible. �

SAS/CONNECT software
SAS/CONNECT supports cooperative and distributed processing between z/OS and
Windows, UNIX, and Open VMS Alpha. It supports the TCP/IP (Transmission
Control Protocol/Internet Protocol) and XMS (Cross-Memory Services)
communications access methods, which enable local clients who are running SAS
to communicate with one or more SAS applications or programs that are running
in remote environments. For more information, see Communications Access
Methods for SAS/CONNECT and SAS/SHARE.

SAS/SHARE software
SAS/SHARE enables local and remote clients in a heterogeneous network to
update SAS data concurrently. It also provides a low-overhead method for multiple
remote clients to read local SAS data. For more information, see SAS/SHARE
User’s Guide.

SAS/SESSION software
SAS/SESSION enables terminal users who are connected to the Customer
Information Control System (CICS) to communicate with SAS software in a z/OS
environment. It uses the LU6.2 (APPC/MVS) protocol. Your local SAS Support
Consultant will find more information about SAS/SESSION in the installation
instructions for SAS software in the z/OS environment.

Initializing and Configuring SAS Software Configuration Files 7

Customizing Your SAS Session
Whether you are using interactive processing under TSO or batch processing, you

might want to customize certain aspects of your SAS session. For example, you might
want to change the line size or page size for your output, or you might want to see
performance statistics for your SAS programs.

You can customize your SAS session in five ways:
� Under TSO, pass operands into the SAS CLIST that your site uses to invoke SAS.

(See “Invoking SAS under TSO: the SAS CLIST” on page 4.) This method is
usually used for one-time overrides of CLIST operands. Here is an example:

sas options(’nocenter linesize=80’)

� In batch mode, pass parameters into the SAS cataloged procedure that your site
uses to invoke SAS. (See “Invoking SAS in Batch Mode: the SAS Cataloged
Procedure” on page 5.) This method is usually used for one-time overrides of
parameters in the cataloged procedure. Here is an example:

//MYJOB EXEC SAS,
// OPTIONS=’NOCENTER, LINESIZE=80’

� Specify SAS system options in a user configuration file. (See “Configuration Files”
on page 7.) This method is useful if you, as an individual user, always want to
override the values of system options that are specified in your site’s system
configuration file. The following example uses a TSO command to specify a user
configuration file:

sas config(’’’my.config.file’’’)

This next example specifies a user configuration file using JCL:

//MYJOB EXEC SAS,
// CONFIG=’MY.CONFIG.FILE’

� Execute SAS statements (such as OPTIONS, LIBNAME, and FILENAME
statements) in an AUTOEXEC file. (See “Autoexec Files” on page 9.) This method
is most useful for specifying options and allocating files that pertain to a particular
SAS application.

� In interactive mode, specify a SASUSER library that contains a user profile
catalog. (See “SASUSER Library” on page 9.)

See “Precedence for Option Specifications” on page 13 for information about the order
of precedence for options specified using these methods.

Configuration Files
A configuration file contains SAS system options that are set automatically when

you invoke SAS. SAS uses two types of configuration files:
� the system configuration file, which is used by all users at your site by default.

Your local SAS Support Consultant maintains the system configuration file for
your site.

� a user configuration file, which is generally used by an individual user or
department.

8 Configuration Files Chapter 1

Creating a User Configuration File
To create a user configuration file, use any text editor to write SAS system options

into a physical file. The configuration file can be either a sequential data set or a
member of a partitioned data set that contains 80-byte fixed-length records. When you
allocate a system or user configuration file, you must specify LRECL=80 and
RECFM=FB.

Whichever type of data set you choose, specify one or more system options on each
line. If you specify more than one system option on a line, use either a blank or a
comma to separate the options.

Some options can be thought of as on (enabled) or off (disabled). Specifying just the
keyword enables the option; specifying the keyword prefixed with NO disables the
option. For example, the configuration file might contain these option specifications:

NOCENTER
NOSTIMER
NOSTATS

All of these options are disabled.
Options that take a value must be specified in the following way:

option-name=value

For example, a configuration file might contain the following lines:

LINESIZE=80
PAGESIZE=60

Note: When you specify SAS system options in a configuration file, blank spaces are
not permitted before or after an equal sign. Comment lines must start with an asterisk
in column 1. �

A configuration file can contain any system option except the CONFIG= option. If
CONFIG= appears in a configuration file, it is ignored; no error or warning message
appears.

Specifying a User Configuration File
To tell SAS where to find your user configuration file, do the following:
� If you use the SAS CLIST to invoke SAS under TSO, use the CONFIG operand.

For example:

sas config(’’’my.config.file’’’)

� If you use the SAS cataloged procedure to invoke SAS in batch mode, use the
CONFIG= parameter. For example:

//S1 EXEC SAS,CONFIG=’MY.CONFIG.FILE’

The user configuration file that you specify is executed along with the system
configuration file that your installation uses. This happens because the SAS CLIST or
the SAS cataloged procedure concatenates the file that you specified to the system
configuration file.

Note: SAS system options that you specify in the user configuration file override
system options that are specified in the system configuration file. �

Initializing and Configuring SAS Software SASUSER Library 9

Autoexec Files
Under z/OS, an autoexec file can be either a sequential data set or a member of a

partitioned data set. Unlike configuration files, which contain SAS system options, an
autoexec file contains SAS statements. These statements are executed immediately
after SAS has been fully initialized and before any SAS input source statements have
been processed. For example, an autoexec file could contain the following lines:

options fullstats pagesize=60 linesize=80;
libname mylib ’userid.my.lib’;
dm ’clock’;

The OPTIONS statement sets some SAS system options, the LIBNAME statement
assigns a library, and the DM statement executes a command.

Note: Some SAS system options can be specified only when you invoke SAS. These
system options cannot be specified in an OPTIONS statement; therefore, they cannot be
specified in an autoexec file. See Table 18.2 on page 529 for information about SAS
system options and where they can be specified. �

Displaying Autoexec Statements in the SAS Log
SAS statements that are submitted from an autoexec file usually are not displayed

in the SAS log. However, if you specify the ECHOAUTO system option when you invoke
SAS, then SAS writes (or "echoes") the autoexec statements to the SAS log as they are
executed.

Using an Autoexec File under TSO
Under TSO, use the AUTOEXEC operand when you invoke SAS to tell SAS where to

find your autoexec file. For example, the following command invokes SAS and tells SAS
to use an autoexec file named MY.EXEC.FILE:

sas autoexec(’’’my.exec.file’’’)

Using an Autoexec File in Batch Mode
To specify an autoexec file in a batch job, use a JCL DD statement to assign the

DDname SASEXEC to your autoexec file. This DD statement must follow the JCL
EXEC statement that invokes the SAS cataloged procedure. For example, the following
two lines of JCL can be used to accomplish the same results in a batch job as the
previous example did under TSO:

//MYJOB EXEC SAS
//SASEXEC DD DSN=MY.EXEC.FILE,DISP=SHR

SASUSER Library
The SASUSER library contains SAS catalogs that enable you to customize certain

features of SAS while your SAS session is running and to save these changes. For
example, in Base SAS software, any changes that you make to function key settings or
to window attributes are stored in a catalog named SASUSER.PROFILE. The
SASUSER library can also contain personal catalogs for other SAS software products.
You can also store SAS data files, SAS data views, SAS programs, SAS/ACCESS
descriptor files, and additional SAS catalogs in your SASUSER library.

10 SASUSER Library Chapter 1

When you use the SAS CLIST that is supplied by SAS to invoke SAS under TSO, the
CLIST allocates a physical file to be used as the SASUSER library during your SAS
session. The SASUSER library is normally used only in interactive processing; the SAS
cataloged procedure, which invokes SAS in batch processing, does not allocate a
SASUSER library.

In addition to storing function key settings and window attributes, the
SASUSER.PROFILE catalog is used to store your DEFAULT.FORM. The
DEFAULT.FORM is created by the FORM subsystem. It is used to control the default
destination of all output that is generated by the PRINT command. (See “Using the
PRINT Command and the FORM Subsystem” on page 121 and SAS Language
Reference: Dictionary for information about the FORM subsystem.)

Note: If your SAS CLIST has been modified so that it does not create a SASUSER
library, SAS creates a PROFILE catalog that is used to store profile information for use
during a single SAS session. This catalog is placed in the WORK library and is deleted
at the end of your session; it is not available in a subsequent SAS session. �

Creating Your Own SASUSER Libraries
By creating your own SASUSER libraries, you can customize SAS software to meet

the requirements of a number of different types of jobs. For example, suppose you want
to create a user profile for a particular type of task that requires a unique set of key
definitions.

To create this user profile, you must first create a SAS data library that can be used
as the SASUSER library. The easiest way to create this library is to start a SAS
System 9 session and then use a LIBNAME statement to create the library, as
explained in “Assigning SAS Data Libraries Internally” on page 56. For example, to
create a SAS data library with a physical file name of ABC.MY.SASUSER, submit the
following LIBNAME statement:

libname newlib ’abc.my.sasuser’ disp=new;

Notice that a libref of NEWLIB was used in this example. SASUSER is a reserved
libref and cannot be reassigned during a SAS session.

You can also use the TSO ALLOCATE command to create a physical file for use as
your SASUSER library. By using the ALLOCATE command, you can avoid using the
LIBNAME statement; however, you must be familiar with TSO commands and with
DCB (data control block) attributes in order to use the ALLOCATE command
effectively. Here is a typical ALLOCATE command for the SASUSER library that
provides satisfactory performance at many sites:

alloc fi(newlib) da(’abc.my.sasuser’) new
catalog space(80 20) dsorg(ps) recfm(f s)
blksize(6144) reu

When you enter this ALLOCATE command from the READY prompt, a physical file
named ABC.MY.SASUSER is created with the correct attributes for a SAS data library.

To use the new SAS data library as the SASUSER library, you must end your SAS
session and start a second session. When you start a second session, you can use the
SASUSER CLIST operand to specify ABC.MY.SASUSER as the SASUSER library.

Specifying Your Own SASUSER Library
After creating your own permanent SAS data library, designate that library as your

SASUSER library. You can do this in either of the following ways:

� Use the SASUSER CLIST operand to specify the physical file name of your SAS
data library. For example, if you had created a library with a name of

Initializing and Configuring SAS Software SAS System Options 11

ABC.MY.SASUSER, then you would use the following CLIST command to invoke
SAS:

sas sasuser(’’’abc.my.sasuser’’’)

When you enter this command, the libref SASUSER is associated with the SAS
data library whose physical file name is ABC.MY.SASUSER. Any profile changes
that you make during your session are saved in the SAS catalog
SASUSER.PROFILE, which is a member of the SASUSER library. These changes
will be retained when you end your SAS session.

� Use the SASUSER= system option to specify the DDname that identifies your SAS
data library. (See “SASUSER= System Option” on page 495.)

Both of these methods require that you identify the SAS data library when you
invoke SAS; you cannot change the SASUSER library during a SAS session.

SAS System Options
SAS system options control many aspects of your SAS session, including output

destinations, the efficiency of program execution, and the attributes of SAS files and
data libraries.

After a system option is set, it affects all subsequent DATA and PROC steps in a
process until it is specified again with a different value. For example, the
CENTER|NOCENTER option affects all output from a process, regardless of the
number of steps in the process.

Specifying or Changing System Option Settings
The default values for SAS system options are appropriate for many of your SAS

programs. If you need to specify or change the value of a system option, you can do so
in the following ways:

� Create a user configuration file to specify values for the SAS system options whose
default values you want to override. See “Creating a User Configuration File” on
page 8 for details.

� Under TSO, specify any SAS system option following the OPTIONS parameter in
the SAS CLIST command:

sas options(’option-list’)

For options that can be on or off, just list the keyword that corresponds to the
appropriate setting. For options that take a value, list the keyword identifying the
option followed by an equal sign and the option value, as in the following example:

sas options(’nodate config=myconfig’)

� In batch mode, specify any SAS system option in the EXEC SAS statement:

// EXEC SAS,OPTIONS=’option-list’

For example:

// EXEC SAS,OPTIONS=’OPLIST LS=80 NOSTATS’

� Specify SAS system options in an OPTIONS statement in an autoexec file, which
is executed when you invoke SAS, or in an OPTIONS statement at any point
during a SAS session. Options specified in an OPTIONS statement apply to the
process in which they are specified, and are reset for the duration of the SAS
session or until you change them with another OPTIONS statement.

12 SAS System Options Chapter 1

For example:

options nodate linesize=72;

See Table 18.2 on page 529 to find out whether a particular option can be
specified in the OPTIONS statement. For more information about autoexec files,
see “Autoexec Files” on page 9. For more information about the OPTIONS
statement, see SAS Language Reference: Dictionary and Step-by-Step
Programming with Base SAS Software.

� Change SAS system options from within the OPTIONS window. On a command
line, enter the keyword OPTIONS. The OPTIONS window appears. Place the
cursor on any option setting and type over the existing value. The value will be
saved for the duration of the SAS session only. Not all options are listed in the
OPTIONS window. See “OPTIONS Window” on page 13 for more information.

Determining How an Option Was Set

Because of the relationship between some SAS system options, SAS may modify an
option’s value. This modification might change your results.

To determine how an option was set, enter the following code in the SAS Program
Editor:

proc options option=option value; run;

After you submit this code, the SAS log will display the value that was set for the
option and how the value was set. For example, the following log message is displayed
when you enter

proc options option=CATCACHE value; run;

Output 1.1 Results of the OPTIONS Procedure for the CATCACHE Option

Option Value Information for SAS Option CATCACHE
Option Value: 0
Option Scope: NoReb
How option value was set: Shipped Default

Options that are set by SAS will often say “Internal” in the How option value was
set field.

Default Options Table and Restricted Options Table
Your local SAS Support Consultant may have created a default options table or a

restricted options table. Information on creating and maintaining these tables is
provided in the installation instructions for SAS software in the z/OS environment.

The purpose of the default options table is to replace SAS system option defaults
with values that are more appropriate for your site. You can change these new defaults
in the same way that you can change the defaults provided with SAS software.

The purpose of the restricted options table is to control the values of invocation-only
system options, which can be specified only when you invoke SAS. These values cannot
be overridden. However, the restricted options table will accept specifications for any
system option, including those that can be specified at any time during the SAS session.
These specifications can be overridden at any time. To see when you can specify a value
for a particular system option, refer to the “Summary Table of SAS System Options” on
page 528.

Initializing and Configuring SAS Software SAS System Options 13

You can determine where host options get their values by using the VALUE
parameter of the OPTIONS procedure. For example, submit:

proc options host value;
run;

Then check the How option value was set field in the SAS log to determine if the
value is the shipped default, or if the value was set in the default options table, or if the
value was set in the SAS configuration file.

Contact your local SAS Support Consultant for more information.

Displaying System Option Settings
To display the current settings of SAS system options, use the OPTIONS procedure

or the OPTIONS window.
Some options may seem to have default values even though the default value listed

in Table 18.2 on page 529 is none. This happens when the option is set in a system
configuration file, in the default options table, or in the restricted options table.

You can use the VALUE parameter of the OPTIONS procedure to see when an
option’s value was set.

OPTIONS Procedure
The OPTIONS procedure writes system options that are available under z/OS to the

SAS log. By default, the procedure lists one option per line with a brief explanation of
what the option does. To list the options with no explanation, use the SHORT option:

proc options short;
run;

To list all the options in a certain category, use the GROUP= option:

proc options group=sort;
run;

Some options, such as system options that are specific to SAS/ACCESS interfaces or
to the SAS interface to ISPF, are listed only if you specify the GROUP= option. See
“OPTIONS Procedure” on page 320 for details.

OPTIONS Window
To display the OPTIONS window, enter OPTIONS on a command line. The OPTIONS

window displays the settings of many SAS system options.

Precedence for Option Specifications
When the same option is set in more than one place, the order of precedence is as

follows:
1 OPTIONS statement or OPTIONS window
2 restricted options table, if there is one
3 SAS invocation, including invocation by way of an EXEC SAS JCL statement (in

batch) or by way of the SAS CLIST command (under TSO)
4 user configuration file, if there is one
5 system configuration file (as SAS software is initialized)
6 default options table, if there is one.

For example, options that you specify during your SAS session (using the OPTIONS
statement or OPTIONS window) take precedence over options that you specified when

14 Specifying Physical Files Chapter 1

you invoked SAS. Options that you specify with the SAS CLIST command take
precedence over settings in the configuration file. The settings in the user configuration
file take precedence over settings in the system configuration file and in the default
options table.

Specifying Physical Files
Wherever you specify the name of a physical file internally (for example, in a SAS

LIBNAME or FILENAME statement, in a LIBNAME or FILENAME function, in a
DATA step, or in a SAS procedure), the name can be in any of these forms:

� a fully qualified data set name such as ‘SAS.SAS9.AUTOEXEC’. A PDS member
name, such as ‘MY.PDS(MEMBER)’, may also be specified, although not for a
LIBNAME statement or function.

� a partially qualified data set name such as‘’.CNTL’. SAS inserts the value of the
SYSPREF= system option (which is usually userid by default) in front of the
period. (See “SYSPREF= System Option” on page 518.) In the following example,
an OPTIONS statement is used to assign a value of USER12.SAS9 to the
SYSPREF= system option. When SAS executes the FILENAME statement, it
interprets ‘.RAW.DATAX’ as ‘USER12.SAS9.RAW.DATAX’.

options syspref=user12.sas9;
filename raw2 ’.raw.datax’ disp=old;

� a temporary data set name such as ’&MYTEMP’.
� a concatenated series of names or a wildcard name consisting of multiple UNIX

System Services (USS) files or members of a partitioned data set (PDS, PDSE).
See “Concatenating External Files” on page 82. However, note that the LIBNAME
statement and LIBNAME function does not support the wildcard syntax or
members of partitioned data sets. It is possible to concatenate SAS data libraries.
For details, see the LIBNAME statement “LIBNAME Statement” on page 393.

Note that names of physical files should be enclosed in quotation marks.

Specifying Physical Files with the INCLUDE Command
Here are examples of the INCLUDE command that illustrate the various ways you

can specify physical files:

INCLUDE MYPGM
MYPGM is a fileref that was previously associated with an external file.

INCLUDE MYPGM(PGM1)
PGM1 is a member of the partitioned data set that is associated with the fileref
MYPGM.

INCLUDE ‘USERID.TEST.PGMS’
This is an example of a sequential data set name.

INCLUDE ‘USERID.TEST.PGMS(AAA)’
This is an example of a data set name with a member specified.

INCLUDE ‘.TEST.MYPGM’
Assuming that the FILESYSTEM= system option is set to MVS, SAS prepends
this data set name with the value of the SAS system option SYSPREF=, which

Initializing and Configuring SAS Software WORK Library 15

defaults to the your system prefix. If FILESYSTEM=HFS, SAS looks into your
default UNIX System Services directory for the “hidden” file .TEST.MYPGM.

INCLUDE ’HFS:/u/userid/mypgms/mypgm1.c’
This is an example of a path to a UNIX System Services (USS) file in the
Hierarchical File System (HFS*), represented by a partially qualified path. SAS
searches for the file in the default HFS directory for that user. If the
FILESYSTEM= system option was set to HFS and if MYPGM was a standard z/
OS data set, the alternate syntax of MVS: would be required above (see
“FILESYSTEM= System Option” on page 440).

INCLUDE ’pgms/mypgms/mypgm1.c’
This is another example of a relative path to a UNIX System Services file. Any file
name containing a slash (/) is assumed to be in UNIX System Services, regardless
of the value of the FILESYSTEM= system option.

Handling of Nonstandard Member Names
You can use the SAS system option FILEEXT= to specify how extensions in member

names of partitioned data sets are to be handled. See “FILEEXT= System Option” on
page 432 for more information.

SAS Software Files

Configuration files (described in “Configuration Files” on page 7) and SASUSER files
(described in “SASUSER Library” on page 9) are only two of several SAS software files
that are automatically identified to your session by either the SAS CLIST (under TSO)
or the SAS cataloged procedure (in batch). This section describes several other SAS
software files that are significant to SAS users under z/OS.

For brief descriptions of all the SAS software files that are frequently used by the
SAS CLIST or by the SAS cataloged procedure, see Table 1.4 on page 23.

WORK Library
By default, the WORK library is a temporary SAS data library that contains

temporary SAS data sets, utility files (created by some SAS procedures, such as PROC
SORT and PROC TABULATE), your user profile, and other items that SAS uses in
processing your current job. Anytime you assign a one-level name to a SAS data set,
the data set is stored in the WORK library by default.

The WORK library is automatically defined by SAS software at the beginning of your
SAS job or session, unless you invoke SAS under TSO and specify the GO operand. By
default, the entire WORK library is deleted at the end of each SAS job or session.

The WORK library must exist on a disk device in SAS System 9 format so that it can
be accessed by the V9 engine. (See “The V9 Engine” on page 38 for information about
the V9 engine.) Under z/OS, the physical file that is associated with the DDname
WORK is allocated by the SAS CLIST or by the SAS cataloged procedure.

* References in this documentation to HFS should be interpreted to refer to the z/OS Unix File System (zFS) as well, unless
explicitly stated otherwise.

16 WORK Library Chapter 1

Note: When the NOTHREADS system option is in effect, all procedures use the SAS
WORK library for utility file space (that is, temporary storage for the lifetime of the
procedure’s execution). Beginning with SAS System 9, if the THREADS system option
is in effect, threaded procedures such as PROC SORT and PROC DMREG use utility
files, which reside outside the WORK library in temporary z/OS data sets. The size and
location of the temporary data sets are governed by UTILLOC, a SAS system option
that can be specified only at invocation time. The default value of the UTILLOC option
specifies an amount of space that is generally equivalent to the amount of space
available for the WORK library. This default is adequate for most applications.
However, applications requiring large (especially multivolume) utility files for threaded
procedures might require an explicit UTILLOC specification. See “UTILLOC= System
Option” on page 521 for more information. �

Space is the aspect of the WORK library that is most likely to require your
consideration. Both the SAS cataloged procedure and the SAS CLIST include
parameters that enable you to specify how much space to allocate to the work library.
In the cataloged procedure and CLIST that are supplied by SAS, the space allocation
for the WORK library is as follows:

SPACE=(6144,(500,200))

That is, the space is allocated in 6144-byte blocks, with a primary allocation of 500
blocks and a secondary allocation of 200 blocks. (Your installation may use different
values; see the JCL from one of your SAS jobs to get a listing of the cataloged procedure
that your SAS jobs use.) This space is enough for many SAS jobs. However, if you have
many large temporary SAS data sets, or if you use a procedure that has many large
utility files (for example, a PROC FREQ step with a complex TABLES statement that
you run against a large SAS data set), you might run out of space in the WORK library.
If you run out of space in batch mode, your PROC or DATA step terminates
prematurely and issues a message similar to the one shown in the following output. In
an interactive session, a dialog window asks you to specify what action to take.

Output 1.2 Insufficient WORK Space Message

ERROR: Insufficient space in file WORK.DATASET.DATA.
NOTE: The SAS System stopped processing this step because of errors.
NOTE: SAS set option OBS=0 and will continue to check statements.

This may cause NOTE: No observations in data set.
WARNING: The data set WORK.DATASET may be incomplete. When this step

was stopped there were 22360 observations and 4 variables.
ERROR: Errors printed on page 1.

Here are three possible solutions to this problem:
� Use a larger WORK library. (See “Increasing the Size of the WORK Library” on

page 17.)
� Delete each temporary SAS data set as soon as you no longer need it. (See

“Deleting Temporary SAS Data Sets” on page 17.)
� Direct the temporary SAS data sets to a different SAS data library so that data

space in the WORK library is conserved for items that must be stored there. (See
“Directing Temporary SAS Data Sets to the USER Library” on page 17.)

You can also combine these methods.

Initializing and Configuring SAS Software WORK Library 17

Increasing the Size of the WORK Library
Batch Mode Method

To increase the size of the WORK library in a batch job, include the WORK
parameter in the EXEC statement in your JCL. The following SAS job allocates
1000 blocks of primary and 400 blocks of secondary space–twice as much as the
default WORK allocations:

//HUGE JOB accounting-information
// EXEC SAS,WORK=’1000,400’
//SYSIN DD *
SAS statements

/*
//

Interactive Mode Method
If you invoke SAS interactively, then include the WORK operand in the SAS
CLIST command, as in the following example:

sas work(’1000,400’)

Deleting Temporary SAS Data Sets
Under z/OS, temporary SAS data set means a data set that is stored in a temporary

SAS data library. That is, you cannot designate the data set itself as temporary, but the
data set takes on the attribute of the library in which it is stored.

One simple way to conserve space in the WORK library is to delete each temporary
SAS data set with a PROC DATASETS step after you no longer need it. However, there
are two problems with this method.

� You can cause errors in a job by deleting a SAS data set before the job is finished
with it.

� If you need several very large temporary SAS data sets in your job at the same
time, you may run out of space before you reach a point at which you can delete
any SAS data sets.

An alternative to deleting the temporary SAS data sets is to direct them to a
different SAS data library, as described in the next section.

Directing Temporary SAS Data Sets to the USER Library
You can use the USER= system option to store temporary data sets in the USER

library rather than in the WORK library. You can make the USER library as large as
you need it to be.

Note: Utility data sets that are created by SAS procedures continue to be stored in
the WORK library. However, any data sets that have one-level names and that are
created by your SAS programs will be stored in the USER library. �

You can use a temporary or permanent physical file for the library, and you can put
the library either on disk or on tape. The physical file can be either a System 9, 8, 7, or
6 SAS data library. If it is a Version 6 SAS data library, then it provides support for
data sets but not for catalogs. The following table summarizes differences between the
WORK and USER libraries.

18 SAS Log File Chapter 1

Table 1.2 Differences between the WORK and USER Libraries

Library Type of Data Set Storage Medium Format

WORK temporary disk V9

USER temporary or permanent disk or tape V9, V8, V7, or
V6

The following example illustrates the use of the USER= system option. The
numbered lines of code are explained below.

filename giant ’company.survey.tvdata’;
libname result ’my.tv.sasdata’;

u libname temp ’&tvtemp’ space=(cyl,(6,2));
v options user=temp;
w data totalusa;

infile giant;
input home_id region income viewers cable;
if home_id=. then delete;

run;

x proc freq;
tables region*income*viewers*cable

y / noprint out=result.freqdata;
run;

1 The LIBNAME statement associates the libref TEMP with the temporary physical
file &TVTEMP.

2 In the OPTIONS statement, the USER= system option designates the TEMP libref
as the temporary SAS data library. Any data sets that have one-level names and
that are created by your SAS program will be stored in this library.

3 A one-level name is used in the DATA statement. When the DATA step is
processed, the SAS data set TEMP.TOTALUSA is created.

4 Because the large TOTALUSA data set was directed to the TEMP library, there is
more space available in the WORK library for the utility files that the FREQ
procedure requires.

5 The SAS data set FREQDATA contains the results of the FREQ procedure. A
two-level name is used to store FREQDATA in the permanent SAS data library
MY.TV.SASDATA.

SAS Log File
The SAS log file is a temporary physical file that has a DDname of SASLOG in both

the SAS cataloged procedure and the SAS CLIST. In batch mode, the SAS cataloged
procedure assigns default data control block (DCB) characteristics to this file as follows:

BLKSIZE=141

LRECL=137

RECFM=VBA

Under TSO, either interactively or noninteractively, the SASLOG file is routed to the
terminal by default. In the windowing environment, the SAS log is directed to the Log
window.

Initializing and Configuring SAS Software SAS Log File 19

See “Types of SAS Output” on page 112 for more information about the SAS log and
about how to route output in a batch job.

Changing the Contents of the SAS Log
The particular information that appears in the SAS log depends on the settings of

several SAS system options. See “Collecting Performance Statistics” on page 212 for
more information.

In addition, the following portable system options affect the contents of the SAS log:

CPUID
controls whether CPU information is printed at the beginning of the SAS log.

DETAILS
specifies whether to include additional information when files are listed in a SAS
data library.

ECHOAUTO
controls whether the SAS source statements in the autoexec file are written
(echoed) to the SAS log.

MLOGIC
controls whether macro trace information is written to the SAS log when macros
are executed.

MPRINT
controls whether SAS statements that are generated by macros are displayed.

MSGLEVEL
controls the level of messages that are displayed.

NEWS=
specifies an external file that contains messages to be written to the SAS log when
SAS software is initialized. Typically, the file contains information such as news
items about the system.

NOTES
controls whether NOTES are printed in the log. NOTES is the default setting for
all methods of running SAS. Do not specify NONOTES unless your SAS program
is completely debugged.

OPLIST
specifies whether options given at SAS invocation are written to the SAS log.

PAGESIZE=
specifies the number of lines that compose a page of SAS output.

PRINTMSGLIST
controls whether extended lists of messages are printed.

SOURCE
controls whether SAS source statements are written to the log. NOSOURCE is the
default setting for SAS interactive line mode; otherwise, SOURCE is the default.

SOURCE2
controls whether secondary source statements from files that are included by
%INCLUDE statements are written to the SAS log.

SYMBOLGEN
controls whether the macro processor displays the results of resolving macro
references.

20 SAS Procedure Output File Chapter 1

Changing the Appearance of the SAS Log
The following portable system options are used to change the appearance of the SAS

log:

DATE
controls whether the date and time, based on when the SAS job or session began,
are written at the top of each page of the SAS log and of any print file that SAS
software creates. Use NODATE to suppress printing of the date and time.

LINESIZE=
specifies the line size (printer line width) for the SAS log and the SAS procedure
output file. LS= is an alias for this option. LINESIZE= values can range from 64
through 256.

NUMBER
controls whether the log pages are numbered. NUMBER is the default. Use the
NONUMBER option to suppress page numbers.

OVP
controls whether lines in SAS output are overprinted.

SAS Procedure Output File
Whenever a SAS program executes a PROC step that produces printed output, SAS

sends the output to the procedure output file. Under TSO, either interactively or
noninteractively, the procedure output file is routed to the terminal by default. In the
windowing environment, output is directed to the Output window.

In batch mode, the SAS procedure output file is identified in the cataloged procedure
by the DDname SASLIST. Unless you specify otherwise, SAS writes most procedure
output to this file. (A few procedures, such as the OPTIONS procedure, route output
directly to the SAS log by default.) PUT statement output may also be directed to this
file by a FILE statement that uses the fileref PRINT. (PRINT is a special fileref that
can be specified in the FILE statement.)

The following DCB characteristics of the procedure output file are controlled by the
cataloged procedure, typically with the following values:

BLKSIZE=264

LRECL=260

RECFM=VBA

The SAS procedure output file is often called the print file; however, any data set
that contains carriage-control information (identified by a trailing A as part of the
RECFM= specification) can be called a print file.

Changing the Appearance of Procedure Output
The following portable system options are used to change the appearance of

procedure output:

CENTER
controls whether the printed results are centered or left-aligned on the procedure
output page. CENTER is the default; NOCENTER specifies left alignment.

DATE
controls whether the date and time, based on when the SAS job or session began,
are written at the top of each page of the SAS log and of any print file that SAS
software creates. Use NODATE to suppress printing of the date and time.

Initializing and Configuring SAS Software TKMVSENV File 21

LINESIZE=
specifies the line size (printer line width) for the SAS log and the SAS procedure
output file. LS= is an alias for this option. LINESIZE= values can range from 64
through 256.

NUMBER
controls whether the page number is printed on the first title line of each SAS
printed output page. NUMBER is the default. Use the NONUMBER option to
suppress page numbers.

PAGENO=
specifies a beginning page number for the next page of output that SAS software
produces.

PAGESIZE=
specifies how many lines to print on each page of SAS output. PS= is an alias for
this option. In the windowing environment or in an interactive line mode session,
the PAGESIZE= option defaults to the terminal screen size, if this information is
available from the operating environment. PAGESIZE= values can range from 15
through 500.

Console Log File
The SAS console log file is a physical file that is automatically allocated at the start

of SAS initialization. The console log file records log messages generated when the
regular SAS log is either unavailable or is not yet allocated. You can control the
appearance of the console log file with the LINESIZE= system option only. The SAS
CLIST and catalogued procedures allocate this file using the DDname SASCLOG.

Parmcards File
The parmcards file is a temporary physical file that is identified by the DDname

SASPARM. It is created automatically by the SAS cataloged procedure and by the SAS
CLIST. SAS uses the parmcards file for internal processing. Lines that follow a
PARMCARDS statement in a PROC step are first written to the parmcards file; then
they are read into the procedure. The PARMCARDS statement is used in the BMDP
and EXPLODE procedures.

TKMVSENV File
A TKMVSENV file is created at install time and proc and clists point to it using the

ddname, TKMVSENV. The TKMVSENV file is used to make a list of pseudo
environment variables, which are available to SAS Scalable Architecture application
programs. The file must be a sequential file or a member of a PDS with a record format
of fixed blocked. Each record in this file must contain a single command: SET or
RESET. The RESET command clears all previously set environment variables. The SET
name=value command allows you to create the variable name and assign it the value
value. Each command must begin in column 1 of the record. No blanks are permitted in
the name=value specification on the SET command, except that the value can be
enclosed in quotation marks. Some variables have a Boolean effect. These variables are
on when they are defined and off when they are not defined. Such variables do not need
to have a value but can simply be defined via SET name=. Comments can be included
after the command specification by including one or more blanks between the command
specification and the comment. Environment variables are supported to help your SAS

22 TKMVSENV File Chapter 1

administrator tailor applications that exploit SAS Scalable Architecture. Some
environment variables help SAS Technical Support when troubleshooting a problem.

For more details about the environment variables supported and the recommended
values, see the following sources:

set TKOPT_SVCNO=nnn
set TKOPT_SVCR15=nn

These variables tell the SAS Scalable Architecture interface how the SAS SVC is
installed at the user site. This information is necessary because the SAS Scalable
Architecture interface might need to use some of the SVC services independent of
the SAS application. These variables should be specified with the same values as
the SAS options of the same name.

set TKOPT_NOHFS=
This Boolean variable is provided for those sites that are unable to provide basic
HFS file system resources to SAS System 9. If this option is specified, then the
SAS Scalable Architecture interface will take the following action when an HFS
file open is requested:

� If the file open request is an INPUT open request, the file is treated as an
empty file. No HFS files are opened.

� If the file open request is an OUTPUT open request, a SYSOUT dataset is
allocated with a ddname of TKHFSnnn where nnn is a unique number that is
increased throughout the session. The first record in the SYSOUT dataset
will contain the path name of the HFS file actually requested. The remaining
records will contain the data intended for the named HFS file.

set TKOPT_LPANAME=xxxxxxxx
This option specifies the name of the SAS application entry point invoked by the
SASLPA main entry point. If the installation placed the LPA resident module in
an LPA with a name other than SASXAL, the user will need to specify the same
name for the TKOPT_LPANAME option value.

set TKOPT_UMASK=nnn
This option specifies the UNIX umask to apply to this session. This mask will be
applied to any HFS files created and will operate as a standard UNIX umask. nnn
must be exactly 3 octal digits between 0 and 7.

set TKOPT_CWD=path
This option causes the current working directory to be set to path for the SAS
session. If the path name is nonexistent or invalid, no action is taken. The path
can be absolute or relative.

Table 1.3 SAS References

For environment variables used in... Refer to...

SAS Installation Configuration Guide for SAS 9.1 for z/OS

SAS Troubleshooting SAS Technical Support

Configuring for the Java Platform Configuration Guide for SAS 9.1 for z/OS

Initializing and Configuring SAS Software Summary Table of SAS Software Files 23

For environment variables used in... Refer to...

Configuring for the SAS Metadata Server SAS Metadata Server: Setup Guide

Summary Table of SAS Software Files
Table 1.4 on page 23 lists all of the SAS software files that are frequently used in

the SAS CLIST or in the SAS cataloged procedure. In the CLIST and cataloged
procedure, logical names are associated with physical files. The logical names listed in
the table are those that are used by the standard SAS CLIST or cataloged procedure.
Your installation may have changed these names.

The system option column in the table lists the SAS system options that you can pass
into the SAS CLIST (using the OPTIONS operand) or into the SAS cataloged procedure
(using the OPTIONS parameter) when you invoke SAS. You can use these system
options to change the defaults that were established by the CLIST or by the cataloged
procedure. (See “Specifying or Changing System Option Settings” on page 11.)

Table 1.4 SAS Software Files

Default
Logical
Name Purpose System Option CLIST Operands Type of OS Data Set

CONFIG system
configuration file

CONFIG= DDname DDCONFIG(DDname) sequential data set or PDS
member; must be FB,
LRECL=80

Description: contains system options that are processed automatically when you invoke SAS. The system
configuration file is usually maintained by your data center.

CONFIG user configuration
file

CONFIG= DDname CONFIG(dsn)

DDCONFIG(DDname)

sequential data set or PDS
member; must be FB,
LRECL=80

Description: also contains system options that are processed automatically when you invoke SAS. Your user
configuration file is concatenated to the system configuration file.

LIBRARY format library n/a n/a SAS data library

Description: contains formats and informats.

SAMPSIO sample SAS data
library

n/a n/a SAS data library

Description: is the SAS data library that is accessed by SAS programs in the sample library provided by SAS Institute.

SASnnnnn command
processor file

n/a n/a sequential data set or PDS
member

Description: is used by the SASCP command in the SAS CLIST.

SASAUTOS system autocall
library

n/a MAUTS(dsn) PDS

Description: contains source for SAS macros that were written by your data center or provided by SAS Institute.

SASAUTOS user autocall
library

SASAUTOS=
specification*

SASAUTOS(dsn)
DDSASAUT(DDname)

PDS

Description: contains a user-defined autocall library to which the system autocall library is concatenated.

24 Summary Table of SAS Software Files Chapter 1

Default
Logical
Name Purpose System Option CLIST Operands Type of OS Data Set

SASCLOG console log n/a n/a sequential data set or PDS
member

Description: SAS console log file.

SASEXEC autoexec file AUTOEXEC= DDname AUTOEXEC(dsn)
DDAUTOEX(DDname)

sequential data set or PDS
member

Description: contains statements that are executed automatically when you invoke SAS.

SASHELP HELP library SASHELP= DDname SASHELP(dsn)
DDSASHLP(DDname)

SAS data library

Description: contains system default catalogs and Help system information.

SASLIB format library (V5) SASLIB= DDname n/a load library

Description: a load library that contains user-written procedures and functions or Version 5 formats and informats. It
is searched before the SAS software load library.

SASLIST procedure output
file

PRINT= DDname PRINT(dsn)
DDPRINT(DDname)

sequential data set or PDS
member

Description: contains SAS procedure output.

SASLOG log file LOG= DDname LOG(dsn)
DDLOG(DDname)

sequential data set or PDS
member

Description: SAS log file.

SASMSG system message
file

SASMSG= DDname SASMSG(dsn)
DDSASMSG(DDname)

PDS

Description: contains SAS software messages.

SASPARM parmcards file PARMCARD= DDname PARMCARD(size)
DDPARMCD(DDname)

sequential data set or PDS
member

Description: a temporary data set that is used by some procedures. The PARMCARD= system option assigns a
DDname to the parmcards file; the PARMCARD CLIST operand specifies the file size. You can use the DDPARMCD
operand to specify an alternate name for the parmcards file via the CLIST.

SASSNAP SNAP dump file n/a n/a sequential data set or PDS
member

Description: SNAP output from dump taken during abend recovery.

SASSWKnn sort work files DYNALLOC
SORTWKDD=
SORTWKNO=

n/a sequential

Description: temporary files that are used by the host sort utility when sorting large amounts of data.

SASUSER SASUSER library SASUSER= DDname SASUSER(dsn)
DDSASUSR(DDname)

SAS data library

Description: contains the user profile catalog and other personal catalogs.

STEPLIB STEPLIB library n/a LOAD(dsn)
SASLOAD(dsn)

load library

Description: a load library that contains SAS procedure and user-written load modules. (Allocate with a STEPLIB
DD statement in a batch job.)

Initializing and Configuring SAS Software Accessing SAS Files in Other Operating Environments 25

Default
Logical
Name Purpose System Option CLIST Operands Type of OS Data Set

SYSIN primary input file SYSIN= DDname INPUT(dsn)
DDSYSIN(DDname)

sequential data set or PDS
member

Description: contains SAS statements. The primary input file can be specified with the INPUT operand under TSO,
or allocated with a DD statement in a batch job.

TKMVSENV TKMVSENV file n/a n/a sequential data set or PDS
member

USER USER library USER= DDname | dsn n/a SAS data library

Description: specifies a SAS data library in which to store SAS data sets that have one-level names (instead of
storing them in the WORK library).

WORK WORK library WORK= DDname DDWORK(DDname) SAS data library

Description: contains temporary SAS files that are created by SAS software during your session.

* SASAUTOS: specification can be a fileref, a partitioned data set name enclosed in quotation marks, or a series
of file specifications enclosed in parentheses.

Transporting SAS Data Sets between Operating Environments
SAS supports three ways of transporting SAS data sets between z/OS and other SAS

operating environments: the XPORT engine, the CPORT and CIMPORT procedures,
and SAS/CONNECT software, which is licensed separately. The process of moving a
SAS file to or from z/OS with the XPORT engine or with the CPORT and CIMPORT
procedures involves three general steps:

1 Convert the SAS file to the intermediate form known as transport format.
2 Physically move the transport format file to the other operating environment.
3 Convert the transport format file into a normal, fully functional SAS file, in the

format required by the other operating environment.

For further information on the XPORT engine and on the CPORT and CIMPORT
procedures, including limited restrictions, refer to Moving and Accessing SAS Files.

SAS/CONNECT software allows you to move files between operating environments
without using the intermediate transport format. For further information on
SAS/CONNECT, including limited restrictions, refer to Communications Access
Methods for SAS/CONNECT and SAS/SHARE.

Accessing SAS Files in Other Operating Environments
SAS supports read-only cross-environment data access (CEDA) for certain types of

SAS files created in the format of SAS Version 7 or later. CEDA allows you to read files
in other operating environments as if those files were stored under z/OS. For further
information on CEDA, refer to Moving and Accessing SAS Files.

26 Utilizing Input/Output Features Chapter 1

Utilizing Input/Output Features

Version 5 and 6 data sets generally need to be moved to SAS System 9 if you want to
take advantage of the I/O features introduced in SAS System 9 and Version 8. For
example, if you wanted to add integrity constraints to a Version 6 data set, you would
first have to move that data set to SAS System 9. For information on upgrading your
data sets, refer to Moving and Accessing SAS Files. For information on I/O features
introduced in SAS System 9, refer to the SAS Language Reference: Dictionary.

Reserved z/OS DDnames

In addition to the logical names shown in Table 1.4 on page 23, which have a special
meaning to SAS, you should be aware of the following reserved DDnames, which have a
special meaning to the operating environment:

JOBCAT
specifies a private catalog that the operating environment is to use instead of the
system catalog for the duration of the job (including jobs with more than one job
step).

JOBLIB
performs the same function as STEPLIB (described in Table 1.4 on page 23) except
that it can be used in a job that has more than one job step.

PROCLIB
specifies a private library of cataloged procedures to be searched before the system
library of cataloged procedures is searched. See your local SAS Support
Consultant for information about whether the PROCLIB DDname convention is
used at your facility.

SORTLIB
is used by some host sort utilities.

SORTMSG
is used by some host sort utilities to print messages.

SORTWKnn
specifies sort work data sets for the host sort utility. If allocated, this will be used
instead of the SASSWKnn data sets.

STEPCAT
specifies a private catalog that the operating environment is to use instead of the
system catalog for the current job step.

SYSABEND
in the event of an abnormal job termination, SYSABEND specifies a data set that
receives a medium-sized dump that consists of user-allocated storage and modules,
system storage related to current tasks and open files, and system and programs
related to the terminated job. See also SYSMDUMP and SYSUDUMP below.

SYSHELP
is used by TSO HELP libraries (not the SAS HELP facility).

SYSLIB
is used by some IBM system utility programs.

Initializing and Configuring SAS Software Starting the Remote Help Browser Server 27

SYSMDUMP
in the event of an abnormal job termination, SYSMDUMP specifies a data set that
receives a system dump in IPCS format. The contents of the dump are determined
by z/OS installation options, though SYSMDUMP generally includes all
user-allocated storage, all system-allocated storage used to control job execution,
and all program modules (system modules and user programs) that were in use at
the time the dump was taken.

SYSOUT
is used by some utility programs to identify an output data set.

SYSPRINT
is used by some utility programs to identify a data set for listings and messages
that may be sent to the printer.

SYSUADS
is used by some TSO commands that may be invoked under SAS software.

SYSUDUMP
in the event of an abnormal job termination, SYSUDUMP specifies a data set that
receives a “short” system dump that consists of user-allocated storage and modules
and system storage related to current tasks and open files. See also SYSABEND
and SYSMDUMP above.

SYSnnnnn
is reserved for internal use (for dynamic allocation) by the operating environment.

Setting Up the Remote Help System

What Is the Remote Help System?
The remote help system enables users who access SAS through a 3270 emulator (or a

real 3270) to view SAS documentation from a Web browser on a PC that is running
Microsoft Windows. Previously, all documentation was displayed by the itemstore help
in the SAS Help Browser window in the z/OS emulator. By displaying this
documentation in your Windows Web browser, you have better browsing capability and
more complete documentation content.

Starting the Remote Help Browser Server
Before you can use the remote help system, your site administrator will need to

install and deploy the remote help Webdoc application and the remote help
documentation. You will have to install the remote help browser on your PC. This
server must be running on your PC for the remote help system to work. To run the
remote help browser server on your computer, follow the instructions below:

Windows environments
Select

Start Programs SAS Remote Help Browser Server

SASrHlp.exe

28 How to Set Up the Remote Help Chapter 1

How to Set Up the Remote Help
Once the remote help browser server is running on your computer, you can run the

help by specifying the HELPADDR, HELPBROWSER, HELPHOST, and HELPPORT
system options.

� The HELPADDR system option specifies the location of the remote help Webdoc
application. Your site administrator must set this option for your site. This
application runs under an application server. For more information, see
“HELPADDR= System Option” on page 448.

� The HELPBROWSER system option specifies whether you want to use the new
remote help (REMOTE, the default) or the traditional itemstore-based help (SAS)
that uses the SAS Help browser. For more information, see “HELPBROWSER=
System Option” on page 448.

� The HELPHOST system option specifies the name of your computer, which runs
your remote help browser server. For more information, see “HELPHOST System
Option” on page 449.

� The HELPPORT system option specifies the port number that the remote help
browser server is listening on. For more information, see “HELPPORT System
Option” on page 452.

You can set these options at SAS invocation, in your configuration file, or during your
SAS session in the OPTIONS statement or in the SAS System Options window.

Example 1: Setting Up the Remote Help at SAS Invocation
The following code shows you how to set up the remote help at SAS invocation:

sas91 helpaddr="http://myhelpserver:8080/SASDoc" helpbrowser=remote
helphost=mycomputer helpport=3755

Example 2: Setting Up the Remote Help during a SAS Session
The following code shows you how to set up the remote help during your SAS session:

sas91 o(’helpaddr=http://myhelpserver:8080/SASDoc
helpbrowser=remote helphost=mycomputer helpport=3755’)

Exiting or Terminating Your SAS Session in the z/OS Environment

Preferred Methods for Exiting SAS
These are the preferred methods for exiting a SAS session:

� select

File Exit

� use endsas;

� enter BYE in the command line.

Initializing and Configuring SAS Software Support for SAS Software 29

Additional Methods for Terminating SAS
In addition to the preferred methods for exiting a SAS session, you can terminate

SAS in the following ways when it running on a server:

STOP
This method is the equivalent of an application requesting a normal shutdown.
You should have no problems with your files.

CANCEL
The operating system initiates the termination of SAS, but application error
handlers can still run and cleanup is possible. Your files will be closed, and the
buffers will be flushed to disk. However, there is no way to ensure that the
shutdown will always be orderly. Your files could be corrupted.

MEMTERM (also know as FORCE)
The operating system terminates all application processes with no recovery. This
is the equivalent to what would happen if the system were rebooted.

Some databases, such as DB2, are able to recover from both the CANCEL and
MEMTERM types of failures. These applications accomplish this task by logging every
change so that, regardless of when a failure occurs, the log can be replayed to enable
recovery to a valid state. However, some transactions could still be lost.

Although you can terminate SAS using these techniques, you should try one of the
three preferred techniques listed first.

What If SAS Doesn’t Start?

If SAS does not start, the SAS log might contain error messages that explain the
failure. Any error messages that SAS issues before the SAS log is initialized are
written to the SAS Console Log, which is the SASCLOG ddname destination. Under
TSO, that will normally be the terminal, but the destination might have been changed
by the SAS Support Consultant by changing the CLIST that invoked SAS. For a batch
job or started task, that will normally be a spooled SYSOUT class, but it might have
been changed by the SAS Support Consultant by changing the SAS cataloged procedure
used to invoke SAS.

Support for SAS Software

Support for SAS software is shared by SAS and your installation or site. SAS
provides maintenance for the software; the SAS Installation Representative, SAS
Support Consultant, and the SAS Training Coordinator for your site are responsible for
providing you with direct user support.

� The SAS Installation Representative receives all shipments and correspondence
and distributes them to the appropriate personnel at your site.

� The SAS Support Consultant is a knowledgeable SAS user who supports the other
SAS users at your site. The SAS Technical Support Division is available to assist
your SAS Support Consultant with problems that you encounter.

� The SAS Training Coordinator works with the SAS Education Division to arrange
training classes for SAS users.

30 Working with Your SAS Support Consultant Chapter 1

Working with Your SAS Support Consultant
At your site, one or more SAS Support Consultants have been designated as the first

point of contact for SAS users who need help resolving problems.
If the SAS Support Consultant is unable to resolve your problem, then the SAS

Support Consultant will contact the SAS Technical Support Division for you. In order to
provide the most efficient service possible, the company asks that you do not contact
SAS Technical Support directly.

SAS Technical Support
The SAS Technical Support Division can assist with suspected internal errors in SAS

software and with possible system incompatibilities. It can also help answer questions
about SAS statement syntax, general logic problems, and procedures and their output.
However, the SAS Technical Support Division cannot assist with special-interest
applications, with writing user programs, or with teaching new users. It is also unable
to provide support for general statistical methodology or for the design of experiments.

Generating a System Dump for SAS Technical Support

Follow these steps to generate a system dump that can be interpreted by SAS Technical
Support:

1 Disable ABEND-AID or any other dump formatting system before generating the
dump.

2 Create a sequential data set with the DCB attributes DSORG=PS RECFM=FB
LRECL=256 and the following contents:

reset
set tkopt_dumpprol=
set tkopt_nostae=
set tkopt_nostaex=

3 In the batch job or TSO session in which SAS is started, allocate the following
DDname’s:

� Allocate the DDname TKMVSENV to the sequential data set that is
described above.

� If an unformatted dump is desired, which is normally the case unless
otherwise advised by SAS Technical Support, allocate the DDname
SYSMDUMP to a disk data set. Specifying SPACE=(CYL,(50,50)) is usually
sufficient. In batch, it is usually convenient to allocate the dump data set
DISP=(,DELETE,CATLG) so that it will be created only if the job abends.

� If a formatted dump is desired or requested, instead of an unformatted dump,
allocate the DDname SYSUDUMP to a disk data set or an appropriate
SYSOUT class. In most cases this would be a SYSOUT class that is not
automatically printed.

� Specify the following options at SAS invocation: NOSTAE, DUMPPROL,
SOURCE, SOURCE2, NOTES, MPRINT, and SYMBOLGEN.

Initializing and Configuring SAS Software Solving Problems within SAS Software 31

To deliver the dump to SAS, use one of the following methods:

FTP
Send unformatted dumps in BINARY mode and inform SAS Technical Support of
the DCB attributes of the original dump data set. Send formatted dumps in ASCII
mode.

Tape
Use IEBGENER to copy the dump data set to a magnetic tape cartridge using
IBM standard labels.

Solving Problems under z/OS
As you use SAS software under z/OS, you might encounter many different kinds of

problems. Problems might occur within the context of your SAS program, or they might
be with some component of the operating environment or with computer resources
rather than with SAS software. For example, problems might be related to job control
language or to a TSO command.

Problems Associated with the z/OS Operating Environment
If a problem is detected by the operating environment, it sends messages to the job

log or to the terminal screen (not the SAS log). In this case, you might need to consult
an appropriate IBM manual or your on-site systems staff to determine the problem and
the solution.

Most error messages indicate which part of the operating environment is detecting
the problem. Here are some of the most common message groups, along with the
operating environment component or utility that issues them:

CSVxxxx
z/OS load module management routines

ICExxxxx
IBM sort utility

ICHxxxx
RACF system-security component of z/OS

IDCxxxxx
catalog-management component of z/OS

IECxxxxx
z/OS data-management routines

IKJxxxx
TSO terminal monitor program (TMP)

WERxxxxx
SYNCSORT program

Consult the appropriate system manual to determine the source of the problem.

Solving Problems within SAS Software
Several resources are available to help you if you determine that your problem is

within SAS software. These resources are discussed in the following sections.

32 Solving Problems within SAS Software Chapter 1

Examining the SAS Log
The primary source of information for solving problems that occur within SAS

software is the SAS log. The log lists the SAS source statements along with notes about
each step, warning messages, and error messages. Errors are flagged in the code, and a
numbered error message is printed in the log. It is often easy to find the incorrect step
or statement just by glancing at the SAS log.

Checking the Condition Code
Upon exit, SAS returns a condition code to the operating environment that indicates

its completion status. The condition code is translated to a return code that is
meaningful to the operating enviornment. SAS issues the condition codes in the
following table:

Table 1.5 z/OS Condition Codes

Return Code Meaning

0 Successful completion

4 WARNING message(s) issued

8 Non-fatal ERROR message(s) issued

12 Fatal ERROR message(s) issued

16 ABORT; executed

20 ABORT RETURN; executed

ABND ABORT ABEND; executed

Using SAS Online Help
Help is available through the SAS online help facility. To obtain host-specific help,

execute the PMENU command as necessary to display SAS menus, then select

Help SAS System Help Main TOC Using SAS Software in z/OS

Then select topics of interest at increasing levels of detail.
Issue the KEYS command to determine the function keys used to page up, down, left,

and right through help pages, and to move backward and forward between help topics.

Using User-Defined Help
Your site may provide user-defined help that provides site-specific information via the

standard SAS help browser. To access user-defined help via the SAS help browser, you
need to allocate a user-defined help library at SAS invocation.

The user-defined help library contains help information in the form of one or more
itemstores, which utilize a file format that allows SAS to treat the itemstore as a file
system within a file. Each itemstore can contain directories, subdirectories, and
individual help topics. For information on loading user-defined help into itemstores,
refer to “ITEMS Procedure” on page 317.

Help for SAS software is contained in itemstores. SAS automatically allocates
libraries for SAS software help at SAS invocation. To invoke SAS so that it recognizes
user-defined help, follow these steps:

1 In an autoexec file, allocate the SAS library that will contain the user-defined
itemstore(s) using the LIBNAME statement. For example, if the libref is to be

Initializing and Configuring SAS Software Solving Problems within SAS Software 33

MYHELP and the itemstore is named APPL.HELP.DATA, the LIBNAME
statement in the SAS invocation would be

libname myhelp ’appl.help.data’ disp=shr;

See “Autoexec Files” on page 9 and “LIBNAME Statement” on page 393 for
details.

2 Concatenate your itemstore(s) to the SAS help itemstore named by the HELPLOC=
system option at SAS invocation. For example, if the libref for your user-defined
help was MYHELP, and if the itemstore in the libref was named PRGAHELP, then
the HELPLOC= specification in the SAS invocation would be as follows:

helploc=’myhelp.prgahelp’

See “HELPLOC= System Option” on page 451 for details on the HELPLOC=
system option.

User-defined help cannot be added to the SAS help itemstore because most users
have read-only access to the SAS help library.

After SAS has been invoked so that it can recognize user-defined help, you can access
that help with the standard SAS help browser by issuing the HELP command and
specifying the appropriate universal resource locator (URL). For example, if the help
topic that you want to display is named DIRAHLP1.HTM, and if that help topic is
contained in an itemstore directory named PRGADIRA, the HELP command would be
as follows:

help helploc://prgadira/dirahlp1.htm

See the next section for information on developing user-defined help for the SAS help
browser.

Developing User-Defined Help
You can develop help for your site or for your SAS programs that can be displayed in

the standard SAS help browser. To ensure that your user-defined help will be displayed
as it is written, use only the subset of tags from HTML that are supported on the SAS
help browser. Help information in tags that are not supported by the SAS help browser
might be ignored by the SAS help browser.

The following table describes the HTML tags supported by the SAS help browser. In
short, the TABLE tag is the only frequently used tag that is not supported at this time.
To add tables to your help, use the PRE tag and format the text manually using blank
spaces, vertical bars, dashes, and underscores as needed.

Table 1.6 HTML Tags Supported by the SAS Help Browser

Tag Type Tag Names Description

heading H1, H2, H3, H4, H5, H6 for hierarchical section headings

paragraph P for text in the body of a help file

list UL, OL, DIR, MENU for unordered (bullet) lists, ordered (numbered)
lists, directory (unordered, no bullets) lists, and
menu (unordered) lists

definition list DL, DT, DD for definition lists, titles of items, and
definitions of items

preformatted text PRE, XMP, LISTING for tables, which must be manually formatted
with blank spaces

34 Solving Problems within SAS Software Chapter 1

font specification I, B, U for italic, bold, and underlined text

phrase EM, STRONG, DFN, CODE,
SAMP, KBD, VAR, CITE

for emphasis, strong emphasis, definitions, code
examples, code samples, keyboard key names,
variables, citations

link A, LINK for anchors and the links that reference those
anchors

document TITLE, BASE, HEAD,
HTML

for titles in the browser, base URLs, heading
sections at the top of a page

For information on the options available for these tags, see any reference for the
version of HTML supported by your browser.

For information on loading your help into itemstores, see “ITEMS Procedure” on page
317.

Using the SAS OnlineDoc CD-ROM
The CD-ROM that is supplied with SAS software contains most of the documentation

for Base SAS, including SAS Language Reference: Dictionary and other titles. If you
encounter a problem that cannot be solved based on the information provided in the
SAS log or in SAS online help, load the CD-ROM disk into a CD-ROM reader and
browse through the contents of the books contained therein.

DATA Step Debugger
The DATA step debugger is an interactive tool that helps you find logic errors, and

sometimes data errors, in SAS DATA steps. By issuing commands, you can execute
DATA step statements one by one or in groups, pausing at any point to display the
resulting variable values in a window. You can also bypass the execution of one or more
statements. For further information on the DATA step debugger, see the SAS Language
Reference: Dictionary.

Using SAS Statements, Procedures, and System Options to Identify
Problems

If you are having a problem with the logic of your program, there might be no error
messages or warning messages to help you. You might not get the results or output
that you expect. Using PUT statements to write messages to the SAS log or to dump
the values of all or some of your variables might help. Using PUT statements enables
you to follow the flow of the problem and to see what is going on at strategic places in
your program.

Some problems might be data related; these can be difficult to trace. Notes that
appear in the SAS log following the step that reads and manipulates the data might be
very helpful. These notes provide information such as the number of variables and
observations that were created. You can also use the CONTENTS and PRINT
procedures to look at the data definitions as SAS recorded them or to actually look at
all or parts of the data in question.

Initializing and Configuring SAS Software Solving Problems within SAS Software 35

SAS system options can also assist with problem resolution. Refer to the SAS
Language Reference: Dictionary for details on the following system options and others
that affect problem resolution:

MLOGIC
controls whether SAS traces execution of the macro language processor.

MPRINT
displays SAS statements that are generated by macro execution.

SOURCE
controls whether SAS writes source statements to the SAS log.

SOURCE2
writes secondary source statements from included files to the SAS log.

SYMBOLGEN
controls whether the results of resolving macro variable references are written to
the SAS log.

Host-System Subgroup Error Messages
See “Messages from the SASCP Command Processor” on page 599 for brief

explanations of many of the host-system subgroup error messages that you might
encounter during a SAS session.

36

37

C H A P T E R

2
Using SAS Data Libraries

Introduction 38

SAS Library Engines 38
The V9 Engine 38

The V9TAPE Engine 39

Compatibility Engines 39
Long Format Names 40

Release 6.06 Format Data Sets 40

V5 and V5TAPE Engines 40
Other SAS Engines 41

SAS View Engines 41
Library Implementation Types for Base and Sequential Engines 42

Direct Access Bound Libraries 42

Creating Direct Access Bound Libraries 42
General Usage Notes 43

Controlling Library Block Size 45

Sequential Access Bound Libraries 46
Creating Sequential Access Bound Libraries 46

General Usage Notes 47
Controlling Library Block Size 48

HFS Libraries 48

Creating HFS Libraries 49
General Usage Notes 49

Hiperspace and DIV Libraries 50

Creating Hiperspace Libraries 51
Pipe Libraries (Experimental) 52

General Usage Notes 52
Allocating a SAS Data Library to a Pipe 53

Sample JCL 54

Assigning SAS Data Libraries 55
Allocating the Library Data Set 55

Assigning SAS Data Libraries Internally 56

Advantages of Allocating SAS Data Libraries Internally 57
Accessing SAS Data Sets without a Libref Using Quoted References 58

Members of Direct Access and Sequential Access Bound Libraries 58
Members of HFS Libraries 58

Assigning SAS Data Libraries Externally 59

JCL DD Statement Examples 60
TSO ALLOCATE Command Examples 60

Using a DDname as a Libref 61

Specifying an Engine for Externally Allocated SAS Data Libraries 61
How SAS Assigns an Engine 62

38 Introduction Chapter 2

Assigning Multiple Librefs to a Single SAS Data Library 62

Listing Your Current Librefs 63
Deassigning SAS Data Libraries 63

Using Multivolume SAS Data Libraries 64

General Guidelines 64
Requesting Space As Needed 65

Preallocating New Multivolume Libraries 66

Allocating a Multivolume Generation Data Group 67

Introduction

A SAS data library is a collection of one or more SAS files that are recognized by SAS,
and that are referenced and stored as a unit. Each file is a member of the library. An
engine is the software component that SAS uses to create, read, update, and manage
the files that reside in a SAS data library. The topics in the following list discuss the
use of library engines and SAS data libraries:

“SAS Library Engines” on page 38
describes how to use various types of engines under z/OS to access SAS data
libraries. For the base, sequential, and certain compatibility engines, the SAS data
libraries can exist in various formats.

“Library Implementation Types for Base and Sequential Engines” on page 42
describes the purpose for each of the various library formats as well as how to
select the format that is most appropriate for your application.

“Assigning SAS Data Libraries” on page 55
describes the various means for specifying that a particular library be used within
a SAS session.

See SAS Language Reference: Concepts for additional general information on SAS data
libraries and SAS I/O engines.

SAS Library Engines
SAS provides different engines that enable you to access and, in most cases, to

update files of different types and different formats.

Note: For a complete list of native library engines available in SAS 9.1, see “Native
Library Engines” in SAS Language Reference: Concepts. �

The V9 Engine
The base engine for SAS data libraries is V9. The V9 engine creates libraries in the

V9 format, and it can also read and write libraries created using the V7 and V8 engines.
The V9 engine is the appropriate choice for most applications because it supports the

full SAS data set functionality. The V9 engine also exploits the random access
capabilities of disk devices to achieve greater performance than is possible with
sequential engines.

The V9 engine is the default engine in most cases, but you can change the specified
default engine with the ENGINE system option. The V9 engine can only be used for the
types of devices that support it.

Using SAS Data Libraries Compatibility Engines 39

Note: Use BASE as the engine name if you write programs that create new SAS
data libraries and you want to create the data libraries in the latest available format.
In SAS System 9, BASE is an alias for V9, and it will be an alias for newer engines in
subsequent releases of SAS. �

The V9TAPE Engine
The sequential engine for SAS data libraries is V9TAPE. The V9TAPE engine creates

sequential libraries in the V9TAPE format, and it can also read and write libraries
created using the V7TAPE and V8TAPE engines.

The V9TAPE engine provides a way to store files on devices such as tape that do not
support random access. Some of the uses of the V9TAPE engine on z/OS include

� archiving SAS files to tape for long-term storage.

� transporting SAS files between your z/OS system and another z/OS system or
CMS system via tape.

� sending SAS data, via a pipe connection, for immediate consumption by another
job running in parallel.

In contrast to the V9 engine, V9TAPE has the following limitations:

� does not support indexing, compression of observations, or audit trail capabilities

� does not support direct access to individual observations (using the POINT= or
KEY= options in the SET or MODIFY statements)

� provides limited support for the following types of SAS library members: ACCESS,
CATALOG, PROGRAM, and VIEW. You can move or transport these member
types, but you cannot use the V9TAPE engine to access the information within
these members.

Note: Use TAPE as the engine name if you write programs that create new SAS
data libraries and you want to create the data libraries in the latest available format.
In SAS System 9, TAPE is an alias for V9TAPE, and it will be an alias for newer
sequential engines in subsequent releases of SAS. �

Compatibility Engines
SAS provides various compatibility engines for the purpose of processing libraries

that were created by previous versions of SAS. The type of engine that should be used
depends on the engine format of the library. In most cases, SAS can detect the engine
format and automatically select the appropriate engine to use. However, if you are
using SAS System 9 to create a new library or new members that will be processed by a
prior version of SAS, you need to explicitly specify (on a LIBNAME statement or
function) an engine that creates a library or members in a format that can be processed
by the prior version of SAS.

The following base engine library formats can be read and written by SAS System 9:

V9 library Libraries created by the default base engine in V8 or V7 are
identified by SAS System 9 as being in V9 format.

V6 library These libraries were created using the default base engine in V6 or
using the V6 compatibility engine under a later version of SAS.

Specifying one of the compatibility engines below has the indicated effect:

V8 creates a V9 library but does not allow creation of members with
format names longer than 8 bytes.

40 Compatibility Engines Chapter 2

V7 has the same effect as V8.

V6 creates a V6 format library.

The following sequential engine library formats can be read and written by SAS
System 9:

V9TAPE library Libraries created by the default sequential engine in V8 or V7 are
identified by SAS System 9 as being in V9TAPE format.

V6TAPE library These libraries were created using the default sequential engine in
V6 or using the V6TAPE compatibility engine under a later version
of SAS.

Specifying one of the compatibility engines below has the indicated effect:

V8TAPE creates a V9TAPE library but does not allow creation of members
with format names longer than 8 bytes.

V7TAPE has the same effect as V8TAPE.

V6TAPE creates a V6TAPE format library.

Long Format Names
The V9 and V9TAPE engines support long format names in data sets. These long

format names can have a maximum length of 32 bytes. SAS Version 8 and Version 7
can process V9 and V9TAPE format libraries, including new data sets created using
SAS System 9, provided the data sets do not have format names longer than 8 bytes. If
you are using SAS System 9 to create data sets that you intend to process using SAS
Version 8 or Version 7, specify the V8 or V8TAPE engine, as appropriate, to ensure that
the format names do not exceed 8 characters.

Release 6.06 Format Data Sets
Data sets that were created under SAS Release 6.06 cannot be read or written by

SAS System 9 because their storage format differs from that used in subsequent
releases of SAS Version 6. To make a SAS Release 6.06 data set available for processing
in SAS System 9, first use a later release of SAS Version 6 (6.07, 6.08, or 6.09) to copy
the SAS Release 6.06 data set to a new SAS data set, either in the same library or in a
new library. (SAS System 9 can process libraries originally created by SAS Release 6.06
if the members contained therein have been converted to the engine format associated
with a later release of SAS, such as SAS Release 6.09.) The newly copied data set
automatically receives the new SAS Version 6 format, which allows the new data set to
be processed by the V6 or V6TAPE engine in SAS System 9.

V5 and V5TAPE Engines
SAS System 9 can read, but not update, libraries that were created in the V5 and

V5TAPE formats. Note that the V5 and V5TAPE engines cannot be specified on the
LIBNAME statement. However, SAS will identify the correct engine to use with these
libraries if no engine is specified.

Using SAS Data Libraries SAS View Engines 41

Other SAS Engines

You can use the following SAS engines for the purposes that are specified with each
engine:

REMOTE
The REMOTE engine is used by SAS/CONNECT and SAS/SHARE to access
remote files. For information about how to use the REMOTE engine, see
SAS/CONNECT User’s Guide and SAS/SHARE User’s Guide.

XPORT
The XPORT engine converts SAS files to a format suitable for transporting the file
from one operating environment to another. For information about how to use this
engine, see Moving and Accessing SAS Files.

Interface Engines
The BMDP, OSIRIS, and SPSS engines provide read-only access to BMDP,
OSIRIS, and SPSS (including SPSS-X) files, respectively.

SAS View Engines

SAS view engines enable SAS software to read SAS data views and DATA step views
that are described by the DATA step, SQL procedure, or by SAS/ACCESS software.
Under z/OS, the following view engines are supported. These engines support the SAS
data set model only and are not specified in the LIBNAME statement or LIBNAME
function.

ADB
accesses ADABAS database files.

DDB
accesses CA-DATACOM/DB database files.

IDMS
accesses CA-IDMS database files.

IMS
accesses IMS-DL/I database files.

DATASTEP
accesses data sets that are described by a SAS DATA step.

These engines support the SAS data view and are also specified in the LIBNAME
statement and the LIBNAME function:

DB2
accesses DB2 database files.

ORACLE
accesses Oracle database files.

SQL
accesses data sets that are described by the SQL procedure.

For more information about the SQL view engine, see SAS Guide to the SQL
Procedure: Usage and Reference. For information about the other view engines, see the
appropriate SAS/ACCESS software documentation.

42 Library Implementation Types for Base and Sequential Engines Chapter 2

Library Implementation Types for Base and Sequential Engines

For a given engine, a SAS data library can be implemented in a variety of forms that
have different usability and performance characteristics. These implementation types
and the engines with which they can be used are listed below. A complete description of
each library can be found in the sections that follow.

Table 2.1 Types of Libraries and Supported Engines

Implementation Type Engines Supported

Direct Access Bound Library V9, V8, V7, V6

Sequential Access Bound Library V9TAPE, V8TAPE, V7TAPE, V6TAPE

HFS Library V9, V8, V7, V9TAPE, V8TAPE, V7TAPE

Hiperspace Library V9, V8, V7, V6

Pipe Library V9TAPE, V8TAPE, V7TAPE, V6TAPE

Direct Access Bound Libraries
A direct access bound library is a single z/OS data set, accessed on disk or

hiperspace, that logically contains one or more SAS files in a manner similar to that of
a z/OS partitioned data set (PDS). However, unlike a PDS, the members of a direct
access bound library can be read, written, or managed only by SAS. Direct access bound
libraries support the requirements of the base engines, particularly the need to
randomly access SAS files and to have more than one SAS file open simultaneously.
Direct access bound libraries can extend to as many as 59 physical direct access storage
device (DASD) volumes. Like a PDSE, SAS can reuse space in these libraries when a
member is deleted or shortened. SAS performs most of its I/O asynchronously to direct
access bound libraries. This enables SAS servers that are accessing these libraries to
perform other work while I/O operations to these libraries are in progress.

Creating Direct Access Bound Libraries
There are many ways to create a direct access bound library, but all methods have

two points in common: First, the library physical name must correspond to a new or
empty z/OS data set on DASD. Second, the library data set must have the DCB
attribute DSORG=PS, and RECFM, if specified, must be FS. The second requirement
will be met if a base engine is explicitly specified on the LIBNAME statement that is
used to identify the library.

The first time that a new direct access bound library is used, it is initialized with the
control structures that are necessary to manage library space and maintain the
directory of library members.

The following example uses the LIBNAME statement with the default library options:

Example Code 2.1 Default Library Options for the LIBNAME Statement

libname study ’.study1.saslib’ disp=(new,catlg);
data study.run1;
...

run;

Using SAS Data Libraries Direct Access Bound Libraries 43

These SAS statements use the V9 engine to create a library named
prefix.STUDY1.SASLIB where prefix is the value of the SYSPREF system option. The
amount of space allocated to the library is derived from the value of the FILEUNIT,
FILESPPRI, and FILESPSEC system options. SAS automatically sets the appropriate
DCB attributes. In an interactive session, it is possible to omit the DISP option; in this
case, SAS assumes a status of NEW and prompts for the value of the normal disposition.

The following example creates an external assignment using JCL:

Example Code 2.2 External Assignment Using JCL

//jobname JOB ...
// EXEC SAS
//STUDY DD DSN-USER489.STUDY1.SASLIB,DISP=(NEW,CATLG),
// UNIT=DISK,SPACE=(CYL,(200,50)),DCB=DSORG=PS
data study.run1;

...
run;

Assuming that the ENGINE system option uses the default of V9, these SAS
statements create a library named USER489.STUDY1.SASLIB.

As in the previous example, SAS automatically sets the appropriate DCB attributes.
Note that it is not necessary to specify the LIBNAME statement.

The following example explicitly specifies the V6 compatibility engine:

Example Code 2.3 External Assignment Using JCL to Specify a Compatibility Engine

//jobname JOB ...
// EXEC SAS
//HIST DD DSN=USER489.HISTORY1.SASLIB,DISP=(NEW,CATLG),
// UNIT=3390,SPACE=(CYL,(10,10)),
// DCB=(DSORG=PS,BLKSIZE=27648)
libname hist V6;
data hist.analysis;
...
run;

Like the previous JCL example, this example uses external assignment; however, the
V6 compatibility engine is explicitly specified in the LIBNAME statement. This library
can now be processed by SAS Version 6. In addition, the DD statement in the JCL
explicitly specifies the library block size.

General Usage Notes
� Only one SAS session can open a direct access bound library for update at a given

time. It is necessary to specify a disposition status of NEW, OLD, or MOD in order
to update a SAS data library. However, multiple SAS sessions can share a SAS
data library for read-only access using DISP=SHR. Except for a special case of
relevance only during the installation of the SAS product, SAS will not open to
update a library that is allocated DISP=SHR.

� The data set in which a direct access library resides is itself a simple physical
sequential data set. Therefore, the library data set can be copied or backed up
(subject to the restrictions below) to disk or to tape using standard z/OS utilities
such as IEBGENER, ISPF/PDF 3.3, or DF/HSM. However, the copy of the library
data set cannot be opened by SAS unless it resides on DASD.

� The library data set for a direct access bound library must not be copied or backed
up while SAS has the library open for update. Failure to respect this restriction

44 Direct Access Bound Libraries Chapter 2

can lead to loss of data. Utility programs that respect the DISP=OLD allocation
and that run in an address space separate from the SAS session will comply with
this restriction.

� Multivolume direct access bound libraries that were last processed by SAS System
9 can be successfully copied by standard utilities. This is true regardless of the
engine format. However, multivolume direct access bound libraries that were last
processed by earlier versions of SAS could have the DS1IND80 bit (last volume
flag) turned on for each volume. Utilities that honor the DS1IND80 flag will
terminate the copy operation at the first volume for which the flag is on. Libraries
for which the DS1IND80 flag is on for all volumes (or any volume except the last
volume with data) cannot be copied in their entirety by such utilities. This
problem exists for any library that was last processed by SAS Version 6. The
problem might also exist for any library last processed by SAS Version 8 but only
if the SAS session abended. For this reason, SAS recommends using the COPY
procedure for such libraries.

� Except as noted above, direct access bound libraries can be copied with external
utilities from one type of DASD device to another (for example, from a 3380 to a
3390). However, the copy operation must comply with the requirements of
RECFM=FS.

� When rewriting a SAS file in a direct access bound library, SAS doesn’t delete the
old copy of the file until the entire SAS file has been completely rewritten. The
library will grow large enough to contain both the old and new version of the file.

� Although SAS reclaims free space in a direct access bound library for its own use,
it doesn’t release free space back to the operating system as part of normal
processing. To make free space available for other z/OS data sets, use the COPY
procedure to copy all of the members of the library to another smaller library, and
then delete the original copy. Unformatted free space at the end of the library data
set (that is, the difference between “Total Library Blocks” and “Highest Formatted
Block” in the CONTENTS procedure output) can be released by specifying the
RLSE subparameter of the SPACE parameter when accessing a library for update.
The RELEASE procedure can release both formatted and unformatted free space
at the end of a library (that is, space that follows “Highest Used Block” as
indicated by the CONTENTS procedure or the DATASETS procedure), but it can
only be used for libraries that reside on a single volume. Neither the RLSE
subparameter nor PROC RELEASE can be used to release embedded free space in
a direct access bound library, that is, free blocks below “Highest Used Block.”

� The value for “Total Library Blocks” reported by PROC CONTENTS and PROC
DATASETS reflects only space on volumes for which the library has formatted
blocks. It does not include preallocated space on volumes to which the library data
set has not yet been extended.

� The COPY procedure can also be used to re-organize a direct access bound library
so that all the blocks of each SAS file reside in contiguous library blocks, which
could improve the efficiency of frequently processed libraries.

� Since SAS uses EXCP to process direct access bound libraries, the direct access
bound libraries cannot reside in extended format sequential data sets.
Consequently, a direct access bound library can occupy a maximum of 64K tracks
on any given volume.

� A direct access bound library that is externally allocated with DISP=MOD cannot
be assigned if the library has been extended to more than one volume. This
restriction also applies when re-assigning a library using an external allocation
that was previously used in the current SAS session or a previous SAS session.
(Libraries can be re-assigned by issuing a LIBNAME statement that names the
libref with which the library is currently assigned. Certain SAS procedures, the

Using SAS Data Libraries Direct Access Bound Libraries 45

DOWNLOAD procedure in particular, also re-assign libraries.) Moreover, a direct
access bound library that is externally allocated with DISP=NEW cannot be
re-assigned once the library has been extended to more than one volume, and the
library is temporary, not cataloged, or resides in a generation data group (GDG).
(However, a library that is allocated with DISP=(NEW,CATLG) can be re-assigned
even after it has been extended to multiple volumes.) The restrictions above can
be circumvented by establishing a DISP=OLD or DISP=SHR allocation to continue
processing the library. Under TSO, this can be accomplished by de-assigning the
library, freeing the external allocation, and using the SAS LIBNAME statement or
TSO ALLOCATE command to establish a new allocation. In batch, this can be
accomplished by passing the library to a subsequent job step for further processing.

� Leading blanks on member names are ignored.

Controlling Library Block Size
The block size of a direct access bound library affects performance because it is the

minimum value for the page size for all SAS files in the library. Moreover, the page size
of any SAS file in the library must be an integral multiple of the library block size. See
“Optimizing I/O” on page 213 for more information.

The block size of a direct access bound library is set at initialization time, and it does
not change for the life of the library data set. SAS begins the process of determining
the library block size by selecting the first applicable value from the following hierarchy
of sources:

� for a preallocated but uninitialized data set, the block size value specified for the
first or only volume of the data set.

� for a data set allocated using DISP=NEW, the block size value specified on
allocation, either in the LIBNAME statement or, for external allocation, in the DD
statement or TSO ALLOCATE command. See “Allocating the Library Data Set” on
page 55 for a description of how and when SAS dynamically allocates the library
data set.

� value of the BLKSIZE= system option, if non-zero.
� value of the BLKSIZE(device-type) system option for the device type on which the

library resides, provided the value is non-zero.
� 6144.

SAS then adjusts the block size value selected from the list above as necessary to
meet the unique requirements of direct access bound libraries. The following procedure
is used to adjust the value:

� If the value is greater than the maximum for the device (generally 32760), it is
decreased to 32760.

� If the value is less than 4096, it is increased to 4096.
� After the previous two calculations are completed, if the value is not a multiple of

512, it is rounded down to the nearest multiple of 512.

Note: The block size value that you specify might not be the block size with which
the library is actually initialized. For example, a value of 32760 would be adjusted to
32256. �

46 Sequential Access Bound Libraries Chapter 2

Sequential Access Bound Libraries

A sequential access bound library is a single z/OS data set that resides on disk or
tape and logically contains one or more SAS files, each file written sequentially one
after another. The primary purpose of this library implementation, like the sequential
engines it supports, is for storing SAS data sets on sequential devices such as tapes.
Moreover, sequential access bound libraries on z/OS are also internally compatible with
the sequential format libraries used by SAS on CMS, thus providing a way for SAS data
to be interchanged between the two operating environments. Sequential access bound
libraries may extend to multiple volumes, subject only to the limitations of the device
type.

Creating Sequential Access Bound Libraries

The following example shows how to create a new multivolume tape library that
resides on more than five volumes. As the sample JCL DD statement shows, the library
can be assigned externally.

//MYTAPE DD DSN=USER489.TAPE.SASLIB,DISP=(NEW,CATLG,DELETE),
// UNIT=CART,LABEL=(1,SL),VOLUME=(PRIVATE,,,7)

The library data set can also be assigned internal to SAS using the SAS LIBNAME
statement, as is shown in the following example, which is equivalent to the above DD
statement:

libname mytape tape ’user489.tape.saslib’ disp=(new,catlg,delete)
unit=cart label=(1,sl) volcount=7;

Regardless of how the library data set was assigned (either with a DD statement or
with a LIBNAME), specify the libref, or externally assigned DDNAME, as the library in
which a new member is to be created, as is shown in the following example:

data mytape.member1; /* new member */
...

Note:

� The engine ID must be specified when you internally assign a new library on tape.
However, when you externally assign a new library on tape, the value of the
SEQENGINE system option determines the engine that is used to create the
library, unless it is overridden by a LIBNAME statement.

� The volume count must be specified for a tape library that will extend to more
than five volumes. Refer to the documentation for the VOLUME parameter of DD
stmt in IBM MVS JCL Reference for details.

�

The following example shows how to create on disk a new, multivolume sequential
access bound library that uses as many as three volumes. As this sample JCL DD
statement shows, the library can be assigned externally:

//SEQDISK DD DSN=USER489.SEQDISK.SASLIB,DISP=(NEW,CATLG),
// UNIT=(3390,3),SPACE=(CYL,(200,200)),BLKSIZE=27998
...

LIBNAME SEQDISK TAPE; /* use TAPE engine */
DATA SEQDISK.MEMB01;
...

Using SAS Data Libraries Sequential Access Bound Libraries 47

The library data set can also be assigned internal to SAS using the SAS LIBNAME
statement, as shown in the following example, which is equivalent to the DD statement
above:

libname seqdisk tape ’user489.seqdisk.saslib’ disp=(new,catlg)
unit=(3390,3) space=(cyl,(200,200)) blksize=27998;

data seqdisk.memb01;
...

Note:
� To ensure the most complete use of the DASD track, specify the optimum

half-track BLKSIZE for the type of disk device used. For sequential access bound
libraries, this must be specified on the DD or LIBNAME statement. The SAS
BLKSIZE system options are not used for sequential access bound libraries.

� The maximum number of disk volumes to which the library data set can extend is
governed by the unit count in the examples above.

� Sequential access bound libraries can reside in extended format sequential data
sets. Extended format sequential data sets can be defined as compressed by SMS,
and they can also occupy more than 64K tracks per volume.

�

General Usage Notes
� Due to the nature of sequential devices, SAS allows only two types of operations

with members of a sequential bound library: reading an existing member and
writing a new copy of a member to the library. The following types of operations
are not supported for sequential access bound libraries:

� having multiple members in the library open at the same time
� updating the contents or attributes of a member of the library
� renaming or deleting a member of the library.

� When the FILEDISP=NEW data set option is specified for a member to be written
to a sequential access bound library, SAS will replace all of the members that
previously existed in the library, even if they were protected by an ALTER
password. The ALTER password is not checked even for the member being
replaced.

� When the COPY procedure is used to write members to a sequential access bound
library, the rules regarding member replacement (listed above) apply only to the
first member being processed by a COPY statement or PROC COPY invocation.
All other members involved in the COPY operation are appended to the end of the
library data even if they already exist in the library. Therefore, it is possible to
cause a library to contain two copies of the member, only the first of which will be
recognized. You should plan all COPY operations carefully so that you avoid this
outcome.

� SAS locates members of sequential access bound libraries by sequentially scanning
the library from the current location (usually the beginning of the library data set)
until the member is located. To avoid the excessive I/O that could occur with this
type of operation, members of these libraries, that will be repeatedly accessed in a
SAS job/session, should be first copied to a BASE engine library and then copied
from the BASE engine library to the sequential access bound library in one PROC
COPY operation. This is particularly important when appending to large
multivolume tape libraries.

� When adding members to an existing sequential access bound library on tape, SAS
can read the library to determine which engine format to use. However,

48 HFS Libraries Chapter 2

determining the engine format requires an extra tape mount if the library is
internally assigned. By explicitly specifying the engine, you can avoid this extra
tape mount.

� To release the library data set prior to the end of the SAS session, specify the SAS
TAPECLOSE=FREE system option prior to the SAS DATA step or procedure that
will write the members of the library. For tape libraries, this step is necessary to
make the tape device and volumes available for other jobs prior to the end of the
SAS session.

Controlling Library Block Size
Because sequential access bound libraries use RECFM=U, the block size value is an

upper limit for the maximum size of a block. The value that SAS uses for any given
session, for either a new or existing library, is specified by the user from the following
hierarchy of sources:

� the block size value specified on allocation, either in the LIBNAME statement or,
for external allocation, in the DD statement or TSO ALLOCATE command

� the block size value specified in the data set label, that is, the value specified on
the DISP=NEW allocation that created the data set

� 32760.

HFS Libraries
A hierarchical file system (HFS) library is a collection of SAS files of the same engine

type that are stored in a single directory of the HFS of z/OS UNIX System Services
(USS). Each SAS library member resides in a separate HFS file. USS is a default
component of z/OS, and the availability of HFS is limited only by the extent to which it
has been implemented at a particular installation.

Note: In addition to the original HFS implementation, z/OS also provides another
UNIX file system known as zFS. zFS, which provides certain performance and
manageability benefits, is functionally equivalent from the perspective of a SAS user.
All information regarding HFS libraries applies equally to SAS files that reside in a
zFS file system. Whether the HFS or zFS implementation is used for a particular file
system is controlled by your systems administrator, not by SAS. �

HFS libraries provide many important capabilities that are not available in other
types of library implementations:

� Members of HFS libraries can be processed by versions of SAS running in other
operating environments via the SAS cross-environment data access (CEDA)
facility. The individual SAS files can be copied (via a utility such as FTP) to other
operating environments and can be directly read by the versions for the target
operating environment. Conversely, SAS files created in most other operating
environments can be copied to an HFS directory and read directly by the z/OS
version of SAS via CEDA. This technique can be further extended by using the
network file system (NFS) capability of z/OS to either mount directories that exist
on remote hosts (NFS client) or to share an HFS directory with other hosts (NFS
server).

� HFS directory names can contain mixed case, and they can also be longer than a z/
OS data set name. The directory hierarchy provides more flexibility for organizing
files.

� Multiple SAS jobs can simultaneously update different members of the same
library. This provides more flexibility than that of direct access and sequential

Using SAS Data Libraries HFS Libraries 49

access bound libraries, which only permit one SAS job to have update access to a
library at a given time.

� Allocating and assigning an HFS library is very straightforward. The LIBNAME
statement merely needs to specify the libref, the HFS directory path, and perhaps
the engine. The various options for reserving space and specifying DCB attributes
are not required, nor do they apply to HFS libraries.

Creating HFS Libraries
Creating an HFS library is as simple as creating a SAS file in a particular library

directory, as shown in the following example:

libname myproj ’/u/user905/MyProject’;
data myproj.member1;

...
run;

If the library directory does not exist, SAS will automatically create the directory if
possible. In the example above, the directory node MyProject would have been created
if it did not already exist, provided the SAS session had adequate authority to do so.
However, the other directories in the directory path must exist before you attempt to
create the library.

General Usage Notes
� The fully qualified name of a SAS file in an HFS library is

< fully-qualified-path>/<member-name>.<SAS-extension>

The member name in this construction is formed by converting to lowercase the
member name specified in the SAS session. The filename extension for a SAS file
is automatically supplied by SAS and indicates the member type and the engine
that was used to create the file. For a list of extensions used, see Table 2.2 on page
50. Do not change the filename extension of a SAS file because that could cause
unpredictable results. The total length of the fully qualified name must not exceed
254 characters. This is more restrictive than the IBM limits on HFS filenames.

� When SAS creates or updates a member of an HFS library, it places an exclusive
lock on the individual file (but not on the library). The lock prevents other jobs,
processes, or SAS sessions from reading, writing, or updating that file until SAS
finishes using the file, at which time the lock is removed. It is still possible for
other SAS sessions to access other SAS files in the library, provided they are
unlocked. The write lock is analagous to the SYSDSN enqueue that is issued when
a data set is allocated with DISP=OLD.

� When SAS reads an existing member of an HFS library, it places a read (or
shared) lock on the individual file, which prevents other jobs, processes, or SAS
sessions from updating the file, although it is still possible for others to read the
file. The read lock is analagous to the SYSDSN enqueue that is issued when a
data set is allocated with DISP=SHR.

� In performance testing at SAS, native HFS libraries have demonstrated I/O
throughput rates that, for a variety of access patterns, generally match or exceed
those demonstrated for direct access bound libraries.

� Although it is possible to externally allocate an HFS library via JCL or the TSO
ALLOCATE command, doing so does not lock or reserve the library in any way.
The main benefit of external allocation is to provide a convenient way to specify a
different library for a particular job.

50 Hiperspace and DIV Libraries Chapter 2

� When using NFS client capability to access SAS files in other operating
environments, specify the xlat(n) option for the NFS mount point on z/OS.
Similar options might need to be specified in other operating environments when
you are accessing SAS files shared by an NFS server running on z/OS. For
information about the xlat option, see the IBM documentation for the z/OS
Network File System (NFS).

Table 2.2 File Extensions for SAS Files in HFS Libraries

Random Access
Files

Sequential Access
Files

SAS Member
Type Description

.sas7bdat .sas7sdat DATA SAS data file

.sas7bndx .sas7sndx INDEX data file index; not treated by SAS software as a
separate file

.sas7bcat .sas7scat CATALOG SAS catalog

.sas7bpgm .sas7spgm PROGRAM stored program (DATA step)

.sas7bvew .sas7svew VIEW SAS data view

.sas7bacs .sas7sacs ACCESS access descriptor file

.sas7baud .sas7saud AUDIT audit file

.sas7bfdb .sas7sfdb FDB consolidation database

.sas7bmdb .sas7smdb MDDB multidimensional database

.sas7bods .sas7sods SASODS output delivery system file

.sas7bdmd .sas7sdmd DMDB data mining database

.sas7bitm .sas7ssitm ITEMSTOR item store file

.sas7butl .sas7sutl UTILITY utility file

.sas7bput .sas7sput PUTILITY permanent utility file

.sas7bbak .sas7sbak BACKUP backup file

Hiperspace and DIV Libraries
A hiperspace library is a temporary library in which each library block resides in a

4K block in a z/OS hiperspace, a form of electronic storage internal to the processor.
The hiperspace facility can be exploited for permanent data by defining a
data-in-virtual (DIV) library in which the library blocks are loaded into the hiperspace
for processing and saved permanently in a VSAM linear data set. Hiperspace and DIV
libraries have the same internal format as that of a direct access bound library, and
SAS automatically re-uses free space within the library.

Placing small to moderately sized SAS data sets in a hiperspace or DIV library can
dramatically decrease the elapsed time required for SAS to process such data sets. The
performance increase is usually at least as great as for direct access bound libraries
allocated to VIO and is particularly significant for data sets that are accessed randomly.
However, the actual performance benefit depends on various factors, including the
amount of z/OS expanded storage available to the SAS session. These benefits occur by
default for hiperspace libraries, but the SAS system option NOHSSAVE must be
specified in order to achieve the increase in I/O throughput for DIV libraries. When
specifying NOHSSAVE, design your SAS application carefully to ensure that updates
stored in the DIV library can be re-created, which might be needed if certain types of

Using SAS Data Libraries Hiperspace and DIV Libraries 51

abends occur. See “HSSAVE System Option” on page 456 for information on the
NOHSSAVE SAS system option.

The number of hiperspace pages used for hiperspace and DIV libraries is governed by
the HSLXTNTS, HSMAXPGS, and HSMAXSPC SAS system options. When a
hiperspace or DIV library is created, a hiperspace with HSLXTNTS pages is created.
When the library needs to be extended, another hiperspace is established with that
same number of pages. This can continue until a total hiperspace in use by SAS in the
current session for all hiperspace/DIV libraries exceeds HSMAXSPC, or the total
number of hiperspace pages in use by SAS the current session for all hiperspace/DIV
libraries exceeds HSMAXPGS. For DIV libraries, the amount of disk space specified
(explicitly or by default) must also be sufficient to contain the number of 4K blocks to
which the library extends. See, “HSLXTNTS= System Option” on page 454,
“HSMAXPGS= System Option” on page 454, and “HSMAXSPC= System Option” on
page 455 for more information on these SAS system options.

Creating Hiperspace Libraries
These sample statements demonstrate how to create a temporary hiperspace library:

libname hiperlib ’&temp’ hip;
data hiperlib.memb01;

...
run;

Because of the requirements of the LIBNAME statement, a library physical name
must be specified. A temporary data set will actually be allocated, but it will not be
used.

The following example demonstrates how to create a DIV library using JCL:

// JOB
//* HIPERSPACE LIBRARY BACKED BY VSAM LINEAR DS (DIV)
// EXEC SAS
//DIVLIB DD DSN=USER489.DIV.SASLIB,
// DISP=(NEW,CATLG),SPACE=(CYL,(5,5)),
// RECORG=LS
//SYSIN DD *

LIBNAME DIVLIB ’’ HIP;
DATA DIVLIB.MEMB01;

...
RUN;

//

The RECORG=LS parameter is necessary at creation time to ensure that the DIV
library data set is properly allocated. However, no special options are required to assign
an existing DIV library. The following example shows how to create the same DIV
library using the LIBNAME statement:

libname div ’user489.div.saslib’ linear disp=(new,catlg) space=(cyl,(5,5));

libname divlib ’USER489.DIV.SASLIB’;
proc contents data=divlib._all_; run;

52 Pipe Libraries (Experimental) Chapter 2

See the following system options for information about controlling how SAS processes
hiperspace libraries:

� “HSLXTNTS= System Option” on page 454
� “HSMAXPGS= System Option” on page 454
� “HSMAXSPC= System Option” on page 455
� “HSSAVE System Option” on page 456
� “HSWORK System Option” on page 456.

Pipe Libraries (Experimental)
The IBM product BatchPipes on z/OS provides a way to reduce the elapsed time for

processes in which one job creates a data set that will be read by a second job in the
process. SAS supports the use of BatchPipes with SAS data sets that were created with
the TAPE and V6TAPE engines. With BatchPipes, each page of a SAS data set written
to a pipe can be read immediately by a second SAS session. Since the second session
does not have to wait for the entire data set to be written, the two SAS sessions can run
largely in parallel, subject to available system resources. The resulting increase in
throughput can be particularly important for sequences of batch jobs that must
complete within a certain time frame.

In order to use BatchPipes on z/OS, verify that the BatchPipes product is installed
and that at least one instance of the BatchPipes subsystem is started. Second, consult
the IBM documentation, particularly the IBM BatchPipes z/OS Users Guide and
Reference, for general background on how to use the product.

Using SAS with BatchPipes requires two jobs, one that writes a SAS data set into
the pipe and a second that reads the data set from the pipe. Both sending to, and
receiving from, a pipe are inherently sequential operations, so only the V9TAPE engine
or the V6TAPE engine can be used. SAS generally treats the pipe as a special kind of
sequential access bound library, with additional exceptions and restrictions noted below.

General Usage Notes

CAUTION:
Pipe library support is experimental in SAS 9.1. We encourage you to use this
experimental piece of the software and immediately report any abnormal results
(such as abends or hangs) to SAS Technical Support. Due to the experimental status
of Pipe Library Support in SAS 9.1, code that functions properly in SAS 9.1 might
have to be changed for future releases to allow for subtle changes in syntax or the
method for invoking this feature. �

� The pipe library must be allocated external to SAS either for output (meaning that
SAS is sending member contents to another job) or for input (meaning that SAS is
receiving member contents from another job). The section below describes in detail
how to allocate pipe libraries. It is not possible to dynamically allocate a pipe
library (via the LIBNAME statement), so it is not possible during a SAS session to
change the manner (that is, sending or receiving) in which the pipe library is
being used.

� Only one member can be written to a pipe library by a single DATA step or SAS
procedure. Likewise, one pipe library member can be read by a single DATA step
or SAS procedure. It is possible, however, to transfer multiple members between
jobs by pairing each sending step or procedure in one job with a receiving step or
procedure in a second job. A single member is transferred by each pair with this
process.

Using SAS Data Libraries Pipe Libraries (Experimental) 53

� Only output SAS operations can be attempted on the sending side of a pipe, which
is consistent with the nature of pipes. Therefore, the job that has allocated a pipe
library format should not attempt to use PROC CONTENTS to list the library
directory. Likewise, only input SAS operations should be attempted on the
receiving side of a pipe library. Moreover, since the pages in the pipe are transient
(that is, they exist only until they are read by the receiving job), it is not possible
to re-read a previously read member or to list the directory after the library has
already been read.

� SAS does not support a mode of operation in which there are multiple readers or
multiple writers for a pipe library. For example, using two different jobs to
simultaneously write to a pipe that is being read by another SAS job would lead to
errors and/or incorrect results.

� It is important to monitor and verify that pipe-related jobs are running as
expected. Under normal circumstances, the receiving SAS DATA step or procedure
will read all the member pages sent by the sending SAS DATA step or procedure.
After sending the last member page, the sending step or procedure will close the
pipe library, and the receiving step or procedure will receive an end-of-file
indication after reading the last member page. However, if the receiving step or
procedure encounters an error condition (such as out-of-space on a library or
external file to which it is copying the member data), the receiving step or
procedure will close the pipe library before it has read all the member pages that
the sending step or procedure has sent (or will send). To avoid the sending job
suspending indefinitely in this case, specify the option ERC=DUMMY on the
SUBSYS parameter of the DD statement for the sending job. If the receiving step
or procedure closes the pipe library prematurely, the ERC=DUMMY option will
cause the sending stepor procedure to continue processing. In this case, the
member pages will be discarded instead of sent to the receiving job.

Allocating a SAS Data Library to a Pipe
� Externally assign the pipe library using a JCL DD statement. On this DD

statement, use the SUBSYS parameter to specify the name of the BatchPipes
subsystem that will be managing the pipe. Within the SAS job, refer to this pipe
library using the DDNAME specified as the libref. Specify the DSN parameter on
the DD statement using a data set name that conforms to the standards for your
installation.

� Distinguish between the sending and receiving sides of the pipe library using the
LABEL parameter of the DD statement. On the DD statement for the pipe library,
specify LABEL=(,,,OUT) if SAS will be sending SAS data sets to the pipe library.
Specify LABEL=(,,,IN) if SAS will be reading SAS data sets from the pipe library.

� The DCB attributes for a pipe library vary from those used for other sequential
access bound libraries. Specify DSORG=PS, RECFM=F for both the sending and
receiving sides of the pipe library. Specify an LRECL between 1024 and 32760 for
the pipe library. The values specified for LRECL in the sending and receiving
sides of the pipe library must match exactly.

� Identify, if necessary, the engine to be used for processing the pipe library. By
default, SAS will use the value of the SEQENGINE option to determine the engine
to use for processing the pipe library. If this value is appropriate and set
identically for both the sending and receiving jobs, it is not necessary to explicitly
identify the engine. To explicitly use another engine, specify a LIBNAME
statement with the libref and engine and no other parameters.

� No other DD statement parameters other than those described in this section
should be specified unless explicitly described in the IBM documentation.

54 Pipe Libraries (Experimental) Chapter 2

Sample JCL
The following code example illustrates how to write a SAS data library to a pipe:

//jobname JOB
// EXEC SAS
//*--
//* This job writes a SAS data set to a pipe.
//*--
//PIPESND DD DSN=TEST.SAS.BATCHPIPES,
// LRECL=6144,RECFM=F,DSORG=PS,
// SUBSYS=(BP01,CLOSESYNC,ERC=DUMMY),
// LABEL=(,,,OUT)
//*
//SYSIN DD *

data pipesnd.member1;
...
output;

run;
/*
//

The following code example illustrates how to read a SAS data library from a pipe:

//jobname JOB
// EXEC SAS
//*---
//* This job reads a SAS data set from a pipe.
//*---
//PIPERCV DD DSN=TEST.SAS.BATCHPIPES,
// LRECL=6144,RECFM=F,DSORG=PS,
// SUBSYS=(BP01,CLOSESYNC,EOFREQUIRED=NO),
// LABEL=(,,,IN)
//*
//SYSIN DD *

data ...;
set pipercv.member1;
...

run;
/*
//

The following code examples demonstrate how to use multiple SAS data step or
procedure pairs in a single pair of jobs. Note that only one member can be written to a
pipe library in a SAS step, and that there is a one-to-one correspondence of steps and
procedures between receiving and sending pipe jobs.

Sending job:

DATA PIPEOUT.MEMBER1; X=1; RUN;

DATA PIPEOUT.MEMBER2; Y=2; RUN;

Receiving job:

/* receives MEMBER1 from sending job */
DATA X; SET PIPEIN.MEMBER1; RUN;

/* will copy MEMBER2 to WORK library: */
PROC COPY IN=PIPEIN OUT=WORK; RUN;

Using SAS Data Libraries Allocating the Library Data Set 55

Assigning SAS Data Libraries
To use a particular SAS data library within a SAS program, the data library must be

identified to SAS. This process, termed assigning a library, involves the following steps:
� identifying the library to SAS. In most cases, this is accomplished by specifying a

logical name, or libref, by which such items as SAS statements and procedures can
refer to the library.

� determining which engine will be used to process the library. In some cases, you
must explicitly specify the engine when you assign the library. In most cases,
however, SAS can select the appropriate engine automatically.

� identifying and reserving the z/OS resources required to process the library, which
is described in detail in “Allocating the Library Data Set” on page 55 .

Under z/OS, you can assign a new or existing SAS data library in the following ways:

internally (within a SAS session)
using a LIBNAME statement, LIBNAME function, SAS Explorer New Library
Assignment dialog box, or implicit reference to members using quoted name
syntax (see “Accessing SAS Data Sets without a Libref Using Quoted References”
on page 58). See “Assigning SAS Data Libraries Internally” on page 56 for more
information.

externally
using a JCL DD statement or a TSO ALLOCATE command. See “Assigning SAS
Data Libraries Externally” on page 59 for more information.

In addition to describing how to assign a SAS data library internally and externally,
this section also discusses the following topics:

� “How SAS Assigns an Engine” on page 62
� “Assigning Multiple Librefs to a Single SAS Data Library” on page 62
� “Listing Your Current Librefs” on page 63
� “Deassigning SAS Data Libraries” on page 63
� “Using Multivolume SAS Data Libraries” on page 64
� “Allocating a Multivolume Generation Data Group” on page 67.

Allocating the Library Data Set
Assigning a direct or sequential access bound library or a DIV library involves

allocating the z/OS data set in which the library resides. This z/OS-specific process
includes the following actions:

� Identifying a logical name (DDname) by which the data set is accessed by the
operating system.

� Creating the data set and reserving an initial allocation of disk space if it is a new
data set on disk.

� Identifying, either directly or indirectly, the volumes on which the data set will
reside for a new or existing data set.

� Establishing a disposition status (also known as a data set enqueue) to prevent
other jobs or users on the z/OS system from accessing the data set in a manner
inconsistent with your SAS job.

� Specifying a disposition status of OLD, NEW, or MOD will request exclusive
access to the library data set. The allocation will not succeed unless no other
jobs/users have the library allocated, and z/OS will prevent any other jobs or

56 Assigning SAS Data Libraries Internally Chapter 2

users from allocating the library until you de-allocate the library. In order to
update any member of a library, you must request exclusive access to the
library data set.

� Specifying a disposition status of SHR will request shared access to the
library. The allocation will succeed provided that no other job or users have
the library allocated for exclusive access, and z/OS will prevent other jobs or
users from allocating the library for exclusive access until you de-allocate the
library. However, other SHR allocations can exist concurrent with yours.

You can allocate the z/OS data set external to SAS using z/OS facilities such as JCL
or the TSO ALLOCATE command. In most cases, SAS will use the external allocation
to process the library. This is always true if the DDname of the allocation is specified as
the libref. However, if SAS does not find an external allocation of the library data set, it
will dynamically allocate the library data set when assigning a library internally. When
this is necessary, SAS will allocate a library with a disposition status of OLD, unless a
different status has been specified. The DDname used for this allocation will be the
same as the libref unless the libref is not a valid DDname or is a DDname that matches
the libref that is already allocated. In those cases, SAS must let the operating system
generate a unique DDname, which would be in the format SYSnnnnn.

Once SAS has allocated a library data set, it will use that allocation to process the
library, regardless of how many librefs are assigned to the library and provided that the
same disposition status is specified (or implied) on all the assignments. See “Assigning
Multiple Librefs to a Single SAS Data Library” on page 62 for more information.
However, if a library is assigned with a disposition status of SHR and later, an
additional assignment is made with a status of OLD, SAS will attempt to dynamically
allocate the library data set a second time using a disposition status of OLD and a
system-generated DDname. If successful, this second allocation will be used for all
subsequent processing of the library until all librefs associated with the library have
been de-assigned. Note that in this case SAS will not (and cannot) release exclusive
access to the library even when you release the assignment that specified a status of
OLD.

Assigning SAS Data Libraries Internally
SAS provides two methods for assigning SAS data libraries internally, that is, via

SAS statements without relying on operating environment facilities such as JCL:

� The LIBNAME statement or LIBNAME function can be used to assign a SAS data
library.

In the following example, the data library USER934.MYLIB.SASLIB has been
assigned to the libref MYLIB. The z/OS allocation parameter DISP=SHR requests
shared access to the library data set. Since no engine was specified, SAS will
examine the format of the library data set to determine which engine to use.

libname mylib ’user934.mylib.saslib’ disp=shr;

In the data step below, the libref MYLIB is used to refer to the library. MYLIB
can be used for the remainder of the SAS session until explicitly cleared by a
LIBNAME CLEAR statement.

data mylib.member1;
...
run;

Except for a few special cases, the LIBNAME statement or function can perform
all of the assignment functions that are required for SAS data libraries. The

Using SAS Data Libraries Assigning SAS Data Libraries Internally 57

LIBNAME statement or function supports the options that are necessary to create
a new direct or sequential access bound library, and it also provides a way to
specify the engine that will be used to create the library. See “LIBNAME
Statement” on page 393 and “LIBNAME Function” on page 267 for more
information and examples.

In most cases, the engine does not need to be specified when assigning existing
SAS data libraries. SAS will also use a default engine if no engine was specified
for a new library. See “How SAS Assigns an Engine” on page 62 for a description
of how SAS determines which engine to use when no engine has been specified.

� In certain contexts in which the name of a SAS file is specified in libref.member
syntax, it is possible to directly specify the full library name and member name, as
shown in the following example:

data ’user934.mylib.saslib(member1)’;
...
run;

The statement above has the same effect in most cases as the LIBNAME
statement example above. This syntax can only be used if neither the engine name
nor LIBNAME options are required to assign the library. See “Accessing SAS Data
Sets without a Libref Using Quoted References” on page 58 for more information.

Advantages of Allocating SAS Data Libraries Internally
Although you can use a JCL DD statement or a TSO ALLOCATE command to

allocate SAS data libraries externally, the LIBNAME statement or LIBNAME function
can do much more. Here are several reasons why it is better to allocate SAS data
libraries internally with the LIBNAME statement or function.

� If you use the LIBNAME statement or function, you can allocate your data library
for only as long as you need it, and then deassign and deallocate it. By contrast,
DDnames that are allocated externally remain allocated for the duration of the
SAS session or job. The LIBNAME CLEAR statement deassigns an externally
allocated libref, but it does not deallocate the file unless FREE=CLOSE is specified
on the external allocation and the library is a direct access bound library.
Similarly, by conditionally executing a LIBNAME statement or function within
macro statements, you can allocate a library data set only if it is required for
execution of your particular job.

� The LIBNAME statement or function provides an easy way to do dynamic
allocation in the batch environment. SAS programs that have LIBNAME
statements or functions instead of external allocations can be executed either in
the TSO environment or in the batch environment without requiring additional
supporting allocation statements in JCL or TSO clists.

� The JCL DD statement and the TSO ALLOCATE command are not portable to
operating environments other than to another z/OS environment. The LIBNAME
statement or function is portable with minor changes to the physical-filename and
options parameters.

� DDnames that are allocated externally cannot be reassigned later by a LIBNAME
statement or a LIBNAME function. You would receive an error message in the
SAS log stating that the DDname is currently assigned.

� Using a LIBNAME statement or a LIBNAME function enables you to specify an
engine explicitly. Also, the following SAS engines must be specified in a LIBNAME
statement or function because they are not assigned by default: XPORT, BMDP,
SPSS, OSIRIS, and REMOTE.

58 Assigning SAS Data Libraries Internally Chapter 2

� DDnames that are allocated externally are not included in the list that is produced
by the LIBNAME LIST statement nor in the SAS Explorer window until after they
have been used as librefs in your SAS session. (See “Listing Your Current Librefs”
on page 63.)

Accessing SAS Data Sets without a Libref Using Quoted References
As an alternative to the libref.member syntax, it is possible to refer to some SAS files

directly by merely specifying the library and member name. This is supported even in
cases in which the library has not yet been assigned (such as via external allocation or
a LIBNAME statement). SAS automatically assigns the library, if necessary, when the
first reference to the library is made. The engine is determined by default according to
the rules described in “How SAS Assigns an Engine” on page 62.

Note: This method of identifying SAS files should only be used for SAS files that are
residing in libraries that can be allocated internally via a LIBNAME statement or
function and for which no LIBNAME options need to be specified. SAS determines
which engine to use by following the rules described in “How SAS Assigns an Engine”
on page 62. However, for SAS files in HFS libraries, it is possible also to specify the file
extension and thus control which engine should be used. This technique is described
below. �

Members of Direct Access and Sequential Access Bound Libraries
Members of existing direct access bound libraries and sequential access bound

libraries can be identified without a libref using the syntax below:

’<z/OS-data-set-name>(member)’

For example:

data ’user489.test.saslib(member1)’; x=1; run;
proc print data=’user489.test.saslib(member1)’; run;

If the value of the SYSPREF= system option was USER489, the following equivalent
syntax could have been used:

data ’.test.saslib(member1)’; x=1; run;
proc print data=’.test.saslib(member1)’; run;

Although the syntax is similar to the notation used for partitioned data set (PDS)
members, a SAS data library is not a PDS, and only SAS files can be accessed in this
manner.

Members of HFS Libraries
Members of new or existing HFS libraries can be identified without a libref using the

syntax below:

’<directory-path>’/member

If the library directory (that is, the lowest level directory in the specified path) does
not exist, SAS will automatically create it if possible.

The directory path can be fully qualified, as in the following example:

data ’/u/user905/MyProject/Member1’; x=51; run;
proc print data=’/u/user905/MyProject/Member1’; run;

Using SAS Data Libraries Assigning SAS Data Libraries Externally 59

A partially qualified directory path may also be specified, in which the path specified
is relative to the current working directory. For example, if the current working
directory is /u/user905, the example below would be equivalent to the example above:

data ’MyProject/Member1’; x=51; run;
proc print data=’MyProject/Member1’; run;

It is not necessary to specify the SAS file extension to a member if the member type
is implied by the context, and if the default engine is the desired engine. However, if
you wanted to access TAPE engine files that exist in the same directory as BASE
engine files, you would need to specify the extension as shown below:

proc print data=’NewProject/member1.sas7sdat’; run;

Assigning SAS Data Libraries Externally
SAS data libraries can be assigned externally by first allocating a DDname to the

library via JCL or a TSO command. Assignment of the library is then completed by
specifying the DDname as a libref within SAS. At that point, SAS selects an engine for
the library according to the rules detailed in the section “How SAS Assigns an Engine”
on page 62. However, if the reference to the libref is in a LIBNAME statement that
explicitly specifies which engine should be used, SAS uses the rules described in
“Specifying an Engine for Externally Allocated SAS Data Libraries” on page 61.

Despite the advantages of assigning SAS data libraries internally, assigning SAS
libraries externally also has advantages, which might be important in some cases.

� You might not want to allow a SAS job running in batch to start until the data
libraries it needs to access are available. If you allocate the data libraries using
DD statements in JCL, the z/OS job scheduler will automatically ensure that the
data libraries are accessible:

� by granting the job exclusive access to the data library if DISP=OLD is
specified

� by granting the job shared access to the data library if DISP=SHR is specified.

� The syntax of the JCL DD statement and the TSO ALLOCATE command is more
comprehensive than that of the LIBNAME statement. For example, in order to
specify a list of more than 30 volumes, it is necessary to use external allocation.

� If a particular SAS program uses an externally assigned SAS data library, it is
possible to change the library that the program acts upon merely by changing the
JCL or TSO clist that invokes SAS, as opposed to changing the program. This may
prove to be convenient in some circumstances.

Note:
� Because direct bound data libraries are not partitioned data sets (PDS or PDSE),

they cannot be concatenated via external allocation. An attempt to concatenate
library data sets in this way is ignored with a warning, and only the first library
in the concatenation is recognized. However, sequential access bound libraries can
be concatenated if they are allocated with DISP=SHR.

� SAS will not attempt to de-allocate a library data set that was allocated external
to SAS. Therefore, externally assigned bound libraries will remain allocated until
the end of the job step or until a TSO FREE command is issued. However, if
FREE=CLOSE is specified on the external allocation for a direct access bound
library, the library will be de-allocated by the system when the last libref assigned
to the library is cleared. This exception does not apply to sequential access bound
libraries; they would not be freed at de-assign time even if FREE=CLOSE was
specified.

60 Assigning SAS Data Libraries Externally Chapter 2

�

JCL DD Statement Examples

� Allocating an existing SAS data library

The following JCL DD statement allocates the cataloged data set
LIBRARY.CATALOG.DATA and assigns the DDname BOOKS to it:

//BOOKS DD DSN=LIBRARY.CATALOG.DATA,
// DISP=OLD

The following JCL DD statement allocates an existing SAS data library, which
is stored in a UNIX System Services directory:

//HFSLIB DD PATH=’/corp/dev/test1’

Note that UNIX System Services recognizes and distinguishes between
uppercase and lowercase letters in pathnames. Also, in contrast to bound libraries,
allocating HFS libraries merely provides a convenient way to establish an external
logical name (DDname) for an HFS library. This does not place any enqueue that
would prevent the library from being accessed by other jobs on the z/OS system.

� Allocating a new SAS data library

This example allocates a new SAS data library on tape:

//INTAPE DD DSN=USERID.V9.SEQDATA,
// UNIT=TAPE,LABEL=(1,SL),

// DCB=(RECFM=U,BLKSIZE=32760),

// DCB=(RECFM=U,LRECL=32756,BLKSIZE=32760),
// DISP=(NEW,KEEP),VOL=SER=XXXXXX

Notice that DCB attributes are specified. When you allocate a new SAS data
library externally, you must either specify DCB attributes or accept the default
DCB attributes that SAS supplies.

� Specifying additional options for a previously allocated SAS data library

See “Specifying an Engine for Externally Allocated SAS Data Libraries” on page
61.

TSO ALLOCATE Command Examples

� Allocating an existing SAS data library

The following TSO ALLOCATE command allocates the cataloged data set
LIBRARY.CATALOG.DATA and assigns the DDname BOOKS to it:

alloc dd(books) da(’lib.cat.data’) old

The following command performs the same allocation, this time using the SAS
X statement to submit the TSO ALLOC command (see “X Statement” on page 406
for details):

x alloc dd(books) da(’lib.cat.data’) old;

Using SAS Data Libraries Assigning SAS Data Libraries Externally 61

The following command allocates a directory as a SAS data library with the
DDname RESULT2:

x alloc dd(result2) path(’/corp/dev/test2’);

Note that allocating HFS libraries in this way provides a convenient way to
establish an external logical name (DDname) for an HFS library. No enqueue is
placed on the library.

� Allocating a new SAS data library

The following TSO command allocates a new sequential SAS data library on
disk:

alloc fi(intape) da(V9.seqdata) dsorg(ps) recfm(u) new

Notice that DCB attributes are specified. When you allocate a new SAS data
library externally, you must either specify DCB attributes or accept the default
DCB attributes that SAS supplies.

� Specifying additional options for a previously allocated SAS data library

See “Specifying an Engine for Externally Allocated SAS Data Libraries” on page
61.

Using a DDname as a Libref

Even though a library has been allocated to a DDname externally to SAS, the
assignment process is not complete until the library has been referred to within a SAS
program or feature that specifies the DDname as a libref. At that point SAS completes
the assignment process and adds the DDname to its table of active librefs. For example:

proc contents data=books._all_; run;

The first time that the DDname BOOKS is used in this manner, SAS assigns it as a
libref for the SAS data library.

When a DDname is allocated externally, it is not listed by the LIBNAME LIST
statement or in the SAS Explorer until after you have used it as a libref in your SAS
session. (See “Listing Your Current Librefs” on page 63.)

Specifying an Engine for Externally Allocated SAS Data Libraries

In most cases, SAS can identify the proper engine to use for existing libraries.
However, when creating new libraries that were allocated externally, you might need to
use the LIBNAME statement or LIBNAME function to override the engine that SAS
would use by default. For example, suppose you used an X statement to submit the
following TSO ALLOCATE command, which allocates the SAS data library
QUARTER1.MAILING.LIST:

x alloc f(mail) da(’quarter1.mailing.list’) new
dsorg(ps) space(10 1) cyl;

You could instruct SAS to use the V9TAPE engine for this new library with the
following statement:

libname mail tape;

This LIBNAME statement does not need to specify the name of library data set or
any other options, because that information was supplied on the external allocation
referenced by the DDname mail.

62 How SAS Assigns an Engine Chapter 2

How SAS Assigns an Engine
In some cases, you might choose not to specify an engine name in the LIBNAME

statement or LIBNAME function, or you might choose not to issue a LIBNAME
statement or function for a data library that was allocated externally. The following
information describes how SAS determines which engine to use when you do not specify
one. The engine that SAS selects depends on the type of library you are accessing. See
“Library Implementation Types for Base and Sequential Engines” on page 42 for more
information on libraries.

If the library that you specify corresponds to a new or empty z/OS data set, SAS
assigns the default engine specified by the ENGINE= system option unless a sequential
engine must be used. Sequential engines are used for the following situations:

� The library data set is on a tape device, or it is a subsystem data set managed by
BatchPipes.

� The DCB characteristics DSORG=PS and RECFM=U are specified for the data set.

If a sequential engine is used, SAS assigns the engine specified by the SEQENGINE=
system option. For empty HFS libraries, SAS assigns the engine specified by the
ENGINE= system option.

If the library data set has already been initialized, or, for HFS, if the library
directory already contains members, SAS generally assigns the engine that has been
used to process the library in the past. The following list contains details about how
SAS assigns engines for the different types of libraries:

direct access bound library
SAS automatically assigns the V5 engine if the library data set has the DCB
characteristic DSORG=DA. Otherwise, SAS reads the library header and assigns
the engine that was originally used to initialize the library.

sequential access bound library
SAS reads the first member header record and assigns the engine that was used to
write the first member of the library.

HFS library
SAS examines the extension of each SAS file in the library directory, because the
extension indicates the engine with which the library member was created. If all
of the SAS files in the directory were created with the same engine, that engine is
assigned to the library. If the SAS files were created using a mix of different
engines, SAS assigns the engine specified by the ENGINE= system option.

hiperspace library
SAS automatically assigns the V9 engine without reading the library header if the
library is a permanent hiperspace library, that is, a library that is backed by a
VSAM linear data set. To access a V6 hiperspace library, you must use the
LIBNAME statement and explicitly specify the V6 engine.

Note: Explicitly identifying the engine with the LIBNAME statement or function
saves system resources. �

Assigning Multiple Librefs to a Single SAS Data Library
You can assign more than one libref to the same SAS data library.

For example, suppose that in two different programs you used different librefs for the
same data libraries. Later you develop a new program from parts of the two old
programs, or you include two different programs with the %INCLUDE statement. In

Using SAS Data Libraries Deassigning SAS Data Libraries 63

the new program, you could simply assign the two original librefs to each data library
and proceed.

Any assigned libref can be used to access the data library with the following
exception: if ACCESS=READONLY was specified or implied (by DISP=SHR) for one
assignment, then that libref can only be used to read the library, even though update
access is available to the library through another libref.

Listing Your Current Librefs
You can use either the LIBNAME command or a form of the LIBNAME statement to

list your currently assigned librefs.
� When you issue the LIBNAME command, the SAS Explorer window is displayed.

The SAS Explorer window lists all of the librefs that are currently assigned for
your session.

The SAS Explorer window displays the full z/OS data set name of the SAS data
library, and displays the engine that is used to access the data library.

� The following form of the LIBNAME statement writes to the SAS log the
attributes of all the librefs that are currently assigned for your session:

LIBNAME _ALL_ LIST;

Deassigning SAS Data Libraries
Once a libref has been assigned to a library, it remains assigned until explicitly

cleared by using the LIBNAME libref CLEAR statement. As noted in“Assigning
Multiple Librefs to a Single SAS Data Library” on page 62, more than one libref can be
assigned to a given library. A library remains assigned to SAS as long as at least one
libref is currently assigned to the library. However, when the last libref assigned to a
library is cleared, SAS releases the resources used to process this library. For bound
libraries, the following actions are taken:

� The library data set is physically closed (if it is not already closed). If
FREE=CLOSE was specified on the external allocation for a direct access bound
library, the system will automatically de-allocate the library data set at this point.
However, FREE=CLOSE is not honored for a sequential access bound library.

� If SAS allocated the library data set (as opposed to using an allocation that had
been established external to SAS), SAS will release the allocation. However, SAS
does not release allocations that were established externally. These allocations are
released at the end of the job step or, in the TSO environment, when a TSO FREE
command is issued for the allocation. When an allocation is released, the enqueue
on the library is released, making the library available for use by other jobs.
Normal disposition processing, such as cataloging or deleting the library data (as
specified by the DISP parameter), is also performed at deallocation time.

Note: All libraries assigned during a SAS session are automatically deassigned at
the end of the session. �

The method that you use to deallocate a SAS data library depends on how the library
was allocated.

� To deassign and deallocate a SAS data library that was allocated with a LIBNAME
statement or LIBNAME function, issue a LIBNAME statement or function in the
following forms, using the libref for the data library that you want to deallocate:

LIBNAME statement: LIBNAME libref <CLEAR>;
LIBNAME function: LIBNAME (libref, ‘ ’);

64 Using Multivolume SAS Data Libraries Chapter 2

This statement deassigns the libref. All libraries assigned during a SAS session
are automatically deassigned at the end of the session.

� To deassign and deallocate a library that was allocated with a TSO command, first
issue a LIBNAME statement or LIBNAME function to deassign the libref, as
shown above. Then issue a TSO FREE command to deallocate the data set.

For example, suppose that a SAS data library with the libref MYLIB is stored
in the z/OS data set MYID.RECENT.DATA. The following two statements would
clear the libref and deallocate the library data set:

libname mylib clear;
x free da(’myid.recent.data’);

CAUTION:
Do not attempt to release the allocation for a library data set without first
deassigning the libref. �

� You can deassign a SAS data library in the SAS Explorer window by selecting the
DELETE menu.

Using Multivolume SAS Data Libraries
A direct access bound library or sequential access bound library on disk can extend to

more than one volume. The library data set might exist on multiple DASD volumes, but
it is processed by SAS software as one logical entity. This capability greatly increases
the storage capacity of a data library. This section discusses two separate
methodologies for creating and extending multivolume data libraries:

Requesting Space As Needed
This approach is recommended for its simplicity, flexibility, and efficiency. With
this methodology, you do not need to determine in advance the amount of storage
that a data library will require. SAS can request additional DASD extents
(allocations of contiguous disk space) as the library needs to grow, meanwhile
leaving more DASD space available for other applications. This approach allows
storage management subsystem (SMS) and third-party DASD space management
to automatically make the optimum decisions about volume selection, and so forth.

PreAllocating Space
In some circumstances, such as when entire volumes have been set aside for use
by a particular application, it is more convenient to preallocate the library data
set. This approach allows more control, but it requires more effort in planning to
estimate the size of the SAS data sets that will reside in the library.

General Guidelines
Following is a short summary of the main rules that govern allocation of space for

SAS data libraries on disk. This summary is not intended to address all points of this
broad subject. For additional information, see IBM documentation as well as manuals
for any third-party DASD space management software installed on z/OS at your site.

Both direct access and sequential access bound libraries reside in a data sets with
the attribute DSORG=PS. On disk, these data sets can be extended to as many as 59
volumes. Each time space is requested for a library data set, the disk space is supplied
in one or more chunks of contiguous space termed extents. A regular format
DSORG=PS data set can have up to 16 extents per volume. Extended format

Using SAS Data Libraries Using Multivolume SAS Data Libraries 65

DSORG=PS data sets can have as many as 123 extents per volume, but they can only
be used for sequential access bound libraries.

When allocating a new library data set, you must specify the size of the initial
(primary) disk space allocation as well as the size of the extent (secondary) to be
obtained when the library data set needs to be enlarged. Each request to extend the
size of the library data set will be satisfied by a secondary extent on the current last
volume until 16 extents have been allocated for the data set on that volume, or the
volume does not contain enough free space to satisfy the request. If the space request
cannot be satisfied, the system will attempt to find space on the next volume, if any,
that is allocated to the library data set. If no additional volumes are allocated to the
data set, the system will issue a system B37 abend, which SAS intercepts and reports
as a library full condition.

Requesting Space As Needed

These examples show how to request space as needed for SAS direct access bound
data libraries.

The following LIBNAME statement allocates a temporary library of up to three
volumes:

libname tmp ’&lib’ unit=(sysda,3) space=(cyl,(300,100));

The following DD statement creates a direct access bound library. The unit count
makes three volumes to be available for the job that creates the library. Note that there
must be three available units in the system for this example to work, even if the data
library does not require space on all three volumes, because the system chooses the
candidate volumes at allocation time.

//WORK DD DSN=MY.MASTER.LIBRARY,DISP=(NEW,CATLG,DELETE),
// UNIT=(DISK,3),SPACE=(CYL,(300,100))

To extend this library to as many as five volumes using another job, the following DD
statement could be used. The secondary space allocation specified at library creation
time is used to determine the size of the secondary extents added.

//WORK DD DSN=MY.MASTER.LIBRARY,DISP=OLD,UNIT=(DISK,5)

If you want to extend an existing library, but only on the volumes that it already
occupies, it is not necessary to specify the UNIT parameter.

As shown below, it is also possible extend an existing library (not SMS-managed) via
the LIBNAME statement EXTEND option, which is equivalent to specifying UNIT=(,n),
where n is one more than the current number of volumes in the existing library:

libname payroll ’my.master.library’ disp=old extend;

The following DD statement creates an SMS-managed data library, which can extend
to as many as four volumes. For SMS-managed libraries allocated without an explicit
list of volumes, the unit count specified when creating the library, specifies the volume
count for the library data set. Note that the volume count can also be specified via the
data class instead of the unit count.

//TEST1 DD DSN=MY.PROJECT.LIBRARY,DISP=(NEW,CATLG),
// UNIT=(DISK,4),SPACE=(CYL,(200,200)),
// STORCLAS=SASSTD,DATACLAS=SASSTD,DCB=(DSORG=PS,RECFM=FS)

The volume count represents the maximum number of volumes to which the data set
can be extended in creating jobs as well as in subsequent jobs. Therefore, this library
could be extended to as many as four volumes using the following DD statement:

//TEST1 DD DSN=MY.PROJECT.LIBRARY,DISP=OLD

66 Using Multivolume SAS Data Libraries Chapter 2

The following LIBNAME statement could be used as well:

libname project ’my.project.library’;

Extending an existing SMS-managed library does not require a UNIT count, nor does
it have any effect. To increase the volume count for an existing SMS-managed library,
use the ADDVOL command of the IDCAMS utility.

Note: An SMS storage class with the GUARANTEED SPACE attribute is not
required as it is when you are preallocating data libraries. �

Preallocating New Multivolume Libraries
The following examples illustrate a scenario in which several entire 3390-3 volumes

have been dedicated to a single data library. No secondary allocation is specified;
consequently this library cannot be extended dynamically by SAS. These examples can
also be adapted for libraries that will use less than an entire volume.

The following JCL will preallocate a three-volume 3390 data library:

//ALLOC EXEC PGM=IEFBR14
//VOL1 DD DSN=MY.PAYROLL.LIBRARY,DISP=(NEW,KEEP),
// DCB=(DSORG=PS,RECFM=FS,LRECL=27648,
// BLKSIZE=27648),UNIT=3390,
// SPACE=(CYL,1113),VOL=SER=PR0001
//VOL2 DD DSN=MY.PAYROLL.LIBRARY,DISP=(NEW,KEEP),
// DCB=(DSORG=PS,RECFM=FS,LRECL=27648,
// BLKSIZE=27648),UNIT=3390,
// SPACE=(CYL,1113),VOL=SER=PR0002
//VOL3 DD DSN=MY.PAYROLL.LIBRARY,DISP=(NEW,KEEP),
// DCB=(DSORG=PS,RECFM=FS,LRECL=27648,
// BLKSIZE=27648),UNIT=3390,
// SPACE=(CYL,1113),VOL=SER=PR0003
//CATDD DD DSN=MY.PAYROLL.LIBRARY,
// DISP=(OLD,CATLG),UNIT=3390,
// VOL=SER=(PR0001,PR0002,PR0003)

Note that IEFBR14 is an IBM utility program that returns immediately, allowing the
system to perform job step allocation/deallocation processing.

The following JCL will add a fourth volume to the library that was allocated in the
previous example. Notice that you must maintain the original sequence for the volume
serial numbers when recataloging the data library.

//ALLOC EXEC PGM=IEFBR14
//UNCATDD DD DSN=MY.PAYROLL.LIBRARY,
// DISP=(OLD,UNCATLG)
//NEWVOL DD DSN=MY.PAYROLL.LIBRARY,
// DISP=(NEW,KEEP_,DCB=(DSORG=PS,
// RECFM=FS,LRECL=27648,
// BLKSIZE=27648),UNIT=3390,
// SPACE=(CYL,1113),VOL=SER=PR0004
//CATDD DD DSN=MY.PAYROLL.LIBRARY,
// DISP=(OLD,CATLG),UNIT=3390,
// VOL=SER=(PR0001,PR0002,PR0003,
// PR0004)

The following JCL will preallocate a three-volume data library in an SMS
environment. Note that the SMS STORCLAS specified must allow multi-unit
allocations and have the GUARANTEED SPACE attribute. Your SMS system

Using SAS Data Libraries Using Multivolume SAS Data Libraries 67

administrator will need to set up the specified storage class for you. The SASGUAR
storage class name is used only as an example.

//ALLOC EXEC PGM=IEFBR14
//DD1 DD DSN=MY.PAYROLL.LIBRARY,
// DISP=(NEW,CATLG),DCB=(DSORG=PS,
// RECFM=FS,LRECL=27648,
// BLKSIZE=27648),SPACE=(CYL,1113),
// UNIT=(DISK,3),STORCLAS=SASGUAR
//

The GUARANTEED SPACE attribute causes the system to allocate the primary space
amount on each volume when the library is allocated.

Allocating a Multivolume Generation Data Group
A collection of SAS data libraries, including multivolume libraries, can be stored and

managed as a z/OS GDG. Before creating any libraries, you must first create the GDG
base, as shown in the following example:

// JOB ...
//* --
//* CREATE GDG BASE FOR SAS LIBRARIES
//* --
//STEP01 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE GDG +
(+

NAME(PROD.WEEKLY.PERFSTAT) +
LIMIT(5) +
SCRATCH +

)
//* --

Once the GDG base exists, libraries that are members of the GDG can be created
using JCL, for example:

// JOB ...
//* ---
//* CREATE MULTI-VOLUME SAS LIBRARY WHICH IS MEMBER OF GDG
//* ---
//STEP01 EXEC SAS
//NEWLIB DD DSN=PROD.WEEKLY.PERFSTAT(+1),DISP=(NEW,CATLG),
// UNIT=(DISK,2),SPACE=(CYL,(50,10)),
// DCB=PROD.WEEKLY.MODEL
//SYSIN DD *

DATA NEWLIB.MEMB01;
...

//* ---

68 Using Multivolume SAS Data Libraries Chapter 2

Each execution of the job above would create an entirely new library that is a
member of the GDG named PROD.WEEKLY.PERFSTAT. The DD statement parameter
DCB= is required to specify a data set from which the model DCB attributes for the
library will be copied.

Note:

� A LIBNAME statement should not be used to create a new GDG library, but it can
be used to refer to an existing GDG member.

� The z/OS GDG facility is somewhat similar to, but is completely unrelated to, the
SAS concept of generation data groups. A z/OS GDG is a group of SAS data
libraries. A SAS GDG is a group of members within a SAS data library. The
former group is managed by z/OS. The latter group is managed by SAS.

�

69

C H A P T E R

3
Accessing BMDP, SPSS, and
OSIRIS Files

Introduction to the BMDP, SPSS, and OSIRIS Engines 69

Restrictions on the Use of These Engines 69
Accessing BMDP Files 70

Assigning a Libref to a BMDP File 70

Referencing BMDP Files 70
Examples of Accessing BMDP Files 70

Accessing SPSS Files 71

Assigning a Libref to an SPSS File 71
Referencing SPSS Files 71

Examples of Accessing SPSS Files 72
Accessing OSIRIS Files 72

Assigning a Libref to an OSIRIS File 72

Referencing OSIRIS Files 73
Examples of Accessing OSIRIS Files 73

Introduction to the BMDP, SPSS, and OSIRIS Engines

The following read-only engines enable you to access files that were created with
other vendors’ software as if those files were written by SAS software:

BMDP accesses system files that were created with BMDP Statistical
Software.

SPSS accesses SPSS files that were created under Release 9 of SPSS as
well as SPSS-X system files and portable export files that are
created by using the SPSS EXPORT command.

OSIRIS accesses OSIRIS files.

You can use these engines in any SAS applications or procedures that do not require
random access. For example, by using one of the engines with the CONTENTS
procedure and its _ALL_ option, you can determine the contents of an entire SPSS file.

Restrictions on the Use of These Engines
Because these are sequential engines, they cannot be used with the POINT= option

of the SET statement nor with the FSBROWSE, FSEDIT, or FSVIEW procedures in
SAS/FSP software. However, you can use the COPY procedure or a DATA step to copy a
BMDP, SPSS, or OSIRIS file to a SAS data set, and then either use POINT= or use
SAS/FSP to browse or edit the file.

70 Accessing BMDP Files Chapter 3

Accessing BMDP Files
The BMDP engine can read only BMDP save files that were created on the same

operating environment. For example, the BMDP engine under z/OS cannot read BMDP
files that were created under the OpenVMS operating environment.

Assigning a Libref to a BMDP File
In order to access a BMDP file, you must use the LIBNAME statement or

LIBNAME function to assign a libref to the file.
You do not need to use a LIBNAME statement or function before running PROC

CONVERT if you are using PROC CONVERT to convert a BMDP file to a SAS data file.
(See “CONVERT Procedure” on page 307.)

Note that the LIBNAME statement has no options for the BMDP engine.
If you previously used a TSO ALLOC command or a JCL DD statement to assign a

DDname to the BMDP file, you can omit the physical-filename (a physical file name in
the z/OS operating environment) in the LIBNAME statement or LIBNAME function
and use the DDname as the libref. See “Accessing BMDP Files” on page 70.

For information on the LIBNAME statement, see “LIBNAME Statement” on page
393. For information on the LIBNAME function, see “LIBNAME Function” on page 267.

Referencing BMDP Files
Because there can be multiple save files in a single physical BMDP file, you use the

value of the BMDP CODE= argument as the name of the SAS data file. For example, if
the BMDP save file contains CODE=ABC and CODE=DEF, and if the libref is XXX, you
reference the files as XXX.ABC and XXX.DEF. All BMDP CONTENT types are treated
the same, so even if file DEF has CONTENT=CORR under BMDP, SAS treats it as
CONTENT=DATA.

In your SAS program, if you want to access the first BMDP save file in the physical
file, or if there is only one save file, you can refer to the file as _FIRST_. This approach
is convenient if you do not know the BMDP CODE= value.

Examples of Accessing BMDP Files
Suppose the physical file MY.BMDP.FILE contains the save file ABC. The following

statements assign a libref to the data set and then run PROC CONTENTS and PROC
PRINT on the BMDP file:

libname xxx bmdp ’my.bmdp.file’;
proc contents data=xxx.abc;
proc print data=xxx.abc;
run;

In the next example, the TSO ALLOC command associates a DDname with the name
of the physical file that comprises the BMDP physical-filename. The physical file name
is omitted in the LIBNAME statement and LIBNAME function, because the libref that
is used is the same as the DDname in the TSO statement. The PROC PRINT statement
prints the data for the first save file in the physical file.

Accessing BMDP, SPSS, and OSIRIS Files Referencing SPSS Files 71

tso alloc f(xxx) da(’my.bmdp.file’) shr reu;
libname xxx bmdp;
proc print data=xxx._first_;
run;

Accessing SPSS Files

The SPSS engine supports native and portable file formats for both SPSS and
SPSS-X files. The engine automatically determines which type of SPSS file it is reading
and reads the file accordingly.

This engine can read only SPSS data files that were created under the same
operating environment. For example, the SPSS engine under z/OS cannot read SPSS
files that were created under the OpenVMS operating environment. The only exception
is an SPSS portable file, which can originate from any operating environment.

Assigning a Libref to an SPSS File
In order to access an SPSS file, you must use the LIBNAME statement or

LIBNAME function to assign a libref to the file. Specify the SPSS engine in the
LIBNAME statement as follows:

LIBNAME libref SPSS ’physical-filename ’;

libref
is a SAS libref.

SPSS
is the SPSS engine.

physical-filename
is the physical file name of the SPSS file.

The syntax of the LIBNAME function for SPSS is as follows:

LIBNAME(libref, ’physical-filename’, ’SPSS’)

You do not need to use a LIBNAME statement or function before running PROC
CONVERT if you are using PROC CONVERT to convert an SPSS file to a SAS data
file. (See “CONVERT Procedure” on page 307.)

Note that the LIBNAME statement and function have no options for the SPSS engine.
If you previously used a TSO ALLOC command or a JCL DD statement to assign a

DDname to the SPSS file, you can omit the physical-filename in the LIBNAME
statement or function and use the DDname as the libref. (See the second example in
“Examples of Accessing SPSS Files” on page 72.)

Referencing SPSS Files
SPSS data files do not have names. For these files, use a member name of your

choice in SAS programs.
SPSS data files have only one logical member per file. Therefore, you can use

FIRST in your SAS programs to refer to the first data file.

72 Examples of Accessing SPSS Files Chapter 3

Examples of Accessing SPSS Files
Suppose you want to read the physical file MY.SPSSX.FILE. The following

statements assign a libref to the data set and then run PROC CONTENTS and PROC
PRINT on the SPSS file:

libname xxx spss ’my.spssx.file’;
proc contents data=xxx._first_;
proc print data=xxx._first_;
run;

In the next example, the TSO ALLOC command associates a DDname with the name
of the physical file that comprises the SPSS physical-filename. The physical file name is
omitted in the LIBNAME statement, because the libref that is used is the same as the
DDname in the TSO command. The PROC PRINT statement prints the data in the
first member of the SPSS data file.

tso alloc f(xxx) da(’my.spssx.file’) shr reu;
libname xxx spss;
proc print data=xxx._first_;
run;

Accessing OSIRIS Files
Although OSIRIS runs only under z/OS and CMS, the SAS OSIRIS engine accepts a

z/OS data dictionary from any other operating environment that is running SAS
software. The layout of an OSIRIS data dictionary is the same on all operating
environments. The data dictionary and data files should not be converted between
EBCDIC and ASCII, however, because the OSIRIS engine expects EBCDIC data.

Assigning a Libref to an OSIRIS File
In order to access an OSIRIS file, you must use the LIBNAME statement or

LIBNAME function to assign a libref to the file. Specify the OSIRIS engine in the
LIBNAME statement as follows:

LIBNAME libref OSIRIS ’physical-filename ’ DICT=’dictionary-filename’;

libref
is a SAS libref.

OSIRIS
is the OSIRIS engine.

physical-filename
is the physical file name of the data file.

dictionary-filename
is the physical file name of the dictionary file. The dictionary-filename can also be
a DDname. However, if you use a DDname for the dictionary-filename, do not use
quotation marks.

Specify the OSIRIS engine in the LIBNAME function as follows:

LIBNAME(libref, ’physical-filename ’, ’OSIRIS’, “DICT=’dictionary-filename’”)

Accessing BMDP, SPSS, and OSIRIS Files Examples of Accessing OSIRIS Files 73

You do not need to use a LIBNAME statement or function before running PROC
CONVERT if you are using PROC CONVERT to convert an OSIRIS file to a SAS data
file. (See “CONVERT Procedure” on page 307.)

If you previously used a TSO ALLOC command or a JCL DD statement to assign a
DDname to the OSIRIS file, you can omit the physical-filename in the LIBNAME
statement or function. However, you must still use the DICT= option, because the
engine requires both files.

Referencing OSIRIS Files
OSIRIS data files do not have individual names. Therefore, for these files you can

use a member name of your choice in SAS programs. You can also use the member
name _FIRST_ for an OSIRIS file.

Under OSIRIS, the contents of the dictionary file determine the file layout of the
data file. A data file has no other specific layout.

You can use a dictionary file with an OSIRIS data file only if the data file conforms to
the format that the dictionary file describes. Generally, each data file should have its
own DICT file.

Examples of Accessing OSIRIS Files
Suppose you want to read the data file MY.OSIRIS.DATA, and the data dictionary is

MY.OSIRIS.DICT. The following statements assign a libref to the data file and then run
PROC CONTENTS and PROC PRINT on the file:

libname xxx osiris ’my.osiris.data’
dict=’my.osiris.dict’;

proc contents data=xxx._first_;
proc print data=xxx._first_;
run;

The next example uses JCL. In this example, the DD statements can be omitted if
the physical names are referenced in the LIBNAME statement.

//JOBNAME JOB
//STEP1 EXEC SAS
//OSIR DD DSN=MY.OSIRIS.DATA,DISP=SHR
//DICT DD DSN=MY.OSIRIS.DICT,DISP=SHR
//SYSIN DD *

/* Any one of the following libname */
/* statements can be used. */

libname osir osiris dict=dict;
libname xxx osiris ’my.osiris.data’ dict=dict;
libname osir osiris dict=’my.osiris.dict’;

/* Use this if the osir libref is used */
proc print data=osir._first_;

/* Use this if the xxx libref is used */
proc print data=xxx._first_;
//

74

75

C H A P T E R

4
Allocating External Files

Introduction to External Files 75

Ways of Allocating External Files 75
Allocating a File for a Single Use 76

Allocating a File for Multiple Uses 76

Using the FILENAME Statement or Function to Allocate External Files 76
FILENAME Statement Syntax 77

FILENAME Statement Examples 77

Using the JCL DD Statement to Allocate External Files 78
Using the TSO Allocate Command to Allocate External Files 79

Allocating External Files on Tape 79
Allocating External Files to a Pipe 80

Allocating Generation Data Sets 81

Allocating a New Generation of a Generation Data Group 81
Allocating an Existing Generation of a Generation Data Group 81

Allocating Nonstandard External Files 82

Allocating ISAM Files 82
Allocating UNIX System Services HFS Files 82

Allocating PDSEs 82
Concatenating External Files 82

Displaying Information about External Files 83

Deallocating External Files 83

Introduction to External Files
External files are files whose format is determined by the operating environment

rather than by SAS software. External files include raw data files, JCL libraries, files
that contain SAS programming statements, load libraries, and HFS files, which are
part of UNIX System Services (USS). In batch and noninteractive line modes, the SAS
log and procedure output files are also external files.

Ways of Allocating External Files
To work with an external file in SAS software, you must first allocate the file. File

allocation is the process of identifying an external file to SAS software. If you are
allocating a new data set, such as a sequential file, partitioned data set (PDS), or
partitioned data set extended (PDSE), you must specify that it is new and you must
describe its structure and format. These actions are not required for new files in the
Hierarchical File System (HFS).

76 Allocating a File for a Single Use Chapter 4

The method you use to allocate an external file depends on whether you plan to use
the file more than once in your SAS program. See “Allocating a File for a Single Use”
on page 76 and “Allocating a File for Multiple Uses” on page 76.

Allocating a File for a Single Use
If you plan to use an existing external file only once in your SAS program, then you

can allocate it by specifying the physical file name in a SAS statement or command. For
example, this INCLUDE command allocates an existing sequential data set and
includes it into the PROGRAM EDITOR window:

include ’myid.report.data’

Similarly, this PROC PRINTTO statement allocates a new PDS member:

proc printto print=’userid.output.data(rockport)’ new;

Allocating a File for Multiple Uses
If you plan to use the same external file several times in your SAS program, then use

one of the following methods to allocate the file:

SAS FILENAME statement or function
You can use these methods in all modes for most types of files. See “Using the
FILENAME Statement or Function to Allocate External Files” on page 76 or
“FILENAME Function” on page 258 for more information.

JCL DD statement
You can use this method if you use z/OS in batch mode. See “Using the JCL DD
Statement to Allocate External Files” on page 78 for more information.

Note: Unlike the other two methods, if you use the JCL DD statement to
allocate a file, there is no way to deallocate the file until the job ends. �

TSO ALLOCATE command
You can use this method if you use z/OS under TSO. See “Using the TSO Allocate
Command to Allocate External Files” on page 79 for more information.

Each of these methods establishes a fileref or a DDname that you can subsequently
use to refer to the file instead of specifying the data set name again. See “Referring to
External Files” on page 86 for more information.

Using the FILENAME Statement or Function to Allocate External Files
The FILENAME statement and FILENAME function associate a SAS fileref (file

reference name) with the operating environment’s name for an external file. This is
equivalent to allocating a physical file externally (using a JCL DD statement or a TSO
ALLOCATE command) and assigning a fileref to it.

In interactive mode, if you issue a FILENAME statement or function or attempt to
allocate a file with the FNAME window for a file that does not exist, and if you do not
specify DISP=NEW, and if the file is not an HFS file, one of the following actions occurs:

� If the SAS system option FILEPROMPT is in effect (the default), then a requestor
window asks whether you want to create the external file. If you reply Yes, SAS
creates the external file, using any attributes that you specified in the FILENAME
statement. If you do not specify any attributes, SAS uses the values of the SAS

Allocating External Files FILENAME Statement Examples 77

system options FILEDEV=, FILEVOL=, FILEUNIT=, FILESPPRI=, and
FILESPSEC=. See “System Options in the z/OS Environment” on page 410 for
information about these options.

� If the SAS system option NOFILEPROMPT is in effect, an error message
indicating that the file could not be allocated is written to the SAS log.

For further information on the FILENAME function, see “FILENAME Function” on
page 258.

FILENAME Statement Syntax
This section provides only a brief overview of FILENAME statement syntax. For

complete information about the FILENAME statement, see “FILENAME Statement” on
page 369.

The syntax of the FILENAME statement is

FILENAME fileref <device-type > ’physical-filename’ <options . . . >;

fileref
identifies the external file. The fileref must conform to the rules for DDnames.
That is, it can consist of one to eight letters, numbers, or the national characters $,
@, and #; the first character must be either a letter or a national character. You
can subsequently use the fileref to refer to this file in your SAS session or batch
job. (See “Referring to External Files” on page 86.)

device-type
enables you to route output to an output device, disk, or tape file by specifying
device type. If device-type is not defined for a new file, its value is taken from the
SAS system option FILEDEV=.

’physical-filename’ | (’physical-filename-1’ . . . ’physical-filename-n’) |
’physical-filename (*)’ | ’physical-filename(beg*)’ | ’physical-filename(*end)’

is the physical file name of the data set, enclosed in quotation marks (see
“Specifying Physical Files” on page 14), or it can be a concatenation of physical file
names. For a concatenation, enclose each data set name in quotation marks, and
enclose the entire group of file-specifications in parentheses. The maximum
number of data sets in a concatenation is 200.

For a concatenation of members in a PDS, an asterisk (*) can be used in a
wildcard file specification. The syntax ’physical-filename (*)’ applies to all
members of the PDS; (beg*) applies to all members or files whose names begin
with beg, and (*end) applies to all files whose names end with end.

options
include standard options such as file disposition as well as options for SYSOUT
data sets such as the destination for output and the number of copies desired.
These options are described in detail in “FILENAME Statement” on page 369.
Generally, values for options may be specified either with or without quotation
marks. However, values that contain special characters must be enclosed in
quotation marks.

FILENAME Statement Examples
The following table provides examples of the FILENAME statement for z/OS.

78 Using the JCL DD Statement to Allocate External Files Chapter 4

Table 4.1 FILENAME Statement Examples

Type of File New or Existing File? Example

sequential existing filename raw ’myid.raw.datax’ disp=old;

new filename x
’userid.newdata’ disp=new

space=(trk,(5,1)) unit=3380 volume=xyzabc
recfm=fb lrecl=80 blksize=6160;

member of
partitioned

existing filename raw ’sas.raw.data(mem1)’ disp=old;

new filename dogcat ’userid.sas8.physn(optwrk)’
disp=new space=(trk,(1,3,1))
volume=xxx111 recfm=fb lrecl=255
blksize=6120 dsorg=po;

partitioned extended existing filename mypdse ’sas.test.pdse’ disp=old;

new filename tpdse ’sas.test.pdse’ dsntype=library
space=(trk,(5,2,2)) lrecl=80 blksize=6160
recfm=fb disp=(new, catlg) dsorg=po;

USS: HFS files existing filename myhfs ’/u/userid/myfile’;

new filename myhfs ’/u/userid/myfile’;

temporary new filename nextone ’&mytemp’ disp=new
space=(trk,(3)) lrecl=80 blksize=6160;

tape existing filename mytape ’prod.data’ vol=myvol unit=tape
label=(1,SL);

new filename tranfile ’sas.cport.file’
label=(1,SL)

vol=’042627’ unit=cart blksize=8000
disp=(new,keep);

concatenated existing filename concat12
(’prod.payroll.data’ ’prod.trans(may)’);

wildcard existing, in PDS filename wild ’prod.payroll(d*)’;

existing, in HFS filename all ’/u/userid/*.sas’;

terminal n/a filename term1 ’*’;
or

filename term2 terminal;

printer n/a filename prnt unit=printer sysout=a;
or

filename prnt printer sysout=a;

Using the JCL DD Statement to Allocate External Files

The syntax of the JCL DD statement is

//DDname DD DSN=data-set-name,options

options include options such as file disposition as well as options that describe the
format of the file.

Here are some examples:

� Allocating an existing sequential data set:

Allocating External Files Allocating External Files on Tape 79

//BOOKS DD DSN=LIBRARY.CATALOG.DATA,DISP=SHR

� Allocating a new sequential data set:

//REPORT DD DSN=LIBRARY.REPORT.FEB08,DISP=(NEW,CATLG),
// SPACE=(CYL,(1,1)),UNIT=SYSDA,
// DCB=(LRECL=80,RECFM=FB,BLKSIZE=6160)

� Concatenating sequential data sets:

//INPUT DD DSN=LIBRARY.DATA.QTR1,DISP=SHR
// DD DSN=LIBRARY.DATA.QTR2,DISP=SHR
// DD DSN=LIBRARY.DATA.QTR3,DISP=SHR
// DD DSN=LIBRARY.DATA.QTR4,DISP=SHR

For complete information about the JCL DD statement, see the appropriate JCL
User’s Guide and JCL Reference for your OS level.

Using the TSO Allocate Command to Allocate External Files
The syntax of the TSO ALLOCATE command is

ALLOC FILE(DDname) DA(’data-set-name ’) options

options include options such as file disposition as well as options that describe the
format of the file.

Here are some examples:
� Allocating an existing member of a PDS:

alloc fi(in1) da(’my.pds(mem1)’) shr

� Allocating a new sequential data set:

alloc fi(report) da(’library.report.feb08’)
new sp(1,1) cyl lrecl(80) recfm(f b)
blksize(6160)

� Concatenating sequential data sets:

alloc fi(input) da(’library.data.qtr1’ ’library.data.qtr2’
’library.data.qtr3’ ’library.data.qtr4’) shr

For complete information about the TSO ALLOCATE command, see the appropriate
TSO reference for your OS level.

Allocating External Files on Tape
Tapes are used primarily in batch mode; in fact, some sites may restrict or prohibit

tape mounts in interactive sessions. Because file allocation for external files on tape is
done infrequently, the FILENAME statement and FILENAME function give only
limited support for parameters that are normally associated with data sets on tape.
However, you can use the FILENAME statement or FILENAME function to allocate a
cataloged tape file, provided that you specify the data set name and disposition (as you
would normally do in a JCL DD statement). To allocate an uncataloged tape file, do the
following:

� For a data set on an IBM standard-label tape (label type SL, the most common
type), you must specify the data set name, UNIT= parameter, and volume serial

80 Allocating External Files to a Pipe Chapter 4

number. You may also specify the label number and type and the disposition, or
you can allow default values to be used for these parameters. For example:

filename mytape ’prod.data’ vol=myvol
unit=tape label=(2,SL);

� For a data set on a nonlabeled tape (label type NL), you must supply the above
information plus DCB information. (See “DCB Attribute Options” on page 379 for
details.) For example:

filename tranfile ’sas.cport.data’
disp=(new,keep) unit=tape vol=xvol
label=(1,NL) recfm=fb
lrecl=80 blksize=8000;

Allocating External Files to a Pipe
BatchPipes offers a way to connect jobs so that data from one job can move to

another job without going to DASD or tape. SAS System 9 permits both SAS data sets
and external files to be written and read with BatchPipes.

Note: To use BatchPipes with SAS on z/OS, you need to make sure you have the
BatchPipes service running before you start your SAS session. �

To write an external file using BatchPipes:

//jobname JOB jobinfo...
// EXEC SAS9
//*
//PIPESND DD DSN=TEST.SAS.EXTFILE.BATCHPIPES,
// LRECL=80,BLKSIZE=3120,RECFM=FB,
// DISP=NEW,
// SUBSYS=(BP01,CLOSESYNC)
//*
//SYSIN DD *

data _null_;
file pipesnd;
put " Line 1 ";
put " Line 2 ";

run;
/*
//

To read an external file using BatchPipes:

//jobname JOB jobinfo...
// EXEC SAS9
//*
//PIPERCV DD DSN=TEST.SAS.EXTFILE.BATCHPIPES,
// DISP=OLD,
// SUBSYS=(BP01,CLOSESYNC)
//*
//SYSIN DD *

data _null_;
infile pipercv;
input;
list;

run;

Allocating External Files Allocating an Existing Generation of a Generation Data Group 81

/*
//

See the IBM documentation about BatchPipes z/OS for more information.

Allocating Generation Data Sets
A generation data set (or generation) is a version of a z/OS data set that is stored as

a member of a generation data group. These generations are supported by z/OS; they
differ from the generation data sets supported by SAS. For detailed information about
z/OS generations, see your IBM documentation. For information about SAS generation
data sets, see the SAS Language Reference: Concepts. See also “Allocating a
Multivolume Generation Data Group” on page 67.

Both standard external files and SAS data libraries can be stored and managed as
generation data groups. The following sections describe the various methods of
allocating new and existing generations.

Allocating a New Generation of a Generation Data Group
To allocate a new generation of a generation data group, use one of the following

methods:
� In a JCL DD statement, you can specify either the relative form of the data set

name or the absolute form.

Relative form:

//DD1 DD DSN=PROD.GDG(+1),DISP=(NEW,CATLG)

Absolute form:

//DD1 DD DSN=PROD.GDG.G0008V00,DISP=(NEW,CATLG)

� In a SAS FILENAME statement or FILENAME function (for external files) or in a
TSO ALLOCATE command, you must specify the absolute form of the data set
name.

FILENAME statement:

filename dd1 ’prod.gdg.g0008v00’ disp=(new,catlg);

TSO ALLOCATE command:

alloc fi(dd1) da(’prod.gdg.g0008v00’) new

Allocating an Existing Generation of a Generation Data Group
To access an existing generation of a generation data group, you can use either the

relative form of the data set name or the absolute form in a FILENAME statement
FILENAME function, JCL DD statement, or TSO ALLOCATE command.

� Relative form:

FILENAME statement:

filename gdgds ’my.gdg.data(-1)’;

JCL DD statement:

//DD1 DD DSN=PROD.GDG(-1),DISP=SHR

82 Allocating Nonstandard External Files Chapter 4

TSO ALLOCATE command:

alloc fi(dd1) da(’prod.gdg(-1)’) shr

� Absolute form:

FILENAME statement:

filename gdgds ’my.gdg.data.g0008v01’;

JCL DD statement:

//DD1 DD DSN=PROD.GDG.G0008V01,DISP=SHR

TSO ALLOCATE command:

alloc fi(dd1) da(’prod.gdg.g0008v01’) shr

Allocating Nonstandard External Files

Allocating ISAM Files
To allocate a new ISAM file, you must use either a JCL DD statement or the TSO

ALLOCATE command; you cannot use the FILENAME statement or FILENAME
function. However, you can use the FILENAME statement or function to allocate an
existing ISAM file.

Allocating UNIX System Services HFS Files
See “Accessing UNIX System Services Files” on page 102 for details.

Allocating PDSEs
To allocate a partitioned data set extended (PDSE), specify the appropriate options

in the FILENAME statement or FILENAME function, as shown in the example in
Table 4.1 on page 78.

See “Options That Specify SMS Keywords” on page 382 for definitions of SMS options.
You can use a PDSE wherever you can use a PDS, and you can write to multiple

members in a PDSE at the same time.

Concatenating External Files
Multiple sequential data sets can be concatenated via JCL DD statements, a TSO

ALLOCATE command, a FILENAME statement, or a FILENAME function. (When
accessing concatenated files, performance is better when either of the first two methods
is used.) See the examples in “Using the FILENAME Statement or Function to Allocate
External Files” on page 76, “Using the JCL DD Statement to Allocate External Files”
on page 78, and “Using the TSO Allocate Command to Allocate External Files” on page
79. Also see “Reading Concatenated Data Sets” on page 97.

Allocating External Files Deallocating External Files 83

Displaying Information about External Files
You can issue the FILENAME command from the command line to display the

FILENAME window. This window lists all current SAS filerefs plus the name of the
physical file to which each fileref has been assigned. Files that were allocated
externally (with a JCL DD statement or with the TSO ALLOCATE command) are listed
only after you have used them as filerefs in your SAS session.

Under z/OS, three additional windows–FNAME, DSINFO, and MEMLIST–also
provide information about external files. For information about these windows, see
“Host-Specific Windows in the z/OS Environment” on page 549.

Deallocating External Files
The method that you use to deallocate a file depends on which method you used to

allocate it:

� If you used the FILENAME statement or FILENAME function to allocate the file,
include the CLEAR argument to deallocate it:

filename books clear;

Note: The CLEAR argument is optional. Specifying FILENAME fileref; has
the same effect. �

� If you used the JCL DD statement to allocate the file, then the file is automatically
deallocated when the job step ends. (There is no way to deallocate the file before
the job step ends.)

� If you used the TSO ALLOCATE command to allocate the file, then use the TSO
FREE command:

free fi(books)

84

85

C H A P T E R

5
Accessing External Files

Referring to External Files 86

How SAS Determines Device Types 87
Writing to External Files 87

FILE Statement 88

FILE Statement Syntax 88
FILE Statement Examples 89

Writing to Sequential Data Sets 89

Writing to Members of PDS or PDSE Data Sets 90
Writing to a Printer 90

Writing to the Internal Reader 91
Writing to a Temporary Data Set 91

Using the FILE Statement to Specify Data Set Attributes 91

Using the Data Set Attributes of an Input File 92
Using the FILE Statement to Specify Data Set Disposition 92

Appending Data with the MOD Option 92

Appending Data with the MOD Disposition 92
Writing to Print Data Sets 93

Designating a Print Data Set 93
Designating Nonprint Data Set as a Print Data Set 93

Designating a Print Data Set as a Nonprint Data Set 94

Reading from External Files 94
INFILE Statement 94

INFILE Statement Syntax 95

INFILE Statement Examples 96
Reading from a Sequential File 96

Reading from a Member of a PDS or PDSE 96
Reading from the Terminal 97

Reading Concatenated Data Sets 97

Reading from Multiple External Files 98
Sequentially Reading from Multiple External Files 98

Alternately Accessing Multiple External Files 98

Reading from Print Data Sets 99
Getting Information about an Input Data Set 99

Accessing Nonstandard Files 99
Accessing IMS and CA-IDMS Databases 99

Accessing ISAM Files 100

Accessing VSAM Data Sets 100
Reading a VSAM File 100

Writing to an Empty VSAM File 100

Updating a VSAM Data Set 101
Using Record-Level Sharing with VSAM 101

86 Referring to External Files Chapter 5

Extended-Format VSAM Data Sets 101

Accessing the Volume Table of Contents (VTOC) 101
Accessing UNIX System Services Files 102

Allocating UNIX System Services Files 102

Allocating a UNIX System Services Directory 102
Specifying File-Access Permissions and Attributes 103

Using SAS 103

Using Operating System Facilities 103
Using UNIX System Services Filenames in SAS Statements and Commands 104

Concatenating UNIX System Services Files 104
Accessing a Particular File in a UNIX System Services Directory 105

Piping Data between SAS and UNIX System Services Commands 105

Piping Data from a UNIX System Services Command to SAS 105
Piping Data from SAS to a UNIX System Services Command 106

Host-Specific Options for UNIX System Services Files 106

Writing Your Own I/O Access Methods 109
Accessing SAS Statements from a Program 109

Using the INFILE/FILE User Exit Facility 109

Referring to External Files

After allocating an external file, you can use the fileref or DDname of the file as a
convenient way of referring to that file in any subsequent SAS language statement or
command.

Note: The first time the DDname of an external file is used in a SAS statement or
procedure, SAS assigns it as a fileref for the external file. Therefore, any information
provided here about filerefs also applies to the DDnames of external files. �

In the following example, the FILENAME statement associates the fileref REPORT
with the sequential data set MYID.NEWDATA. The FILE statement later uses the
fileref rather than the data set name to refer to the data set.

filename report ’myid.newdata’ disp=old;
data _null_;

file report;
put ...;

run;

Here is a similar example in which a JCL DD statement associates the DDname IN
with a member of a partitioned data set. The INFILE statement later uses the
DDname rather than the data set name and member name to refer to the PDS member.

//IN DD DSN=MYID.NEWDATA(TRIAL1),DISP=SHR
//SYSIN DD *
data out;

infile in;
input ...;

run;

When referring to a member of a PDS or a PDSE, you also have the option of
specifying only the data set name in the FILENAME statement (or FILENAME
function) or in the DD statement. Then, in subsequent references, you specify the
member name with the fileref. For example:

Accessing External Files Writing to External Files 87

//IN DD DSN=MYID.NEWDATA,DISP=SHR
//SYSIN DD *
data out;

infile in(trial1);
input ...;

run;

If an external data set is not cataloged, you must also provide the volume serial
number. See “FILENAME Statement” on page 369 for more information about other
options that you can specify.

How SAS Determines Device Types
A fileref has a device type of either MVS or HFS, where HFS identifies files that are

stored in the hierarchical file system of UNIX System Services (USS). The device type
determines how SAS will access the file. This device type is somtimes referred to as an
access method.

If a physical name does not contain a slash (/) or a tilde (~) character to identify it as
an HFS file name, SAS uses the following algorithm to determine the device type:

1 Use the access method from the allocation statement, if provided, as in:

FILE ’example’ HFS;

or

FILENAME XXX HFS ’example’;

If the access method is not specified or is MVS, use the MVS access method.
2 Use the access method specified by the MVS: or HFS: prefix in the physical file

name, if one is provided, as in:

FILENAME XXX ’HFS:first’;
FILENAME XXX ’MVS:first’;

3 Use the HFS access method if a slash character (/)or tilde character (~) appears
in the physical file name, as in:

FILENAME XXX ’~/first’;

4 Use the access method specified by the FILESYSTEM= system option. See
“FILESYSTEM= System Option” on page 440.

Writing to External Files
After allocating an external file, you can use the FILE statement, FILE command, or

FOPEN function to write to the file. This section describes the FILE statement. For
information about the FILE command, see SAS Language Reference: Dictionary.

Note: You can also use FOPEN, FWRITE, FPUT, FNOTE, FPOINT, and FCLOSE to
access external files. See SAS Language Reference: Dictionary for details. �

88 FILE Statement Chapter 5

FILE Statement
The FILE statement specifies the current output file for PUT statements in the

DATA step. (See SAS Language Reference: Dictionary for a complete description of the
PUT statement.)

When multiple FILE statements are present, the PUT statement builds and writes
output lines to the file that was specified in the most recent FILE statement. If no
FILE statement was specified, the PUT statement writes to the SAS log.

The specified output file must be an external file, not a SAS data library, and it must
be a valid access type.

The FILE statement is executable; therefore, you can use it in conditional processing
(in an IF/THEN statement, for example).

As with INFILE, it is possible to alternately access multiple external files. See the
example in “Reading from Multiple External Files” on page 98. You cannot write to
multiple members of a single PDS at the same time. However, you can write to multiple
members of a PDSE at one time.

Under z/OS, SAS uses the IBM ENQUEUE/DEQUEUE facility to prevent multiple
users from writing to the same physical file simultaneously. This facility also prevents
SAS software and ISPF from overwriting each other.

FILE Statement Syntax
This section provides a brief overview of FILE statement syntax. For complete

information about the FILE statement, see “FILE Statement” on page 363.
The syntax of the FILE statement is

FILE file-specification <type> <options > <host-options>;

file-specification
identifies the file. It can be in the following forms:

Table 5.1 File Specification Examples for the FILE Statement

Form Example

fileref report

fileref(member) report(feb)

’physical-filename’ ’library.daily.report’

’physical-filename(member)’ ’library.daily.output(report1)’

reserved filerefs LOG
or
PRINT

HFS file ’/u/userid/file’

’HFS:myfile’

See “Specifying Physical Files” on page 14 for details about different ways of
specifying physical-filename.

type
specifies the type of file. Nonstandard (host-specific) file types that you can specify
for z/OS are

Accessing External Files Writing to Sequential Data Sets 89

DLI for IMS databases (see “Accessing IMS and CA-IDMS
Databases” on page 99).

HFS and PIPE for files in UNIX System Services (see “Accessing UNIX System
Services Files” on page 102).

MVS for z/OS data sets.

VSAM for VSAM files (see “Accessing VSAM Data Sets” on page 100).

options
describe the output file’s characteristics and specify how it is to be written with a
PUT statement. Many of these options are not host-dependent and are
documented in SAS Language: Reference. For information about options that are
specific to z/OS, see “FILE Statement” on page 363. You can use these options to
do the following:

� define variables that will contain information about the external file
� specify special open and close processing
� specify file characteristics.

FILE Statement Examples

Table 5.2 Examples of the FILE Statement

Type of Data Set Example

sequential file ’my.new.dataset’;

member of a PDS or PDSE file out(newdata);
or
file ’my.new.dataset(newdata)’;

sequential or member of a PDS or PDSE* file myfilerf;

HFS file ’/usr/tmp/newdata’;

HFS file ’newmem.dat’ hfs;

HFS file ’HFS:raw’;

MVS file ’newmem.dat’ mvs;

MVS file ’MVS:raw’;

VSAM file payroll vsam;

IMS file psb dli;

SAS log file log;

* The type depends on what the fileref is associated with.

Writing to Sequential Data Sets
The disposition of a sequential data set can be OLD, MOD, or SHR. Using OLD

eliminates the possibility of another job writing to the data set at the same time your
job is writing to it.

If you specify OLD or SHR, SAS begins writing at the beginning of the data set,
replacing existing information. To append new information to the existing information,
specify the MOD option in the FILE statement.

90 Writing to Members of PDS or PDSE Data Sets Chapter 5

The following example assigns the fileref RAW to the data set MYID.RAW.DATAX
and uses the fileref in a simple DATA step:

filename raw ’myid.raw.datax’ disp=old;
data _null_;

file raw;
msgline=’write this line’;
put msgline;

run;

Writing to Members of PDS or PDSE Data Sets
To write to a member of a PDS, include the member name along with the data set

name in the FILE statement, the FILENAME statement, the FILENAME function, the
TSO ALLOCATE command, or the JCL DD statement. Omitting the member name
causes an error message because SAS tries to treat the PDS as a sequential data set.

The disposition of the PDS member can be OLD or SHR; you cannot use a disposition
of MOD for a member of a PDS. In both cases, SAS begins writing at the beginning of
the member, replacing existing information. Using OLD eliminates the possibility of
another job writing into the member at the same time your job is writing into it.

In a single DATA step you can write to only one member of a particular PDS;
however, you can write to members of separate PDSs. To write to more than one
member of a given PDS, you must use a separate DATA step for each member. In a
single DATA step, you can write to multiple members of a PDSE.

The following example assigns the fileref RAW to the PDS member MEM1 and then
uses the fileref in a simple DATA step:

/* PDS Example */
filename raw ’myid.raw.data(mem1)’ disp=old;
data _null_;

file raw;
put ’write this line’;

run;

This next example assigns the fileref MYPDSE to the PDSE and then uses the fileref
in a simple DATA step:

/* PDSE Example */
filename mypdse ’sales.div1.reg3’ disp=shr;
data a;

x=1;
file mypdse(june97);
put x;
file mypdse(jul97);
put x;

run;

Writing to a Printer
This example uses the FILENAME and FILE statements to route output to a printer:

filename prnt printer sysout=a;
data _null_;

file prnt;
put ’text to write’;

run;

Accessing External Files Using the FILE Statement to Specify Data Set Attributes 91

Writing to the Internal Reader
This example uses the FILENAME and FILE statements to write to an internal

reader:

filename injcl ’.misc.jcl’ disp=shr;
filename outrdr sysout=a pgm=intrdr

recfm=fb lrecl=80;
data _null_;

infile injcl(myjcl);
file outrdr noprint notitles;
input;
put _infile_;

run;

Writing to a Temporary Data Set
The following examples use the FILENAME and FILE statements to write to a

temporary data set.
� This example shows how to use default attributes to define a temporary file:

filename tempfile ’&mytemp’ ;
data out;

file tempfile;
put ...;

run;

� The next example defines a temporary file and specifies some of its attributes:

filename nextone ’&mytemp’ disp=new
lrecl=80 blksize=320 space=(trk,(3));

data out;
file nextone;
put ...;

run;

Using the FILE Statement to Specify Data Set Attributes
You can specify data set attributes in the FILE statement as well as in the

FILENAME statement or FILENAME function. SAS supplies default values for any
attributes that you do not specify. (For information about default values, see “Overview
of DCB Attributes” on page 381 and “DCB Option Descriptions” on page 379.)

This example specifies values for LRECL= and RECFM= in the FILE statement and
allows SAS to use the default value for BLKSIZE=:

filename x ’userid.newdata’ disp=new
space=(trk,(5,1)) volume=xyz111;

data out;
file x lrecl=80 recfm=fb;
put ... ;

run;

92 Using the Data Set Attributes of an Input File Chapter 5

Using the Data Set Attributes of an Input File
In this example, data is read from the input file; then the data is written to an

output file, using the same file characteristics. The DCB option in the FILE statement
tells SAS to use the same data set attributes for the output file as were used for the
input file.

filename in ’userid.input’;
filename out ’userid.output’;
data;

infile in;
input;
file out dcb=in;
put _infile_;

run;

Using the FILE Statement to Specify Data Set Disposition

Appending Data with the MOD Option
In this example, the MOD option is used to append data to the end of an external file:

filename out ’user.output’;
data _null_;
/* New data is written to ’user.output’ */

file out;
put ... ;

run;

data _null_;
/* data is appended to ’user.output’ */

file out mod;
put ... ;

run;

Appending Data with the MOD Disposition
This example is similar to the previous one except that instead of using the MOD

option, the DISP= option is used. The OLD option is then used to overwrite the data.

filename out ’user.output’ disp=mod;
data _null_;
/* data is appended to ’user.output’ */

file out;
put ... ;

run;

data _null_;
/* data is written at the beginning of */
/* ’user.output’ */

file out old;
put ... ;

run;

Accessing External Files Writing to Print Data Sets 93

data _null_;
/* data is written at the beginning of */
/* ’user.output’ */

file out;
put ... ;

run;

data _null_;
/* data is appended to ’user.output’ */

file out mod;
put ... ;

run;

Writing to Print Data Sets
A print data set contains carriage-control information (also called ASA control

characters) in column 1 of each line. These characters (blank, 0, −, +, and 1) control the
operation of a printer, causing it to skip lines, to begin a new page, and so on. They do
not normally appear on a printout. A nonprint data set does not contain any
carriage-control characters.

When you write to a print data set, SAS shifts all column specifications in the PUT
statement one column to the right in order to accommodate the carriage-control
characters in column 1. Therefore, if you expect to print an external file, you should
designate the file as a print data set either when you allocate it or when you write to it.

Designating a Print Data Set
The preferred method for designating a data set as a print data set is when you

allocate it, using the RECFM= option in the FILENAME statement, the FILENAME
function, the JCL DD statement, or the TSO ALLOCATE command. Adding the letter
A to the end of the value for the RECFM= option (RECFM=FBA or RECFM=VBA, for
example) causes SAS to include carriage-control characters in the data set that is being
created. See “FILENAME Statement” on page 369 for complete information about the
RECFM= option.

Designating Nonprint Data Set as a Print Data Set
When you write to a data set that was not designated as a print data set when it was

allocated, you can designate it as a print data set in several ways, depending on what
you plan to do with the data set. Here are some examples:

� Use the PRINT option in the FILE statement:

file saveit print;

SAVEIT is the fileref of the data set. The PRINT type in the FILE statement
includes a page number, date, and title; this is the simplest way to create a print
data set.

� Use PRINT as the fileref in the FILE statement (different from the PRINT option
above):

file print;

The PRINT fileref in the FILE statement causes SAS to write the information
either to the standard SAS procedure output file (PRINT=SASLIST), or to another
output file if you have used a PROC PRINTTO statement to redirect your output.

94 Reading from External Files Chapter 5

(See “PRINTTO Procedure” on page 332 and “Using the PRINTTO Procedure and
the FORM Subsystem” on page 119 for information about PROC PRINTTO.) In
either case, this file contains carriage-control characters by default. You can
suppress the carriage-control characters by specifying the NOPRINT option in the
FILE statement (see “Writing to External Files” on page 87).

� Use the letter A as part of the value in the RECFM= option in the FILE statement:

file saveit recfm=vba;

As in the FILENAME statement or FILENAME function, the letter A in the
RECFM= option of the SAS FILE statement causes SAS to include
carriage-control characters in the data set that is being created. SAS also changes
the record format of the target data set.

For information about how to process print files as input, see “Reading from Print
Data Sets” on page 99.

Designating a Print Data Set as a Nonprint Data Set
The NOPRINT option is useful when you use a DATA step to copy a data set that

already contains carriage-control information. In this case, use NOPRINT to prevent
SAS from adding an additional column of carriage-control information.

If a data set has been allocated as a print data set, you can use the NOPRINT option
in the FILE statement to omit carriage-control information. For example, suppose you
specified RECFM=VBA, indicating a print data set, when you allocated a file and that
you assigned the fileref OUTDD. The following SAS statement designates OUTDD as a
nonprint data set:

file outdd noprint;

To write lines without carriage-control information to the SAS procedure output file,
specify:

file print noprint;

Reading from External Files

After you allocate an external file, you can read from the file in a SAS DATA step by
specifying it in the INFILE statement, the INCLUDE command, or the %INCLUDE
statement.

This section describes the INFILE statement. For information about the INCLUDE
command, the %INCLUDE statement, and the DATA step, see SAS Language
Reference: Dictionary.

INFILE Statement
In a SAS DATA step, the INFILE statement specifies which external file is to be

read by a subsequent INPUT statement. Every external file that you want to read must
have a corresponding INFILE statement. The external file can be a sequential data set
on disk or tape, a member of a partitioned data set (PDS or PDSE), or any of several
nonstandard file types (see the description of the type argument in “INFILE Statement
Syntax” on page 95). The file can also be entered from a terminal.

The INFILE statement is executable. Therefore, it can be used in conditional
processing–in an IF/THEN statement, for example.

Accessing External Files INFILE Statement 95

When multiple INFILE statements are present, the INPUT statement reads from the
external file that was specified by the most recent INFILE statement. (See SAS
Language Reference: Dictionary for a complete description of the INPUT statement.)

INFILE Statement Syntax
This section provides a brief overview of INFILE statement syntax. For complete

information about the INFILE statement, see “INFILE Statement” on page 388.
The syntax of the INFILE statement is

INFILE file-specification <type> <options>;

file-specification
identifies the file. It can be in the following forms:

Table 5.3 File Specification Examples for the INFILE Statement

Form Example

fileref report

fileref(member) report(feb)

’physical-filename’ ’library.daily.report’

’physical-filename(member)’ ’library.daily.source(report1)’

reserved fileref DATALINES

See “INFILE Statement” on page 388 for information about partial physical file
names and wildcard member names.

type
specifies the type of file. When you omit type, the default is a standard external
file. Nonstandard (host-specific) file types that you can specify for z/OS are

DLI for IMS databases. For information about IMS options for the
INFILE statement, see SAS/ACCESS Interface to IMS:
Reference.

HFS and PIPE for files in UNIX System Services (see “Accessing UNIX System
Services Files” on page 102). PIPE allows you to issue UNIX
System Services commands from within the INFILE statement.

IDMS specifies that the file is a CA-IDMS file. For information about
CA-IDMS options for the INFILE statement, see
SAS/ACCESS DATA Step Interface to CA-IDMS: Reference.

ISAM specifies that the file is an ISAM file. See “Accessing
Nonstandard Files” on page 99.

VSAM for VSAM files (see “Accessing VSAM Data Sets” on page 100).

VTOC specifies that the Volume Table of Contents (VTOC) is to be
accessed.

options
describe the input file’s characteristics and specify how it is to be read with an
INPUT statement. Many of these options are not host-dependent and are
documented in SAS Language Reference: Dictionary. Those that are host-specific

96 Reading from a Sequential File Chapter 5

are documented in “INFILE Statement” on page 388. You can use these options to
do the following:

� define variables that will contain information about the external file
� specify special open and close processing
� specify file characteristics.

INFILE Statement Examples

Table 5.4 Examples of the INFILE Statement

Type of Data Set Example

sequential infile ’library.daily.data’;

member of a PDS or PDSE infile report(feb);

or

infile ’lib.daily.src(rpt1)’;

sequential or member of a
PDS or PDSE*

infile data;

IMS infile psb dli;

in-stream infile datalines;

* The type depends on what the fileref is associated with.

Reading from a Sequential File
This example assigns the fileref RAW to the data set MYID.RAW.DATAX and uses

the fileref in a simple DATA step:

filename raw ’myid.raw.datax’ disp=shr;
data out;

infile raw;
input ... ;

run;

This example is similar to the previous one, except that it specifies a value for the
SYSPREF= system option and then uses a partially qualified data set name in the
FILENAME statement:

options syspref=sys2.sas7;
filename raw2 ’.raw.datax’ disp=shr;
data out;

infile raw2;
input ... ;

run;

See “Specifying Physical Files” on page 14 for information about using SYSPREF=
and partially qualified data set names.

Reading from a Member of a PDS or PDSE
This example specifies the PDS name in the FILENAME statement and then

specifies the member name in parentheses following the fileref in the INFILE statement:

Accessing External Files Reading Concatenated Data Sets 97

filename mypds ’user.my.pds’;
data out;

infile mypds(mydata);
input ... ;

run;

This example specifies both the PDS name and the member name in the FILENAME
statement. Therefore, only the fileref is specified in the INFILE statement:

filename mymember ’user.my.pds(mydata)’;
data out;

infile mymember;
input ... ;

run;

Multiple members of a PDS can be open for read access at the same time.

Reading from the Terminal
If you run SAS in interactive line mode or in noninteractive mode, you can read

input from the terminal. These examples illustrate ways to define a terminal file.
In the first example, TERMINAL is specified as the device type in the FILENAME

statement:

filename term1 terminal;
data one;

infile term1;
input ... ;

run;

In the next example, an asterisk is used in place of a physical file name to indicate
that the file will be entered from the terminal:

filename term2 ’*’;
data out;

infile term2;
input ... ;

run;

Note: Enter "/*" to signify end-of-file after entering your input from the terminal. �

Reading Concatenated Data Sets
Multiple sequential data sets can be concatenated (via a JCL DD statement, a TSO

ALLOCATE command, or a FILENAME statement) and read consecutively using one
pair of INFILE/INPUT statements.

Sequential data sets and individual PDS or PDSE members can also be
concatenated, as in the following example:

x alloc fi(in1)
da(’my.data1’ ’my.pds(mem)’ ’my.data2’);

data mydata;
infile in1;
input ... ;
/* SAS statements */

run;

98 Reading from Multiple External Files Chapter 5

Here is an example of using the FILENAME statement to concatenate data sets:

filename in1 (’my.data1’ ’my.pds(mem)’ ’my.data2’);

You can also concatenate external files that are stored on different types of devices
and that have different characteristics.

If PDSs or PDSEs are concatenated and a member is specified in the INFILE
statement, then SAS searches each PDS or PDSE for that member. SAS searches in the
order in which the PDSs appear in the DD statement, the ALLOCATE command, or the
FILENAME statement or function. If the member is present in more than one of the
PDSs, SAS retrieves the first one that it finds.

Reading from Multiple External Files
You can read from multiple external files either sequentially or alternately from

multiple filerefs.

Sequentially Reading from Multiple External Files
To read from multiple external files sequentially, use the END= option or the EOF=

option in each INFILE statement to direct program control to a new file after each file
has been read. For example:

filename outrdr sysout=a pgm=intrdr
recfm=fb lrecl=80;

data _null_;
length dsn $ 44;
input dsn $;
infile dummy filevar=dsn end=end;
file outrdr noprint notitles;
do until(end);

input;
put _infile_;
end;

datalines;
PROD.PAYROLL.JCL(BACKUP)
PROD.PAYROLL.JCL(TRANS)
PROD.PAYROLL.JCL(PRINT)
;
run;

See SAS Language Reference: Dictionary for more information about the END= and
EOF= options of the INFILE statement.

Alternately Accessing Multiple External Files
For you to be able to alternately access multiple external files, the files must have

different filerefs. You can partially process one file, go to a different file, and return to
the original file. An INFILE statement must be executed each time you want to access
a file, even if you are returning to a file that was previously accessed. The DATA step
terminates when SAS encounters the EOF of any of the files. Consider the following
example:

filename exfile1 ’my.file.ex1’;
filename exfile2 ’my.file.ex2’;
data mydata;

infile exfile1;

Accessing External Files Accessing IMS and CA-IDMS Databases 99

input ... ;
/* SAS statements */

infile exfile2;
input ... ;

/* SAS statements */

infile exfile1;
input ... ;

/* SAS statements */

run;

When there is more than one INFILE statement for the same fileref, with options
specified in each INFILE statement, the options apply cumulatively to successive files.

Note: Multiple files inside concatenations cannot be accessed in this manner. �

Reading from Print Data Sets
When reading from a print data set, you can tell SAS to ignore the carriage-control

character that is in column 1 of print data sets by specifying SAS system option
FILECC. For more information, see “FILECC System Option” on page 430.

Getting Information about an Input Data Set
In the following example, data set information is printed in the SAS log. Control

blocks are printed in hexadecimal format. The example can be used with either a
sequential data set or a PDS.

filename in ’user.data’;
data out;

infile in jfcb=jf dscb=ds volumes=vol
ucbname=ucb devtype=dev;

if (_n_ = 1) then
put @1 ’Data Set Name:’ @17 jf $52. /

@4 ’Volume =’ @20 vol $30. /
@4 ’JFCB =’ @20 jf $hex200. /
@4 ’DSCB =’ @20 ds $hex188. /
@4 ’Devtype =’ @20 dev $hex48. /
@4 ’Device Addr =’ @20 ucb $3. ;

run;

Accessing Nonstandard Files

Accessing IMS and CA-IDMS Databases
Both the SAS/ACCESS interface to IMS and the SAS/ACCESS interface to

CA-IDMS include a DATA step interface. Extensions for certain SAS statements (such

100 Accessing ISAM Files Chapter 5

as INFILE, FILE, PUT, and INPUT) enable you to format database-specific calls in a
SAS DATA step. Therefore, you can access the IMS or CA-IDMS data directly, without
using SAS/ACCESS view descriptors. If your site licenses these interfaces, see
SAS/ACCESS Interface to IMS: Reference and SAS/ACCESS DATA Step Interface to
CA-IDMS: Reference for more information.

Note: The DATA step interface for IMS-DL/I is a read/write interface. The DATA
step interface for CA-IDMS is read only. �

Accessing ISAM Files
To read an ISAM file sequentially, include the ISAM keyword in the INFILE

statement as in the following example:

data newdata;
infile isamfile isam;
input;
/* SAS statements */

run;

Accessing VSAM Data Sets
Use the VSAM option to indicate that a fileref points to a VSAM external file.

Note: Many VSAM-specific options are available with the INFILE and FILE
statements. See “VSAM Options for the FILE and INFILE Statements under z/OS” on
page 367 for details. For complete information about accessing VSAM data sets, see the
SAS Guide to VSAM Processing. �

Reading a VSAM File
To read a VSAM file with an INPUT statement, specify the VSAM option in an

INFILE statement:

filename in1 ’prod.payroll’;
data mydata;

infile in1 vsam;
input ...;
/* SAS statements */

run;

Note: A VSAM file can be read sequentially without your having to specify the
VSAM option. �

Writing to an Empty VSAM File
To write to an empty VSAM file with a PUT statement, specify the VSAM option in a

FILE statement:

filename out ’myid.newdata’ disp=old;
data current;

file out vsam;
put ...;
/* SAS statements */

run;

Accessing External Files Accessing the Volume Table of Contents (VTOC) 101

Updating a VSAM Data Set
To update a VSAM data set, include an INFILE statement and a FILE statement

that point to the same fileref, and specify the VSAM type option in the DATA step:

filename mydata ’myid.newdata’ disp=old;
data newdata;

file mydata vsam;
infile mydata vsam;
/* SAS statements */

run;

Using Record-Level Sharing with VSAM
SAS provides support for the record-level sharing (RLS) access feature for VSAM

data sets. For the RLS access feature to work, you must define your VSAM clusters as
eligible for RLS access.

RLS eligible data sets must be SMS data sets that were defined with a LOG
specification. The details of RLS definition, restrictions, and use are contained in the
IBM Data Facility Storage Management Subsystem (DFSMS) documentation.

SAS determines whether a VSAM data set is RLS eligible when it opens the data set.
If the data set is RLS eligible, SAS automatically opens it in RLS mode. You can
override this action by specifying the NRLS option in the INFILE statement that you
use to define the data set to be opened. Opening the data set in non-RLS mode might
generate the following results:

� If you are opening the data set for output, the OPEN operation will fail if another
application has the data set open. Alternatively, an attempt to subsequently open
the data set by another application will fail while the data set is open in non-RLS
output mode by SAS.

� If you are opening the data set for input, the OPEN operation will succeed, even
though the data set is open by another application, as long as you specify
SHAREOPTIONS(2) when you define the VSAM cluster.

The operation of RLS is essentially transparent to users. However, make sure you
specify DISP=SHR in the statement that defines the VSAM file you are opening.

Note: Currently, SAS does not support RLS for relative record data sets. �

Extended-Format VSAM Data Sets
SAS supports extended-format VSAM data sets. These data sets are managed with

SMS, and they are defined as extended format with the data class DSNTYPE=EXT
parameter and sub-parameters.

Extended-format data sets are the basis for many new VSAM functions, such as data
striping, host data compression for key-sequenced data sets, system-managed buffering,
and extended addressability for data sets greater than 4 gigabytes in size.

See the IBM DFSMS documentation for information on defining these functions to
SMS and for any restrictions for using these functions.

Accessing the Volume Table of Contents (VTOC)
To access a disk’s Volume Table of Contents (VTOC), specify the VTOC option in an

INFILE statement. See “VTOC Options for the INFILE Statement under z/OS” on page
391 for more information.

102 Accessing UNIX System Services Files Chapter 5

Accessing UNIX System Services Files
IBM’s UNIX System Services implements a directory-based file system that is very

similar to the file systems that are used in UNIX. SAS software under z/OS enables you
to read and write UNIX System Services files and to pipe data between SAS and UNIX
System Services commands.

Allocating UNIX System Services Files
You can allocate a UNIX System Services file either externally (using a JCL DD

statement or the TSO ALLOCATE command) or internally (using the SAS FILENAME
statement or FILENAME function). For information about allocating UNIX System
Services files externally, see your IBM documentation.

There are four ways to specify that a file is in UNIX System Services when you use
the FILENAME statement or FILENAME function:

� Include a slash or tilde in the pathname:

filename input1 ’/u/sasusr/data/testset.dat’;
filename input2 ’~/data/testset2.dat’;

� Specify HFS (for hierarchical file system) as the file type:

filename input hfs ’testset.dat’;

� Specify HFS as the file prefix:

filename input ’HFS:testset.dat’;

� Rely on the setting of the FILESYSTEM= system option:

options filesystem=HFS;
filename ’testset.dat’;

You can also use these specifications in combination. For example, you can specify
the UNIX System Services file type and use a slash in the pathname.

If you do not specify the entire pathname of a UNIX System Services file, then the
directory component of the pathname is the working directory that was current when
the file was allocated, not when the fileref is used. For example, if your working
directory was /usr/local/sasusr when you allocated the file, then the following
FILENAME statement associates the INPUT fileref with the following path:

/usr/local/sasusr/testset.dat

filename input hfs ’testset.dat’;

If you change your current working directory to /usr/local/sasusr/testdata,
then the following statement still refers to /usr/local/sasusr/testset.dat, not to /
usr/local/sasusr/testdata/testset.dat:

infile input;

Allocating a UNIX System Services Directory
To allocate a UNIX System Services directory, create the directory if necessary, and

then allocate the directory using any standard method, such as a JCL DD statement, a
TSO ALLOCATE command, or a FILENAME statement (as shown in “Allocating UNIX
System Services Files” on page 102).

Accessing External Files Specifying File-Access Permissions and Attributes 103

To open a particular file in a directory for input or output, you must specify the file
name in the SAS INFILE or FILE statement, as described in “Accessing a Particular
File in a UNIX System Services Directory” on page 105.

Specifying File-Access Permissions and Attributes
How you specify file-access permissions and attributes depends on whether you use

SAS statements or operating system facilities to allocate a UNIX System Services file.

Using SAS
If you use the FILENAME statement or FILENAME function to allocate a UNIX

System Services file, or if you use a JCL DD statement or a TSO ALLOCATE command
but do not specify values for PATHMODE and PATHOPTS, then SAS uses the following
values for those options:

� For PATHMODE, SAS uses the file-access mode -rw-rw-rw-; however, this mode
may be modified by the current file-mode creation mask. (For detailed information
about the file-mode creation mask, see your IBM documentation.)

� For PATHOPTS, the file-access mode that SAS supplies depends on how the fileref
or DDname is being used:

� If the fileref or DDname appears only in a FILE statement, SAS opens the
file for writing only. If the file does not exist, SAS creates it.

� If the fileref appears only in an INFILE statement, SAS opens the file for
reading only.

� If the fileref appears in both FILE and INFILE statements within the same
DATA step, SAS opens the file for reading and writing. For the FILE
statement, SAS also creates the file if it does not already exist.

Using Operating System Facilities
When you use a JCL DD statement or a TSO ALLOCATE command to allocate a

UNIX System Services file, you can use the PATHMODE and PATHOPTS options to
specify file-access permissions and attributes for the file. If you later use the file’s
DDname in a SAS session, SAS uses the values of those options when it opens the file.

For example, if you use the following TSO ALLOCATE command to allocate the
DDname INDATA and SAS attempts to open it for output, then SAS issues an
“insufficient authorization” error message and does not permit the file to be opened for
output. (The ORDONLY value of PATHOPTS specifies "open for reading only.")

alloc file(indata)
path(’/u/sasusr/data/testset.dat’)
pathopts(ordonly)

In other words, you could use the DDname INDATA in a SAS INFILE statement, but
not in a FILE statement. Similarly, if you specify OWRONLY, then you can use the
DDname in a FILE statement but not in an INFILE statement.

CAUTION:
PATHOPTS values OAPPEND and OTRUNC take precedence over FILE statement options
OLD and MOD. If you specify OAPPEND ("add new data to the end of the file"), the
FILE statement option OLD does not override this behavior. Similarly, if you specify
OTRUNC ("if the file exists, erase it and re-create it"), the FILE statement options
OLD and MOD do not override this behavior. (See “Standard Host Options for the

104 Using UNIX System Services Filenames in SAS Statements and Commands Chapter 5

FILE Statement under z/OS” on page 365 for details about these FILE statement
options.) �

Using UNIX System Services Filenames in SAS Statements and
Commands

To use an actual UNIX System Services filename (rather than a fileref or DDname)
in a SAS statement or command, include a slash or tilde in the pathname, or use the
HFS prefix with the filename. You can use a UNIX System Services filename anywhere
that an external filename can be used, such as in a FILE or INFILE statement, in an
INCLUDE or FILE command in the windowing environment, or in the SAS Explorer
window. If the file is in the current directory, specify the directory component as ./.
For example:

include ’./testprg.sas’

Concatenating UNIX System Services Files
You can concatenate UNIX System Services files or directories by associating a

fileref with the pathnames in parentheses or by including an * wildcard in the filename.
The * concatenates all of the files that contain one or more matching characters, except
for the period at the beginning of filenames. For example, this statement concatenates
the files data/test1 and data/test2:

filename test (’data/test1.dat’ ’data/test2.dat’);

This next statement concatenates all of the files in the data directory that begin with
test:

filename test ’data/test*’

The parenthesis method is specified in the FILENAME statement. You can specify
the * wildcard in the FILENAME, INFILE, and %INCLUDE statements and in the
INCLUDE command. The wildcard method is for input only; you cannot use the *
wildcard in the FILE statement. The parenthesis method supports input and output;
however, for output, data is written to the first file in the concatenation.

All of the pathnames in a concatenation must be for UNIX System Services files or
directories. If your program reads data from different types of files in the same DATA
step, you can use the EOF= option in each INFILE statement to direct program control
to a new INFILE statement after each file has been read. (See SAS Language Reference:
Dictionary for more information about the EOF= option of the INFILE statement.) A
wildcard character that generates a list of mixed file types results in an error.

The following rules apply to the use of the * wildcard:
� The * must be in the filename part of the pathname.
� Only one * can be included in any given filename.

Examples of the * wildcard follow:
� An asterisk alone sets up a fileref that concatenates all of the files, except hidden

UNIX files, in a given directory.

filename test ’/u/userid/data/*’;

� A leading or trailing wildcard includes all files that begin or end with the same
characters. A period selects all hidden UNIX files, which begin with a period.

include ’/u/userid/data/test*’;
include ’/u/userid/data/*test.dat’;

Accessing External Files Piping Data between SAS and UNIX System Services Commands 105

include ’/u/userid/data/.*’;

� An embedded wildcard inputs all files that have both the same beginning and
ending characters.

infile ’/u/userid/data/test*file’;

Wildcards that you use when you pipe data from SAS to UNIX System Services
commands are not expanded within the SAS session, but they are passed directly to the
UNIX System Services commands for interpretation.

Accessing a Particular File in a UNIX System Services Directory
If you have associated a fileref with a UNIX System Services directory or with a

concatenation of UNIX System Services directories, you can open a particular file in the
directory for reading or writing by using an INFILE or FILE statement in the form
shown below:

infile fileref(file);
file fileref(file);

If you do not enclose file in quotation marks, then SAS appends a file extension to
the file name. In the windowing environment commands INCLUDE and FILE, the file
extension is .sas. In the INFILE and FILE statements, the file extension is .dat.

If the file is opened for input, SAS searches all of the directories that are associated
with the fileref in the order in which they appear in the FILENAME statement or
FILENAME function. If the file is opened for output, SAS creates the file in the first
directory that was specified. If the file is opened for updating but does not exist, SAS
creates the file in the first directory.

Piping Data between SAS and UNIX System Services Commands
To pipe data between SAS and UNIX System Services commands, you first specify

the PIPE file type and the command in a FILENAME statement or FILENAME
function. Enclose the command in single quotation marks. For example, this
FILENAME statement assigns the command ls -lr to the fileref OECMD:

filename oecmd pipe ’ls -lr’;

To send the output from the command as input to SAS software, you then specify the
fileref in an INFILE statement. To use output from SAS as input to the command, you
specify the fileref in a FILE statement.

You can associate more than one command with a single fileref. Commands are
executed in the order in which they appear in the FILENAME statement or
FILENAME function. For example:

filename oecmd pipe (’ls *.sas’ ’ls *.data’);

Piping Data from a UNIX System Services Command to SAS
When a pipe is opened for input by the INFILE statement, any output that the

command writes to standard output or to standard error is available for input. For
example, here is a DATA step that reads the output of the ls -l command and saves it
in a SAS data set:

filename oecmd pipe ’ls -l’;
data dirlist;

infile oecmd truncover;

106 Host-Specific Options for UNIX System Services Files Chapter 5

input mode $ 1-10 nlinks 12-14 user $ 16-23
group $25-32 size 34-40 lastmod $ 42-53
name $ 54-253;

run;

Piping Data from SAS to a UNIX System Services Command
When a pipe is opened for output by the FILE statement, any lines that are written

to the pipe by the PUT statement are sent to the command’s standard input. For
example, here is a DATA step that uses the UNIX System Services od command to
write the contents of the file in hexadecimal format to the UNIX System Services file
dat/dump.dat, as follows:

filename oecmd pipe ’od -x -tc - >dat/dump.dat’;
data _null_;

file oecmd;
input line $ 1-60;
put line;

datalines;
SAS software is an integrated system of software
products, enabling you to perform data management,
data analysis, and data presentation tasks.
;
run;

Host-Specific Options for UNIX System Services Files
The following table shows which host-specific options are recognized by the

FILENAME, FILE, and INFILE statements for UNIX System Services files and pipes.
No other options are recognized, including such options specific to z/OS as DISP,
CLOSE, and DCB. Descriptions of the options follow the table.

Table 5.5 Host-Specific Options for UNIX System Services Files and Pipes

Option FILENAME FILE INFILE

FILEDATA= X X X

OLD X X

MOD X X

LRECL= X X X

RECFM= X X X

TERMSTR= X X X

Accessing External Files Host-Specific Options for UNIX System Services Files 107

FILEDATA=BINARY | TEXT
The FILEDATA= option specifies that the file being processed is expected to
contain one of the following:

BINARY
data without record separator character sequences.

TEXT
data with records terminated by the EBCDIC new line character. The
EBCDIC new line character is defined at code point x‘15’ and is typically
represented as NL or \n.

Note: The FILEDATA= option is meant to be similar to the FILEDATA=
parameter on the DD JCL statement, but is evaluated at runtime by SAS. The
JCL parameter is used by z/OS to set an attribute of the file when the file is
created by the JCL �

OLD
replaces the previous contents of the file. This is the default. This option has no
effect on a pipe.

MOD
appends the output lines to the file. This option has no effect on a pipe.

LRECL=value
specifies the maximum number of characters in a line (unless the file has been
opened with RECFM=N). The default is 255. Lines longer than value are
truncated. value must be between 1 and 32,767, inclusive.

RECFM=record-format
specifies the record format of the file. Valid values are

F specifies that all lines in the file have the length specified in
the LRECL= option. In output files, lines that are shorter than
the LRECL= value are padded on the right with blanks.

V | D specifies that the lines in the file are of variable length, ranging
from 1 character to the number of characters specified by
LRECL=. This is the default.

P specifies that the file has variable-length records and is in print
format.

N specifies that the file is in binary format. The file is treated as
a byte stream; that is, line boundaries are not recognized.

TERMSTR=NONE | NL | CR | LF | CRLF | LFCR | CRNL
The TERMSTR= option specifies the type of record separator character sequences
to use to terminate records in the file. TERMSTR= accepts the following
parameters:

NONE Record terminators are not used. This parameter provides the
same function as FILEDATA=BINARY.

NL The new line character (x’15’) is used as the record
terminator. This parameter provides the same function as
FILEDATA=TEXT.

CR The carriage return character (x’0C’) is used as the record
terminator.

LF The line feed character (x’25’) is used as the record terminator.

108 Host-Specific Options for UNIX System Services Files Chapter 5

CRLF The sequence CR followed by LF is used as the record
terminator.

LFCR The sequence LF followed by CR is used as the record
terminator.

CRNL The sequence CR followed by NL is used as the record
terminator.

All of the above specifications (x’15’, x’0C’, and x’25’) assume that the files use
an ENCODING= value whose short (12 byte) name is in the form open_ed-nnnn
and whose long (32 byte) name contains (OpenEdition), for example,
open_ed-1047 or Western(OpenEdition). These characters are automatically
transcoded to or from the file’s encoding if they are required by the ENCODING=
or LOCALE= options.

The last occurrence of FILEDATA= or TERMSTR= takes precedence.
Specification of one or the other of these options on a FILE or INFILE statement
takes precedence over the specification in a related FILENAME statement.

The full precedence order is as follows:
1 Specification of FILEDATA= or TERMSTR= on a FILE or INFILE statement.
2 Specification of FILEDATA= or TERMSTR= on a FILENAME statement.
3 Specification of FILEDATA= on a DD JCL statement when the file was

created by that DD statement
4 Implied by the RECFM= option in effect for the file.
The RECFM= option on the FILENAME, FILE, and INFILE statement can

imply the value assumed for the termination sequence. This implication is always
overridden by the presence of a TERMSTR= or FILEDATA= option for the file.
Here are the default values:

RECFM=V|D TERMSTR=NL is implied. (This is the default.)

RECFM=F TERMSTR=NONE is implied.

RECFM=P TERMSTR=NL implied, along with other formatting control
characters.

RECFM=N TERMSTR=NONE is implied.

Note: The FILEDATA= parameter on the DD JCL statement is only used by z/
OS when the file is being created by that JCL statement. For existing files, the
FILEDATA= parameter is ignored by z/OS, and SAS is informed of its value at file
creation time. Therefore, SAS cannot detect a change in the JCL. However, SAS
will honor the values of FILEDATA= or TERMSTR= specified on the FILENAME,
INFILE, or FILE statements when replacing an existing file or when reading a
file. �

CAUTION:
The combination of RECFM= and TERMSTR= provides much flexibility for reading and
writing many different file formats. It is possible to use these options in a way that
can produce a file that may be difficult to process in the future. For example, a
PRINT file may be created without record terminators, but this file would look strange
when printed on a printer or viewed in an editor. �

Accessing External Files Using the INFILE/FILE User Exit Facility 109

Writing Your Own I/O Access Methods
You can write your own I/O access method to replace the default SAS access method.

This feature enables you to redirect external file I/O to a user-written program.

Note: The user-written I/O access method applies only to external files, not to SAS
data sets. �

See your local SAS Support Consultant for additional information about writing I/O
access methods.

Accessing SAS Statements from a Program
You can redirect your SAS statements to come from an external program rather

than from a file by using the SYSINP= and PGMPARM= system options. SYSINP=
specifies the name of the program, and PGMPARM= specifies a parameter that is
passed to the program. For more information, see “SYSINP= System Option” on page
517 and “PGMPARM= System Option” on page 488.

Using the INFILE/FILE User Exit Facility
User exit modules enable you to inspect, modify, delete, or insert records in a DATA

step. Here are some examples of how they may be used:
� encrypting and decrypting data
� compressing and decompressing data
� translating data from one character-encoding system to another.

This is an advanced topic. See “Sample Program” on page 588 for details.

110

111

C H A P T E R

6
Directing SAS Log and SAS
Procedure Output

Types of SAS Output 112

SAS Log File 112
SAS Procedure Output File 112

SAS Console Log File 112

Destinations of SAS Output Files 113
Directing Output to External Files with the PRINTTO Procedure 114

Directing Output Back to the Default Destination 115

Directing Output to External Files with System Options 115
Directing Output to an External File at SAS Invocation 115

Copying Output to an External File 116
Directing Output to External Files Using the Configuration File 116

Directing Output to External Files with the DMPRINT Command 117

Directing Output to External Files with the FILE Command 117
Directing Output to External Files with DD Statements 117

Directing Output to a Printer 118

Using the PRINTTO Procedure and Universal Printing 119
Example 119

Using the PRINTTO Procedure and the FORM Subsystem 119
Example 120

Using the PRINT Command and Universal Printing 120

Selecting a Printer 120
Modifying Printer Properties 120

Creating a New Printer Definition 120

Printing a Graphics Window 121
Previewing a Print Job 121

Using the PRINT Command and the FORM Subsystem 121
Specifying a Form 121

Modifying Your Default Form 121

Adding a Form 122
Examples 122

Using the PRTFILE and PRINT Commands 122

Example 123
SAS System Options That Relate to Printing When Using Universal Printing 124

SAS System Options That Relate to Printing When Using the FORM Subsystem 124
Directing Output to a Remote Destination 124

Directing Procedure Output: ODS Examples 125

Viewing ODS Output on an External Browser 126
Storing ODS HTML Output in a Sequential File, FTP from UNIX 126

Storing ODS HTML Output in a z/OS PDSE, FTP from UNIX 127

Writing ODS HTML Output Directly to UNIX 128
Writing ODS XML Output to ASCII, Binary FTP to UNIX 129

112 Types of SAS Output Chapter 6

Writing ODS XML Output to EBCDIC, ASCII Transfer to UNIX 130

Directing ODS XML Output to UNIX System Services 131
Directing Procedure Output to a High-Quality Printer via ODS 131

Directing Procedure Output: SAS/GRAPH Example 132

Sending E-Mail from within SAS Software 134
FILENAME Statement Syntax for E-Mail 134

PUT Statement Syntax for E-Mail 137

Example: Sending E-Mail from the DATA Step 140
Sending Procedure Output as E-Mail 142

Examples: Sending Procedure Output via E-Mail 142
Example: Directing Output as an E-Mail Attachment with Universal Printing 147

Example: Sending E-Mail by Using SCL Code 148

Types of SAS Output
For each SAS process, SAS can create three types of output:
� SAS log file
� SAS procedure output file
� SAS console log file.

SAS Log File
The SAS log file contains information about the processing of SAS statements. As

each program step executes, notes are written to the SAS log along with any applicable
error or warning messages. For further information, see “SAS Log File” on page 18.

SAS Procedure Output File
Whenever a SAS program executes a PROC step that produces printed output, SAS

sends the output to the procedure output file. Beginning with Version 7, SAS procedure
output is handled by the Output Delivery System (ODS), which enhances your ability to
manage procedure output. Procedures that fully support ODS can

� combine the raw data that they produce with one or more templates to produce
one or more objects that contain the formatted results.

� store a link to each output object in the Results folder in the Results window.
� optionally generate HTML files that contain the formatted results and links to

those results, as in a table of contents.
� optionally generate data sets from procedure output.
� provide a way to customize procedure output by creating templates that you can

use whenever you run your procedure.

For more information on ODS, see SAS Output Delivery System: User’s Guide.
For more information on the procedure output file, see “SAS Procedure Output File”

on page 20.

SAS Console Log File
If an error, warning, or note must be written to the SAS log and the log is not

available, the console log is used instead. The console log file is particularly useful for

Directing SAS Log and SAS Procedure Output Destinations of SAS Output Files 113

capturing log entries that are generated during SAS initialization, before the SAS log
file is allocated. For further information on this file, see “Console Log File” on page 21.

Destinations of SAS Output Files
The following table shows the default destinations of the SAS output files.

Table 6.1 Default Destinations for SAS Output Files

Processing Mode Log File Procedure Output File

batch printer printer

windowing environment (TSO) Log window Output window

interactive line (TSO) terminal terminal

noninteractive (TSO) terminal terminal

These default destinations are specified in the SAS cataloged procedure and in the
SAS CLIST, which you use to invoke SAS in batch mode and under TSO, respectively.
Your system administrator may have changed these default destinations.

If you want to change the destination of these files, use the following table to help
you decide which method you should choose.

Table 6.2 Changing the Default Destination

To direct your SAS
log or procedure
output to...

Using this
mode of
processing... Use this method... See...

a printer any mode FILENAME statement and
PRINTTO procedure

“Using the PRINTTO Procedure
and Universal Printing” on page
119

or

“Using the PRINTTO Procedure
and the FORM Subsystem” on
page 119

PRINT command and the Universal
Printing subsystem option display

“Using the PRINT Command and
Universal Printing” on page 120

PRINT command and the FORM
subsystem option display

“Using the PRINT Command and
the FORM Subsystem” on page
121

windowing
environment
under TSO

PRTFILE and PRINT commands “Using the PRTFILE and PRINT
Commands” on page 122

an external file any mode PRINTTO procedure “Directing Output to External
Files with the PRINTTO
Procedure” on page 114

114 Directing Output to External Files with the PRINTTO Procedure Chapter 6

To direct your SAS
log or procedure
output to...

Using this
mode of
processing... Use this method... See...

LOG= and PRINT= system options “Directing Output to an External
File at SAS Invocation” on page
115

batch

SASLOG DD and SASLIST DD
statements

“Directing Output to External
Files with DD Statements” on
page 117

its usual location and
to an external file

any mode ALTLOG= and ALTPRINT= system
options

“Directing Output to External
Files with System Options” on
page 115

windowing
environment
under TSO

FILE command “Directing Output to External
Files with the FILE Command”
on page 117

a remote destination any mode FILENAME statement and
PRINTTO procedure

“Directing Output to a Remote
Destination” on page 124

Beginning with Release 8.2, SAS output can also be routed via electronic mail
(e-mail). For information about how SAS implements e-mail delivery, see “Sending
E-Mail from within SAS Software” on page 134.

Directing Output to External Files with the PRINTTO Procedure

Using the PRINTTO procedure with its LOG= and PRINT= options, you can direct
the SAS log or SAS procedure output to an external file in any mode. You can specify
the name of the external file in the PROC PRINTTO statement. For example, the
following statement directs procedure output to MYID.OUTPUT.DATA(MEMBER):

proc printto print=’myid.output.data(member)’ new;

However, if you plan to specify the same external file several times in your SAS
program, you can allocate the file using a FILENAME statement, a JCL DD statement,
or the TSO ALLOCATE command. See “Introduction to External Files” on page 75 for
details and examples. Once the external file is allocated, use the PROC PRINTTO
statement options LOG= or PRINT= at any point in your SAS session to direct the log
or procedure output to the external file. Specify the fileref or the DDname that is
associated with the external file. Here is an example that uses FILENAME statements
to allocate external files for both the log and the procedure output:

filename printout ’myid.output.prtdata’ disp=old;
filename logout ’myid.output.logdata’ disp=old;
proc printto print=printout log=logout new;

The log and procedure output continue to be directed to the designated external file
until another PROC PRINTTO statement redirects them.

The NEW option causes any existing information in the file to be cleared. If you omit
the NEW option from the PROC PRINTTO statement, the SAS log or procedure output
is appended to existing sequential data sets. You must specify NEW when routing to a
PDS or PDSE because you cannot append data to a member of a partitioned data set.

Directing SAS Log and SAS Procedure Output Directing Output to an External File at SAS Invocation 115

If you want to direct both the log and procedure output to partitioned data set
members, the members must be in a PDSE or in different data sets. SAS allows you to
write to two members of a PDSE, but not to two members of a PDS.

Directing Output Back to the Default Destination
To return the log and procedure output to their default destinations, submit the

following statements:

proc printto;
run;

See Table 6.1 on page 113 for a list of the default destinations.

Directing Output to External Files with System Options
You can use SAS system options to change the destination of the SAS log and

procedure output. The options that you use depend on which of the following tasks you
want to accomplish:

� directing your SAS log or procedure output to an external file instead of to their
default destinations (see “Directing Output to an External File at SAS Invocation”
on page 115)

� directing the log or output both to their default destinations and to an external file
(see “Copying Output to an External File” on page 116).

Specify the system options in any of the following ways:

� when you invoke the SAS CLIST
� in the JCL EXEC statement

� in your SAS configuration file.

See “Specifying or Changing System Option Settings” on page 11 for more
information about specifying SAS system options.

Directing Output to an External File at SAS Invocation
Use the LOG= and PRINT= system options to change the destination of your SAS log

or procedure output. The log and procedure output are then not directed to their
default destinations.

When you invoke SAS, use the LOG= and PRINT= options to specify the DDnames or
physical file names of the output data sets. See “LOG= System Option” on page 472 and
“PRINT= System Option” on page 488 for option syntax and other host-specific details.

SAS automatically allocates a file when a system option is specified with a physical
file name. The following example illustrates a SAS invocation in noninteractive mode
using the SAS CLIST with internal allocation of output files:

sas options (’log=myid.output.logdata
print=myid.output.ptrdata’)
input(’’’myid.sas.program’’’)

This example illustrates the same SAS invocation using external allocation:

alloc fi(logout) da(’myid.output.logdata’) old
alloc fi(printout) da(’myid.output.prtdata’) old

116 Copying Output to an External File Chapter 6

sas options(’log=logout print=printout’)input(’’’myid.sas.program’’’)

This example illustrates a SAS invocation in batch mode, using a JCL EXEC
statement and internal allocation of output files:

//SASSTEP EXEC SAS,
// OPTIONS=’LOG=<file> PRINT=<file> ALTLOG=<file>’

This example illustrates the same SAS invocation with external allocation:

//SASSTEP EXEC SAS,
// OPTIONS=’LOG=LOGOUT PRINT=PRINTOUT’
//LOGOUT DD DSN=MYID.OUTPUT.LOGDATA,DISP=OLD
//PRINTOUT DD DSN=MYID.OUTPUT.PRTDATA,DISP=OLD
//SYSIN DD DSN=MYID.SAS.PROGRAM,DISP=SHR

The LOG= and PRINT= system options are normally used in batch, noninteractive,
and interactive line modes. These options have no effect in the windowing environment,
which will continue to display SAS log and procedure output data in the Log and
Output windows. To capture and print data in the Log and Output windows, use the
ALTLOG= and ALTPRINT= options, as described in the next section.

See “ALTLOG= System Option” on page 410 and “ALTPRINT= System Option” on
page 411 for option syntax and other host-specific details.

Copying Output to an External File
Use the ALTLOG= and ALTPRINT= system options to send a copy of your SAS log

or procedure output to an external file. After specifying ALTLOG= and ALTPRINT=,
the log and procedure output will continue to be displayed in the Log and Output
windows as usual. The log and procedure output will also continue to be directed to
their default SAS file destinations or to the nondefault destinations specified by the
LOG= and PRINT= system options, as described in the preceding section.

When you invoke SAS, use the ALTLOG= and ALTPRINT= options as shown to
specify the DDnames or physical file names of the allocated data sets:

sas options(’altprint=myid.output.prtdata
altlog=myid.output.logdata’)

See the previous section for complete examples of SAS invocations in various modes.

Directing Output to External Files Using the Configuration File
This example illustrates how to direct output to external files using the SAS

configuration file:

log=myid.output.logdata
* logout DDname must be allocated
log=logout

print=myid.output.prtdata
* printout DDname must be allocated
print=printout

altlog=myid.output.altlog
* altlogx DDname must be allocated
altlog=altlogx

Directing SAS Log and SAS Procedure Output Directing Output to External Files with DD Statements 117

Directing Output to External Files with the DMPRINT Command
Beginning in Release 8.2, you can use the DMPRINT command to copy the contents

of many different windows to external files. Issue the DMPRINT command on the
command line of the window whose contents you want to copy. SAS displays the Print
window. If the Use Forms check box is visible, verify that it is not selected. Select the
option Print to File. An input window asks you for the name of the file to which to
save the window contents. You must enter the fully qualified filename. If the file does
not exist, a requestor window asks you whether you want to create the file and whether
you want to catalog it. If the file does exist, a requestor window asks you whether you
want to replace it or to append data to the existing data. This option is not available if
SAS is invoked with the NOUNIVERSALPRINT system option set.

Directing Output to External Files with the FILE Command
You can use the FILE command to copy the contents of many different windows to

external files. Issue the FILE command on the command line of the window whose
contents you want to copy. For example, to copy the contents of the Log window to a
sequential data set, issue the following command on the command line of the Log
window:

file ’myid.log.out’

If the sequential file does not exist, a requestor window asks you whether you want
to create the file and whether you want to catalog it. If the file does exist, a requestor
window asks you whether you want to replace it or to append data to the existing data.

You can also use the FILE command to copy the contents of a window to either a
PDS or PDSE member:

file ’myid.log.out1(test)’

If you have already associated a fileref or DDname with your PDS or PDSE, you can
use the fileref or DDname in the command, followed by the member name in
parentheses:

file mylib(test)

If the member that you specify already exists, it is overwritten because you cannot
append data to existing PDS or PDSE members.

Directing Output to External Files with DD Statements
In a z/OS batch job, you can use the SASLOG DD and SASLIST DD statements to

change the destination of the SAS log and procedure output file. These statements
override the DD statements in the SAS cataloged procedure; therefore, the position of
these statements in your JCL is important. You must place the SASLOG DD statement
and the SASLIST DD statement in the same order as they appear in the SAS cataloged
procedure. Also, these statements must follow the JCL EXEC statement, and they must
precede the DD statements for any DDnames that are not included in the cataloged
procedure (such as SYSIN).

For example, the following example directs the SAS log to member DEPT of an
existing partitioned data set and directs the procedure output to an existing sequential
data set:

118 Directing Output to a Printer Chapter 6

//REPORT JOB accounting-information,
// MSGLEVEL=(1,1)
//SASSTEP EXEC SAS,OPTIONS=’LINESIZE=80 NOSTATS’
//SASLOG DD DSN=MYID.MONTHLY.REPORT(DEPT),
// DISP=OLD
//SASLIST DD DSN=MYID.MONTHLY.OUTPUT,DISP=MOD
//SYSIN DD *
SAS statements
//

Note: SASLOG and SASLIST are the default DDnames of the SAS log and
procedure output files. If these DDnames have been changed in your site’s SAS
cataloged procedure, then use your site’s DDnames in place of SASLOG and SASLIST. �

CAUTION:
The SAS cataloged procedure specifies default DCB characteristics unless you specify them
in the SASLOG or SASLIST DD statement. If you are directing the SAS log to a member
of a partitioned data set whose DCB characteristics are different from those given in
“SAS Log File” on page 18, you must include the existing DCB characteristics in the
SASLOG DD statement. Similarly, if you are directing the SAS procedure output to a
member of a partitioned data set whose DCB characteristics are different from those
given in “SAS Procedure Output File” on page 20, you must include the existing DCB
characteristics in the SASLIST DD statement. Otherwise, the existing DCB
characteristics of the partitioned data set will be changed to the characteristics that
are specified for SASLOG or SASLIST in the SAS cataloged procedure, making the
other members of the partitioned data set unreadable. �

Directing Output to a Printer

Beginning in Release 8.2, SAS supports two printing destinations for directing
procedure output on z/OS: Universal Printing and Xprinter (line) printing. A Universal
printer is an e-mail message, network printer, or file that exists on a local area network
(LAN). Universal Printing is the default printing destination. Xprinter translates to a
printer device on an SNA network. The FORM subsystem is one way to direct output
that is destined for a line printer.

The printing destination and default printer at a site are typically determined by data
center personnel. This section contains instructions for directing procedure output using
either of the printing destinations. You can direct SAS output to a printer as follows:

� by using the PRINTTO procedure combined with Universal Printing

� by using the PRINT command or menu selection combined with Universal Printing

� by using the PRINT command or menu selection combined with the FORM
subsystem

� by using the PRTFILE command and the PRINT command or menu selection
combined with the FORM subsystem.

Universal Printing and the FORM subsystem are portable and are therefore
documented in the Base SAS section of the SAS Help and in the SAS Language
Reference: Dictionary. To help customer sites get started with Universal Printing, some
common z/OS printer definitions, sample printer setup programs, and sample print
commands are also provided in Chapter 7, “Universal Printing,” on page 149.

Directing SAS Log and SAS Procedure Output Using the PRINTTO Procedure and the FORM Subsystem 119

Using the PRINTTO Procedure and Universal Printing

You can use the FILENAME statement with the PRINTTO procedure to route your
output directly to a printer. Specify a device type of UPRINTER to direct your output to
the default Universal Printing printer. Then specify the fileref with the PRINT= or
LOG= option in the PROC PRINTTO statement. The following example establishes a
fileref and uses it in the PROC PRINTTO statement to redirect the procedure output:

filename output UPRINTER;
proc printto print=output;

The Universal Printing default printer is usually determined by your site’s data
center personnel. You can define your own default printer in the windowing
environment by selecting

File Print Setup

or by issuing the DMSETPRINT printer-name command, where printer-name is the
name of the printer you want to make the default. You can also define a temporary
default printer by specifying the PRINTERPATH= system option. This option is
typically used in the batch environment.

Example

Follow these steps to direct output to the default Universal Printing printer:

1 Identify a print destination:

filename myprint UPRINTER;

2 Identify the print destination to SAS:

proc printto log=myprint;

3 Submit a print procedure:

proc print data=work.myfile;
run;

4 Remove the print destination from SAS:

proc printto log=log;

Using the PRINTTO Procedure and the FORM Subsystem

You can use the FILENAME statement or FILENAME function with the PRINTTO
procedure to route your output directly to a printer. Use the SYSOUT= option in the
FILENAME statement or function to direct your output to the system printer. The
default system printer is controlled by the FORM subsystem. Then specify the fileref
with the PRINT= or LOG= option in the PROC PRINTTO statement. The following
example establishes a fileref and uses it in the PROC PRINTTO statement to redirect
the procedure output:

filename output sysout=a;
proc printto print=output;

Usually, SYSOUT=A specifies that the destination is a printer; however, this is
determined by the data center personnel at your site.

120 Using the PRINT Command and Universal Printing Chapter 6

Example
Follow these steps to direct output to the system printer:

1 Identify a print destination:

filename myprint dest=dest99 sysout=a hold;

2 Identify the print destination to SAS:

proc printto log=myprint;

3 Submit a print procedure:

proc print data=work.myfile;
run;

4 Remove the print destination from SAS:

proc printto log=log;

Using the PRINT Command and Universal Printing
Use the PRINT command or menu selection to direct the contents of a window to

your default printer. This is the easiest method of printing output. For example, issue
the PRINT command from the command line of your Output window to send the
contents of that window to your default printer. The default printer — as well as other
aspects of your output such as printer margins, printer control language, and font
control information — are controlled by the Universal Printing subsystem. The
Universal Printing subsystem consists of five windows that are described in detail in
the SAS Language Reference: Dictionary.

Selecting a Printer
To direct the contents of a window to a printer that is not your default printer, you

can issue a DMSETPRINT printer-name command, where printer-name is the name of
the printer that you want to make the default. You can also specify a temporary default
printer by using the PRINTERPATH= system option.

Modifying Printer Properties
To use the default printer and change one or more of its parameters, issue the

DMPRINT command on the command line of the window whose contents you want to
copy. SAS displays the Print window. If the Use Forms window check box is visible,
verify that it is not selected. Select Properties and change any of the parameters.
Select OK to accept and OK to print. The new definition is saved in your SASUSER file,
and it overrides any definition of a printer of the same name in the SASHELP file.

Creating a New Printer Definition
There are several ways to set up a printer using Universal Printing:
� Select

File Print Setup

from a pull-down menu.
� Issue the DMPRTSETUP command.
� Issue the DMPRTCREATE command.

Directing SAS Log and SAS Procedure Output Using the PRINT Command and the FORM Subsystem 121

� Override the active printer settings using PROC PRTDEF. You can also use PROC
PRTDEF to set up multiple printers at one time.

Typically, your system administrator sets up the printers. Your system administrator
can save printer definitions to SASHELP so that all users have access to them. When
you use PROC PRTDEF, you can save the definitions in the SASUSER or SASHELP
libraries.

Printing a Graphics Window
When printing a graphics window, you can print to the default printer, to any other

Universal Printer, or to a SAS/GRAPH graphics driver. To print from a printer that is
not the default, select from the list of available printers. To print with a SAS/GRAPH
driver, select the Use SAS/GRAPH Drivers check box in the Print Method group box.
The software will display a list of available drivers from which you can select.

Previewing a Print Job
You cannot currently preview a print job on a mainframe.

Using the PRINT Command and the FORM Subsystem
Use the PRINT command or menu selection to direct the contents of a window to

your default printer. The default printer — as well as other aspects of your output such
as printer margins, printer control language, and font control information — is
controlled by the FORM subsystem. The FORM subsystem consists of six frames that
are described in detail in SAS Language Reference: Dictionary and in “Host-Specific
Windows of the FORM Subsystem” on page 555. You use these frames to define a form
for each printer that is available to you at your site. You can also define multiple forms
for the same printer. (See “Adding a Form” on page 122.) Your local SAS Support
Consultant can give you information about your default form and about any other forms
that have been defined at your site.

Specifying a Form
To direct the contents of a window to a printer that is not your default printer, you

can use the FORM= option with the PRINT command. Use this option to specify a form
that has been defined for a different printer. For example, to copy output to a printer
destination that is described in a form named MYOUTPUT, you would enter the
following command-line command:

print form=myoutput

Modifying Your Default Form
To change the default destination printer and to customize other features of the

output that the PRINT command generates, you can modify the default form that the
FORM subsystem uses. To modify your default form, do the following:

1 Enter fsforms default from the command line to display your default form. If
your SASUSER.PROFILE catalog contains a form named DEFAULT, then that
form is displayed. If you do not have a form named DEFAULT, then the Printer
Selection frame is displayed.

2 Select a printer from the Printer Selection frame. When you select a printer, SAS
copies the default form for that printer into your SASUSER.PROFILE catalog.

122 Using the PRTFILE and PRINT Commands Chapter 6

Note: Printer information is site-specific; see your system administrator if you
need help with selecting a printer. �

3 Make other changes to the default form, if desired, by changing the information in
the other frames of the FORM subsystem. Issue the NEXTSCR command to scroll
to the next FORM frame, and issue the PREVSCR command to scroll to the
previous frame. The two Print File Parameters frames are used to specify
host-specific printer information; they are described in “Host-Specific Windows of
the FORM Subsystem” on page 555. The other frames are described in SAS
Language Reference: Dictionary.

4 Enter the END command to save your changes.

Adding a Form
You can also add additional forms to the FORM subsystem. These forms can then be

used with the PRINT command, as described in “Specifying a Form” on page 121, and
they can be modified in the same manner as described in “Modifying Your Default
Form” on page 121. For example, to create a form named MYOUTPUT, do the following:

1 Enter fsforms myoutput from the command line.
2 Select a printer from the Printer Selection frame.
3 Use the NEXTSCR and PREVSCR commands to scroll through the other frames of

the FORM subsystem. Use these other frames to provide additional information
that will be associated with the MYOUTPUT form.

4 Enter the END command to save your changes.

Examples

� To create or update a SAS form:

fsform myoutput

� To identify the SAS form:

FORMNAME myoutput

� To print the contents of a window:

PRINT

� To send a file to the printer:

FREE

Using the PRTFILE and PRINT Commands
You can also use the PRTFILE command, followed by the PRINT command, to print

the contents of windows. This method enables you to override some of the defaults that
are established by the FORM subsystem, such as the destination or the SYSOUT class.

Note: The PRTFILE command does not apply to Universal Printing printers.
Default values of system-defined printers in the Universal Printing subsystem can be
overridden in the Properties window. The modified printer definition is saved to the
SASUSER file, which overrides any definition of a printer of the same name in the
SASHELP file. �

PRTFILE establishes the destination, and PRINT sends the contents of the window
to that destination. If you don’t specify a destination with the PRTFILE command,

Directing SAS Log and SAS Procedure Output Using the PRTFILE and PRINT Commands 123

PRINT automatically sends the window contents to your default printer. (See “Using
the PRINT Command and the FORM Subsystem” on page 121 for details about using
the PRINT command alone.)

For example, to print the contents of your Output window on RMT5 instead of on
your default printer, follow these steps:

1 From the Program Editor window, submit a FILENAME statement or FILENAME
function to allocate a destination file for the output. You can use the DEST= and
SYSOUT= options to specify the destination and SYSOUT class, respectively. You
can also direct the output to the HOLD queue by specifying the HOLD option.
(See “SYSOUT Data Set Options for the FILENAME Statement” on page 383 for
information about other options that you can specify.)

filename myrpt dest=rmt5 sysout=a hold;

Note: The destination printer that you specify in the FILENAME statement or
FILENAME function must be the same type of printer as your default printer. �

2 From a command line, issue the PRTFILE command, specifying the fileref from
your FILENAME statement or FILENAME function.

prtfile myrpt

3 From the command line of the window whose contents you want to print, issue the
PRINT command.

4 If you want to print the contents of any other windows, issue the PRINT command
from the command line of those windows. A requestor window warns you that the
destination file already exists. Enter A in the requestor window to append the
window contents to the destination file.

5 From the command line of the first window that you printed, issue the FREE
command.

6 From the PROGRAM EDITOR window, submit a FILENAME statement or
FILENAME function to clear (deassign) the fileref. Your output is not actually
printed until you perform this step.

filename myrpt clear;

Example

Follow these steps to print a file with PRTFILE and PRINT:

1 Establish a print destination with the FILENAME statement:

filename myprint dest=dest99 sysout=a;

2 Identify the fileref as a print destination:

prtfile myprint replace

3 Print the file with the PRINT command or menu selection.

When directing output to a print device, for immediate printing use the FREE
command or menu selection, and then submit:

filename myprint clear;

For delayed printing, ending the SAS session or process forces printing to an output
device.

124 SAS System Options That Relate to Printing When Using Universal Printing Chapter 6

SAS System Options That Relate to Printing When Using Universal
Printing

The NOUNIVERSALPRINT system option is related to the printing of SAS output
when using Universal Printing. NOUNIVERSALPRINT turns Universal Printing off.

SAS System Options That Relate to Printing When Using the FORM
Subsystem

The following system options relate to the printing of SAS output when using the
FORM subsystem:

� SYSPRINT= is used when the PRINT command or PMENU selection is issued and
the print file default has not been established with the PRTFILE command, Set
Print File menu selection, or Set Form Name menu selection.

� FILEFORMS= specifies the default form that is used in the operating
environment. The default form is used when a printer file is dynamically
allocated, when FORMS= is not specified in the FILENAME statement, or when
the SAS form being used does not have a FORMS= value.

� FORMS= specifies the name of the default form that is used by the SAS FORM
subsystem in the windowing environment.

� FILESYSOUT= specifies the default SYSOUT= class that will be used when a
printer file is allocated dynamically and SYSOUT= is omitted from the FILENAME
statement, or when the SAS form being used does not have a CLASS= value.

A valid sysout-class is a single character (number or letter only). Valid classes
are site dependent. At some sites, data center personnel may have set up a default
class that cannot be overridden.

Directing Output to a Remote Destination

For Universal Printing, you direct output to a remote destination by specifying the
DEST= option on the host option parameter of the printer definition. You can modify or
create a printer definition by using PROC PRTDEF, by issuing the DMPRTSETUP
command, or by selecting

File Print Setup

in the windowing environment.
In the FORM subsystem, you use the DEST= option of the FILENAME statement or

FILENAME function to direct output to a remote destination. The destination can be a
workstation, a local or remote printer, or other device.

In order to direct your output to a remote destination, you must know the remote
station ID of the device that will receive your output. The station ID is an identifying
label that is established by your data center; it is one to eight characters in length. You
must also know the appropriate SYSOUT class for output that is directed to the remote
device. Your data center personnel can provide you with this information.

After determining the remote station ID and the SYSOUT class, you use either the
TSO ALLOCATE command or a SAS FILENAME statement or FILENAME function to
establish a DDname or fileref for the destination. Then use the DDname or fileref with
the PRINTTO procedure to direct your output. Here is an example that directs the
procedure output file to a remote printer:

Directing SAS Log and SAS Procedure Output Directing Procedure Output: ODS Examples 125

filename output sysout=a dest=xyz16670;
proc printto print=output;
proc print data=oranges;
run;

The FILENAME statement includes the options SYSOUT=A and DEST=xyz16670.
The values of these options are site specific. In this case, the output class, A, specifies
that the output will be directed to a printer. The destination, xyz16670, links the fileref
to a particular printer.

The PROC PRINTTO statement then specifies the fileref OUTPUT in the PRINT=
option. This option directs the procedure output file to the destination that was
associated with the fileref OUTPUT in the FILENAME statement. When the PRINT
procedure is executed, SAS sends the procedure output to the job entry subsystem
(JES); the output is not displayed in the OUTPUT window. JES holds the output until
the file identified by the fileref OUTPUT is closed and deassigned. Then the output is
printed at the remote destination.

To send the output to the printer for the previous example, submit:

proc printto; run;
filename output;

To direct the SAS log to a remote destination, use the same procedure, but use the
LOG= option instead of the PRINT= option with the PROC PRINTTO statement.

Directing Procedure Output: ODS Examples
SAS supports three output formats for procedure output: the Output Delivery

System (ODS), SAS/GRAPH, and the FORM subsystem.
Most of ODS is portable and therefore documented elsewhere, including the SAS

Output Delivery System: User’s Guide and the SAS Language Reference: Dictionary.
Two format options provided by ODS are HTML and XML. This section shows examples
of how the ODS HTML and ODS XML statements are used and the steps that are
required to route the output between operating environments. A SAS/GRAPH example
is also provided.

In a mainframe environment, by default, ODS produces a binary file that contains
embedded record-separator characters. While this approach means that the file is not
restricted by the line-length restrictions on ASCII files, it also means that if you view
the file in an editor, the lines all run together.

If you want to format the HTML files so that you can read them with an editor, use
RECORD_SEPARATOR=NONE. In this case, ODS writes one line of HTML at a time to
the file. When you use a value of NONE, the logical record length of the file that you
are writing to must be at least as long as the longest line that ODS produces. If it isn’t,
the HTML may wrap to another line at an inappropriate place. We recommend that
you use rs=none if you are writing to a standard z/OS file, but not if you are writing to
an HFS file. See “Writing ODS XML Output to EBCDIC, ASCII Transfer to UNIX” on
page 130 for an example that uses rs=none to format output.

Note: The NLSCOMPATMODE system option might affect the format of outputs
produced with ODS. If you are using ODS, set the NLSCOMPATMODE value to
NONLSCOMPATMODE. �

126 Viewing ODS Output on an External Browser Chapter 6

Viewing ODS Output on an External Browser
The following example stores ODS HTML output in a UNIX System Services (USS)

file. You can then display the output in an external HTML browser with the universal
resource locator (URL) appropriate to your site.

/* if needed, create web directory */
%sysexec mkdir ’/u/myuid/public_html’ ;

ods html
/* specify locations of HTML files */

body=’examplb.htm’
page=’examplp.htm’
contents=’examplc.htm’
frame=’example.htm’
path=’/u/myuid/public_html’(url=none);

/* do not send output to proc output */
ods listing close;

title1 ’z/OS UNIX System Services
Example’;

proc plan seed=9544455;
factors a=3 b=4 c=5 ordered; run;
title1;
quit;

/* close the HTML destination */
ods html close;

Here is a typical URL for this example:

http://corp.dept.com/~myuid/example.htm

Storing ODS HTML Output in a Sequential File, FTP from UNIX
The following example runs partly on SAS in the z/OS operating environment and

partly on the command line in the UNIX operating environment.

ods html
/* specify HTML files and destination URLs */

body=’.seqb.htm’ (url=’seqb.htm’)
page=’.seqp.htm’ (url=’seqp.htm’)
contents=’.seqc.htm’ (url=’seqc.htm’)
frame=’.seqf.htm’
trantab=ascii;

/* don’t send output to proc output destination*/
ods listing close;

title1 ’z/OS HTML Example’;

proc plan seed=9544455;
factors a=3 b=4 c=5 ordered; run;

Directing SAS Log and SAS Procedure Output Storing ODS HTML Output in a z/OS PDSE, FTP from UNIX 127

title1;
quit;

/* close the html destination */
ods html close;

When you use physical filename syntax and run in interactive mode, you are
prompted to specify whether you want to create the files. You are not prompted in batch
mode.

When you use JCL or a FILENAME statement, the disposition parameter controls
file creation.

The TRANTAB= option generates ASCII stream files. Each line is terminated with a
newline character. You cannot read ASCII stream files with TSO ISPF browse. The
default file characteristics are record format VB and record length 8,196.

You might need to update links between the files after you transfer the files to UNIX.
To avoid the need to update links, use the URL= option in the ODS statement to
identify how you would like to generate the links.

This second part of the example transfers the ODS output file from z/OS to UNIX.
Issue the following commands on a UNIX workstation:

ftp os390
...
ftp> binary
...
ftp> get ’myuid.seqb.html’

/u/myuid/public_html/seqb.htm
...

To view the output file, point your UNIX browser at the file that you moved to UNIX
with FTP, using a URL such as

http://corp.dept.com/~myuid/seqb.htm

Storing ODS HTML Output in a z/OS PDSE, FTP from UNIX
The filename in this example stores ODS output as a member of a partitioned data

set extended (PDSE).

/* create a PDSE */
filename ODSPDSE ’.exampl.pdse’

dsntype=library
disp=(new,catlg) dsorg=po ;

ods html
/* specify HTML files and destination URLs */

body=’examplb’ (url=’examplb.htm’)
page=’examplp’ (url=’examplp.htm’)
contents=’examplc’ (url=’examplc.htm’)
frame=’examplf’
path=’.exampl.pdse’ (url=none)
trantab=ascii;

/* don’t send output to proc output destination */
ods listing close;

128 Writing ODS HTML Output Directly to UNIX Chapter 6

title1 ’z/OS PDSE Example’;

proc plan seed=9544455;
factors a=3 b=4 c=5 ordered; run;
title1;
quit;

/* close the HTML destination */
ods html close;

The TRANTAB= option generates ASCII stream files. Each line is terminated with a
newline character. You cannot read ASCII stream files with TSO ISPF browse.

You might need to update links between the files after you transfer the files to UNIX.
To avoid the need to update links, use the URL= option in the ODS statement to
identify how you would like to generate the links.

In the UNIX operating environment, use the following FTP command to transfer a
file from the PDSE:

ftp> get ’myuid.exampl.pdse(examplb)’
/u/myuid/public_html/examplb.html

Writing ODS HTML Output Directly to UNIX
The following example uses the FTP access method to write HTML output that is

generated on z/OS directly to a UNIX file.
Each of the following FILENAME statements uses the FTP access method to specify

a file on a UNIX host. Each file will contain part of the ODS HTML output that is
generated by this SAS job. You need to provide the correct host, user, password, and
directory information for your site. See the section on the FILENAME, FTP access
method in the SAS Language Reference: Dictionary for more information about the FTP
access method options.

filename myfram ftp ’example_frame.htm’ /* Specify frame file */
cd=’mydir’ /* Specify directory */
host=’myhost.mycompany.com’ /* Specify your host */
user=’myuser’ /* Specify user */

pass=’mypass’ /* Specify password */
/* or */ /* prompt */ /* Password prompting */

rcmd=’site umask 022’ /* Set permissions to */
/* -rw-r--r-- */

recfm=s /* binary transfer */
debug; /* Write ftp messages */

filename mybody ftp ’example_body.htm’ /* Specify body file */
cd=’mydir’ /* Specify directory */
host=’myhost.mycompany.com’ /* Specify your host */
user=’myuser’ /* Specify user */

pass=’mypass’ /* Specify password */
/* or */ /* prompt */ /* Password prompting */

rcmd=’site umask 022’ /* Set permissions to */
/* -rw-r--r-- */

Directing SAS Log and SAS Procedure Output Writing ODS XML Output to ASCII, Binary FTP to UNIX 129

recfm=s /* binary transfer */
debug; /* Write ftp messages */

filename mypage ftp ’example_page.htm’ /* Specify page file */
cd=’mydir’ /* Specify directory */
host=’myhost.mycompany.com’ /* Specify your host */
user=’myuser’ /* Specify user */

pass=’mypass’ /* Specify password */
/* or */ /* prompt */ /* Password prompting */

rcmd=’site umask 022’ /* Set permissions to */
/* -rw-r--r-- */

recfm=s /* binary transfer */
debug; /* Write ftp messages */

filename mycont ftp ’example_contents.htm’ /* Specify contents */
cd=’mydir’ /* Specify directory */
host=’myhost.mycompany.com’ /* Specify your host */
user=’myuser’ /* Specify user */

pass=’mypass’ /* Specify password */
/* or */ /* prompt */ /* Password prompting */

rcmd=’site umask 022’ /* Set permissions to */
/* -rw-r--r-- */

recfm=s /* binary transfer */
debug; /* Write ftp messages */

/* Specify the HTML files using the filerefs defined above */
ods html body=mybody

page=mypage
contents=mycont
frame=myfram
trantab=ascii;

/* Do not send output to proc output destination */
ods listing close;

title1 ’z/OS FTP Access Method Example’;
proc plan seed=9544455;

factors a=3 b=4 c=5 ordered; run;
title1;
quit;

/* Close the HTML destination */
ods html close;

Writing ODS XML Output to ASCII, Binary FTP to UNIX
The following ODS XML example generates ASCII output with embedded record

separators and does a binary transfer to UNIX.

130 Writing ODS XML Output to EBCDIC, ASCII Transfer to UNIX Chapter 6

/* Use FTP access method to direct the output to UNIX */

filename myxml ftp ’odsxml1.xml’ /* specify xml file */
cd=’public_html/ods_test’ /* specify directory */
host=’unix.corp.dept.com’ /* specify host */
user=’userid’ /* specify user */

/* pass=’mypass’ */ /* specify password */
/* or */ prompt /* password prompting */

rcmd=’site umask 022’ /* set permissions to */
/* -rw-r--r-- */

recfm=s /* binary transfer */
debug; /* write ftp messages */

/* Don’t write to output window */
ods listing close;

/* Specify XML file using fileref specified above */
/* Specify ascii representation and do a binary transfer */
ods xml file=myxml

trantab=ascii;

title1 ’z/OS ODS XML Example - Binary transfer to UNIX’;
proc plan seed=9544455; factors a=3 b=4 c=5 ordered; run;
title1;
quit;

/* Close the XML destination */
ods xml close;

To view the output file, point your UNIX browser at the file that you moved to UNIX
with FTP, using a URL such as

http://corp.dept.com/~userid/ods_test/odsxml1.xml

Writing ODS XML Output to EBCDIC, ASCII Transfer to UNIX
This example generates ODS XML output in EBCDIC and uses RS=NONE to format

the output for a text (ASCII) transfer to UNIX.

/* Use FTP access method to direct the output to UNIX */

filename myxml ftp ’odsxml2.xml’ /* specify xml file */
cd=’public_html/ods_test’ /* specify directory */
host=’unix.corp.dept.com’ /* specify host */
user=’userid’ /* specify user */

/* pass=’mypass’ */ /* specify password */
/* or */ prompt /* password prompting */

rcmd=’site umask 022’ /* set permissions to */
/* -rw-r--r-- */

recfm=v /* text transfer */

Directing SAS Log and SAS Procedure Output Directing Procedure Output to a High-Quality Printer via ODS 131

debug; /* write ftp messages */

/* Don’t write to output window */
ods listing close;

/* Specify XML file using fileref specified above */
/* Specify RS=NONE, generate EBCDIC and do a TEXT (ASCII) transfer */
ods xml file=myxml

rs=none;

title1 ’z/OS ODS XML Example - TEXT transfer to UNIX’;
proc plan seed=9544455; factors a=3 b=4 c=5 ordered; run;
title1;
quit;

/* Close the XML destination */
ods xml close;

To view the output file, point your UNIX browser at the file that you moved to UNIX
with FTP, using a URL such as

http://corp.dept.com/~userid/ods_text/odsxml2.xml

Directing ODS XML Output to UNIX System Services
The following example stores ODS XML output in a UNIX System Services file.

/* Don’t write to output window */
ods listing close;

/* Direct output to UNIX System Services (HFS) file */
/* Specify ascii representation */
ods xml file=’/u/userid/public_html/odsxml3.xml’

trantab=ascii;

title1 ’z/OS ODS XML Example - Output to UNIX System Services’;
proc plan seed=9544455; factors a=3 b=4 c=5 ordered; run;
title1;
quit;

/* Close the XML destination */
ods xml close;

To view the output file, point your UNIX browser at the file that you moved to UNIX
System Services, using a URL such as

http://s390.corp.dept.com/~userid/ods_text/odsxml1.xml

Directing Procedure Output to a High-Quality Printer via ODS
Follow these steps to send high-resolution procedure output created with the Output

Delivery System to a Universal Printing destination:
1 Establish the print destination with the PRINTERPATH= option:

options printerpath=’prt23lj5’;

132 Directing Procedure Output: SAS/GRAPH Example Chapter 6

The OPTIONS statement assigns PRT23lJ5 as the default Universal printer.
PRT23lJ5 remains the default printer for the duration of the SAS session, unless
it is overridden by another OPTIONS statement.

2 Identify the print destination to SAS:

ods printer;

The ODS PRINTER statement opens an ODS printer destination, enabling
procedure output to be formatted for a high-resolution printer. Because the ODS
PRINTER statement does not specify a filename or a fileref, ODS output is sent to
the Universal Printing default printer (PRT23lJ5).

3 Issue a print command:

proc print data=sashelp.shoes;
where region="Canada";

run;

PROC PRINT generates procedure output in ODS format.
4 Remove the print destination:

ods printer close;

The ODS PRINTER CLOSE statement removes the ODS printing destination
and sends the procedure output to PRT23lJ5. Subsequent procedure output is
routed to the default Universal Printing destination.

Directing Procedure Output: SAS/GRAPH Example
The following example uses the FTP access method to write SAS/GRAPH output

directly to a UNIX file.
Each of the following FILENAME statements uses the FTP access method to specify

a file on a UNIX host. Each file will contain part of the ODS HTML output that is
generated by this SAS job. You need to provide the correct host, user, password and
directory information for your site. See the FILENAME, FTP access method
documentation in the SAS Language Reference: Dictionary for more information about
the FTP access method options.

filename myfram ftp ’example_frame.htm’ /* Specify frame file */
cd=’mydir’ /* Specify directory */
host=’myhost.mycompany.com’ /* Specify your host */
user=’myuser’ /* Specify user */

pass=’mypass’ /* Specify password */
/* or */ /* prompt */ /* Password prompting */

rcmd=’site umask 022’ /* Set permissions to */
/* -rw-r--r-- */

recfm=s /* binary transfer */
debug; /* Write ftp messages */

filename mybody ftp ’example_body.htm’ /* Specify body file */
cd=’mydir’ /* Specify directory */
host=’myhost.mycompany.com’ /* Specify your host */
user=’myuser’ /* Specify user */

pass=’mypass’ /* Specify password */
/* or */ /* prompt */ /* Password prompting */

Directing SAS Log and SAS Procedure Output Directing Procedure Output: SAS/GRAPH Example 133

rcmd=’site umask 022’ /* Set permissions to */
/* -rw-r--r-- */

recfm=s /* binary transfer */
debug; /* Write ftp messages */

filename mypage ftp ’example_page.htm’ /* Specify page file */
cd=’mydir’ /* Specify directory */
host=’myhost.mycompany.com’ /* Specify your host */
user=’myuser’ /* Specify user */

pass=’mypass’ /* Specify password */
/* or */ /* prompt */ /* Password prompting */

rcmd=’site umask 022’ /* Set permissions to */
/* -rw-r--r-- */

recfm=s /* binary transfer */
debug; /* Write ftp messages */

filename mycont ftp ’example_contents.htm’ /* Specify contents */
cd=’mydir’ /* Specify directory */
host=’myhost.mycompany.com’ /* Specify your host */
user=’myuser’ /* Specify user */

pass=’mypass’ /* Specify password */
/* or */ /* prompt */ /* Password prompting */

rcmd=’site umask 022’ /* Set permissions to */
/* -rw-r--r-- */

recfm=s /* binary transfer */
debug; /* Write ftp messages */

/* Specify the HTML files using the filerefs defined above */
ods html body=mybody

page=mypage
contents=mycont
frame=myfram
trantab=ascii;

/* Do not send output to proc output destination */
ods listing close;

title1 ’z/OS FTP Access Method Example’;
proc plan seed=9544455;

factors a=3 b=4 c=5 ordered; run;
title1;
quit;

/* Close the HTML destination */
ods html close;

134 Sending E-Mail from within SAS Software Chapter 6

Sending E-Mail from within SAS Software
SAS software enables you to send e-mail by way of a DATA step, SAS procedure, or

SCL. Specifically, you can
� use the logic of the DATA step or SCL to subset e-mail distribution based on a

large data set of e-mail addresses.
� send e-mail automatically upon completion of a SAS program that you submitted

for batch processing.
� direct output through e-mail that is based on the results of processing.

SAS e-mail is implemented in the following language elements:
� the EMAILHOST= and EMAILPORT= SAS options. SAS software sends all e-mail

over a socket to an SMTP server. You or your system administrator may have to
specify the EMAILHOST= system option to identify the host that runs an SMTP
server on your network. The EMAILHOST= option defaults to localhost.The
EMAILPORT= system option identifies the port number on the SMTP server for
e-mail access.The default port number is 25. See “The SMTP E-Mail Interface” in
SAS Language Reference: Conceptsfor more information on SMTP.

� the FILE and FILENAME statements, which are used to specify the name of an
e-mail fileref and the mailing instructions that are used to send it. See
“FILENAME Statement Syntax for E-Mail” on page 134 for details. Options that
you specify in the FILE statement override any corresponding options that you
specified in the FILENAME statement.

� the PUT statement, which is used in the DATA step or SCL to create the e-mail
message and to specify or change mailing directives. See “PUT Statement Syntax
for E-Mail” on page 137 for details.

FILENAME Statement Syntax for E-Mail
To send e-mail from within a SAS session, issue a FILENAME statement of the

following form:

FILENAME fileref EMAIL ’address’ <e-mail-options>;

The arguments are defined as follows:

fileref
is a name that is temporarily assigned to an external file or to an aggregate
storage location that identifies it to SAS software.

’address’
is the e-mail address of the recipient. Alternatively, you may specify recipient
address arguments in the TO= option or by way of a !EM_TO! directive.

e-mail-options
can be any of the following:

TO=to-address
specifies the primary recipients of the e-mail message. If an address contains
special characters or more than one word, enclose the entire address in single
or double quotation marks, as follows:

to=’joe@somplace.org’

To specify more than one address, enclose the list of addresses in
parentheses and each address in single or double quotation marks, and
separate each address with a space:

Directing SAS Log and SAS Procedure Output FILENAME Statement Syntax for E-Mail 135

to=("joe@smplc.org" "jane@diffplc.org")

To specify the recipient’s name along with the address, enclose the address
in angle brackets (<>), as follows:

to="Joe Smith <joe@somplace.org>"

Specifying the TO= option overrides the ’address’ option.

Note: You can send an e-mail without specifying a recipient in the TO=
option as long as you specify a recipient in either the CC= or BCC= option. �

CC=cc-address
identifies the recipients to receive a copy of the e-mail message. If an address
contains special characters or more than one word, enclose the entire address
in single or double quotation marks, as follows:

cc=’joe@somplace.org’

To specify more than one address, enclose the list of addresses in
parentheses and separate the addresses with a space, for example:

cc=(’joe@smplc.org’ ’jane@diffplc.org’)

To specify the recipient’s name along with the address, enclose the address
in angle brackets, as follows:

cc="Joe Smith <joe@somplace.org>"

BCC=bcc-address
specifies the recipients to receive a blind copy of the e-mail message.
Individuals listed in the bcc field will receive a copy of the e-mail message.
The BCC field does not appear in the e-mail header, so that these e-mail
addresses cannot be viewed by other recipients.

If a BCC address contains more than one word, enclose it in quotation
marks. To specify more than one address, enclose the group of addresses in
parentheses, enclose each address in quotation marks, and separate each
address with a space. For example,

bcc="joe@someplace.org"

and

bcc=("joe@someplace.org" "jane@diffplc.org")

are valid BCC values.

FROM=’from-user’
identifies the sender of the e-mail message. The default value is the user ID
and hostname of the user who is running SAS. You may prefer to specify a
different address for a server application. If the e-mail address contains
special characters or more than one word, enclose the entire specification in
quotation marks. To specify a name along with an address, enclose the
address in brackets, as follows:

from=’John Smith <john@hisplace.org>’

SUBJECT=’subject’
specifies the subject of the message. If the subject text is longer than one
word (that is, it contains at least one blank space), you must enclose it in
quotation marks. You also must use quotation marks if the subject contains
any special characters. For example, subject=Sales and subject=‘June
Report’ are valid subjects. Any subject that is not enclosed in quotation
marks is converted to uppercase.

136 FILENAME Statement Syntax for E-Mail Chapter 6

ATTACH=”file-specification”
specifies the z/OS filename of one or more files to attach to the message.
Enclose the filename in double quotation marks. To attach more than one file,
or a file and other attachment options, enclose the list of file specifications in
parentheses and separate each file specification with a blank space.

Attachment options include a content-type option, an extension option, and
a name option for each attachment.

CONTENT_TYPE=’content/type’
specifies the content type of the attached file. CT=, CONTENT-TYPE=,
and TYPE= are all accepted as synonyms for CONTENT_TYPE=. The
purpose for this option is to cause the correct MIME header to be
included in the e-mail file. The default content type is text/plain.

EXTENSION=’extension’
specifies the filename extension on the file that is attached. This
extension will be used by the recipient’s e-mail system for selecting the
appropriate utility to use for displaying the attachment. The default
attachment extension is “txt”. EXTENSION= can be specified as EXT=.

NAME=’name’
specifies a name to be used for the attachment instead of the z/OS
filename.

The following examples show the ATTACH= e-mail option with and
without attachment options:

attach="user.misc.pds(member)"
attach=("user.misc.jcl(sasjcl)" extension=’doc’

"userid.sas.output" content_type=’image/gif’ extension=’gif’
name=’Test Results’)

TYPE=’content-type’
specifies the content type of the main message body, as follows:

type=’text/plain’
type=’text/html’
type=’image/gif’

The value for TYPE= must be enclosed in quotation marks.

LRECL=value
specifies the logical record length (that is, the number of bytes in a record).
SAS defaults to the size that is needed (for either print or nonprint files)
when a file is opened.

Logical record length is affected by the record format (see RECFM=).
When the record format is fixed (indicated by an F as part of the RECFM=
value), all records have the same length, and that length is the value of the
LRECL= value.

When the record format is variable (indicated by a V as part of the
RECFM= value), records may have different lengths, and each record
contains 4 bytes of length information in addition to its other data.
Therefore, you must specify an LRECL= value that is 4 bytes longer than the
longest record that you expect to write. If you do not know the length of the
longest record to be put into a variable-format data set, choose a maximum
value and add 4 to it to create an LRECL= value.

RECFM=record-format
specifies the record format of the file. Valid values are

F specifies fixed-length records, unblocked.

Directing SAS Log and SAS Procedure Output PUT Statement Syntax for E-Mail 137

V specifies variable-length records, unblocked.

FB specifies fixed-length records, blocked.

VB specifies variable-length records, blocked.

U specifies undefined-length records, unblocked.

The following values can be appended to the RECFM= values:

A specifies that the first byte of each record is an ANSI
printer-control character.

M specifies that the file is a machine control character file.
SAS does not interpret machine-code control characters,
nor does it create them in output files. See MVS JCL
Reference by IBM for more information.

S specifies that the file contains spanned records (when
appended to V), or that the file contains standard blocks
(when appended to F).

The next format stands alone; no other values can be appended:

N indicates that the file is in binary format. The file is
processed as a stream of bytes with no record boundaries.
This record format is specific to SAS.

PUT Statement Syntax for E-Mail
In your DATA step, after using the FILE statement to define your e-mail fileref as

the output destination, use PUT statements to define the body of the message.
You can also use PUT statements to specify e-mail directives that override the

attributes of your electronic mail message (TO, CC, SUBJECT, TYPE, ATTACH) or
perform actions with it (such as SEND, ABORT, and start a NEWMSG). Specify only
one directive in each PUT statement; each PUT statement can contain only the text
associated with the directive it specifies. Use quotation marks as necessary to construct
the arguments of the PUT statement. However, the final string written by the PUT
statement does not need to be enclosed in quotation marks.

The directives that change the attributes of a message are

!EM_TO! addresses
replaces the current primary recipient addresses with addresses. For example:

PUT "!EM_TO!" "joe@somplace.org";

or

user="joe@somplace.org";
put ’!EM_TO!’ user;

To specify more than one address, enclose the list of addresses in parentheses
and each address in single or double quotation marks, and separate each address
with a space:

PUT "!EM_TO!" (’joe@smplc.org’ ’jane@diffplc.org’);

or

list=(’joe@smplc.org’ ’jane@diffplc.org’);
put ’!EM_TO!’ list;

138 PUT Statement Syntax for E-Mail Chapter 6

To specify a name with the address, enclose the address in angle brackets, as
follows:

PUT "!EM_TO!" "Joe Smith <joe@somplace.org>";

or

user="Joe Smith <joe@somplace.org>";
put ’!EM_TO!’ user;

!EM_CC! addresses
replaces the current copied recipient addresses with addresses. For example:

PUT "!EM_CC!" "joe@somplace.org";

or

user="joe@somplace.org";
put ’!EM_CC!’ user;

To specify more than one address, enclose the list of addresses in parentheses
and each address in single or double quotation marks, and separate addresses
with a space:

PUT "!EM_CC!" (’joe@smplc.org’ ’jane@diffplc.org’);

or

list=(’joe@smplc.org’ ’jane@diffplc.org’);
put ’!EM_CC!’ list;

To specify a name with the address, enclose the address in angle brackets, as
follows:

PUT "!EM_CC!" "Joe Smith <joe@somplace.org>";

or

user="Joe Smith <joe@somplace.org>";
put ’!EM_CC!’ user;

!EM_BCC! addresses
replaces the current blind copied recipient addresses with addresses. For example:

PUT "!EM_BCC!" "joe@somplace.org";

or

user="joe@somplace.org";
put ’!EM_BCC!’ user;

To specify more than one address, enclose the list of addresses in parentheses
and each address in single or double quotation marks, and separate addresses
with a space:

PUT "!EM_BCC!" (’joe@smplc.org’ ’jane@diffplc.org’);

or

list=(’joe@smplc.org’ ’jane@diffplc.org’);
put ’!EM_BCC!’ list;

To specify a name with the address, enclose the address in angle brackets, as
follows:

PUT "!EM_BCC!" "Joe Smith <joe@somplace.org>";

Directing SAS Log and SAS Procedure Output PUT Statement Syntax for E-Mail 139

or

user="Joe Smith <joe@somplace.org>";
put ’!EM_BCC!’ user;

!EM_FROM! ’address’
replaces the current address of the sender of the message with address. For
example:

PUT "!EM_FROM! "john@hisplace.org"

or

user="john@hisplace.org";
put ’!EM_FROM!’ user;

!EM_SUBJECT! subject
replaces the current subject of the message with subject.

!EM_CONTENTTYPE! content-type
replaces the current content type of the message with content-type.

!EM_ATTACH! “file-specification”
replaces the current list of attachments with file-specification. Enclose the
file-specification in double quotation marks.

To attach more than one file or a file with additional attachment options,
enclose the list of file specifications or options in parentheses and separate each
file-specification with a space. The attachment options are

CONTENT_TYPE=’content/type’
specifies the MIME content type that should be associated with this
attachment. The default content type is text/plain. CONTENT_TYPE= may
be specified as:

� CONTENT_TYPE=
� CONTENT-TYPE=
� TYPE=
� CT=

EXTENSION=’extension’
specifies the filename extension on the recipient’s file that is attached. This
extension will be used by the recipient’s e-mail system for selecting the
appropriate utility to use for displaying the attachment. The default
attachment extension is "txt". EXTENSION= may be specified as EXT=.

NAME=’name’
specifies a different name to be used for the attachment.

The following examples show the syntax for specifying attachment options in a
PUT statement:

put ’!EM_ATTACH!’ "(’user.misc.pds(member)’ content_type=’text/html’
extension=’html’)";

put ’!EM_ATTACH!’ "(’user.misc.jcl(sasjcl)’ extension=’doc’,
’userid.sas.output’ content_type=’image/gif’ extension=’gif’
name=’Test Results’)";

mycfg="’user.misc.jcl(sasjcl)’";
syscfg="’user.sas.output’ content_type=’image/gif’ ext=’gif’";
put ’!EM_ATTACH!’ "("mycfg","syscfg")";

140 Example: Sending E-Mail from the DATA Step Chapter 6

These directives perform actions:

!EM_SEND!
sends the message with the current attributes. By default, SAS sends a message
when the fileref is closed. The fileref closes when the next FILE statement is
encountered or the DATA step ends. If you use this directive, SAS software sends
the message when it encounters the directive and again at the end of the DATA
step.

!EM_ABORT!
aborts the current message. You can use this directive to stop SAS software from
automatically sending the message at the end of the DATA step.

!EM_NEWMSG!
clears all attributes of the current message, including TO, CC, SUBJECT, TYPE,
ATTACH, and the message body.

Example: Sending E-Mail from the DATA Step
Suppose you want to share a copy of your SASV9 CONFIG file with your co-worker

Jim, whose user ID is JBrown. You could send it by submitting the following DATA step:

filename mymail email ’JBrown@ajax.com’
subject=’My SASV9 CONFIG file’
attach="jbrown.tso.config(sasV9)";

data _null_;
file mymail;
put ’Jim,’;
put ’This is my SASV9 CONFIG file.’;
put ’I think you might like the new options I added.’;

run;

The following example sends a message and two attached files to multiple recipients.
It specifies the e-mail options in the FILE statement instead of in the FILENAME
statement:

filename outbox email ’ron@acme.com’;

data _null_;
file outbox

to=(’ron@acme.com’ ’lisa@acme.com’)
/* Overrides value in */
/* filename statement */

cc=(’margaret@yourcomp.com’
’lenny@laverne.abc.com’)

subject=’My SAS output’
attach=("my.sas.output" "my.sas.code")
;

put ’Folks,’;
put ’Attached is my output from the

SAS program I ran last night.’;
put ’It worked great!’;

run;

You can use conditional logic in the DATA step to send multiple messages and to
control which recipients receive which message. For example, suppose you want to send

Directing SAS Log and SAS Procedure Output Example: Sending E-Mail from the DATA Step 141

customized reports to members of two different departments. Here is a DATA step
example:

filename reports email ’Jim@corp.com’;

data _null_;
file reports;
infile cards eof=lastobs;
length name dept $ 21;
input name dept;
put ’!EM_TO!’ name;
/* Assign the TO attribute */

put ’!EM_SUBJECT! Report for ’ dept;
/* Assign the SUBJECT attribute */

put name ’,’;
put ’Here is the latest report for ’ dept ’.’;
if dept=’marketing’ then

put ’!EM_ATTACH!’ "userid.market.report";
else

/* ATTACH the appropriate report */

put ’!EM_ATTACH!’ "userid.devlpmnt.report";
put ’!EM_SEND!’;

/* Send the message */

put ’!EM_NEWMSG!’;
/* Clear the message attributes */

return;
lastobs: put ’!EM_ABORT!’;

/* Abort the message before the */
/* RUN statement causes it to */
/* be sent again. */

datalines;
Susan marketing
Jim marketing
Rita development
Herb development
;
run;

The resulting e-mail message and its attachments are dependent on the department
to which the recipient belongs.

Note: You must use the !EM_NEWMSG! directive to clear the message attributes
between recipients. The !EM_ABORT! directive prevents the message from being
automatically sent at the end of the DATA step. �

142 Sending Procedure Output as E-Mail Chapter 6

Sending Procedure Output as E-Mail

E-mail can be used to send procedure output. ODS HTML procedure output must be
sent with the RECORD_SEPARATOR (RS) option set to NONE. For z/OS, ODS produces
an HTML stream with embedded record-separator characters, by default. When the RS
option is set to NONE, ODS writes one line of HTML at a time to the file. Be sure that
the file’s record length is large enough to accommodate the longest HTML line.

The following section contains examples that illustrate how to send ODS HTML and
graph output in the body of an e-mail message and also as attachments to e-mail.

Examples: Sending Procedure Output via E-Mail

The following example shows how to use ODS to send HTML output in e-mail:

filename outbox email
to=’susan@mvs’
type=’text/html’
subject=’Temperature conversions’
;

data temperatures;
do centigrade = -40 to 100 by 10;

fahrenheit = centigrade*9/5+32;
output;

end;
run;

ods html
body=outbox /* Mail it! */
rs=none;

title ’Centigrade to Fahrenheit conversion table’;
proc print;

id centigrade;
var fahrenheit;

run;

ods html close;

The following example shows how to create and send a GIF image in an e-mail
message:

filename gsasfile email
to=’Jim@acme.com’
type=’image/gif’
subject="SAS/GRAPH output."
;

goptions dev=gif gsfname=gsasfile;

proc gtestit pic=1; run;

The following example shows how to create ODS HTML and send it as attachments
to an e-mail message:

Directing SAS Log and SAS Procedure Output Sending Procedure Output as E-Mail 143

/* -- */
/* allocate PDSE to contain the HTML output */
/* -- */
filename odsout ’.mvsmail1.pdse’ disp=(new,catlg,delete)

dsorg=po dsntype=library;

/* ------------------------------------ */
/* stop sending output to OUTPUT window */
/* ------------------------------------ */
ods listing close;

/* --- */
/* Assign frame, contents and body files. */
/* Specify the URLs to have the .html extension. */
/* Specify the PATH to be the PDSE. */
/* Specify RS=NONE to write one line of HTML per record. */
/* This is necessary when e-mailing the HTML output. */
/* --- */
ods html frame=’shoes1f’

contents=’shoes1c’ (url=’shoes1c.html’)
body=’shoes1b’ (url=’shoes1b.html’)
path=odsout
rs=none;

data newshoes;
set sashelp.shoes;
where Region in (’Canada’ ’Central America/Caribbean’

’South America’ ’United States’);
run;

/* --- */
/* sort the data set and generate the report */
/* --- */
proc sort data=newshoes;

by Region Subsidiary Product;
run;

options nobyline;
title1 ’Sales for Regions #byval(Region)’;
proc report data=newshoes nowindows;

by Region;
column Region Product Subsidiary Sales;
define Region / noprint group;
define Product / display group;
define Subsidiary / display group;
define Sales / display sum format=dollar8.;
compute after Region;

Product=’Total’;
endcomp;
break after Region / summarize style=rowheader;

run;

/* -- */
/* Close the HTML destination and open the listing output */

144 Sending Procedure Output as E-Mail Chapter 6

/* -- */
ods html close;
ods listing;

/* ----------------- */
/* E-mail the report */
/* ----------------- */

filename email email ’fred@bedrock.com’
subject="Shoe report 1"
type="text/plain"

attach=(".mvsmail1.pdse(shoes1f)" content_type=’text/html’ extension=’html’
".mvsmail1.pdse(shoes1c)" content_type=’text/html’ extension=’html’
".mvsmail1.pdse(shoes1b)" content_type=’text/html’ extension=’html’) ;

data _null_;
file email;
put ’Here is the latest Shoe sales report’;

run;

The following example shows how to create ODS HTML and GIF files and send them
as e-mail attachments:

/* -- */
/* Define the UNIX System Services HFS directory to */
/* contain the graphics and HTML output. */
/* -- */

filename odsout ’/u/myhome/public_html’;

/* -- */
/* stops sending output to GRAPH and OUTPUT windows */
/* -- */

ods listing close;

/* ---------------------------- */
/* set the graphics environment */
/* ---------------------------- */

goptions reset=global gunit=pct
colors=(black blue green red)
hsize=8.42 in vsize=6.31 in ftitle=zapfb
ftext=swiss htitle=4 htext=2.5
device=gif transparency noborder;

/* --------------------------------- */
/* add the HTML variable to NEWSHOES */
/* --------------------------------- */

data newshoes;
set sashelp.shoes;
where Region in (’Canada’ ’Central America/Caribbean’

’South America’ ’United States’);
length regdrill $40;

if Region=’Canada’ then
regdrill=’HREF="shoes1_regsales.html#IDX1"’;

else if Region=’Central America/Caribbean’ then
regdrill=’HREF="shoes1_regsales.html#IDX2"’;

Directing SAS Log and SAS Procedure Output Sending Procedure Output as E-Mail 145

else if Region=’South America’ then
regdrill=’HREF="shoes1_regsales.html#IDX3"’;

else if Region=’United States’ then
regdrill=’HREF="shoes1_regsales.html#IDX4"’;

run;

/* --*/
/* Assign the destination for the ODS graphics output */
/* and ODS HTML files. */
/* Specify RS=NONE to write one line of HTML per record. */
/* This is necessary when e-mailing the HTML output. */
/* --- */
ods html path=odsout

body=’shoe_report.html’
rs=none
nogtitle;

/* ----------------------------------- */
/* define title and footnote for chart */
/* ----------------------------------- */
title1 ’Total Sales for the Americas’;
footnote1 h=3 j=l ’click on bars’ j=r ’REPORT3D ’;

/* ----------------------------------- */
/* assign a pattern color for all bars */
/* ----------------------------------- */
pattern color=cyan;

/* --------------------------- */
/* define axis characteristics */
/* --------------------------- */
axis1 order=(0 to 7000000 by 1000000)

minor=(number=1)
label=none;

axis2 label=none offset=(4,4)
value=(’Canada’ ’C. Amr./Car.’

’S. America’ ’USA’);

/* --------------------------- */
/* generate vertical bar chart */
/* --------------------------- */
proc gchart data=newshoes;

vbar3d Region / discrete
width=6
sumvar=sales
html=regdrill
coutline=black
cframe=blue
maxis=axis2
raxis=axis1
name=’shoes1 ’;

146 Sending Procedure Output as E-Mail Chapter 6

run;
quit;

/* --- */
/* Open the HTML destination for the PROC PRINT output. */
/* Specify RS=NONE to write one line of HTML per record. */
/* This is necessary when e-mailing the HTML output. */
/* --- */

ods html body=’shoes1_regsales.html’
rs=none
path=odsout;

/* --- */
/* sort data set NEWSHOES in order by region */
/* --- */

proc sort data=newshoes;
by Region Subsidiary Product;

run;
quit;

/* -- */
/* print a report of shoe sales for each Region */
/* -- */

goptions reset=footnote;
option nobyline;
title ’Sales Report for #byval(Region)’;
proc report data=newshoes nowindows;

by Region;
column Region Subsidiary Product Sales;
define Region / noprint group;
define Subsidiary / display group;
define Product / display group;
define Sales / display sum format=dollar12.;
compute after Region;

Subsidiary=’Total’;
endcomp;
break after Region / summarize style=rowheader page;

run;

/* -- */
/* Close the HTML destination and open the listing output */
/* -- */

ods html close;
ods listing;

/* ---------------- */
/* Email the report */
/* -----------------*/

filename email email ’barney@bedrock.com’
subject="Shoe report 2"
type="text/plain"

attach=("./public_html/shoe_report.html" content_type=’text/html’
"./public_html/shoes1_regsales.html" content_type=’text/html’
"./public_html/shoes1.gif" content_type=’image/gif’) ;

Directing SAS Log and SAS Procedure Output Example: Directing Output as an E-Mail Attachment with Universal Printing 147

data _null_;
file email;
put ’Here is the latest Shoe sales report’;

run;

Example: Directing Output as an E-Mail Attachment with Universal
Printing

Follow these steps to send procedure output as an attachment to an e-mail message.
1 Define a Universal printer with a device type of ’EMAIL’.
2 Establish a printing destination with the PRINTERPATH= option:

options printerpath=’emailjoe’;

The OPTIONS statement assigns EMAILJOE as the default Universal printer.
EMAILJOE remains the default printer for the duration of the SAS session, unless
it is overridden by another OPTIONS statement.

3 Identify the print destination to SAS:

ods printer;

The ODS PRINTER statement enables procedure output to be formatted for a
high-resolution printer. Because the ODS PRINTER statement does not specify a
filename or fileref, ODS output is sent to the Universal Printing default printer
(EMAILJOE).

4 Issue a print command or procedure:

proc print data=sashelp.shoes;
where region="Canada";
run;

PROC PRINT generates procedure output in standard ODS format. The output
is sent to the attachment file associated with EMAILJOE.

5 Remove the print destination:

ods printer close;

The second ODS PRINTER statement removes the ODS print destination. The
procedure output is sent to EMAILJOE, which sends the e-mail message with the
attached file to the e-mail recipient.

The following program defines a registry entry for printing procedure output to an
e-mail attachment:

/* STEP 1 */
data printers;

name = ’emailjoe’;
protocol = ’Ascii’;
trantab = ’GTABCMS’;
model = ’PostScript Level 1 (Gray Scale)’;
device = ’EMAIL’;
dest = ’John.Doe@sas.com’;
hostopt = "recfm=vb ct=’application/PostScript’

subject=’Canada Report’ ";
run;

/* STEP 2 */
proc prtdef data=printers replace list;
run;

148 Example: Sending E-Mail by Using SCL Code Chapter 6

Example: Sending E-Mail by Using SCL Code
The following example is the SCL code that underlies a frame entry design for

e-mail. The frame entry includes these text-entry fields:

mailto the user ID of the e-mail recipient

copyto the user ID of the recipient of the e-mail copy (CC)

attach the name of the file to attach

subject the subject of the e-mail message

line1 the text of the e-mail message

The frame entry also contains a pushbutton named SEND that causes this SCL code
(marked by the send: label) to execute.

send:
/* set up a fileref */
rc = filename(’mailit’,’userid’,’email’);
/* if the fileref was successfully set up

open the file to write to */
if rc = 0 then do;

fid = fopen(’mailit’,’o’);
if fid > 0 then do;

/* fput statements are used to
implement writing the
mail and the components such as
subject, who to mail to, etc. */

fputrc1 = fput(fid,line1);
rc = fwrite(fid);
fputrc2 = fput(fid,’!EM_TO! ’||mailto);
rc = fwrite(fid);
fputrc3 = fput(fid,’!EM_CC! ’||copyto);
rc = fwrite(fid);
fputrc4 = fput(fid,’!EM_ATTACH! ’||attach);
rc = fwrite(fid);
fputrc5 = fput(fid,’!EM_SUBJECT! ’||subject);
rc = fwrite(fid);
closerc = fclose(fid);

end;
end;

return;
cancel:

call execcmd(’end’);
return;

149

C H A P T E R

7
Universal Printing

Introduction to Universal Printing 150

Using Universal Printing in the Windowing Environment 150
Setting the Default Printer 150

Defining a New Printer Interactively 150

Changing the Default Printer 151
Setting Printer Properties 151

Changing the Default Font 152

Setting Page Properties 153
Testing Printer Properties 154

Setting a Page Range Value 154
Previewing a Print Job 154

Printing Selected Text 154

Printing the Contents of a SAS Window 155
Directing the Contents of a SAS Window to a File 155

Printing the Contents of a Graphics Window 155

Creating Printer Definitions When Universal Printing Is Turned Off 156
Universal Printing and the SAS Registry 156

Using Universal Printing in a Batch Environment 157
Setting the Default Printer 157

Directing Output to a Universal Printer 157

Sending Output to a UPRINTER Device 157
The PRINTERPATH SAS Option 157

Changing the Default Font 158

Setting Up a Universal Printer with PROC PRTDEF 158
Required Variables 159

Optional Variables 159
Sample PROC PRTDEF Jobs in z/OS 160

Example 1: Defining PostScript, PCL, and PDF Universal Printers 160

Example 2: Defining a Universal Printer for an E-Mail Message with a PostScript
Attachment 160

Setting Up Printers in Your Environment 161

z/OS PostScript 161
z/OS PCL 162

z/OS PDF 162
Sample Programs and Summary 163

Sample 1: ODS and a Default Universal Printer 163

Sample 2: ODS and the PRINTERPATH System Option 164
Sample 3: ODS and the PRINTERPATH System Option (with FILEREF) 166

Sample 4: PRINTERPATH and FILENAME UPRINTER Statement 167

Sample 5: SAS/GRAPH: ODS and PRINTERPATH System Option 168
Sample 6: SAS/GRAPH: No ODS or PRINTERPATH System Option 172

150 Introduction to Universal Printing Chapter 7

The SASLIB.HOUSES Data Set 178

Summary of Printing Examples 179

Introduction to Universal Printing
Universal Printing is a printing mechanism provided by SAS that supplies printing

support for all operating environments. It is especially helpful for those operating
environments in which printing can be a challenge. With Universal Printing, you can
direct output to printers attached to your local area network, and you can employ all
the font and graphic capabilities of those printers when you generate output.

With SAS Release 8.2, Universal Printing became the default printing method in the
z/OS windowing environment. It is also the default printing method used to generate
ODS (Output Delivery System) and SAS/GRAPH output in all mainframe environments.
Universal Printing is not the default printing method used to generate procedure
output that is text based (such as PROC PRINT output), unless ODS is also used.

Universal Printing is also the default in the UNIX and VMS operating environments.
It is supported, but it is not the default, in the Microsoft Windows operating
environment.

Universal Printing produces output in PostScript, PDF, PCL, GIF, or a file that is
sent directly to an output device.

Using Universal Printing in the Windowing Environment

Setting the Default Printer
A default printer is required for Universal Printing. Unless you define a default

printer, SAS uses a predefined default printer that generates output in PostScript
Level 1 language with a 12-point Courier font.

On z/OS, output goes by default to a sequential data set called <prefix>.SASPRT.PS
where <prefix> is the value of the SYSPREF= SAS option.

Defining a New Printer Interactively
To create a new printer definition interactively:
1 Select

File Print Setup

or
Issue the command DMPRTSETUP.

2 Select

New Printer

The first of four Define a New Printer dialog boxes is displayed. Fill out the
fields in these dialog boxes to complete your new printer definition. Alternatively,
you can issue the command DMPRTCREATE PRINTER to start the Define a New
Printer dialog box directly.

Universal Printing Setting Printer Properties 151

Note: The Define a New Printer dialog box does not prompt you for printer detail
fields, including the Protocol and Translate Table (TRANTAB) fields. The printer
details are automatically initialized to those in the prototype you select. When the
Define a New Printer dialog boxes are complete, you will be returned to the
Printer Setup window with the new printer highlighted.

Follow these steps if you need to change any of the printer detail fields:

1 Select Properties.

2 Select Advanced.

3 Change the values of Protocol and Translate Table as necessary.

4 Select OK.

For further details regarding values for Protocol and Translate Table, refer to
“Setting Up Printers in Your Environment” on page 161.

Changing the Default Printer
You can use any of the following procedures to change the default printer:

� Use the Print Setup window.

1 Select

File Print Setup

or
Issue the command DMPRTSETUP.

2 Select the printer that you want to use as the default.

3 Select OK.

� Issue the command DMSETPRINT <’printer-name’>, where <’printer-name’> is
the name of the printer that you want to set as the default.

� Submit the statement OPTIONS PRINTERPATH=(’printer-name’ <fileref>).
See “The PRINTERPATH SAS Option” on page 157 for more information on the
PRINTERPATH option.

Note: DMPRTSETUP and DMSETPRINT generate an entry in the SASUSER
library, and they remain in effect until they are changed. Setting a default printer
with the OPTIONS PRINTERPATH= command does not generate an entry in the
SASUSER library. It remains in effect for the duration of the session only.

Setting Printer Properties
Use the following procedure to set the properties for a printer:

1 Select

File Print Setup

or
Issue the command DMPRTSETUP.

2 From the Printer list box, select a printer.

3 Select Properties.

152 Changing the Default Font Chapter 7

4 In the Printer Properties window, select the Destination tab to set the device
type, destination, and host options.

Device Type
refers to the type of device to which your output will be routed, such as a
printer or a disk.

Destination
refers to the target location used by the device.

Host Options
includes any host-specific options that you can set for the selected device type.

5 (Optional) Select Advanced to set resolution, protocol, translate table, buffer size,
previewer, and preview command information for the printer.

Resolution
specifies the resolution to use for printed output in dots per inch.

Protocol
specifies how to convert the output to a format that can be processed by a
protocol converter that connects the mainframe to an ASCII device. Protocol
information is applicable only to IBM hosts.

Translate Table
specifies the translate table to use for generating your printed output. A
translate table is needed when an EBCDIC host sends data to an ASCII device.

Buffer Size
refers to the buffer size to use when sending output to the printer.

Previewer
refers to the name of the viewer that will be used when a print preview occurs.
This option is not used in mainframe environments.

Preview Command
specifies a preview command for your previewer. This option is not used in
mainframe environments.

6 (Optional) Select Font to open a window where you can set the default font
information for your printer.

Note: Printer properties are stored in the SASUSER library and remain in effect
until changed.

See “Setting Up Printers in Your Environment” on page 161 for information
regarding the way printer properties are used in the mainframe environment.

Changing the Default Font
The font included in the definition of the current default printer is the font used to

generate output, unless you override it with the SYSPRINTFONT= system option.
SYSPRINTFONT= sets the font to use when printing to the current default printer or
to the printer identified with the optional keywords NAMED or ALL. You can specify
SYSPRINTFONT= in your configuration file, at SAS invocation, or in an OPTIONS
statement.

The syntax is as follows:

SYSPRINTFONT=(face-name <weight> <style> <character-set> <point-size>
<NAMED printer-name | DEFAULT | ALL>)

Universal Printing Setting Page Properties 153

face-name
specifies the name of the font face to use for printing. This must be a valid font
face name. If the face-name consists of more than one word, it must be enclosed in
single or double quotation marks. Valid font face names are listed in the Printer
Properties window under the Font tab.

weight
specifies the weight of the font, such as bold. A list of valid values for your specified
printer appears in the Printer Properties window. The default value is NORMAL.

style
specifies the style of the font, such as italic. A list of valid values for your specified
printer appears in the Printer Properties window. The default is REGULAR.

point-size
specifies the point size to use for printing. This must be an integer. If you omit
this argument, SAS uses the default point size.

character-set
specifies the character set to use for printing. Valid values are listed in the Printer
Properties window, under the Font tab. If the font does not support the specified
character set, the default character set is used. If the default character set is not
supported by the font, the font’s default character set is used.

NAMED printer-name
must match exactly the name shown in the Print Setup window (except that the
printer name is not case sensitive). If it is more than one word, the printer-name
must be enclosed in double quotation marks.

DEFAULT
is the current default printer if you do not specify another printer.

ALL
updates the font information for all installed printers.

Setting Page Properties
1 Select

File Page Setup

or
Issue the command DMPAGESETUP.

2 From the Page Setup window, make selections that will apply to the pages printed
for the remainder of your SAS session or until the values are changed again
through this window or through specification of options.

The selections that you can make in this window correspond to options that can be set
by submitting an OPTIONS statement. These options are listed in the following table:

Table 7.1 Options That Control Page Setup

General Options Paper Margins Other

BINDING PAPERDEST TOPMARGIN ORIENTATION

COLLATE PAPERSIZE RIGHTMARGIN

154 Testing Printer Properties Chapter 7

General Options Paper Margins Other

DUPLEX PAPERSOURCE LEFTMARGIN

COLORPRINTING PAPERTYPE BOTTOMMARGIN

Changes made by issuing the above options on an OPTIONS statement remain in
effect for the current SAS session only. Changes made through the Page Setup window
remain in effect for subsequent SAS sessions.

Options not supported by your default printer are dimmed and are not selectable.

Testing Printer Properties
1 Select

File Print Setup

or
Issue the command DMPRTSETUP.

2 Select a printer from the Printer list box.

3 Select Print Test Page.

Setting a Page Range Value
When you print the contents of an active window in the SAS windowing environment

(such as the Program Editor or Log window), all pages are printed by default. In
certain situations, the Print window includes a Page Range group box that you can use
to control the page ranges that print.

1 Select the appropriate SAS window.

2 Select

File Print

or
Issue the command DMPRINT.

3 If the Page Range group box is available, select either All Pages, Current Page,
or Select Range from the Range combo box. If you choose Select Range, then
specify the pages that you want to print in the Pages field. You must separate
individual pages or page ranges with either a comma or a blank space.

n-m prints all pages from n to m (where n and m are both numbers).

-n prints all pages from page 1 to n.

n- prints all pages from page n to the last page.

Previewing a Print Job
You cannot preview a print job in the mainframe environment.

Printing Selected Text
You cannot print selected text in the mainframe environment.

Universal Printing Printing the Contents of a Graphics Window 155

Printing the Contents of a SAS Window
To print the contents of a SAS window with Universal Printing:
1 Select the window that you want to print.
2 Select

File Print

or
Issue the command DMPRINT.

3 If the Use Forms check box is visible, verify that it is not selected.
4 From the Printer group box, select the appropriate printer name and the number

of copies that you want to print.

Note: If you choose to print multiple copies and Collation is turned off, each page
prints the given number of times before the next page begins printing.

5 Select or deselect additional Print window fields, if any additional fields are
available.

The fields that appear depend on the content that exists in the SAS window
that you are trying to print. For example, if a window is active (such as the
Program Editor), then the Page Range group box will be available.

6 Select the page range or specify the pages that you want to print.

See “Printing the Contents of a Graphics Window” on page 155 for more information
about printing the contents of a graphics window.

Directing the Contents of a SAS Window to a File
1 Select

File Print

or
Issue the command DMPRINT.

2 Select the Print to File check box in the Printer group box.
3 Select OK.

A window opens that enables you to save your contents to a specific filename.
� The filename must be fully qualified. Quotation marks are not needed, but

you can use them.
� If the file does not exist, you will be asked if you want to create it, and if you

want to delete it or catalog it. The file will be created as a variable blocked
(RECFM=VB) file.

� If the file does exist, you will be asked if you want to replace it or append to it.

Note: The protocol and prototype properties of the selected printer definition are
used to format the records that are written to the file. Thus, if you select a printer
that has a protocol value of ASCII and a prototype value of PostScript Level 1
(Gray Scale), you will generate a file that contains PostScript records written with
the ASCII character set. To move this file to an ASCII platform, you must execute
a Binary (FTP) transfer.

Printing the Contents of a Graphics Window
1 Select the graphics window that you want to print.

156 Creating Printer Definitions When Universal Printing Is Turned Off Chapter 7

2 Select

File Print

or
Issue the command DMPRINT.

3 Select the appropriate printer name and the number of copies that you want to
print from the Printer group box.

Note: If you choose to print multiple copies and Collation is turned off, each page
prints the given number of times before the next page begins printing.

4 In the Print Method group box, verify that the Use SAS/GRAPH Drivers check
box is not selected.

Creating Printer Definitions When Universal Printing Is Turned Off
You can create printer definitions with PROC PRTDEF when Universal Printing is

turned off, but the printer definitions will not appear in the Print window. When
Universal Printing is turned on, the menu options change to offer the Universal
Printing options. When Universal Printing is turned off, the Universal Printing options
are not available.

If you want to specify your printer definitions when Universal Printing is turned off,
do one of the following:

� Specify the printer definition as part of the PRINTERPATH SAS System option.
� Submit the following statement:

ODS PRINTER SAS PRINTER = myprinter;

where myprinter is the name of your printer definition.

Universal Printing and the SAS Registry
Universal Printing printer definitions are stored in the SAS registry. To access the

SAS registry:
1 Select:

Solutions Accessories Registry Editor

or
Issue the command REGEDIT.

2 Select:

Core Printing Printers

The printer definitions in SASUSER are listed first, followed by those in SASHELP,
along with all their options. You can modify any of the options for the printer
definitions in SASUSER if you have permission to write to the SASUSER library. To
modify the options:

Select:

Edit Modify

or
Click the right mouse button and select MODIFY.

CAUTION:
Making a mistake in editing the registry can cause your system to become unstable and/or
unusable. �

Universal Printing Directing Output to a Universal Printer 157

Wherever possible, use the administrative tools, such as the New Library window, the
PRTDEF procedure, Universal Print windows, and the Explorer Options window to
make configuration changes, rather than editing the registry directly. Using the
administrative tools ensures that values are stored properly in the registry when you
change the configuration.

CAUTION:
If you use the Registry Editor to change values, you will not be warned if any entry is
incorrect. Incorrect entries can cause errors, and can even prevent you from bringing up a
SAS session. �

Using Universal Printing in a Batch Environment

Setting the Default Printer
A default printer is required for Universal Printing. Unless you specify a default

printer, SAS uses a predefined default printer that generates output in PostScript
Level 1 language with a 12-point Courier font.

On z/OS, output goes by default to a sequential data set called <prefix>.SASPRT.PS
where <prefix> is the value of the SYSPREF= SAS option.

Directing Output to a Universal Printer

Sending Output to a UPRINTER Device
If you are using the SAS windowing environment, you can issue the DMPRINT

command in many windows, including the Log, Output, and Program Editor windows,
to send window contents to the Universal Printing default printer. You can also use the
FILENAME statement to associate a fileref with the default printer, using the device
type UPRINTER:

filename myuprt uprinter;

Once a fileref is associated with a printer, you can use that fileref in a PROC
PRINTTO statement to print the log or procedure output. For example, the following
statement directs any subsequent output to the default UPRINTER:

proc printto log=myuprt print=myuprt; run;

The fileref can also be used in other SAS statements that accept filerefs or in any
window command or field that accepts filerefs.

Note: The -ovp option (typically used when a PROC routes log output to a universal
printer) is incompatible with the UPRINTER driver. Messages are not overprinted. �

The PRINTERPATH SAS Option
Use the PRINTERPATH= SAS option to specify the destination printer for SAS print

jobs.

PRINTERPATH=(’printer-name’ fileref)

158 Setting Up a Universal Printer with PROC PRTDEF Chapter 7

printer-name
must be one of the defined printers. Quotation marks are required around the
printer name only when it contains blank spaces.

fileref
is an optional fileref. If a fileref is specified, it must be defined with a FILENAME
statement or external allocation. If a fileref is not specified, output is directed to
the destination defined in the printer definition or setup. Parentheses are required
only when a fileref is specified.

Note: The PRINTERPATH= option is an important option in batch processing. It
causes Universal Print drivers to be used for SAS/GRAPH and ODS PRINTER output
whenever it is set. �

Changing the Default Font
The font that is included in the definition of the current default printer is the font

used to generate output, unless you override it with the SYSPRINTFONT= system
option. SYSPRINTFONT= sets the font to use when printing to the current printer or
to the printer identified with the optional keywords NAMED or ALL. You can specify
SYSPRINTFONT= in your configuration file, at SAS invocation, or in an OPTIONS
statement.

The syntax is as follows:

SYSPRINTFONT=(face-name <weight> <style> <character-set> <point-size>
<NAMED printer-name | DEFAULT | ALL>)

See “Changing the Default Font” on page 152 for more information.

Setting Up a Universal Printer with PROC PRTDEF

Printer definitions can be created in batch mode for an individual or for all SAS users
at your site using PROC PRTDEF. The system administrator can create printer
definitions in the registry and make these printers available to all SAS users at your
site by using PROC PRTDEF with the SASHELP option. You can create printer
definitions for yourself by using PROC PRTDEF. Printer definitions that you create
with PROC PRTDEF, and without the SASHELP option, are stored in the SASUSER
registry. The complete syntax of the PROC PRTDEF statement is as follows:

PROC PRTDEF <DATA=SAS-data-set>
<SASHELP><LIST><REPLACE>;

DATA=
specifies a SAS data set that contains the printer definition records. The SAS data
set is required to have the variables name, model, device, and dest. The
variables hostopt, preview, protocol, trantab, lrecl, desc, and viewer are
optional. See “Required Variables” on page 159 and “Optional Variables” on page
159 for more information on these variables.

SASHELP
specifies the output location where the printer definitions are stored. Use this
option to specify whether the printer definitions are available to all users or just
the user who is running PROC PRTDEF. Specifying SASHELP makes the
definitions available to all users. You must have permission to write to the
SASHELP library. Otherwise, the definitions are stored in SASUSER and are
available to the users who are using that SASUSER library.

Universal Printing Setting Up a Universal Printer with PROC PRTDEF 159

LIST
specifies that a list of printers that were created or replaced is written to the log.

REPLACE
specifies that any printer name that already exists is to be modified using the
information in the printer definition data record.

The following sections contain information about the printer definition variables in
the input data set specified by DATA=.

Required Variables
name The name of the printer is the key for the printer definition record.

The name is limited to 80 characters. If a record contains a name
that already exists, the record is not processed unless the REPLACE
option has been specified. The printer name must have at least one
non-blank character and cannot contain a backslash. Leading and
trailing blanks are stripped from the name.

model For a valid list of prototypes or model descriptions, look in the SAS
registry editor, which can be invoked with the regedit command.
Once the SAS registry editor is open, follow the path

Core Printing Prototypes

to the list of prototypes. Or invoke the Print Setup window
(DMPRTSETUP) and select New to view the list that is displayed on
the second window of the Printer Definition wizard.

device Valid devices are listed in the third window of the Printer Definition
wizard and in the SAS registry editor under

Core Printing Device Types

The device column is not case-sensitive.

If you specify a device type of catalog, disk, ftp, socket, or
pipe, you must also specify the dest variable.

dest The destination name is limited to 256 characters. Whether this
name is case-sensitive depends on the type of device that is specified.

Optional Variables
hostopt The host options column is not case-sensitive. Host options are

limited to 256 characters.

preview This variable is not used on mainframe platforms. It is used to
specify the printer to use for print preview.

protocol This variable specifies the I/O protocol to use when sending output
to the printer. On IBM hosts, the protocol describes how to convert
the output to a format that can be processed by a protocol converter
that connects the mainframe to an ASCII device. See “Setting Up
Printers in Your Environment” on page 161 for further information
regarding the use of PROTOCOL.

trantab This variable specifies which translate table to use when sending
output to the printer. The translate table is needed when an
EBCDIC host sends data to an ASCII device. See “Setting Up

160 Sample PROC PRTDEF Jobs in z/OS Chapter 7

Printers in Your Environment” on page 161 for further information
regarding the use of TRANTAB.

lrecl This variable specifies the buffer size or record length to use when
sending output to the printer.

desc This variable specifies the description of the printer. It defaults to
the prototype used to create the printer.

viewer This variable is not used on mainframe platforms. It is used to
specify the host system command used during print previews.

Sample PROC PRTDEF Jobs in z/OS
The following examples provide details for using the PRTDEF procedure to define

Universal Printers in the z/OS environment.

Example 1: Defining PostScript, PCL, and PDF Universal Printers
The following SAS program provides an example of how to use PROC PRTDEF in the

z/OS operating environment to set up Universal Printing printer definitions.
The following example shows you how to set up various printers. The INPUT

statement contains the names of the four required variables. Each data line contains
the information that is needed to produce a single printer definition. The & specifies
that two or more blanks separate character values. This allows the name and model
value to contain blanks. The DATA= option on the PROC PRTDEF specifies PRINTERS
as the input data set that contains the printer attributes. PROC PRTDEF creates the
printer definitions for the SAS registry, and the USESASHELP option specifies that the
printer definitions will be available to all users.

data printers;
dest=’ ‘;
input name $& model $& device=’POINTER’ $& HOSTOPT $&;
datalines;
Myprinter PostScript Level 1 SYSOUT=T DEST=printer1
Laserjet PCL 5 Printer SYSOUT=T DEST=printer5
Color LaserJet PostScript Level 2 SYSOUT=T DEST=printer2
;

proc prtdef data=printers usesashelp;
run;

Note: SYSOUT=T indicates a binary queue, which is a queue that has no EBCDIC to
ASCII conversion. �

Example 2: Defining a Universal Printer for an E-Mail Message with a
PostScript Attachment

The following SAS program provides an example of how to use PROC PRTDEF in the
z/OS operating environment to set up a Universal Printing printer definition that
generates an e-mail message with a PostScript attachment.

data printers;
name=’email’;
protocol = ’None’;
model = ’PostScript Level 2 (color)’;

Universal Printing Setting Up Printers in Your Environment 161

device = ’email’;
dest = ’John.Doe@sas.com’;
hostopt = "recfm=vb Subject=’Weekly Report’

ct=’application/PostScript’ ";
run;

proc prtdef data=printers replace list; run;

Note: ct is an abbreviation for the MIME keyword content_type. �

Setting Up Printers in Your Environment
The following tables contain information on the required and optional variables that

you need to use to create different types of outputs. Use these option values when you
define variables for printing to a Universal Printer in a specific operating environment.

z/OS PostScript

Table 7.2 PostScript Variables

Print to a PostScript Printer Generate PostScript Output and Save to
a File

Model One of:

PostScript

Grayscale PostScript

Color PostScript

Duplex PostScript

PostScript Level 1

PostScript Level 2

One of:

PostScript

Grayscale PostScript

Color PostScript

Duplex PostScript

PostScript Level 1

PostScript Level 2

Device Type PRINTER DISK

Destination N/A Userid.sasprt.ps

Host Options sysout=t dest=<printer-address>* recfm=vb

Protocol ASCII ASCII

Translate Table NONE NONE

FTP N/A Binary

* SYSOUT=T indicates a binary queue, which is a queue that has no EBCDIC to ASCII conversion.
<printer-address> is the LAN queue name, such as PRT23LJ5.

162 Setting Up Printers in Your Environment Chapter 7

z/OS PCL

Table 7.3 PCL Variables

Print to a PCL Printer Generate PCL Output and
Save to a File

Model One of:

PCL4

PCL5

PCL5e

PCL5c

One of:

PCL4

PCL5

PCL5e

PCL5c

Device Type PRINTER DISK

Destination N/A Userid.sasprt.pcl

Host Options sysout=t dest=<printer-address>* recfm=vb

Protocol ASCII ASCII

Translate Table NONE NONE

FTP N/A Binary

* SYSOUT=T indicates a binary queue, which is a queue that has no EBCDIC to ASCII conversion.
<printer-address> is the LAN queue name, such as PRT23LJ5.

z/OS PDF

Table 7.4 PDF Variables

Generate PDF Output and Save to a File

Model PDF

Device Type DISK

Destination Userid.sasprt.pdf

Host Options recfm=vb

Protocol ASCII

Translate Table NONE

Buffer Size 255

FTP to PC Binary

Universal Printing Sample 1: ODS and a Default Universal Printer 163

Sample Programs and Summary
All of the sample programs access the SASLIB.HOUSES data set, which is shown in

“The SASLIB.HOUSES Data Set” on page 178. The first six sample programs execute
the same PROC PRINT using different combinations of output formats and printing
destinations. Sample 7 and Sample 8 use SAS/GRAPH code to execute PROC REG
followed by PROC GPLOT, again with different output formats and printing
destinations. See “Summary of Printing Examples” on page 179 for a summary of the
results.

The sample programs were developed on the z/OS platform, with a printer device of
PostScript output written to a file.

To generate output to other printer definitions, use the printers defined at your site,
or include your own printer definitions. See “Setting Up a Universal Printer with PROC
PRTDEF” on page 158 for more information.

Sample 1: ODS and a Default Universal Printer
Output: Default Universal Printer

Format: ODS

options linesize=80 nodate;
libname saslib ’.saslib.data’;

ods listing close;
ods printer;

title1 ’ods and up default’;

proc print data=saslib.houses;
format price dollar10.0;

run;

ods printer close;

The following output shows the results of this code.

164 Sample 2: ODS and the PRINTERPATH System Option Chapter 7

Sample 2: ODS and the PRINTERPATH System Option
Output: Universal Printer ’Postscript’

Format: ODS

options linesize=80 nodate;
libname saslib ’.saslib.data’;

options printerpath = PostScript;
ods listing close;
ods printer;

Universal Printing Sample 2: ODS and the PRINTERPATH System Option 165

title1 ’ods and printerpath (no fileref)’;

proc print data=saslib.houses;
format price dollar10.0;

run;

ods printer close;

The following output shows the results of this code.

166 Sample 3: ODS and the PRINTERPATH System Option (with FILEREF) Chapter 7

Sample 3: ODS and the PRINTERPATH System Option (with FILEREF)
Output: File ’.sasprt.out’ with the characteristics of the

Universal Printer ’Postscript’

Format: ODS

options linesize=80 nodate;
libname saslib ’.saslib.data’;

filename outlist ’.sasprt.out’;
options printerpath = (’Postscript’ outlist);
ods listing close;
ods printer;

title1 ’ods and up file’;
title2 ’printerpath with fileref’;

proc print data=saslib.houses;
format price dollar10.0;

run;

ods printer close;

The following output shows the results of this code.

Universal Printing Sample 4: PRINTERPATH and FILENAME UPRINTER Statement 167

Sample 4: PRINTERPATH and FILENAME UPRINTER Statement

The following example code uses a line printer to format output to a PostScript printer.
Because no font is specified, the font that is used is the default 12-point Courier font.

Output: Universal Printer ’Postscript’

Output
Format:

LINE PRINTER

168 Sample 5: SAS/GRAPH: ODS and PRINTERPATH System Option Chapter 7

options linesize=80 nodate;
libname saslib ’.saslib.data’;

title1 ’proc printto’;
title2 ’filename upr and printerpath’;

options printerpath = Postscript;
filename upr uprinter;

proc printto print=upr; run;

proc print data=saslib.houses;
format price dollar10.0;

run;

The following output shows the results of this code.

1 proc printto 1
filename upr and printerpath

style sqfeet brs baths price

CONDO 1400 2 1.5 $80,050
CONDO 1390 3 2.5 $79,350
CONDO 2105 4 2.5 $127,150
CONDO 1860 2 2.0 $110,700
CONDO 1350 2 2.0 $77,000
CONDO 2000 4 2.5 $125,000
CONDO 1800 2 2.0 $109,250
RANCH 1250 2 1.0 $64,000
RANCH 1500 3 3.0 $86,650
RANCH 1535 3 3.0 $89,100
RANCH 720 1 1.0 $35,000
RANCH 1300 2 1.0 $70,000
RANCH 1500 3 3.0 $86,000
RANCH 1100 2 1.0 $60,000
SPLIT 1190 1 1.0 $65,850
SPLIT 1615 4 3.0 $94,450
SPLIT 1305 3 1.5 $73,650
SPLIT 1200 1 1.0 $66,000
SPLIT 1590 3 2.0 $92,000
SPLIT 1100 1 1.0 $62,250
SPLIT 1400 3 2.5 $78,800
TWOSTORY 1810 4 3.0 $107,250
TWOSTORY 1040 2 1.0 $55,850
TWOSTORY 1240 2 1.0 $69,250
TWOSTORY 1745 4 2.5 $102,950
TWOSTORY 1800 4 2.5 $106,250
TWOSTORY 1300 2 1.0 $70,000
TWOSTORY 1700 4 3.0 $100,250

Sample 5: SAS/GRAPH: ODS and PRINTERPATH System Option
Output: File ’.graphip.ps’ with the characteristics of the

Universal Printer ’Postscript’

Universal Printing Sample 5: SAS/GRAPH: ODS and PRINTERPATH System Option 169

Format: ODS

options nodate;
goptions reset=all;
libname saslib ’.saslib.data’;

filename out ’.graphip.ps’;
options printerpath=(Postscript out);
ods listing close;
goptions device=sasprtc;
ods printer;

footnote "ODS and Universal Printer";
title1 "Linear Regression";
title2 "Results";

proc reg data=saslib.houses;
/* Regression model */

Linear_Regression_Model: MODEL price = sqfeet / ;

/* output dataset to use as input for plots */
output out = WORK._PLOTOUT

predicted = _predicted1
residual = _residual1
student = _student1
rstudent = _rstudent1;

run;
quit;

title1 "Regression Analysis";
title2 "Plots";
axis1 major=(number=5) width=1;
axis3 major=(number=5) offset=(5 pct) width=1;

proc gplot data=WORK._PLOTOUT;
where price is not missing and

sqfeet is not missing;

/* ********* PREDICTED plots ********* */

title9 "Observed price by Predicted price";
symbol1 C=GREEN V=DOT height=2PCT interpol=NONE L=1 W=1;
label _predicted1 = "Predicted price";
where price is not missing and _predicted1 is not missing;
plot price * _predicted1 /

vaxis=AXIS1 vminor=0 haxis=AXIS3 hminor=0
description = "Observed price by Predicted price";

run;

/* ********* RESIDUAL plots ********* */

title9 "Studentized Residuals of price by Predicted price";
symbol1 C=GREEN V=DOT height=2PCT interpol=NONE L=1 W=1;
label _rstudent1 = "Residuals";
label _predicted1 = "Predicted price";

170 Sample 5: SAS/GRAPH: ODS and PRINTERPATH System Option Chapter 7

where _rstudent1 is not missing and _predicted1 is not missing;
plot _rstudent1 * _predicted1 /

vaxis=AXIS1 vminor=0 haxis=AXIS3 hminor=0 vref=0
description = "Studentized Residuals of price by Predicted price";

run;
symbol;

quit;

proc delete data=WORK._PLOTOUT; run;
title; footnote; run;

ods printer close;

The following output shows the results of PROC REG.

The following output shows the “Observed price by Predicted price” plot for this
sample:

Universal Printing Sample 5: SAS/GRAPH: ODS and PRINTERPATH System Option 171

The following output shows the “Studentized Residuals of price by Predicted price”
plot for this sample:

172 Sample 6: SAS/GRAPH: No ODS or PRINTERPATH System Option Chapter 7

Sample 6: SAS/GRAPH: No ODS or PRINTERPATH System Option
Output: File ’.graphip.ps’

Format: As specified by the SAS/GRAPH device driver

options linesize=80 nodate;
goptions reset=all;
filename out ’.graphip.ps’;
goptions device=ps gsfname=out;
libname saslib ’.saslib.data’;

footnote "Regular SAS/Graph PS Output; no ODS, no Universal Printer";
title1 "Linear Regression";
title2 "Results";

proc reg data=saslib.houses;
/* Regression model */

Linear_Regression_Model: MODEL price = sqfeet / ;

Universal Printing Sample 6: SAS/GRAPH: No ODS or PRINTERPATH System Option 173

/* output dataset to use as input for plots */
output out = WORK._PLOTOUT

predicted = _predicted1
residual = _residual1
student = _student1
rstudent = _rstudent1;

run;
quit;

title1 "Regression Analysis";
title2 "Plots";
axis1 major=(number=5) width=1;
axis3 major=(number=5) offset=(5 pct) width=1;

proc gplot data=WORK._PLOTOUT;
where price is not missing and

sqfeet is not missing;

/* ********* PREDICTED plots ********* */

title9 "Observed price by Predicted price";
symbol1 C=GREEN V=DOT height=2PCT interpol=NONE L=1 W=1;
label _predicted1 = "Predicted price";
where price is not missing and _predicted1 is not missing;
plot price * _predicted1 /

vaxis=AXIS1 vminor=0 haxis=AXIS3 hminor=0
description = "Observed price by Predicted price";

run;

/* ********* RESIDUAL plots ********* */

title9 "Studentized Residuals of price by Predicted price";
symbol1 C=GREEN V=DOT height=2PCT interpol=NONE L=1 W=1;
label _rstudent1 = "Residuals";
label _predicted1 = "Predicted price";
where _rstudent1 is not missing and _predicted1 is not missing;
plot _rstudent1 * _predicted1 /

vaxis=AXIS1 vminor=0 haxis=AXIS3 hminor=0 vref=0
description = "Studentized Residuals of price by Predicted price";

run;
symbol;

quit;

proc delete data=WORK._PLOTOUT; run;
title; footnote; run;

The following output shows the results of PROC REG. This output appears in the SAS
Output window.

1 Linear Regression 1

Results

174 Sample 6: SAS/GRAPH: No ODS or PRINTERPATH System Option Chapter 7

The REG Procedure

Model: Linear_Regression_Model

Dependent Variable: price

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 12798244470 12798244470 3791.82 <.0001

Error 26 87755798 3375223

Corrected Total 27 12886000268

Root MSE 1837.17800 R-Square 0.9932
Dependent Mean 83716 Adj R-Sq 0.9929
Coeff Var 2.19453

Parameter Estimates
Parameter Standard

Variable DF Estimate Error t Value Pr > |t|
Intercept 1 -16246 1660.05685 -9.79 <.0001
sqfeet 1 68.52572 1.11283 61.58 <.0001

Regular SAS/GRAPH PS Output; no ODS, no Universal Printer

The following output shows the “Observed price by Predicted price” plot for this sample.
The two graphs are written to .GRAPHICS.PS.

Universal Printing Sample 6: SAS/GRAPH: No ODS or PRINTERPATH System Option 175

The following output shows the “Studentized Residuals of price by Predicted price”
plot for this sample:

176 Sample 6: SAS/GRAPH: No ODS or PRINTERPATH System Option Chapter 7

The following output shows the “Observed price by Predicted price” plot for this
sample. The two graphs are written to a PostScript file.

Universal Printing Sample 6: SAS/GRAPH: No ODS or PRINTERPATH System Option 177

The following output shows the “Studentized Residuals of price by Predicted price”
plot for this sample:

178 The SASLIB.HOUSES Data Set Chapter 7

The SASLIB.HOUSES Data Set

The SASLIB.HOUSES data set contains the data used by the sample programs in
this section.

libname saslib ’.saslib.data’;
data saslib.houses;

input style $ 1-8 sqfeet 15-19 brs 22 baths 25-27 price 30-38;
datalines;

CONDO 1400 2 1.5 80050
CONDO 1390 3 2.5 79350
CONDO 2105 4 2.5 127150
CONDO 1860 2 2 110700
CONDO 1350 2 2 77000
CONDO 2000 4 2.5 125000
CONDO 1800 2 2 109250
RANCH 1250 2 1 64000
RANCH 1500 3 3 86650

Universal Printing Summary of Printing Examples 179

RANCH 1535 3 3 89100
RANCH 720 1 1 35000
RANCH 1300 2 1 70000
RANCH 1500 3 3 86000
RANCH 1100 2 1 60000
SPLIT 1190 1 1 65850
SPLIT 1615 4 3 94450
SPLIT 1305 3 1.5 73650
SPLIT 1200 1 1 66000
SPLIT 1590 3 2 92000
SPLIT 1100 1 1 62250
SPLIT 1400 3 2.5 78800
TWOSTORY 1810 4 3 107250
TWOSTORY 1040 2 1 55850
TWOSTORY 1240 2 1 69250
TWOSTORY 1745 4 2.5 102950
TWOSTORY 1800 4 2.5 106250
TWOSTORY 1300 2 1 70000
TWOSTORY 1700 4 3 100250
run;

Summary of Printing Examples

Example Where Printed Output
Format

ods listing close;
ods printer;
proc print data=saslib.houses; run;
ods printer close;

Default Universal Printer ODS

options printerpath=MYPRINT;
ods listing close;
ods printer;
proc print data=saslib.houses; run;
ods printer close;

Universal Printer
MYPRINT

ODS

filename MYFILE ".myfile.out";
options printerpath= (Postscript MYFILE);
ods listing close;
ods printer;
proc print data=saslib.houses; run;
ods printer close;

File .MYFILE.OUT with
the characteristics of the
Universal Printer
“Postscript”

ODS

options printerpath=MYPRINT;
filename upr uprinter;
proc printto print=upr; run;
proc print data=saslib.houses; run;

Universal Printer
MYPRINT

Line Printer1

filename upr uprinter;
proc printto print=upr; run;
proc print data=saslib.houses; run;

Default Universal Printer Line Printer1

180 Summary of Printing Examples Chapter 7

Example Where Printed Output
Format

options printerpath=MYPRINT;
ods listing close;
ods printer;
goptions device=sasprtc; *
proc reg data=saslib.houses; run;
proc gplot; run;
ods printer close;

Universal Printer
MYPRINT

ODS

filename OUT ".graphip.ps";
goptions device=ps gsfname=OUT;
proc reg data=saslib.houses; run;
proc gplot; run;

File .GRAPHIP.SAS As specified
by the
SAS/GRAPH
device driver

options printerpath=postscript
device=sasprtc;
proc gplot; run;

Universal Printer
Postscript file .SASPRT.PS

SAS/GRAPH

1 The default font is 12-point Courier unless otherwise specified.
* goptions device= is needed only in batch mode.

181

P A R T2

Application Considerations

Chapter 8.SAS Interfaces to ISPF and REXX 183

Chapter 9.Data Representation 207

Chapter 10.Optimizing Performance 211

182

183

C H A P T E R

8
SAS Interfaces to ISPF and REXX

SAS Interface to ISPF 184

Software Requirements 184
Enabling the Interface 184

Invoking ISPF Services 184

Using the ISPEXEC CALL Routine 185
Using the ISPLINK CALL Routine 186

Testing ISPEXEC and ISPLINK Return Codes 186

Using ISPF Dialog Development Models 186
Using Special SAS System Options with the Interface 186

Changing the Status of ISPF Interface Options during Execution of a DATA Step 187
Using the ISPF Editor from Your SAS Session 188

Copying ISPF EDIT Models to Your SAS Session 188

Using Special Facilities for Passing Parameters to ISPF 189
Variable-Naming Conventions 189

Specifying Fixed Binary Parameters 189

Passing Parameters That Are Longer Than 200 Bytes 190
Bypassing Parameter Processing 190

Accessing SAS Variables from ISPF 190
VDEFINE, VDELETE, and VRESET Services 190

Handling Numeric Variables 191

Handling Character Variables 191
Examples of Defining Variables 192

Tips and Common Problems 193

Checking for Invalid Values in SAS Variables 193
Checking for Null Values in ISPF Variables 193

Truncated Values for Numeric Variables 193
Uninitialized Variables 193

Character Values Passed for Numeric Variables 194

Testing ISPF Applications 194
Sample Application 194

Employee Records Application 194

Contents of Member SASEMPLA in ISPPLIB 195
First Employee Record Application Panel 196

Contents of Member SASEMPLB in ISPPLIB 196
Second Employee Record Application Panel 198

Contents of Member SASX21 in ISPMLIB 198

SAS Interface to REXX 199
Enabling the Interface 199

Invoking a REXX Exec 199

Interacting with the SAS Session from a REXX Exec 200
Routing Messages from REXX Execs to the SAS Log 200

184 SAS Interface to ISPF Chapter 8

The GETEXEC DATA Step Function 201

The PUTEXEC DATA Step Routine 201
Checking Return Codes in REXX Execs 201

Changing the Host Command Environment 202

Comparing the REXX Interface to the X Statement 202
Comparing SAS REXX Execs to ISPF Edit Macros 202

Examples of REXX Execs 203

A Simple REXX Exec 203
Using the GETEXEC DATA Step Function 203

Using the PUTEXEC DATA Step Routine 204
Checking the SAS Return Code in a REXX Exec 205

SAS Interface to ISPF
The SAS interface to ISPF consists of CALL routines, system options, and other

facilities that enable you to write interactive ISPF applications in the SAS language or
in a combination of the SAS language and other languages that are supported by ISPF.
This interface replaces the Version 5 product, SAS/DMI. It provides access to ISPF both
from the windowing environment and from SAS Component Language (SCL).

Using this interface, you can implement interactive applications that can be used
even by novice users. Users need only know how to log on to a 3270 or 3290 terminal.
All other information can be supplied as part of the application itself.

For SAS programmers, using this interface is often preferable to using other
languages to implement interactive ISPF applications because existing SAS data files
and applications can be exploited. The interface also reduces the need for the SAS
programmer to learn another language.

For detailed information about ISPF, see the IBM documents ISPF Dialog
Developer’s Guide and Reference and ISPF Reference Summary.

Software Requirements
The following table summarizes the software requirements for using the interface.

Table 8.1 Software Requirements for Using the SAS Interface to ISPF

Software Version Required

Base SAS Software SAS Release 6.08 or later

Operating Environment MVS/SP Version 2 or later, TSO/E Version 2 or later

ISPF ISPF Version 2 or later

Enabling the Interface
The interface is available to you whenever you invoke SAS in the z/OS environment

under ISPF. There is no separate procedure for enabling the interface.

Invoking ISPF Services
The interface provides CALL routines that enable you to use ISPF services from a

SAS DATA step. The ISPF services facilitate many other tasks. For example, they

SAS Interfaces to ISPF and REXX Invoking ISPF Services 185

provide an efficient way to convert SAS files to ISPF tables and ISPF tables to SAS
files. They also enable display input to be validated by the ISPF panel processing
section and/or by the SAS DATA step, giving cross-variable-checking capability.

The IBM documents ISPF Dialog Developer’s Guide and Reference and ISPF
Reference Summary describe the ISPF services and their syntax conventions. To invoke
these services, you can use either the ISPLINK CALL routine or the ISPEXEC CALL
routine. However, ISPEXEC has the following limitations:

� The following ISPF services cannot be invoked from ISPEXEC:

GRERROR

GRINIT

GRTERM

VCOPY

VDEFINE

VDELETE

VREPLACE

VRESET

� The SAS services described in “Changing the Status of ISPF Interface Options
during Execution of a DATA Step” on page 187 cannot be invoked from ISPEXEC.

� You cannot use abbreviated variable lists (described in “Variable-Naming
Conventions” on page 189) with ISPEXEC.

Remember that ISPF restricts a name list to 254 names.

Using the ISPEXEC CALL Routine

To invoke ISPEXEC from a SAS DATA step, use a CALL statement with one of
these formats:

call ispexec(value1,value2);

call ispexec(,value2);

call ispexec(value2);

where value1 and value2 are variables, literals, or expressions to be passed as
parameters to ISPF. Use the same parameters that you would use with an ISPF
ISPEXEC. Value1, if specified, is the length of value2. If you use the second or third
form of the call, the ISPF interface provides this value. Value2 is a character string
that contains the service name and parameters, specified as they would be in a CLIST.
Parameters can be specified as symbolic ISPF variables that will be replaced with the
ISPF variable values at run time. Only one scan for symbolic variables is done, and the
resulting service request must not exceed 512 bytes in length.

Note: If you use symbolic ISPF variables, remember that both SAS and ISPF use
ampersands to define symbolic variables. Enclose the ISPF symbolic variable
specifications in single quotation marks to prevent them from being replaced by SAS. �

186 Using Special SAS System Options with the Interface Chapter 8

Using the ISPLINK CALL Routine
To invoke ISPLINK from a SAS DATA step, use a CALL statement with this format:

call isplink(value1,...,value15);

where value1,...,value15 are variables, literals, or expressions to be passed as
parameters to ISPF. You use the same parameters that you would use with an ISPF
ISPLINK. See “Using Special Facilities for Passing Parameters to ISPF” on page 189
for a description of special parameter considerations.

Trailing blanks are sometimes used by ISPF to determine the end of a parameter;
they are optional because the interface supplies them. If more than 15 positional
parameters are required (for example, TBSTATS can have up to 17 parameters),
parameters 15 through 20 can be specified in value15. The values must be separated by
commas. The interface will parse value15 into parameters 15 through 20.

Testing ISPEXEC and ISPLINK Return Codes
Each ISPEXEC or ISPLINK CALL subroutine results in a return code that is

described in IBM’s ISPF Dialog Developer’s Guide and Reference manual. You can test
the return code with the SAS numeric variable ISP_RC. Because this variable is set by
ISPEXEC or ISPLINK, the SAS compiler produces a Note: Variable varname is
uninitialized message. To avoid receiving this message, specify the following SAS
statement in your program:

retain isp_rc 0;

Using ISPF Dialog Development Models
A standard ISPF function called Dialog Development Models uses the ISPF EDIT

facility to simplify the development of programs. (See the chapter on "Using Edit
Models" in the IBM manual ISPF Edit and Edit Macros. See also “Using the ISPF
Editor from Your SAS Session” on page 188 and “Copying ISPF EDIT Models to Your
SAS Session” on page 188.)

If you specify PL/I as the model class, the statements that the model facility produces
will be in the proper SAS form. To simplify the use of the Dialog Development Models,
the PL/I return code variable, PLIRETV, is recognized and used by the interface in the
same way as ISP_RC. The following examples could have been created using the
SELECT Edit model:

data _null_;
call ispexec(’SELECT PANEL(ISR@PRIM)’);
if pliretv = 0 then put pliretv=;

run;

data _null_;
call isplink(’SELECT’,’ ’,’PANEL(ISR@PRIM)’);
if pliretv = 0 then put pliretv=;

run;

Using Special SAS System Options with the Interface
The SAS interface to ISPF includes the following SAS system options. These options

are useful in developing and debugging ISPF applications. Most of them are used in
conjunction with the ISPF VDEFINE service, which is described in “VDEFINE,
VDELETE, and VRESET Services” on page 190.

SAS Interfaces to ISPF and REXX Using Special SAS System Options with the Interface 187

ISPCAPS

ISPCHARF

ISPCSR=

ISPEXECV=

ISPMISS=

ISPMSG=

ISPNOTES

ISPNZTRC

ISPPT

ISPTRACE

ISPVDEFA

ISPVDLT

ISPVDTRC

ISPVIMSG=

ISPVRMSG=

ISPVTMSG=

ISPVTNAM=

ISPVTPNL=

ISPVTRAP

ISPVTVARS=

To determine which of these options are in effect for your SAS session, submit the
following statements from the Program Editor window and view the output in the Log
window.

proc options group=ispf;
run;

You specify these options as you would specify any other SAS system option. See
“Specifying or Changing System Option Settings” on page 11. For detailed information
about these options, see “System Options in the z/OS Environment” on page 410.

Changing the Status of ISPF Interface Options during Execution of a DATA
Step

You can use the interface’s SAS service in conjunction with the ISPLINK CALL
routine to change the status of some of the SAS system options that relate to the ISPF
interface. For example, the following ISPLINK CALL specifies the ISPNZTRC system
option:

call isplink (’SAS’,’ISPNZTRC’);

The system options whose status can be changed in this manner are listed in Table
8.2 on page 188. See Chapter 18, “System Options under z/OS,” on page 407 for
detailed descriptions of these options.

Note: For compatibility with SAS/DMI, you can use the DMI service to change the
status of the corresponding system option. �

188 Using the ISPF Editor from Your SAS Session Chapter 8

Table 8.2 SAS Services and Their SAS/DMI Equivalents

SAS Service Equivalent DMI Service

(’SAS’,’ISPCAPS’) (’DMI’,’CAPS’)

(’SAS’,’NOISPCAPS’) (’DMI’,’NOCAPS’)

(’SAS’,’ISPCHARF’) (’DMI’,’CHARFORMATTED’)

(’SAS’,’NOISPCHARF’) (’DMI’,’NOCHARFORMATTED’)

(’SAS’,’ISPNOTES’) (’DMI’,’NOTES’)

(’SAS’,’NOISPNOTES’) (’DMI’,’NONOTES’)

(’SAS’,’ISPNZTRC’) (’DMI’,’NZRCTRACE’)

(’SAS’,’NOISPNZTRC’) (’DMI’,’NONZRCTRACE’)

(’SAS’,’ISPPT’) (’DMI’,’PT’)

(’SAS’,’NOISPPT’) (’DMI’,’NOPT’)

(’SAS’,’ISPTRACE’) (’DMI’,’TRACE’)

(’SAS’,’NOISPTRACE’) (’DMI’,’NOTRACE’)

(’SAS’,’ISPVDTRC’) (’DMI’,’VDEFTRACE’)

(’SAS’,’NOISPVDTRC’) (’DMI’,’NOVDEFTRACE’)

(’SAS’,’ISPVDLT’) (’DMI’,’VDELVDEF’)

(’SAS’,’NOISPVDLT’) (’DMI’,’NOVDELVDEF’)

(’SAS’,’ISPVTRAP’) (’DMI’,’VTRAP’)

(’SAS’,’NOISPVTRAP’) (’DMI’,’NOVTRAP’)

Using the ISPF Editor from Your SAS Session
If you prefer to use the ISPF editor rather than the SAS editor, or if you need to use

the ISPF editor in order to use edit models (see the next section, “Copying ISPF EDIT
Models to Your SAS Session” on page 188), you can use the SAS HOSTEDIT command.
Under z/OS, the HOSTEDIT command temporarily suspends the current SAS session
and initiates a session of the ISPF editor or browser. See “HOSTEDIT Command” on
page 561 for details.

Copying ISPF EDIT Models to Your SAS Session
A major advantage of being able to access the ISPF editor with the HOSTEDIT

command is that it enables you to access ISPF EDIT models, modify them as necessary,
and then copy them to your SAS Program Editor window.

To access an ISPF EDIT model, do the following:
1 Invoke SAS from ISPF and enter HOSTEDIT on the command line of the Program

Editor window.
2 Enter MODEL CLASS PLI on the ISPF editor command line.
3 Enter MODEL plus the model name to include a particular model (for example,

MODEL TBDISPL), or enter MODEL alone and specify a model from the list of EDIT
models that appears.

You can then modify the model as necessary and use the END command to save it
back to your Program Editor window.

SAS Interfaces to ISPF and REXX Using Special Facilities for Passing Parameters to ISPF 189

For more information about the ISPF EDIT facility and EDIT models, refer to the
IBM manual ISPF Edit and Edit Macros.

Using Special Facilities for Passing Parameters to ISPF
The interface provides special facilities and services that simplify the coding and

processing of parameters for ISPF services. These facilities include
� variable-naming conventions that simplify the specification of variables to ISPF
� methods for specifying fixed binary parameters
� a way to pass parameters that are longer than the usual 200-byte limit
� a way to bypass parameter processing.

Variable-Naming Conventions
To simplify the specification of variables to ISPF, the interface recognizes _ALL_ or

an asterisk (*) to reference all variable names. Variable names can also be selected by
their prefixes. When a name ends in a colon, all variables that begin with the specified
name are referenced.

You can also use other types of SAS variable lists, including numbered range lists
(for example, x1-xn) and name range lists (x-numeric-a), as described in the section
about rules of the SAS language in SAS Language Reference: Concepts.

When a variable list is passed to the VDEFINE service (see “VDEFINE, VDELETE,
and VRESET Services” on page 190), the special naming conventions refer to all
variables in the current DATA step that are legal ISPF variable names. (Note: A name
that contains an underscore is not a legal ISPF variable name.) SAS arrays, temporary
DATA step variables such as FIRST.variable and LAST.variable, and the variable
PLIRETV are not considered candidates for VDEFINE. The special naming conventions
for services other than VDEFINE refer only to the list of currently defined variables
and not to all of the variables in the DATA step.

Specifically, the special variable-naming conventions can be used in the following
places:

� in the second parameter for the VCOPY, VDEFINE, VDELETE, VERASE, VGET,
VMASK, VPUT, and VREPLACE services

� in the third parameter for the TBADD, TBCREATE, TBMOD, TBPUT, TBSARG,
and TBSCAN services

� in the fourth parameter for the TBCREATE service.

Specifying Fixed Binary Parameters
The interface supports the use of simple numeric constants or variables in ISPF

service parameters for services that require numeric parameters. However, for
compatibility with SAS/DMI, the following two ways of creating full-word fixed binary
parameters in SAS DATA steps are also supported:

length fixed10 $4;
retain fixed10;
if _n_=1 then fixed10=put(10,pib4.);

or

retain fixed10 ’0000000a’x;

In addition, you can specify a hexadecimal value as a literal parameter by enclosing
the value in single or double quotation marks and entering the letter X after the closing
quotation mark.

190 Accessing SAS Variables from ISPF Chapter 8

Some of the services that have numeric parameters are CONTROL, TBDISPL,
TBCREATE, TBQUERY, TBSKIP, VDEFINE, and VCOPY.

Note: Never use a blank or null value for a numeric parameter. �

The ISPF SELECT service has a special parameter list because it requires a
full-word fixed binary parameter that specifies the length of the buffer. The SAS
interface to ISPF provides this length parameter, but if you use the ISPLINK CALL
routine to invoke the SELECT service, then you must reserve the parameter’s place in
the parameter list. Use either a comma or two single quotation marks with a blank
between them (’ ’) to represent the parameter, as in the following example:

isplink(’SELECT’, ,’CMD(%MYDIALOG)’);

If you use the ISPEXEC CALL routine to invoke the SELECT service, then you do
not need to reserve the parameter’s place:

ispexec(’SELECT CMD(%MYDIALOG)’);

Passing Parameters That Are Longer Than 200 Bytes
Previous releases of SAS limit the length of a CALL routine parameter to 200 bytes,

but it is sometimes necessary to pass more than 200 bytes as an ISPF service request
parameter. For this reason, the interface has a special parameter form that allows
parameters up to 65,535 bytes long for both ISPLINK and ISPEXEC calls.

When a parameter longer than 200 bytes is required, use the following form in place
of the parameter:

=varname=length

where varname is the name of a SAS character variable in the current DATA step, and
length is the length of varname, expressed as a two-byte binary value. Blanks are not
permitted before or after the equal signs.

Using this parameter form does not change ISPF parameter restrictions. For
example, ISPEXEC allows a maximum of 512 bytes in its second parameter regardless
of how you specify the parameter.

Bypassing Parameter Processing
There may be times when parameters must be passed to ISPF without modification.

If the interface encounters a parameter whose first position contains a PL/I "not"
symbol (), then the parameter that follows the "not" symbol is passed to ISPF
unchanged. This facility prevents the parameter from being translated to uppercase
and prevents names from being replaced within the parameter.

Accessing SAS Variables from ISPF
This section describes how the SAS interface to ISPF processes three ISPF

services—VDEFINE, VDELETE, and VRESET. These services are used to grant and
revoke ISPF access to variables in the SAS DATA step. This section also provides an
explanation of how SAS numeric and character variables are handled by VDEFINE,
and it includes examples of how VDEFINE and VDELETE are used.

VDEFINE, VDELETE, and VRESET Services
The ISPF VDEFINE service is used to give ISPF access to variables in the SAS

DATA step. When you call the VDEFINE service, the interface adds the SAS variables
that you specify to its list of defined variables.

SAS Interfaces to ISPF and REXX Accessing SAS Variables from ISPF 191

The ISPF VDEFINE service allows you to specify seven parameters. The form is

’VDEFINE’, namelist, variable, format,
length, optionlist, userdata

The interface provides the values for variable, format, length, and userdata. You need
only specify namelist.

The optionlist parameter is optional and can be used when you are defining either
SAS character variables or SAS numeric variables. The two VDEFINE options that you
can specify are COPY and NOBSCAN. The LIST option is not supported. COPY allows
the value of the variable that is being defined to be initialized to the value of a dialog
variable that has the same name in the function pool, shared pool, or profile pool. The
NOBSCAN option prevents ISPF from stripping trailing blanks from variables.

To define all SAS variables in the current DATA step, use the following statement:

call isplink(’VDEFINE’,’_ALL_’);

For more information about specifying variables, see “Variable-Naming Conventions”
on page 189.

The VDELETE service ends ISPF access to specified variables in the SAS DATA step,
and the interface drops the variables from the list of defined variables that it
maintains. The interface recognizes the end of a SAS DATA step and deletes any
variables that remain on its list of defined variables.

The VRESET service ends ISPF access to all variables that have been passed to the
VDEFINE service. However, in addition to removing all variables that the user has
passed to VDEFINE, VRESET also removes variables that the interface has passed to
VDEFINE. To prevent variables that it is using from being removed, the interface
changes VRESET to (’VDELETE’,’_ALL_’).

Handling Numeric Variables
Numeric SAS variables are in double-word floating-point format. You may pass

them to the VDEFINE service with either the FLOAT format or the USER format. If
you use the FLOAT format, you should specify (or let the interface provide) a length of
8, because all SAS numeric variables have a length of 8 during the execution of the SAS
DATA step. *

Note: When the FLOAT format is used, certain features of the SAS interface to
ISPF are unavailable: SAS formats and informats that are associated with the variable
are not used, null values are not changed to the special missing value "._" (period
underscore), and accessing of variables cannot be traced with the ISPVTRAP option. �

Because earlier releases of ISPF did not support the FLOAT format, SAS (and
previously SAS/DMI) supports the use of the USER format. If you specify the USER
format, or if you let SAS default to it, then SAS provides a user exit that uses any
format and/or informat associated with the variable. If no format or informat is
associated with the variable, then the default SAS format or informat is used.

Handling Character Variables
In addition to containing strings of printable characters, SAS character variables can

actually contain any data value. Hence, you may use any valid ISPF VDEFINE format
with a SAS character variable. ISPF treats the variable accordingly. Within the SAS

* For numeric variables, the LENGTH statement applies to the length of the variables when they are stored in a SAS data
set, not to the length of the variables in memory while the DATA step is executing.

192 Accessing SAS Variables from ISPF Chapter 8

DATA step, the SAS functions INPUT or PUT can be used to perform data conversion
as required. The SAS system option ISPCHARF | NOISPCHARF determines whether
explicit SAS informats and formats are used to convert SAS character variable values
when they are used as ISPF variables. The following list explains how this option
determines whether the SAS variable formats are to be used when a variable is passed
to the VDEFINE service:

� If the system option NOISPCHARF is in effect when a SAS character variable is
passed to the VDEFINE service, the SAS character variable is defined to ISPF
with a format of CHAR, and both ISPF and SAS reference and modify the values
of these variables directly in main storage.

� If the system option ISPCHARF is in effect when a SAS character variable is
passed to the VDEFINE service, and if the SAS variable has an explicit SAS
informat or format, then the SAS character variable is defined to ISPF with a
format of USER, and the interface uses the SAS informat or format in its
conversion routine whenever ISPF references the variable. The interface also
applies the following rules:

� If the variable contains an invalid value for the SAS informat, the variable is
set to the value of the system option MISSING=.

� If the variable contains an invalid value for the SAS format, ISPF receives
the value of the system option MISSING= for the variable.

� If no value is specified for an ISPF character variable, the variable is set to
the value of the ISPMISS= option.

If an application requires an ISPF dialog variable that is longer than the maximum
SAS character variable length of 32,767, then the length parameter of VDEFINE can be
specified and associated with the variables that are being defined to ISPF. In order to
prevent the data from being overwritten, you must do the following:

� Create multiple variables whose total length equals or exceeds the length required.
� Ensure that the SAS compiler assigns storage for the variables contiguously by

using SAS ARRAY statements to arrange the variables as needed. Either all or
none of the variables must be specified in the RETAIN statement.

It is good practice to code the SAS ARRAY and RETAIN statements for these
extra-long variables immediately following the SAS DATA statement.

The following example shows how ISPF dialog variables named LONG1 and LONG2,
each 32,000 bytes long, would be defined.

data _null_;
array anyname1 $32000 long1 long1_c;
array anyname2 $32000 long2 long2_c;
retain long1 long1_c long2 long2_c ’ ’;
call isplink(’VDEFINE’,’(LONG1 LONG2)’,,,64000);

Examples of Defining Variables
The following statement defines to ISPF all variables in the current DATA step that

begin with the letters PPR:

call isplink(’VDEFINE’,’PPR:’);

The next statement defines the variables SASAPPLN, ZCMD, and ZPREFIX to ISPF.
The variables are to be initialized with the values from variables of the same name that
already exist in the variable pools.

call isplink(’VDEFINE’,
’(SASAPPLN ZCMD ZPREFIX)’,,,,’COPY’);

SAS Interfaces to ISPF and REXX Tips and Common Problems 193

This next statement removes all previously defined variables from the variable pool,
making them inaccessible to ISPF:

call isplink(’VDELETE’,’_ALL_’);

Tips and Common Problems

Checking for Invalid Values in SAS Variables

If a SAS variable in an ISPF table or display has a specified informat, invalid values
are replaced with missing values. When you create ISPF panels through which a user
can enter or modify SAS values, the values can be checked for validity either with the
action section of the panel or with the SAS DATA step. If missing values are not
appropriate, you can redisplay the panel (along with an appropriate error message) and
prompt the user to re-enter the invalid values correctly.

Checking for Null Values in ISPF Variables

The special missing value of underscore indicates an ISPF variable with a length of
0. (Null values are valid for ISPF values.) The special missing value of underscore
distinguishes between an invalid value from an informat (which will have a missing
value) and a value that was not provided.

Truncated Values for Numeric Variables

To avoid truncating the values of numeric variables, you must either provide a
format whose length does not exceed the size of the display field, or you must increase
the length of the display field itself. If no format is associated with a numeric variable,
the default format width is 12 characters.

Uninitialized Variables

When a variable is neither specified with an initial value in a RETAIN statement nor
appears on the left side of the equal sign in an assignment statement, the SAS log shows
the Note: Variable varname is uninitialized message. For example, the following
statements would result in the message NOTE: Variable ZCMD is uninitialized.

data _null_;
length zcmd $200;
call isplink(’VDEFINE’,’ZCMD’);
call isplink(’DISPLAY’,’ISRTSO’);
put zcmd=;
run;

However, in this example the message is misleading because the call to ISPF actually
assigns a value to ZCMD. To prevent the message from being generated, put the
variable in a RETAIN statement with an initial value, or use the variable in an
assignment statement. For example, the following RETAIN statement assigns an initial
value (a blank) to the variable ZCMD:

retain zcmd ’ ’;

194 Testing ISPF Applications Chapter 8

Character Values Passed for Numeric Variables
Under SAS/DMI (the Version 5 predecessor to the SAS interface to ISPF), it was not

possible to pass numeric values directly to ISPF services for which numeric values are
required. Instead, an alternate method was provided (see “Specifying Fixed Binary
Parameters” on page 189). The alternate method is still supported but is not required.
Therefore, if you used SAS/DMI to develop ISPF applications, you may prefer to modify
those applications so that numeric values are passed directly to these ISPF services
instead.

Testing ISPF Applications
When you are testing code that uses ISPF services, there are techniques and

facilities that can greatly simplify the testing process. Chapter 2 of the IBM manual
ISPF Dialog Developer’s Guide and Reference describes the ISPF dialog test modes.
This facility provides aids for testing functions, panels, variables, messages, tables, and
skeletons.

In addition, SAS provides the MPRINT system option to help you find coding errors.
If you want to see the SAS statements that are generated by SAS macros, specify
MPRINT in a SAS OPTIONS statement. (The MPRINT system option is documented in
SAS Language Reference: Dictionary.)

The ISPF parameters are written to the SAS log when the ISPTRACE option is
specified. The tracing can also be turned on and off with the ISPLINK CALL
subroutine, as in the following example, which stops the tracing of ISPF parameters.

call isplink(’SAS’,’NOISPTRACE’);

Sample Application
The IBM manual ISPF Examples provides examples of ISPF applications written in

APL2, COBOL, FORTRAN, PASCAL, PL/I, and as CLISTs.
This section shows how one of those applications would be written in the SAS

language.

Employee Records Application

DATA _NULL_;
LENGTH EMPSER $6 FNAME LNAME $16 ADDR1 ADDR2 ADDR3 ADDR4 $40 PHA $3

PHNUM MSG TYPECHG CHKTYPE $8 I STATE $1;
RETAIN EMPSER FNAME LNAME I ADDR1 ADDR2 ADDR3 ADDR4 PHA PHNUM MSG

TYPECHG CHKTYPE ’ ’ STATE ’1’ PLIRETV 0;
CALL ISPLINK(’VDEFINE’, /* DEFINE VARIABLES */

’(EMPSER FNAME LNAME I ADDR: PHA PHNUM TYPECHG CHKTYPE)’);
MSG=’ ’; /* INITIALIZE MESSAGE */

CALL ISPLINK(’TBCREATE’, /* IF TABLE DOESN’T EXIST*/
’SASEMPTB’,’(EMPSER)’, /* CREATE IT */
’(LNAME FNAME I ADDR: PHA PHNUM)’,
’NOWRITE’); /* DON’T SAVE THE TABLE */

DO WHILE (STATE NE ’4’); /* LOOP UNTIL TERM SET */
CALL ISPLINK(’DISPLAY’,’SASEMPLA’,MSG); /* SELECT EMPLOYEE */
IF PLIRETV=8 THEN STATE=’4’; /* END KEY THEN TERMINATE*/
ELSE DO; /* ENTER KEY PRESSED */

MSG=’ ’; /* RESET MESSAGE */

SAS Interfaces to ISPF and REXX Sample Application 195

STATE=’2’; /* PROCESS EMPLOYEE PANEL*/
CALL ISPLINK(’TBGET’,’SASEMPTB’); /* OBTAIN EMPLOYEE DATA */
IF PLIRETV=0 THEN /* IF RECORD EXISTS THEN */

TYPECHG=’U’; /* SET UPDATE FLAG */
ELSE DO; /* RECORD DOES NOT EXIST */

TYPECHG=’N’; /* SET TYPE=NEW */
LNAME=’ ’;FNAME=’ ’;I=’ ’; /* INITIALIZE PANEL VARS */
ADDR1=’ ’;ADDR2=’ ’;ADDR3=’ ’;
ADDR4=’ ’;PHA=’ ’;PHNUM=’ ’;

END;
CHKTYPE=TYPECHG; /* SAVE TYPE OF CHANGE */
CALL ISPLINK(’DISPLAY’,’SASEMPLB’,MSG); /* DISPLAY EMPLOYEE DATA */
IF PLIRETV NE 8 THEN DO; /* END KEY NOT PRESSED */

IF TYPECHG=’N’ THEN DO; /* IF NEW EMPLOYEE */
CALL ISPLINK(’TBADD’,’SASEMPTB’); /* ADD TO TABLE */
MSG=’SASX217’; /* */
END; /* */

ELSE DO; /* */
IF TYPECHG=’U’ THEN DO; /* IF UPDATE REQUESTED */

CALL ISPLINK(’TBPUT’,’SASEMPTB’); /* UPDATE TABLE */
MSG=’SASX218’; /* */
END; /* */

ELSE DO; /* */
CALL ISPLINK(’TBDELETE’,’SASEMPTB’); /* DELETED MESSAGE */
MSG=’SASX219’; /* */
END; /* */

END; /* END TABLE MODS */
END; /* END 2ND PANEL PROCESS */

END; /* END 1ST PANEL PROCESS */
IF MSG NE ’ ’ THEN CALL ISPLINK(’LOG’,MSG); /* LOG MESSAGE */

END; /* END DO LOOP */
CALL ISPLINK(’TBCLOSE’,’SASEMPTB’); /* CLOSE TABLE */
CALL ISPLINK(’VDELETE’,’_ALL_’); /* DELETE ALL VARIABLES */
RUN;

Contents of Member SASEMPLA in ISPPLIB

Contents of Member SASEMPLA in ISPPLIB:

%------------------------ EMPLOYEE SERIAL ------------------------------
%COMMAND ====>_ZCMD %
+
%ENTER EMPLOYEE SERIAL BELOW:
+
+
+
+ EMPLOYEE SERIAL%===>_EMPSER+ (MUST BE 6 NUMERIC DIGITS)
+
+
+
+PRESS%ENTER+TO DISPLAY EMPLOYEE RECORD.

196 Sample Application Chapter 8

+ENTER%END COMMAND+TO RETURN TO PREVIOUS MENU.
)PROC

VER (&EMPSER,NONBLANK)
VER (&EMPSER,PICT,NNNNNN)

)END

First Employee Record Application Panel

Display 8.1 First Employee Record Application Panel

Contents of Member SASEMPLB in ISPPLIB

%------------------------ EMPLOYEE RECORDS -----------------------------
%COMMAND ====>_ZCMD %
+
+ EMPLOYEE SERIAL: &EMPSER
+
+ EMPLOYEE NAME:%===>_TYPECHG + (NEW, UPDATE, OR DELETE)
+ LAST %===>_LNAME +
+ FIRST %===>_FNAME +

SAS Interfaces to ISPF and REXX Sample Application 197

+ INITIAL%===>_I+
+
+ HOME ADDRESS:
+ LINE 1%===>_ADDR1 +
+ LINE 2%===>_ADDR2 +
+ LINE 3%===>_ADDR3 +
+ LINE 4%===>_ADDR4 +
+
+ HOME PHONE:
+ AREA CODE %===>_PHA+
+ LOCAL NUMBER%===>_PHNUM +
+
)INIT

.CURSOR = TYPECHG
IF (&PHA = ’ ’)

&PHA = 914
&TYPECHG = TRANS(&TYPECHG N,NEW U,UPDATE D,DELETE)

)PROC
&TYPECHG = TRUNC (&TYPECHG,1)
IF (&TYPECHG = N)

IF (&CHKTYPE NE N)
.MSG = SASX211

IF (&TYPECHG NE N)
IF (&CHKTYPE = N)

.MSG = SASX212
VER (&LNAME,ALPHA)
VER (&FNAME,ALPHA)
VER (&I,ALPHA)
VER (&PHA,NUM)
VER (&PHNUM,PICT,’NNN-NNNN’)
IF (&TYPECHG = N,U)

VER (&LNAME,NONBLANK,MSG=SASX214)
VER (&FNAME,NONBLANK,MSG=SASX213)
VER (&ADDR1,NONBLANK,MSG=SASX215)
VER (&ADDR2,NONBLANK,MSG=SASX215)
VER (&ADDR3,NONBLANK,MSG=SASX215)

)END

198 Sample Application Chapter 8

Second Employee Record Application Panel

Display 8.2 Second Employee Record Application Panel

Contents of Member SASX21 in ISPMLIB

SASX210 ’INVALID TYPE OF CHANGE’ .ALARM=YES
’TYPE OF CHANGE MUST BE NEW, UPDATE, OR DELETE.’
SASX211 ’TYPE ’’NEW’’ INVALID’ .ALARM=YES
’EMPLOYEE SERIAL &EMPSER ALREADY EXISTS. CANNOT BE SPECIFIED AS NEW.’

SASX212 ’UPDATE OR DELETE INVALID’ .ALARM=YES
’EMPLOYEE SERIAL &EMPSER IS NEW. CANNOT SPECIFY UPDATE OR DELETE.’

SASX213 ’ENTER FIRST NAME’ .ALARM=YES
’EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE.’

SASX214 ’ENTER LAST NAME’ .ALARM=YES
’EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE.’

SAS Interfaces to ISPF and REXX Invoking a REXX Exec 199

SASX215 ’ENTER HOME ADDRESS’ .ALARM=YES
’HOME ADDRESS MUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE.’

SASX217 ’&EMPSER ADDED’
’EMPLOYEE &LNAME, &FNAME &I ADDED TO FILE.’

SASX218 ’&EMPSER UPDATED’
’EMPLOYEE &LNAME, &FNAME &I UPDATED.’

SASX219 ’&EMPSER DELETED’
’EMPLOYEE &LNAME, &FNAME &I DELETED.’

SAS Interface to REXX
REXX, the procedure language for computing platforms that conform to the IBM

Systems Application Architecture (SAA), is well known for combining powerful
programming features with ease of use. By enabling SAS users to supplement the SAS
language with REXX, the SAS interface to REXX provides new SAS programming
possibilities in the z/OS environment.

Enabling the Interface
The SAS system options REXXMAC and REXXLOC control the REXX interface.
� The REXXMAC option enables or disables the REXX interface. If REXXMAC is in

effect, then the REXX interface is enabled. This means that when SAS encounters
an unrecognized statement, it searches for a REXX exec whose name matches the
first word of the unrecognized statement. If the default, NOREXXMAC, is in
effect, then the REXX interface is disabled. This means that when SAS encounters
an unrecognized statement, a "statement is not valid" error occurs. You can specify
this option in the configuration file, when you invoke SAS, or in the OPTIONS
statement.

� When the REXXMAC option is in effect, the REXXLOC= option specifies the
DDname of the REXX exec library to be searched for any SAS REXX execs. The
default is REXXLOC=SASREXX. You can specify this option either in the
configuration file or when you invoke SAS, or on the OPTIONS statement.

Invoking a REXX Exec
SAS REXX execs are REXX programs. They are stored in a library that is allocated

to the SASREXX DDname (or to another DDname, as specified by the SAS system
option REXXLOC=). A REXX exec is submitted as part of a SAS program in the same
way as any other global SAS statement.

To run a REXX exec from within SAS, do the following:
1 Put the REXX exec in a partitioned data set and allocate that PDS to the DDname

SASREXX.
2 Either invoke SAS with the REXXMAC option or specify the REXXMAC option

later in an OPTIONS statement.
3 Code a statement that begins with the name of the REXX exec.

Note: You can invoke a REXX exec from an SCL program, but you should
enclose the statement in a SUBMIT block. Otherwise, the exec will be executed at
compile time rather than at run time. �

200 Interacting with the SAS Session from a REXX Exec Chapter 8

The following example invokes a REXX exec called YOUREXEC, which resides in
YOUR.REXX.LIBRARY. This example works in both batch and TSO environments.

options rexxmac;
filename sasrexx ’your.rexx.library’ disp=shr;
yourexec;

In batch, you can also use a JCL DD statement to allocate the REXX library
externally:

//jobname JOB ...
// EXEC SAS
//SASREXX DD DSN=YOUR.REXX.LIBRARY,DISP=SHR
//SYSIN DD *
options rexxmac;
yourexec;
/*
//

A REXX exec can have zero, one, or multiple arguments. You call the exec by
specifying its name, followed by arguments (if any), followed by a semicolon. You can
place the exec anywhere that a global SAS statement, such as an OPTIONS or TITLE
statement, can be placed.

The exec is invoked when the DATA step is compiled. This means that it is executed
only once, rather than for each observation in the DATA step.

“A Simple REXX Exec” on page 203 provides an example of a REXX exec called
VERIFY that takes as its argument a single data set name. This REXX exec can be
invoked by submitting the following statement from a SAS program:

verify data.set.name;

A SAS REXX exec submits SAS statements through the SAS subcommand
environment by specifying or defaulting to ’SAS’ as its "address". When a REXX exec
receives control, the default subcommand environment for that program is ’SAS’. As
illustrated in this example, any SAS language statement can then be passed to SAS for
execution.

Interacting with the SAS Session from a REXX Exec
One of the main advantages of using the REXX interface is that it provides three

kinds of communication between the REXX exec and the SAS session:
� The REXX exec can route messages to the SAS log.
� You can retrieve and set the value of any variable in the submitting REXX exec by

using the GETEXEC DATA step function and the PUTEXEC DATA step routine.
� You can check the return code from a SAS step in the REXX exec that submits it.

Routing Messages from REXX Execs to the SAS Log
A set of SAS directives enables a REXX exec to print to the SAS log. SAS directives

use a leading ++ sequence to differentiate them from normal SAS language statements
that are submitted to the SAS subcommand environment.

Three directives are available:

SAS Interfaces to ISPF and REXX Interacting with the SAS Session from a REXX Exec 201

address SAS ’++SASLOG’
causes all subsequent SAS statements to be printed to the SAS log.

address SAS ’++NOLOG’
stops subsequent SAS language statements from being printed to the SAS log.

address SAS ’++SASLOG message-text’
places message-text into the SAS log and causes subsequent submitted statements
to be printed to the SAS log. The message text can include quoted strings or
REXX variables. Strings that are enclosed in single quotation marks are converted
to uppercase, whereas strings that are enclosed in double quotation marks are not.
For REXX variables that are not contained in quoted strings, SAS substitutes the
values of those variables.

The GETEXEC DATA Step Function

You can use the GETEXEC function in SAS statements that are submitted to the
SAS subcommand environment to retrieve the value of any variable in the submitting
REXX exec. The syntax of the GETEXEC function is as follows:

value = GETEXEC(REXX-variable)

where REXX-variable is a SAS expression that represents the name of a REXX
variable in uppercase and value receives the value of the specified REXX variable.

See “Using the GETEXEC DATA Step Function” on page 203 for an example of the
GETEXEC function.

The PUTEXEC DATA Step Routine

You can call the PUTEXEC routine in SAS statements that are submitted to the
SAS subcommand environment to assign the value of any variable in the submitting
REXX EXEC. The syntax of the PUTEXEC routine is as follows:

CALL PUTEXEC(REXX-variable, value)

where REXX-variable is a SAS expression that represents the name of a REXX variable
in uppercase and value is a SAS expression representing the value to be assigned to the
specified REXX variable.

See “Using the PUTEXEC DATA Step Routine” on page 204 for an example of the
PUTEXEC routine.

Checking Return Codes in REXX Execs

The REXX special variable RC is always set when any command string is submitted
to an external environment.

SAS REXX execs are slightly different from ordinary execs, however, in the way RC
is set. When an ordinary exec submits z/OS commands, the RC variable is set to the
command return code when control returns to REXX. The strings that are submitted to
SAS, however, are not necessarily complete execution units. SAS collects SAS language
elements until a RUN statement is encountered, at which point the SAS step is
executed. While partial program fragments are being submitted, the RC is set to 0. The
SAS return code is not assigned to the REXX variable RC until the string that contains
the RUN statement is submitted.

The RC value is set to the value of the &SYSERR macro variable. See “Checking the
SAS Return Code in a REXX Exec” on page 205 for an example of how the REXX
variable RC can be tested after a SAS step has been executed.

202 Changing the Host Command Environment Chapter 8

Changing the Host Command Environment
When a REXX EXEC that is invoked under SAS receives control, the default host

command environment for that program is ’SAS’. You can use the ADDRESS
instruction followed by the name of an environment to change to a different host
command environment:

address tso
address sas
address mvs

See “Using the GETEXEC DATA Step Function” on page 203 for an example of using
the ADDRESS instruction to execute a TSO statement.

You can also use the ADDRESS built-in function to determine which host command
environment is currently active:

hcmdenv = address()

Use the SUBCOM command to determine whether a host command environment is
available before trying to issue commands to that environment. The following example
checks to see whether SAS is available:

/* REXX */
address mvs "subcom sas"
say "subcom sas rc:" rc
if rc = 1

then sas="not "
else sas=""

say "sas environment is "sas"available"

Comparing the REXX Interface to the X Statement
The X statement can be used to invoke a REXX exec. (See “X Statement” on page

406.) However, compared to the REXX interface, the X statement has the following
limitations:

� With the X statement, the command that you invoke has no way to communicate
information back to the SAS session.

� With the X statement, you have to press Enter to return to SAS.
� The X statement is available only when SAS is running in the TSO environment.

A REXX exec can be invoked from a SAS program running in the batch
environment, though it cannot issue TSO commands in the batch environment.

Comparing SAS REXX Execs to ISPF Edit Macros
In their structure and invocation, SAS REXX execs are analogous to ISPF EDIT

macros.
� SAS REXX execs are REXX programs in a library that is allocated to the

SASREXX DDname (or to another DDname, as specified by the SAS system option
REXXLOC=). They are submitted as part of a SAS program in the same way as
any other global SAS statement. A SAS REXX exec submits SAS statements
through the SAS subcommand environment by specifying or defaulting to ’SAS’ as
its "address".

� ISPF edit macros may be REXX programs in the standard command procedure
library (SYSPROC, SYSEXEC, or other). They are started from an ISPF EDIT

SAS Interfaces to ISPF and REXX Examples of REXX Execs 203

command line in the same way as any other ISPF EDIT subcommand. An ISPF
EDIT macro submits editor subcommands through the ISREDIT subcommand
environment by specifying or defaulting to ’ISREDIT’ as its "address" (the
destination environment for a command string).

Examples of REXX Execs

A Simple REXX Exec
This REXX exec, called VERIFY, takes as its argument a single data set name. The

REXX exec checks to see whether the data set exists. If so, the REXX exec routes a
message to the SAS log to that effect. If the data set does not exist, the REXX exec
creates the data set and then sends an appropriate message to the SAS log.

/*-------------- REXX exec VERIFY --------------*/
Parse Upper Arg fname .
retcode = Listdsi("’"fname"’")
If retcode = 0 Then Do

Address SAS "++SASLOG" fname "already exists"
End

Else Do
Address TSO "ALLOC FI(#TEMP#) DA(’"fname"’)

RECFM(FB) LRECL(80) BLKSIZE(6160)
DSORG(PS) SPACE(10 5) TRACK NEW"

Address SAS "++SASLOG" fname "created"
Address TSO "FREE FI(#TEMP#)"
End

Exit

Using the GETEXEC DATA Step Function
This REXX exec executes a TSO command that generates a list of all filenames

beginning with a specified prefix, then deletes the files named in the list and places the
names of the deleted files in a SAS data set.

/*------------- REXX exec DELDIR --------------*/
Parse Upper Arg file_prefx .
/*------ Execute the TSO LISTC Command --------*/
x = Outtrap(’list.’)
Address TSO "LISTC LVL(’"FILE_PREFX"’) "

/*--- Process Output from the LISTC Command ---*/
idx = 0
file_del.= ’’

Do line = 1 To list.0 By 1
Parse Var list.line word1 word2 word3
If word1 = ’NONVSAM’ Then Do

fname = word3
Address TSO "DELETE ’"fname"’"
idx = idx + 1
file_del.idx = fname
file_stat.idx = ’DELETED’

204 Examples of REXX Execs Chapter 8

End
End

/*--- Pass a DATA step into the SAS System ----*/
Address SAS ’++SASLOG’

"data results (keep = dsname status); "
" total = getexec(’IDX’); "
" put ’Total z/OS files deleted: ’ total; "
" do i = 1 to total; "
" dsnm = getexec(’FILE_DEL.’ || trim(left(i)));"
" stat = getexec(’FILE_STAT.’ || trim(left(i)));"
" output; "
" end; "
" run; "

/*---------- Execute a SAS Procedure ----------*/
" proc print; "
" run; "

/*---------- Return to the SAS System ---------*/
Exit

Using the PUTEXEC DATA Step Routine

This REXX exec reads a set of high-level qualifiers from a SAS data set and writes
them to REXX stem variables so that they can be processed by the REXX exec. Then
the REXX exec loops through the high-level qualifiers, calling the DELDIR routine for
each one in turn.

/*------------ REXX exec DELMANY -------------*/
/* Accepts as arguments up to 5 high-level */
/* qualifiers
Parse Upper Arg arg1 arg2 arg3 arg4 arg5 .
hlq.=’’
/*-=- Pass a DATA step into the SAS System ---*/
Address SAS ’++SASLOG’
" data prefixes; "
" input prefix $ 1-20; "
" cards; "
""arg1
""arg2
""arg3
""arg4
""arg5
"; "
" data _null_; "
" set prefixes; "
" rexxvar = ’HLQ.’ || trim(left(_N_)); "
" call putexec(trim(rexxvar),prefix); "
" call putexec(’HLQ.0’, trim(left(_N_))); "
" run; "
/*---------- Call the DELDIR REXX exec -------*/
Do idx = 1 To hlq.0

pre = hlq.idx

SAS Interfaces to ISPF and REXX Examples of REXX Execs 205

Call deldir pre
End

/*------------ Return to SAS ------------------*/
Exit rc

Checking the SAS Return Code in a REXX Exec
This REXX exec, called SHOWRC, demonstrates how the REXX variable RC can be

tested after a SAS step has run:

/*-------------- REXX exec SHOWRC ------------*/
/* Accepts as argument a SAS data set */
Parse Upper Arg ds_name .
Address SAS ’++SASLOG’
"data newdata; "
" set "ds_name"; "
" run; "
If rc = 0 Then

Say ’SAS DATA step completed successfully’
Else

Say ’SAS DATA step terminated with rc=’ rc
Exit

206

207

C H A P T E R

9
Data Representation

Representation of Numeric Variables 207

Representation of Integers 207
Using the LENGTH Statement to Save Storage Space 207

How Character Values Are Stored 208

Line-Feed Characters and Transferring Data between EBCDIC and ASCII 209
Details of Transferring Data 209

Representation of Numeric Variables

To store numbers of large magnitude and to perform computations that require many
digits of precision to the right of the decimal point, SAS stores all numeric values in
8-byte floating-point (real binary) representation. Details about how floating-point
numbers are represented and the factors that can affect your numeric calculations are
provided in “Floating-Point Representation on IBM Mainframes” in SAS Language
Reference: Concepts. When processing in a z/OS environment, you should be aware of
the way in which integers are stored.

Representation of Integers
Like other numeric values, SAS maintains integer variables in 8-byte floating-point

(real binary) representation. But under z/OS, outside of SAS, integer values are
typically represented as 4-byte (fixed point) binary values using two’s complement
notation. SAS can read and write these values using informats and formats, but it does
not process them internally in this form. SAS uses floating-point representation
internally.

You can use the IBw.d informat and format to read and write the binary integer
values used under z/OS. Each integer uses 4 bytes (32 bits) of storage space; thus, the
range of values that can be represented is from −2,147,483,648 to 2,147,483,647.

Using the LENGTH Statement to Save Storage Space
When SAS writes a numeric variable to a SAS data set, it writes the number in IBM

double-wide floating-point format (as described in SAS Language Reference: Concepts).
In this format, 8 bytes are required for storing a number in a SAS data set with full
precision. However, you can use the LENGTH statement in the DATA step to specify
that you want to store a particular numeric variable in fewer bytes.

208 How Character Values Are Stored Chapter 9

Using the LENGTH statement can greatly reduce the amount of space that is
required for storing your data. For example, if you were storing a series of test scores
whose values could range from 0 to 100, you could use numeric variables with a length
of 2 bytes. This would save 6 bytes of storage per variable for each observation in your
data set.

However, you must use the LENGTH statement cautiously in order to avoid losing
significant data. One byte is always used to store the exponent and the sign. The
remaining bytes are used for the mantissa. When you store a numeric variable in fewer
than 8 bytes, the least significant digits of the mantissa are truncated. If the part of the
mantissa that is truncated contains any nonzero digits, then precision is lost.

Use the LENGTH statement only for variables whose values are always integers.
Fractional numbers lose precision if they are truncated. In addition, you must ensure
that the values of your variable will always be represented exactly in the number of
bytes that you specify. Use the following table to determine the largest integer that can
be stored in numeric variables of various lengths:

Table 9.1 Variable Length and Largest Exact Integer

Length in
Bytes

Significant Digits Retained Largest Integer Represented Exactly

2 2 256

3 4 65,536

4 7 16,777,216

5 9 4,294,967,296

6 12 1,099,511,627,776

7 14 281,474,946,710,656

8 16 72,057,594,037,927,936

Note: No warning is issued when the length that you specify in the LENGTH
statement results in truncated data. �

How Character Values Are Stored

Alphanumeric characters are stored in a computer using a character-encoding
system known as a collating sequence, where one or two bytes represent a given
character. The two single-byte character-encoding systems that are most widely used in
data processing are ASCII and EBCDIC. IBM mainframe computers use the EBCDIC
system. The EBCDIC system can be used to represent 256 different characters. Each
character is assigned a unique hexadecimal value between 00 and FF.

The following table shows the EBCDIC code for commonly used characters:

Table 9.2 EBCDIC Code: Commonly Used Characters

Hex Character Hex Character Hex Character Hex Character

’40’x space ’95’ n ’C4’ D ’E3’ T

’4B’ . ’96’ o ’C5’ E ’E4’ U

’4E’ + ’97’ p ’C6’ F ’E5’ V

Data Representation Details of Transferring Data 209

’60’ - ’98’ q ’C7’ G ’E6’ W

’81’ a ’99’ r ’C8’ H ’E7’ X

’82’ b ’A2’ s ’C9’ I ’E8’ Y

’83’ c ’A3’ t ’D0’ } ’E9’ Z

’84’ d ’A4’ u ’D1’ J ’F0’ 0

’85’ e ’A5’ v ’D2’ K ’F1’ 1

’86’ f ’A6’ w ’D3’ L ’F2’ 2

’87’ g ’A7’ x ’D4’ M ’F3’ 3

’88’ h ’A8’ y ’D5’ N ’F4’ 4

’89’ i ’A9’ z ’D6’ O ’F5’ 5

’91’ j ’C0’ { ’D7’ P ’F6’ 6

’92’ k ’C1’ A ’D8’ Q ’F7’ 7

’93’ l ’C2’ B ’D9’ R ’F8’ 8

’94’ m ’C3’ C ’E2’ S ’F9’ 9

Line-Feed Characters and Transferring Data between EBCDIC and ASCII
When you exchange data between an operating environment that uses ASCII

encoding and an operating environment that uses EBCDIC encoding, formatting errors
can occur because EBCDIC and ASCII do not always use the same characters to
indicate the end of a line of data. EBCDIC indicates the end of a line with either a
line-feed character or a new-line character. ASCII uses only the line-feed character to
indicate the end of a line. If you exchange data between an EBCDIC operating
environment, such as z/OS, and an ASCII operating environment, such as Windows,
then you should use UNIX System Services (USS) encodings, which help prevent
end-of-line formatting errors. USS encodings are used by default in
NONLSCOMPATMODE, which is the default for SAS System 9.

Details of Transferring Data
Software running on ASCII platforms requires that the end of the line be indicated

by the line-feed character. When data is transferred from z/OS to a machine that
supports ASCII encodings, formatting problems can occur, particularly in HTML
output, because the EBCDIC new-line character is not recognized.

SAS supports two sets of EBCDIC-based encodings for z/OS:
� The encodings with EBCDIC in their names use the traditional mapping of

EBCDIC line-feed to ASCII line-feed character, which can cause data to appear as
one stream.

� The encodings with USS in their names use the line-feed character as the
end-of-line character. When the data is transferred to an ASCII platform, the
EBCDIC new-line character maps to an ASCII line-feed character. This mapping
enables ASCII applications to interpret the end-of-line correctly, resulting in better
formatting.

If you need to exchange data between ASCII and EBCDIC, you can specify USS
encodings from the list of encodings in “ENCODING System Option” in the SAS

210 Details of Transferring Data Chapter 9

National Language Support (NLS): User’s Guide. There are several language elements
and commands that enable you to specify encodings when creating or exchanging data:

� “FILE Statement” on page 363
� “INFILE Statement” on page 388
� “FILE Command” on page 560
� “INCLUDE Command” on page 562
� “ENCODING System Option” in the SAS National Language Support (NLS):

User’s Guide
� “ENCODING= Data Set Option” in the SAS National Language Support (NLS):

User’s Guide

211

C H A P T E R

10
Optimizing Performance

Introduction to Optimizing Performance 212

Collecting Performance Statistics 212
Logging SMF Statistics 213

Optimizing I/O 213

Put Catalogs and Data Sets into Separate Libraries, Using the Optimal Block Size for Each 213
Optimize I/O for Direct Access Bound Libraries 213

Sequential Processing Pattern 214

Random Processing Pattern 214
Optimize I/O for Sequential Libraries 214

Determine Whether You Should Compress Your Data 215
Consider Using SAS Software Compression in Addition to Hardware Compression 216

Consider Placing SAS Data Libraries in Hiperspaces 216

Examples of Using the HIPERSPACE Engine Option 216
Controlling the Size of a Hiperspace Library 217

Hiperspace Libraries and DIV Data Sets 217

Performance Considerations for Hiperspace SAS Data Sets 217
Consider Designating Temporary SAS Libraries as Virtual I/O Data Sets 217

Efficient Sorting 218
Consider Changing the Values of SORTPGM= and SORTCUTP= 218

Take Advantage of the DFSORT Performance Booster 218

Some SAS System Options That Can Affect Performance 218
MAUTOSOURCE and IMPLMAC 218

REXXMAC 219

SPOOL/NOSPOOL 219
Managing Memory 219

Specify a Value for MEMSIZE= When You Invoke SAS 219
Specify a Value for MEMLEAVE= When You Invoke SAS 220

Consider Using Superblocking Options to Control Memory Fragmentation 220

Memory Cheat Sheet for z/OS 220
Use SYSLEAVE= and PROCLEAVE= to Handle Out-of-Memory Conditions 220

Loading SAS Modules Efficiently 221

Use a Bundled Configuration of SAS 221
Other Considerations for Improving Performance 221

Leave AUTOSCROLL 0 in Effect for the LOG and OUTPUT Windows 221
Use the EM3179 Device Driver When Appropriate 222

Consider Using the Direct Logon Procedure to Invoke SAS 222

212 Introduction to Optimizing Performance Chapter 10

Introduction to Optimizing Performance
SAS software includes many features that can help you manage CPU, memory, and

I/O resources effectively. The following sections describe features that are either specific
to z/OS or that have characteristics that are specific to z/OS. The information is
applicable to your site whether you run SAS interactively or in batch mode.

For additional information about optimizing SAS performance under z/OS, see
Tuning SAS Applications in the MVS Environment, by Michael Raithel (available
through SAS as part of the Books by Users program).

For information about optimizing SAS performance on any host operating system,
see SAS Language Reference: Concepts and SAS Programming Tips: A Guide to
Efficient SAS Processing.

Collecting Performance Statistics
Several SAS system options provide information that can help you optimize your

SAS programs. The STATS system option writes statistics to the SAS log. The
FULLSTATS, MEMRPT, and STIMER system options can be specified in combination to
select the statistics that are written to the SAS log.

STATS
specifies that statistics are to be written to the SAS log. NOSTATS specifies that
no statistics are to be written to the SAS log, regardless of the values of STIMER,
MEMRPT, and FULLSTATS. STATS and NOSTATS can be specified at any time
during a SAS session.

STIMER
specifies that the CPU time statistic is to be collected and maintained throughout
the SAS session. If STATS and STIMER are in effect, then the CPU time statistic
will be written into the SAS log for each task. If FULLSTATS, STATS, and
STIMER are in effect, the statistics listed under FULLSTATS below will be
written to the SAS log. STIMER must be specified at SAS invocation.

MEMRPT
specifies that memory usage statistics are to be written to the SAS log. If STATS
and MEMRPT are in effect, then the amount of memory used by each task and the
total amount of memory used for the SAS session will be written into the SAS log.
If FULLSTATS, STATS, and MEMRPT are in effect, then additional statistics will
be written into the SAS log, as specified below for FULLSTATS. MEMRPT and
NOMEMRPT can be specified at any time during a SAS session.

FULLSTATS
specifies that additional statistics are to be written to the SAS log. The actual
statistics added are determined by the values of STIMER and MEMRPT. If
STIMER is in effect, then elapsed time is displayed. RSM hiperspace time and
EXCP count are also displayed if their values are non-zero. If MEMRPT is in
effect, then for each task, both task and total memory are displayed, including the
amount of memory used for data and amount of memory used for program.
FULLSTATS and NOFULLSTATS can be specified at any time during a SAS
session.

Optimizing Performance Optimize I/O for Direct Access Bound Libraries 213

Logging SMF Statistics
SMF statistics are generated by IBM’s System Management Facility. If your system

is configured to enter the SMF exit, and if the SAS system options SMF and SMFEXIT=
are in effect, up to 20 SMF statistics can be written to the SAS log for each task.

SMF statistics are written to the SAS log only when the STATS system option is in
effect.

For further information on SMF statistics, see the configuration instructions for SAS
in the z/OS environment.

Optimizing I/O

To optimize SAS input and output in the z/OS environment, consider the following
suggestions.

Put Catalogs and Data Sets into Separate Libraries, Using the Optimal
Block Size for Each

The physical block size (BLKSIZE=)of a SAS bound data library determines both the
minimum page size and the minimum unit of space allocation for the library. The 6KB
default is relatively efficient across a range of device types, and it leads to lower
memory requirements for catalog buffers. However, when you use the 6KB default,
more DASD space is needed to hold a given amount of data because smaller blocks lead
to capacity losses. In one test case on a 3380, an MXG daily PDB required 8% more
tracks when it was stored in 6KB physical blocks instead of in half-track blocks.

Because the optimal block sizes for SAS catalogs and SAS data sets are not
necessarily the same, consider putting catalogs and data sets into separate libraries.
For catalog libraries, 6KB is a good general physical block size on any device. For data
sets, choose either a full-track or half-track block size, depending on whether the data
library is stored on a device that supports full-track blocks.

Optimize I/O for Direct Access Bound Libraries
Determining whether the primary access pattern you want to use is sequential or

random, and then selecting an appropriate page size based on your determination, will
help you optimize the performance of your SAS session. Based on the primary access
pattern you are using, select an appropriate page size according to the guidelines in
“Sequential Processing Pattern” on page 214 and “Random Processing Pattern” on page
214.

The BUFSIZE data set option enables you to establish a non-default page size for a
new SAS data set, but there are some limitations. Once determined, the page size
becomes a permanent attribute of the SAS data set and influences the efficiency of both
the output operation that creates the data set as well as that of subsequent read or
update operations.

The minimum page size that may be specified for a SAS data set is the block size of
the library that will contain it. Because the library block size is fixed when the library
is created, achieving optimal performance might require creating new libraries with
special block sizes. You might also have to segregate into separate libraries those
members you access sequentially and those members you access randomly.

214 Optimize I/O for Sequential Libraries Chapter 10

Sequential Processing Pattern

Use the following recommendations to optimize performance when using a sequential
access pattern:

� Choose a library block size that corresponds to half-track blocking, that is, two
blocks per track. For example, specify:

option blksize(3380)=half blksize(3390)=half;

� Select a BUFNO value that is an even number between 6 and 10. Setting BUFNO
to a value from 10 to 30 might result in small additional gains in the number of
bytes transferred per unit of elapsed time; however, this gain might come at the
expense of monopolizing the channel or the device. Consult with your system
administrators to evaluate the likelihood of this problem occurring, as well as the
impact on the system.

� Choose a larger BUFNO value than the default value. Start with 10, although it
might be helpful to increase the page size to 30. The performance benefit will vary
depending upon the cache scheme that is employed by the controller on which the
data library resides.

� Consider using the In-Memory File (IMF) feature for a SAS file that will be
accessed across many SAS steps (DATA / procedure) if the file is small enough to
fit into the available region size. Load the file using the SASFILE statement prior
to the SAS steps that will process the file. The file will be read and, if necessary,
written only once. Without IMF, the file would be read once per step. See
“SASFILE Statement” on page 401 for more information on how to reserve enough
space to hold the entire data set in memory while it is being processed.

Random Processing Pattern

Use the following criteria to optimize performance when using a random access pattern:

� Choose a library block size of 6K, if that block size is practical. However, for some
DASD controller configurations, half-track blocking performs nearly as well as a
6K block size for random access. Half-track blocking, which results in fewer
inter-block gaps, allows more data to be packed on a track.

� If necessary, explicitly set the member page size, the BUFSIZE, equal to the
library block size.

� Consider using the SASFILE statement to load a repetitively accessed file, such as
a master file, into memory. The elapsed time for such operations is dramatically
reduced by IMF because all of the member pages that need to be accessed must be
read into memory only once. However, take care to ensure that the region size for
the job is large enough to contain the file being loaded. It might also be necessary
to consult with your z/OS system administrator to ensure that the job is protected
against having the working-set size for its virtual storage trimmed.

Optimize I/O for Sequential Libraries

Sequential format bound libraries are those libraries that are processed with the TAPE
engine.

� Use the default BUFSIZE when you access sequential format bound libraries. The
default BUFSIZE is always the most appropriate choice.

Optimizing Performance Determine Whether You Should Compress Your Data 215

� For both new and existing sequential format bound libraries on disk, specify the
optimal half-track block size. The block size must be specified as part of the
allocation parameters (that is, DD statement or LIBNAME statement). The
BLKSIZE and BLKSIZE (device) system options are not used for sequential access
bound libraries.

� For libraries on tape, if it is possible, structure your SAS job to write all library
members as part of a single PROC COPY operation. This avoids the I/O delays
that result when SAS repositions back to the beginning of the tape data set
between every SAS procedure or DATA step.

� For libraries on tape that are assigned internally, explicitly specify the engine on
the LIBNAME statement. This avoids an extra tape mount.

Determine Whether You Should Compress Your Data
Compressing data reduces I/O and disk space but increases CPU time. Therefore,

whether or not data compression is worthwhile to you depends on the resource
cost-allocation policy in your data center. Often your decision must be based on which
resource is more valuable or more limited, DASD space or CPU time.

You can use the portable SAS system option COMPRESS= to compress all data sets
that are created during a SAS session. Or, use the SAS data set option COMPRESS= to
compress an individual data set. Data sets that contain many long character variables
generally are excellent candidates for compression.

The following tables illustrate the results of compressing SAS data sets under z/OS.
In both cases, PROC COPY was used to copy data from an uncompressed source data
set into uncompressed and compressed result data sets, using the system option values
COMPRESS=NO and COMPRESS=YES, respectively.* In the following tables, the CPU
row shows how much time was used by an IBM 3090-400S to copy the data, and the
SPACE values show how much storage (in megabytes) was used.

For the first table, the source data set was a problem-tracking data set. This data set
contained mostly long, character data values, which often contained many trailing
blanks.

Table 10.1 Compressed Data Comparison 1

Resource Uncompressed Compressed Change

CPU 4.27 sec 27.46 sec +23.19 sec

Space 235 MB 54 MB -181 MB

For the preceding table, the CPU cost per megabyte is 0.1 seconds.
For the next table, the source data set contained mostly numeric data from an MICS

performance database. The results were again good, although not as good as when
mostly character data was compressed.

* When you use PROC COPY to compress a data set, you must include the NOCLONE option in your PROC statement.
Otherwise, PROC COPY propagates all the attributes of the source data set, including its compression status.

216 Consider Placing SAS Data Libraries in Hiperspaces Chapter 10

Table 10.2 Compressed Data Comparison 2

Resource Uncompressed Compressed Change

CPU 1.17 sec 14.68 sec +13.51 sec

Space 52 MB 39 MB -13 MB

For the preceding table, the CPU cost per megabyte is 1 second.
For more information about the pros and cons of compressing SAS data, see SAS

Programming Tips: A Guide to Efficient SAS Processing.

Consider Using SAS Software Compression in Addition to Hardware
Compression

Some storage devices perform hardware data compression dynamically. Because this
hardware compression is always performed, you might decide not to enable the SAS
COMPRESS option when you are using these devices. However, if DASD space charges
are a significant portion of your total bill for information services, you might benefit by
using SAS software compression in addition to hardware compression. The hardware
compression is transparent to the operating environment; this means that if you use
hardware compression only, space charges are assessed for uncompressed storage.

Consider Placing SAS Data Libraries in Hiperspaces
One effective method of avoiding I/O operations is to use SAS software’s

HIPERSPACE engine option. This option is specific to z/OS and enables you to place a
SAS data library in a hiperspace instead of on disk.

A hiperspace overrides the specified physical data library. This means that the
physical data library on disk is neither opened nor closed, and data is neither written to
nor read from the data library. All data access is done in the hiperspace.

Because the specified data library is not written to, it should be a temporary data
set. The only time the specified data library is used is when it is a DIV (data-in-virtual)
data set, as explained in “Hiperspace Libraries and DIV Data Sets” on page 217.

The HIPERSPACE option is processed after the normal allocation processing is
complete. The requested data set is allocated first, as it is with any LIBNAME
statement or LIBNAME function. It is deallocated when you issue a LIBNAME CLEAR
statement or when you terminate the SAS session. The hiperspace, in effect, overrides
the data set.

Examples of Using the HIPERSPACE Engine Option

Here is an example of using the HIPERSPACE engine option to place a data library
in a hiperspace:

libname mylib ’&templib’ hip;

(HIP is an alias for the HIPERSPACE option.)
For a data library that was allocated externally with a DD statement or a TSO

ALLOCATE command, specify a null data set name in quotation marks. For example,
the following LIBNAME statement places a library that was allocated with the
DDname "X" in a hiperspace:

libname x ’’ hip;

Optimizing Performance Consider Designating Temporary SAS Libraries as Virtual I/O Data Sets 217

To place the WORK data library in a hiperspace, specify the HSWORK SAS system
option when you invoke SAS. See “HSWORK System Option” on page 456 for a
description of the HSWORK option.

Note: Hiperspace libraries do not support sequential engines. �

Controlling the Size of a Hiperspace Library
Just as you use the SPACE=, DISP=, and BLKSIZE= engine options to allocate a

physical data set, you use the HSLXTNTS=, HSMAXPGS=, and HSMAXSPC= SAS
system options to control the size of hiperspace libraries. These options are described in
“HSMAXPGS= System Option” on page 454.

The CONTENTS procedure reports all hiperspace libraries as residing on a 3380
device with a block size of 4096. These attributes might differ from the attributes of the
physical data set.

Hiperspace Libraries and DIV Data Sets
The only time the allocated physical data set is actually used with the

HIPERSPACE option is if the data set is a data-in-virtual (DIV) data set.* An empty
DIV data set can be initialized by allocating it to a hiperspace library. An existing DIV
data set that contains data can be read or updated, or both.

In order to achieve a performance benefit when using DIV libraries, it is necessary to
specify the HSSAVE SAS system option. This avoids I/O until the library is deassigned.
See “HSSAVE System Option” on page 456 for more information about this option.

Performance Considerations for Hiperspace SAS Data Sets
The major factor that affects hiperspace performance is the amount of expanded

storage on your system. The best candidates for using hiperspace are jobs that execute
on a system that has plenty of expanded storage. If expanded storage on your system is
constrained, the hiperspaces are moved to auxiliary storage. This eliminates much of
the potential benefit of using the hiperspaces.

For more information about using hiperspaces under z/OS, see the documentation for
your operating environment. Also see Tuning SAS Applications in the MVS
Environment.

Consider Designating Temporary SAS Libraries as Virtual I/O Data Sets
Treating data libraries as "virtual I/O" data sets is another effective method of

avoiding I/O operations. This method works well with any temporary SAS data
library–especially WORK. To use this method, specify UNIT=VIO as an engine option in
the LIBNAME statement or LIBNAME function.

The VIO method is always effective for small libraries (<10 cylinders). If your
installation has set up your system to allow VIO to go to expanded storage, then VIO
can also be effective for large temporary libraries (up to several hundred cylinders).
Using VIO is most practical during evening and night shifts when the demands on
expanded storage and on the paging subsystem are typically light.

The VIO method can also save disk space because it is an effective way of putting
large paging data sets to double use. During the day, these data sets can be used for

* DIV data sets are also referred to as VSAM linear data sets.

218 Efficient Sorting Chapter 10

their normal function of paging and swapping back storage; during the night, they
become a form of temporary scratch space.

Efficient Sorting

Consider Changing the Values of SORTPGM= and SORTCUTP=
SAS software includes an internal sort program that is often more efficient than

host sort programs for sorting small volumes of data. Host sort programs are generally
more efficient when the data volume is too high to perform the sort entirely in memory.

Under z/OS, the default value of the SAS system option SORTPGM= is BEST. This
value causes SAS to use the SAS sort program for less than 4M of data; for more than
4M of data, SAS uses the host sort program. You use the SORTNAME= system option
to specify the name of the host sort program.

The 4M limit is the default value that is specified by the SORTCUTP= system option,
which is specific to z/OS. You might want to change the value of this option in order to
optimize sorting for your particular applications.

Take Advantage of the DFSORT Performance Booster
If your installation uses Release 13 or later of IBM’s DFSORT as its host sort utility

for large sorts, then you can take advantage of a DFSORT "performance booster." To do
so, specify SORTBLKMODE in an OPTIONS statement, in the OPTIONS parameter
list of the SAS cataloged procedure, or in a configuration file.

SORTBLKMODE causes SAS to work in conjunction with DFSORT to process your
SAS sorting applications faster. SAS applications that use either PROC SORT or PROC
SQL for sorting can take advantage of this performance booster. For large sorts of
approximately 500,000 observations or more, CPU usage may be reduced by up to 25%.

Some SAS System Options That Can Affect Performance

MAUTOSOURCE and IMPLMAC
The MAUTOSOURCE and IMPLMAC SAS system options affect the operation of

the SAS autocall macro facility, and they interact in a way that you should be aware of.
Specifying IMPLMAC enables you to use statement-style macros in your SAS

programs. With IMPLMAC in effect, each SAS statement is potentially a macro, and
the first word (token) in each statement must be checked to determine whether it is a
macro call.

When IMPLMAC is in effect without MAUTOSOURCE, no special checking takes
place until the first statement-style macro is compiled. When both IMPLMAC and
MAUTOSOURCE are in effect, however, this checking is done unconditionally. The
initial occurrence of a word as the first token of a SAS statement results in a search of
the autocall library. There can be a significant number of directory searches, especially

Optimizing Performance Specify a Value for MEMSIZE= When You Invoke SAS 219

when a large DATA step is compiled, in addition to the CPU time that is consumed by
maintaining and searching the symbol table.

The combination of MAUTOSOURCE and IMPLMAC can add 20% to CPU time and
5% to I/O for a non-trivial job. Therefore, for best performance, leave NOIMPLMAC as
the installation default.

REXXMAC
When SAS encounters an apparent SAS statement that it does not recognize, it

typically generates a "statement is not valid" error message in the SAS log. However,
when the REXXMAC system option is in effect, SAS passes the first word in the
apparent statement to the z/OS REXX processor, which looks for a member by that
name in the SASREXX library. Hence, a mistyped statement could have unintended
results and could have a negative impact on performance. For more information, see
“REXXMAC System Option” on page 492 and “REXXLOC= System Option” on page 491.

SPOOL/NOSPOOL
The SPOOL system option is appropriate when you are running SAS interactively,

without using the windowing environment. When SPOOL is in effect, SAS input
statements are stored in a WORK library utility file; they are retrieved later by
%INCLUDE and %LIST commands. SAS is shipped with SPOOL as the default setting
for interactive sessions, but you might want to consider resetting it to NOSPOOL for
batch jobs. In a batch job that has a large number of input lines, NOSPOOL can reduce
I/O by as much as 9%.

Managing Memory
In the z/OS operating environment, you can use two options to limit the amount of

memory used by SAS. The MEMSIZE= option sets a hard limit on the amount of
memory used by SAS. The MEMLEAVE= option limits SAS memory relative to the
user’s available region of memory. SAS recommends that you specify a value for the
MEMLEAVE= option and let SAS determine the value of MEMSIZE= based on your
REGION size and on the value of MEMLEAVE=.

The following sections provide details on available memory management techniques.

Specify a Value for MEMSIZE= When You Invoke SAS
The default value for the MEMSIZE= option is calculated internally using the

following formula:

MEMSIZE_default = size_of_user_memory_region - MEMLEAVE_value

When the default amount of memory is not sufficient, it is normally better to adjust it
by changing the REGION rather than to change MEMSIZE from the default value. The
MEMSIZE option is provided primarily for portability from other operating
environments.

220 Specify a Value for MEMLEAVE= When You Invoke SAS Chapter 10

Specify a Value for MEMLEAVE= When You Invoke SAS
As with MEMSIZE=, the MEMLEAVE= system option limits the amount of memory

used by SAS, but in a different way. Instead of setting an absolute limit on the amount
of memory SAS can use, MEMLEAVE= specifies a value that is subtracted from the
total amount of memory available in the user’s REGION. The amount of memory
specified by MEMLEAVE= is reserved for the use of the operating environment. The
remainder of the user’s REGION remains available to SAS. The advantage provided by
MEMLEAVE= is that it applies equally well to all SAS sessions, regardless of the size
of the REGION. Choosing an appropriate value for MEMSIZE=, on the other hand, can
be problematic in environments where REGION sizes vary.

The default value of MEMLEAVE= is 512K. You might need to increase this value
depending on memory demands expected for host programs running in the same
REGION, to prevent SAS from using too much of that REGION. For example, you
might want to increase the value of MEMLEAVE= if you plan to run a
memory-intensive host sort routine while also running a large SAS session.

If you specify a value for the MEMLEAVE= option, either do not specify a value for
the MEMSIZE= option or set the value of the MEMSIZE= option to 0.

Consider Using Superblocking Options to Control Memory
Fragmentation

Superblocking options are SAS system options that set aside large blocks of memory
for different classes of use. In most cases, the default values for these options are
appropriate and should not be altered. However, if you receive a superblock-overflow
warning message in the SAS log, you might want to use these options to adjust the
memory allocation for your job.

For complete information on superblocking system options, see the installation
instructions for SAS software in the z/OS environment. You can also submit the
following SAS statement to list the superblocking system options:

proc options group=memory;
run;

Memory Cheat Sheet for z/OS
Use the following questions to diagnose memory problems with SAS.
1 What is the error message in the SAS log or JES messages log?
2 Did you specify the size of the memory region anywhere? If so, what value was

specified, how and where?
3 Did you specify a MEMSIZE= value? If so, what value was specified and how?
4 Does your site have any known restrictions on the amount of memory available to

a particular job, for example, for an IEFUSI exit?

Use SYSLEAVE= and PROCLEAVE= to Handle Out-of-Memory Conditions
Sometimes a job runs out of memory in spite of additional memory allocations. To

ensure that the job ends "gracefully" under that condition, you might want to increase
the values of the SAS system options SYSLEAVE= and PROCLEAVE=.

� The SYSLEAVE= option reserves a specified amount of memory to ensure that,
when a SAS task ends, enough memory is available to close data sets and to "clean

Optimizing Performance Leave AUTOSCROLL 0 in Effect for the LOG and OUTPUT Windows 221

up" other resources. For details, including the SAS default value, see
“SYSLEAVE= System Option” on page 517.

� The PROCLEAVE= option serves a similar function for SAS procedures. For
example, some procedures are designed to use memory until no more is available;
they then continue by opening and using work files. PROCLEAVE= ensures that
there will be enough memory left to open these work files and to allocate I/O
buffers for them so that the procedure can continue. For details, including the SAS
default value, see “PROCLEAVE= System Option” on page 489.

Loading SAS Modules Efficiently

Use a Bundled Configuration of SAS
SAS software has three possible program configurations:
� unbundled
� bundled (LPA/ELPA version)
� bundled (non-LPA version).

In an unbundled configuration, all modules are loaded individually from the SAS
software load library. Running in this manner is not generally recommended because it
significantly increases library-directory searches and I/O. However, SAS is shipped with
this setting by default because some of the installation tasks must invoke SAS before
the installer has had the opportunity to select a bundled version.

In the two bundled configurations of SAS, many individual modules are combined
into one large executable file. Invoking a bundled version of SAS eliminates both
wasted space between modules and the overhead of loading each module individually.
Performance is also improved slightly.

In a multiuser SAS environment, the most effective way to reduce memory
requirements is to use the LPA/ELPA bundled configuration. This configuration
dramatically reduces each user’s working-set size.*

The non-LPA bundled configuration is intended for sites that do not want to place
SAS modules in the Link Pack Area. In this configuration, the bundle is loaded into
each user’s address space. Although this decreases library-directory searches and I/O, it
has the unfortunate side-effect of increasing individual working-set sizes. Therefore,
this method is not recommended if you have many SAS users at your site.

For detailed information about the bundled configurations and how to install them,
see the installation instructions for SAS software in the z/OS environment.

Other Considerations for Improving Performance

Leave AUTOSCROLL 0 in Effect for the LOG and OUTPUT Windows
The AUTOSCROLL command controls how information is scrolled as it is written to

the Log and Output windows. Specifying small scrolling increments is very expensive in
terms of response time, network data traffic, and CPU time.

* Working-set size is the amount of real system memory that is required to contain a) the programs that consume most of the
system execution time, and b) the data areas that these programs reference.

222 Use the EM3179 Device Driver When Appropriate Chapter 10

Under z/OS, AUTOSCROLL is preset to 0 for the Log window. AUTOSCROLL 0
suppresses automatic scrolling and positions the Log window at the bottom of the most
recent output when a DATA step or procedure is completed. At that time, of course, you
can scroll up to view the contents of the log.

To see the effect of this command, enter AUTOSCROLL 1 on the command line of the
Log window and then run PROC OPTIONS. Then enter AUTOSCROLL 0 and run
PROC OPTIONS again. The CPU time ratio is more than 30 to 1.

Use the EM3179 Device Driver When Appropriate
If you are running Attachmate or any other full-functioned 3270 emulator over a

slow connection, specify the SAS system option FSDEVICE=EM3179 when you invoke
SAS. Menus in applications such as SAS/ASSIST are then displayed as text menus
instead of icon menus. The text menus require much less network data transfer and are
considerably faster across slow lines.

Consider Using the Direct Logon Procedure to Invoke SAS
When you use the direct logon procedure to invoke SAS instead of the TSO logon

procedure, SAS acts as your terminal monitor program. The direct logon procedure has
three potential advantages for your installation:

� It eliminates the need for SAS users to know anything about TSO.
� It saves a small amount of memory (approximately 50KB per user) in working-set

size.
� If you license TSO/E as a measured usage product, then you might be able to

reduce your TSO charges significantly because CPU time for SAS applications will
no longer be accumulated as TSO/E usage.

For a sample logon procedure and other information about configuring it into the
environment at your site, see the installation instructions for SAS software in the z/OS
environment.

223

P A R T3

Host-Specific Features of the SAS Language

Chapter 11.Data Set Options under z/OS 225

Chapter 12.Formats under z/OS 233

Chapter 13.Functions and CALL Routines under z/OS 245

Chapter 14.Informats under z/OS 277

Chapter 15.Macros under z/OS 287

Chapter 16.Procedures under z/OS 295

Chapter 17.Statements under z/OS 359

Chapter 18.System Options under z/OS 407

Chapter 19.Windows and Commands in z/OS Environments 545

224

225

C H A P T E R

11
Data Set Options under z/OS

Data Set Options in the z/OS Environment 225

ALTER= Data Set Option 225
BUFSIZE= Data Set Option 226

FILEDISP= Data Set Option 227

Summary of SAS Data Set Options in the z/OS Environment 228

Data Set Options in the z/OS Environment

Portable data set options are documented in SAS Language Reference: Dictionary.
This chapter provides detailed information about data set options that are specific to z/
OS or that have aspects that are specific to z/OS. “Summary of SAS Data Set Options in
the z/OS Environment” on page 228 includes all the SAS data set options that are
available under z/OS.

Data set options are specified in parentheses following a data set name. The data set
options apply only to that one data set.

ALTER= Data Set Option

Assigns an alter password to a SAS file and enables access to a password-protected SAS file

Valid in: DATA step and PROC steps

Category: Data Set Control

See: ALTER= Data Set Option in SAS Language Reference: Dictionary

Syntax

ALTER=alter-password

Syntax Description

alter-password
must be a valid SAS name. See “Rules for Words and Names in the SAS
Language” in SAS Language Reference: Concepts.

226 BUFSIZE= Data Set Option Chapter 11

Details
The ALTER= option applies to all types of SAS files except catalogs. You can use this
option to assign an alter-password to a SAS file or to access a read-protected,
write-protected, or alter-protected SAS file. When replacing a SAS data set that is alter
protected, the new file inherits the alter password. To change the alter password for the
new file, use the MODIFY statement in the DATASETS procedure.

The ALTER password is not honored for HFS libraries processed via the TAPE or
V6TAPE engines. Moreover, the ALTER password cannot be used to prevent members of
a sequential access bound library from being deleted if those members follow a member
that is being replaced. For complete details, see “General Usage Notes” on page 47.

Note: A SAS password does not control access to a SAS file or SAS library beyond
the SAS System. You should use the operating environment-supplied utilities and
file-system security controls in order to control access to SAS files outside of SAS. �

See Also

� ENCRYPT= Data Set Option in SAS Language Reference: Dictionary
� PW= Data Set Option in SAS Language Reference: Dictionary
� READ= Data Set Option in SAS Language Reference: Dictionary
� WRITE= Data Set Option in SAS Language Reference: Dictionary
� File Protection in SAS Language Reference: Concepts
� Manipulating Passwords in Base SAS Procedures Guide

BUFSIZE= Data Set Option

Specifies the permanent buffer page size for an output SAS data set

Valid in: DATA step and PROC steps
Default: the value of the BUFSIZE= system option
Category: Data Set Control
Restriction: Use with output data sets only
z/OS specifics: Default value, valid values
See: BUFSIZE= Data Set Option in SAS Language Reference: Dictionary

Syntax
BUFSIZE= 0 | n | nK

0
specifies that SAS choose the optimal page size of the data set based on the
characteristics of the library and the type of data set.

n | nK
specifies the permanent buffer size (page size) in bytes or kilobytes, respectively. For
libraries other than HFS, the value specified will be rounded up to the block size
(BLKSIZE) of the library data set, because a block is the smallest unit of a data set
that may be transferred in a single I/O operation.

Data Set Options under z/OS FILEDISP= Data Set Option 227

Details
The page size is the amount of data that can be transferred for a single I/O operation to
one buffer. A page is the number of bytes of data that SAS moves between external
storage and memory in one logical I/O operation.

On z/OS, when BUFSIZE=0, SAS usually sets the member page size for output SAS
data sets equal to the number of blocks that would fit on one track of the z/OS disk
device. This page size tends to favor sequential processing by assuming the entire track
will be needed, read in multiple, consecutive blocks.

However, to improve performance for random (direct) access, the smallest possible
buffer size is best. The minimum page size that you can specify depends on the type of
library, as shown in the following table.

Table 11.1 Minimum Page Sizes for SAS Libraries

Type of Library Minimum Page Size

direct access bound library BLKSIZE of library data set

HFS library 6K

hiperspace library 4K

FILEDISP= Data Set Option

Specifies the initial disposition for a sequential access bound SAS data library

Valid in: DATA step and PROC steps

Default: OLD

Engines: V9TAPE, V8TAPE, V7TAPE, V6TAPE, V5TAPE

z/OS specifics: all

Syntax
FILEDISP=NEW | OLD

NEW
specifies that the sequential data library is to be considered empty. SAS therefore
does not look for previously written members. The DATA step writes the new
member at the beginning of the new (empty) library. Any members that existed in
the library prior to the write operation are lost. The FILEDISP=NEW option can be
valid only during the first write to a sequential data library for a given libref. For all
subsequent writes to that libref, FILEDISP=NEW is ignored and FILEDISP=OLD is
assumed.

OLD
specifies that the sequential data library is not initially empty. SAS therefore writes
members with names that do not already exist in the library at the end of the library.
If the member being written has a name that already exists in the library, the
existing member is overwritten, and any members that follow the overwritten
member are lost.

228 Summary of SAS Data Set Options in the z/OS Environment Chapter 11

Details
A sequential data library is a single SAS file that can contain one or more concatenated
members.

To avoid inadvertent data loss, make sure that you specify FILEDISP=NEW only
when writing to new (empty) sequential data libraries. Also, when writing to an existing
sequential data library, make sure that the name of the member being written does not
inadvertently correspond to the name of a member that already exists in the library.

Summary of SAS Data Set Options in the z/OS Environment
The following table describes both the data set options specific to z/OS and the

portable data set options.
The See column tells you where to look for more detailed information about an

option, based on the following legend:

COMP See the description of the data set option in this chapter.

LR See SAS Language Reference: Dictionary.

NLS SAS National Language Support (NLS): User’s Guide

The Engines column lists the engines with which the option is valid, based on the
following legend:

all V9, V8, V7,
V6, DBI

Applies to all disk and tape engines, including database interface
(DBI) engines.

all V9, V8, V7,
V6

Applies to all disk and tape engines except DBI engines.

V9TAPE,
V8TAPE,
V7TAPE,
V6TAPE

Applies to all tape engines for the specified SAS versions; does not
apply to disk or DBI engines.

V9, V8, V7, V6 Applies to all disk engines for the specified versions; does not apply
to tape or DBI engines.

Note: For the purposes of the following table, V7, V8, and V9 are the same engine,
and V7TAPE, V8TAPE, and V9TAPE are the same engine. �

Table 11.2 Summary Table of SAS Data Set Options

Data Set Option Description When Used See Engines

ALTER= specifies the password required to delete or
replace a SAS data set or to modify variable
attributes or indexes for a SAS data set

output, update COMP all V9,
V8, V7,
V6

BUFNO= specifies the number of buffers for processing
a SAS data set

input, output, update LR all V9,
V8, V7,
V6

input LR all V5

BUFSIZE= specifies a permanent page size for output
SAS data sets

output COMP,
LR

all V9,
V8, V7,
V6

Data Set Options under z/OS Summary of SAS Data Set Options in the z/OS Environment 229

Data Set Option Description When Used See Engines

CNTLLEV= specifies the level of shared access to a SAS
data set

input, update LR V9, V8,
V7, V6

input LR V5

COMPRESS= compresses observations in an output SAS
data set

output LR V9, V8,
V7, V6,
V9TAPE,
V8TAPE,
V7TAPE

DLDMGACTION= specifies what type of action to take when a
SAS data set in a SAS data library is
detected as damaged

input, output, update LR all V9,
V8, V7,
V6

DROP= excludes variables from processing or from
output SAS data sets

input, output, update LR all V9,
V8, V7,
V6, DBI

input LR V5

ENCODING= specifies a character-set encoding to use for
processing a particular input or output SAS
data set

input NLS V9, V8,
V7,
V9TAPE,
V8TAPE,
V7TAPE

ENCRYPT= encrypts SAS data files output LR all V8

FILECLOSE= specifies how to position a tape volume when
a SAS file on the tape is closed

input, output LR V9TAPE,
V8TAPE,
V7TAPE,
V6TAPE

input LR V5TAPE

FILEDISP= specifies the initial disposition for a
sequential-format SAS data library

input, output COMP V9TAPE,
V8TAPE,
V7TAPE,
V6TAPE

input COMP V5TAPE

FIRSTOBS= causes processing to begin at a specified
observation

input, update LR all V9,
V8, V7,
V6, DBI

GENMAX= requests generations for a file and specifies
the maximum number of generations

output, update LR V9, V8,
V7

GENNUM= references a specific generation of a data set input, output, update LR V9, V8,
V7

IDXNAME= directs SAS to use a specific index to satisfy
the conditions of a WHERE expression

input, update LR V9, V8,
V7, V6

IDXWHERE= overrides the SAS decision about whether to
use an index to satisfy the conditions of a
WHERE expression

input, update LR V9, V8,
V7, V6

230 Summary of SAS Data Set Options in the z/OS Environment Chapter 11

Data Set Option Description When Used See Engines

IN= creates a variable that indicates whether the
data set contributed data to the current
observation

input (with SET,
MERGE, MODIFY,
UPDATE statements
only)

LR all V9,
V8, V7,
V6, DBI

INDEX= defines one or more indexes for a new data
set

output LR V9, V8,
V7, V6,
V9TAPE,
V8TAPE,
V7TAPE

KEEP= specifies variables for processing or for
writing to output SAS data sets

input, output, update LR all V9,
V8, V7,
V6, DBI

input LR all V5

LABEL= specifies a label for the SAS data set input, output, update LR all V9,
V8, V7,
V6, DBI

input LR all V5

OBS= specifies the last observation of the data set
to process

input, update LR all V9,
V8, V7,
V6, DBI

OBSBUF= determines the size of the view buffer for
processing a DATA step view

input LR V9, V8,
V7

OUTREP= specifies an output format for an operating
environment other than z/OS

output LR V9, V8,
V7,
V9TAPE

POINTOBS= controls whether a new compressed data set
may be processed by observation number

input LR V9, V8,
V7

PW= assigns a read, write, and alter password to a
SAS file

input, output, update LR all V9,
V8, V7,
V6

input LR all V5

PWREQ= specifies whether to display a requestor
window if a password has not been supplied

input, output, update LR all V9,
V8, V7,
V6

input LR all V5

READ= specifies the password required to read a
SAS data set

input, output, update LR all V9,
V8, V7,
V6

input LR V5

RENAME= changes the name of a variable input, output, update LR all V9,
V8, V7,
V6, DBI

input LR V5

Data Set Options under z/OS Summary of SAS Data Set Options in the z/OS Environment 231

Data Set Option Description When Used See Engines

REPEMPTY= controls replacement of like-named
temporary or permanent SAS data sets when
the new one is empty

output LR V9, V8

REPLACE= controls replacement of like-named
temporary or permanent SAS data sets

output LR all V9,
V8, V7,
V6, DBI

REUSE= specifies whether SAS appends new
observations to a compressed data set or
inserts them in freed space

output LR V9, V8,
V7, V6

SORTEDBY= specifies how the data set is currently sorted input, output update LR all V9,
V8, V7,
V6

input LR all V5

SORTSEQ= specifies the collating sequence to be used by
the SORT procedure

input, output, update NLS V9, V8,
V7

SPILL= specifies whether to create a spill file for
non-sequential processing of a DATA step
view

output LR V9, V8,
V7

TOBSNO= specifies the number of observations to be
transmitted in each multi-observation
exchange with a SAS server

input, output, update LR REMOTE

TYPE= specifies the data set type for data that is
used by some SAS/STAT procedures

input, output, update LR all V9,
V8, V7,
V6, DBI

input LR all V5

WHERE= selects observations that meet the specified
condition

input, output, update LR all V9,
V8, V7,
V6, DBI

input LR all V5

WHEREUP= specifies whether to evaluate added
observations and modified observations
against a WHERE clause

input, output, update LR V9, V8,
V7, V6

input LR all V5

WRITE= specifies the password required to modify the
value of an observation within a SAS data set

output, update LR all V9,
V8, V7,
V6

232

233

C H A P T E R

12
Formats under z/OS

Formats in the z/OS Environment 233

Considerations for Using Formats in the z/OS Environment 233
EBCDIC and Character Data 233

Floating-Point Number Format and Portability 234

Writing Binary Data 234
BESTw. Format 235

Ew. Format 236

HEXw. Format 237
IBw.d Format 238

PDw.d Format 239
RBw.d Format 240

w.d Format 241

ZDw.d Format 242

Formats in the z/OS Environment

In general, formats are completely portable. Only the formats that have aspects
specific to z/OS are documented in this chapter. All portable formats are described in
SAS Language Reference: Dictionary; that information is not repeated here. Instead,
you are given details on how the format behaves in the z/OS environment, then you are
referred to SAS Language Reference: Dictionary for further details.

Considerations for Using Formats in the z/OS Environment

EBCDIC and Character Data

The following character formats produce different results on different computing
platforms, depending on which character-encoding system the platform uses. Because z/
OS uses the EBCDIC character-encoding system, all of the following formats convert
data from EBCDIC.

These formats are not discussed in detail in this chapter because the EBCDIC
character-encoding system is their only host-specific aspect.

$ASCIIw.
converts EBCDIC character data to ASCII character data.

234 Floating-Point Number Format and Portability Chapter 12

$BINARYw.
converts EBCDIC character data to binary representation, where each character is
represented by eight binary characters.

$EBCDICw.
converts EBCDIC data to character data. Under z/OS, $EBCDICw. and $CHARw.
are equivalent.

$HEXw.
converts EBCDIC character data to hexadecimal representation.

$OCTALw.
converts EBCDIC character data to octal representation.

All the information that you need in order to use these formats under z/OS is in SAS
Language Reference: Dictionary.

Floating-Point Number Format and Portability
The manner in which z/OS stores floating-point numbers can affect your data. See

SAS Language Reference: Concepts for details.

Writing Binary Data
If a SAS program that writes binary data is run in only one operating environment,

you can use the following native-mode formats:*

IBw.d
writes integer binary (fixed-point) values, including negative values, that are
represented in two’s complement notation.

PDw.d
writes data that is stored in IBM packed decimal format.

PIBw.d
writes positive integer binary (fixed-point) values.

RBw.d
writes real binary (floating-point) data.

If you want to write SAS programs that can be run on multiple machines that use
different byte-storage systems, use the following IBM 370 formats:

S370FFw.d
writes standard numeric data in IBM mainframe format.

S370FIBw.d
writes integer binary data in IBM mainframe format.

S370FIBUw.d
writes unsigned integer binary data in IBM mainframe format.

S370FPDw.d
writes packed decimal data in IBM mainframe format.

S370FPDUw.d
writes unsigned packed decimal data in IBM mainframe format.

* Native-mode formats use the byte-ordering system that is standard for the operating environment.

Formats under z/OS BESTw. Format 235

S370FPIBw.d
writes positive integer binary data in IBM mainframe format.

S370FRBw.d
writes real binary data in IBM mainframe format.

S370FZDw.d
writes zoned decimal data in IBM mainframe format.

S370FZDLw.d
writes zoned decimal leading sign data in IBM mainframe format.

S370FZDSw.d
writes zoned decimal separate leading sign data in IBM mainframe format.

S370FZDTw.d
writes zoned decimal separate trailing sign data in IBM mainframe format.

S370FZDUw.d
writes unsigned zoned decimal data in IBM mainframe format.

These IBM 370 formats enable you to write SAS programs that can be run in any
SAS environment, regardless of the standard for storing numeric data. They also
enhance your ability to port raw data between host operating environments.

For more information about the IBM 370 formats, see SAS Language Reference:
Dictionary.

BESTw. Format

SAS software chooses the best notation

Numeric

Width range: 1-32 bytes
Default width: 12
Alignment: right
z/OS specifics: writes output as EBCDIC, minimum and maximum values
See: BESTw. Format in SAS Language Reference: Dictionary

Details
Numbers are written using EBCDIC code with one digit per byte. Because the value is
output as EBCDIC text characters, you can print it without further formatting.

The range of the magnitude of numbers is from 5.4 x 10-79 to 7.2 x 1075. Any number
that is outside this range causes an overflow error. All numeric variables that are
represented by SAS software are within this range.

The following examples illustrate the use of BESTw. under z/OS:

236 Ew. Format Chapter 12

Value Format Results Notes

1234 best6. bb1234

-1234 best6. b-1234

12.34 best6. b12.34

12345678 best8. 1.2346E8 truncated and
rounded

Note: In these examples, the Value column represents the value of the SAS numeric
variable. The Results column shows what the numeric output looks like when viewed
from a text editor. The b characters in the Results column indicate blank spaces. See
Table 9.2 on page 208 for a table of commonly used EBCDIC characters. �

See Also

� Format: BESTw. in SAS Language Reference: Dictionary

Ew. Format

Writes numeric values in scientific notation

Numeric

Width range: 7- 32 bytes

Default width: 12

Alignment: right

z/OS specifics: writes output as EBCDIC, minimum and maximum values

See: Ew. Format in SAS Language Reference: Dictionary

Details
Numbers are represented using the EBCDIC code, with one digit per byte. Because the
values are stored in EBCDIC, they can be printed without further formatting.

The range of the magnitude of numbers is from 5.4 x 10-79 to 7.2 x 1075. Any number
that is outside of this range causes an overflow error. All numeric variables that are
represented by SAS software are within this range.

The following examples illustrate the use of Ew. under z/OS:

Value Format Results Notes

123 e10. b1.230E+02

-123 e10. -1.230E+02

12.3 e10. b1.230E+01

12345678 e10. b1.235E+07 truncated and rounded

Formats under z/OS HEXw. Format 237

Note: In these examples, the Value column represents the value of the SAS numeric
variable. The Results column shows what the numeric value looks like when viewed
from a text editor. The b characters in the Results column indicate blank spaces. See
Table 9.2 on page 208 for a table of commonly used EBCDIC characters. �

See Also

� Format: Ew. in SAS Language Reference: Dictionary

� Informat: “Ew.d Informat” on page 280

HEXw. Format

Converts real binary (floating-point) values to hexadecimal representation

Numeric

Width range: 1-16 bytes

Default width: 8

Alignment: left

z/OS specifics: writes output as EBCDIC, IBM floating-point format

See: HEXw. Format in SAS Language Reference: Dictionary

Details
Each hexadecimal digit is written using the EBCDIC code, which requires one byte per
digit. See Table 9.2 on page 208 for a table of commonly used EBCDIC characters.

The format of floating-point numbers is host-specific. See SAS Language Reference:
Concepts for a description of the IBM floating-point format that is used under z/OS.

The w value of the HEXw. format determines whether the number is written as a
floating-point number or as an integer. When you specify a width value of 1 through 15,
the real binary numbers are truncated to fixed-point integers before being converted to
hexadecimal representation. When you specify 16 for the width, the floating point
values are used, and the numbers are not truncated.

The following examples illustrate the use of HEXw. under z/OS:

Value Format Results Notes

31.5 hex16. 421F800000000000 floating-point
number

31.5 hex15. 00000000000001F integer

-31.5 hex16. C21F800000000000 floating-point
number

-31.5 hex15. FFFFFFFFFFFFFE1 integer

Note: In these examples, the Value column represents the value of the SAS numeric
variable. The Results column shows what the numeric value looks like when viewed
from a text editor. �

238 IBw.d Format Chapter 12

See Also

� Format: HEXw. in SAS Language Reference: Dictionary

� Informat: “HEXw. Informat” on page 280

� “Representation of Numeric Variables” on page 207

IBw.d Format

Writes numbers in integer binary (fixed-point) format

Numeric

Width range: 1-8 bytes

Default width: 4

Decimal range: 0-10

Alignment:

z/OS specifics: two’s complement notation

See: IBw.d Format in SAS Language Reference: Dictionary

Details
On an IBM mainframe system, integer values are stored in two’s complement notation.

If an overflow occurs, the value written is the largest value that fits into the output
field; the value will be positive, negative, or unsigned, as appropriate. If the format
includes a d value, the number is multiplied by 10d.

Here are some examples of the IBw.d format:

Value Format Results (Hex) Notes

-1234 ib4. FFFFFB2E

12.34 ib4. 0000000C

123456789 ib4. 075BCD15

1234 ib6.2 00000001E208 a d value of 2 causes
the number to be
multipled by 102

-1234 ib6.2 FFFFFFFE1DF8 a d value of 2 causes
the number to be
multipled by 102

1234 ib1. 7F overflow occurred

-1234 ib1. 80 overflow occurred

Note: In these examples, the Value column represents the value of the numeric
variable. The Results column shows a hexadecimal representation of the bit pattern
written by the corresponding format. (You cannot view this data in a text editor, unless
you can view it in hexadecimal representation.) �

Formats under z/OS PDw.d Format 239

See Also

� Formats: IBw.d, S370FIBw.d, and S370FPIBw.d in SAS Language Reference:
Dictionary

� Informat: “IBw.d Informat” on page 281

PDw.d Format

Writes values in IBM packed decimal format

Numeric

Width range: 1-16 bytes

Default width: 1

Decimal range: 0-31

Alignment: left

z/OS specifics: IBM packed decimal format

See: PDw.d Format in SAS Language Reference: Dictionary

Details

In packed decimal format, each byte represents two decimal digits. An IBM packed
decimal number consists of a sign and up to 31 digits, thus giving a range of 1031 −1 to
-1031 + 1. The sign is written in the rightmost nibble. (A nibble is four bits or half a
byte.) A hexadecimal C indicates a plus sign, and a hexadecimal D indicates a minus
sign. The rest of the nibbles to the left of the sign nibble represent decimal digits. The
hexadecimal values of these digit nibbles correspond to decimal values; therefore, only
values between ’0’x and ’9’x can be used in the digit positions.

If an overflow occurs, the value that is written is the largest value that fits into the
output field; the value will be positive, negative, or unsigned, as appropriate.

Here are several examples of packed decimal format:

Value Format Results (Hex) Notes

-1234 pd3. 01234D

1234 pd2. 999C overflow occurred

1234 pd4. 0001234C

1234 pd4.2 0123400C a d value of 2 causes the
number to be multiplied
by 102

Note: In these examples, the Value column represents the value of the data, and the
Results column shows a hexadecimal representation of the bit pattern written by the
corresponding format. (You cannot view this data in a text editor, unless you can view it
in hexadecimal representation.) �

240 RBw.d Format Chapter 12

See Also

� Formats: PDw.d and S370FPDw.d in SAS Language Reference: Dictionary

� Informat: “PDw.d Informat” on page 282

RBw.d Format

Writes numeric data in real binary (floating-point) notation

Numeric

Width range: 2-8 bytes

Default width: 4

Decimal range: 0-10

Alignment: left

z/OS specifics: IBM floating-point format

See: RBw.d Format in SAS Language Reference: Dictionary

Details

The format of floating-point numbers is host-specific. See SAS Language Reference:
Concepts for a description of the format that is used to store floating-point numbers
under z/OS.

If the format includes a d value, the number is multiplied by 10d.
Here are some examples of how decimal numbers are written as floating-point

numbers using the RBw.d format:

Value Format Results (Hex) Notes

123 rb8.1 434CE00000000000 a d value of 1 causes
the number to be
multiplied by 101

123 rb8.2 44300C0000000000 a d value of 2 causes
the number to be
multiplied by 102

-123 rb8. C27B000000000000

1234 rb8. 434D200000000000

1234 rb2. 434D truncation occurred

12.25 rb8. 41C4000000000000

Note: In these examples, the Value column represents the value of the data, and the
Results column shows a hexadecimal representation of the bit pattern written by the
corresponding format. (You cannot view this data in a text editor, unless you can view it
in hexadecimal representation.) �

Formats under z/OS w.d Format 241

See Also

� Formats: RBw.d and S370FRBw.d in SAS Language Reference: Dictionary

� Informat: “RBw.d Informat ”on page 283

w.d Format

Writes numeric data

Numeric

Width range: 1-32 bytes

Default width: 12

Decimal range: d<w

Alignment: right

z/OS specifics: writes output as EBCDIC, minimum and maximum values

See: w.d Format in SAS Language Reference: Dictionary

Details
The w.d format writes numeric values one digit per byte using EBCDIC code. Because
the values are stored in EBCDIC, they can be printed without further formatting.

Numbers written with the w.d format are rounded to the nearest number that can be
represented in the output field. If the number is too large to fit, the BESTw.d format is
used. Under z/OS, the range of the magnitude of numbers that can be written with the
BESTw.d format is from 5.4 x 10-79 to 7.2 x 1075.

The following examples illustrate the use of the w.d format:

Value Format Results

1234 4. 1234

1234 5. b1234

12345 4. 12E3

123.4 6.2 123.40

-1234 6. b-1234

Note: In these examples, the Value column represents the value of the data, and the
Results column shows what the numeric value looks like when viewed from a text
editor. The b characters in the Results column indicate blank spaces. See Table 9.2 on
page 208 for a table of commonly used EBCDIC characters. �

See Also

� Format: w.d in SAS Language Reference: Dictionary

242 ZDw.d Format Chapter 12

ZDw.d Format

Writes zoned decimal data

Numeric

Width range: 1-32 bytes
Default width: 1
Decimal range: 0-32
Alignment: left
z/OS specifics: IBM zoned decimal format
See: ZDw.d Format in SAS Language Reference: Dictionary

Details
Like standard format, zoned decimal digits are represented as EBCDIC characters.
Each digit requires one byte. The rightmost byte represents both the least significant
digit and the sign of the number. Digits to the left of the least significant digit are
written as the EBCDIC characters 0 through 9. The character that is written for the
least significant digit depends on the sign of the number. Negative numbers are
represented as the EBCDIC printable hexadecimal characters D0 through D9 in the
least significant digit position, and positive numbers are represented as hexadecimal C0
through C9. If the format includes a d value, the number is multiplied by 10d.

If an overflow occurs, the value that is written is the largest value that fits into the
output field; the value will be positive, negative, or unsigned, as appropriate.

The following examples illustrate the use of the zoned decimal format:

Value Format Results (Hex) Notes

1234 zd8. F0F0F0F0F1F2F3C4

123 zd8.1 F0F0F0F0F1F2F3C0 a d value of 1
causes the number
to be multiplied by
101

123 zd8.2 F0F0F0F1F2F3F0C0 a d value of 2
causes the number
to be multiplied by
102

-123 zd8. F0F0F0F0F0F1F2D3

0.000123 zd8.6 F0F0F0F0F0F1F2C3 a d value of 6
causes the number
to be multiplied by
106

Formats under z/OS ZDw.d Format 243

Value Format Results (Hex) Notes

0.00123 zd8.6 F0F0F0F0F1F2F3C0 a d value of 6
causes the number
to be multiplied by
106

1E-6 zd8.6 F0F0F0F0F0F0F0C1 a d value of 6
causes the number
to be multiplied by
106

Note: In these examples, the Value column represents the value of the data, and the
Results column shows a hexadecimal representation of the bit pattern that is written by
the corresponding format. (You cannot view this data in a text editor unless you view it
in hexadecimal representation.) See Table 9.2 on page 208 for a table of commonly used
EBCDIC characters. �

See Also

� Formats: ZDw.d, S370FZDLw.d, S370FZDSw.d, S370FZDTw.d, and S370FZDUw.d
in SAS Language Reference: Dictionary

� Informats: “ZDw.d Informat ”on page 284, “ZDBw.d Informat” on page 285, and
“S370FZDw.d” in SAS Language Reference: Dictionary

244

245

C H A P T E R

13
Functions and CALL Routines
under z/OS

Functions and CALL Routines under z/OS 245

ANYPUNCT Function 246
CALL SLEEP Routine 247

CALL SYSTEM Routine 248

CALL TSO Routine 249
CALL WTO Routine 249

DINFO Function 250

DOPEN Function 254
DOPTNAME Function 255

DOPTNUM Function 256
FCLOSE Function 256

FDELETE Function 257

FEXIST Function 257
FILEEXIST Function 258

FILENAME Function 258

FILEREF Function 260
FINFO Function 260

FOPEN Function 264
FOPTNAME Function 266

FOPTNUM Function 266

KTRANSLATE Function 267
LIBNAME Function 267

MOPEN Function 268

PATHNAME Function 269
PEEKCLONG Function 270

PEEKLONG Function 271
SYSGET Function 272

SYSTEM Function 273

TRANSLATE Function 274
TSO Function 275

WTO Function 275

Functions and CALL Routines under z/OS
Portable functions are documented in SAS Language Reference: Dictionary. This

chapter includes detailed information about the SAS functions and CALL routines that
are specific to z/OS or that have aspects specific to z/OS.

246 ANYPUNCT Function Chapter 13

ANYPUNCT Function

Searches a character string for a punctuation character and returns the first position at which it is
found

Category: Character

See: ANYPUNCT Function in SAS Language Reference: Dictionary

Syntax
ANYPUNCT(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional integer that specifies the position at which the search should start and
the direction in which to search.

Details
The results of the ANYPUNCT function depend directly on the translation table that is
in effect (see “TRANTAB= System Option” in the SAS Language Reference: Dictionary)
and indirectly on the ENCODING and LOCALE system options.

The ANYPUNCT function searches a string for the first occurrence of a punctuation
character. If such a character is found, ANYPUNCT returns the position in the string of
that character. If no such character is found, ANYPUNCT returns a value of 0.

If you use only one argument, ANYPUNCT begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.

� If the value of start is negative, the search proceeds to the left.

� If the value of start is less than the negative length of the string, the search begins
at the end of the string.

ANYPUNCT returns a value of zero when

� the character that you are searching for is not found

� the value of start is greater than the length of the string

� the value of start = 0.

Note: For z/OS systems, the new anypunct function will by default report a small
list of characters as punctuation. This is a holdover from older systems that defined a
limited set of printable characters. To use a current definition of the punctuation
characters, specify an appropriate LOCALE option value, for example,
LOCALE=ENGLISH. �

Functions and CALL Routines under z/OS CALL SLEEP Routine 247

Comparisons
The ANYPUNCT function searches a character string for a punctuation character. The
NOTPUNCT function searches a character string for a character that is not a
punctuation character.

Examples
The following example uses the ANYPUNCT function to search a string for punctuation
characters.

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=anypunct(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=6 c==
j=8 c=_
j=10 c=_
j=12 c=+
j=18 c=;
That’s all

See Also
1 “NOTPUNCT Function” in SAS Language Reference: Dictionary

CALL SLEEP Routine

Suspends the execution of a program that invokes this call routine for a specified period of time

Category: Special
z/OS specifics: host call
See: CALL SLEEP Routine in SAS Language Reference: Dictionary

Syntax
CALL SLEEP(time);

time
specifies the amount of time, in milliseconds (1/1,000 of a second), that you want to
suspend execution of a DATA step and the SAS task that is running that DATA step.

248 CALL SYSTEM Routine Chapter 13

Details
CALL SLEEP puts the DATA step in which it is invoked into a nonactive wait state,
using no CPU time and performing no input or output. If you are running multiple SAS
tasks, each task can execute CALL SLEEP independently without affecting the other
tasks.

Note:
� In batch mode, extended sleep periods can trigger automatic host session

termination based on timeout values set at your site. Contact your host system
administrator as necessary to determine the timeout values used at your site.

� If you are running the asynchronous RSUBMIT statement in a SAS/CONNECT
session, specifying CALL SLEEP for a DATA step affects only that DATA step. It
does not affect any other SAS tasks that you are running on the remote system.

�

CALL SYSTEM Routine

Submits an operating system command for execution

Category: Special
z/OS specifics: all
See: CALL SYSTEM Routine in SAS Language Reference: Dictionary

Syntax
CALL SYSTEM(command);

command
can be a system command enclosed in quotation marks, an expression whose value is
a system command, or the name of a character variable whose value is a system
command. Under z/OS, "system command" includes TSO commands, CLISTs, and
REXX execs.

Details
The CALL SYSTEM routine is similar to the X (or TSO) statement, the X (or TSO)
command, the SYSTEM (or TSO) function, and the %SYSEXEC (or %TSO) macro
statement.

In most cases, the X statement, the X command, or the %SYSEXEC macro statement
are preferable because they require less overhead. However, the CALL SYSTEM
routine can be useful in certain situations because it is executable and because it
accepts expressions as arguments. For example, the following DATA step executes one
of three CLISTs depending on the value of a variable named ACTION that is stored in
an external file named USERID.TRANS.PROG:

data _null_;
infile ’userid.trans.prog’;

/* action is assumed to have a value of */

Functions and CALL Routines under z/OS CALL WTO Routine 249

/* 1, 2, or 3 */
/* create and initialize a 3-element array */
input action;
array programs{3} $ 11 c1-c3

("exec clist1" "exec clist2" "exec clist3");
call system(programs{action});

run;

In this example, the array elements are initialized with character strings that consist
of TSO commands for executing the three CLISTs. In the CALL SYSTEM statement,
an expression is used to pass one of these character strings to the CALL SYSTEM
routine. For example, if ACTION equals 2, then PROGRAMS{2}, which contains the
EXEC CLIST2 command, is passed to the CALL SYSTEM routine.

Under z/OS, CALL TSO is an alias for the CALL SYSTEM routine.

See Also

� Statements: “TSO Statement” on page 403 and “X Statement” on page 406

� Functions: “SYSTEM Function” on page 273 and “TSO Function” on page 275

� Commands: “TSO Command” on page 564 and “X Command” on page 566

� “Macro Statements” on page 289

CALL TSO Routine

Issues a TSO command or invokes a CLIST or a REXX exec during a SAS session

Category: Special

z/OS specifics: all

Syntax
CALL TSO(command);

Details
The TSO and SYSTEM CALL routines are identical, with one exception: under an
operating environment other than z/OS, the TSO CALL routine has no effect, whereas
the SYSTEM CALL routine is always processed. See “CALL SYSTEM Routine” on page
248 for more information.

CALL WTO Routine

Sends a message to the system console

z/OS specifics: all

250 DINFO Function Chapter 13

Syntax
CALL WTO (“text-string”);

text-string
is the message that you want to send. It should be no longer than 125 characters.

Description
WTO is a DATA step call routine that takes a character-string argument and sends it to
a system console. The destination is controlled by the WTOUSERROUT=,
WTOUSERDESC=, and WTOUSERMCSF= SAS system options. If WTOUSERROUT=0
(the default), no message is sent.

See Also
� “WTO Function” on page 275
� “WTOUSERDESC= System Option” on page 525
� “WTOUSERMCSF= System Option” on page 526
� “WTOUSERROUT= System Option” on page 527

DINFO Function

Returns information about a directory

Category: External Files
z/OS specifics: info-item
See: DINFO Function in SAS Language Reference: Dictionary

Syntax
DINFO(directory-id, info-item)

directory-id
specifies the identifier that was assigned when the directory was opened, generally
by the DOPEN function.

info-item
specifies the information item to be retrieved. DINFO returns a blank if the value of
the info-item argument is invalid. The information available varies according to
the operating environment. This is a character value.

Details
Directories that are opened with the DOPEN function are identified by a directory-id
and have a number of associated information items. Use DOPTNAME to determine the
names of the available system-dependent directory information items. Use DOPTNUM
to determine the number of directory information items available.

Functions and CALL Routines under z/OS DINFO Function 251

The DINFO, DOPTNAME, and DOPTNUM functions support the following directory
information items under z/OS.

Table 13.1 Directory Information Items for UNIX System Services (USS)
Directories

Item Item Identifier Definition

1 File Name Directory name

2 Access Permission Read, write, and execute permissions for owner, group,
and other

3 Number of Links Number of links in the directory

4 Owner Name User ID of the owner

5 Group Name Name of the owner’s access group

6 Filesize File size

7 Last Modified Date contents last modified

Table 13.2 Directory Information Items for PDSs

Item Item Identifier Definition

1 Dsname PDS name

2 Unit Disk type

3 Volume Volume on which data set resides

4 Disp Disposition

5 Blksize Block size

6 Lrecl Record length

7 Recfm Record format

Table 13.3 Directory Information Items for PDSEs

Item Item Identifier Definition

1 Dsname PDSE name

2 Dsntype Directory type

3 Unit Disk type

4 Volume Volume on which data set resides

5 Disp Disposition

6 Blksize Block size

7 Lrecl Record length

8 Recfm Record format

252 DINFO Function Chapter 13

Example 1: UNIX System Services (USS) Directory Information

This example generates output that includes information item names and values for
a USS directory:

data _null_;
length opt $100 optval $100;

/* Allocate directory */
rc=FILENAME(’mydir’, ’/u/userid’);

/* Open directory */
dirid=DOPEN(’mydir’);

/* Get number of information items */
infocnt=DOPTNUM(dirid);

/* Retrieve information items and */
/* print to log */
put @1 ’Information for a UNIX

System Services Directory:’;
do j=1 to infocnt;

opt=DOPTNAME(dirid,j);
optval=DINFO(dirid,upcase(opt));
put @1 opt @20 optval;

end;

/* Close the directory */
rc=DCLOSE(dirid);

/* Deallocate the directory */
rc=FILENAME(’mydir’);

run;

Output 13.1 USS Directory Information

Information for a UNIX System
Services Directory:

File Name /u/userid
Access Permission drwxr-xr-x
Number of Links 17
Owner Name MYUSER
Group Name GRP
Last Modified Apr 26 07:18

NOTE: The DATA statement used 0.09
CPU seconds and 5203K.

Example 2: PDSE Directory Information

This example generates directory information for a PDSE:

data _null_;
length opt $100 optval $100;

/* Allocate directory */
rc=FILENAME(’mydir’, ’userid.pdse.src’);

Functions and CALL Routines under z/OS DINFO Function 253

/* Open directory */
dirid=DOPEN(’mydir’);

/* Get number of information items */
infocnt=DOPTNUM(dirid);

/* Retrieve information items and */
/* print to log */
put @1 ’Information for a PDSE:’;
do j=1 to infocnt;

opt=DOPTNAME(dirid,j);
optval=DINFO(dirid,upcase(opt));
put @1 opt @20 optval;

end;

/* Close the directory */
rc=DCLOSE(dirid);

/* Deallocate the directory */
rc=FILENAME(’mydir’);

run;

Output 13.2 PDSE Directory Information

Information for a PDSE:
Dsname USERID.PDSE.SRC
Dsntype PDSE
Unit 3380
Volume ABC002
Disp SHR
Blksize 260
Lrecl 254
Recfm VB

NOTE: The DATA statement used 0.08
CPU seconds and 5203K.

Example 3: PDS Directory Information

This example generates information item names and values for a PDS:

data _null_;
length opt $100 optval $100;

/* Allocate directory */
rc=FILENAME(’mydir’, ’userid.mail.text’);

/* Open directory */
dirid=DOPEN(’mydir’);

/* Get number of information items */
infocnt=DOPTNUM(dirid);

/* Retrieve information items and */
/* print to log */

254 DOPEN Function Chapter 13

put @1 ’Information for a PDS:’;
do j=1 to infocnt;

opt=DOPTNAME(dirid,j);
optval=DINFO(dirid,upcase(opt));
put @1 opt @20 optval;

end;

/* Close the directory */
rc=DCLOSE(dirid);

/* Deallocate the directory */
rc=FILENAME(’mydir’);

run;

Output 13.3 PDS Directory Information

Information for a PDS:
Dsname USERID.MAIL.TEXT
Unit 3380
Volume ABC005
Disp SHR
Blksize 6160
Lrecl 80
Recfm FB

NOTE: The DATA statement used 0.07
CPU seconds and 5211K.

See Also

� “DOPEN Function” on page 254

� “DOPTNAME Function” on page 255

� “DOPTNUM Function” on page 256

DOPEN Function

Opens a directory and returns a directory identifier value

Category: External Files

z/OS specifics: file systems

See: DOPEN Function in SAS Language Reference: Dictionary

Syntax

DOPEN(‘fileref’)

fileref
specifies the fileref assigned to the directory.

Functions and CALL Routines under z/OS DOPTNAME Function 255

Details

DOPEN opens a directory and returns a directory identifier value (a number greater
than 0) that is used to identify the open directory in other SAS external file access
functions.

DOPEN applies to directory structures that are available in partitioned data sets
(PDS, PDSE) and in UNIX System Services. For code examples, see “DINFO Function”
on page 250.

See Also

� “DOPTNAME Function” on page 255

� “DOPTNUM Function” on page 256

DOPTNAME Function

Returns the name of a directory information item

Category: External Files

z/OS specifics: nval

See: DOPTNAME Function in SAS Language Reference: Dictionary

Syntax

DOPTNAME(directory-id,nval)

directory-id
specifies the identifier that was assigned when the directory was opened, generally
by the DOPEN function.

nval
specifies the number of a directory information item. For definitions of information
item numbers and code examples, see“DINFO Function” on page 250.

Details

The DOPTNAME function returns the name of the specified information item number
for a file that was previously opened with the DOPEN function.

See “DINFO Function” on page 250 for information about item numbers and
definitions and code examples.

See Also

� “DOPEN Function” on page 254

� “DOPTNUM Function” on page 256

256 DOPTNUM Function Chapter 13

DOPTNUM Function
Returns the number of information items that are available for a directory

Category: External Files
z/OS specifics: return value
See: DOPTNUM Function in SAS Language Reference: Dictionary

Syntax
DOPTNUM(directory-id)

directory-id
specifies the identifier that was assigned when the directory was opened, generally
by the DOPEN function.

Details
Currently, the number of information items that are available for a PDS directory is 7,
for a PDSE directory is 8, and for a UNIX System Services directory is 7.

For code examples, see “DINFO Function” on page 250.

See Also

� “DOPEN Function” on page 254
� “DOPTNAME Function” on page 255

FCLOSE Function
Closes an external file, a directory, or a directory member

Category: External Files
z/OS specifics: file close is strongly recommended
See: FCLOSE Function in SAS Language Reference: Dictionary

Syntax
FCLOSE(file-id)

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

Details
Files opened with the FOPEN function are not closed automatically after processing.
All files that are opened with FOPEN should be closed with FCLOSE. For code
examples, see “FINFO Function” on page 260

Functions and CALL Routines under z/OS FEXIST Function 257

See Also

� “FOPEN Function” on page 264

FDELETE Function

Deletes an external file or an empty directory

Category: External Files

z/OS specifics: fileref

See: FDELETE Function in SAS Language Reference: Dictionary

Syntax
FDELETE (‘fileref’)

fileref
identifies an external file. The fileref must have been previously associated with a
sequential file, a PDS, a PDSE, or a UNIX System Services file using a FILENAME
statement or FILENAME function. The fileref cannot represent a concatenation of
multiple files.

Details
FDELETE returns 0 if the operation was successful, or a non-zero number if it was not
successful. If the fileref that is specified with FDELETE is associated with a UNIX
System Services directory, PDS, or PDSE, then that directory, PDS, or PDSE must be
empty. In order to delete the directory or file, the user that calls FDELETE must also
have the appropriate privileges.

Example

filename delfile ’myfile.test’;
data _null_;
rc=fdelete(’delfile’);
run;

FEXIST Function

Verifies the existence of an external file associated with a fileref

Category: External Files

z/OS specifics: fileref

See: FEXIST Function in SAS Language Reference: Dictionary

258 FILEEXIST Function Chapter 13

Syntax
FEXIST(‘fileref’)

fileref
identifies an external file. Under z/OS, it can be a fileref or any valid DDname that
has been previously associated with an external file using either a TSO ALLOCATE
command or a JCL DD statement. See the SAS Language Reference: Dictionary for
information on the values returned by this function.

Details
FEXIST returns 1 if the external file that is associated with fileref exists, and 0 if the
file does not exist.

FILEEXIST Function

Verifies the existence of an external file by its physical name

Category: External Files
z/OS specifics: filename
See: FILEEXIST Function in SAS Language Reference: Dictionary

Syntax
FILEEXIST(filename)

filename
specifies a physical filename of an external file. In a DATA step, filename can be a
character expression, a string in quotation marks, or a DATA step variable. In a
macro, filename can be any expression.

Under UNIX System Services, filename can specify a path.

Details
FILEEXIST returns 1 if the external file that is associated with fileref exists, and 0 if
the file does not exist.

FILENAME Function

Assigns or deassigns a fileref for an external file, a directory, or an output device

Category: External Files
z/OS specifics: host options, devices

Functions and CALL Routines under z/OS FILENAME Function 259

See: FILENAME Function in SAS Language Reference: Dictionary

Syntax
FILENAME(‘fileref’,filename<,device <,host-options>>)

fileref
in a DATA step, specifies the fileref to assign to an external file. In a macro (for
example, in the %SYSFUNC function), fileref is the name of a macro variable
(without an ampersand) whose value contains the fileref to assign to the external file.

filename
specifies the external file. Specifying a blank filename (‘ ’)deassigns the fileref that
was previously assigned.

device
specifies the type of device if the fileref points to an output device rather than to a
physical file:

DISK
specifies a disk.

DUMMY
specifies that output to the file is discarded.

PIPE
specifies an unnamed pipe.

PLOTTER
specifies an unbuffered graphics output device.

PRINTER
specifies a printer or printer spool file.

TERMINAL
specifies the user’s terminal.

TAPE
specifies a tape drive.

TEMP
creates a temporary file that exists only as long as the filename is assigned. The
temporary file can be accessed only through the logical name and is available only
while the logical name exists. If a physical pathname is specified, an error is
returned. Files manipulated by the TEMP device can have the same attributes
and behave identically to DISK files.

host-options
are host-specific options that may be specified in the FILENAME statement. These
options can be categorized into several groups. For details, see the following sections:

� “FILENAME Statement” on page 369

� “DCB Attribute Options” on page 379

� “SYSOUT Data Set Options for the FILENAME Statement” on page 383

� “Subsystem Options for the FILENAME Statement” on page 385

� “Options That Specify SMS Keywords” on page 382

� “Host-Specific Options for UNIX System Services Files” on page 106.

260 FILEREF Function Chapter 13

You can specify host options in any order following the file specification and the
optional device specification. When specifying more than one option, use a blank
space to separate each option. Values for options may be specified with or without
quotation marks. However, if a value contains one of the supported national
characters ($, #, or @), the quotation marks are required.

Details
FILENAME returns 0 if the operation was successful, and a non-zero number if it was
not successful.

See Also

� “FILENAME Statement” on page 369

FILEREF Function
Verifies that a fileref has been assigned for the current SAS session

Category: External Files
z/OS specifics: fileref
See: FILEREF Function in SAS Language Reference: Dictionary

Syntax
FILEREF(‘fileref’)

fileref
specifies the fileref to be validated. Under z/OS, fileref can be a DDname that was
assigned using the TSO ALLOCATE command or JCL DD statement.

Details
A negative return code indicates that the fileref exists, but the physical files associated
with the fileref does not exist. A positive value indicates that the fileref is not assigned.
A value of zero indicates that the fileref and the external file both exist.

FINFO Function
Returns the value of a file information item for an external file

Category: External Files
z/OS specifics: info-item
See: FINFO Function in SAS Language Reference: Dictionary

Syntax
FINFO(file-id,info-item)

Functions and CALL Routines under z/OS FINFO Function 261

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

info-item
specifies the number of the information item that is to be retrieved. This is a
character value.

Details

FINFO returns the value of a system-dependent information item for an external file
that was previously opened and assigned a file-id by the FOPEN function. FINFO
returns a blank if the value given for info-item is valid.

The FINFO, FOPTNAME, and FOPTNUM functions support the following
information items.

Table 13.4 Information Items for UNIX System Services Files

Item Item Identifier Definition

1 File Name Filename

2 Access Permission Read, write, and execute permissions for owner, group,
and other

3 Number of Links Number of links in the file

4 Owner Name User ID of the owner

5 Group Name Name of the owner’s access group

6 File Size File size

7 Last Modified Date file last modified

Table 13.5 Information Items for Sequential Files and Members of PDSs and
PDSEs

Item Item Identifier Definition

1 Dsname Filename

2 Unit Disk type

3 Volume Volume on which data set resides

4 Disp Disposition

5 Blksize Block size

6 Lrecl Record length

7 Recfm Record format

Example 1: Sequential File Information

The following example generates output that shows the information items available
for a sequential data set:

262 FINFO Function Chapter 13

data _null_;
length opt $100 optval $100;

/* Allocate file */
rc=FILENAME(’myfile’,

’userid.test.example’);

/* Open file */
fid=FOPEN(’myfile’);

/* Get number of information
items */

infocnt=FOPTNUM(fid);

/* Retrieve information items
and print to log */

put @1 ’Information for a
Sequential File:’;

do j=1 to infocnt;
opt=FOPTNAME(fid,j);
optval=FINFO(fid,upcase(opt));
put @1 opt @20 optval;

end;

/* Close the file */
rc=FCLOSE(fid);

/* Deallocate the file */
rc=FILENAME(’myfile’);

run;

Output 13.4 Sequential File Information

Information for a Sequential File:
Dsname USERID.TEST.EXAMPLE
Unit 3380
Volume ABC010
Disp SHR
Blksize 23392
Lrecl 136
Recfm FB

NOTE: The DATA statement used 0.10
CPU seconds and 5194K.

Example 2: PDS, PDSE Member Information

This example shows the information items available for PDS and PDSE members:

data _null_;
length opt $100 optval $100;

/* Allocate file */
rc=FILENAME(’myfile’,

’userid.test.data(oats)’);

Functions and CALL Routines under z/OS FINFO Function 263

/* Open file */
fid=FOPEN(’myfile’);

/* Get number of information
items */

infocnt=FOPTNUM(fid);

/* Retrieve information items
and print to log */

put @1 ’Information for a PDS
Member:’;

do j=1 to infocnt;
opt=FOPTNAME(fid,j);
optval=FINFO(fid,upcase(opt));
put @1 opt @20 optval;

end;

/* Close the file */
rc=FCLOSE(fid);

/* Deallocate the file */
rc=FILENAME(’myfile’);

run;

Output 13.5 PDS, PDSE Member Information

Information for a PDS Member:
Dsname USERID.TEST.DATA(OATS)
Unit 3380
Volume ABC006
Disp SHR
Blksize 1000
Lrecl 100
Recfm FB

NOTE: The DATA statement used 0.05
CPU seconds and 5194K.

Example 3: UNIX System Services File Information

This example shows the information items available for UNIX System Services files:

data _null_;
length opt $100 optval $100;

/* Allocate file */
rc=FILENAME(’myfile’,

’/u/userid/one’);

/* Open file */
fid=FOPEN(’myfile’);

/* Get number of information
items */

infocnt=FOPTNUM(fid);

264 FOPEN Function Chapter 13

/* Retrieve information items
and print to log */

put @1 ’Information for a UNIX
System Services File:’;

do j=1 to infocnt;
opt=FOPTNAME(fid,j);
optval=FINFO(fid,upcase(opt));
put @1 opt @20 optval;

end;

/* Close the file */
rc=FCLOSE(fid);

/* Deallocate the file */
rc=FILENAME(’myfile’);

run;

Output 13.6 UNIX System Services File Information

Information for a UNIX
System Services File:

File Name /u/userid/one
Access Permission -rw-rw-rw-
Number of Links 1
Owner Name USERID
Group Name GRP
File Size 4
Last Modified Apr 13 13:57

NOTE: The DATA statement used
0.07 CPU seconds and 5227K.

See Also

� “FCLOSE Function” on page 256
� “FOPEN Function” on page 264
� “FOPTNAME Function” on page 266
� “FOPTNUM Function” on page 266

FOPEN Function

Opens an external file and returns a file identifier value

Category: External Files
z/OS specifics: files opened with FOPEN must be explicitly closed with FCLOSE
See: FOPEN Function in SAS Language Reference: Dictionary

Syntax
FOPEN(‘fileref’<,open-mode <,record-length <,record-format>>>)

Functions and CALL Routines under z/OS FOPEN Function 265

fileref
specifies the fileref assigned to the external file.

open-mode
specifies the type of access to the file:

A APPEND mode allows writing new records after the current end
of the file.

I INPUT mode allows reading only (default).

O OUTPUT mode defaults to the OPEN mode that is specified in
the host option in the FILENAME statement or function. If no
host option is specified, it allows writing new records at the
beginning of the file.

S Sequential input mode is used for pipes and other sequential
devices such as hardware ports.

U UPDATE mode allows both reading and writing.

record-length
specifies the logical record length of the file. To use the existing record length for the
file, specify a length of 0, or do not provide a value here.

record-format
specifies the record format of the file. To use the existing record format, do not
specify a value here. Valid values are as follows:

B data should be interpreted as binary data.

D use default record format.

E use editable record format.

F file contains fixed length records.

P file contains printer carriage control in host-dependent record
format. For data sets with FBA or VBA record format, specify ‘P’
for the record-format argument.

V file contains variable-length records.

Details
FOPEN returns a 0 if the file could not be opened. Under z/OS, files that have been
opened with FOPEN must be closed with FCLOSE at the end of a DATA step; files are
not closed automatically after processing.

FOPEN can be used to open DDnames with instream data that are not already
opened if you specify ‘S’ for the open-mode attribute.

See “FINFO Function” on page 260 for code examples.

See Also

� “FCLOSE Function” on page 256

� “FOPTNAME Function” on page 266

� “FOPTNUM Function” on page 266

266 FOPTNAME Function Chapter 13

FOPTNAME Function

Returns the name of an information item for an external file

Category: External Files
z/OS specifics: info-item
See: FOPTNAME Function in SAS Language Reference: Dictionary

Syntax
FOPTNAME(file-id,nval)

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

nval
specifies the name of the file information item to be retrieved.

Details
FOPTNAME returns a blank if an error occurred.

For definitions of information item numbers and code examples, see “FINFO
Function” on page 260.

See Also

� “FCLOSE Function” on page 256
� “FOPEN Function” on page 264
� “FOPTNUM Function” on page 266

FOPTNUM Function

Returns the number of information items that are available for an external file

Category: External Files
z/OS specifics: return value
See: FOPTNUM Function in SAS Language Reference: Dictionary

Syntax
FOPTNUM(file-id)

file-id
specifies the identifier that was assigned when the file was opened (generally by the
FOPEN function).

Functions and CALL Routines under z/OS LIBNAME Function 267

Details
Currently, the number of information items available for a sequential file, a PDS
member, and a UNIX System Services file is 7.

For code examples, refer to “FINFO Function” on page 260.

See Also

� “FCLOSE Function” on page 256
� “FOPEN Function” on page 264
� “FOPTNAME Function” on page 266

KTRANSLATE Function

Replaces specific characters in a character expression

Category: DBCS
z/OS specifics: to/from pairs
See: KTRANSLATE Function in SAS National Language Support (NLS): User’s Guide

Syntax
KTRANSLATE(source, to-1, from-1<...to-n, from-n>)

Details
In the z/OS environment, KTRANSLATE requires a from argument for each to
argument. Also, there is no practical limit to the number of to/from pairs you can
specifiy.

KTRANSLATE differs from TRANSLATE in that it supports single-byte character set
replacement by double-byte characters, or vice versa.

See Also

� “TRANSLATE Function” on page 274

LIBNAME Function

Assigns or deassigns a libref for a SAS data library

Category: SAS File I/O
z/OS specifics: libref, SAS-data-library
See: LIBNAME Function in SAS Language Reference: Dictionary

Syntax
LIBNAME(libref,<,SAS-data-library<,engine<,options>>>)

268 MOPEN Function Chapter 13

libref
specifies the libref that is assigned to a SAS data library.

SAS-data-library
specifies the physical filename of the SAS data library that is associated with the
libref.

Details
If the LIBNAME function returns a 0, then the function was successful. However, you
could receive a non-zero value, even if the function was successful. A non-zero value is
returned if an error, warning, or note is produced. To determine if the function was
successful, look through the SAS log and use the following guidelines:

� If a warning or note was generated, then the function was successful.
� If an error was generated, then the function was not successful.

If no value is provided for SAS-data-library or if SAS-data-library has a value of
’’(with or without a space), LIBNAME disassociates the libref from the data library.

DDnames (assigned by JCL or the TSO ALLOCATE command) can also be used to
refer to SAS data libraries.

Example

rc=libname(’v9dat’,’myapp.demo.v9dat’, ’v9’);

See Also

� “LIBNAME Statement” on page 393

MOPEN Function

Opens a file by directory ID and by member name, and returns either the file identifier or a 0

Category: External Files
z/OS specifics: file systems, open-mode
See: MOPEN Function in SAS Language Reference: Dictionary

Syntax
MOPEN(directory-id,member-name<open-mode<,record-length <,record-format>>>)

open-mode
specifies the type of access to the file.

A APPEND mode allows writing new records after the current end of
the file. The A option is valid only for UNIX System Services. An
error will be returned if you specify A for a PDS or PDSE member.

Functions and CALL Routines under z/OS PATHNAME Function 269

O OUTPUT mode defaults to the OPEN mode specified in the
operating environment option in the FILENAME statement or
function. If no operating environment option is specified, it allows
writing new records at the beginning of the file.

Details
MOPEN returns the identifier for the file, or 0 if the file could not be opened.

MOPEN applies to members in partitioned data sets (PDS and PDSE) and UNIX
System Services (USS) files. Under z/OS, MOPEN can open PDS and PDSE members
for output only. It can open USS files for output or append.

See Also

� “DOPEN Function” on page 254

PATHNAME Function

Returns the physical name of a SAS data library or of an external file or returns a blank

Category: SAS File I/O

Category: External Files

z/OS specifics: fileref, libref

See: PATHNAME Function in SAS Language Reference: Dictionary

Syntax
PATHNAME((‘fileref’ | ‘libref’) <search-level>)

fileref
specifies the fileref assigned to an external file.

libref
specifies the libref assigned to a SAS library.

search-level
specifies whether to search for a fileref or a libref.

Note: If search-level is omitted, PATHNAME searches for a fileref or libref with
the specified name. �

F specifies a search for a fileref.

L specifies a search for a libref.

Details
PATHNAME returns the physical name of an external file or a SAS library, or returns a
blank if fileref or libref is invalid. When PATHNAME is applied to a concatenation, it
returns a list of data set names enclosed in parentheses.

270 PEEKCLONG Function Chapter 13

Under z/OS, you can also use any valid DDname that was previously allocated using
a TSO ALLOCATE command or a JCL DD statement.

PEEKCLONG Function

Stores the contents of a memory address in a character variable on 32-bit and 64-bit platforms

Category: Special
See: PEEKCLONG Function in SAS Language Reference: Dictionary

Syntax
PEEKCLONG(address<,length>)

Arguments

address
specifies a character string that is the memory address in binary.

length
specifies the length of the character data.
Default: If no length is specified, the length of the target variable is used. If the

function is used as part of an expression, the maximum length is returned.
Range: 1 to 32,767

Details
If you do not have access to the memory storage location that you are requesting, the
PEEKCLONG function returns an “Invalid argument” error.

Comparisons
The PEEKCLONG function stores the contents of a memory address in a character
variable.

The PEEKLONG function stores the contents of a memory address in a numeric
variable. It assumes that the input address refers to an integer in memory.

Example for a 32-bit Platform

The following example returns the pointer address for the character variable Z:

data _null_;
x=’ABCDE’;
y=addrlong(x);
z=peekclong(y,2);
put z=;

run;

The output from the SAS log is: z=AB

Functions and CALL Routines under z/OS PEEKLONG Function 271

See Also

Function:
“PEEKLONG Function” on page 271

PEEKLONG Function

Stores the contents of a memory address in a numeric variable on 32-bit and 64-bit platforms

Category: Special
See: PEEKLONG Function in SAS Language Reference: Dictionary

Syntax
PEEKLONG(address<,length>)

Arguments

address
specifies a character string that is the memory address in binary.

length
specifies the length of the character data.
Default: 4 on 32-bit machines; 8 on 64-bit machines.
Range: 1-4 on 32-bit machines; 1-8 on 64-bit machines.

Details
If you don’t have access to the memory storage location that you are requesting, the
PEEKLONG function returns an “Invalid argument” error.

Comparisons
The PEEKLONG function stores the contents of a memory address in a numeric
variable. It assumes that the input address refers to an integer in memory.

The PEEKCLONG function stores the contents of a memory address in a character
variable. It assumes that the input address refers to character data.

Example for a 32-bit Platform

The following example returns the pointer address for the numeric variable Z:

data _null_;
length y $4;
y=put(1,IB4.);
addry=addrlong(y);
z=peeklong(addry,4);
put z=;

272 SYSGET Function Chapter 13

run;

The output from the SAS log is: z=1

See Also

Function:

“PEEKCLONG Function” on page 270

SYSGET Function

Returns the value of the specified operating-environment variable

Category: Special

z/OS specifics: operating-environment-variable

See: SYSGET Function in SAS Language Reference: Dictionary

Syntax

SYSGET(operating-environment-variable)

operating-environment-variable
is the name of one of the parameters defined in the CLIST by which SAS was invoked.

Details

If the specified variable was not included in the SAS invocation, the error message
“NOTE: Invalid argument to the function SYSGET” is generated and _ERROR_ is set to
1.

Although z/OS does not have native environment variables, you can use the SET
option to define environment variables that are valid in your SAS session. SYSGET lets
you retrieve these environment variables. If you are in interactive mode, SYSGET
returns CLIST parameters. If you are in line mode, SYSGET returns the environment
variables that are valid in your SAS session.

Example

The following example returns the system options that are specified in the OPTIONS
parameter of the SAS CLIST and prints to the specified log:

data _null_;
opstr=sysget(’OPTIONS’);
if _ERROR_ then put ’no options supplied’;
else put ’options supplied are:’ optstr;

run;

Functions and CALL Routines under z/OS SYSTEM Function 273

See Also

� “SET= System Option” on page 497

SYSTEM Function

Issues an operating environment command during a SAS session and returns the system return
code

Category: Special
z/OS specifics: command, related commands, statements, macros
See: SYSTEM Function in SAS Language Reference: Dictionary

Syntax
SYSTEM(command)

command
can be a system command enclosed in quotation marks, an expression whose value is
a system command, or the name of a character variable whose value is a system
command. Under z/OS, the term system command refers to TSO commands, CLISTs,
and REXX execs.

Details
The SYSTEM function is similar to the X (or TSO) statement, the X (or TSO) command,
the CALL SYSTEM (or CALL TSO) routine, and the %SYSEXEC (or %TSO) macro
statement.

This function returns the operating environment return code after the command,
CLIST, or REXX exec is executed.

SAS executes the SYSTEM function immediately. Under z/OS, TSO is an alias for
the SYSTEM function. On other operating environments, the TSO function has no
effect, whereas the SYSTEM function is always processed.

You can use the SYSTEM function to issue most TSO commands or to execute
CLISTs or REXX execs. However, you cannot issue the TSO commands LOGON and
LOGOFF, and you cannot execute CLISTs that include the TSO ATTN statement.

You must use the TSO command, TSOEXEC, to execute authorized commands.

Examples

In the following example, the SYSTEM function is used to allocate an external file:

data _null_;
rc=system(’alloc f(study) da(my.library)’);

run;

For a fully qualified data set name, use the following statements:

data _null_;
rc=system("alloc f(study) da(’userid.my.library’)");

run;

274 TRANSLATE Function Chapter 13

In the second example above, notice that the command is enclosed in double
quotation marks. When the TSO command includes quotation marks, it is best to
enclose the command in double quotation marks. If you choose to use single quotation
marks, then double each single quotation mark within the TSO command:

data _null_;
rc=system(’alloc f(study)da(’’userid.my.library’’)’);

run;

See Also

� Statements: “TSO Statement” on page 403 and “X Statement” on page 406

� CALL routines: “CALL SYSTEM Routine” on page 248 and “CALL TSO Routine”
on page 249

� Commands: “TSO Command” on page 564 and “X Command” on page 566

� “Macro Statements” on page 289

TRANSLATE Function

Replaces specific characters in a character expression

Category: Character

z/OS specifics: to/from pairs

See: TRANSLATE Function in SAS Language Reference: Dictionary

Syntax

TRANSLATE(source, to-1, from-1, <... to-n, from-n>)

Arguments

source
specifies the SAS expression that contains the original character value.

to
specifies the characters that you want TRANSLATE to use as substitutes.

from
specifies the characters that you want TRANSLATE to replace.

Details

Under z/OS, you must specify pairs of to and from arguments. Also, there is no
practical limit to the number of to/from pairs you can specifiy.

TRANSLATE handles character replacement for single-byte character sets only. See
KTRANLSATE to replace single-byte characters with double-byte characters, or vice
versa.

Functions and CALL Routines under z/OS WTO Function 275

See Also

� “KTRANSLATE Function” on page 267

TSO Function
Issues a TSO command or invokes a CLIST or a REXX exec during a SAS session

z/OS specifics: all

Syntax
TSO(command)

Description
The SYSTEM and TSO functions are identical, with one exception: under an operating
environment other than z/OS, the TSO function has no effect, whereas the SYSTEM
function is always processed. See “SYSTEM Function” on page 273 for more
information. Note that the TSO function is ignored in a batch environment, unless SAS
is running in the TSO/E background.

WTO Function
Sends a message to the system console

z/OS specifics all

Syntax
WTO(“text-string”)

text-string
is the message that you want to send. It should be no longer than 125 characters.

Description
WTO is a DATA step function that takes a character-string argument and sends it to a
system console. The destination is controlled by the WTOUSERROUT=,
WTOUSERDESC=, and WTOUSERMCSF= SAS system options. If WTOUSERROUT=0
(the default), no message is sent.

See Also
� “WTOUSERDESC= System Option” on page 525
� “WTOUSERMCSF= System Option” on page 526
� “WTOUSERROUT= System Option” on page 527

276

277

C H A P T E R

14
Informats under z/OS

Informats in the z/OS Environment 277

Considerations for Using Informats under z/OS 277
EBCDIC and Character Data 277

Floating-Point Number Format and Portability 278

Reading Binary Data 278
Date and Time Informats 279

Ew.d Informat 280

HEXw. Informat 280
IBw.d Informat 281

PDw.d Informat 282
RBw.d Informat 283

ZDw.d Informat 284

ZDBw.d Informat 285

Informats in the z/OS Environment

In general, informats are completely portable. Only the informats that have aspects
specific to z/OS are documented in this chapter.

All informats are described in SAS Language Reference: Dictionary; that information
is not repeated here. Instead, you are given details on how the informat behaves under
z/OS, and then you are referred to SAS Language Reference: Dictionary for further
details.

Considerations for Using Informats under z/OS

EBCDIC and Character Data
The following character informats produce different results on different computing

platforms, depending on which character-encoding system the platform uses. Because z/
OS uses the EBCDIC character-encoding system, all of the following informats convert
data to EBCDIC.

These informats are not discussed in detail in this chapter because the EBCDIC
character-encoding system is their only host-specific aspect.

$ASCIIw.
converts ASCII character data to EBCDIC character data.

278 Floating-Point Number Format and Portability Chapter 14

$BINARYw.
converts binary values to EBCDIC character data.

$CHARZBw.
reads character data and converts any byte that contains a binary zero to a blank.

$EBCDICw.
converts character data to EBCDIC. Under z/OS, $EBCDIC and $CHAR are
equivalent.

$HEXw.
converts hexadecimal data to EBCDIC character data.

$OCTALw.
converts octal data to EBCDIC character data.

$PHEXw.
converts packed hexadecimal data to EBCDIC character data.

w.d
reads standard numeric data.

All the information that you need in order to use these informats under z/OS is in
SAS Language Reference: Dictionary.

Floating-Point Number Format and Portability
The manner in which z/OS stores floating-point numbers can affect your data. See

SAS Language Reference: Concepts for details.

Reading Binary Data
If a SAS program that reads and writes binary data is run on only one type of

machine, you can use the following native-mode* informats:

IBw.d reads integer binary (fixed-point) values, including negative values,
that are represented in two’s complement notation.

PDw.d reads data that is stored in IBM packed decimal format.

PIBw.d reads positive integer binary (fixed-point) values.

RBw.d reads real binary (floating-point) data.

If you want to write SAS programs that can be run on multiple machines that use
different byte-storage systems, use the following IBM 370 informats:

S370FFw.d
is used on other computer systems to read EBCDIC data.

S370FIBw.d
reads integer binary data.

S370FIBUw.d
reads unsigned integer binary data.

S370FPDw.d
reads packed decimal data.

* Native-mode means that these informats use the byte-ordering system that is standard for the machine.

Informats under z/OS Date and Time Informats 279

S370FPDUw.d
reads unsigned packed decimal data.

S370FPIBw.d
reads positive integer binary data.

S370FRBw.d
reads real binary data.

S370FZDw.d
reads zoned decimal data.

S370FZDLw.d
reads zoned decimal leading sign data.

S370FZDSw.d
reads zoned decimal separate leading sign data.

S370FZDTw.d
reads zoned decimal separate trailing sign data.

S370FZDUw.d
reads unsigned zoned decimal data.

These IBM 370 informats enable you to write SAS programs that can be run in any
SAS environment, regardless of the standard for storing numeric data. They also
enhance your ability to port raw data between host operating environments.

For more information about the IBM 370 informats, see SAS Language Reference:
Dictionary.

Date and Time Informats
Several informats are designed to read time and date stamps that have been written

by the System Management Facility (SMF) or by the Resource Measurement Facility
(RMF). SMF and RMF are standard features of the z/OS operating environment. They
record information about each job that is processed. The following informats are used to
read time and date stamps that are generated by SMF and RMF:

PDTIMEw.
reads the packed decimal time of SMF and RMF records.

RMFDUR.
reads the duration values of RMF records.

RMFSTAMPw.
reads the time and date fields of RMF records.

SMFSTAMPw.
reads the time and date of SMF records.

TODSTAMP.
reads the 8-byte time-of-day stamp.

TUw.
reads the Timer Unit.

In order to facilitate the portability of SAS programs, these informats may be used
with any operating environment that is supported by SAS software; therefore, they are
documented in SAS Language Reference: Dictionary.

280 Ew.d Informat Chapter 14

Ew.d Informat

Reads numeric values that are stored in scientific notation

Numeric

Width range: 7- 32 bytes
Default width: 12
Decimal range: 0-31
z/OS specifics: interprets input as EBCDIC, minimum and maximum values
See: Ew.d Informat in SAS Language Reference: Dictionary

Details
Numbers are interpreted using the EBCDIC character-encoding system, with one digit
per byte. The range of the magnitude of acceptable values is from 5.4 x 10-79 to 7.2 x
1075. Any number outside this range causes an overflow error.

The following examples illustrate the use of the informat.

Data Line Informat Value

1.230E+02 e10. 123

-1.230E+02 e10. -123

1.230E+01 e10. 12.3

1.235E+08 e10. 123,500,000

Note: In these examples, Data Line shows what the input looks like when viewed
from a text editor. Value is the number that is used by SAS after the data pattern has
been read using the corresponding informat. �

See Also

� Informat: Ew.d in SAS Language Reference: Dictionary
� Format: “Ew. Format” on page 236

HEXw. Informat

Converts hexadecimal positive binary values to either integer (fixed-point) or real (floating-point)
binary values

Numeric

Width range: 1-16 bytes
Default width: 8
z/OS specifics: interprets input as EBCDIC, IBM floating-point format

Informats under z/OS IBw.d Informat 281

See: HEXw. Informat in SAS Language Reference: Dictionary

Details
Under z/OS, each hexadecimal digit that is read by the HEX informat must be
represented using the EBCDIC code, with one digit per byte. For example, the
hexadecimal number ’3B’x is actually stored in the external file as the bit pattern
represented by ’F3C2’x, which is the EBCDIC code for 3B. (See Table 9.2 on page 208
for a table of commonly used EBCDIC characters.)

The format of floating-point numbers is host specific. See the data representation
information in SAS Language Reference: Concepts for a description of the IBM
floating-point format that is used under z/OS.

The w value of the HEX informat specifies the field width of the input value. It also
specifies whether the final value is an integer binary (fixed-point) value or a real binary
(floating-point) value. When you specify a width value of 1 through 15, the input
hexadecimal number represents an integer binary number. When you specify a width of
16, SAS interprets the input hexadecimal number as a representation of a floating-point
number.

The following examples illustrate the use of HEXw.d under z/OS.

Data Line (Hex) Informat Value Notes

433E800000000000 HEX16. 1000 input is interpreted as
floating point

000100 HEX6. 256 input is interpreted as
integer

C1A0000000000000 HEX16. -10 input is interpreted as
floating point

Note: In these examples, Data Line (Hex) represents the bit pattern stored, which is
the value seen when viewed in a text editor that displays values in hexadecimal
representation. Value is the number that is used by SAS after the data pattern has
been read using the corresponding informat. �

See Also

� Informat: HEXw.d in SAS Language Reference: Dictionary

� Format: “HEXw. Format” on page 237
� “Representation of Numeric Variables” on page 207

IBw.d Informat

Reads integer binary (fixed-point) values, including negative values

Numeric

Width range: 1-8 bytes

282 PDw.d Informat Chapter 14

Default width: 4

Decimal range: 0-10

z/OS specifics: two’s complement notation

See: IBw.d Informat in SAS Language Reference: Dictionary

Details
On an IBM mainframe system, integer values are represented in two’s complement
notation. If the informat specification includes a d value, the number is divided by 10d.

Here are several examples of the IBw.d informat:

Data Line (Hex) Informat Value Notes

FFFFFB2E ib4. -1234

000000003034 ib6.2 123.4 a d value of 2
causes the number
to be divided by 102

00000001E208 ib6.2 1234 a d value of 2
causes the number
to be divided by 102

Note: In these examples, Data Line (Hex) represents the bit pattern stored, which is
the value you see if you view it in a text editor that displays values in hexadecimal
representation. Value is the number that is used by SAS after the data pattern has
been read using the corresponding informat. �

See Also

� Informats: IBw.d, S370FIBw.d, and S370FPIBw.d in SAS Language Reference:
Dictionary

� Format: “IBw.d Format” on page 238

PDw.d Informat

Reads data that is stored in IBM packed decimal format

Numeric

Width range: 1-16 bytes

Default width: 1

Decimal range: 0-31

z/OS specifics: IBM packed decimal format

See: PDw.d Informat in SAS Language Reference: Dictionary

Informats under z/OS RBw.d Informat 283

Details
The w value specifies the number of bytes, not the number of digits. If the informat
specification includes a d value, the number is divided by 10d.

In packed decimal format, each byte except for the last byte represents two decimal
digits. (The last byte represents one digit and the sign.) An IBM packed decimal
number consists of a sign and up to 31 digits, thus giving a range from -1031 + 1 to 1031

− 1. The sign is written in the rightmost nibble. (A nibble is 4 bits or half a byte.) A
hexadecimal C indicates a plus sign, and a hexadecimal D indicates a minus sign. The
rest of the nibbles to the left of the sign nibble represent decimal digits. The
hexadecimal values of these digit nibbles correspond to decimal values; therefore, only
values between ’0’x and ’9’x can be used in the digit positions.

Here are several examples of how data is read using the PDw.d informat:

Data Line (Hex) Informat Value Notes

01234D pd3. -1234

0123400C pd4.2 1234 the d value of 2 causes the
number to be divided by 102

Note: In these examples, Data Line (Hex) represents the bit pattern stored, which is
the value you see if you view it in a text editor that displays values in hexadecimal
representation. Value is the number that is used by SAS after the data pattern has
been read using the corresponding informat. �

See Also

� Informats: PDw.d and S370FPDw.d in SAS Language Reference: Dictionary

� Format: “PDw.d Format” on page 239

RBw.d Informat

Reads numeric data that is stored in real binary (floating-point) notation

Numeric

Width range: 2- 8 bytes

Default width: 4

Decimal range: 0-10

z/OS specifics: IBM floating-point format

See: RBw.d Informat in SAS Language Reference: Dictionary

Details
The w value specifies the number of bytes, not the number of digits. If the informat
specification includes a d value, the number is divided by 10d.

284 ZDw.d Informat Chapter 14

The format of floating-point numbers is host-specific. See the data representation
information in SAS Language Reference: Concepts for a description of the IBM
floating-point format that is used under z/OS.

The following examples show how data that represent decimal numbers are read as
floating-point numbers using the RBw.d informat:

Data Line (Hex) Informat Value Notes

434CE00000000000 rb8.1 123 a d value of 1 causes
the number to be
divided by 101

44300C0000000000 rb8.2 123 a d value of 2 causes
the number to be
divided by 102

C27B000000000000 rb8. -123

434D200000000000 rb8. 1234

41C4000000000000 rb8. 12.25

Note: In these examples, Data Line (Hex) represents the bit pattern stored, which is
the value you see if you view it in a text editor that displays values in hexadecimal
representation. Value is the number that is used by SAS after the data pattern has
been read using the corresponding informat. �

See Also

� Informats: RBw.d and S370FRBw.d in SAS Language Reference: Dictionary
� Format: “RBw.d Format” on page 240
� “Representation of Numeric Variables” on page 207

ZDw.d Informat

Reads zoned decimal data

Numeric

Width range: 1-32 bytes
Decimal range: 0-32
z/OS specifics: IBM zoned decimal format
See: ZDw.d Informat in SAS Language Reference: Dictionary

Details
Like numbers that are stored in standard format, zoned decimal digits are represented
in EBCDIC code. Each digit requires one byte of storage space. The low-order, or
rightmost, byte represents both the least significant digit and the sign of the number.
Digits to the left of the least significant digit are represented in EBCDIC code as ’F0’x

Informats under z/OS ZDBw.d Informat 285

through ’F9’x. The character that is printed for the least significant digit depends on
the sign of the number. In EBCDIC code, negative numbers are represented as ’D0’x
through ’D9’x in the least significant digit position; positive numbers are represented as
’C0’x through ’C9’x. If the informat specification includes a d value, the number is
divided by 10d.

The following examples illustrate the use of the ZDw.d informat:

Data Line (Hex) Informat Value Notes

F0F0F0F1F2F3F0C0 zd8.2 123 a d value of 2
causes the number
to be divided by 102

F0F0F0F0F0F1F2D3 zd8. -123

F0F0F0F0F1F2F3C0 zd8.6 0.00123 a d value of 6
causes the number
to be divided by 106

F0F0F0F0F0F0F0C1 zd8.6 1E-6 a d value of 6
causes the number
to be divided by 106

Note: In these examples, Data Line (Hex) represents the bit pattern stored, which is
the value you see if you view it in a text editor that displays values in hexadecimal
representation. Value is the number that is used by SAS after the data pattern has
been read using the corresponding informat. See Table 9.2 on page 208 for a table of
commonly used EBCDIC characters. �

See Also

� Informats: ZDw.d, S370FZDw.d, S370FZDLw.d, S370FZDSw.d, S370FZDTw.d,
and S370FZDUw.d in SAS Language Reference: Dictionary and “ZDBw.d
Informat” on page 285

� Format: “ZDw.d Format” on page 242

ZDBw.d Informat
Reads zoned decimal data in which zeros have been left blank

Numeric

Width range: 1-32 bytes
Decimal range: 0-32
z/OS specifics: used on IBM 1410, 1401, and 1620
See: ZDBw.d Informat in SAS Language Reference: Dictionary

Details
As previously described for the ZDw.d informat, each digit is represented as an
EBCDIC character, and the low-order, or rightmost, byte represents both the sign and

286 ZDBw.d Informat Chapter 14

the least significant digit. The only difference between the two informats is the way in
which zeros are represented. The ZDBw.d informat treats EBCDIC blanks (’40’x) as
zeros. (EBCDIC zeros are also read as zeros.)

The following examples show how the ZDBw.d informat reads data:

Data Line (Hex) Informat Value

40404040F14040C0 zdb8. 1000

4040404040F1F2D3 zdb8. -123

4040404040F1F2C3 zdb8. 123

Note: In these examples, Data Line (Hex) represents the bit pattern stored, which is
the value you see if you view it in a text editor that displays values in hexadecimal
representation. Value is the number that is used by SAS after the data pattern has
been read using the corresponding informat. See Table 9.2 on page 208 for a table of
commonly used EBCDIC characters. �

See Also

� Informats:
� ZDBw.d in SAS Language Reference: Dictionary

� “ZDw.d Informat ”on page 284

� Format: “ZDw.d Format” on page 242

287

C H A P T E R

15
Macros under z/OS

Macros in the z/OS Environment 287

Automatic Macro Variables 287
Portable Macro Variables That Have Host-Specific Values 287

Macro Variables Available Only under z/OS 288

Names to Avoid When Defining Automatic Macro Variables 289
Macro Statements 289

Macro Functions 290

Autocall Libraries 290
Specifying a User Autocall Library 290

Example: Specifying an Autocall Library in Batch Mode 290
Example: Specifying an Autocall Library under TSO 291

Creating an Autocall Macro 291

Stored Compiled Macro Facility 291
Accessing Stored Compiled Macros 292

Other Host-Specific Aspects of the Macro Facility 293

Collating Sequence for Evaluating Macro Characters 293
SAS System Options Used by the Macro Facility 293

Additional Sources of Information 293

Macros in the z/OS Environment

Most features of the SAS macro facility are portable. These features are documented
in the SAS Macro Language: Reference. This chapter discusses the aspects of the macro
facility that are specific to the z/OS environment.

Automatic Macro Variables

Portable Macro Variables That Have Host-Specific Values
The following automatic macro variables are portable, but their values are

host-specific:

SYSCC
contains the current SAS condition code that SAS will translate into a meaningful
return code for z/OS at the conclusion of the SAS session.

288 Macro Variables Available Only under z/OS Chapter 15

SYSDEVIC
contains the name of the current graphics device. The current graphics device is
determined by the SAS option DEVICE=. (See “DEVICE= System Option” on page
421.) Ask your lcoal SAS Support Consultant which graphics devices are available
at your site.

SYSENV
is provided for compatibility with SAS software on other operating environments.
Under z/OS, its value is FORE if you are running SAS under TSO; otherwise, its
value is BACK. You cannot change the value of this variable.

SYSJOBID
contains the job name of the batch job that is currently executing, or the user ID
that is associated with the current SAS session. SAS obtains this value from the
TIOCNJOB field of the TIOT control block, except in the case of SAS/SESSION.
With SAS/SESSION, SAS obtains the value from the User_id field that is returned
by the Get_TP_Properties service of APPC/MVS. You cannot change the value of
this variable.

SYSMAXLONG
returns the maximum long integer value allowed by z/OS, which is 2,147,483,647.

SYSRC
contains the return code from the most recent operating environment command
that was issued from within a SAS session. The default value is 0.

SYSSCP
contains the operating environment abbreviation OS. You cannot change the value
of this variable.

SYSSCPL
contains the operating environment name. For systems prior to OS/390 Release 1,
SYSSCPL contains the value MVS. For OS/390 releases, SYSSCPL contains the
value OS/390. For z/OS releases, SYSSCPL contains the value z/OS. You cannot
change the value of this macro variable.

Macro Variables Available Only under z/OS
The following macro variables are available only under z/OS:

SYSDEXST
contains the value that is returned by the DSNEXST statement. (See “DSNEXST
Statement” on page 361.) SYSDEXST has a value of 1 if the data set specified in
the DSNEXST statement is currently available, or a value of 0 if the data set is
not currently available.

SYSJCTID
contains the value of the JCTUSER field of the JCT control block as mapped by
the IEFAJCTB macro. It is a 7-byte character value.

SYSJMRID
contains the value of the JMRUSEID field of the JCT control block as mapped by
the IEFAJMR macro. It is a 7-byte character value.

SYSUID
contains the value of the TSO user ID that is associated with the SAS session,
regardless of whether the session is a batch job, a remote connect session, a
SAS/SESSION connection, or a TSO session. SAS obtains this value from the
ACEEUSRI field of the ACEE control block.

Macros under z/OS Macro Statements 289

Four additional automatic macro variables that are available only under z/OS can be
used to help diagnose failures in dynamic allocation. Their values are updated each
time SAS does a dynamic allocation as a result of a FILENAME or LIBNAME
statement (or their equivalent DATA step or SCL functions). They are undefined until
the first dynamic allocation is performed. These macro variables are:

SYS99ERR
contains the error reason code that was returned in the SVC 99 request block.

SYS99INF
contains the information reason code that was returned in the SVC 99 request
block.

SYS99MSG
contains the text of the message that is associated with the reason code.

SYS99R15
contains the return code that was returned in R15 from SVC 99.

Names to Avoid When Defining Automatic Macro Variables
When you define automatic macro variables, do not use names taken up by z/OS

reserved words, (see “Reserved z/OS DDnames” on page 26) names of SAS files (see
Table 1.2 on page 18), or names beginning with &SYS. The prefix &SYS has been
reserved for future use.

Macro Statements
The following macro statements have behavior specific to z/OS:

%TSO
executes TSO commands during an interactive SAS session. It is similar to the
TSO statement. (See “TSO Statement” on page 403.) The %TSO statement
enables you to execute TSO commands immediately. It places the operating
environment return code in the automatic variable SYSRC. You can use the %TSO
statement either inside or outside a macro. The form of the statement is

%TSO <command>;

You can use any TSO command or any sequence of macro operations that
generate a TSO command. If you omit the command, your SAS session is
suspended and your z/OS session is placed in TSO submode. To return to the SAS
session, enter either RETURN or END.

If you execute a %TSO statement on an operating environment other than z/OS,
the statement is treated as a comment.

%SYSEXEC
executes TSO commands during an interactive SAS session. The form of the
statement is

%SYSEXEC <command>;

Under z/OS, the %SYSEXEC statement works exactly like the %TSO statement.
The two statements are different only if you transport your SAS program to a
different operating environment. Because %SYSEXEC statements are recognized

290 Macro Functions Chapter 15

on multiple operating environments, each operating environment expects
commands that are appropriate for that operating environment.

Macro Functions
The following macro functions have behavior specific to z/OS:

%SCAN
under z/OS and other systems that use the EBCDIC collating sequence, if you
specify no delimiters, SAS treats all of the following characters as delimiters:

blank . < (+ | & ! $ *); − / , % ¦ ¢

%SYSGET
under TSO, %SYSGET allows you to retrieve the values of the CLIST variables
with which SAS was invoked.

Autocall Libraries
An autocall library contains files that define SAS macros. Under z/OS, an autocall

library is a partitioned data set. Each autocall macro should be a separate member in a
partitioned data set. SAS supplies some autocall macros in the system autocall library;
you can also define autocall macros yourself in a user autocall library. In order to use
the autocall facility, the SAS option MAUTOSOURCE must be in effect. (See SAS
Language Reference: Dictionary for details about MAUTOSOURCE.)

Specifying a User Autocall Library
You can designate a physical file, or a concatenation of physical files, as your

user-written autocall library in any of the following ways:
� with the SASAUTOS= system option. You can designate one or more filerefs or

data set names as your autocall library. See “SASAUTOS= System Option” on
page 494 for more information.

� with the SASAUTOS parameter of the SAS CLIST (under TSO). In this case, SAS
concatenates the user autocall library in front of the system autocall library, which
is specified by the CLIST parameter MAUTS.

� with the SASAUTOS= parameter of the SAS cataloged procedure.

Example: Specifying an Autocall Library in Batch Mode
In batch mode, you could use the following JCL statements to specify an autocall

library:

single autocall library:

//MYJOB JOB account. ...
// EXEC SAS,OPTIONS=’MAUTOSOURCE’
//SASAUTOS DD DSN=MY.MACROS,DISP=SHR

concatenated autocall library:

//MYJOB JOB account ...
// EXEC SAS,OPTIONS=’MAUTOSOURCE’

Macros under z/OS Stored Compiled Macro Facility 291

//SASAUTOS DD DSN=MY.MACROS1,DISP=SHR
// DD DSN=MY.MACROS2,DISP=SHR
// DD DSN=default.autocall.library,
// DISP=SHR

Example: Specifying an Autocall Library under TSO
Under TSO, you can specify an autocall library either when you invoke SAS or

during a SAS session.

When you invoke SAS:

single autocall library:

sas options(’mautosource sasautos=
"myid.macros"’)

concatenated autocall library:

sas options(’mautosource sasautos=
("myid.macros1","myid.macros2",sasautos)’)

During a SAS session:

single autocall library:

options mautosource sasautos=
’myid.macros’;

concatenated autocall library:

options mautosource sasautos=
(’myid.macros1’,’myid.macros2’, sasautos);

Creating an Autocall Macro
To create an autocall macro, do the following:

1 Create a partitioned data set to function as an autocall library, or use an existing
autocall library.

2 In the autocall library, create a member that contains the source statements for
the macro. The member name must be the same as the name of the macro.

Note: The SAS macro facility allows you to include the underscore character in
macro names; however, z/OS does not allow the underscore character in partitioned
data set member names. To create an autocall member for a macro name that contains
an underscore, use a pound sign (#) in place of the underscore in the member name.
For example, to create an autocall member for a macro named _SETUP_, name the
member #SETUP#. However, invoke the macro by the macro name, as follows:

%_setup_

�

Stored Compiled Macro Facility
The stored compiled macro facility gives you access to permanent SAS catalogs that

contain compiled macros. In order for SAS to use stored compiled macros, the SAS

292 Accessing Stored Compiled Macros Chapter 15

option MSTORED must be in effect. In addition, you use the SAS option
SASMSTORE= to specify the libref of a SAS data library that contains a catalog of
stored compiled SAS macros. For more information about these options, see SAS
Language Reference: Dictionary.

Using stored compiled macros offers the following advantages over other methods of
making macros available to your session:

� SAS does not have to compile a macro definition when a macro call is made.

� Session-compiled macros and the autocall facility are also available in the same
session.

Because you cannot re-create the source statements from a compiled macro, you must
save the original macro source statements.

Note: Catalogs of stored compiled macros cannot be concatenated. �

If you don’t want to use the stored compiled macro facility, you can make macros
accessible to your SAS session or job by doing the following:

� placing all macro definitions in the program before calling them

� using a %INCLUDE statement to bring macro definitions into the program from
external files*

� using the autocall facility to search predefined source libraries for macro definitions

Your most efficient choice may be to use the stored compiled macro facility.

Accessing Stored Compiled Macros
The following example illustrates how to create a stored compiled macro in one

session and then use the macro in a later session.

/* Create a Stored Compiled Macro */
/* in One Session */
libname mylib ’u.macro.mysecret’ disp=old;
options mstored sasmstore=mylib;
%macro myfiles / store;

filename file1 ’mylib.first’;
filename file2 ’mylib.second’;

%mend;

/* Use the Stored Compiled Macro */
/* in a Later Session */
libname mylib ’u.macro.mysecret’ disp=shr;
options mstored sasmstore=mylib;

%myfiles
data _null_;

infile file1;
*statements that read input file FILE1;

file file2;
*statements that write to output file FILE2;

run;

* The %INCLUDE statement takes as arguments the same types of file specifications as the INCLUDE command. See
“INCLUDE Command” on page 562.

Macros under z/OS Additional Sources of Information 293

Other Host-Specific Aspects of the Macro Facility

Collating Sequence for Evaluating Macro Characters
Under z/OS, the macro facility uses the EBCDIC collating sequence for %EVAL and

for implicit evaluation of macro characters.

SAS System Options Used by the Macro Facility
The following table lists the SAS options that are used by the macro facility and

that have host-specific characteristics. It also tells you where to look for more
information about these system options.

Table 15.1 SAS Options Used by the Macro Facility That Have Host-Specific Aspects

System Option Description See ...

MSYMTABMAX= specifies the maximum amount of memory available
to all symbol tables (global and local combined).
Under z/OS, the default value for this option is
1,048,576 bytes.

“MSYMTABMAX= System Option” on
page 482 and the SAS Language
Reference: Dictionary

MVARSIZE= specifies the maximum number of bytes for any
macro variable stored in memory (0 <= n <= 32768).
Under z/OS, the default setting for this option is
8,192.

“MVARSIZE= System Option” on page
483 and the SAS Language Reference:
Dictionary

SASAUTOS= specifies the autocall library. “Specifying a User Autocall Library”
on page 290 and “SASAUTOS=
System Option” on page 494

Additional Sources of Information
For more information about the SAS macro facility, see the following documents:
� SAS Macro Language: Reference

� SAS Language Reference: Dictionary

294

295

C H A P T E R

16
Procedures under z/OS

Procedures in the z/OS Environment 295

BMDP Procedure 295
CATALOG Procedure 303

CIMPORT Procedure 304

CONTENTS Procedure 304
CONVERT Procedure 307

CPORT Procedure 312

DATASETS Procedure 312
DBF Procedure 313

FONTREG Procedure 316
FORMAT Procedure 316

ITEMS Procedure 317

OPTIONS Procedure 320
PDS Procedure 321

PDSCOPY Procedure 325

PMENU Procedure 331
PRINTTO Procedure 332

RELEASE Procedure 332
SORT Procedure 336

SOURCE Procedure 339

TAPECOPY Procedure 349
TAPELABEL Procedure 356

Procedures in the z/OS Environment
Portable procedures are documented in the Base SAS Procedures Guide. Only the

procedures that are specific to z/OS or that have aspects specific to z/OS are
documented in this chapter.

BMDP Procedure

Calls any BMDP program to analyze data in a SAS data set

z/OS specifics: all

296 BMDP Procedure Chapter 16

Syntax
PROC BMDP <options>;

VAR variables;

BY variables;

PARMCARDS;

BMDP control statements;

;

Details
BMDP is a library of statistical analysis programs that were originally developed at the
UCLA Health Sciences Computing Facility. Use the BMDP procedure in SAS programs
to

� call a BMDP program to analyze data in a SAS data set

� convert a SAS data set to a BMDP save file.

In order to use the BMDP procedure in a SAS session, the JCL EXEC statement
must request the cataloged procedure SASBMDP rather than the usual cataloged
procedure SAS. If the SASBMDP cataloged procedure is not available on your computer
system, or if it has a different name, ask your computing center staff to help you set it
up. Your SAS Installation Representative has the SAS software installation
instructions, which include directions for setting up the procedure.

You can use BMDP programs to analyze SAS data sets by invoking this procedure.
To analyze BMDP data with SAS software, create a BMDP save file in a BMDP
program, and then use the SAS CONVERT procedure or the BMDP engine to convert
the save file to a SAS data set. (See “Introduction to the BMDP, SPSS, and OSIRIS
Engines” on page 69 for more information about the BMDP engine.) You can use the
BMDP procedure any number of times in a SAS job to invoke BMDP.

To use the BMDP procedure, first specify the name of the BMDP program you want
to invoke in the PROC BMDP statement. The VAR and BY statements can follow, but
they are optional. The BMDP control statements follow the PARMCARDS statement.

PROC BMDP Statement

PROC BMDP <options>;

The following options can be used in the PROC BMDP statement:

CODE=save-file
assigns a name to the BMDP save file that the BMDP procedure creates from a
SAS data set. The save-file corresponds to the CODE sentence in the BMDP
INPUT paragraph. For example, you can use the following statement:

proc bmdp prog=bmdp3s code=judges;

Then, the BMDP INPUT paragraph must contain the following sentence:

CODE=’JUDGES’

Procedures under z/OS BMDP Procedure 297

CODE= usually is not necessary in the PROC BMDP statement. When CODE=
is not specified, the name of the BMDP save file is the SAS data set name.

If you are converting a SAS data set to a BMDP save file, include the CODE
sentence in the BMDP INPUT paragraph to name the save file. To use the name
of the SAS data set, specify that name in the BMDP INPUT paragraph. If you use
a different name, it must match the name that is supplied in the CODE= option.

CONTENT=DATA | CORR | MEAN | FREQ
tells BMDP whether your SAS data set is a standard SAS data set
(CONTENT=DATA) or whether it contains a correlation matrix (CORR), variable
means (MEAN), or frequency counts (FREQ). You do not need to specify the
CONTENT= option for specially structured SAS data sets that were created by
other SAS procedures. If you omit the CONTENT= option, the data set’s TYPE
value is used.

Note: BMDP may use a structure for special data sets (for example, a
correlation matrix) that is different from the SAS structure. Ensure that the input
SAS data set is in the form that BMDP expects. �

DATA=SAS-data-set
specifies the SAS data set that you want the BMDP program to process. If you do
not specify the DATA= option, PROC BMDP uses the most recently created SAS
data set.

LABEL=variable
specifies a variable whose values are to be used as case labels for BMDP. Only the
first four characters of the values are used. The LABEL= variable must also be
included in the VAR statement if you use one.

LABEL2=variable
specifies a variable whose values are to be used as second case labels for BMDP.
As with the LABEL= option, only the first four characters are used, and the
LABEL2= variable must also be given in the VAR statement if you use one.

NOMISS
specifies that you want the BMDP program or save file to exclude observations
that contain missing values.

PROG=BMDPnn
specifies the BMDP program that you want to run. For example, the following
PROC BMDP statement runs the BMDP3S program:

proc bmdp prog=bmdp3s;

Note: If you want only to convert a SAS data set to a BMDP save file and do
not want to run a BMDP program, omit the PROG= option and include the UNIT=
option, which is described next. �

UNIT=n
specifies the FORTRAN logical unit number for the BMDP save file that the BMDP
procedure creates. The value you specify for n must correspond to the UNIT=
value that is specified in the INPUT paragraph of the BMDP control language.

If you omit this option, n defaults to 3 and FT03F001 is used as the fileref for
the save file.

WRKSPCE=nn | PARM=nn
controls the allocation of a work space in BMDP. The WRKSPCE= or PARM=
value is passed as a parameter to BMDP programs and corresponds to the
WRKSPCE= feature in BMDP z/OS cataloged procedures. The default value for nn

298 BMDP Procedure Chapter 16

is 30. If nn is less than 100, then its value represents kilobytes. If it is greater
than 100, then its value represents bytes.

VAR Statement

VAR variables;

The VAR statement specifies which variables to use in the BMDP program. When
you do not include a VAR statement, the BMDP program uses all the numeric variables
in the SAS data set.

BY Statement

BY variables;

Use the BY statement with the BMDP procedure to obtain separate analyses of
observations in groups. The groups are defined with the BY variables. When you use a
BY statement, the procedure expects the input data set to be sorted in order of the BY
variables or to have an appropriate index. If your input data set is not sorted in
ascending order, you can do the following:

� Use the SORT procedure with a similar BY statement to sort the data.

� If appropriate, use the BY statement options NOTSORTED or DESCENDING.

� Create an index on the BY variables that you want to use. For more information
about creating indexes and about using the BY statement with indexed data sets,
see "The DATASETS Procedure" in the Base SAS Procedures Guide.

If a BY statement is used, it is included in the BMDP printed output to distinguish
the BY group output.

For more information about the BY statement, see SAS Language Reference:
Dictionary.

PARMCARDS Statement

PARMCARDS;

The PARMCARDS statement indicates that the BMDP control language follows.

BMDP Control Statements
Put your BMDP control language statements after the PARMCARDS statement. These
statements are similar for all BMDP programs; see the most current BMDP manual for
information about their forms and functions.

The BMDP INPUT paragraph must include UNIT and CODE sentences. The values
of these sentences must match the UNIT= and CODE= values that are given in the
PROC BMDP statement. (If the PROC BMDP statement does not specify a UNIT=
value, then use 3 as the UNIT= value in the BMDP statements.) Use the SAS data set
name as the CODE value unless you have used the CODE= option in the PROC BMDP
statement to specify a different name. Omit the VARIABLES paragraph from the
BMDP statements, because it is not needed when your input is a save file.

Procedures under z/OS BMDP Procedure 299

How Missing Values Are Handled
Before the BMDP procedure sends data to BMDP, it converts missing SAS values to the
standard BMDP missing value. When you use the NOMISS option in the PROC BMDP
statement, observations that contain missing values are excluded from the data set that
is sent to the BMDP program.

Invoking BMDP Programs That Need FORTRAN Routines
Some BMDP programs, such as the programs for nonlinear regression, need to invoke
the FORTRAN compiler and linkage editor before executing. All BMDP compilation
and link editing must be completed before you use PROC BMDP.

Example of Creating and Converting a BMDP Save File
Here is an example of creating and converting a BMDP save file.

u data temp;
input x y z;
datalines;
1 2 3
4 5 6
7 8 9
10 11 12

run;
v proc contents;

title ’CONTENTS OF SAS DATA SET TO BE RUN
THROUGH BMDP1D’;

run;

w proc bmdp prog=bmdp1d unit=3;
parmcards;
/input unit=3. code=’TEMP’.
/print min.
/save unit=4. code=’NEW’. NEW.
/end
/finish

run;

x libname ft04f001 bmdp;
y data _null_;

set ft04f001.new;
put _all_;

run;

U proc contents data=ft04f001._all_;
run;

V proc convert bmdp=ft04f001 out=xyz;

The numbered lines of code are explained here:

1 This DATA step creates a SAS data set called TEMP.

2 The CONTENTS procedure shows the descriptive information for the data set
TEMP.

3 PROC BMDP calls the BMDP program BMDP1D to analyze the data set TEMP.

300 BMDP Procedure Chapter 16

Note the BMDP program statements UNIT=3. and CODE=’TEMP’. The results
are stored in the BMDP save file NEW.

The word NEW must be in the SAVE paragraph. UNIT=nn should refer to the
FTnnF001 fileref that was defined in your DD statement.

4 The LIBNAME statement associates the libref FT04F001 with the BMDP engine
so that SAS knows which engine to use to access the data.

5 The DATA step reads the BMDP save file NEW, which was created in the previous
PROC BMDP step. It uses the two-level name FT04F001.NEW to reference the file.

6 The CONTENTS procedure prints the information regarding all members that
reside in the FT04F001 file. The _ALL_ member name is a special member name
for the BMDP engine; it causes PROC CONTENTS to process all BMDP members
in the file.

7 The CONVERT procedure converts the BMDP save file NEW to a SAS data set
named XYZ. The NEW save file is on UNIT 4, that is, FT04F001.

The results from this SAS program are shown in the following output:

Procedures under z/OS BMDP Procedure 301

Output 16.1 NEW Save File Created from Data Set TEMP and Converted to SAS Data Set XYZ, Part 1 of 3

1
CONTENTS OF SAS DATA SET TO BE RUN THROUGH BMDP1D

The CONTENTS Procedure
...

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos

1 X Num 8 0
2 Y Num 8 8
3 Z Num 8 16

...

PAGE 1 1D

BMDP1D - SIMPLE DATA DESCRIPTION
COPYRIGHT 1977, 1979, 1981, 1982, 1983, 1985, 1987, 1988, 1990

BY BMDP STATISTICAL SOFTWARE, INC.

BMDP STATISTICAL SOFTWARE, INC.| BMDP STATISTICAL SOFTWARE
1440 SEPULVEDA BLVD | CORK TECHNOLOGY PARK, MODEL FARM RD
LOS ANGELES, CA 90025 USA | CORK, IRELAND

PHONE (213) 479-7799 | PHONE +353 21 542722
FAX (213) 312-0161 | FAX +353 21 542822
TELEX 4972934 BMDP UI | TELEX 75659 SSWL EI

VERSION: 1990 (IBM/OS) DATE: APRIL 27, 1999 AT 14:27:43
MANUAL: BMDP MANUAL VOL. 1 AND VOL. 2.
DIGEST: BMDP USER’S DIGEST.

UPDATES: STATE NEWS. IN THE PRINT PARAGRAPH FOR SUMMARY OF NEW FEATURES.

PROGRAM INSTRUCTIONS

/INPUT UNIT=3. CODE=’TEMP’.
/PRINT MIN.
/SAVE UNIT=4. CODE=’NEW’. NEW.
/END

PROBLEM TITLE IS
APRIL 27, 1999 14:27:43

NUMBER OF VARIABLES TO READ 3
NUMBER OF VARIABLES ADDED BY TRANSFORMATIONS. . 0
TOTAL NUMBER OF VARIABLES 3
CASE FREQUENCY VARIABLE
CASE WEIGHT VARIABLE.
CASE LABELING VARIABLES
NUMBER OF CASES TO READ TO END
MISSING VALUES CHECKED BEFORE OR AFTER TRANS. . NEITHER
BLANKS IN THE DATA ARE TREATED AS MISSING
INPUT UNIT NUMBER 3
REWIND INPUT UNIT PRIOR TO READING. . DATA. . . YES
NUMBER OF INTEGER WORDS OF MEMORY FOR STORAGE . 689662

INPUT BMDP FILE
CODE. . . IS TEMP
CONTENT . IS DATA
LABEL . . IS

VARIABLES
1 X 2 Y 3 Z

VARIABLES TO BE USED
1 X 2 Y 3 Z

PRINT CASES CONTAINING VALUES LESS THAN THE STATED MINIMA.

--
BMDP FILE IS BEING WRITTEN ON UNIT 4
CODE. . . IS NEW
CONTENT . IS DATA
LABEL . . IS APRIL 27, 1999 14:27:43

302 BMDP Procedure Chapter 16

Output 16.2 NEW Save File Created from Data Set TEMP and Converted to SAS Data Set XYZ, Part 2 of 3

PAGE 2 1D APRIL 27, 1999 14:27:43
VARIABLES ARE

1 X 2 Y 3 Z

BMDP FILE ON UNIT 4 HAS BEEN COMPLETED.
--
NUMBER OF CASES WRITTEN TO FILE 4

NUMBER OF CASES READ. 4

VARIABLE TOTAL STANDARD ST.ERR COEFF. OF SMALLEST
NO. NAME FREQUENCY MEAN DEVIATION OF MEAN VARIATION VALUE

LARGEST
Z-SCORE VALUE Z-SCORE RANGE

1 X 4 5.5000 3.8730 1.9365 .70418 1.0000
-1.16 10.000 1.16 9.0000
2 Y 4 6.5000 3.8730 1.9365 .59584 2.0000
-1.16 11.000 1.16 9.0000
3 Z 4 7.5000 3.8730 1.9365 .51640 3.0000
-1.16 12.000 1.16 9.0000

NUMBER OF INTEGER WORDS USED IN PRECEDING PROBLEM 530
CPU TIME USED 0.030 SECONDS

Procedures under z/OS CATALOG Procedure 303

Output 16.3 NEW Save File Created from Data Set TEMP and Converted to SAS Data Set XYZ, Part 3 of 3

PAGE 3 1D

BMDP1D - SIMPLE DATA DESCRIPTION
COPYRIGHT 1977, 1979, 1981, 1982, 1983, 1985, 1987, 1988, 1990

BY BMDP STATISTICAL SOFTWARE, INC.

BMDP STATISTICAL SOFTWARE, INC.| BMDP STATISTICAL SOFTWARE
1440 SEPULVEDA BLVD | CORK TECHNOLOGY PARK, MODEL FARM RD
LOS ANGELES, CA 90025 USA | CORK, IRELAND

PHONE (213) 479-7799 | PHONE +353 21 542722
FAX (213) 312-0161 | FAX +353 21 542822
TELEX 4972934 BMDP UI | TELEX 75659 SSWL EI

VERSION: 1990 (IBM/OS) DATE: APRIL 27, 1999 AT 14:27:44

PROGRAM INSTRUCTIONS

/FINISH

NO MORE CONTROL LANGUAGE.

PROGRAM TERMINATED

CONTENTS OF SAS DATA SET TO BE RUN THROUGH BDMP1D

The CONTENTS Procedure

Data Set Name: FT04F001.NEW Observations: .
Member Type: DATA Variables: 4
Engine: BMDP Indexes: 0
Created: 14:27 Monday, April 27, 1999 Observation Length: 16
Last Modified: 14:27 Monday, April 27, 1999 Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos

4 USE Num 4 12
1 X Num 4 0
2 Y Num 4 4
3 Z Num 4 8

-----Directory-----
Libref: FT04F001
Engine: BDMP
Physical Name: SYS99117.T145548.RA000.BDMP90V9.R0120689

Name Memtype

1 NEW DATA

CATALOG Procedure

Manages SAS catalogs

z/OS specifics: FILE= option

304 CIMPORT Procedure Chapter 16

Details
The FILE= option in the CONTENTS statement of the CATALOG procedure is the only
portion of this procedure that is host specific. Under z/OS, if the value that you specify
in the FILE= option has not been previously defined as a fileref (using a FILENAME
statement, FILENAME function, TSO ALLOCATE command, or JCL DD statement),
then SAS uses the value to construct the physical file name.

In the following example, if the SAS system option FILEPROMPT is in effect, a
requestor window asks whether you want to allocate the external file whose fileref is
SAMPLE. If you reply Yes, then SAS attempts to locate the external file. If the file was
not previously allocated, then SAS allocates it. To construct the data set name, SAS
inserts the value of the SYSPREF= system option in front of the FILE= value (in this
case, SAMPLE), and it appends the name LIST to it. In this example, if the value of
SYSPREF= is SASDEMO.V9, then SAS allocates a physical file named
SASDEMO.V9.SAMPLE.LIST.

proc catalog catalog=profile;
contents file=sample;

run;

See Also

� Base SAS Procedures Guide

CIMPORT Procedure

Restores a transport file that was created by the CPORT procedure

z/OS specifics: options

Details
The DISK option is the default for the CIMPORT procedure. Therefore, PROC
CIMPORT defaults to reading from a file on disk instead of from a tape. If you want to
read a file from tape, then specify the TAPE option.

When writing and reading files to and from tapes, you are not required to specify the
DCB attributes in a SAS FILENAME statement or FILENAME function. However, it is
recommended that you specify BLKSIZE=8000.

See Also

� Moving and Accessing SAS Files
� “CPORT Procedure” on page 312
� Base SAS Procedures Guide

CONTENTS Procedure

Prints descriptions of the contents of one or more files from a SAS data library

z/OS specifics: engine/host-dependent information, directory information

Procedures under z/OS CONTENTS Procedure 305

Syntax

PROC CONTENTS <option(s)>;

Details

Although most of the output that this procedure generates is the same on all operating
environments, the Engine/Host Dependent Information is system-dependent and
engine-dependent. The following output shows sample PROC CONTENTS output,
including the information that is specific to z/OS for the BASE engine.

Output 16.4 CONTENTS Procedure Output, Including Engine/Host Dependent Information

CONTENTS PROCEDURE
Data Set Name: WORK.ORANGES Observations: 4
Member Type: DATA Variables: 5
Engine: V9 Indexes: 0
Created: 15:56 Monday, April 27, 1999 Observation Length: 40
Last Modified: 15:56 Monday, April 27, 1999 Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: YES
Label:

-----Engine/Host Dependent Information-----

Data Set Page Size: 6144
Number of Data Set Pages: 1
First Data Page: 1
Max Obs per Page: 152
Obs in First Data Page: 4
Number of Data Set Repairs: 0
Physical Name: SYS96050.T153830.RA000.USERID.R0000004
Release Created: 8.0000B1
Release Last Modified: 8.0000B1
Created by: USERID
Last Modified by: USERID
Subextents: 1
Total Blocks Used: 1

Taste Test Results For Oranges

CONTENTS PROCEDURE

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos

2 FLAVOR Num 8 8
4 LOOKS Num 8 24
3 TEXTURE Num 8 16
5 TOTAL Num 8 32
1 VARIETY Char 8 0

The procedure output provides values for the physical characteristics of the SAS data
set WORK.ORANGES. Important values follow:

Observations
is the number of nondeleted records in the data set.

306 CONTENTS Procedure Chapter 16

Observation Length
is the maximum record size in bytes.

Compressed
has the value NO if records are not compressed; it has the value CHAR or
BINARY if records are compressed.

Data Set Page Size
is the size of pages in the data set.

Number of Data Set Pages
is the total number of pages in the data set.

First Data Page
is the number of the page that contains the first data record; header records are
stored in front of data records.

Max Obs per Page
is the maximum number of records a page can hold.

Obs in First Data Page
is the number of data records in the first data page.

The DIRECTORY option lists several host-specific data library attributes at the
beginning of PROC CONTENTS output. The following output shows the directory
information that is listed by the following code:

proc contents data=test._all_ directory;
run;

Output 16.5 Engine/Host Dependent Information

CONTENTS PROCEDURE
-----Directory-----

Libref: TEST
Engine: V9
Physical Name: USERID.TEST.TESTLIB
Unit: DISK
Volume: TST810
Disposition: OLD
Device: 3380
Blocksize: 6144
Blocks per Track: 7
Total Library Blocks: 105
Total Used Blocks: 28
Total Free Blocks: 77
Highest Used Block: 28
Highest Formatted Block: 35
Members: 2

Name Memtype Indexes

1 TEMP DATA
2 XYZ DATA

The following list explains these data library attributes:

Total Library Blocks
is the total number of blocks that are currently allocated to the data library. This
value equals the sum of Total Used Blocks and Total Free Blocks. It also equals
Blocks per Track multiplied by the number of tracks that are currently allocated to

Procedures under z/OS CONVERT Procedure 307

the data library. The current number of allocated cylinders or tracks can be found
in the DSINFO window, or in ISPF panel 3.2. These windows show what the
allocation was the last time the data library was closed.

Total Used Blocks
is the total number of library blocks that currently contain valid data. It equals
the sum of the directory blocks and all the data blocks that are associated with
existing members.

Total Free Blocks
is the total number of currently allocated library blocks that are available for use
by members or as extra directory blocks. This count includes any data blocks that
were previously associated with members that have been deleted.

Highest Used Block
is the number of the highest relative block in the data library that currently
contains either directory information or data for an existing member.

Highest Formatted Block
is the number of the highest relative block in the data library that has been
internally formatted for use. Blocks are internally formatted before they are used,
and they are formatted in full track increments. Therefore, the highest formatted
block is equal to the Blocks per Track multiplied by the number of tracks that are
currently used by the data library. The number of currently used cylinders or
tracks can be found in the DSINFO window or in ISPF panel 3.2. These windows
show what the allocation was the last time the data library was closed. This
number is also the true end-of-file (EOF) marker. It corresponds to the DS1LSTAR
field in the DSCB in the VTOC, which is the z/OS operating environment’s EOF
flag.

Note: The same directory information that is generated by the DIRECTORY option
in the PROC CONTENTS statement is also generated by the LIST option in the
LIBNAME statement. �

See Also

� SAS Language Reference: Dictionary

� Base SAS Procedures Guide

CONVERT Procedure

Converts BMDP and OSIRIS system files and SPSS export files to SAS data sets

z/OS specifics: all

Syntax

PROC CONVERT <options>;

308 CONVERT Procedure Chapter 16

Details
PROC CONVERT produces one output SAS data set but no printed output. The new
SAS data set contains the same information as the input system file; exceptions are
noted in “How Variable Names Are Assigned” on page 309.

The procedure converts system files from these software packages:

� BMDP save files up to and including the most recent version of BMDP

� SPSS save files up to and including Release 9, along with SPSS-X and the SPSS
portable file format created by using the SPSS EXPORT command.

� OSIRIS files up to and including OSIRIS IV (hierarchical file structures are not
supported).

These software packages are products of other organizations. Therefore, changes
might be made that make the system files incompatible with the current version of
PROC CONVERT. SAS cannot be responsible for upgrading PROC CONVERT to
support changes to other vendor’s software packages; however, attempts to do so are
made when necessary with each new version of SAS.

Information associated with each software package is given in “Introduction to the
BMDP, SPSS, and OSIRIS Engines” on page 69.

PROC CONVERT Statement

PROC CONVERT <options>;

options can be from the following list. Only one of the options that specify a system
file (BMDP, OSIRIS, or SPSS) can be included. Usually only the PROC CONVERT
statement is used, although data set attributes can be controlled by specifying the
DROP=, KEEP=, or RENAME= data set options with the OUT= option of this
procedure. See SAS Language Reference: Dictionary for more information about these
data set options. You can also use LABEL and FORMAT statements following the
PROC statement.

BMDP=fileref <(CODE=code-id | CONTENT= content-type)>
specifies the fileref of a BMDP save file. The first save file in the physical file is
converted. If you have more than one save file in the data set, then you can use
two additional options in parentheses after the libref or fileref. The CODE= option
specifies the code of the save file you want, and the CONTENT= option specifies
the save file’s content. For example, if a file CODE=JUDGES has a content type of
DATA, you can use this statement:

proc convert bmdp=bmdpfile(code=judges
content=data);

DICT=fileref
specifies the fileref of a physical file that contains the dictionary file for the
OSIRIS data set. The DICT= option is required if you use the OSIRIS= option.

FIRSTOBS=n
gives the number of the observation at which the conversion is to begin. This
enables you to skip over observations at the beginning of the BMDP, OSIRIS, or
SPSS file.

OBS=n
specifies the number of the last observation to be converted. This enables you to
exclude observations at the end of the file.

Procedures under z/OS CONVERT Procedure 309

OSIRIS=fileref
specifies a fileref for a physical file that contains an OSIRIS file. The DICT=
option is required when you use the OSIRIS= option.

OUT=SAS-data-set
names the SAS data set that will be created to hold the converted data. If OUT=
is omitted, SAS still creates a data set and automatically names it DATAn, just as
if you omitted a data set name in a DATA statement. That is, if it is the first such
data set in a job or session, then SAS names it DATA1; the second is DATA2, and
so on. If you omit the OUT= option, or if you do not specify a two-level name in
the OUT= option, then the converted data set is not permanently saved.

SPSS=fileref
specifies a fileref for a physical file that contains an SPSS file. The SPSS file can
be in any of three formats: SPSS Release 9 (or prior), SPSS-X format (whose
originating operating environment is z/OS, CMS, or VSE), or the portable file
format from any operating environment that was created by using the SPSS
EXPORT command.

How Missing Values Are Handled
If a numeric variable in the input data set has no value or has a system missing value,
PROC CONVERT assigns a missing value to it.

How Variable Names Are Assigned
The following sections explain how names are assigned to the SAS variables that are
created by the CONVERT procedure.

CAUTION:
Because some translation of variable names can occur (as indicated in the following
sections), ensure that the translated names will be unique. �

Variable Names in BMDP Output Variable names from the BMDP save file are used
in the SAS data set, except that nontrailing blanks and all special characters are
converted to underscores in the SAS variable names. The subscript in BMDP variable
names, such as x(1), becomes part of the SAS variable name, with the parentheses
omitted: X1. Alphabetic BMDP variables become SAS character variables of length 4.
Category records from BMDP are not accepted.

Variable Names in OSIRIS Output For single-response variables, the V1 through V9999
name becomes the SAS variable name. For multiple-response variables, the suffix Rn is
added to the variable name, when n is the response. For example, V25R1 would be the
first response of the multiple response V25. If the variable after or including V1000 has
100 or more responses, then responses above 99 are eliminated. Numeric variables that
OSIRIS stores in character, fixed-point binary, or floating-point binary mode become
SAS numeric variables. Alphabetic variables become SAS character variables; any
alphabetic variable whose length is greater than 200 is truncated to 200. The OSIRIS
variable description becomes a SAS variable label, and OSIRIS print format
information is translated to the appropriate SAS format specification.

Variable Names in SPSS Output SPSS variable names and labels become variable
names and labels without any changes. SPSS alphabetic variables become SAS
character variables of length 4. SPSS blank values are converted to SAS missing values.
SPSS print formats become SAS formats, and the SPSS default precision of no decimal
places becomes part of the variables’ formats. The SPSS DOCUMENT data is copied so
that the CONTENTS procedure can display them. SPSS value labels are not copied.

310 CONVERT Procedure Chapter 16

Example of Converting a BMDP Save File
The following statements convert a BMDP save file and produce the temporary SAS
data set TEMP, which contains the converted data. The PROC CONTENTS output
would be similar to that shown in Output 16.1.

filename ft04f001 ’userid.bmdp.savefile’;
proc convert bmdp=ft04f001 out=temp;
run;

title ’BMDP CONVERT Example’;

proc contents;
run;

Example of Converting an OSIRIS File
The following statements convert an OSIRIS file and produce the temporary SAS data
set TEMP, which contains the converted data. Output 16.6 shows the attributes of
TEMP.

filename osiris ’userid.misc.cntl(osirdata)’;
filename dict ’userid.misc.cntl(osirdict)’;
proc convert osiris=osiris dict=dict out=temp;
run;

title ’OSIRIS CONVERT Example’;

proc contents;
run;

Procedures under z/OS CONVERT Procedure 311

Output 16.6 Converting an OSIRIS File

OSIRIS CONVERT Example
The CONTENTS Procedure

Data Set Name: WORK.TEMP Observations: 20
Member Type: DATA Variables: 9
Engine: V9 Indexes: 0
Created: 9:46 Monday, April 27, 1999 Observation Length: 36
Last Modified: 9:46 Monday, April 27, 1999 Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

-----Engine/Host Dependent Information-----

Data Set Page Size: 6144
Number of Data Set Pages: 1
First Data Page: 1
Max Obs per Page: 135
Obs in First Data Page: 20
Number of Data Set Repairs: 0
Physical Name: SYS99117.T152416.RA000.USERID.R0121907
Release Created: 8.0000B2
Release Last Modified: 8.0000B2
Created by: USERID
Last Modified by: USERID
Subextents: 1
Total Blocks Used: 1

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Label
--
1 V1 Num 4 0 INTERVIEW NUMBER REF= 1 ID=
2 V2 Num 4 4 INTERVIEWER NUMBER REF= 2 ID=
3 V3 Num 4 8 PRIMARY SAMPLING UNIT REF= 3 ID=
4 V4 Num 4 12 REGION REF= 4 ID=
5 V5 Num 4 16 CHUNK AND SEGMENT REF= 5 ID=
6 V6 Num 4 20 LANGUAGE OF INTERVIEW REF= 6 ID=
7 V7 Num 4 24 LANGUAGE OF INTERVIEW REF=1621 ID=
8 V9 Num 4 28 LNGTH OF INTERVIEW REF=1620 ID=
9 V9 Num 4 32 12.4 WEIGHT REF=1700 ID=

Example of Converting an SPSS File

The following statements convert an SPSS Release 9 file and produce the temporary
SAS data set TEMP, which contains the converted data. The output generated by
PROC CONTENTS is similar in format to Output 16.6.

filename spss ’userid.spssfile.num1’;
proc convert spss=spss out=temp;
run;

title ’SPSSR9 CONVERT Example’;

proc contents;
run;

See Also

� “Introduction to the BMDP, SPSS, and OSIRIS Engines” on page 69

312 CPORT Procedure Chapter 16

CPORT Procedure

Writes SAS data sets and catalogs into a special format in a transport file

z/OS specifics: specification of transport file

Details
The DISK option is the default for the CPORT procedure; therefore, PROC CPORT
defaults to writing to a file on disk instead of on a tape. If you want to write to a file on
tape, specify the TAPE option or assign the fileref or DDname of SASCAT to a tape.

You are not required to define the logical name SASCAT to your tape, and you are
not required to specify the full DCB attributes. However, the BLKSIZE= value must be
an integral multiple of 80; a value of 8000 is recommended.

Here is an example of exporting all the SAS data sets and catalogs in a SAS data
library to a transport file on disk. Note that the FILENAME statement specifies
BLKSIZE=8000.

libname oldlib ’SAS-data-library’;
filename tranfile ’transport-file-name’

blksize=8000 disp=(new,catlg);
proc cport library=oldlib file=tranfile;
run;

PROC CPORT writes a transport file to the physical file that is referenced by
TRANFILE. The file contains all the data sets and catalogs in the SAS data library
OLDLIB.

See Also

� Moving and Accessing SAS Files
� “CIMPORT Procedure” on page 304
� Base SAS Procedures Guide

DATASETS Procedure

Lists, copies, renames, repairs, and deletes SAS files; manages indexes for and appends SAS
data sets in a SAS data library; changes variable names and related information; prints the
contents of a SAS data library

z/OS specifics: output generated by CONTENTS statement, data library information

Details
Part of the DATASETS procedure output is system-dependent. The SAS data library
information that is displayed in the SAS log depends on the operating environment and
the engine. In Output 16.7, the SAS log shows the information that is generated by the
DATASETS procedure for the V9 (BASE) engine under z/OS.

Note: The information that is produced for other engines varies slightly. See
“Compatibility Engines” on page 39 for information about other engines. �

Procedures under z/OS DBF Procedure 313

Output 16.7 SAS Data Library Information from the DATASETS Procedure

-----Directory-----
Libref: WORK
Engine: V9
Physical Name: SYS96053.T145204.RA000.USERID.R0000128
Unit: DISK
Volume: ANYVOL
Disposition: NEW
Device: 3380
Blocksize: 6144
Blocks per Track: 7
Total Library Blocks: 105
Total Used Blocks: 31
Total Free Blocks: 74
Highest Used Block: 44
Highest Formatted Block: 49
Members: 1

Name Memtype Indexes

1 ORANGES DATA
2 PROFILE CATALOG

For explanations of the fields in this output, see “CONTENTS Procedure” on page 304.

See Also

� “CONTENTS Procedure” on page 304

� SAS Language Reference: Dictionary

� Base SAS Procedures Guide

DBF Procedure

Converts a dBASE file to a SAS data set or a SAS data set to a dBASE file

z/OS specifics: all

Syntax
PROC DBF options ;

The following options can be used in the PROC DBF statement:

DB2|DB3|DB4|DB5=fileref
specifies the fileref of a DBF file. The fileref may be allocated via a SAS
FILENAME statement, a JCL DD statement (in batch mode), or a TSO ALLOC
command (under TSO). For further information on fileref specification, see “Ways
of Allocating External Files” on page 75. The DBF file can be stored as a
sequential data set (such as sasdemo.emp.dbf), a partitioned z/OS data set
member (such as sasdemo.dbf.pds(emp)), or a file in an hierarchical file system
(such as /u/sasdemo/emp.dbf). For further information on file naming
requirements, see “Referring to External Files” on page 86.

314 DBF Procedure Chapter 16

If the fileref is allocated with a FILENAME statement, the statement may
optionally specify RECFM=N to identify the DBF file as binary.

The DBn option must correspond to the version of dBASE with which the DBF
file is compatible. Specify a DBF file with the DBn option, where n is 2, 3, 4, or 5.
You can specify only one of these values.

DATA=<libref.>member
names the input SAS data set, using 1–32 characters. Use this option if you are
creating a DBF file from a SAS data set. If you use the DATA= option, do not use
the OUT= option. If you omit the DATA= option, SAS creates an output SAS data
set from the DBF file.

OUT=<libref.>member
names the SAS data set that is created to hold the converted data, using 1–32
characters. Use this option only if you do not specify the DATA= option. If OUT=
is omitted, SAS creates a temporary data set in the WORK library. The name of
the temporary data set is DATA1 [...DATAn]. If OUT= is omitted or if you do not
specify a two-level name in the OUT= option, the SAS data set that is created by
PROC DBF remains available during your current SAS session (under the
temporary data set name), but it is not permanently saved.

Details
You can use PROC DBF in the z/OS environment if your site has a license for
SAS/ACCESS for PC File Formats. To see a list of your licences, submit

proc setinit; run;

If you are licensed, you will see an entry in your SAS log for SAS/ACCESS for PC
File Formats.

The DBF procedure converts files in DBF format to SAS data sets that are
compatible with the current SAS release. You can also use PROC DBF to convert SAS
data sets to files in DBF format.

Before you convert a DBF file to a SAS file, you must first upload your DBF file from
the Windows, OS/2, NT, or UNIX environment to the z/OS environment, using a
mechanism such as FTP (file transfer protocol). If you are licensed for SAS/CONNECT,
you can use PROC UPLOAD:

filename out1 ’sasdemo.emp.dbf’;
proc upload infile=’c:\employee\emp.dbf’

outfile=out1 binary;
run;

In the z/OS environment, sequential data sets are recommended for use with DBF,
with the following attributes:

RECFM=FS
DSORG=PS
LRECL=6160
BLKSIZE=6160

The following example illustrates the specification of attributes for a sequential data set:

sasdemo.emp.dbf = (DSORG=PS,RECFM=FS,LRECL=6160,BLKSIZE=6160)

PROC DBF produces one output file but no printed output. The output file contains
the same information as the input file but in a different format.

The DBF procedure works with DBF files created by all the current versions and
releases of dBASE (II, III, III PLUS, IV, and 5.0) and with most DBF files that are
created by other software products.

Procedures under z/OS DBF Procedure 315

Converting DBF Fields to SAS Variables When you convert a DBF file to a SAS data
set, DBF numeric variables become SAS numeric variables. Similarly, DBF character
variables become SAS character variables. Any DBF character variable of length
greater than 254 is truncated to 254 in SAS. Logical fields become SAS character
variables with a length of 1. Date fields become SAS date variables.

DBF fields whose data are stored in auxiliary files (Memo, General, binary, and OLE
data types) are ignored in SAS.

If a DBF file has missing numeric or date fields, SAS fills those missing fields with a
series of the digit 9 or with blanks, respectively.

When a dBASE II file is translated into a SAS data set, any colons in dBASE
variable names are changed to underscores in SAS variable names. Conversely, when a
SAS data set is translated into a dBASE file, any underscores in SAS variable names
are changed to colons in dBASE field names.

Converting SAS Variables to DBF Fields In DBF files, numeric variables are stored in
character form. When converting from a SAS data set to a DBF file, SAS numeric
variables become DBF numeric variables with a total length of 16. A SAS numeric
variable with a decimal value must be stored in a decimal format in order to be
converted to a DBF numeric field with a decimal value. In other words, unless you
associate the SAS numeric variable with an appropriate format in a SAS FORMAT
statement, the corresponding DBF field will not have any value to the right of the
decimal point. You can associate a format with the variable in a SAS data set when you
create the data set or by using the DATASETS procedure (see “DATASETS Procedure”
on page 312).

If the number of digits—including a possible decimal point—exceeds 16, a warning
message is issued and the DBF numeric field is filled with a series of the digit 9. All
SAS character variables become DBF fields of the same length. When converting from a
SAS data set to a DBF file that is compatible with dBASE III or later, SAS date
variables become DBF date fields. When converting to a dBASE II file, SAS date
variables become dBASE II character fields in the form YYYYMMDD.

Transferring Other Software Files to DBF Files You might find it helpful to save
another software vendor’s file to a DBF file and then convert that file into a SAS data
set. For example, you could save an Excel XLS file in DBF format, upload the file, and
use PROC DBF to convert that file into a SAS data set. Or you could do the reverse;
use PROC DBF to convert a SAS data set into a DBF file and then load that file into an
Excel spreadsheet.

Example 1: Converting a dBASE IV File to a SAS Data Set

In this example, a dBASE IV file named SASDEMO.EMPLOYEE.DBF is converted
to a SAS data set. A FILENAME statement specifies a fileref that names the dBASE IV
file. The FILENAME statement must appear before the PROC DBF statement, as
shown:

libname save ’sasdemo.employee.data’;
filename dbfin ’sasdemo.employee.dbf’;
proc dbf db4=dbfin out=save.employee;
run;

Example 2: Converting a dBASE 5 file to a SAS Data Set

In this example, a dBASE 5 file is converted to a SAS data set.

libname demo ’sasdemo.employee.data’;
filename dbfout ’sasdemo.newemp.dbf’ recfm=n;

316 FONTREG Procedure Chapter 16

proc dbf db5=dbfout data=demo.employee;
run;

FONTREG Procedure

Adds system fonts to the SAS registry

z/OS specifics: statement support for non-HFS sites; font file requirements

Details
SAS distributes font files for use by the universal printer GIF driver as native z/OS files
with the following characteristics:

� Data Set Organization (DSORG) = PS
� Record Format (RECFM) = FBS
� Logical Record Length (LRECL) = 1.

In this format, the FONTREG procedure requires the FONTFILE statement. All
other statements for this procedure require a directory specification, which is
incompatible with native z/OS files. Also, omitting all statements implies a directory
search of the directory specified by the FONTSLOC= system option. The specification
for the FONTSLOC= option for native z/OS files does not specify a directory.

The font files can be copied to the HFS file system. Placing the font files in an HFS
directory will allow full functionality of the FONTREG procedure, with support for all
statements. Also, if no statement is supplied, the specification of the FONTSLOC=
system option for HFS allows for a directory specification.

See Also

� “FONTSLOC= System Option” on page 443
� Base SAS Procedures Guide

FORMAT Procedure

Creates user-defined formats and informats

z/OS specifics: LIBRARY= option in the PROC FORMAT statement

Details
To create a new format, specify a valid libref as the value of the LIBREF= option. This
creates a new format in the SAS System 9 style in the FORMATS catalog. The
FORMATS catalog is stored in the SAS System 9 SAS data library that is identified by
the LIBRARY= option.

In SAS System 9, you can no longer write Version 5 formats to a load library by
using a DDname as the value of the LIBRARY= option. You can read Version 5 formats,
but you cannot write them.

Procedures under z/OS ITEMS Procedure 317

See Also

� Base SAS Procedures Guide

ITEMS Procedure

Builds, reads, and writes SAS itemstores

z/OS specifics: all

Syntax
PROC ITEMS NAME=<libref.>member;

Details
An itemstore is a SAS data set that is made up of independently accessible chunks of
information. SAS uses itemstores for online help, where the SAS help browser accesses
an itemstore in the SASHELP library. You can use the ITEMS procedure to create,
modify, and browse your own itemstores, which you can then access through the SAS
help browser.

The contents of an itemstore are divided into directories, subdirectories, and topics.
The directory tree structure emulates that of UNIX System Services, so that a given
help topic is identified by a directory path (root_dir/sub_dir/item). This hierarchical
structure allows the SAS help browser to support HTML links between help topics.

The itemstores that SAS uses for HTML help can be written only by users who have
the appropriate privileges. Though SAS discourages rewrites of SAS help items, you
can add items to the SAS help itemstores, and you can develop new itemstores of your
own for any information that you want to make available through the SAS help
browser. For further information on writing your own HTML help, see “Using
User-Defined Help” on page 32.

To access an itemstore, you must first allocate the library that contains the
itemstore, unless the itemstore is a member of the WORK library. After you allocate the
library, you issue the PROC ITEMS NAME=fileref statement to access the itemstore in
SAS. Once the itemstore is available in SAS, you can use the LIST, IMPORT, EXPORT,
MERGE, and DELETE statements to control itemstore contents. SAS applies all of
these statements to the itemstore name in the last PROC ITEMS NAME= statement.

For information on the HTML tags that are supported by the SAS help browser, see
“Developing User-Defined Help” on page 33.

HTC File Format Itemstores are physically stored in the operating environment as
HTC files. An HTC file is a text file that lists help filenames one per line, preceded by
five colons, as follows:

:::::<filename>.htm

Directories in the HTC file are identified by a line that begins with five colons and
ends with a path specification:

:::::<dirname1>/<dirname2>/<filename>.htm

HTC files can be imported and exported in HTC file format. Importing an HTC file
with the IMPORT statement creates the necessary directories and subdirectories. For

318 ITEMS Procedure Chapter 16

example, if an HTC file containing the preceding directory entry was imported into an
itemstore with the IMPORT statement, the directory and subdirectory would be created
as needed, and the file would be placed in the specified subdirectory. Any filename that
lacks a path specification goes into the root directory or into the directory specified by
the DIR= option, if it is specified in the IMPORT statement.

Alternate Syntax for the DIR= and ITEM= Options You can use the forward slash path
character (/) to specify a path in the DIR= and ITEM= options (described below) in all of
the statements that take those options. For example, the following two statements are
equivalent:

LIST DIR=’usr’ ITEM=’mail’;
LIST ITEM=’usr/mail’;

Note that a full path, starting with the directory just beneath the itemstore’s root
directory (with no initial forward slash) is required for access to anything except items
in the root directory or to itemstores consisting of a single item.

Wildcards, using asterisks (*) as in UNIX, are not accepted in itemstore paths. Nor
can you specify more than one path (a file concatenation) for each of the following
statements.

PROC ITEMS Statement
PROC ITEMS NAME=< libref.>member;

The following argument is required in the PROC ITEMS statement:

NAME=
If no libref is specified, the libref is assumed to be WORK. If libref.member is
specified, the libref must have been previously allocated. See “LIBNAME
Statement” on page 393 for details on allocation.

LIST Statement
LIST <options;>

The LIST statement writes a list of item and/or directory names to the SAS log or to a
specified file. Specifying no options writes a list of all items and directories to the SAS
log.

The following options can be used in the LIST statement:

DUMP=fileref
specifies the fileref that will receive the listing. If DUMP= is not specified, the
output goes to the SAS log.

DIR=’dir-name’
specifies an itemstore directory whose item names you wish to list. If you specify
the DIR= option alone, you will receive a listing of item names contained in that
directory.

ITEM=’item-name’
specifies that you wish to list the contents of the named item in the named
directory of the itemstore. If you specify an item without specifying a directory,
you will receive the contents of the item with the specified name in the root
directory of the itemstore.

IMPORT Statement
IMPORT FILEREF=fileref <options>;

Procedures under z/OS ITEMS Procedure 319

The IMPORT statement imports a fileref into an itemstore. If the imported fileref
contains items or directories that currently exist in the itemstore, the new items or
directories overwrite (replace) the existing versions.

The following options can be used in the IMPORT statement:

DIR=’dir-name’
specifies the itemstore directory that will receive the imported fileref. If a directory
is not specified, the fileref is imported into the root directory of the itemstore.

ITEM=’item-name’
specifies the name of the item that will receive the imported fileref. If an item is
not specified, the imported fileref is assumed to be an HTC file.

EXPORT Statement
EXPORT FILEREF=fileref<options>;

The EXPORT statement copies an item or itemstore to an external fileref in HTC
format. If the fileref exists prior to the EXPORT statement, the new fileref overwrites
(replaces) the previous version.

The following options can be used in the EXPORT statement:

DIR=’dir-name’
specifies the itemstore directory that is the source of the export. If you do not
specify a directory, the fileref receives the contents of the entire itemstore or the
specified item from the root directory of the itemstore.

ITEM=’item-name’
specifies an item for export. If you do not specify an item, the fileref receives the
entire contents of the specified directory or itemstore, in HTC format.

MERGE Statement
MERGE SOURCE=<libref.>member;

The MERGE statement merges the specified itemstore into the itemstore opened
previously with PROC ITEMS.

A libref is required in the MERGE statement. If the two itemstores have directories
with the same name and path, the contents of the new directory replace the contents of
the old directory. If you merge into the root directory, the entire itemstore is replaced. If
you merge a new item into a directory, the new item is merged into the old directory. If
the old directory contains an item of the same name, the new item replaces the old item.

DELETE Statement
DELETE <options>;

The DELETE statement deletes all or part of the contents in an itemstore.
The following options can be used in the DELETE statement:

DIR=’dir-name’
specifies the directory from which you wish to delete. When DIR= is not specified,
either the entire contents of the itemstore are deleted or the specified item is
deleted from the itemstore’s root directory.

ITEM=’item-name’
deletes the specified item from the specified directory in the itemstore, or if a
directory is not specified, from the root directory of the itemstore.

320 OPTIONS Procedure Chapter 16

See Also

� Information on the HELPLOC= system option in SAS Language Reference:
Dictionary.

OPTIONS Procedure

Lists the current values of all system options in the SAS log

z/OS specifics: host options displayed, host-specific options of OPTIONS statement

Syntax
PROC OPTIONS<option(s)>;

Note: This is a simplified version of the OPTIONS procedure syntax. For the
complete syntax and its explanation, see the OPTIONS procedure in Base SAS
Procedures Guide. �

option(s)

HOST | NOHOST
displays only host options (HOST) or only portable options (NOHOST).
PORTABLE is an alias for NOHOST.

RESTRICT
displays the system options that have been set by your site administrator in a
restricted configuration file. These options cannot be changed by the user. For
each option that is restricted, the RESTRICT option displays the option’s value,
scope, and how it was set.

If your site administrator has not restricted any options, then the following
message will appear in the SAS log:

Your Site Administrator has not restricted any SAS options.

Details
Portable options are the same in all operating environments. To see a list of these
options, submit

proc options portable;
run;

Certain portable options have aspects that are specific to z/OS. All portable options with
z/OS-specific aspects are documented in “Summary Table of SAS System Options” on
page 528, along with all of the portable SAS portable options.

Other options are entirely specific to the z/OS environment. To see a list of these
options, submit

proc options host;
run;

All options that are specific to z/OS are documented in “Summary Table of SAS System
Options” on page 528, along with all of the portable SAS portable options.

Procedures under z/OS PDS Procedure 321

The following options cause the OPTIONS procedure to list the system options that
are specific to the following SAS software products or applications. While the OPTIONS
procedure still accepts the following one-word options, it is recommended that you use
the associated GROUP= option instead:

ADB
GROUP=ADABAS

SAS/ACCESS interface to ADABAS

APF
GROUP=INSTALL

system administrators

DB2
GROUP=DB2

SAS/ACCESS interface to DB2

DDB
GROUP=DATACOM

SAS/ACCESS interface to CA-DATACOM/DB

IDM
GROUP=IDMS

SAS/ACCESS interface to CA-IDMS

IMS
GROUP=IMS

SAS/ACCESS interface to IMS

ISP
GROUP=ISPF

SAS interface to ISPF (see “SAS Interface to ISPF” on page 184)

SORT
GROUP=SORT

sorts observations in a SAS data set

For more information about SAS system options that are associated with a particular
SAS/ACCESS interface, see the documentation for that SAS/ACCESS interface.

See Also

� “Displaying System Option Settings” on page 13

� “Summary Table of SAS System Options” on page 528

� SAS Language Reference: Dictionary

� Base SAS Procedures Guide

PDS Procedure

Lists, deletes, or renames members of a partitioned data set

z/OS specifics: all

Syntax
PROC PDS DDNAME=file-specification <options >;

DELETE member-1 <. . . member-n >;

CHANGE old-name-1 =new-name-1 < . . . old-name-n =new-name-n > ;

EXCHANGE name-1=other-name-1 < . . . name-n =other-name-n > ;

322 PDS Procedure Chapter 16

Details
Partitioned data sets (PDS) are libraries that contain files called members. There are
two kinds of partitioned data sets. One can contain source code, macros, cataloged
procedures, and other data. The other, called a load library, can contain only load
modules.

PROC PDS operates on the directory of a partitioned data set to list, delete, and
rename members and aliases. (Partitioned data sets are not the same as SAS data
libraries.) When members are deleted or renamed, PROC PDS updates the directory of
the partitioned data set. Also, unless NOLIST is specified, PROC PDS writes an
updated listing of the PDS member names to the SAS log.

PROC PDS operates with full capabilities on both extended partitioned data sets
(PDSEs) and standard partitioned data sets (PDSs).

PROC PDS Statement

PROC PDS DDNAME=file-specification <options>;

DDNAME=file-specification
specifies the physical file name (enclosed in quotation marks) or the fileref that is
associated with the partitioned data set that you want to process. A fileref must
have been previously assigned with a FILENAME statement, FILENAME
function, a JCL DD statement, or a TSO ALLOCATE command. The DDNAME=
argument is required.

The following options can appear in the PROC PDS statement:

NOLIST
suppresses the listing of the member names and aliases in the directory of the
partitioned data set.

KILL
deletes all the members of the partitioned data set that is specified by DDNAME=.

REFRESH | NOREFRESH
specifies whether to update the directory information of the file that is being
processed after each operation. The default, REFRESH, updates the directory
information after each operation. Unless the operations that are being performed
by PROC PDS are dependent on each other, specify NOREFRESH for better
performance.

STRICT
causes error messages to be generated and sets the return code to 8 if no members
match the selection criteria. The default behavior is for note messages to be
generated and for the return code to be set to 0 if no members match the selection
criteria.

DELETE Statement

DELETE member-1 <. . . member-n >;

If you want to delete a member or members from the PDS, specify the member names
in a DELETE statement.

When a specification in the DELETE statement is followed by a colon (:), all
members whose names begin with the characters preceding the colon are deleted. For

Procedures under z/OS PDS Procedure 323

example, when the following statement is executed, PROC PDS deletes all members
whose names begin with the characters PRGM:

delete prgm:;

CHANGE Statement

CHANGE old-name-1 =new-name-1 < . . . old-name-n =new-name-n > ;

If you want to rename a member or members of the PDS, use the CHANGE statement.
Specify the old name on the left side of the equal sign, and specify the new name on the
right. For example, the following statements change the name of member TESTPGM to
PRODPGM:

filename loadlib ’my.pgm.lib ’;
proc pds ddname=loadlib;

change testpgm=prodpgm;
run;

If multiple members have names that begin with the same sequence of characters
and you want to change all of the names so that they begin with a different sequence,
use a colon (:) after old-name and new-name. Here is an example:

change exam:=test:;

All of the members whose names began with the characters EXAM will subsequently
have names beginning with the characters TEST.

Note: If changing the name of a member would make the name the same as that of
an existing member, then the member is not renamed and a note is written to the SAS
log. �

It is not necessary for the lengths of the character sequences that precede the colon
to match. For example, the following statement is valid:

change am:=morn:;

However, if a new name is too long, then a note is written to the SAS log and no
change is made.

EXCHANGE Statement

EXCHANGE name-1=other-name-1 < . . . name-n =other-name-n > ;

Use the EXCHANGE statement to switch the names of members of the partitioned data
set. For example, after the following statements are executed, the member originally
called A will be member Z, and the member originally called Z will be member A.

proc pds ddname=’my.pgm.lib’;
exchange a=z;

run;

If multiple members have names that begin with the same sequence of characters and
you want to exchange that sequence with the sequence from another group of data sets,
use a colon (:) after name and other-name. For example, after the following statement
is executed, all data sets whose names began with ABC will begin with DEFG. In
addition, all of the data sets whose names began with DEFG will begin with ABC.

exchange abc:=defg:;

324 PDS Procedure Chapter 16

It is not necessary for the lengths of the sequences of characters that precede the
colons to match. However, if a new name is too long, then a note is written to the SAS
log and no change is made.

Usage Note
Unlike other SAS procedures that deal with partitioned data sets (for example, PROC
PDSCOPY and PROC SOURCE), PROC PDS does not make any distinction between a
member name and an alias, other than to report which names in the PDS directory are
aliases for which members. If an alias is renamed, it is still an alias. PROC PDS allows
you to delete a member that has aliases in the PDS directory, but then other procedures
(PROC PDSCOPY, for example) cannot process the aliases.

Example of Deleting and Renaming Members with the PDS Procedure
This example writes the names of the members of USERID.MVS.OUTPUT to the SAS
log and then generates a second listing showing the member changes and deletions that
are specified by the second PROC step. The results are shown in Output 16.8.

filename pdstest ’userid.mvs.output’;
proc pds ddname=pdstest;
run;

proc pds ddname=pdstest;
delete tempout tempout2;
change mem=out1603;

run;

Procedures under z/OS PDSCOPY Procedure 325

Output 16.8 Deleting and Renaming Members with the PDS Procedure

1 filename pdstest ’userid.mvs.output’;
2
3 proc pds ddname=pdstest;
4 run;
SAS PROC PDS Version 9.00 04/27/99

DSNAME=USERID.MVS.OUTPUT VOL=SER=XXXXXX

Members (aliases)

MEM OUT1601 OUT1602 TEMPOUT TEMPOUT2

Tracks Used 1.8
Unused 1.2
Total 3.0

Extents 1

Directory Blks 11
Blocks Used 1

5
6 proc pds ddname=pdstest;
7 delete tempout tempout2;
8 change mem=out1603;
9 run;

DSNAME=USERID.MVS.OUTPUT VOL=SER=XXXXXX

Members (aliases)

MEM OUT1601 OUT1602 OUT1603

Tracks Used 1.8
Unused 1.2
Total 3.0

Extents 1

Directory Blks 11
Blocks Used 1

PDSCOPY Procedure

Copies partitioned data sets from disk to disk, disk to tape, tape to tape, or tape to disk

z/OS specifics: all

Syntax
PROC PDSCOPY INDD=file-specification OUTDD=file-specification <options >;

EXCLUDE member-name-1 <. . . member-name-n>;
SELECT member-name-1 <. . . member-name-n >;

Details
The PDSCOPY procedure can be used to copy an entire partitioned data set, or you can
specify which members you want to copy. This procedure cannot be used to copy

326 PDSCOPY Procedure Chapter 16

extended partitioned data sets (PDSEs). PROC PDSCOPY is useful for backing up
source libraries and load module libraries to tape. If you use PROC PDSCOPY to copy a
PDS to tape, then you must also use it if you want to copy that PDS back to disk.
However, you can use either PROC PDSCOPY or other copy utilities to copy that tape
to another tape.

When libraries are moved between disks that have different optimal block sizes,
PROC PDSCOPY can be used to reblock the libraries. PROC PDSCOPY handles
overlay programs and alias names. It also sets up the RLD count fields that are used by
the FETCH program.

When a PDS contains load modules, it generally requires 13% to 18% less disk space
after being copied by PROC PDSCOPY, because PROC PDSCOPY uses free space on a
partially filled track to store records. The linkage editor constructs records that do not
fit on a partially used track.

The PDSCOPY procedure does not copy scatter-loaded modules.
If errors are encountered during PDSCOPY processing, the return code for the job

step is set to 8.

PROC PDSCOPY Statement

PROC PDSCOPY INDD=file-specification OUTDD=file-specification <options>;

INDD=file-specification
specifies either the fileref or the physical file name (enclosed in quotation marks)
of the library to copy. INDD= is required.

OUTDD=file-specification
specifies either the fileref or the physical file name (enclosed in quotation marks)
of the output partitioned data set. OUTDD= is required.

Options Some of the options that can appear in the PROC PDSCOPY statement apply
to both source libraries and load module libraries. Others apply only to load module
libraries. The following options apply to both source libraries and load module libraries:

ALIASMATCH=TTR
BLKSIZE=
INTAPE
NEWMOD
NOALIAS
NOREPLACE
OUTTAPE
SHAREINPUT

The following options apply only to load module libraries:
ALIASMATCH=BOTH|EITHER|NAME
DC
DCBS|NODCBS
MAXBLOCK=
NE
NOTEST

All the options that can appear in the PROC PDSCOPY statement are discussed in
this section. In the discussion, the term member refers to both source library members
and to load modules. The term module refers only to load modules.

Procedures under z/OS PDSCOPY Procedure 327

ALIASMATCH=BOTH | EITHER | NAME | TTR
specifies how to match aliases with main members to determine whether they
represent the same member.

BOTH
specifies that both the TTR (relative track and record) values and the names
must match in order for a main module to be considered a match.

EITHER
specifies that a match for either the TTR value or the name is sufficient to
identify the main module that corresponds to an alias. If more than one main
module directory entry matches, it is impossible to predict which one will be
used.

NAME
specifies that the main module name in the directory entry for the alias (at
offset 36) is compared with main module names to find a match. The alias is
assumed to represent the same module as the main module that has the
matching name. When you specify ALIASMATCH=NAME, the TTR values do
not need to match.

A situation in which names match even though TTR values do not match
occurs when the main module is originally link edited specifying the alias
names, and then link edited again without specifying them. In this case, the
directory entries for the aliases still point to the old version of the module
(that is, to a back-level version). Because of this, you should consider
carefully whether to use the ALIASMATCH=NAME option or the NEWMOD
option. ALIASMATCH=NAME updates the aliases to point to the current
version of the main module rather than to the back-level version. The
NEWMOD option causes the older version of the module to copy. Another
alternative is to use TTR matching and not to copy the aliases when they are,
in fact, obsolete names.

TTR
specifies that TTR values are compared. TTR is the default. An alias is
assumed to represent the main member that has the same TTR value. If the
TTR values match, then the directory entry for the main member and the
alias currently point to the same place in the data set.

For load modules, the most common situation in which TTR values might
match, but names may not match, occurs when the main module was renamed
(for example, by using ISPF option 3.1) after the aliases were created. The
alias directory entries may still contain the old main module name.

Whichever method you use, unmatched aliases are not copied to the output
file unless you specify the NEWMOD option (see NEWMOD on page 329).
Matched aliases in the output file always point to the main module to which
they were matched (that is, they have the same TTR values), even if the TTR
values were different in the input file (which might occur if
ALIASMATCH=NAME or ALIASMATCH=EITHER was used). When
modules are matched using the TTR values (that is, when TTR or EITHER
was specified), the main module name in alias directory entries is changed in
the output file.

BLKSIZE=block-size
specifies the maximum block size to use for reblocking the copied load modules on
the output device. If the BLKSIZE= option is omitted, the default depends on the
type of the output device and on the data set type:

� If output is to tape, the default is 32,760.

328 PDSCOPY Procedure Chapter 16

� If output is in tape (sequential) format on disk (that is, when the OUTTAPE
option is used), the default is either the device track size or 32,760,
whichever is less.

� If output is to disk, the default depends on the device type. However, it is
never greater than 18K unless you use the MAXBLOCK= option (see
MAXBLOCK on page 328). In addition, the default cannot exceed the device
track size or 32,760, whichever is less.

� Unless the NODCBS option (described later) is specified and the output data
set is a partitioned data set on disk, the default value is reduced to the data
set control block (DSCB) block size of the partitioned data set, if that is
smaller.

For tape (sequential) format output, the specified block size cannot be less than
1.125 times the maximum input device block size, nor greater than 32,760. For
disk output, the specified block size cannot be less than 1,024.

DC
specifies that load modules that are marked downward compatible (that is,
modules that can be processed by linkage editors that were used before z/OS) are
eligible for processing. After they are copied by PROC PDSCOPY, the load
modules are not marked DC in their directory entry because PROC PDSCOPY
does not produce downward compatible load modules nor does it preserve their
attributes. If you do not specify the DC option and you attempt to copy load
modules marked DC, PROC PDSCOPY issues an error message.

DCBS | NODCBS
tells SAS whether to preserve the data control block (DCB) characteristics of the
output partitioned data set on disk. If NODCBS is specified, the data control block
(DCB) characteristics of the output partitioned data set on disk can be overridden.
The default value is DCBS.

If the NODCBS option is specified, PROC PDSCOPY changes the DSCB (data
set control block) block size of the output partitioned data set to the maximum
permissible block size for the device. Otherwise, the maximum permissible value
of the BLKSIZE= option is the current block size value from the DSCB, and the
DSCB block size is not changed.

Using the NODCBS option may enable PROC PDSCOPY to block output load
modules more efficiently. However, changing the DSCB block size could cause
problems when the data set is moved, copied, or backed up by a program other
than PROC PDSCOPY, particularly if your installation has more than one type of
disk drive. Consult your systems staff before specifying NODCBS.

INTAPE
specifies that the INDD= library is in tape (sequential) format. The INTAPE
option is assumed if a tape drive is allocated to the input data set.

MAXBLOCK=block-size | MAXBLK=block-size
enables you to override the limitation of 18K on the block size of text records in
the output library. (The value of BLKSIZE must be greater than or equal to the
value of MAXBLOCK in order to get text records at MAXBLOCK size.) If the
value of MAXBLOCK is not specified, then the maximum block size for text
records is 18K; this is the largest text block that can be handled by the FETCH
program in many operating environments. You can specify a block size greater
than 18K for text records, but doing so may cause copied modules to ABEND with
an ABEND code of 0C4 or 106-E when they are executed. You should use this
parameter only if you are sure that your operating environment (or TP monitor)
FETCH program supports text blocks that are larger than 18K. CICS and z/OS
FETCH programs, for example, support text blocks that are larger than 18K.

Procedures under z/OS PDSCOPY Procedure 329

NE
specifies that the output library should not contain records that are used in the
link editing process. Although programs in the output library are executable, they
cannot be reprocessed by the linkage editor, nor can they be modified by the
AMASPZAP program. Using the NE option can reduce the amount of disk space
that is required for the output library.

NEWMOD
specifies that aliases that do not match a main member are to be copied as main
members rather than being marked as aliases in the output file. The directory
entry in the output file is reformatted to main member format. See the
ALIASMATCH option for a description of how aliases are matched with main
members. If you do not specify the NEWMOD option, unmatched aliases are not
copied to the output file.

NOALIAS | NOA
prevents automatic copying of all aliases of each member that you have selected
for copying. Any aliases that you want to copy must be named in the SELECT
statement. If you select only an alias of a member, the member (that is, the main
member name) is still automatically copied, along with the selected alias.

NOREPLACE | NOR
copies only members in the INDD= library that are not found in the OUTDD=
library; that is, members or aliases that have the same name are not replaced.

NOTEST
deletes the symbol records produced by the assembler TEST option from the copied
load modules. Using the NOTEST option can reduce the amount of disk space that
is required for the output library by 10% to 20%.

OUTTAPE
specifies that the OUTDD= library is to be in tape (sequential) format. The
OUTTAPE option is assumed if a tape drive is allocated to the output data set.

SHAREINPUT | SHAREIN
specifies that the INDD= library is to be shared with other jobs and TSO users.
SHAREINPUT is the default for PDSCOPY when the INDD= library is enqueued
for shared control (DISP=SHR). This means that the INDD= library is shared with
ISPF and the linkage editor rather than being enqueued exclusively. This makes it
possible for more than one person to use an INDD= library simultaneously. (The
OUTDD= library is always enqueued for exclusive control against ISPF and the
linkage editor; therefore, it cannot be changed while PROC PDSCOPY is
processing it.)

EXCLUDE Statement

EXCLUDE member-name-1 <. . . member-name-n >;

Use this statement if you want to exclude certain members from the copying operation.
The EXCLUDE statement is useful if you want to copy more members than you want to
exclude. All members that are not listed in EXCLUDE statements are copied. You can
specify more than one member in an EXCLUDE statement, and you can specify as
many EXCLUDE statements as necessary.

If you follow a specification in the EXCLUDE statement with a colon (:), then all
members whose names begin with the characters preceding the colon are excluded.

Note: You cannot use both the SELECT statement and the EXCLUDE statement in
one PROC PDSCOPY step. �

330 PDSCOPY Procedure Chapter 16

SELECT Statement

SELECT member-name-1 <. . . member-name-n >;

Use this statement to specify the names of members to copy if you do not want to copy
the entire library. You can specify more than one member in a SELECT statement, and
you can specify as many SELECT statements as necessary.

If you follow a specification in the SELECT statement with a colon (:), then all
members whose names begin with the characters preceding the colon are copied. In the
following example all members whose names begin with the characters FCS are copied:

select fcs:;

Note: You cannot use both the SELECT statement and the EXCLUDE statement in
one PROC PDSCOPY step. �

Output Data Set
The PDSCOPY procedure produces an output partitioned data set on disk or on tape.
The output data set contains copies of the requested members of the input partitioned
data set.

If you use PROC PDSCOPY to copy partitioned data sets that contain source
members, then the RECFM and LRECL of the output data set must match those of the
input data set. If they differ, an error message is displayed. The BLKSIZE values for
the input and output data sets do not have to be the same, however.

Usage Notes
If a member that you specified in a SELECT statement does not exist, PROC PDSCOPY
issues a warning message and continues processing.

PROC PDSCOPY enqueues the input and output data sets using the SPFEDIT and
SPFDSN QNAMEs.

If a data set has a name that was assigned by using the FILENAME statement, the
ENCODING value of the FILENAME statement is ignored when the data set is
processed by PROC PDSCOPY.

Output
The PDSCOPY procedure writes the following information to the SAS log:

� INPUT and OUTPUT, the data set names and volume serials of the input and
output libraries

� MEMBER, a list of the members copied

� ALIAS, the members’ aliases, if any

� whether the copied members replaced others members of the same name

� whether a selected member or alias was not copied and a note explaining why not.

If the output device is a disk, PROC PDSCOPY also writes the following information
next to each member name:

� TRACKS, the size of the member, in tenths of tracks

� SIZE, the number of bytes in the member that was copied (in decimal notation).

Procedures under z/OS PMENU Procedure 331

Example of Copying Members Using the PDSCOPY Procedure

The following example copies all members and aliases that start with the letters OUT.
In this example, the alias must match the main member both by name and by TTR in
order for the alias to be copied.

filename old ’userid.mvs.output’ disp=shr;
filename new ’userid.mvs.output2’ disp=old;
proc pdscopy indd=old outdd=new aliasmatch=both

shareinput;
select out:;

run;

The following output shows the results.

Output 16.9 PDSCOPY Procedure Example

1 filename old ’userid.mvs.output’ disp=shr;
2 filename new ’userid.mvs.output2’ disp=shr;
3
4 proc pdscopy indd=old outdd=new aliasmatch=both shareinput;
5 select out:;
6 run;

SAS PROC PDSCOPY Version 9.00 04/24/99

INPUT DSNAME=USERID.MVS.OUTPUT VOL=SER=XXXXXX
OUTPUT DSNAME=USERID.MVS.OUTPUT2 VOL=SER=XXXXXX

MEMBER TRACKS SIZE
ALIAS

OUT1601 2.6 40019 replaced
OUT1602 10.6 165519 replaced
OUT1603 53.3 829081 replaced

TRACKS USED 67.0
UNUSED 8.0
TOTAL 75.0

EXTENTS 5

PMENU Procedure

Defines PMENU facilities for user-defined windows

z/OS specifics: Some portable statements are ignored.

Details

The following statements and options are accepted without generating errors, but with
current device drivers they have no effect under z/OS:

� ACCELERATE= option in the ITEM statement

� MNEMONIC= option in the ITEM statement

� HELP= option in the DIALOG statement.

332 PRINTTO Procedure Chapter 16

See Also

� Base SAS Procedures Guide

PRINTTO Procedure

Defines destinations for SAS procedure output and for the SAS log

z/OS specifics: UNIT= option; output destination

Details
In the SAS CLIST and in the SAS cataloged procedure that are supplied by SAS, no
filerefs of the form FTnnF001 are predefined for the UNIT= option. Ask your SAS
Installation Representative whether your site has predefined DDnames of the form
FTnnF001.

Under z/OS, the destination of the procedure output or the SAS log can be specified
by either of the following:

fileref
sends the log or procedure output to a sequential data set or member of a
partitioned data set that is identified by the fileref.

’physical-filename’
sends the log or procedure output to a sequential data set, to a member of a
partitioned data set, to an extended partitioned data set, or to a file in a UNIX
System Services hierarchical file system.

The following restrictions apply to PROC PRINTTO under z/OS:
� When writing log or procedure output files to a partitioned data set member, you

must specify the NEW option; you cannot append data to a partitioned data set
member.

� LOG files that are generated on z/OS and captured with PROC PRINTO contain
an ASA control character in column 1. If you are using the INPUT statement to
read a LOG file that was generated on z/OS, you must account for this character if
you use column input or column pointer controls.

� If you create a file to be used with the PRINTTO procedure and specify a record
format that has no carriage-control characters, the PROC PRINTTO output will
not include carriage-control characters.

� In order to simultaneously route both the SAS log and procedure output files to
partitioned data set members, the members must be in different partitioned data
sets.

See Also

� “Directing Output to External Files with the PRINTTO Procedure” on page 114
� Base SAS Procedures Guide

RELEASE Procedure

Releases unused space at the end of a disk data set

Procedures under z/OS RELEASE Procedure 333

z/OS specifics: all

Syntax

PROC RELEASE DDNAME=file-specification <options>;

Details

PROC RELEASE can be used with most sequential or partitioned data sets, not just
with a SAS data library that contains SAS data sets. However, PROC RELEASE is not
supported for, and cannot be used to release unused space from, the following types of
data sets:

� the SAS WORK data library

� extended partitioned data sets (PDSEs)

� ISAM or VSAM data sets

� multivolume SAS data libraries

� external multivolume data sets.

If you delete some members from a SAS data library (using the DATASETS
procedure, for example), you can use the RELEASE procedure to release the unused
space at the end of the last member. You cannot use PROC RELEASE to release
embedded space. That is, you can release only space that follows the “Highest Used
Block,” as indicated by the CONTENTS or DATASETS procedure.

In order to use PROC RELEASE on a SAS data library, the data library must be
closed. If the library is open, SAS generates an error message. If you have assigned a
libref to the data library and have used some members of that library in your SAS
session, the library will be open. To close it, issue a LIBNAME statement of the
following form for each libref currently assigned to the library:

LIBNAME libref CLEAR;

Then issue a new LIBNAME statement for the data library and immediately run
PROC RELEASE. As an alternative to issuing a second LIBNAME statement, you can
simply specify the data library’s name (enclosed in quotation marks) as the value of the
DDNAME= option in the PROC RELEASE statement.

In the control language, you can release unused space by using specifications such as
SPACE=(,,RLSE) in the DD statement (in batch mode), or you can use the RELEASE
operand of the TSO ALLOCATE command. However, releasing unused space with
PROC RELEASE offers several advantages over methods provided by the operating
environment. For example, with PROC RELEASE, the user, not the operating
environment, controls when unused space is released. This advantage is especially
applicable to TSO users.

Another advantage of PROC RELEASE is that you can use PROC RELEASE options
to specify exactly how many tracks you want to keep or release. There is no danger of
erasing all or part of a data set because PROC RELEASE frees only unused space.
PROC RELEASE returns unused space to the pool of available space on the disk
volume. Once released, the space is still available for allocation to the data set,
provided a secondary space allocation is given for the data set in the control language
or SAS statement, and provided all free space on the volume is not subsequently
allocated to other data sets.

334 RELEASE Procedure Chapter 16

PROC RELEASE Statement

PROC RELEASE DDNAME=file-specification <options>;

DDNAME=file-specification
specifies either a physical file name (enclosed in quotation marks), a fileref that
refers to the physical file from which to release unused space, or a libref referring
to an unopened SAS data library. If multiple librefs are currently assigned to a
SAS data library, you must specify the libref which was assigned first. DDNAME=
is required.

options
specify how much unused space to keep or release, and specify the unit boundary
on which the data set should end.

TOTAL=number | TRACKS=number
specifies the total number of tracks that the data set should contain after
unused space is released, that is, after PROC RELEASE has executed. For
example, the following statement releases all but ten tracks for the data set
that is referenced by the fileref SURVEY:

proc release ddname=survey total=10;

The procedure calculates the amount of space to release as follows:

amount of space allocated − (value of TOTAL= option) = amount of unused
space released

If the value that you specify is smaller than the amount of used space in
the data set, then SAS releases only the unused space at the end of the data
set.

UNUSED=number
specifies the number of tracks of unused space that the data set should
contain after PROC RELEASE has executed. The procedure calculates the
amount of unused space to release as follows:

amount of space allocated − (used space + value of UNUSED= option) =
amount of unused space released

If the value that you specify is greater than the amount of unused space at
the end of the data set, then no space is released at the end of the data set.

RELEASE=number
specifies how many tracks of unused space to release. If the value that you
specify is greater than the amount of unused space at the end of the data set,
then SAS releases all the unused space at the end of the data set.

EXTENTS | EXTENT | EX
tells SAS to release only the space that is allocated to completely unused
secondary extents. After the procedure releases unused space from the data
set, the size of the data set is the sum of the primary extent plus all used
secondary extents.

If you do not specify one of these options in the PROC RELEASE statement,
then all unused space at the end of the data set is released.

Use the following option to specify the unit boundary on which the data set
should end:

BOUNDARY=type | TYPE=type
specifies whether the data set will end on a track boundary or on a cylinder
boundary.

Procedures under z/OS RELEASE Procedure 335

After the total amount of space to be retained is calculated, this amount is
rounded up to the next unit boundary. Any remaining space is then released.
Remember that the total amount of space will include the space that is
actually used and may also include unused space that was requested with
other options. BOUNDARY=type then will increase the amount of unused
space that is retained in the data set by the portion of the unit that is needed
in order to reach (or round up to) the next boundary. TYPE can be one of the
following:

DATASET | DSCB
specifies that the data set will end on the next track or cylinder
boundary depending on how space is currently allocated. If allocated in
tracks, the total amount of space to be retained is calculated, and
remaining unused tracks are released. If allocated in cylinders, the
space to be retained is rounded up to the next cylinder boundary, and
remaining unused space is released. This is the default boundary type.

CYLINDERS | CYLINDER | CYLS | CYL
specifies that space to be retained is rounded to the next cylinder
boundary before remaining unused space is released. This specification
is effective only if the data set is currently allocated in multiples of
cylinders.

TRACKS | TRACK | TRKS | TRK
specifies that unused tracks are to be released. Because the minimum
unit of space that can be released is a track, the space to be retained is
not rounded up.

ALLOC | DD | JCL
specifies that space to be retained is rounded to the next unit boundary
(tracks or cylinders) depending on the allocation unit that was specified
in the JCL statement, TSO ALLOCATE command, FILENAME or
LIBNAME statement, or FILENAME or LIBNAME function. For
example, the following, in combination with BOUNDARY=DD, is
equivalent to specifying BOUNDARY=CYL:

//DD2 DD DISP=OLD,DSN=MY.DATA,
// SPACE=(CYL,2)

Usage Notes
If the messages in the SAS log indicate that no space was released from the data set,
check to see whether the data set is allocated to another job or to another user. When
PROC RELEASE is invoked, the operating environment’s disk space management
function (DADSM) must be able to obtain exclusive control of the data set. If it cannot,
then no indication that DADSM does not have control is passed to SAS software, no
space is released from the data set, and no error message is issued by SAS software.

Output
PROC RELEASE writes the following information to the SAS log:

� how many tracks were allocated to the data set before and after the procedure was
executed

� how many tracks were used

� how many extents were used.

336 SORT Procedure Chapter 16

Example

The following example releases the unused secondary extents for a physical file that is
referenced by the fileref THISFILE:

filename thisfile ’my.pgm.lib’;
proc release ddname=thisfile extents;
run;

See Also

� IBM’s MVS JCL Reference

SORT Procedure

Sorts observations in a SAS data set according to the values of one or more variables

z/OS specifics: available z/OS sort utilities and SORT procedure statement options;
host-specific SAS system options

Details

You can direct the SORT procedure to use either the SAS sort program, which is
available under z/OS and under all other operating environments, or a sort utility that
is specific to z/OS. You can also use the SORTPGM= system option to tell SAS to choose
the best sort program to use. (See “SORTPGM= System Option” on page 506.)

The following SAS system options also affect any sorting that is done by SAS:

DYNALLOC SORTEQOP SORTSHRB

FILSZ SORTLIB= SORTSIZE=*

SORT= SORTLIST SORTSUMF

SORTALTMSGF SORTMSG SORTUADCON

SORTBLKMODE SORTMSG= SORTUNIT=

SORTBUFMOD SORTNAME= SORTWKDD=

SORTCUTP= SORTOPTS SORTWKNO=

SORTDEV= SORTPARM= SORT31PL

SORTDEVWARN SORTPGM=

SORTDUP=* SORTSEQ=*

* Options marked with an asterisk (*) are either portable or portable with host specifics. For
information on these options, begin with SAS Language Reference: Dictionary.

You can see the values of the preceding options by submitting:

proc options group=sort; run;

Procedures under z/OS SORT Procedure 337

PROC SORT Statement Options
The following host-specific sort options are available in the PROC SORT statement
under z/OS in addition to the statement options that are available under all host
operating environments. The list includes the portable EQUALS option because it has
aspects that are specific to z/OS.

DIAG
passes the DIAG parameter to the sort utility. If the utility supports this option,
then it will produce additional diagnostic information if the sort fails.

EQUALS
passes the EQUALS parameter to the sort utility program whether or not the sort
utility supports it. SAS software defaults to EQUALS by passing the parameter to
the utility if the SAS system option SORTEQOP is in effect.

LEAVE=n
specifies how many bytes to leave unallocated in the region. Occasionally, the
SORT procedure runs out of main storage. If this happens, rerun the job and
increase the LEAVE= value (which has a default value of 16000) by 30000.

LIST | L
provides additional information about the system sort. Not all sort utilities
support the specification of the LIST option; they may require that it be specified
when the sort utility is generated or installed. This option is the default action if
the SAS system option SORTLIST is in effect. Also, this option overrides
NOSORTLIST if it is in effect.

MESSAGE | M
prints a summary of the system sort utility’s actions. This option is the default
action if the SAS system option SORTMSG is in effect. Also, this option overrides
NOSORTMSG if it is in effect. MESSAGE is useful if you run PROC SORT and
the SAS log prints a message indicating that the sort did not work properly.
Explanations of the message can be found in the IBM or vendor reference manual
that describes your system sort utility.

SORTSIZE=n | nK | nM | nG | MAX | SIZE
specifies the maximum virtual storage that can be used by the system sort utility.
If not specified, the default sort size is given by the SAS system option
SORTSIZE=.

SORTWKNO=n
specifies how many sort work areas PROC SORT allocates. If not specified, the
default is given by the SAS system option SORTWKNO=.

TECHNIQUE=xxxx | T=xxxx
specifies a four-character sort technique to be passed to the system sort utility.
SAS does not check the validity of the specified value, so you must ensure that it
is correct.

Specifying the SORTSEQ= Option with a Host Sort Utility
The SORTSEQ= option enables you to specify the collating sequence for your sort. For
a list of valid values, see the Base SAS Procedures Guide.

CAUTION:
If you are using a host sort utility to sort your data, then specifying the SORTSEQ= option
might corrupt the character BY variables if the sort sequence translation table and its
inverse are not one-to-one mappings. In other words, for the sort to work the

338 SORT Procedure Chapter 16

translation table must map each character to a unique weight, and the inverse table
must map each weight to a unique character variable. �

If your translation tables do not map one-to-one, then you can use one of the
following methods to perform your sort:

� create a translation table that maps one-to-one. Once you create a translation table
that maps one-to-one, you can easily create a corresponding inverse table using
the TRANTAB procedure. If your table is not mapped one-to-one, then you will
receive the following note in the SAS log when you try to create an inverse table:

NOTE: This table cannot be mapped one to one.

For more information, see “The TRANTAB Procedure” in the Base SAS Procedures
Guide.

� use the SAS sort. You can specify the SAS sort using the SORTPGM system
option. For more information, see “SORTPGM= System Option” on page 506.

� specify the collation order options of your host sort utility. See the documentation
for your host sort utility for more information.

� create a view with a dummy BY variable. For an example, see “Example: Creating
a View with a Dummy BY Variable” on page 338.

Note: After using one of these methods, you might need to perform subsequent BY
processing using either the NOTSORTED option or the NOBYSORTED system option.
For more information on the NOTSORTED option, see “BY Statement” in SAS
Language Reference: Dictionary. For more information on the NOBYSORTED system
option, see “BYSORTED System Option” in SAS Language Reference: Dictionary. �

Example: Creating a View with a Dummy BY Variable The following code is an
example of creating a view using a dummy BY variable:

options sortpgm=host msglevel=i;

data one;
input name $ age;

datalines;
anne 35
ALBERT 10
JUAN 90
janet 5
bridget 23
BRIAN 45
;

data oneview / view=oneview;
set one;
name1=upcase(name);

run;

proc sort data=oneview out=final(drop=name1);
by name1;

run;

proc print data=final;
run;

The output is the following:

Procedures under z/OS SOURCE Procedure 339

Output 16.10 Creating a View with a Dummy BY Variable

The SAS System
Obs name age
1 ALBERT 10
2 anne 35
3 BRIAN 45
4 bridget 23
5 janet 5
6 JUAN 90

See Also

� “Summary Table of SAS System Options” on page 528

� SAS Language Reference: Concepts

� SAS Language Reference: Dictionary

� Base SAS Procedures Guide

SOURCE Procedure

Provides an easy way to back up and process source library data sets

z/OS specifics: all

Syntax
PROC SOURCE <options >;

SELECT member-1 < . . . member-n >;

EXCLUDE member-1 < . . . member-n > ;

FIRST ’model-control-statement ’;

LAST ’model-control-statement ’;

BEFORE ’model-control-statement ’<options >;

AFTER ’model-control-statement’ <options >;

Details
Use PROC SOURCE to read PDS or PDSE libraries and produce sequential output.

You can use the SOURCE procedure to

� write the contents of an entire library to the SAS log.

� process only the directory of a library in order to produce input for SAS software,
for a utility, or for other programs.

� route the members of a library to other programs for processing. By default, PROC
SOURCE generates records for the IBM utility, IEBUPDTE, which reloads an
unloaded data set.

� create a sequential, or unloaded, version of the library’s directory records.

340 SOURCE Procedure Chapter 16

� construct an unloaded data set from a library. The unloaded data set is suitable
for reloading by IEBUPDTE or other source library maintenance utilities,
including the ability to recognize and properly handle aliases.

Using the SOURCE procedure, a source library can be copied into a sequential tape
or disk data set to create either a backup or a manually transportable copy of the
source data. This copy is called an unloaded data set; it consists of 80-byte records that
contain the source data and the control information that are needed to restore the
source to its original organization. When an unloaded data set is restored by the proper
utility to a device that will support the data in their original form, the data is
reconstructed, or loaded.

An advantage of having an unloaded data set is that one or more members can be
retrieved without reloading the entire library.

PROC SOURCE has several advantages over IBM’s IEBPTPCH utility. With PROC
SOURCE you can

� list members in alphabetical order

� select members by specifying a wildcard or range

� list the number of records in each member

� list each member on a new page

� produce an unloaded version of the library that can be ported to some other host
systems.

The model-control-statements in the FIRST, LAST, BEFORE, and AFTER
statements are usually either utility or job control statements, depending on the
destination given by the OUTDD= option in the PROC SOURCE statement.

PROC SOURCE Statement

PROC SOURCE <options >;

The following options are used in the PROC SOURCE statement:

DIRDD=file-specification
specifies either the fileref or physical file name of the output data set to which
PROC SOURCE writes a sequential, unloaded form of the PDS directory. Each
directory record is written into one 80-byte record. Records are left-aligned and
padded on the right with blanks. If specified, the fileref must match the reference
name that was used in the FILENAME statement, FILENAME function, JCL DD
statement, or TSO ALLOCATE command that allocated the output data set.

Note: The SELECT and EXCLUDE statements have no effect when the
DIRDD= option is specified. �

INDD=file-specification
specifies the fileref or the physical file name of an input PDS that contains 80-byte
fixed-length records. The fileref, if specified, must match the reference name that
was specified in the FILENAME statement, FILENAME function, JCL DD
statement, or TSO ALLOCATE command that allocated the input library. If the
INDD= option is not specified, the default fileref is SOURCE.

If OUTDD is specified, then the RECFM of the INDD file must be either F or
FB. The fileref may not refer to a concatenation of data sets. If it does, then an
error message is generated. If the member names in the INDD file are
nonstandard, then specify FILEEXT=ASIS in an OPTIONS statement.

Procedures under z/OS SOURCE Procedure 341

MAXIOERROR=n
specifies the maximum number of I/O errors to allow before terminating. Normally,
PROC SOURCE detects, issues a warning message about, and then ignores I/O
errors that occur while reading the library members. When the number of errors
specified by MAXIOERROR= has occurred, however, PROC SOURCE assumes
that the library is unreadable and stops. The default MAXIOERROR= value is 50.

NOALIAS
treats aliases as main member names. Therefore, PROC SOURCE does not
generate

./ ALIAS

cards or alias BEFORE and AFTER cards.

NODATA
specifies that you do not want to read the members in the input PDS. In other
words, PROC SOURCE produces only control statements and a list of the member
names; it does not produce the contents of the members. The list of member
names includes any aliases. NODATA is particularly useful when you want to
process only the directory of a library.

NOPRINT
specifies that you do not want to generate the list of member names and record
counts. (These listings are produced even when the PRINT option is not specified.)
The NOPRINT option is ignored when PRINT is specified.

NOSUMMARY
specifies that you do not want to generate the member summary. The
NOSUMMARY option is ignored when the NODATA, NOPRINT, or PRINT option
is specified.

NOTSORTED
causes PROC SOURCE to process PDS members in the order in which they either
appear (in SELECT statements) or remain (after EXCLUDE statements).

Normally, PROC SOURCE processes (that is, unloads, writes to the SAS log,
and so on) the PDS members in alphabetical order by member name.

NULL
specifies that null members (PDS members that contain no records, just an
immediate end-of-file) should be processed. Such members occasionally appear in
source PDSs, but they are not normally unloaded because IEBUPDTE and most
other PDS maintenance utilities do not create null members. If you are using a
source library maintenance utility that can properly recognize and create a null
member, then specify this option and provide the appropriate BEFORE (and
possibly AFTER) statements.

OUTDD=file-specification
specifies the fileref, PDS or PDSE member name, or UNIX System Services
filename of the output file to which PROC SOURCE writes the unloaded
(sequential) form of the input PDS and any records that FIRST, LAST, BEFORE,
and AFTER statements generate. If specified, the fileref must match the reference
name used in the FILENAME statement, FILENAME function, JCL DD
statement, or TSO ALLOCATE command that allocated the data set. This option
cannot be used when the INDD file contains variable-length records.

PAGE
begins the listing of the contents of each member on a new page.

342 SOURCE Procedure Chapter 16

PRINT
lists the contents of the entire PDS. The PRINT option is ignored when NODATA
is specified.

SELECT Statement

SELECT member-1 < . . . member-n >;

When you use the SELECT statement, only the members that you specify are
processed. You can specify more than one member in a SELECT statement, and you
can use any number of SELECT statements.

Use a colon (:) to indicate that you want to select all members whose names begin
with the characters that precede the colon. (See the second example below.)

You can include an alphabetic range of names in the SELECT statement by joining
two names with a hyphen (-). The two hyphenated members and all members in
between are processed. For example, if a library contains members called BROWN,
GRAY, GREEN, RED, and YELLOW, and you want to process the first four members,
use this SELECT statement:

select brown-red;

The colon (:) and hyphen (-) notation can be used together. For example, the
following statement produces the same results as the previous SELECT statement:

select br:-gr: red;

EXCLUDE Statement

EXCLUDE member-1 < . . . member-n > ;

When you use the EXCLUDE statement, all members except those that you specify are
processed. You can use any number of EXCLUDE statements.

Use a colon (:) to indicate that you want to exclude all members whose names begin
with the characters that precede the colon.

You can include an alphabetic range of names in the EXCLUDE statement by joining
two names with a hyphen. The two hyphenated members and all members in between
are excluded from processing. (See the SELECT examples in the SELECT statement
description.)

The colon and hyphen notation can be used together.
Sometimes it is convenient to use SELECT and EXCLUDE statements together. For

example, you can use the colon or hyphen notation in a SELECT statement to select
many members, then use the EXCLUDE statement to exclude a few of the selected
members. Suppose there are 200 members called SMC1 through SMC200, and you want
to copy all of them except SMC30 through SMC34. You could use these statements:

select smc:;
exclude smc30-smc34;

When you use both EXCLUDE and SELECT statements, the EXCLUDE statements
should specify only members that are specified by the SELECT statements. However,
excluding unselected members has no effect other than to generate warning messages.

Procedures under z/OS SOURCE Procedure 343

FIRST Statement

FIRST ’model-control-statement ’;

The FIRST statement generates initial control statements that invoke a utility program
or that are needed only once. The specified model-control-statement is reproduced,
left-aligned, on a record that precedes all members in the unloaded data set. You can
use any number of FIRST statements. One FIRST statement can specify one model
control statement. Each model control statement generates a record.

LAST Statement

LAST ’model-control-statement ’;

The LAST statement generates final control statements that terminate a utility
program or that are needed only once. The specified model-control-statement is
reproduced, left-aligned, on a record that follows all members in the unloaded data set.
You can use any number of LAST statements. One LAST statement can specify one
model control statement. Each model control statement generates a record.

BEFORE Statement

BEFORE ’model-control-statement’ <options>;

The BEFORE statement generates a utility control statement before each member. You
can use any number of BEFORE statements. One BEFORE statement can specify one
model control statement. Each model-control-statement that you specify is reproduced,
left-aligned, on a record that precedes each member in the unloaded data set.

By default, PROC SOURCE generates control statements for the IBM IEBUPDTE
utility program before each member of an unloaded data set. You can use the BEFORE
and AFTER statements to override the default and generate control statements for
other utility programs. To prevent PROC SOURCE from generating these statements,
use the BEFORE statement with no parameters.

Options for the BEFORE and AFTER statements are the same. A list of these
options follows the description of the AFTER statement.

AFTER Statement

AFTER ’model-control-statement’ <options >;

The AFTER statement generates a utility control statement after each member. You
can use any number of AFTER statements. One AFTER statement can specify one
model control statement. Each model-control-statement that you specify is reproduced,
left-aligned, on a record that follows each member in the unloaded data set.

By default, PROC SOURCE generates control statements for the IBM IEBUPDTE
utility program after each member of an unloaded data set. You can use the AFTER
statement to override the default and generate control statements for other utility
programs.

The following options are used in the BEFORE and AFTER statements:

344 SOURCE Procedure Chapter 16

ALIAS
tells SAS to produce a record containing the model-control-statement only for each
defined alias. (The alias is placed into the record at the specified column, if any.)

column number
tells SAS to substitute the member name in records that are generated by
BEFORE and AFTER statements in an 8-byte field beginning in this column. The
beginning column can be any column from 1 to 73. Aliases, as well as main
member names, are substituted. The name is left-aligned in the field unless the
RIGHT option is specified, and it is padded on the right with blanks unless the
NOBLANK option is specified.

NOBLANK
is meaningful only if column number is specified. When the member name is
substituted in records that are generated by the BEFORE and AFTER statements,
NOBLANK eliminates blanks between the end of the member and any text that
follows. In the following record, a member name precedes the text; NOBLANK has
not been specified:

name ,text text text

When NOBLANK is specified, the same record looks like this:

name,text text text

RIGHT
is meaningful only if column number is specified. When the member name is
substituted in records that are generated by the BEFORE and AFTER statements,
RIGHT causes the member name to be right-aligned in the specified field. By
default, the name is left-aligned in an 8-byte field.

Output

PROC SOURCE writes the following information to the SAS log:

� the contents of the entire PDS, if the PRINT option is specified

� a listing of the member names in the PDS (unless you specify NOPRINT)

� the number of records for each member (unless you specify NOPRINT or NODATA)

� a summary of the attributes and contents of the PDS.

Even when PRINT is not specified, some records may still be written to the log. The
signal NAME: or ENTRY: or AUTHOR: beginning in column 5 of a record in the library
starts the listing; the signal END beginning in column 5 stops it. If you do not want
SAS to list this subset of records, specify the NOSUMMARY option.

Example of Printing Selected Members from a PDS

The following example writes to the SAS log the contents of the member ORANGES4
from the PDS USERID.TASTE.TEST:

proc source indd=’userid.taste.test’ print;
select oranges4;

run;

The log is shown here:

Procedures under z/OS SOURCE Procedure 345

Output 16.11 Selecting a Member from a Source Statement Library

19 proc source indd=’userid.taste.test’ print;
20 select oranges4; run;
ORANGES4
data oranges;

input variety $ flavor texture looks;
total=flavor+texture+looks;
datalines;
navel 9 8 6
temple 7 7 7
valencia 8 9 9
mandarin 5 7 8
;

proc sort data=oranges;
by descending total;

proc print data=oranges;
title ’Taste Test Result for Oranges’;

17 - RECORDS

NOTE: INDD=SYS00158 data set is :
Dsname=USERID.TASTE.TEST,
Unit=3380,Volume=XXXXXX,Disp=SHR,Blksize=23055,
Lrecl=259,Recfm=FB.

3348 Members defined in source library.
0 Aliases defined in source library.
1 Members selected.

17 Records read from source library.

Example of Building and Submitting a Job to Assemble Programs
The following PROC SOURCE program builds and submits a job to compile assembler
programs. It writes the output directly to the internal reader so that the compile job
can be executed.

filename out sysout=a pgm=intrdr lrecl=80 recfm=f;
proc source indd=’userid.asm.src’ nodata outdd=out;

first ’//COMPILE JOB (0,ROOM),’’DUMMY’’,’;
first ’// NOTIFY=,REGION=4M,TYPRUN=HOLD’;
first ’/*JOBPARM FETCH’;
last ’//’;
before ’//XXXXXXXX EXEC ASMHCL,’ 3;
before ’// MAC2=’’XXX.MACLIB’’ ’;
before ’//SYSIN DD DISP=SHR,’;
before ’// DSN=USERID.ASM.SOURCE(XXXXXXXX)’ 26 NOBLANK;

run;

The output that is written to the internal reader is shown below. Note that this
output shows only the statements that are generated by PROC SOURCE, before they
are executed.

346 SOURCE Procedure Chapter 16

Output 16.12 Building and Submitting a Job to Assemble Programs

//COMPILE JOB (0,ROOM),’DUMMY’,
// NOTIFY=,REGION=4M,TYPRUN=HOLD
/*JOBPARM FETCH
//OUT1601 EXEC ASMHCL,
// MAC2=’XXX.MACLIB’
//SYSIN DD DISP=SHR,
// DSN=USERID.ASM.SRC(OUT1601)
//OUT1602 EXEC ASMHCL,
// MAC2=’XXX.MACLIB’
//SYSIN DD DISP=SHR,
// DSN=USERID.ASM.SRC(OUT1602)
//OUT1603 EXEC ASMHCL,
// MAC2=’XXX.MACLIB’
//SYSIN DD DISP=SHR,
// DSN=USERID.ASM.SRC(OUT1603)
//

Example of Producing Directory Records
The following PROC SOURCE program produces directory records. The subsequent
DATA step extracts the ISPF statistics, if any are present.

filename indd ’userid.sas.src’ disp=shr;
filename out ’&temp’;
/* Build directory records. */
proc source indd=indd nodata noprint dirdd=out;

/* Read directory records and extract */
/* ISPF statistics. */
data test;
infile out;
file print header=h;
input member $8. ttr pib3. ind pib1. @;
datalen = 2*mod(ind,32);
if (datalen = 30)
then do;

input ver pib1. mod pib1. blank pib2.
ccreate pib1.
create pd3.

cchanged pib1.
changed pd3. hh pk1.

mm pk1. size pib2. init pib2.
modl pib2. userid $8.;

yyyydddc = (ccreate * 100000) + 1900000 + create;
jcreate = datejul(yyyydddc);
yyyydddx = (cchanged * 100000) + 1900000 + changed;
jchange = datejul(yyyydddx);

/* Print the results. */
put @4 member $8.

@15 jcreate yymmdd10.
@27 jchange yymmdd10.
@39 hh z2. ’:’ mm z2.
@48 userid;

end;

Procedures under z/OS SOURCE Procedure 347

return;
h:
put @4 ’NAME ’

@15 ’CREATED’
@27 ’CHANGED’
@39 ’TIME’
@48 ’ ID ’;

put;
return;
run;

The following output shows the results.

Output 16.13 Producing Directory Records

The SAS System
NAME CREATED CHANGED TIME ID

OUT1601 1999-02-20 1999-02-20 10:50 USERID
OUT1602 1999-02-20 1999-02-20 10:54 USERID
OUT1603 1999-02-20 1999-02-20 10:59 USERID

Example of Generating Control Cards for IEBCOPY

This example first produces control statements for the IBM utility program, IEBCOPY.
Then IEBCOPY executes, copying selected members.

//IEBPDS JOB (0,ROOM),’USERID’,
// NOTIFY=
/*JOBPARM FETCH
// EXEC SAS
//IN DD DSN=XXX.SUBLIB,DISP=SHR
//OUT DD DSN=&&TEMP,SPACE=(CYL,(1,2)),
// DISP=(,PASS),UNIT=DISK
//SYSIN DD *

proc source indd=in outdd=out nodata noprint;
select hc:;
select lm:;
select sasextrn;
first ’ COPY INDD=IN,OUTDD=NEWPDS’;
before ’ SELECT MEMBER=XXXXXXXX -----------’

17;
before ’ S M=XXXXXXXX ***ALIAS***’

17 ALIAS;
//S1 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//IN DD DSN=XXX.SUBLIB,DISP=SHR
//NEWPDS DD DSN=&&NEW,SPACE=(CYL,(20,10,20)),
// UNIT=DISK
//SYSUT1 DD UNIT=DISK,SPACE=(CYL,(2,3))
//SYSUT2 DD UNIT=DISK,SPACE=(CYL,(2,3))
//SYSUT3 DD UNIT=DISK,SPACE=(CYL,(2,3))
//SYSIN DD DSN=&&TEMP,DISP=(OLD,DELETE)

348 SOURCE Procedure Chapter 16

The first output shows what is written to the SAS log after PROC SOURCE is run.
The second output shows the IEBCOPY output.

Output 16.14 Producing Control Statements for the IEBCOPY Utility

1 proc source indd=in outdd=out nodata noprint;
2 select hc:;
3 select lm:;
4 select sasextrn;
5 first ’ COPY INDD=IN,OUTDD=NEWPDS’;
6 before ’ SELECT MEMBER=XXXXXXXX -----------’ 17;
7 before ’ S M=XXXXXXXX ***ALIAS***’ 17 ALIAS;

NOTE: INDD=IN data set is :
Dsname=USERID.DATASET,
Unit=3380,Volume=XXXXXX,Disp=SHR,Blksize=6160,
Lrecl=80,Recfm=FB.

NOTE: OUTDD=OUT data set is :
Dsname=SYS96052.T131013.RA000.IEBPDS.TEMP,
Unit=3390,Volume=,Disp=NEW,Blksize=27920,
Lrecl=80,Recfm=FB.

9 Members defined in source library.
0 Aliases defined in source library.
6 Members selected.
0 Records read from source library.

Output 16.15 IEBCOPY Output: Selected Members Copied

IEBCOPY MESSAGES AND CONTROL STATEMENTS
COPY INDD=IN,OUTDD=NEWPDS
SELECT MEMBER=HCMEM1 -----------
SELECT MEMBER=HCMEM2 -----------
SELECT MEMBER=HCMEM3 -----------
SELECT MEMBER=LMMEM1 -----------
SELECT MEMBER=LMMEM2 -----------
SELECT MEMBER=SASEXTRN -----------

.

.

.
IEB167I FOLLOWING MEMBER(S) COPIED FROM INPUT DATA SET REFERENCED BY IN
IEB154I HCMEM1 HAS BEEN SUCCESSFULLY COPIED
IEB154I HCMEM2 HAS BEEN SUCCESSFULLY COPIED
IEB154I HCMEM3 HAS BEEN SUCCESSFULLY COPIED
IEB154I LMMEM1 HAS BEEN SUCCESSFULLY COPIED
IEB154I LMMEM2 HAS BEEN SUCCESSFULLY COPIED
IEB154I SASEXTRN HAS BEEN SUCCESSFULLY COPIED
IEB144I THERE ARE 239 UNUSED TRACKS IN OUTPUT DATA SET REFERENCED BY NEWPDS
IEB149I THERE ARE 8 UNUSED DIRECTORY BLOCKS IN OUTPUT DIRECTORY
IEB147I END OF JOB - 0 WAS HIGHEST SEVERITY CODE

References

� IBM’s DFSMS/MVS: Utilities

Procedures under z/OS TAPECOPY Procedure 349

TAPECOPY Procedure

Copies an entire tape volume (tape or cartridge), or files from one or several tape volumes, to one
output tape volume

z/OS specifics: all

Syntax
PROC TAPECOPY options ;

INVOL options ;
FILES file-numbers ;

Details
PROC TAPECOPY always begins writing at the beginning of the output tape volume;
any files that previously existed on the output tape are destroyed.

Note: PROC TAPECOPY copies to a single output tape volume. �

The TAPECOPY procedure can copy either standard labeled or nonlabeled tapes or
cartridges. You can specify, within limits, whether the output tape is standard labeled
(SL) or nonlabeled (NL). You cannot create an SL tape using an NL input tape because
TAPECOPY cannot manufacture tape labels. Also, if LABEL=(,SL) was specified in a
DD statement for an output tape volume, you cannot change that tape into a nonlabeled
tape. PROC TAPECOPY does allow you to write over an existing volume label on a
standard labeled tape if you specify LABEL=(,BLP) in the DD statement. (The BLP
value indicates bypass label processing.)

The JCL DD statement parameter LABEL=(,BLP) must be authorized specifically by
each computing installation. If your installation allows the BLP specification, then
ANSI-labeled, nonstandard labeled, and standard user-labeled tapes can be treated as
nonlabeled tape volumes. If the BLP specification is not authorized at your installation,
then LABEL=(,BLP) is treated as LABEL=(,NL). PROC TAPECOPY will work as you
expect if your tape is in fact nonlabeled; otherwise, the operating environment does not
allow TAPECOPY to use the tape, thus preserving the label.

Throughout this description, references to specifying LABEL=(,BLP) assume that
LABEL=(,BLP) is a valid specification at your installation.

CAUTION:
Record lengths cannot exceed 32K bytes. PROC TAPECOPY copies up to 32K bytes of
data per record, even if the length of the record exceeds 32K. No error message is
generated. �

Input Tape DD Statement Requirements In the DD statement that describes an input
tape, you need to specify the UNIT, VOL=SER, DISP parameters, and usually either
the LABEL or DSN parameter.

VOL=SER gives the volume serial of the first input tape. You can omit VOL=SER if
the UNIT parameter specifies deferred mounting–for example, UNIT=(tape,,DEFER). If
you specify deferred mounting, remember to use the INVOL= option in the PROC
TAPECOPY statement or in an INVOL statement to specify the volume serial of the
input tape. For details, see the information on the INVOL= option or “INVOL
Statement” on page 352.

350 TAPECOPY Procedure Chapter 16

For a nonlabeled input tape, you must specify either LABEL=(,NL) or LABEL=(,BLP)
in the DD statement. If you are unsure whether the input tape volume is labeled or
nonlabeled, specify LABEL=(,BLP) in the input tape DD statement, if your installation
allows it.

For a standard labeled input tape at an installation that does not allow
LABEL=(,BLP), specify LABEL=(,SL) and the DSN parameter, giving the DSNAME of
the first data set on the tape.

Output Tape DD Statement Requirements In the DD statement that describes the
output tape, you usually need to specify only the UNIT, VOL=SER, and DISP
parameters, and possibly the LABEL or DSN parameters.

VOL=SER gives the volume serial of the output tape. You can omit VOL=SER if the
UNIT parameter specifies deferred mounting–for example, UNIT=(tape,,DEFER). If you
specify deferred mounting, use the OUTVOL= option in the PROC TAPECOPY
statement to specify the volume serial of the output tape. For details, see the
information on the OUTVOL= option below.

You should usually specify DISP=(NEW,KEEP) for the output tape in the DD
statement. At some installations it may be necessary to specify DISP=(OLD,KEEP)
along with the DSN parameter, giving the DSNAME of the first data set on the tape
volume. The LABEL parameter should give the tape’s label type as it is before the
TAPECOPY procedure is executed, regardless of its label type after the copying
operation.

Output The TAPECOPY procedure writes to the SAS log a listing of the input and
output tape characteristics plus a summary of the files that were copied.

PROC TAPECOPY Statement

PROC TAPECOPY options ;

The following options can appear in the PROC TAPECOPY statement:

COPYVOLSER
specifies that the output tape should have a standard label with the same volume
serial as the first input tape. COPYVOLSER is effective only when both of the
following conditions are true:

� The output tape volume is to be standard labeled–that is, LABEL=SL.
� The output tape DD statement specifies LABEL=(,NL) or LABEL=(,BLP).

Both of these conditions must be true because the PROC TAPECOPY statement
LABEL= option specifies whether the output tape is standard labeled or nonlabeled
after the copy operation. The output tape volume’s DD statement LABEL=
parameter specifies what the output tape’s label status is before the copy operation.

If you specify COPYVOLSER and these conditions are not true, PROC
TAPECOPY stops processing.

DEN=density
specifies the density of the output tape. (The DEN= option should not be specified
for cartridge tapes.) If the DEN= option appears in the PROC TAPECOPY
statement, it overrides any DCB=DEN specification in the DD statement for the
output tape volume. If you do not specify a density in the PROC TAPECOPY
statement or in the DD statement, the operating environment writes the tape at
its default density. The default density is usually the highest density at which the
unit allocated to the output tape volume can record.

Valid density values follow:

Procedures under z/OS TAPECOPY Procedure 351

Tape Density Value Tape Volume Type

DEN=2 800 bpi

DEN=800

DEN=3 1600 bpi

DEN=1600

DEN=4 6250 bpi

DEN=6250

INDD=DDname
specifies the DDname that is referenced in the JCL DD statement for the first
input tape volume. The default INDD= option value is VOLIN.

INVOL=volume-serial
specifies the volume serial of the first input tape when deferred mounting is
specified in the DD statement for the first input tape. The INVOL= option
specification overrides the volume serial, if any, that was specified in the DD
statement for the tape.

Specify the INVOL= option only if you are using deferred mounting.

LABEL=SL | NL
specifies whether the output tape volume is to be standard labeled (LABEL=SL) or
nonlabeled (LABEL=NL).

Note: Be careful not to confuse the LABEL= option in the PROC TAPECOPY
statement with the DD statement parameter LABEL=(,specification). The PROC
TAPECOPY statement LABEL= option specifies whether the output tape is
standard labeled or nonlabeled after the copy operation. The output tape volume’s
DD statement LABEL= parameter specifies what the output tape’s label status is
before the copy operation. �

The DD statement for nonlabeled output tapes must specify either
LABEL=(,NL) or LABEL=(,BLP). If the output tape has an existing label (before
the copy operation) and the output tape is to be nonlabeled (after the copy
operation), then the DD statement must specify LABEL=(,BLP).

The default LABEL= option value is NL when multiple input volumes are used
and when the DD statements for any of them specify LABEL=(,NL). If there are
multiple input tapes and LABEL=(,NL) is not specified for any of them, and if the
first input tape volume is actually standard labeled, then the default LABEL=
option value is SL. This is true even if the DD statement specifies LABEL=(,BLP)
for the first tape; in this case, PROC TAPECOPY reads the tape volume’s first
record to determine the actual label type.

NEWVOLSER=new-volume-serial
specifies a new volume serial for the output tape. NEWVOLSER is effective only if
the output tape is standard labeled. If the output tape has an existing label, then
the DD statement for the output tape must specify LABEL=(,BLP); otherwise,
PROC TAPECOPY stops processing and does not write over the label.

NOFSNRESEQ | NFR
specifies that file sequence numbers in the file labels should not be resequenced
when a standard labeled output tape volume is being produced. PROC
TAPECOPY usually resequences these numbers and updates the label in order to
reflect both the ordinal position of the file on the output tape as it is copied and
the actual density at which the output tape is written.

352 TAPECOPY Procedure Chapter 16

NOLIST
tells SAS not to write the tape characteristics and the summary of copied files to
the SAS log. Even when you specify NOLIST, the SAS log contains a brief
summary of PROC TAPECOPY’s action; this summary is usually enough to verify
proper functioning of PROC TAPECOPY if you are familiar with the contents of
the input tape(s).

NORER
tells SAS not to specify the "reduced error recovery for tape devices" feature of the
operating environment for each input tape volume. When NORER is specified,
some tapes of marginal quality can be read successfully by PROC TAPECOPY
because the error recovery procedures are more extensive.

OUTDD=DDname
specifies the DDname that is referenced in the JCL DD statement for the output
tape. The default OUTDD= option value is VOLOUT.

OUTVOL=volume-serial
specifies the volume serial of the output tape when deferred mounting is specified
in the DD statement for the output tape. The OUTVOL= option specification
overrides the volume serial, if any, that was specified in the DD statement for the
tape.

Specify the OUTVOL= option only if you are using deferred mounting.

INVOL Statement

INVOL options ;

The INVOL statement defines an input tape volume from which some or all files are to
be copied to the output tape volume. The INVOL statement is not necessary if you are
using only one input tape nor for the first of several input tapes. (Use the INDD= and
INVOL= options of the PROC TAPECOPY statement instead.) When you are using
several input tapes, use an INVOL statement for each tape after the first input tape.

The following options can appear in the INVOL statement:

DSN | DSNAME=’physical-filename’
specifies the data set name of the first file on the current input tape. You must use
this option when both of the following conditions are true:

� The data set name specified in the DD statement is incorrect or missing.

� LABEL=(,SL) is specified (or implied by default) in the input tape volume DD
statement.

You typically use this option when one of the following conditions is true:

� The DD statement for the input tape specifies deferred mounting.

� You are reusing a DD statement (and tape drive); that is, the fileref is the
same but you want another standard labeled tape volume on the same unit.
LABEL=(,SL) should be specified or implied by default, and the data set
name cannot be the same as that on the previous tape that was used with
this fileref.

INDD=DDname
specifies the DDname that is referenced in the JCL DD statement for the current
input tape. The default INDD= option value is the DDname that is already in
effect for the previous input tape volume, as specified in the PROC TAPECOPY
statement or in the last INVOL statement.

Procedures under z/OS TAPECOPY Procedure 353

INVOL=volume-serial
specifies the volume serial of the current input tape. Use the INVOL= option when
the JCL DD statement for the input tape specifies deferred mounting (as described
in “PROC TAPECOPY Statement” on page 350), or when you are reusing a DD
statement (and tape drive); that is, the DDname is the same, but you want a
different tape volume on the same unit.

NL
specifies that the input tape is nonlabeled. If LABEL=(,SL) or LABEL=(,BLP) has
been specified in the DD statement for the input tape and the tape is actually
standard labeled, specifying the NL option causes the tape to be treated as if it
were nonlabeled. In this case, any file numbers that are specified in FILES
statements must be physical file numbers, not logical file numbers.

NORER
tells SAS not to specify the "reduced error recovery for tape devices" feature of the
operating environment for the input tape volume. When this option is specified,
some tapes of marginal quality can be read successfully by PROC TAPECOPY
because the error recovery procedures are more extensive. If NORER is specified
in the PROC TAPECOPY statement, then NORER is in effect for all input tape
volumes and INVOL statements.

SL
specifies that the input tape is standard labeled. If you specify LABEL=(,BLP) in
the DD statement for the input tape and specify SL in the INVOL statement,
PROC TAPECOPY verifies that the tape is standard labeled. Do not specify SL
unless the tape is actually standard labeled.

Note: If you do not specify NL or SL in the INVOL statement, the actual input
tape label type determines whether PROC TAPECOPY treats the tape as
nonlabeled or standard labeled, even when LABEL=(,BLP) is specified in the DD
statement. �

FILES Statement

FILES file-numbers;

When you want to copy particular files from an input tape, use the FILES statement to
specify which files you want to copy. Use as many FILES statements as you want. Give
the physical file numbers for nonlabeled tapes or for labeled tapes that are being
treated as nonlabeled. Give the logical file numbers for standard labeled tapes that are
not being treated as nonlabeled, even when the output tape volume is to be nonlabeled
(LABEL=NL). FILE is an alias for the FILES statement.

If you are using only one input tape, the FILES statement(s) can directly follow the
PROC TAPECOPY statement. When you use several input tape volumes, follow each
INVOL statement with the associated FILES statement or statements.

Specifying Individual Files File numbers in a FILES statement can be specified in
any order. For example, you might want to copy file 5 and then file 2 and then file 1, as
in the following example:

proc tapecopy;
files 5 2;
files 1;

run;

354 TAPECOPY Procedure Chapter 16

Specifying a Range You can specify a range of files by putting a dash between two file
numbers, as in the following example:

proc tapecopy;
files 1-7;

run;

In a range, the second number must be greater than the first. The keyword EOV (end
of volume) can be used as the last file in a range. PROC TAPECOPY copies all files on
the input tape until the end of the volume (in most cases, a double tapemark). On a
nonlabeled tape, you can copy files from the input tape beyond the double tapemark by
specifying the physical file number, counting tapemarks as usual. If another double
tapemark exists on the input tape volume, you can then specify EOV in another range.

Examples

Example 1: Copying Standard Labeled to Standard Labeled The following job copies a
standard labeled tape (volume serial XXXXXX) to another standard labeled tape
(volume serial YYYYYY).

//jobname JOB account,name
// EXEC SAS
//VOLIN DD UNIT=TAPE,DISP=OLD,
// VOL=SER=XXXXXX,LABEL=(,SL),
// DSN=first-dsname-on-tape
//VOLOUT DD UNIT=TAPE,DISP=(,KEEP),
// VOL=SER=YYYYYY,LABEL=(,SL)
//SYSIN DD *

proc tapecopy;
run;

/*
//

After PROC TAPECOPY executes, the output tape volume is labeled YYYYYY.
If LABEL=(,BLP) had been specified in the input tape DD statement (VOLIN), then

it would not have been necessary to use the DSN= option. Because some installations
do not permit the BLP label type specification, and because no volume label checking is
performed when it is specified, it is recommended that you specify (or allow to default)
LABEL=(,SL).

The specification of LABEL=(,SL) in the output tape DD statement (VOLOUT)
causes the operating environment to check the volume label when a tape volume is
mounted on the tape drive. The operating environment ensures that a tape with
volume serial YYYYYY is mounted. However, if the tape with external volume label
YYYYYY were, in fact, internally labeled something other than YYYYYY, PROC
TAPECOPY would fail. In this case, you would have to specify LABEL=(,BLP) or else
give the actual internal volume serial in the output tape DD statement. If the output
tape is not labeled internally, you can specify LABEL=(,NL) or LABEL=(,BLP).

Example 2: Copying Standard Labeled to Nonlabeled The next job copies a standard
labeled tape with volume serial TAPEIN to a nonlabeled tape, FCSTP1. After the job is
executed, the output tape volume is still a nonlabeled tape, presumably with only an
external volume label of FCSTP1. You must specify LABEL=NL in the PROC
TAPECOPY statement; otherwise, the procedure defaults to LABEL=SL because the
first (and only) input tape volume is standard labeled.

//jobname JOB account,name
// EXEC SAS

Procedures under z/OS TAPECOPY Procedure 355

//VOLIN DD UNIT=TAPE,DISP=OLD,VOL=SER=TAPEIN,
// LABEL=(,BLP)
//VOLOUT DD UNIT=TAPE,DISP=(,KEEP),VOL=SER=FCSTP1,
// LABEL=(,NL)
//SYSIN DD *

proc tapecopy label=nl;
run;

/*
//

Example 3: Copying Nonlabeled to Nonlabeled The following job copies a nonlabeled
tape with volume serial QDR123 to a nonlabeled, 1600 bpi tape, SLXATK:

//jobname JOB account,name
// EXEC SAS
//INTAPE DD UNIT=TAPE,DISP=OLD,VOL=SER=QDR123,
// LABEL=(,NL)
//OUTTAPE DD UNIT=2927-3,DISP=(,KEEP),
// VOL=SER=SLXATK,LABEL=(,NL)
//SYSIN DD *

proc tapecopy indd=intape outdd=outtape
den=1600;

run;
/*
//

Example 4: Copying Multiple Files from One Input Tape This next job copies the first
seven files from the standard labeled input tape U02746 plus four files from the
standard labeled input tape T13794 to an initially nonlabeled output tape with volume
serial MINI01. After the procedure is executed, the output tape is standard labeled and
has a volume serial of U02746, as specified by the COPYVOLSER option.

//jobname JOB account,name
// EXEC SAS
//TAPI1 DD DISP=SHR,UNIT=TAPE,
// VOL=SER=U02746,LABEL=(,SL),
// DSN=first-file-dsname
//TAPI2 DD UNIT=(TAPE,,DEFER)
//OUTDDN DD DISP=(,KEEP),UNIT=TAPE,VOL=SER=MINI01,
// LABEL=(,NL)
//SYSIN DD *

proc tapecopy outdd=outddn indd=tapi1
copyvolser;

files 3 2 1;
invol indd=tapi2 invol=t13794

dsn=’first-dsname-on-this-tape ’;
file 3;
invol indd=tapi1;
files 5-7 4;
invol indd=tapi2;
files 2 4 1;

run;
/*
//

356 TAPELABEL Procedure Chapter 16

Example 5: Copying Multiple Files from Multiple Input Tapes The next job copies
several files from several input tape volumes to one output tape volume:

//REARRNGE JOB account,name
// EXEC SAS
//DEN2IN DD UNIT=(2927-4,,DEFER),LABEL=(,BLP)
//DEN3IN DD UNIT=(2927-3,,DEFER),LABEL=(,SL)
//TAPE1 DD UNIT=TAPE,DISP=SHR,VOL=SER=XR8475,
// LABEL=(,BLP)
//TAPE2 DD UNIT=TAPE,DISP=OLD,VOL=SER=BKT023,
// DSN=first-file-dsname
//OUTPUT DD UNIT=(3400-5,,DEFER),DISP=(,KEEP)
//SYSIN DD *

proc tapecopy label=sl den=6250 nolist
outdd=output outvol=histpe;

invol indd=den2in invol=ptftp0;
files 2-4 8-eov 7 6;
invol indd=tape1;
files 5 7 9-eov;
invol indd=tape2;
files 4 5 1;
invol indd=den3in invol=s03768

dsn=’xrt.bkt120.g0081v00’;
files 1-6 22-34;
invol invol=so3760 dsn=’t.bkt120.g0023v00’;
files 4 5 6 9;
invol indd=tape2;
files 7-eov;

run;
/*
//

TAPELABEL Procedure

Writes the label information of an IBM standard-labeled tape volume to the SAS procedure output
file

z/OS specifics: all

Syntax
PROC TAPELABEL <options >;

Details
The procedure writes information from the tape label, including the data set name,
DCB information, and data set history, to the SAS procedure output file.

Each tape volume must have a DDname allocated for it before that volume can be
read by the TAPELABEL procedure. Multiple tape volumes can be read in one PROC
TAPELABEL statement, using a list of DDnames in the DDNAME= option, as shown

Procedures under z/OS TAPELABEL Procedure 357

below. At some installations, you may need to specify the data set name of the first file
on the tape volume as the first entry in your list of DDnames. This is necessary if you
cannot use LABEL=(,BLP), which is restricted at many sites.

PROC TAPELABEL Statement

PROC TAPELABEL <options >;

The following options can be specified in the PROC TAPELABEL statement:

DCBDEVT=128
enables PROC TAPELABEL to process Fujitsu F6470 tape cartridges.

DDNAME=(DDname-1...DDname-n)
specifies the DDname of the tape volume that you want to process. More than one
DDname can be specified, with blanks spaces delimiting the list. If you specify
only one DDname, you can omit the parentheses.

If DDNAME= is omitted, the default DDname is TAPE.

DUMP
sends to output the first 80 bytes in the first 10 blocks of each data set on the tape.

NOTRAP813
tells the TAPELABEL procedure not to trap 813-04 abends. When you use
LABEL=(,SL) to access an IBM standard labeled tape, this option prevents you
from reading the tape unless you specify the data set name of the first file on the
tape volume.

PAGE
begins the output for each tape volume on a new page.

Output
For each file on a tape volume, TAPELABEL generates the following information:

� FILE NUMBER, the file sequence number

� DSNAME, the data set name

� RECFM, the record format

� LRECL, the logical record length

� BLKSIZE, the block size

� BLOCK COUNT, the number of blocks in the file (from the trailer label)

� EST FEET, the estimated length of the file in feet (assumes all blocks=BLKSIZE)

� CREATED, the file creation date

� EXPIRES, the file expiration date

� CREATED BY JOB NAME STEPNAME, the job and step names of the job that
created the file

� TRTCH, the track recording technique

� DEN, the file recording density code

� PSWD, the file protection indicator

� UHL, the number of user header labels

� UTL, the number of user trailer labels.

TAPELABEL also lists the sum of the estimated file lengths.

358 TAPELABEL Procedure Chapter 16

Note: On an IBM standard tape label, only 17 characters are available for the data
set name. If a longer name is specified in the JCL when the data set is created, only
the rightmost 17 characters are used. PROC TAPELABEL displays what is stored in
the tape’s header label. Some tape management systems catalog data sets by the full
name specified in the JCL and therefore require you to specify the full name when you
access the data set. �

Example
The following job generates the label information for all files on the MVSV9 tape
volume allocated to the DDname OURTAPE:

//jobname JOB acct,name
/*JOBPARM FETCH
//TLABEL EXEC SAS
//OURTAPE DD UNIT=TAPE,DISP=OLD,VOL=SER=MVSV9
//SYSIN DD *

proc tapelabel ddname=ourtape;
run;

/*
//

The following output shows the results.

Output 16.16 Output from the TAPELABEL Procedure

The SAS System

TAPE LIST FOR DDNAME - OURTAPE

CONTENTS OF TAPE VOLUME - OS390T OWNER -

FILE BLOCK EST CUM CREATED BY

NUMBER DSNAME RECFM LRECL BLKSIZE COUNT FEET FEET CREATED EXPIRES JOB NAME STEPNAME TRTCH DEN PSWD UHL UTL

1 SAS.SASROOT FB 80 6160 175 3.6 3.6 12MAR1999 0000000 E70S701 /GO 5 NO 0 0

2 SAS.V186.@P@BA$H FB 6144 6144 77 1.6 5.2 12MAR1999 0000000 E70S701 /GO 5 NO 0 0

3 SAS.V186.EMO1CLR U 0 6164 633 12.9 18.0 12MAR1999 0000000 E70S701 /GO 5 NO 0 0

359

C H A P T E R

17
Statements under z/OS

Statements in the z/OS Environment 359

ABORT Statement 359
ATTRIB Statement 361

CARDS Statement 361

DSNEXST Statement 361
FILE Statement 363

FILENAME Statement 369

FOOTNOTE Statement 386
%INCLUDE Statement 386

INFILE Statement 388
LENGTH Statement 392

LIBNAME Statement 393

OPTIONS Statement 400
SASFILE Statement 401

SYSTASK LIST Statement 402

TITLE Statement 403
TSO Statement 403

WAITFOR Statement 404
X Statement 406

Statements in the z/OS Environment
Portable statements are documented in SAS Language Reference: Dictionary. This

chapter documents statements that are specific to z/OS or that have aspects that are
specific to z/OS.

ABORT Statement

Stops the execution of the current DATA step, SAS job, or SAS session

Valid: in a DATA step
z/OS specifics: action of ABEND and RETURN, maximum value of n
See: ABORT Statement in SAS Language Reference: Dictionary

360 ABORT Statement Chapter 17

Syntax

ABORT <ABEND | RETURN> <n>;

The following options are used primarily in batch processing, although they can be
used with any method of running SAS. These options have host-specific characteristics.

ABEND
causes abnormal termination of the current SAS job or session. This also terminates
the step in your z/OS job stream that was used to execute your SAS job. Both step
and system termination cleanup occurs after the ABORT statement. This cleanup
includes the freeing of FILENAMEs and LIBNAMEs.

RETURN
causes an immediate normal termination of the SAS job or session. The step return
code (condition code) should be used to indicate the error. To pass the specific return
code back to the operating environment, use the n option. You can then use this
return code in your JCL to conditionally execute later steps in your z/OS job stream.

n
enables you to specify an ABEND code or a condition code that SAS returns to the
operating environment when it stops executing. The value of n must be an integer.
Under z/OS, the range of acceptable values is from 1 to 4095. If you do not specify a
value for n, an ABORT ABEND statement returns a user abend 999; an ABORT
RETURN statement returns condition code 20.

Details

You can use the ABORT statement to control the conditional execution of z/OS job
steps. For example, depending on the result of the z/OS job step that executes your SAS
program, you may need to either bypass or execute later steps. To do this you can
establish a variable in your SAS DATA step program that is set to a particular value
whenever an error occurs; in the following example, we use a variable named
ERRCODE that is set to 16 if an error occurs in the DATA step. You can choose any
variable name and value that are required by your program. Then, use the following
ABORT statement, coded in the THEN clause of an IF statement, to cause the z/OS job
step to ABEND if ERRCODE=16:

if errcode=16 then abort abend;

When the z/OS job step that is used to execute your SAS job ends (either normally or
abnormally), the next z/OS job step is processed. You could then use the following
EXEC statement to conditionally execute that job step if an ABEND occurs. If
ERRCODE is not set to 16, then the ABORT statement is not executed, and because an
ABEND did not occur the job step is bypassed.

//stepname EXEC PGM=your-program,COND=ONLY

See Also

� SAS Language Reference: Dictionary

� MVS JCL Reference from IBM

Statements under z/OS DSNEXST Statement 361

ATTRIB Statement

Associates a format, informat, label, length, or any combination of these attributes, with one or
more variables

Valid: in a DATA step
z/OS specifics: LENGTH= specification in attribute-list

See: ATTRIB Statement in SAS Language Reference: Dictionary

Syntax
ATTRIB variable-list-1 attribute-list-1 <...variable-list-n attribute-list-n>;

Details
LENGTH=<$> length is one of the attributes that may be specified in the attribute-list.
The LENGTH= attribute specifies the length of variables in the variable-list. Under z/
OS, numeric variables can range from 2 to 8 bytes in length, and character variables
can range from 1 to 32,767 bytes in length.

See Also

� SAS Language Reference: Dictionary

CARDS Statement

Indicates that data lines follow

Valid: in a DATA step
z/OS specifics: behavior
See: CARDS Statement in SAS Language Reference: Dictionary

Details
The behavior of the CARDS statement is affected by the CARDIMAGE system option.
For more information, see “CARDIMAGE System Option” on page 417.

DSNEXST Statement

Checks to see whether the specified physical file exists and is available

Valid: anywhere
z/OS specifics: all

362 DSNEXST Statement Chapter 17

Syntax
DSNEXST ’physical-filename ’;

’physical-filename ’
is the name of a physical file. Quotation marks around the name are optional;
however, the data set name must always be fully qualified. In this case,
physical-filename cannot specify a UNIX System Services file.

Details
DSNEXST is a global statement. The first time the statement is issued, it creates the
macro variable &SYSDEXST and assigns a value of 1 to it if the data set exists and is
available for allocation or a value of 0 if the data set does not exist.

The following example allocates a data set differently depending on whether the data
set already exists or not.

%macro mydsn;
dsnexst ’my.data.set’;
filename myds ’my.data.set’

%if &sysdexst %then %do;
disp=old;
%end;

%else %do;
disp=(new,catlg) space=(cyl,(1,1)) blksize=6160

dsorg=ps recfm=fb lrecl=80 unit=disk
volser=’MYVOL’;

%end;

%mend mydsn;

%mydsn

The next example shows how you can submit some SAS statements if a data set
already exists and bypass them if it does not.

%macro copylib;
dsnexst ’my.data.library’;

%if &sysdexst %then %do;
libname mylib ’my.data.library’ disp=shr;
proc copy in=mylib out=work;
run;
%end;

%mend;

%copylib

In situations where there could be more than one user of the data set, the following
example shows how you can use the &SYS99ERR automatic macro variable to
distinguish between “data set does not exist” and “data set exists but is not available.”

%macro dsexist(loc);
dsnexst &loc;

Statements under z/OS FILE Statement 363

%if &sysdexst=0 and &sys99err=1708
%then %do;
%put &loc does not exist;
%end;

%else %do;
%put &loc exists;
%end;

%mend;

%dsexist(my.data.set)

See Also

� SAS Macro Language: Reference

FILE Statement

Specifies the current output file for PUT statements

Valid: in a DATA step
z/OS specifics: file-specification, type, host-options
See: FILE Statement in SAS Language Reference: Dictionary

Syntax
FILE file-specification <ENCODING=encoding-value> <type> <options>;

FILE LOG | PRINT <options>;

file-specification
identifies a file in one of the following forms:

fileref
specifies a fileref or the allocated DDname of the file. A fileref can consist of up to
eight letters, numbers, national characters ($, @, and #), and underscores (_). The
first character must be either a letter, a national character, or an underscore.

fileref(member)
specifies a member of a partitioned data set, where the PDS or PDSE is specified
by the assigned fileref or allocated DDname.

The value of the FILEEXT= system option can affect the way SAS interprets
PDS and PDSE member names. See “FILEEXT= System Option” on page 432 for
details.

’physical-filename’
specifies a physical file, which can be a sequential file, a member of partitioned
data set (PDS), a member of an extended partitioned data set (PDSE), or a UNIX
System Services file, using the following syntax:

� a UNIX System Services file. For example:

’/u/userid/raw’

364 FILE Statement Chapter 17

or

’HFS:raw’

� a fully qualified data set name. For example:

’myid.raw.datax’

� a fully qualified data set name with a member in parentheses. For example:

’sas.raw.data(mem1)’

� a partially qualified data set name with a period preceding it. For example:

’.raw.data’

� a partially qualified data set name with a period preceding it and a member
name in parentheses. For example:

’.raw.data(mem1)’

� a temporary data set name. For example:

’&mytemp’

The value of the FILEEXT= system option can affect the way SAS interprets file
specifications for PDS and PDSE files. See “FILEEXT= System Option” on page
432 for details.

See “Specifying Physical Files” on page 14 for more information about partially
qualified data set names.

ENCODING=encoding-value
specifies the encoding to use when writing to the output file. The value for
ENCODING= indicates that the output file has a different encoding from the
current session encoding. However, you can also specify the same encoding for the
output file as for that of the current session encoding. You must enclose the value
in quotation marks if it contains a dash.

If you specify an encoding value different from the session encoding, SAS
transcodes the data from the session encoding to the specified encoding when you
write data to the output file. The default encoding is the session encoding, which
is the value of the ENCODING= SAS system option.

For valid encoding values and more information about encoding, see “Encoding
Values in SAS Language Elements” in the SAS National Language Support (NLS):
User’s Guide.

LOG
directs output to the SAS log file.

PRINT
directs output to the SAS procedure output file.

type
specifies the type of file. When you omit type, the default is a standard external file.
Nonstandard (host-specific) file types that you can specify for z/OS are

DLI
for IMS-DL/I databases. For information about IMS-DL/I options for the FILE
statement, see SAS/ACCESS Interface to IMS: Reference.

HFS
for UNIX System Services files. See “Accessing UNIX System Services Files” on
page 102.

Statements under z/OS FILE Statement 365

MVS
for z/OS data sets.

PIPE
for pipelines in UNIX System Services. See “Piping Data from SAS to a UNIX
System Services Command” on page 106.

VSAM
for VSAM files. See “Accessing VSAM Data Sets” on page 100.

options
are either portable or host-specific. See SAS Language Reference: Dictionary for
information on portable options that can be specified in the FILE statement.

You can specify portable options and host options in any order. When you specify
more than one option, separate the options with a blank space.

The host options that you can specify depend on what type of file you are
accessing. See the following sections for details:

� “Standard Host Options for the FILE Statement under z/OS” on page 365
� “Host Options for Retrieving Information about Data Sets” on page 367
� “Options That Specify SMS Keywords” on page 382
� “VSAM Options for the FILE and INFILE Statements under z/OS” on page 367.
� “Host-Specific Options for UNIX System Services Files” on page 106.

Standard Host Options for the FILE Statement under z/OS
You can use the following options with all external files under z/OS:

BLKSIZE=value | BLK=value
specifies the block size of the file. Block size is discussed in more detail in “DCB
Option Descriptions” on page 379 and in “Overview of DCB Attributes” on page
381.

CLOSE=keyword
indicates how a tape volume is positioned at the end of the DATA step. Values for
keyword are

REREAD positions the tape at the logical beginning of the data set.

LEAVE positions the tape at the logical end of the data set.

REWIND rewinds the tape to the physical beginning of the volume.

FREE dynamically deallocates the tape volume.

DISP is implied by the control language.

CSRC
specifies that you want to use the CSRCESRV services (available with z/OS) to
compress data on output. For example:

data _null_;
file myfile csrc;
put ... ;

run;

You cannot use this option with an external file that has a fixed-length record
format.

DCB=fileref
specifies the fileref of an external file that was referenced in an earlier FILE or
INFILE statement in the same DATA step. SAS uses that file’s RECFM=,
LRECL=, and BLKSIZE= information for the current file.

366 FILE Statement Chapter 17

LINESIZE=width
works with LRECL to specify the maximum number of characters per line or
record in print files, nonprint files, and the SAS log. Under z/OS, the range of
acceptable values of LINESIZE= is 64 to 256. The default value of the LINESIZE=
system option under z/OS is 132. This default applies only to print files (with
carriage returns) or to the SAS log. For nonprint files (without carriage returns),
the value of LRECL= is used in place of the default value for LINESIZE=.

LRECL=value
specifies the logical record length of the file. The specified value depends on the
access method and the device type. For more information, see the discussion of
LRECL= in “DCB Option Descriptions” on page 379 and MVS JCL Reference.

MOD
writes the output lines following any existing lines in the file. This option
overrides a disposition that was specified in JCL or under TSO. It is not valid if
the specified file is a member of a partitioned data set (PDS).

NOPROMPT
specifies that if the file that you reference in the FILE statement is unavailable, a
requestor window is not displayed and an error is written to the SAS log.

OLD
writes the output lines at the beginning of the file, overwriting any existing data
in the file. This option overrides a disposition that was specified in JCL or under
TSO, and it is the default if no disposition is specified. Using OLD is necessary
only if you used MOD for the file in an earlier FILE statement and you want to
overwrite the file.

PRINT|NOPRINT
specifies whether carriage-control characters are placed in output files. Under
z/OS, PRINT adds carriage-control characters to the beginning of all lines of
output that are directed to print files and to the SAS log.

RECFM=record-format
specifies the record format of the file. Valid values are

F specifies fixed-length records, unblocked.

V specifies variable-length records, unblocked.

FB specifies fixed-length records, blocked.

VB specifies variable-length records, blocked.

U specifies undefined-length records, unblocked.

The following values can be appended to the RECFM values:

A specifies that the first byte of each record is an ANSI
printer-control character.

S if appended to V, specifies that the file contains spanned
records; if appended to F, specifies that the file contains
standard blocks.

The following value stands alone; no other values can be appended:

N indicates that the file is in binary format. The file is processed
as a stream of bytes with no record boundaries. This record
format is specific to SAS.

Statements under z/OS FILE Statement 367

Host Options for Retrieving Information about Data Sets

The following options are used in the FILE, FILENAME, and INFILE statements to
retrieve information about a data set from the operating environment control blocks.
SAS assigns values to the variables that are defined by these options when it opens the
data set. It updates the values every time it opens a new data set in a concatenation.
You can use these options with all standard external files under z/OS.

DEVTYPE=variable
defines a character variable (minimum length 24) that SAS sets to the device type.
SAS obtains the device type by using the z/OS operating environment DEVTYPE
macro. For more information, see the IBM documentation for your operating
environment.

DSCB=variable
defines a character variable (minimum length 96) that SAS sets to the Data Set
Control Block (DSCB) information from a non-VSAM data set. For more
information, see the IBM documentation for your operating environment.

JFCB=variable
defines a character variable (minimum length 176) that SAS sets to the Job File
Control Block (JFCB). For more information, see the IBM documentation for your
operating environment.

UCBNAME=variable
defines a character variable (minimum length 3) that SAS sets to the unit name
(device address), which is derived from information in the unit control block (UCB).

VOLUME=variable | VOLUMES=variable
defines a character variable (with a minimum length of 6 characters) that SAS
sets to the tape VOLSER or the disk volume serial number. In the case of a
multivolume file, the VOLUME= variable contains the concatenated volume serial
numbers up to the length of the variable or the first 30 volumes, whichever is less.
The value in the VOLUME= variable contains the volume serial number of the
first data set in the concatenation when the file is opened. This serial number
changes if you open a subsequent data set in the concatenation.

VSAM Options for the FILE and INFILE Statements under z/OS

You can use the following options for VSAM files in the FILE statement and in the
INFILE statement. (Unless otherwise indicated, the option can be used in both.)

BACKWARD | BKWD
causes SAS to read the VSAM data set backwards (INFILE only).

BUFND=value
indicates how many data buffers to use for the VSAM data set.

BUFNI=value
indicates how many index buffers to use for the VSAM data set.

CONTROLINTERVAL | CTLINTV | CNV
indicates that you want to read physical VSAM control interval records rather
than logical records. This is typically used for diagnostic purposes (INFILE only).

ERASE=variable
defines a numeric SAS variable that you must set to 1 when you want to erase a
VSAM record (INFILE only).

368 FILE Statement Chapter 17

FEEDBACK=variable | FDBK=variable
defines a numeric variable that SAS sets to the VSAM logical error code. This is
similar to the _FDBK_ automatic variable. When SAS sets the FEEDBACK
variable, you must reset it to 0 in order to continue.

GENKEY
causes SAS to use the KEY= variable as the leading portion of a record’s key.
VSAM retrieves the first record whose key matches the generic key (INFILE only).

KEY=variable | KEY=(variable1 variable2 . . .)
indicates that direct keyed access is being used to read records either from a
KSDS or from an ESDS via an alternate index. Also, the variable contains the key
value to be used in the retrieval of a record (input) or the writing of a record
(output) (INFILE ONLY).

KEYGE
is used in conjunction with the KEY= option. KEYGE indicates that when KEY=
is used in a retrieval request, SAS retrieves any record whose key is equal to or
greater than the specified key. This is useful when the exact key is not known
(INFILE only).

KEYLEN=variable
specifies a numeric SAS variable that, when used with GENKEY, specifies the
length of the key that is to be compared to the keys in the file.

KEYPOS=variable
indicates the numeric variable that SAS sets to the position of the VSAM key field.
This option enables you to read keys without knowing the key position in advance.
This variable is set to the column number (starting from 1).

NRLS
specifies not to use record-level sharing (RLS) to open an RLS-eligible data set
(INFILE only).

PASSWD=value
gives the appropriate password for a VSAM data set that has password protection.

RBA=variable
specifies a numeric variable that you set to the relative byte address (RBA) of the
data record that you want to read. The RBA= option indicates that addressed
direct access is being used; it is appropriate for KSDS and ESDS. If you specify
the CONTROLINTERVAL option, you can use the RBA= option to access control
records in an RRDS (INFILE only).

RC4STOP
stops the DATA step from executing if a return code greater than 4 is returned by
the operating environment when the VSAM data set is opened.

RECORDS=variable
defines a numeric variable that SAS sets to the number of logical records in a
VSAM data set that has been opened for input.

RECORG=record-organization
specifies the organization of records in a new VSAM data set. Use this option only
if SMS is active. Valid values are

KS specifies a VSAM key-sequenced data set.

ES specifies a VSAM entry-sequenced data set.

RR specifies a VSAM relative-record data set.

LS specifies a VSAM linear-space data set.

Statements under z/OS FILENAME Statement 369

RESET
indicates that the VSAM file is reset to empty (no records) when it is opened. This
option applies only to loading a VSAM data set that has been marked REUSE. You
cannot use this option if the data set contains an alternate index.

RRN=variable
defines a numeric variable that you set to the relative record number (RRN) of the
record that you want to read or write. This option indicates that keyed direct
access is being used; it is appropriate for RRDS only.

SEQUENTIAL
specifies sequential VSAM record retrieval when either the RBA= (for an ESDS) or
the RRN= option (for an RRDS) is specified (INFILE only).

SKIP
indicates skip-sequential processing of VSAM files. Skip-sequential processing
finds the first record whose value is the same as the value specified by the KEY=
option; records are read sequentially from that point on (INFILE only).

UPDATE=variable
defines a numeric SAS variable that indicates that not every record that it reads is
to be updated. Use this option when you are updating records in a VSAM data set
(INFILE only). When an INFILE and a FILE statement reference the same VSAM
data set, records are retrieved for update by default.

In most cases when you retrieve a record for update, no user, including you, can
access that particular record or any other records in the same control interval
until you free the record by executing a PUT or an INPUT statement for the data
set. The UPDATE= option avoids user lockout when only a few of many records
read need to be updated. When you set the UPDATE= variable to a value of 1
before the INPUT statement, the record is retrieved for update. This is the default
if UPDATE= is not specified. If you set UPDATE=0 before the INPUT statement,
the record is not retrieved for update.

Options for UNIX System Services Files and Pipes
Several options can be specified in the FILE statement for files and pipes that are in
the Hierarchical File System of UNIX System Services. For information about these
options, see “Host-Specific Options for UNIX System Services Files” on page 106,
“Writing to External Files” on page 87, and “Using the FILE Statement to Specify Data
Set Attributes” on page 91.

See Also

� SAS Language Reference: Dictionary

� SAS Guide to VSAM Processing

FILENAME Statement

Associates a SAS fileref with an external file

Valid: anywhere

z/OS specifics: fileref, device-type, physical-filename, host-options

See: FILENAME Statement in SAS Language Reference: Dictionary

370 FILENAME Statement Chapter 17

Syntax
FILENAME fileref <device-type> ’physical-filename’ <ENCODING=encoding-value>

<host-options>;

FILENAME fileref <device-type> (’physical–filename–1’... ’physical-filename-n’)
<ENCODING=encoding-value> <host-options>;

FILENAME fileref EMAIL ’address’ <e-mail-options>;

FILENAME fileref | _ALL_ CLEAR;

FILENAME fileref | _ALL_ LIST;

fileref
is a symbolic name for an external file. The fileref can consist of up to eight letters,
numbers, national characters ($, @, #), and underscores (_). The first character must
be either a letter, a national character, or an underscore.

device-type
specifies a device type for the output. It can be one of the following:

CATALOG
references a SAS catalog as a flat file. The external file is a valid two-, three-, or
four- part SAS catalog name followed by any catalog options needed. Refer to SAS
Language Reference: Dictionary for a description of catalog options.

DISK
sends the output to a disk drive.

DUMMY
specifies a null output device. This value is especially useful in testing situations.
Any output that would normally be sent to the external file is discarded.

EMAIL
sends electronic mail to an address. The external file is an address followed by
e-mail options. See “Sending E-Mail from within SAS Software” on page 134 for
more information.

FTP
reads or writes to a file from any machine on a network that is running an FTP
server. The external file is the pathname of the external file on the remote
machine followed by FTP options. Only one member of a z/OS PDS can be written
to at a time. If you need to write to multiple members at the same time, a z/OS
PDSE or a UNIX System Services directory should be used. See SAS Language
Reference: Dictionary for more information.

HFS
specifies a UNIX System Services file.

MVS
specifies an MVS data set.

Statements under z/OS FILENAME Statement 371

NOMVSTRANS
suppresses the EBCDIC to ASCII translation that is internal to the Socket access
method.

PIPE
specifies that SAS open a UNIX System Services pipeline for execution of UNIX
System Services commands that are issued within the statement.

PLOTTER
sends the output to the default system plotter.

PRINTER
sends the output to the default system printer.

SOCKET
reads and writes information over a TCP/IP socket. The external file depends on
whether the SAS application is a server application or a client application. In a
client application, the external file is the name or IP address of the host and the
TCP/IP port number to connect to followed by any TCP/IP options. In server
applications, it is the port number to create for listening, followed by the SERVER
keyword, and then any TCP/IP options. See SAS Language Reference: Dictionary
for more information.

Note: The maximum number of directory or PDS members that you can have
open at the same time is limited by the number of sockets that your FTP server
can have open at one time. This limitation is restricted by the maximum number
of connections created when the FTP server is installed.

You might want to limit the number of sockets you have open at the same time
to prevent potential degradation of your system’s performance. The number of
sockets that are open at the same time is proportional to the number of directory
or PDS members open at the same time. When the job you are running opens the
maximum number of sockets that can be open at the same time, the results of the
job can become unpredictable. �

TAPE
sends the output to a tape drive.

TEMP
allocates a temporary data set.

TERMINAL
sends the output to your terminal.

UPRINTER
associates the fileref with the Universal Printing device. Any output generated to
a fileref that is defined for this device type is formatted and sent to the default
device that has been set up interactively through the Printer Setup dialog. By
default on z/OS, output is sent to a data set called <prefix>.sasprt.ps, where
<prefix> is the value of the SYSPREF= system option. For more information about
Universal Printing, see the SAS Language Reference: Dictionary.

URL
allows you to access remote files using the URL of the file. The external file is the
name of the file that you want to read from or write to on a URL server. The URL
must be in one of the following forms:

http://hostname/file
http://hostname:portno/file

Refer to SAS Language Reference: Dictionary for more information.

372 FILENAME Statement Chapter 17

You can specify device-type between the fileref and the file specification in the
FILENAME statement. If you do not specify a device type value for a new file, SAS
uses the current value of the SAS system option FILEDEV=.

’physical-filename’ or (’physical-filename-1’... ’physical-filename-n’)
identifies an external file or a concatenation of external files. Enclose
physical-filename in quotation marks. In a concatenation, enclose the entire group of
concatenated file specifications in parentheses.

The physical file can be a sequential data set, a member of a partitioned data set
(PDS), a member of an extended partitioned data set (PDSE), or a file in UNIX
System Services. ‘physical-filename’ can be specified as

� a fully qualified data set name. For example:

’myid.raw.datax’

� a fully qualified data set name with a member in parentheses. For example:

’sas.raw.data(mem1)’

� a partially qualified data set name with a period preceding it. For example:

’.raw.data’

� a partially qualified data set name with a period preceding it and a member
name in parentheses. For example:

’.raw.data(mem1)’

� for PDS members, a fully or partially qualified data set name with a wildcard
name in parentheses. For example:

’.raw.data(mem*)’

’.raw.data(*mem1)’

’.raw.data(*)’

� a temporary data set name. For example:

’&mytemp’

� a UNIX System Services file. For example:

’/u/userid/raw’

or

’HFS:raw’

or

’/u/userid/test/data/*’

Note: The * wildcard character indicates a concatenation of UNIX System
Services files. For more information about the use of the wildcard, see
“Concatenating UNIX System Services Files” on page 104.

The value of the FILEEXT= system option can affect the way SAS interprets
physical file specifications for PDS and PDSE files. See “FILEEXT= System Option”
on page 432 for details.

The value of the FILESYSTEM= system option can also affect the way SAS
interprets filenames. See “FILESYSTEM= System Option” on page 440 for details.

See “Specifying Physical Files” on page 14 for more information about partially
qualified data set names.

ENCODING=encoding-value

Statements under z/OS FILENAME Statement 373

specifies the encoding to use when writing to an output file or reading from an input
file. Typically, you would specify a value for ENCODING= that indicates that the file
has a different encoding from the current session encoding. However, you can also
specify the same encoding for the file as that of the current session encoding. You
must enclose the value in quotation marks if it contains a dash.

If you specify an encoding value different from the session encoding, SAS performs
the transcoding as the records are read. The default encoding is the session
encoding, which is the value of the ENCODING= SAS system option.

For valid encoding values, see “Encoding Values in SAS Language Elements” in
SAS National Language Support (NLS): User’s Guide.

host-options
are host-specific options that may be specified in the FILENAME statement. These
options can be categorized into several groups. For details, see the following sections:

� “Standard File Options for the FILENAME Statement” on page 374
� “DCB Attribute Options” on page 379
� “SYSOUT Data Set Options for the FILENAME Statement” on page 383
� “Subsystem Options for the FILENAME Statement” on page 385
� “Options That Specify SMS Keywords” on page 382
� “Host-Specific Options for UNIX System Services Files” on page 106.

You can specify these options in any order following ’physical-filename’. When
specifying more than one option, use a blank space to separate each option. Values
for options may be specified with or without quotation marks. However, if a value
contains one of the supported national characters ($, #, or @), the quotation marks
are required.

EMAIL
specifies the EMAIL device type, which indicates that the specified file is to be sent
as electronic mail, using the specified e-mail-options.

’address’
specifies the e-mail address of the recipient. Alternatively, you may specify recipient
address arguments in the TO= option or by way of a !EM_TO! directive. The use of
!EM_TO! directives is described in “PUT Statement Syntax for E-Mail” on page 137.

e-mail-options
when the EMAIL device type is specified, the FILENAME statement accepts the
following e-mail-options:

ATTACH=
CC=
FROM=
SUBJECT=
TO=
TYPE=
See “E-Mail Option Values” on page 377 for the values that can be assigned to the

preceding options.

ALL
specifies to clear or list all currently allocated filerefs.

374 FILENAME Statement Chapter 17

CLEAR
specifies to deallocate the specified fileref, or to deallocate all currently allocated
filerefs.

LIST
specifies to list the fileref name and physical name, or to list information about all
currently allocated filerefs.

Standard File Options for the FILENAME Statement
Standard file options provide information about a data set’s disposition and physical
attributes. The following standard options can be used with all external files under
z/OS except for files that are in the Hierarchical File System of UNIX System Services.
(See “Host-Specific Options for UNIX System Services Files” on page 106.)

DISP=status | (status,<normal-termination-disp>,<abnormal-termination-disp>)
specifies the status of the physical file at the beginning and ending of a job, as well
as what to do if the job step terminates abnormally. If you specify only status, you
can omit the parentheses.

status
specifies the status of the data set at the beginning of a job. Valid values are

NEW creates a new data set.

OLD does not share the existing data set.

SHR shares the existing data set.

MOD if the data set exists, adds new records to the end; if the
data set does not exist, it creates a new data set. MOD
cannot be specified for a partitioned data set.

REP for non-PDS members, implies DISP=OLD if the data set
exists and is cataloged; otherwise, it implies DISP=NEW.
For PDS members, it implies DISP=SHR if the PDS is
cataloged; otherwise, it implies DISP=NEW.

The default is SHR.

Notes:
� You can also supply any of these values for status as a separate,

individual keyword in the FILENAME statement rather than as a
subparameter of the DISP= option.

� DISP=REP is ignored if a volume is specified on the FILENAME
statement.

normal-termination-disp
specifies what to do with the data set if the job step that was using the data
set terminates normally. Valid values are

DELETE deletes the data set at the end of the step.

KEEP keeps the data set.

CATLG places the entry in the system catalog or user catalog.

UNCATLG deletes the entry from the system catalog or user catalog.
For a new data set, the default is CATLG. For an existing data set, the

default is KEEP.

abnormal-termination-disp

Statements under z/OS FILENAME Statement 375

specifies what to do if the job step terminates abnormally. The default is to
take the action that is specified or implied by normal-termination-disp. Valid
values are

DELETE deletes the data set at the end of a job step.

KEEP keeps the data set.

CATLG places the entry in the system catalog or user catalog.

UNCATLG deletes the entry from the system catalog or user catalog.
Here are some examples of the DISP parameter:

DISP=SHR
DISP=REP
DISP=(NEW,CATLG)
DISP=(OLD,UNCATLG,DELETE)

SPACE=(unit,(primary,secondary,directory),
RLSE,type,ROUND)
is the amount of disk space to be provided for a data set that is being created.

unit
can be any of the following:

TRK allocates the space in tracks.

CYL allocates the space in cylinders.

blklen allocates space in blocks whose block length is blklen
bytes. The system computes how many tracks are
allocated.

primary
specifies how many tracks, cylinders, or blocks to allocate.

secondary
specifies how many additional tracks, cylinders, or blocks to allocate if more
space is needed. The system does not allocate additional space until it is
needed.

directory
specifies how many 256-byte directory blocks are needed for the directory of a
partitioned data set.

RLSE
causes unused space that was allocated to an output data set to be released
when the data set is closed. Unused space is released only if the data set is
opened for output and if the last operation was a write operation.

type
can be any of the following:

CONTIG specifies to use contiguous space.

MXIG specifies to use the maximum contiguous space.

ALX specifies to use different areas of contiguous space.

Note: You can also specify MXIG or ALX as a separate, individual
keyword on the FILENAME statement rather than as a subparameter of the
SPACE= option. �

376 FILENAME Statement Chapter 17

ROUND
specifies that the allocated space must be equal to an integral number of
cylinders when the specified unit was a block length. If unit was specified as
TRK or CYL, the system ignores ROUND.

Here are some examples of the SPACE parameter:

SPACE=(CYL,10)
or SPACE=(CYL,(10,,10),,CONTIG)

SPACE=(1024,(100,50,20),RLSE,MXIG,ROUND)

If you do not specify SPACE, its values are taken from the SAS system options
FILEUNIT=, FILESPPRI=, FILESPSEC=, and FILEDIRBLK=, in the following
form:

SPACE=(FILEUNIT,(FILESPPRI, FILESPSEC,FILEDIRBLK))

The default specification is SPACE=(CYL,(1,1,6)) for partitioned data sets and
SPACE=(CYL,(1,1)) for sequential data sets.

See MVS JCL Reference by IBM for complete information about how to use the
SPACE= option.

VOLSER=value | VOL=value | VOL=(value-1, ..., value-n)
specifies the disk or tape volume serial number or numbers. Up to 30 volume
serial numbers can be specified.

If you do not specify VOLSER=, its value is taken from the SAS system option
FILEVOL=.

VOLCOUNT=nnn
Where nnn is the maximum number of volumes that an output data set requires.
The volume count is a decimal number from 1 through 255.

VOLSEQ=nnn
Where nnn identifies which volume of an existing multivolume data set is to be
used to begin processing the data set. The volume sequence number is a decimal
number from 1 to 255.

UNIT=value | UNIT=(value,n)
specifies one of several different devices. n is a number from 1 to 59 that specifies
the number of devices to be allocated for the dataset. If n is the letter “p” or “P”,
then all volumes for the dataset will be mounted in parallel.

If you specify a device type with UNIT=, the value overrides any device type
specified on the FILENAME statement with the device-type option. Some valid
values follow, but not all values are available at all sites. Ask your system
administrator whether additional values are defined at your site.

� DISK

� DUMMY

� PLOTTER

� PRINTER

� SYSDA

� SYSALLDA

� TAPE

� TERMINAL

The default for UNIT= is the value of the FILEUNIT= SAS system option.
A list of specific volume serial numbers in the FILENAME statement might

result in the allocation of more devices to the dataset than the number that is
specified by n.

Statements under z/OS FILENAME Statement 377

LABEL=(subparameter-list)
specifies the type and contents of the label of either a tape data set or a disk data
set, as well as other information such as the retention period or expiration date for
the data set. It is identical to the JCL LABEL= parameter. Here is a simple
example:

label=(3,SL,,,EXPDT=1999/123)

This label specification indicates that the data set sequence number is 3, that it
uses standard labels, and that it expires on the 123rd day of 1999. See MVS JCL
Reference by IBM for complete information about how to use the LABEL= option,
including which subparameters you can specify in subparameter-list.

NOMOUNT
specifies that the mount message is not issued for a volume that is not already
online. The default action is to issue the mount message.

NOPROMPT
specifies that if the file that you reference in the FILENAME statement is
unavailable, a requestor window is not displayed and an error message is written
to the SAS log.

REUSE
indicates that the file that you reference in the FILENAME statement is to be
freed and reallocated if it is currently in use. By default, SAS does not free and
reallocate a file that is currently in use.

WAIT=n
controls how many minutes SAS waits if the file that you reference in the
FILENAME statement is unavailable. SAS tries to reacquire the reserved data set
every 15 seconds. The value n specifies a length of time in minutes.

E-Mail Option Values
The FILENAME statement supports the following values for e-mail-options, which are
used in conjunction with the EMAIL device type to send mail from within a SAS session:

TO=‘to-address’
specifies one or more recipients to receive the outgoing message. These names
appear on the To line of the outgoing message. The following examples show the
syntax for a single address, multiple addresses, and a name with the address:

to=’joe@somplace.org’
to=("joe@smplc.org" "jane@diffplc.org")
to=’Joe Smith <joe@somplace.org>’

If an address contains special characters or more than one word, enclose the
entire address in single or double quotation marks. To specify more than one
address, enclose the list of addresses in parentheses. To include a name with the
address, enclose the address in angle brackets.

CC=‘cc-address’
specifies recipients that receive a copy of the message. These addresses appear on
the CC line of the outgoing message. The following examples show the syntax for
a single copy recipient, multiple copy recipients, and a name with the address:

cc=’joe@somplace.org’
cc=(’joe@smplc.org’ ’jane@diffplc.org’)
cc=’Joe Smith <joe@somplace.org>’

If an address contains special characters or more than one word, enclose the
entire address in single or double quotation marks. To specify more than one

378 FILENAME Statement Chapter 17

address, enclose the list of addresses in parentheses. To include a name with the
address, enclose the address in angle brackets.

BCC=‘bcc-address’
specifies recipients that receive a “blind” carbon copy of the message. These
addresses appear on the BCC line of the outgoing message. The following
examples show the syntax for a single copy recipient, multiple copy recipients, and
a name with the address:

bcc=’joe@somplace.org’
bcc=(’joe@smplc.org’ ’jane@diffplc.org’)
bcc=’Joe Smith <joe@somplace.org>’

If an address contains special characters or more than one word, enclose the
entire address in single or double quotation marks. To specify more than one
address, enclose the list of addresses in parentheses. To include a name with the
address, enclose the address in angle brackets.

FROM=‘from-address’
identifies the sender of the e-mail message. The address appears on the From line
of the outgoing message. The default value is the userid and hostname of the user
who is running SAS. The following example specifies a name with the address:

from=’John Smith <john@hisplace.org>’

SUBJECT=‘subject’
specifies the subject of the message. If the subject text is longer than one word
(that is, it contains at least one blank space), you must enclose it in quotation
marks. You also must use quotation marks if the subject contains any special
characters. For example, subject=Sales and subject=‘June Report’ are valid
subjects. Any subject that is not enclosed in quotation marks is converted to
uppercase.

TYPE=’content-type’
specifies the content type of the main message body, for example:

type=’text/plain’
type=’text/html’
type=’image/gif’

Enclose the value for TYPE in single or double quotation marks.

ATTACH=”physical-filename”;
specifies, inside double quotation marks, the physical filename of one or more files
to attach to the outgoing message. In addition, you can specify a content type,
extension, and name for each attachment by specifying the CONTENT TYPE=,
EXTENSION=, and NAME= options for each filename.

CONTENT_TYPE=‘content/type’
specifies the content type of the attached file. CT=, CONTENT=,
CONTENT-TYPE, and TYPE= are all synonyms for CONTENT_TYPE=. The
purpose of this option is to cause the correct MIME header to be included in
the mail file. The default CONTENT_TYPE is text/plain.

EXTENSION=‘extension’
specifies the filename extension on the file that is attached. This extension is
used by the recipient’s e-mail system for selecting the appropriate utility to
display the attachment. The default attachment extension is "txt". EXT= is a
synonym for EXTENSION=.

Statements under z/OS FILENAME Statement 379

NAME=‘name’
specifies a name to be used for the attachment instead of the physical
filename:

The following examples show the syntax for attaching a single address and
multiple addresses with and without the optional content type, extension, and
name:

attach="user.misc.pds(member)"
attach=("user.misc.jcl(sasjcl)" "userid.sas.output")
attach=("user.misc.jcl(sasjcl)" extension=’doc’

"userid.sas.output" content_type=’image/gif’ extension=’gif’
name=’Test Results’)

If you specify more than one address, enclose the list of addresses in
parentheses.

DCB Attribute Options
The following section describes DCB options that can be used in the FILENAME
statement. For additional information about DCB characteristics, see “Overview of DCB
Attributes” on page 381.

DCB Option Descriptions The following DCB options can be used in the FILENAME
statement for all types of external files under z/OS, except for files that are stored in
the directory structure of UNIX System Services. (For information about options that
are available for UNIX System Services files, see “Host-Specific Options for UNIX
System Services Files” on page 106.) These options correspond to the DCB parameters
that you would specify in a JCL DD statement.

BLKSIZE=value
specifies the number of bytes in a block of records. A block is a group of records
that SAS and the operating environment move as a unit when they read or write
an external file. The term also refers to the space allocated for each group of
records. You seldom need to calculate block size when you write an external file
because SAS automatically selects the block size.

The values of the FILEBLKSIZE(device-type)= system option contain, for each
model of disk that is currently available, the best block size for your installation
for external, nonprint data sets on that type of disk. Some installations may
provide different FILEBLKSIZE default values for batch processing than they do
for interactive processing. Therefore, to see the values for the
FILEBLKSIZE(device-type)= option, run the OPTIONS procedure both in a batch
job and in a SAS session under TSO.

For print data sets, which by default have variable-length records, SAS uses a
default block size of 264, with one record per block.

You can use the OPT value of the FILEBLKSIZE(device-type)= option to
calculate the optimal block size for nonprint files. (See
“FILEBLKSIZE(device-type)= System Option” on page 429.) Or you can calculate
the block size yourself:

� For fixed-length records, multiply the LRECL= value by the number of
records you want to put into the block.

� For variable-length records, multiply the LRECL= value by the number of
records per block and add 4 bytes.

In each case, if you are writing the data set to disk, compare the block size to
the track size for the disk. A block cannot be longer than one track of the disk
device on which it is stored, and the operating environment does not split a block

380 FILENAME Statement Chapter 17

between tracks. Make sure that the block size does not leave a large portion of the
track unused. (If you are not sure, consult your computing center staff.) See
“Optimizing I/O” on page 213 for information about determining the optimal block
size for your data.

The maximum block size for a data set on tape is 32,760.

BUFNO=value
specifies how many memory buffers to allocate for reading and writing. If
BUFNO= is not specified, the default is BUFNO=5. See “Optimizing I/O” on page
213 for information about determining the optimal BUFNO= value for your data.

DSORG=organization
can be any of the following:

DA specifies direct access.

PO specifies PDS, PDSE.

PS specifies sequential.
The following values for organization refer to physical files that contain

location-dependent information: DAU, POU, PSU.
You do not need to include the DSORG= value when you create an external file

of type PS or PO. This is because the operating environment identifies a
partitioned data set by the presence of a directory allocation in the SPACE=
parameter. When you use a FILE statement to write data, SAS identifies a PDS or
PDSE by the presence of a member name in the FILE statement. If no member
name is present, SAS assumes that the data set is sequential.

LRECL=value
specifies the logical record length (that is, the number of bytes in a record). SAS
defaults to the size that is needed (for either print or nonprint files) when a file is
opened.

Logical record length is affected by the record format (see RECFM=). When the
record format is fixed (indicated by an F as part of the RECFM= value), all records
have the same length, and that length is the value of the LRECL= value.

When the record format is variable (indicated by a V as part of the RECFM=
value), records may have different lengths, and each record contains 4 bytes of
length information in addition to its other data. Therefore, you must specify an
LRECL= value that is 4 bytes longer than the longest record that you expect to
write. If you do not know the length of the longest record to be put into a
variable-format data set, choose a maximum value and add 4 to it to create an
LRECL= value.

OPTCD=value
specifies the optional services to be performed by the operating environment. For
example, specifying W requests a validity check for write operations on
direct-access devices. For more information, see the appropriate IBM MVS JCL
manual for your system.

Valid values are R, J, T, Z, A, Q, F, H, O, C, E, B, U, and W. You can specify
more than one code by listing them with no blanks or commas between them (as
with RECFM). A maximum of four characters is allowed.

RECFM=record-format
specifies the record format of the file. Valid values are

F specifies fixed-length records, unblocked.

V specifies variable-length records, unblocked.

FB specifies fixed-length records, blocked.

Statements under z/OS FILENAME Statement 381

VB specifies variable-length records, blocked.

U specifies undefined-length records, unblocked.

The following values can be appended to the RECFM= values:

A specifies that the first byte of each record is an ANSI
printer-control character.

M specifies that the file is a machine control character file. SAS
does not interpret machine-code control characters, nor does it
create them in output files. See MVS JCL Reference by IBM for
more information.

S specifies that the file contains spanned records (when appended
to V), or that the file contains standard blocks (when appended
to F).

The next format stands alone; no other values can be appended:

N indicates that the file is in binary format. The file is processed
as a stream of bytes with no record boundaries. This record
format is specific to SAS.

Overview of DCB Attributes DCB attributes and options are relevant to INFILE and
FILE statements as well as to the FILENAME statement. This section provides some
background information about DCB characteristics.

DCB attributes are those data set characteristics that describe the organization and
format of the data set records. If you do not specify these attributes, SAS uses default
values. This section discusses how and under what circumstances these attributes are
changed or default values are used.

The discussion focuses on the RECFM, LRECL, and BLKSIZE file attributes. For
more information, see the appropriate data administration guide for your system.

Values for these attributes are kept in each of the following operating environment
control blocks:

Data Set Control Block (DSCB)
is the description found in the VTOC of the disk device on which the physical file
resides. These are the permanent characteristics of the data set. For tape devices,
the data set label in the header of SL tapes contains this information.

Job File Control Block (JFCB)
maps a physical file on a device to a logical name (DDname). Contains information
from a JCL DD statement, TSO ALLOCATE command, SAS FILENAME
statement, or SAS FILENAME function. These attributes are either temporary
(for the duration of the allocation) or new (to be made permanent).

Data Control Block (DCB)
describes the current state of an open data set. z/OS and its access methods
(BSAM for SAS software) use the DCB to control how data is read or written.
These attributes are temporary for input, but they become permanent for output.

For existing data sets, DCB attributes are almost never changed from the DSCB.
These attributes may be overridden by a DD statement or TSO ALLOCATE command
or by SAS FILENAME, FILE, or INFILE statement options. If a DCB option is
specified in both places, the FILENAME, FILE, or INFILE option takes precedence.

When you open a data set, z/OS merges information from the DSCB (or data set
label) and the JFCB to obtain the current DCB characteristics before entering the DCB
open exit. SAS then merges its own information (FILENAME/FILE/INFILE statement

382 FILENAME Statement Chapter 17

options, data set device type, requested data set type, requested line size from LS=) and
inspects the resulting DCB attributes. If the result is invalid for some reason, SAS
terminates the open operation and issues an appropriate message. Attributes may be
considered invalid for any of the following reasons:

� For RECFM=V or VB, BLKSIZE is not at least 4 bytes greater than LRECL.
� For RECFM=F, LRECL equals neither 0 nor BLKSIZE.
� For RECFM=FB, BLKSIZE is not a multiple of LRECL.
� BLKSIZE or LRECL is greater than the z/OS maximum (32,760).
� LRECL is greater than BLKSIZE (except RECFM=VBS).
� RECFM is not consistent with the requested data set type.
� The requested data length cannot be contained in LRECL.

For any unspecified attributes, SAS uses default values that seem to fit existing
attributes. This may cause unexpected combinations, so it is better to completely
specify the attributes for a data set.

If no permanent attributes are present (as is possible with a new data set), and if
none are given by FILENAME/FILE/INFILE options, then SAS uses default values that
are based on the device type and data set type. The following table summarizes these
default values.

Table 17.1

Attribute DISK TAPE
PRINT/
SYSOUT TERMINAL DUMMY

RECFM FB FB VBA V FB

LRECL 80 80 260 261 80

BLKSIZE * ** 264 265 *

* The smaller of the SAS system option FILEBLKSIZE(device-type)= value and the output device
maximum, rounded down to a multiple of the LRECL.

** The smaller of the SAS system option FILEBLKSIZE(device-type)= value and 32,760, rounded
down to a multiple of the LRECL.

If you specify a line size (LS=) parameter, SAS uses it to compute the LRECL and
the BLKSIZE.

If you override permanent attributes on input, SAS uses the new values only for the
duration of the INFILE processing; the permanent attributes of the data set are not
changed. However, if you override the attributes on output, the new attributes become
permanent for the data set, even if no records are physically written.

Options That Specify SMS Keywords
Several options that specify SMS (Storage Management Subsystem) keywords can be
specified in the FILENAME or FILE statement when you create an external file. All of
these options are ignored for existing data sets; they apply only when you are creating a
data set. If you do not specify any of these options when you create an SMS data set,
the system defaults are used. The default values are site-dependent; see your system
administrator for details. For more information about SMS data sets, see MVS JCL
Reference by IBM.

DATACLAS=data-class-name
specifies the data class for an SMS-managed data set. The name can have up to
eight characters. This option applies only to new data sets; it is ignored for

Statements under z/OS FILENAME Statement 383

existing data sets. The data class is predefined and controls the DCB attributes
for a data set.

The implementation of the DATACLAS= option is compatible with the SMS
DATACLAS= JCL parameter. For complete information about this parameter, see
MVS JCL Reference. Ask your system administrator for the data-class names that
are used at your site.

DSNTYPE=LIBRARY | PDS
specifies the data set name type.

LIBRARY indicates that the data set is a PDSE.

PDS indicates that the data set is a PDS.
DSNTYPE= is valid only for SMS data sets, and it is valid only when

DSORG=PO.

LIKE=data-set-name
allocates an external file that has the same attributes as an existing file. See MVS
JCL Reference for more information.

MGMTCLAS=management-class-name
specifies a management class for an SMS data set. The name can have up to eight
characters. This option applies only to new data sets; it is ignored for existing data
sets. The management class is predefined and controls how your data set is
managed, such as how often it is backed up and how it is migrated.

The implementation of the MGMTCLAS= option is compatible with the SMS
MGMTCLAS= JCL parameter. For complete information about this parameter, see
MVS JCL Reference. Ask your system administrator for the management class
names that are used at your site.

RECORG=record-organization
specifies the organization of records in a new VSAM data set. Use this option only
if SMS is active. Valid values are

KS specifies a VSAM key-sequenced data set.

ES specifies a VSAM entry-sequenced data set.

RR specifies a VSAM relative-record data set.

LS specifies a VSAM linear-space data set.

STORCLAS=storage-class-name
specifies a storage class for an SMS data set. The name can have up to eight
characters. This option applies only to new data sets; it is ignored for existing data
sets. The storage class is predefined and controls which device your SMS data set
is stored on, such as disk or tape.

The implementation of the STORCLAS= option is compatible with the SMS
STORCLAS= JCL parameter. For full details on this parameter, refer to MVS JCL
Reference. See your system administrator for storage class names at your site.

SYSOUT Data Set Options for the FILENAME Statement

The following options apply to data sets that are sent to a system output device (usually
a printer). The default value is usually the value that was specified by your site at
installation. See “Writing to Print Data Sets” on page 93, as well as your IBM JCL
reference, for more information about print data sets.

384 FILENAME Statement Chapter 17

ALIGN
tells the operator to check the alignment of the printer forms before printing the
data set.

BURST
tells the operator that the printed output goes to a burster-trimmer-stacker
machine, to be burst into separate sheets.

CHAR1=
specifies a one- to four-character name for character-arrangement table #1 (used in
conjunction with the 3800 Printing Subsystem).

CHAR2=
specifies a one- to four-character name for character-arrangement table #2 (used in
conjunction with the 3800 Printing Subsystem).

CHAR3=
specifies a one- to four-character name for character-arrangement table #3 (used in
conjunction with the 3800 Printing Subsystem).

CHAR4=
specifies a one- to four-character name for character-arrangement table #4 (used in
conjunction with the 3800 Printing Subsystem).

CLOSE
tells the operating environment to deallocate the data set when the DCB is closed.

COPIES=
specifies how many copies of the SYSOUT data set to print. The default is
COPIES=1.

DEST=
specifies a destination for the SYSOUT data set. If DEST= is not defined, its value
is taken from the SAS system option FILEDEST=.

FCB=
specifies the forms control buffer image that JES uses to control the printing of the
SYSOUT data set.

FLASH=
specifies which forms-overlay frame to use when printing on a 3800 Printing
Subsystem.

FLASHC=
specifies the number of copies on which to print the forms overlay frame.

FOLD
specifies that the print chain or print train for the universal character set is
loaded in fold mode.

FORMDEF=
identifies a member that contains statements that tell the Print Services Facility
from IBM how to print the SYSOUT data set on a page-mode printer. This option
has no effect on SAS forms.

FORMS=
specifies the IBM form number. If FORMS= is not defined, its value is taken from
the FILEFORMS= system option. This option has no effect on SAS forms.

HOLD
tells the system to hold the SYSOUT data set when it is deallocated until it is
released by the system operator.

Statements under z/OS FILENAME Statement 385

ID=
specifies the user ID for the SYSOUT destination.

MODIFY=
specifies a copy-modification module that tells JES how to print the SYSOUT data
set on a 3800 Printing Subsystem.

MODIFYT=n
specifies which of the CHARn tables to use. For example, if n is 1, then the
character-arrangement table that is identified by the CHAR1= option is used.

OUTDES=
specifies the output descriptor.

OUTLIM=
specifies a limit for the number of logical records in the SYSOUT data set.

PAGEDEF=
identifies a member that contains statements that tell the Print Services Facility
how to format the page on a page-mode printer.

PGM=
specifies the SYSOUT program name.

PRMODE=
specifies which process mode is required for printing the SYSOUT data set.

SYSOUT=
specifies the output class for the SYSOUT data set. If SYSOUT is not defined, its
value is taken from the SAS system option FILESYSOUT=.

UCS=
specifies the Universal Character Set.

UCSVER
tells the operator to visually verify that the character set image is for the correct
print chain or print train. The character set image is displayed on the printer
before the data set is printed.

VERIFY
tells the operator to verify that the image displayed on the printer is for the
correct FCB image.

Subsystem Options for the FILENAME Statement
The following subsystem data set options are also available. For more information
about subsystem data sets, see the appropriate IBM MVS JCL manual for your site.

SUBSYS=
specifies the name of the subsystem (up to 4 characters).

PARM1=
specifies a subsystem parameter (up to 67 characters).

PARM2=
specifies a subsystem parameter (up to 67 characters).

PARM3=
specifies a subsystem parameter (up to 67 characters).

PARM4=
specifies a subsystem parameter (up to 67 characters).

PARM5=
specifies a subsystem parameter (up to 67 characters).

386 FOOTNOTE Statement Chapter 17

Options for UNIX System Services Files and Pipes
Several options can be specified in the FILENAME statement for files and pipes that
are in the Hierarchical File System of UNIX System Services. For information about
these options, see “Accessing UNIX System Services Files” on page 102.

See Also

� “FILENAME Function” on page 258
� SAS Language Reference: Dictionary
� MVS JCL Reference by IBM

FOOTNOTE Statement

Prints up to ten lines at the bottom of the procedure output

Valid: anywhere
z/OS specifics: maximum length of footnote
See: FOOTNOTE Statement in SAS Language Reference: Dictionary

Syntax
FOOTNOTE<n> <’text ’ | "text">;

Details
Under z/OS, the maximum footnote length is determined by the value of the
LINESIZE= system option. The maximum value of LINESIZE= is 256. Footnotes
longer than the value of LINESIZE= are truncated.

Note: No space is permitted between FOOTNOTE and the number n. �

See Also

� SAS Language Reference: Dictionary

%INCLUDE Statement

Includes SAS statements and data lines

Valid: anywhere
z/OS specifics: file-specification, JCLEXCL, options
See: %INCLUDE Statement in SAS Language Reference: Dictionary

Syntax
%INCLUDE source-1 < . . . source-n>

Statements under z/OS %INCLUDE Statement 387

</<SOURCE2> <S2=length> <JCLEXCL>>;

The following list explains some of the components of the %INCLUDE statement.
See SAS Language Reference: Dictionary for the complete syntax information.

source
describes the location of the information that you want to access with the
%INCLUDE statement. The three possible sources follow:

file-specification
Under z/OS, this can be a fileref or a physical file name enclosed in quotation
marks.

internal-lines
You can access lines that were entered earlier in the same SAS job or session. In
order to use this technique in a line mode session, the SAS system option SPOOL
must be in effect.

keyboard-entry
You can enter the statements or data lines directly from the terminal. Use an
asterisk (*) to indicate that the statements are to come from the terminal.

SOURCE2
causes the SAS log to show the source statements that are being included in your
SAS program. In other words, this option has the same effect as the SAS system
option SOURCE2, except that it applies only to the records that you are currently
including. Specifying SOURCE2 in the %INCLUDE statement works even if the
NOSOURCE2 system option is in effect.

S2=length
specifies the length of the record to be used for input. Possible values are

S sets S2 equal to the current setting of the SAS system option S=.

0 tells SAS to use the setting of the SAS system option SEQ= to
determine whether the line contains a sequence field. If the line
does contain a sequence field, SAS determines the line length by
excluding the sequence field from the total length.

n indicates which columns SAS should scan and which columns, if
any, contain sequence numbers that should be ignored. n specifies
the column in which to start scanning (for variable-length
records) or stop scanning (for fixed-length records).

If the source lines in an external file that you are including contain sequence
numbers, then either delete them before including the SAS program in your SAS
session, or specify S2=0.

JCLEXCL
ignores any lines of JCL in the included source.

See Also

� SAS Language Reference: Dictionary

388 INFILE Statement Chapter 17

INFILE Statement

Specifies an external file to read with an INPUT statement

Valid: in a DATA step
z/OS specifics: file-specification, type, host-options
See: INFILE Statement in SAS Language Reference: Dictionary

Syntax
INFILE file-specification <ENCODING=encoding-value> <type><options>;

INFILE DATALINES | CARDS <options>;

file-specification
identifies a file in one of the following forms:

fileref
specifies the assigned fileref or the allocated DDname of the file. A fileref must
conform to the rules for DDnames. That is, it can consist of up to eight letters,
numbers, or national characters ($, @, and #) and underscores (_). The first
character must be either a letter or a national character.

fileref(member)
specifies a member of a partitioned data set, where the PDS or PDSE is specified
by the assigned fileref or allocated DDname.

The value of the FILEEXT= system option can affect the way SAS interprets
PDS and PDSE member names. See “FILEEXT= System Option” on page 432 for
details.

’physical-filename’
specifies a physical file, which can be a member of a partitioned data set (PDS), an
extended partitioned data set (PDSE), or a UNIX System Services file, using the
following syntax:

� a fully qualified data set name. For example:

’myid.raw.datax’

� a fully qualified data set name with a member in parentheses. For example:

’sas.raw.data(mem1)’

� a partially qualified data set name with a period preceding it. For example:

’.raw.data’

� a partially qualified data set name with a period preceding it and a member
name in parentheses. For example:

’.raw.data(mem1)’

� for PDS members, a fully or partially qualified data set name with a wildcard
name in parentheses. For example:

’.raw.data(mem*)’

Statements under z/OS INFILE Statement 389

’.raw.data(*mem1)’

’.raw.data(*)’

� a UNIX System Services file. For example:

’/u/userid/raw’

or

’HFS:raw’

or

’/u/userid/data/*’

The * wildcard character indicates a concatenation of UNIX System
Services files. For more information about the use of the wildcard, see
“Concatenating UNIX System Services Files” on page 104.

� a temporary data set name. For example:

’&mytemp’

The value of the FILEEXT= system option can affect the way SAS interprets file
specifications for PDS and PDSE files. See “FILEEXT= System Option” on page
432 for details.

See “Specifying Physical Files” on page 14 for more information about partially
qualified data set names.

ENCODING= encoding-value
specifies the encoding to use when reading from the input file. Typically, you would
specify a value for ENCODING= that indicates that the input file has a different
encoding from the current session encoding. However, you can also specify the same
encoding for the input file as for that of the current session encoding. You must
enclose the value in quotation marks if it contains a dash.

If you specify an encoding value different from the session encoding, SAS
transcodes the data from the session encoding to the specified encoding when you
read data from the input file. The default encoding is the session encoding, which is
the value of the ENCODING= SAS system option.

For valid encoding values, see “Encoding Values in SAS Language Elements” in
the SAS National Language Support (NLS): User’s Guide.

DATALINES | CARDS
specifies that input data immediately follows a DATALINES or CARDS statement in
your SAS program.

type
specifies the type of file. When you omit type, the default is a standard external file.
Nonstandard (host-specific) file types that you can specify for z/OS are

DLI
for IMS-DL/I databases. For information about IMS-DL/I options for the FILE
statement, see SAS/ACCESS Interface to IMS: Reference.

HFS
for files in UNIX System Services. See “Accessing UNIX System Services Files” on
page 102.

MVS
for z/OS data sets.

PIPE

390 INFILE Statement Chapter 17

for files in UNIX System Services, opens a pipe to issue UNIX System Services
commands from within the statement. See “Piping Data from SAS to a UNIX
System Services Command” on page 106.

IDMS
for CA-IDMS files. For information about CA-IDMS options for the INFILE
statement, see SAS/ACCESS DATA Step Interface to CA-IDMS: Reference.

ISAM
for ISAM files. See “Accessing ISAM Files” on page 100.

VSAM
for VSAM files. See “Accessing Nonstandard Files” on page 99.

VTOC
for a Volume Table of Contents (VTOC).

options
are either portable or host-specific. See SAS Language Reference: Dictionary for
information on portable options.

You can specify portable options and host options in any order. When you specify
more than one option, separate the options with a blank space.

The host-options that you can specify depend on which type of external file is being
accessed. See the following sections for details:

� “Standard Options for the INFILE Statement under z/OS” on page 390
� “Host Options for Retrieving Information about Data Sets” on page 391
� “VSAM Options for the FILE and INFILE Statements under z/OS” on page 367
� “VTOC Options for the INFILE Statement under z/OS” on page 391
� “Host-Specific Options for UNIX System Services Files” on page 106.

Standard Options for the INFILE Statement under z/OS
You can use the following standard options with all standard external files under z/OS.

BLKSIZE=value | BLK=value
specifies the block size of the file. Block size is discussed in more detail in “DCB
Attribute Options” on page 379.

CCHHR=variable
specifies a character variable to which the physical address (cylinder head record)
of a record is returned. This applies to files on CKD disks only.

CLOSE=keyword
indicates how a tape volume is positioned at the end of the DATA step. Values for
keyword are

REREAD positions the tape at the logical beginning of the data set.

LEAVE positions the tape at the logical end of the data set.

REWIND rewinds the tape to the physical beginning of the volume.

FREE dynamically deallocates the tape volume.

DISP is implied by the control language.

CSRC
specifies that you want to use the CSRCESRV services (available with z/OS) to
decompress data on input. For example:

data;
infile myfile csrc;

Statements under z/OS INFILE Statement 391

input;
run;

DCB=fileref
specifies the fileref of an external file that was referenced in an earlier FILE or
INFILE statement in the same DATA step. SAS uses that file’s RECFM=,
LRECL=, and BLKSIZE= information for the current file.

LINESIZE=width
works with LRECL to specify the maximum number of characters per line or
record in print files, nonprint files, and the SAS log. Under z/OS, the range of
acceptable values of LINESIZE= is 64 to 256. The default value of the LINESIZE=
system option under z/OS is 132. This default applies only to print files (with
carriage returns) or to the SAS log. For nonprint files (without carriage returns),
the value of LRECL= is used in place of the default value for LINESIZE=.

LRECL=value
specifies the logical record length of the file. The specified value depends on the
access method and the device type. For more information, see the discussion of
LRECL= in “DCB Option Descriptions” on page 379 and in MVS JCL Reference.

RECFM=record-format
specifies the record format of the file. Valid values are

F specifies fixed-length records, unblocked.

V specifies variable-length records, unblocked.

FB specifies fixed-length records, blocked.

VB specifies variable-length records, blocked.

U specifies undefined-length records, unblocked.
The following values can be appended to the RECFM= values:

A specifies that the first byte of each record is an ANSI
printer-control character.

M specifies that the file is a machine control character file. SAS
does not interpret machine code control characters, nor does it
create them in output files. See MVS JCL Reference by IBM for
more information.

S specifies that the file contains spanned records (V), or the file
contains standard blocks (F).

The following value stands alone; no other values can be appended:

N indicates that the file is in binary format. The file is processed
as a stream of bytes with no record boundaries. This record
format is specific to SAS.

Host Options for Retrieving Information about Data Sets
For information about options that retrieve information about a data set from operating
environment control blocks, see “Host Options for Retrieving Information about Data
Sets” on page 367.

VTOC Options for the INFILE Statement under z/OS
The following options are used only in INFILE statements that involve VTOC (Volume
Table of Contents) access:

392 LENGTH Statement Chapter 17

CCHHR=variable
defines a SAS character variable of length 5 whose value is set to the CCHHR of
the last VTOC record that was read by SAS. The returned value is in hexadecimal
format; it can be printed by using the $HEX10. SAS format.

CVAF
tells SAS to use the Common VTOC Access Facility (CVAF) of the IBM program
product Data Facility/Device Support (DF/DS) for indexed VTOCs. If the VTOC is
not indexed, or if your installation does not have CVAF, this option is ignored.

Note: When you use CVAF and CCHHR=, values that are returned for
Format-5 DSCB records are not valid, because indexed VTOCs do not have
Format-5 DSCB records. �

Host Options for UNIX System Services Files and Pipes
You can specify several options in the INFILE statement for files and pipes that are in
the Hierarchical File System of UNIX System Services. For information about these
options, see “Host-Specific Options for UNIX System Services Files” on page 106.

See Also

� “Reading from External Files” on page 94
� SAS Language Reference: Dictionary

LENGTH Statement

Specifies how many bytes SAS uses to store a variable’s value

Valid: in a DATA step
z/OS specifics: length of numeric variables
See: LENGTH Statement in SAS Language Reference: Dictionary

Syntax
LENGTH variables <$> length . . . <DEFAULT=n>;

Note: This is a simplified version of the LENGTH statement syntax; see SAS
Language Reference: Dictionary for the complete syntax and its explanation. �

length
can range from 2 to 8 for numeric variables and from 1 to 32,767 for character
variables.

n
changes from 8 to n the default number of bytes that SAS uses for storing the values
of newly created numeric variables. Under z/OS, n can range from 2 to 8.

See Also

� “Using the LENGTH Statement to Save Storage Space” on page 207

Statements under z/OS LIBNAME Statement 393

� SAS Language Reference: Dictionary

LIBNAME Statement

Assigns a SAS libref and an engine to a SAS data library

Valid: anywhere
z/OS specifics: libref, engine, physical-filename, engine/host-options
See: LIBNAME Statement in SAS Language Reference: Dictionary

Syntax
LIBNAME libref <engine > <’physical-filename’> < engine/host-options>;

LIBNAME libref <engine> <(’physical-filename-1’, ..., ’physical-filename-n’)>
<engine/host-options>;

LIBNAME libref | _ALL_ CLEAR;

LIBNAME libref | _ALL_ LIST;

Details
The LIBNAME statement can be used to assign a SAS data library, release a library
assignment, or display a list of all library assignments. The LIBNAME function
provides similar functionality. See “LIBNAME Function” on page 267 for more
information.

Assigning a Library The LIBNAME statement allows you to identify a data library to
SAS, specify which engine SAS should use to process the library, and identify the z/OS
resources required to process the library. For a complete discussion of assigning
libraries, see “Assigning SAS Data Libraries” on page 55. For direct or sequential access
bound libraries, the LIBNAME statement can be used to specify the options necessary
to allocate the library data set. For detailed information about z/OS allocation as it
relates to SAS data libraries, see “Allocating the Library Data Set” on page 55.

LIBNAME Statement Forms for Assigning Libraries
The form of the LIBNAME statement used to assign a SAS data library is described

below. See “Examples of Assigning a Library” on page 399 for more information.

LIBNAME libref <engine > <‘physical-filename’> <engine/host-options>;

LIBNAME libref <engine > <(‘library-specification-1’, ..., ‘library-specification-n’)>
<engine/host-options’>;

libref
is a SAS name that identifies the library. The libref can be a maximum of eight
characters. The first character must be a letter (A–Z) or an underscore. The
remaining characters can be any of these characters or numerals 0–9. This libref
is used to reference the library throughout SAS.

If the libref specified is already assigned, SAS deassigns the libref before
performing the assignment specified.

394 LIBNAME Statement Chapter 17

Note: SAS System 9 for z/OS supports libref names that begin with or contain
underscores. For example, libref names with formats such as libref_name,
_librefname, or _libref_name are now supported.

Unlike filerefs, librefs cannot include the special characters $, @, and #. �

engine
specifies which engine to use to access the SAS data library.

For a list of some of the native library engines that can be specified on the
LIBNAME statement, see “SAS Library Engines” on page 38. For general
information about these and other engines, see “SAS Engines” in SAS Language
Reference: Concepts.

It is generally necessary to specify the engine only when creating a library that
will be processed by an engine other than the default engine that is indicated by
the “ENGINE= System Option” on page 427 or the “SEQENGINE= System
Option” on page 496 . For existing libraries, SAS can examine the format of the
library to determine which engine to use. For complete details about how SAS
selects an engine when an engine is not specified, see “How SAS Assigns an
Engine” on page 62.

Note:
� The V5 and V5TAPE engine names can no longer be specified on the

LIBNAME statement. These engines are still supported for read-only access
to existing libraries in those formats. To read those libraries, simply omit the
engine name, and SAS will examine the library format to determine which
engine to use.

� The V6 engine must be explicitly specified for SAS Version 6 data-in-virtual
(DIV) libraries. For more information on DIV libraries, see “Creating
Hiperspace Libraries” on page 51.

�

library-specification
specifies either a libref or the physical name of the library. As noted in the syntax
diagram, one or more libraries can be specified. These specifications can be any
mix of librefs and physical names. If multiple libraries are specified, the libref will
refer to a concatenation of the libraries. For details, see “Library Concatenation”
in SAS Language Reference: Concepts. In addition, note that libraries of different
implementation types (such as direct access bound and HFS) can be concatenated.

For a library that resides in a z/OS data set, the physical name of the library
data set can be specified in one of the following ways:

� a fully qualified data set name. For example:

’user934.mylib.saslib’

� a partially qualified data name. For example, if the value of the SYSPREF
option is USER934, the following specification would be equivalent to the
above example:

’.mylib.saslib’

See “SYSPREF= System Option” on page 518 for more information.
� a temporary data set name specified as an ampersand (&), followed by one

alphabetic character, and up to seven additional additional alphanumeric or
special ($, #, or @) characters. For example:

’&tmp#lib1’

Statements under z/OS LIBNAME Statement 395

This specification will always create a new temporary library, even if you
have already specified the same temporary data set name in a previous
LIBNAME statement. To assign an additional libref to a temporary library,
specify the original libref, as shown in the following example:

libname t ’&tmp#lib1’;
libname x (t);

Note: Temporary libraries will receive system-generated data set names
in the following form, which is guaranteed to be unique across the sysplex:

SYSyyddd.Thhmmss.RA000.jjobname.Rggnnnn

�

For a library that resides in an HFS directory, the physical name of the library
is simply the directory path. This path can be specified in the following ways:

� a fully-qualified pathname:

’/u/userid/mylib’

� a pathname relative to the current working directory:

’./mylib’

or

’HFS:mylib’

The HFS prefix is needed when the SAS system option FILESYSTEM=MVS
is in effect and the directory path name specified does not contain a slash (/)
to indicate an HFS file. See “FILESYSTEM= System Option” on page 440 for
more information.

Note: The library-specification argument is optional. If you specify it, it must
follow the engine name. If you did not specify an engine, then it must follow the
libref. �

engine/host-options
are options that govern processing of the SAS data library. Each option is
identified by a keyword, and most keywords assign a specific value to that option.
You can specify one or more of these options using the following forms:

keyword=value | keyword

When you specify more than one option, use a blank space to separate each option.
There are two categories of options. Engine options can vary from engine to

engine but are the same for all operating environments. These options are
documented as part of the LIBNAME statement syntax in SAS Language
Reference: Dictionary. The host options, which are documented below, apply
exclusively to the z/OS environment. For convenience, the host options are divided
into two groups, general options and options that govern the allocation of a library
data set. Many host options apply only to certain library implementation types.
See “Library Implementation Types for Base and Sequential Engines” on page 42
for additional details.

General Host Options

DLTRUNCHK | NODLTRUNCHK
overrides the system option DLTRUNCHK for this LIBNAME statement
assignment only.

396 LIBNAME Statement Chapter 17

This option applies only to direct access bound libraries.

HFS
specifies that the library physical name refers to an HFS directory in the user’s
HFS working directory. See “HFS Libraries” on page 48 for more information.

It is not necessary to specify this option if the physical-filename on the
LIBNAME statement contains a slash (/)or if the HFS: data-set-name syntax is
used.

HIPERSPACE
specifies that the SAS data library will be placed in a hiperspace rather than on a
disk. HIP is an alias for the HIPERSPACE option. See “Creating Hiperspace
Libraries” on page 51 for more information.

LINEAR
specifies that this new library should be allocated as a VSAM linear data set. This
library will then be a permanent library that uses the HIPERSPACE access
method by way of the DIV (data-in-virtual) facility.

NOPROMPT
for this assignment, specifies that no requestor window is displayed to prompt you
to create the library, even if the system option FILEPROMPT is in effect and if the
library does not already exist.

Host Options for Allocating Library Data Sets
The host options in this category specify the parameters for allocating the library

data set, or they control the allocation process itself. Therefore, these options only apply
for library implementation types in which the library resides in a single z/OS data set:
direct access bound, sequential access bound, and DIV libraries.

BLKSIZE=n
specifies the block size that SAS is to use when dynamically allocating the library
data set. The maximum acceptable value is 32760. The BLKSIZE host option is
ignored for libraries that are already externally allocated by a DD statement.

If the BLKSIZE option is omitted and SAS must dynamically allocate the
library data set, the block size associated with the allocation will be zero unless
the BLKALLOC option is specified. See “BLKALLOC System Option” on page 413
for more information.

The value of the BLKSIZE host option for the LIBNAME statement is just one
of many factors which might influence the block size which SAS uses to process a
library. Different rules apply for different library implementation types. See the
following topics for more information:

“Controlling Library Block Size” on page 45 for Direct Access Bound Libraries

“Controlling Library Block Size” on page 48 for Sequential Access Bound
Libraries

DATACLAS=data-class-name
specifies the data class for an SMS-managed data set. The name can have up to
eight characters. This option applies only to new data sets; it is ignored for
existing data sets. The data class is predefined and controls the DCB attributes
for a data set.

The implementation of the DATACLAS= option is compatible with the SMS
DATACLAS= JCL parameter. For complete information about this parameter, see
MVS JCL Reference by IBM. Ask your system administrator which data-class
names are used for SAS data libraries at your site.

DISP= status | (< status >,< normal-termination-disp>, < abnormal-termination-disp>)

Statements under z/OS LIBNAME Statement 397

specifies the status of the data set at the beginning and ending of a job, as well as
what to do if the job step terminates abnormally. If you are specifying only the
status, you can omit the parentheses.

status
specifies the status of the physical file at the beginning of a job. Valid values
are

NEW a new data set is to be created.

OLD the data set exists and is not to be shared.

SHR the data set exists and can be shared.

The default for status is OLD unless the ACCESS=READONLY engine option
is specified, in which case DISP=SHR is used.

normal-termination-disp
specifies disposition for the data set if the job using the data set terminates
normally. If you omit the normal termination disposition value, the default is
CATLG for new data sets or KEEP for existing data sets. Valid values are

DELETE the data set is deleted at the end of the step.

KEEP the data set is to be kept.

CATLG the system should place an entry in the system catalog or
user catalog.

UNCATLG the system is to delete the entry in the system catalog or
user catalog.

abnormal-termination-disp
specifies the action to take if the job step terminates abnormally. The default
is to take the action that is specified or implied by normal-termination-disp.
Valid values are

DELETE the data set is deleted at the end of the step.

KEEP the data set is to be kept.

CATLG the system should place an entry in the system catalog or
user catalog.

UNCATLG the system is to delete the entry in the system catalog or
user catalog.

EXTEND
specifies that when SAS allocates this library, it will allocate it with a volume
count that is one greater than the current number of DASD volumes on
which the library resides. With this option, a single-volume library can be
converted to a multivolume library, and existing multivolume libraries can be
extended to another volume.

LABEL=(subparameter-list)
enables you to specify for a tape or direct access data set the type and contents of
the label of the tape or disk data set, as well as other information such as the
retention period or expiration date for the data set.

The LABEL= option is identical to the JCL LABEL= parameter. For example:

label=(3,SL,,,EXPDT=1999/123)

This label specification indicates the data set sequence number is 3, that it uses
standard labels, and that it expires on the 123rd day of 1999. See MVS JCL

398 LIBNAME Statement Chapter 17

Reference by IBM for complete information about how to use the LABEL= option,
including which subparameters you can specify in subparameter-list.

LIKE=‘physical-filename’
when allocating a new library, tells SAS to set the DCB attributes of the new
library to the same values as those in the specified data set.

MGMTCLAS=management-class-name
specifies a management class for an SMS data set. The name can have up to eight
characters. This option applies only to new data sets; it is ignored for existing data
sets. The management class is predefined and controls how your data set is
managed, such as how often it is backed up and how it is migrated.

The implementation of the MGMTCLAS= option is compatible with the SMS
MGMTCLAS= JCL parameter. For complete information about this parameter, see
z/OS JCL Reference by IBM. Ask your system administrator which management
class names are used at your site.

SPACE=(unit,(primary<,secondary>), <RLSE>,<type>,<ROUND>)
specifies how much disk space to provide for a data set that is being created. The
space can be requested in terms of tracks, cylinders, or blocks, as follows:

unit
can be any of the following:

TRK specifies that the space is to be allocated in tracks.

CYL specifies that the space is to be allocated in cylinders.

blklen specifies that the space is to be allocated in blocks whose
block length is blklen bytes. The system computes how
many tracks are allocated.

primary
specifies how many tracks, cylinders, or blocks to allocate.

secondary
specifies how many additional tracks, cylinders, or blocks to allocate if more
space is needed. The system does not allocate additional space until it is
needed.

RLSE
causes unused space that was allocated to an output data set to be released
when the data set is closed. Unused space is released only if the data set is
opened for output, and if the last operation was a write operation.

type
can be any of the following:

CONTIG specifies that the space to be allocated must be contiguous.

MXIG specifies that the maximum contiguous space is required.

ALX specifies that different areas of contiguous space are
needed.

Statements under z/OS LIBNAME Statement 399

ROUND
specifies that the allocated space must be equal to an integral number of
cylinders when the unit specified was a block length. If unit was specified as
TRK or CYL, the system ignores ROUND.

If SPACE is not defined, its values are taken from the SAS system options
FILEUNIT=, FILESPPRI=, and FILESPSEC=, in the following form:

SPACE=(FILEUNIT,(FILESPPRI,FILESPSEC))

STORCLAS=storage-class-name
specifies a storage class for an SMS data set. The name can have up to eight
characters. This option applies only to new data sets; it is ignored for existing data
sets. The storage class is predefined and controls which device your SMS data set
is stored on, such as disk or tape.

The implementation of the STORCLAS= option is compatible with the SMS
STORCLAS= JCL parameter. Ask your system administrator which storage class
names are used at your site. For full details on this parameter, refer to MVS JCL
Reference by IBM.

UNIT=value | (value,n)
where n is the number of units for multivolume data libraries. It can name one of
several different devices. Some likely values are DISK and SYSDA. Additional
valid values can be defined at your site.

VOLCOUNT=nnn
specifies the maximum number of volumes on which a new library can reside.
VOLCOUNT enables the creation of a multivolume tape library without the
specification of an explicit list of volumes with the VOLSER option. The value of
VOLCOUNT is a decimal number from 1 through 255.

VOLSER=value | (value-1, ..., value-n)
specifies up to 30 volume serial numbers. If VOLSER= is not specified, its value is
taken from the SAS system option FILEVOL=. See “FILEVOL= System Option”
on page 441 for more information. The VOLSER option does not need to be
specified for existing cataloged data sets unless your SAS job will extend the
library to additional volumes, and you want to explicitly specify the volumes (as
opposed to allowing z/OS to select the volumes).

WAIT=n
specifies how long SAS software waits for a data set that is held by another job or
user before the LIBNAME statement fails. The value n specifies a length of time
in clock minutes. If the data set becomes free before n minutes expire, then the
LIBNAME statement is processed as usual. The dynamic allocation request is
retried internally every 15 seconds.

When you use the WAIT= option, you must also specify the engine name in the
LIBNAME statement if you are accessing uncataloged data libraries or libraries
that do not reside on disk. Otherwise, you do not have to specify the engine name.

For batch jobs using WAIT=, also specify the FILEMSGS option, which causes a
message to be written to the system log for each allocation attempt, thus allowing
system operators to determine why the job is waiting. See “FILEMSGS System
Option” on page 436 for more information.

Examples of Assigning a Library

Assigning an Existing Bound Library The following LIBNAME statement associates
the libref mylib with the existing library USER934.MYLIB.SASLIB. SAS examines the
internal format of the library data set in order to select the appropriate engine. SAS

400 OPTIONS Statement Chapter 17

would dynamically allocate the library for shared access if the library were not already
assigned externally or internally.

libname mylib ’user934.mylib.saslib’ disp=shr;

Assigning an HFS Library The following LIBNAME statement associates the libref
hfslib with the collection of HFS files residing in the directory /u/user905/saslib.
This form of assignment does not use any host options and is, therefore, simple to port
to or from other platforms.

libname hfslib ’/u/user905/saslib’;

Assigning an Engine for An Externally Allocated Library The following LIBNAME
statement completes the assignment process for the externally assigned library
CORP.PROD.PAYROLL.R200305 and specifies that the TAPE engine will be used to
process this library. It is necessary to specify the LIBNAME statement because the
BASE engine is the default engine in this particular case.

//REGISTER DD DSN=CORP.PROD.PAYROLL.R200305,DISP=(NEW,CATLG),
// UNIT=DISK,SPACE=(CYL,(5,5))
libname register TAPE;

Creating a New Bound Library The following LIBNAME statement specifies the host
options necessary to create and catalog a new multivolume, SMS-managed bound
library:

libname new ’.newproj.saslib’ disp=(new,catlg)
unit=(disk,2) space=(cyl,(50,20)) dataclas=sasstnd;

Concatenating a Personal Library to a Base Library
The following LIBNAME statements associate the libref project with the library

concatenation in which a library containing modified members is concatenated in front
of the base project library, which is accessed as read-only:

libname projbase ’.project.base.saslib’ disp=shr;
libname project (’.project.modified.saslib’ projbase);

See Also

� “LIBNAME Function” on page 267
� “Assigning SAS Data Libraries” on page 55
� “Deassigning SAS Data Libraries” on page 63
� “Listing Your Current Librefs” on page 63
� SAS Language Reference: Dictionary

� SAS Language Reference: Concepts

OPTIONS Statement

Changes the value of one or more SAS system options

Valid: anywhere
z/OS specifics: options

See: OPTIONS Statement in SAS Language Reference: Dictionary

Statements under z/OS SASFILE Statement 401

Syntax
OPTIONS options-1 <. . . option-n >;

Details
Some of the options that you can specify are host-specific. “Summary Table of SAS
System Options” on page 528 describes all of the system options that are available in
SAS under z/OS. Descriptions of the portable system options are provided in SAS
Language Reference: Dictionary.

Some system options can be changed only when you invoke SAS, not in an OPTIONS
statement. “Summary Table of SAS System Options” on page 528 tells where each
system option can be specified.

See Also

� “SAS System Options” on page 11
� SAS Language Reference: Dictionary

SASFILE Statement

Reduces I/O processing by holding the entire data set in memory

Valid: anywhere
z/OS specifics: performance considerations
See: SASFILE Statement in SAS Language Reference: Dictionary

Details
The SASFILE statement can greatly reduce both the elapsed time required for a SAS
job to run and the CPU time for the job. However, in an environment where the various
z/OS processes (batch jobs, TSO users, and started tasks) are competing for real
(central) storage, the SAS data set may require more virtual storage than is available.
Unless steps are taken to manage memory usage, virtual storage paging delays could
negate the benefits of using the SASFILE statement.

SAS allocates virtual storage above the 16M line for buffers and associated control
blocks for a SAS data set. The SASFILE statement causes SAS to reserve enough
buffers to hold the entire data set in memory while it is processed by multiple SAS
DATA steps and procedures and then written to disk (if necessary) once. However, if
the overall environment is constrained for storage, or a process like the SAS/SHARE
server is processing a heavy workload, the page frames that are occupied by the SAS
data set buffers can be stolen, and virtual storage paging delays may occur.

For batch jobs, this problem can be avoided by simply scheduling the job to run when
the overall system is less busy. However, in general, it may be necessary to employ
storage isolation to enforce a minimum working set size for the job. IBM’s z/OS: MVS
Initialization and Tuning Guide provides an explanation of storage isolation in its
discussion of SRM.

402 SYSTASK LIST Statement Chapter 17

To estimate the minimum working set required for a SAS job, consider the following:

� the amount of storage that is required for the buffers and associated control blocks
supporting a SAS data set loaded with the SASFILE statement. The amount of
storage approximately equals (# of member pages) * ((member page size) + 120).
You can obtain the number of data set pages and data set page size by running
PROC CONTENTS on the data set.

� the baseline requirements that are necessary for executing the job without the
SASFILE statement.

For installations running Workload Manager in goal mode, it is not possible to set
the SRM options directly. Under Workload Manager, it may be appropriate to establish
a velocity goal for the SAS jobs or servers that will use the SASFILE statement to load
large SAS data sets into memory.

See Also

� “SASFILE Global Statement” in the SAS Language Reference: Dictionary

SYSTASK LIST Statement

Lists asynchronous tasks

Valid: anywhere

z/OS specifics: all

Syntax
SYSTASK LIST <_ALL_ | taskname> <STATE>;

ALL
specifies all active tasks in the system. A task is active if it is running, or if it has
completed and has not been waited for using the WAITFOR statement on the remote
host that submitted the task.

STATE
displays the status of the task, which can be Start Failed, Running, or Complete.

taskname
requests information for one remotely submitted task. If the task name contains a
blank character, enclose taskname in quotation marks.

Details
Task names can be listed with the SYSTASK LIST statement. These task names are
assigned on other hosts and are supplied to the z/OS SAS session via RSUBMIT
commands or statements in SAS/CONNECT software.

The preferred method for displaying any task (not just SAS/CONNECT processes) is
to use the LISTTASK statement instead of SYSTASK LIST. For more information on
LISTTASK, see “LISTTASK Statement” in SAS/CONNECT User’s Guide.

Statements under z/OS TSO Statement 403

See Also

� “WAITFOR Statement” on page 404
� SAS/CONNECT User’s Guide

TITLE Statement

Specifies title lines for SAS output

Valid: anywhere
z/OS specifics: maximum length of title
See: TITLE Statement in SAS Language Reference: Dictionary

Syntax
TITLE<n> <’text ’ | "text "> ;

Details
Under z/OS, the maximum title length is determined by the value of the LINESIZE=
system option. The maximum value of LINESIZE= is 256. Titles longer than the value
of LINESIZE= are truncated.

Note: No space is permitted between TITLE and the number n. �

See Also

� SAS Language Reference: Dictionary

TSO Statement

Issues a TSO command or invokes a CLIST or a REXX exec during a SAS session

Valid: anywhere
z/OS specifics: all

Syntax
TSO <command >;

command
can be a system command enclosed in quotation marks, an expression whose value is
a system command, or the name of a character variable whose value is a system
command. Under z/OS, "system command" includes TSO commands, CLISTs, and
REXX execs.

404 WAITFOR Statement Chapter 17

Details
The TSO statement is similar to the TSO (or SYSTEM) CALL routines, the TSO (or X)
command, the TSO (or SYSTEM) function, and the %TSO (or %SYSEXEC) macro
statement. SAS executes the TSO statement immediately. Under z/OS, TSO is an alias
for the X statement. On other operating environments, the TSO statement has no
effect, whereas the X statement is always processed.

Note: The TSO statement is ignored in a batch environment, unless SAS is running
in the TSO/E background. �

You can use the TSO statement to issue most TSO commands or to execute CLISTs or
REXX execs. However, you cannot issue the TSO commands LOGON and LOGOFF, and
you cannot execute CLISTs that include the TSO ATTN statement. In addition, you can
use the TSO statement to issue the following UNIX System Services shell commands:
cd, pwd, and umask. The shell command names must be specified in lowercase.

TSOEXEC TSOEXEC is a TSO command that you use to invoke authorized
commands. At z/OS sites that run under later releases of TSO/E, you can invoke
authorized commands such as RACF commands by submitting the following statement:

tso tsoexec authorized-command;

For more information, see the IBM document TSO Extensions Command Reference.

Entering TSO Submode You can also use the TSO statement to enter TSO submode
during a SAS session.

To start the submode, place the TSO statement in your program without specifying
any options. (In the windowing environment, enter TSO submode by issuing TSO as a
command-line command. See “TSO Command” on page 564.) When the statement is
executed, SAS enters TSO submode and prompts you for TSO commands. Any
commands that you issue in TSO submode are processed by TSO; they are not
processed as SAS statements. They can be any length; however, if the command is
longer than one line, you must enter a TSO continuation symbol.

To return to the SAS session, issue RETURN, END, or EXIT. Any characters that follow
the RETURN, END, or EXIT subcommand are ignored. An END command that occurs
within a CLIST terminates the command procedure without ending the TSO submode.

See Also

� Statement: “X Statement” on page 406

� Functions: “SYSTEM Function” on page 273 and “TSO Function” on page 275

� CALL routines: “CALL SYSTEM Routine” on page 248 and “CALL TSO Routine”
on page 249

� Command: “TSO Command” on page 564

� “SAS Interface to REXX” on page 199

WAITFOR Statement

Suspends execution of the current SAS session until the specified tasks finish executing

Valid: anywhere

z/OS specifics: all

Statements under z/OS WAITFOR Statement 405

Syntax
WAITFOR <_ANY_ | _ALL_> taskname1 <taskname2 ...tasknameX>

<TIMEOUT=seconds>;

taskname
specifies the name of the remotely submitted task(s) that you want to complete
execution before resuming execution of SAS. You cannot use wildcards to specify task
names. Resumption of the SAS session depends first on the value of the TIMEOUT=
option and second on the execution state of the specified task(s).

ANY | _ALL_
suspends execution of the current SAS session until either one or all of the specified
remote tasks finishes execution. The default setting is _ANY_, which means that as
soon as one of the specified task(s) completes execution, the WAITFOR statement will
finish execution. Note again that resumption of execution is primarily dependent on
the TIMEOUT= option.

TIMEOUT=seconds
specifies the maximum number of seconds that WAITFOR should suspend the
current SAS session, regardless of the execution state of any or all specified tasks.
The SAS session resumes execution at the end of the TIMEOUT= period even if
specified tasks are still executing. If you do not specify the TIMEOUT= option and
you do not specify any task names, WAITFOR suspends execution of the SAS session
indefinitely. If you specify tasks name(s) and you do not specify a TIMEOUT= value,
the SAS session resumes execution when the specified tasks complete execution.
Specifying TIMEOUT= without specifying task names suspends SAS execution for
the specified number of seconds.

Details
Task names can be listed with the SYSTASK LIST statement. These task names are
assigned on other hosts and are supplied to the z/OS SAS session via RSUBMIT
commands or statements in SAS/CONNECT software.

The SYSRC macro variable contains the return code for the WAITFOR statement. If
a WAITFOR statement cannot execute successfully, the SYSRC macro variable will
contain a non-zero value. For example, the WAITFOR statement might contain syntax
errors. If the number of seconds specified with the TIMEOUT option elapses, then the
WAITFOR statement finishes executing and the SYSRC macro variable is set to a
non-zero value if any of the following occur:

� You specify a single task that does not finish executing.
� You specify more than one task and the _ANY_ option (which is the default

setting), but none of the tasks finish executing.
� You specify more than one task and the _ALL_ option, and any one of the tasks

does not finish executing.

See Also

� “SYSTASK LIST Statement” on page 402
� SAS/CONNECT User’s Guide

406 X Statement Chapter 17

X Statement

Issues an operating environment command during a SAS session

Valid: anywhere
z/OS specifics: issues a TSO command or invokes a CLIST or a REXX exec
See: X Statement in SAS Language Reference: Dictionary

Syntax
X <command>;

Details
Under z/OS, the X and TSO statements are identical; on other operating environments,
the TSO statement has no effect, whereas the X statement is always processed. See
“Using the X Statement to Issue UNIX System Services Commands” on page 566 and
“TSO Statement” on page 403 for more information.

407

C H A P T E R

18
System Options under z/OS

System Options in the z/OS Environment 410

ALTLOG= System Option 410
ALTPRINT= System Option 411

ARMAGENT= System Option 412

AUTOEXEC= System Option 413
BLKALLOC System Option 413

BLKSIZE= System Option 414

BLKSIZE(device-type)= System Option 415
CAPSOUT System Option 416

CARDIMAGE System Option 417
CATCACHE= System Option 417

CHARTYPE= System Option 418

CLIST System Option 419
CONFIG= System Option 419

DBCS System Option 420

DBCSLANG= System Option 420
DBCSTYPE= System Option 421

DEVICE= System Option 421
DLEXCPCOUNT System Option 422

DLMSGLEVEL= System Option 423

DLTRUNCHK System Option 423
DSRESV System Option 424

DYNALLOC System Option 425

EMAILHOST= System Option 425
EMAILSYS= System Option 426

ENCODING= System Option 427
ENGINE= System Option 427

FILEAUTHDEFER System Option 428

FILEBLKSIZE(device-type)= System Option 429
FILECC System Option 430

FILEDEST= System Option 431

FILEDEV= System Option 431
FILEDIRBLK= System Option 432

FILEEXT= System Option 432
FILEFORMS= System Option 434

FILELOCKS= System Option 434

FILEMOUNT System Option 435
FILEMSGS System Option 436

FILENULL System Option 436

FILEPROMPT System Option 437
FILEREUSE System Option 437

408 Contents Chapter 18

FILESPPRI= System Option 438

FILESPSEC= System Option 438
FILESTAT System Option 439

FILESYSOUT= System Option 439

FILESYSTEM= System Option 440
FILEUNIT= System Option 441

FILEVOL= System Option 441

FILSZ System Option 442
FONTSLOC= System Option 443

FSBCOLOR System Option 443
FSBORDER= System Option 444

FSDEVICE= System Option 445

FSMODE= System Option 445
FULLSTATS System Option 446

GHFONT= System Option 447

HELPADDR= System Option 448
HELPBROWSER= System Option 448

HELPCASE System Option 449
HELPHOST System Option 449

HELPINDEX= System Option 450

HELPLOC= System Option 451
HELPPORT System Option 452

HELPTOC= System Option 452

HSLXTNTS= System Option 454
HSMAXPGS= System Option 454

HSMAXSPC= System Option 455
HSSAVE System Option 456

HSWORK System Option 456

ISPCAPS System Option 457
ISPCHARF System Option 458

ISPCSR= System Option 459

ISPEXECV= System Option 459
ISPMISS= System Option 460

ISPMSG= System Option 461
ISPNOTES System Option 461

ISPNZTRC System Option 462

ISPPT System Option 462
ISPTRACE System Option 463

ISPVDEFA System Option 464

ISPVDLT System Option 464
ISPVDTRC System Option 465

ISPVIMSG= System Option 466
ISPVRMSG= System Option 466

ISPVTMSG= System Option 467

ISPVTNAM= System Option 467
ISPVTPNL= System Option 468

ISPVTRAP System Option 468

ISPVTVARS= System Option 469
JREOPTIONS= System Option 470

LINESIZE= System Option 471
LOCALE= System Option 471

LOG= System Option 472

LOGPARM= System Option 472
MEMLEAVE= System Option 476

System Options under z/OS Contents 409

MEMRPT System Option 477

MEMSIZE= System Option 478
MINSTG System Option 479

MSG= System Option 479

MSGCASE System Option 480
MSGLOAD System Option 481

MSGSIZE= System Option 481

MSYMTABMAX= System Option 482
MVARSIZE= System Option 483

NLSCOMPATMODE System Option 484
OPLIST System Option 484

PAGESIZE= System Option 485

PARMCARDS= System Option 486
PFKEY= System Option 486

PGMPARM= System Option 488

PRINT= System Option 488
PRINTINIT System Option 489

PROCLEAVE= System Option 489
PRODTOC= System Option 490

REALMEMSIZE= System Option 491

REXXLOC= System Option 491
REXXMAC System Option 492

S= System Option 493

SASAUTOS= System Option 494
SASHELP= System Option 494

SASLIB= System Option 495
SASUSER= System Option 495

SEQENGINE= System Option 496

SORT= System Option 498
SORTALTMSGF System Option 499

SORTBLKMODE System Option 499

SORTBUFMOD System Option 499
SORTCUTP= System Option 500

SORTDEV= System Option 501
SORTDEVWARN System Option 501

SORTEQOP System Option 502

SORTLIB= System Option 503
SORTLIST System Option 503

SORTMSG System Option 504

SORTMSG= System Option 504
SORTNAME= System Option 505

SORTOPTS System Option 505
SORTPARM= System Option 506

SORTPGM= System Option 506

SORTSHRB System Option 507
SORTSIZE= System Option 508

SORTSUMF System Option 509

SORTUADCON System Option 510
SORTUNIT= System Option 510

SORTWKDD= System Option 511
SORTWKNO= System Option 512

SORT31PL System Option 512

STAE System Option 513
STATS System Option 513

410 System Options in the z/OS Environment Chapter 18

STAX System Option 514

STIMER System Option 514
SVC11SCREEN System Option 515

SYNCHIO System Option 515

SYSIN= System Option 516
SYSINP= System Option 517

SYSLEAVE= System Option 517

SYSPREF= System Option 518
SYSPRINT= System Option 519

S99NOMIG System Option 519
TAPECLOSE= System Option 520

USER= System Option 520

UTILLOC= System Option 521
VERBOSE System Option 522

VSAMLOAD System Option 523

VSAMREAD System Option 524
VSAMUPDATE System Option 524

WORK= System Option 525
WTOUSERDESC= System Option 525

WTOUSERMCSF= System Option 526

WTOUSERROUT= System Option 527
XCMD System Option 527

Summary Table of SAS System Options 528

System Options in the z/OS Environment

The SAS Language Reference: Dictionary contains information about system options
that can be used in all operating environments. Only the Base SAS system options that
are specific to z/OS or that have aspects specific to z/OS are documented in this chapter.
However, Table 18.2 on page 529 lists all the Base SAS system options that are
available under z/OS.

For information on system options that support a SAS product, such as
SAS/ACCESS, SAS/CONNECT, or SAS/SHARE, see the documentation for that product.

For information about using SAS system options under z/OS, see “SAS System
Options” on page 11.

For information on file specifications, see “Referring to External Files” on page 86
and “Ways of Allocating External Files” on page 75.

ALTLOG= System Option

Specifies a destination for a copy of the SAS log

Default: none

Valid in: configuration file, SAS invocation

Category: Environment Control: ENVFILES

PROC OPTIONS GROUP= ENVFILES

z/OS specifics: file-specification

System Options under z/OS ALTPRINT= System Option 411

Syntax
ALTLOG=file-specification

file-specification
identifies an external file. Under z/OS, it can be a valid DDname, a physical file
name, or the name of a file stored in the directory structure of UNIX System
Services. The DDname must have been previously associated with an external file
using either a TSO ALLOCATE command or a JCL DD statement.

Details
The ALTLOG= system option specifies a destination to which a copy of the SAS log is
written. Use the ALTLOG= option to capture the log output for printing.

See Also

� “ALTPRINT= System Option” on page 411

� “Directing Output to an External File at SAS Invocation” on page 115

ALTPRINT= System Option

Specifies a destination for a copy of the SAS procedure output file

Default: none

Valid in: configuration file, SAS invocation

Category: Environment Control: ENVFILES

PROC OPTIONS GROUP= ENVFILES

z/OS specifics: file-specification

Syntax
ALTPRINT=file-specification

file-specification
identifies an external file. Under z/OS, it can be a valid DDname, a physical file
name, or the name of a file stored in the directory structure of UNIX System
Services. The DDname must have been previously associated with an external file
using either a TSO ALLOCATE command or a JCL DD statement.

Details
Use the ALTPRINT= option to capture procedure output for printing.

412 ARMAGENT= System Option Chapter 18

See Also

� “ALTLOG= System Option” on page 410

� “Directing Output to a Printer” on page 118

ARMAGENT= System Option

Specifies another vendor’s ARM agent, which is an executable module that contains a vendor’s
implementation of the ARM API

Default: none

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: System administration: Performance

PROC OPTIONS GROUP= PERFORMANCE

Restriction: After you enable the ARM subsystem, you cannot specify a different ARM
agent using ARMAGENT=.

z/OS specifics: Length of module name

See: ARMAGENT= System Option in SAS Language Reference: Dictionary

Syntax

ARMAGENT=module

module
is the name of the module that contains an ARM agent, which is a program module
that contains a vendor’s implementation of the ARM API. The maximum length for
the module name in z/OS environments is eight characters.

Details

An ARM agent is an executable module that contains a vendor’s implementation of the
ARM API. The ARM agent is a set of executable routines that are called from an
application. The ARM agent and SAS run concurrently. The SAS application passes
transaction information to the ARM agent, which collects and manages the writing of
the ARM records to the ARM log. SAS, as well as other vendors, provide an ARM agent.

By default, SAS uses the SAS ARM agent. Use ARMAGENT= to specify another
vendor’s ARM agent in order to monitor both the internal SAS processing transactions
(using ARMSUBSYS=) as well as for user-defined transactions (using ARM macros).

See Also

� SAS Language Reference: Concepts.

System Options under z/OS BLKALLOC System Option 413

AUTOEXEC= System Option

Specifies the autoexec file

Default: null

Valid in: configuration file, SAS invocation

Category: Environment Control: ENVFILES

PROC OPTIONS GROUP= ENVFILES
z/OS specifics: file-specification

Syntax
AUTOEXEC=file-specification | NOAUTOEXEC

file-specification
identifies an external file. Under z/OS, it can be a valid DDname, a physical file
name, or the name of a file stored in the directory structure of UNIX System
Services. The DDname must have been previously associated with an external file
using either a TSO ALLOCATE command or a JCL DD statement.

NOAUTOEXEC
disables AUTOEXEC, as if the file-specification was blank.

Details
The autoexec file contains SAS statements that are executed automatically when you
invoke SAS. The autoexec file can contain any SAS statements. For example, you can
include LIBNAME statements for SAS data libraries that you access routinely in SAS
sessions.

During initialization, SAS checks to see whether the SASEXEC DDname has been
allocated. If so, SAS initializes AUTOEXEC= to SASEXEC; otherwise, it sets it to null.

See Also

� “Autoexec Files” on page 9

BLKALLOC System Option

Causes SAS to set LRECL and BLKSIZE values for a SAS data library when it is allocated rather
than when it is first accessed

Default: NOBLKALLOC
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: File Control: SASFILES

PROC OPTIONS GROUP= SASFILES

z/OS specifics: all

414 BLKSIZE= System Option Chapter 18

Syntax
BLKALLOC | NOBLKALLOC

Details
The BLKALLOC option causes LIBNAME statement processing to use a non-zero block
size value when allocating a direct access or sequential access bound data library. This
value is calculated with the following hierarchy:

1 the value specified with the BLKSIZE host option of the LIBNAME statement
2 the value specified with the BLKSIZE system option
3 the value specified with the BLKSIZE(OTHER) system option
4 6144.

However, the actions described above take place only if both of following conditions
are met:

� The data library is not already allocated either externally or internally to SAS.
� DISP=NEW is specified.

The purpose of BLKALLOC is to ensure that the library data set is allocated with a
default non-zero block size value even if the data library is not accessed by SAS in the
current session, and therefore not initialized. The block size value thus set will be
saved in the data set label (format-1 DSCB in VTOC). If such a library is accessed in a
later SAS session, it is treated as a preallocated, but uninitialized, data library.

Note: The BLKALLOC option has no effect for libraries that were already allocated,
either external or internal to SAS. �

See Also

� “LIBNAME Statement” on page 393
� “Direct Access Bound Libraries” on page 42
� “Sequential Access Bound Libraries” on page 46

BLKSIZE= System Option

Specifies the default block size for SAS data libraries

Default: 0
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: SASFILES
PROC OPTIONS GROUP= SASFILES
z/OS specifics: all

Syntax
BLKSIZE=n | nK | hexX | MIN | MAX

System Options under z/OS BLKSIZE(device-type)= System Option 415

n | nK
specifies the block size in multiples of 1 (bytes) or 1,024 (kilobytes). You can specify
decimal values for the number of kilobytes. For example, a value of 8 specifies a
block size of 8 bytes, and a value of .782K specifies a block size of 801 bytes.

hexX
specifies the block size as a hexadecimal value. You must specify the value beginning
with a number (0–9), followed by hex digits (0–9, A–F), and then followed by an X.
For example, the value 2dx sets the block size to 45 bytes and a value of 0a0x sets
the block size to 160 bytes.

MIN
sets the default block size to 0.

If BLKSIZE=0 is specified, SAS uses the value of the appropriate
BLKSIZE(device) option. If a non-zero value is specified for BLKSIZE, then SAS uses
the value specified for all device types.

MAX
sets the default block size to 32,760.

Details
The BLKSIZE= option has an effect when you are creating a SAS data library. After
the library is created, the block size is set. This option sets the physical block size of
the library.

The default value of zero indicates that SAS will use the value of the appropriate
BLKSIZE(device-type)= option.When a non-zero value is specified for BLKSIZE=, this
value takes precedence over any value specified with the BLKSIZE(device-type)= option.

See Also

� “Direct Access Bound Libraries” on page 42
� “Sequential Access Bound Libraries” on page 46

BLKSIZE(device-type)= System Option
Specifies the default block size for SAS data libraries by device-type

Default: varies by device type
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: SASFILES
PROC OPTIONS GROUP= SASFILES
z/OS specifics: all

Syntax
BLKSIZE(device-type)=value

device-type
specifies any valid specific device number, or DASD, DISK, or OTHER.

DISK or DASD
sets values for the device types 2301, 2303, 2305-1, 2305-2, 2314, 3330, 3330-1,
3340, 3350, 3375, 3380, 3390, and 9345.

416 CAPSOUT System Option Chapter 18

OTHER
specifies the value that SAS uses to allocate a library when the BLKALLOC option
is specified and the BLKSIZE host option was not specified on the LIBNAME
statement or LIBNAME function. See “BLKSIZE= System Option” on page 414 for
more information.

value
specifies the default block size. Valid values are

number
specifies the block size that SAS is to use for the device.

OPT
specifies that SAS is to choose an optimum block size for the device.

MAX or FULL
specifies that SAS is to use the maximum permitted block size for the device or
32760, whichever is lower.

HALF, THIRD, FOURTH, or FIFTH
specifies that SAS is to use the largest value that results in obtaining two, three,
four, and five blocks per track, respectively.

Details
The following example tells SAS to choose optimum block size values for all disk devices
except 3380s, for which one-third track blocking is requested:

options blksize(disk)=opt
blksize(3380)=third;

For most devices, BLKSIZE(device-type)= has a mimimum value of 1024, a maximum
value of 32760, and a default value of 6144. For some legacy devices the maximum and
default values are limited by the track size.

Note: The block size value you specify may not be the block size with which the
library is actually initialized. See “Direct Access Bound Libraries” on page 42 or
“Sequential Access Bound Libraries” on page 46 for more information about
determining block size for either of the library types. �

See Also

� “Optimizing I/O” on page 213

CAPSOUT System Option
Specifies that all output is to be converted to uppercase

Default: NOCAPSOUT
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: EXTFILES
PROC OPTIONS GROUP= EXTFILES
z/OS specifics: all

Syntax
CAPSOUT | NOCAPSOUT

System Options under z/OS CATCACHE= System Option 417

CARDIMAGE System Option

Processes SAS source and data lines as 80-byte records

Default: CARDIMAGE

Valid in: configuration file, SAS invocation, OPTIONS statement

Category: Input Control: DATA PROCESSING

PROC OPTIONS GROUP= INPUTCONTROL

z/OS specifics: default value

See: CARDIMAGE System Option in SAS Language Reference: Dictionary

Syntax
CARDIMAGE | NOCARDIMAGE

Details
The default setting on z/OS is CARDIMAGE. This might differ from the default setting
in SAS in other operating environments.

CATCACHE= System Option

Specifies the number of SAS catalogs to keep open

Default: 0

Valid in: configuration file, SAS invocation

Category: File Control: SASFILES

PROC OPTIONS GROUP= SASFILES

z/OS specifics: all

See: CATCACHE= System Option in SAS Language Reference: Dictionary

Syntax
CATCACHE=n | hexX | MIN | MAX

n
specifies any integer greater than or equal to 0 in terms of bytes. If n > 0, SAS places
up to that number of open-file descriptors in cache memory instead of closing the
catalogs.

418 CHARTYPE= System Option Chapter 18

hexX
specifies the number of open-file descriptors that are kept in cache memory as a
hexadecimal number. You must specify the value beginning with a number (0–9),
followed by hex digits (0–9, A–F), and then followed by an X. For example, the value
2dx sets the number of catalogs to keep open to 45 catalogs.

MAX
sets the number of open-file descriptors that are kept in cache memory to the largest,
signed, 4-byte integer that is representable in your operating environment.

Note: The recommended maximum setting for this option is 10. �

MIN
sets the number of open-file descriptors that are kept in cache memory to 0.

Details
By using the CATCACHE= system option to specify the number of SAS catalogs to keep
open, you can avoid the repeated opening and closing the same catalogs.

Note: If MINSTG is in effect, then SAS sets the value of CATCACHE to 0. �

See Also

� “Optimizing System Performance” in SAS Language Reference: Concepts.

CHARTYPE= System Option
Specifies a character set or screen size to use for a device

Default: 0
Valid in: configuration file, SAS invocation
Category: Environment Control: ENVDISPLAY
PROC OPTIONS GROUP= ENVDISPLAY
z/OS specifics: all

Syntax
CHARTYPE=cell-size | screen-size

cell-size
specifies the character set number for an IBM 3290 terminal. Values are 1 for a 6 x
12 cell and 2 for a 9 x 16 cell.

screen-size
specifies the screen size for other Extended-Data-Stream (EDS) terminals. Values are
1 for a primary screen size and 2 for an alternate screen size.

Details
For an IBM 3290 terminal, the CHARTYPE= option specifies which character cell size
to use. For other EDS terminals, it specifies which screen size to use. This option
corresponds to the CHARTYPE option in SAS/GRAPH.

System Options under z/OS CONFIG= System Option 419

The default value, 0, indicates that the CHARTYPE= option is not applicable to the
terminal you are using.

See Also

� “Improving Screen Resolution on an IBM 3290 Terminal” on page 570

CLIST System Option

Specifies that SAS will obtain its input from a CLIST

Default: NOCLIST
Valid in: configuration file, SAS invocation
Category: Environment Control: EXECMODES
PROC OPTIONS GROUP= EXECMODES
z/OS specifics: all

Syntax
CLIST | NOCLIST

Details
The CLIST option controls whether SAS obtains its input from the terminal directly
(NOCLIST specified) or indirectly (CLIST specified) when running interactively under
TSO. When CLIST is specified, you can use TSO CLISTs that include SAS statements
after the TSO command that invokes SAS. NODMS must be specified if SAS is to
obtain its primary input from a CLIST; otherwise, only input from files that are
allocated to the terminal will come from a CLIST.

CONFIG= System Option

Specifies a DDname for the configuration file

Default: CONFIG
Valid in: SAS invocation
Category: Environment Control: ENVFILES
PROC OPTIONS GROUP= ENVFILES
z/OS specifics: DDname
See: SAS Language Reference: Dictionary

Syntax
CONFIG=DDname

420 DBCS System Option Chapter 18

DDname
can be any valid DDname, up to eight characters; the DDname must have been
previously associated with an external file using either a TSO ALLOCATE command
or a JCL DD statement.

Details
The configuration file can contain any SAS system options except CONFIG=. If this
option appears in the configuration file, it is ignored.

See Also

� “Configuration Files” on page 7

DBCS System Option

Enables double-byte character support

Default: NODBCS
Valid in: configuration file, SAS invocation
Category: Environment Control: LANGUAGECONTROL
PROC OPTIONS GROUP= LANGUAGECONTROL
z/OS specifics: all
See: “DBCS System Option” in the SAS National Language Support (NLS): User’s
Guide

DBCSLANG= System Option

Specifies the language of the double-byte character set

Default: none
Valid in: configuration file, SAS invocation
Category: Environment Control: LANGUAGECONTROL
PROC OPTIONS GROUP= LANGUAGECONTROL
z/OS specifics: all
See: “DBCSLANG System Option” in the SAS National Language Support (NLS):
User’s Guide

System Options under z/OS DEVICE= System Option 421

DBCSTYPE= System Option

Specifies the encoding sequence for double-byte character sets

Default: IBM

Valid in: configuration file, SAS invocation

Category: Environment Control: LANGUAGECONTROL

PROC OPTIONS GROUP= LANGUAGECONTROL

z/OS specifics: encoding-method

See: “DBCSTYPE System Option” in the SAS National Language Support (NLS):
User’s Guide

DEVICE= System Option

Specifies a device driver for graphics output for SAS/GRAPH software

Default: none

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Graphics: GRAPHICS

PROC OPTIONS GROUP= GRAPHICS

z/OS specifics: device-driver-name

See: DEVICE= System Option in SAS Language Reference: Dictionary

Syntax
DEVICE=device-driver-name

device-driver-name
specifies the name of a terminal device driver.

Details
To see a list of device drivers that are available, use the GDEVICE procedure. If you
are in the windowing environment, submit the following statements:

proc gdevice catalog=sashelp.devices;
run;

If you are running in interactive line mode, noninteractive mode, or batch mode,
submit the following statements:

proc gdevice catalog=sashelp.devices nofs;
list _all_;
run;

422 DLEXCPCOUNT System Option Chapter 18

See Also

� SAS/GRAPH Reference, Volumes 1 and 2

DLEXCPCOUNT System Option

Reports number of EXCPs to direct access bound SAS data libraries

Default: NODLEXCPCOUNT

Valid in: configuration file, SAS invocation

Category: File Control: SASFILES

PROC OPTIONS GROUP= SASFILES

z/OS specifics: all

Syntax
DLEXCPCOUNT | NODLEXCPCOUNT

DLEXCPCOUNT
reports the EXCPs (Execute Channel Program calls) that SAS performs on direct
access bound libraries and the number of blocks that were transferred in these
EXCPs.

NODLEXCPCOUNT
does not report the number of EXCPs that SAS performs on direct access bound
libraries and the number of blocks that were transferred in these EXCPs.

Details
Specifying DLEXCPCOUNT causes SAS to generate a message that reports the number
of blocks processed and the corresponding number of EXCPs issued to each SAS data
library since the library was opened. This message is produced when the library is
closed. The message is written to the z/OS system log as a WTO message. The message
is also written to the SAS log except when the library is closed during termination of
the SAS session. The message text output is in this form:

SAS processed <number> blocks and performed <number> EXCPs on
library ‘data set name’

Note: A library is opened the first time it is referenced in a SAS session. It is closed
when the last libref that is assigned to the library is cleared. If the library is still open
at the end of a SAS session, the library is closed as part of SAS termination. �

The values of BUFSIZE= and BUFNO=, specified as data set options or SAS system
options, have a direct effect on the number of EXCPs performed. Increasing the value of
BUFSIZE= increases page size and reduces the number of EXCPs required. Specifying
a larger value for BUFNO= causes more blocks to be read with a single EXCP under
certain circumstances, thus reducing the total EXCP count.

System Options under z/OS DLTRUNCHK System Option 423

DLMSGLEVEL= System Option

Specifies the level of messages to generate for SAS data libraries

Default: ERROR

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: File Control: SASFILES

PROC OPTIONS GROUP= SASFILES

z/OS specifics: all

Syntax
DLMSGLEVEL=ERROR | WARN | INFO | DIAG

ERROR
causes a message to be written to the SAS log when an error occurs during
processing of a SAS data library. This value is the default.

WARN
causes a message to be written to the SAS log when SAS detects an abnormal or
unusual situation during processing of a SAS data library, yet is able to continue
processing.

INFO
causes a message to be written to the SAS log that details processing for certain
types of libraries. This setting may be requested by SAS Technical Support for
high-level problem diagnosis.

DIAG
causes SAS to produce SNAP dumps of key internal control blocks when processing
certain types of libraries. In order to receive the dumps, it is necessary to allocate
the SASSNAP DDname to a SYSOUT data set or to a sequential data set. This
setting would be requested by SAS Technical Support for detailed problem diagnosis.

Note: Each setting also implies all the preceding settings in the list. For example,
DLMSGLEVEL=INFO would cause SAS to also produce the messages that would be
generated for WARN and ERROR. �

DLTRUNCHK System Option

Enables checking for SAS data library truncation

Default: NODLTRUNCHK

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: File Control: SASFILES

PROC OPTIONS GROUP= SASFILES

z/OS specifics: all

424 DSRESV System Option Chapter 18

Syntax
DLTRUNCHK | NODLTRUNCHK

Details
The first time a SAS data library is accessed after it is assigned, SAS compares the
external count of library blocks from the z/OS data set label with the internal count of
library blocks from the library itself. If the external count is less, the library may be
truncated, or the external count may merely be in error. In either of these cases
(apparent or actual truncation), if the DLTRUNCHK option is in effect, SAS issues an
error message and refuses to process the library in any manner. If NODLTRUNCHK is
in effect, SAS attempts to continue processing; however, if the library is truncated, no
write access is allowed. If you specify NODLTRUNCHK, SAS also attempts to correct
the external count, if possible, when closing the library or when extending the library to
a new volume. However, this repair is not possible if the library is actually truncated or
the SAS session does not have write access to the library.

DLTRUNCHK is the default setting, and it is recommended for all production
applications for the following reasons:

� Attempting to read or update a library that is truncated might result in the SAS
session terminating with an abend. Therefore, if you are running a SAS/SHARE
server, it is recommended that you specify DLTRUNCHK to prevent the server
from terminating for that reason.

� If you use NODLTRUNCHK, there is a small risk that SAS will accept as valid
any residual data on a disk that is from a deleted z/OS data set.

DSRESV System Option

Requests exclusive use of shared disk volumes when accessing partitioned data sets on shared
disk volumes

Default: NODSRESV

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: File Control: EXTFILES

PROC OPTIONS GROUP= EXTFILES

z/OS specifics: all

Syntax
DSRESV | NODSRESV

DSRESV
reserves the device, which prevents other processors from accessing the volume on
which the partitioned data set resides.

System Options under z/OS EMAILHOST= System Option 425

NODSRESV
enqueues the resources that are defined by the operating environment.

Details
The DSRESV option controls whether certain SAS utility procedures, such as
PDSCOPY, issue the RESERVE macro instruction when they access partitioned data
sets on shared disk volumes.

DYNALLOC System Option

Controls whether SAS or the host sort utility allocates sort work data sets

Default: NODYNALLOC
Alias: DYN
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Sort: SORT
PROC OPTIONS GROUP= SORT
z/OS specifics: all

Syntax
DYNALLOC | NODYNALLOC

DYNALLOC
specifies that the host sort utility supports dynamic allocation of any necessary work
files. Therefore, SAS does not attempt to allocate them.

NODYNALLOC
specifies that SAS allocates sort work files. This may be necessary if the host sort
utility does not support allocation. Some sort programs do not reallocate previously
allocated work files even if the space requirements are greater.

See Also

� “SORT= System Option” on page 498
� “SORTDEV= System Option” on page 501
� “SORTUNIT= System Option” on page 510
� “SORTWKDD= System Option” on page 511
� “SORTWKNO= System Option” on page 512

EMAILHOST= System Option

Specifies the Simple Mail Transfer Protocol (SMTP) server that supports e-mail access for your site

Default: LOCALHOST

426 EMAILSYS= System Option Chapter 18

Valid in: configuration file, SAS invocation
Category: EMAIL
PROC OPTIONS GROUP= EMAIL
z/OS specifics: server
See: EMAILHOST= System Option in SAS Language Reference: Dictionary

Syntax
EMAILHOST= server

server
specifies the domain name of the Simple Mail Transfer Protocol (SMTP) server for
your site.

Note: The system administrator for your site will provide this information. �

Details
To enable the SMTP interface that SAS provides, you must also specify the
EMAILSYS=SMTP system option. See “EMAILSYS= System Option” on page 426 for
information about EMAILSYS.

For the SMTP access method, use this option in conjunction with the EMAILID=,
EMAILAUTHPROTOCOL=, EMAILPORT, and EMAILPW system options. EMAILID=
provides the username, EMAILPW= provides the password, EMAILPORT specifies the
port to which the SMTP server is attached, EMAILHOST specifies the SMTP server
that supports e-mail access for your site, and EMAILAUTHPROTOCOL= provides the
protocol. See “The SMTP E-Mail Interface” in SAS Language Reference: Concepts for
more information on SMTP.

EMAILSYS= System Option

Specifies which e-mail interface to use

Default: SMTP
Valid in: configuration file, SAS invocation
Category: EMAIL
PROC OPTIONS GROUP= EMAIL
z/OS specifics: interface

Syntax
EMAILSYS= interface

interface
The only valid value is SMTP. The EMAILSYS= system option is supported for
compatibility with other hosts. See “The SMTP E-Mail Interface” in SAS Language
Reference: Concepts for more information on SMTP.

System Options under z/OS ENGINE= System Option 427

ENCODING= System Option

Specifies the character-set encoding for reading from or writing to external files

Default: OPEN_ED-1047

Valid in: configuration file, system invocation

Category: Environment Control: LANGUAGECONTROL

PROC OPTIONS GROUP= LANGUAGECONTROL

z/OS specifics: valid values for encoding

See: “ENCODING System Option” in the SAS National Language Support (NLS):
User’s Guide

ENGINE= System Option

Specifies the default access method to use for SAS libraries

Default: BASE

Valid in: configuration file, SAS invocation, VMS_SAS_OPTIONS DCL symbol

PROC OPTIONS GROUP= SASFILES

OpenVMS specifics: valid values for engine-name

See: “ENGINE= System Option” in SAS Language Reference: Dictionary

Syntax
ENGINE=engine-name

engine-name
can be one of the following under OpenVMS:

BASE | V9
specifies the default SAS engine for SAS System 9 files. This engine is 64-bit.
Previous SAS engines were 32-bit.

V8
specifies the SAS engine for all Version 8 files.

V7
specifies the SAS engine for all Version 7 files.

V6
specifies the read-only Version 6 SAS engine. This engine enables you to read your
Version 6 data sets in SAS 9.1.

V9TAPE
specifies the default sequential engine for SAS System 9 files.

428 FILEAUTHDEFER System Option Chapter 18

V8TAPE | V7TAPE
specifies the SAS sequential engine for all Version 8 and Version 7 files. These
engines are identical to the V9TAPE engine.

XPORT
specifies the transport engine. The XPORT engine reads or writes one or more
SAS data sets in transport format.

Note: V5 and V6TAPE are no longer valid engine names. �

See Also

� “The V9 Engine” on page 38
� “The V9TAPE Engine” on page 39
� SAS Language Reference: Concepts

FILEAUTHDEFER System Option

Controls whether SAS performs file authorization checking for z/OS data sets or defers
authorization checking to z/OS system services such as OPEN

Default: NOFILEAUTHDEFER
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: EXTFILES, File Control SASFILES
PROC OPTIONS GROUP= EXTFILES and SASFILES
z/OS specifics: all

Syntax
FILEAUTHDEFER | NOFILEAUTHDEFER

FILEAUTHDEFER
specifies that SAS will not attempt to perform file authorization checking for z/OS
data sets before invoking z/OS system services such as OPEN. FILEAUTHDEFER
enables the site’s authorization system to record failed access attempts in its audit
log.

NOFILEAUTHDEFER
specifies that SAS will not attempt to open a z/OS data set without first verifying
that the user is authorized to access the file in the manner requested.
NOFILEAUTHDEFER prevents security system messages (such as ICH408I) and
S913 abends from being issued.

Details
If the user ID under which the session or server is running is not authorized to access a
z/OS data set in the manner requested (either read or update), SAS, by default, produces

System Options under z/OS FILEBLKSIZE(device-type)= System Option 429

an explanatory message in the SAS log. SAS does not attempt to open the data set if the
user ID does not have the proper authorization. However, the auditing requirements for
some installations cause unauthorized access attempts to be sent to the log for that
site’s authorization facility. An attempt to open the data set must actually occur before
a message is sent to the log of the authorization facility. Specify FILEAUTHDEFER for
unauthorized access attempts to be logged with the authorization facility at your site.

The FILEAUTHDEFER option controls the checking of file authorization for external
files and SAS data libraries. However, it only applies to files or libraries which reside in
z/OS data sets. FILEAUTHDEFER does not apply to the processing of HFS files.

FILEAUTHDEFER does not control the authorization checking for z/OS data sets
that a SAS server accesses on behalf of a client. Such third-party authorization
checking is performed regardless of the FILEAUTHDEFER setting, and access failures
are intercepted by SAS rather than resulting in abends or system errors. Nonetheless,
FILEAUTHDEFER governs attempts by a SAS server to access a data set in a manner
not authorized for the ID under which the server is running. However, the unauthorized
access will be logged as having been attempted by the server ID, not the client ID.

FILEBLKSIZE(device-type)= System Option

Specifies the default maximum block size for external files

Default: varies by device type

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: File Control: EXTFILES

PROC OPTIONS GROUP= EXTFILES

z/OS specifics: all

Syntax
FILEBLKSIZE(device-type)=value

device-type
specifies any valid specific device number, as well as DASD, DISK, OTHER,
SYSOUT, TAPE, and TERM.

DASD or DISK
sets values for the device types 2301, 2303, 2305-1, 2305-2, 2311, 2314, 2321, 3330,
3330-1, 3340, 3350, 3375, 3380, 3390, and 9345.

OTHER
specifies the value that SAS uses when it is unable to determine the exact device
type.

SYSOUT
sets values for SYSOUT data sets.

TAPE
sets values for the 2400, 3400, 3480, 3490E, and 3590 device types.

TERM
sets values for data sets that are directed to the terminal.

430 FILECC System Option Chapter 18

value
specifies the default block size. Valid values are

number
specifies the block size that SAS is to use for the device.

OPT
tells SAS to choose an optimum block size for the device.

MAX or FULL
tells SAS to use the maximum permitted block size for the device.

HALF, THIRD, FOURTH, or FIFTH
instructs SAS to use the largest value that results in obtaining two, three, four,
and five blocks per track, respectively (if a disk device), or the maximum permitted
block size divided by two, three, four, and five, respectively (if not a disk device).

MIN
specifies the same as FIFTH above.

Details
The minimum value for FILEBLKSIZE(device-type)= is 5; the maximum value is device
dependent and can be obtained by using the DEFINE option on the PROC OPTIONS
statement. For example:

proc options option=fileblksize(3390) define;
run;

FILECC System Option

Specifies whether to treat data in column 1 of a printer file as carriage-control data when reading
the file

Default: NOFILECC

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: File Control: EXTFILES

PROC OPTIONS GROUP= EXTFILES

z/OS Specifics: all

Syntax
FILECC | NOFILECC

FILECC
specifies that data in column 1 of a printer file should be treated as carriage-control
data.

NOFILECC
indicates that data in column 1 of a printer file should be treated as data.

System Options under z/OS FILEDEV= System Option 431

FILEDEST= System Option

Specifies the default printer destination

Default: none
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: EXTFILES
PROC OPTIONS GROUP= EXTFILES
z/OS specifics: all

Syntax
FILEDEST=printer-destination

Details
The FILEDEST= system option specifies the default destination to be used for printer
data sets when the DEST= option is omitted. This can occur when the FILENAME
statement or FILENAME function does not have a DEST= value or when the form
being used does not have a DEST= value.

See Also

� “SYSOUT Data Set Options for the FILENAME Statement” on page 383

FILEDEV= System Option

Specifies the device name used for allocating new physical files

Default: SYSDA
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Categories: File Control: EXTFILES, File Control: SASFILES
PROC OPTIONS GROUPS= EXTFILES and SASFILES
z/OS specifics: all

Syntax
FILEDEV=device-name

Details
FILEDEV= specifies the device name to be used when dynamically allocating a new
physical file if device-type or UNIT= is not specified in the FILENAME statement or
FILENAME function, or if UNIT= is not specified in the LIBNAME statement or
LIBNAME function. Device names are site-specific.

432 FILEDIRBLK= System Option Chapter 18

FILEDIRBLK= System Option

Specifies the number of default directory blocks to allocate for new partitioned data sets

Default: 6

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: File Control: EXTFILES

PROC OPTIONS GROUP= EXTFILES

z/OS specifics: all

Syntax
FILEDIRBLK=n

Details
The FILEDIRBLK= system option specifies how many directory blocks to allocate for a
new partitioned data set when the SPACE= option is omitted from the FILENAME
statement or FILENAME function.

See Also

� “FILESPPRI= System Option” on page 438

� “FILESPSEC= System Option” on page 438

� “FILEUNIT= System Option” on page 441

FILEEXT= System Option

Specifies how to handle file extensions when accessing members of partitioned data sets

Default: IGNORE

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: File Control: EXTFILES

PROC OPTIONS GROUP= EXTFILES

z/OS specifics: all

Syntax
FILEEXT=VERIFY | IGNORE | INVALID | ASIS

VERIFY
verifies that the part of the name after the period corresponds to the last level of the
partitioned data set name.

System Options under z/OS FILEEXT= System Option 433

IGNORE
ignores the part of the name after the period and specifies that only the part before
the period is to be used.

INVALID
disallows any member name with an extension.

ASIS
accepts the member name as it is. These member names must conform to the
naming conventions of partitioned data sets.

Details
For compatibility with SAS on other platforms, the FILEEXT= system option enables
you to write portable SAS programs that will run on systems that support file
extensions and on systems that do not support file extensions.

Portable SAS programs can access external files with file extensions when you run
those programs in environments such as Windows and UNIX. When you run those
programs in z/OS, and when the program accesses members in partitioned data sets,
the value of FILEEXT= determines how the file extensions are interpreted.

Member names in partitioned data sets must consist of one to eight alphanumeric
characters starting with a letter or with one of the following national characters: $, #, @.
A member name extension is an optional part of the member name that follows a period.

Example of FILEEXT=VERIFY

In this example, SAS verifies that the part of the name that follows the period
corresponds to the last level of the partitioned data set name. If it does not, an error
message is written to the SAS log:

options fileext=verify;

/* allocate a PDS */
filename out2 ’myid.fileext.sas’ disp=old;
data _null_;

/* the member name is ’versas’*/
file out2(versas.sas);

put ’text’;
run;

Example of FILEEXT=IGNORE

Using the IGNORE value causes the extension, if present, to be ignored:

options fileext=ignore;

/* allocate a PDS */
filename out2 ’myid.fileext.testsrc’ disp=old;
data _null_;

/* the member name is ’dotnd’ */
file out2(dotnd.some);
put ’text’;

run;

434 FILEFORMS= System Option Chapter 18

Example of FILEEXT=ASIS

With the ASIS parameter, the member name is accepted as-is:

options fileext=asis;

/* allocate a PDS */
filename out2 ’myid.fileext.testsrc’ disp=old;
data _null_;

/* the member name is ’mem.as’ */
file out2(mem.as);
put ’text’;

run;

FILEFORMS= System Option

Specifies the default SYSOUT form for a print file

Default: none
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Log and Procedure Output Control: LISTCONTROL
PROC OPTIONS GROUP= LISTCONTROL
z/OS specifics: all

Syntax
FILEFORMS=operating-environment-form

Details
The FILEFORMS= system option specifies a default operating environment form using
one to four characters. The default form is used when a printer file is dynamically
allocated if FORMS= is not specified in the FILENAME statement or FILENAME
function.

Comparison
The FILEFORMS= option specifies operating environment forms, whereas the portable
FORMS= system option specifies the name of the default form that is used by the SAS
FORM subsystem. For information about the FORM subsystem and about the
FORMS= system option, see SAS Language Reference: Dictionary and “Using the
PRINT Command and the FORM Subsystem” on page 121.

FILELOCKS= System Option

Specifies whether file locking is on or off and what action should be taken if a file cannot be locked

System Options under z/OS FILEMOUNT System Option 435

Default: FAIL
Valid in: configuration file, SAS invocation
Category: File Control: EXTFILES
PROC OPTIONS GROUP= EXTFILES
z/OS specifics: all

Syntax
FILELOCKS= NONE | FAIL| CONTINUE

NONE
turns file locking off. SAS files are not protected from shared update access.

FAIL
turns file locking on. If a file cannot be locked, an attempt to open it fails.

CONTINUE
turns file locking on. If a file is already locked by someone else, an attempt to open it
fails. If the file cannot be locked for some other reason, the file is opened and a
warning message is sent to the log.

Details
When file locking is in effect, SAS prevents these situations:

� two SAS sessions simultaneously opening the same SAS file for update or output
� two SAS sessions accidentally using the same work subdirectory if they are

sharing the same work directory.

FILEMOUNT System Option

Specifies whether an off-line volume is to be mounted

Default: FILEMOUNT
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: EXTFILES
PROC OPTIONS GROUP= EXTFILES
z/OS specifics: all

Syntax
FILEMOUNT | NOFILEMOUNT

Details
This option applies to the allocation of external files. It tells SAS what to do when an
attempt is made to allocate a physical file on a volume that is offline.

If FILEMOUNT is in effect, a request is made to mount the volume. If
NOFILEMOUNT is in effect, then the volume is not mounted and the allocation fails.

436 FILEMSGS System Option Chapter 18

FILEMSGS System Option

Controls whether you receive expanded dynamic allocation error messages when you are
assigning a physical file

Default NOFILEMSGS

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: File Control: EXTFILES, File Control: SASFILES

PROC OPTIONS GROUP= EXTFILES and SASFILES

z/OS specifics: all

Syntax
FILEMSGS | NOFILEMSGS

Details
The FILEMSGS option applies to physical files that are referenced in either a
FILENAME statement or function or in a LIBNAME statement or function.

If FILEMSGS is in effect and you try to assign a data set that is allocated to another
user, SAS generates detailed error messages explaining why the allocation failed.
Under TSO, the messages are written to the display. The display is cleared and the
messages appear. You must press ENTER to return to your session in the windowing
environment. In batch mode, the messages are written to the job log.

If NOFILEMSGS is in effect, you will still receive some error messages in your SAS
log, but they may not be as detailed.

FILENULL System Option

Specifies whether zero-length records are written to external files

Default: FILENULL

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: File Control: EXTFILES

PROC OPTIONS GROUP= EXTFILES

z/OS specifics: all

Syntax
FILENULL | NOFILENULL

FILENULL
allows zero-length records to be written to external files. This is the default value.

System Options under z/OS FILEREUSE System Option 437

NOFILENULL
prevents zero-length records from being written to external files. This type of record
is ignored.

Details
If your file transfer program cannot handle zero-length records, you should specify
NOFILENULL before you create the file that you want to transfer.

FILEPROMPT System Option

Controls whether you are prompted if you reference a data set that does not exist

Default: FILEPROMPT (interactive); NOFILEPROMPT (batch)
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: EXTFILES, File Control: SASFILES
PROC OPTIONS GROUP= EXTFILES and SASFILES
z/OS specifics: all

Syntax
FILEPROMPT | NOFILEPROMPT

FILEPROMPT
specifies that you want to be prompted. The prompt allows you to create the data set
dynamically or to cancel the request. This is the default value in the interactive
environment.

NOFILEPROMPT
specifies that you do not want to be prompted. In this case, the data set is not
created, and your LIBNAME or FILENAME statement or function fails.

Details
The FILEPROMPT option controls whether you are prompted if the physical file that is
referenced in a FILENAME statement or function or in a LIBNAME statement or
function does not exist. This option has no effect in batch mode.

FILEREUSE System Option

Specifies whether to reuse an existing allocation for a file that is being allocated to a temporary
DDname

Default: NOFILEREUSE
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: EXTFILES

438 FILESPPRI= System Option Chapter 18

PROC OPTIONS GROUP= EXTFILES
z/OS specifics: all

Syntax
FILEREUSE | NOFILEREUSE

Details
If FILEREUSE is in effect and there is a request to allocate a file that is already
allocated, the existing allocation is used whenever the new allocation would cause a
temporary DDname (of the form @SASnnnn) to be generated.

FILESPPRI= System Option

Specifies the default primary space allocation for new physical files

Default: 1
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: EXTFILES, File Control: SASFILES
PROC OPTIONS GROUP= EXTFILES and SASFILES
z/OS specifics: all

Syntax
FILESPPRI=primary-space-size

Details
The default primary space is allocated in units that are specified by the FILEUNIT=
option. Use the FILESPSEC= option to specify secondary space allocation and the
FILEDIRBLK= option to specify the number of directory blocks to be allocated.

The value of this option is used if you omit the SPACE= option from the FILENAME
statement or function or from the LIBNAME statement or function when creating a
new physical file.

The range of acceptable values for FILESPPRI= is 1-32760.

FILESPSEC= System Option

Specifies the default secondary space allocation for new physical files

Default: 1
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

System Options under z/OS FILESYSOUT= System Option 439

Category: File Control: EXTFILES, File Control: SASFILES
PROC OPTIONS GROUP= EXTFILES and SASFILES
z/OS specifics: all

Syntax
FILESPSEC=secondary-space-size

Details
The default secondary space is allocated in units that are specified by the FILEUNIT=
system option. Use the FILESPPRI= option to specify primary space allocation, and use
the FILEDIRBLK= option to specify the number of directory blocks to allocate.

The value of this option is used if you omit the SPACE= option in the FILENAME
statement or function or in the LIBNAME statement or function when creating a new
physical file.

The range of acceptable values is 0-32760.

FILESTAT System Option

Specifies whether ISPF statistics will be written

Default: NOFILESTAT
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: EXTFILES
PROC OPTIONS GROUP= EXTFILES
z/OS specifics: all

Syntax
FILESTAT | NOFILESTAT

Details
FILESTAT causes ISPF statistics to be written in the directory entry for a new member
of a partitioned data set, or updated for an existing member that already contains ISPF
statistics. NOFILESTAT suppresses ISPF statistics.

FILESYSOUT= System Option

Specifies the default SYSOUT CLASS for a printer file

Default: Z

440 FILESYSTEM= System Option Chapter 18

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Log and Procedure Output Control: LISTCONTROL
PROC OPTIONS GROUP= LISTCONTROL
z/OS specifics: all

Syntax
FILESYSOUT=sysout-class

sysout-class
is a single character (number or letter only). Valid classes are site dependent. At
some sites, data center personnel may have set up a default class that cannot be
overridden.

Details
The FILESYSOUT= option specifies the default SYSOUT CLASS that will be used
when a printer file is allocated dynamically and when the SYSOUT= option is omitted
from the FILENAME statement or FILENAME function.

FILESYSTEM= System Option

Specifies the default file system used when the filename is ambiguous

Default: MVS
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: EXTFILES
PROC OPTIONS GROUP= EXTFILES
z/OS specifics: all

Syntax
FILESYSTEM=MVS | HFS

MVS
specifies that the filesystem is native z/OS, which includes partitioned data sets
(PDS, PDSE).

HFS
specifies the hierarchical file system of UNIX System Services.

Details
The FILESYSTEM= system option specifies the file system that is used when the
physical filename is valid in both file systems. For example:

System Options under z/OS FILEVOL= System Option 441

options filesystem=’HFS’;

/* resolves to a UNIX System Services */
/* path, such as /homedir/hfs.file */

filename myhfs ’hfs.file’;

See Also

� “How SAS Determines Device Types” on page 87

FILEUNIT= System Option

Specifies the default unit of allocation for new physical files

Default: CYLS

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: File Control: EXTFILES, File Control: SASFILES
PROC OPTIONS GROUP= EXTFILES and SASFILES

z/OS specifics: all

Syntax
FILEUNIT=unit-type

unit-type
specifies the unit of allocation. Valid values include BLK, BLKS, CYL, CYLS, TRK,
and TRKS, or an integer. The default is CYLS. If an integer is specified, it is the
block size that will be used for the allocation.

Details
The FILEUNIT= option specifies the default unit of allocation that will be used for new
physical files if the SPACE= option is not specified in either the FILENAME statement
or function or the LIBNAME statement or function.

FILEVOL= System Option

Specifies which VOLSER to use for new physical files.

Default: none
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: File Control: EXTFILES, File Control: SASFILES

PROC OPTIONS GROUP= EXTFILES and SASFILES

z/OS specifics: all

442 FILSZ System Option Chapter 18

Syntax
FILEVOL=volser | (volser-1 . . . volser-n)

volser
specifies 1 to 30 volume serial numbers (VOLSERs); the VOLSERs can be separated
by blanks or commas. A VOLSER is a six-character name of a z/OS DASD or tape
volume. The name contains one to six alphanumeric or special characters. VOLSERs
are site-specific.

Details
The FILEVOL= option specifies the default VOLSER that will be used for allocating
new physical files if the VOL= option is omitted from the FILENAME statement or
function or from the LIBNAME statement or function.

Parentheses are required if more than one VOLSER is specified.

FILSZ System Option

Specifies that the host sort utility supports the FILSZ parameter

Default: FILSZ

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Sort: SORT

PROC OPTIONS GROUP= SORT

z/OS specifics: all

Syntax
FILSZ | NOFILSZ

FILSZ
specifies that the host sort utility supports the FILSZ parameter. SAS uses the
FILSZ= option in the SORT control statement that it generates and passes to the
sort program. FILSZ is more efficient than the SIZE parameter.

NOFILSZ
specifies that the host sort utility does not support the FILSZ parameter. SAS uses
the SIZE= option in the SORT control statement that it generates and passes to the
sort utility program.

Details
If a program product sort utility that supports the FILSZ parameter is installed,
specifying the FILSZ option increases the sort efficiency.

System Options under z/OS FSBCOLOR System Option 443

See Also

� Refer to your site’s sort utility documentation.

FONTSLOC= System Option

Specifies the location of the files that contain the SAS fonts

Default: NULL
Valid in: SAS invocation
PROC OPTIONS GROUP= ENVDISPLAY
z/OS specifics: all
See: FONTSLOC= System Option in SAS Language Reference: Dictionary

Syntax
FONTSLOC=high level qualifier(s) | HFS directory path

high level qualifier(s)
specified when the SAS supplied font files are stored in native MVS files.

HFS directory path
specified if the font files are saved in an HFS directory.

Details
SAS distributes font files for use by the universal printer GIF driver as native z/OS files
with the following characteristics:

� Data Set Organization (DSORG) = PS
� Record Format (RECFM) = FBS
� Logical Record Length (LRECL) = 1.

If the font files were installed into SAS9.SASMONO.TTF and
SAS9.SASMONOB.TTF, specify FONTSLOC=SAS9 at SAS invocation.

These font files can be copied to the HFS file system if it is available at your site. In
this case, the specification for the FONTSLOC= option would be similar to
FONTSLOC=‘/sas9/fonts’, assuming that the font files were saved in this directory.

FSBCOLOR System Option

Specifies whether you can set background colors in SAS windows on vector graphics devices

Default: NOFSBCOLOR
Valid in: configuration file, SAS invocation
Category: Environment Control: ENVDISPLAY
PROC OPTIONS GROUP= ENVDISPLAY

444 FSBORDER= System Option Chapter 18

z/OS specifics: all

Syntax
FSBCOLOR | NOFSBCOLOR

FSBCOLOR
enables you to set the background color in your SAS windows. For example, if you
specify FSBCOLOR when you invoke SAS, you can issue commands such as the
following in any SAS window:

color back blue

This command sets the background color to blue.
Use the FSBCOLOR option only on vector graphics devices. The FSBCOLOR

system option is ignored if you specify it on a program symbols device, and you will
receive an error message if you try to set the background color of a window.

NOFSBCOLOR
specifies that no background colors are to be used. This is the default value on all
devices.

Details
Nongraphics terminals and program symbols graphics terminals, such as the IBM 3279,
the PC 3270 emulators, and the Tektronix 4205, do not allow you to set the background
color of individual windows; the background color is always black. Vector graphics
terminals such as the IBM 3179G, 3192G, and 3472G allow you to set the background
color.

FSBORDER= System Option

Specifies what type of symbols are to be used in borders

Default: BEST

Valid in: configuration file, SAS invocation

Category: Environment Control: ENVDISPLAY

PROC OPTIONS GROUP= ENVDISPLAY

z/OS specifics: all

Syntax
FSBORDER=BEST | PS | APL | NONE

BEST
tells SAS to choose the border symbols based on the type of terminal you are using.

System Options under z/OS FSMODE= System Option 445

PS
tells SAS to use programmed symbols for border symbols in the windowing
environment.

APL
tells SAS to use APL symbols.

NONE
indicates that no special border symbols are to be used (normal text is used).

Details
The FSBORDER= system option specifies what type of symbols are to be used in
window borders and other widgets.

FSDEVICE= System Option

Specifies the full-screen device driver for your terminal

Default: none
Valid in: configuration file, SAS invocation
Alias: FSD=
Category: Environment Control: ENVDISPLAY
PROC OPTIONS GROUP= ENVDISPLAY
z/OS specifics: all
See: SAS Language Reference: Dictionary

Syntax
FSDEVICE=device-name

Details
The value of the FSDEVICE= system option is needed to run windowing procedures. See
“Terminal Support in the z/OS Environment” on page 568 for a list of all devices that
are supported by the SAS terminal-based interactive windowing system under z/OS.

FSMODE= System Option

Specifies the full-screen data stream type

Default: IBM
Valid in: configuration file, SAS invocation
Catergory: Environment Control: ENVDISPLAY
PROC OPTIONS GROUP= ENVDISPLAY

446 FULLSTATS System Option Chapter 18

z/OS specifics: all

Syntax
FSMODE=data-stream-type

data-stream-type
is the name of an acceptable data stream type. Valid values are

IBM
is the default.

FACOM | FUJITSU
specifies the F6683 data stream, which can be used for F6683 and F6653 terminals.

HITAC | HITACHI
specifies the T560/20 data stream, which can be used for T560/20, H2020, and
H2050 terminals.

Details
The FSMODE= system option specifies the type of IBM 3270 data stream for the
terminal. An incorrect setting of this option can cause a 3270 data stream program
check or a system abend.

FULLSTATS System Option

Specifies to write expanded statistics to the SAS log

Default: NOFULLSTATS

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Alias: FULLSTIMER

Category: Log and Procedure Output Control: LOGCONTROL, System Administration:
PERFORMANCE

PROC OPTIONS GROUP= LOGCONTROL

z/OS specifics: all

Syntax
FULLSTATS | NOFULLSTATS

FULLSTATS
tells SAS to write expanded statistics to the SAS log.

NOFULLSTATS
tells SAS not to write expanded statistics to the SAS log.

System Options under z/OS GHFONT= System Option 447

Details
The STATS, FULLSTATS, STIMER, and MEMRPT system options control the resource
usage statistics that are written to the SAS log for each SAS step.

The STATS system option controls whether any statistics are listed and provides a
quick way to turn off all resource usage Notes. The STIMER and MEMRPT system
options specify the type of statistics that are reported. The FULLSTATS system option
controls whether just one line of CPU time and/or memory resource statistics is listed,
or whether expanded statistics are listed on multiple lines.

Expanded statistics for STIMER include CPU time, elapsed time, EXCP count, and
possibly RSM hiperspace time (the hiperspace time is listed only if it is not zero).

Expanded statistics for MEMRPT include program memory and data memory usage
for the step and program memory and data memory usage for the entire SAS session.

See Also

� “MEMRPT System Option” on page 477
� “STATS System Option” on page 513
� “STIMER System Option” on page 514
� “Collecting Performance Statistics” on page 212

GHFONT= System Option

Specifies the default graphics hardware font

Default: none
Valid in: configuration file, SAS invocation
Category: Environment Control: ENVDISPLAY
PROC OPTIONS GROUP= ENVDISPLAY
z/OS specifics: all

Syntax
GHFONT=font-specification

Examples of values for font-specification are

F6X9
specifies characters that are 6 pixels wide and 9 pixels high.

F9X12
specifies characters that are 9 pixels wide and 12 pixels high.

I6X9
specifies an italic font with characters that are 6 pixels wide and 9 pixels high.

See your system administrator for a complete list of fonts that are available to you.

Details
The GHFONT= option specifies the default hardware font in graphics. It applies only to
vector graphics devices that support stroke precision in the vector graphics symbol set
(for example, IBM terminals such as 3179G, 3192G, and 3472G).

448 HELPADDR= System Option Chapter 18

This option is used with SAS software products where you can specify a smaller font
and display more information in the tables on the display.

HELPADDR= System Option

Specifies the location of the remote help Webdoc application

Default: NULL
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Help
PROC OPTIONS GROUP= HELP
z/OS specifics: all

Syntax
HELPADDR=address

address
specifies the location of the remote help Webdoc application that will provide the help
HTML pages to the browser. Quotation marks or parentheses are required. The
maximum number of characters is 2048. An example of an address is "http://
myhelpserver:8080/SASDoc".

See Also
� “HELPBROWSER= System Option” on page 448
� “HELPHOST System Option” on page 449
� “HELPPORT System Option” on page 452
� “Setting Up the Remote Help System” on page 27

HELPBROWSER= System Option

Specifies whether you want to use the remote help or the traditional itemstore help

Default: REMOTE
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Help
PROC OPTIONS GROUP= HELP
z/OS specifics: all

Syntax
HELPBROWSER= REMOTE | SAS

System Options under z/OS HELPHOST System Option 449

REMOTE
specifies to use the remote browser for the help. The location of the remote browser
is determined by the HELPHOST and HELPPORT system options.

SAS
specifies to use the SAS browser for the help.

See Also
� “HELPADDR= System Option” on page 448
� “HELPHOST System Option” on page 449
� “HELPPORT System Option” on page 452
� “Setting Up the Remote Help System” on page 27

HELPCASE System Option

Controls how text is displayed in the help browser

Default: NOHELPCASE
Valid in: configuration file, SAS invocation
Category: Environment Control: ENVDISPLAY
PROC OPTIONS GROUP= HELP
z/OS specifics: all

Syntax
HELPCASE | NOHELPCASE

Details
If HELPCASE is specified, then the help browser will display text in uppercase letters.
When NOHELPCASE is in effect, mixed-case text is used.

HELPHOST System Option

Specifies the name of the computer where the remote help browser is running

Default: NULL
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Help
PROC OPTIONS GROUP= HELP
z/OS specifics: all

Syntax
HELPHOST=host

450 HELPINDEX= System Option Chapter 18

host
specifies the name of the computer where the remote help is to be displayed.
Quotation marks or parentheses are required. The maximum number of characters is
2048.

Details
If you do not specify the HELPHOST option, and the HELPBROWSER system option is
set to REMOTE, then you will see an HTML page in the SAS session with remote help
instructions.

See Also
� “HELPADDR= System Option” on page 448

� “HELPBROWSER= System Option” on page 448

� “HELPPORT System Option” on page 452

� “Setting Up the Remote Help System” on page 27

HELPINDEX= System Option

Specifies one or more index files to be used by SAS Help

Default: /help/common.hlp/index.txt, /help/common.hlp/keywords.htm,
common.hhk

Valid in: configuration file, SAS invocation

PROC OPTIONS GROUP= HELP

z/OS specifics: HTML files must reside in the path specified by the HELPLOC= option

Syntax
HELPINDEX=index-pathname-1 < index-pathname-2 < index-pathname-3>>

index-pathname
specifies the partial pathname for the index that is to be used by SAS Help. The
index-pathname can be any or all of the following:

/help/applet-index-filename
specifies the partial pathname of the index file that is to be used by the SAS Help
Java applet in a UNIX environment. applet-index-filename must have a file
extension of .txt, and it must reside in a path that is specified by the HELPLOC=
system option. The default is /help/common.hlp/index.txt.

See the default index file for the format that is required for an index file.

/help/accessible-index-filename
specifies the partial pathname of an accessible index file that is to be used by SAS
Help in UNIX, OpenVMS, or z/OS environments. An accessible index file is an
HTML file that can be used by Web browsers. accessible-index-filename must have
a file extension of .htm, and it must reside in a path that is specified by the

System Options under z/OS HELPLOC= System Option 451

HELPLOC= system option. The default pathname is /help/common.hlp/
keywords.htm.

See the default index file for the format that is required for an index file.

HTML-Help-index-pathname
specifies the pathname of the Microsoft HTML Help index that is to be used by
SAS Help in Windows environments. The default pathname is common.hhk. For
information on creating an index for Microsoft HTML Help, see your Microsoft
HTML Help documentation.

Details
Use the HELPINDEX= option if you have a customized index that you want to use in
place of the index supplied by SAS. If you use one configuration file to start SAS in
more than one operating environment, you can specify all of the partial pathnames in
the HELPINDEX= option.The order of the pathnames is not important, although only
one pathname of each type can be specified.

When the HELPINDEX= option specifes a pathname for UNIX, OpenVMS, or z/OS
operating environments, SAS determines the complete path by replacing /help/ in the
partial pathname with the pathname specified in the HELPLOC= option. If the
HELPLOC= option contains more than one pathname, SAS searches each path for the
index file.

For example, when the value of HELPINDEX= is /help/common.hlp/myindex.htm
and the value of HELPLOC= is /u/myhome/myhelp, the complete path to the index is /
u/myhome/myhelp/common.hlp/myindex.htm.

See Also

� “HELPLOC= System Option” on page 451

HELPLOC= System Option
Specifies the location of the text and index files for the facility that is used to view SAS Help and
Documentation

Default: HELPDOC
Valid in: configuration file, SAS invocation
Category: Environment Control: ENVFILES
PROC OPTIONS GROUP= HELP
z/OS specifics: all

Syntax
HELPLOC=<(>location-1<,location-2,...,location-n><)>

location
specifies a specially formatted help data set known as an itemstore.

Details
Specifying a value for the HELPLOC= system option causes SAS to insert that value at
the start of a concatenated list of values, the last of which is the default value

452 HELPPORT System Option Chapter 18

HELPLOC. This enables you to access the help for your site without losing access to
SAS Help and Documentation.

For example, after two specifications of HELPLOC=, the value of the system option is
of the following form:

(helploc-specification-2, helploc-specification-1, HELPDOC)

Both of the specifications in the example above could consist of concatenated lists of
itemstore file specifications.

See Also

� “Using User-Defined Help” on page 32

� “ITEMS Procedure” on page 317

HELPPORT System Option

Specifies the port number for the remote help client

Default: 3755

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Help

PROC OPTIONS GROUP= HELP

z/OS specifics: all

Syntax
HELPPORT=port-number

port-number
specifies the port-number that the remote help browser server is listening on. Valid
values range from 0 to 65535.

See Also
� “HELPADDR= System Option” on page 448

� “HELPBROWSER= System Option” on page 448

� “HELPHOST System Option” on page 449
� “Setting Up the Remote Help System” on page 27

HELPTOC= System Option

Specifies the table of contents files to be used by SAS Help

Default: /help/common.hlp/contents.txt, /help/common.hlp/toc.htm, common.hhc

Valid in: configuration file, SAS invocation

System Options under z/OS HELPTOC= System Option 453

PROC OPTIONS GROUP= HELP
z/OS specifics: HTML files must reside in the path specified by the HELPLOC= option

Syntax
HELPTOC=TOC-pathname-1 < TOC-pathname-2 < TOC-pathname-3>>

TOC-pathname
specifies a partial pathname for the table of contents that is to be used by SAS Help.
The TOC-pathname can be any or all of the following:

/help/applet-TOC-filename
specifies the partial pathname of the table of contents file that is to be used by the
SAS Help Java applet in a UNIX environment. applet-TOC-filename must have a
file extension of .txt, and it must reside in a path that is specified by the
HELPLOC= system option. The default is /help/helpnav.hlp/contents.txt.

See the default table of contents file for the format that is required for an index
file.

/help/accessible-TOC-filename
specifies the partial pathname of an accessible table of contents file that is to be
used by SAS Help in UNIX, OpenVMS, or z/OS environments. An accessible table
of contents file is an HTML file that can be used by Web browsers.
accessible-TOC-filename must have a file extension of .htm, and it must reside in a
path that is specified by the HELPLOC= system option. The default pathname is
/help/common.hlp/toc.htm.

See the default table of contents file for the format that is required for a table of
contents.

HTML-Help-TOC-pathname
specifies the complete pathname to the Microsoft HTML Help table of contents
that is to be used by SAS Help in Windows environments. The default pathname
is common.hhc. For information on creating an index for Microsoft HTML Help,
see your Microsoft HTML Help documentation.

Details
Use the HELPTOC= option if you have a customized table of contents that you want to
use in place of the table of contents supplied by SAS. If you use one configuration file to
start SAS in more than one operating environment, you can specify all of the partial
pathnames in the HELPTOC= option. The order of the pathnames is not important,
although only one pathname of each type can be specified.

When the HELPTOC= option specifes the pathname for UNIX, OpenVMS, and z/OS
operating environments, SAS determines the complete path by replacing /help/ in the
partial pathname with the pathname specified in the HELPLOC= option. If the
HELPLOC= option contains more than one pathname, SAS searches each path for the
table of contents.

For example, when the value of HELPTOC= is /help/common.hlp/mytoc.htm and
the value of HELPLOC= is /u/myhome/myhelp, the complete path to the table of
contents is /u/myhome/myhelp/common.hlp/mytoc.htm.

454 HSLXTNTS= System Option Chapter 18

See Also

� “HELPLOC= System Option” on page 451

HSLXTNTS= System Option
Specifies the size of each physical hiperspace that is created for a SAS data library

Default: 1,500
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: SASFILES
PROC OPTIONS GROUP= SASFILES
z/OS specifics: all

Syntax
HSLXTNTS=value

Details
The HSLXTNTS= option specifies the size, in pages, of each physical hiperspace that is
created for a SAS data library with the HIPERSPACE option in the LIBNAME
statement or LIBNAME function. These physical hiperspaces are analogous to physical
data set extents in that when one is filled, another is obtained. They are logically
combined internally to form a single logical hiperspace representing a library.

The value that you specify must be in the range 0 to 2,147,483,647. If you specify 0,
SAS uses the value 1,800. Check with your system administrator for any site-specific
maximum number of pages you may have.

See Also

� “Optimizing I/O” on page 213
� Tuning SAS Applications in the MVS Environment, by Michael Raithel

HSMAXPGS= System Option

Specifies the maximum number of hiperspace pages allowed in a SAS session

Default: 75,000
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: SASFILES
PROC OPTIONS GROUP= SASFILES
z/OS specifics: all

Syntax
HSMAXPGS=value

System Options under z/OS HSMAXSPC= System Option 455

Details
The HSMAXPGS= option specifies the maximum number of hiperspace pages that can
be allocated in a single SAS session for all hiperspaces. The value of the HSMAXPGS=
option is equal to the product of the values of the HSLXTNTS= and HSMAXSPC=
options.

The value that you specify must be in the range 0 to 2,147,483,647. If you specify 0,
SAS allocates 1,920 blocks of hiperspace to the library. Check with your system
administrator for any site-specific maximum number of pages you may have.

If you are responsible for controlling resource use at your site and you are concerned
with hiperspace usage, you can use the IBM SMF installation exit, IEFUSI, to limit the
hiperspace resources that are available to users.

See Also

� “Optimizing I/O” on page 213
� Tuning SAS Applications in the MVS Environment, by Michael Raithel

HSMAXSPC= System Option

Specifies the maximum number of hiperspaces allowed in a SAS session

Default: 50
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: SASFILES
PROC OPTIONS GROUP= SASFILES
z/OS specifics: all

Syntax
HSMAXSPC=value

Details
The HSMAXSPC= option specifies the maximum number of physical hiperspaces (each
of which has the size specified by the HSLXTNTS= option) that can be allocated in a
single SAS session.

The value that you specify must be in the range 0 to 2,147,483,647. If you specify
zero, SAS allocates 1,920 blocks of VIO for the library. Check with your system
administrator for any site-specific maximum number of hiperspaces you may have.

See Also

� “Optimizing I/O” on page 213
� Tuning SAS Applications in the MVS Environment, by Michael Raithel

456 HSSAVE System Option Chapter 18

HSSAVE System Option

Controls how often the DIV data set pages are updated when a DIV data set backs a hiperspace
library

Default: HSSAVE
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: SASFILES
PROC OPTIONS GROUP= SASFILES
z/OS specifics: all

Syntax
HSSAVE | NOHSSAVE

HSSAVE
specifies that the DIV data set pages are updated every time SAS writes to the
hiperspace.

NOHSSAVE
specifies that the DIV data set pages are updated only when the library is closed. A
SAS data library is closed when you clear the library specification or when you end
your SAS session.

Details
Note: DIV data sets are also referred to as VSAM linear data sets. �

The HSSAVE default provides the best protection from data loss during
programming. During execution of tested programs, you might want to improve
performance by specifying NOHSSAVE. The performance improvement results from a
decrease in the number of I/O operations to the DIV data set. However, you should not
specify NOHSSAVE unless you are willing to risk losing changes. You may lose changes
if the library is not closed before a job terminates abnormally.

See Also

� “Optimizing I/O” on page 213
� Tuning SAS Applications in the MVS Environment, by Michael Raithel

HSWORK System Option

Tells SAS to place the WORK data library in a hiperspace

Default: NOHSWORK
Valid in: configuration file, SAS invocation
Category: File Control: SASFILES
PROC OPTIONS GROUP= SASFILES

System Options under z/OS ISPCAPS System Option 457

z/OS specifics: all

Syntax
HSWORK | NOHSWORK

Details
HSWORK indicates that a hiperspace should be used for the WORK data library.
Specifying NOHSWORK indicates that the WORK data library will not be a hiperspace.

NOHSWORK is the default setting for this option, and this default is probably
suitable for most of your programming needs. However, there may be times when you
want to place the WORK data library in a hiperspace. For example, the performance of
programs (with regard to elapsed time) that perform only output operations to the
WORK data library may improve significantly when the WORK data library is a
hiperspace library. The performance of programs that perform a mixture of input,
output, and update operations usually does not show a significant improvement in
elapsed time.

Note: The effect on performance of using a hiperspace for WORK data sets is
site-dependent. Your system administrator may want to make recommendations based
on investigation of this issue for your site. �

See Also

� “Optimizing I/O” on page 213
� Tuning SAS Applications in the MVS Environment, by Michael Raithel

ISPCAPS System Option

Specifies whether to convert to uppercase printable ISPF parameters that are used in CALL
ISPEXEC and CALL ISPLINK

Default: NOISPCAPS
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Host Interfaces: ISPF
PROC OPTIONS GROUP= ISPF
z/OS specifics: all

Syntax
ISPCAPS | NOISPCAPS

Details
If ISPCAPS is in effect, then the values of variables and literals that are used as
parameters are passed to ISPF in uppercase.

458 ISPCHARF System Option Chapter 18

If NOISPCAPS is in effect, then the caller must ensure that the parameters are in
the proper case. The names of most ISPF parameters must be in uppercase.

The following example shows two ISPLINK calls. The first turns on the ISPCAPS
option. As a result, the parameters that are specified in lowercase in the second
ISPLINK call are passed to ISPF in uppercase.

DATA _NULL_;
CALL ISPLINK(’SAS’,’ISPCAPS’);
CALL ISPLINK(’display’, ’dmiem1’);
RUN;

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

� “SAS Interface to ISPF” on page 184

ISPCHARF System Option

Specifies whether the values of SAS character variables are converted using their explicit
informats or formats each time they are used as ISPF variables

Default: NOISPCHARF

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Host Interfaces: ISPF

PROC OPTIONS GROUP= ISPF

z/OS specifics: all

Syntax

ISPCHARF | NOISPCHARF

Details

If ISPCHARF is specified, then formats and informats are used for SAS character
variables that have been defined to ISPF via the SAS VDEFINE user exit. If
NOISPCHARF is in effect, then formats and informats are not used for these SAS
character variables.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

� “SAS Interface to ISPF” on page 184

System Options under z/OS ISPEXECV= System Option 459

ISPCSR= System Option
Tells SAS to set an ISPF variable to the name of a variable whose value is found to be invalid

Default: none
Valid in: configuration file, SAS invocation
Category: Host Interfaces: ISPF
PROC OPTIONS GROUP= ISPF
z/OS specifics: all

Syntax
ISPCSR=variable-name

Details
The ISPF variables that are specified by both ISPCSR= and ISPMSG= are set by the
SAS VDEFINE user exit whenever the exit finds an ISPF variable that has a zero
length, or whenever the SAS informat that is associated with the variable finds the
value invalid. SAS uses the VDEFINE user exit to define variable-name as a character
variable length of eight, placing it in the explicit function pool.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

� “SAS Interface to ISPF” on page 184

ISPEXECV= System Option
Specifies the name of an ISPF variable that passes its value to an ISPF service

Default: none
Valid in: configuration file, SAS invocation
Category: Host Interfaces: ISPF
PROC OPTIONS GROUP= ISPF
z/OS specifics: all

Syntax
ISPEXECV=variable-name

Details
When accessed, the variable contains the return code for the service request. SAS uses
the VDEFINE user exit to define variable-name as a character variable of length two,
placing it in the explicit function pool.

460 ISPMISS= System Option Chapter 18

For example, if ISPEXECV=SASEXEC, then you could do the following from an ISPF
panel:

&SASEXEC = ’DISPLAY PANEL (XXX)’

IF (&SASEXEC = ’00’) ...

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

� “SAS Interface to ISPF” on page 184

ISPMISS= System Option

Specifies the value assigned to SAS character variables defined to ISPF when the associated ISPF
variable has a length of zero

Default: none

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Host Interfaces: ISPF

PROC OPTIONS GROUP= ISPF

z/OS specifics: all

Syntax

ISPMISS=value

Details

When the ISPF variable has a length of zero, the value of ISPMISS= is the value that is
assigned to SAS character variables defined to ISPF via the SAS VDEFINE user exit
that have explicit formats or informats associated with them. The specified value must
be one byte in length.

Note: The specified value is substituted only if the SAS system option ISPCHARF is
in effect when the variable is identified to ISPF via VDEFINE. (See “ISPCHARF
System Option” on page 458.) �

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

� “SAS Interface to ISPF” on page 184

System Options under z/OS ISPNOTES System Option 461

ISPMSG= System Option

Tells SAS to set an ISPF variable to a message ID when a variable is found to be invalid

Default: none
Valid in: configuration file, SAS invocation
Category: Host Interfaces: ISPF
PROC OPTIONS GROUP= ISPF
z/OS specifics: all

Syntax
ISPMSG=variable-name

Details
The ISPF variables that are specified by both ISPMSG= and ISPCSR= are set by the
VDEFINE user exit whenever the exit finds an ISPF variable that has a zero length, or
whenever the SAS informat that is associated with the variable finds the value invalid.
The SAS VDEFINE user exit identifies variable-name to ISPF as a character variable
length of eight, placing it in the explicit function pool.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

� “SAS Interface to ISPF” on page 184

ISPNOTES System Option

Specifies whether ISPF error messages are to be written to the SAS log

Default: NOISPNOTES
Category: Host Interfaces: ISPF, Log and Procedure Output Control: LOGCONTROL
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
PROC OPTIONS GROUP= LOGCONTROL and ISPF
z/OS specifics: all

Syntax
ISPNOTES | NOISPNOTES

Details
If ISPNOTES is specified, then ISPF error messages are written to the SAS log. If
NOISPNOTES is in effect, then ISPF error messages are not written to the SAS log.

462 ISPNZTRC System Option Chapter 18

The ISPTRACE option overrides the NOISPNOTES option, so all messages are
written to the SAS log when ISPTRACE is specified.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

� “SAS Interface to ISPF” on page 184

ISPNZTRC System Option

Specifies whether nonzero ISPF service return codes are to be written to the SAS log

Default: NOISPNZTRC
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Host Interfaces: ISPF, Log and Procedure Output Control: LOGCONTROL
PROC OPTIONS GROUP= LOGCONTROL and ISPF
z/OS specifics: all

Syntax
ISPNZTRC | NOISPNZTRC

Details
If ISPNZTRC is specified, nonzero ISPF service return codes are written to the SAS log.
If NOISPNZTRC is in effect, then nonzero ISPF service return codes are not written to
the SAS log.

To display all parameter lists and return codes in the SAS log, use the ISPTRACE
option instead of ISPNZTRC.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

� “SAS Interface to ISPF” on page 184

ISPPT System Option

Specifies whether ISPF parameter value pointers and lengths are to be written to the SAS log

Default: NOISPPT
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Host Interfaces: ISPF, Log and Procedure Output Control: LOGCONTROL
PROC OPTIONS GROUP= LOGCONTROL and ISPF
z/OS specifics: all

System Options under z/OS ISPTRACE System Option 463

Syntax
ISPPT | NOISPPT

Details
The ISPPT option is used for debugging. If ISPPT is specified, then ISPF parameter
value pointers and lengths are displayed. If NOISPPT is in effect, then ISPF parameter
value pointers and lengths are not displayed.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

� “SAS Interface to ISPF” on page 184

ISPTRACE System Option

Specifies whether the parameter lists and service return codes are to be written to the SAS log

Default: NOISPTRACE
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Host Interfaces: ISPF, Log and Procedure Output Control: LOGCONTROL
PROC OPTIONS GROUP= LOGCONTROL and ISPF
z/OS specifics: all

Syntax
ISPTRACE | NOISPTRACE

Details
If ISPTRACE is specified, then all ISPF service calls and return codes are written to
the SAS log. Fixed binary parameters are written to the SAS log, converted to decimal
display. After a VDEFINE or VDELETE service request, the list of currently defined
SAS variables is written to the SAS log.

If NOISPTRACE is in effect, then ISPF service calls and return codes are not written
to the SAS log.

Note: The ISPTRACE option can be set based on the value of the ISPF variable
named DMITRACE. In the following example, if the DMITRACE value is YES, then
ISPTRACE will be in effect. If the DMITRACE value is NO, then NOISPTRACE will be
in effect. �

CALL ISPLINK(’DMI’,’*ISPTRACE’);

464 ISPVDEFA System Option Chapter 18

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

� “SAS Interface to ISPF” on page 184

ISPVDEFA System Option

Specifies whether all current SAS variables are to be identified to ISPF via the SAS VDEFINE user
exit

Default: NOISPVDEFA

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Host Interfaces: ISPF

PROC OPTIONS GROUP= ISPF

z/OS specifics: all

Syntax
ISPVDEFA | NOISPVDEFA

Details
If ISPVDEFA is specified, then all current SAS variables are identified to ISPF via the
SAS VDEFINE user exit. If an explicit VDEFINE service request is issued, then any
variables that it specifies will be defined twice.

If NOISPVDEFA is in effect, then only those variables that are passed explicitly to
the VDEFINE user exit will be defined.

To display information on ISPF options, use PROC OPTIONS GROUP=ISPF.

See Also

� “SAS Interface to ISPF” on page 184

ISPVDLT System Option

Specifies whether VDELETE is executed before each SAS variable is identified to ISPF via VDEFINE

Default: NOISPVDLT

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Host Interfaces: ISPF

PROC OPTIONS GROUP= ISPF

z/OS specifics: all

System Options under z/OS ISPVDTRC System Option 465

Syntax
ISPVDLT | NOISPVDLT

Details
If ISPVDLT is specified, then each SAS variable is deleted from ISPF with the
VDELETE user exit before it is identified to ISPF with VDEFINE. This prevents a SAS
variable from being identified to ISPF more than once in any SAS DATA step.

If NOISPVDLT is in effect, then SAS variables are not deleted from ISPF before they
are defined. This may cause SAS variables to be defined to ISPF more than once in a
SAS DATA step.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

� “SAS Interface to ISPF” on page 184

ISPVDTRC System Option

Specifies whether to trace every VDEFINE for SAS variables

Default: NOISPVDTRC

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Host Interfaces: ISPF, Log and Procedure Output Control: LOGCONTROL

PROC OPTIONS GROUP= LOGCONTROL and ISPF

z/OS specifics: all

Syntax
ISPVDTRC | NOISPVDTRC

Details
Tracing means that, as each SAS variable is identified to ISPF with the SAS VDEFINE
user exit, its name, its VDEFINE length, and any nonzero ISPF return codes are
written to the SAS log.

If NOISPVDTRC is in effect, then no information is written to the SAS log when a
SAS variable is identified to ISPF via VDEFINE. The NOISPVDTRC setting is useful
when many variables are defined with one service request because SAS actually issues
multiple VDEFINE requests (one for each variable).

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

466 ISPVIMSG= System Option Chapter 18

See Also

� “SAS Interface to ISPF” on page 184

ISPVIMSG= System Option

Specifies the ISPF message ID that is to be set by the SAS VDEFINE user exit when the informat
for a variable returns a nonzero return code

Default: none
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Host Interfaces: ISPF
PROC OPTIONS GROUP= ISPF
z/OS specifics: all

Syntax
ISPVIMSG=message-ID

Details
The message ID is stored in the ISPF variable that is specified by the ISPMSG= option.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

� “SAS Interface to ISPF” on page 184

ISPVRMSG= System Option

Specifies the ISPF message ID that is to be set by the SAS VDEFINE user exit when a variable has
a null value

Default: none
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Host Interfaces: ISPF
PROC OPTIONS GROUP= ISPF
z/OS specifics: all

Syntax
ISPVRMSG=message-ID

System Options under z/OS ISPVTNAM= System Option 467

Details
The message ID is stored in the ISPF variable that is specified by the ISPMSG= option.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

� “SAS Interface to ISPF” on page 184

ISPVTMSG= System Option

Specifies the ISPF message ID that is to be displayed by the SAS VDEFINE user exit when the
ISPVTRAP option is in effect

Default: none
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Host Interfaces: ISPF
PROC OPTIONS GROUP= ISPF
z/OS specifics: all

Syntax
ISPVTMSG=message-ID

Details
To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

� “SAS Interface to ISPF” on page 184

ISPVTNAM= System Option

Restricts the information that is displayed by the ISPVTRAP option to the specified variable only

Default: none
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Host Interfaces: ISPF
PROC OPTIONS GROUP= ISPF
z/OS specifics: all

Syntax
ISPVTNAM=variable-name

468 ISPVTPNL= System Option Chapter 18

Details
To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

� “SAS Interface to ISPF” on page 184

ISPVTPNL= System Option

Specifies the name of the ISPF panel that is to be displayed by the SAS VDEFINE user exit when
the ISPVTRAP option is in effect

Default: none
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Host Interfaces: ISPF
PROC OPTIONS GROUP= ISPF

z/OS specifics: all

Syntax
ISPVTPNL=panel

Details
To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

� “SAS Interface to ISPF” on page 184

ISPVTRAP System Option

Specifies whether the SAS VDEFINE user exit is to write information to the SAS log (for debugging
purposes) each time it is entered

Default: NOISPVTRAP
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Host Interfaces: ISPF, Log and Procedure Control: LOGCONTROL

PROC OPTIONS GROUP= LOGCONTROL and ISPF
z/OS specifics: all

System Options under z/OS ISPVTVARS= System Option 469

Syntax
ISPVTRAP | NOISPVTRAP

Details
If ISPVTRAP is specified, the SAS VDEFINE user exit writes a message to the SAS log
each time it is entered. If the parameters for the ISPVTPNL, ISPVTVARS, and
ISPVTMSG options are set, it sets the ISPVTVARS variables and displays the
ISPVTPNL panel with the ISPVTMSG message on it. If you press the END key on the
information display, the option is set to NOISPVTRAP.

If NOISPVTRAP is in effect, the SAS VDEFINE user exit does not write information
to the SAS log each time it is entered.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

� “SAS Interface to ISPF” on page 184

ISPVTVARS= System Option

Specifies the prefix for the ISPF variables to be set by the SAS VDEFINE user exit when the
ISPVTRAP option is in effect

Default: none
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Host Interfaces: ISPF
PROC OPTIONS GROUP= ISPF
z/OS specifics: all

Syntax
ISPVTVARS=prefix

Details
The numbers 0 through 5 are appended to this prefix to generate the ISPF variable
names. These variables contain the following information:

prefix0 whether the variable is being read or written

prefix1 the name of the variable that is being updated

prefix2 the address of the parameter list for the VDEFINE user exit

prefix3 the address of the variable that is being updated

470 JREOPTIONS= System Option Chapter 18

prefix4 the length of the variable that is being updated

prefix5 the value of the variable that is being updated.

For example, if ISPVTVARS=SASVT, then the variables SASVT0 - SASVT5 would be
created. Possible values for these variables could be as follows:

SASVT0 READ (or WRITE)

SASVT1 MYVAR

SASVT2 083C1240

SASVT3 00450138

SASVT4 7

SASVT5 MYVALUE

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

� “SAS Interface to ISPF” on page 184

JREOPTIONS= System Option

Identifies Java Runtime Environment options to be used with SAS

Default: none
Valid in: configuration file, SAS invocation
PROC OPTIONS GROUP= EXECMODES
z/OS specifics: all

Syntax
JREOPTIONS= (-JRE-option-1 <-JRE-option-n>)

-JRE-option
specifies one or more Java Runtime Environment options. JRE options must begin
with a hyphen. Use a space to separate multiple JRE options. Valid values for
JRE-option depend on your installation’s Java Runtime Environment. For
information about JRE options, see your installation’s Java documentation.

Details
The set of JRE options must be enclosed in parentheses. If you specify multiple
JREOPTIONS system options, SAS appends JRE options to JRE options that are
currently defined. Each of the options following the first option should begin with a
blank space followed by a hyphen, for example,

jreoptions=(-jreoption1 -jreoption2)

Invalid JRE options are ignored.

System Options under z/OS LOCALE= System Option 471

Example
jreoptions=(-Xms2000000 -Xmx2000000)

LINESIZE= System Option

Specifies the line size of SAS Log and Output windows

Default: the terminal’s width setting for interactive modes; 132 for noninteractive modes
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Log and Procedure Output Control: LOG_LISTCONTROL
PROC OPTIONS GROUP= LOG_LISTCONTROL
z/OS specifics: Default value
See: LINESIZE= System Option in SAS Language Reference: Dictionary

Syntax
LINESIZE=n | hexX | MIN | MAX

n
specifies the number of lines.

hexX
specifies the line size as a hexadecimal value. You must specify the value beginning
with a number (0–9), followed by an X. For example, the value 2dx specifies 45
characters.

MIN
sets the line size of the SAS procedure output to 64.

MAX
sets the line size of the SAS procedure output to 256.

Details
Under z/OS, the default for interactive mode (windowing environment and interactive
line mode) is the display’s width setting. For noninteractive mode and batch mode, the
default is 132. The minimum value of n is 64; the maximum is 256.

LOCALE= System Option

Specifies attributes that reflect the language, local conventions, and culture for a geographical
region and that are used to establish the default working environment for a SAS session

Default: English
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Environment Control: LANGUAGECONTROL

472 LOG= System Option Chapter 18

PROC OPTIONS GROUP= LANGUAGECONTROL
z/OS specifics: all
See: “LOCALE= System Option” in the SAS National Language Support (NLS): User’s
Guide

LOG= System Option

Specifies a file to which the SAS log is written when executing SAS programs outside the
windowing environment

Default: SASLOG
Valid in: configuration file, SAS invocation
Category: Environment Control: ENVFILES
PROC OPTIONS GROUP= ENVFILES
z/OS specifics: file-specification

Syntax
LOG=file-specification

file-specification
identifies an external file. Under z/OS, it can be a valid DDname, a physical file
name, or the name of a file stored in the directory structure of UNIX System
Services. The DDname must have been previously associated with an external file
using either a TSO ALLOCATE command or a JCL DD statement.

See Also

� “ALTLOG= System Option” on page 410
� “Copying Output to an External File” on page 116

LOGPARM= System Option
Controls when SAS log files are opened, closed, and, in conjunction with the LOG= system option,
how they are named

Valid in: configuration file, SAS invocation
Category: Log and procedure output control: SAS log
PROC OPTIONS GROUP= LOGCONTROL
z/OS specifics: restrictions on the OPEN argument and the length of log filename
See: LOGPARM= System Option in SAS Language Reference: Dictionary

Syntax
LOGPARM=

System Options under z/OS LOGPARM= System Option 473

“<OPEN= APPEND | REPLACE | REPLACEOLD>
<ROLLOVER= AUTO | NONE | SESSION>
<WRITE= BUFFERED | IMMEDIATE>”

Syntax Description

OPEN=
when a log file already exists, controls how the contents of the existing file are
treated.

APPEND
appends the log when opening an existing file. If the file does not already exist, a
new file is created. This option cannot be used if the LOG= system option specifies
a member of a PDS or PDSE.

REPLACE
overwrites the current contents when opening an existing file. If the file does not
already exist, a new file is created.

REPLACEOLD
appends the log when opening an existing file. If the file does not already exist, a
new file is created. This option cannot be used if the LOG= system option specifies
a member of a PDS or PDSE.
Default: REPLACE

ROLLOVER=AUTO|NONE|SESSION
controls when or if the SAS log “rolls over,” that is, when the current log is closed
and a new one is opened.

AUTO
causes an automatic “rollover” of the log when the directives in the value of the
LOG= option change, that is, the current log is closed and a new log file is opened.
Interaction: The name of the new log file is determined by the value of the LOG=

system option. If LOG= does not contain a directive, however, the name would
never change, so the log would never roll over, even when ROLLOVER=AUTO.

Note: Because the directives do not resolve, specifying a % instead of a #
would result in an invalid name for a native z/OS user. �

NONE
specifies that rollover does not occur, even when a change occurs in the name that
is specified with the LOG= option.
Interaction: If the LOG= value contains any directives, they do not resolve. For

example, if Log="#b.log" is specified, the directive “#” does not resolve, and the
name of the log file remains "#b.log".

SESSION
at the beginning of each SAS session, opens the log file, resolves directives that
are specified in the LOG= system option, and uses its resolved value to name the
new log file. During the course of the session, no rollover is performed.

Default: NONE
Interaction: Rollover is triggered by a change in the value of the LOG= option.
See Also: LOG= system option

474 LOGPARM= System Option Chapter 18

WRITE=
specifies when content is written to the SAS log.

BUFFERED
writes content to the SAS log only when a buffer is full in order to increase
efficiency.

IMMEDIATE
writes to the SAS log each time that statements are submitted that produce
content for the SAS log.

Default: BUFFERED

Details
The LOGPARM= system option controls the opening and closing of SAS log files. This
option also controls the naming of new log files in conjunction with the LOG= system
option and the use of directives in the value of LOG=. If you issue the LOG= system
option and intend to use the LOGPARM= system option, then LOG= must specify a
physical name.

Native z/OS filenames that contain more than eight characters are truncated to eight
characters. The character count begins with the first character of the filename. If a
period is encountered, the character count begins again. For example,

testFeb1234.Wednesday

is truncated to the following

testFeb1.Wednesda

Note that testFeb1234 is truncated to testFeb1, and that Wednesday is truncated to
Wednesda.

If a directive is specified in a PDS member name, the directive is fully expanded. The
PDS member name might then exceed eight-characters, which is the maximum length
for a PDS member name, and an error will occur.

Directives are fully expanded for UNIX System Services.
Using directives in the value of the LOG= system option allows you to control when

logs are open and closed and how they are named, based on real time events, such as
time, month, day of week, etc. The following table contains a list of directives that are
valid in LOG= values:

Table 18.1 Directives for Controlling the Name of SAS Log Files

Directive Description Range

%a or #a Locale’s abbreviated day
of week

Sun–Sat

%A or #A Locale’s full day of week Sunday–Saturday

%b or #b Local’s abbreviated month Jan–Dec

%B or #B Locale’s full month January–December

%C or #C Century number 00–99

%d or #d Day of the month 01–31

%H or #H Hour 00–23

%j or #j Julian day 001–366

%M or #M Minutes 00–59

System Options under z/OS LOGPARM= System Option 475

Directive Description Range

%m or #m Month number 01–12

%n or #n Current system nodename
(without domain name)

00–23

%s or #s Seconds 00–59

%u or #u Day of week 1= Monday–7=Sunday

%v or #v Unique identifier alphanumeric string that creates a log
filename that does not currently exist

%w or #w Day of week 0=Sunday–6=Saturday

%W or #W Week number (Monday as
first day; all days in new
year preceding first
Monday are in week 00)

00–53

%y or #y Year without century 00–99

%Y or #Y Full year 1970–9999

%% Percent escape writes a
single pound sign in the
log filename.

%

Pound escape writes a
single percent sign in the
log filename.

#

Examples

� Rolling over the log at a certain time and using directives to name the log
according to the time: If this command is submitted at 9:43 AM, this example
creates a log file called test0943.log, and the log rolls over each time the log
filename changes. In this example, at 9:44 AM, the test0943.log file will be closed,
and the test0944.log file will be opened.

sas -log "test%H%M.log" -logparm "rollover=auto"

� Preventing log rollover but using directives to name the log: For a SAS session that
begins at 9:34 AM, this example creates a log file named test0934.log, and
prevents the log file from rolling over:

sas -log "test%H%M.log" -logparm "rollover=session"

� Preventing log rollover and preventing the resolution of directives: This example
creates a log file named test%H%M.log, ignores the directives, and prevents the
log file from rolling over during the session:

sas -log "test%H%M.log" -logparm "rollover=none"

� Creating log files with unique identifiers: This example uses a unique identifier to
create a log file with a unique name:

sas -log "test%v.log" -logparm "rollover=session "

476 MEMLEAVE= System Option Chapter 18

SAS creates a log file called test1.log, if test1.log does not already exist. If test1.log
does exist, SAS continues to create filenames in this format—test2.log and so
on—until it generates a log filename that does not exist.

Because %v is not a time-based format, the log file name will never change after
it has been generated; therefore, the log will never roll over. In this situation,
specifying ROLLOVER=SESSION is equivalent to specifying ROLLOVER=AUTO.

See Also

� “LOG= System Option” on page 472

MEMLEAVE= System Option

Specifies the amount of memory in the user’s region that is reserved exclusively for the use of the
operating environment

Default: 512K
Valid in: configuration file, SAS invocation
Category: System Administration: MEMORY
PROC OPTIONS GROUP= MEMORY
z/OS specifics: all

Syntax
MEMLEAVE=n | nK | nM | MIN | hexX

n | nK | nM
specifies the amount of memory reserved in multiples of 1 (bytes); 1,024 (kilobytes);
or 1,048,576 (megabytes). You can specify decimal values for the number of kilobytes
or megabytes. For example, a value of 8 specifies 8 bytes, a value of .782k specifies
801 bytes, and a value of 3m specifies 3,145,728 bytes.

MIN
specifies the amount of memory reserved as the minimum value, 0 bytes.

hexX
specifies the amount of memory reserved as a hexadecimal number of bytes.

Details
MEMLEAVE= reserves memory in your region that will not be used by SAS. A
minimum memory reservation is required so that the operating environment can
perform cleanup activities in the event of an abnormal termination of SAS. You may
need to reserve additional memory based on the amount of processing that is taking
place in your region outside of SAS.

The MEMLEAVE= system option relates to the MEMSIZE= system option. To
minimize out-of-memory conditions, do not specify a value for the MEMSIZE= option.
Instead, leave the value of MEMSIZE= at its default value. This prevents the possibility
of your MEMSIZE= value exceeding the size of your memory region. If this occurs, SAS
uses up all of its memory before it runs its automatic memory recovery programs. By
specifying MEMLEAVE= and leaving MEMSIZE= at its default value, you are ensured

System Options under z/OS MEMRPT System Option 477

that you have memory reserved for cleanup and that memory recovery programs will
run to help prevent out-of-memory conditions, regardless of the size of your region.

It should be noted that the value of MEMLEAVE= has no bearing on the values of
the PROCLEAVE= and SYSLEAVE= system options. MEMLEAVE= reserves memory
that is never used by SAS—it is used exclusively by the operating environment.
PROCLEAVE= and SYSLEAVE= reserve SAS memory only.

Setting MEMLEAVE= to 0 is not recommended except for debugging and testing
purposes. The optimal setting depends on the application being used and the system
resources that are available at your site. Note that the amount of memory available to
SAS processes can also be limited by your system administrator.

See Also

� “MEMSIZE= System Option” on page 478
� “PROCLEAVE= System Option” on page 489
� “SYSLEAVE= System Option” on page 517
� To adjust the size of your memory region, see the JCL documentation for your

operating environment.

MEMRPT System Option

Specifies whether memory usage statistics are to be written to the SAS log for each step

Default: MEMRPT
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: System Administration: MEMORY
PROC OPTIONS GROUP= MEMORY
z/OS specifics: all

Syntax
MEMRPT | NOMEMRPT

MEMRPT
if the STATS option is in effect, MEMRPT specifies that memory usage statistics are
to be written to the SAS log.

NOMEMRPT
specifies that memory usage statistics are not to be written to the SAS log.

Details
The STATS system option specifies that statistics are to be written to the SAS log. If
STATS is in effect and MEMRPT is in effect, then the total memory used by the SAS
session is written to the SAS log for each step.

Additional memory statistics can be written to the SAS log by specifying the
FULLSTATS system option.

Note that the program memory statistics reported by FULLSTATS reflect the size of
respective program images or load modules; they do not include the size of the DATA
step programs or other code that is generated dynamically by SAS software.

478 MEMSIZE= System Option Chapter 18

See Also

� “FULLSTATS System Option” on page 446
� “STATS System Option” on page 513
� “STIMER System Option” on page 514
� “Collecting Performance Statistics” on page 212
� SAS Language Reference: Concepts

MEMSIZE= System Option

Specifies the limit on the total amount of memory that SAS can use

Default: varies, see the following Details section
Valid in: configuration file, SAS invocation
Category: System Administration: MEMORY
PROC OPTIONS GROUP= MEMORY
z/OS specifics: all

Syntax
MEMSIZE=n | n K | n M | n G | hexX | MIN | MAX

n | n K | n M | n G
specifies total memory size in bytes (0–2,147,483,647), kilobytes (0–2,097,151),
megabytes (0–2047), or gigabytes (0–2). You can specify decimal values for the
number of kilobytes, megabytes, or gigabytes. For example, to specify 33,554,432
bytes, you can use 32M, 32768K, or 33554432.

hexX
specifies the memory size as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by hex digits (0–9, A–F), and then followed
by an X. For example, the value 2000000x sets the memory size to 32M and a value
of 4000000x sets the memory size to 64M.

MIN
causes SAS to calculate the value of MEMSIZE= using the formula in the following
Details section.

MAX
causes SAS to calculate the value of MEMSIZE= using the formula in the following
Details section.

Details
SAS calculates the value of the MEMSIZE= system option using the formula below if
any of the following are true:

� No value is specified for MEMSIZE=.
� A value of 0 is specified for MEMSIZE=.
� MIN or MAX is specified for MEMSIZE=.

System Options under z/OS MSG= System Option 479

� The value specified for MEMSIZE= exceeds the size of the user’s currently
available REGION.

value_of_MEMSIZE_system_option = currently_available_memory_region -
value_of_MEMLEAVE_system_option

Using the default value for MEMSIZE= removes the possibility of MEMSIZE= values
that exceed your memory region. For this reason, it is recommended that you not
specify a value for MEMSIZE=. Instead, control memory usage by setting your region
size and by using an appropriate value for the MEMLEAVE= option. For information
on setting your region size, see the JCL information for your operating environment.

See Also

� “MEMLEAVE= System Option” on page 476
� “Specify a Value for MEMSIZE= When You Invoke SAS” on page 219
� “REALMEMSIZE= System Option” on page 491

MINSTG System Option
Tells SAS whether to minimize its use of storage

Default: NOMINSTG
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: System Administration: MEMORY
PROC OPTIONS GROUP= MEMORY
z/OS specifics: all

Syntax
MINSTG | NOMINSTG

MINSTG
tells SAS to minimize storage in use.

NOMINSTG
tells SAS not to minimize storage in use.

Details
The MINSTG system option tells SAS to minimize its use of storage by returning
unused storage and deleting unused load modules at the termination of steps and
pop-up windows. This option should be used on memory-constrained systems or when
sharing the address space with other applications, such as ISPF split-screen or
multisession products. If MINSTG is in effect, then CATCACHE= is set to 0.

MSG= System Option
Specifies the location of the file

480 MSGCASE System Option Chapter 18

Default: SASMSG
Valid in: configuration file, SAS invocation
Alias: SASMSG=
Category: Environment Control: ENVFILES
PROC OPTIONS GROUP= ENVFILES
z/OS specifics: all

Syntax
MSG=file-specification

file-specification
identifies an external file. Under z/OS, it can be a valid DDname or a physical file
name. The DDname must have been previously associated with an external file using
either a TSO ALLOCATE command or a JCL DD statement.

Details
Under z/OS, the MSG= system option specifies the file that contains error, warning, and
informational messages that are issued during a SAS session.

See Also

� “MSGCASE System Option” on page 480
� “MSGLOAD System Option” on page 481
� “MSGSIZE= System Option” on page 481

MSGCASE System Option

Specifies uppercase or lowercase message display

Default: NOMSGCASE
Valid in: configuration file, SAS invocation
Category: Environment Control: ENVFILES
PROC OPTIONS GROUP= ENVFILES
z/OS specifics: all

Syntax
MSGCASE | NOMSGCASE

Details
MSGCASE specifies that text taken from the message file is translated to uppercase for
display.

System Options under z/OS MSGSIZE= System Option 481

See Also

� “MSG= System Option” on page 479
� “MSGLOAD System Option” on page 481
� “MSGSIZE= System Option” on page 481

MSGLOAD System Option

Enables closing and reloading of message files

Default: NOMSGLOAD
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Enironment Control: ENVFILES
PROC OPTIONS GROUP= ENVFILES
z/OS specifics: all

Syntax
MSGLOAD | NOMSGLOAD

Details
Specifying MSGLOAD closes and reloads message files.

See Also

� “MSG= System Option” on page 479
� “MSGCASE System Option” on page 480
� “MSGSIZE= System Option” on page 481

MSGSIZE= System Option

Specifies the size of the message cache

Default: 131,072
Valid in: configuration file, SAS invocation
Category: System Administration: MEMORY, Environment: ENVFILES
PROC OPTIONS GROUP= MEMORY and ENVFILES
z/OS specifics: all

Syntax
MSGSIZE=n | nK | nM | nG | MIN | MAX | hexX

482 MSYMTABMAX= System Option Chapter 18

n | nK | nM | nG
specifies the size of the message cache in multiples of 1 (bytes); 1,024 (kilobytes);
1,048,576 (megabytes); or 1,073,741,824 (gigabytes). You can specify decimal values
for the number of kilobytes, megabytes, or gigabytes. For example, a value of 8
specifies 8 bytes, a value of .782k specifies 801 bytes, and a value of 3m specifies
3,145,728 bytes.

MIN
sets message cache size to 0 and tells SAS to use the default value.

MAX
sets message cache size to 2,147,483,647.

hexX
specifies message cache size as a hexadecimal number of bytes.

Details
The MSGSIZE= option is set during the installation process and normally is not
changed after installation.

See Also

� “MSG= System Option” on page 479

� “MSGCASE System Option” on page 480

� “MSGLOAD System Option” on page 481

MSYMTABMAX= System Option

Specifies the maximum amount of memory available to the macro variable symbol table(s)

Default: 1,048,576 bytes

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Macro: MACRO

PROC OPTIONS GROUP= MACRO

z/OS specifics: default value

See: SAS Macro Language: Reference

Syntax
MSYMTABMAX=n | nK | nM | nG | hexX | MIN | MAX

n | nK | nM | nG
specifies the maximum amount of memory that is available for the macro symbol
table in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576 (megabytes); or
1,073,741,824 (gigabytes). You can specify decimal values for the number of
kilobytes, megabytes, or gigabytes. For example, to specify 1,048,576 bytes, you can
use 1M, 1024K, or 1048576.

hexX

System Options under z/OS MVARSIZE= System Option 483

specifies the symbol table size as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by hex digits (0–9, A–F), and then followed
by an X. For example, the value 0c000x sets the symbol table size to 49,152 and a
value of 180000x sets the symbol table size to 1,572,864.

MIN
sets symbol table size to 0 and requires SAS to use the default value.

MAX
sets symbol table size to 2,147,483,647.

Details
The portable default value for MSYMTABMAX is 24,576. Under z/OS, the default value
is 1,048,576 bytes.

MVARSIZE= System Option

Specifies the maximum size for macro variables that are stored in memory

Default: 8,192 bytes

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Macro: MACRO

PROC OPTIONS GROUP= MACRO

z/OS specifics: default value, range of available values

See: SAS Macro Language: Reference

Syntax
MVARSIZE=n | nK | nM | nG | hexX | MIN | MAX

n | nK | nM | nG
specifies in bytes, kilobytes, megabytes, or gigabytes, respectively.

specifies the maximum macro variable size in multiples of 1 (bytes); 1,024
(kilobytes); 1,048,576 (megabytes); or 1,073,741,824 (gigabytes). You can specify
decimal values for the number of kilobytes, megabytes, or gigabytes. For example, a
value of 8 specifies 8 bytes, a value of .782k specifies 801 bytes, and a value of 3m
specifies 3,145,728 bytes.

hexX
specifies the maximum macro variable size as a hexadecimal value. You must specify
the value beginning with a number (0–9), followed by hex digits (0-9, A-F), and then
followed by an X. For example, the value 2dx sets the maximum macro variable size
to 45 bytes and a value of 0a0x sets the maximum macro variable size to 160 bytes.

MIN
sets maximum macro variable size to 0 and requires SAS to use the default value.

MAX
sets maximum macro variable size to 2,147,483,647.

484 NLSCOMPATMODE System Option Chapter 18

NLSCOMPATMODE System Option

Provides national language compatibility with previous releases of SAS

Default: NONLSCOMPATMODE

Valid in: configuration file, SAS invocation

Category: Environment Control: LANGUAGECONTROL

PROC OPTIONS GROUP= LANGUAGECONTROL

z/OS specifics: all

See: “NLSCOMPATMODE System Option” in the SAS National Language Support
(NLS): User’s Guide

OPLIST System Option

Writes to the SAS log the settings of all SAS system options that you specified when you invoked
SAS

Default: NOOPLIST

Valid in: configuration file, SAS invocation

Category: Log and Procedure Output Control: LOGCONTROL

PROC OPTIONS GROUP= LOGCONTROL

z/OS specifics: information logged

See: SAS Language Reference: Dictionary

Syntax
OPLIST | NOOPLIST

Details
Under z/OS, the OPLIST system option writes to the SAS log the settings of all options
that were specified on the command line. It does not list the settings of system options
that were specified in the configuration file.

See Also

� “VERBOSE System Option” on page 522

PAGEBREAKINITIAL System Option

Inserts an initial page break in SAS log and procedure output files

System Options under z/OS PAGESIZE= System Option 485

Default: PAGEBREAKINITIAL
Valid in: configuration file, SAS invocation
Category: Log and Procedure Output Control: LOG_LISTCONTROL
PROC OPTIONS GROUP= LOG_LISTCONTROL
z/OS-specifics: Default value
See: PAGEBREAKINITIAL System Option in SAS Language Reference: Dictionary

Syntax
PAGEBREAKINITIAL | NOPAGEBREAKINITIAL

Details
The PAGEBREAKINITIAL option inserts a page break at the start of the SAS log and
listing files. The default behavior is not to begin the SAS log and listing files on a new
page. Specify NOPAGEBREAKINITIAL to eliminate the page break.

PAGESIZE= System Option

Specifies the number of lines that compose a page of SAS output

Default: terminal screen size for the windowing environment; 21 for interactive line
mode; 60 for noninteractive modes
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Log and Procedure Output Control: LOG_LISTCONTROL
PROC OPTIONS GROUP= LOG_LISTCONTROL
z/OS specifics: default value, range of available values
See: PAGESIZE= System Option in SAS Language Reference: Dictionary

Syntax
PAGESIZE=n | nK | hexX | MIN | MAX

n | nK
specifies the number of lines that compose a page in multiples of 1 (bytes) or 1,024
(kilobytes). You can specify decimal values for the number of kilobytes. For example,
a value of 8 specifies 8 bytes, and a value of .782k specifies 801 bytes.

hexX
specifies the maximum number of lines that compose a page as a hexadecimal value.
You must specify the value beginning with a number (0–9), followed by hex digits
(0–9, A–F), and then followed by an X. For example, the value 2dx sets the maximum
number of lines that compose a page to 45 lines.

MIN
sets the number of lines that compose a page to the minimum setting, which is 15.

486 PARMCARDS= System Option Chapter 18

MAX
sets the maximum number of lines that compose a page, whis is 32,767.

Details
Under z/OS, the windowing environment uses the terminal screen size to determine
page size.

PARMCARDS= System Option

Specifies the file reference to use as the PARMCARDS file

Default: SASPARM

Valid in: configuration file, SAS invocation, OPTIONS statement, System Options
window

PROC OPTIONS GROUP= ENVFILES

z/OS specifics: valid values for fileref

See: PARMCARDS= System Option in SAS Language Reference: Dictionary

Syntax
PARMCARDS=fileref

fileref
specifies the file reference of the file to be opened.

Details
The PARMCARDS= system option specifies the file reference of a file that SAS opens
when it encounters a PARMCARDS statement in a procedure.

In SAS System 9, if you specify the PARMCARDS= system option when you invoke
SAS or in a configuration file, you can use the command-line alias PRMCARDS.

PFKEY= System Option

Specifies which set of function keys to designate as primary

Default: PRIMARY

Valid in: configuration file, SAS invocation

Category: Environment Control: ENVDISPLAY

PROC OPTIONS GROUP= ENVDISPLAY

z/OS specifics: all

See: SAS Language Reference: Dictionary

System Options under z/OS PFKEY= System Option 487

Syntax
PFKEY=pfkey-set

pfkey-set
specifies which set of 12 function keys is to be considered the primary set. Acceptable
values include the following:

PRIMARY
specifies that the primary set be F13 through F24. Thus, F13 through F24 would
have the basic settings; F1 through F12 would have the extended settings. You
can use PRI as an alias for PRIMARY.

ALTERNATE
specifies that the primary set be F1 through F12. Thus F1 through F12 would
have the basic settings; F13 through F24 would have the extended settings. You
can use ALT as an alias for ALTERNATE.

12
specifies that F1 through F12 exactly match F13 through F24. Thus, both F1
through F12 and F13 through F24 would have the basic settings. As a result, the
Keys window displays only F1 through F12.

Details
The PFKEY= option enables you to specify which set of 12 programmed function keys is
to be considered primary.

The following values are displayed in the Keys window when you specify
PFKEY=PRIMARY. F1 through F12 are the extended settings; F13 through F24 are the
basic settings.

Extended Set Basic Set

Key Definition Key Definition

F1 mark F13 help

F2 smark F14 zoom

F3 unmark F15 zoom off; submit

F4 cut F16 pgm; recall

F5 paste F17 rfind

F6 store F18 rchange

F7 prevwind F19 backward

F8 next F20 forward

F9 pmenu F21 output

F10 command F22 left

F11 keys F23 right

F12 undo F24 home

488 PGMPARM= System Option Chapter 18

PGMPARM= System Option

Specifies the parameter that is passed to the external program specified by the SYSINP= option

Default: none

Valid in: configuration file, SAS invocation

Category: File Control: EXTFILES

PROC OPTIONS GROUP= EXTFILES

z/OS specifics: all

Syntax
PGMPARM=’string’

string
can be up to 255 characters long. The quotation marks are optional unless the string
contains blanks or special characters.

Details
The PGMPARM= option specifies the parameter that is passed to the external program
specified by the SYSINP= option. For more information about using the PGMPARM=
and SYSINP= options, contact your lcoal SAS Support Consultant.

PRINT= System Option

Specifies the SAS output file when executing SAS programs outside the windowing environment

Default: SASLIST

Valid in: configuration file, SAS invocation

Category: Environment Control: ENVFILES

PROC OPTIONS GROUP= ENVFILES

z/OS specifics: file-specification

Syntax
PRINT=file-specification

file-specification
identifies an external file. Under z/OS, it can be a valid DDname, a physical file
name, or the name of a file stored in the directory structure of UNIX System
Services. The DDname must have been previously associated with an external file
using either a TSO ALLOCATE command or a JCL DD statement.

System Options under z/OS PROCLEAVE= System Option 489

See Also

� “ALTPRINT= System Option” on page 411

� “Directing Output to a Printer” on page 118

� SAS Language Reference: Dictionary

PRINTINIT System Option

Initializes the SAS print file

Default: NOPRINTINIT

Valid in: configuration file, SAS invocation

Category: Log and Procedure Output Control: LISTCONTROL

PROC OPTIONS GROUP= LISTCONTROL

z/OS specifics: system response to PRINTINIT

See: PRINTINIT System Option in SAS Language Reference: Dictionary

Syntax
PRINTINIT | NOPRINTINIT

PRINTINIT
empties the SAS output file and resets the file attributes upon initialization.

NOPRINTINIT
preserves the existing output file if no new output is generated. This is the default.

Details
Under z/OS, specifying PRINTINIT causes the SAS print file to be emptied before SAS
writes output to it. It also forces the file attributes to be correct for a print file. Specify
NOPRINTINIT if a previous program or job step has already written output to the
same file and you want to preserve that output.

PROCLEAVE= System Option

Specifies how much memory to leave unallocated for SAS procedures to use to complete critical
functions during out-of-memory conditions

Default: (0,153600)

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: System Administration: MEMORY

PROC OPTIONS GROUP= MEMORY

z/OS specifics: all

490 PRODTOC= System Option Chapter 18

Syntax
PROCLEAVE=n | nK | nM | (n | nK | nM, n | nK | nM)

n |nK | nM
specifies in bytes, kilobytes, or megabytes how much memory to leave unallocated
above the 16-megabyte line. Valid values are any integer from 0 to the maximum
amount of available memory.

(n | nK | nM, n | nK | nM)
specifies how much memory to reserve below the 16-megabyte line, followed by the
amount of memory to reserve above the line.

Details
The PROCLEAVE= system option specifies an amount of memory to leave unallocated
so that a procedure can terminate normally when error recovery code is initiated. If a
procedure that demands large amounts of memory is failing, increase the number of
bytes specified by PROCLEAVE=. This causes the failing procedure to use an algorithm
that demands less memory. However, the procedure is also forced to use utility data
sets, thereby increasing the execution time of the procedure.

See Also

� “Use SYSLEAVE= and PROCLEAVE= to Handle Out-of-Memory Conditions” on
page 220

PRODTOC= System Option

Specifies the location of the table of contents for the product specific help

Default: NULL
Valid in: configuration file, SAS invocation
Category: Environment control: Help
PROC OPTIONS GROUP= HELP
z/OS specifics: valid value of pathname

Syntax
-PRODTOC (path-1...path-n)

pathname
specifies the location of the table of contents for product-specific help. Under UNIX
System Services (USS), pathname is a fully qualified filename. Under TSO,
pathname is a member of a PDS. For example,

(/onldoc/common.hlp/doccontents.hlp
/onldoc/common.hlp/doctoc.htm

System Options under z/OS REXXLOC= System Option 491

coccommon.hhc)

Details
The value of PRODTOC= can be set during SAS installation.

REALMEMSIZE= System Option
Indicates the amount of real memory SAS can expect to allocate

Default: 0
Valid in: SAS invocation, configuration file
Category: System Administration: MEMORY
PROC OPTIONS GROUP= MEMORY
z/OS specifics: all

Syntax
REALMEMSIZE=n | nK | nM | nG | hexX

n | nK | nM | nG
specifies the amount of memory that can be used in multiples of 1 (bytes); 1,024
(kilobytes); 1,048,576 (megabytes); or 1,073,741,824 (gigabytes). You can specify
decimal values for the number of kilobytes, megabytes, or gigabytes. For example, a
value of 8 specifies 8 bytes, a value of .782k specifies 801 bytes, and a value of 3m
specifies 3,145,728 bytes.

hexX
specifies the amount of memory as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by an X. For example, the value 2dx sets the
amount of memory to 45 bytes and a value of 0a0x sets the amount of memory to 160
bytes.

Details
The REALMEMSIZE= system option limits the amount of virtual memory that SAS can
use for procedures and applications that can use both memory and disk space. In
general on z/OS, SAS does a good job of determining the amount of memory that is
available. You should specify a value for REALMEMSIZE= only if page thrashing has
occurred, for example, for a large PROC SORT operation. Specifying a nonzero value
for REALMEMSIZE= causes SAS to use the smaller of the REALMEMSIZE= value or
80% of the remaining available MEMSIZE= as the memory size.

See Also
� “MEMSIZE= System Option” on page 478

REXXLOC= System Option
Specifies the DDname of the REXX library to be searched when the REXXMAC option is in effect

492 REXXMAC System Option Chapter 18

Default: SASREXX

Valid in: configuration file, SAS invocation

Category: Host Interfaces: REXX

PROC OPTIONS GROUP= REXX

z/OS specifics: all

Syntax
REXXLOC=DDname

Details
The REXXLOC= option specifies the DDname of the REXX library to be searched for
any SAS REXX EXEC files, if the REXXMAC option is in effect.

See Also

� “SAS Interface to REXX” on page 199

� “REXXMAC System Option” on page 492

REXXMAC System Option

Enables or disables the REXX interface

Default: NOREXXMAC

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Host Interfaces: REXX

PROC OPTIONS GROUP= REXX

z/OS specifics: all

Syntax
REXXMAC | NOREXXMAC

REXXMAC
enables the REXX interface. This means that when SAS encounters an unrecognized
statement, it searches for a REXX EXEC file whose name matches the first word of
the unrecognized statement. The REXXLOC= system option specifies the DDname of
the REXX library to be searched.

NOREXXMAC
disables the REXX interface. This means that when SAS encounters an unrecognized
statement, a "statement is not valid" error occurs.

System Options under z/OS S= System Option 493

See Also

� “SAS Interface to REXX” on page 199

� “REXXLOC= System Option” on page 491

S= System Option

For data lines that follow a CARDS statement and for SAS source statements, specifies which
columns SAS should scan and which columns, if any, contain sequence numbers that should be
ignored

Default: 0

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Input Control: INPUTCONTROL

PROC OPTIONS GROUP= INPUTCONTROL

z/OS specifics: maximum length of value

See: S= System Option in SAS Language Reference: Dictionary

Syntax
S=n | nK | nG | nT | MIN | MAX | hexX

n | nK | nG | nT
specifies the length of statements and data in multiples of 1 (bytes); 1,024 (kilobytes);
1,048,576 (megabytes); or 1,073,741,824 (gigabytes). You can specify decimal values
for the number of kilobytes, megabytes, or gigabytes. For example, a value of 8
specifies 8 bytes, a value of .782k specifies 801 bytes, and a value of 3m specifies
3,145,728 bytes.

MIN
sets the length of statements and data to 0, and requires SAS to use a default value.

MAX
sets the length of statements and data to MACLONG.

hexX
specifies the length of statements as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by hex digits (0-9, A-F), and then followed
by an X. For example, the value 2dx sets the length of line statements to 45 bytes.

Details
Under z/OS, n can range from 0 to 32,760, which is the maximum length of records on
z/OS.

Note: If n is 0, SAS uses the value of the SEQ= system option to determine whether
the input contains sequence fields that should be ignored. Otherwise, SAS interprets n
as the column in which to start scanning (for variable-length records) or stop scanning
(for fixed-length records). �

494 SASAUTOS= System Option Chapter 18

SASAUTOS= System Option

Specifies the location of the autocall library

Default: SASAUTOS
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Environment Control: ENVFILES

Macro: MACRO
PROC OPTIONS GROUP= ENVFILES

MACRO
z/OS specifics: file-specification
See: SAS Macro Language: Reference

Syntax
SASAUTOS=file-specification | (file-specification-1 . . . file-specification-n)

file-specification
identifies the name of an external autocall library. Under z/OS, it can be any valid
SAS fileref or a physical file name of a PDS or PDSE.

You can specify one or more autocall libraries. They will be searched in the order
in which they are listed.

Details
SAS looks for autocall members in autocall libraries specified by SASAUTOS=. By
default, SAS looks in the library that is associated with the SASAUTOS fileref. Once
you specify the SASAUTOS= system option, that specification replaces the default. SAS
no longer searches SASAUTOS unless you include it in the new specification for
SASAUTOS=. To add SASAUTOS to your current list of autocall libraries, issue a
statement like the following:

options sasautos=(’your.autocall.lib’
’dept.autocall.lib’ sasautos);

SAS searches the other autocall libraries before it searches the locations associated
with the SASAUTOS fileref.

SASHELP= System Option

Specifies the location of the SASHELP SAS data library

Default: SASHELP
Valid in: configuration file, SAS invocation
Category: Environment Control: ENVFILES
PROC OPTIONS GROUP= ENVFILES
z/OS specifics: library-specification

System Options under z/OS SASUSER= System Option 495

See: SASHELP= System Option in SAS Language Reference: Dictionary

Syntax
SASHELP=library-specification

library-specification
can be any valid DDname or the name of the physical file that comprises a SAS data
library; the DDname must have been previously associated with the SASHELP SAS
data library, using either a TSO ALLOCATE command or a JCL DD statement.

Details
If the SASHELP= option is not specified, then the value SASHELP is used.

SASLIB= System Option

Specifies the DDname for an alternate load library

Default: SASLIB
Valid in: configuration file, SAS invocation
Category: Environment Control: ENVFILES
PROC OPTIONS GROUP= ENVFILES
z/OS specifics: all

Syntax
SASLIB=DDname

DDname
is the DDname of a single load library or a concatenation of load libraries that SAS is
to search before it searches the standard libraries. The DDname must be allocated
before SAS is invoked.

Details
The SASLIB= option can be used to specify a load library that contains Version 5
formats, informats, and functions.

SASUSER= System Option

Specifies the location of the SAS data library that contains the user profile catalog

Default: SASUSER

496 SEQENGINE= System Option Chapter 18

Valid in: configuration file, SAS invocation
Category: Environment Control: ENVFILES
PROC OPTIONS GROUP= ENVFILES
z/OS specifics: library-specification
See: SASUSER= System Option in SAS Language Reference: Dictionary

Syntax
SASUSER=library-specification

library-specification
can be any valid DDname, the name of the physical file that comprises a SAS data
library, or a UNIX System Services directory; the DDname must have been
previously associated with the SASUSER SAS data library using either a TSO
ALLOCATE command or a JCL DD statement.

Details
If a UNIX System Services directory is being used, it must have been created
beforehand.

See Also

� “SASUSER Library” on page 9

SEQENGINE= System Option

Specifies the default engine for sequential SAS data libraries

Default: TAPE
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: SASFILES
PROC OPTIONS GROUP= SASFILES
z/OS specifics: all

Syntax
SEQENGINE=sequential-engine

sequential-engine
can have the following values:

TAPE
specifies the engine for accessing sequential SAS data libraries in the latest tape
format.

V9TAPE | V9SEQ | V8TAPE | V8SEQ |V7TAPE | V7SEQ

System Options under z/OS SET= System Option 497

specifies the engine for accessing sequential SAS data libraries in System 9,
Version 8, or Version 7 tape format. The SAS System 9, Version 8, and Version 7
engines are identical.

V6TAPE | V6SEQ
specifies the engine for accessing sequential SAS data libraries in Version 6 tape
format.

Details
The SEQENGINE= system option specifies the engine that SAS will use to access an
existing sequential format data library when an engine name is not explicitly stated in
the LIBNAME statement or LIBNAME function.

See Also

� “The V9TAPE Engine” on page 39

SET= System Option

Defines an environment variable

Default: none

Valid in: Configuration file, SAS invocation

Category: Environment Control: ENVFILES

PROC OPTIONS GROUP= ENVFILES

z/OS specifics: all

Syntax
SET= ’environment-variable value’

environment-variable
specifies the environment variable to define.

value
specifies the environment variable value. Note that quotation marks are required
around the entire environment-variable value string.

Details
You can use the SET= system option to define an environment variable that is valid
within the SAS session. For example, you can use the SET= option to make
environment variables available to turn on support for various utility functions.
SAS/CONNECT software uses environment variables to turn on debug tracing
capabilities, among other things.

You can define one environment variable at a time with the SET= option. The
environment-variable value takes precedence over any corresponding values except for
those set by the following system options:

498 SORT= System Option Chapter 18

System Option Environment Variable

TCPIPMCH TCPIP_MACH

TCPIPPRF TCPIP_PREFIX

ICSRSLV ICS_RESOLVER

SORT= System Option

Specifies the minimum size of all allocated sort work data sets

Default: 0

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Sort: SORT

PROC OPTIONS GROUP= SORT

z/OS specifics: all

Syntax
SORT=n | nK | MIN | MAX | hexX

n | nK
specifies the value of SORT= in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576
(megabytes); or 1,073,741,824 (gigabytes). You can specify decimal values for the
number of kilobytes, megabytes, or gigabytes. For example, a value of 8 specifies 8
bytes, a value of .782k specifies 801 bytes, and a value of 3m specifies 3,145,728 bytes.

MIN
sets SORT= to 0.

MAX
sets SORT= to 32,767.

hexX
specifies SORT= as a hexadecimal number.

Details
The SORT= option specifies the minimum size of all sort work files that SAS allocates.
The units are specified by the SORTUNIT= option. If the DYNALLOC system option is
specified, then any value that you specify for the SORT= option is ignored.

See Also

� “SORTUNIT= System Option” on page 510

� “DYNALLOC System Option” on page 425

System Options under z/OS SORTBUFMOD System Option 499

SORTALTMSGF System Option

Enables sorting with alternate message flags

Default: NOSORTALTMSGF
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Sort: SORT
PROC OPTIONS GROUP= SORT
z/OS specifics: all

Syntax
SORTALTMSGF | NOSORTALTMSGF

Details
Specify SORTALTMSGF if the sort utility on your host requires non-standard flags for
the message parameter. For example, the Fujitsu system sort utility requires alternate
message flags.

SORTBLKMODE System Option

Enables block mode sorting

Default: NOSORTBLKMODE
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Sort: SORT
PROC OPTIONS GROUP= SORT
z/OS specifics: all

Syntax
SORTBLKMODE | NOSORTBLKMODE

Details
Specify SORTBLKMODE if the sort utility on your host supports block mode sorting.

SORTBUFMOD System Option

Enables modification of the sort utility output buffer

500 SORTCUTP= System Option Chapter 18

Default: SORTBUFMOD
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Sort: SORT
PROC OPTIONS GROUP= SORT
z/OS specifics: all

Syntax
SORTBUFMOD | NOSORTBUFMOD

Details
Specify NOSORTBUFMOD if the sort utility on your host does not support modification
of its sort buffer.

SORTCUTP= System Option

Specifies the number of bytes above which the host sort utility is used instead of the SAS sort
program

Default: 4M
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Sort: SORT
PROC OPTIONS GROUP= SORT
z/OS specifics: all

Syntax
SORTCUTP=n | nK | nM | nG | MIN | MAX | hexX

n | nK | nM | nG
specifies the value of SORTCUTP= in bytes, kilobytes, megabytes, or gigabytes,
respectively.

specifies the value of SORTCUTP= in multiples of 1 (bytes); 1,024 (kilobytes);
1,048,576 (megabytes); or 1,073,741,824 (gigabytes). You can specify decimal values
for the number of kilobytes, megabytes, or gigabytes. For example, a value of 8
specifies 8 bytes, a value of .782k specifies 801 bytes, and a value of 3m specifies
3,145,728 bytes.

MIN
sets SORTCUTP= to 0.

MAX
sets SORTCUTP= to 2,147,483,647 bytes.

hexX
specifies SORTCUTP= as a hexadecimal number of bytes.

System Options under z/OS SORTDEVWARN System Option 501

Details
The SORTCUTP= option specifies the number of bytes (or kilobytes, megabytes, or
gigabytes) above which the external host sort utility is used instead of the SAS sort
program, if SORTPGM=BEST is in effect.

The following equation computes the number of bytes to be sorted:

number-of-bytes=((length-of-obs)+(length-of-all-keys))*number-of-obs

See Also

� “Efficient Sorting” on page 218
� “SORTPGM= System Option” on page 506

SORTDEV= System Option

Specifies the device name used for allocated sort work data sets

Default: SYSDA
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Sort: SORT
PROC OPTIONS GROUP= SORT
z/OS specifics: all

Syntax
SORTDEV=unit-device-name

Details
The SORTDEV= option specifies the unit device name if SAS dynamically allocates the
sort work file. (See “DYNALLOC System Option” on page 425.) Use a generic device
type unit name, such as 3390, rather than a group name, such as SYSDA. To determine
the memory requirements, SAS must look up the device characteristics for the specified
unit name. A group name might represent multiple device types, making it impossible
to predict on which device type the sort work files will be allocated and, therefore, what
the memory requirements will be.

For group names, the device characteristics of the WORK library are used. This may
result in a warning message, unless NOSORTDEVWARN is in effect.

See Also
“SORTDEVWARN System Option” on page 501

SORTDEVWARN System Option

Enables device type warnings

502 SORTEQOP System Option Chapter 18

Default: SORTDEVWARN

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Sort: SORT

PROC OPTIONS GROUP= SORT

z/OS specifics: all

Syntax
SORTDEVWARN | NOSORTDEVWARN

Details
Specify NOSORTDEVWARN to disable warning messages sent when SORTDEV=
specifies a generic or esoteric device type.

SORTEQOP System Option

Specifies whether the host sort utility supports the EQUALS option

Default: SORTEQOP

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Sort: SORT

PROC OPTIONS GROUP= SORT

z/OS specifics: all

Syntax
SORTEQOP | NOSORTEQOP

Details
The SORTEQOP option specifies whether the host sort utility accepts the EQUALS
option. (The EQUALS option sorts observations that have duplicate keys in the original
order.) If the utility does accept the EQUALS option, then SORTEQOP causes the
EQUALS option to be passed to it unless you specify NOEQUALS in the PROC SORT
statement. If NOSORTEQOP is in effect, then the EQUALS option is not passed to the
host sort utility unless you explicitly specify the EQUALS option in the PROC SORT
statement.

Note that equals processing is the default for PROC SORT. Therefore, if
NOSORTEQOP is in effect, and if you did not explicitly specify EQUALS, then the host
sort interface must do additional processing to ensure that observations with identical
keys will remain in the original order. This may adversely affect performance.

System Options under z/OS SORTLIST System Option 503

SORTLIB= System Option

Specifies the name of the sort library

Default: SYS1.SORTLIB

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Sort: SORT

PROC OPTIONS GROUP= SORT

z/OS specifics: all

Syntax
SORTLIB=physical-filename

physical-filename
specifies the name of a partitioned data set.

Details
The SORTLIB= option specifies the name of the partitioned data set (load library) that
contains the host sort utility (other than the main module specified by the SORTPGM=
or SORTNAME= option). This library is dynamically allocated to the DDname
SORTLIB. If the host sort utility resides in a link list library or if the sort library is
part of the JOBLIB, STEPLIB, or TASKLIB libraries, then this option is unnecessary
and should not be specified.

SORTLIST System Option

Enables passing of the LIST parameter to the host sort utility

Default: NOSORTLIST

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Sort: SORT

PROC OPTIONS GROUP= SORT

z/OS specifics: all

Syntax
SORTLIST | NOSORTLIST

SORTLIST
tells SAS to pass the LIST parameter to the host sort utility when the SORT
procedure is invoked. The host sort utility uses the LIST parameter to determine
whether or not to list control statements.

504 SORTMSG System Option Chapter 18

NOSORTLIST
tells SAS not to pass the LIST parameter to the host sort utility.

Details
The SORTLIST option controls whether the LIST parameter is passed to the host sort
utility.

Note: If the default for your sort utility is to print messages, then NOSORTLIST
has no effect. �

SORTMSG System Option

Controls the class of messages to be written by the host sort utility

Default: NOSORTMSG
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Sort: SORT
PROC OPTIONS GROUP= SORT
z/OS specifics: all

Syntax
SORTMSG | NOSORTMSG

SORTMSG
tells SAS to pass the MSG=AP parameter to the host sort utility.

NOSORTMSG
tells SAS to pass the MSG=CP parameter to the host sort utility, which means that
only critical messages are written.

SORTMSG= System Option

Specifies the DDname to be dynamically allocated for the message print file of the host sort utility

Default: SYSOUT
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Sort: SORT
PROC OPTIONS GROUP= SORT
z/OS specifics: all

Syntax
SORTMSG=DDname

System Options under z/OS SORTOPTS System Option 505

DDname
can be any valid DDname or a null string. The DDname is dynamically allocated to
either a SYSOUT data set (with class *) under batch or a terminal under TSO, and
the DDname is passed to the host sort utility.

SORTNAME= System Option

Specifies the name of the host sort utility

Default: SORT
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Sort: SORT
PROC OPTIONS GROUP= SORT
z/OS specifics: all

Syntax
SORTNAME=host-sort-utility-name

host-sort-utility-name
is any valid operating environment name. A valid operating environment name can
be up to eight characters, the first of which must be a letter or special character ($, #,
or @). The remaining characters, following the first, can be any of the above, or digits.

Details
The SORTNAME= option specifies the name of the host sort utility to be invoked if
SORTPGM=HOST or if SORTPGM=BEST and the host sort utility is chosen instead of
the SAS sort utility. See “SORTPGM= System Option” on page 506 for information on
sort utility selection.

SORTOPTS System Option

Specifies whether the host sort utility supports the OPTIONS statement

Default: SORTOPTS
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Sort: SORT
PROC OPTIONS GROUP= SORT
z/OS specifics: all

Syntax
SORTOPTS | NOSORTOPTS

506 SORTPARM= System Option Chapter 18

Details
The SORTOPTS option specifies whether the host sort utility accepts the OPTIONS
statement. The OPTIONS statement is generated by the host sort interface only if the
31-bit extended parameter list is requested via the SORT31PL option.

If the SORT31PL and NOSORTOPTS options are both specified, then not all of the
available sort options can be passed to the host sort utility. This may cause the sort to
fail. In particular, the sort work areas may not be used because the SORT option
cannot be passed the value of the SORTWKDD= option.

You should therefore specify the DYNALLOC option, even though this may cause
problems with multiple sorts within a single job. Older releases of some vendors’ sort
utilities dynamically allocate sort work files only if they are not already allocated. As a
result, subsequent sorts might fail if they require more sort work space than the first
sort.

SORTPARM= System Option

Specifies a string of parameters to pass to your host sort utility

Default: none

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Sort: SORT

PROC OPTIONS GROUP= SORT

z/OS specifics: all

Syntax
SORTPARM=’string’

string
is a string of parameters. It can contain up to 255 characters. Single quotation
marks are optional unless string contains blanks or special characters.

Details
The string of parameters that you specify is appended to the OPTIONS statement that
is generated by the SAS host sort interface. This enables you to specify options that are
unique to the particular sort utility you are using. The sort utility must accept a 31-bit
parameter list and an OPTIONS statement; otherwise, this option is ignored.

SORTPGM= System Option

Specifies which sort utility to use

System Options under z/OS SORTSHRB System Option 507

Default: BEST

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Sort: SORT

PROC OPTIONS GROUP= SORT

z/OS specifics: all

Syntax
SORTPGM=utility | BEST | HOST | SAS

utility
can be any valid operating environment name that specifies the name of an
accessible utility, except one of the three keywords for this option.

BEST
specifies a choice of sort utility of the data being sorted. The choice is made based on
a comparison of the value of the SORTCUTP= option and a calculation of the number
of bytes being sorted. If the number of bytes exceeds the value of SORTCUTP=, then
the host sort utility is used. Otherwise, the SAS sort utility is used.

HOST
specifies to use the host sort utility.

SAS
specifies to the SAS sort utility.

Details
The host sort utility may be more suitable than the sort utility supplied by SAS for SAS
data sets that contain a large number of observations.

The name of the host sort utility is also given by the SORTNAME= system option.

See Also

� “Efficient Sorting” on page 218

� “SORTCUTP= System Option” on page 500

� “SORTNAME= System Option” on page 505

SORTSHRB System Option

Specifies whether the host sort interface can modify data in buffers

Default: SORTSHRB for all modes except batch; NOSORTSHRB for batch mode

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Sort: SORT

PROC OPTIONS GROUP= SORT

z/OS specifics: all

508 SORTSIZE= System Option Chapter 18

Syntax
SORTSHRB | NOSORTSHRB

SORTSHRB
specifies that two or more tasks are likely to be sharing the data in buffers. If
SORTSHRB is in effect, the host sort interface cannot modify data in buffers but
must move the data first. This could have a severe performance impact, especially for
large sorts.

SORTSHRB is the default value for the windowing environment, interactive line
mode, and noninteractive mode, where it is quite likely that multiple tasks will be
using the same data.

NOSORTSHRB
specifies that no tasks will be sharing the data in buffers. If NOSORTSHRB is in
effect, the host sort interface can modify data in buffers. NOSORTSHRB is the
default value for batch mode because it is unlikely that buffers will be shared during
batch jobs, where larger sorts are usually run. If this is not suitable for your batch
environment, be sure to specify SORTSHRB.

Details
SAS data sets can be opened for input by more than one SAS task (or window). When
this happens, the buffers into which the data is read can be shared between the tasks.
Because the host sort interface needs to modify the data before passing it to the host
sort utility, and by default does this directly to the data in the buffers, data can be
corrupted if more than one task is using the data in the buffers.

SORTSIZE= System Option

Specifies the SIZE parameter that SAS is to pass to the sort utility

Default: MAX

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Sort: SORT

System Administration: MEMORY

PROC OPTIONS GROUP= SORT

MEMORY

z/OS specifics: valid values

See: SORTSIZE= System Option in SAS Language Reference: Dictionary

Syntax
SORTSIZE=n | nK | nM | n | G | MAX | SIZE

System Options under z/OS SORTSUMF System Option 509

n
specifies a number of bytes of memory to pass to the sort utility. If n is 0, the sort
uses the default that was defined when it was installed.

nK
specifies a number of kilobytes of memory to pass to the sort utility.

nM
specifies a number of megabytes of memory to pass to the sort utility.

nG
specifies a number of gigabytes of memory to pass to the sort utility.

MAX
specifies that the characters MAX are to be passed to the system sort utility. This
causes the sort utility to size itself. Not all sort utilities support this feature.

SIZE
specifies that the sort is to use the total amount of free space in the virtual machine
minus the amount that is specified by the LEAVE= option in the PROC SORT
statement.

SORTSUMF System Option

Specifies whether the host sort utility supports the SUM FIELDS=NONE control statement

Default: SORTSUMF
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Sort: SORT
PROC OPTIONS GROUP= SORT
z/OS specifics: all

Syntax
SORTSUMF | NOSORTSUMF

SORTSUMF
specifies that the host sort utility supports the SUM FIELDS=NONE control card.

NOSORTSUMF
specifies that the host sort utility does not support the SUM FIELDS=NONE control
card. If NOSORTSUMF is in effect and the NODUPKEY option was specified when
PROC SORT was invoked, then records that have duplicate keys are eliminated.

Details
If the NODUPKEY procedure option is specified when the SORT procedure is invoked,
the SORTSUMF system option can be used to specify whether the host sort utility
supports the SUM FIELDS=NONE statement.

Note that duplicate keys are not the same as duplicate records. Duplicate keys can
be eliminated with the NODUPKEY option, whereas duplicate records can be
eliminated with the NODUP option in the PROC SORT statement.

510 SORTUADCON System Option Chapter 18

SORTUADCON System Option

Specifies whether the host sort utility supports passing a user address constant to the E15/E35 exits

Default: SORTUADCON
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Sort: SORT
PROC OPTIONS GROUP= SORT
z/OS specifics: all

Syntax
SORTUADCON | NOSORTUADCON

SORTUADCON
specifies that the host utility supports passing a user address constant to the E15/
E35 exits.

NOSORTUADCON
specifies that the host sort utility does not support passing a user address constant to
the E15/E35 exits.

SORTUNIT= System Option

Specifies the unit of allocation for sort work files

Default: CYLS
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Sort: SORT
PROC OPTIONS GROUP= SORT
z/OS specifics: all

Syntax
SORTUNIT=CYL<S> | TRK<S> | BLK<S> | n

CYL<S>
specifies that the units be cylinders. The space calculation for cylinder allocations
requires that the characteristics of the device on which the allocations will be made
need to be known. The device type is specified with the SORTDEV= option. The
device type should be specified as generic, such as 3390, rather than esoteric, such as
DISK. This is because when an esoteric name is specified, it is impossible to predict
what device type will be used and thus the device characteristics will also be
unknown.

TRK<S>

System Options under z/OS SORTWKDD= System Option 511

specifies that the units be track(s). The space calculation for track allocations
requires that the characteristics of the device on which the allocations will be made
need to be known. The device type is specified with the SORTDEV= option. The
device type should be specified as generic, such as 3390, rather than esoteric, such as
DISK. This is because when an esoteric name is specified, it is impossible to predict
what device type will be used and thus the device characteristics will also be
unknown.

BLK<S>
specifies that the files will be allocated with an average block size equal to the record
length rounded up to approximately 6K (6144). Therefore, if the input record length
was 136, the average block size used for the allocation would be 6120.

n
is an integer that specifies the average block size.

Details

The SORTUNIT= option specifies the unit of allocation to be used if SAS dynamically
allocates the sort work files (see the DYNALLOC option).

SORTWKDD= System Option

Specifies the prefix of sort work data sets

Default: SASS

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Sort: SORT

PROC OPTIONS GROUP= SORT

z/OS specifics: all

Syntax

SORTWKDD=prefix

prefix
is a four-character, valid operating environment name, which must begin with a letter
or a special character ($, #, or @), followed by letters, national characters, or digits.

Details

The SORTWKDD= option specifies the prefix to be used to generate the DDnames for
the sort work files if SAS or the host sort utility dynamically allocates them (see
“DYNALLOC System Option” on page 425). The DDnames will be of the form
prefixWKnn, where nn can be in the range of 01 to the value of the SORTWKNO=
option, which is usually 3 and cannot exceed 6.

512 SORTWKNO= System Option Chapter 18

SORTWKNO= System Option

Specifies how many sort work data sets to allocate

Default: 3
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Sort: SORT
PROC OPTIONS GROUP= SORT
z/OS specifics: all

Syntax
SORTWKNO=n

n
can be 0 through 6. If SORTWKNO=0 is specified, any existing sort work files are
freed and none are allocated.

Details
The SORTWKNO= option specifies how many sort work files are to be allocated
dynamically by either SAS or the SORT utility. (See “DYNALLOC System Option” on
page 425.)

SORT31PL System Option

Controls what type of parameter list is used to invoke the host sort utility

Default: SORT31PL
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Sort: SORT
PROC OPTIONS GROUP= SORT
z/OS specifics: all

Syntax
SORT31PL | NOSORT31PL

Details
If SORT31PL is in effect, a 31-bit extended parameter list is used to invoke the host
sort utility. If NOSORT31PL is in effect, a 24-bit parameter list is used.

If SORT31PL is specified, then the SORTOPTS system option should also be
specified. Also, because sorts that currently support a 31-bit parameter list also support

System Options under z/OS STATS System Option 513

the EQUALS option, the SORTEQOP system option should be specified in order to
maximize performance.

STAE System Option

Enables or disables a system abend exit

Default: STAE

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Environment Control: ERRORHANDLING

PROC OPTIONS GROUP= ERRORHANDLING

z/OS specifics: all

Syntax
STAE | NOSTAE

Details
The STAE option causes SAS’s error trapping and handling to be activated by an
ESTAE macro in the host supervisor.

STATS System Option

Specifies whether statistics are to be written to the SAS log

Default: STATS

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: System Administration: PERFORMANCE, Log and Procedure Output
Control: LOGCONTROL

PROC OPTIONS GROUP= LOGCONTROL or PERFORMANCE

z/OS specifics: all

Syntax
STATS | NOSTATS

STATS
tells SAS to write selected statistics to the SAS log.

NOSTATS
tells SAS not to write any statistics to the SAS log.

514 STAX System Option Chapter 18

Details
The STATS system option specifies whether performance statistics are to be written to
the SAS log. The statistics that are written to the log are determined by the MEMRPT,
STIMER, and FULLSTATS system options.

See Also

� “FULLSTATS System Option” on page 446
� “MEMRPT System Option” on page 477
� “STIMER System Option” on page 514
� “Collecting Performance Statistics” on page 212

STAX System Option

Specifies whether to enable attention handling

Default: STAX
Valid in: configuration file, SAS invocation
Category: Environment Control: ERRORHANDLING
PROC OPTIONS GROUP= ERRORHANDLING
z/OS specifics: all

Syntax
STAX | NOSTAX

STAX
causes attention handling to be activated by a STAX macro in the host supervisor.

NOSTAX
causes the SAS session to end when the attention key is pressed.

STIMER System Option

Tells SAS whether to maintain system performance statistics

Default: STIMER
Valid in: configuration file, SAS invocation
Category: System Administration: PERFORMANCE
PROC OPTIONS GROUP= PERFORMANCE
z/OS specifics: all

Syntax
STIMER | NOSTIMER

System Options under z/OS SYNCHIO System Option 515

STIMER
writes only real time and CPU time to the SAS log. When the STATS option is also
in effect, SAS writes the CPU time statistic to the SAS log.

NOSTIMER
does not write any statistics to the SAS log.

Details
Additional statistics can be written to the SAS log by specifying the FULLSTATS or
MEMRPT system options.

See Also

� “FULLSTATS System Option” on page 446
� “MEMRPT System Option” on page 477
� “STATS System Option” on page 513
� “Collecting Performance Statistics” on page 212

SVC11SCREEN System Option

Specifies whether to enable SVC 11 screening to obtain host date and time information

Default: NOSVC11SCREEN
Valid in: configuration file, SAS invocation
Category: System Administration: TESTING
PROC OPTIONS GROUP= EXECMODES
z/OS specifics: all

Syntax
SVC11SCREEN | NOSVC11SCREEN

SVC11SCREEN
causes SAS to issue SVC 11 to obtain the datetime.

NOSVC11SCREEN
causes SAS to use IBM’s STCK instruction to obtain the datetime.

SYNCHIO System Option

Specifies whether synchronous I/O is enabled

Default: NOSYNCHIO

516 SYSIN= System Option Chapter 18

Valid in: configuration file, SAS invocation
Category: SAS files
PROC OPTIONS GROUP= SASFILES
z/OS specifics: default value
See: SAS Language Reference: Dictionary for information on ASYNCHIO.

Syntax
SYNCHIO | NOSYNCHIO

SYNCHIO
causes data set I/O to wait for completion.

NOSYNCHIO
allows other logical SAS tasks to execute (if any are ready) while the I/O is being
done.

Details
The SYNCHIO system option is a mirror alias of the system option NOASYNCHIO.
NOSYNCHIO is equivalent to ASYNCHIO.

SYSIN= System Option

Specifies the location of the primary SAS input data stream

Default: none (interactive), SYSIN (batch)
Valid in: configuration file, SAS invocation
Category: Environment Control: ENVFILES
PROC OPTIONS GROUP= ENVFILES
z/OS specifics: all

Syntax
SYSIN=file-specification

file-specification
identifies an external file. Under z/OS, it can be a valid DDname, a physical file
name, or the name of a file stored in the directory structure of UNIX System
Services. The DDname must have been previously associated with an external file
using either a TSO ALLOCATE command or a JCL DD statement.

Details
This option is applicable when you run SAS programs in noninteractive or batch mode.
SYSIN= is overridden by SYSINP= if a value for SYSINP= has been specified.

System Options under z/OS SYSLEAVE= System Option 517

If you set a value for SYSIN, the values of the following options are set as indicated
below:

LINESIZE=132
PAGESIZE=60
OVP=NOOVP
SOURCE=SOURCE
DMS=NODMS
EXPLORER=NOEXP
INTERACTIVE=NOI
FORMATLOG=FORMATLOG
DLDMGACTION=FAIL

These values override the default values of the options and any other values you
might have previously specified for these options in your current SAS session.

SYSINP= System Option

Specifies the name of an external program that provides SAS input statements

Default: none
Valid in: configuration file, SAS invocation
Category: File Control: EXTFILES
PROC OPTIONS GROUP= EXTFILES
z/OS specifics: all

Syntax
SYSINP=external-program-name

external-program-name
identifies an external program, using eight characters or less.

Details
SAS calls this external program every time it needs a new SAS input statement. The
PGMPARM= option (see “PGMPARM= System Option” on page 488) enables you to pass
a parameter to the program that you specify with the SYSINP= option.

The SYSINP= option overrides the SYSIN= system option.

SYSLEAVE= System Option

Specifies how much memory to leave unallocated to ensure that SAS software tasks will be able
to terminate successfully

Default: (0,153600)

518 SYSPREF= System Option Chapter 18

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: System Administration: MEMORY

PROC OPTIONS GROUP= MEMORY

z/OS specifics: all

Syntax
SYSLEAVE= n | nK | nM | (n| nK | nM, n | nK | nM)

n | nK | nM
specifies in bytes, kilobytes, or megabytes how much space to leave unallocated above
the 16-megabyte line. Unallocated space below the 16-megabyte line remains at its
previous value, or at the default value. Valid values are any integer from 0 to the
maximum amount of available space.

(n| nK | nM, n | nK | nM)
specifies in bytes, kilobytes, or megabytes how much space to leave unallocated below
and above the 16-megabyte line respectively. Valid values are any integer from 0 to
the maximum amount of available space.

See Also

� “Use SYSLEAVE= and PROCLEAVE= to Handle Out-of-Memory Conditions” on
page 220

SYSPREF= System Option

Specifies a prefix for partially qualified physical file names

Default: user profile prefix for interactive, user ID for batch

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: File Control: EXTFILES

PROC OPTIONS GROUP= EXTFILES

z/OS specifics: all

Syntax
SYSPREF=prefix

Details
The SYSPREF= option specifies a prefix to be used in constructing a fully qualified
physical file name from a partially qualified name. Wherever a physical name must be
entered in quotation marks in SAS statements or in SAS windowing environment
commands, you can enter a data set name in the form ’.rest-of-name’, and SAS inserts
the value of the SYSPREF= option in front of the first period.

System Options under z/OS S99NOMIG System Option 519

Unlike the user profile prefix, the SYSPREF= option may have more than one
qualifier in its name. If, for example, SYSPREF=SAS.TEST, then ’.SASDATA’ is
interpreted as ’SAS.TEST.SASDATA’. The maximum length of prefix is 42 characters.

If no value is specified for SYSPREF=, then SAS uses the user profile prefix (in the
interactive environment) or the user ID (in batch).

SYSPRINT= System Option

Specifies the handling of output that is directed to the default print file

Default: none

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Log and Procedure Output Control: LISTCONTROL

PROC OPTIONS GROUP= LISTCONTROL

z/OS specifics: all

Syntax
SYSPRINT= * | DUMMY | DDname

*
terminates redirection of output.

DUMMY
suppresses output to the default print file.

DDname
causes output to the default print file to be redirected to the specified DDname.

S99NOMIG System Option

Tells SAS whether to recall a migrated data set

Default: NOS99NOMIG

Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: File Control: SASFILES, File Control: EXTFILES

PROC OPTIONS GROUP= SASFILES and EXTFILES

z/OS specifics: all

Syntax
S99NOMIG | NOS99NOMIG

520 TAPECLOSE= System Option Chapter 18

Details
The S99NOMIG option tells SAS what to do when a physical file that you reference (in
a FILENAME statement, for example) has been migrated. If S99NOMIG is in effect,
then the data set is not recalled and the allocation fails. If NOS99NOMIG is in effect,
the data set is recalled, and allocation proceeds as it would have if the data set had not
been migrated.

TAPECLOSE= System Option
Specifies the default CLOSE disposition for a SAS data library on tape

Default: REREAD
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: SASFILES
PROC OPTIONS GROUP= SASFILES
z/OS specifics: default value, valid values

Syntax
TAPECLOSE=REREAD | LEAVE | REWIND | DISP | FREE

REREAD
leaves the tape volume positioned at the tapemark that precedes the file that was
just closed. REREAD overrides a FREE=CLOSE specification in control language.
Specify TAPECLOSE=REREAD if you access one or more tape data libraries several
times in a SAS program.

LEAVE
leaves the tape volume positioned at the tapemark that follows the file that was just
closed. LEAVE overrides a FREE=CLOSE specification in control language. Specify
TAPECLOSE=LEAVE if you are not repeatedly accessing the same tape libraries in a
SAS program, but instead you are creating or accessing one or more tape libraries in
a subsequent file on the same tape volume.

REWIND
rewinds the tape volume to the beginning of the tape. A FREE=CLOSE specification
in control language overrides the REWIND specification. Specify
TAPECLOSE=REWIND if you are not repeatedly accessing one or more tape
libraries in a SAS program.

DISP
positions the tape volume according to the disposition that is specified in the
operating environment’s control language.

FREE
rewinds the tape volume to the beginning of the tape and deallocates the tape drive.

USER= System Option
Specifies the location of the default SAS data library

System Options under z/OS UTILLOC= System Option 521

Default: none
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window

Category: Environment Control: ENVFILES
PROC OPTIONS GROUP= ENVFILES
z/OS specifics: library-specification

See: USER= System Option in SAS Language Reference: Dictionary

Syntax
USER=library-specification

library-specification
can be a DDname that was previously associated with a SAS data library, the name
of a physical file that comprises a SAS data library, or a UNIX System Services
directory.

See Also

� “Directing Temporary SAS Data Sets to the USER Library” on page 17

UTILLOC= System Option

Specifies location of temporary utility files

Default: an ALLOC command to allocate a utility file that has the same maximum size
on one volume as the WORK library

Valid in: configuration file, SAS invocation
Category: File Control: SASFILES
PROC OPTIONS GROUP= SASFILES
z/OS specifics: valid values
See: “UTILLOC= System Option” in SAS Language Reference: Dictionary

Syntax
UTILLOC = “location” | (“location1”, “location2”, ...)

location
can be one of the following:

� an HFS directory in the UNIX System Services file system.
� an ALLOC command that specifies the amount of space to be used for each

utility file. You can include any of the following keywords in your ALLOC
command: TRACKS, CYL, BLOCK, SPACE, UCOUNT, VOL, UNIT,
STORCLAS, MGMTCLAS, and DATACLAS.

Here are some examples of the UTILLOC= system option.

522 VERBOSE System Option Chapter 18

UTILLOC=’ALLOC UNIT(DISK) UCOUNT(2) CYL SPACE(20,100)’
UTILLOC=’/dept/prod/utility’
UTILLOC=(’ALLOC UNIT(SYSDA) UCOUNT(2) CYL SPACE(15,15)’)
UTILLOC=(’ALLOC UNIT(SYSDA) VOL(SCR001) CYL SPACE(15,15)’,

’ALLOC UNIT(SYSDA) VOL(SCR002) CYL SPACE(15,15)’)
UTILLOC=(’/dept/prod/utility1’, ’/dept/prod/utility2’)
UTILLOC=(’ALLOC UNIT(DISK) CYL SPACE(20,100)’,

’/dept/prod/utility’)

Details
The following parameters must be specified on the ALLOC command:

� UNIT
� TRACKS, CYL, or BLOCK
� SPACE(primary[,secondary])

One or more of the following options can be also specified on the ALLOC command:
� UCOUNT(number of devices)
� VOL(volser [,volser...])
� STORCLASS(storage class)
� MGMTCLAS(management class)
� DATACLAS(data class)

Note: UCOUNT is recommended instead of VOL. �

The ALLOC command options listed above have the same syntax and meaning as
when specified on the TSO ALLOCATE command. See the IBM documentation about
the ALLOCATE command for more information.

An ALLOC command can be specified as a utility file location even in the batch
environment. It is not necessary to be running SAS under TSO when you specify an
ALLOC command as a utility file location.

When you specify multiple utility file locations, they are generally used in a
round-robin fashion by SAS applications. For applications that use multiple utility files
at once, it might therefore improve performance to specify locations that have separate
I/O paths (such as locations on different DASD control units).

Unique, system-generated names are used for each utility file required by SAS. This
allows multiple distinct utility files to be in use at one time. It is not possible to specify
the data set name to be used for the utility files.

The utility files required by some applications might exceed the size of a z/OS disk
volume. To allocate multiple volumes for a utility file, specify UCOUNT(n) where n is
the maximum number of volumes. Or, specify an SMS data class (with the DATACLAS
option), which in turn specifies a volume count greater than one. Specifying an explicit
list of volumes with the VOL option is not recommended for multivolume utility files.

The utility files specified with the UTILLOC option reside in regular format
sequential data sets. Extended format sequential data sets are not currently supported.

VERBOSE System Option

Writes the settings of SAS system options either to the terminal or to the batch job log

System Options under z/OS VSAMLOAD System Option 523

Default: NOVERBOSE
Valid in: configuration file, SAS invocation
Category: Log and Procedure Output Control: LOGCONTROL
PROC OPTIONS GROUP= LOGCONTROL
z/OS specifics: data written and where it is written

Syntax
VERBOSE | NOVERBOSE

Details
If you specify the VERBOSE system option at SAS invocation, the settings of all SAS
system options that were set at SAS invocation or in the configuration files will be
displayed in the following order:

1 settings in the system configuration file
2 settings in the user configuration file, if you have one
3 settings at SAS invocation.

If you specify the VERBOSE system option in a configuration file, only the options
that are processed after VERBOSE is encountered are displayed. In other words,
VERBOSE can appear in a configuration file, but the resulting options list then
includes only those options that follow it in the configuration file.

If you invoke SAS interactively, the settings are displayed on the screen. If you
invoke SAS as part of a batch job, the settings are written to the batch job log.

See Also

� “OPLIST System Option” on page 484

VSAMLOAD System Option

Enables you to load a VSAM data set

Default: NOVSAMLOAD
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: EXTFILES
PROC OPTIONS GROUP= EXTFILES
z/OS specifics: all

Syntax
VSAMLOAD | NOVSAMLOAD

Details
The VSAMLOAD option must be in effect in order to load an empty VSAM data set.

524 VSAMREAD System Option Chapter 18

See Also

� SAS Guide to VSAM Processing

VSAMREAD System Option

Enables the user to read a VSAM data set

Default: VSAMREAD
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: EXTFILES
PROC OPTIONS GROUP= EXTFILES
z/OS specifics: all

Syntax
VSAMREAD | NOVSAMREAD

Details
The VSAMREAD option enables you to process VSAM data sets with a SAS DATA step.

See Also

� SAS Guide to VSAM Processing

VSAMUPDATE System Option

Enables you to update a VSAM data set

Default: NOVSAMUPDATE
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: EXTFILES
PROC OPTIONS GROUP= EXTFILES
z/OS specifics: all

Syntax
VSAMUPDATE | NOVSAMUPDATE

Details
The VSAMUPDATE option must be in effect in order to update VSAM data sets.
Specifying VSAMUPDATE implies VSAMREAD.

System Options under z/OS WTOUSERDESC= System Option 525

See Also

� SAS Guide to VSAM Processing

WORK= System Option

Specifies the location of the SAS WORK library

Default: WORK
Valid in: configuration file, SAS invocation
Category: Environment Control: ENVFILES
PROC OPTIONS GROUP= ENVFILES
z/OS specifics: library-specification
See: WORK= System Optionin SAS Language Reference: Dictionary

Syntax
WORK=library-specification

library-specification
can be a DDname that was previously associated with a SAS data library or the
name of a physical file that comprises a SAS data library.

See Also

� “WORK Library” on page 15

WTOUSERDESC= System Option

Specifies a WTO DATA step function descriptor code

Default: 0
Valid in: configuration file, SAS invocation
Category: System Administration: INSTALLATION
PROC OPTIONS GROUP= INSTALL
z/OS specifics: all

Syntax
WTOUSERDESC= n

n specifies the message descriptor code. The valid values for n are from 0 to 16.

Details
The message descriptor code is assigned to any message that is sent using the WTO
DATA step function or CALL routine. Refer to the IBM documentation for supported
DESCRIPTOR code values and their meanings.

526 WTOUSERMCSF= System Option Chapter 18

Note: Unlike z/OS, SAS does not support multiple descriptor codes. �

See Also
� “WTO Function” on page 275
� “CALL WTO Routine” on page 249

� “WTOUSERMCSF= System Option” on page 526
� “WTOUSERROUT= System Option” on page 527

WTOUSERMCSF= System Option

Specifies WTO DATA step function MCS flags

Default: NULL

Valid in: configuration file, SAS invocation
Category: System Administration: INSTALLATION
PROC OPTIONS GROUP= INSTALL

z/OS specifics: all

Syntax
WTOUSERMCSF=(BRDCAST | HRDCPY | NOTIME | BUSYEXIT)

BRDCAST
tells SAS to broadcast the message to all active consoles.

HRDCPY
tells SAS to queue the message for hard copy only.

NOTIME
tells SAS not to append time to the message.

BUSYEXIT
tells SAS, in case of a WTO buffer shortage, to return rather than wait for an
available buffer.

Details
If you supply a value for WTOUSERMCSF=, it is included in the MCSFLAG field for
every write-to-operator message that is sent with the WTO DATA step function or
CALL routine.

You can supply one or more of the valid values. If you supply more than one value,
the values must be enclosed in parentheses. The parentheses are optional if you specify
only one value.

See Also
� “WTO Function” on page 275
� “CALL WTO Routine” on page 249

� “WTOUSERDESC= System Option” on page 525

System Options under z/OS XCMD System Option 527

� “WTOUSERMCSF= System Option” on page 526

WTOUSERROUT= System Option

Specifies a WTO DATA step function routing code

Default: 0
Valid in: configuration file, SAS invocation
Category: System Administration: INSTALLATION
PROC OPTIONS GROUP= INSTALL
z/OS specifics: all

Syntax
WTOUSERROUT=n

n specifies the routing code. The valid values of n are from 0 to 16.

Note: Specifying a value of 0 for the WTOUSERROUT= system option disables the
WTO function. �

Details
The routing code is assigned to any message that is sent with the WTO DATA step
function or CALL routine. Refer to the IBM documentation for supported routing code
values and their meaning.

Note: Unlike z/OS, SAS does not support multiple descriptor codes. �

See Also
� “WTO Function” on page 275
� “CALL WTO Routine” on page 249
� “WTOUSERMCSF= System Option” on page 526
� “WTOUSERMCSF= System Option” on page 526

XCMD System Option

Enables the use of operating environment commands in a SAS session

Default: XCMD
Valid in: configuration file, SAS invocation
Category: Input Control: INPUTCONTROL
PROC OPTIONS GROUP= INPUTCONTROL
z/OS specifics: all

Syntax
XCMD | NOXCMD

528 Summary Table of SAS System Options Chapter 18

Details
If XCMD is in effect, you can issue operating environment commands through any of
the available SAS interfaces, including the X command or the X statement; TSO
command, statement, function, or CALL routine; SYSTEM function or CALL routine;
%TSO macro; or %SYSEXEC macro.

Summary Table of SAS System Options
The following table lists all the SAS system options that are supported under the z/

OS operating environment. The table gives you the following information about each
SAS system option:

� the option name
� the default if you do not specify the option and if the option does not appear in the

configuration file, in your site’s default options table, or in the restricted options
table

� where you can specify the option
� where to learn more about the option.

The Specified In column indicates where you can set or change the option’s value.
The abbreviations are

SI SAS invocation

CF configuration file

OS OPTIONS statement

OW OPTIONS window.

Some options have different default values depending on the mode in which SAS
software is running. For these options, the abbreviations are

(b) the default value in batch or noninteractive mode

(i) the default value in interactive line mode

(w) the default value in windowing environment mode.

The OPTIONS Argument column indicates the argument you can use with the
OPTIONS procedure to list the current values of an option.

The See column abbreviations are

ADB SAS/ACCESS Interface to ADABAS: Reference

CAM Communication Access Methods for SAS/CONNECT and
SAS/SHARE Software

COMP SAS Companion for z/OS

CONN SAS/CONNECT User’s Guide

DATACOM SAS/ACCESS Interface to CA-Datacom/DB: Reference

DB2 SAS/ACCESS Supplement for DB2 under z/OS

DQ SAS Data Quality Server: Reference

System Options under z/OS Summary Table of SAS System Options 529

HELP SAS online Help

IDMS SAS/ACCESS DATA Step Interface to CA-IDMS: Reference

IMS SAS/ACCESS Interface to IMS: Reference

INST installation instructions for SAS in the z/OS environment

IT indicates that the option is described in the documentation for
Integration Technologies, either with the Integration Technologies
software or on the SAS Web site.

LR SAS Language Reference: Dictionary

Macro SAS Macro Language: Reference

NLS SAS National Language Support (NLS): User’s Guide

ORACLE SAS/ACCESS Software for Relational Databases: Reference
(ORACLE Chapter)

SHARE SAS/SHARE User’s Guide.

When two references are listed in the See column, the first reference is the primary
source of information.

Table 18.2 Summary of All SAS System Options Available under z/OS

Option Name Default
Specified

In
OPTIONS
Argument See

ADBBYMD R SI CF GROUP=ADABAS ADB

ADBDBID 0 SI CF GROUP=ADABAS ADB

ADBDBMD M SI CF GROUP=ADABAS ADB

ADBDEFW 0 SI CF GROUP=ADABAS ADB

ADBDEL N SI CF GROUP=ADABAS ADB

ADBDELIM \ SI CF GROUP=ADABAS ADB

ADBFMTL 500 SI CF GROUP=ADABAS ADB

ADBISNL 5000 SI CF GROUP=ADABAS ADB

ADBL3 N SI CF GROUP=ADABAS ADB

ADBMAXM 191 SI CF GROUP=ADABAS ADB

ADBMAXP 9 SI CF GROUP=ADABAS ADB

ADBMINM 1 SI CF GROUP=ADABAS ADB

ADBNATAP SI CF GROUP=ADABAS ADB

ADBNATPW SI CF GROUP=ADABAS ADB

ADBNATUS SI CF GROUP=ADABAS ADB

ADBRECL 7500 SI CF GROUP=ADABAS ADB

ADBSCHL 500 SI CF GROUP=ADABAS ADB

ADBSECCC SI CF GROUP=ADABAS ADB

ADBSECDB 0 SI CF GROUP=ADABAS ADB

ADBSECFL 16 SI CF GROUP=ADABAS ADB

530 Summary Table of SAS System Options Chapter 18

Option Name Default
Specified

In
OPTIONS
Argument See

ADBSECPW SI CF GROUP=ADABAS ADB

ADBSPANS * SI CF GROUP=ADABAS ADB

ADBSYSCC SI CF GROUP=ADABAS ADB

ADBSYSDB 0 SI CF GROUP=ADABAS ADB

ADBSYSFL 15 SI CF GROUP=ADABAS ADB

ADBSYSPW SI CF GROUP=ADABAS ADB

ADBTASK S SI CF GROUP=ADABAS ADB

ADBUISN Y SI CF GROUP=ADABAS ADB

ADBUPD Y SI CF GROUP=ADABAS ADB

ADBVALL 300 SI CF GROUP=ADABAS ADB

ALTLOG SI CF HOST COMP, LR

ALTPRINT SI CF HOST COMP, LR

APPLETLOC all PORTABLE LR

ARMAGENT [NULL] all PORTABLE LR

ARMLOC ARMLOC.LOG all PORTABLE LR

ARMSUBSYS (ARM_NONE) all PORTABLE LR

ASYNCHIO ASYNCHIO SI CF PORTABLE LR

AUTHENCR OPTIONAL all HOST CAM

AUTHPROVIDERDOMAIN(NULL) SI CF HOST COMP

AUTOEXEC 5 SI CF HOST COMP, LR

AUTOSAVELOC (NULL) all PORTABLE LR

AUTOSIGNON NOAUTOSIGNON all PORTABLE LR

BATCH NOBATCH SI CF PORTABLE LR

BINDING DEFAULT all PORTABLE LR

BLKALLOC NOBLKALLOC all HOST COMP

BLKSIZE 0 all HOST COMP

BLKSIZE(DISK) 0 all N/A COMP

BLKSIZE(OTHER) 6144 all HOST COMP

BLKSIZE(2301) 6144 all HOST COMP

BLKSIZE(2303) 4608 all HOST COMP

BLKSIZE(2305-1) 6144 all HOST COMP

BLKSIZE(2305-2) 6144 all HOST COMP

BLKSIZE(2314) 6144 all HOST COMP

BLKSIZE(3330) 6144 all HOST COMP

BLKSIZE(3330-1) 6144 all HOST COMP

BLKSIZE(3340) 6144 all HOST COMP

System Options under z/OS Summary Table of SAS System Options 531

Option Name Default
Specified

In
OPTIONS
Argument See

BLKSIZE(3350) 6144 all HOST COMP

BLKSIZE(3375) 8192 all HOST COMP

BLKSIZE(3380) 6144 all HOST COMP

BLKSIZE(3390) 6144 all HOST COMP

BLKSIZE(9345) 6144 all HOST COMP

BMPREAD N SI CF GROUP=IMS IMS

BNDLSUFX SI CF GROUP=INSTALL INST

BOTTOMMARGIN 0.000 all PORTABLE LR

BUFNO 1 all PORTABLE LR

BUFSIZE 0 all PORTABLE LR

BUNDLE SI CF GROUP=INSTALL INST

BYERR BYERR all PORTABLE LR

BYLINE BYLINE all PORTABLE LR

BYSORTED BYSORTED all PORTABLE LR

CAPS NOCAPS all PORTABLE LR

CAPSOUT NOCAPSOUT all HOST COMP

CARDIMAGE CARDIMAGE all PORTABLE COMP, LR

CATCACHE 0 SI CF PORTABLE LR

CBUFNO 0 all PORTABLE LR

CENTER CENTER all PORTABLE LR

CHARCODE NOCHARCODE all PORTABLE LR

CHARTYPE 0 SI CF HOST COMP

CLEANUP CLEANUP all PORTABLE LR

CLIST NOCLIST SI CF HOST COMP

CMDMAC NOCMDMAC all PORTABLE LR

CMPLIB (null) all PORTABLE LR

CMPOPT (NOEXTRAMATH
NIMISSCHECK
NOPRECISE
NOGUARDCHECK)

all PORTABLE LR

COLLATE NOCOLLATE all PORTABLE LR

COLORPRINTING COLORPRINTING all PORTABLE LR

COMAMID XMS all PORTABLE CONN, CAM

COMAUX1 SI CF HOST CAM

COMAUX2 SI CF HOST CAM

COMPRESS NO all PORTABLE LR

CONFIG CONFIG SI HOST COMP, LR

532 Summary Table of SAS System Options Chapter 18

Option Name Default
Specified

In
OPTIONS
Argument See

CONNECTPERSIST CONNECTPERSIST all PORTABLE LR

CONNECTREMOTE all PORTABLE LR

CONNECTSTATUS CONNECTSTATUS all PORTABLE LR

CONNECTWAIT CONNECTWAIT all PORTABLE LR

COPIES 1 all PORTABLE LR

CPUCOUNT 1 all PORTABLE LR

CPUID CPUID SI CF PORTABLE LR

CTRANSLOC CTRANS SI CF HOST CAM

DATASTMTCHK COREKEYWORDS all PORTABLE LR

DATE DATE all PORTABLE LR

DATESTYLE LOCALE all PORTABLE LR

DB2DBUG NODB2DEBUG all GROUP=DB2 DB2

DB2DECPT . SI CF GROUP=DB2 DB2

DB2IN all GROUP=DB2 DB2

DB2PKCHK N SI CF GROUP=DB2 DB2

DB2PLAN SAS91 all GROUP=DB2 DB2

DB2RRS NODB2RRS SI CF GROUP=DB2 DB2

DB2SSID DB2 all GROUP=DB2 DB2

DB2UPD Y SI CF GROUP=DB2 DB2

DBCS NODBCS SI CF HOST NLS

DBCSLANG SI CF HOST NLS

DBCSTYPE IBM SI CF HOST NLS

DBSLICEPARM (THREADED_APPS,2) all PORTABLE LR

DBSRVTP NONE SI CF PORTABLE LR

DDBDBN SI CF GROUP=DATACOM DDB

DDBDELIM \ SI CF GROUP=DATACOM DDB

DDBLOAD 0 SI CF GROUP=DATACOM DDB

DDBLOCK 0 SI CF GROUP=DATACOM DDB

DDBMASK # SI CF GROUP=DATACOM DDB

DDBMISS SI CF GROUP=DATACOM DDB

DDBPW SI CF GROUP=DATACOM DDB

DDBSPANS * SI CF GROUP=DATACOM DDB

DDBSV PROD SI CF GROUP=DATACOM DDB

DDBTASK 2 SI CF GROUP=DATACOM DDB

DDBTRACE 0 SI CF GROUP=DATACOM DDB

DDBUPD Y SI CF GROUP=DATACOM DDB

System Options under z/OS Summary Table of SAS System Options 533

Option Name Default
Specified

In
OPTIONS
Argument See

DDBURT SI CF GROUP=DATACOM DDB

DDBUSER SI CF GROUP=DATACOM DDB

DETAILS NODETAILS all PORTABLE LR

DEVICE all PORTABLE LR, COMP

DFLANG ENGLISH all PORTABLE NLS

DKRICOND ERROR all PORTABLE LR

DKROCOND WARN all PORTABLE LR

DLDMGACTION REPAIR all PORTABLE LR

DLEXCPCOUNT NODLEXCPCOUNT SI CF HOST COMP

DLIREAD N SI CF GROUP=IMS IMS

DLMSGLEVEL ERROR all HOST COMP

DLTRUNCHK DLTRUNCHK all HOST COMP

DMR NODMR SI CF PORTABLE CONN

DMS NODMS (i, b);
DMS (w)

SI CF PORTABLE LR

DMSEXP NODMSEXP SI CF PORTABLE LR

DMSSYNCHK NODMSSYNCHK all PORTABLE LR

DMSLOGSIZE 99999 SI CF PORTABLE LR

DMSOUTSIZE 99999 SI CF PORTABLE LR

DOCLOC SI CF HOST COMP

DQLOCALE (NULL) all PORTABLE DQ

DQSETUPLOC (NULL) all PORTABLE DQ

DSNFERR DSNFERR all PORTABLE LR

DSRESV NODSRESV all HOST COMP

DTRESET NODTRESET all PORTABLE LR

DUPLEX NODUPLEX all PORTABLE LR

DYNALLOC NODYNALLOC all HOST COMP

ECHOAUTO NOECHOAUTO SI CF PORTABLE LR

EMAILAUTHPROTOCOL NONE SI CF PORTABLE LR

EMAILHOST LOCALHOST SI CF PORTABLE COMP, LR

EMAILID SI CF PORTABLE LR

EMAILPORT 25 SI CF PORTABLE LR

EMAILPW SI CF PORTABLE LR

EMAILSYS SMTP SI CF HOST COMP

ENCODING OPEN_ED-1047 SI CF HOST NLS

ENCRKEY SI CF HOST INST

ENGINE SI CF PORTABLE LR

534 Summary Table of SAS System Options Chapter 18

Option Name Default
Specified

In
OPTIONS
Argument See

ERRORABEND NOERRORABEND all PORTABLE LR

ERRORBYABEND NOERRORBYABEND all PORTABLE LR

ERRORCHECK NORMAL all PORTABLE LR

ERRORS 20 all PORTABLE LR

EXPLORER NOEXPLORER SI CF PORTABLE LR

FILEAUTHDEFER NOFILEAUTHDEFER all HOST COMP

FILEBLKSIZE(DISK) 0 all N/A COMP

FILEBLKSIZE(OTHER) 6400 all HOST COMP

FILEBLKSIZE(SYSOUT) 264 all HOST COMP

FILEBLKSIZE(TAPE) 0 all N/A COMP

FILEBLKSIZE(TERM) 264 all HOST COMP

FILEBLKSIZE(2301) 20483 all HOST COMP

FILEBLKSIZE(2303) 4892 all HOST COMP

FILEBLKSIZE
(2305-1)

14136 all HOST COMP

FILEBLKSIZE
(2305-2)

14660 all HOST COMP

FILEBLKSIZE(2311) 3625 all HOST COMP

FILEBLKSIZE(2314) 7294 all HOST COMP

FILEBLKSIZE(2321) 2000 all HOST COMP

FILEBLKSIZE(2400) 32760 all HOST COMP

FILEBLKSIZE(3330) 13030 all HOST COMP

FILEBLKSIZE
(3330-1)

13030 all HOST COMP

FILEBLKSIZE(3340) 8368 all HOST COMP

FILEBLKSIZE(3350) 19069 all HOST COMP

FILEBLKSIZE(3375) 17600 all HOST COMP

FILEBLKSIZE(3380) 23476 all HOST COMP

FILEBLKSIZE(3390) 27998 all HOST COMP

FILEBLKSIZE(3400) 32760 all HOST COMP

FILEBLKSIZE(3480) 32760 all HOST COMP

FILEBLKSIZE(3490E) 32760 all HOST COMP

FILEBLKSIZE(3590) 32760 all HOST COMP

FILEBLKSIZE(9345) 22928 all HOST COMP

FILECC NOFILECC all HOST COMP

FILEDEST all HOST COMP

FILEDEV SYSDA all HOST COMP

System Options under z/OS Summary Table of SAS System Options 535

Option Name Default
Specified

In
OPTIONS
Argument See

FILEDIRBLK 6 all HOST COMP

FILEEXT IGNORE all HOST COMP

FILEFORMS all HOST COMP

FILELOCKS FAIL SI CF HOST COMP

FILEMOUNT FILEMOUNT all HOST COMP

FILEMSGS NOFILEMSGS all HOST COMP

FILENULL FILENULL all HOST COMP

FILEPROMPT FILEPROMPT (i);
NOFILEPROMPT
(b)

all HOST COMP

FILEREUSE NOFILEREUSE all HOST COMP

FILESPPRI 1 all HOST COMP

FILESPSEC 1 all HOST COMP

FILESTAT NOFILESTAT all HOST COMP

FILESYSOUT Z all HOST COMP

FILESYSTEM MVS all HOST COMP

FILEUNIT CYLS all HOST COMP

FILEVOL all HOST COMP

FILSZ FILSZ all HOST COMP

FIRSTOBS 1 all PORTABLE LR

FMTERR FMTERR all PORTABLE LR

FMTSEARCH (WORK LIBRARY) all PORTABLE LR

FONTSLOC NULL all PORTABLE COMP, LR

FORMCHAR |—−|+|— +=||-/
\<>*

all PORTABLE LR

FORMDLIM all PORTABLE LR

FORMS DEFAULT all PORTABLE LR

FSBCOLOR NOFSBCOLOR SI CF HOST COMP

FSBORDER BEST SI CF HOST COMP

FSDEVICE SI CF HOST LR, COMP

FSMODE IBM SI CF HOST COMP

FULLSTATS NOFULLSTATS all HOST COMP

GHFONT SI CF HOST COMP

GISMAPS all PORTABLE LR

GWINDOW GWINDOW all PORTABLE LR

HELPADDR SI CF HOST COMP

HELPBROWSER REMOTE SI CF HOST COMP

536 Summary Table of SAS System Options Chapter 18

Option Name Default
Specified

In
OPTIONS
Argument See

HELPCASE NOHELPCASE SI CF HOST COMP

HELPENCMD HELPENCMD SI CF PORTABLE LR

HELPHOST SI CF HOST COMP

HELPINDEX see the LR SI CF PORTABLE LR

HELPLOC HELPDOC SI CF HOST COMP

HELPPORT 0 SI CF HOST COMP

HELPTOC see the LR SI CF PORTABLE LR

HSLXTNTS 1500 all HOST COMP

HSMAXPGS 75000 all HOST COMP

HSMAXSPC 50 all HOST COMP

HSSAVE HSSAVE all HOST COMP

HSWORK NOHSWORK SI CF HOST COMP

IBUFSIZE 0 all PORTABLE LR

ICSRSLV ONLY SI CF HOST CONN

IDMDBUG NOIDMDBUG all GROUP=IDMS IDMS

IDMWHST I SI CF GROUP=IDMS IDMS

IMPLMAC NOIMPLMAC all PORTABLE Macro

IMSBPAGN * all GROUP=IMS IMS

IMSBPCPU 0 all GROUP=IMS IMS

IMSBPDCA 0 all GROUP=IMS IMS

IMSBPIN * all GROUP=IMS IMS

IMSBPNBA 0 all GROUP=IMS IMS

IMSBPOBA 0 all GROUP=IMS IMS

IMSBPOPT C all GROUP=IMS IMS

IMSBPOUT * all GROUP=IMS IMS

IMSBPPAR 0 all GROUP=IMS IMS

IMSBPSTI 0 all GROUP=IMS IMS

IMSBPUPD Y SI CF GROUP=IMS IMS

IMSDEBUG N all GROUP=IMS IMS

IMSDLBKO * all GROUP=IMS IMS

IMSDLBUF 16 all GROUP=IMS IMS

IMSDLDBR * all GROUP=IMS IMS

IMSDLEXC 0 all GROUP=IMS IMS

IMSDLFMT P all GROUP=IMS IMS

IMSDLIRL * all GROUP=IMS IMS

IMSDLIRN * all GROUP=IMS IMS

System Options under z/OS Summary Table of SAS System Options 537

Option Name Default
Specified

In
OPTIONS
Argument See

IMSDLLOG 0 all GROUP=IMS IMS

IMSDLMON N all GROUP=IMS IMS

IMSDLSRC 0 all GROUP=IMS IMS

IMSDLSWP * all GROUP=IMS IMS

IMSDLUPD Y SI CF GROUP=IMS IMS

IMSID * SI CF GROUP=IMS IMS

IMSIOB * all GROUP=IMS IMS

IMSREGTP DLI SI CF GROUP=IMS IMS

IMSSPIE 0 all GROUP=IMS IMS

IMSTEST 0 all GROUP=IMS IMS

IMSWHST N SI CF GROUP=IMS IMS

INITCMD SI CF PORTABLE LR

INITSTMT SI CF PORTABLE LR

INVALIDDATA . all PORTABLE LR

ISPCAPS NOISPCAPS all GROUP=ISPF COMP

ISPCHARF NOISPCHARF all GROUP=ISPF COMP

ISPCSR SI CF GROUP=ISPF COMP

ISPEXECV SI CF GROUP=ISPF COMP

ISPMISS all GROUP=ISPF COMP

ISPMSG SI CF GROUP=ISPF COMP

ISPNOTES NOISPNOTES all GROUP=ISPF COMP

ISPNZTRC NOISPNZTRC all GROUP=ISPF COMP

ISPPT NOISPPT all GROUP=ISPF COMP

ISPTRACE NOISPTRACE all GROUP=ISPF COMP

ISPVDEFA NOISPVDEFA all GROUP=ISPF COMP

ISPVDLT NOISPVDLT all GROUP=ISPF COMP

ISPVDTRC NOISPVDTRC all GROUP=ISPF COMP

ISPVIMSG all GROUP=ISPF COMP

ISPVRMSG all GROUP=ISPF COMP

ISPVTMSG all GROUP=ISPF COMP

ISPVTNAM all GROUP=ISPF COMP

ISPVTPNL all GROUP=ISPF COMP

ISPVTRAP NOISPVTRAP all GROUP=ISPF COMP

ISPVTVARS all GROUP=ISPF COMP

JREOPTIONS SI CF HOST COMP

LABEL LABEL all PORTABLE LR

538 Summary Table of SAS System Options Chapter 18

Option Name Default
Specified

In
OPTIONS
Argument See

LAST _NULL_ all PORTABLE LR

LEFTMARGIN 0.000 all PORTABLE LR

LINESIZE width of terminal
(i, w); 132 (b)

all PORTABLE COMP, LR

LOCALE ENGLISH_UnitedStates all HOST NLS

LOG SASLOG SI CF HOST COMP, LR

LOGPARM SI CF PORTABLE COMP

LUFIRST 1 SI CF HOST CAM

LULAST 9 SI CF HOST CAM

LUNAME SI CF HOST CAM

LUPOOL USER SI CF HOST CAM

LUPREFIX SI CF HOST CAM

LU62MODE all HOST CAM

MACRO MACRO SI CF PORTABLE Macro

MAPS MAPS all PORTABLE LR

MAUTOLOCDISPLAY NOMAUTOLOCDISPLAY all PORTABLE LR

MAUTOSOURCE MAUTOSOURCE all PORTABLE Macro

MAXSEGRATIO 75 all PORTABLE LR

MCOMPILENOTE [NONE] all PORTABLE MACRO

MEMLEAVE 524288 SI CF HOST COMP

MEMRPT MEMRPT all HOST COMP

MEMSIZE varies, see
dictionary

SI CF HOST COMP

MERGENOBY NOWARN all PORTABLE LR

MERROR MERROR all PORTABLE Macro

METAAUTORESOURCES [null] SI CF PORTABLE LR

METACONNECT [null] all PORTABLE LR

METAENCRYPTALG NONE SI CF PORTABLE LR

METAENCRYPTLEVEL EVERYTHING SI CF PORTABLE LR

METAID SI CF PORTABLE LR

METAPASS all PORTABLE LR

METAPORT 0 all PORTABLE LR

METAPROFILE [NULL] SI CF PORTABLE LR

METAPROTOCOL BRIDGE all PORTABLE LR

METAREPOSITORY Default all PORTABLE LR

METASERVER all PORTABLE LR

METAUSER all PORTABLE LR

System Options under z/OS Summary Table of SAS System Options 539

Option Name Default
Specified

In
OPTIONS
Argument See

MFILE NOMFILE all PORTABLE Macro

MINDELIMETER (null) all PORTABLE MACRO

MINPARTSIZE (null) SI CF PORTABLE LR

MINSTG NOMINSTG all HOST COMP

MISSING . all PORTABLE LR

MLOGIC NOMLOGIC all PORTABLE Macro

MLOGICNEST NOMLOGICNEST all PORTABLE MACRO

MPRINT NOMPRINT all PORTABLE Macro

MPRINTNEST NOIMPRINTNEST all PORTABLE MACRO

MRECALL NOMRECALL all PORTABLE Macro

MSG SASMSG SI CF HOST COMP

MSGCASE NOMSGCASE SI CF HOST COMP

MSGLEVEL N all PORTABLE LR

MSGLOAD NOMSGLOAD all HOST COMP

MSGSIZE 131072 SI CF HOST COMP

MSTORED NOMSTORED all PORTABLE Macro

MSYMTABMAX 1048576 all PORTABLE Macro, COMP

MULTENVAPPL NOMULTENVAPPL all PORTABLE LR

MVARSIZE 8192 all PORTABLE Macro, COMP

NETENCRYPT NONETENCRYPT all PORTABLE CONN,
SHARE

NETENCRYPTALGORITHM all PORTABLE CONN,
SHARE

NETENCRYPTKEYLEN 0 all PORTABLE CONN,
SHARE

NETMAC NETMAC all PORTABLE CONN,
SHARE

NEWS SI CF PORTABLE LR

NLSCOMPATMODE NONLSCOMPATMODE SI CF HOST NLS

NOTES NOTES all PORTABLE LR

NUMBER NUMBER all PORTABLE LR

OBJECTSERVER NOOBJECTSERVER SI CF PORTABLE LR

OBS 9223372036854775807 all PORTABLE LR

OPLIST NOOPLIST SI CF HOST COMP, LR

OPRESTRICTIONS SI CF GROUP=INSTALL INST

ORIENTATION PORTRAIT all PORTABLE LR

OVP NOOVP all PORTABLE LR

PAGEBREAKINITIAL PAGEBREAKINITIAL SI CF PORTABLE COMP, LR

540 Summary Table of SAS System Options Chapter 18

Option Name Default
Specified

In
OPTIONS
Argument See

PAGENO 1 all PORTABLE LR

PAGESIZE terminal screen
size (w); 21 (i); 60
(b)

all PORTABLE LR, COMP

PAPERDEST all PORTABLE LR

PAPERSIZE LETTER all PORTABLE LR

PAPERSOURCE all PORTABLE LR

PAPERTYPE PLAIN all PORTABLE LR

PARM all PORTABLE LR

PARMCARDS SASPARM all PORTABLE COMP, LR

PFKEY PRIMARY SI CF HOST COMP

PGMPARM SI CF HOST COMP

PRINT SASLIST SI CF HOST COMP, LR

PRINTERPATH all PORTABLE LR

PRINTINIT NOPRINTINIT SI CF PORTABLE COMP, LR

PRINTMSGLIST PRINTMSGLIST all PORTABLE LR

PROCLEAVE (0, 153600) all HOST COMP

PROCLEAVE [NULL] SI CF HOST COMP

PSUPISA 174080 SI CF GROUP=INSTALL INST

PSUPOSA 20480 SI CF GROUP=INSTALL INST

QUOTELENMAX QUOTELENMAX all PORTABLE LR

REALMEMSIZE 0 SI CF HOST COMP

REPLACE REPLACE all PORTABLE LR

REUSE NO all PORTABLE LR

REXXLOC SASREXX SI CF HOST COMP

REXXMAC NOREXXMAC all HOST COMP

RIGHTMARGIN 0.000 all PORTABLE LR

RSASUSER NORSASUSER SI CF PORTABLE LR

S 0 all PORTABLE LR, COMP

SASAUTOS SASAUTOS all PORTABLE COMP, Macro

SASCMD all PORTABLE LR

SASFRSCR all PORTABLE CONN, INST

SASHELP SASHELP SI CF PORTABLE COMP, LR

SASLIB SASLIB SI CF HOST COMP

SASMSTORE all PORTABLE MACRO

SASSCRIPT all PORTABLE CONN, INST

SASUSER SASUSER SI CF PORTABLE COMP, LR

System Options under z/OS Summary Table of SAS System Options 541

Option Name Default
Specified

In
OPTIONS
Argument See

SECPROFILE SI CF HOST SHARE

SEQ 8 all PORTABLE LR

SEQENGINE TAPE all HOST COMP

SERROR SERROR all PORTABLE Macro

SET SI CF HOST COMP

SETINIT NOSETINIT SI CF PORTABLE LR

SIGNONWAIT SIGNONWAIT all PORTABLE CONN

SKIP 0 all PORTABLE LR

SMF NOSMF SI CF GROUP=INSTALL INST

SMFEXIT SI CF GROUP=INSTALL INST

SMFTYPE 128 SI CF GROUP=INSTALL INST

SOLUTIONS SOLUTIONS SI CF PORTABLE LR

SORT 0 all HOST COMP

SORTALTMSGF NOSORTALTMSGF all HOST COMP

SORTBLKMODE NOSORTBLKMODE all HOST COMP

SORTBUFMOD SORTBUFMOD all HOST COMP

SORTCUTP 4194304 all HOST COMP

SORTDEV SYSDA all HOST COMP

SORTDEVWARN SORTDEVWARN all HOST COMP

SORTDUP PHYSICAL all PORTABLE LR

SORTEQOP SORTEQOP all HOST COMP

SORTEQUALS SORTEQUALS all PORTABLE LR

SORTLIB SYS1.SORTLIB all HOST COMP

SORTLIST NOSORTLIST all HOST COMP

SORTMSG NOSORTMSG all HOST COMP

SORTMSG SYSOUT all HOST COMP

SORTNAME SORT all HOST COMP

SORTOPTS SORTOPTS all HOST COMP

SORTPARM all HOST COMP

SORTPGM BEST all HOST COMP

SORTSEQ all PORTABLE NLS

SORTSHRB SORTSHRB (i,w);
NOSORTSHRB (b)

all HOST COMP

SORTSIZE MAX all PORTABLE COMP, LR

SORTSUMF SORTSUMF all HOST COMP

SORTUADCON SORTUADCON all HOST COMP

SORTUNIT CYLS all HOST COMP

542 Summary Table of SAS System Options Chapter 18

Option Name Default
Specified

In
OPTIONS
Argument See

SORTWKDD SASS all HOST COMP

SORTWKNO 3 all HOST COMP

SORT31PL SORT31PL all HOST COMP

SOURCE NOSOURCE all PORTABLE LR

SOURCE2 NOSOURCE2 all PORTABLE LR

SPDEINDEXSORTSIZE 33554432 all PORTABLE LR

SPDEMAXTHREADS 0 SI CF PORTABLE LR

SPDESORTSIZE 33554432 all PORTABLE LR

SPDEUTILLOC [null] SI CF PORTABLE LR

SPDEWHEVAL COST all PORTABLE LR

SPOOL NOSPOOL all PORTABLE LR

SSLCLIENTAUTH NOSSLCLIENTAUTH all PORTABLE LR

SSLCRLCHECK NOSSLCRLCHECK all PORTABLE LR

STAE STAE all HOST COMP

STARTLIB NOSTARTLIB SI CF PORTABLE LR

STATS STATS all HOST COMP

STAX STAX SI CF HOST COMP

STIMER STIMER SI CF HOST COMP

SUBSYSID SAS0 SI CF GROUP=INSTALL INST

SUMSIZE 0 all PORTABLE LR

SVC0R15 4 SI CF GROUP=INSTALL INST

SVC0SVC 109 SI CF GROUP=INSTALL INST

SVC11SCREEN NOSVC11SCREEN SI CF HOST COMP

SYMBOLGEN NOSYMBOLGEN all PORTABLE Macro

SYNCHIO NOSYNCHIO SI CF PORTABLE COMP, LR

SYNTAXCHECK SYNTAXCHECK all PORTABLE LR

SYSIN none (i,w); SYSIN
(b)

SI CF HOST COMP

SYSINP SI CF HOST COMP

SYSLEAVE (0, 153600) all HOST COMP

SYSPARM all PORTABLE Macro

SYSPREF user profile prefix
(i, w); userid (b)

all HOST COMP

SYSPRINT all HOST COMP

SYSPRINTFONT all PORTABLE LR

SYSRPUTSYNC NOSYSRPUTSYNC all PORTABLE CAM

S2 0 all PORTABLE LR

System Options under z/OS Summary Table of SAS System Options 543

Option Name Default
Specified

In
OPTIONS
Argument See

S99NOMIG NOS99NOMIG all HOST COMP

TAPECLOSE REREAD all HOST COMP

TBUFSIZE 0 all PORTABLE CONN

TCPIPMCH SI CF HOST CAM

TCPIPPRF SI CF HOST CAM

TCPPORTFIRST 0 all PORTABLE CAM

TCPPORTLAST 0 all PORTABLE CAM

TCPSEC _NONE_ all HOST CAM

TERMINAL TERMINAL SI CF PORTABLE LR

TERMSTMT SI CF PORTABLE LR

TEXTURELOC all PORTABLE LR

THREADS THREADS all PORTABLE LR

TOOLSMENU TOOLSMENU SI CF PORTABLE LR

TOPMARGIN 0.000 all PORTABLE LR

TRAINLOC SI CF PORTABLE LR

TRANTAB all PORTABLE NLS

UNIVERSALPRINT UNIVERSALPRINT SI CF PORTABLE LR

USER all PORTABLE COMP, LR

USERXIT1 SI CF GROUP=INSTALL INST

USERXIT2 SI CF GROUP=INSTALL INST

UTILLOC WORK SI CF PORTABLE LR

UUIDCOUNT 100 all PORTABLE IT

UUIDGENDHOST all PORTABLE IT

V6CREATEUPDATE NOTE SI CF PORTABLE LR

VALIDFMTNAME LONG all PORTABLE LR

VALIDVARNAME V7 all PORTABLE LR

VERBOSE NOVERBOSE SI CF HOST COMP

VIEWMENU VIEWMENU SI CF PORTABLE LR

VMCTLISA 163840 all GROUP=INSTALL INST

VMNSISA 0 SI CF GROUP=INSTALL INST

VMNSOSA 0 SI CF GROUP=INSTALL INST

VMPAISA 262144 all GROUP=INSTALL INST

VMPAOSA 131072 all GROUP=INSTALL INST

VMPBISA 262144 all GROUP=INSTALL INST

VMPBOSA 131072 all GROUP=INSTALL INST

VMTAISA 262144 all GROUP=INSTALL INST

544 Summary Table of SAS System Options Chapter 18

Option Name Default
Specified

In
OPTIONS
Argument See

VMTAOSA 131072 all GROUP=INSTALL INST

VMTBISA 262144 all GROUP=INSTALL INST

VMTBOSA 131072 all GROUP=INSTALL INST

VNFERR VNFERR all PORTABLE LR

VSAMLOAD NOVSAMLOAD all HOST COMP

VSAMREAD VSAMREAD all HOST COMP

VSAMUPDATE NOVSAMUPDATE all HOST COMP

WORK WORK SI CF PORTABLE COMP, LR

WORKINIT WORKINIT SI CF PORTABLE LR

WORKTERM WORKTERM all PORTABLE LR

WTOSYSTEMDESC 0 SI CF HOST INST

WTOSYSTEMMCSF SI CF HOST INST

WTOSYSTEMROUT 0 SI CF HOST INST

WTOUSERDESC 0 SI CF HOST COMP

WTOUSERMCSF SI CF HOST COMP

WTOUSERROUT 0 SI CF HOST COMP

XCMD XCMD SI CF HOST COMP

YEARCUTOFF 1920 all PORTABLE LR

545

C H A P T E R

19
Windows and Commands in z/OS
Environments

Windows and Commands in the z/OS Environment 546

Using the Graphical Interface 546
Window Controls and General Navigation 546

Selection-Field Commands 548

Host-Specific Windows in the z/OS Environment 549
DSINFO Window 549

FILENAME Window 550

FNAME Window 550
LIBASSIGN Window 552

LIBNAME Window 552
MEMLIST Window 553

Host-Specific Windows of the FORM Subsystem 555

TSO Print-File Parameter Frame 555
Field Descriptions 556

IBM 3800 Print-File Parameter Frame 557

Field Descriptions 557
Host-Specific Window Commands 557

CLOCK Command 558
DFLTACTION Command 558

DLGENDR Command 559

EXPLODE Command 559
FILE Command 560

GCURSOR Command 560

HOSTEDIT Command 561
INCLUDE Command 562

NULLS Command 563
TSO Command 564

WIDGNEXT Command 565

WIDGPREV Command 565
X Command 566

SAS System Options That Affect the z/OS Windowing Environment 567

Terminal Support in the z/OS Environment 568
Text Device Drivers 568

Graphics Device Drivers 568
EMULUS Extensions 569

Using a Mouse in the SAS Windowing Environment under z/OS 569

Using a Three-Button Mouse 570
Using a Two-Button Mouse 570

Appearance of Window Borders, Scroll Bars, and Widgets 570

Improving Screen Resolution on an IBM 3290 Terminal 570

546 Windows and Commands in the z/OS Environment Chapter 19

Windows and Commands in the z/OS Environment

Portable features of the SAS windowing environment are documented in the help
forBase SAS. Only features that are specific to z/OS or that have aspects that are
specific to z/OS are documented in this section.

This section also includes information about terminals and special devices that you
can use with SAS software in the z/OS environment.

Using the Graphical Interface

The graphical user interface provides windows, commands, and menus that are
compatible with 3270 terminals, with 3270 terminal emulation, and with other graphics
terminals used in the z/OS environment. This section describes the ways that SAS
windows and window controls function on these terminals.

For information on hardware support for terminals and mouse input devices, see
“Terminal Support in the z/OS Environment” on page 568.

Window Controls and General Navigation

This section explains some of the basic capabilities of the SAS windowing
environment under z/OS. The word select indicates positioning the cursor with a single
click of the mouse button or with the TAB or SHIFT+TAB keys if you don’t have a
mouse. Press the ENTER key to confirm your selection. The word choose refers to the
selection and confirmation of a menu option.

Function keys
Issue the KEYS command to display and edit function key settings.

Displaying SAS menus
Issue the PMENU command to display the SAS menu bar at the top of each
window. Then use a function key or choose

Tools Options Command...

to display a command line window without removing the menus. You can also use
the default function keys F9 for pmenus and F10 for a command line.

Moving between windows
Issue the PREVWIND command (F7 by default) or the NEXT command (F8 by
default) to move the cursor and bring different windows to the foreground. If a
mouse is available, clicking in a particular window brings that window to the
foreground. The LOG, PGM, and OUT commands move the Log, Program, or
Output window to the foreground, respectively.

Resizing a window
Select the window border that you want to resize, then select the new position of
that window border. Select a top, bottom, or side border to resize horizontally or
vertically. Choose a corner to resize horizontally and vertically at the same time.
You can also issue the ZOOM, ICON RESIZE, WGROW, and WSHRINK
commands to change window dimensions.

Windows and Commands in z/OS Environments Window Controls and General Navigation 547

Arranging windows
Choose

View Change Display

to see a list of window arrangement options. For example, the Cascade option
moves and resizes windows to display the top row of all active windows. You can
also issue the RESIZE, CASCADE, and TILE commands to arrange windows.

Moving a window
Select the title of the window in the upper-left corner of the window border. The
word MOVE appears in the bottom of the display area. A second click determines
the new position of the top left corner of the window, which will not change size.
You can also issue the WMOVE command to move a window.

Navigating in a window

Scrolling
Scroll down through a file with the FORWARD command (F20 by default).
Scroll up with the BACKWARD command (F19 by default). Scroll right with
the RIGHT command (F23 by default), and scroll left with the LEFT
command (F22 by default).

You can also use scrollbars to scroll through a file. Issuing the
SCROLLBAR command displays vertical and horizontal scrollbars in all of
the open SAS windows. The SCROLLBAR command has two short forms,
SCROLL and SBAR. SCROLLBAR, SCROLL, and SBAR operate like toggle
commands. Issuing any of the commands either turns on the scrollbars or
turns them off.

The SCROLLBAR command has two optional parameters, on and off. You
can issue any of the forms of the SCROLLBAR command with the on or off
parameters. For example, issuing scrollbar on displays the scrollbars in
the same way that issuing scrollbar or sbar displays them.

Moving through help topics
Issue the HBACKWARD command to move back one help topic (F11 by
default). Issue the HFORWARD command (F12 by default) to move forward
one help topic.

Selecting a view
In windows that contain a tree view on the left and a list view on the right,
such as the SAS Explorer window (see Display 19.1 on page 548), select a
view, press the ENTER key, and then move the cursor from field to field
within that view.

548 Selection-Field Commands Chapter 19

Display 19.1 Tree View (left) and List View (right) in SAS Explorer Window

Selecting a control or widget
A widget or a control is a screen character that implements a control function
for the window or the application. An example is the X character that
indicates the current position in a scroll bar, as shown in Display 19.1 on
page 548. With the cursor positioned on a control or widget, issue the
WDGNEXT or WDGPREV commands to move to the next, or the previous,
control or widget.

Scrolling a view or column
Select a position in the scroll bar to change the displayed portion of a view or
column. Selecting in various places causes the display to move up or down
one screen width or move to the beginning or end of the view or column.

Resizing a view or column
Select the icon in the upper right corner of the tree view or column heading.
The view title will change to the resize symbol. Select again to fix the new
horizontal position of the corner.

Sorting a column
Select the heading of the column that you want to sort. Not all columns can
be sorted.

Selection-Field Commands
Selection fields allow you to accomplish tasks in windows using keystrokes or mouse

clicks. This section introduces the selection-field commands that are generally available
in the z/OS windowing environment.

Certain SAS windows display a tree view on the left and a list view on the right.
Each view has its own set of selection-field commands. (You might want to display one
of these windows to test the following commands.)

The tree view shows hierarchical structures such as SAS libraries and members. To
display or hide a level of detail, position the cursor on the plus sign (+) or the dash (–)
to the far left of the library or member name and press the ENTER key. A single mouse
click does the same job.

In the tree view and list view, you may perform tasks using the selection field
represented by an underscore character (_) just to the left of an item. To issue

Windows and Commands in z/OS Environments DSINFO Window 549

selection-field commands, position the cursor and type in a single character, some of
which are listed below, or issue the WPOPUP command (mouse button 2 by default) or
a question mark (?) to see a menu of available selection field commands.

S or X Select or emulate a double-click

D Deassign or delete

P Properties

N New

R Rename

Host-Specific Windows in the z/OS Environment

Portable windows are documented primarily in the help for Base SAS. In this help
for SAS in the z/OS environment, coverage is limited to windows that are specific to the
z/OS environment and to portable windows with contents or behavior that are specific
to the z/OS environment.

DSINFO Window

Provides information about a cataloged physical file

z/OS specifics: all

Syntax

DSINFO

DSINFO DDname

DSINFO ‘physical-filename’

DSINFO ‘HFS filename’

Details

You can invoke the DSINFO window from any window in the windowing environment,
including the windows in SAS/FSP and SAS/AF. To invoke the DSINFO window, type
DSINFO followed by either a DDname, a fully qualified physical file name, or a
partially qualified name such as ’.misc.text’. (See “Specifying Physical Files” on page 14
for information about using partially qualified data set names.)

If you are referencing a concatenated file with a DDname, the DSINFO window
displays information for the first data set in the concatenation.

550 FILENAME Window Chapter 19

Display 19.2 DSINFO Window

FILENAME Window

Displays assigned filerefs and their associated filenames

z/OS specifics: display of externally allocated DDnames

Syntax
FILENAME

Details
A DDname that was allocated externally (using the JCL DD statement or the TSO
ALLOCATE command) is not listed by the FILENAME window or by the Active File
Shortcuts window until after you have used it as a fileref in your SAS session.

FNAME Window

Displays allocated DDnames, their associated data set names, and data set information

z/OS specifics: all

Syntax
FNAME

FNAME <DDname>

FNAME <generic-name*>

FNAME <generic-name:>

Windows and Commands in z/OS Environments FNAME Window 551

Details
The FNAME window displays allocated DDnames whether they are identified as librefs,
filerefs, or other DDnames. You can invoke the FNAME window from any window in
the windowing environment, including the windows in SAS/FSP and SAS/AF. To invoke
it, type FNAME. If you do not supply the optional DDname, then the FNAME window
displays all DDnames that are associated with your TSO login session and your SAS
session, along with the names of the physical files that are associated with them. If you
supply a DDname, it can either be specific or generic. For example, to see only
DDnames that begin with S, you would use either of the following generic
specifications: FNAME S* or FNAME S: .

In the FNAME window you can perform various tasks by entering one of the
following selection-field commands:

B selects a sequential data set or partitioned data set (PDS) member
for browsing.

E selects a sequential data set or PDS member for editing.

I includes a sequential data set or PDS member into the Program
Editor window.

F frees (deallocates) an allocated fileref.

M opens the MEMLIST window, which lists the members in a single
PDS.

C lists the members in a concatenation of PDSs. C must be specified
on the first line of a concatenation, that is, the DDname cannot be
blank.

S selects or emulates a double-click. The action taken varies according
to file type. Selecting a PDS brings up the MEMLIST window, for
example.

X displays file properties.

% submits a %INCLUDE statement to SAS to include a sequential
data set or PDS member.

? displays a pop-up menu of available selection-field commands.

Display 19.3 FNAME Window

552 LIBASSIGN Window Chapter 19

LIBASSIGN Window

Assigns a SAS libref and engine to a SAS data library

z/OS specifics: Options field

Syntax
LIBASSIGN

Details
The Options field of the New Library window allows only 53 characters. To allow more
characters, assign the EXPLODE command to a function key, and then use the function
key to open a dialog box with a longer (but not unlimited) text entry field. For more
information, see “EXPLODE Command” on page 559.

LIBNAME Window

Lists all the libraries that are currently assigned in your SAS session

z/OS specifics: display of externally allocated libraries

Syntax
LIBNAME

LIBNAME < libref>

Details
If you specify libref, the Active Libraries window opens with a list of members of the
specified library. Otherwise, the Active Libraries window lists the currently assigned
libraries. You can select a library to list its members.

A library that was allocated externally (using the JCL DD statement or the TSO
ALLOCATE command) is not listed by the LIBNAME window until after you have used
it in your SAS session.

Windows and Commands in z/OS Environments MEMLIST Window 553

Display 19.4 Active Libraries Window

MEMLIST Window

Displays a member list for a partitioned data set (PDS) or for a series of partitioned data sets in a
concatenation

z/OS specifics: all

Syntax
MEMLIST

MEMLIST DDname

MEMLIST DDname(member)

MEMLIST DDname (generic-name*)

MEMLIST DDname(generic-name:)

MEMLIST fileref

MEMLIST ’physical-filename’

MEMLIST ’physical-filename (member)’

MEMLIST ’physical-filename(generic-name *)’

MEMLIST ’physical-filename (generic-name :)’

Details
You can invoke the MEMLIST window from any window in the windowing environment,
including the windows in SAS/FSP and SAS/AF. You can specify either a specific
member name or a generic member name. For example, the following specification lists
all of the members in a PDS to which you have assigned the fileref MYPDS: MEMLIST

554 MEMLIST Window Chapter 19

MYPDS. To list only members whose names begin with TEST in this PDS, you would
use the following generic specification: MEMLIST MYPDS(TEST*) .

You can also invoke the MEMLIST window by using the M selection-field command
in the FNAME window.

By entering one of the following selection-field commands in the MEMLIST window,
you can perform various functions on the displayed list of PDS members:

B or S selects a member for browsing.

E selects a member for editing.

I includes a member into the Program Editor window and makes
Program Editor the active window.

% submits a %INCLUDE statement for a member.

R renames a member.

D deletes a member.

? displays a pop-up menu.

When a concatenation of PDSes is specified, the selection-field commands work only
for members that have a “1” in the LIB column. The LIB column uses numbers to
indicate the library in which each member is found. The numbers represent the order
in which the PDSes were specified at concatenation. For example, a “1” in the LIB
column indicates the member exists in the first PDS that was specified, the number “2”
indicates it exists in the second PDS that was specified, and so on. A plus (+) sign next
to a number indicates that multiple members in the concatenation have the same name.

Display 19.5 MEMLIST Window

The MEMLIST window supports concatenated PDSes in SAS System 9. However,
selection-field commands issued on concatenated PDSes operate only on the first library
in the concatenation. For example, you cannot save the result of editing a member that
exists in a library other than the first library in the concatenation.

You can use the DELETE and RENAME commands for members of the first library
that have the same name as members in lower libraries. If you delete a file in the first
library, the member of the first library is deleted and the next lower member with that
name is displayed. If you rename a file in the first library, the member of the first
library is renamed and the next lower member with that name is displayed.

Windows and Commands in z/OS Environments TSO Print-File Parameter Frame 555

If you have more than one MEMLIST window displaying the same PDS, and you create,
rename, or delete a member of the PDS, only the active window is updated on screen
when the change is completed. The other MEMLIST windows are updated at the same
time as the active window, but you will not see the change to the PDS member until
you select one of these windows as your active window.

Host-Specific Windows of the FORM Subsystem
The FORM subsystem consists of six windows that are described in detail in the help

for Base SAS. You use these frames to define a form for each printer that is available to
you at your site.

Two of the windows in the FORM subsystem contain host-specific information. Both
are print-file parameter windows that you use to specify the printer, text format, and
destination for your output. Display 19.6 on page 555 and Display 19.7 on page 557
show these two frames. Display 19.7 on page 557 appears only if you select IBM 3800
print-file parameters.

This section contains brief discussions of the fields in the z/OS-specific FORM
windows. For additional information, select the field you’re interested in and press the
function key you use to issue the HELP command. Also see “Using the PRINT
Command and the FORM Subsystem” on page 121 for more information about using
the FORM subsystem.

The TSO print-file parameters in the first window are the same parameters you
would use in a TSO ALLOCATE statement.

TSO Print-File Parameter Frame

Display 19.6 TSO Print-File Parameter Frame

556 TSO Print-File Parameter Frame Chapter 19

Field Descriptions
Many of the values that are entered for these parameters are site specific. The data

center personnel at your site can give you information about the Destination, Forms,
and Class codes that are used at your site.

Destination
routes the output to a particular device. Destination is a one to eight
alphanumeric or national character name that is defined for a device by your site.

Class
refers to the SYSOUT class of the file. The SYSOUT parameter is used to route
output to printers and other devices. Class can be any alphanumeric character.
Ask your data center personnel which specifications are appropriate for this field.

Forms
are specified by using one to four alphanumeric or national characters. Form
numbers are used to request special paper. Ask your data center personnel which
values are appropriate for this field.

UCS
requests that a print chain or print train that contains the Universal Character
Set be mounted for a device. Ask your data center personnel which values are
appropriate for this field.

Copies
specifies how many copies to print. The range is from 1 to 255, with a default
value of 1.

FCB
is the forms control-buffer value, which specifies the movement of forms on a
device. Ask your data center personnel which values are appropriate for this field.

Writer
specifies the name of a program in the SYS1.LINKLIB library that is to be used to
write the output instead of JES2 or JES3. Ask your data center personnel for
information about using this parameter.

ID
specifies the maximum number of output lines that can be printed. The range is
from 1 to 16,777,215. If ID is exceeded, the job is automatically terminated.

Hold
requests that output be held in the output queue instead of going directly to the
device.

Windows and Commands in z/OS Environments Host-Specific Window Commands 557

IBM 3800 Print-File Parameter Frame

Display 19.7 IBM 3800 Print-File Parameter Frame

Field Descriptions
This frame requests the following print-file parameters. For more information,

consult the help facility. Also refer to the IBM JCL reference manual for your system
for additional information about these parameters.

Character tables
specifies which character table to use for printing output. Ask your data center
personnel which values are appropriate for this field.

Flash name and Flash count
controls the use of overlay forms. Ask your data center personnel for details.

Modify name and Modify TRC
controls the use of copy modification modules in SYS1.IMAGELIB for printing
output. Ask your data center personnel for details.

Burst
requests that your output be torn apart into separate sheets of paper. When Burst
is not specified, the default is normal fanfold (continuous) printing.

Optcode
works in conjunction with the character tables option. Ask your data center
personnel for details.

Host-Specific Window Commands
Command-line commands are documented in the help for Base SAS. This section

includes detailed information about commands that are specific to the z/OS windowing
environment.

“CLOCK Command” on page 558

558 CLOCK Command Chapter 19

“DFLTACTION Command” on page 558
“DLGENDR Command” on page 559
“EXPLODE Command” on page 559
“FILE Command” on page 560
“GCURSOR Command” on page 560
“HOSTEDIT Command” on page 561
“INCLUDE Command” on page 562
“NULLS Command” on page 563
“TSO Command” on page 564
“WIDGNEXT Command” on page 565
“WIDGPREV Command” on page 565
“X Command” on page 566

CLOCK Command

Displays the current time according to a 24-hour clock

z/OS specifics: all

Syntax
CLOCK

Details
The time is shown as hh.mm in the lower-right corner of the display. Repeat the
command to toggle the clock on and off. Issuing the command CLOCK OFF removes
the clock.

DFLTACTION Command

Simulates a mouse double-click

z/OS specifics: all

Syntax
DFLTACTION

Details
To enter a double-click without using a mouse, position the cursor (set the keyboard
focus) on the control and issue the command. The DFLTACTION command applies to

Windows and Commands in z/OS Environments EXPLODE Command 559

the following controls: text pad, combo box, list view, spin box, tree view, push button,
desk top icon, and list box.

The DFLTACTION command is best used by assigning the command to a function
key. Enter the KEYS command to display and edit function key assignments.

To use a function key to issue the DFLTACTION command, position the cursor in a
text entry field and press the function key.

DLGENDR Command

Ends the SAS session

z/OS specifics: all

Syntax
DLGENDR

Details
This command causes SAS to display a window that asks you to confirm that you want
to end your SAS session. An affirmative response ends the session.

EXPLODE Command

Displays the full length of truncated text entry fields

z/OS specifics: all

Syntax
EXPLODE

Details
This command opens the EXPLODE window to display text that could not be fully
displayed in the narrow width of a text entry field. If a window displays a maximum of
10 characters in a text entry field, and the value displayed in that field contains 20
characters, only the first 10 will be displayed. To see the entire 20 characters, enter
EXPLODE on the command line, place the cursor on the text entry field, and press the
ENTER key. The resulting EXPLODE window displays up to the first 255 characters of
the text entry field, with any blank spaces retained.

In the EXPLODE window, you can edit all the text in the field, but only if the field is
accessible for read and write. You cannot edit read-only fields, nor can you edit any part
of a field that is longer than 255 characters. However, the EXPLODE command will
display the first 255 characters of any text entry field from Version 7 or later.

560 FILE Command Chapter 19

The EXPLODE window displays text on five lines of 51 characters. Each line is
edited individually. Text does not scroll from one line to the next as you add and delete
characters. Selecting the OK button concatenates the text on any of the five lines into
the single text entry field, preserving any blank spaces in between.

EXPLODE is best used by assigning the command to one of your function keys.
Enter the KEYS command to display and edit your function key assignments.

To use a function key to issue the EXPLODE command, position the cursor in a text
entry field and press the function key.

The EXPLODE command cannot expand normal text fields.

FILE Command

Saves the contents of a window to an external file

z/OS specifics: file-specification, ENCODING= option

Syntax
FILE file-specification <ENCODING=encoding-value> <options>

file-specification
specifies a valid z/OS external file specification, such as a fileref or the physical file
name of a sequential data set, a member of a partitioned data set (PDS), a member of
an extended partitioned data set (PDSE), or a file in UNIX System Services (USS).

ENCODING=encoding-value
specifies the encoding to use when writing to the output file. Typically, you would
specify a value for ENCODING= that indicates that the output file has a different
encoding from the current session encoding. However, you can also specify the same
encoding for the output file as for that of the current session encoding. You must
enclose the value in quotation marks if it contains a dash.

If you specify an encoding value that is different from the session encoding, SAS
transcodes the data from the session encoding to the specified encoding when you
write data to the output file. The default encoding is the session encoding, which is
the value of the ENCODING= SAS system option.

For valid encoding values, see “Encoding Values in SAS Language Elements” in
the SAS National Language Support (NLS): User’s Guide.

GCURSOR Command

When applicable, turns the graphics cursor on or off

z/OS specifics: all

Syntax
GCURSOR <ON> | <OFF>

Windows and Commands in z/OS Environments HOSTEDIT Command 561

Details
This command is used only with 3179G, 3192G, IBM5550, and IBM3472G graphics
terminals. When a mouse is attached, the default setting for GCURSOR is ON. Without
a mouse, the cursor movement keys are used to position the graphics cursor. The
GCURSOR command acts like a toggle switch. Alternatively, you can use the ON and
OFF operands.

HOSTEDIT Command

Temporarily suspends the current SAS session and starts a session of the ISPF editor or browser

z/OS specifics: host editor invoked

Syntax
HOSTEDIT | HED

Details
Under z/OS, this command starts a session of the ISPF editor or browser. Under other
operating environments, it invokes other host-specific editors.

Note: The HOSTEDIT command works only if you have invoked SAS from the ISPF
environment. �

You can execute the HOSTEDIT command from the command line of any SAS
window that involves the SAS Text Editor, such as the Program Editor, Log, Output,
and Notepad windows, among others.

When the ISPF EDIT session begins, the screen displays the contents of the window
from which it was invoked. Depending on how the window was defined when it was
created, one of the following actions occurs:

� If the window can be edited, you are placed in an ISPF EDIT session editing the
contents of the window. You can then use the standard ISPF EDIT commands to
edit the text or to call up any of the ISPF EDIT models, and you can save changes
back to the window from which the HOSTEDIT command was issued.

� If the window is read only, you are placed in an ISPF BROWSE session that
displays the contents of the window.

� If the window cannot be edited by the host editor, a message to that effect appears
in the window, and no other action occurs.

Special text attributes such as color or highlighting are lost during a host editing
session. When the HOSTEDIT command is issued from a window that contains text
with these attributes, a requestor window appears. The requestor window gives you the
option of either continuing or aborting the HOSTEDIT command.

When you have finished editing in the ISPF EDIT session, do one of the following:
� To save the contents back to the window, issue the END command.
� To discard the changes you made, issue the CANCEL command.

562 INCLUDE Command Chapter 19

� To save the contents of the window to an external file, use the standard ISPF
EDIT commands such as CREATE or REPLACE. Then issue the END or CANCEL
command, depending on whether you also want to save the changes back to the
window.

In each case, you are returned to the window in the SAS session that was suspended.

See Also

� “Using the ISPF Editor from Your SAS Session” on page 188

INCLUDE Command

Copies the contents of an external file into the current window

z/OS specifics: file-specification

Syntax
INCLUDE fileref

INCLUDE fileref(member)

INCLUDE ’physical-filename’ <ENCODING=encoding-value>

INCLUDE ’physical-filename(member)’ <ENCODING=encoding-value>

ENCODING=encoding-value
specifies the encoding to use when reading to the input file. Typically, you would
specify a value for ENCODING= that indicates that the input file has a different
encoding from the current session encoding. However, you can also specify the same
encoding for the input file as for that of the current session encoding. You must
enclose the value in quotation marks if it contains a dash.

If you specify an encoding value that is different from the session encoding, SAS
transcodes the data from the specified encoding to the session encoding when you
read data from the input file. The default encoding is the session encoding, which is
the value of the ENCODING= SAS system option.

For valid encoding values and for more information about encoding, see “Encoding
Values in SAS Language Elements” in the SAS National Language Support (NLS):
User’s Guide.

Details
This command is available in the Program Editor window as well as in any other
window that uses the SAS Text Editor such as the Notepad window. You can also
include an external file from the MEMLIST or FNAME windows by using selection-field
commands. You can identify the external file by specifying either a fileref or the physical
file name. If you specify the physical file name, you must enclose it in quotation marks.

Here are examples of the INCLUDE command that illustrate the various ways you
can specify physical files:

INCLUDE MYPGM
MYPGM is a fileref that was previously associated with the external file.

Windows and Commands in z/OS Environments NULLS Command 563

INCLUDE MYPGM(PGM1)
PGM1 is a member of the partitioned data set that is associated with the fileref
MYPGM.

INCLUDE ’USERID.TEST.PGMS’
sequential data set name.

INCLUDE ’USERID.TEST.PGMS(AAA)’
data set name with member specified.

INCLUDE ’.TEST.MYPGM’
Assuming that the FILESYSTEM= system option is set to MVS, SAS prepents this
data set name with the value of the SAS system option SYSPREF=, which defaults
to the your system prefix. If FILESYSTEM=HFS, SAS looks into your default
UNIX System Services directory for the “hidden” file .TEST.MYPGM.

INCLUDE ’HFS:/u/userid/mypgms/mypgm1.c’
name of a UNIX System Services file in the hierarchical file system, represented
by a partially qualified path. SAS searches for the file in the default HFS directory
for that user. If the FILESYSTEM= system option was set to HFS and if MYPGM
was a standard z/OS data set, the alternate syntax of MVS: would be required
above (see “FILESYSTEM= System Option” on page 440).

INCLUDE ’pgms/mypgms/mypgm1.c’
This is another example of a relative path to a UNIX System Services file. Any file
name containing a slash (/) is assumed to be in UNIX System Services, regardless
of the value of the FILESYSTEM= system option.

INCLUDE ’pgms/mypgms/*’
The * wildcard character specifies a concatenation of UNIX System Services files,
which in this case, includes all of the files in the directory MYPGM. For more
information about the use of the wildcard character, see “Concatenating UNIX
System Services Files” on page 104.

Use the ENCODING= option to dynamically change the character-set encoding for
processing external data. When data is read into SAS, it is changed from the specified
encoding to the session encoding. For a list of valid encoding values, see “ENCODING
System Option” in SAS Language Reference: Dictionary.

See Also

� “%INCLUDE Statement” on page 386
� “Specifying Physical Files” on page 14
� SAS Language Reference: Dictionary

NULLS Command

Turns NULLS on or off for all input fields of all windows

z/OS specifics: all

Syntax
NULLS <ON> | <OFF>

564 TSO Command Chapter 19

Details
When NULLS is ON, all input fields are padded with null characters instead of blanks.
The NULLS command acts like a toggle switch. Alternatively, you can use the ON and
OFF operands.

TSO Command

Issues a TSO command or invokes a CLIST or a REXX exec from the command line

z/OS specifics: all

Syntax
TSO <command>

Details
The TSO command is similar to the TSO (or X) statement, the TSO (or SYSTEM) CALL
routine, the TSO (or SYSTEM) function, and the %TSO (or %SYSEXEC) macro
statement. It accepts the following argument:

command
is a system command. Under z/OS, “system command” includes TSO commands,
CLISTs, and REXX execs.

To submit a TSO command, or to invoke a CLIST or a REXX exec, use the TSO
command form of the command. You can use the TSO command from the command line
of any window. SAS executes the TSO command immediately.

Under z/OS, TSO is an alias for the X command. On other operating environments,
the TSO command has no effect, whereas the X command is always processed.

You can use the TSO command to issue most TSO commands or to execute CLISTs or
REXX execs. However, you cannot issue the TSO commands LOGON and LOGOFF, and
you cannot execute CLISTs that include the TSO ATTN statement. Nor can you issue
authorized commands, such as some RACF commands; however, you can use the
TSOEXEC command to issue authorized commands, as in this example:

TSO TSOEXEC ALTDSD...

You can also use the TSO command to go into TSO submode from within a SAS
session. To start the submode, enter TSO from the command line without specifying a
TSO command. When the command is executed, SAS goes into TSO submode and
prompts you for TSO commands. Any commands that you enter in TSO submode are
processed by TSO, not by the windowing environment. They can be any length; however,
if the command is longer than one line, you must enter a TSO continuation symbol.

To return to the SAS session, enter RETURN, END, or EXIT. Any characters that follow
the RETURN, END, or EXIT subcommand are ignored. An END command that occurs
within a CLIST terminates the CLIST without ending the TSO submode.

Windows and Commands in z/OS Environments WIDGPREV Command 565

Note: The TSO command processor does not know when or if it is invoking an
interactive windowing application. To avoid problems with screen clearing, you may
want to invoke ISPF, IOF, or similar facilities directly. For example:

tso ispf

This method works only if you invoked SAS from the TSO READY prompt. It does
not work if you were already in ISPF when you invoked your current SAS session. �

See Also

� Command: “X Command” on page 566
� Statements: “TSO Statement” on page 403 and “X Statement” on page 406
� CALL routines: “CALL TSO Routine” on page 249 and “CALL SYSTEM Routine”

on page 248
� Functions: “TSO Function” on page 275 and “SYSTEM Function” on page 273
� “Macro Statements” on page 289

WIDGNEXT Command

Moves the keyboard focus from one widget to the next widget

z/OS specifics: all

Syntax
WIDGNEXT

Details
With the keyboard focus on a widget in a window, entering the WIDGNEXT command
moves the keyboard focus to the next widget in the window, in a manner similar to that
seen with the TAB key. For example, in the SAS Explorer window, you can use this
command to change the keyboard focus from the list view to the tree view.

The WIDGNEXT command is best used by assigning the command to a function key.
Enter the KEYS command to display and edit function key assignments.

To use a function key to issue the WIDGNEXT command, position the cursor in a
text entry field and press the function key.

See Also

� “WIDGPREV Command” on page 565

WIDGPREV Command

Moves the keyboard focus from one widget to the previous widget

z/OS specifics: all

566 X Command Chapter 19

Syntax
WIDGPREV

Details
With the keyboard focus on a widget in a window, entering the WIDGPREV command
moves the keyboard focus to the previous widget in the window, in a manner similar to
that seen with the SHIFT+TAB keys. For example, issuing WIDGPREV in the SAS
Explorer window moves the keyboard focus between the list view and the tree view.

The WIDGPREV command is best used by assigning the command to a function key.
Enter the KEYS command to display and edit function key assignments.

To use a function key to issue the WIDGPREV command, position the cursor in a text
entry field and press the function key.

See Also

� “WIDGNEXT Command” on page 565

X Command

Enters operating envirnoment mode or enables you to issue an operating environment command
without ending your SAS session

z/OS specifics: portable version of the TSO command

Syntax
X <command>

Details
The X and TSO commands are identical, with one exception: under an operating
environment other than z/OS, the TSO command has no effect, whereas the X command
is always processed. See “TSO Command” on page 564 for more information.

Using the X Statement to Issue UNIX System Services Commands
To start the UNIX System Services shell, issue the following X statement:

x omvs;

Note: UNIX System Services commands are case sensitive. �

You can also use the X statement to issue any of three UNIX System Services
commands:

Windows and Commands in z/OS Environments SAS System Options That Affect the z/OS Windowing Environment 567

x cd directory;
changes the current working directory to directory. If directory is omitted, the
current working directory is changed to the working directory that was initially
assigned to your login name.

x umask mask;
changes the current file-mode creation mask value to mask. According to UNIX
conventions, mask is a one- to three-digit octal number. The file-mode creation
mask modifies the file mode of new files. Each 1 bit in the file-mode creation mask
causes the corresponding permission bit in the file mode to be disabled. If a bit is
0 in the mask, the corresponding file-mode bit can be enabled. For UNIX System
Services files that are created by SAS, the file mode for new files is "-rw-rw-rw-";
however, this mode is modified by the current file-mode creation mask. For
example, x umask 022 ensures that each newly created file can be written to
only by its owner. (For detailed information about the file-mode creation mask, see
your IBM documentation.)

The new value is displayed in the SAS log. If mask is not specified, the current
value is simply displayed in the SAS log; the current file-mode creation mask
value remains unchanged.

x pwd;
displays your current working directory in the SAS log.

Aside from these three commands, it is not possible to issue UNIX System Services
commands with the X command. However, you can use the PIPE access method of the
FILENAME statement or function to invoke a USS command and send input to the
command or read its output. See “Piping Data between SAS and UNIX System Services
Commands” on page 105 for more information.

To issue a TSO command or CLIST that has the same name as one of the
case-sensitive commands (a CLIST named CD, for example), either enter the command
using uppercase characters, or use the TSO: prefix and enclose the command in
quotation marks, as in the following examples:

x CD option1 option2 ...;
x ’tso:cd option1 option2 ...’;

Restrictions in SAS Software Support for UNIX System Services
It is not possible to run SAS under the UNIX System Services shell. However, you can
run the shell after you initialize SAS by using the x omvs; statement or by using x
bpxbatch sh [unix command]; to run a USS shell command.

SAS System Options That Affect the z/OS Windowing Environment

You can use the following SAS system options to customize the windowing
environment under z/OS:

CHARTYPE=
specifies which character set or screen size to use for a device.

FSBORDER=
specifies what type of symbols to use in window borders and other widgets.

FSDEVICE=
specifies which terminal device driver to use.

568 Terminal Support in the z/OS Environment Chapter 19

FSMODE=
specifies which type of IBM 3270 data stream to use for a terminal.

PFKEY=
specifies which set of function keys to designate as the primary set.

For detailed information about these system options, see “System Options in the z/OS
Environment” on page 410.

Terminal Support in the z/OS Environment
The information in the following sections might be useful to you if you use graphics

or special device drivers in the SAS windowing environment.

Note: SAS best supports those terminal emulators that closely adhere to the
original IBM specifications for the 3270 terminal. If you are having difficulties with the
SAS vector graphics in your emulator session, make sure that the settings for your
emulator match the specifications for the 3270 terminal as closely as possible. �

Text Device Drivers
SAS uses two interactive windowing text (nongraphics) device drivers: a

non-Extended-Data-Stream (non-EDS) driver and an Extended-Data-Stream (EDS)
driver. An EDS device supports IBM 3270 extended attributes such as colors and
highlighting, whereas a non-EDS device does not. Note that EDS devices also support
the non-EDS data stream. The ability to do graphics on a 3270 terminal implies that it
is an EDS device. Here are some examples of EDS and non-EDS IBM terminals:

EDS Non-EDS

3179, 3290 (LT-1) 3277

3279, 3270-PC 3278 (most)

3278 with graphics RPQ 3290 (LT-2, 3, or 4)

On non-EDS terminals, vertical window borders occupy three display positions on the
screen: the first position for the field attribute byte, the second position for the border
character itself, and the third position for the attribute byte for the following field.
Because a window has both left and right vertical borders, six display positions are
used by the vertical borders. Therefore, on an 80-column non-EDS device, the
maximum display/editing area in a window is 74 columns.

Vertical window borders on EDS devices occupy two display positions: the border
character and the attribute for the next field (left vertical border) or the attribute and
the border character (right vertical border). Therefore, on an 80-column EDS device,
the maximum display or editing area in a window is 76 columns.

Graphics Device Drivers
There are two 3270 graphics device drivers in the SAS windowing environment: the

Programmed Symbol driver and the Vector-to-Raster driver. On terminals that support
graphics, these two drivers are used to produce graphics as well as mixed text and

Windows and Commands in z/OS Environments Using a Mouse in the SAS Windowing Environment under z/OS 569

graphics. Both graphics drivers communicate with the text driver, which controls the
terminal display.

� The Programmed Symbol graphics driver uses user-definable characters to display
graphics. A programmed symbol is a character on the device in which certain
pixels are illuminated to produce a desired shape in a position (cell) on the display.
A loadable programmed symbol set is a terminal character set that contains these
application-defined programmed symbols. (The default symbol set on a device is
the standard character set–that is, those symbols that are normally displayed and
that can be entered from the keyboard.) Examples of terminals that use
programmed symbols to display graphics are the 3279G, 3290, and 3270-PC.

� The Vector-to-Raster graphics driver is used to produce graphics on terminals that
support graphics drawing instructions such as MOVE and DRAW. Examples of
these devices are the 3179G/3192G and the IBM5550. The 3179G/3192G terminals
also have limited support for programmed symbol graphics.

EMULUS Extensions
When used with Emulus 3270 terminal emulation software, the SAS 3270 device

drivers provide workstation-like capabilities that can greatly enhance SAS/GRAPH
software, as well as applications that are developed using SAS/AF software. These
capabilities include the following:

use of local workstation memory for graphics
offers significant performance improvements for SAS/AF applications because a
local copy of graphics is stored in the workstation memory rather than being
continually retransmitted from the mainframe.

color loading by RGB value
enables applications to use more colors than just the standard 8 or 16 graphics
colors that they would use on a typical 3270 terminal or terminal emulator.

rubber-banding
enables you to create, resize, and move objects. For example, you can

� create or size graphics objects by dragging the workstation mouse in the
SAS/GRAPH Graphics Editor

� easily drag and position objects in the SAS/AF Frame Editor

� rotate a plot when using SAS/INSIGHT software

� resize or move SAS windows.

dynamic graphics cursor shapes
enables applications to change the shape of the graphics cursor to indicate the
state of the application. For example, the graphics cursor typically changes shape
when a user drags an object or rotates a plot.

Using a Mouse in the SAS Windowing Environment under z/OS
The IBM 3179G, 3192G, 3472G, and 5550 terminals are all graphics terminals that

support the use of a mouse. The IBM 3179G, 3192G, and 5550 terminals use the
three-button IBM 5277 Model 1 optical mouse, whereas the IBM 3472G terminal uses
the two-button PS/2 mouse.

SAS recognizes when the mouse is attached and automatically places the graphics
cursor under the control of the mouse.

570 Appearance of Window Borders, Scroll Bars, and Widgets Chapter 19

Using a Three-Button Mouse
The IBM 5277 Model 1 optical mouse has three buttons:

leftmost button
SAS uses the leftmost button as an ENTER key. The ENTER key is used to select
menu items; to grow, shrink, or move windows; to scroll using scroll bars; and so
on. Therefore, having the ENTER key on the mouse is useful. The text cursor
moves to the location of the mouse cursor whenever you press this mouse button.

center button
By default, SAS assigns a function key to the center button. You can use the
KEYS window or the KEYDEF command to change the definition of this button.
The button is designated as MB2. See the help for Base SAS for more information
about the KEYS window and the KEYDEF command.

rightmost button
The rightmost button is a reset button that unlocks the keyboard.

For additional information about using a mouse, refer to the appropriate
documentation at your site.

Using a Two-Button Mouse
The 3472G terminal is a multiple-session graphics terminal. This device uses the

two-button PS/2 mouse. With the graphics cursor attached, these buttons have the
same functions as the leftmost and center buttons on the three-button mouse.

Appearance of Window Borders, Scroll Bars, and Widgets
Depending on the type of terminal, SAS uses either programmed symbols or APL

symbols to create window borders, scroll bars, and widgets (radio buttons, push buttons,
and check boxes). This can cause SAS windows to look somewhat nicer on some
terminals than on others.

� On devices that support programmed symbols, the SAS windowing environment
uses a predefined set of programmed symbols for its window components.
Programmed symbols give window components a nicer appearance than APL
symbols. These programmed s ymbols are available for the four most common
character cell sizes: 9 x 12, 9 x 14, 9 x 16, and 6 x 12. Programmed symbols are
not used for any device that has a different character cell size (for example, 10 x
14 on a Tektronix 4205), even though the device supports programmed symbols.

� On 3270 terminals that do not support programmed symbols, but that support the
APL character set, the SAS windowing environment uses APL symbols. APL is
supported only on EDS devices, including all nongraphic 3279 and 3179 terminals,
and on many PC 3270 emulators.

Note: The APL language relies heavily on mathematical-type notation, using
single-character operators in a special character set.

Improving Screen Resolution on an IBM 3290 Terminal
The IBM 3290 terminal gives you the ability to change character cell size (and,

therefore, to change screen resolution). This capability is useful if you are working with
graphics, for example.

You use the CHARTYPE= system option to modify the character cell size. For
example, on a 3290 terminal that is configured as having 43 rows by 80 columns,
CHARTYPE=1 (the default) produces a 62 x 80 display size.

Windows and Commands in z/OS Environments Improving Screen Resolution on an IBM 3290 Terminal 571

If you specify CHARTYPE=2, the display size will be 46 x 53. Note that if you
configure the 3290 as 62 x 160 (the maximum display size available on the 3290),
CHARTYPE=2 results in a display size of 46 x 106. This results in a very legible and
attractive windowing environment. See “CHARTYPE= System Option” on page 418 for
more information about this option.

Note: If you are running in interactive graphics mode and you receive a message,
your display may become corrupted. To correct this and return the screen to its original
display, press ENTER in response to the SCREEN ERASURE message. Alternatively,
you can configure the 3290 as one logical terminal with a 62 x 160 character cell size. �

572

573

P A R T4

Appendixes

Appendix 1.Using the INFILE/FILE User Exit Facility 575

Appendix 2.Host-System Subgroup Error Messages 599

Appendix 3.Recommended Reading 605

574

575

A P P E N D I X

1
Using the INFILE/FILE User Exit
Facility

Introduction 575

Writing a User Exit Module 575
Function Request Control Block 576

User Exit BAG Control Block 577

Function Descriptions 579
Initialization Function 579

Parse Options Function 580

Open Function 581
Read Function 583

Concatenation Function 583
Write Function 584

Close Function 585

SAS Service Routines 585
Building Your User Exit Module 587

Activating an INFILE/FILE User Exit 587

Sample Program 588

Introduction
The INFILE/FILE User Exit Facility provides an interface for accessing user exit

modules during the processing of external files in a SAS DATA step. A user exit module
(or user exit) consists of several functions that you write in order to perform special
processing on external files. For example, you can write user exits that inspect, modify,
delete, or insert records. Here are some more specific examples of how user exits may
be used:

� encrypting and decrypting data
� compressing and decompressing data
� translating data from one character-encoding system to another.

If a user exit is active, SAS invokes it at various points during the processing of an
external file.

Writing a User Exit Module
You can write a user exit module in any language that meets the following criteria:
� The language runs in 31-bit addressing mode.
� The language supports standard OS linkage.

576 Function Request Control Block Appendix 1

Examples of such languages are IBM assembly language and C. See “Sample
Program” on page 588 for an example of an exit that is written in assembly language.

Note: In all the figures in this appendix, the field names that are shown in
parentheses (for example, EXITIDB in Figure A1.2 on page 577) are those that were
used in the sample program. �

In your user exit module, you should include code for all seven of the functions that
are described in “Function Descriptions” on page 579. At the beginning of your user exit
module, examine the function code that was passed to you in the Function Request
Control Block (described in the next section) and branch to the routine or function that
is being requested.

When you write the user exit module, you must follow IBM conventions for
assembler linkage, and you must set R15 to a return code value that indicates whether
the user exit was successful. Any nonzero return code causes execution to stop. If you
want to write an error message to the SAS log, use the SAS LOG service routine. (See
“LOG” in “SAS Service Routines” on page 585.)

If the user exit terminates with a nonzero return code value, you must put the
address of a user-defined message string that ends in a null (00x) character in the
Pointer to User Error Message (ERRMSG) field of the User Exit BAG Control Block.
(See “User Exit BAG Control Block” on page 577.) This message is printed in the SAS
log.

Return code values that apply to particular function requests are listed with the
descriptions of those functions in later sections of this appendix.

Be sure to take advantage of the SAS service routines when you write your user exit
functions. See “SAS Service Routines” on page 585 for details.

Function Request Control Block
The Function Request Control Block (FRCB) provides a means of communication

between SAS and your user exit functions. Each time SAS invokes the user exit
module, R1 points to a Function Request Control Block (FRCB) that contains, at a
minimum, the fields shown in the following figure:

Figure A1.1 Function Request Control Block Fields

R1 Function Code

Pointer to User Exit
BAC Control Block

UEBCB

+0

+4

The 4-byte Function Code communicates the current user exit phase to the user exit.
It contains one of the following values:

0 indicates the Initialization function.

4 indicates the Parse Options function.

8 indicates the Open function.

12 indicates the Read function.

16 indicates the Concatenation function.

20 indicates the Write function.

Using the INFILE/FILE User Exit Facility User Exit BAG Control Block 577

24 indicates the Close function.

These functions are described in “Function Descriptions” on page 579. Each time
SAS calls the user exit, the user exit should branch to the appropriate exit routine, as
determined by the Function code.

User Exit BAG Control Block
In Figure A1.1 on page 576, the UEBCB (User Exit BAG Control Block) serves as a

common anchor point for work areas that SAS has obtained on behalf of the user exit.
SAS reserves a user word in the UEBCB for the user exit to use. You can use this word
to store a pointer to memory that you allocate for use by all your exit routines. SAS does
not modify this word during the lifespan of the user exit. The lifespan is defined as the
time period between the Initialization function request and the Close function request.

The following two figures illustrate the structure of the UEBCB and its relationship
to other data areas:

Figure A1.2 UEBCB Structure, Part 1 of 2

*

*

*

*

Exit IDB
(EXITIDB)

Exit Entry Point
(EXITEP

Size of the Work Area
above the 16M line
(MEMALEN)

Pointer to the Work Area
above the 16M line
(MEMABV)
Size of the Work Area
below the 16M line
(MEMBLEN)

Pointer to the Work Area
below the 16M line
(MEMBEL)

User Word that can be
set by the user exit
(USERWORD)

Logical name of the
file (DDname)
(EDDNAME)

Pointer to routine that
creates SAS variables

Pointer to User Error
NULL-terminated string
(ERRMSG)

Flag Byte 1

Reserved

+0

+4

+8

+C

+10

+14

+18

+1C

+24

+28

+2C

+2D

continued next page

The user exit can update this field.

String

VARRTN
Routine

Work Area

Work Area

Used by the SAS System

Used by the SAS System

Size specified by user

Size specified by user

Available to user

Specified in INFILE or File Statement

578 User Exit BAG Control Block Appendix 1

Figure A1.3 UEBCB Structure, Part 2 of 2

+2E

+2F

+32

+34

+38

+3C

+40

+44

+48

+4C

+50

+54 LOG1
Routine

LOG
Routine

FREE
Routine

ALLOC
Routine

Used by the SAS System

Used by the SAS System

VARRTN1
Routine

FREE1
Routine

ALLOC1
Routine

Reserved

Reserved

Pointer to
Allocate Routine

Pointer to
Free Routine

PIDA

Pointer to Allocate
Routine with
environment switch

Pointer to Free
Routine with
environment switch

Pointer to routine to
create variable with
environment switch

Reserved

Pointer to routine to
write message
to the SAS log

Pointer to routine to
write to SAS log
with switch

The Flag Byte 1 field can have one of several values. The following list gives the
values and their meanings:

’80’x EX_NEXT
Prompt the exit for the next record.

Using the INFILE/FILE User Exit Facility Initialization Function 579

’40’x EX_DEL
Ignore the current record.

’20’x EX_EOF
End-of-file has been reached.

’10’x EX_EOFC
This exit supports read/write calls after end-of-file has been reached.

’08’x EX_ALC
This exit uses the ALLOC/FREE routines.

’04’x EX_STOR
This exit supports stored programs and views.

Function Descriptions
The following sections provide the information that you need in order to write the

functions that are part of the user exit module.

Initialization Function
SAS calls the Initialization function before it calls any of the other functions. In the

Initialization function, you specify the amount of virtual memory that your routine will
need above and below the 16-megabyte address line. You store the length of the work
area that you need above the line in the fullword that is pointed to by the INITMALN
field of the Initialization FRCB. You store the length of the work area that you need
below the line in the fullword that is pointed to by the INITMBLN field of the
Initialization FRCB. All pointers in the Initialization FRCB point to valid data areas.

In the amount of storage that you request, you should include space for a Local
Register Save Area (LRSA) of 72 bytes, plus any other work areas that your Parse
Options function and Open function will need.

SAS allocates the memory that you request when it returns from this function, and it
stores pointers to the allocated memory in the UEBCB. The pointer to the memory that
was allocated above the line is stored in the MEMABV field of the UEBCB. The pointer
to the memory that was allocated below the line is stored in the MEMBEL field.

The following figure illustrates the Initialization FRCB structure and its relationship
with other control blocks:

580 Parse Options Function Appendix 1

Figure A1.4 Initialization FRCB

*

*

*

Pointer to the amount of
storage below the 16M line
(INITBLN)

+0

+4

+8

+12

The user exit can update this field.

Fullword

Fullword

UEBCB

R1 Initialization
function (INITFUNC):0

Pointer to User Exit
BAC Control Block
(INITEXIT)

Pointer to the amount of
storage above the I16M line
(INITMALN)

Parse Options Function
In the Parse Options function, you validate both the name of the user exit and any

INFILE or FILE statement options that SAS does not recognize. SAS calls this function
once to process the user exit module name. SAS then calls the function for each
statement option that it does not recognize so that the function can process each option
and value string.

You can use two kinds of statement options in your user exit:
� options that take a value, such as name=value. For example:

myopt=ABC

Note that quotation marks are considered part of the value; if you want them to
be stripped off, you must provide the code to do so.

� options that do not take a value.

The first time the Parse Options function is invoked, it should do the following:
� verify that the virtual storage that was requested during the Initialization

function has been allocated
� initialize both the allocated virtual storage and the two data areas in the UEBCB

(User Word and Pointer to User Error Message).

The following figure illustrates the Parse Options FRCB structure and its
relationship to other control blocks:

Using the INFILE/FILE User Exit Facility Open Function 581

Figure A1.5 Parse Options FRCB

+0

+4

+8

+12

+16

+20
String

String

UEBCB

R1 Parse Options
function (PARSFUNC):4

Pointer to User Exit
BAG Control Block
(PARSEXIT)

Length of the
Option Name String
(PARSOPTL)

Pointer to the
Option Name
(PARSOPTN)

Length of the
Option Value String
(PARSVALL)

Pointer to the
Option Value
(PARSVAL)

When the Parse Options function receives control, PARSOPTL is set to the length of
the option name, and the address of the option name is stored in PARSOPTN. For
options that take a value, PARSVALL is set to the length of the value, and the address
of the option value is stored in PARSVAL. For options that do not take a value, both
PARSVALL and PARSVAL are set to 0.

If an invalid option name or option value is detected, R15 should be set to a return
code value of 8.

Open Function
SAS invokes the Open function after INFILE or FILE statement processing opens

the associated data set. The following figure illustrates the Open FRCB and its
relationship to other control blocks:

582 Open Function Appendix 1

Figure A1.6 Open FRCB

*

*

+0

+4

+8

+12

+16

+20

+24

Fullword

UEBCB

R1 Open
function (OPENFUNC):8

Pointer to User Exit
BAG Control Block
(OPENEXIT)
Open Mode: Read,
Write, Append, or Update
(OPENMODE)

Pointer to User
Maximum Data Size
(OPENZLEN)

Data Set Block Size
(OPENBLKL)

Data Set Record Size
(OPENRECL)

Dta Set Record Format
(OPENRECF)

The user exit can update this field.

The OPENMODE field can be one of the following values:

1 The data set is opened for input mode.

2 The data set is opened for output mode.

4 The data set is opened for append mode.

8 The data set is opened for update mode (read and write).

When this function receives control, the Pointer to User Maximum Data Size field
(OPENZLEN) points to a fullword that contains the Data Set Record Size. In this
function, set the pointer so that it points to a fullword that you initialize. The fullword
should contain the size of the largest record that you expect to process with the Read
function. If it contains a lesser value, then truncated records may be passed to the
Read function.

The Data Set Record Format field (OPENRECF) can be any combination of the
following values:

’C0’x indicates Undefined format.

’80’x indicates Fixed format.

’40’x indicates Variable format.

’10’x indicates Blocked format.

’08’x indicates Spanned format.

’04’x indicates ASA Control Characters format.

The Open function should activate any subprocesses or exits and should solicit from
them any virtual storage requirements.

In this function, if you turn on the EX_NEXT flag in the UEBCB, SAS calls the Read
function for the first record before it reads any records from the file itself.

Using the INFILE/FILE User Exit Facility Concatenation Function 583

If you use any SAS service routines (such as the ALLOC and FREE routines) in this
function, then you must set the EX_ALC flag in the UEBCB.

Read Function
SAS invokes the Read function during execution of the INPUT statement to obtain

the next input record. The following figure illustrates the Read FRCB structure and its
relationship to other control blocks:

Figure A1.7 Read FRCB

*

*

*

+0

+4

+8

+12 Fullword

UEBCB

R1

The user exit can update this field.

Record
Address Record

Read Function
(READFUNC):12

Pointer to User Exit
BAG Control Block
(READEXIT)

Pointer to User
Record Area Address
(READRECA

Pointer to
Record Size
(READRECL)

When the Read function receives control, the READRECA field (or Pointer to User
Record Area Address) points to the address of the current record from the file. The
READRECL field points to a fullword that contains the length of the record that is in
the Record Area.

In this function you can change the Record Address so that it points to a record that
was defined by your user exit. If you do this, then SAS passes your record to the
INPUT statement, rather than passing the record that was read from the file. However,
in this case you must also update the fullword that the Pointer to Record Size points to:
it must equal the actual size of the record that the Record Address points to.

As long as the EX_NEXT flag is on, SAS invokes the Read function to obtain the next
record. SAS reads no records from the file itself until you turn off the EX_NEXT flag.

If you set the EX_DEL flag, then SAS ignores the current record, and processing
continues to the next record.

Concatenation Function
SAS invokes the Concatenation function whenever a data set in a concatenation of

data sets has reached an end-of-file condition and the next data set has been opened.
The following figure illustrates the Concatenation FRCB structure and its relationship
to other control blocks:

584 Write Function Appendix 1

Figure A1.8 Concatenation FRCB

*

*

+0

+4

+8

+12

+16

+20
Fullword

UEBCB

R1

The user exit can update this field.

Concatenation
function
(CONCFUNC):16

Pointer to User Exit
BAG Control Block
(CONCEXIT)

Next Data Set
Block Size
(CONBLKL)

Next Data Set
Record Size
(CONCRECL)

Next Data Set
Record Format
(CONCRECF)
Pointer to User
Maximum Data Size
(CONCZLEN)

In this function you can modify the maximum data size for the next data set by
changing the Pointer to User Maximum Data Size so that it points to a fullword that
you initialize.

Write Function
SAS invokes the Write function during the execution of the PUT statement

whenever a new record must be written to the file. The following figure illustrates the
Write FRCB and its relationship to other control blocks:

Figure A1.9 Write FRCB

*

*

*

+0

+4

+8

+12
Fullword

UEBCB

R1

The user exit can update this field.

Record
Address Record

Write Function
(WRITFUNC):14

Pointer to User Exit
BAG Control Block
(WRITEXIT)

Pointer to User
Record Area Address
(WRITRECA)

Pointer to
Record Size
(WRITRECL)

When the Write function receives control, the WRITRECA field (or Pointer to User
Record Area Address) points to a Record Address. The Record buffer is allocated by
SAS and contains the record that was created by the PUT statement.

Using the INFILE/FILE User Exit Facility SAS Service Routines 585

In this function you can change the Record Address so that it points to a record that
is defined by your user exit. If you do this, then SAS writes your record to the file,
instead of writing the record that was created by the PUT statement. However, in this
case you must also update the fullword that the Pointer to Record Size points to: it
must equal the actual size of the record that the Pointer to Record Area points to.

In the Write function, you may also change the setting of flags in the UEBCB. As
long as the EX_NEXT bit in the UEBCB is on, SAS calls the Write function to write the
next output record. The DATA step is not prompted for any new records to output until
the EX_NEXT flag has been set. At any time, if the EX_DEL bit in the UEBCB is on,
SAS ignores the current record, and processing continues to the next record.

Close Function
SAS invokes the Close function after it closes the associated data set. In this

function, you should close any files that you opened, free any resources that you
obtained, and terminate all subprocesses or exits that your user exit initiated.

The following figure illustrates the Close FRCB structure and its relationship to
other control blocks:

Figure A1.10 Close FRCB

UEBCB

R1 CLOSE Function
(CLOSEFUNC):18

Pointer to User Exit
BAC Control Block
(CLOSEXIT)

+0

+4

SAS Service Routines

SAS provides four service routines that you can use when writing INFILE/FILE
user exits. These service routines allocate memory, free memory, access DATA step
variables, or write a message to the SAS log. Whenever possible, use the SAS service
routines instead of the routines that are supplied with z/OS. For example, use the
ALLOC SAS service routine instead of GETMAIN. When you use the ALLOC routine,
SAS frees memory when you are finished with it. By contrast, if you use the GETMAIN
routine, cleaning up memory is your responsibility, so you also have to use the
FREEMAIN routine.

The following list describes the four SAS service routines. You invoke one of these
routines by loading its address from the appropriate field in the UEBCB and then
branching to it. All of these routines are used in the “Sample Program” on page 588.

ALLOC routine
allocates an area of memory from within the SAS memory pool. This memory is
automatically freed when the Close function is processed. The ALLOC routine
takes the following parameters:

ALCEXIT
a pointer to the UEBCB.

586 SAS Service Routines Appendix 1

ALCPTR
a pointer to a fullword in which the allocated area address will be stored.

ALCLEN
the amount of memory required.

ALCFLG
a flag byte that controls whether the memory is allocated above or below the
16M line. It has the following values:

1 allocates the memory below the 16M line.

0 allocates the memory above the 16M line.

FREE routine
frees an area of memory that was previously allocated by a call to the ALLOC
routine. The FREE routine takes the following parameters:

FREEXIT
a pointer to the UEBCB.

FREPTR
a pointer to the area to be freed.

FREFLG
a flag byte that indicates whether the memory that is to be freed is above or
below the 16M line. It has the following values:

1 the memory is below the 16M line.

0 the memory is above the 16M line.

LOG routine
prints a message to the SAS log. The LOG routine takes the following parameter:

LOGSTR
a pointer to a character string that ends with a null (x’00’).

VARRTN routine
defines or gets access to a SAS DATA step variable. The VARRTN routine takes
the following parameters:

VARNAME
a pointer to the name of the variable.

VARNAMEL
the length of the variable name.

VARTYPE
the type of variable that is being defined. It takes the following values:

1 the variable is numeric (double precision).

2 the variable is character.

VARSIZE
the size of the variable, if the variable type is character.

VARFLAG
a flag byte that controls whether the variable is considered internal or
external. It takes the following values:

X’01’ the variable is an internal variable; it will not appear in
any output data set.

X’02’ the variable is an external variable; it will appear in the
output data set.

Using the INFILE/FILE User Exit Facility Activating an INFILE/FILE User Exit 587

VARADDR
a pointer to a fullword into which SAS places the address at which the
current value of the variable will be stored. For numeric variables, the value
is stored as a double precision value. For character variables, the stored
value consists of three components:

MAXLEN is 2 bytes and represents the maximum length of the
character variable.

CURLEN is 2 bytes and represents the current length of the
character variable.

ADDR is 4 bytes and is a pointer to the character variable string
data.

Here are the return codes for the VARRTN routine:

0 the routine was successful (the variable was created or
accessed).

1 the variable already exists as a different type.

2 the variable already exists as a character variable, but with a
shorter length.

3 the variable already exists.

Building Your User Exit Module
After you have coded your user exit module, you must assemble or compile it and

then link it into a load library. The name that you choose for your load module must
consist of a four-character prefix, followed by the letters IFUE. Do not use a prefix that
is the same as the name of a FILE or INFILE statement option.

After your load module is built, use the LOAD parameter of the SAS CLIST or
cataloged procedure when you invoke SAS to tell SAS the name of the load library that
contains your user exit module.

Activating an INFILE/FILE User Exit
To activate an INFILE/FILE user exit, you generally specify the first four characters

of the name of the user exit module following the DDname or data set name in an
INFILE or FILE statement. For example:

infile inputdd abcd;

Only the first 4 characters of the user exit module name in the INFILE or FILE
statement are significant; SAS forms the load module name by adding the constant
IFUE to these characters. Therefore, in the previous example, SAS loads a module
named ABCDIFUE.

You can also specify the name of the user exit module by using the ENGINE= option
in the FILENAME statement or FILENAME function.

Note: If you use an INFILE/FILE user exit with a DATA step view, specify the name
of the exit in the FILENAME statement or FILENAME function that you use to allocate
the file, instead of in the INFILE or FILE statement. (If you specify the exit name in an
INFILE or FILE statement, the exit is ignored when the view is executed.) For example:

filename inputdd ’my.user.exit’ abcd;

588 Sample Program Appendix 1

�

Sample Program
The following sample program illustrates the process of writing an INFILE/FILE

user exit. Notice that this is not a trivial program. Writing user exits requires a firm
understanding of register manipulation and other fairly advanced programming
techniques.

The example uses z/OS services to compress data. The data is compressed on output
and decompressed on input.*

The example consists of several assembly macros, followed by the assembly language
program itself. The macros define how the parameter lists are to be interpreted. Each
macro begins with a MACRO statement and ends with a MEND statement. The actual
program begins on the line that reads SASCSRC START. Here is the example:

TITLE ’INFILE/FILE USER EXIT TO COMPRESS DATA USING ESA SERVICES’
*--
* COPYRIGHT (C) 1991 BY SAS INSTITUTE INC., CARY, NC 27513 USA
*
* NAME: ==> SASCSRC
* TYPE: ==> EXTERNAL FILE USER EXIT
* LANGUAGE: ==> ASM
* PURPOSE: ==> TO COMPRESS/DECOMPRESS DATA USING CSRCESRV SERVICES
* USAGE: ==> DATA;INFILE MYFILE CSRC;INPUT;RUN;
*--
* - - - - - - - - - -

MACRO
*---
* COPYRIGHT (C) 1991 BY SAS INSTITUTE INC., CARY, NC 27513 USA
*
* NAME ==> VXEXIT
* PURPOSE ==> DSECT MAPPING OF INFILE EXIT TABLE
*---

VXEXIT
*--
* MAP OF USER EXIT HOST BAG
*--
VXEXIT DSECT

SPACE 1
*--
* THE FOLLOWING FIELDS MUST NOT BE CHANGED BY THE EXIT ROUTINE
* EXCEPT USERWORD
*--
EXITIDB DS A
EXITEP DS A
MEMALEN DS F LENGTH OF WORK AREA ABOVE 16M LINE
MEMABV DS A POINTER TO WORK AREA ABOVE 16M LINE
MEMBLEN DS F LENGTH OF WORK AREA BELOW 16M LINE
MEMBEL DS A POINTER TO WORK AREA BELOW 16M LINE

* This code is actually implemented in SAS, to support the CSRC option in the INFILE and FILE statements. The CSRC
option is described in “Standard Host Options for the FILE Statement under z/OS” on page 365 and in “Standard Options for
the INFILE Statement under z/OS” on page 390.

Using the INFILE/FILE User Exit Facility Sample Program 589

USERWORD DS A (USER UPD) WORD AVAILABLE TO EXIT
EDDNAME DS CL8 LOGICAL NAME OF THE FILE
VARRTN DS A SAS VARIABLE CREATING ROUTINE ADDRESS
ERRMSG DS A (USER UPD) NULL TERMINATED ERROR MESSAGE POINTER
EFLAG1 DS XL1 (USER UPD) FLAG BYTE-1
EX_NEXT EQU X’80’ GET NEXT RECORD FROM EXIT
EX_DEL EQU X’40’ DELETE THIS RECORD
EX_EOF EQU X’20’ EOF OF DATASET REACHED
EX_EOFC EQU X’10’ CALL USER EXIT AFTER EOF
EX_ALC EQU X’08’ WILL USE ALLOC/FREE ROUTINES
EX_STOR EQU X’04’ WILL SUPPORT STORED PROGRAMS
EX_TERM EQU X’02’ WILL NEED A TERMINAL CALL
EFLAG2 DS XL1 FLAG BYTE-2
EFLAG3 DS XL1 FLAG BYTE-3
EFLAG4 DS XL1 FLAG BYTE-4
ALLOC DS A ALLOC ROUTINE
FREE DS A FREE ROUTINE
PIDA DS F PID ABOVE
PIDB DS F PID BELOW
ALLOC1 DS A ALLOCATE ROUTINE WITH SWITCH
FREE1 DS A FREE ROUTINE WITH SWITCH
VARRTN1 DS A SAS VARIABLE CREATING ROUTINE WITH SWITCH
VXCRAB DS A CRAB ADDRESS
LOG DS A LOG ROUTINE WITHOUT SWITCH
LOG1 DS A LOG ROUTINE WITH SWITCH

SPACE 1
DS 0D
SPACE 1

VXEXITL EQU *-VXEXIT
*--
* MAP OF VARRTN FUNCTION CALL
*--
PARMVAR DSECT
*
VARNAME DS A POINTER TO VARIABLE NAME
VARNAMEL DS F VARIABLE NAME LENGTH
VARTYPE DS F VARIABLE TYPE 1=NUM, 2=CHAR
VARSIZE DS F SIZE OF VARIABLE IF CHAR
VARFLAG DS F FLAGS , X’01’ - INTERNAL
* X’02’ - EXTERNAL
VARADDR DS A POINTER TO VAR LOC ADDRESS (RETURNED)
*
* FOR CHARACTER VARIABLE IT RETURNS A POINTER TO A STRING STRUCTURE
*
* MAXLEN DS H MAX LENGTH OF STRING
* CURLEN DS H CURRENT LENGTH OF STRING
* ADDR DS A ADDRESS OF STRING DATA
PARMVARL EQU *-PARMVAR
*--
* MAP OF ALLOC FUNCTION CALL
*--
PARMALC DSECT
*
ALCEXIT DS A POINTER TO THE EXIT BAG

590 Sample Program Appendix 1

ALCPTR DS A PLACE TO RETURN ALLOCATED ADDRESS
ALCLEN DS F LENGTH OF MEMORY REQUIRED
ALCFLG DS F FLAG BYTE 1=BELOW 16M, 0=ABOVE 16M
PARMALCL EQU *-PARMALC
*--
* MAP OF FREE FUNCTION CALL
*--
PARMFRE DSECT
*
FREEXIT DS A POINTER TO THE EXIT BAG
FREPTR DS A ADDRESS OF FREEMAIN
FREFLG DS F FLAG BYTE 1=BELOW 16M, 0=ABOVE 16M
PARMFREL EQU *-PARMFRE
*--
* MAP OF INIT EXIT CALL
*--
PARMINIT DSECT
*
INITFUNC DS F FUNCTION CODE
INITEXIT DS A USER EXIT BAG ADDRESS
INITMBLN DS A PTR TO AMT OF MEMORY NEEDED BELOW LINE
INITMALN DS A PTR TO AMT OF MEMORY NEEDED ABOVE LINE
PARMINIL EQU *-PARMINIT
*--
* MAP OF PARSE EXIT CALL
*--
PARMPARS DSECT
*
PARSFUNC DS F FUNCTION CODE
PARSEXIT DS A USER EXIT BAG ADDRESS
PARSOPTL DS F OPTION NAME LENGTH
PARSOPTN DS A POINTER TO OPTION NAME
PARSVALL DS F OPTION VALUE LENGTH
PARSVAL DS A OPTION VALUE
PARMPARL EQU *-PARMPARS
*--
* MAP OF OPEN EXIT CALL
*--
PARMOPEN DSECT
*
OPENFUNC DS F FUNCTION CODE
OPENEXIT DS A USER EXIT BAG ADDRESS
OPENMODE DS F OPEN MODE
OPENZLEN DS A POINTER TO DATA LENGTH
OPENBLKL DS F DATA SET BLOCK SIZE
OPENRECL DS F DATA SET RECORD LENGTH
OPENRECF DS F DATA SET RECORD FORMAT
PARMOPEL EQU *-PARMOPEN
*--
* MAP OF READ EXIT CALL
*--
PARMREAD DSECT
*
READFUNC DS F FUNCTION CODE

Using the INFILE/FILE User Exit Facility Sample Program 591

READEXIT DS A USER EXIT BAG ADDRESS
READRECA DS A POINTER TO RECORD AREA ADDRESS
READRECL DS A POINTER TO RECORD LENGTH
PARMREAL EQU *-PARMREAD
*--
* MAP OF WRITE EXIT CALL
*--
PARMWRIT DSECT
*
WRITFUNC DS F FUNCTION CODE
WRITEXIT DS A USER EXIT BAG ADDRESS
WRITRECA DS A POINTER TO RECORD AREA ADDRESS
WRITRECL DS F RECORD LENGTH
PARMWRIL EQU *-PARMWRIT
*--
* MAP OF CLOSE EXIT CALL
*--
PARMCLOS DSECT
*
CLOSFUNC DS F FUNCTION CODE
CLOSEXIT DS A USER EXIT BAG ADDRESS
PARMCLOL EQU *-PARMCLOS
*--
* MAP OF CONCAT EXIT CALL
*--
PARMCONC DSECT
*
CONCFUNC DS F FUNCTION CODE
CONCEXIT DS A USER EXIT BAG ADDRESS
CONCBLKL DS F NEXT DATA SET IN CONCAT BLOCK SIZE
CONCRECL DS F NEXT DATA SET IN CONCAT RECORD LENGTH
CONCRECF DS F NEXT DATA SET IN CONCAT RECORD FORMAT
CONCZLEN DS A POINTER TO DATA LENGTH
PARMCONL EQU *-PARMCONC
*
*--
* MAP OF LOG ROUTINE PARMLIST
*--
PARMLOG DSECT
LOGSTR DS A ADDRESS OF THE NULL-TERMINATED STRING
PARMLOGL EQU *-PARMLOG
*
*--
* EQUATES AND CONSTANTS
*--
EXITPARS EQU 4
EXITOPEN EQU 8
EXITREAD EQU 12
EXITCONC EQU 16
EXITWRIT EQU 20
EXITCLOS EQU 24
EXITP2HB EQU 28 NOT SUPPORTED YET
EXITHB2P EQU 32 NOT SUPPORTED YET
*

592 Sample Program Appendix 1

* EXITMODE VALUES
EXITINP EQU 1
EXITOUT EQU 2
EXITAPP EQU 4
EXITUPD EQU 8
* RECFM VALUES
EXITRECF EQU X’80’
EXITRECV EQU X’40’
EXITRECB EQU X’10’
EXITRECS EQU X’08’
EXITRECA EQU X’04’
EXITRECU EQU X’C0’
&SYSECT CSECT

MEND
DS OD

VXEXITL EQU *-VXEXIT
SPACE 1
MACRO

&LBL VXENTER &DSA=,&WORKAREA=MEMABV,&VXEXIT=R10
DROP

&LBL CSECT
USING &LBL,R11
LR R11,R15 LOAD PROGRAM BASE
USING VXEXIT,&VXEXIT
L &VXEXIT,4(,R1) LOAD -> VXEXIT STRUCTURE
AIF (’&DSA’ EQ ’NO’).NODSA
AIF (’&DSA’ EQ ’’).NODSA
L R15,&WORKAREA LOAD -> DSA FROM VXEXIT
ST R15,8(,R13) SET FORWARD CHAIN
ST R13,4(,R15) SET BACKWARD CHAIN
LR R13,R15 SET NEW DSA
USING &DSA,R13

.NODSA ANOP
MEND

* - - - - - - - - - -
MACRO

&LBL VXRETURN &DSA=
AIF (’&LBL’ EQ ’’).NOLBL

&LBL DS 0H
.NOLBL AIF (’&DSA’ EQ ’NO’).NODSA

L R13,4(,R13) LOAD PREVIOUS DSA
.NODSA ANOP

ST R15,16(,R13) SAVE RETURN CODE
LM R14,R12,12(R13) RELOAD REGS
BR R14 RETURN
LTORG
MEND

* -
* -
SASCSRC START
*
* MAIN ENTRY POINT FOR ALL EXITS
*

USING SASCSRC,R15

Using the INFILE/FILE User Exit Facility Sample Program 593

STM R14,R12,12(R13)
L R2,0(,R1) LOAD FUNCTION CODE
L R15,CSRCFUNC(R2) LOAD FUNCTION ADDRESS
BR R15

*
CSRCFUNC DS 0A CSRC FUNCTIONS

DC A(CSRCINIT) INITIALIZATION
DC A(CSRCPARS) PARSE CSRC OPTIONS
DC A(CSRCOPEN) OPEN EXIT
DC A(CSRCREAD) READ EXIT
DC A(CSRCCNCT) CONCATENATION BOUNDARY EXIT
DC A(CSRCWRIT) WRITE EXIT
DC A(CSRCCLOS) CLOSE EXIT

*
* INITIALIZATION EXIT
*
CSRCINIT VXENTER DSA=NO

SPACE 1
USING PARMINIT,R1

*
* THIS EXIT RUNS ONLY IN ESA AND ABOVE RELEASES
* WHICH SUPPORT DECOMPRESSION.
* THE CODE CHECKS FOR IT FIRST. IF NOT ESA, THE INIT FAILS
*

L R15,16 LOAD CVT POINTER
USING CVT,R15 BASE FOR CVT MAPPING
TM CVTDCB,CVTOSEXT EXTENSION PRESENT
BNO NOTESA FAIL, NOT ESA
TM CVTOSLV0,CVTXAX SUPPORTS ESA
BNO NOTESA NOT AN ESA
DROP R15
L R3,=A(PWALENL) SET WORK AREA LENGTH...
L R2,INITMALN
ST R3,0(,R2) AS ABOVE THE 16M LINE LENGTH
SLR R15,R15 GOOD RC
XC EFLAG1,EFLAG1 CLEAR
OI EFLAG1,EX_ALC WILL USE ALLOC/FREE ROUTINES
B INITX RETURN

NOTESA DS 0H
LA R15,BADOS
ST R15,ERRMSG SAVE ERROR MESSAGE

INITX DS 0H
SPACE 1
VXRETURN DSA=NO

BADOS DC C’THIS SUPPORT IS NOT AVAILABLE IN THIS ENVIRONMENT’
DC XL1’00’

*
* PARSE EXIT
*
CSRCPARS VXENTER DSA=PWA

USING PARMPARS,R4
LR R4,R1 R4 IS PARMLIST BASE
SPACE 1
L R6,PARSOPTL R6 = OPTION NAME LENGTH

594 Sample Program Appendix 1

LTR R6,R6 IF 0
BZ PARSR RETURN OK
LA R15,4 SET BAD OPTION RC
L R7,PARSOPTN R7 -> OPTION NAME
L R8,PARSVALL R8 = OPTION VALUE LENGTH
L R9,PARSVAL R9 -> OPTION VALUE (VAR NAME)
SPACE 1

* OPTION ACCEPTED IS: *
* CSRC RECL= *

C R6,=F’4’ IF LENGTH NOT 4
* BNE PARSX RETURN WITH ERROR

LTR R8,R8 IS IT =
BNZ PARSRECL THEN CHECK FOR RECL=
CLC 0(4,R7),=CL4’CSRC’ IF NOT ’CSRC’
BNE PARSX RETURN WITH ERROR
B PARSR ELSE RETURN OK

* PARSE RECL=NUM *

PARSRECL DS 0H

CLC 0(4,R7),=CL4’RECL’ IF NOT ’RECL’
BNE PARSX RETURN WITH ERROR
CH R8,=H’16’ GREATER THAN 16
BNL PARSX INVALID VALUE
BCTR R8,0 MINUS 1 FOR EXECUTE
XC TEMP,TEMP CLEAR
EX R8,CONNUM CONVERT TO NUMBER

*CONNUM PACK TEMP(0),0(R9)
CVB R0,TEMP CONVERT TO BINARY
ST R0,RECL SAVE RECL
SPACE 1

PARSR SLR R15,R15 RETURN OK
SPACE 1

PARSX VXRETURN DSA=PWA
CONNUM PACK TEMP(8),0(0,R9) *** EXECUTE ****
*
* OPEN EXIT
*
CSRCOPEN VXENTER DSA=PWA

USING PARMOPEN,R1
SPACE 1
LA R15,NOINPUT SET -> NO INPUT ERROR MESSAGE
L R4,RECL LOAD USER RECLEN
LTR R4,R4 HAS IT BEEN SET?
BNZ *+8
LH R4,=Y(32676) SET LRECL=32K BY DEFAULT
SPACE 1
LA R15,DLENBIG SET -> DATALENGTH TOO BIG MESSAGE
L R2,OPENZLEN
L R3,0(,R2) R3 = DATA LENGTH OF EACH RECORD
CR R3,R4 IF GREATER THAN CSRC MAXIMUM
BH OPENX RETURN ERROR

Using the INFILE/FILE User Exit Facility Sample Program 595

SPACE 1
ST R4,0(,R2) RETURN LENGTH TO THE SAS SYSTEM
ST R4,RECL SAVE LENGTH

*
* ALLOCATION OF BUFFER FOR INPUT RECORDS
*

LA R1,PARM POINT TO PARMAREA
XC PARM,PARM CLEAR
USING PARMALC,R1
ST R10,ALCEXIT COPY HOST BAG POINTER
LA R15,MEMADDR
ST R15,ALCPTR PLACE TO RETURN MEM ADDRESS
ST R4,ALCLEN LENGTH OF MEMORY NEEDED
L R15,ALLOC LOAD MEMORY ALLOCATE ROUTINE
BALR R14,R15 ALLOCATION OF MEMORY
LTR R15,R15 WAS MEMORY ALLOCATED?
BNZ OPENMEM IF NOT, OPERATION FAILS

*
* QUERY THE COMPRESS SERVICE
*

LA R0,1 USE RUN LENGTH ENCODING
CSRCESRV SERVICE=QUERY QUERY IT
LTR R15,R15 EVERYTHING OK
BNZ OPENERR IF NOT, FAIL WITH MESSAGE
LTR R1,R1 REQUIRE WORK AREA
BZ OPENX IF NOT, END
LR R0,R1 SAVE R1
LA R1,PARM POINT TO PARMLIST
LA R15,MEMWK ALLOCATE WORK AREA
ST R15,ALCPTR PLACE TO RETURN MEM ADDRESS
ST R0,ALCLEN LENGTH OF MEMORY NEEDED
L R15,ALLOC LOAD MEMORY ALLOCATE ROUTINE
BALR R14,R15 ALLOCATION OF MEMORY
LTR R15,R15 WAS MEMORY ALLOCATED?
BNZ OPENMEM IF NOT, OPERATION FAILS
B OPENX RETURN, OPERATION IS DONE

OPENERR DS 0H
XC TEMP,TEMP CONVERT RC TO DECIMAL
CVD R15,TEMP CONVERT TO DECIMAL
MVC MSG(BADESRVL),BADESRV MOVE IN SKELETON
UNPK MSG+BADESRVL-3(2),TEMP UNPACK
OI MSG+BADESRVL-2,X’F0’ MAKE IT PRINTABLE
LA R15,MSG SET MESSAGE
ST R15,ERRMSG SET -> ERROR MESSAGE, IF ANY
LA R15,8
B OPENX

OPENMEM DS 0H
LA R15,NOMEMORY
SPACE 1

OPENX DS 0H
ST R15,ERRMSG SET -> ERROR MESSAGE, IF ANY

* R15 = EITHER 0 OR NONZERO
VXRETURN DSA=PWA

*

596 Sample Program Appendix 1

NOINPUT DC C’CSRC: DECOMPRESS DOES NOT SUPPORT OUTPUT’
DC XL1’00’

NOFIXED DC C’CSRC: DECOMPRESS DOES NOT SUPPORT FIXED LENGTH RECORDS’
DC XL1’00’

DLENBIG DC C’DATASET DATALENGTH > CSRC MAXIMUM’
DC XL1’00’

NOMEMORY DC C’CSRC: UNABLE TO OBTAIN MEMORY’
DC XL1’00’

BADESRV DC C’CSRC: NON ZERO RETURN CODE FROM QUERY, RC = ’
BADESRVN DC H’0’

DC XL1’00’
BADESRVL EQU *-BADESRV
*---
* READ EXIT
*
* THIS EXIT DECOMPRESSES EACH RECORD
*---
CSRCREAD VXENTER DSA=PWA

USING PARMREAD,R1
SPACE 1
L R8,READRECL R8 -> RECORD LENGTH
L R9,READRECA R9 -> RECORD ADDRESS
L R3,0(,R8) R3 = RECORD LENGTH
L R2,0(,R9) R2 = RECORD ADDRESS
L R1,MEMWK LOAD WORK AREA ADDRESS
L R4,MEMADDR R4 = OUTPUT BUFFER
L R5,RECL R5 = OUTPUT BUFFER LENGTH
CSRCESRV SERVICE=EXPAND
LTR R15,R15 EVERYTHING OK
BNZ READERR IF NOT, SET ERROR AND RETURN
L R15,MEMADDR START OF BUFFER
SR R4,R15 MINUS LAST BYTE USED
ST R4,0(,R8) LENGTH OF UNCOMPRESSED RECORD
ST R15,0(,R9) SAVE UNCOMPRESSED REC ADDRESS
SLR R15,R15 SET GOOD RC
B READX RETURN TO USER

READERR DS 0H
XC TEMP,TEMP CONVERT RC TO DECIMAL
CVD R15,TEMP CONVERT TO DECIMAL
MVC MSG(EXPERRL),EXPERR MOVE IN SKELETON
UNPK MSG+EXPERRL-3(2),TEMP UNPACK
OI MSG+EXPERRL-2,X’F0’ MAKE IT PRINTABLE
LA R15,MSG SET MESSAGE
ST R15,ERRMSG SET -> ERROR MESSAGE, IF ANY
LA R15,8

*
SPACE 1

READX DS 0H
VXRETURN DSA=PWA
SPACE ,

EXPERR DC C’CSRC NON ZERO RETURN CODE FROM EXPAND, RC = ’
EXPERRN DC H’0’

DC XL1’00’
EXPERRL EQU *-EXPERR

Using the INFILE/FILE User Exit Facility Sample Program 597

*
*
* CONCATENATION EXIT
*
CSRCCNCT VXENTER DSA=PWA

SPACE 1
SLR R15,R15
VXRETURN DSA=PWA

*---
* WRITE EXIT
*
* THIS EXIT COMPRESSES EACH RECORD
*---
CSRCWRIT VXENTER DSA=PWA

USING PARMWRIT,R1
L R8,WRITRECL R8 -> RECORD LENGTH
L R9,WRITRECA R9 -> RECORD ADDRESS
L R3,0(,R8) R3 = RECORD LENGTH
L R2,0(,R9) R2 = RECORD ADDRESS
L R1,MEMWK LOAD WORK AREA ADDRESS
L R4,MEMADDR R4 = OUTPUT BUFFER
L R5,RECL R5 = OUTPUT BUFFER LENGTH
CSRCESRV SERVICE=COMPRESS
LTR R15,R15 EVERYTHING OK
BNZ WRITERR IF NOT, SET ERROR AND RETURN
L R15,MEMADDR START OF BUFFER
SR R4,R15 MINUS LAST BYTE USED
ST R4,0(,R8) LENGTH OF RECORD
ST R15,0(,R9) SAVE NEW RECORD ADDRESS
SLR R15,R15 SET GOOD RC
B WRITEX RETURN TO USER

WRITERR DS 0H
XC TEMP,TEMP CONVERT RC TO DECIMAL
CVD R15,TEMP CONVERT TO DECIMAL
MVC MSG(WRTERRL),WRTERR MOVE IN SKELETON
UNPK MSG+WRTERRL-3(2),TEMP UNPACK
OI MSG+WRTERRL-2,X’F0’ MAKE IT PRINTABLE
LA R15,MSG SET MESSAGE
ST R15,ERRMSG SET -> ERROR MESSAGE, IF ANY
LA R15,8
SPACE 1
SPACE 1

WRITEX DS 0H
VXRETURN DSA=PWA

WRTERR DC C’CSRC: NON ZERO RETURN CODE FROM COMPRESS, RC = ’
WRTERRN DC H’0’

DC XL1’00’
WRTERRL EQU *-WRTERR

LTORG
*
* CLOSE EXIT
*
CSRCCLOS VXENTER DSA=PWA

SLR R15,R15

598 Sample Program Appendix 1

LA R1,PARM
XC PARM,PARM
USING PARMFRE,R1
ST R10,FREEXIT
L R15,MEMADDR
ST R15,FREPTR
L R15,FREE
BALR R14,R15
VXRETURN DSA=PWA

*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*

VXEXIT ,
*
PWA DSECT PROGRAM WORK AREA
PWASAVE DS 32F SAVE AREA
TEMP DS D
RECL DS F
SAVE DS 32F
PARM DS CL(PARMALCL)
MEMADDR DS F
MEMWK DS F
MSG DS CL200
PWALENL EQU *-PWA LENGTH OF CSRC WORK AREA

CVT DSECT=YES
*

END

599

A P P E N D I X

2
Host-System Subgroup Error
Messages

Introduction 599

Messages from the SASCP Command Processor 599
Messages from the TSO Command Executor 601

Messages from the Internal CALL Command Processor 603

Introduction

This appendix provides brief explanations of many of the host-system subgroup error
messages that you might encounter during a SAS session. The explanation for each
message includes where the message comes from, a short explanation of its meaning,
and information about what you can do to correct the problem.

Messages from the SASCP Command Processor
To help you identify and remedy problems when running under TSO, SAS software

provides the following list of messages from the SASCP command processor. SASCP is
involved in processing SAS software tasks and is invoked by the terminal monitor
program as a standard TSO command processor.

SAST001I COMMAND SYSTEM ERROR +
Entering a question mark in the line following this message produces one of these
additional messages:

� NOT ENOUGH MAIN STORAGE TO EXECUTE COMMAND

� IKJPARS RETURN CODE rc

Either the SAS command processor was unable to allocate enough memory to
begin execution, or the system failed while it was parsing the command line. This
message should not occur under normal conditions; inform your local SAS Support
Consultant.

SAST002I DATA SET dsn NOT IN CATALOG or SAST002I DYNAMIC
ALLOCATION ERROR, IKJDAIR RETURN CODE rc DARC drc CTRC crc

The SAS command processor was unable to locate a data set that was specified by
the TASKLIB operand. This message usually indicates that a data set name was
misspelled.

SAST003I MORE THAN 15 TASKLIB DATA SETS SPECIFIED
You have specified more than 15 task-library data sets with the TASKLIB
operand. Reduce the number of task-library data sets.

600 Messages from the SASCP Command Processor Appendix 2

SAST004I dsn IS NOT A PARTITIONED DATA SET
For the value of the TASKLIB operand, you have specified a task-library data set
that is not a partitioned data set. This message usually indicates a misspelled
data set name or a reference to the wrong data set.

SAST005I TASKLIB CANNOT BE OPENED
The SAS command processor was unable to open the task library. You have
probably specified an invalid load library as a task-library data set in the
TASKLIB operand.

SAST006I SAS ENTRY POINT NAME NOT SPECIFIED
You have not specified a member name for the SAS entry point. Use the ENTRY
operand to specify an entry-point name for SAS software .

SAST007I SAS ENTRY POINT NAME entry-name NOT FOUND
The SAS command processor was unable to locate the member name that was
specified as the SAS entry point. This message usually indicates that an
entry-point name was misspelled. Use the ENTRY operand to specify a valid
entry-point name.

SAST007I BLDL I/O ERROR ON TASKLIB
An error occurred during BLDL processing of TASKLIB.

SAST008I OPTIONS FIELD TRUNCATED TO 256 CHARACTERS
The options parameter string that was passed to SAS software was too long and
was truncated to 256 characters. (This string consists of SAS options that you
specified as the value of the OPTIONS operand plus any additional SAS options
that were supplied automatically within the SAS CLIST.) This message is a
warning message.

SAST009I COMMAND SYSTEM ERROR +
Entering a question mark in the line following this message produces one of these
additional messages:

� NOT ENOUGH MAIN STORAGE TO INVOKE SAS SUBTASK

� ATTACH RETURN CODE rc

Either the SAS command processor was unable to allocate enough memory to
invoke SAS software , or the system was unable to create the SAS subtask. This
message should not normally occur; inform your local SAS Support Consultant.

SAST010I entry-name ENDED DUE TO ERROR +
This message indicates that the SAS session has terminated abnormally
(abended). Entering a question mark in the line following this message produces
one of these additional messages:

� USER ABEND CODE uac

� SYSTEM ABEND CODE sac REASON CODE rc

A user abend code of 999 (’3E7’x) indicates an error condition. You can specify
other user abend codes in the SAS ABORT statement. A system abend code should
not normally occur; inform your local SAS Support Consultant.

SAST011I entry-name TERMINATED DUE TO ATTENTION
The SAS session has ended because you pressed the BREAK or ATTN key and
then entered the word END in response to the message SAST013D.

SAST012I COMMAND SYSTEM ERROR +
Entering a question mark in the line following this message produces one of these
additional messages:

� NOT ENOUGH MAIN STORAGE TO EXECUTE COMMAND

Host-System Subgroup Error Messages Messages from the TSO Command Executor 601

� STAE RETURN CODE rc

Either the SAS command processor was unable to allocate enough memory to
invoke SAS software , or an error occurred during execution of the SASCP
command. This message should not normally occur; inform your lcoal SAS Support
Consultant.

SAST013D ENTER "END" TO TERMINATE SAS, OR A NULL LINE TO
CONTINUE

SAS software displays this prompt when the SAS command processor detects that
the BREAK or ATTN key has been pressed. Enter the word END to leave the SAS
session, or enter a null line to resume SAS processing.

SAST014I INVALID RESPONSE, MUST BE "END" OR A NULL LINE
You have entered a response other than the word END or a null line after
receiving message SAST013D. Enter either the word END or a null line.

SAST015I SASCP INVOKED IN A NON-TSO ENVIRONMENT OR PASSED
INVALID PARAMETERS
USE SASCP AS A TSO COMMAND TO INVOKE SAS IN THE

FOREGROUND
USE PGM=SAS TO INVOKE SAS IN THE BACKGROUND
SASCP was not invoked as a TSO command, and it could not locate the
appropriate TSO control blocks to reconstruct a TSO command environment,
either because it was invoked as a background program or because the TSO
environment is nonstandard. If you were running under TSO, contact your local
SAS Support Consultant.

SAST016I PARM FIELD TRUNCATED TO 256 CHARACTERS
The PARM list operand that was passed to the CALL command is too long and
was truncated. (The CALL command is used to invoke SAS software.)

SAST017I INVALID PARAMETER LIST PASSED TO IKJDAIR
An invalid parameter list was passed to the TSO service routine IKJDAIR. This
message should not normally occur; inform your local SAS Support Consultant.

SAST018I SASCP INVOKED IN A NON-TSO ENVIRONMENT
USE PGM=SAS TO INVOKE SAS IN THE BACKGROUND
SASCP was not invoked under TSO.

Messages from the TSO Command Executor
The TSO command executor is involved with TSO command processors for the X and

TSO commands, the X and TSO statements, and the TSO function.

SAST101I ERROR IN PUTGET SERVICE ROUTINE
An error occurred while the TSO command executor was attempting to read a line
from the terminal or from the TSO input stack using the TSO service routine
IKJPTGT. This message should not normally occur; inform your local SAS Support
Consultant.

SAST102I INVALID COMMAND NAME SYNTAX
You have specified an invalid command name in one of the following:

� a TSO or X command
� a TSO or X statement
� a TSO or SYSTEM function

602 Messages from the TSO Command Executor Appendix 2

� a TSO or SYSTEM CALL routine.

This message usually indicates that a TSO command name was misspelled.

SAST103I COMMANDcmd NOT SUPPORTED
You have entered a TSO command that cannot be issued from within a SAS
session. To issue the command, end the session, issue the command, and then
start a new session.

SAST104I COMMAND cmd NOT FOUND
The TSO command executor could not locate the TSO command name that was
specified. This message usually indicates that a TSO command name was
misspelled.

SAST105Icmd ENDED DUE TO ERROR +
Entering a question mark in the line following this message produces one of these
additional messages:

� SYSTEM ABEND CODE sac REASON CODE rc

� USER ABEND CODE uac

A TSO command that was invoked in one of the following ways ended
abnormally with the indicated abend code:

� a TSO or X command

� a TSO or X statement

� a TSO or SYSTEM function

� a TSO or SYSTEM CALL routine.

SAST106I COMMAND SYSTEM ERROR +
Entering a question mark in the line following this message produces one of these
additional messages:

� NOT ENOUGH MAIN STORAGE TO EXECUTE COMMAND

� ATTACH RETURN CODE rc

Either the TSO command executor was unable to allocate enough memory to
execute the requested command, or an error occurred during execution of the
command executor. This message should not normally occur; inform your local
SAS Support Consultant.

SAST107I COMMAND SYSTEM ERROR +
Entering a question mark in the line following this message produces one of these
additional messages:

� NOT ENOUGH MAIN STORAGE TO EXECUTE COMMAND

� STAE RETURN CODE rc

Either the system was unable to allocate enough memory to execute the
requested command, or an abend occurred during execution of the command. This
message should not normally occur; inform your lcoal SAS Support Consultant.

SAST108I SEVERE COMMAND SYSTEM ERROR +
Entering a question mark in the line following this message produces one of these
additional messages:

� SYSTEM ABEND CODE sac REASON CODE rc

� USER ABEND CODE uac

The TSO command executor encountered severe internal failure. This message
should not normally occur; inform your lcoal SAS Support Consultant.

Host-System Subgroup Error Messages Messages from the Internal CALL Command Processor 603

SAST109I TSO SUBMODE, ENTER "RETURN" OR "END" TO RETURN TO
THE SAS SYSTEM

SAS software displays this prompt when you enter TSO submode.

SAST110I COMMANDcmd TERMINATED DUE TO ATTENTION
You have stopped the execution of the specified TSO command by pressing the
BREAK or ATTN key and entering the word END in response to message
SAST1112D.

SAST111I SPF COMMAND NOT ALLOWED, SPF ALREADY ACTIVE
You have attempted to issue the TSO ISPF/PDF or SPF command from a SAS
session that you invoked under the ISPF/PDF or SPF TSO command processor
panel (panel 6). To return to the ISPF/PDF or SPF session, end the SAS session.

SAST112D ENTER "END" TO TERMINATE COMMAND, OR A NULL LINE TO
CONTINUE

This prompt is displayed when you press the BREAK or ATTN key during the
execution of a TSO command. Enter the word END to terminate the command, or
enter a null line to resume the command.

SAST113I INVALID RESPONSE, MUST BE "END" OR A NULL LINE
You have entered a response other than the word END or a null line after
receiving message SAST112D. Enter either the word END or a null line.

SAST114I SASTSO NOT SUPPORTED IN NON-TSO ENVIRONMENT
The command that you have entered cannot be executed under the z/OS batch
TMP. The command can be executed only during an interactive TSO session.

SAST114I COMMAND cmd NOT SUPPORTED IN BACKGROUND
You have entered a TSO command that cannot be issued from a background TSO
session.

Messages from the Internal CALL Command Processor
The internal CALL command processor implements the TSO CALL command for use

by an unauthorized caller outside of the Terminal Monitor Program.

SAST201I COMMAND SYSTEM ERROR +
Entering a question mark in the line following this message produces one of these
additional messages:

� NOT ENOUGH MAIN STORAGE TO EXECUTE COMMAND

� IKJPARS RETURN CODE rc

Either the CALL command was unable to allocate enough memory to begin
processing, or the system failed while it was parsing the command line. This
message should not normally occur; inform your local SAS Support Consultant.

SAST202I TEMPNAME ASSUMED AS MEMBER NAME
You have not specified a member name with a CALL command invocation, and the
CALL command processor used the member name TEMPNAME.

SAST203I PARM FIELD TRUNCATED TO 100 CHARACTERS
The parameter string that was passed to the program by the CALL command
processor was too long and was truncated to 100 characters.

SAST204I DATA SET dsn NOT IN CATALOG
The CALL command processor was unable to locate the specified program data set.
This message usually indicates that a data set name was misspelled. You will be
prompted to enter the correct data set name.

604 Messages from the Internal CALL Command Processor Appendix 2

SAST204I DATA SET NOT ALLOCATED, IKJDAIR RETURN CODE rc DARC
drc CTRC crc

An error occurred while the data set was being allocated; inform your local SAS
Support Consultant.

SAST205I MEMBERmem SPECIFIED BUT dsn NOT A PARTITIONED DATA
SET

You have specified a program library in the CALL command that is not a valid
load-module library. This message usually indicates that a data set name was
misspelled.

SAST206I DATA SETdsn NOT USABLE +
Entering a question mark in the line following this message produces this
additional information:

CANNOT OPEN DATA SET

The CALL command processor was unable to open the program library. This
message usually indicates an invalid load-module library or a misspelled data set
name.

SAST207I MEMBER mem NOT IN DATA SET
The CALL command processor could not locate the member name that you
specified in the CALL command. This message usually indicates that a member
name was misspelled. You will be prompted to enter the correct member name.

SAST207I BLDL I/O ERROR
An error occurred while searching for the program on the data set; inform your
local SAS Support Consultant.

SAST208I COMMAND SYSTEM ERROR +
Entering a question mark in the line following this message produces one of these
additional messages:

� NOT ENOUGH MAIN STORAGE TO EXECUTE COMMAND

� ATTACH RETURN CODE rc

Either the system was unable to allocate enough memory to invoke the specified
program, or an error occurred while it was attaching the program. This message
should not normally occur; inform your local SAS Support Consultant.

SAST209I INVALID PARAMETER LIST PASSED TO IKJDAIR
The CALL command processor passed an invalid parameter list to the TSO service
routine IKJDAIR. This message should not normally occur; inform your local SAS
Support Consultant.

605

A P P E N D I X

3
Recommended Reading

Recommended Reading 605

Recommended Reading

Here is the recommended reading list for this title:
� Base SAS Procedures Guide
� Moving and Accessing SAS Files
� SAS Language Reference: Concepts
� SAS Language Reference: Dictionary
� SAS Output Delivery System: User’s Guide

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

606

607

Glossary

aggregate storage location
a location on an operating system that can contain a group of distinct files. On
different operating systems, different terms (such as directory, folder, or partitioned
data set) are used to refer to an aggregate storage location.

allocation
the z/OS operating system’s term for associating a logical name (DDname) with an
operating system data set. See also assignment.

ASCII (American Standard Code for Information Interchange)
a 7-bit character encoding that is the U.S. national variant of the ISO 646 standard.
The ASCII encoding includes the upper- and lowercase letters A-Z, digits, symbols
(such as &, #, and mathematical symbols), punctuation marks, and control
characters. This set of 128 characters is also included in most other encodings. See
also EBCDIC (Extended Binary Coded Decimal Interchange Code), encoding.

ASCII collating sequence
an ordering of characters that follows the order of the characters in the ASCII
encoding method. See also ASCII (American Standard Code for Information
Interchange), EBCDIC collating sequence.

assignment
SAS software’s internal association between a logical name (that is, a libref or a
fileref) and an operating system data set. For SAS data libraries, an assignment also
associates a SAS engine with the operating system data set. See also allocation.

batch job
a job (program) that is submitted to the operating system for batch processing.
Under z/OS, the job begins with a JCL JOB statement and ends with a JCL null (//)
statement. See also batch mode.

batch mode
a method of running SAS programs in which you prepare a file that contains SAS
statements plus any necessary operating system control statements and submit the
file to the operating system. Execution is completely separate from other operations
at your terminal. Batch mode is sometimes referred to as running in the background.

block
a unit of physical storage on disk or tape that is used for transferring data between
an operating system or an application program and the storage media. Under z/OS,

608 Glossary

blocks are separated from each other by spaces called interblock gaps. The format of
the data that is stored in a block depends on the access method and on the
application that created the data.

block size
the number of bytes in a block. See also block.

blocking factor
the number of logical records that fit in one block. See also block.

cataloged procedure
See SAS cataloged procedure.

character set
the set of characters that are used by a language or group of languages. A character
set includes national characters, special characters (such as punctuation marks and
mathematical symbols), the digits 0-9, and control characters that are needed by the
computer. Most character sets also include the unaccented upper- and lowercase
letters A-Z. See also national character.

CLIST
an abbreviation for command list. A CLIST consists of a planned, executable
sequence of TSO commands, subcommands, and command procedure statements that
control various system and program operations.

DASD (direct access storage device)
a drum or disk storage device that allows direct access to data.

data control block (DCB)
See DCB (data control block).

data set
See operating system data set, PDS (partitioned data set), SAS data set, sequential
data set, VSAM data set.

data set label
in a SAS data set, a user-defined attribute of up to 200 characters that is used for
documenting the SAS data set. Under z/OS, this term can also refer to a format 1
data set control block (DSCB) for a data set on disk or to an IBM label for a data set
on tape.

DCB (data control block)
the z/OS control block that contains information about the physical characteristics of
an operating system data set.

DD statement
a data definition statement that describes an operating system data set to the
operating system, including information about the resources that are needed for the
data set. The manner in which a program can use a data set depends on the
parameters in the DD statement.

DDname
a name that is defined by a JCL DD statement or a TSO ALLOCATE command.
DDnames can contain one to eight characters. The first character must be a letter or
some other national character. If you use a DD statement to allocate a SAS data
library externally, the first time you use the DDname as a libref, SAS assigns that
libref to the library. Similarly, if you need to use an external file in a SAS program,
you can use a DD statement to allocate the file. In that case, the DDname
corresponds to the fileref for the external file.

Glossary 609

direct access bound library
a random (as opposed to sequential) SAS data library that is stored as a regular z/OS
operating system data set. The term bound emphasizes the fact that the library is a
single physical file that contains all of the members of that library. This
characteristic distinguishes direct access bound libraries from HFS libraries and
hiperspace libraries. See also HFS library, hiperspace library.

direct access storage device
See DASD (direct access storage device).

EBCDIC (Extended Binary Coded Decimal Interchange Code)
a group of 8-bit character encodings that each include up to 256 characters. EBCDIC
is used on IBM mainframes and on most IBM mid- range computers, and it includes
both graphic (printable) codes and control (nonprintable) codes. See also ASCII
(American Standard Code for Information Interchange), encoding.

EBCDIC collating sequence
an ordering of characters that follows the order in the EBCDIC encoding method.
SAS uses the same collating sequence as its host operating environment. See also
ASCII collating sequence, EBCDIC (Extended Binary Coded Decimal Interchange
Code).

encoding
a set of characters (letters, logograms, digits, punctuation, symbols, control
characters, and so on) that have been mapped to numeric values (called code points)
that can be used by computers. The code points are assigned to the characters in the
character set by applying an encoding method.

engine/host option
an option that is specified in a LIBNAME statement. Engine/host options specify
attributes that apply to all SAS data sets in a SAS data library.

external file
a file that is created and maintained by a host operating system or by another
vendor’s software application. SAS can read data from and route output to external
files. External files can contain raw data, SAS programming statements, procedure
output, or output that was created by the PUT statement. Under z/OS, JCL libraries
and load libraries are also external files. A SAS data set is not an external file.

fatal error
an error that causes a program to end abnormally or that prevents the program from
starting.

fileref (file reference)
a name that is temporarily assigned to an external file or to an aggregate storage
location such as a partitioned data set, a directory, or a folder. Under z/OS, a
DDname and a fileref are generally the same. The DDname (which is assigned with
a JCL DD statement) is used by the operating system to allocate and reference the
file. The fileref (which is assigned with a SAS FILENAME statement or function) is
used by SAS to allocate and reference the file.

format library
a collection of user-defined formats and informats. The format library can be either a
FORMATS catalog in a SAS data library, or a load library containing SAS formats
and informats in load module form. See also load library.

HFS (hierarchical file system)
an obsolete term for what IBM now refers to as UNIX System Services (USS). See
UNIX System Services.

610 Glossary

HFS library
a directory in the hierarchical file system of UNIX System Services. Members of an
HFS library are individual files in the HFS directory. This characteristic
distinguishes HFS libraries from direct access bound libraries. See also UNIX
System Services.

hiperspace library
a collection of member files that are loaded into a z/OS hiperspace, which consists of
virtual storage that is backed by available expanded storage. The fact that a
hiperspace library consists of a collection of member files distinguishes hiperspace
libraries from the single-file format of direct access bound libraries.

host
the operating environment that provides facilities, computer services, and the
environment for software applications.

host option
in a SAS statement, an option that is specific to a particular operating environment.

ISPF
an interactive interface that can be used to facilitate many programming tasks. The
complete name is the Interactive System Productivity Facility/Program Development
Facility (ISPF/PDF).

ISPF/PDF
See ISPF.

JCL (Job Control Language)
a language that is used in the z/OS operating environment to communicate
information about a job to the operating system, including information about the
data sets, execution time, and amount of memory that the job needs.

job
a unit of work that is performed by a host computer.

Job Control Language
See JCL (Job Control Language).

job stream
the JCL statements in a batch job. These statements identify operating system data
sets, execute programs, and provide data that are processed by the job. See also JCL
(Job Control Language).

libref (library reference)
a name that is temporarily associated with a SAS library. The complete name of a
SAS file consists of two words, separated by a period. The libref, which is the first
word, indicates the library. The second word is the name of the specific SAS file. For
example, in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the
file NEWBDAY. You assign a libref with a LIBNAME statement or with an operating
system command. Under z/OS, you can use a TSO ALLOCATE statement or a JCL
DD statement to allocate a SAS data library. In that case, SAS assigns a libref that
is the same as the DDname.

load library
an external file that contains load modules. These can be modules that are supplied
by SAS, or they could be compiled and linked by other sources. See also format
library, load module.

load module
a complete machine-level program in a form that is ready to be loaded into main
memory and executed.

Glossary 611

logical name
a name that is associated with an operating system data set name. Under z/OS, a
logical name can be a DDname, a fileref, or a libref. An example is the logical name
SASUSER, which is used in the SAS CLIST and in the SAS cataloged procedure. See
also assignment, DDname.

member
(1) a SAS file in a SAS library. (2) under z/OS, a single component of a partitioned
data set.

member name
a name that is assigned to a SAS file in a SAS library. Under z/OS, this term can
also refer to the name of a single component of a partitioned data set.

national character
any character that is specific to a language as it is written in a particular nation or
group of nations.

nibble
half a byte, or 4 bits (binary digits).

operating system data set
a collection of information that IBM mainframe operating systems such as z/OS and
OS/390 can identify and manage as a unit. IBM operating system data sets
correspond to files under other operating systems. Partitioned data sets (PDSs),
sequential data sets, and VSAM data sets are some types of data sets that are
supported in IBM mainframe environments. By contrast, SAS data sets are managed
by SAS software, not by any operating system, although they can be stored as
members of partitioned data sets or in sequential data sets on IBM mainframes. See
also PDS (partitioned data set), SAS data set, sequential data set, VSAM data set.

partitioned data set
See PDS (partitioned data set).

PCL (Printer Command Language)
a command language that was developed by Hewlett-Packard for controlling
Hewlett-Packard printers. Each PCL command consists of an escape key followed by
a series of code numbers. Different versions of PCL have been developed for use with
different models or types of Hewlett-Packard printers.

PDS (partitioned data set)
a type of operating system data set that consists of one or more separate units of
information called members, plus a directory. For each member, a unique name is
entered in the PDS directory. Partitioned data sets must reside on disk. See also
operating system data set.

portability
the ability of a program to execute in an operating environment other than the one
for which it was written.

portable
See portability.

PROFILE catalog
See SASUSER.PROFILE catalog.

random access
the ability to retrieve records in a file without reading all records sequentially.

record
a logical unit of related data that can be fixed, variable, or undefined in length.

612 Glossary

RMF (Resource Measurement Facility)
a feature of the z/OS operating environment that records information about each job
that is processed.

SAS cataloged procedure
a group of JCL statements that are used to invoke SAS during the execution of a
batch job. You can use a single EXEC statement to invoke all the JCL statements in
the SAS cataloged procedure. The SAS cataloged procedure is supplied with Base
SAS in the z/OS environment. However, it can be customized at each site.

SAS data library
in the z/OS operating environment, an operating system data set whose internal
format has been defined by SAS. The internal format divides the DASD space that
has been allocated to the operating system data set into space for each SAS file that
is stored in the library. Each file is a member of the library.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SASHELP library
a SAS data library supplied by SAS software that stores the text for Help windows,
default function-key definitions and window definitions, and menus.

SASUSER library
a default, permanent SAS data library that is created at the beginning of your first
SAS session. The SASUSER library contains a PROFILE catalog that stores the
customized features or settings that you specify for SAS. You can also store other
SAS files in this library. See also SAS data library, SASUSER.PROFILE catalog.

SASUSER.PROFILE catalog
a SAS catalog in which SAS stores information about attributes of your SAS
windowing environment. For example, this catalog contains function-key definitions,
fonts for graphics applications, window attributes, and other information that is used
by interactive SAS procedures.

sequential access
a method of file access in which the records are read or written one after the other
from the beginning of the file to the end.

sequential data set
a type of operating system data set that is organized so that its data is processed in
order, from beginning to end. Sequential data sets can reside either on disk or on
tape. Under z/OS, SAS data libraries can be created and processed as sequential
data sets, but sequential files can also contain data that is external to SAS and that
can be processed by different applications. See also operating system data set.

SMF (System Management Facility)
a z/OS facility that provides information about the computing resources that the
operating system utilizes when it runs a job.

System Management Facility
See SMF (System Management Facility).

task
a logical process within SAS. A task can be a procedure or a DATA step, a window, or
a supervisor process.

Glossary 613

UNIX System Services (USS)
an IBM term for the directory-based hierarchical file system that is available in the
z/OS operating environment.

USER library
a SAS data library to which the libref USER has been assigned. When the libref
USER is defined, SAS data sets that have one- level names are stored in this library
instead of in the temporary WORK data library.

USS
See UNIX System Services (USS).

VSAM data set
a classification that indicates how the records in an operating system data set are
organized. VSAM is an acronym for Virtual Storage Access Method and is an IBM
data access method that provides three ways to organize records in a disk file:
Entry-Sequenced Data Set (ESDS), Key- Sequenced Data Set (KSDS), and Relative
Record Data Set (RRDS). VSAM allows three types of access to records in VSAM
files: sequential, direct, and skip sequential. See also operating system data set.

VSAM file
another term for VSAM data set. See VSAM data set.

VTOC
an acronym for the volume table of contents of a disk. The VTOC contains the name
and location of operating system data sets and, if the VTOC is not indexed, it
contains unused space on the disk. The VTOC also contains other information about
the data sets, such as date of creation and size.

WORK library
a SAS data library that is automatically defined by SAS at the beginning of each SAS
session or SAS job. Unless you have specified a USER data library, any newly
created SAS file that has a one-level name will be placed in the WORK library by
default and will be deleted at the end of the current SAS session or job.

614

Index 615

Index

Numbers
3270 emulators 222
3270 terminals

connecting to SAS 6

A
abend exits 513
ABEND option

ABORT statement 360
ABORT statement 360
access methods 87
AFTER statement

SOURCE procedure 343
ALIAS option

AFTER statement (SOURCE) 344
ALIASMATCH= option

PROC PDSCOPY statement 327
ALIGN option

FILENAME statement 384
ALLOC routine 585
allocating external files

See external files, allocating
ALTER= data set option 225
alter passwords 225
ALTLOG= system option 411
ALTPRINT= system option 411
ANYPUNCT function 246
appending data

MOD disposition for 92
MOD option for 92

ARM agents 412
ARMAGENT= system option 412
ASCII files

writing ODS XML output, binary FTP to
UNIX 129

assembler programs 345
asynchronous tasks

listing 402
ATTACH= option

FILENAME statement 378
Attachmate 222
attention handling 514
ATTRIB statement 361
autocall libraries 290

creating autocall macros 291
location of 494
specifying 290

specifying, in batch mode 290
specifying, under TSO 291

autocall macros 291
autoexec file

customizing SAS sessions 7, 9
displaying statements in SAS log 9
in batch mode 9
specifying 413
under TSO 9

AUTOEXEC= system option 413
automatic macro variables

See macro variables
AUTOSCROLL command

performance and 221

B
BACKWARD option

FILE statement 367
INFILE statement 367

batch environment
Universal Printing in 157

batch mode
autocall libraries 290
autoexec file in 9
customizing SAS sessions 7
increasing size of WORK library 17
invoking SAS in 5
name of current batch job 288

BatchPipes z/OS 52, 80
BCC= option

FILENAME statement 378
BEFORE statement

SOURCE procedure 343
BESTw. format 235
binary data

reading 278
writing 234

BKWD option
FILE statement 367
INFILE statement 367

BLKALLOC system option 414
BLKSIZE= option

FILE statement 365
FILENAME statement 379
INFILE statement 390
LIBNAME statement 396
PROC PDSCOPY statement 327

BLKSIZE= system option 414

BLKSIZE(device-type)= system option 415
block mode sorting 499
block size

direct access bound libraries 45
performance and 213
sequential access bound libraries 48

BMDP control statements 298
BMDP engine 69
BMDP files

accessing 70
assigning librefs to 70
converting to data sets 307
examples 70
referencing 70

BMDP= option
PROC CONVERT statement 308

BMDP procedure 296
BMDP control statements 298
BMDP programs needing FORTRAN rou-

tines 299
examples 299
missing values 299

BMDP programs
calling 296
required FORTRAN routines 299

BMDP save files
converting to data sets 310
creating and converting 299
variable names 309

border symbols 444
borders 570
buffer size

for output data sets 226
BUFND= option

FILE statement 367
INFILE statement 367

BUFNI= option
FILE statement 367
INFILE statement 367

BUFNO= option
FILENAME statement 380

BUFSIZE= data set option 226
bundled SAS configuration 221
BURST option

FILENAME statement 384
BY statement

BMDP procedure 298

616 Index

C
CA-IDMS databases

accessing 99
CALL routines 245
CALL SLEEP routine 247
CALL SYSTEM routine 248
CALL TSO routine 249
CALL WTO routine 250
CAPSOUT system option 417
CARDIMAGE system option 417
CARDS statement 361
carriage control characters 94, 99
carriage-control data 430
cascading windows 547
CATALOG procedure 304
cataloged procedure

invoking SAS in batch 5
catalogs

managing 304
number to keep open 417
performance and 213
writing to transport files 312

CATCACHE= system option 417
CC= option

FILENAME statement 377
CCHHR= option

INFILE statement 390, 392
CD-ROM documentation 34
CEDA (cross-environment data access) 25
CHANGE statement

PDS procedure 323
CHAR1= option

FILENAME statement 384
CHAR2= option

FILENAME statement 384
CHAR3= option

FILENAME statement 384
CHAR4= option

FILENAME statement 384
character data

reading 277
writing 233

character expressions
replacing specific characters in 267, 274

character-set encoding
FILE statement 364
FILENAME statement 372
INFILE statement 389

character sets 418
character values

data representation 208
character variables

converting to ISPF variables 458
storing memory addresses in 270

CHARTYPE= system option 418
windowing enviroment and 567

CICS (Customer Information Control System)
connecting to SAS 6

CIMPORT procedure 304
transporting data sets 25

CLIST system option 419
CLISTs 4

invoking during SAS sessions 249, 275, 403
invoking from command line 564
specifying input from 419
variables, retrieving values 290

CLOCK command 558
Close function 585
CLOSE= option

FILE statement 365
FILENAME statement 384
INFILE statement 390

CNV option
FILE statement 367
INFILE statement 367

CODE= option
PROC BMDP statement 296

collating sequence 208
macros 293

color loading 569
columns

resizing 548
sorting 548

command line
invoking CLISTs or REXX execs 564
issuing TSO commands 564

commands 546
host-specific window commands 557
issuing z/OS commands during SAS ses-

sions 248, 273
selection-field commands 548

compatibility 288
compatibility engines 39

long format names 40
Release 6.06 data sets 40
V5 and V5TAPE engines 40

compiled macros 291
compiling assembler programs 345
compressing data 215
concatenated data sets

reading from 97
concatenating

external files 82
UNIX System Services files 104

Concatenation function 583
condition codes 32, 287
CONFIG= system option 420
configuration file

creating 8
customizing SAS sessions 7
DDname for 420
directing output to external files 116
specifying a user config file 8

connecting to SAS 6
console log file 21, 112
CONTENT= option

PROC BMDP statement 297
CONTENTS procedure 305
control cards

for IEBCOPY utility 347
CONTROLINTERVAL option

FILE statement 367
INFILE statement 367

CONVERT procedure 307
examples 310
missing values 309
variable names, assigning 309
variable names, BMDP output 309
variable names, OSIRIS output 309
variable names, SPSS output 309

COPIES= option
FILENAME statement 384

COPYVOLSER option
PROC TAPECOPY statement 350

CPORT procedure 312
transporting data sets 25

cross-environment data access (CEDA) 25
CSRC option

FILE statement 365
INFILE statement 390

CTLINTV option
FILE statement 367
INFILE statement 367

cursor 561, 569
Customer Information Control System (CICS)

connecting to SAS 6
customizing SAS sessions

See SAS sessions, customizing
CVAF option

INFILE statement 392

D
data compression 215
Data Control Block (DCB) 381
data-in-virtual (DIV) data sets 217
data libraries

See also data libraries, allocating
assigning engines 552
assigning engines to 393
assigning librefs 393, 552
block size 414
block size, by device-type 415
deallocating 63
default location 521
direct access bound libraries 42
DIV libraries 50
engine implementation types 42
HFS libraries 48
hiperspace libraries 50
hiperspace size 454
in hiperspaces 216
message level for 423
performance and 213
physical name, returning 269
pipe libraries 52
printing file descriptions 305
record length 414
sequential access bound libraries 46
temporary 217
truncation checking 424
user profile catalog 496

data libraries, allocating 38
DDnames as librefs 61
deallocating libraries 63
engine assignment 62
externally 59
HFS directories and 48
internally 56
internally, advantages of 57
JCL DD statement examples 60
LIBNAME function, external allocation 61
LIBNAME statement, external allocation 61
library engines 38
listing current librefs 63
multiple librefs per library 62
multivolume libraries 64
overview 38

Index 617

TSO ALLOCATE command examples 60
view engines 41
without a libref 58

data lines 361
as 80-byte records 417
including 387
sequence number columns 493

DATA= option
PROC BMDP statement 297
PROC DBF statement 314

data representation
character values 208
EBCDIC codes 208
integers 207
numeric variables 207
saving storage space 207

data set attributes
of input file 92
writing to external files 91

Data Set Control Block (DSCB) 381
data set disposition 92
data set options 225

BUFSIZE= 226
FILEDISP= 227
summary of 228
table of 228

data sets
accessing without librefs 58
allocating, multivolume data libraries 64
converting BMDP save files to 310
converting OSIRIS files to 310
converting SPSS files to 311
converting system files to 307
converting to/from dBASE files 313, 315
DIV data sets 217
holding in memory 401
in hiperspaces 217
performance and 213
prompting for 437
recalling migrated data sets 519
Release 6.06 format 40
retrieving information about 367, 391
temporary 17
transporting between operating environ-

ments 25
virtual I/O data sets 217
writing to transport files 312

DATA step
aborting 360
changing ISPF options during 187
sending e-mail from 140
suspending 247

DATA step debugger 34
DATACLAS= option

FILENAME statement 382
LIBNAME statement 396

DATASETS procedure 312
date and time informats 279
date/time information 515
DB2 option

PROC DBF statement 313
DB3 option

PROC DBF statement 313
DB4 option

PROC DBF statement 313
DB5 option

PROC DBF statement 313

dBASE files
converting to data sets 313, 315

DBF fields
converting to/from variables 315

DBF files
transferring other software files to 315

DBF procedure 313
converting DBF fields to/from variables 315
examples 315
transferring other software files to DBF

files 315
DC option

PROC PDSCOPY statement 328
DCB attributes

FILENAME statement 381
FILENAME statement options 379

DCB (Data Control Block) 381
DCB= option

FILE statement 365
INFILE statement 391

DCBDEVT= option
PROC TAPELABEL statement 357

DCBS option
PROC PDSCOPY statement 328

DD statements
directing output to external files 117
TAPECOPY procedure 349, 350

DDNAME= option
PROC PDS statement 322
PROC TAPELABEL statement 357

DDnames
as librefs 61
displaying, with data set name and informa-

tion 550
for alternate load library 495
for configuration file 420
of external files 86

DDnames, reserved 26
debugging 34
default options table 12
DELETE statement

ITEMS procedure 319
PDS procedure 322

delimiters 290
DEN= option

PROC TAPECOPY statement 350
DEST= option

FILENAME statement 384
device drivers

graphics device drivers 568
terminal support 568
text device drivers 568

DEVICE= system option 421
device types

determining 87
DEVTYPE= option

FILE statement 367
DFLTACTION command 558
DFSORT performance booster 218
DIAG option

PROC SORT statement 337
Dialog Development Models 186
DICT= option

PROC CONVERT statement 308
DINFO function 250
DIR= option

DELETE statement (ITEMS) 319

EXPORT statement (ITEMS) 319
IMPORT statement (ITEMS) 319
ITEMS procedure 318
LIST statement (ITEMS) 318

DIRDD= option
PROC SOURCE statement 340

direct access bound libraries 42
accessing without a libref 58
block size 45
creating 42
engine assignment 62
I/O optimization for 213
number of EXCPs 422
random processing pattern 214
sequential processing pattern 214
usage notes 43

direct log-on 222
directories

assigning filerefs 259
closing 256
closing members 256
deassigning filerefs 259
getting information about 250
identifier values 254
opening 254

directory information items
getting 250
name of 255
number available 256

directory records 346
disk data sets

releasing unused space 333
DISP= option

FILENAME statement 374
LIBNAME statement 396

DIV data sets 217
update frequency 456

DIV libraries 50
DLEXCPCOUNT system option 422
DLGENDR command 559
DLMSGLEVEL system option 423
DLTRUNCHK option

LIBNAME statement 395
DLTRUNCHK system option 424
DMPRINT command

directing output to external files 117
documentation

OnlineDoc 34
DOPEN function 254
DOPTNAME function 255
DOPTNUM function 256
double-click, simulating 558
DSCB (Data Set Control Block) 381
DSCB= option

FILE statement 367
DSINFO window 549
DSNAME= option

INVOL statement (TAPECOPY) 352
DSNEXST statement 288, 362
DSNTYPE= option

FILENAME statement 383
DSORG= option

FILENAME statement 380
DSRESV system option 424
DUMP= option

LIST statement (ITEMS) 318
PROC TAPELABEL statement 357

618 Index

DYNALLOC system option 425
dynamic allocation 289

E
e-mail 134

FILENAME statement options 377
FILENAME statement syntax for 134
interface for 426
PostScript attachments 160
procedure output as 142
procedure output as attachment 147
PUT statement syntax for 137
sending from DATA step 140
sending from within SAS 134
sending with SCL code 148
SMTP server for 426

EBCDIC code 233, 277
EBCDIC codes 208
ebcdic codes, table of 208
EBCDIC files

writing ODS XML output, ASCII transfer to
UNIX 130

EDS drivers 568
electronic mail

See e-mail
EMAILHOST= system option 426
EMAILSYS= system option 426
emulators 222, 569
EMULUS extensions 569
ENCODING= option

FILE statement 364
FILENAME statement 372
INFILE statement 389

engines
assigning to data libraries 393, 552
assigning to SAS data libraries 62
BMDP 69
compatibility engines 39
default, for sequential data libraries 496
library implementation types 42
OSIRIS 69
read-only 69
SAS library engines 38
SAS view engines 41
SPSS 69
V5 and V5TAPE engines 40
V9 engine 38
V9TAPE engine 39

environment variables
defining 497
pseudo 21

EQUALS option
PROC SORT statement 337

ERASE= option
FILE statement 367
INFILE statement 367

error messages
assigning physical files 436
for z/OS problems 31
from internal CALL command processor 603
from SASCP command processor 599
from TSO command executor 601
host-system subgroup 35
ISPF 461

Ew. format 236

Ew.d informat 280
EXCHANGE statement

PDS procedure 323
EXCLUDE statement

PDSCOPY procedure 329
SOURCE procedure 342

EXCPs
reporting the number of 422

Execute Channel Program calls 422
EXPLODE command 559
EXPORT statement

ITEMS procedure 319
external files

assigning filerefs 259, 370
CA-IDMS databases 99
character-set encoding 364, 372, 389
closing 256
concatenating 82
copying output to 116
copying to current window 562
DDnames 86
deallocating 83
deassigning filerefs 259
deleting 257
displaying information about 83
existence verification of 258
file identifier values 264
IMS-DL/I databases 99
INFILE/FILE user exit facility 109
introduction 75
ISAM files 100
maximum block size 429
opening 264
output to, at SAS invocation 115
output to, with configuration file 116
output to, with DD statements 117
output to, with DMPRINT command 117
output to, with FILE command 117
output to, with PRINTTO procedure 114
output to, with system options 115
physical name, returning 269
reading statements from 109
referring to 86
saving window contents to 560
volume table of contents (VTOC) 101
VSAM files 100
zero-length records 436

external files, accessing
device types 87
nonstandard files 99
referring to files 86
statements from programs 109
UNIX System Services files 102
user exit modules 109
user-written I/O access methods 109
writing to external files 87

external files, allocating 75
concatenating files 82
deallocating files 83
displaying file information 83
FILENAME function for 76
FILENAME statement for 76
for multiple uses 76
for single use 76
generation data sets 81
HFS files 82
ISAM files 82

JCL DD statements for 78
methods for 75
nonstandard external files 82
on tape 79
PDSE files 82
to pipes 80
TSO ALLOCATE command for 79

external files, reading from 94
concatenated data sets 97
INFILE statement for 94
input data sets information 99
multiple files 98
PDS/PDSE members 96
print data sets 99
sequential files 96
terminals 97

external files, writing to 87
appending data 92
data set attributes 91
data set attributes of input file 92
data set disposition 92
FILE statement for 88
internal readers 91
PDS/PDSE data sets 90
print data sets 93
printers 90
sequential data sets 89
temporary data sets 91

external programs
passing parameters to 488

F
FCB= option

FILENAME statement 384
FCLOSE function 256
FDELETE function 257
FEEDBACK= option

FILE statement 368
INFILE statement 368

FEXIST function 258
file allocations

reusing 438
file authorization checking 428
FILE command 560

directing output to external files 117
file extensions

partitioned data sets and 432
file identifier values

external files 264
file information items 261

name of 266
number available 266

file locking 435
FILE statement 363

data set attributes, specifying 91
data set disposition, specifying 92
examples 89
host options, retrieving data set informa-

tion 367
host options, standard 365
pipe options 369
syntax 88
UNIX System Services options 369
VSAM options 367
writing to external files 88

Index 619

file system default 440
FILEAUTHDEFER system option 428
FILEBLKSIZE(device-type)= system option 429
FILECC system option 430
FILEDEST= system option 431
FILEDEV= system option 431
FILEDIRBLK= system option 432
FILEDISP= data set option 227
FILEEXIST function 258
FILEEXT= system option 432
FILEFORMS= system option 434
FILELOCKS= system option 435
FILEMOUNT system option 435
FILEMSGS system option 436
FILENAME function 259

allocating external files 76
FILENAME statement 370

allocating external files 76
DCB attribute options 379
DCB attributes 381
e-mail options 377
examples 77
for e-mail 134
pipe options 386
SMS keyword options 382
standard file options 374
subsystem options 385
syntax 77
SYSOUT data set options 383
UNIX System Services options 386

FILENAME UPRINTER statement 167
FILENAME window 550
filenames

displaying, with filerefs 550
FILENULL system option 436
FILEPROMPT system option 437
FILEREF function 260
filerefs

assigning 259
assigning to external files 370
deassigning 259
displaying, with filenames 550
verifying 260

FILEREUSE system option 438
files

accessing, in other operating environments 25
opening, in directory structures 268

FILES statement
TAPECOPY procedure 353

FILESPPRI= system option 438
FILESPSEC= system option 439
FILESTAT system option 439
FILESYSOUT= system option 440
FILESYSTEM= system option 440
FILEUNIT= system option 441
FILEVOL= system option 442
FILSZ system option 442
FINFO function 261
FIRST statement

SOURCE procedure 343
FIRSTOBS= option

PROC CONVERT statement 308
fixed-point format

writing numbers in 238
fixed-point values

converting hexadecimal data to 281
reading 282

FLASH= option
FILENAME statement 384

FLASHC= option
FILENAME statement 384

floating-point format
converting hexadecimal data to 281
converting to hexadecimal 237
numeric data stored in 283
portability and 234, 278
reading 283
writing numeric data in 240

FNAME window 550
FOLD option

FILENAME statement 384
FONTREG procedure 316
fonts

changing default 152
file location for SAS fonts 443
graphics hardware font 447

FONTSLOC= system option 443
FOOTNOTE statement 386
FOPEN function 264
FOPTNAME function 266
FOPTNUM function 266
FORM subsystem

adding forms 122
examples 122
host-specific windows 555
IBM 3800 print-file parameter frame 557
modifying default form 121
PRINT command and 121
PRINTTO procedure and 119
specifying forms 121
TSO print-file parameter frame 555

FORMAT procedure 316
formats 233

associating with variables 361
BESTw. 235
converting character variables to ISPF 458
EBCDIC and character data 233
Ew. 236
floating-point numbers and portability 234
HEXw. 237
IBw.d 238
PDw.d 239
RBw.d 240
user-defined 316
w.d 241
writing binary data 234
ZDw.d 242

FORMDEF= option
FILENAME statement 384

FORMS= option
FILENAME statement 384

FORTRAN routines 299
fragmentation 220
FRCB (Function Request Control Block) 576
FREE routine 586
FROM= option

FILENAME statement 378
FSBCOLOR system option 444
FSBORDER= system option 444

windowing enviroment and 567
FSDEVICE= system option 445

windowing enviroment and 567
FSMODE= system option 446

windowing enviroment and 568

full-screen data stream type 446
full-screen device driver 445
FULLSTATS system option 446
FULLSTIMER system option 446
function keys 546

primary set of 487
Function Request Control Block (FRCB) 576
functions 245

INFILE/FILE User Exit Facility 579

G
GCURSOR command 561
generation data groups

allocating 67
allocating existing generations 81
allocating new generations 81

generation data sets
allocating 81

GENKEY option
FILE statement 368
INFILE statement 368

GETEXEC function 201, 203
GHFONT= system option 447
graphical user interface 546

navigation 546
selection-field commands 548
window controls 546

graphics cursor 561, 569
graphics device drivers 568
graphics devices

name of 288
graphics fonts 447
graphics windows

printing 121
printing contents of 155

H
help

case of text 449
index for 450
itemstore help 448
moving through topics 547
remote help 448
remote help browser 450
remote help client 452
SAS Help and Documentation 451
table of contents 490
table of contents for 453
troubleshooting with 32
user-defined 32

help browser
user-defined help and 33

help Webdoc application 448
HELPADDR= system option 448
HELPBROWSER= system option 448
HELPCASE system option 449
HELPHOST system option 450
HELPINDEX= system option 450
HELPLOC= system option 451
HELPPORT system option 452
HELPTOC= system option 453

620 Index

hexadecimal data
converting to binary values 281
converting to integer values 281

hexadecimal representation
converting real binary values to 237

HEXw. format 237
HEXw. informat 281
HFS files

allocating 82
HFS (hierarchical file system)

allocating SAS data libraries 48
HFS libraries 48

accessing without a libref 58
creating 49
engine assignment 62
file extensions for SAS files 50
usage notes 49

HFS option
LIBNAME statement 396

hierarchical file system (HFS)
See HFS libraries

HIPERSPACE engine option 216
hiperspace libraries 50, 216

creating 51
DIV data set update frequency 456
DIV data sets and 217
engine assignment 62
HIPERSPACE engine option 216
size of 217
size of hiperspace 454
WORK data library 457

HIPERSPACE option
LIBNAME statement 396

hiperspace pages 455
hiperspace SAS data sets 217
hiperspaces

maximum per SAS session 455
HOLD option

FILENAME statement 384
host-environment variables

returning value of 272
HOST option

PROC OPTIONS statement 320
host sort utility 507

choosing 507
E15/E35 exits 510
EQUALS option support 502
file size cutoff 500
message classes 504
message print file 505
modifying data in buffers 508
name specification 505
OPTIONS statement support 506
parameter list for invoking 512
passing LIST parameter to 503
passing parameters to 506
SORTSEQ= option with 337
SUM FIELDS=NONE statement support 509
user address constant 510

host-specific window commands 557
host-specific windows 549

FORM subsystem 555
host-system mode 566
host-system subgroup error messages 35, 599
HOSTEDIT command 561
HSLXTNTS= system option 454
HSMAXPGS= system option 455

HSMAXSPC= system option 455
HSSAVE system option 456
HSWORK system option 457
HTC files 317
HTML output

storing in sequential files 126
storing in z/OS PDSE 127
writing to UNIX 128

I
I/O access methods

user-written 109
I/O features 26
I/O optimization 213

catalogs 213
compressing data 215
data sets 213
direct access bound libraries 213
hiperspace libraries 216
sequential libraries 214
temporary SAS libraries 217
virtual I/O data sets 217

I/O processing
reducing 401

IBM 3290
screen resolution 570

IBM 3800 print-file parameter frame 557
IBw.d format 238
IBw.d informat 282
ID= option

FILENAME statement 385
IEBCOPY utility 347
IEBPTPCH utility 340
IMPLMAC system option

performance and 218
IMPORT statement

ITEMS procedure 319
IMS-DL/I databases

accessing 99
INCLUDE command 562

specifying physical files 14
%INCLUDE statement 387
INDD= option

INVOL statement (TAPECOPY) 352
PROC SOURCE statement 340
PROC TAPECOPY statement 351

index files for help 450
INFILE/FILE user exit facility

reading external files 109
INFILE/FILE User Exit Facility 575

activating user exits 587
building user exit modules 587
Close function 585
Concatenation function 583
Function Request Control Block 576
functions 579
Initialization function 579
Open function 581
Parse Options function 580
Read function 583
sample program 588
service routines 585
User Exit BAG Control Block 577
Write function 584
writing user exit modules 575

INFILE statement 388
examples 96
host options, retrieving data set informa-

tion 391
pipe options 392
reading from external files 94
standard options 390
syntax 95
UNIX System Services options 392
VSAM options 367
VTOC options 391

informats 277
associating with variables 361
converting character variables to ISPF 458
date and time 279
EBCDIC and character data 277
Ew.d 280
floating-point format and portability 278
HEXw. 281
IBw.d 282
PDw.d 283
RBw.d 283
reading binary data 278
user-defined 316
ZDBw.d 285
ZDw.d 284

Initialization function 579
input data sets

getting information about 99
PDSCOPY procedure 330

input data stream 516
input files

data set attributes of 92
INFILE statement 388

input/output features 26
INPUT statement

external file specification 388
input statements 517
Installation Coordinator 29
INTAPE option

PROC PDSCOPY statement 328
integer binary format

writing numbers in 238
integer binary values

reading 282
integer values

converting hexadecimal data to 281
integers

representation of 207
interactive mode

customizing SAS sessions 7
increasing size of WORK library 17

interface
See graphical user interface

interface engines 41
internal CALL command processor 603
internal readers

writing to 91
invoking SAS 4

in batch mode 5
logging on to SAS directly 5
troubleshooting, if SAS doesn’t start 6
under TSO, with SAS CLIST 4

INVOL= option
INVOL statement (TAPECOPY) 353
PROC TAPECOPY statement 351

Index 621

INVOL statement
TAPECOPY procedure 352

ISAM files
accessing 100
allocating 82

ISPCAPS system option 457
ISPCHARF system option 458
ISPCSR= system option 459
ISPEXEC CALL routine 185, 186
ISPEXECV= system option 459
ISPF

error messages 461
informat non-zero return codes 466
ISPVTRAP information 468
ISPVTRAP message ID 467
ISPVTRAP panel name 468
ISPVTRAP prefix 469
null variable values 467
parameters, logging 463
return codes, logging 463
return codes, non-zero 462
SAS variables, applying formats/infor-

mats 458
SAS variables, identifying 464
statistics 439
uppercasing parameters 457
value pointers and lengths 463
VDEFINE, executing after VDELETE 465
VDEFINEs, logging 469
VDEFINEs, tracing 465

ISPF browser 561
ISPF EDIT macros

REXX execs compared with 202
ISPF EDIT models

copying to SAS sessions 188
ISPF editor 561

copying ISPF EDIT models 188
using from SAS sessions 188

ispf interface
sas services and sas/dmi equivalents 188

ISPF interface 184
applications, sample 194
applications, testing 194
character variables 191, 194
enabling 184
invoking ISPF services 184
ISPF editor 188
mumeric variables 191
numeric variables 193, 194
passing parameters to 189
software requirements 184
system options and 186
tips and common problems 193
variables, accessing 190
variables, character as numeric 194
variables, defining 192
variables, invalid values 193
variables, null values in 193
variables, uninitialized 193
VDEFINE service 190
VDELETE service 190
VRESET service 190

ISPF parameters 189
bypassing parameter processing 190
fixed-binary parameters 189
longer than 200 bytes 190
variable-naming conventions 189

ISPF services
invoking 184

ISPF variables
default for zero length 460
invalid values 459, 461
passing values 459

ISPLINK CALL routine 186
ISPMISS= system option 460
ISPMSG= system option 461
ISPNOTES system option 461
ISPNZTRC system option 462
ISPPT system option 463
ISPTRACE system option 463
ISPVDEFA system option 464
ISPVDLT system option 465
ISPVDTRC system option 465
ISPVIMSG= system option 466
ISPVRMSG= system option 467
ISPVTMSG= system option 467
ISPVTNAM= system option 468
ISPVTPNL= system option 468
ISPVTRAP

limiting information displayed 468
message ID, setting 467
panel specification 468
prefix specification 469

ISPVTRAP system option 469
ISPVTVARS= system option 469
ITEM= option

DELETE statement (ITEMS) 319
EXPORT statement (ITEMS) 319
IMPORT statement (ITEMS) 319
ITEMS procedure 318
LIST statement (ITEMS) 318

ITEMS procedure 317
alternate syntax 318
HTC format 317

itemstore help 448
itemstores 32, 317

J
Java Runtime Environment

options 470
JCL DD statement

allocating external files 78
allocating SAS data libraries 59

JCTUSER field 288
JFCB (Job File Control Block) 381
JFCB= option

FILE statement 367
JMRUSEID field 288
Job File Control Block (JFCB) 381
JOBCAT, reserved DDname 26
JOBLIB, reserved DDname 26
JREOPTIONS= system option 470

K
KEY= option

FILE statement 368
INFILE statement 368

keyboard
moving widget focus 565, 566

KEYGE option
FILE statement 368
INFILE statement 368

KEYLEN= option
FILE statement 368
INFILE statement 368

KEYPOS= option
FILE statement 368
INFILE statement 368

KILL option
PROC PDS statement 322

KTRANSLATE function 267

L
LABEL= option

FILENAME statement 377
LIBNAME statement 397
PROC BMDP statement 297
PROC TAPECOPY statement 351

LABEL2= option
PROC BMDP statement 297

labels
associating with variables 361

LAST statement
SOURCE procedure 343

LEAVE= option
PROC SORT statement 337

length
associating with variables 361

LENGTH statement 392
saving storage space 207

LIBASSIGN window 552
LIBNAME function 268

allocating SAS data libraries, externally 61
allocating SAS data libraries, internally 56

LIBNAME statement 393
allocating SAS data libraries, internally 56
assigning librefs 393
examples 399
forms for assigning libraries 393
host options 395
host options, allocating library data sets 396

LIBNAME window 552
library engines 38

allocating data libraries 38
V9 engine 38
V9TAPE engine 39

librefs
accessing data sets without 58
assigning 268
assigning to data libraries 393, 552
assigning with LIBNAME statement 393
BMDP files 70
DDnames as 61
deassigning 268
listing 63, 552
multiple per SAS data library 62
OSIRIS files 72
SPSS files 71

LIKE= option
FILENAME statement 383
LIBNAME statement 398

LINEAR option
LIBNAME statement 396

622 Index

LINESIZE= option
FILE statement 366
INFILE statement 391

LINESIZE= system option 471
LIST option

PROC SORT statement 337
LIST statement

ITEMS procedure 318
list view 548
load libraries

alternates for 495
loaded data sets 340
log

changing appearance of 20
changing contents of 19
destination for copy of 411
destinations for 332
displaying autoexec statements 9
displaying available system options 13
expanded statistics in 446
ISPF error messages in 461
ISPF parameter values in 463
memory usage statistics in 477
performance statistics in 513
problem solving with 32
routing REXX exec messages 200
system option settings in 484
system performance statistics 515

log file 18, 112
console log file 112

log files 473
specifying 472

LOG routine 586
LOG= system option 472
LOG window

scrolling 221
logging on to SAS 5
LOGPARM= system option 473
long format names 40
long integer values 288
LRECL= option

FILE statement 366
FILENAME statement 380
INFILE statement 391

M
macro functions 290
macro statements 289
macro variable symbol tables

memory for 482
macro variables 287

host-specific values 287
in-memory, maximum size 483
reserved names 289
z/OS-specific 288

macros 287
autocall libraries 290
collating sequence 293
SAS system options and 293
stored compiled macro facility 291

MAUTOSOURCE system option
performance and 218

MAXBLOCK= option
PROC PDSCOPY statement 328

MAXIOERROR= option
PROC SOURCE statement 341

MEMLEAVE= system option 476
performance and 220

MEMLIST window 553
memory

allocating 478
diagnosing problems 220
for graphics 569
fragmentation 220
holding data sets in 401
macro variabbles stored in 483
macro variable symbol tables 482
MEMLEAVE= option 220
MEMSIZE= system option 219
out-of-memory condition 490
out-of-memory conditions 220
procedures 490
real memory allocation 491
reserving for operating environment 476
reserving for SAS termination 518
usage statistics, logging 477

memory addresses
storing in character variables 270
storing in numeric variables 271

memory fragmentation 220
memory management 219
MEMRPT system option 477
MEMSIZE= system option 478

performance and 219
menus 546

text menus 222
MERGE statement

ITEMS procedure 319
message cache 481
message files

reloading 481
MESSAGE option

PROC SORT statement 337
messages

cache size 481
case of 480
file location for 480
level for data libraries 423
reloading message files 481
sending to system console 250, 275

MGMTCLAS= option
FILENAME statement 383
LIBNAME statement 398

migrated data sets, recalling 519
MINSTG system option 479
missing values

BMDP programs 299
CONVERT procedure 309

MOD disposition
appending data with 92

MOD option
appending data with 92
FILE statement 366

MODIFY= option
FILENAME statement 385

MODIFYT= option
FILENAME statement 385

MOPEN function 268
mounting tape volumes 435
mouse

double-click simulation 558

terminal support 569
three-button 570
two-button 570

MSG= system option 480
MSGCASE system option 480
MSGLOAD system option 481
MSGSIZE= system option 481
MSYMTABMAX= system option 482
multivolume data libraries 64

guidelines 64
multivolume generation data groups 67
preallocating 66

MVARSIZE= system option 483

N
naming conventions

physical files 14
navigation 546

in a window 547
NE option

PROC PDSCOPY statement 329
NEWMOD option

PROC PDSCOPY statement 329
NEWVOLSER= option

PROC TAPECOPY statement 351
NL option

INVOL statement (TAPECOPY) 353
NOALIAS option

PROC PDSCOPY statement 329
PROC SOURCE statement 341

NOBLANK option
AFTER statement (SOURCE) 344

NODATA option
PROC SOURCE statement 341

NOFSNRESEQ option
PROC TAPECOPY statement 351

NOLIST option
PROC PDS statement 322
PROC TAPECOPY statement 352

NOMISS option
PROC BMDP statement 297

NOMOUNT option
FILENAME statement 377

NOPRINT option
PROC SOURCE statement 341

NOPROMPT option
FILE statement 366
FILENAME statement 377
LIBNAME statement 396

NOREPLACE option
PROC PDSCOPY statement 329

NORER option
INVOL statement (TAPECOPY) 353
PROC TAPECOPY statement 352

NOSUMMARY option
PROC SOURCE statement 341

NOTEST option
PROC PDSCOPY statement 329

NOTRAP813 option
PROC TAPELABEL statement 357

NOTSORTED option
PROC SOURCE statement 341

NOUNIVERSALPRINT system option 124
NRLS option

FILE statement 368

Index 623

INFILE statement 368
NULL option

PROC SOURCE statement 341
NULLS

turning on or off 564
NULLS command 564
numbers

writing in integer binary format 238
numeric data

best notation 235
in real binary notation 283
in scientific notation 236, 280
writing 241
writing in real binary notation 240

numeric variables
data representation 207
storing memory addresses in 271

O
OBS= option

PROC CONVERT statement 308
ODS (Output Delivery System) 112

examples 125
procedure output to high-quality printers 131
storing HTML output, FTP from UNIX 126,

127
storing output, in PDSE files 127
storing output, in sequential files 126
storing XML output, in UNIX System Services

files 131
Universal Printing and 163, 164, 166, 168
viewing output on external browser 126
writing HTML output, to UNIX 128
writing SAS/GRAPH output, to UNIX

files 132
writing XML output to ASCII, FTP to

UNIX 129
writing XML output to EBCDIC, ASCII trans-

fer to UNIX 130
OLD option

FILE statement 366
online help 32
OnlineDoc CD-ROM 34
Open function 581
operating environment

memory reserved for 476
operating environment abbreviation 288
operating environment name 288
OPLIST system option 484
OPTCD= option

FILENAME statement 380
OPTIONS procedure 13, 320
OPTIONS statement 401
OPTIONS window 13
OSIRIS engine 69
OSIRIS files

accessing 72
assigning librefs to 72
converting to data sets 307, 310
examples 73
referencing 73
variable names 309

OSIRIS= option
PROC CONVERT statement 309

out-of-memory conditions 220, 490

OUT= option
PROC CONVERT statement 309
PROC DBF statement 314

OUTDD= option
PROC SOURCE statement 341
PROC TAPECOPY statement 352

OUTDES= option
FILENAME statement 385

OUTLIM= option
FILENAME statement 385

output 112
changing appearance of procedure output 20
console log file 112
copying to external files 116
default destinations 113, 115
default destinations, changing 113
e-mail 134
file specification for 488
line size 471
log file 112
ODS output 125
page size 485
procedure output 125
procedure output file 20, 112
RELEASE procedure 335
SOURCE procedure 344
TAPECOPY procedure 350
TAPELABEL procedure 357
titles 403
to external files, at SAS invocation 115
to external files, with configuration file 116
to external files, with DD statements 117
to external files, with DMPRINT com-

mand 117
to external files, with FILE command 117
to external files, with PRINTTO proce-

dure 114
to external files, with system options 115
to printers 118
to remote destination 124
to Universal Printers 157
to UPRINTER device 157
types of 112

output data sets
PDSCOPY procedure 330
permanent buffer size 226

Output Delivery System
See ODS (Output Delivery System)

output devices
assigning filerefs 259
deassigning filerefs 259

output files
for PUT statements 363

OUTPUT window
scrolling 221

OUTTAPE option
PROC PDSCOPY statement 329

OUTVOL= option
PROC TAPECOPY statement 352

P
packed decimal format 239, 283
PAGE option

PROC SOURCE statement 341
PROC TAPELABEL statement 357

page properties 153
page range value 154
page size 227
PAGEDEF= option

FILENAME statement 385
PAGESIZE= system option 485
PARM= option

PROC BMDP statement 297
parmcards file 21
PARMCARDS file 486
PARMCARDS statement

BMDP procedure 298
PARMCARDS= system option 486
Parse Options function 580
partitioned data sets (PDS)

copying 325
definition 322
directory blocks 432
displaying member list 553
exclusive access 424
file extensions 432
shared disk volumes 424

PASSWD= option
FILE statement 368
INFILE statement 368

passwords
alter passwords 225

PATHNAME function 269
PCL printers 162
PDF printers 160, 162
PDS data sets

writing to 90
PDS directories

information items 251, 253
PDS files

information items 261, 262
PDS members

copying 325, 331
deleting 321, 324
listing 321
listing of 553
printing selected members 344
renaming 321, 324

PDS procedure 321
aliases 324
example 324

PDSCOPY procedure 325
example 331
input data set 330
output 330
output data set 330

PDSE directories
information items 252

PDSE files
allocating 82
information items 261, 262
reading from 96
storing ODS HTML output in 127

PDw.d format 239
PDw.d informat 283
PEEKCLONG function 270
PEEKLONG function 271
performance

collecting statistics 212
direct log-on procedure 222
emulators and 222
I/O optimization 213

624 Index

introduction 212
loading SAS modules 221
logging SMF statistics 213
memory management 219
reducing I/O processing 401
SAS system options and 218
scrolling and 221
sorting 218

performance statistics
logging 513

PFKEY= system option 487
windowing enviroment and 568

PGM= option
FILENAME statement 385

PGMPARM= system option 488
physical files

default primary space allocation 438
default secondary space allocation 439
default unit of allocation 441
device name for allocating 431
error messages when allocating 436
information about 549
nonstandard names 15
prefix for partially qualified files 518
specifying 14
specifying with INCLUDE command 14
verifying existence of 362
VOLSER for 442

pipe libraries 52
general usage notes 52

pipes
allocating external files to 80
between SAS and UNIX System Services com-

mands 105
FILE statement options 369
FILENAME statement options 386
INFILE statement options 392

PMENU procedure 331
PostScript printers

defining 160
output as e-mail attachment 160
setting up 161

previewing print jobs 121, 154
PRINT command

output to printers 122
output to printers, and FORM subsystem 121
output to printers, and Universal Printing 120

print data sets
as nonprint data sets 94
designating 93
nonprint data sets as 93
reading from 99
writing external files to 93

print files 20
default file redirection 519
default SYSOUT form for 434
IBM 3800 parameter frame 557
initializing 489
TSO parameter frame 555

PRINT option
FILE statement 366
PROC SOURCE statement 342

PRINT= system option 488
printer definitions

defining interactively 150
PRTDEF procedure samples 160
Universal Printing turned off 156

printer files
carriage-control data 430
SYSOUT CLASS 440

PRINTERPATH system option
destination printer specification 157
FILENAME UPRINTER statement and 167
ODS and 164, 166, 168

printers
default destination 431
default printer, changing 151
default printer, setting 150, 157
fonts, changing default 152
FORM subsystem 119, 121
output to 118
output to, with PRINT command 120, 121,

122
output to, with PRINTTO procedure 119
output to, with PRTFILE command 122
page properties 153
printer definitions 120
properties 151
properties, modifying 120
properties, testing 154
routing output to, from external files 90
selecting 120
setup, in batch environment 161
setup, with PRTDEF procedure 158
Universal Printing 118, 119, 120

printing
See also Universal Printing
FORM subsystem 124
graphics window contents 155
graphics windows 121
page range value 154
previewing print jobs 121, 154
procedure output to high-quality printer via

ODS 131
SAS window contents 155
SAS window contents to a file 155
selected PDS members 344
selected text 154
system options and 124
Universal Printing 124
Xprinter printing 118

PRINTINIT system option 489
PRINTTO procedure 332

output to external files 114
output to printers 119

PRMODE= option
FILENAME statement 385

problem solving
See troubleshooting

PROC BMDP statement 296
PROC CONVERT statement 308
PROC DBF statement 313
PROC ITEMS statement 318
PROC PDS statement 322
PROC PDSCOPY statement 326

options 326
PROC RELEASE statement 334
PROC SORT statement 337
PROC SOURCE statement 340
PROC TAPECOPY statement 350
PROC TAPELABEL statement 357
procedure output

copy of output file 411
destinations for 332

footnotes 386
ODS examples 125
sending as e-mail 142
sending as e-mail attachment 147
to high-quality printer via ODS 131

procedure output file 20, 112
changing appearance of procedure output 20
writing tape label information to 356

procedures
memory for 490
troubleshooting with 34
under z/OS 295

PROCLEAVE= system option 490
out-of-memory conditions 220

PROCLIB, reserved DDname 26
PRODTOC= system option 490
PROG= option

PROC BMDP statement 297
program configurations 221
Programmed Symbol driver 568
PRTDEF procedure

sample print jobs 160
setup for Universal Printers 158

PRTFILE command
directing output to printers 122

pseudo environment variables 21
PUT statement

for e-mail 137
output file for 363

PUTEXEC function 204
PUTEXEC routine 201

R
RBA= option

FILE statement 368
INFILE statement 368

RBw.d format 240
RBw.d informat 283
RC4STOP option

FILE statement 368
INFILE statement 368

Read function 583
read-only engines 69

limitations on 69
real binary values

converting hexadecimal data to 281
converting to hexadecimal 237
numeric data stored in 283
writing numeric data in 240

real memory allocation 491
REALMEMSIZE= system option 491
reason codes 289
RECFM= option

FILE statement 366
FILENAME statement 380
INFILE statement 391

record-level sharing
with VSAM 101

RECORDS= option
FILE statement 368
INFILE statement 368

RECORG= option
FILE statement 368
FILENAME statement 383
INFILE statement 368

Index 625

REFERSH option
PROC PDS statement 322

registry
adding system fonts to 316

Release 6.06
data set format 40

RELEASE procedure 333
example 336
output 335

REMOTE engine 41
remote help 28, 448
remote help browser 450
remote help browser server 27
remote help client

port number 452
remote help system 27
remote help Webdoc application 448
reserved DDnames 26
RESET option

FILE statement 369
INFILE statement 369

resizing windows 546
resolution

IBM 3290 570
RESTRICT option

PROC OPTIONS statement 320
restricted options table 12
return codes 288

ISPF 466
ISPF, logging 463
ISPF, non-zero 462
ISPF interface 186
REXX interface 201, 205

RETURN option
ABORT statement 360

REUSE option
FILENAME statement 377

REXX execs 199
checking return codes 201
examples 203
interacting with SAS sessions 200
invoking 199
invoking during SAS sessions 249, 275, 403
invoking from command line 564
invoking with X statement 202
ISPF EDIT macros compared with 202
routing messages to SAS log 200
variable values, getting 201
variable values, setting 201

REXX interface 199, 492
See also REXX execs
enabling 199
GETEXEC function 201, 203
host command environment, changing 202
interacting with SAS sessions 200
PUTEXEC function 204
PUTEXEC routine 201
return codes, checking 201, 205
routing messages to SAS log 200
variable values, getting 201
variable values, setting 201
X statement compared with 202

REXX libraries 492
REXXLOC= system option 492
REXXMAC system option 492

performance and 219

RIGHT option
AFTER statement (SOURCE) 344

RLS (record-level sharing)
with VSAM 101

RRN= option
FILE statement 369
INFILE statement 369

rubber-banding 569

S
S= system option 493
S99NOMIG system option 520
SAS 3270 device drivers 569
SAS/CONNECT software

connecting to SAS 6
transporting data sets 25

SAS fonts
file location for 443

SAS/GRAPH software
terminal device driver for 421
Universal Printing and 168, 172
writing output to UNIX files 132

SAS Help and Documentation 451
SAS jobs

aborting 360
reducing I/O processing 401

sas log, routing
destination, choosing 113

SAS modules, loading 221
bundled configurations 221

SAS output
See output

sas procedure output, routing
destination, choosing 113

sas services, sas/dmi equivalents 188
SAS/SESSION software

connecting to SAS 6
SAS sessions

aborting 360
connecting to 6
copying ISPF EDIT models to 188
ending with DLGENDR command 559
entering host-system mode 566
executing TSO commands 289
exiting 28
invoking CLISTs 403
invoking CLISTs during 249, 275
invoking REXX execs 403
invoking REXX execs during 249, 275
issuing TSO commands 289, 403
issuing TSO commands during 249, 275
issuing z/OS commands 406, 528, 566
issuing z/OS commands during 248, 273
REXX execs and 200
suspending 405
terminating 28
user ID associated with 288
using ISPF editor from 188

SAS sessions, customizing 7
autoexec files 9
configuration files 7
SAS system options for 11
SASUSER library 9

SAS/SHARE software
connecting to SAS 6

SAS software
direct log-on 222
invoking 4
support for 29
troubleshooting 31

SAS software files 15
console log file 21
parmcards file 21
procedure output file 20
SAS log file 18
summary table of 23
TKMVSENV file 21
WORK library 15

SAS windows
directing contents to a file 155
printing contents of 155

SASAUTOS= system option 494
SASCP command processor 599
SASFILE statement 401
SASHELP data library

location of 495
SASHELP= system option 495
SASLIB= system option 495
SASLOG file 18
SASMSG= system option 480
SASUSER library

creating 10
customizing SAS sessions 9
specifying your own library 10

SASUSER= system option 496
%SCAN macro function 290
scientific notation 236, 280
SCL code

sending e-mail with 148
screen resolution

IBM 3290 570
screen size 418
scroll bars 570
SCROLLBAR command 547
scrolling 547, 548

performance and 221
SELECT statement

PDSCOPY procedure 330
SOURCE procedure 342

selection-field commands 548
SEQENGINE= system option 496
sequential access bound libraries 46

accessing without a libref 58
block size 48
creating 46
engine assignment 62
initial disposition 227
usage notes 47

sequential data libraries
default engine for 496

sequential data sets
writing to 89

sequential files
information items 261
reading from 96
storing ODS HTML output in 126

sequential libraries
I/O optimization for 214

SEQUENTIAL option
FILE statement 369
INFILE statement 369

626 Index

service routines
INFILE/FILE user exits 585

SET= system option 497
shared disk volumes 424
SHAREINPUT option

PROC PDSCOPY statement 329
Simple Mail Transfer Protocol (SMTP)

server 426
SKIP option

FILE statement 369
INFILE statement 369

SL option
INVOL statement (TAPECOPY) 353

SMF statistics
logging 213

SMS (Storage Management Subsystem) key-
words 382

SMTP server 426
sort library 503
SORT procedure 336
SORT= system option 498
sort utility

See also host sort utility
FILSZ parameter 442
output buffer 500
size parameter 508
specifying 507

sort work data sets
allocating 425
device name for 501
minimum size of 498
number to allocate 512
prefix specification 511
unit of allocation for 510

SORT31PL system option 512
SORTALTMSG system option 499
SORTBLKMODE system option 499
SORTBUFMOD system option 500
SORTCUTP= system option 500

sorting efficiently 218
SORTDEV= system option 501
SORTDEVWARN system option 502
SORTEQOP system option 502
sorting

See also host sort utility
alternate message flags 499
block mode 499
device type warnings 502
file size cutoff 500
FILSZ parameter 442
sort utility output buffer 500
system options and 336

sorting efficiency 218
DFSORT performance booster 218
SORTCUTP= system option 218
SORTPGM= system option 218

SORTLIB, reserved DDname 26
SORTLIB= system option 503
SORTLIST system option 503
SORTMSG, reserved DDname 26
SORTMSG= system option 504, 505
SORTNAME= system option 505
SORTOPTS system option 506
SORTPARM= system option 506
SORTPGM= system option 507

sorting efficiently 218

SORTSEQ= option
PROC SORT statement 337

SORTSHRB system option 508
SORTSIZE= option

PROC SORT statement 337
SORTSIZE= system option 508
SORTSUMF system option 509
SORTUADCON system option 510
SORTUNIT= system option 510
SORTWKDD= system option 511
SORTWKnn, reserved DDname 26
SORTWKNO= option

PROC SORT statement 337
SORTWKNO= system option 512
source library data sets 339
source lines 417
SOURCE procedure 339

compiling assembler programs 345
control cards for IEBCOPY 347
directory records, producing 346
examples 344
model-control-statements 340
output 344
printing selected PDS members 344

source statements
sequence number columns 493

space management 333, 335
SPACE= option

FILENAME statement 375
LIBNAME statement 398

SPOOL system option
performance and 219

SPSS engine 69
SPSS files

accessing 71
assigning librefs to 71
converting to data sets 308, 311
examples 72
referencing 71
variable names 309

SPSS= option
PROC CONVERT statement 309

STAE system option 513
statements

including 387
troubleshooting with 34
under z/OS 359

statistics
expanded statistics in log 446
logging 513

STATS system option 513
STAX system option 514
STEPCAT, reserved DDname 26
STIMER system option 515
storage

minimizing 479
Storage Management Subsystem (SMS) key-

words 382
storage space

saving 207
STORCLAS= option

FILENAME statement 383
LIBNAME statement 399

stored compiled macro facility 291
accessing macros in 292

STRICT option
PROC PDS statement 322

subgroup error messages 35
SUBJECT= option

FILENAME statement 378
subsystem options

FILENAME statement 385
superblocking system options 220
Support Consultant 29, 30
suspending SAS sessions 405
SVC 11 screening 515
SVC 99 request block 289
SVC11SCREEN system option 515
SYNCHIO system option 516
synchronous I/O 516
SYS99ERR macro variable 289
SYS99INF macro variable 289
SYS99MSG macro variable 289
SYS99R15 macro variable 289
SYSABEND, reserved DDname 26
SYSCC macro variable 287
SYSDEVIC macro variable 288
SYSDEXST macro variable 288
SYSENV macro variable 288
%SYSEXEC macro statement 289
SYSGET function 272
%SYSGET macro function 290
SYSHELP, reserved DDname 26
SYSIN= system option 516
SYSINP= system option 517
SYSJCTID macro variable 288
SYSJMRID macro variable 288
SYSJOBID macro variable 288
SYSLEAVE= system option 518

out-of-memory conditions 220
SYSLIB, reserved DDname 26
SYSMAXLONG macro variable 288
SYSMDUMP, reserved DDname 27
SYSnnnn, reserved DDname 27
SYSOUT, reserved DDname 27
SYSOUT class 440
sysout data sets

FILENAME statement options 383
SYSOUT forms 434
SYSOUT= option

FILENAME statement 385
SYSPREF= system option 518
SYSPRINT, reserved DDname 27
SYSPRINT= system option 519
SYSRC macro variable 288
SYSSCP macro variable 288
SYSSCPL macro variable 288
SYSTASK LIST statement 402
system abend exits 513
system console

sending messages to 250, 275
system dumps 30
system fonts

adding to SAS registry 316
SYSTEM function 273
system options 410

available options, writing to SAS log 13
changing values of 401
current values 320
customizing SAS sessions 11
default options table 12
determining how an option was set 12
displaying settings 13
displaying settings in OPTIONS window 13

Index 627

ISPF interface 186
log contents and 19
logging settings 484, 523
macros and 293
OPTIONS procedure and 320
order of precedence 13
output to external files 115
performance and 218
printing with FORM subsystem 124
procedure output, changing appearance of 20
restricted options table 12
screen display of settings 523
settings, changing 11
settings, specifying 11
sorting and 336
summary table 528
superblocking options 220
troubleshooting with 34
Universal Printing and 124
windowing environment and 567

system performance statistics 515
SYSUADS, reserved DDname 27
SYSUDUMP, reserved DDname 27
SYSUID macro variable 288

T
table of contents

for help 453
for product specific help 490

tape density 350
tape labels

writing to procedure output file 356
tape libraries

CLOSE disposition for 520
tape volumes 435
tape volumes, copying 349

multiple files from multiple input tapes 356
multiple files from single input tape 355
nonlabeled to nonlabeled 355
standard label to nonlabeled 354
standard label to standard label 354

TAPECLOSE= system option 520
TAPECOPY procedure 349

examples 354
individual files 353
input tape DD statement requirements 349
multiple files from multiple input tapes 356
multiple files from one input tape 355
nonlabeled to nonlabeled 355
output 350
output tape DD statement requirements 350
range of files 354
record length for 349
standard labeled to nonlabeled 354
standard labeled to standard labeled 354

TAPELABEL procedure 356
example 358
output 357

tapes
allocating external files on 79

Technical Support 30
system dump for 30

TECHNIQUE= option
PROC SORT statement 337

temporary data sets
deleting from WORK library 17
directing to USER library 17

temporary files
writing to 91

temporary SAS libraries
performance and 217

temporary utility files 521
terminal

reading from 97
terminal emulators

connecting to SAS 6
terminal support 568

EMULUS extensions 569
graphics device drivers 568
mouse 569
screen resolution, IBM 3290 570
scroll bars 570
text device drivers 568
widgets 570
window borders 570

text device drivers 568
text entry fields 559
text menus 222
three-button mouse 570
tiling windows 547
time display 558
TITLE statement 403
TKMVSENV file 21
TO= option

FILENAME statement 377
Training Coordinator 29
TRANSLATE function 274
transport files

creating 312
restoring 304

transport format 25
transporting data sets, between operating environ-

ments 25
tree view 548
troubleshooting 31

condition codes 32
DATA step debugger 34
host-system subgroup error messages 599
online help 32
OnlineDoc 34
SAS log for 32
SAS software problems 31
SAS statements and procedures for 34
system options for 34
user-defined help 32
z/OS problems 31

truncation
data libraries 424

TSO
autocall libraries 291
autoexec file under 9
customizing SAS sessions 7
invoking SAS 4
SASLOG file 18
user IDs 288

TSO ALLOCATE command
allocating data libraries 59
allocating external files 79
examples 60

TSO command 564
TSO command executor 601

TSO commands
executing during SAS sessions 289
issuing during SAS sessions 249, 275, 403
issuing from command line 564
issuing from SAS sessions 289

TSO function 275
%TSO macro statement 289
TSO print-file parameter frame 555
TSO statement 403

entering TSO submode 404
TSOEXEC command 404

TSO submode 404
TSOEXEC command 404
TYPE= option

FILENAME statement 378

U
UCBNAME= option

FILE statement 367
UCS= option

FILENAME statement 385
UCSVER option

FILENAME statement 385
UEBCB (User Exit BAG Control Block) 577
UNIT= option

FILENAME statement 376
LIBNAME statement 399
PROC BMDP statement 297

Universal Printing 118, 150
See also Universal Printing, batch environment
See also Universal Printing, windowing envi-

ronment
FILENAME UPRINTER statement 167
ODS and 163, 164, 166, 168
output to printers, with PRINT command 120
output to printers, with PRINTTO proce-

dure 119
PRINTERPATH system option 164, 166, 167,

168
procedure output as e-mail attachment 147
procedure output to 131
sample programs 163
SAS/GRAPH and 168, 172
SAS system options and 124
summary of printing examples 179

Universal Printing, batch environment 157
e-mail message with PostScript attach-

ment 160
font, changing default 158
output to a Universal Printer 157
output to UPRINTER device 157
PCL output 160
PDF output 160
PostScript output 160
printer, setting default 157
printer setup 161
printer setup, with PRTDEF procedure 158
PRINTERPATH option 157
sample PRTDEF jobs 160

Universal Printing, windowing environment 150
font, changing default 152
graphics windows, printing contents 155
page properties 153
page range value 154
previewing print jobs 154

628 Index

printer, changing default 151
printer, setting default 150
printer definitions 150, 156
printer properties 151
printer properties, testing 154
printing selected text 154
SAS window contents, printing 155
SAS window contents, to a file 155

UNIX files
writing ODS HTML output to 128
writing SAS/GRAPH output to 132

UNIX System Services
FILE statement options 369
FILENAME statement options 386
INFILE statement options 392

UNIX System Services directories
information items 251, 252

UNIX System Services files
accessing 102
accessing a particular file 105
allocating 102
allocating directories 102
concatenating 104
file-access permissions and attributes 103
filenames in SAS statements and com-

mands 104
host-specific options 106
information items 261, 263
issuing commands with X statement 566
piping data 105
restrictions on 567
storing ODS XML output in 131

UNIX System Services shell 566
unloaded data sets 340
unused space

releasing 333
UPDATE= option

FILE statement 369
INFILE statement 369

uppercasing output 417
UPRINTER device

output to 157
user-defined help 32

developing 33
User Exit BAG Control Block (UEBCB) 577
User Exit Facility

See INFILE/FILE User Exit Facility
user exit modules 109

building 587
user ID

associated with a SAS session 288
USER library

compared with WORK library 17
directing temporary data sets to 17

user profile catalog
location of 496

USER= system option 521
redirecting temporary data sets 17

utility files
location of temporary files 521

UTILLOC= system option 521

V
V5 engine 40
V5TAPE engine 40

V9 engine 38
V9TAPE engine 39
VAR statement

BMDP procedure 298
variables

accessing from ISPF 190
converting to/from DBF fields 315
defining in ISPF 192
invalid values 193
null values in 193
truncated values, numeric variables 193
uninitialized 193

VARRTN routine 586
VDEFINE service 190

logging 469
VDEFINE user exit 459, 464

tracing 465
VDELETE service 190, 465
vector graphic devices

setting background colors 444
Vector-to-Raster driver 568
VERBOSE system option 523
VERIFY option

FILENAME statement 385
view engines 41

allocating data libraries 41
views

list view 548
resizing 548
tree view 548

virtual I/O data sets 217
virtual memory 491
VOLCOUNT= option

FILENAME statement 376
LIBNAME statement 399

VOLSEQ= option
FILENAME statement 376

VOLSER= option
FILENAME statement 376
LIBNAME statement 399

VOLUME= option
FILE statement 367

Volume Table of Contents (VTOC) 101
VRESET service 190
VSAM data sets

accessing 100
extended-format 101
loading 523
reading 100, 524
record-level sharing with 101
updating 101, 524
writing to empty files 100

VSAM options
FILE statement 367
INFILE statement 367

VSAMLOAD system option 523
VSAMREAD system option 524
VSAMUPDATE system option 524
VTOC options

INFILE statement 391
VTOC (Volume Table of Contents) 101

W
WAIT= option

FILENAME statement 377

LIBNAME statement 399
WAITFOR statement 405
warning messages

device type, for sorting 502
w.d format 241
Webdoc application 448
widgets

appearance of 570
moving keyboard focus 565, 566
selecting 548

WIDGNEXT command 565
WIDGPREV command 566
window commands

host-specific 557
windowing environment

customizing with system options 567
Universal Printing in 150

windows 546
arranging 547
background color 444
border symbols 444
borders 570
controls 546, 548
copying external files into 562
host-specific 549, 555
moving 547
moving between 546
navigating in 547
resizing 546
resizing views or columns 548
saving contents to external file 560
scroll bars 570
scrolling 548
sorting columns 548
view selection 547
widgets 548, 565, 566, 570

WORK library 15
compared with USER library 17
increasing size of 17
location of 525
placing in hiperspace 457
space allocation 16
temporary data sets, deleting 17
temporary data sets, directing to USER li-

brary 17
WORK= system option 525
WPOPUP command 548
Write function 584
WRKSPCE= option

PROC BMDP statement 297
WTO

descriptor codes 525
MCS flags 526
routing codes 527

WTO function 275
WTOUSERDESC= system option 525
WTOUSERMCSF= system option 526
WTOUSERROUT= system option 527

X
X command 566
X statement 406

issuing UNIX System Services com-
mands 566

REXX interface compared with 202

Index 629

XCMD system option 528
XML output

storing in UNIX System Services files 131
writing to ASCII, binary FTP to UNIX 129
writing to EBCDIC, ASCII transfer to

UNIX 130
XPORT engine 41

transporting data sets 25
Xprinter printing 118

Z
z/OS commands

issuing during SAS sessions 248, 273, 406,
566

issuing from SAS sessons 528

z/OS jobs

conditional execution 360

ZDBw.d informat 285

ZDw.d format 242

ZDw.d informat 284

zero-length records

in external files 436

zoned decimal data 242, 284

zeros left blank 285

Your Turn

If you have comments or suggestions about SAS 9.1 Companion for z/OS, please send
them to us on a photocopy of this page, or send us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

.

.

	Table of Contents
	Contents

	What’s New
	Overview
	Details
	Long Format Names
	Remote Help
	SAS Language Elements

	Running SAS Software under z/OS
	Initializing and Configuring SAS Software
	Invoking SAS in the z/OS Environment
	Invoking SAS under TSO: the SAS CLIST
	Invoking SAS in Batch Mode: the SAS Cataloged Procedure
	Logging On to SAS Software Directly
	What If SAS Doesn’t Start?

	Connecting to SAS under z/OS
	Customizing Your SAS Session
	Configuration Files
	Autoexec Files
	SASUSER Library
	SAS System Options

	Specifying Physical Files
	Specifying Physical Files with the INCLUDE Command
	Handling of Nonstandard Member Names

	SAS Software Files
	WORK Library
	SAS Log File
	SAS Procedure Output File
	Console Log File
	Parmcards File
	TKMVSENV File
	Summary Table of SAS Software Files

	Transporting SAS Data Sets between Operating Environments
	Accessing SAS Files in Other Operating Environments
	Utilizing Input/Output Features
	Reserved z/OS DDnames
	Setting Up the Remote Help System
	What Is the Remote Help System?
	Starting the Remote Help Browser Server
	How to Set Up the Remote Help

	Exiting or Terminating Your SAS Session in the z/OS Environment
	Preferred Methods for Exiting SAS
	Additional Methods for Terminating SAS
	What If SAS Doesn’t Start?

	Support for SAS Software
	Working with Your SAS Support Consultant
	SAS Technical Support
	Generating a System Dump for SAS Technical Support

	Solving Problems under z/OS
	Problems Associated with the z/OS Operating Environment
	Solving Problems within SAS Software

	Using SAS Data Libraries
	Introduction
	SAS Library Engines
	The V9 Engine
	The V9TAPE Engine
	Compatibility Engines

	SAS View Engines
	Library Implementation Types for Base and Sequential Engines
	Direct Access Bound Libraries
	Sequential Access Bound Libraries
	HFS Libraries
	Hiperspace and DIV Libraries
	Pipe Libraries (Experimental)

	Assigning SAS Data Libraries
	Allocating the Library Data Set
	Assigning SAS Data Libraries Internally
	Assigning SAS Data Libraries Externally
	How SAS Assigns an Engine
	Assigning Multiple Librefs to a Single SAS Data Library
	Listing Your Current Librefs
	Deassigning SAS Data Libraries
	Using Multivolume SAS Data Libraries

	Accessing BMDP, SPSS, and OSIRIS Files
	Introduction to the BMDP, SPSS, and OSIRIS Engines
	Restrictions on the Use of These Engines

	Accessing BMDP Files
	Assigning a Libref to a BMDP File
	Referencing BMDP Files
	Examples of Accessing BMDP Files

	Accessing SPSS Files
	Assigning a Libref to an SPSS File
	Referencing SPSS Files
	Examples of Accessing SPSS Files

	Accessing OSIRIS Files
	Assigning a Libref to an OSIRIS File
	Referencing OSIRIS Files
	Examples of Accessing OSIRIS Files

	Allocating External Files
	Introduction to External Files
	Ways of Allocating External Files
	Allocating a File for a Single Use
	Allocating a File for Multiple Uses

	Using the FILENAME Statement or Function to Allocate External Files
	FILENAME Statement Syntax
	FILENAME Statement Examples

	Using the JCL DD Statement to Allocate External Files
	Using the TSO Allocate Command to Allocate External Files
	Allocating External Files on Tape
	Allocating External Files to a Pipe
	Allocating Generation Data Sets
	Allocating a New Generation of a Generation Data Group
	Allocating an Existing Generation of a Generation Data Group

	Allocating Nonstandard External Files
	Allocating ISAM Files
	Allocating UNIX System Services HFS Files
	Allocating PDSEs

	Concatenating External Files
	Displaying Information about External Files
	Deallocating External Files

	Accessing External Files
	Referring to External Files
	How SAS Determines Device Types
	Writing to External Files
	FILE Statement
	Writing to Sequential Data Sets
	Writing to Members of PDS or PDSE Data Sets
	Writing to a Printer
	Writing to the Internal Reader
	Writing to a Temporary Data Set
	Using the FILE Statement to Specify Data Set Attributes
	Using the Data Set Attributes of an Input File
	Using the FILE Statement to Specify Data Set Disposition
	Writing to Print Data Sets

	Reading from External Files
	INFILE Statement
	Reading from a Sequential File
	Reading from a Member of a PDS or PDSE
	Reading from the Terminal
	Reading Concatenated Data Sets
	Reading from Multiple External Files
	Reading from Print Data Sets
	Getting Information about an Input Data Set

	Accessing Nonstandard Files
	Accessing IMS and CA-IDMS Databases
	Accessing ISAM Files
	Accessing VSAM Data Sets
	Accessing the Volume Table of Contents (VTOC)

	Accessing UNIX System Services Files
	Allocating UNIX System Services Files
	Allocating a UNIX System Services Directory
	Specifying File-Access Permissions and Attributes
	Using UNIX System Services Filenames in SAS Statements and Commands
	Accessing a Particular File in a UNIX System Services Directory
	Piping Data between SAS and UNIX System Services Commands
	Host-Specific Options for UNIX System Services Files

	Writing Your Own I/O Access Methods
	Accessing SAS Statements from a Program
	Using the INFILE/FILE User Exit Facility

	Directing SAS Log and SAS Procedure Output
	Types of SAS Output
	SAS Log File
	SAS Procedure Output File
	SAS Console Log File
	Destinations of SAS Output Files

	Directing Output to External Files with the PRINTTO Procedure
	Directing Output Back to the Default Destination

	Directing Output to External Files with System Options
	Directing Output to an External File at SAS Invocation
	Copying Output to an External File
	Directing Output to External Files Using the Configuration File

	Directing Output to External Files with the DMPRINT Command
	Directing Output to External Files with the FILE Command
	Directing Output to External Files with DD Statements
	Directing Output to a Printer
	Using the PRINTTO Procedure and Universal Printing
	Using the PRINTTO Procedure and the FORM Subsystem
	Using the PRINT Command and Universal Printing
	Using the PRINT Command and the FORM Subsystem
	Using the PRTFILE and PRINT Commands
	SAS System Options That Relate to Printing When Using Universal Printing
	SAS System Options That Relate to Printing When Using the FORM Subsystem

	Directing Output to a Remote Destination
	Directing Procedure Output: ODS Examples
	Viewing ODS Output on an External Browser
	Storing ODS HTML Output in a Sequential File, FTP from UNIX
	Storing ODS HTML Output in a z/OS PDSE, FTP from UNIX
	Writing ODS HTML Output Directly to UNIX
	Writing ODS XML Output to ASCII, Binary FTP to UNIX
	Writing ODS XML Output to EBCDIC, ASCII Transfer to UNIX
	Directing ODS XML Output to UNIX System Services
	Directing Procedure Output to a High-Quality Printer via ODS
	Directing Procedure Output: SAS/GRAPH Example

	Sending E-Mail from within SAS Software
	FILENAME Statement Syntax for E-Mail
	PUT Statement Syntax for E-Mail
	Example: Sending E-Mail from the DATA Step
	Sending Procedure Output as E-Mail
	Example: Directing Output as an E-Mail Attachment with Universal Printing
	Example: Sending E-Mail by Using SCL Code

	Universal Printing
	Introduction to Universal Printing
	Using Universal Printing in the Windowing Environment
	Setting the Default Printer
	Defining a New Printer Interactively
	Changing the Default Printer
	Setting Printer Properties
	Changing the Default Font
	Setting Page Properties
	Testing Printer Properties
	Setting a Page Range Value
	Previewing a Print Job
	Printing Selected Text
	Printing the Contents of a SAS Window
	Directing the Contents of a SAS Window to a File
	Printing the Contents of a Graphics Window
	Creating Printer Definitions When Universal Printing Is Turned Off
	Universal Printing and the SAS Registry

	Using Universal Printing in a Batch Environment
	Setting the Default Printer
	Directing Output to a Universal Printer
	Setting Up a Universal Printer with PROC PRTDEF
	Sample PROC PRTDEF Jobs in z/OS
	Setting Up Printers in Your Environment

	Sample Programs and Summary
	Sample 1: ODS and a Default Universal Printer
	Sample 2: ODS and the PRINTERPATH System Option
	Sample 3: ODS and the PRINTERPATH System Option (with FILEREF)
	Sample 4: PRINTERPATH and FILENAME UPRINTER Statement
	Sample 5: SAS/GRAPH: ODS and PRINTERPATH System Option
	Sample 6: SAS/GRAPH: No ODS or PRINTERPATH System Option

	The SASLIB.HOUSES Data Set
	Summary of Printing Examples

	Application Considerations
	SAS Interfaces to ISPF and REXX
	SAS Interface to ISPF
	Software Requirements
	Enabling the Interface
	Invoking ISPF Services
	Using Special SAS System Options with the Interface
	Using the ISPF Editor from Your SAS Session
	Using Special Facilities for Passing Parameters to ISPF
	Accessing SAS Variables from ISPF
	Tips and Common Problems
	Testing ISPF Applications
	Sample Application

	SAS Interface to REXX
	Enabling the Interface
	Invoking a REXX Exec
	Interacting with the SAS Session from a REXX Exec
	Changing the Host Command Environment
	Comparing the REXX Interface to the X Statement
	Comparing SAS REXX Execs to ISPF Edit Macros
	Examples of REXX Execs

	Data Representation
	Representation of Numeric Variables
	Representation of Integers

	Using the LENGTH Statement to Save Storage Space
	How Character Values Are Stored
	Line-Feed Characters and Transferring Data between EBCDIC and ASCII
	Details of Transferring Data

	Optimizing Performance
	Introduction to Optimizing Performance
	Collecting Performance Statistics
	Logging SMF Statistics

	Optimizing I/O
	Put Catalogs and Data Sets into Separate Libraries, Using the Optimal Block Size for Each
	Optimize I/O for Direct Access Bound Libraries
	Optimize I/O for Sequential Libraries
	Determine Whether You Should Compress Your Data
	Consider Placing SAS Data Libraries in Hiperspaces
	Consider Designating Temporary SAS Libraries as Virtual I/O Data Sets

	Efficient Sorting
	Consider Changing the Values of SORTPGM= and SORTCUTP=
	Take Advantage of the DFSORT Performance Booster

	Some SAS System Options That Can Affect Performance
	MAUTOSOURCE and IMPLMAC
	REXXMAC
	SPOOL/NOSPOOL

	Managing Memory
	Specify a Value for MEMSIZE= When You Invoke SAS
	Specify a Value for MEMLEAVE= When You Invoke SAS
	Consider Using Superblocking Options to Control Memory Fragmentation
	Memory Cheat Sheet for z/OS
	Use SYSLEAVE= and PROCLEAVE= to Handle Out-of-Memory Conditions

	Loading SAS Modules Efficiently
	Use a Bundled Configuration of SAS

	Other Considerations for Improving Performance
	Leave AUTOSCROLL 0 in Effect for the LOG and OUTPUT Windows
	Use the EM3179 Device Driver When Appropriate
	Consider Using the Direct Logon Procedure to Invoke SAS

	Host-Specific Features of the SAS Language
	Data Set Options under z/OS
	Data Set Options in the z/OS Environment
	Summary of SAS Data Set Options in the z/OS Environment

	Formats under z/OS
	Formats in the z/OS Environment
	Considerations for Using Formats in the z/OS Environment
	EBCDIC and Character Data
	Floating-Point Number Format and Portability
	Writing Binary Data

	Functions and CALL Routines under z/ OS
	Functions and CALL Routines under z/OS

	Informats under z/OS
	Informats in the z/OS Environment
	Considerations for Using Informats under z/OS
	EBCDIC and Character Data
	Floating-Point Number Format and Portability
	Reading Binary Data
	Date and Time Informats

	Macros under z/OS
	Macros in the z/OS Environment
	Automatic Macro Variables
	Portable Macro Variables That Have Host-Specific Values
	Macro Variables Available Only under z/OS
	Names to Avoid When Defining Automatic Macro Variables

	Macro Statements
	Macro Functions
	Autocall Libraries
	Specifying a User Autocall Library
	Creating an Autocall Macro

	Stored Compiled Macro Facility
	Accessing Stored Compiled Macros

	Other Host-Specific Aspects of the Macro Facility
	Collating Sequence for Evaluating Macro Characters
	SAS System Options Used by the Macro Facility

	Additional Sources of Information

	Procedures under z/OS
	Procedures in the z/OS Environment

	Statements under z/OS
	Statements in the z/OS Environment

	System Options under z/OS
	System Options in the z/OS Environment
	Summary Table of SAS System Options

	Windows and Commands in z/OS Environments
	Windows and Commands in the z/OS Environment
	Using the Graphical Interface
	Window Controls and General Navigation
	Selection-Field Commands

	Host-Specific Windows in the z/OS Environment
	Host-Specific Windows of the FORM Subsystem
	TSO Print-File Parameter Frame
	IBM 3800 Print-File Parameter Frame

	Host-Specific Window Commands
	SAS System Options That Affect the z/OS Windowing Environment
	Terminal Support in the z/OS Environment
	Text Device Drivers
	Graphics Device Drivers
	EMULUS Extensions
	Using a Mouse in the SAS Windowing Environment under z/OS
	Appearance of Window Borders, Scroll Bars, and Widgets
	Improving Screen Resolution on an IBM 3290 Terminal

	Appendixes
	Using the INFILE/FILE User Exit Facility
	Introduction
	Writing a User Exit Module
	Function Request Control Block
	User Exit BAG Control Block

	Function Descriptions
	Initialization Function
	Parse Options Function
	Open Function
	Read Function
	Concatenation Function
	Write Function
	Close Function

	SAS Service Routines
	Building Your User Exit Module
	Activating an INFILE/FILE User Exit
	Sample Program

	Host-System Subgroup Error Messages
	Introduction
	Messages from the SASCP Command Processor
	Messages from the TSO Command Executor
	Messages from the Internal CALL Command Processor

	Recommended Reading
	Recommended Reading

	Glossary
	Index

