
SAS®

9.1 Companion for
UNIX Environments

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS ® 9.1 Companion for UNIX Environments. Cary, NC: SAS Institute Inc.

SAS® 9.1 Companion for UNIX Environments
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
ISBN 1–59047–210–1
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New ix

Overview ix

Migrating 32-Bit SAS Files to 64–Bit SAS Files ix

Accessing SAS Files from Previous Releases x

Restricted System Options x

Executing UNIX Commands within a SAS Session x

Sending E-mail from within Your SAS Session x

Accessing Shared Executable Libraries from SAS xi

Changes to the cleanwork Command xi

SAS Resources xi

SAS Language Elements xi

P A R T 1 Running SAS Software Under UNIX 1

Chapter 1 Getting Started with SAS in UNIX Environments 3
Starting SAS Sessions in UNIX Environments 4

Running SAS in a Foreground or Background Process 5

Selecting a Method of Running SAS in UNIX Environments 6

SAS Windowing Environment in UNIX Environments 6

Interactive Line Mode in UNIX Environments 7

Batch Mode in UNIX Environments 8

Running SAS on a Remote Host in UNIX Environments 9

X Command Line Options 11

Executing Operating System Commands from Your SAS Session 13

Customizing Your SAS Registry Files 16

Customizing Your SAS Session Using Configuration and Autoexec Files 16

Customizing Your SAS Session Using System Options 18

Defining Environment Variables in UNIX Environments 21

Determining the Completion Status of a SAS Job in UNIX Environments 22

Interrupting or Terminating Your SAS Session in UNIX Environments 22

Ending a Process That Is Running as a SAS Server 24

Ending a SAS Process on a Relational Database 25

Chapter 2 Working in the SAS Windowing Environment 29
Definition of the SAS Windowing Environment 30

Description of SAS in the X Environment 31

The SAS Session Manager (motifxsassm) in UNIX 33

Displaying Function Key Definitions in UNIX Environments 34

The SAS ToolBox in UNIX Environments 35

Opening Files in UNIX Environments 39

Changing Your Working Directory in UNIX Environments 41

iv

Selecting (Marking) Text in UNIX Environments 42

Copying or Cutting and Pasting Selected Text in UNIX Environments 44

Using Drag and Drop in UNIX Environments 45

Searching For and Replacing Text Strings in UNIX Environments 46

Sending Mail from within Your SAS Session in UNIX Environments 47

Configuring SAS for Host Editor Support in UNIX Environments 49

Getting Help in UNIX Environments 50

Chapter 3 Customizing the SAS Windowing Environment 53
Overview of Customizing SAS in X Environment 54

Overview of X Resources 55

Methods for Customizing X Resources 55

Modifying X Resources through the Preferences Dialog Box 57

Setting X Resources with the Resource Helper 62

Customizing Toolboxes and Toolsets in UNIX Environments 67

Customizing Key Definitions in UNIX Environments 73

Customizing Fonts in UNIX Environments 80

Customizing Colors in UNIX Environments 84

Controlling Pull-Down Menus in UNIX Environments 91

Customizing Cut-and-Paste in UNIX Environments 91

Customizing Session Workspace, Session Gravity, and Window Sizes in UNIX
Environments 93

Specifying User-Defined Icons in UNIX Environments 94

Miscellaneous Resources in UNIX Environments 96

Summary of X Resources for SAS in UNIX Environments 97

Chapter 4 Using SAS Files 101
Introduction to SAS Files, Data Libraries, and Engines in UNIX Environments 103

Common Types of SAS Files in UNIX Environments 104

Filename Extensions and Member Types in UNIX Environments 105

Migrating 32-Bit SAS Files to 64-Bit in UNIX Environments 106

Accessing SAS Files across Compatible Machine Types in UNIX Environments 108

Creating a SAS File to Use with an Earlier Release 110

Reading SAS Data Sets from Previous Releases or from Other Hosts 111

Referring to SAS Data Files Using Librefs in UNIX Environments 111

Specifying Pathnames in UNIX Environments 114

Assigning a Libref to Several Directories (Concatenating Directories) 115

Using Multiple Engines for a Library in UNIX Environments 116

Using Environment Variables as Librefs in UNIX Environments 117

Librefs Assigned by SAS in UNIX Environments 118

Using One-Level Names To Access Permanent Files (User Data Library) 120

Accessing Disk-Format Data Libraries in UNIX Environments 121

Accessing Sequential-Format Data Libraries in UNIX Environments 122

Sharing Files in UNIX Environments 124

Accessing BMDP, OSIRIS, or SPSS Files in UNIX Environments 125

Support for Links in UNIX Environments 128

v

Chapter 5 Using External Files and Devices 131
Introduction to External Files and Devices in UNIX Environments 132

Accessing an External File or Device in UNIX Environments 133

Specifying Pathnames in UNIX Environments 133

Assigning Filerefs to External Files or Devices with the FILENAME Statement 135

Concatenating Filenames in UNIX Environments 138

Assigning a Fileref to a Directory (Using Aggregate Syntax) 138

Using Environment Variables to Assign Filerefs in UNIX Environments 139

Filerefs Assigned by SAS in UNIX Environments 140

Reserved Filerefs in UNIX Environments 141

Reading from and Writing to UNIX Commands (PIPE) 141

Sending Electronic Mail Using the FILENAME Statement (EMAIL) 143

Processing Files on TAPE in UNIX Environments 149

Chapter 6 Printing and Routing Output 153
Overview of Printing Output in UNIX Environments 154

Previewing Output in UNIX Environments 154

The Default Routings for the SAS Log and Procedure Output in UNIX
Environments 155

Changing the Default Routings in UNIX Environments 155

Using the Print Dialog Box in UNIX Environments 157

Using Commands to Print in UNIX Environments 159

Using the PRINTTO Procedure in UNIX Environments 161

Using SAS System Options to Route Output 163

Printing Large Files with the PIPE Device Type in UNIX Environments 164

Changing the Default Print Destination in UNIX Environments 165

Changing the Default Print Command in UNIX Environments 165

Controlling the Content and Appearance of Output in UNIX Environments 165

Chapter 7 Accessing Shared Executable Libraries from SAS 169
Overview of Shared Libraries in SAS 170

The SASCBTBL Attribute Table 170

Special Considerations When Using Shared Libraries 176

Examples of Accessing Shared Executable Libraries from SAS 187

P A R T 2 Application Considerations 195

Chapter 8 Data Representation 197
Numeric Variable Length and Precision in UNIX Environments 197

Missing Values in UNIX Environments 198

Reading and Writing Binary Data in UNIX Environments 198

P A R T 3 Host-Specific Features of the SAS Language 199

Chapter 9 Commands under UNIX 201
SAS Commands under UNIX 202

vi

Chapter 10 Data Set Options under UNIX 223
SAS Data Set Options under UNIX 223

Dictionary 223

Summary of SAS Data Set Options in UNIX Environments 227

Chapter 11 Formats under UNIX 231
SAS Formats under UNIX 231

Dictionary 231

Chapter 12 Functions and CALL Routines under UNIX 237
SAS Functions and CALL Routines under UNIX 237

Dictionary 238

Chapter 13 Informats under UNIX 257
SAS Informats under UNIX 257

Dictionary 257

Chapter 14 Macro Facility under UNIX 263
About the Macro Facility under UNIX 263

Automatic Macro Variables in UNIX Environments 263

Macro Statements in UNIX Environments 265

Macro Functions in UNIX Environments 265

SAS System Options Used by the Macro Facility in UNIX Environments 266

Using Autocall Libraries in UNIX Environments 266

Chapter 15 Procedures under UNIX 269
SAS Procedures under UNIX 269

Dictionary 269

Chapter 16 Statements under UNIX 289
SAS Statements under UNIX 289

Dictionary 289

Chapter 17 System Options under UNIX 311
SAS System Options under UNIX 313

Determining How a System Option Was Set 313

Dictionary 313

Summary of All SAS System Options in UNIX Environments 384

P A R T 4 Appendices 395

Appendix 1 The !SASROOT Directory 397
Introduction to the !SASROOT Directory 397

Contents of the !SASROOT Directory 397

Appendix 2 Tools for the System Administrator 399
The Utilities Directory in UNIX Environments 399

Installing Manual Pages 399

vii

Utilities in the /bin Directory 400

Appendix 3 Using SSL in UNIX Environments 403
What Is SSL? 403

Using SSL 405

SSL for SAS 405

SSL for UNIX 405

Converting between PEM and DER File Formats 410

SSL Language Elements 411

Appendix 4 SAS Releases in UNIX Environments 413
SAS Releases in UNIX Environments 413

Appendix 5 Recommended Reading 415
Recommended Reading 415

Glossary 417

Index 427

viii

ix

What’s New

Overview
New and enhanced features for Base SAS improve ease of use and SAS performance

under the UNIX operating environment:
� SAS for the AIX, HP-UX, and Solaris operating environments is 64-bit only.
� SMTP (Simple Mail Transfer Protocol) is now the default mail handler.
� Sharing files between UNIX and Windows has been simplified.
� Using the MODULE family of SAS functions and CALL routines, you can invoke a

routine that resides in an external shared library from within SAS.
� Universal Printing is the new default printing mechanism. SAS does not support

host printing functionality.

Note:
� This section describes the features of SAS software under the UNIX operating

environment that are new or enhanced since SAS 8.2.
� z/OS is the successor to the OS/390 operating system. Throughout this document,

any reference to z/OS also applies to OS/390, unless otherwise stated.

�

Migrating 32-Bit SAS Files to 64–Bit SAS Files
Starting in SAS 9, SAS for the AIX, HP-UX, and Solaris operating environments is

64-bit only. Consequently, some SAS files (such as your SAS catalogs) that were created
in 32-bit releases of SAS cannot be read by the V9 engine. You can read and write to
your 32-bit SAS data sets, SAS/ACCESS views from Oracle or SYBASE, SQL views, or
MDDB files from a 64-bit SAS session using CEDA. However, you cannot update these
files. For more information, see “Migrating 32-Bit SAS Files to 64-Bit in UNIX
Environments” on page 106.

You can use the MIGRATE procedure to convert all of your SAS files to 64-bit. For
more information about the MIGRATE procedure, see the Migration Community at
support.sas.com/rnd/migration.

x What’s New

Note: If you use Remote Library Services (RLS) to access SAS files on a server, see
the SAS/CONNECT User’s Guide for information about accessing Version 6 SAS files. �

Accessing SAS Files from Previous Releases

On the 64-bit AIX, HP-UX, and Solaris platforms, the V6 and V6TAPE read-only
engines provide read-only access to your Release 6.12 data sets. See SAS Language
Reference: Concepts for more information about the compatibility of V6 files with SAS
9.1.

With the Tru64 and Linux platforms, you still have read and write access to your
Release 6.12 data sets. For more information about compatibility issues, see “Accessing
SAS Files across Compatible Machine Types in UNIX Environments” on page 108.

Restricted System Options

Your site administrator can specify SAS system options for your site, a specific group,
or an individual user in a restricted configuration file . Because these options are
restricted, you cannot change the specified value. Use the new RESTRICT option in the
OPTIONS procedure to see all the system options that have been restricted. For more
information about how SAS processes the restricted configuration file, see “Order of
Precedence for SAS Configuration Files” on page 17. For information about creating a
restricted configuration file, see the SAS System Configuration Guide for UNIX.

Executing UNIX Commands within a SAS Session

umask is added to the list of UNIX commands cd, pwd, or setenv that SAS checks
before executing the SAS equivalent in a session when you use the X command, X
statement, CALL system routine, or %SYSEXEC. For more information, see “Executing
a Single UNIX Command” on page 13.

Sending E-mail from within Your SAS Session

� The default mail handler is SMTP (Simple Mail Transfer Protocol), which supports
attachments. For more information, see “Initializing Electronic Mail” on page 144.

� The new BCC option in the FILENAME statement enables you to send blind copy
e-mails during a SAS session. For more information, see “Syntax of the
FILENAME Statement for Electronic Mail” on page 144.

� Using the Send Mail dialog box, you can now do the following:

� include the contents of an active SAS text window (such as the Program
Editor or Log) in the body of your e-mail. For more information, see “Sending
the Contents of a Text Window” on page 48.

� attach the contents of a non-text window to your e-mail. Examples of
non-text windows include a graph generated by SAS/GRAPH and an image in
your PROC REPORT output. For more information, see “Sending the
Contents of a Non-Text Window” on page 49.

What’s New xi

Accessing Shared Executable Libraries from SAS
Shared libraries in UNIX contain executable programs that are written in various

programming languages. These libraries store useful routines that might be needed by
many applications. Using the MODULE family of SAS functions and CALL routines,
you can invoke a routine that resides in an external shared library from within SAS.
You can access the shared library routines by using a DATA step, the IML procedure,
and SCL code. See Chapter 7, “Accessing Shared Executable Libraries from SAS,” on
page 169.

Changes to the cleanwork Command
The cleanwork command can now be used to delete utility directories whose

associated SAS process has ended. For more information, see “cleanwork Command” on
page 400.

SAS Resources
� The SAS.useNativeXmTextTranslations X resource specifies whether any

XmText widget translations are inherited by all instances of the Text, Combo Box,
and Spin Box widgets that are used by the SAS X Motif user interface. For more
information, see “Miscellaneous Resources in UNIX Environments” on page 96.

� The SAS.webBrowser resource is no longer supported. The SAS.helpBrowser
resource now specifies the pathname of the World Wide Web browser for use when
viewing the online help or when the WBROWSE command is issued. For more
information, see “Miscellaneous Resources in UNIX Environments” on page 96.

� The following resources that were used to control your ODS results are no longer
supported:

� SAS.resultsHTML

� SAS.resultsUseWork

� SAS.resultsTmpDir

� SAS.resultsHTMLStyle

� SAS.resultsListing

� SAS.resultsAutoNavigate

To set the values for your ODS output, use the Results tab in the Preferences
dialog box. For more information, see “Modifying the Results Settings” on page 60.

SAS Language Elements

Commands
The following commands are obsolete:
� DLGPRT

xii What’s New

� DLGPRTMODE

� DLGPRTPREVIEW

� DLGPRTSETUP.

Functions and CALL Routines

� To call a specific routine or module that resides in a shared library, you can use the
MODULE function. For more information, see “MODULE Function” on page 251.

� You can store the contents of a memory address in a numeric variable on 32-bit
and 64-bit platforms by using the PEEKLONG function. This function replaces
the PEEK function, which was valid only on 32-bit platforms. For more
information, see “PEEKLONG Function” on page 254.

Statements

� The following option is new in the FILE, FILENAME, and INFILE statements:

� TERMSTR= enables the sharing of UNIX and PC formatted files.

For more information, see “FILE Statement” on page 291, “FILENAME
Statement” on page 293, and “INFILE Statement” on page 299.

� The following options are new in the %INCLUDE statement:

� BLKSIZE= specifies the number of bytes that are physically read or written
in an I/O operation.

� ENCODING= specifies the encoding to use when reading from the specified
source.

� LRECL= specifies the record length (in bytes).

� RECFM= controls the record format.

For more information, see “%INCLUDE Statement” on page 298.

Procedures
� To see all the system options that have been set by your site administrator, use the

RESTRICT option in the OPTIONS procedure. For more information, see
“OPTIONS Procedure” on page 279.

� The BMDP procedure is obsolete.

System Options
� The following system options are new:

� You can specify the location of the Program Editor autosave file by using the
AUTOSAVELOC system option. For more information, see“AUTOSAVELOC
System Option” on page 317.

� If you create a customized table of contents and index for the SAS Help and
Documentation, use the HELPINDEX and HELPTOC system options to
specify the file location. For more information, see “HELPTOC System
Option” on page 335 and “HELPINDEX System Option” on page 333.

What’s New xiii

� SSLCALISTLOC, SSLCERTLOC, SSLCLIENTAUTH, SSLCRLCHECK,
SSLCRLLOC, SSLPVTKEYLOC, and SSLPVTKEYPASS are new system
options that support Secure Sockets Layer (SSL) authentication. For more
information, see “SSLCALISTLOC System Option” on page 369,
“SSLCERTLOC System Option” on page 370, “SSLCLIENTAUTH System
Option” on page 371, “SSLCRLCHECK System Option” on page 372,
“SSLCRLLOC System Option” on page 373, “SSLPVTKEYLOC System
Option” on page 373, and “SSLPVTKEYPASS System Option” on page 374.

� To set permissions for the temporary Work library when it is created, use the
WORKPERMS system option. For more information, see “WORKPERMS
System Option” on page 382.

� The following system options are enhanced:
� If you specify only a directory path for the ALTLOG, LOG, ALTPRINT, or

PRINT system options during SAS invocation, then the default filename for
your log or procedure output file is filename.LOG or filename.LST, where
filename is the name of your SAS job. For more information, see “ALTLOG
System Option” on page 313, “LOG System Option” on page 340, “ALTPRINT
System Option” on page 314, and “PRINT System Option” on page 351.

� SMTP (Simple Mail Transfer Protocol) is the new default for the EMAILSYS
system option. For more information, see “EMAILSYS System Option” on
page 326.

� V9 is a new value for the ENGINE system option. For more information, see
“ENGINE System Option” on page 327.

� MAX is the new default for the SORTSIZE system option. The value of MAX
is based on your operating environment. For more information, see
“SORTSIZE System Option” on page 368.

� The following system options have values that are obsolete:
� Because the CoSort utility is no longer supported, cosort is not a valid value

for the SORTNAME system option. For more information, see “SORTNAME
System Option” on page 367.

� The following system options are obsolete:
� PROCLEAVE
� SORTLIB
� SYSLEAVE
� XPRINTNM.

The UNBUFLOG system option has been replaced by the LOGPARM system option,
which is available in all operating environments. For details, see SAS Language
Reference: Dictionary

xiv What’s New

1

P A R T1

Running SAS Software Under UNIX

Chapter 1.Getting Started with SAS in UNIX Environments 3

Chapter 2.Working in the SAS Windowing Environment 29

Chapter 3.Customizing the SAS Windowing Environment 53

Chapter 4.Using SAS Files 101

Chapter 5.Using External Files and Devices 131

Chapter 6.Printing and Routing Output 153

Chapter 7.Accessing Shared Executable Libraries from SAS 169

2

3

C H A P T E R

1
Getting Started with SAS in UNIX
Environments

Starting SAS Sessions in UNIX Environments 4

Invoking SAS 4
Syntax of the SAS Command 5

Example: Invoking an Interactive SAS Session 5

What If SAS Does Not Start? 5
Running SAS in a Foreground or Background Process 5

Selecting a Method of Running SAS in UNIX Environments 6

SAS Windowing Environment in UNIX Environments 6
Introduction to the SAS Windowing Environment 6

What Is the Explorer Window? 6
What Are the Program Editor, Output, and Log Windows? 6

Invoking SAS in the Windowing Environment 7

Exiting SAS in the Windowing Environment 7
Interactive Line Mode in UNIX Environments 7

Introduction to Interactive Line Mode 7

Invoking SAS in Interactive Line Mode 8
Exiting SAS in Interactive Line Mode 8

Batch Mode in UNIX Environments 8
Introduction to Running SAS in Batch Mode 8

Invoking SAS in Batch Mode 8

Submitting a Program to the Batch Queue 9
Writing Data from an External File Using Pipes 9

Running SAS on a Remote Host in UNIX Environments 9

Introduction to Running SAS on a Remote Host 9
Steps for Running SAS on a Remote Host 10

Preventing SAS from Attempting to Connect to the X Server 11
Troubleshooting Connection Problems 11

X Command Line Options 11

How to Specify X Window System Options 11
Supported X Command Line Options 11

Unsupported X Command Line Options 12

Executing Operating System Commands from Your SAS Session 13
Deciding Whether to Run an Asynchronous or Synchronous Task 13

Executing a Single UNIX Command 13
Example 1: Executing a UNIX Command Using the X Statement 13

Example 2: Executing a UNIX Command Using the CALL SYSTEM Routine 14

How SAS Processes a Single UNIX Command 14
Executing Several UNIX Commands 14

Example: Executing Several Commands Using the %SYSEXEC Macro 14

How SAS Processes Several UNIX Commands 15
Starting a Shell 15

4 Starting SAS Sessions in UNIX Environments Chapter 1

Changing the File Permissions for Your SAS Session 15

Executing X Statements in Batch Mode 15
Customizing Your SAS Registry Files 16

Customizing Your SAS Session Using Configuration and Autoexec Files 16

Introduction to Configuration and Autoexec Files 16
Differences between Configuration and Autoexec Files 16

Creating a Configuration File 17

Order of Precedence for SAS Configuration Files 17
Specifying a Configuration File for SAS to Use 18

Customizing Your SAS Session Using System Options 18
Ways to Specify a SAS System Option 18

Overriding the Default Value for a System Option 19

How SAS Processes System Options Set in One Place 20
How SAS Processes System Options Set in Multiple Places 20

Precedence for Processing System Options 20

Defining Environment Variables in UNIX Environments 21
What Is an Environment Variable? 21

How to Define an Environment Variable for Your Shell 21
Bourne and Korn Shells 21

C Shell 22

Displaying the Value of an Environment Variable 22
Determining the Completion Status of a SAS Job in UNIX Environments 22

Interrupting or Terminating Your SAS Session in UNIX Environments 22

Preferred Methods of Exiting SAS 22
Additional Methods for Interrupting or Terminating SAS 23

Using Control Keys 23
Using the SAS Session Manager 23

Using the UNIX kill Command 24

Messages in the SAS Console Log 24
Ending a Process That Is Running as a SAS Server 24

Ending a SAS Process on a Relational Database 25

How to Interrupt a SAS Process 25
Example: Interrupt Menu for PROC SQL 26

How to Terminate a SAS Process 26
What Happens When You Interrupt a SAS Process and the Underlying DBMS Process 27

Starting SAS Sessions in UNIX Environments

Invoking SAS
The command that you use to invoke your SAS session is defined during the SAS

installation process and is added to the list of commands that are recognized by the
operating environment. Ask your system administrator what the command is that
invokes SAS at your site. At many sites, the command to invoke SAS is simply sas,
but a different command might have been defined during the SAS installation process
at your site. This documentation assumes that SAS is invoked by the sas command.

Note: Before you start your SAS session, review the different techniques for
interrupting and terminating your SAS session (see “Interrupting or Terminating Your
SAS Session in UNIX Environments” on page 22). Also, if you cannot stop your session,
contact your system administrator; do not turn off your machine, especially if your
machine is part of a network. �

Getting Started with SAS in UNIX Environments Running SAS in a Foreground or Background Process 5

Syntax of the SAS Command
The general form of the SAS command is as follows:

sas < -option1…-option-n> <filename>

You can use these arguments with the SAS command:

-option1 ... -option-n
specifies SAS system options to configure your session or X command line options.
See Chapter 17, “System Options under UNIX,” on page 311 and “X Command
Line Options” on page 11 for more information. If you omit any options (either on
the command line or in the configuration file), the SAS (or site-specific) default
options are in effect.

filename
specifies the name of the file containing the SAS program to be executed.
Specifying a filename on the SAS command invokes a batch SAS session. Omit the
filename to begin an interactive session.

If the file is not in the current directory, specify its full pathname.

Example: Invoking an Interactive SAS Session
To invoke an interactive SAS session, without specifying any SAS system options,

enter

sas

The execution mode will depend on your default settings. For more information, see
“Selecting a Method of Running SAS in UNIX Environments” on page 6.

To specify the NODATE and LINESIZE system options, you could enter

sas -nodate -linesize 80

To run a SAS program and pass parameters to it, enter

sas -sysparm ’A B C’ progparm.sas

The value A B C is assigned to the SYSPARM macro variable, which can be read by the
program ProgParm.sas.

What If SAS Does Not Start?
If SAS does not start, the SAS log might contain error messages that explain the

failure. However, error messages that SAS issues before the SAS log is initialized are
written to the SAS console log.

Under UNIX, the STDOUT fileref specifies the location of the console log.

Running SAS in a Foreground or Background Process
UNIX is a multitasking system, so you can run multiple processes at the same time.

For example, you can have one process running in the foreground and three in the
background. A foreground process executes while you wait for the prompt; that is, you
cannot execute additional commands while the current command is being executed.
After you enter a command, the shell starts a process to execute the command. After
the system executes the command, the shell displays the prompt and you can enter

6 Selecting a Method of Running SAS in UNIX Environments Chapter 1

additional commands. A background process executes independently of the shell. After
you enter a command, the shell starts a process to execute the command and then
issues the system prompt. You can enter other commands or start other background
tasks without waiting for your initial command to execute. You can run SAS in the
foreground or in the background.

Note: Both the C shell and the Korn shell include commands that enable you to
move jobs among three possible states: running in the foreground, running in the
background, and suspended. �

Selecting a Method of Running SAS in UNIX Environments
You can run SAS in the following modes:
� SAS windowing environment
� interactive line mode
� batch mode.

Ask your system administrator which interface or mode of operation is the default at
your site.

SAS Windowing Environment in UNIX Environments

Introduction to the SAS Windowing Environment
You interact with SAS through windows using your keyboard, mouse, pull-down

menus, pop-up menus, and icons. The windowing environment includes, but is not
limited to, the Explorer, Program Editor, Output, Log, and Results windows.

Your SAS session may default to the windowing environment interface. If you want to
use the windowing environment, you can start your SAS session as a foreground process
or as a background process (by adding an ampersand (&) to your SAS command line).

For more information about using the windowing environment, see Chapter 2,
“Working in the SAS Windowing Environment,” on page 29.

Note: If you are not using an X display, then you need to invoke SAS in interactive
line mode using the NODMS system option. For more information, see “Interactive
Line Mode in UNIX Environments” on page 7. �

What Is the Explorer Window?
Explorer is a windowing environment for managing basic SAS software tasks such as

viewing and managing data sets, libraries, members, applications, and output. The SAS
Explorer is a central access point from which you can do the following:

� manipulate SAS data through a graphical interface
� access the Program Editor, Output, and Log windows (as well as other windows)
� view the results of SAS procedure output in the Results window
� import files into SAS.

What Are the Program Editor, Output, and Log Windows?
The Program Editor, Output, and Log windows enable you to edit and execute SAS

programs and display output. For more information about these windows, see SAS Help
and Documentation.

Getting Started with SAS in UNIX Environments Introduction to Interactive Line Mode 7

Invoking SAS in the Windowing Environment
You can use the following commands to specify which windows open when the SAS

session starts.
� You can open the Explorer window by specifying the EXPLORER system option:

sas -explorer

� You can open the Program Editor, Output, and Log windows by specifying the
DMS system option:

sas -dms

� You can use the DMSEXP system option to open the Program Editor, Output, Log,
and Results windows and the Explorer:

sas -dmsexp

SAS also opens the toolbox from which you can open additional SAS windows. For
more information about the toolbox, see to Chapter 2, “Working in the SAS Windowing
Environment,” on page 29.

Exiting SAS in the Windowing Environment
To end your SAS session, enter the BYE or ENDSAS command on the command line

or select

File Exit

from the pull-down menu of the session that you want to end.

Interactive Line Mode in UNIX Environments

Introduction to Interactive Line Mode
You enter SAS statements line by line in response to prompts issued by SAS. SAS

reads the source statements from the terminal as you enter them. DATA and PROC
steps execute when

8 Invoking SAS in Interactive Line Mode Chapter 1

� a RUN, QUIT, or DATALINES statement is entered
� another DATA or PROC statement is entered
� the ENDSAS statement is entered.

To use interactive line mode, you must run SAS in the foreground.

Invoking SAS in Interactive Line Mode
To start an interactive line mode session, invoke SAS with the NODMS or

NODMSEXP system option:

sas -nodms
sas -nodmsexp

By default, SAS log and procedure output (if any) appear on your display as each
step executes.

After you invoke SAS, the 1? prompt appears, and you can begin entering SAS
statements. After you enter each statement, a line number prompt appears.

Exiting SAS in Interactive Line Mode
You can end the session by pressing the EOF key (usually CTRL+D; see “Using

Control Keys” on page 23) or by issuing the ENDSAS statement:

endsas;

Batch Mode in UNIX Environments

Introduction to Running SAS in Batch Mode
To run SAS in batch mode, you specify your SAS application name in the SAS

command. You can run batch mode in the foreground, in the background by specifying
an ampersand at the end of the SAS command, or submit your application to the batch
queue by using the batch, at, nohup, or cron UNIX commands. (For more information,
refer to the UNIX man pages for the batch, at, nohup, or cron commands.) If you start
your application with one of these UNIX commands and you log off of your system, then
your application will complete execution. If your application contains statements that
start an interactive procedure such as FSEDIT, then you need to run your batch
application in the foreground.

Invoking SAS in Batch Mode
To invoke SAS in batch mode, you must specify a filename in the SAS command. For

example, if Weekly.rpt is the file containing the SAS statements to be executed, and you
want to specify the NODATE and LINESIZE system options, you would enter

sas weekly.rpt -nodate -linesize 90

The command would run the program in the foreground. If you want to run the
program in the background, add the ampersand to the end of the command:

sas weekly.rpt -nodate -linesize 90 &

Getting Started with SAS in UNIX Environments Introduction to Running SAS on a Remote Host 9

You do not need to specify the SYSIN option as with some other platforms.
SAS creates a .log file and a .lst file in the current directory that contains the log and

procedure output.

Submitting a Program to the Batch Queue
To submit your program to the batch queue, you can use the batch, at, nohup, or

cron commands. For example, you could submit Weekly.rpt from your shell prompt as
follows:

$ at 2am
sas weekly.rpt
<control-D>
warning: commands will be executed using /usr/bin/sh
job 8400.a at Wed Jun 11 02:00:00 2003
$

If you create a file that contains the SAS command necessary to run your program, for
example CmdFile.sas, then you can enter the following command at your shell prompt:

at 2am < cmdfile.sas

SAS sends the output to a file that has the same name as the program and an
extension of .lst, and the log goes to a file with an extension of .log. Both of these files
are written to your current directory. Refer to the man pages for these commands for
more information on submitting jobs to the batch queue. For more details on routing
output, see Chapter 6, “Printing and Routing Output,” on page 153.

Note: If your program contains statements that start an interactive procedure such
as the FSEDIT procedure, you will need to run your program in the foreground. �

Writing Data from an External File Using Pipes
You can use a pipe to write data from an external file to a SAS program. For

example, suppose that your data resides in the file MyData and your program
MyProg.sas includes this statement:

INFILE STDIN;

Issue this command to have MyProg.sas read data from MyData:

cat mydata | sas myprog.sas

For details about using external files, see Chapter 5, “Using External Files and
Devices,” on page 131. See also “File Descriptors in the Bourne and Korn Shells” on
page 140 for another way to have a SAS program read data from an external file.

Running SAS on a Remote Host in UNIX Environments

Introduction to Running SAS on a Remote Host
When you invoke SAS in an interactive mode, you can run SAS on your local host, or

you can run SAS on a remote host and interact with the session through an X server

10 Steps for Running SAS on a Remote Host Chapter 1

running on your workstation. The server provides the display services that are needed
for the X Window System.

Most of the time, the server name is derived from the machine’s name. For example,
if your machine is named green, the name of the server is green:0.0. In most cases,
the X server will already be running when you log in. If you need to start your server
manually, consult the documentation that is provided with your X Window System
software.

To run SAS on a remote host, you must tell SAS which display to use by either setting
the DISPLAY environment variable or specifying the -display X command line option.

Steps for Running SAS on a Remote Host
To run SAS on a remote host, follow these steps:
1 Make sure that the clients running on the remote host have permission to connect

to your server. Most systems control this by using the xhost client. Other systems
control access through a session manager. To use the xhost client to permit all
remote hosts to connect to your server, enter the following command at the system
prompt on the system that is running your X server:

xhost +

To run this command automatically each time you log in, enter this command in a
file named .xhost.

If your system does not control access with the xhost client, consult your
system documentation for information on allowing remote access.

2 Log in to the remote system, or use a remote shell.
3 Identify your server as the target display for X clients that are run on the remote

host. You can do this in one of two ways:

a Set the DISPLAY environment variable. In the Bourne and Korn shells, you
can set the DISPLAY variable as follows:

DISPLAY=green:0.0
export DISPLAY

In the Korn shell, you can combine these two commands:

export DISPLAY=green:0.0

In the C shell, you must use the setenv command:

setenv DISPLAY green:0.0

The DISPLAY variable will be used by all Xclients on the system.

Note: To determine the shell for your system, type ps at the command
prompt or check the value of the SHELL environment variable. �

b Use the -display option. For example:

sas -display green:0.0

If you have trouble establishing a connection, you can try using an IP address
instead of a display name, for example:

-display 10.22.1.1:0

Note: This option is a command line option for the X Window system, not
for SAS. Specifying this option in a SAS configuration file or in the
SASV9_OPTIONS environment variable might cause problems when you are
running other interfaces. �

Getting Started with SAS in UNIX Environments Supported X Command Line Options 11

Preventing SAS from Attempting to Connect to the X Server
To prevent SAS from attempting to connect to the X server, unset the DISPLAY

environment variable and use the -noterminal option on the command line.

Troubleshooting Connection Problems
If SAS cannot establish a connection to your display, it prints a message that

indicates the nature of the problem and then terminates. An example of a message that
you might receive is the following:

ERROR: Cannot open Xdisplay. Check display name/server access authorization.

Make sure that you have brought up the SAS session correctly. You might need to
use the xhost client (enter xhost +) or some other method to change display
permissions. You can also specify the NODMS system option when you invoke SAS to
bring your session up in line mode.

If you are unable to invoke SAS, try running another application such as xclock. If
you cannot run the application, you might need to contact your system administrator
for assistance.

X Command Line Options

How to Specify X Window System Options
When you invoke some X clients, such as SAS, you can use command line options

that are passed to the X Window System. In general, you should specify X Window
System options after SAS options on the command line.

Supported X Command Line Options
The following list describes the X command line options that are available when you

invoke a SAS session from the command prompt.

-display host:server.screen
specifies the name or IP address of the terminal on which you want to display the
SAS session. For example, if your display node is wizard, you might enter

-display wizard:0.0

or

-display 10.22.1.1:0

-name instance-name
reads the resources in your SAS resource file that begin with instance-name. For
example, -name MYSAS reads the resources that begin with MYSAS, such as

MYSAS.dmsfont: Cour14
MYSAS.defaultToolbox: True

12 Unsupported X Command Line Options Chapter 1

-noterminal
specifies that you do not want to display the SAS session. You must specify this
option to generate a graph in batch mode. For more information, see “Running
SAS/GRAPH Programs” in SAS/GRAPH Reference, Volumes 1 and 2.

Note: To prevent SAS from attempting to connect to the X server, unset the
DISPLAY environment variable and use the -noterminal option on the command
line. �

-title string
specifies the title up to six characters long for your SAS session window. To use
multiple words in the title, enclose the words in single or double quotation marks.
For example, -title MYSAS produces MYSAS:Explorer in the title bar of the
Explorer window.

-xrm string
specifies a resource to override any defaults. For example, the following resource
turns off the Confirm dialog box when you exit SAS:

-xrm ’SAS.confirmSASExit: False’

Unsupported X Command Line Options
SAS does not support the following X command line options because their

functionality is not applicable to SAS or is provided by SAS resources. Refer to
“Overview of X Resources” on page 55 for more information on SAS resources.

-geometry
Window geometry is specified by the SAS.windowHeight, SAS.windowWidth,
SAS.maxWindowHeight, and SAS.maxWindowWidth resources.

-background, -bg
These options are ignored.

-bordercolor, -bd
These options are ignored. Refer to “Defining Colors and Attributes for Window
Elements (CPARMS)” on page 88 for a description of specifying the color of window
borders.

-borderwidth, -bw
These options are ignored. The width of window borders is set by SAS.

-foreground, -fg
These options are ignored.

-font, -fn
SAS fonts are specified by the SAS.DMSFont, SAS.DMSboldFont, and
SAS.DMSfontPattern resources.

-iconic
This option is ignored.

-reverse, -rv, +rv
These options are ignored. Refer to “Defining Colors and Attributes for Window
Elements (CPARMS)” on page 88 for a description of specifying reverse video.

-selectionTimeout
Timeout length is specified by the SAS.selectTimeout resource.

-synchronous, +synchronous
The XSYNC command controls the X synchronization.

Getting Started with SAS in UNIX Environments Executing a Single UNIX Command 13

-xn1language
This option is ignored.

Executing Operating System Commands from Your SAS Session

Deciding Whether to Run an Asynchronous or Synchronous Task
You can execute UNIX commands from your SAS session either asynchronously or

synchronously. When you run a command as an asynchronous task, the command
executes independently of all other tasks that are currently running. To run a
command asynchronously, you must use the SYSTASK statement. See “SYSTASK
Statement” on page 305 for information about executing commands asynchronously.

When you execute one or more UNIX commands synchronously, then you must wait
for those commands to finish executing before you can continue working in your SAS
session. You can use the CALL SYSTEM routine, %SYSEXEC macro program
statement, X statement, and X command to execute UNIX commands synchronously.
The CALL SYSTEM routine can be executed with a DATA step. The %SYSEXEC macro
statement can be used inside macro definitions, and the X statement can be used
outside of DATA steps and macro definitions. You can enter the X command on any SAS
command line. See “CALL SYSTEM Routine” on page 239 and “Macro Statements in
UNIX Environments” on page 265 for more information.

Executing a Single UNIX Command
To execute only one UNIX command, you can enter the X command, X statement,

CALL SYSTEM routine, or %SYSEXEC macro statement as follows:

X command

X command;

CALL SYSTEM (’command’);

%SYSEXEC command;

Note: When you use the %SYSEXEC macro statement, if the UNIX command you
specify includes a semicolon, you must enclose the UNIX command in a macro quoting
function. Refer to SAS Macro Language: Reference for more information on quoting
functions. �

Example 1: Executing a UNIX Command Using the X Statement
You can use the X statement to execute the ls UNIX command (in a child shell) as

follows:

x ls -l;

14 Executing Several UNIX Commands Chapter 1

Example 2: Executing a UNIX Command Using the CALL SYSTEM Routine
Inside a DATA step, you can use the CALL SYSTEM routine to execute a cd

command, which will change the current directory of your SAS session:

data _null_;
call system (’cd /users/smith/report’);
run;

The search for any relative (partial) filenames during the SAS session will now begin in
the /users/smith/report directory. When you end the session, your current directory
will be the directory in which you started your SAS session.

For more information about the CALL SYSTEM routine, see “CALL SYSTEM
Routine” on page 239.

How SAS Processes a Single UNIX Command
When you specify only one command, SAS checks to see whether the command is cd,

pwd, setenv, or umask and, if so, executes the SAS equivalent of these commands. The
SAS cd and pwd commands are equivalent to their Bourne shell counterparts. The SAS
setenv command is equivalent to its C shell namesake. The SAS umask command is
equivalent to the numeric mode of the umask command supported by the Bourne, Korn,
and C shells. These four commands are built into SAS because they affect the
environment of the current SAS session. When executed by SAS software, they affect
only the SAS environment and the environment of any shell programs started by the
SAS session. They do not affect the environment of the shell program that began your
SAS session.

If the command is not cd, pwd, or setenv, SAS starts a shell* in which it executes
the command that you specified. If the command is umask, but you do not specify a
mask, then SAS passes the command to the shell in which the current SAS session was
started. For more information about the umask command, see “Changing the File
Permissions for Your SAS Session” on page 15.

Executing Several UNIX Commands
You can also use the X command, X statement, CALL SYSTEM routine, and

%SYSEXEC macro statement to execute several UNIX commands:

X ’command-1;...command-n’

X ’command-1;...command-n’;

CALL SYSTEM (’command-1;...command-n’);

%SYSEXEC quoting-function(command-1;...command-n);

Separate each UNIX command with a semicolon (;).

Note: When you use the %SYSEXEC macro statement to execute several UNIX
commands, because the list of commands uses semicolons as separators, you must
enclose the string of UNIX commands in a macro quoting function. Refer to SAS Macro
Language: Reference for more information on quoting functions. �

Example: Executing Several Commands Using the %SYSEXEC Macro
The following code defines and executes a macro called pwdls that executes the pwd

and ls -l UNIX commands:

* The shell used depends on the SHELL environment variable.

Getting Started with SAS in UNIX Environments Executing X Statements in Batch Mode 15

%macro pwdls;
%sysexec %str(pwd;ls -l);
%mend pwdls;
%pwdls;

This example uses %str as the macro quoting function.

How SAS Processes Several UNIX Commands
When you specify more than one UNIX command (that is, a list of commands

separated by semicolons), SAS passes the entire list to the shell and does not check for
the cd, pwd, setenv, or umask commands, as it does when a command is specified by
itself (without semicolons).

For more information about how SAS processes the cd, pwd, setenv, or umask
commands, see “How SAS Processes a Single UNIX Command” on page 14.

Starting a Shell
If you are not running in the SAS windowing environment, you can start a shell by

not specifying any UNIX commands in the X statement:

X;

SAS responds with

Enter ’exit’ to return to your SAS session.

SAS then starts a shell.
Enter any UNIX commands. When you are ready to return to the SAS session, enter

the exit command.
Even if you changed directories while in the shell, you will be in the same directory

as when you started the shell.

Changing the File Permissions for Your SAS Session
At invocation, a SAS session inherits the file permissions from the parent shell. Any

file that you create will inherit these permissions. If you want to change the file
permissions from within SAS, issue the umask mask command on the X statement. The
umask mask command sets the permissions for any new file that you create. The value
of mask can be either numeric or symbolic. For more information about this command,
see the man page for umask)

When SAS executes the umask mask command, it changes the file permissions of the
current SAS session, but it does not change the permissions in the parent shell. Any
subsequent file that you create during this SAS session will inherit the permissions
that you specified.

Executing X Statements in Batch Mode
If you run your SAS program in batch mode and if your operating system supports

job control, the program will be suspended when an X statement within the program
needs input from the terminal.

If you run your SAS program from the batch queue by submitting it with the at or
batch commands, SAS processes any X statements as follows:

� If the X statement does not specify a command, SAS ignores the statement.

16 Customizing Your SAS Registry Files Chapter 1

� If any UNIX command in the X statement attempts to get input, it receives an
end-of-file (standard input is set to /dev/null).

� If any UNIX command in the X statement writes to standard output or standard
error, the output is mailed to you unless it was previously redirected.

Customizing Your SAS Registry Files
SAS registry files store information about the SAS session. The SAS registry is the

central storage area for configuration data for SAS. Some of the data stored in the
registry includes

� the libraries and file shortcuts that SAS assigns at startup. These shortcuts could
include secure information, such as your password.

� the printers that are defined for use and their print setup.
� configuration data for various SAS products.

The Sasuser registry file (called regstry.sas7bitm) contains your user defaults. These
registry entries can be customized by using the SAS Registry Editor or by using PROC
REGISTRY. For more information, see “The SAS Registry” in SAS Language Reference:
Concepts.

CAUTION:
For experienced users only. Registry customization is generally performed by
experienced SAS users and system administrators. �

Customizing Your SAS Session Using Configuration and Autoexec Files
You can customize your SAS environment in several ways. To customize your SAS

environment at the point of invocation, you can use configuration and autoexec files. For
information about how to customize a SAS session using the windowing environment,
see Chapter 3, “Customizing the SAS Windowing Environment,” on page 53.

Introduction to Configuration and Autoexec Files
You can customize your SAS session by defining configuration and/or autoexec files.

You can use these files to specify system options and to execute SAS statements
automatically whenever you start a SAS session. (SAS system options control many
aspects of your SAS session, including output destinations, the efficiency of program
execution, and the attributes of SAS files and data libraries. Refer to SAS Language
Reference: Dictionary for a complete description of system options.)

The configuration file (for SAS 9.1) is typically named sasv9.cfg, and the autoexec file
is named autoexec.sas. These files typically reside in the directory where SAS was
installed. By default, this is the !SASROOT directory.

You can have customized configuration and autoexec files in your user home
directory. If you do, then SAS will use the customizations specified in these files when
you start a SAS session. For more information about the order of precedence SAS uses
when processing configuration files, see “Order of Precedence for SAS Configuration
Files” on page 17.

Differences between Configuration and Autoexec Files
The differences between configuration files and autoexec files are as follows:

Getting Started with SAS in UNIX Environments Order of Precedence for SAS Configuration Files 17

� Configuration files can contain only SAS system option settings, while autoexec
files can contain any valid SAS statement. For example, you might want to create
an autoexec file that includes an OPTIONS statement to change the default values
of various system options and LIBNAME and FILENAME statements for the SAS
data libraries and external files that you use most often.

� Configuration files are processed before SAS initializes, while autoexec files are
processed immediately after SAS initializes but before it processes any source
statements. An OPTIONS statement in an autoexec file is equivalent to
submitting an OPTIONS statement as the first statement of your SAS session.

Creating a Configuration File
To create a configuration file, follow these steps:

1 Use a text editor to write the SAS system options into a UNIX file. Save the file as
either sasv9.cfg or .sasv9.cfg. (See “Order of Precedence for SAS Configuration
Files” on page 17 for more information.)

2 Specify one or more system options on each line. Use the same syntax that you
would use for specifying system options with the SAS command – except do not
include the SAS command itself. For example, a configuration file might contain
the following lines:

-nocenter
-verbose
-linesize 64
-work /users/myid/tmp

3 Close the configuration file.

Order of Precedence for SAS Configuration Files
SAS is shipped with a default configuration file in the !SASROOT directory. Your SAS

Installation Representative can edit this configuration file so that it contains whichever
options are appropriate to your site.

You can also create one or more of your own configuration files. SAS reads option
settings from each of these files in the following order:*

1 sasv9.cfg in the !SASROOT directory. (See Appendix 1, “The !SASROOT Directory,”
on page 397.)

2 .sasv9.cfg in your home directory. (Notice the leading period.)

3 sasv9.cfg in your home directory.

4 sasv9.cfg in your current directory.

5 any restricted configuration files. Restricted configuration files contain system
options that are set by the site administrator and cannot be changed by the user.
Options can be restricted globally, by group, or by user. For more information
about restricted configuration files, see SAS System Configuration Guide for UNIX.

SAS uses the last value it encounters for a system option. For example, if the
WORKPERMS system option is specified in sasv9.cfg in the !SASROOT directory and in
sasv9.cfg in your current directory, SAS will use the value specified in sasv9.cfg in your
current directory.

* For future versions of SAS, the names of these files will change accordingly.

18 Specifying a Configuration File for SAS to Use Chapter 1

Specifying a Configuration File for SAS to Use
When you specify a configuration file for SAS to use, you bypass the search of the

configuration files listed in “Order of Precedence for SAS Configuration Files” on page
17.

Note: SAS still processes any restricted configuration files that exist. The settings in
these files take precedence over the settings in the configuration file that you specify. �

To specify a configuration file, complete one of the following steps:
� specify a configuration file with the CONFIG system option in the SAS command:

sas -config filename

� specify a configuration file in the SASV9_OPTIONS environment variable. See
“Defining Environment Variables in UNIX Environments” on page 21. For
example, in the Korn shell, you would use:

export SASV9_OPTIONS=’-config filename’

� define the environment variable SASV9_CONFIG. See “Defining Environment
Variables in UNIX Environments” on page 21. For example, in the Korn shell, you
would use:

export SASV9_CONFIG=filename

filename is the name of a file containing SAS system options.
If you have specified a configuration file in the SASV9_OPTIONS or SASV9_CONFIG

environment variables, you can prevent SAS from using that file by specifying
NOCONFIG in the SAS command.

Customizing Your SAS Session Using System Options
You can customize your SAS environment in several ways. One way is through the

use of SAS system options. For information about other ways to customize a SAS
session, see Chapter 3, “Customizing the SAS Windowing Environment,” on page 53.

Ways to Specify a SAS System Option
SAS options can be specified in one or more ways:
� in a configuration file
� in the SASV9_OPTIONS environment variable
� in the SAS command
� in an OPTIONS statement (either in a SAS program or an autoexec file)
� in the System Options window.

Table 17.3 on page 385 shows where each SAS system option can be specified.
Any options that do not affect the initialization of the SAS, such as CENTER and

NOCENTER, can be specified and changed at any time.
Some options can be specified only in a configuration file, in the SASV9_OPTIONS

variable, or in the SAS command. These options determine how SAS initializes its
interfaces with the operating system and the hardware; they are often called
configuration options. After you start a SAS session, these options cannot be changed.
Usually, configuration files specify options that you would not change very often. In

Getting Started with SAS in UNIX Environments Overriding the Default Value for a System Option 19

those cases when you need to change an option just for one job, specify the change in
the SAS command.

Overriding the Default Value for a System Option

The default values for SAS system options will be appropriate for many of your SAS
programs. However, you can override a default setting using one or more of the
following methods:

configuration file
Modify your current configuration file (see “Order of Precedence for SAS
Configuration Files” on page 17) or create a new configuration file. Specify SAS
system options in the file by preceding each with a hyphen. For ON/OFF options,
just list the keyword corresponding to the appropriate setting. For options that
accept values, list the keyword identifying the option followed by the option value.
All SAS system options can appear in a configuration file.

For example, a configuration file might contain these option specifications:

-nocenter
-verbose
-linesize 64

SASV9_OPTIONS environment variable
Specify SAS system options in the SASV9_OPTIONS environment variable before
you invoke SAS. See “Defining Environment Variables in UNIX Environments” on
page 21.

Settings that you specify in the SASV9_OPTIONS environment variable affect
SAS sessions that are started when the variable is defined.

For example, in the Korn shell, you would use:

export SASV9_OPTIONS=’-xwait -nodate’

SAS command
Specify SAS system options in the SAS command. Precede each option with a
hyphen:

sas -option1 -option2...

For ON/OFF options, list the keyword corresponding to the appropriate setting.
For options that accept values, list the keyword that identifies the option, followed
by the option value. For example,

sas -nodate -work mywork

Settings that you specify in the SAS command last for the duration of the SAS
session; or, for those options that can be changed within the session, until you
change them. All options can be specified in the SAS command.

OPTIONS statement within a SAS session
Specify SAS system options in an OPTIONS statement at any point within a SAS
session. The options are set for the duration of the SAS session or until you
change them. When you specify an option in the OPTIONS statement, do not
precede its name with a hyphen (-). If the option has an argument, use = after the
option name.

For example,

options nodate linesize=72;
options editcmd=’/usr/bin/xterm -e vi’;

20 How SAS Processes System Options Set in One Place Chapter 1

Refer to SAS Language Reference: Dictionary for more information on the
OPTIONS statement. Not all options can be specified in the OPTIONS statement.
To find out about a specific option, look up its name in Table 17.3 on page 385.

OPTIONS statement in an autoexec file
Specify SAS system options in an OPTIONS statement in a autoexec file. For
example, your autoexec file could contain the following statements:

options nodate pagesize=80;
filename rpt ’/users/myid/data/report’;

System Options window
Change the SAS system options from within the System Options window.

In general, use quotation marks to enclose filenames and pathnames specified in the
OPTIONS statement or the System Options window. Do not use quotation marks
otherwise. Any exceptions are discussed under the individual option. You can use the
abbreviations listed in Table 4.6 on page 115 to shorten the filenames and pathnames
you specify.

How SAS Processes System Options Set in One Place
If the same option is set more than once within the SAS command, a configuration

file, or the SASV9_OPTIONS environment variable, only the last setting is used; the
others are ignored. For example, the DMS option is ignored in the following SAS
command:

sas -dms -nodms

The DMS option is also ignored in the following configuration file:

-dms
-linesize 80
-nodms

By default, if you specify the HELPLOC, MAPS, MSG, SAMPLOC, SASAUTOS, or
SASHELP system options more than one time, the last value that is specified is the
value that SAS uses. If you want to add additional pathnames to the pathnames
already specified by one of these options, you must use the APPEND or INSERT system
options. See “APPEND System Option” on page 315 and “INSERT System Option” on
page 337 for more information.

How SAS Processes System Options Set in Multiple Places
When the same option is set in more than one place, the most recent specification is

used. The following places are listed in order of precedence. For example, a setting
made in the System Options window or OPTIONS statement will override any other
setting, but if you set a system option using the SASV9_OPTIONS environment
variable, then this will override only the setting for the same system option in your
configuration file.

Precedence for Processing System Options
The precedence for processing system options is as follows:

1 System Options window or OPTIONS statement (from a SAS session or job).

2 autoexec file that contains an OPTIONS statement (after SAS initializes)

Getting Started with SAS in UNIX Environments How to Define an Environment Variable for Your Shell 21

3 SAS command
4 SASV9_OPTIONS environment variable
5 configuration files (before SAS initializes). For more information, see “Order of

Precedence for SAS Configuration Files” on page 17.

For example, if a configuration file specifies NOSTIMER, you can override the setting
in the SAS command.

By default, if you specify the HELPLOC, MAPS, MSG, SAMPLOC, SASAUTOS, or
SASHELP system option more than one time, the last value that is specified is the
value that SAS uses. If you want to add additional pathnames to the pathnames
already specified by one of these options, you must use the APPEND or INSERT system
options to add the new pathname. See “APPEND System Option” on page 315 and
“INSERT System Option” on page 337 for more information.

Defining Environment Variables in UNIX Environments

What Is an Environment Variable?
Environment variables are variables that apply to both the current shell and to any

subshells it creates (for example, when you send a job to the background or execute a
script). If you change the value of an environment variable, the change is passed
forward to subsequent shells but not backward to the parent shell.

In a SAS session, you can use the SASV9_OPTIONS environment variable to specify
system options and the SASV9_CONFIG environment variable to specify a
configuration file. You can also use environment variables as filerefs and librefs in
various statements and commands.

Note: A SAS/ACCESS product initializes the environment variables it needs when
loading. Any changes that you make to an environment variable after initialization will
not be recognized. For more information, see the documentation for your SAS/ACCESS
product. �

How to Define an Environment Variable for Your Shell
The way in which you define an environment variable depends on the shell that you

are running. (To determine which shell you are running, type ps at the command
prompt or echo $shell to see the current value of the SHELL environment variable.)

Bourne and Korn Shells
In the Bourne shell and in the Korn shell, use the export command to export one or

more variables to the environment. For example, these commands make the value of
the variable scname available to all subsequent shell scripts:

$ scname=phonelist
$ export scname

In the Korn shell, you can combine these into one command:

$ export scname=phonelist

If you change the value of scname, the new value affects both the shell variable and
the environment variable. If you do not export a variable, only the shell script in which
you define has access to its value.

22 Displaying the Value of an Environment Variable Chapter 1

C Shell
In the C shell, you set (define and export) environment variables with the setenv

(set environment) command. For example, this command is equivalent to the
commands shown previously:

% setenv scname phonelist

Displaying the Value of an Environment Variable
To display the values of individual environment variables, use the echo command

and parameter substitution. An example is: echo $SHELL which returns the current
value of the SHELL environment variable. Use the env (or printenv) command to
display all environment variables and their current values.

Determining the Completion Status of a SAS Job in UNIX Environments
The exit status for the completion of a SAS job is returned in $status for the C shell,

and in $? for the Bourne and Korn shells. A value of 0 indicates normal termination.
You can affect the exit status code by using the ABORT statement. The ABORT
statement takes an optional integer argument, n, which can range from 0 to 255.

The following table summarizes the values of the exit status code.

Table 1.1 Exit Status Code Values

Condition
Exit Status
Code

All steps terminated normally 0

SAS System issued warning(s) 1

SAS System issued error(s) 2

User issued ABORT statement 3

User issued ABORT RETURN statement 4

User issued ABORT ABEND statement 5

User issued ABORT RETURN n statement n

User issued ABORT ABEND n statement n

If you specify the ERRORABEND SAS system option on the command line, and the
job has errors, the exit status code is set to 5.

UNIX exit status codes are in the range 0-255. Numbers greater than 255 may not
print what the user expects because the code is interpreted as a signed byte.

Interrupting or Terminating Your SAS Session in UNIX Environments

Preferred Methods of Exiting SAS
The preferred methods of exiting a SAS session are the following:

Getting Started with SAS in UNIX Environments Additional Methods for Interrupting or Terminating SAS 23

� select

File Exit

if you are using SAS in the windowing environment
� use endsas;

� enter BYE in the command line
� use CTRL+D if you are using SAS in interactive line mode.

Additional Methods for Interrupting or Terminating SAS
In addition to the preferred methods, you can terminate SAS in the following ways:
� Press the interrupt or quit control key
� Use the session manager
� Enter the UNIX kill command.

Although you can terminate SAS using these techniques, you should try one of the four
preferred techniques listed first.

Using Control Keys
Control keys enable you to interrupt or terminate your session by simply pressing

the interrupt or quit key sequence. However, control keys can be used only when your
SAS program is running in interactive line mode or in batch mode in the foreground.
You cannot use control keys to stop a background job.

Note: You cannot use control keys to stop a batch job that has been submitted with
the batch, at, nohup, or cron command. �

Because control keys vary from system to system, issue the UNIX stty command to
determine which key sends which signal. The stty command varies considerably
among UNIX operating environments, so check the stty UNIX man page before using
it. Usually, one of these forms of the command will print all of the current terminal
settings:

stty
stty -a
stty everything

The output should contain lines similar to these:

intr = ^C; quit = ^\; erase = ^H;
kill = ^U; eof = ^D; eol = ^@

The caret (^) stands for the CTRL key. In this example, CTRL+C is the interrupt key
and CTRL+\ is the quit key.

Using the SAS Session Manager
If you invoke SAS in the windowing environment, you can use the session manager

to interrupt or terminate your SAS session. The session manager is automatically
iconified when you start SAS. To interrupt or terminate your SAS session, open the SAS
Session Manager window and click Interrupt or Terminate .

Note: Clicking Interrupt is equivalent to specifying the -SIGINT option on the kill
command. Clicking Terminate is equivalent to specifying the -SIGTERM option on the
kill command. �

24 Messages in the SAS Console Log Chapter 1

Using the UNIX kill Command
Note: Only use the kill command after you have tried all other methods to exit

your SAS session. �

The kill command sends an interrupt or quit signal to SAS, depending on which
signal you specify. You can use the kill command to interrupt or terminate a SAS
session running in any mode. The kill command cannot be issued from within a SAS
session. You must issue it from another terminal or from another window (if your
terminal permits it).

The format of the kill command is

kill <-signal-name> pid

To send the interrupt signal, specify -SIGINT. To send the terminate signal, specify
-SIGTERM. Use the ps command to determine the process identification number (pid) of
the SAS session that you want to interrupt or terminate.

For example, suppose you want to stop a SAS job running in the background. First,
issue the ps command to determine the PID of the SAS job.

> ps
PID TTY TIME COMMAND
2103 ttyu0 0:00 motifxsa
2111 ttyu0 0:01 sas
2116 ttyu0 0:00 ps
3856 ttyu2 0:03 ksh

Four PIDs appear, but only one is for a SAS program. (motifxsa is the SAS session
manager. See “The SAS Session Manager (motifxsassm) in UNIX” on page 33 for more
information.) Therefore, to send the interrupt signal to that SAS program, you would
issue this command:

kill -SIGINT 2111

SAS replies with a prompt:

Press Y to cancel submitted statements,
N to continue.

For more information, refer to the UNIX man pages for the ps and kill commands.

Messages in the SAS Console Log
If SAS encounters an error or warning condition when the SAS log is not available,

then any messages that SAS issues are written to the SAS console log. Normally, the
SAS log is unavailable only early in SAS initialization and late in SAS termination.

Under UNIX, the STDOUT fileref specifies the location of the console log.

Ending a Process That Is Running as a SAS Server

If you need to end a process running as a SAS server, use one of the following
methods:

� If you are using the SAS Metadata Server, use the SAS Management Console to
end a process.

� If you are using another SAS server, use the UNIX scripts that shipped with the
servers to stop the process. You can also use these scripts to start (or restart) a

Getting Started with SAS in UNIX Environments How to Interrupt a SAS Process 25

server, as well as determine if the server is already running. For more information
about these scripts, contact your site administrator.

Note: If the server does not respond to the UNIX script, then you can use the
kill command to end the server process. For more information, see “Using the
UNIX kill Command” on page 24.

Ending a SAS Process on a Relational Database

How to Interrupt a SAS Process
CAUTION:

When you interrupt a SAS process, you might terminate the current query. If you are
using the current query to create a new data set, then the data set is still created
even if the query is terminated. If you are using the current query to overwrite a
data set, the data set is not overwritten if the query is terminated. In either case,
however, you do not receive a warning that the query did not complete. �

The method that you use to interrupt a SAS process depends on how you invoke SAS.

� If you are running SAS in interactive line mode or in batch mode using a
foreground process, then you can use either of the following methods to interrupt
SAS:

� Press the control key sequence that is set to interrupt in the shell that
invoked SAS. In most cases, this control key sequence is CTRL+C. See the
man page for the stty command to determine the appropriate key sequence
for your environment.

Note: This control key sequence will not interrupt a SAS process if you issue
it in a SAS window, such as the Program Editor or SAS log.

� Use the -SIGINT option in the kill command. For more information, see
“Using the UNIX kill Command” on page 24

� If you are running the SAS windowing environment in the foreground, then click
Interrupt in the SAS Session Manager.

� If you are running an interactive SAS process in the background, then you must
click Interrupt in the SAS Session Manager. You cannot use a control key
sequence to interrupt the SAS process.

The interrupt signal is sent to the DATA step or procedure that is currently
executing for interpretation. The interrupt signal is interpreted differently by DATA
steps and procedures. The actions that you can take appear in the interrupt menu.
Since the options in the interrupt menu are dependent on what is currently executing,
you might see a different interrupt menu for the following:

� each SAS procedure. The options available for PROC SORT differ from those
available for PROC SQL.

� a DATA step. The options available when SAS is processing a DATA step are
different from when SAS is processing a procedure.

� each SAS application. For example, SAS webAF has a different interrupt menu
than the one for PROC SQL.

Note: Depending on the relational database, the interrupt signal might be handled
differently. If the DATA step or procedure does not respond to the interrupt in a given
amount of time, then SAS does not terminate the current DATA step or procedure. �

26 How to Terminate a SAS Process Chapter 1

Example: Interrupt Menu for PROC SQL
The following is an example of the interrupt menu that you might see if you issue an

interrupt signal while SAS is processing a PROC SQL statement:

Select:
1. Cancel Submitted Statements
2. Halt Datastep/Proc: SQL
C. Cancel the dialog
T. Terminate the SAS System

The following table explains each of these options:

Table 1.2 Description of Interrupt Menu Options for PROC SQL

Option Description What This Option Does

1 Cancel Submitted
Statements

Selecting this option will end the current DATA step or procedure
and the underlying DBMS process. In interactive mode, you will
return to the command prompt.

2 Halt Datastep/Proc:
SQL

If you select this option and SAS is currently executing an SQL
procedure, then the following menu appears:
Press:

C to continue
Q to cancel the current query
S to cancel the submitted statements
X to exit SQL procedure
?

� If you select C, then the menu will disappear, but since the
current query ended when you interrupted the SAS process,
SAS will not return to the current query. Instead, SAS will
begin processing the next line of code.

� If you select Q, then SAS cancels the current query even if
it is on a relational database. SAS continues processing the
next statement.

� If you select S, then all of the PROC SQL statements that
you submitted are cancelled.

� If you select X, SAS exits the current SQL procedure and
starts processing the next statement in the submit block.

C Cancel the dialog Selecting this option returns you to normal processing; however,
the current query might have been interrupted. If you are
running a long query and the control is on the DBMS server, then
selecting C will end the current query. If you are running a short
query and SAS has the control, then selecting C will cause the
interrupt menu to disappear and the current query will continue.
To determine whether or not the query was interrupted while
reading or writing out the DBMS data, use PROC PRINT to view
the partially created DBMS table or SAS data set.

T Terminate the SAS
System

Selecting this option ends your SAS session as well as the current
query.

How to Terminate a SAS Process
The method that you use to terminate a SAS process depends on how you invoke SAS.

Getting Started with SAS in UNIX Environments What Happens When You Interrupt a SAS Process and the Underlying DBMS

Process 27

� If you are running in interactive line mode or in batch mode using a foreground
process, use the -SIGTERM option in the kill command. For more information, see
“Using the UNIX kill Command” on page 24:

� If you are running the SAS windowing environment in the foreground, then click
Terminate in the SAS Session Manager.

� If you are running an interactive SAS process in the background, then you must
click Terminate in the SAS Session Manager. You cannot use a control key
sequence to terminate the SAS process.

If you click Terminate in the SAS Session Manager, then a dialog box appears
confirming that you want to end the session. If you click OK , then both the SAS
session and the current query are terminated. If you click Cancel , then you are
returned to the SAS session.

What Happens When You Interrupt a SAS Process and the Underlying
DBMS Process
CAUTION:

Interrupting a SAS process and the underlying DBMS process might kill all jobs that are
running on your DBMS. Interrupting your SAS and DBMS processes should be an
exception. Extensive care should be taken when you construct your queries. �

Note: In this section, SAS process refers to a series of events. It is not the process
on the operating system. When you interrupt or terminate a SAS process, the process
on the operating system might still be running. �

When you interrupt or terminate a query on a server, the following processes stop:

� processing of current extractions. For example, suppose you forgot to include a
WHERE clause in your SQL query and are now extracting 1 billion rows into SAS.
Issuing an interrupt stops the SAS process and the extract step in the DBMS.

� processing of queries that are in progress on the server. For example, you have a
very complex extract query that runs for a long time before producing a result.
Issuing an interrupt stops the SAS and DBMS processes. As a result, the complex
query running on your DBMS server is interrupted and terminated.

� update, delete, and insert processing. For example, you are updating, deleting, or
inserting many rows in your DBMS. An interrupt stops the SAS and DBMS
processes.

28

29

C H A P T E R

2
Working in the SAS Windowing
Environment

Definition of the SAS Windowing Environment 30

Description of SAS in the X Environment 31
Definition of X Window System 31

X Window Managers 31

SAS Window Session ID 31
Workspace and Gravity in a SAS Session 31

Window Types 32

Top-Level Windows 32
Interior Windows 32

The SAS Session Manager (motifxsassm) in UNIX 33
What Is the SAS Session Manager? 33

Features of the SAS Session Manager 33

Disabling the SAS Session Manager 34
Displaying Function Key Definitions in UNIX Environments 34

Benefits of Assigning Function Key Definitions 34

How to Display Function Key Definitions 34
The SAS ToolBox in UNIX Environments 35

Introduction to the SAS ToolBox 35
Customizing the Default Toolbox 36

Default Configuration for the Command Window and the Toolbar 36

Opening and Closing the Command Window and the Toolbar 36
Executing Commands 38

Opening Files in UNIX Environments 39

Opening the Open Dialog Box 39
Description of the Open Dialog Box Options 40

Specifying the Initial Filter and Directory Using SAS Resources 40
Using Regular Expressions in Filenames 40

Changing Your Working Directory in UNIX Environments 41

What Is Your Working Directory? 41
Changing Your Working Directory 41

Change Working Directory Dialog Box 41

Selecting (Marking) Text in UNIX Environments 42
Difference between Marking Character Strings and Blocks 42

Techniques for Selecting Text 43
Selecting Text with the Mouse 43

Selecting Text with the MARK Command 44

Selecting Text Using the Edit Menu 44
Copying or Cutting and Pasting Selected Text in UNIX Environments 44

Techniques for Copying or Cutting and Pasting Selected Text 44

How SAS Uses the Automatic Paste Buffer 45
Disabling the Automatic Paste Buffer 45

30 Definition of the SAS Windowing Environment Chapter 2

Copying and Pasting Text between SAS and Other X Clients 45

Using Drag and Drop in UNIX Environments 45
Difference between Default and Nondefault Drag and Drop 45

Limitations of Drag and Drop in UNIX 46

How to Drag and Drop Text 46
Searching For and Replacing Text Strings in UNIX Environments 46

What Are the Find and Replace Dialog Boxes? 46

Opening the Find Dialog Box 46
Description of the Find Dialog Box Options 46

Opening the Replace Dialog Box 46
Description of the Replace Dialog Box Options 47

Sending Mail from within Your SAS Session in UNIX Environments 47

Default E-mail Protocol in SAS 47
What Is the Send Mail Dialog Box? 47

Sending E-mail Using the Send Mail Dialog Box 48

Sending the Contents of a Text Window 48
Sending the Contents of a Non-Text Window 49

Changing the Default File Type 49
Configuring SAS for Host Editor Support in UNIX Environments 49

Requirements for Using a Host Editor 49

Invoking and Using Your Host Editor 50
How to Open and Use the Host Editor 50

Example 1: Invoking SAS to Use xedit with the HOSTEDIT Command 50

Example 2: Invoking SAS to Use vi 50
Troubleshooting the Transfer of Text Attributes 50

Getting Help in UNIX Environments 50

Definition of the SAS Windowing Environment
The SAS windowing environment refers to the windows that open when you invoke

SAS. These windows include: the Program Editor, Log, Output, Explorer, and Results.
These windows appear when you start SAS from your workstation or through an
emulator. For more information about these windows, see SAS Help and
Documentation.

The SAS windowing environment supports the use of X-based graphical user
interfaces (GUIs). In UNIX environments, SAS provides an X Window System interface
that is based on the Motif style.

Many features of the SAS windowing environment are controlled by X resources. For
example, colors, window sizes, the appearance of the Toolbox, and key definitions are all
controlled through X resources. Chapter 3, “Customizing the SAS Windowing
Environment,” on page 53 provides general information about resources, such as how to
specify resources, and describes all of the resources that you can use to customize the
interface.

Working in the SAS Windowing Environment Workspace and Gravity in a SAS Session 31

Description of SAS in the X Environment

Definition of X Window System
The X Window System is a networked windowing system. If several machines are on

a network, you can run an X server that in turn serves X applications (as clients) to all
the other machines in the network.

X Window Managers
In UNIX environments, SAS features an X Window System interface that is based

on Motif. This interface uses the window manager on your system to manage the
windows on your display. Any window manager that is compliant with the Inter-Client
Communication Conventions Manual (ICCCM) can be used with the Motif interface to
SAS. Vendors provide at least one window manager with the X Window System
environment. A common window manager is the Common Desktop Environment (CDE).
If you are using another window manager, such as Gnome, you should also read the
documentation that is supplied by the vendor for that window manager.

All window managers perform the same basic functions, but they differ in their style
and in their advanced functions. The appearance and function of the interface to SAS
depends to some extent on your X window manager. Most window managers provide
some kind of frame around a window. The window manager also governs the
placement, sizing, stacking, and appearance of windows, as well as their interaction
with the keyboard. The basics of interacting with SAS are the same for all window
managers: opening pull-down and pop-up menus, moving windows, responding to dialog
boxes, dragging text, and so on.

SAS Window Session ID
When you run SAS on an X workstation, SAS shares the display with other X

applications, including other SAS sessions. To enable you to distinguish between
different applications and SAS sessions, SAS generates a SAS window session ID for
each session by appending a number to the application name, which by default is SAS.
This session ID appears in the window title bar for each SAS window and in the
window icon title. The SAS sessions are assigned sequentially. Your first SAS session is
not assigned a number, so the session ID is SAS; your second SAS session is assigned
the session ID SAS2, and so on. Although the default application name is SAS, you can
use the -name X option to change the instance name. The instance name can be up to
six characters long.

Workspace and Gravity in a SAS Session
When you use SAS on an X workstation, the display may be shared by many

concurrent applications. When SAS windows from several different sessions and
windows from other applications appear on the display, the display can become
cluttered. To help alleviate this problem, the windows for a SAS session first appear
within an application workspace (AWS). The AWS defines a rectangular region that
represents a virtual display in which SAS windows are initially created. SAS attempts
to position the AWS in relation to the upper-left corner of your display. In other words,
the workspace gravitates toward a certain direction (session gravity) on the display.

32 Window Types Chapter 2

Some window manager configurations might override the placement that SAS has
chosen for a window.

If you issue windowing commands or execute SAS procedures that create new SAS
windows, the same rules of initial position and size apply to these windows: they are
initially placed in the SAS AWS. You can use the WSAVE command to save the current
window positions (or geometry). See “Customizing Session Workspace, Session Gravity,
and Window Sizes in UNIX Environments” on page 93 for details.

Window Types

Top-Level Windows
SAS uses primary and interior windows. Some SAS applications consist of one or

more primary windows controlled by the X window manager in addition to the interior
windows controlled by SAS. The SAS windowing environment primary windows, as well
as most SAS application windows, initially appear as top-level windows. Top-level
windows interact directly with the X window manager. They have a full title bar along
with other window manager decorations. You can manipulate them individually once
they appear on the display.

Interior Windows
Interior windows behave differently than primary windows. SAS/ASSIST software is

an application with interior windows. Interior windows are contained within container
windows, which may or may not be primary windows. The following display shows an
interior window in SAS/ASSIST software.

Display 2.1 Sample Interior Window

SAS provides some degree of window management for interior windows. Specifically,
interior windows have the following sizing and movement capabilities:

� You can move interior windows by clicking the interior window title bar and
dragging the window to the desired location. If the destination of the interior
window is outside the bounds of the container window, the container window
changes according to the value of the SAS.awsResizePolicy resource. (The space
within the container window is the application workspace, which is described in
“Workspace and Gravity in a SAS Session” on page 31.) See “Overview of X
Resources” on page 55 for more information.

Working in the SAS Windowing Environment Features of the SAS Session Manager 33

� Interior windows cannot be iconified individually. Clicking on the container
window icon button iconifies the container window and its interior windows.

� A push-to-back button (the small overlapping squares in the upper right corner) is
also available with interior windows. However, you cannot push an active window
behind an inactive window.

The SAS Session Manager (motifxsassm) in UNIX

What Is the SAS Session Manager?
The SAS Session Manager for X (motifxsassm) is an X client that is run by SAS

when you use the SAS windowing environment. The session manager appears as shown
in the following display.

Display 2.2 SAS Session Manager Dialog Box

The session manager window describes the following:
� which SAS session it controls
� the host machine from which the SAS session was invoked
� the UNIX process identifier of the SAS session.

When SAS opens, the session manager window is automatically minimized (iconified).

Features of the SAS Session Manager
The session manager enables you to
� map and iconize all windows of the SAS session. The Restore and Minimize

buttons restore and minimize all of the windows that are open in the SAS session
that is controlled by that session manager. These functions are performed with
standard X library calls and will work with most X window managers.

� interrupt the SAS session. The Interrupt button sends a UNIX signal to SAS.
When SAS receives the signal, it displays a dialog box that asks for confirmation
before it cancels the submitted statements.

� terminate the SAS session. Terminate displays a dialog box that asks you to
confirm that you want to terminate the SAS session. If you select OK , the session
manager sends a UNIX signal to the SAS session that forces the session to
terminate.

CAUTION:
Terminating your SAS session might result in data loss or data corruption. Before
terminating your session, you should attempt to end SAS using one of the
methods described in “Preferred Methods of Exiting SAS” on page 22.

34 Disabling the SAS Session Manager Chapter 2

� use your host editor from within your SAS session. When you issue the
HOSTEDIT command, SAS passes the request to the session manager, which then
invokes your host editor, so the session manager must be running in order for the
HOSTEDIT command to take effect. When you issue the HOSTEDIT command,
SAS creates a temporary file that contains the data from the active SAS window
and passes this file to your host editor. (These temporary files are stored in the
directory specified by the SASWORK option.) When you save your file in the host
editor, the file is copied back into the SAS window if the window is writable, and
the temporary files are deleted when the SAS session ends. See “Configuring SAS
for Host Editor Support in UNIX Environments” on page 49 for more information.

Disabling the SAS Session Manager
You can disable the SAS Session Manager by performing one of the following steps:
� Select

Tools Options Preferences

On the General tab, deselect the Start Session manager check box.
� Specify the following X resource on the SAS command line at invocation:

sas -xrm ’SAS.startSessionManager: False’

Specifying the SAS.startSessionManager X resource will deselect the Start
Session manager check box in the Preferences dialog box.

Note: SAS saves the settings in the Preferences dialog box when it exits. If you
have disabled the SAS Session Manager during your session, then the next time you
invoke SAS, the SAS Session Manager will not run. To start the SAS Session Manager,
select the Start Session manager check box in the Preferences dialog box or specify
the following on the SAS command line at invocation:

sas -xrm ’SAS.startSessionManager: True’

�

Displaying Function Key Definitions in UNIX Environments

Benefits of Assigning Function Key Definitions
Function keys provide quick access to commands. They enable you to issue

commands, insert text strings, and insert commands in programs. Function key
definitions can be different on different terminals. These definitions are fully
customizable.

How to Display Function Key Definitions
You can open the KEYS (DMKEYS) window to display all of the your function key

definitions in one of the following ways:
� Press F2.
� Issue the KEYS command.

Working in the SAS Windowing Environment Introduction to the SAS ToolBox 35

� Select

Tools Options Keys

Display 2.3 KEYS (DMKEYS) Window

To view a single key definition without bringing up the KEYS window, use the
KEYDEF command and specify the key definition that you want to view. For example,
the following command displays the definition for key F4:

keydef f4

For information on customizing key definitions, see “Customizing Key Definitions in
UNIX Environments” on page 73. Refer to SAS Language Reference: Dictionary for
more information on the KEYS window and the KEYDEF command.

The SAS ToolBox in UNIX Environments

Introduction to the SAS ToolBox
The SAS ToolBox has two parts as illustrated in the following display:

� A command window that enables you to quickly enter any command in the active
SAS window. For information about commands that are available under UNIX, see
Chapter 9, “Commands under UNIX,” on page 201 and the SAS commands section
in the Base SAS Software section in SAS Help and Documentation.

� A toolbar that contains several tool icons. When you select a tool icon, SAS
immediately executes the command that is associated with that icon. The toolbar
and the tool icons are completely customizable. For more information, see “Using
the Tool Editor” on page 68.

36 Default Configuration for the Command Window and the Toolbar Chapter 2

Display 2.4 SAS ToolBox

The name of the active window is displayed in the title bar of the SAS ToolBox. For
example, if the Log window were active, the title bar would say SAS ToolBox: Log
instead of SAS ToolBox: Program Editor.

Under UNIX, the default SAS ToolBox automatically appears at the bottom of the
SAS windows stack by default. To control its configuration, you use the Preferences
dialog box. (See “Modifying the ToolBox Settings” on page 60.)

Customizing the Default Toolbox
The default toolbox is automatically copied to your

SASUSER.PROFILE.DMS.TOOLBOX regardless of whether you customize the toolbox.
If you invoke an application that does not have an associated PMENU entry, the default
toolbox is displayed for that application. If you then customize the toolbox for that
application, the customized toolbox is stored in
SASUSER.PROFILE.DEFAULT.TOOLBOX, where DEFAULT is the same entry name
as the PMENU entry for the window or application.

You can customize the default toolbox, create multiple toolboxes and switch between
them, and create application-specific toolboxes (such as with SAS/AF applications) that
are automatically loaded when the application is loaded. Only one toolbox is displayed
at a time, and the tools in the toolbox change as you move between applications. For
more information about customizing your toolboxes, see “Customizing Toolboxes and
Toolsets in UNIX Environments” on page 67.

Default Configuration for the Command Window and the Toolbar
By default, the toolbar and the command window are joined and are automatically

displayed when SAS initializes unless
� you executed your SAS job in a nonwindowing environment mode.
� the SAS.defaultToolBox or SAS.defaultCommandWindow resource is set to

False. The default value is True. For more information about the resources that
control the toolbox, see “X Resources That Control Toolbox Behavior” on page 67.

� you deselect Display tools window, Display command window, or Combine
windows from the Toolbox tab in the Preferences dialog box.

The following display shows the command window and the toolbar in their default
configuration.

Display 2.5 Default Configuration for Command Window and Toolbar

Opening and Closing the Command Window and the Toolbar
The following table lists the steps that you can use to open and close the command

window and toolbar.

Working in the SAS Windowing Environment Opening and Closing the Command Window and the Toolbar 37

Table 2.1 Steps for Opening and Closing the Command Window and the Toolbar

Window How to Open How to Close

Command
Window and
Toolbar

To open both windows, complete any
of the following steps:

� Issue the COMMAND
WINDOW command.

� Issue the TOOLLOAD
command. See “TOOLLOAD
Command” on page 217 for
more information.

� Select

Tools Options

Toolbox

To close these windows, complete any
of the following steps:

� Select Close from the ToolBox
window menu.

� Enter the TOOLCLOSE
command as described in
“TOOLCLOSE Command” on
page 216.

� Select

Tools Options

Toolbox

so that ToolBox is deselected.

38 Executing Commands Chapter 2

Window How to Open How to Close

Command
Window

To open only the command window:

1 Deselect Combine windows
in the ToolBox tab of the
Preferences dialog box.

2 Complete any of the following
steps:

� Select Display
command window in
the ToolBox tab of the
Preferences dialog box.

� Issue the COMMAND
WINDOW command.

To close only the command window:

1 Deselect Display command
window in the ToolBox tab of
the Preferences dialog box.

2 Select Close from the window
menu.

Toolbar To open only the toolbar:

1 Deselect Combine windows
in the ToolBox tab of the
Preferences dialog box.

2 Complete any of the following
steps:

� Select Display tools
window in the ToolBox
tab of the Preferences
dialog box.

� Issue the TOOLLOAD
command. See
“TOOLLOAD Command”
on page 217 for more
information.

� Select

Tools Options

Toolbox

To close only the toolbar:

1 Deselect Combine windows
in the ToolBox tab of the
Preferences dialog box.

2 Complete any of the following
steps:

� Deselect Display
tools window in the
ToolBox tab of the
Preferences dialog box.

� Issue the TOOLCLOSE
command as described in
“TOOLCLOSE Command”
on page 216.

� Select

Tools Options

Toolbox

so that ToolBox is
deselected.

Executing Commands
You can execute commands from either the command window or the toolbar. The

following table gives more details on how to execute commands.

Working in the SAS Windowing Environment Opening the Open Dialog Box 39

Table 2.2 Executing Commands in the Command Window and the Toolbar

Window Executing a Command

Command Window To execute a command, complete the following steps:

1 Click in the command window.

2 Type in the command.

3 Press ENTER or click the check mark.

The command is executed in the active SAS window. You can use the up
and down arrow keys to scroll through previously entered commands, or
you can select a previous command from the drop-down list. Use the left
mouse button to select a command from the drop-down list. Use MB2 to
select and execute a command from the list.

Toolbar Clicking a tool icon in the toolbar executes the command or commands
associated with that icon. If you place the cursor over an icon for the
amount of time specified by the SAS.toolBoxTipDelay resource, a
pop-up window displays text that describes the command for that icon.

Opening Files in UNIX Environments

Opening the Open Dialog Box
The Open dialog box enables you to select files from the host file system. To open

this dialog box, select

File Open

Display 2.6 Open Dialog Box

40 Using Regular Expressions in Filenames Chapter 2

Description of the Open Dialog Box Options
The following table describes the options found on the Open Dialog Box.

Table 2.3 Options in the Open Dialog Box

Option Description

Enter directory, filename,
or filter

is where you can type in the name of the directory, file, or
file filter (file type) that you want to open.

The directory shown under the Filter field is the currently
selected directory. You can change this directory either by
selecting a name from the Page of Directories list or by
typing the new name directly into the field. The dialog box
displays nonreadable directories with a different icon.

To display a list of all the files in a directory, enter the
asterisk (*) wild card in the Filter field or select All
Files; * as the file type.

Page of Directories contains the names of the directories specified in the
Filter and Page fields.

Files contains the files in the selected directory that match the
filter specified.

Page enables you to change the directories that are listed in the
Page of Directories list box. A new page is defined
when the number of entries in the Page of Directories
list exceeds twice the screen height. To change pages, use
the right or left arrows next to the Page field.

File type enables you to select the type or types of files to be shown in
the Files list box. You can display a list of possible file
filters by selecting the down arrow next to the field. Click on
a file filter to select it.

Ignore Case specifies that both uppercase and lowercase names be
included in the display. (If you select All Files; * as the
filter, both uppercase and lowercase names are displayed
whether or not you select Ignore Case.)

Include hidden includes or excludes hidden files and directories from the
graphical display.

Specifying the Initial Filter and Directory Using SAS Resources
You can specify the initial filter in the File type field by assigning a value to the

SAS.pattern resource. However, the Open dialog box retains its filter between
invocations, so the SAS.pattern resource applies only to the first invocation of the
Open dialog box. You can also use the SAS.directory resource to specify the directory
that you want when you first invoke the Open dialog box.

For more information about specifying SAS resources, see “Overview of X Resources”
on page 55.

Using Regular Expressions in Filenames
Everything that you enter into the Open dialog box is treated as a regular

expression. When you are opening or saving a file and you want to use a regular

Working in the SAS Windowing Environment Changing Your Working Directory 41

expression special character as part of the filename, precede the character with a
backslash (\). For example, to write to a file named $Jan, enter \$Jan as the filename.

For more information on regular expressions, refer to man page 5 for regexp:

man 5 regexp

Changing Your Working Directory in UNIX Environments

What Is Your Working Directory?
The working directory is the operating system directory to which many SAS

commands and actions apply. By default, SAS uses the current directory as the working
directory when you begin your SAS session.

Changing Your Working Directory
You can change the working directory during your SAS session. You can use the

Change Working Directory dialog box to select a new directory, or you can use the X
command, the X statement, the CALL SYSTEM routine, or the %SYSEXEC macro
statement to issue the change directory (cd) command. For information on the X
command and statement, the CALL SYSTEM routine, and the %SYSEXEC macro
statement, see “Executing Operating System Commands from Your SAS Session” on
page 13.

Change Working Directory Dialog Box
To open the Change Working Directory dialog box, issue the DLGCDIR command or

select

Tools Options Change Directory

42 Selecting (Marking) Text in UNIX Environments Chapter 2

Display 2.7 Change Working Directory Dialog Box

The Change Working Directory dialog box works exactly the same as the Open dialog
box, except that you cannot select a file from the list. For an explanation of the options
on the Change Working Directory dialog box, see “Description of the Open Dialog Box
Options” on page 40.

Selecting (Marking) Text in UNIX Environments

Difference between Marking Character Strings and Blocks
When you select text in a SAS window, you can select character strings or blocks.

Character strings include the text in successive columns of one or more rows, as shown
in the following display. Blocks are rectangular blocks that include the same columns
from successive rows, as shown in Display 2.9 on page 43.

Working in the SAS Windowing Environment Techniques for Selecting Text 43

Display 2.8 Strings That Are Marked

Display 2.9 Blocks That Are Marked

Techniques for Selecting Text
When using one of the following techniques, the text that you select might not

remain highlighted although it has been copied into the paste buffer.

Selecting Text with the Mouse
To select your text, complete the following steps:

1 Position the cursor at the beginning of the text that you want to mark.

2 Press and hold the left mouse button. If you want to select a block instead of a
string, press and hold the CTRL key before you press the left mouse button.

3 Drag the mouse pointer over the text that you want to mark.

44 Copying or Cutting and Pasting Selected Text in UNIX Environments Chapter 2

4 Press and hold down the Alt key (or Extend char key or Meta key, depending on
your keyboard) while you release the mouse button. The marks that are generated
by the mouse are called drag marks.

To extend an area of marked text, press and hold the Shift key, and use the left
mouse button and the Alt key (and the CTRL key, if you are marking a block) to mark
the new ending position. To unmark the selected text, press the mouse button
anywhere in the window.

Selecting Text with the MARK Command
You can issue the MARK command from the command line, or you can assign it to a

function key. With the MARK command, you can select more than one area of text in
the same window at the same time. For more information about the MARK command,
see SAS Help and Documentation.

To select your text, complete the following steps:
1 Position the cursor at the beginning of the text that you want to mark.
2 Issue the MARK command. If you want to select a block instead of a string, add

the BLOCK argument to the MARK command.
3 Move the cursor to the end of the text that you want to mark.
4 Issue the MARK command a second time.

To unmark the selected text, issue the UNMARK command.

Selecting Text Using the Edit Menu
To select your text using the Edit menu, complete the following steps:
1 Position the cursor at the beginning of the text that you want to mark.
2 Select

Edit Select

3 Position the cursor to the end of the text that you want to mark.
4 Press the left mouse button.

To unmark the selected text, select

Edit Deselect

Copying or Cutting and Pasting Selected Text in UNIX Environments

Techniques for Copying or Cutting and Pasting Selected Text
After you have marked text, you can copy or cut the text and paste it in another

location.
� To copy text, select the Copy icon from the toolbox, issue the STORE or WCOPY

command, or select

Edit Copy

� To cut text, select the Cut icon from the toolbox, issue the CUT or WCUT
command, or select

Edit Cut

Working in the SAS Windowing Environment Difference between Default and Nondefault Drag and Drop 45

� To paste the cut or copied text, select the Paste icon from the toolbox, issue the
PASTE or WPASTE command, or select

Edit Paste

For more information on the CUT, PASTE, and STORE commands, refer to SAS
Language Reference: Dictionary.

How SAS Uses the Automatic Paste Buffer
When you end a drag mark by releasing the mouse button without holding down the

Alt key, SAS performs an end-of-mark action that might automatically generate a
STORE command to save the contents of the mark into a SAS paste buffer. If the
STORE command is generated automatically, you do not have to explicitly copy the text
before you paste it.

Disabling the Automatic Paste Buffer
You can disable the automatic paste buffer in the following ways:
� Set the SAS.markPasteBuffer resource.
� Deselect Automatically store selection on the Editing tab in the Preferences

dialog box:

Tools Options Preferences

For more information, see “Customizing Cut-and-Paste in UNIX Environments” on page
91.

Copying and Pasting Text between SAS and Other X Clients
You can cut or copy and paste text between X clients if you associate the default SAS

paste buffer with a paste buffer specific to X. For example, if you associate the default
SAS paste buffer with the XTERM paste buffer, you can copy and paste text between
xterm windows and SAS windows. To associate the SAS buffer with an X buffer, specify
the SAS.defaultPasteBuffer resource. For example:

SAS.defaultPasteBuffer: XTERM

For more information about using paste buffers, see “Customizing Cut-and-Paste in
UNIX Environments” on page 91.

Using Drag and Drop in UNIX Environments

Difference between Default and Nondefault Drag and Drop
The SAS windowing environment on UNIX offers two types of drag and drop:

default and nondefault. Default drag and drop enables you to move text from one place
to another. Nondefault drag and drop enables you to choose whether to move or copy
the text, submit the text if you are dragging SAS code, or cancel the drag and drop
operation. With default drag and drop, you can drag text between SAS windows in
different SAS sessions and between SAS windows and other Motif applications, such as

46 Limitations of Drag and Drop in UNIX Chapter 2

Netscape, that support drag and drop. Nondefault drag and drop is available only
between windows in the same SAS session.

Limitations of Drag and Drop in UNIX
Under UNIX, you cannot drag and drop files or RTF (Rich Text Format) text.

How to Drag and Drop Text
To drag and drop text, first mark the text in one of the ways described in “Selecting

(Marking) Text in UNIX Environments” on page 42. To use default drag and drop,
simply use the middle mouse button (MB2) to drag the text where you want it. To use
nondefault drag and drop, press and hold the Alt (or Extend Char) key before you
release MB2.

Searching For and Replacing Text Strings in UNIX Environments

What Are the Find and Replace Dialog Boxes?
The Find and Replace dialog boxes (Display 2.10 on page 47) enable you to search

for and replace strings in SAS text editor windows such as the Program Editor, the SCL
editor, or the Notepad.

Opening the Find Dialog Box
To search for a string, open the Find dialog box by issuing the DLGFIND command

or by selecting

Edit Find

Description of the Find Dialog Box Options

The Find dialog box works like the Replace dialog box, except it does not have the
Replace field or the Replace and Replace All buttons.

For a description of the options on the Find Dialog Box, see “Description of the
Replace Dialog Box Options” on page 47.

Opening the Replace Dialog Box
To replace one text string with another, open the Replace dialog box by issuing the

DLGREPLACE command or by selecting

Edit Replace

Working in the SAS Windowing Environment What Is the Send Mail Dialog Box? 47

Display 2.10 Replace Dialog Box

Description of the Replace Dialog Box Options
To find a character string, type the string in the Find field, and select Find . To

change a character string, type the string in the Find field, type its replacement in the
Replace field, and select Replace . To change every occurrence of the string to its
replacement string, select Replace All .

You can tailor your find or replace operation using the following buttons:

Match Case
tells the search to match the uppercase and lowercase characters exactly as you
entered them.

Match Word
searches for the specified string delimited by space, end-of-line, or end-of-file
characters.

Previous
searches from the current cursor position toward the beginning of the file.

Next
searches from the current cursor position toward the end of the file.

Sending Mail from within Your SAS Session in UNIX Environments

Default E-mail Protocol in SAS
By default, SAS uses SMTP (Simple Mail Transfer Protocol) to send e-mail from

within your SAS session. You can use the EMAILSYS system option to specify which
script or protocol you want to use for sending electronic mail. See “EMAILSYS System
Option” on page 326 for more information.

For more information about the SMTP e-mail interface, see SAS Language Reference:
Concepts.

What Is the Send Mail Dialog Box?
The Send Mail dialog box (Display 2.11 on page 48) enables you to send e-mail

without leaving your current SAS session. To invoke the dialog box, issue the
DLGSMAIL command or select

48 Sending the Contents of a Text Window Chapter 2

File Send Mail

Display 2.11 Send Mail Dialog Box

Sending E-mail Using the Send Mail Dialog Box
To send e-mail, complete the following steps as needed:
� Enter the ID(s) of the e-mail recipients in the To, CC, and BCC fields. Separate

multiple addresses with either blanks or commas.
� Edit the entry in the Subject field as needed.
� Enter the name of the file that you want to send in the Attach field. Separate

multiple filenames with blanks. You can also use Browse to select a file.

Note: Some external scripts do not support sending e-mail attachments.

� Type your message in the message area or edit the contents grabbed from the
active SAS text window.

� Click Send .

To cancel a message, click Cancel .

Sending the Contents of a Text Window
You can e-mail the contents of an active SAS text window (such as the Program Editor

or the Log) by using the Send Mail dialog box. To open the Send Mail dialog box, select

Working in the SAS Windowing Environment Requirements for Using a Host Editor 49

File Send Mail

SAS automatically copies the contents of the active SAS window and includes the text
in the body of your e-mail. You can change or add to the e-mail message in the Send
Mail dialog box.

If you do not want to include the contents of the active SAS editor window in your
message, select

Edit Clear All

before invoking the Send Mail dialog box.

Sending the Contents of a Non-Text Window
To send the contents of a non-text window (such as a graph generated by SAS/

GRAPH or an image from your PROC REPORT output), select

File Send Mail

from the active SAS window. SAS automatically copies the image data to a temporary
file and enters that filename into the Attach field of the Send Mail dialog box. To
change the default file type for this temporary file, see “Changing the Default File
Type” on page 49.

SAS only copies the portion of the image that is visible in the active window, along
with the window frame and title. This behavior is similar to using the DLGSCRDUMP
command. For more information, see “DLGSCRDUMP Command” on page 208.

If you do not want to attach this image to your e-mail, clear the contents of the
Attach field.

Note: Some external scripts do not support sending e-mail attachments. �

Changing the Default File Type
You can change the default file type for the temporary file that SAS creates using the

Preferences dialog box. To open the Preferences dialog box, select

Tools Options Preferences

On the DMS tab in the Image type for Email attachments box, select one of the
following file types:

� Portable Network Graphics (.png)
� Graphics Interchange Format (.gif)
� Tagged Image File Format (.tif).

Configuring SAS for Host Editor Support in UNIX Environments

Requirements for Using a Host Editor
SAS supports the use of a host text editor with the Motif interface, so you can use

an editor such as vi or EMACS with your SAS session. There is no host editor set as
the default host editor, so you must specify one to use this feature. Host editor support
requires the use of the motifxsassm client. (See “The SAS Session Manager
(motifxsassm) in UNIX” on page 33 for more information.)

50 Invoking and Using Your Host Editor Chapter 2

Invoking and Using Your Host Editor

How to Open and Use the Host Editor
To use your host text editor with SAS, complete the following steps:

1 Specify the command required to invoke your editor with the EDITCMD system
option.

2 Invoke the editor as needed with the HOSTEDIT command.

The HOSTEDIT command passes data from a SAS window to the host editor. When
you save in the host editor, the data is copied back into the SAS window if the window
is writable.

After you return to the SAS text editor window, you can issue the UNDO command
to undo all of the changes that you made with your host editor. You must issue the
UNDO command a second time to return to the state of the window before the
HOSTEDIT command was issued. If you issue the HOSTEDIT command in a read-only
window, you can save your editing changes to an external file, but the SAS text editor
window remains unchanged.

See “EDITCMD System Option” on page 325 and “HOSTEDIT Command” on page
213 for more information.

Example 1: Invoking SAS to Use xedit with the HOSTEDIT Command
Some systems have an X-based editor installed that is called xedit. If you want to use

xedit with the HOSTEDIT command, you can invoke SAS with the following command:

sas -editcmd ’/usr/local/bin/xedit’

Example 2: Invoking SAS to Use vi
The vi editor is a terminal-based editor that requires a terminal window. The xterm

client’s -e option runs a program when the xterm client is invoked. To use the
EDITCMD option to display an xterm client in conjunction with vi, invoke SAS as
follows:

sas -editcmd ’/usr/bin/X11/xterm -e /usr/bin/vi’

Troubleshooting the Transfer of Text Attributes
Text attributes, such as color and highlighting, are not transferred between a host

editor window and a SAS text editor window. Issue the HEATTR ON command to
display a dialog box that will warn you if you are editing text with highlighting and
color attributes that will be removed by the host editor. This dialog box prompts you to
continue or abort the HOSTEDIT command. Specify HEATTR OFF to suppress this
dialog box.

Getting Help in UNIX Environments
The Help menu is always available within your SAS session. Here are descriptions

of the help topics available from the Help menu:

Working in the SAS Windowing Environment Getting Help in UNIX Environments 51

Using this Window
Help information that is relevant to the active window. This is the same as
clicking the Help button or pressing the F1 key.

SAS Help and Documentation
tutorials and sample programs to help you learn how to use SAS, comprehensive
documentation for all products installed at your site, and information about
contacting SAS for additional support.

Getting Started with SAS Software
opens a tutorial that will help you get started with SAS.

Learning SAS Programming
opens the SAS Online Tutor, if it is installed, to help you develop your SAS
programming skills. SAS Online Tutor is a separately licensed product.

SAS on the Web
provides links to useful areas on the SAS Institute Web site, including technical
support, frequently asked questions, sending feedback to SAS, and the SAS
homepage.

About SAS System
opens the About SAS System dialog box which provides information about SAS
software, your operating environment, and Motif.

52

53

C H A P T E R

3
Customizing the SAS Windowing
Environment

Overview of Customizing SAS in X Environment 54

Overview of X Resources 55
Introduction to X Resources 55

Syntax for Specifying X Resources 55

Methods for Customizing X Resources 55
Modifying X Resources through the Preferences Dialog Box 57

What Is the Preferences Dialog Box? 57

Opening the Preferences Dialog Box 57
Description of the Options on the Preferences Dialog Box 58

Modifying the General Settings 58
Modifying the DMS Settings 58

Modifying the Editing Settings 59

Modifying the Results Settings 60
Modifying the ToolBox Settings 60

Setting X Resources with the Resource Helper 62

Introduction to the Resource Helper 62
How to Start the Resource Helper 62

Starting the Resource Helper from a SAS Session 62
Starting the Resource Helper from a Shell Prompt 62

Defining Keys with the Resource Helper 63

How to Define a Key 63
Troubleshooting Incorrect Key Definitions 64

Modifying the Color of a SAS Window Using the Resource Helper 64

How to Use the Color Window 64
Example: Changing the Color of a SAS Window 65

Returning to the Default Settings 66
Permanently Saving Your Color Settings 66

How the Resource Helper Searches for X Resources 66

Customizing Toolboxes and Toolsets in UNIX Environments 67
Techniques for Customizing Toolboxes 67

X Resources That Control Toolbox Behavior 67

Using the Tool Editor 68
What Is a Toolset? 68

Invoking the Tool Editor 69
Changing the Appearance of the Entire Toolbox 69

Changing an Existing Tool 70

Adding Tools to the Toolbox 70
Changing the Order of the Tools in the Toolbox 71

Deleting Tools from the Toolbox 71

Returning to the Default Settings 71
Saving Changes to the Toolbox or Toolset 71

54 Overview of Customizing SAS in X Environment Chapter 3

Creating a New Toolbox 72

Creating or Customizing an Application- or Window-Specific Toolbox 72
Creating or Customizing an Application- or Window-Specific Toolset 72

Customizing Key Definitions in UNIX Environments 73

Techniques for Customizing Your Key Definitions 73
Defining Key Translations 74

What Is a Key Translation? 74

What Is the SAS.keyboardTranslations Resource? 74
Steps for Creating a Key Definition 74

Determining Keysyms 75
Syntax of the SAS.keyboardTranslations Resource 75

Syntax of the SAS.keysWindowLabels Resource 76

SAS Keyboard Action Names 77
Examples: Defining Keys Using SAS Resources 80

Customizing Fonts in UNIX Environments 80

Difference between the System Font and Windowing Environment Fonts 80
How SAS Determines Which Windowing Environment Font To Use 81

Customizing Fonts Using the Fonts Dialog Box 81
Introduction to the Fonts Dialog Box 81

How to Change the Windowing Environment Font 81

Specifying Font Resources 82
Specifying Font Aliases 83

Example: Substituting the Lucida Font for Palatino 84

Customizing Colors in UNIX Environments 84
Methods for Customizing the Color Settings in Your SAS Session 84

Customizing Colors Using the SASCOLOR Window 85
Syntax of the COLOR Command 85

Defining Color Resources 86

Types of Color Resources 86
Specifying RGB Values or Color Names for Foreground and Background Resources 86

Defining Colors and Attributes for Window Elements (CPARMS) 88

Controlling Contrast 90
Controlling Pull-Down Menus in UNIX Environments 91

Customizing Cut-and-Paste in UNIX Environments 91
Types of Paste Buffers 91

Selecting a Paste Buffer 92

Manipulating Text Using a Paste Buffer 92
Notes on Preserving Text and Attribute Information 93

Customizing Session Workspace, Session Gravity, and Window Sizes in UNIX Environments 93

Specifying User-Defined Icons in UNIX Environments 94
Why Specify User-Defined Icons? 94

How SAS Locates a User-Defined Icon 95
X Resources for Specifying User-Defined Icons 95

Miscellaneous Resources in UNIX Environments 96

Summary of X Resources for SAS in UNIX Environments 97

Overview of Customizing SAS in X Environment
The SAS windowing environment supports the use of X-based graphical user

interfaces (GUIs). In UNIX environments, SAS provides an X Window System interface
that is based on the Motif style. For more information on SAS in the X environment,
see “Description of SAS in the X Environment” on page 31.

You can customize your working environment by using X resources.

Customizing the SAS Windowing Environment Methods for Customizing X Resources 55

Overview of X Resources

Introduction to X Resources
X clients usually have characteristics that can be customized; these properties are

known as X resources. Since SAS functions as an X windows client, many aspects of the
appearance and behavior of the SAS windowing environment are controlled by X
resources. For example, X resources can be used to define a font, a background color, or
a window size. The resources for an application, such as SAS, are placed in a resource
database.

SAS functions correctly without any modifications to the resource database.
However, you may want to change the default behavior or appearance of the interface.
There are several ways to specify your customizations. Some methods modify all SAS
sessions displayed on a particular X server. Some methods affect all SAS sessions run
on a particular host. Other methods affect only a single SAS session.

If you need more information on X Window System clients and X resources, refer to
the documentation provided by your vendor.

Syntax for Specifying X Resources
A resource specification has the following format:

resource-string: value

The resource string usually contains two identifiers and a separator. The first identifier
is the client or application name (SAS), the separator is a period (.) or asterisk (*)
character, and the second identifier is the name of the specific resource. The value given
may be a Boolean value (True or False), a number, or a character string, depending on
the resource type.

The application name and resource name can both specify an instance value or a
class value. A specification for a class applies to a larger scope than a single instance.

The following are sample resource specifications:

SAS.startSessionManager: True
SAS.maxWindowHeight: 100
SAS.awsResizePolicy: grow

Refer to your X Window System documentation for more information on resource
specifications.

Methods for Customizing X Resources
The following list describes the methods that you can use to customize X resources.
� Use the Font dialog box, the Preferences dialog box, or the Resource Helper to

customize your SAS session. All of these tools write X resource definitions out to a
location that SAS will read the next time you start a SAS session. See “Modifying
X Resources through the Preferences Dialog Box” on page 57, “Setting X Resources
with the Resource Helper” on page 62, and “Customizing Fonts in UNIX
Environments” on page 80 for more information on these tools.

Note: The settings that you specify in the Preferences dialog box will override
any command line settings.

56 Methods for Customizing X Resources Chapter 3

� Specify session-specific resources by using the -xrm option on the command line for
each invocation of SAS. For example, the following command specifies that SAS
will not display the Confirm dialog box when you exit your SAS session:

sas -xrm ’SAS.confirmSASExit: False’

You can specify the -xrm option as many times as needed. You must specify the
-xrm option for each resource.

Note: If you normally invoke SAS with a shell script, you should protect the
quote characters from the shell with the backslash (\) character:

sasscript -xrm \’SAS.confirmSASExit: False\’

�

� Add resource definitions to a file in your home directory. If you place resources in
a file that X Toolkit normally searches for when applications are invoked, these
resources will be loaded when you invoke SAS. For information about where the X
Toolkit searches for resources, refer to the documentation for the X Windows
System.

You can also add resources to the resource database after SAS has initialized by
running xrdb. For example, the following command merges the definitions in the
MyResources file into the resource database:

xrdb -merge myresources

� Create a subdirectory for storing resource definitions. (This subdirectory is usually
named app-defaults.) Set the XUSERFILESEARCHPATH environment variable
to the pathname of this subdirectory. You can use %N to substitute an application
class name for a file when specifying the XUSERFILESEARCHPATH environment
variable. Specify the definition for this environment variable in the initialization
file for your shell, for example, the $HOME/.login, $HOME/.cshrc, or $HOME/
.profile files, to ensure that the XUSERFILESEARCHPATH variable is defined for
each shell that is started.

Create a file called SAS in the subdirectory identified by
XUSERFILESEARCHPATH. Include your resource definitions in this file.

Note: Alternatively, you could set the XAPPLRESDIR environment variable to
the pathname of the subdirectory that stores your resource definitions. The
XAPPLRESDIR and XUSERFILESEARCHPATH environment variables use a
slightly different syntax to specify the location of your resource definitions. The
location specified by the XUSERFILESEARCH environment variable takes
precedence over the location specified by the XAPPLRESDIR variable. For more
information, see the X man page.

� If you want the customized resource definitions to be used for all users on a
particular host, create a file called SAS to contain your resource definitions, and
store this file in the system app-defaults directory.

For more information on X resources, refer to the X Window System documentation
supplied by your vendor or to other documentation on the X Window System.

Customizing the SAS Windowing Environment Opening the Preferences Dialog Box 57

Modifying X Resources through the Preferences Dialog Box

What Is the Preferences Dialog Box?
The Preferences dialog box enables you to control the settings of certain X resources.

Changes made through the Preferences dialog box (with the exception of those
resources on the General tab) become effective immediately, and the settings are saved
in the SasuserPrefs file in your Sasuser directory.

Note: The settings that you specify in the Preferences dialog box will override any
command line settings. �

Opening the Preferences Dialog Box
You can invoke the Preferences dialog box by issuing the DLGPREF command or by

selecting

Tools Options Preferences

Display 3.1 Preferences Dialog Box

58 Description of the Options on the Preferences Dialog Box Chapter 3

Description of the Options on the Preferences Dialog Box

Modifying the General Settings
To modify the General settings, select the General tab in the Preferences dialog box.

Start Session manager
specifies whether you want the session manager to be started automatically when
you start your SAS session. If you want to use your host editor in your SAS
session, the session manager must be running. The session manager enables you
to interrupt or terminate your SAS session and minimize and restore all of the
windows in a SAS session. See “The SAS Session Manager (motifxsassm) in
UNIX” on page 33 and “Configuring SAS for Host Editor Support in UNIX
Environments” on page 49 for more information. This check box sets the
SAS.startSessionManager resource.

Startup Logo
specifies whether you want SAS to display an XPM file while your SAS session is
being initialized and, if so, which file.

If you select Use Default Logo, SAS uses the default file for your site. If you
select No Logo, then no file is displayed. If you select Use Custom Logo, then you
can either enter the XPM filename directly in the text field or press Select to open
the File Selection dialog box. This check box sets the SAS.startupLogo resource.

Use application workspace
confines all windows displayed by an application to a single Application Work
Space. This check box sets the SAS.noAWS resource. You must exit and reopen the
windows for changes to this resource to take effect.

AWS Resize Policy
controls the policy for resizing AWS windows as interior windows are added and
removed. (See “Workspace and Gravity in a SAS Session” on page 31 and “Window
Types” on page 32.)

Grow
The AWS window will attempt to grow any time an interior window is grown
or moved (to make all of its interior windows visible), but it will not shrink to
remove unused areas.

Fixed
The AWS window will attempt to size itself to the size of the first interior
window and will not attempt any further size changes.

This check box sets the SAS.awsResizePolicy resource.

Modifying the DMS Settings
To modify the DMS settings, select the DMS tab in the Preferences dialog box.

Use menu access keys
activates pull-down menu mnemonics. When mnemonics are turned on, you can
select menu items by typing the single, underlined letter in the item. This check
box sets the SAS.usePmenuMnemonics resource.

Confirm exit
displays the Exit dialog box when you exit your SAS session. This check box sets
the SAS.confirmSASExit resource.

Customizing the SAS Windowing Environment Description of the Options on the Preferences Dialog Box 59

Save Settings on Exit
tells SAS to issue the WSAVE ALL command when you exit your SAS session. This
command saves the global settings, such as window color and window position, that
are in effect for all windows that are currently open. These settings are saved in
your Sasuser.Profile catalog. This check box sets the SAS.wsaveAllExit resource.

Note: For the WSAVE command to work, your window manager must support
explicit window placement. Consult the documentation for your window manager
to determine how to configure your window manager. For example, if you are
running Exceed, open the Screen Definition Settings dialog box and deselect
Cascade Windows. �

Backup Documents
enables you to specify whether you want SAS to automatically save (at the
interval specified by the SAS.autoSaveInterval resource) the documents that
you currently have open. This check box sets the SAS.autoSaveOn resource.

Help & Documentation Browser -- Netscape Path
specifies the path name for the Web browser that you want to use to view the SAS
Help and Documentation. This field sets the SAS.helpBrowser resource.

Image type for Email attachments
specifies the default file type for the temporary file that SAS creates when sending
the contents of a non-text window via e-mail. Examples of non-text windows
include a graph generated by SAS/GRAPH or an image from your PROC REPORT
output. For more information, see “Sending the Contents of a Non-Text Window”
on page 49.

Modifying the Editing Settings

To modify the Editing settings, select the Editing tab in the Preferences dialog box.

Default paste buffer
defines an alias for the default SAS buffer. The following list describes the paste
buffer alias names and the X buffer with which each name is associated.

XPRIMARY
X primary selection (PRIMARY)

XSCNDARY
X secondary selection (SECONDARY)

XCLIPBRD
X clipboard (CLIPBOARD)

XTERM
exchange protocol used by the xterm client

XCUTn
X cut buffer where n is between 0 and 7, inclusive

This check box sets the SAS.defaultPasteBuffer resource. See “Controlling
Pull-Down Menus in UNIX Environments” on page 91 for more information about
cut-and-paste butters.

Automatically store selection
generates a STORE command every time you mark a region of text with the
mouse. This check box sets the SAS.markPasteBuffer resource.

60 Description of the Options on the Preferences Dialog Box Chapter 3

Cursor
controls the editing mode in SAS text editor windows. The Insert and Overtype
check boxes set the SAS.insertModeOn resource to True and False, respectively.

Modifying the Results Settings
The items on the Results tab affect only output that is produced through the

Output Delivery System (ODS). To modify these settings, select the Results tab in the
Preferences dialog box.

For a complete description of ODS, refer to SAS Output Delivery System: User’s
Guide.

Create Listing
opens the ODS Listing destination, which produces monospace output. Selecting
this check box is equivalent to entering the ODS LISTING SELECT ALL
statement.

Create HTML
opens the ODS HTML destination, which produces output that is formatted in
Hypertext Markup Language. Selecting this check box is equivalent to entering
the ODS HTML SELECT ALL statement.

Folder
specifies a destination for HTML files. Specifying a directory in this field is
equivalent to specifying a directory with the PATH option in the ODS HTML
statement.

Use WORK Folder
tells the ODS to send all HTML files to your WORK directory. Selecting this check
box is equivalent to specifying the pathname of your WORK directory with the
PATH option in the ODS HTML statement.

Style
specifies the style definition to use for HTML output. The style definition controls
such aspects as color, font name, and font size. Specifying a style in this field is
equivalent to specifying a style with the STYLE option in the ODS HTML
statement. You can specify any style that is defined in the
\ODS\PREFERENCES\STYLES key in the SAS Registry. You can open the SAS
Registry by issuing the REGEDIT command or by selecting

Solutions Accessories Registry Editor

View results as they are generated
tells SAS to automatically display results files when they are generated. If you
select this check box, make sure that Password protect HTML file browsing is
deselected.

Password protect HTML file browsing
tells SAS to prompt you for your password before sending HTML files to your
browser. If you select this check box, make sure that View results as they are
generated is deselected. This check box sets the SAS.htmlUsePassword resource.

Modifying the ToolBox Settings
The items on the ToolBox tab of the Preferences dialog box affect both the toolbar

and the command window. To modify these settings, select the ToolBox tab in the
Preferences dialog box.

Customizing the SAS Windowing Environment Description of the Options on the Preferences Dialog Box 61

Display tools window
determines whether to display the default toolbox. This check box sets the
SAS.defaultToolBox resource.

Display command window
determines whether to display the command window. This check box sets the
SAS.defaultCommandWindow resource.

Auto Complete Commands
specifies whether SAS automatically fills in the remaining letters of a command as
you type a command in the command window that begins with the same letter as
a command that you have entered previously. If both this check box and Save
Commands are selected, then SAS can automatically fill in commands that were
entered in previous sessions. This check box sets the SAS.autoComplete resource.

Save Commands
specifies whether SAS saves the commands that you enter in the command
window and how many commands are saved. You can specify a number from 0 to
50. If you specify 0, no commands will be saved. If you specify 1 or more, that
number of commands is saved in the file commands.hist in your Sasuser
directory. If this check box is selected, then SAS will be able to automatically fill
in (see Auto Complete Commands) commands that were entered in previous
sessions. This field sets the SAS.commandsSaved resource.

Combine windows
combines the toolbox and command window into one window. The toolbox and
command window are combined by default. This check box sets the
SAS.useCommandToolBoxCombo resource.

Use arrow decorations
adds arrows to both ends of the combined toolbox/command window. This check
box sets the SAS.useShowHideDecorations resource.

Always on top
keeps the toolbox or the combined toolbox/command window on top of the window
stack. This check box is selected by default, which might cause problems with
window managers and other applications that want to be on top of the window
stack. If you have such a situation, turn off this feature. This check box sets the
SAS.toolBoxAlwaysOnTop resource.

Toolbox Persistent
specifies whether the toolbox that is associated with the Program Editor stays
open when you close the Program Editor. By default, the Program Editor toolbox
stays open whenever you close the Program Editor. If you deselect this check box,
then the toolbox will close if you close the Program Editor. This check box sets the
SAS.isToolBoxPersistent resource.

The items in the Tools area affect the individual tools in the toolbox.

Use large tools
controls whether tool icons are displayed as 24x24 or 48x48 pixels. The default is
24x24. This check box sets the SAS.useLargeToolBox resource.

Use tip text
specifies whether tool tip text is displayed when you position your cursor over a
tool in the toolbox. Some window managers may place the toolbox tip behind the
toolbox. If this happens in your environment, deselect this check box. This check
box sets the SAS.useToolBoxTips resource.

62 Setting X Resources with the Resource Helper Chapter 3

delay
controls the delay in milliseconds before popping up the toolbox tip. This check box
sets the SAS.toolBoxTipDelay resource. You can enter a value directly into the
field or use the arrows to the right of the field to change the value.

Setting X Resources with the Resource Helper

Introduction to the Resource Helper
With Resource Helper, you can customize the key definitions and the colors of the

SAS interactive interface. Resource Helper creates SAS resource definitions and stores
them in a location where the Resource Manager can find them. See “How the Resource
Helper Searches for X Resources” on page 66 for a list of the locations that Resource
Helper searches for resource definitions. Resource settings that are saved with
Resource Helper will take effect the next time you start a SAS session.

You can start Resource Helper from within a SAS session or from your shell prompt.

How to Start the Resource Helper

Starting the Resource Helper from a SAS Session
Start the SAS Resource Helper from a SAS window by entering

reshelper

on the command line in the command window.

Display 3.2 Main Window for Resource Helper

Starting the Resource Helper from a Shell Prompt
Resource Helper is installed into the /utilities/bin subdirectory in the directory

where SAS is installed (!SASROOT). The name of the executable module is reshelper.
For example, if SAS is installed in /usr/local/sas91, you start Resource Helper by
typing the following command:

/usr/local/sas91/utilities/bin/reshelper &

Customizing the SAS Windowing Environment Defining Keys with the Resource Helper 63

Defining Keys with the Resource Helper

How to Define a Key
To define a key, follow these steps:
1 Start the Resource Helper (see “How to Start the Resource Helper” on page 62)

and select the Keys icon.

Display 3.3 Keys Window for Resource Helper

Key definitions are divided into several Action Categories:

� Move By Cursor

� Move By Field

� Edit

� Miscellaneous

� All Actions

2 Select Click here and press the keys you want to define .

3 Press the key or combination of keys that you want to assign an action to. For
example, press F12. If a default SAS translation has already been assigned to the
key combination, Resource Helper displays the default translation.

4 Select the action category menu button to open a list of action categories. Select
the action category that you want. For example, if you want to define a key to
delete the current field, select Edit as your Action Category. Resource Helper
will display a list of actions in that category.

5 Select an action from the list. For example, Delete current field. Resource
Helper can assign only one action to a translation. If the action that you select
requires an argument (such as sas-action-routine), Resource Helper prompts
you for the argument.

Resource Helper displays the key combination and its new definition:

None<Key>F12: sas-delete()

Note: If you select the sas-function-key action routine, then the key definition is
automatically displayed in the KEYS window. If you choose another action routine
and if you want the definition to appear in the KEYS window, you will need to
define a window label for the key. See “Syntax of the SAS.keysWindowLabels
Resource” on page 76 for information on defining labels in the KEYS window.

64 Modifying the Color of a SAS Window Using the Resource Helper Chapter 3

6 Select the right arrow to add this key translation to the list of User-Defined
Keys.

7 Select OK to exit the Keys window after you have finished defining key
translations.

8 To save your translations permanently, from the Resource Helper pull-down
menus, select

File Save Resources

To modify a key definition that is already in the User-Defined Keys list, select the
definition, select the left arrow to remove the definition from the list, and edit the
definition.

To delete a definition from User-Defined Keys, select it and select Delete.
Clear clears the key definition edit window.
Default Defined Keys displays the default key definitions for your system.

Troubleshooting Incorrect Key Definitions
In most cases, using Resource Helper is much easier and faster than defining the

resources yourself. However, the X Window System searches for resources in several
places, so it is possible for Resource Helper to pick up the wrong key symbol for the key
you are trying to define. If you get unexpected results while using Resource Helper, you
might need to define your key resources yourself. See “Defining Key Translations” on
page 74 for more information.

Modifying the Color of a SAS Window Using the Resource Helper

How to Use the Color Window
You can modify the color of part of a SAS window as follows:

1 Start Resource Helper and select the Colors icon.

Display 3.4 Colors Window for Resource Helper

Customizing the SAS Windowing Environment Modifying the Color of a SAS Window Using the Resource Helper 65

2 Select a category from the Category window.

3 Click a color and/or attribute in the Colors and Attributes window, or double-click
a color to open the Customize Colors window, shown in the following display.

You can also change the attributes of some categories of SAS windows. The
attributes options are Highlight, Underline, or Reverse.

Display 3.5 Customize Colors Window for Resource Helper

You can customize a color by

� selecting a new Alias

� moving the Red, Blue, or Green sliders

� selecting Grab and clicking a color anywhere on your screen.

4 Select OK to exit the Colors window after you have finished defining your color
settings.

The result is displayed in the Sample Window. The hex value of the color is
displayed at the bottom of the window.

Example: Changing the Color of a SAS Window
For example, double-click Red in the Colors window. The From: display shows the

red currently used by SAS windowing environment. Click Aquamarine under Aliases
and observe the change in the To: display. Move the Red, Green, and Blue sliders with
your mouse button and note the changes in the color of the To: display. Click Apply
and note the difference in the color displayed as Red in the Colors window. Select OK
to save your changes.

66 How the Resource Helper Searches for X Resources Chapter 3

Returning to the Default Settings
Select Defaults to restore your color settings to their default values.

Permanently Saving Your Color Settings
To save your color settings permanently, from the Resource Helper pull-down menus,

select

File Save Resources

How the Resource Helper Searches for X Resources
The following list describes the locations where the Resource Helper searches for

resource definitions and the order in which it searches these locations.
1 Resource Helper loads the resources in the file pointed to by the

XENVIRONMENT environment variable. If XENVIRONMENT is not set,
Resource Helper loads the resources in the ~/.Xdefaults-hostname file, where
hostname is the name of the machine on which Resource Helper is running.

2 Resource Helper loads the resources defined in the RESOURCE_MANAGER
property. If the RESOURCE_MANAGER property is the first location in which
Resource Helper finds resources, the RESOURCE_MANAGER property will
override any resources that you generate with Resource Helper.

To determine if any resources have been defined in your
RESOURCE_MANAGER property, issue the following command:

xrdb -q | more

If no listing is returned, the RESOURCE_MANAGER property does not exist.
In this case, Resource Helper loads the resources defined in the ~/.Xdefaults file.

3 Resource Helper loads the resources in the file pointed to by the
XUSERFILESEARCHPATH environment variable.

You can use %N to substitute an application class name for a file when specifying
the XUSERFILESEARCHPATH environment variable. For example, to point to
/usr/local/resources as the location of all the resources for any application,
issue the following command in the Bourne or Korn shells:

export XUSERFILESEARCHPATH=\
/usr/local/resources/%N

In the C shell, the command is

setenv XUSERFILESEARCHPATH \
/usr/local/resources/%N

As a result, when SAS is invoked, the file pointed to by
XUSERFILESEARCHPATH is

/usr/local/resources/SAS

SAS is the application class name for SAS.
4 Resource Helper loads the resources in the file specified by the XAPPLRESDIR

environment variable. The application’s class name is appended to the
XAPPLRESDIR environment variable and the resulting string is used to search
for resources. For example, if you issue the following command in the Bourne or
Korn shells:

export XAPPLRESDIR=/usr/local/app-defaults

Customizing the SAS Windowing Environment X Resources That Control Toolbox Behavior 67

at the next invocation of SAS, the application’s class name is appended to the path:

/usr/local/app-defaults/SAS

In the C shell, the command is

setenv XAPPLRESDIR /usr/local/app-defaults

5 Resource Helper loads the resources in the file named ~/SAS.
6 Resource Helper loads the resources in the file or substitution specified by the

XFILESEARCHPATH environment variable.

Note: To determine if an environment variable has been set, you can issue the
following command:

env|grep <environment_variable>

7 Resource Helper loads the resources defined in /usr/lib/X11/app-defaults.
Resource Helper does not need to have write access to this file, but it must be able
to read the file and add the SAS resources to a writable resource file. Resource
Helper does not generate a warning message if the file is not present or if it
cannot read the file.

8 Resource Helper loads the fallback resources that are defined in the SAS code.

Except for the /usr/lib/X11/app-defaults file, Resource Helper tries to write the
new resources to the same directory and file where it first found SAS resources. This
location must be a writable file in a writable directory. If Resource Helper cannot write
to the file, the SAS resources in that file will remain in effect and any new or modified
resources generated by Resource Helper will not take effect. If this happens, Resource
Helper displays an error dialog box that contains the file or directory and suggests a
way to fix the problem.

Customizing Toolboxes and Toolsets in UNIX Environments

Techniques for Customizing Toolboxes
You can customize toolboxes
� through the Preferences dialog box. The Preferences dialog box enables you to

customize the appearance and behavior of toolboxes. See “Modifying X Resources
through the Preferences Dialog Box” on page 57 and “Modifying the ToolBox
Settings” on page 60 for information on using the Preferences dialog box.

� by specifying SAS resources in your resource file. “X Resources That Control
Toolbox Behavior” on page 67 describes the SAS resources that affect toolboxes.

� through the Tool Editor. The Tool Editor enables you to customize the individual
tools in a toolbox. See “Using the Tool Editor” on page 68 for more information.

X Resources That Control Toolbox Behavior
You can control the behavior of toolboxes with the following SAS resources:

SAS.autoComplete: True | False
specifies whether SAS automatically fills in the remaining letters of a command as
you type a command in the command window that begins with the same letter as
a command that you have entered previously. The default value is True.

68 Using the Tool Editor Chapter 3

SAS.commandsSaved : close up | n]
specifies whether SAS saves the commands that you enter in the command
window and how many commands are saved. You can specify a number from 0 to
50. If you specify 0, no commands will be saved. If you specify 1 or more, that
number of commands is saved in the file commands.hist in your Sasuser
directory. If you specify 1 or more for this resource and SAS.autoComplete is
True, then SAS will be able to automatically fill in commands that were entered in
previous sessions. The default value is 25.

SAS.defaultToolBox: True | False
controls opening the default toolbox when SAS is invoked. The default is True.

SAS.isToolBoxPersistent: True | False
controls whether the toolbox that is associated with the Program Editor stays open
when you close the Program Editor. The default value is True.

SAS.toolBoxAlwaysOnTop: True | False
controls whether the toolbox is always on top of the window stack. The default
value of True might cause problems with window managers that are not Motif
interface window managers or other applications that want to be on top of the
window stack. If you have such a situation, set this resource to False.

SAS.toolBoxTipDelay: delay-in-milliseconds
sets the delay in milliseconds before displaying the toolbox tip. The default is 750.

SAS.useCommandToolBoxCombo: True | False
controls whether the command window and toolbox are joined or separated. The
SAS.defaultToolBox and SAS.defaultCommandWindow resources control whether
the toolbox and command window are displayed. If both are displayed, this
resource controls whether they are joined or separated. The default value is True.

SAS.useLargeToolBox: True | False
controls whether tool icons in the toolbox are displayed as 24x24 pixels or 48x48
pixels. The default is False (24x24 pixels).

SAS.useShowHideDecorations: True | False
controls whether the combined command/toolbox window has arrows at the left
and right. You can use these arrows to hide or show portions of the window as
they are needed. The default value is False.

SAS.useToolBoxTips: True | False
determines if toolbox tip text is displayed. Some window managers might place
the toolbox tip behind the toolbox. If this happens in your environment, set this
resource to False. The default is True.

Using the Tool Editor

What Is a Toolset?
The Tool Editor enables you to create custom toolsets for your SAS applications. A

toolset is a set of predefined tools that is associated with an application. Toolsets make
it easier for individual users to customize their application toolboxes. If you create a
toolset for an application, users can press the Actions button in the Tool Editor and
choose the tools that they want to appear in their toolboxes. Users do not have to define
the icons, commands, tip text, and IDs for those tools.

Customizing the SAS Windowing Environment Using the Tool Editor 69

For example, you can define a default toolbox for your application that includes tools
for opening files, cutting, copying, and pasting text, and saving files. You can define a
toolset that includes those tools and tools for opening the Preferences dialog box,
opening the Replace dialog box, and entering the RECALL command. These additional
tools will not appear in the users’ toolbox unless a user adds them to their toolbox with
the Tool Editor. See “Changing an Existing Tool” on page 70 and “Creating or
Customizing an Application- or Window-Specific Toolset” on page 72 for more
information.

Invoking the Tool Editor
You can change the appearance and contents of a toolbox using the Tool Editor. To

invoke the Tool Editor, select

Tools Options Edit Toolbox

Alternatively, you can issue the TOOLEDIT command as described in “TOOLEDIT
Command” on page 216.

Display 3.6 Tool Editor Dialog Box

By default, the Tool Editor edits the current toolbox. To edit a different toolbox, click
Open and specify the libref, catalog, and entry name for the toolbox you want to edit.

Once you invoke the Tool Editor, the toolbox goes into preview mode. In preview
mode, clicking a tool icon makes that icon the current icon and displays its associated
commands in the Command field. The current icon always appears pressed.

Changing the Appearance of the Entire Toolbox
The items in the area of the Tool Editor labeled “ToolBox” affect the entire toolbox:

Name
displays the catalog entry that you are editing. The default toolbox is named
SASUSER.PROFILE.DMS.TOOLBOX.

Max tools per row
specifies how the icons in the toolbox are arranged. The default value creates a
horizontal toolbox. One tool per row creates a vertical toolbox.

70 Using the Tool Editor Chapter 3

Changing an Existing Tool
When you open the Tool Editor, the first icon is the current icon, and information

about the current icon appears in the Button area of the dialog box. To change an
existing tool, you can select a tool from the toolset displayed by the Actions button or
you can modify the fields individually.

Note: The Actions button will display a toolset only if a toolset is associated with
(has the same entry name as) the toolbox that you are editing. See “Saving Changes to
the Toolbox or Toolset” on page 71 for more information. �

To use Actions , select the tool that you want to change, and then select Actions . The
Tool Editor displays the toolset associated with toolbox. If you select a tool from this
toolset, the Tool Editor enters the appropriate information into the button fields for you.

To modify the fields individually:
1 Select the icon you want to change.
2 Click in and change the Button fields as appropriate.

Command
specifies the command or commands that you want executed when you click
on the icon. You can use any windowing environment command available
under UNIX. For information on commands that are valid in all operating
environments, see SAS Language Reference: Dictionary. Separate commands
with a semi-colon (;). For example, you could create an icon to open the
Change Working Directory dialog box by using the DLGCDIR command.

Help Text
is used for applications that are designed to be run under Windows or OS/2.
The help text is displayed in the AWS status line on Windows and OS/2 when
a toolbox is ported to and loaded on those platforms.

Tip Text
specifies the text that is displayed when you position the cursor over the icon.

Id
is useful if you are creating toolboxes for SAS/AF applications. The ID is the
identifier of the corresponding pull-down menu item in the application. This
number is the value assigned to the item in the ID option of the ITEM
statement in PROC PMENU. If you specify an ID, then the application can
set the state of the PMENU item to match the state of the tool in the toolbox,
and it can make the PMENU item active or inactive to match whether the
PMENU item is active or inactive. If you do not specify an ID, the ID
defaults to 0.

3 Change the icon if necessary.

a Select Icon or double-click an icon in the preview toolbox. The Tool Editor
opens the Select A Pixmap dialog box, which displays the icons provided with
SAS. These icons are divided into several categories such as SAS windows,
data, analysis, numbers and symbols, files, folders, and reports, and so on. To
change categories, select the arrow to the right of the Icon Category field
and select a new category.

b Select the icon you want to use and then select OK .
4 Save your changes as described in “Saving Changes to the Toolbox or Toolset” on

page 71.

Adding Tools to the Toolbox
To add a tool to the toolbox:

Customizing the SAS Windowing Environment Using the Tool Editor 71

1 Select the icon next to where you want to add the new tool.
2 Select Add before or Add after . The Tool Editor adds a new icon to the toolbox

and clears the Button fields.
3 Enter the appropriate information in the Button fields as described in “Changing

an Existing Tool” on page 70.
4 Change the icon, if necessary, as described in “Changing an Existing Tool” on page

70.
5 Save your changes as described in “Saving Changes to the Toolbox or Toolset” on

page 71.

Changing the Order of the Tools in the Toolbox
To change the position of a tool in the toolbox, select the tool icon, and then click on

the left or right arrows to move the tool.

Deleting Tools from the Toolbox
To delete a tool from the toolbox:
1 Select the tool you want to delete.
2 Select Delete .
3 Save your changes as described in “Saving Changes to the Toolbox or Toolset” on

page 71.

Returning to the Default Settings
To return all tools in the current Toolbox to their default settings, select Defaults .

The Tool Editor asks you to verify your request. Select Yes , No , or Cancel .

Saving Changes to the Toolbox or Toolset
You can save the changes to the catalog entry shown in the Name field or create a

new toolbox with a different name.
If you are customizing a window- or application-specific toolbox or toolset for your

own personal use, you should save the customized toolbox or toolset in your
Sasuser.Profile catalog using the same entry name as the PMENU entry for the window
or application. SAS searches for toolboxes and toolsets first in the Sasuser.Profile
catalog, and then in the application catalog.

If you are a SAS/AF application developer or site administrator and you are editing a
window- or application-specific toolbox that you want to be accessible to all users, you
must save the TOOLBOX entry with the same library, catalog, and entry name as the
PMENU entry for the window or application. To associate a toolset with a specific
toolbox, save the TOOLSET entry with the same library, catalog, and entry name as the
TOOLBOX entry. You will need write permissions to the appropriate location. For
example, to store a customized toolbox for the graphics editor, the site administrator
needs to store the toolbox in SASHELP.GI.GEDIT.TOOLBOX.

Save saves the toolbox information to the catalog entry shown in the Name field.
Save As prompts you to enter a different libref, catalog, and entry name. You can also
choose to save the toolbox as a toolset. If you save the toolbox as a toolset, the entry type
will be TOOLSET; otherwise, the entry type is always TOOLBOX. (Saving a set of tools
as a TOOLSET does not change your TOOLBOX entry. See “Customizing Toolboxes and
Toolsets in UNIX Environments” on page 67 and “Creating or Customizing an
Application- or Window-Specific Toolset” on page 72 for information about toolsets.)

If you select Close or Open without first saving your changes, the Tool Editor
prompts to save the changes to the current toolbox or toolset before continuing.

72 Creating a New Toolbox Chapter 3

After you save the toolbox or toolset, the Tool Editor remains open for additional
editing, and the Name field changes to the name of the new entry (if you entered a new
name).

Creating a New Toolbox
To create an entirely new toolbox, you can:
� edit an existing toolbox using the Tool Editor and save it using Save as as

described in “Saving Changes to the Toolbox or Toolset” on page 71.
� open the Sasuser.Profile catalog in the Explorer window and add a new toolbox by

selecting

File New Toolbox

Creating or Customizing an Application- or Window-Specific Toolbox
If you are an application developer and want to create or edit an existing application

toolbox, you must:
1 Delete any existing TOOLBOX entry in your Sasuser.Profile for the window or

application that you want to customize. Deleting the copy of the toolbox in your
Sasuser.Profile allows you to pick up a copy of the toolbox supplied with SAS when
you invoke the Tool Editor.

2 Create or edit the application toolbox as described in “Creating a New Toolbox” on
page 72 or “Using the Tool Editor” on page 68.

3 Save the edited toolbox as described in “Saving Changes to the Toolbox or Toolset”
on page 71.

4 Inform your users that you have changed the window or application toolbox. If
they want to use the new toolbox, they must delete the corresponding TOOLBOX
entry from their Sasuser.Profile. The new toolbox will then be automatically
loaded when the window or application is invoked. If a user does not delete the
corresponding TOOLBOX entry from their Sasuser.Profile, that copy of the toolbox
will be loaded instead of the new toolbox.

The TOOLLOAD and TOOLCLOSE commands are most useful when you are
developing SAS/AF applications. You can use the EXECMDI routine with these
commands to enable your application to open and close the toolbox and to give users of
your applications access to several toolboxes during the course of their work. See SAS
Component Language: Reference for a description of the EXECMDI routine.

Creating or Customizing an Application- or Window-Specific Toolset
You define application- or window-specific toolsets in the same way that you create

an application- or window-specific toolbox. There are only two differences:
� To create a new toolset, start by defining a toolbox as described in “Creating a New

Toolbox” on page 72.
� After you have defined the toolbox, save it as a TOOLSET entry, not as a

TOOLBOX entry.

Note: If you are an application developer, make sure that you delete any existing
TOOLSET entry for your application as described in “Creating or Customizing an
Application- or Window-Specific Toolbox” on page 72 before you modify your
application’s toolset. �

Customizing the SAS Windowing Environment Techniques for Customizing Your Key Definitions 73

Customizing Key Definitions in UNIX Environments

Techniques for Customizing Your Key Definitions
There are four ways to customize your key definitions:
� through the KEYS window. To open the KEYS window, issue the KEYS command

or select

Tools Options Keys

If you change any key definitions through the KEYS window for the primary SAS
windowing environment windows, the definitions are stored in the Sasuser.Profile
catalog in the entry DMKEYS.KEYS. Key definitions for other SAS windows are
stored in catalog entries named BUILD.KEYS, FSEDIT.KEYS, and so on.

Refer to SAS Help and Documentation for more information on the KEYS
command and the KEYS window.

� with the KEYDEF command. The KEYDEF command enables you to redefine
individual function keys:

keydef keyname <command|~text-string>

For example, if you specify keydef F8 dlgpref, then the F8 key will open the
Preferences dialog box.

For more information about the KEYDEF command, refer to the Base SAS
section in SAS Help and Documentation.

� through the Resource Helper (reshelper). Resource Helper generates SAS resource
specifications based on keys and functions that you select. You can use Resource
Helper to change the function of any key listed in the KEYS window. See “Setting
X Resources with the Resource Helper” on page 62 and “Defining Keys with the
Resource Helper” on page 63 for more information about the Resource Helper.

In most cases, Resource Helper is much easier and faster than defining the
resources yourself. However, because the X Window System searches for resources
in several places, it is possible for Resource Helper to pick up the wrong key
symbol for the key you are trying to define. Also, unless the action routine that
you assign to your keys is the sas-function-key routine, then Resource Helper
does not provide a way to change the key labels in the KEYS window. In both of
these cases, you will need to define your key resources yourself.

� by defining the SAS.keyboardTranslations and SAS.keysWindowLabels
resources in your resources file as described in “Defining Key Translations” on
page 74.

You can define most of the keys on your keyboard. However, a few keys have
dedicated functions that are associated with them. For example, the mouse buttons are
dedicated to the cursor and cut-and-paste operations and are not available for user
customization.

74 Defining Key Translations Chapter 3

Defining Key Translations

What Is a Key Translation?
Key customization for the X Window System consists of defining a key sequence and

an action to be executed when that key sequence is typed on the keyboard. This is
known as binding keys to actions; together they are referred to as a translation.

What Is the SAS.keyboardTranslations Resource?
The SAS.keyboardTranslations resource specifies the set of key bindings that SAS

uses in all SAS windows. The default value for the SAS.keyboardTranslations
resource is determined at run time based on the vendor identification string reported by
the X server that you are using as the display. These defaults are listed in the files
contained in !SASROOT/X11/resource_files. To modify the default bindings supplied
by SAS, you must modify the keyboardTranslations resource.

Note: The X Toolkit Intrinsics translations specified in this resource apply to both
the user area and the command line of all SAS windows that are affected by this
resource. This resource does not affect windows that are controlled by Motif interface
resources, such as the Command window, the Open or Import dialog boxes, and some
other pull-down menu dialog boxes. �

Steps for Creating a Key Definition
To create a key definition, follow these steps:

1 Determine the keysyms for the keys that you want to define. Keysyms are the
symbols recognized by the X Window System for each key on a keyboard. See
“Determining Keysyms” on page 75 for more information.

2 Modify/add the SAS.keyboardTranslations resource in your resource file to
include the definitions of the keys that you want to define. Use a keyboard action
routine to define which action you want the key to perform. The definition in the
right column in the KEYS window will no longer control the function of any keys
that are defined with a keyboard action routine other than sas-function-key.
The definitions of those keys in the KEYS window become labels that have no
effect. See “Syntax of the SAS.keyboardTranslations Resource” on page 75 for
more information.

3 Modify/add the SAS.keysWindowLabels resource in your resource file. The
SAS.keysWindowLabels resource specifies the set of valid labels that will appear
in the SAS KEYS window. Modify this resource only if you want to add new labels
or modify existing labels in the left column in the KEYS window.

The SAS.keysWindowLabels resource defines only the mnemonics used in the
KEYS window. For a specific key to perform an action, you must specify a
SAS.keyboardTranslations definition for the key. See “Syntax of the
SAS.keysWindowLabels Resource” on page 76 for more information.

4 Start a SAS session and open the KEYS window.

5 In the right-hand column in the KEYS window, type a command name or other
description of each key that you have defined.

See “Examples: Defining Keys Using SAS Resources” on page 80 for examples of key
definitions.

Customizing the SAS Windowing Environment Defining Key Translations 75

Determining Keysyms
You can use the xev utility to determine the keysyms associated with the keys on

your keyboard. xev is distributed with most UNIX operating systems, but if xev is not
installed on your operating system, contact your system administrator for information
about other methods that are available in your UNIX environment.

xev prints a message for each X event that occurs. The KeyPress event specifies the
keysym for each key that is pressed.

1 Start xev on the X server for which you want to define keys. The xev client
displays a small Event Tester window that lists the X events that occur. (The xev
client generates a large amount of output, so you might want to save the output to
a file for later review. You can issue the UNIX script command to save the
output to a file.)

2 Give keyboard focus to the Event Tester window by clicking the mouse pointer on
the window, if necessary.

3 Press the key that you want to define, and watch for the KeyPress event to be
listed. The listing has a number of items that are separated by commas. One of
the fields in the KeyPress event lists the keysym name that is associated with the
key that was pressed.

For example, when the 0 key on the keypad of an HP 9000/700 keyboard is
pressed, it generates the following output:

KeyPress event, serial 14, synthetic NO,
window 0x4400001,root 0x23, subw 0x4400002,
time 507920400, (54,37),root:(67,66),
state 0x0, keycode 30 (keysym 0xffb0, KP_0),
same_screen YES,
XLookupString gives 1 characters: "0"

In this example, the keysym name is KP_0.

Note: SAS defines a set of virtual keysyms with the SAS.defaultVirtualBindings
resource. Virtual keysyms all begin with osf, such as osfPageDown, osfClear, and
osfPrimaryPaste. If you remap these virtual bindings instead of using the defaults
supplied by SAS, you might get unexpected results. If you specify a key translation that
does not work, you might be trying to redefine a key that is bound to a virtual keysym.
In this case, you must specify the virtual keysym in the SAS.keyboardTranslations
resource instead of the keysym displayed by xev. To determine the virtual keysym that
is bound to a key, you can start the Resource Helper, select Keys , and press the key or
key combination that you want to define. Resource Helper will display the virtual
keysym name. You can also refer to the key definition files in /Xll/resource_files in
the directory where SAS is installed (!SASROOT) and to the man pages for
VirtualBinding or xmbind. �

Syntax of the SAS.keyboardTranslations Resource

Note: Most SAS documentation uses angle brackets (<>) to indicate optional syntax.
However, in this topic, optional syntax is shown with square brackets ([]). The angle
brackets that are shown in this topic are part of the syntax and should be entered
exactly as shown. �

The syntax of the SAS.keyboardTranslations resource is

SAS.keyboardTranslations: #override \

[modifier] <Key>keysym : action-routine \n\

76 Defining Key Translations Chapter 3

[modifier] <Key>keysym : action-routine

#override
indicates that this definition should override any existing bindings for the specific
keys that you define without affecting any other keys. If you omit the #override
directive, the new bindings replace all of the default bindings, and none of the
other keys on the keyboard will be available.*

modifier
can be Alt, Ctrl, Meta, Shift, Lock, Mod1, Mod2, Mod3, Mod4, Mod5, None, or a
blank space. The list of valid modifiers varies depending on your keyboard. To
display a list of valid modifiers for your keyboard, enter the xmodmap UNIX
command. Refer to the man page for xmodmap for more information.

<Key>
is required. It signals the beginning of the keysym.

keysym
is the key symbol recognized by X for the key that you are defining. See
“Determining Keysyms” on page 75 for more information.

action-routine
is what you want the key to do. You can specify any action routine described in
“SAS Keyboard Action Names” on page 77.

\n
allows the X translation manager to determine where one translation sequence
ends and the next one begins. Do not enter \n after the end of the last translation.

\
prevents the newline character at the end of the line from being interpreted as
part of the definition. This is a stylistic convention that allows each translation to
be listed on a separate line. Do not enter a backslash after the end of the last
translation.

Note: SAS does not prevent you from specifying invalid keys in the
SAS.keyboardTranslations resource. In some cases, invalid keys will produce
warnings in the shell window. �

Syntax of the SAS.keysWindowLabels Resource

Note: The square brackets ([]) in the following syntax indicate that the
(InternalKeyName) is optional. �

The syntax of the SAS.keysWindowLabels resource is

SAS.keyWindowLabels: \

KeyWindowLabel [(InternalKeyName)] \n\

KeyWindowLabel [(InternalKeyName)]

KeyWindowLabel
is the label (1 to 8 characters) that you want to appear in the KEYS window.

* For information on the #augment and #replace directives, refer to the documentation for the X Window System.

Customizing the SAS Windowing Environment Defining Key Translations 77

InternalKeyName
is the character string that is passed to the sas-function-key action routine in
the corresponding SAS.keyboardTranslations key binding. (InternalKeyName is
used by SAS to correlate KEYS window entries to key definitions in the KEYS
modules loaded from SAS catalogs or defined in the SAS KEYS window.) If the
InternalKeyName is not specified, SAS uses the KeyWindowLabel as the
InternalKeyName.

\n and \
serves the same purpose as in the SAS.keyboardTranslations resource. See
“Syntax of the SAS.keyboardTranslations Resource” on page 75 for more
information.

SAS Keyboard Action Names

Note: Most SAS documentation uses angle brackets (<>) to indicate optional syntax.
However, in this topic optional syntax is shown with square brackets ([]). The angle
brackets that are shown in this topic are part of the syntax and should be entered
exactly as shown. �

SAS declares a set of keyboard actions during X initialization. You can think of these
keyboard actions as simple functions. When the actions are executed, they act on the
window that currently has keyboard input focus.

The following list of keyboard actions represents action routines registered by the
Motif interface for use with X toolkit keyboard event translations.

sas-cursor-down()
moves the cursor down one line in the SAS window. The cursor does not wrap
when it reaches the bottom of the SAS window interior.

sas-cursor-left()
moves the cursor left one character in the SAS window. The cursor does not wrap
when it reaches the left side of the SAS window interior.

sas-cursor-right()
moves the cursor right one character in the SAS window. The cursor does not
wrap when it reaches the right side of the SAS window interior.

sas-cursor-up()
moves the cursor up one line in the SAS window. The cursor does not wrap when
it reaches the top of the SAS window interior.

sas-delete()
deletes all text in the current field.

sas-delete-begin()
deletes text from the current cursor position to the beginning of the current text
field.

sas-delete-char()
deletes the character under the text cursor and leaves the cursor in place.

sas-delete-end()
deletes text from the current cursor position to the end of the current text field.

sas-delete-prev-chr()
deletes the character to the left of the text cursor and moves the cursor back one
space.

78 Defining Key Translations Chapter 3

sas-delete-prev-word()
deletes text to the start of the previous word from the current cursor position. If
the cursor is in the interior of a word when the action is invoked, the text from the
cursor position to the start of the word is deleted.

sas-delete-word()
deletes text from the current cursor position to the end of the current or next word.

sas-do-command()
accepts one or more text string parameters that are interpreted as SAS commands
to be executed when the action is invoked. The action may be invoked with
multiple parameters. The parameters are concatenated with semicolon delimiters
supplied by the sas-do-command action between the parameters. The assembled
SAS command string is then submitted for execution. For example, the following
translation syntax can be used to define a HOME, SUBMIT key sequence for all
SAS windowing environment windows:

<Key>KP_F3: sas-do-command(HOME;SUBMIT)

sas-function-key("InternalKeyName")
invokes the SAS commands associated with the function key identified by the
InternalKeyName label. InternalKeyName is the character string (1 to 8 characters
long) that is passed to the keysWindowLabels resource. Enclose InternalKeyName
in quotes. Refer to “Defining Key Translations” on page 74 for a description of
internal key names.

sas-home-cursor()
is the equivalent of the HOME command. It is provided for convenience so that
the HOME action may be defined for all SAS windowing environment windows.

sas-insert-char(["InsertionString"])
inserts or overwrites the character typed into the input field under the text cursor.
Insert or overstrike behavior is determined by the sas-toggle-insert action, which
has a mode that is reflected by the text cursor style displayed; the block cursor
indicates overstrike mode, and the underline cursor indicates insert mode.
Normally, sas-insert-char translates the XKeyEvent into the appropriate character
and inserts it at the SAS text cursor location. If you specify the parameter, the
text string represented by this parameter is inserted at the SAS text cursor
location. White space in the string is interpreted by the X Toolkit as a parameter
delimiter unless you enclose the string in double quotation marks. Refer to your X
Window System documentation for information on embedding quotes in the string
parameter. To include an escaped quote, use the following syntax:

Shift<Key>KP_1: sas-insert-char("One\\"1\\"")

This produces the text string One"1" at the SAS text cursor location.

sas-kp-application()
sets the workstation’s numeric keypad to allow function key translations to be
reinstated. This action only works for those keypad keys that are bound to
sas-function-key() actions. Keypad bindings to other actions are not affected by
this translation.

sas-kp-numeric()
sets the workstation’s keypad to generate numeric characters instead of its
previous function key assignment. This action only works for keypad keys that are
bound to sas-function-key() actions. Keypad bindings to other actions are not
affected by this translation.

Customizing the SAS Windowing Environment Defining Key Translations 79

sas-move-begin()
moves the cursor to the beginning of the current text field.

sas-move-end()
moves the cursor to the end of the current text field.

sas-new-line()
generates an end-of-line event when invoked. This is a context-sensitive action. If
the action is typed on the SAS command line, the text entered will be submitted
for execution. If invoked in the SAS application client area, the action depends on
the attributes of the text area under the text cursor. In simplest terms, this action
is the general line terminator for an input field.

sas-next-field()
advances the SAS application to the next field in the SAS window client area.

sas-next-word()
skips the text cursor forward to the beginning of the next word in the current text
field. If sas-next-word does not find the beginning of a word in the current text
field, it advances to the next SAS application field. If you are typing in the SAS
command line area of the window, the cursor will not wrap into the SAS window
client area.

sas-page-down()
scrolls the current window contents forward by one page.

sas-page-end()
moves the text cursor to the end of the current page.

sas-page-top()
moves the text cursor to the top of the current page.

sas-page-up()
scrolls the window contents backward by one page.

sas-prev-field()
returns the SAS application to the previous field in the SAS window client area.

sas-prev-word()
skips the text cursor backward to the beginning of the previous word in the
current text field. If sas-prev-word does not find the beginning of a previous word
in the current text field, it returns to the end of the previous SAS application field.
If you are typing in the SAS command line area of the window, the cursor will not
wrap into the SAS window client area.

sas-to-bottom()
Moves the text cursor to the absolute bottom of the window’s text range.

sas-to-top()
Moves the text cursor to the absolute top of the window’s text range.

sas-toggle-insert()
switches the associated window line-editing behavior between insert and
overstrike modes. This only applies to the SAS command line and the SAS window
client area. The current mode is indicated by the cursor style in use. The block
cursor indicates overstrike mode, and the underline cursor indicates insert mode.

sas-xattr-key(<KeyType>[,<KeyParam>])
processes SAS extended attribute keys. The KeyType parameter must be one of the
following values: XACOLOR, XAATTR, XACLEAR. For KeyType XACOLOR, the
12 DMS color names are valid parameters; for KeyType XAATTR, the valid values
are HIGHLIGHT, REVERSE, BLINK, and UNDERLINE; for XACLEAR, no

80 Customizing Fonts in UNIX Environments Chapter 3

parameter is required. The BLINK attribute is not supported in the Motif
interface. However, if you specify the BLINK attribute, it will be displayed when
the catalog is ported to other operating environments.

Examples: Defining Keys Using SAS Resources

Note: Most SAS documentation uses angle brackets (<>) to indicate optional syntax.
However, in these examples, optional syntax is shown with square brackets ([]). The
angle brackets that are shown in these examples are part of the syntax and should be
entered exactly as shown. �

In the following example, the sas-do-command action routine specifies that the
COMMAND command is to override any existing definition for KP_0.

SAS.keyboardTranslations: #override \n\
None<Key>KP_0: sas-do-command(COMMAND)

All other keys retain their current definitions.
The following example binds the key sequence CTRL-K to the KEYS command and

specifies that CTRL-D deletes the character under the cursor. Commands entered in
the KEYS window for CTRL-K and CTRL-D will have no effect.

SAS.keyboardTranslations: #override\
Ctrl<Key>k: sas-do-command(keys)\n\
Ctrl<Key>d: sas-delete-char()

The following example specifies that the key associated with the keysym
hpClearLine performs the command entered beside the MyClrLn label in the KEYS
window.

SAS.keyboardTranslations: #override \
<Key>hpClearLine : sas-function-key("ClearLn")

SAS.keysWindowLabels: MyClrLn(ClearLn)

The character string that appears inside the parentheses in the
SAS.keysWindowLabels resource must match the string entered as the parameter to
the sas-function-key routine. The label (MyClrLn) can be any character string, and the
keysym hpClearLine must be a valid keysym for your keyboard.

Customizing Fonts in UNIX Environments

Difference between the System Font and Windowing Environment
Fonts

SAS uses two main types of fonts:
� The system font is used in most dialog boxes and pull-down menus. SAS inherits

the system font defined by the CDE *.systemFont resource. If this resource is not
defined, SAS uses a Helvetica font.

� Windowing environment fonts are used in SAS windows. You can change the SAS
windowing environment font either through the Fonts dialog box or by specifying
the resources in your resources file. The windowing environment font must be a
fixed font.

Customizing the SAS Windowing Environment Customizing Fonts Using the Fonts Dialog Box 81

Note: It is best to change fonts before invoking any applications. Changing fonts
while applications are running might result in unexpected behavior. �

How SAS Determines Which Windowing Environment Font To Use
SAS determines the normal (not bold) default windowing environment font as follows:
1 If you have saved a font in SASUSER.PROFILE.DMSFONT.UNXPREFS through

the Font dialog box, this font is used as the default normal font.
2 If you have not saved a font through the Font dialog box, but you have set the

SAS.DMSFont resource, SAS uses the font specified by this resource as the default
font.

3 If you have not set the SAS.DMSFont resource, SAS uses any *Font resources that
you have defined.

4 If you have not set the *Font resources, but you have set the SAS.DMSFontPattern
resource, SAS uses this resource to determine which font to use. The
SAS.DMSfontPattern resource will have no effect if a *Font resource is defined.

5 If no resources have been set, SAS chooses a font from the fonts that are available
on your server.

If you have not specified a value for the SAS.DMSboldFont resource, SAS uses the
default normal font to determine the default bold font. If the normal SAS.DMSFont has
an XLFD name associated with it, then SAS selects the matching bold font and loads it.
If SAS cannot automatically select or load a bold font, the normal font is also used for
the bold font.

In many cases, font names are given aliases so that a shorter name can be used to
refer to a font that has an XLFD name associated with it. The name used in
determining a bold font is based on the XA_FONT font property for the normal font.

Customizing Fonts Using the Fonts Dialog Box

Introduction to the Fonts Dialog Box
The Fonts dialog box enables you to change the windowing environment font for the

entire SAS session. If you change the font, the font that you select is stored in
SASUSER.PROFILE.DMSFONT.UNXPREFS and will be used in future SAS sessions.

How to Change the Windowing Environment Font
To change the windowing environment font, complete the following steps:
1 To open the Fonts dialog box, use one of the following methods:

� Issue the DLGFONT command in the command window.
� Select

Tools Options Fonts

82 Specifying Font Resources Chapter 3

Display 3.7 Fonts Dialog Box

� Select a font name and, if desired, a size, weight, and slant. (Not all fonts are
available in all sizes, weights, or slants.) The Sample field shows what the
selected font looks like.

� Click OK to change the existing font to the selected font.

To return to the default font, click Default .
To cancel any changes and exit the Fonts dialog box, click Cancel .

Specifying Font Resources
You can customize the fonts used in the SAS windowing environment with the

following resources:

SAS.DMSFont: font-name
specifies the font that you want to be used as the default normal font. The default
normal font is Courier.

SAS.DMSboldFont: font-name
specifies the font that you want to be used as the default bold font.

SAS.DMSDBfont: font-name
specifies the multibyte normal character set font used by the SAS windowing
system for operating environments that support multibyte character sets.

SAS.DMSDBboldFont: font-name
specifies the multibyte bold character set font used by the SAS windowing system
for operating environments that support multibyte character sets.

SAS.DMSfontPattern: XLFD-pattern
specifies an X Logical Font Description, or XLFD pattern that you want SAS to
use to determine the windowing environment font. Most fonts in the X Window

Customizing the SAS Windowing Environment Specifying Font Aliases 83

System are associated with an XLFD, which contains a number of different fields
delimited by a dash (–) character. The fields in the XLFD indicate properties such
as the font family name, weight, size, resolution, and whether the font is
proportional or monospaced. Refer to your X Window documentation for more
information on the XLFD and font names used with X.

The XLFD-pattern that you specify for SAS.DMSfontPattern must contain the
same number of fields as an XLFD. An asterisk (*) character means that any value
is acceptable for that particular field. For example, the following pattern matches
any font that has a regular slant, is not bold, is monospaced, and is an iso8859 font:

SAS.DMSFontPattern: -*-*-*-r-*--*-*-*-*-m-*-iso8859-1

SAS uses the XLFD-pattern to choose a font as follows:
1 SAS queries the X server for the list of fonts that match the

SAS.DMSfontPattern resource.
2 SAS excludes all fonts that have X and Y resolution values different from the

current X display, all fonts that have variable character cell sizing (such as
proportional fonts), and all fonts that have point sizes smaller than 8 points
or larger than 15 points. If this step results in an empty list, SAS chooses a
generic (and usually fixed) font.

3 The font with the largest point size is chosen from the remaining list.

SAS.fontPattern: XLFD-pattern
specifies an XLFD font pattern that describes the candidate fonts used to resolve
SAS graphics font requests. This allows the user to optimize or control the use of
X fonts within the context of various SAS graphics applications. The default value
of * usually does not affect performance to a significant degree. You might want to
restrict the font search if you are running SAS on a server with an excessive
number of fonts or that is operating in performance-limited environment.

SAS.systemFont: font-name
specifies the system font. The SAS windowing environment font is used in SAS
windows. The system font is used in most dialog boxes and menus. SAS typically
inherits the system font from the font resources set by the X window environment,
such as the Common Desktop Environment (CDE), or K Desktop Environment
(KDE). If the *.systemFont resource, SAS uses a 12-point Helvetica font.

Specifying Font Aliases
If your server does not provide fonts to match all of those supplied by SAS, you can

use font alias resources to substitute the fonts available on your system. (Ask your
system administrator about the fonts that are available.) Use the following syntax to
specify font aliases in your resource file:

SAS.supplied-fontAlias: substitute-family

where supplied-font is the name of the font supplied by SAS. substitute-family is the
family name of the font that you want to substitute.

CAUTION:
Do not specify a SAS font as a font alias. There might be a conflict if you specify a font
supplied by SAS as a font alias, as in the following example:

SAS.timesRomanAlias: symbol

Assigning this value to a font alias prevents the selection of any symbol fonts
through the font selection dialog box, because they are specified as the Times Roman
alias. �

84 Customizing Colors in UNIX Environments Chapter 3

The following table lists SAS font alias resource names.

Table 3.1 SAS Font Alias Resources

Resource Name Class Name

SAS.timesRomanAlias TimesRomanAlias

SAS.helveticaAlias HelveticaAlias

SAS.courierAlias CourierAlias

SAS.symbolAlias SymbolAlias

SAS.avantGardeAlias AvantGardeAlias

SAS.bookmanAlias BookmanAlias

SAS.newCenturySchoolbookAlias NewCenturySchoolbookAlias

SAS.palatinoAlias PalatinoAlias

SAS.zapfChanceryAlias ZapfChanceryAlias

SAS.zapfDingbatsAlias ZapfDingbatsAlias

Example: Substituting the Lucida Font for Palatino
Suppose that your system does not have a Palatino font, but has the following Lucida

font:

b&h-lucida-bold-r-normal-sans-
10-100-75-75-p-66-iso8859-1

To substitute Lucida for Palatino, include the following line in your resource file:

SAS.palatinoAlias: lucida

Customizing Colors in UNIX Environments

Methods for Customizing the Color Settings in Your SAS Session
SAS ships to all sites a default set of colors and attribute settings for the elements of

all SAS windows. You can customize the colors in your SAS session

� through Resource Helper (reshelper). Resource Helper enables you to customize
any color. See “Setting X Resources with the Resource Helper” on page 62 and
“Modifying the Color of a SAS Window Using the Resource Helper” on page 64 for
more information.

� through the SASCOLOR window, as described in “Customizing Colors Using the
SASCOLOR Window” on page 85. You can customize any window element for most
SAS windows with the SASCOLOR window.

� with the COLOR command as described in “Syntax of the COLOR Command” on
page 85. The COLOR command affects only the specified element of the active
window. Changes made with the COLOR command override changes entered
through any of the other methods described here.

Customizing the SAS Windowing Environment Syntax of the COLOR Command 85

� by entering the color resource specifications yourself. You can enter specific RGB
values or color names for any of the X resources that control color. See “Defining
Color Resources” on page 86 for more information.

Customizing Colors Using the SASCOLOR Window
You can use the SASCOLOR window to change the color and highlighting of specific

elements of SAS windows. To open the SASCOLOR window, issue the SASCOLOR
command or select

Tools Options Colors

Display 3.8 SASCOLOR Window

To change a color for a window element, select the element name, and then select
color and attribute that you want assigned to the element.

The BLINK attribute is not supported. The HIGHLIGHT attribute causes text to be
displayed in bold font.

When you select Save , your changes are saved to the catalog entry
SASUSER.PROFILE.SAS.CPARMS.

Note: Close and reopen any active windows for new color settings to take effect. �

For more information about the SASCOLOR window, see the SAS Help and
Documentation.

Syntax of the COLOR Command
You can use the COLOR command to set the color for specific elements of the active

window:

color field-type <color|NEXT <highlight>>

field-type
specifies an area of the window such as background, banner, command, border,
message, and so on.

color
specifies a color such as blue (which can be abbreviated B), red (R), green (G), cyan
(C), pink (P), yellow (Y), white (W), black (K), magenta (M), gray (A), brown (B), or
orange (O).

86 Defining Color Resources Chapter 3

NEXT
changes the color to the next available color.

highlight
can be H (which causes text to be displayed in a bold font), U (underlined), or R
(reverse video). The BLINK attribute is not supported.

To save your changes, issue the WSAVE command. The changes are saved to
SASUSER.PROFILE.window.WSAVE.

Note: The WSAVE command is not available for all SAS windows. For example,
with SAS/FSP or SAS/CALC software, changes are saved either through the EDPARMS
or the PARMS window. (To determine whether WSAVE is available for a SAS window,
refer to the product documentation.) �

For more information on the COLOR and WSAVE commands, see SAS Help and
Documentation.

Defining Color Resources

Types of Color Resources
Color resources fall into two categories:

foreground and background definitions
These resources allow you to customize the RGB values that are used to define the
12 DMS colors. Since each color could be used as either a background or a
foreground color, you can specify different RGB values or color names for each
color for each usage. For example, you can specify that when blue is used as a
foreground color, color #0046ED is used, and when blue is used as a background
color, CornflowerBlue is used.

window element definitions
These resources, which are referred to as CPARMS resources, enable you to specify
which of the 12 DMS colors you want to use for each window element. For
example, you can specify that message text is displayed in magenta.

These two types of resources work together. The CPARMS color values use the current
foreground and background definitions. For example, the following resources specify
that the background of your primary windows will be CornflowerBlue:

SAS.blueBackgroundColor: CornflowerBlue
SAS.cparmBackground: DmBlue

Specifying RGB Values or Color Names for Foreground and Background
Resources

SAS uses SAS.systemBackground, SAS.systemForeground, and the resources listed
in the following table to determine the colors to be used in its windows.

SAS.systemForeground: color
specifies the color for the foreground system color in the SASCOLOR window.

SAS.systemBackground: color
specifies the color for the background system color in the SASCOLOR window.

Customizing the SAS Windowing Environment Defining Color Resources 87

SAS.systemSecondaryBackground: color
sets the system secondary background color and specifies the color for the
secondary background system color in the SASCOLOR window.

You can specify color names such as MediumVioletRed or RGB values such as #0000FF
for all of the foreground and background resources. Refer to your X Window System
documentation for information on RGB color values.

The following table lists all of the foreground and background color resources and
their class names. All of these resources are of the type String.

Table 3.2 Foreground and Background Color Resources

Resource Name Class Name

SAS.systemForeground SystemForeground

SAS.systemBackground SystemBackground

SAS.systemSecondaryBackground Background

SAS.blackForegroundColor BlackForegroundColor

SAS.blueForegroundColor BlueForegroundColor

SAS.brownForegroundColor BrownForegroundColor

SAS.cyanForegroundColor CyanForegroundColor

SAS.grayForegroundColor GrayForegroundColor

SAS.greenForegroundColor GreenForegroundColor

SAS.magentaForegroundColor MagentaForegroundColor

SAS.orangeForegroundColor OrangeForegroundColor

SAS.pinkForegroundColor PinkForegroundColor

SAS.redForegroundColor RedForegroundColor

SAS.whiteForegroundColor WhiteForegroundColor

SAS.yellowForegroundColor YellowForegroundColor

SAS.blackBackgroundColor BlackBackgroundColor

SAS.blueBackgroundColor BlueBackgroundColor

SAS.brownBackgroundColor BrownBackgroundColor

SAS.cyanBackgroundColor CyanBackgroundColor

SAS.grayBackgroundColor GrayBackgroundColor

SAS.greenBackgroundColor GreenBackgroundColor

SAS.magentaBackgroundColor MagentaBackgroundColor

SAS.orangeBackgroundColor OrangeBackgroundColor

SAS.pinkBackgroundColor PinkBackgroundColor

SAS.redBackgroundColor RedBackgroundColor

88 Defining Color Resources Chapter 3

Resource Name Class Name

SAS.whiteBackgroundColor WhiteBackgroundColor

SAS.yellowBackgroundColor YellowBackgroundColor

Defining Colors and Attributes for Window Elements (CPARMS)

You can define the colors and attributes for specific window elements by assigning
values to SAS resources known as CPARMS. Each CPARMS resource defines the color
and attribute of a specific window element, such as the background in a secondary
window or the border of a primary window.

You can specify multiple color and attribute names in the same resource definition,
but only the final color and attribute will be used:

SAS.cparmResource: DmColorName|DmAttrName\
<+DmColorName|DmAttrName>

Resource can be any of the CPARMS resources listed in the following table. All of
these resources are of type DmColor, and their default values are dynamic—that is, the
default values are determined at run time.

Table 3.3 SAS CPARMS Resources

Resource Name

Specifies the color and

attribute settings

for . . . Class Name Default Color

SAS.cparmBackground backgrounds within all
primary windows displayed
in a SAS session

CparmBackground DmWhite

SAS.cparmBanner a banner within a window CparmForeground DmBlack

SAS.cparmBorder the border of a primary
window

CparmBackground DmBlack

SAS.cparmByline BY lines written to the
Output window

CparmForeground DmBlue

SAS.cparmColumn text labels for column
information. You can use
this resource within the SAS
editor to identify editing
lines and in spreadsheet
windows to label
spreadsheets.

CparmForeground DmBlue/
Underline

SAS.cparmCommand the command data entry field
when menus are disabled.

CparmForeground DmBlack

SAS.cparmData general lines written to the
Log window or the Output
window

CparmForeground DmBlack

SAS.cparmError ERROR: lines that are
written to the Log window or
Output window

CparmForeground DmRed

Customizing the SAS Windowing Environment Defining Color Resources 89

Resource Name

Specifies the color and

attribute settings

for . . . Class Name Default Color

SAS.cparmFootnote FOOTNOTE lines written to
the Output window

CparmForeground DmBlue

SAS.cparmForeground all text fields within a SAS
windowing environment
window that can be edited

CparmBackground DmBlack

SAS.cparmHeader HEADER lines written to
the Output window

CparmForeground DmBlue

SAS.cparmHelpLink links to additional levels of
information in the HELP
system

CparmForeground DmGreen/
Underline

SAS.cparmHelpMainTopic topic words or phrases in the
HELP system

CparmForeground DmBlack

SAS.cparmHelpSubTopic topic words or phrases in the
HELP system

CparmForeground DmBlack

SAS.cparmInfo text that is displayed in a
window as an aid to the
user, for example:
Press Enter to continue

CparmForeground DmBlack

SAS.cparmLabel text that precedes a widget.
For example, the text Name:
in the following example is a
label:
Name: _______________

CparmForeground DmBlack

SAS.cparmMark areas that have been
selected for operations such
as FIND, CUT, and COPY

CparmForeground DmBlack/
DmReverse

SAS.cparmMessage the message field CparmForeground DmRed

SAS.cparmNote NOTE: lines that are written
to the Log window or the
Output window

CparmForeground DmBlue

SAS.cparmSecondaryBackground backgrounds in secondary
windows

CparmForeground DmGray

SAS.cparmSecondaryBorder the border of a secondary
window

CparmForeground DmBlack

SAS.cparmSource SAS source lines that are
written to the Log window

CparmForeground DmBlack

SAS.cparmText text labels for row
information. You can use
this resource within the SAS
editor to identify editing
lines and in spreadsheet
windows to label
spreadsheet rows.

CparmForeground DmBlue

90 Defining Color Resources Chapter 3

Resource Name

Specifies the color and

attribute settings

for . . . Class Name Default Color

SAS.cparmTitle TITLE lines written to the
Output window

CparmForeground DmBlue

SAS.cparmWarning WARNING lines written to
the Log window or the
Output window

CparmForeground DmGreen

DmColorName can be any one of the following colors:
� DmBLUE
� DmRED
� DmPINK
� DmGREEN
� DmCYAN
� DmYELLOW
� DmWHITE
� DmORANGE
� DmBLACK
� DmMAGENTA
� DmGRAY
� DmBROWN

DmAttrName can be any one of the following attributes:
� DmHIGHLIGHT
� DmUNDERLINE
� DmREVERSE

For example, the following resources specify that all background colors are gray and
all foreground colors are black:

SAS.cparmBackground: DmGRAY
SAS.cparmForeground: DmBLACK

These resources specify that errors should be displayed in red with reverse video,
and warnings should be displayed in yellow with reverse video and a bold font:

SAS.cparmError: DmRED + DmREVERSE
SAS.cparmWarning: DmHIGHLIGHT + DmYELLOW + DmREVERSE

SAS looks for default CPARMS resources in two places:
� If your SAS Site Representative has entered color and attribute settings in the

SASHELP.BASE.SAS.CPARMS catalog entry, then these settings become the
default for your site.

� If you have saved settings in SASUSER.PROFILE.SAS.CPARMS, then these
settings override the settings specified for your site.

Controlling Contrast
During interactive move/stretch operations, such as rubberbanding and dragging

rectangles in SAS/INSIGHT software, you might find it hard to see the outline of the

Customizing the SAS Windowing Environment Types of Paste Buffers 91

graphics primitive because of the lack of contrast between the primitive and the
background. The XCONTRAST command makes the primitive visible against the
background. The rendering performance and the aesthetic appearance of the primitive
is compromised for the sake of visibility. You can enter XCONTRAST to act as a toggle,
or you can specify XCONTRAST ON or XCONTRAST OFF.

In some color combinations, text fields, push buttons, check boxes, and other
foreground categories might not be visible. The SAS.dmsContrastCheck resource
makes these categories legible.

SAS.dmsContrastCheck: True | False
controls whether contrast mapping is applied to nongraphic foreground colors in a
SAS window. The default value is False. A value of True specifies that DMS
foreground colors will be remapped if necessary to produce a contrast. Some color
usage based on graphic operations are not affected by this resource.

Controlling Pull-Down Menus in UNIX Environments
Pull-down menus are controlled by the following resources:

SAS.pmenuOn: True | False
forces the global PMENU state on regardless of the information stored by the
WSAVE command. The WSAVE state of an individual window takes precedence
over the global state. The default is True. (You can also use the PMENU ON and
PMENU OFF commands to turn pull-down menus on and off.)

SAS.usePmenuMnemonics: True | False
specifies whether mnemonics are attached to the pmenus for the current SAS
session. The default is True.

Customizing Cut-and-Paste in UNIX Environments
Note: For instructions on cutting and pasting text, see “Selecting (Marking) Text in

UNIX Environments” on page 42 and “Copying or Cutting and Pasting Selected Text in
UNIX Environments” on page 44. �

Types of Paste Buffers
There are four SAS paste buffers. Each SAS paste buffer is associated with a X paste

buffer:

XPRIMARY
is associated with X primary selection (PRIMARY).

XSCNDARY
is associated with the X secondary selection (SECONDARY).

XCLIPBRD
is associated with the X clipboard selection (CLIPBOARD). This paste buffer
allows you to use the MIT X Consortium xclipboard client with SAS.

XTERM
is associated with the paste buffer used by the xterm client. XTERM is the default
buffer. DEFAULT is an alias for XTERM. If you copy or cut text into the XTERM

92 Selecting a Paste Buffer Chapter 3

buffer, the text is actually copied or cut into all four of the paste buffers. When you
paste text from the XTERM buffer, the text is pasted from the XPRIMARY buffer.

XCUTn
is associated with X cut buffern where 0 <= n <= 7.

Selecting a Paste Buffer
If you are not sure which X data exchange protocols your other X clients are using,

you should use the XTERM paste buffer. You can specify your default paste buffer with
the SAS.defaultPasteBuffer resource:

SAS.defaultPasteBuffer: XTERM

If you know that the X clients in your workstation environment all use the X
PRIMARY selections to exchange data, you should use the XPRIMARY paste buffer:

SAS.defaultPasteBuffer: XPRIMARY

This specification uses both SAS and X resources more efficiently and provides for the
on-demand transfer of data between clients.

Sun OpenWindows desktop clients use the CLIPBOARD selection as the basis for
their copy-and-paste operations. If you use the SAS XCLIPBRD paste buffer, you can
exchange text directly with these clients.

You can also use the SAS XCLIPBRD paste buffer to interact with Motif clients that
use the Motif clipboard mechanism for text exchanges. This clipboard mechanism
makes it unnecessary to have a dedicated client such as xclipboard. For example, you
can use XCLIPBRD to exchange text directly with the Motif xmeditor application when
you select the Cut, Copy, or Paste items from the xmeditor Edit pull-down menu.

The Motif quick-copy data exchange and Motif clipboard data exchange mechanisms
are specific to the Motif interface toolkit and are not currently supported as SAS paste
buffers. However some dialog boxes, such as the File Selection dialog box, use Motif
interface text widgets. In these dialog boxes, the Motif quick copy and clipboard data
exchange mechanisms are available.

Manipulating Text Using a Paste Buffer
If you want SAS to automatically copy selected text into your paste buffer every time

you mark a region of text with the mouse, you should also specify your paste buffer
name in the SAS.markPasteBuffer resource:

SAS.markPasteBuffer: XTERM

Alternatively, because DEFAULT is an alias for XTERM, you could specify

SAS.markPasteBuffer: DEFAULT

The SAS.markPasteBuffer definition causes SAS to automatically issue a STORE
command whenever you select text.

The STORE command, as well as the CUT and PASTE commands, support a
BUFFER= option that specifies which buffer to use. When these commands are issued
from function keys or pull-down menus whose definitions do not include the BUFFER=
option, if the SAS.markPasteBuffer resource is not defined, these commands use
BUFFER=DEFAULT. If this resource is defined, these commands use
BUFFER=buffer-name.

You can customize your normal cut, copy, or paste keys to issue any of these
commands with the BUFFER= option. For example, you can override the

Customizing the SAS Windowing Environment Customizing Session Workspace, Session Gravity, and Window Sizes in UNIX

Environments 93

SAS.keyboardTranslations definition for the osfCopy and osfPaste keys with the
following specifications:

SAS.keyboardTranslations: #override \
<Key>osfCopy: sas-do-command(\"STORE BUFFER=XCLIPBRD\") \n\
<Key>osfPaste: sas-do-command(\"PASTE BUFFER=XCLIPBRD\")

For more information on customizing keys, see “Customizing Key Definitions in UNIX
Environments” on page 73.

Notes on Preserving Text and Attribute Information
When you cut or copy and paste text between SAS sessions using the XTERM,

XPRIMARY, or XSCNDARY paste buffers, the color and attribute information is
preserved. However, if you copy and paste the same text into an xterm window while
using the vi editor, the color and attribute information is lost. If you change the
definition for SAS.defaultPasteBuffer and SAS.markPasteBuffer to XCUT0, then
you will not retain the text and color attributes when you copy and paste text between
two SAS sessions.

When you use the xclipboard client, SAS text attributes are not preserved in
exchanges made between SAS sessions. However, when you use the XCLIPBRD paste
buffer without a clipboard manager such as the xclipboard client, SAS text attributes
are preserved in exchanges between SAS sessions.

Customizing Session Workspace, Session Gravity, and Window Sizes in
UNIX Environments

SAS uses the following resources to determine the size of the session workspace, the
gravity of the workspace, and the size of the windows. The default values for these
resources are listed in Table 3.4 on page 98.

SAS.awsResizePolicy: grow | fixed
controls the policy for resizing AWS windows as interior windows are added and
removed. Possible values include the following:

grow the AWS window will attempt to grow any time an interior
window is grown or moved, in order to show all interior
windows, but it will not shrink to remove dead areas.

fixed the AWS window will attempt to size itself to the size of the first
interior window and will not attempt any further size changes.

SAS.maxWindowHeight: units
specifies the number of units for the maximum height of a window. The unit is
specified by the SAS.windowUnitType resource.

SAS.maxWindowWidth: units
specifies the number of units for the maximum width of a window. The unit is
specified by the SAS.windowUnitType resource.

SAS.noAWS: True | False
controls whether each of your application’s windows appears in its own native
window rather than in an Application Work Space (AWS). The default is True;
each application runs in its own native window.

94 Specifying User-Defined Icons in UNIX Environments Chapter 3

SAS.scrollBarSize: pixels
specifies the default size of the scroll bar in pixels.

SAS.sessionGravity: value
controls the region of the screen where SAS will attempt to place its windows.
This resource might be ignored by some window manager configurations. Possible
values include the following:

CenterGravity

EastGravity

WestGravity

SouthGravity

NorthGravity

SouthEastGravity

NorthEastGravity

SouthWestGravity

NorthWestGravity

SAS.sessionGravityXOffset: offset
specifies an x offset to be added when SAS attempts to place a window in the
gravity region.

SAS.sessionGravityYOffset: offset
specifies a y offset to be added when SAS attempts to place a window in the
gravity region.

SAS.windowHeight: units
specifies the number of units for the default height of a window. The unit is
specified by the SAS.windowUnitType resource.

SAS.windowUnitType: character | pixel | percentage
specifies the unit type for SAS.windowWidth, SAS.windowHeight,
SAS.maxWindowWidth, and SAS.maxWindowHeight. Possible values include the
following:

character
units specify the number of rows and columns.

pixel
units specify the number of pixels.

percentage
units specify the percentage of the screen.

SAS.windowWidth: units
specifies the number of units for the default width of a window. The unit is
specified by the SAS.windowUnitType resource.

Specifying User-Defined Icons in UNIX Environments

Why Specify User-Defined Icons?
You can add your own icons to those icons that are supplied with SAS. For example,

if you want to use your own color icons in the toolbox, define the SAS.colorUiconPath,
SAS.colorUiconCount, and SAS.sasUiconx resources. Then, when you are defining

Customizing the SAS Windowing Environment X Resources for Specifying User-Defined Icons 95

tools in the tool editor, the tool editor will include your icons in the display of icons that
you can choose for each tool.

How SAS Locates a User-Defined Icon
The resource name that is used to locate the icon bitmap filename for user icon

number x is SAS.sasUiconx. For example, the following resource defines the filename
myicon for the user icon 1:

SAS.sasUicon1: myicon

If the resource name is not defined, SAS generates a filename of the form
sasuinnn.xbm or sasuinnn.xpm. The path elements from the SAS.uiconPath or
SAS.colorUiconpath resource are searched in sequence until the icon file is found or
until the search path is exhausted.

For example, the following set of X resources defines a collection of color icons.

SAS.colorUiconPath: /users/jackaroe/pixmaps/
SAS.colorUiconCount: 7
SAS.sasUicon1: adsetup
SAS.sasUicon2: adverse
SAS.sasUicon3: altmenu
SAS.sasUicon4: batch
SAS.sasUicon5: is
SAS.sasUicon6: patgrps
SAS.sasUicon7: pctchg

The Motif interface will search for icon sasUicon1 in a file named /users/jackaroe/
pixmaps/adsetup.xpm.

X Resources for Specifying User-Defined Icons
SAS uses the following resources to determine the number of user-defined icons that

are available and their location.

SAS.colorUiconPath: search-path
specifies the file search path for locating user-defined color icon files. This string
resource specifies the directory paths to be searched for an icon file. These files
should be in X Pixmap (xpm) format. Use a comma to separate individual
directory pathnames. For example, the following string first searches for icon files
in the /usr/lib/X11/pixmaps directory and then in the /usr/lib/X11/
pixmaps/SAS directory:

SAS.colorUiconPath : /usr/lib/X11/pixmaps, \
/usr/lib/X11/pixmaps/SAS

SAS.colorUiconCount: num-icons
specifies the number of user-defined color icons that are available for SAS to use.

SAS.uiconCount: num-icons
specifies the number of user-defined icons that are available for use in the SAS
session.

SAS.uiconPath: search-path
specifies the file search path for locating user-defined icon bitmap files. This string
resource specifies the directory paths to be searched for an icon file. These files

96 Miscellaneous Resources in UNIX Environments Chapter 3

should be in X Bitmap (xbm) format. Use a comma to separate individual
directory pathnames. For example, the following string will first search for bitmap
files in the /usr/lib/X11/bitmaps directory and then in the /usr/lib/X11/
bitmaps/SAS directory:

SAS.uiconPath : /usr/lib/X11/bitmaps,\
/usr/lib/X11/bitmaps/SAS

SAS.sasUiconx: name
associates a value with the filename of an X bitmap or pixmap file. x is a number
assigned to the file. A file extension of .xbm or .xpm is automatically supplied.

Miscellaneous Resources in UNIX Environments
You can also customize the following resources:

SAS.altVisualId: ID
specifies a visual type ID.

SAS.autoSaveInterval: minutes
specifies how often (in number of minutes) that the data from the Program Editor
window should be saved.

SAS.autoSaveOn: True | False
specifies that data from the Program Editor window should be saved to a file at
intervals specified by the SAS.autoSaveInterval resource.

SAS.confirmSASExit: True | False
controls whether SAS displays the Exit dialog box when you enter the DLGENDR
command or select

File Exit

The default is True.

SAS.defaultCommandWindow: True | False
specifies whether the command window is invoked when you start your SAS
session. The default is True.

SAS.directory: directory-pathname
specifies the directory that you want when you first invoke the Open dialog box.
By default, the Open dialog box uses the current directory.

SAS.helpBrowser: pathname
specifies the pathname of the World Wide Web browser to use for viewing the
online help or when the WBROWSE command is issued. The default browser is
Netscape.

SAS.htmlUsePassword: True | False
specifies whether SAS prompts you to enter your password before sending HTML
files to your browser. The default value is True.

SAS.insertModeOn: True | False
controls the editing mode in SAS editor windows. The default is False (overtype).

SAS.noDoCommandRecall: True | False
controls whether or not SAS commands submitted through the sas-do-command()
action routine are recorded in the command recall buffer. The default value of
True causes commands to be omitted from the command recall buffer; a value of
False causes them to be recorded.

Customizing the SAS Windowing Environment Summary of X Resources for SAS in UNIX Environments 97

SAS.pattern: default-pattern
specifies the default pattern that you want to be used as the file filter when you
first invoke the Open and Import Image dialog boxes. This pattern is displayed in
the text field at the top of the dialog box. By default, the dialog box uses the first
filter in the File type list. The pattern resource has no effect on the File type field.

SAS.selectTimeout: seconds
specifies the X toolkit selection conversion timeout value in units of seconds. This
determines the amount of time that SAS will wait for a request to convert an X
toolkit selection to complete. The default value should be adequate in most cases.

SAS.startupLogo: xpm-filename | None | ""
specifies the XPM file that you want SAS to display when it is initialized. If the
string is empty, SAS uses the default logo.

SAS.startSessionManager: True | False
specifies whether SAS automatically starts the session manager when a new SAS
session is started. Using your own host editor with SAS requires that the session
manager be running. The default is True.

SAS.suppressMenuIcons: True | False
specifies whether SAS displays any menu icons other than the check box and
toggle button icons in cascade or popup menus. Suppressing the icons reduces
memory usage and improves how quickly the menus display on slower X servers.
The default is False.

SAS.suppressTutorialDialog: True | False
specifies whether SAS displays the Getting Started Tutorial dialog box at the start
of your SAS session. True suppresses the dialog box. You might want to suppress
this dialog box if you have previously used SAS. The default is False.

SAS.useNativeXmTextTranslations: True | False
specifies whether any XmText widget translations are inherited by all instances of
the Text, Combo Box, and Spin Box widgets used by the SAS X Motif user
interface. When the value is False, the SAS keys windows translations supercede
any user or system-supplied XmText translations. The default value is False. See
the XmText man page for more information about XmText resources.

SAS.wsaveAllExit: True | False
specifies whether SAS should issue the WSAVE ALL command when you end your
session. This command saves the global settings, such as window color and
window position, that are in effect for all windows that are currently open. The
default is False.

Note: For the WSAVE command to work, your window manager must support
explicit window placement. Consult the documentation for your window manager
to determine how to configure your window manager. For example, if you are
running Exceed, open the Screen Definition Settings dialog box and deselect
Cascade Windows. �

Summary of X Resources for SAS in UNIX Environments

The following table lists the instance and class names, type, and default values for
many of the SAS resources. See the following tables for additional resources of specific
types:

� “SAS Font Alias Resources,” Table 3.1 on page 84

98 Summary of X Resources for SAS in UNIX Environments Chapter 3

� “Foreground and Background Color Resources,” Table 3.2 on page 87
� “SAS CPARM Resources,” Table 3.3 on page 88.

Table 3.4 SAS Resources

Resource Name Class Name Type Default

SAS.altVisualId AltVisualId Integer NULL

SAS.autoComplete AutoComplete Boolean True

SAS.autoSaveInterval AutoSaveInterval Integer 10

SAS.autoSaveOn AutoSaveOn Boolean True

SAS.awsResizePolicy AWSResizePolicy String grow

SAS.colorUiconCount UiconCount Integer 0

SAS.colorUiconPath UiconPath String NULL

SAS.commandsSaved CommandsSaved Integer 25

SAS.confirmSASExit ConfirmSASExit Boolean True

SAS.defaultCommandWindow DefaultCommandWindow Boolean True

SAS.defaultPasteBuffer DefaultPasteBuffer String XTERM

SAS.defaultToolBox DefaultToolBox Boolean True

SAS.directory Directory String NULL

SAS.dmsContrastCheck DmsContrastCheck Boolean False

SAS.DMSDBFont Font String dynamic

SAS.DMSDBboldFont Font String dynamic

SAS.DMSboldFont Font String dynamic

SAS.DMSFont Font String dynamic

SAS.DMSfontPattern DMSFontPattern String -*-*-*-r-*–*-
--*-m-*-
iso8859-1

SAS.fontPattern FontPattern String *

SAS.helpBrowser HelpBrowser String netscape

SAS.htmlUsePassword HtmlUsePassword Boolean True

SAS.insertModeOn InsertModeOn Boolean False

SAS.isToolBoxPersistent IsToolBoxPersistent Boolean True

SAS.keyboardTranslations KeyboardTranslations Translation dynamic

SAS.keysWindowLabels KeysWindowLabels String dynamic

SAS.markPasteBuffer MarkPasteBuffer String XTERM

SAS.maxWindowHeight WindowHeight Dimension 95

SAS.maxWindowWidth WindowWidth Dimension 95

SAS.noAWS NoAWS Boolean True

SAS.noDoCommandRecall NoDoCommandRecall Boolean True

Customizing the SAS Windowing Environment Summary of X Resources for SAS in UNIX Environments 99

Resource Name Class Name Type Default

SAS.pattern Pattern String NULL

SAS.pmenuOn PmenuOn Boolean True

SAS.sasUicon SasUicon String NULL

SAS.scrollBarSize ScrollBarSize Dimension 17

SAS.selectTimeout SelectTimeout Integer 60

SAS.sessionGravity SASGravity String NorthWestGravity

SAS.sessionGravityXOffset SASGravityOffset Integer 0

SAS.sessionGravityYOffset SASGravityOffset Integer 0

SAS.startSessionManager StartSessionManager Boolean True

SAS.startupLogo StartUpLogo String NULL

SAS.suppressMenuIcons SuppressMenuIcons Boolean False

SAS.suppressTutorialDialog SuppressTutorialDialog Boolean False

SAS.systemFont SystemFont String “-adobe-
helvetica-
medium-r-
normal–12−*−
−−*−*−*−*”

SAS.toolBoxAlwaysOnTop ToolBoxAlwaysOnTop Boolean True

SAS.toolBoxTipDelay ToolBoxTipDelay Integer 750

SAS.uiconCount UiconCount Integer 0

SAS.uiconPath UiconPath String NULL

SAS.useCommandToolBoxCombo UseCommandToolBoxCombo Boolean True

SAS.useLargeToolBox UseLargeToolBox Boolean False

SAS.useNativeXmTextTranslations UseNativeXmTextTranslations Boolean False

SAS.usePmenuMnemonics UsePmenuMnemonics Boolean True

SAS.useShowHideDecorations UseShowHideDecorations Boolean False

SAS.useToolBoxTips UseToolBoxTips Boolean True

SAS.wsaveAllExit WsaveAllExit Boolean False

SAS.windowHeight WindowHeight Dimension 50

SAS.windowWidth WindowWidth Dimension 67

SAS.windowUnitType WindowUnitType String percentage

100

101

C H A P T E R

4
Using SAS Files

Introduction to SAS Files, Data Libraries, and Engines in UNIX Environments 103

What Is a SAS File? 103
How SAS Filenames Appear in Your Operating Environment 103

What Are Data Libraries? 103

What Is a Libref? 103
What Is an Engine? 103

Additional Resources 104

Common Types of SAS Files in UNIX Environments 104
What Are Data Sets? 104

SAS Data Files (Member Type DATA) 104
SAS Data Views (Member Type VIEW) 105

What Are Catalogs? 105

What Are Stored Program Files? 105
What Are Access Descriptor Files? 105

Filename Extensions and Member Types in UNIX Environments 105

Migrating 32-Bit SAS Files to 64-Bit in UNIX Environments 106
Compatibility of Existing SAS Files with SAS 9.1 106

Migrating Supported SAS Files 107
Benefits of Converting Supported SAS Files 107

How to Convert Supported SAS Files 107

Migrating Unsupported SAS Files 108
Why You Need to Convert Your Unsupported SAS Files 108

How to Convert Unsupported File Types 108

Additional Resources 108
Accessing SAS Files across Compatible Machine Types in UNIX Environments 108

Characteristics of Compatible Machine Types 108
Compatible Machine Types for Release 6.12 through Release 8.2 108

Determining Compatible Machine Types in SAS 9.1 109

Creating a SAS File to Use with an Earlier Release 110
Reading SAS Data Sets from Previous Releases or from Other Hosts 111

Reading Version 6 Data Sets 111

Using CEDA to Read Data Sets 111
Referring to SAS Data Files Using Librefs in UNIX Environments 111

Techniques for Referring to a SAS File 111
What Is a Libref? 111

Assigning Librefs 112

Using the LIBNAME Statement 112
Using the LIBNAME Function 112

Using the LIBASSIGN Command 112

Using the LIBNAME Window 113
Using the SAS Explorer Window 113

102 Contents Chapter 4

Permanently Assigning a Libref 113

Accessing a Permanent SAS Data Library Using a Libref 113
Specifying Pathnames in UNIX Environments 114

Rules for Specifying Directory and Pathnames 114

Example 1: Accessing a File That Is Not in the Current Directory 114
Example 2: Accessing a File in the Current Directory 114

Valid Character Substitutions in Pathnames 114

Assigning a Libref to Several Directories (Concatenating Directories) 115
Introduction to Concatenating Directories 115

How SAS Accesses Concatenated Data Libraries 115
Accessing Files for Input and Update 116

Accessing Files for Output 116

Accessing Data Sets with the Same Name 116
Using Multiple Engines for a Library in UNIX Environments 116

Using Environment Variables as Librefs in UNIX Environments 117

Librefs Assigned by SAS in UNIX Environments 118
Automatically Defined Librefs 118

Sasuser Data Library 118
What Is the Sasuser Library? 118

Contents of the Sasuser Library 118

Work Data Library 120
Using One-Level Names To Access Permanent Files (User Data Library) 120

Introduction to One-Level Names 120

Techniques for Assigning the User Libref 121
Accessing Disk-Format Data Libraries in UNIX Environments 121

Accessing Sequential-Format Data Libraries in UNIX Environments 122
Benefits and Limitations of Sequential Engines 122

Reading and Writing SAS Files on Tape 122

Introduction to SAS Libraries on Tape 122
Benefit of Using a Staging Directory 122

Syntax of the LIBNAME Statement 122

Example: Assigning a Libref to the Tape Device 122
Accessing Multi-Volume Tape Libraries 122

Reading and Writing Transport Formats on Tape 122
Example: Transporting a File from Tape to the Work Library 123

Writing Sequential Data Sets to Named Pipes 123

Why Use Named Pipes? 123
Syntax of the LIBNAME Statement 123

Example: Creating a SAS Data Set Using a Named Pipe 123

Sharing Files in UNIX Environments 124
Sharing Files with the FILELOCKS System Option 124

Conditions to Check When FILELOCKS=NONE 124
Sharing Files in a Network 124

Introduction to Sharing Files Across Workstations 124

Accessing Files on Different Types of Workstations 125
Troubleshooting Accessing Data Over NFS Mounts 125

Accessing BMDP, OSIRIS, or SPSS Files in UNIX Environments 125

Introduction to the BMDP, OSIRIS, and SPSS Files 125
The BMDP Engine 126

Syntax for Accessing BMDP Save Files 126
Example: BMDP Engine 126

The OSIRIS Engine 127

Notes on the OSIRIS Data Dictionary Files 127
Syntax for Accessing an OSIRIS File 127

Using SAS Files What Is an Engine? 103

Example: OSIRIS Engine 127

The SPSS Engine 128
Syntax for Accessing an SPSS Export File 128

Example: SPSS Engine 128

Support for Links in UNIX Environments 128

Introduction to SAS Files, Data Libraries, and Engines in UNIX
Environments

What Is a SAS File?
Your data can reside in different types of files, including SAS files and files that are

formatted by other software products, such as database management systems. Under
UNIX, a SAS file is a specially structured UNIX file. Although the UNIX operating
environment manages the file for SAS by storing it, the operating system cannot
process it because of the structure built into the file by SAS. For example, you can list
the filename with the ls command, but you cannot use the vi editor to edit the file. A
SAS file can be permanent or temporary.

How SAS Filenames Appear in Your Operating Environment
In SAS, you can create filenames using lowercase, uppercase, or mixed case. For

example, valid data set names include: test1, TEST1, and Test1. However, when you
view these files in your operating environment, the names will appear only in
lowercase. For example, all of the previous data set names will appear as test1 in your
operating environment.

What Are Data Libraries?
SAS files are stored in SAS data libraries. A SAS data library is a collection of SAS

files within a UNIX directory. Any UNIX directory can be used as a SAS data library.
(The directory can also contain files called external files that are not managed by SAS.
See Chapter 5, “Using External Files and Devices,” on page 131 for how to access
external files.) SAS stores temporary SAS files in a Work data library (see “Work Data
Library” on page 120), which is automatically defined for you. You must specify a data
library for each permanent SAS file.

What Is a Libref?
SAS data libraries can be identified with librefs. A libref is a name by which you

reference the directory in your application. For more information about how to assign a
libref, see “Referring to SAS Data Files Using Librefs in UNIX Environments” on page
111.

What Is an Engine?
SAS files and SAS data libraries are accessed through engines. An engine is set of

routines that SAS must use to access the files in the data library. SAS can read from
and, in some cases, write to the file by using the engine that is appropriate for that file

104 Additional Resources Chapter 4

type. For some file types, you need to tell SAS which engine to use. For others, SAS
automatically chooses the appropriate engine. The engine that is used to create a SAS
data set determines the format of the file.

Additional Resources
For more information about SAS files, data libraries, and engines, see SAS Language

Reference: Concepts.

Common Types of SAS Files in UNIX Environments

What Are Data Sets?
Data sets consist of descriptor information and data values organized as a table of

rows and columns that can be processed by one of the engines. The descriptor
information includes data set type, data set label, the names and labels of the columns
in the data set, and so on. A SAS data set can also include indexes for one or more
columns.

SAS data sets are implemented in two forms:
� If the data values and the data set’s descriptor information are stored in one file,

the SAS data set is called a SAS data file.
� If the file simply contains information about where to obtain a data set’s data

values and descriptor information, the SAS data set is called a SAS data view.

The default engine processes the data set as if the data file or data view and the
indexes were a single entity.

For more information, see “SAS Data Files (Member Type DATA)” on page 104 and
“SAS Data Views (Member Type VIEW)” on page 105.

SAS Data Files (Member Type DATA)
The SAS data file is probably the most frequently used type of SAS file. These files

have have the extension .sas7bdat. SAS data files are created in the DATA step and
by some SAS procedures. There are two types of data files:

� Native data files store data values and their descriptor information in files
formatted by SAS. These are the traditional SAS data sets familiar from previous
releases of SAS.

Native SAS data files created by the default engine can be indexed. An index is
an auxiliary file created in addition to the data file it indexes. The index provides
fast access to observations within a SAS data file by a variable or key. Under
UNIX, indexes are stored as separate files but are treated as integral parts of the
SAS data file by SAS.

CAUTION:
Do not remove index files using UNIX commands. Removing the index file can
damage your SAS data set. Also, do not change its name or move it to a
different directory. Use the DATASETS procedure to manage indexes. �

� Interface data files store data in files that have been formatted by other software
and that SAS can only read. See “Accessing BMDP, OSIRIS, or SPSS Files in
UNIX Environments” on page 125 for more information.

Using SAS Files Filename Extensions and Member Types in UNIX Environments 105

SAS Data Views (Member Type VIEW)
A SAS data view contains only the information needed to derive the data values and

the descriptor information. Depending on how the SAS data view is created, the actual
data can be in other SAS data sets or in other vendors’ files.

Views can be of two kinds:
� Native SAS data views contain information about data in one or more SAS data

files or SAS data views. This type of view is created with the SQL procedure or
DATA step.

� Interface SAS data views contain information about data formatted by other
software products, for example, a database management system. The ACCESS
procedure in SAS/ACCESS software, for example, creates such a view.

What Are Catalogs?
Catalogs are a special type of SAS file that can contain multiple entries. Many

different types of entries can be kept in the same SAS catalog. For example, catalogs
can contain entries created by SAS/AF and SAS/FSP software, windowing applications,
key definitions, SAS/GRAPH graphs, and so on.

Catalogs have the SAS member type of CATALOG.

What Are Stored Program Files?
Stored program files are compiled DATA steps generated by the Stored Program

Facility. For details on the Stored Program Facility, see SAS Language Reference:
Dictionary.

Stored program files have the SAS member type of PROGRAM.

What Are Access Descriptor Files?
Access descriptor files describe the data formatted by other software products such as

the Oracle or the SYBASE database management systems. Descriptor files created by
the ACCESS procedure in SAS/ACCESS software have the SAS member type of
ACCESS.

Filename Extensions and Member Types in UNIX Environments
Because SAS needs to distinguish between the different file types, it automatically

assigns an extension to each file when it creates the file. Also, since each SAS file is a
member of a data library, SAS assigns each file a member type.

The following table lists the file extensions and their corresponding SAS member
types.

CAUTION:
Do not change the file extensions of SAS files. File extensions determine how SAS
accesses files; changing them can cause unpredictable results. �

106 Migrating 32-Bit SAS Files to 64-Bit in UNIX Environments Chapter 4

Table 4.1 File Extensions for SAS File Types

Version 6 Version 8, SAS System 9

Random
Access
Files

Sequential
Access Files

Random
Access
Files

Sequential
Access Files

SAS
Member
Type Description

.sas .sas .sas .sas .sas SAS program

.lst .lst .lst .lst .lst Procedure output

.log .log .log .log .log SAS log file

.ssdnn1 .sdqnn .sas7bdat .sas7sdat DATA SAS data file

.snxnn .siqnn .sas7bndx .sas7sndx INDEX Data file index; not treated by the
SAS System as a separate file

.sctnn .scqnn .sas7bcat .sas7scat CATALOG SAS catalog

.sspnn .ssqnn .sas7bpgm .sas7spgm PROGRAM Stored program (DATA step)

.ssvnn .svqnn .sas7bvew .sas7svew VIEW SAS data view

.ssann .saqnn .sas7bacs .sas7sacs ACCESS Access descriptor file

.sstnn .stqnn .sas7baud .sas7saud AUDIT Audit file

.sfdnn .sfqnn .sas7bfdb .sas7sfdb FDB Consolidation database

.ssmnn .smqnn .sas7bmdb .sas7smdb MDDB Multi-dimensional database

.sdsnn .soqnn .sas7bods .sas7sods SASODS Output delivery system file

.snmnn .sqnnn .sas7bdmd .sas7sdmd DMDB Data mining database

.sitnn .srqnn .sas7bitm .sas7sitm ITEMSTOR Item store file

.sutnn .suqnn .sas7butl .sas7sutl UTILITY Utility file

.spunn .spqnn .sas7bput .sas7sput PUTILITY Permanent utility file

.ssbnn .sbqnn .sas7bbak .sas7sbak BACKUP Backup file

1 All Version 6 files end with a two-character code (nn) that identifies sets of compatible SAS files. See “Sharing Files in UNIX
Environments” on page 124 for more information.

A UNIX directory can store a variety of files, but you might find it more practical to
store files in separate directories according to their use. Also, you can keep libraries
that are accessed by different engines in the same directory, but this is not
recommended. See “Using Multiple Engines for a Library in UNIX Environments” on
page 116 for more information.

Migrating 32-Bit SAS Files to 64-Bit in UNIX Environments

Compatibility of Existing SAS Files with SAS 9.1
Starting in SAS 9, SAS for the AIX, HP-UX, and Solaris operating environments is

64-bit only. Consequently, some SAS files (such as your SAS catalogs) that were created
in 32-bit releases of SAS cannot be read by the V9 engine. SAS automatically tries to
use Cross-Environment Data Access (CEDA) to process these files. The following table
lists the supported processing for each SAS file.

Using SAS Files Migrating Supported SAS Files 107

Table 4.2 Supported Processing for SAS Files

File Type Support

SAS data files input processing 1, output processing 2

MDDB file input processing

PROC SQL view input processing

SAS/ACCESS view for Oracle or SYBASE input processing

SAS/ACCESS view other than for Oracle or
SYBASE

no support

SAS catalog no support

stored compiled DATA step program no support

DATA step view no support

item store no support

1 To read data sets created in Version 6, use the V6 or V6TAPE read-only engines.
2 In SAS 9 if you create a new data file from the 32-bit file, the new file will be 64-bit.

For the supported SAS files, CEDA provides only read and write access. You cannot
update these files. To update these files, you will need to convert them to 64-bit. You
can use the MIGRATE procedure to convert all of your SAS files (both supported and
unsupported) to 64-bit.

Note: See SAS/CONNECT User’s Guide for information about accessing Version 6
SAS files if you use Remote Library Services to access SAS files on a server. �

Migrating Supported SAS Files

Benefits of Converting Supported SAS Files

If you need to access 32-bit SAS data sets, SAS/ACCESS views from Oracle or
SYBASE, SQL views, or MDDB files from a 64-bit SAS session, then you can access
these files using CEDA. (If you are trying to access Version 6 data sets, then you will
need to use the V6 or V6TAPE read-only engines.) CEDA provides read and write
access to these files. However, CEDA does not support update processing. CEDA also
consumes additional resources each time that you read or write to these files.

Converting your data files enables you to

� have update access to these data files

� avoid the overhead of reading or writing to 32-bit data files in a 64-bit SAS session.

How to Convert Supported SAS Files

To convert these SAS files, use the MIGRATE procedure. Using PROC MIGRATE to
convert your data files enables you to preserve any integrity constraints or indexes that
are associated with the data file.

Note: You do not need access to a 32-bit release of Version 8 to convert these files. �

108 Migrating Unsupported SAS Files Chapter 4

Migrating Unsupported SAS Files

Why You Need to Convert Your Unsupported SAS Files
Catalogs and other SAS files (not including SAS data sets) contain data structures

that are only known to the application that created them. These files might contain
data objects other than character or numeric objects, and therefore, these files cannot
be shared between 64-bit SAS and earlier 32-bit releases of SAS. The MIGRATE
procedure will automatically convert these files to the 64-bit version.

How to Convert Unsupported File Types
To convert an unsupported SAS file (see Table 4.2 on page 107 for a list of the

supported file types), you can use the MIGRATE procedure. However, you must have
access to a 32-bit release of Version 8 and a license for SAS/SHARE or SAS/CONNECT.

If you do not have SAS/SHARE or SAS/CONNECT, then you will need to use the
CPORT and CIMPORT procedures and have access to a 32-bit release of Version 8 to
convert your files. For more information, see “CPORT Procedure” on page 275 and
“CIMPORT Procedure” on page 270.

Additional Resources
� For more information about the MIGRATE procedure, see the Migration

Community at support.sas.com/rnd/migration.

� For more information about reading Version 6 data sets, see “Reading Version 6
Data Sets” on page 111.

� For more information about CEDA, see SAS Language Reference: Concepts.

Accessing SAS Files across Compatible Machine Types in UNIX
Environments

Characteristics of Compatible Machine Types
Different computers store numeric binary data in different forms. Hewlett-Packard,

Sun, and IBM store bytes in one order. Linux and Compaq Tru64 UNIX (formerly
Digital UNIX) store bytes in a different order. SAS files can be transported between
compatible machine types using various methods including NFS, FTP, and CD. For two
machine types to be compatible, they must have the following characteristics in common:

� same word length. Word lengths can be either 32-bit or 64-bit.

� same ordering of bytes in memory. Machine types differ in whether the most
significant byte (MSB) or the least significant byte (LSB) is loaded at the lower
memory address. This is often referred to as “big endian” or “little endian.”

Compatible Machine Types for Release 6.12 through Release 8.2
The tables in this section show the compatible machine types for Releases 6.12

through 8.2. After each table, a brief explanation is provided.

Using SAS Files Determining Compatible Machine Types in SAS 9.1 109

Table 4.3 Compatible Machine Types for Sharing Release 6.12 SAS Files

Bits Compatible Machine Types

32 Intel ABI, Linux

32 HP-UX, Solaris, AIX, IRIX

64 Tru64 UNIX

You can move a Release 6.12 SAS data set that was created on a 32-bit HP-UX host
to a 32-bit AIX host using NFS, FTP, or CD. Because HP-UX and AIX are compatible
machine types, you can use the V6 or V6TAPE engine to read the HP-UX data set on
the AIX host.

The same 32-bit HP-UX data set can be moved to a 32-bit Intel ABI host. However
because these machine types are incompatible, you cannot use the V6 or V6TAPE
engine to read the HP-UX data set.

For information about reading Version 6 data sets, see “Reading Version 6 Data Sets”
on page 111.

Table 4.4 Compatible Machine Types for Sharing Version 8 SAS Data Sets

Bits Compatible Machine Types

32 Intel ABI, Linux

32 HP-UX, Solaris, AIX, IRIX

64 AIX, Solaris, HP-UX PA Risc

64 Tru64 UNIX

You can move a Version 8 data set that was created on a 32-bit Solaris host to a
32-bit HP-UX host using methods such as NFS, FTP, or CD. Because these are
compatible machine types, you will be able to read this data set in SAS.

The same 32-bit Solaris data set can be moved to a 64-bit HP-UX host. Because
these machine types are incompatible, SAS will use CEDA to read this data set. For
more information, see “Using CEDA to Read Data Sets” on page 111.

Determining Compatible Machine Types in SAS 9.1
In SAS 9.1, the Data Representation field of the PROC CONTENTS output shows

the compatible machine types for a SAS file. The following is a portion of the PROC
CONTENTS output.

110 Creating a SAS File to Use with an Earlier Release Chapter 4

Output 4.1 Portion of PROC CONTENTS Output Using the V9 Engine

The CONTENTS Procedure

Data Set Name CLASSES.MAJORS Observations 5
Member Type DATA Variables 6
Engine V9 Indexes 0
Created Monday, February 24, 2003 14:30:19 Observation Length 48
Last Modified Monday, February 24, 2003 14:30:19 Deleted Observations 0
Protection Compressed NO
Data Set Type Sorted NO
Label Second Data Set
Data Representation HP_UX_64, RS_6000_AIX_64, SOLARIS_64, HP_IA64
Encoding latin1 Western (ISO)

In this example, the Data Representation field output shows that the compatible
machine types for this data set are: HP-UX (HP_UX_64) AIX 64-bit (RS_6000_AIX_64),
Solaris 64-bit (Solaris_64) and HP-UX Itanium (HP_IA64). Therefore, you can move a
data set that was created on a 64-bit HP-UX host to a 64-bit AIX, Solaris, or HP-UX
Itanium host using NFS, FTP, or CD. You could not move this data set to a 32-bit Linux
host using these methods. However, you can read this data set using CEDA. For more
information, see “Using CEDA to Read Data Sets” on page 111.

The following table lists the possible values for the Data Representation field for
SAS 9.1 and the corresponding machine types.

Table 4.5 Data Representation Value for Each Machine Type in SAS 9.1

Data Representation Value Corresponding Machine Type

ALPHA_TRU64 Compaq Tru64

HP_UX_64 HP-UX PA-Risc 64-bit

HP_IA64 HP-UX Itanium Processor Family

INTEL_ABI Intel ABI Compliant Operating Systems

LINUX Linux on Intel 32-bit Hardware

RS_6000_AIX_64 AIX 64-bit

SOLARIS_64 Solaris 64-bit

Note: The Encoding value might affect your ability to move SAS files between
compatible machine types. It is important to note this value when you are transporting
SAS files between hosts. For more information about encoding, see SAS National
Language Support (NLS): User’s Guide. �

Creating a SAS File to Use with an Earlier Release
The V9 and V9TAPE engines differ slightly from previous SAS engines. These

engines support longer format and informat names than previous SAS engines. To
ensure compatibility between releases, see SAS Language Reference: Concepts.

Using SAS Files What Is a Libref? 111

Reading SAS Data Sets from Previous Releases or from Other Hosts

Reading Version 6 Data Sets
Using the V6 and V6TAPE read-only engines, SAS can read Version 6 data sets that

were created by compatible machine types. The following examples demonstrate how
you can use the V6 engine.

� If you are running SAS 9.1 on Linux, you can use the V6 engine to read Version 6
data sets that were created with any Intel ABI release of SAS, such as SCO UNIX.

� If you are running SAS 9.1 on HP-UX, you can use the V6 engine to read Version 6
data sets that were created on HP-UX, Solaris, AIX, or IRIX.

For a list of the compatible machines types for V6, see “Compatible Machine Types
for Release 6.12 through Release 8.2” on page 108. For more information about the
compatibility of Version 6 files with SAS 9.1, see SAS Language Reference: Concepts.

Using CEDA to Read Data Sets
CEDA enables a SAS data set that was created in Version 7 or later in any

directory-based operating environment (such as UNIX, Windows, and OpenVMS Alpha)
to be read by a SAS session that is running in another directory-based environment. In
SAS 9.1, if you try to access a data set that was created in a previous release, then SAS
automatically uses CEDA to process the file. For example, if you are running SAS 9.1
on Linux, SAS will use CEDA to process a data set that was created in Version 8 on a
64-bit Solaris host. With CEDA, you have read and write access to these files; however,
you will not be able to update the file.

For information about CEDA, see SAS Language Reference: Concepts.

Referring to SAS Data Files Using Librefs in UNIX Environments

Techniques for Referring to a SAS File
If you want to read or write to a permanent SAS file, you can refer to the SAS file in

one of two ways:
� refer to the data file directly by using its pathname in the appropriate statements

(such as DATA, SET, MERGE, UPDATE, OUTPUT, and PROC).
� assign a libref to the SAS data library (directory) that contains the data file and

use the libref as the first level of a two-level filename.

What Is a Libref?
A libref is a nickname that you can use to refer to the data library during a SAS

session or job. You will probably want to use a libref when:
� the data file pathname is long and must be specified several times within a

program

112 Assigning Librefs Chapter 4

� the pathname might change. If the pathname changes, you need to change only
the statement assigning the libref, not every reference to the file.

� your application will be used on other platforms. Using librefs makes it easier to
port an application to other operating environments.

� you need to concatenate libraries. See “Assigning a Libref to Several Directories
(Concatenating Directories)” on page 115 for more information.

Librefs can be stored in the SAS registry. See “Customizing Your SAS Registry Files” on
page 16 for more information.

Assigning Librefs
You can use any of the following methods to assign a SAS libref:

� the LIBNAME statement

� the LIBNAME function

� the LIBASSIGN command

� the LIBNAME window

� the SAS Explorer window .

A libref assignment remains in effect for the duration of the SAS job, session, or
process unless you either clear the libref or use the same libref in another LIBNAME
statement or LIBNAME function.

If you assign a libref from a SAS process, that libref is valid only within that SAS
process. If you clear a libref from within a SAS process, that libref is not cleared from
other SAS processes.

Using the LIBNAME Statement
The LIBNAME statement identifies a SAS data library to SAS, associates an engine

with the library, enables you to specify options for the library, and assigns a libref to it.
For details about LIBNAME statement syntax, see “LIBNAME Statement” on page 301.

Using the LIBNAME Function
The LIBNAME function takes the same arguments and options as the LIBNAME

statement. For more information about the LIBNAME function, see “LIBNAME
Function” on page 250.

Using the LIBASSIGN Command
Perform the following steps to assign a libref using the LIBASSIGN command:

1 Issue the LIBASSIGN command in the command window. The New Library dialog
box opens.

2 Specify the libref in the Name field.

3 Specify an engine for the libref in the Engine field by selecting the default engine
or another engine from the drop-down menu. Depending on the engine that you
specify, the fields in the Library Information area might change.

4 Click the Enable at startup box to assign this libref when you invoke SAS.

5 Specify the necessary information for the desired SAS data library in the Library
Information area. Depending on the engine selected, there may or may not be a
Path field available for input.

Using SAS Files Accessing a Permanent SAS Data Library Using a Libref 113

6 Specify LIBNAME options in the Options field. These options can be specific to
your host or engine, including options that are specific to a SAS engine that
accesses another software vendor’s relational database system.

7 Click OK .

Using the LIBNAME Window
Perform the following steps to assign a libref from the LIBNAME window
1 Issue the LIBNAME command in the command window. The LIBNAME window

opens.
2 From the File pull-down menu, select New. The New Library dialog box opens.
3 Fill in the fields in the New Library dialog box, described in “Using the

LIBASSIGN Command” on page 112.
4 Click OK .

Using the SAS Explorer Window
Perform the following steps to assign a libref from the SAS Explorer window:
1 From the File pull-down menu, select New when the Libraries node in the tree

structure is active. The New dialog box opens.
2 Select Library, and then click OK . The New Library dialog box opens.
3 Fill in the fields in the New Library dialog box, described in “Using the

LIBASSIGN Command” on page 112.
4 Click OK .

Permanently Assigning a Libref
You might want to save a libref so that it is valid between SAS sessions. You can

assign a libref permanently by using one of the following methods:
� Specify the LIBNAME statement or LIBNAME function in an autoexec file. For

more information, see “LIBNAME Function” on page 250 or “LIBNAME
Statement” on page 301

� Select the Enable at startup box when you assign a libref using the
LIBASSIGN command, LIBNAME window, or Explorer Window. This will save the
libref in the SAS Registry. For more information about these methods, see
“Assigning Librefs” on page 112.

� Use environment variables as librefs. Include these environment variables in your
startup files so that these variables are set when SAS is invoked.

Accessing a Permanent SAS Data Library Using a Libref
After you have defined a libref, you can use the libref in one of two ways to access a

permanent SAS data library:
� as the first level of a two-level SAS filename:

libref.member-name

where libref is the first-level name referring to the directory where the file is
stored, and member-name specifies the name of the file being read or created.

� as the value of the USER= option. (See “Using One-Level Names To Access
Permanent Files (User Data Library)” on page 120 for details.)

114 Specifying Pathnames in UNIX Environments Chapter 4

For example, these SAS statements access the data file Final.sas7bdat in the Sales
library that is stored in the /users/myid/mydir directory :

libname sales ’/users/myid/mydir’;
data sales.final;

Specifying Pathnames in UNIX Environments

Rules for Specifying Directory and Pathnames
Whether you specify a data file name directly in the various SAS statements or

specify the data library name in a LIBNAME statement and then refer to the libref, the
same rules apply for specifying UNIX directory and file pathnames.

Specify directory and file pathnames in quotation marks. The level of specification
depends on your current directory.

Example 1: Accessing a File That Is Not in the Current Directory
If /u/1999/budgets is not your current directory, then to access the data file named

May, you must specify the entire pathname:

data ’/u/1999/budgets/may’;

If you wanted to use a libref, you would specify:

libname budgets ’/u/1999/budgets’;
data budgets.may;

Example 2: Accessing a File in the Current Directory
If /u/1999/budgets is your current directory, you could specify only the data file

names:

data ’quarter1’;
merge ’jan’ ’feb’ ’mar’;
run;

Note: If you omit the quotation marks, then SAS assumes that these data sets are
stored in the Saswork directory. �

If you wanted to use a libref, you would specify:

libname budgets ’.’;
data budgets.quarter1;
merge budgets.jan budgets.feb budgets.mar;
run;

Valid Character Substitutions in Pathnames
You can use the character substitutions shown in the following table to specify

pathnames.

Using SAS Files How SAS Accesses Concatenated Data Libraries 115

Table 4.6 Character Substitutions in Pathnames

Characters Meaning

~/ $HOME/

Can be used only at the beginning of a pathname.

~name/ name’s home directory (taken from file /etc/passwd). Can be used only
at the beginning of a pathname.

!sasroot name of sasroot directory (see Appendix 1, “The !SASROOT Directory,”
on page 397). Specified only at the beginning of a pathname.

. current working directory

.. parent of current working directory

$VARIABLE environment variable VARIABLE

Assigning a Libref to Several Directories (Concatenating Directories)

Introduction to Concatenating Directories
You can use the LIBNAME statement to assign librefs and engines to one or more

directories, including the Work directory.
If you have SAS data sets located in multiple directories, you can treat these

directories as a single SAS data library by specifying a single libref and concatenating
the directory locations, as in the following example:

libname income (’/u/2002/revenue’, ’/u/2002/costs’);

This statement indicates that the two directories, /u/2002/revenue and /u/2002/
costs, are to be treated as a single SAS data library.

If you have already assigned librefs to your SAS data libraries, you can use these
librefs to indicate that you want to concatenate the data libraries, as in this example:

libname income (’/u/2002/corpsale’, ’/u/2002/retail’);
libname costs (’/u/2002/salaries’, ’/u/2002/expenses’);
libname profits (income, costs, ’/u/2002/capgain’);

This statement indicates that the five directories, /u/2002/corpsale, /u/2002/
retail, /u/2002/salaries, /u/2002/expenses, and /u/2002/capgain, are to be
treated as a single SAS data library.

How SAS Accesses Concatenated Data Libraries
When you concatenate SAS data libraries, SAS uses a protocol for accessing the

libraries, which depends on whether you are accessing the libraries for read, write, or
update. (A protocol is a set of rules.)

SAS uses the protocol shown in the following sections to determine which directory is
accessed. (The protocol illustrated by these examples applies to all SAS statements and
procedures that access SAS files, such as the DATA, UPDATE, and MODIFY
statements in the DATA step, and the SQL and APPEND procedures.)

116 Accessing Files for Input and Update Chapter 4

Accessing Files for Input and Update
When a SAS data set is accessed for input or update, the first SAS data set that is

found by that name is the one that is accessed. For example, if you submit the following
statements and the data set Old.Species exists in both directories, the one in the
mysasdir directory is the one that is printed:

libname old (’mysasdir’,’saslib’);
proc print data=old.species;
run;

The same would be true if you opened Old.Species for update with the FSEDIT
procedure.

Accessing Files for Output
If the data set is accessed for output, it is always written to the first directory,

provided that the directory exists. If the directory does not exist, an error message is
displayed. For example, if you submit the following statements, SAS writes the
Old.Species data set to the first directory (mysasdir) and replaces any existing data set
with the same name:

libname old (’mysasdir’,’saslib’);
data old.species;
x=1;
y=2;
run;

If a copy of the Old.Species data set exists in the second directory, it is not replaced.

Accessing Data Sets with the Same Name
If you use the DATA and SET statements to access data sets with the same name,

the DATA statement uses the output rules and the SET statement uses the input rules.
For example, suppose you submit the following statements and Test.Species originally
exists only in the second directory, mysasdir:

libname test (’sas’,’mysasdir’);
data test.species;
set test.species;
if value1=’y’ then

value2=3;
run;

The DATA statement opens Test.Species for output according to the output rules;
that is, SAS opens a data set in the first of the concatenated libraries (sas). The SET
statement opens the existing Test.Species data set in the second (mysasdir) directory,
according to the input rules. Therefore, the original Test.Species data set is not updated.
After the data step executes, two Test.Species data sets exist, one in each directory.

Using Multiple Engines for a Library in UNIX Environments
You can assign multiple librefs to a single directory, and specify a different engine

with each libref. For example, after the following statements are executed, data sets

Using SAS Files Using Environment Variables as Librefs in UNIX Environments 117

that are referenced by One are created and accessed using the default engine, while data
sets that are referenced by Two are created and accessed using the sequential engine:

libname one v9 ’/users/myid/educ’;
libname two tape ’/users/myid/educ’;

Note: Keeping different types of data libraries in one directory is not recommended
because you must remember the appropriate engine for accessing each library. SAS
cannot determine the right engine for accessing libraries in a directory that contains
libraries of different types. See “Omitting Engine Names from the LIBNAME
Statement” on page 304 for more information. �

Using Environment Variables as Librefs in UNIX Environments
An environment variable can also be used as a libref. The variable name must be in

all uppercase characters, and the variable value must be the full pathname of the
directory, that is, the name of the directory must begin with a slash.

Note: SAS on UNIX does not support the assignment of the User libref via the
USER environment variable. �

Suppose you want to use the data library in /users/mydir/educ, and you want to
refer to it with the EDUC environment variable. You can define the variable at two
times:

� before you invoke SAS. See “Defining Environment Variables in UNIX
Environments” on page 21. For example, in the Korn shell, you would use

export EDUC=/users/mydir/educ

� after you invoke SAS you can use the X statement (see “Executing Operating
System Commands from Your SAS Session” on page 13) and the SAS setenv
command:

x setenv EDUC /users/mydir/educ;

You cannot specify an engine when you define a libref as an environment variable, so
SAS determines which engine to use as described in “Omitting Engine Names from the
LIBNAME Statement” on page 304.

After the libref is defined, you can use it to access data sets stored in the library:

proc print data=educ.class;
run;

Note: If a variable and a libref have the same name but refer to different files, SAS
uses the libref. �

118 Librefs Assigned by SAS in UNIX Environments Chapter 4

Librefs Assigned by SAS in UNIX Environments

Automatically Defined Librefs
SAS automatically defines three librefs:

Sashelp
contains a group of catalogs that contain information that is used to control
various aspects of your SAS session. The Sashelp library is in the !SASROOT
directory. See Appendix 1, “The !SASROOT Directory,” on page 397.

Sasuser
contains SAS catalogs that enable you to tailor features of SAS (such as window
size, font settings, and printer entries) for your needs. If the defaults in the
Sashelp library are not suitable for your applications, you can modify them and
store your personalized defaults in your Sasuser library.

Work
is the temporary, or scratch, library automatically defined by SAS at the beginning
of each SAS session or job. The Work library stores two types of temporary files:
those you create and those created internally by SAS as part of normal processing.

These librefs and the LIBRARY libref are reserved librefs. If your site also has SAS/
GRAPH software or SAS/GIS software, the MAPS or GISMAPS librefs might also be
automatically defined. All these libraries are described in SAS Language Reference:
Dictionary. Sasuser and Work have operating system dependencies.

Sasuser Data Library

What Is the Sasuser Library?
The Sasuser library contains the customizations (such as window size and

positioning, colors, fonts, and printer entries) that you specified for your SAS session.
When you invoke SAS, it looks for the Sasuser directory to find these customizations. If
this directory does not exist, SAS uses the SASUSER system option to create it. The
default directory is set in the system configuration file (sasv9.cfg) and is usually similar
to the following:

-sasuser ~/sasuser.v91

This specification tells SAS to create a directory for the Sasuser libref in your home
directory. To determine the value of this directory for your system, use PROC OPTIONS
or libname sasuser LIST.

You can permit read-only access to the Sasuser library by using the RSASUSER
system option. See Chapter 17, “System Options under UNIX,” on page 311 for details
on the SASUSER and RSASUSER system options.

After the Sasuser library has been created, SAS automatically assigns the same
Sasuser libref to it each time you start a SAS session. It cannot be cleared or
reassigned during a SAS session. If you delete the library, SAS re-creates it the next
time you start a session. Because SAS assigns the libref for you, you do not need to use
a LIBNAME statement before referencing this library.

Contents of the Sasuser Library
Your customizations are stored in one of the following locations in the Sasuser library:

Using SAS Files Sasuser Data Library 119

Sasuser.Profile catalog
The Sasuser.Profile catalog is the profile.sas7bcat file in your Sasuser library. If
you change any function key definitions, window attributes (such as size, color,
and position), or PMENU settings during your SAS session, SAS saves the
changes in the Sasuser.Profile catalog.

If Sasuser.Profile does not exist, then at invocation SAS checks for the
Sashelp.Profile catalog. (This catalog will only exist if you have copied your
Sasuser.Profile catalog to the Sashelp library.) If the Sashelp.Profile catalog exists,
then SAS will copy it to the Sasuser library, and this will become your new
Sasuser.Profile catalog. If the Sashelp.Profile catalog does not exist, then SAS will
create a Sasuser.Profile using the default settings for a SAS session.

If you invoke SAS and discover that your customizations have been lost, then
your Sasuser.Profile is either corrupted or locked by another SAS session started
with the same user ID. If either of these conditions are true, then the following
messages will appear in the SAS log:

NOTE: Unable to open SASUSER.PROFILE. WORK.PROFILE will be opened instead.
NOTE: All profile changes will be lost at the end of the session.

When this occurs, SAS creates a Work.Profile catalog (in the Work library)
using the default settings for a SAS session. This Work.Profile catalog is used for
the duration of the SAS session. Since the contents of the Work directory are
temporary, any customizations that you save to the Work.Profile catalog will be
lost at the end of the SAS session.

To resolve these problems with your Sasuser.Profile catalog, you can try one of
the following options:

� If your Sasuser.Profile has been corrupted, then you can remove this catalog,
and let SAS create a new one at the next invocation.

� If your Sasuser.Profile is being used by multiple SAS sessions, then you can
specify the RSASUSER system option to permit read-only access to the
Sasuser library. Since this permission is read-only, you will not be able to
save any customizations to your Sasuser.Profile during that SAS session.

Sasuser.Registry catalog
The Sasuser.Registry catalog is the registry.sas7bitm file in your Sasuser library.
If you change any Universal Printing entries or libref assignments during a SAS
session, then SAS saves the changes in the Sasuser.Registry catalog.

At invocation, SAS looks in the Sasuser directory to see if it can write to the
Sasuser.Registry catalog. If SAS cannot write to this catalog, then the following
warning appears in the SAS log:

WARNING: Unable to open SASUSER.REGISTRY. WORK.REGISTRY will be used instead.
NOTE: All registry changes will be lost at the end of the session.

If SAS can read the Sasuser.Registry, then SAS copies the Sasuser.Registry to
create a Work.Registry catalog (in the Work library). This Work.Registry catalog
will be used for the duration of the SAS session. Since the contents of the Work
library are temporary, then any customizations that you save to the Work.Registry
catalog will be lost at the end of the SAS session. However, the customizations
saved in Sasuser.Registry will still exist.

If SAS cannot read the Sasuser.Registry, then SAS creates the Work.Registry
catalog using the default settings for a SAS session. In this case, SAS issues an
additional warning to the SAS log:

WARNING: Unable to copy SASUSER.REGISTRY to WORK.REGISTRY.

120 Work Data Library Chapter 4

Sasuser.Prefs file
The settings that you specify in the Preferences dialog box (with the exception of
those resources on the General tab) are saved in the SasuserPrefs file. For more
information about these resources, see “Modifying X Resources through the
Preferences Dialog Box” on page 57.

These are three of the files that you can have in your Sasuser library. However, you
can store other data sets and catalogs in the Sasuser library as well.

Work Data Library
The Work data library is the temporary library that is automatically defined by SAS

at the beginning of each SAS session or job. The Work data library stores temporary
SAS files that you create as well as files created internally by SAS.

To access files in the Work data library, simply specify a one-level name for the file.
The libref Work is automatically assigned to these files unless you have assigned the
User libref.

When you invoke SAS, it assigns the Work libref to a subdirectory of the directory
specified in the WORK system option described in Chapter 17, “System Options under
UNIX,” on page 311. This subdirectory is usually named SAS_workcode_nodename
where

code
is a 12-character code. The first four characters are randomly generated numbers.
The next eight characters are based on the hexadecimal process ID of the SAS
session

nodename
is the name of the UNIX box where the SAS process is running

This libref cannot be cleared or reassigned during a SAS session.
The WORKINIT and WORKTERM system options control the creation and deletion

of the Work data library. See SAS Language Reference: Dictionary for details.

Note: If a SAS session is terminated improperly (for example, using the kill -9
command), SAS will not delete the SAS_workcode_nodename directory. You might want
to use the cleanwork command to delete these straggling directories (see Appendix 2,
“Tools for the System Administrator,” on page 399). �

Using One-Level Names To Access Permanent Files (User Data Library)

Introduction to One-Level Names
SAS data sets are referenced with a one- or two-level name. The two-level name is of

the form libref.member-name where libref refers to the SAS data library in which the
data set resides and member-name refers to the particular member within that library.
The one-level name is of the form member-name (without a libref). In this case, SAS
stores the files in the temporary Work data library. To override this action and have
files with one-level names stored in a permanent library, first assign the User libref to
an existing directory. To refer to temporary SAS files while User is assigned, use a
two-level name with Work as the libref.

Using SAS Files Accessing Disk-Format Data Libraries in UNIX Environments 121

Techniques for Assigning the User Libref
You have three ways to assign the User libref:
� Assign the User libref directly using the LIBNAME statement:

libname user ’/users/myid/mydir’;

� Specify the USER= system option before you start the session. For example, you
can assign the User libref when you invoke SAS:

sas -user /users/myid/mydir

� Specify the USER= system option after you start the session. First, assign a libref
to the permanent library. Then use the USER= system option in an OPTIONS
statement to equate that libref to User. For example, these statements assign the
libref User to the directory with libref Mine:

libname mine ’/users/myid/mydir’;
options user=mine;

See Chapter 17, “System Options under UNIX,” on page 311 for details on the USER=
system option.

Note: SAS on UNIX does not support the assignment of the User libref via the
USER environment variable. �

Accessing Disk-Format Data Libraries in UNIX Environments
You will probably create and access data libraries on disk more than any other type

of library. The default engine and the compatibility engines allow read, write, and
update access to SAS files on disk. They also support indexing and compression.

In the following example, the In libref is assigned to a directory that contains the
Stats1 data set:

libname in ’/users/myid/myappl’;
proc print data=in.stats1;
run;

Remember, a SAS-data-library must already exist before SAS can read from or write
to this directory. For example, if you want to create the SAS data set Orders in a
directory, use the X statement to issue the mkdir UNIX command. Then you can use
the LIBNAME statement to associate the libref with the directory.

x mkdir /users/publish/books;
libname books ’/users/publish/books’;
data books.orders;

more SAS statements
run;

By default, the LIBNAME statement associates the V9 engine with the directory.

122 Accessing Sequential-Format Data Libraries in UNIX Environments Chapter 4

Accessing Sequential-Format Data Libraries in UNIX Environments

Benefits and Limitations of Sequential Engines
The sequential engines enable you to access data libraries in sequential format on

tape or disk. The sequential engines do not support indexing and compression of
observations.

Note: Before using sequential engines, read the information about sequential data
libraries in SAS Language Reference: Dictionary. �

Reading and Writing SAS Files on Tape

Introduction to SAS Libraries on Tape
A SAS library on tape can contain one or more SAS data sets; however, only one SAS

data set from a given library on tape can be accessed at any given point in a SAS job.

Benefit of Using a Staging Directory
You can write SAS files directly to tape using the TAPE engine; however, it is more

efficient to use a staging directory so that the files can be processed directly from disk.
You can use the UNIX tar command to move SAS data sets between the staging
directory and tape. (Do not use the UNIX cp command.)

Syntax of the LIBNAME Statement
To access SAS 9.1 files on tape, you can specify the V9TAPE or TAPE engine in the

LIBNAME statement:

LIBNAME libref V9TAPE ’tape-device-pathname’;

The tape-device-pathname must be a pathname for a tape device; it should be the name
of the special file associated with the tape device. (Check with your system
administrator for details.) The name must be enclosed in quotation marks. You cannot
specify remote tape devices in the LIBNAME statement.

Example: Assigning a Libref to the Tape Device
The following LIBNAME statement assigns the libref Seq2 to the /dev/tape2 tape

device. Because the tape device is specified, the engine does not have to be specified.

libname seq2 ’/dev/tape2’;

Accessing Multi-Volume Tape Libraries
Multi-volume tape libraries are supported if you specify the TAPECLOSE=LEAVE

system option when you start your SAS session.

Reading and Writing Transport Formats on Tape
Transport formats on tape are handled in a manner similar to external files. Read

“Processing Files on TAPE in UNIX Environments” on page 149 before continuing with
this topic.

Using SAS Files Writing Sequential Data Sets to Named Pipes 123

Example: Transporting a File from Tape to the Work Library
The following SAS statements issue the UNIX mt command to rewind the tape and

create a transport file using the xport engine and PROC CPORT:

x ’mt -t /dev/rmt/0mn rewind’;
libname tranfile xport ’/dev/rmt/0mn’;
proc cport library=sasuser file=tranfile;
run;

The following statements import the transport file from tape into the Work data library:

x ’mt -t /dev/rmt/0mn rewind’;
libname tranfile xport ’/dev/rmt/0mn’;
proc cimport infile=tranfile library=work;
run;

Writing Sequential Data Sets to Named Pipes

Why Use Named Pipes?
You can send output to and read input from the operating system by using named

pipes. For example, you might want to compress a data set or send it to a tape
management system without creating intermediate files.

Syntax of the LIBNAME Statement
You can read from and write to named pipes from within your SAS session by

specifying the pipe name in the LIBNAME statement:

LIBNAME libref <TAPE> ’pipename’;

Since you cannot position a pipe file, SAS uses the TAPE engine to ensure sequential
access. You do not have to specify the engine name; TAPE is assumed.

Example: Creating a SAS Data Set Using a Named Pipe
To create a SAS data set and compress the data set without creating an

intermediate, uncompressed data set, create a named pipe (such as mypipe) and enter
the compress command:

mknod mypipe p compress <mypipe >sasds.Z

In your SAS session, assign a libref to the pipe and begin writing to the data set:

libname x ’mypipe’;
data x.a;

...more SAS statements...
output;
run;

The data is sent to mypipe, compressed, and written to the data set. When SAS
closes the data set, the compress finishes, and you have a compressed, sequential data
set in sasds.Z.

If you begin writing to a named pipe before the task on the other end (in this case,
the compress command) begins reading, your SAS session will be suspended until the
task begins to read.

124 Sharing Files in UNIX Environments Chapter 4

Sharing Files in UNIX Environments

Sharing Files with the FILELOCKS System Option
If more than one user accesses a SAS file at the same time or if a single user has

access to the same file from different SAS sessions, the results could be unpredictable.
By default, the FILELOCKS system option is set to FAIL, which enables multiple SAS
sessions to simultaneously read the same SAS file. (See “FILELOCKS System Option”
on page 329.)

Conditions to Check When FILELOCKS=NONE
If FILELOCKS has been set to NONE, then you should do one of the following:

� Make sure that your sasuser directory is unique for each SAS session. Typically,
the system administrator assigns this directory in the system configuration file.
The specification in that file or in your personal configuration file helps ensure
that the directory is unique as long as you run only one SAS session at a time.

If you run two or more SAS sessions simultaneously, you can guarantee unique
user files by specifying different sasuser directories for each session. In the first
session, you can use

-sasuser ~/sasuser

In the nth session, you can use

-sasuser ~/sasusern

For details, see “Order of Precedence for SAS Configuration Files” on page 17
and “SASUSER System Option” on page 361. The RSASUSER option can be used
to control modifications to the Sasuser library when it is shared by several users
(see “RSASUSER System Option” on page 354).

� If you run two or more SAS sessions simultaneously (either by using the X
statement or by invoking it from two different windows) and you use the same
Sasuser.Profile catalog, do not do anything within the SAS session to change that
catalog (for example, using the WSAVE command or changing key assignments)
because both sessions can use the same one.

� If you and other people use the same data sets, avoid writing to them at the same
time. However, multiple people can read these data sets at the same time.

Sharing Files in a Network

Introduction to Sharing Files Across Workstations
SAS can be licensed to run on one or more workstations in a network of similar

machines. The license specifically lists the workstations that SAS can run on. Other
workstations in the network may have access to the SAS executable files but not be
able to run SAS.

If the licensed workstations are connected via NFS mounts so that they share a file
system, they can all share a single copy of the SAS executables, although this is not
necessary. They can also share SAS files. However, if a SAS session attempts to update
a data set or catalog, it must obtain an exclusive file lock on that file to prevent other
sessions from accessing that file.

Using SAS Files Introduction to the BMDP, OSIRIS, and SPSS Files 125

If SAS is installed on workstations of different types that are connected via NFS,
then each type of workstation must have its own copy of the SAS executables. For
information about how to move catalogs and data sets between hosts, see “Accessing
SAS Files across Compatible Machine Types in UNIX Environments” on page 108.

Accessing Files on Different Types of Workstations
If the data set or catalog you want to process exists on your network but cannot be

accessed with the LIBNAME statement because it resides on a different type of
workstation, you have several alternatives:

� You can log in to the remote machine and convert the file to SAS transport format
using the CPORT procedure, copy the transport file to your machine or access it via
NFS, and import it using the CIMPORT procedure to your type of machine format.

� You can FTP or RCP the file from the remote machine to your machine.
� You can log in to the remote machine and perform the work there. This alternative

works best when the file is used rarely, or if the original file changes often.
� You can do part of your work on your machine and the other part on the remote

machine. One example of this alternative would be to run a set of statements on a
small test case on the local machine, and then submit the real work to be done on
the remote machine. Similarly, you might want to subset a large data set on
another machine, and then do local analysis on that subset. This can be
accomplished with SAS/CONNECT software. For more information about Remote
Library Services, see SAS/CONNECT User’s Guide.

Troubleshooting Accessing Data Over NFS Mounts
SAS might hang when accessing data over NFS mounts if the FILELOCKS option is

set to FAIL or CONTINUE. To alleviate the problem, make sure that all NFS filelocking
daemons are running on both machines (usually statd and lockd). Your system
administrator can assist with starting statd and lockd.

Note: To test whether there is a problem with file locking, you can set the
FILELOCKS system option to NONE temporarily. If setting FILELOCKS to NONE
resolves the problem, then you know that there probably is a problem with the statd
and lockd daemons. It is recommended that you do not set FILELOCKS to NONE
permanently as it might cause data corruption or unpredictable results. �

Accessing BMDP, OSIRIS, or SPSS Files in UNIX Environments

Introduction to the BMDP, OSIRIS, and SPSS Files
SAS includes three interface library engines, BMDP, OSIRIS and SPSS, that enable

you to access external data directly from a SAS program. All these engines are
read-only.

Because they are sequential, these engines cannot be used with the POINT= option
on the SET statement or with the FSBROWSE, FSEDIT, or FSVIEW procedures. You
can use PROC COPY, PROC DATASETS, or a DATA step to copy a BMDP or OSIRIS
system file or a SPSS export file to a SAS data set and then perform these functions on
the SAS data set. Also, some procedures (such as PROC PRINT) give a warning
message about the engine being sequential.

126 The BMDP Engine Chapter 4

With these engines, the physical filename associated with a libref is an actual
filename, not a directory. This is an exception to the rules concerning librefs.

You can also use the CONVERT procedure to convert BMDP, OSIRIS and SPSS files
to SAS data files. See “CONVERT Procedure” on page 272 for more information.

The BMDP Engine
The BMDP interface library engine enables you to read BMDP files from the BMDP

statistical software package directly from a SAS program. The BMDP engine is a
read-only engine. The following discussion assumes you are familiar with the BMDP
save file terminology.*

Note: This engine is available for AIX, HP-UX, and Solaris. �

Syntax for Accessing BMDP Save Files
To read a BMDP save file, issue a LIBNAME statement that explicitly specifies the

BMDP engine. In this case, the LIBNAME statement takes this form:

LIBNAME libref BMDP ’filename’;

In this form of the LIBNAME statement, libref is a SAS libref and filename is the
BMDP physical filename. If the libref appears previously as a fileref, omit filename
because the physical filename associated with the fileref is used. This engine can only
read save files created under UNIX.

Because there can be multiple save files in a single physical file, you reference the
CODE= value as the member name of the data set within the SAS language. For
example, if the save file contains CODE=ABC and CODE=DEF and the libref is MyLib,
you reference them as MyLib.ABC and MyLib.DEF. All CONTENT types are treated the
same, so even if member DEF is CONTENT=CORR, it is treated as CONTENT=DATA.

If you know that you want to access the first save file in the physical file or if there is
only one save file, refer to the member name as _FIRST_. This is convenient if you do
not happen to know the CODE= value.

Example: BMDP Engine
Assume that the physical file MyBMDP.dat contains the save file ABC. The following

SAS code associates the libref MyLib with the BMDP physical file and runs the
CONTENTS and PRINT procedures on the save file:

libname mylib bmdp ’mybmdp.dat’;
proc contents data=mylib.abc;
run;
proc print data=mylib.abc;
run;

The following example uses the LIBNAME statement to associate the libref MyLib2
with the BMDP physical file. Then it prints the data for the first save file in the
physical file:

libname mylib2 bmdp ’mybmdp.dat’;
proc print data=mylib2._first_;
run;

* See the documentation provided by BMDP Statistical Software Inc. for more information.

Using SAS Files The OSIRIS Engine 127

The OSIRIS Engine
The Inter-University Consortium on Policy and Social Research (ICPSR) uses the

OSIRIS file format for distribution of its data files. SAS provides the OSIRIS interface
library engine to support the many users of the ICPSR data and to be compatible with
PROC CONVERT.

With the OSIRIS engine, you can read OSIRIS data and dictionary files directly from
a SAS program. The following discussion assumes you are familiar with the OSIRIS file
terminology and structure. If you are not, refer to the documentation provided by the
ICPSR.

Notes on the OSIRIS Data Dictionary Files
Since the OSIRIS software does not run outside the MVS environment, the layout of

an OSIRIS data dictionary is consistent across operating environments. However, the
OSIRIS engine is designed to accept a data dictionary from any other operating
environment on which SAS runs. It is important that the dictionary and data files not
be converted from EBCDIC to ASCII; the engine expects EBCDIC data.

The dictionary file should consist of fixed-length records of length 80. The data file
should contain records large enough to hold the data described in the dictionary.

Syntax for Accessing an OSIRIS File
To read an OSIRIS file, issue a LIBNAME statement that explicitly specifies the

OSIRIS engine. The syntax of the LIBNAME statement in this case is

LIBNAME libref OSIRIS ’data-filename’ DICT=’dictionary-filename’;

libref
is a SAS libref.

’data-filename’
is the physical filename of the data file. If the libref appears also as a fileref, omit
the data filename.

’dictionary-filename’
is the physical filename of the dictionary file. The dictionary filename can also be
an environment variable or a fileref, but if it is either of those, do not enclose it in
quotation marks. The DICT= option is required.

OSIRIS data files do not have member names. Therefore, use whatever member
name you like.

To use the same dictionary file with different data files, code a separate LIBNAME
statement for each one.

Example: OSIRIS Engine
In the following example, the data file is /users/myid/osr/dat, and the dictionary

file is /users/myid/osr/dic. The example associates the libref MYLIB with the
OSIRIS files and runs a PROC CONTENTS and PROC PRINT on the data.

libname mylib osiris ’/users/myid/osr/dat’
dict=’/users/myid/osr/dic’;

proc contents data=mylib._first_;
run;
proc print data=mylib._first_;
run;

128 The SPSS Engine Chapter 4

The SPSS Engine
With the SPSS interface library engine, you can read only SPSS export files. This

engine does not read SPSS-X native files.

Syntax for Accessing an SPSS Export File
To read an SPSS export file, issue a LIBNAME statement that explicitly specifies the

SPSS engine. The syntax of the LIBNAME statement in this case is

LIBNAME libref SPSS ’filename’;

Libref is a SAS libref and filename is the physical filename. If the libref appears also as
a fileref, omit filename; the physical filename associated with the fileref is used.

Export files must be created by the SPSS EXPORT command and can originate from
any operating environment. Export files must be transported to and from your
operating environment in ASCII format. If they are transported in binary format, other
operating environments will not be able to read them.

Because SPSS-X files do not have internal names, refer to them by any member name
you like. A common extension for export files is .por, but this extension is not required.

Example: SPSS Engine
The following example associates the libref MYLIB with the physical file /users/

myid/mydir/myspssx.por in order to run the CONTENTS and PRINT procedures on
the export file:

libname mylib spss ’/users/myid/mydir/myspssx.por’;
proc contents data=mylib._first_;
proc print data=mylib._first_;
run;

In the next example, the FILENAME statement associates the fileref MyLib2 with the
/users/myid/mydir/aspssx.por SPSS physical file, and the LIBNAME statement
associates the libref with the SPSS engine. The PRINT procedure prints the data from
the save file.

filename mylib2 ’/users/myid/mydir/aspssx.por’;
libname mylib2 spss;
proc print data=mylib2._first_;
run;

Support for Links in UNIX Environments
SAS provides limited support for hard links and symbolic links in UNIX

environments. You can create links that point to a SAS data set or SAS catalog. If you
reference the link in a SAS program, SAS will follow the link to find the data set or
catalog.

For example, you can create a symbolic link in the /tmp directory to the /home/user/
mydata.sas7bdat data set by typing the following command at the UNIX prompt:

ln -s /home/user/mydata.sas7bdat /tmp/mydata.sas7bdat

The following SAS code uses the symbolic link in the /tmp directory to find the
mydata.sas7bdat data set. This code does not change the symbolic link, but it does sort
the data in the data set.

Using SAS Files Support for Links in UNIX Environments 129

libname tmp ’/tmp’;

proc sort data=tmp.mydata;
by myvariable;

run;

If you are running in the SAS windowing environment, you can use the Explorer
window to view the symbolic links that are stored within a specific directory. Any
symbolic link that points to a nonexistent SAS file will have a file size of 0.0KB and a
modified date of 31DEC59:19:00:00.

Note: SAS does not support links for a data set that has any of the following:

� an index

� version data sets.

�

130

131

C H A P T E R

5
Using External Files and Devices

Introduction to External Files and Devices in UNIX Environments 132

Accessing an External File or Device in UNIX Environments 133
What Is a Fileref? 133

Specifying Pathnames in UNIX Environments 133

Rules for Specifying Pathnames 133
Exceptions to Enclosing the Filename in Quotation Marks 134

Using Wildcards in Pathnames (Input Only) 134

Descriptions of the Valid Wildcards 134
Example 1: Selecting Files By Including a Wildcard in a String 134

Example 2: Reading Each File in the Current Directory 135
Example 3: Wildcards in Filenames When Using Aggregate Syntax 135

Example 4: Associating a Fileref with Multiple Files 135

Assigning Filerefs to External Files or Devices with the FILENAME Statement 135
Introduction to the FILENAME Statement 135

Accessing DISK Files 136

Debugging Code With DUMMY Devices 136
Sending Output to PRINTER Devices 136

Using Temporary Files (TEMP Device Type) 137
Accessing TERMINAL Devices Directly 137

Assigning Filerefs to Files on Other Systems (FTP and SOCKET Access Types) 137

Concatenating Filenames in UNIX Environments 138
Assigning a Fileref to a Directory (Using Aggregate Syntax) 138

Introduction to Aggregate Syntax 138

Example 1: Referring to a File Using Aggregate Syntax 138
Example 2: Using Aggregate Syntax with Filerefs Defined by Environment Variables 138

Assigning a Fileref to Several Directories 139
Using Environment Variables to Assign Filerefs in UNIX Environments 139

Requirements for Variable Names 139

Reading a Data File 139
Writing to an External File 140

Filerefs Assigned by SAS in UNIX Environments 140

Filerefs for Standard Input, Standard Output, and Standard Error 140
What Is a File Descriptor? 140

File Descriptors in the Bourne and Korn Shells 140
Reserved Filerefs in UNIX Environments 141

Reading from and Writing to UNIX Commands (PIPE) 141

What Are Pipes? 141
Syntax of the FILENAME Statement to Assign a Fileref to a Pipe 141

Using the Fileref for Reading 142

Example 1: Sending the Output of the Process Command to a SAS DATA Step 142
Example 2: Using the Stdin Fileref to Read Input 142

132 Introduction to External Files and Devices in UNIX Environments Chapter 5

Using the Fileref for Writing 143

Example 1: Sending Mail Using Pipes 143
Example 2: Starting a Remote Shell and Printing Output 143

Sending Electronic Mail Using the FILENAME Statement (EMAIL) 143

Advantages of Sending Electronic Mail from within SAS 143
Initializing Electronic Mail 144

Components of the DATA Step or SCL Code Use to Send E-Mail 144

Syntax of the FILENAME Statement for Electronic Mail 144
Specifying E-mail Options in the FILE Statement 145

Defining the Body of the Message 145
Specifying E-mail Directives in the PUT Statement 146

Example: Sending E-mail from the DATA Step 146

Example: Sending E-mail Using SCL Code 148
Processing Files on TAPE in UNIX Environments 149

Introduction to Processing Tape Files 149

Using the TAPE Device Type 149
Using the PIPE Device Type 150

Working with External Files Created on the Mainframe 150
Example: Multivolume, Standard Label Tapes 151

Introduction to External Files and Devices in UNIX Environments

At times during a SAS session, you might want to use external files, that is, files that
contain data or text or files in which you want to store data or text. These files are
created and maintained by the operating system, not by SAS.

You can use external files in a SAS session to

� hold raw data to be read with the INPUT statements

� store printed reports created by a SAS procedure

� submit a file containing SAS statements for processing

� store data written with PUT statements.

For SAS, external files and devices can serve both as sources of input and as
receivers of output. The input can be either raw data to be read in a DATA step or SAS
statements to be processed by SAS. The output can be

� the SAS log, which contains notes and messages produced by the program

� the formatted output of SAS procedures

� data written with PUT statements in a DATA step.

You might also want to use peripheral devices such as a printer, plotter, or your own
terminal. UNIX treats these I/O devices as if they were files. Each device is associated
with a file, called a special file, which is treated as an ordinary disk file. When you
write to a special file, the associated device is automatically activated. All special files
reside in the dev directory or its subdirectories. Although there are some differences in
how you use the various devices, the basic concept is the same for them all.

UNIX also enables you to use pipes to send data to and from operating system
commands as if they were I/O devices.

If you need to access an external file containing a transport data library, refer to
Moving and Accessing SAS Files.

Using External Files and Devices Rules for Specifying Pathnames 133

Accessing an External File or Device in UNIX Environments
To access an external file or device, you will need to specify its pathname or fileref in

the appropriate SAS statements:

FILE
specifies the current output file for PUT statements.

%INCLUDE
includes a file containing SAS source statements into the Program Editor.

INFILE
identifies an external file that you want to read with an INPUT statement.

In the SAS statement, refer to the file or device in one of two ways:

� specify the pathnames for the files. For more information, see “Specifying
Pathnames in UNIX Environments” on page 133.

� assign a fileref to a device, one or more files, or a directory and use the fileref
when you want to refer to the file or device.

In most cases, you will want to use a fileref.

What Is a Fileref?
A fileref is nickname that you assign to a file or device. You simply assign the fileref

once, and then use it as needed. Filerefs are especially useful when

� the pathname is long and has to be specified several times within a program

� the pathname might change. If the pathname changes, you need to change only
the statement that assigns the fileref, not every reference to the file.

You can assign filerefs in the File Shortcuts window of the Explorer, with the
FILENAME statement, with the FILENAME function,* or by defining the fileref as an
environment variable.

Specifying Pathnames in UNIX Environments

Rules for Specifying Pathnames
You can reference an external file directly by specifying its pathname in the FILE,

INFILE, or %INCLUDE statements, or you can reference the file indirectly by
specifying a fileref and a pathname in the FILENAME statement and then using the
fileref in the FILE, INFILE, or %INCLUDE statements.

Whether you reference a file directly or indirectly, you will need to specify its
pathname in the appropriate statement. In most cases, you must enclose the name in
quotation marks. For example, the following INFILE statement refers to the file
/users/pat/cars:

infile ’/users/pat/cars’;

* For a complete description of the FILENAME statement and the FILENAME function, see SAS Language Reference:
Dictionary.

134 Using Wildcards in Pathnames (Input Only) Chapter 5

The following FILE statement directs output to the specified terminal:

file ’/dev/ttyp1’;

The level of specification depends on your current directory. You can use the character
substitutions shown in Table 4.6 on page 115 to specify the pathname. You can also use
wildcards as described in “Using Wildcards in Pathnames (Input Only)” on page 134.

Exceptions to Enclosing the Filename in Quotation Marks
You can omit the quotation marks on a filename if
� there is not already a fileref defined with that filename.
� the file has the filename extension expected by the statement that you are using to

refer to the file. If you do not enclose a filename in quotation marks, the FILE and
INFILE statements assume a file extension of .dat, and the %INCLUDE statement
assumes a file extension of .sas.

� the file is in the current directory.
� the filename is all lower case characters.

For example, if the current directory is /users/mkt/report and it includes file
Qtr.sas, you can reference Qtr.sas in any of the following statements:

%include ’/users/mkt/report/qtr.sas’;
%include ’qtr.sas’;
file ’qtr.sas’;

If there is no Qtr fileref already defined, you can omit the quotation marks and the
filename extension on the %INCLUDE statement:

%include qtr;

Using Wildcards in Pathnames (Input Only)

Descriptions of the Valid Wildcards
You can use the *, ?, and []wildcards to specify pathnames in the FILENAME (only

if the fileref is to be used for input), INFILE, and %INCLUDE statements and the
INCLUDE command.

* matches one or more characters, except for the period at the
beginning of filenames.

? matches any single character.

[] matches any single character from the set of characters defined
within the brackets. You can specify a range of characters by
specifying the starting character and ending character separated by
a hyphen.

Wildcards are supported for input only. You cannot use wildcards in the FILE
statement.

Example 1: Selecting Files By Including a Wildcard in a String
The following example reads input from every file in the current directory that

begins with the string wild and ends with .dat:

Using External Files and Devices Introduction to the FILENAME Statement 135

filename wild ’wild*.dat’;
data;

infile wild;
input;

run;

Example 2: Reading Each File in the Current Directory
The following example reads input from every file in every subdirectory of the

current working directory:

filename subfiles ’*/*’;
data;

infile subfiles;
input;

run;

If new files are added to any of the subdirectories, they can be accessed with the
Subfiles fileref without changing the FILENAME statement.

Example 3: Wildcards in Filenames When Using Aggregate Syntax
You can also use wildcards in filenames, but not in directory names, when you use

aggregate syntax:

filename curdir ".";
data;

infile curdir(’wild*’);
input;

run;

In the example above, the period in the FILENAME statement refers to the current
directory. See Table 4.6 on page 115 for information about other character substitutions
available on UNIX.

Example 4: Associating a Fileref with Multiple Files
The following statement associates the fileref MyRef with all files that begin with

alphabetic characters. Files beginning with numbers or other characters such as the
period or tilde are excluded.

filename myref ’[a-zA-Z]*.dat’;

The following statement associates MyRef with any file beginning with Sales (in either
uppercase, lowercase, or mixed case) and a year between 1990 and 1999:

filename myref ’[Ss][Aa][Ll][Ee][Ss]199[0-9].dat’;

Assigning Filerefs to External Files or Devices with the FILENAME
Statement

Introduction to the FILENAME Statement
The most common way to assign a fileref to an external file or device is with the

FILENAME statement. There are several forms of the FILENAME statement,

136 Accessing DISK Files Chapter 5

depending on the type of device you want to access. For more information, see
“FILENAME Statement” on page 293.

Accessing DISK Files
The most common use of the FILENAME statement is to access DISK files. The

FILENAME syntax for a DISK file is

FILENAME fileref <DISK> ’pathname’ <options>;

The following FILENAME statement associates the fileref MyFile with the external
file /users/mydir/myfile, which is stored on a disk device:

filename myfile disk ’/users/mydir/myfile’;

The following FILENAME statement assigns a fileref of Prices to the file
/users/pat/cars. The FILE statement then refers to the file using the fileref:

filename prices ’/users/pat/cars’;
data current.list;

file prices;
...PUT statements...

run;

See “Concatenating Filenames in UNIX Environments” on page 138 for more
information about using DISK files.

Debugging Code With DUMMY Devices
You can substitute the DUMMY device type for any of the other device types. This

device type serves as a tool for debugging your SAS code without actually reading or
writing to the device. After debugging is complete, replace the DUMMY device name
with the proper device type, and your program will access the specified device type.

The FILENAME syntax for a DUMMY file is

FILENAME fileref DUMMY ’pathname’<options>;

Output to DUMMY devices is discarded.

Sending Output to PRINTER Devices
The PRINTER device type enables you to send output directly to a printer. The

FILENAME syntax to direct a file to a PRINTER is

FILENAME fileref PRINTER ’<printer> <printer-options>’ <options>;

For example, this SAS program sends the output file to the BLDG3 printer:

filename myfile printer ’bldg3’;

data test;
file myfile;
put ’This will appear in bldg3 .’;

run;

See “Using PRTFILE and PRINT with a Fileref” on page 160 and “Using the
PRINTTO Procedure in UNIX Environments” on page 161 for more information.

Using External Files and Devices Assigning Filerefs to Files on Other Systems (FTP and SOCKET Access Types) 137

Using Temporary Files (TEMP Device Type)
The TEMP device type associates a fileref with a temporary file stored in the same

directory as the Work data library. (See “Work Data Library” on page 120.) Using the
TEMP device type enables you to create a file that lasts only as long as the SAS session.

The FILENAME syntax for a TEMP file is

FILENAME fileref TEMP <options>;

For example, this FILENAME statement associates Tmp1 with a temporary file:

filename tmp1 temp;

Accessing TERMINAL Devices Directly
To access a terminal directly, use the TERMINAL device type. The FILENAME

syntax to associate a file with a terminal is

FILENAME fileref TERMINAL < ’terminal-pathname’> <options>;

The terminal-pathname must be a pathname of the special file associated with the
terminal. Check with your system administrator for details. Enclose the name in
quotation marks. If you omit the terminal pathname, the fileref is assigned to your
terminal.

For example, this FILENAME statement associates the fileref Here with your
terminal:

filename here terminal;

The following FILENAME statement associates the fileref ThatFile with another
terminal:

filename thatfile terminal ’/dev/tty3’;

Assigning Filerefs to Files on Other Systems (FTP and SOCKET Access
Types)

You can access files on other systems in your network by using the SOCKET and
FTP access methods. The forms of the FILENAME statement are

FILENAME fileref FTP ’external-file’ <ftp-options>;

FILENAME fileref SOCKET ’external-file’ <tcpip-options>;

FILENAME fileref SOCKET ’:portno’ SERVER <tcpip-options>;

These access methods are documented in SAS Language Reference: Dictionary.
Under UNIX, the FTP access method supports an additional option:

MACH=’machine’
identifies which entry in the .netrc file should be used to get the username and
password. Consult the UNIX man page for more information about the .netrc
file. You cannot specify the MACH option together with the HOST option in the
FILENAME statement.

If you are transferring a file to UNIX from the z/OS operating environment and you
want to use either the S370V or S370VB format to access that file, then the file must be
of type RECFM=U and BLKSIZE=32760 before you transfer it.

138 Concatenating Filenames in UNIX Environments Chapter 5

CAUTION:
When you use the FTP access method to create a remote file, the UNIX permissions for
that file are set to -rw-rw-rw-, which makes the file world-readable and world-writable.
See the man page for chmod for information about changing file permissions. �

Concatenating Filenames in UNIX Environments
You can concatenate filenames in the FILENAME, %INCLUDE, and INFILE

statements. Concatenating filenames enables you to read those files sequentially.

FILENAME fileref ("pathname-1" ... "pathname-n");

%INCLUDE ’("filename-1" ... "filename-n")’;

%INCLUDE "(’filename-1’ ... ’filename-n’)";

INFILE ’("filename-1" ... "filename-n")’;

INFILE "(’filename-1’ ... ’filename-n’)";

You can enclose the pathnames in single or double quotation marks and separate
them with commas or blank spaces. You can use the characters shown in Table 4.6 on
page 115 and the wildcards described in “Using Wildcards in Pathnames (Input Only)”
on page 134 to specify the pathnames.

Assigning a Fileref to a Directory (Using Aggregate Syntax)

Introduction to Aggregate Syntax
Aggregate syntax enables you to assign a fileref to a directory and then work with

any file in that directory by specifying its filename in parentheses after the fileref.

FILENAME fileref directory-name;

Aggregate syntax is especially useful when you have to refer to several files in one
directory.

Example 1: Referring to a File Using Aggregate Syntax
To refer to a file in the directory, specify the fileref followed by the individual

filename in parentheses. For example, you can refer to the file Cars.dat in the directory
/users/pat as shown in this example:

filename prices ’/users/pat’;
data current.list;

file prices(cars);
...other SAS statements...

run;

Example 2: Using Aggregate Syntax with Filerefs Defined by Environment
Variables

You can also use aggregate syntax with filerefs that have been defined using
environment variables (see “Using Environment Variables to Assign Filerefs in UNIX
Environments” on page 139). For example:

Using External Files and Devices Reading a Data File 139

x setenv PRICES /users/pat;
data current.list;

file prices(cars);
...other SAS statements...

run;

Assigning a Fileref to Several Directories
In the FILENAME statement, you can concatenate directory names and use the

fileref to refer to any file within those directories:

FILENAME fileref ("directory-1" ... "directory-n");

When you concatenate directory names, you can use aggregate syntax to refer to a file
in one of the directories. For example, assume that the Report.sas file resides in the
directory associated with the MYPROGS environment variable. When SAS executes the
following code, it searches for Report.sas in the pathnames that are specified in the
FILENAME statement and it executes the program.

filename progs ("$MYPROGS" "/users/mkt/progs");
%inc progs(report);

SAS searches the pathnames in the order specified in the FILENAME statement until
� it finds the first file with the specified name. Even if you use wildcards (see “Using

Wildcards in Pathnames (Input Only)” on page 134) in the filename, SAS matches
only one file.

� it encounters a filename in the list of pathnames that you specified in the
FILENAME statement.

Using Environment Variables to Assign Filerefs in UNIX Environments

Requirements for Variable Names
An environment variable can also be used as a fileref to refer to DISK files. The

variable name must be in all uppercase characters, and the variable value must be the
full pathname of the external file; that is, the filename must begin with a slash.

Note: If a variable and a fileref have the same name but refer to different files, SAS
uses the fileref. For example, the %INCLUDE statement below refers to file /users/
myid/this_one. �

filename ABC ’/users/myid/this_one’;
x setenv ABC /users/myid/that_one;
%include ABC;

Reading a Data File
Suppose that you want to read the data file /users/myid/educ.dat, but you want to

refer to it with the INED environment variable. You can define the variable at two
times:

140 Writing to an External File Chapter 5

� before you invoke SAS. See “Defining Environment Variables in UNIX
Environments” on page 21. For example, in the Korn shell, you use

export INED=/users/myid/educ.dat

� after you invoke SAS by using the X statement (see “Executing Operating System
Commands from Your SAS Session” on page 13) and the SAS setenv command:

x setenv INED /users/myid/educ.dat;

After INED is associated with the file /users/myid/educ.dat, you can use INED as a
fileref to refer to the file in the INFILE statement:

infile ined;

Writing to an External File
The same method applies if you want to write to an external file. For example, you

can define OUTFILE before you invoke SAS:

OUTFILE=/users/myid/scores.dat
export OUTFILE

Then, use the environment variable name as a fileref to refer to the file:

file outfile;

Filerefs Assigned by SAS in UNIX Environments

Filerefs for Standard Input, Standard Output, and Standard Error
Often a command’s arguments or options tell the command what to use for input and

output, but in case they do not, the shell supplies you with three standard files: one for
input (standard input), one for output (standard output), and one for error messages
(standard error). By default, these files are all associated with your terminal: standard
input with your keyboard, and both standard output and standard error with your
terminal’s display. When you invoke SAS, it assigns a fileref to each file that it opens,
including the three standard files. SAS assigns the filerefs Stdin, Stdout, and Stderr to
standard input, standard output, and standard error, respectively.

What Is a File Descriptor?
Each file has an internal file descriptor assigned to it. By default, 0 is the file

descriptor for standard input, 1 is the file descriptor for standard output, and 2 is the
file descriptor for standard error. As other files are opened, they get other file
descriptors. In the Bourne shell and in the Korn shell, you can specify that data be
written to or be read from a file using the file descriptor as described in “File
Descriptors in the Bourne and Korn Shells” on page 140.

File Descriptors in the Bourne and Korn Shells
If you are using the Bourne shell or the Korn shell, SAS assigns filerefs of the

following form to files that have a file descriptor (see “Filerefs Assigned by SAS in
UNIX Environments” on page 140) larger than 2.

Using External Files and Devices Syntax of the FILENAME Statement to Assign a Fileref to a Pipe 141

FILDESnumber

number is a two-digit representation of the file descriptor. You can use these filerefs in
your SAS applications.

For example, if you invoke SAS with the following command, then the operating
environment opens the file Sales_Data and assigns file descriptor 4 to it:

sas salespgm 4< sales_data

SAS assigns the fileref FILDES04 to the file and executes the application salespgm.
When the application reads input from FILDES04, it reads the file Sales_Data. Using
file descriptors as filerefs enables you to use the same application to process data from
different files without changing the application to refer to each file. In the command
that you use to invoke the application, you simply assign the appropriate file descriptor
to the file to be processed.

Reserved Filerefs in UNIX Environments

The following filerefs are reserved.

DATALINES fileref in the INFILE statement
specifies that input data immediately follow a DATALINES statement. You need
to use INFILE DATALINES only when you want to specify options in the INFILE
statement to read instream data.

LOG fileref in the FILE statement
specifies that output lines produced by PUT statements be written to the SAS log.
LOG is the default destination for output lines.

PRINT fileref in the FILE statement
specifies that output lines produced by PUT statements be written to the same
print file as output produced by SAS procedures.

Reading from and Writing to UNIX Commands (PIPE)

What Are Pipes?
Pipes enable your SAS application to receive input from any UNIX command that

writes to standard output and to route output to any UNIX command that reads from
standard input. In UNIX commands, the pipe is represented by a vertical bar (|). For
example, to find the number of files in your directory, you could redirect the output of
the ls command through a pipe to the wc (word count) command by entering

ls | wc -w

Syntax of the FILENAME Statement to Assign a Fileref to a Pipe
Under UNIX, you can use the FILENAME statement to assign filerefs not only to

external files and I/O devices, but also to a pipe. The syntax of the FILENAME
statement is

FILENAME fileref PIPE ’UNIX-command’ <options>;

142 Using the Fileref for Reading Chapter 5

fileref
is the name by which you reference the pipe from SAS.

PIPE
identifies the device-type as a UNIX pipe.

’UNIX-command’
is the name of a UNIX command, executable program, or shell script to which you
want to route output or from which you want to read input. The command(s) must
be enclosed in either double or single quotation marks.

options
control how the external file is processed. See “FILENAME Statement” on page
293 for an explanation of these options.

Whether you are using the command as input or output depends on whether you use
the fileref in a reading or writing operation. For example, if the fileref is used in an
INFILE statement, then SAS assumes that the input comes from a UNIX command; if
the fileref is used in a FILE statement, then SAS assumes that the output goes to a
UNIX command.

Using the Fileref for Reading
When the fileref is used for reading, the specified UNIX command executes, and any

output sent to its standard output or standard error is read through the fileref. In this
case, the standard input of the command is connected to /dev/null.

Example 1: Sending the Output of the Process Command to a SAS DATA Step
The following SAS program uses the PIPE device-type keyword to send the output of

the ps (process) command to a SAS DATA step. The resulting SAS data set contains
data about every process currently running SAS:

filename ps_list pipe "ps -e|grep ’sas’";
data sasjobs;

infile ps_list;
length process $ 80;
input process $ char80.;

run;
proc print data=sasjobs;
run;

The ps -e command produces a listing of all active processes on the system, including
the name of the command that started the task. In BSD-based UNIX systems, you use
the ps -ax command.

The operating environment uses pipes to send the output from ps to the grep
command, which searches for every occurrence of the string ’sas’. The FILENAME
statement connects the output of the grep command to the fileref Ps_List. The DATA
step then creates a data set named SasJobs from the INFILE statement that points to
the input source. The INPUT statement reads the first 80 characters on each input line.

Example 2: Using the Stdin Fileref to Read Input
In the next example, the Stdin fileref is used to read input through a pipe into the

SAS command which in turn executes the SAS program. By placing the piping

Using External Files and Devices Advantages of Sending Electronic Mail from within SAS 143

operation outside the SAS program, the program becomes more general. The program
in the previous example has been changed and stored in file Ps.sas:

data sasjobs;
infile stdin;
length process $ 80;
input process $ char80.;

run;
proc print data=sasjobs;
run;

To run the program, use pipes to send the output of ps to grep and from grep into the
SAS command:

ps -e|grep ’sas’|sas ps.sas &

The output will be stored in Ps.lst; the log in Ps.log as described in “The Default
Routings for the SAS Log and Procedure Output in UNIX Environments” on page 155.

Using the Fileref for Writing
When the fileref is used for writing, the output from SAS is read in by the specified

UNIX command, which then executes.

Example 1: Sending Mail Using Pipes
In this example, any data sent to the Mail fileref are piped to the mail command and

sent to user PAT:

filename mail pipe ’mail pat’;

Example 2: Starting a Remote Shell and Printing Output
Consider this FILENAME statement:

filename letterq pipe ’remsh alpha lp -dbldga3’;

Any data sent to the LetterQ fileref are passed to the UNIX command, which starts a
remote shell on the machine named Alpha.* The shell then prints the LetterQ output
on the printer identified by the destination BldgA3. Any messages produced by the lp
command are sent to the SAS log.

Sending Electronic Mail Using the FILENAME Statement (EMAIL)

Advantages of Sending Electronic Mail from within SAS
SAS lets you send electronic mail using SAS functions in a DATA step or in SCL.

Sending e-mail from within SAS enables you to
� use the logic of the DATA step or SCL to subset e-mail distribution based on a

large data set of e-mail addresses.
� send e-mail automatically upon completion of a SAS program that you submitted

for batch processing.

* The form of the command that starts a remote shell varies among the various UNIX operating systems.

144 Initializing Electronic Mail Chapter 5

� direct output through e-mail based on the results of processing.

� send e-mail messages from within a SAS/AF frame application, customizing the
user interface.

Initializing Electronic Mail
By default, SAS uses SMTP (Simple Mail Transfer Protocol) to send e-mail. SMTP,

unlike some external scripts, supports attachments. This default is specified by the
EMAILSYS system option. For information about how to change the e-mail protocol,
see “EMAILSYS System Option” on page 326.

Before you can send e-mail from within SAS, your system administrator might need
to set the EMAILHOST system option to point to the SMTP server. For more
information about the EMAILHOST system option, see SAS Language Reference:
Dictionary.

Components of the DATA Step or SCL Code Use to Send E-Mail
In general, a DATA step or SCL code that sends electronic mail has the following

components:

� a FILENAME statement with the EMAIL device-type keyword

� options specified on the FILENAME or FILE statements indicating the e-mail
recipients, subject, and any attached files

� PUT statements that contain the body of the message

� PUT statements that contain special e-mail directives (of the form !EM_directive!)
that can override the e-mail attributes (TO, CC, BCC, SUBJECT, ATTACH) or
perform actions (such as SEND, ABORT, and start a NEWMSG).

Syntax of the FILENAME Statement for Electronic Mail
To send electronic mail from a DATA step or SCL, issue a FILENAME statement of

the following form:

FILENAME fileref EMAIL ’address’ <email-options>;

The FILENAME statement accepts the following email-options:

fileref
is a valid fileref.

’address’
is the destination e-mail address of the user to which you want to send e-mail. You
must specify an address here, but you can override its value with the TO e-mail
option.

email-options
can be any of the following:

TO=to-address
specifies the primary recipients of the electronic mail. If an address contains
more than one word, enclose it in quotation marks. To specify more than one
address, enclose the group of addresses in parentheses, enclose each address
in quotation marks, and separate each address with a space. For example,
to=’joe@someplace.org’ and
to=("joe@smplc.org" "jane@diffplc.org") are valid TO values.

Using External Files and Devices Syntax of the FILENAME Statement for Electronic Mail 145

Note: You can send an e-mail without specifying a recipient in the TO=
option as long as you specify a recipient in either the CC= or BCC= option. �

CC=cc-address
specifies the recipients you want to receive a copy of the electronic mail. If an
address contains more than one word, enclose it in quotation marks. To
specify more than one address, enclose the group of addresses in parentheses,
enclose each address in quotation marks, and separate each address with a
space. For example, cc=’joe@someplace.org’ and
cc=("joe@smplc.org" "jane@diffplc.org") are valid CC values.

BCC=bcc-address
specifies the recipients you want to receive a blind copy of the electronic mail.
Individuals listed in the bcc field will receive a copy of the e-mail. The BCC
field does not appear in the e-mail header, so that these e-mail addresses
cannot be viewed by other recipients.

If a BCC address contains more than one word, enclose it in quotation
marks. To specify more than one address, enclose the group of addresses in
parentheses, enclose each address in quotation marks, and separate each
address with a space. For example, bcc=’joe@someplace.org’ and
bcc=("joe@smplc.org" "jane@diffplc.org") are valid BCC values.

SUBJECT=’subject’
specifies the subject of the message. If the subject text is longer than one
word (that is, it contains at least one blank space), you must enclose it in
quotation marks. You also must use quotation marks if the subject contains
any special characters. For example, subject=Sales and subject=’June
Report’ are valid subjects. Any subject not enclosed in quotation marks is
converted to upper case.

ATTACH=’filename.ext’ | ATTACH = (’filename.ext’ <attachment-options>)
specifies the physical name of the file(s) to be attached to the message and
any options to modify attachment specifications. Enclose filename.ext in
quotation marks. To attach more than one file, enclose the group of filenames
in parentheses. For example, attach=’/u/userid/opinion.txt’ and
attach=("june98.txt" "july98.txt") are valid file attachments.

By default, SMTP e-mail attachments are truncated at 256 characters. To
send longer attachments, you can specify the LRECL= and RECFM= options
from the FILENAME statement as the attachment-options. For more
information about the LRECL= and RECFM= options, see “FILENAME
Statement” on page 293.

For more information about the options that are valid when you are using SMTP, see
“FILENAME Statement, EMAIL (SMTP) Access Method” in SAS Language Reference:
Dictionary.

Specifying E-mail Options in the FILE Statement

You can also specify the email-options in the FILE statement inside the DATA step.
Options that you specify in the FILE statement override any corresponding options that
you specified in the FILENAME statement.

Defining the Body of the Message

In your DATA step, after using the FILE statement to define your e-mail fileref as
the output destination, use PUT statements to define the body of the message.

146 Example: Sending E-mail from the DATA Step Chapter 5

Specifying E-mail Directives in the PUT Statement
You can also use PUT statements to specify e-mail directives that change the

attributes of your electronic message or perform actions with it. Specify only one
directive in each PUT statement; each PUT statement can contain only the text
associated with the directive it specifies.

The following are the directives that change the attributes of your message:

!EM_TO! addresses
Replace the current primary recipient addresses with addresses. In the PUT
statement, specify addresses without single quotation marks.

!EM_CC! addresses
Replace the current copied recipient addresses with addresses. In the PUT
statement, specify addresses without single quotation marks.

!EM_BCC! addresses
Replace the current blind copied recipient addresses with addresses. In the PUT
statement, specify addresses without single quotation marks.

!EM_SUBJECT! subject
Replace the current subject of the message with subject.

!EM_ATTACH! pathname
Replace the names of any attached files with pathname.

The following are the directives that perform actions:

!EM_SEND!
Sends the message with the current attributes. By default, SAS sends a message
when the fileref is closed. The fileref closes when the next FILE statement is
encountered or the DATA step ends. If you use this directive, SAS sends the
message when it encounters the directive, and again at the end of the DATA step.

!EM_ABORT!
Aborts the current message. You can use this directive to stop SAS from
automatically sending the message at the end of the DATA step.

!EM_NEWMSG!
Clears all attributes of the current message, including TO, CC, SUBJECT,
ATTACH, and the message body.

Example: Sending E-mail from the DATA Step
Suppose that you want to share a copy of your Config.sas file with your coworker

Jim, whose user ID is JBrown. If your e-mail program handles alias names and
attachments, you could send it by submitting the following DATA step:

filename mymail email ’JBrown’
subject=’My CONFIG.SAS file’
attach=’config.sas’;

data _null_;
file mymail;
put ’Jim,’;
put ’This is my CONFIG.SAS file.’;
put ’I think you might like the

new options I added.’;
run;

Using External Files and Devices Example: Sending E-mail from the DATA Step 147

The following example sends a message and two attached files to multiple recipients.
It specifies the e-mail options in the FILE statement instead of the FILENAME
statement:

filename outbox email ’ron@acme.com’;

data _null_;
file outbox

/* Overrides value in filename statement */
to=(’ron@acme.com’ ’lisa@acme.com’)
cc=(’margaret@yourcomp.com’

’lenny@laverne.abc.com’)
subject=’My SAS output’
attach=(’results.out’ ’code.sas’)
;

put ’Folks,’;
put ’Attached is my output from the

SAS program I ran last night.’;
put ’It worked great!’;

run;

You can use conditional logic in the DATA step to send multiple messages and control
which recipients get which message. For example, suppose you want to send
customized reports to members of two different departments. If your e-mail program
handles alias names and attachments, your DATA step might look like the following:

filename reports email ’Jim’;

data _null_;
file reports;
infile cards eof=lastobs;
length name dept $ 21;
input name dept;

/* Assign the TO attribute */
put ’!EM_TO!’ name;

/* Assign the SUBJECT attribute */
put ’!EM_SUBJECT! Report for ’ dept;

put name ’,’;
put ’Here is the latest report for ’ dept ’.’;

/* ATTACH the appropriate report */
if dept=’marketing’ then

put ’!EM_ATTACH! mktrept.txt’;
else

put ’!EM_ATTACH! devrept.txt’;

/* Send the message */
put ’!EM_SEND!’;

/* Clear the message attributes */
put ’!EM_NEWMSG!’;

148 Example: Sending E-mail Using SCL Code Chapter 5

return;

/* Abort the message before the */
/* RUN statement causes it to */
/* be sent again. */

lastobs: put ’!EM_ABORT!’;

datalines;
Susan marketing
Jim marketing
Rita development
Herb development
;
run;

The resulting e-mail message and its attachments are dependent on the department
to which the recipient belongs.

Note: You must use the !EM_NEWMSG! directive to clear the message attributes
between recipients. The !EM_ABORT! directive prevents the message from being
automatically sent at the end of the DATA step. �

Example: Sending E-mail Using SCL Code
The following example is the SCL code behind a frame entry design for e-mail. The

frame entry includes several text entry fields that let the user enter information:

mailto the user ID to send mail to

copyto the user ID to copy (CC) the mail to

attach the name of a file to attach

subject the subject of the mail

line1 the text of the message

The frame entry also contains a pushbutton called SEND that causes this SCL code
(marked by the send: label) to execute.

send:

/* set up a fileref */
rc = filename(’mailit’,’userid’,’email’);

/* if the fileref was successfully set up
open the file to write to */

if rc = 0 then do;
fid = fopen(’mailit’,’o’);
if fid > 0 then do;

/* fput statements are used to
implement writing the
mail and the components such as
subject, who to mail to, etc. */

fputrc1 = fput(fid,line1);
rc = fwrite(fid);

Using External Files and Devices Using the TAPE Device Type 149

fputrc2 = fput(fid,’!EM_TO! ’||mailto);
rc = fwrite(fid);
fputrc3 = fput(fid,’!EM_CC! ’||copyto);
rc = fwrite(fid);

fputrc4 = fput(fid,’!EM_ATTACH! ’||attach);
rc = fwrite(fid);
fputrc5 = fput(fid,’!EM_SUBJECT! ’||subject);
rc = fwrite(fid);

closerc = fclose(fid);
end;

end;
return;

cancel:
call execcmd(’end’);

return;

Processing Files on TAPE in UNIX Environments

Introduction to Processing Tape Files
Tape devices are inherently slow and should be used on a regular basis only for

archiving files or for transferring data from one system to another.
There are four UNIX commands that are frequently used to process tape files on

UNIX:

mt positions the tape (winds forward and rewinds). On AIX, this
command is tctl.

dd converts, reblocks, translates, and copies files.

cat concatenates, copies, and prints files.

tar saves and restores archive files.

remsh connects to the specified host and executes the specified command.

For a complete description of these commands, refer to the man pages.
In addition, you will almost always need to use a no-rewind device and the SAS

system option TAPECLOSE=LEAVE to get the results you want.
You can use either the TAPE device type or the PIPE device type to process tape files.

Using the TAPE Device Type
To use the TAPE device type, enter the FILENAME statement as follows:

FILENAME fileref TAPE ’tape-device-pathname’ <options>;

The tape-device-pathname is the pathname of the special file associated with the tape
device. Check with your system administrator for details. Enclose the name in
quotation marks.

150 Using the PIPE Device Type Chapter 5

For example, this FILENAME statement associates YR1999 with a file stored on a
tape that is mounted on device /dev/tp0:

filename yr1999 tape ’/dev/tp0’;

Using the PIPE Device Type
You can also use the PIPE device type together with UNIX dd command to process

the tape:

FILENAME fileref PIPE ’UNIX-commands’;

UNIX-commands are the commands needed to process the tape.
Using the PIPE device type and the dd command can process the tape more

efficiently than the TAPE device type, and it allows you to use remote tape drives.
However, using UNIX commands in your application means that the application will
have to be modified if it is ported to a non-UNIX environment.

For example, the following DATA step writes an external file to tape:

options tapeclose=leave;
x ’mt -t /dev/rmt/0mn rewind’;
filename outtape pipe ’dd of=/dev/rmt/0mn 2> /dev/null’;
data _null_;

file outtape;
put ’1 one’;
put ’2 two’;
put ’3 three’;
put ’4 four’;
put ’5 five’;

run;

The following DATA step reads the file from tape:

options tapeclose=leave;
x ’mt -t /dev/rmt/0mn rewind’;
filename intape pipe ’dd if=/dev/rmt/0mn 2> /dev/null’;
data numbers;

infile intape pad;
input digit word $8.;

run;

If the tape drive that you want to access is a remote tape drive, you can access the
remote tape drive by adding remsh machine-name to the X and FILENAME
statements. For example, if the remote machine name is wizard, then you could read
and write tape files on wizard by modifying the X and FILENAME statements as
follows:

x ’remsh wizard mt -t /dev/rmt/0mn rewind’;
filename intape pipe ’remsh wizard \

dd if=/dev/rmt/0mn 2> /dev/null’;

Working with External Files Created on the Mainframe
There are three main points to remember when dealing with tapes on UNIX that

were created on a mainframe:

Using External Files and Devices Example: Multivolume, Standard Label Tapes 151

� UNIX does not support IBM standard label tapes. IBM standard label tapes
contain user data files and labels, which themselves are files on the tape. To
process the user data files on these tapes, use a no-rewind device (such as /dev/
rmt/0mn) and the mt command with the fsf count subcommand to position the
tape to the desired user data file. The formula for calculating count is

count = (3 x user_data_file_number) - 2

� UNIX does not support multivolume tapes. To process multivolume tapes on
UNIX, the contents of each tape must be copied to disk using the dd command.
After all of the tapes have been unloaded, you can use the cat command to
concatenate all of the pieces in the correct order. You can then use SAS to process
the concatenated file on disk.

� You must know the DCB characteristics of the file. The records in files that are
created on a mainframe are not delimited with end-of-line characters, so you must
specify the original DCB parameters on the INFILE or FILENAME statement. In
the INFILE statement, specify the record length, record format, and block size with
the LRECL, RECFM, and BLKSIZE host options. In the FILENAME statement, if
you use the PIPE device-type and the dd command, you must also specify the block
size with the ibs subcommand. For more information about host options on the
INFILE statement, see “INFILE Statement” on page 299. For more information
about the ibs subcommand, refer to the man page for the dd command.

Example: Multivolume, Standard Label Tapes
This example assumes the use of a no-rewind device and TAPECLOSE=LEAVE.
Suppose that you are given a two-reel, multivolume, standard label tape set

containing a mainframe external file and told that the record length is 7 and the record
format is fixed. You will need to unload the data portion of each tape into disk files,
concatenate the two disk files, and process the resultant file.

Make sure that the first tape is in the tape drive, then use the mt command to rewind
the tape, skip over the label file, and position the tape at the beginning of the user data
file. In this case, the user data file that you want to access is the first (and only) user
data file on the tape. To skip over the label and position the tape at the beginning of
the user data file, use the fsf count subcommand. Using the formula in “Working
with External Files Created on the Mainframe” on page 150, the fsf count value is 1.

mt -t /dev/rmt/0mn rewind
mt -t /dev/rmt/0mn fsf 1
dd if=/dev/rmt/0mn of=/tmp/tape1 ibs=7

Repeat this process with the second tape, then concatenate the two disk files into one
file.

mt -t /dev/rmt/0mn rewind
mt -t /dev/rmt/0mn fsf 1
dd if=/dev/rmt/0mn of=/tmp/tape2 ibs=7

cat /tmp/file1 /tmp/file2 > /tmp/ebcdic.numbers

You can then use the following DATA step to refer to the concatenated file (/tmp/
ebcdic.numbers) and to convert the data using the appropriate EBCDIC informats:

filename ibmfile ’/tmp/ebcdic.numbers’;
data numbers;

infile ibmfile lrecl=7 recfm=f;
length digit 8 temp $ 1 word $ 6;

152 Example: Multivolume, Standard Label Tapes Chapter 5

input temp $ebcdic1. word $ebcdic6.;
digit=input(temp,8.);
drop temp;

run;

153

C H A P T E R

6
Printing and Routing Output

Overview of Printing Output in UNIX Environments 154

Previewing Output in UNIX Environments 154
Previewing Output Using Universal Printing 154

Previewing Output from within SAS/AF Applications 154

The Default Routings for the SAS Log and Procedure Output in UNIX Environments 155
Changing the Default Routings in UNIX Environments 155

Techniques for Routing Output 155

Determining Which Technique to Use When Changing the Routing 155
Using the Print Dialog Box in UNIX Environments 157

Printing from Text Windows 157
Opening the Print Dialog Box 157

Default Printing Mode 158

Specifics for Forms Printing 158
Troubleshooting Print Server Errors 158

Printing from GRAPH Windows 158

Opening the Print Dialog Box 158
Specifics for SAS/GRAPH Drivers 159

Troubleshooting Print Server Errors 159
Using Commands to Print in UNIX Environments 159

Differences between the PRTFILE, PRINT, and FILE Commands 159

Sending Output to a UNIX Command 159
Specifying the Print File 159

Using PRTFILE and PRINT with a Fileref 160

Steps for Sending Output Directly to a Printer 160
Examples of FILENAME Statements Using PRINTER and PIPE 160

Using the FILE Command 161
Using the PRINTTO Procedure in UNIX Environments 161

Important Note about the PRINTTO Procedure 161

Using the LOG= and PRINT= Options 162
Routing Output to a Universal Printer 162

Routing Output to a Printer 162

Piping Output to a UNIX Command 162
Routing Output to a Terminal 163

Using SAS System Options to Route Output 163
Changing the Output Destination Using the LOG, PRINT, ALTLOG, and ALTPRINT System

Options 163

Creating Postscript Output with the PRINTCMD and SYSPRINT System Options 164
Printing Large Files with the PIPE Device Type in UNIX Environments 164

Changing the Default Print Destination in UNIX Environments 165

Changing the Default Print Command in UNIX Environments 165
Controlling the Content and Appearance of Output in UNIX Environments 165

154 Overview of Printing Output in UNIX Environments Chapter 6

SAS Log Options 166

Procedure Output Options 166

Overview of Printing Output in UNIX Environments
When you print text or graphics, SAS needs to know where the output should go,

how it should be written, and how the output should look. Universal Printing is the
default printing mechanism in UNIX. Universal Printing generates both PostScript and
PCL files in the SAS windowing environment. For more detailed information about
Universal Printing, see SAS Language Reference: Concepts.

Forms printing is an older method of text printing available from SAS. It involves
using the FORM subsystem, which consists of the Form window. For detailed
information, see FORMS printing in SAS Language Reference: Dictionary.

If you are printing graphics, the output is controlled by native SAS/GRAPH drivers.
Refer to the online help for SAS/GRAPH for detailed information about native
SAS/GRAPH drivers.

Previewing Output in UNIX Environments

Previewing Output Using Universal Printing
With Universal Printing, you can preview your output before you send it to a printer,

plotter, or external file. To preview your output, you first need to define a previewer for
your system. For more information about Universal Printing, see SAS Language
Reference: Concepts.

Previewing Output from within SAS/AF Applications
To preview output from within a SAS/AF application, use the DMPRTMODE and

DMPRTPREVIEW commands to turn on preview mode, print the output, open the Print
Preview dialog box, and then turn preview mode off. For example, the following code
prints the GRAPH1 object using the host drivers and displays it in the Preview dialog
box:

/* Turn on preview mode. */
CALL EXECCMDI ("DMPRTMODE PREVIEW");

/* Print the graph */
GRAPH1._PRINT_();

/* Open the Preview dialog box */
CALL EXECCMDI ("DMPRTPREVIEW");

/* Turn off preview mode */
CALL EXECCMDI ("DMPRTMODE NORMAL");

Printing and Routing Output Determining Which Technique to Use When Changing the Routing 155

The Default Routings for the SAS Log and Procedure Output in UNIX
Environments

For each SAS job or session, SAS automatically creates two types of output:

SAS log
contains information about the processing of SAS statements. As each program
step executes, notes are written to the SAS log along with any applicable error or
warning messages.

SAS output
is also called the procedure output file or print file. Whenever a SAS program
executes a PROC step or a DATA step that produces printed output, SAS sends
the output to the SAS output file.

Table 6.1 on page 155 shows the default routings of the SAS log and output files.

Table 6.1 Default Routings of the SAS Log and Output Files

Processing Mode SAS Log File SAS Output File

batch filename.log filename.lst

windowing environment Log window Output window

interactive line terminal terminal

By default, both the log file and the output file are written to your current directory.
Your system administrator might have changed these default routings.

Changing the Default Routings in UNIX Environments

Techniques for Routing Output
There are four primary methods for routing your output:

� using the Print dialog box. The Print dialog box is available when you are using
the SAS windowing environment.

� issuing windowing environment commands. The PRTFILE, PRINT, and FILE
commands can be issued from any command line and can be used to send output
to external files or to other devices defined with the FILENAME statement.

� using the PRINTTO procedure. You can use the PRINTTO procedure in any mode.
Using the FILENAME statement with the PRINTTO procedure is the most
flexible way of routing your output.

� using SAS system options, such as PRINT, LOG, ALTPRINT, or ALTLOG, to
specify alternate destinations.

Determining Which Technique to Use When Changing the Routing
Use the following table to help you decide which method you should choose to change

the routing.

156 Determining Which Technique to Use When Changing the Routing Chapter 6

Table 6.2 Decision Table: Changing the Default Destination

To route your SAS log
or output to...

Using this
mode of
processing... Use this method... See...

a printer any mode FILENAME statement (UPRINTER
or PRINTER device type) and
PRINTTO procedure

“Using the PRINTTO Procedure
in UNIX Environments” on page
161

windowing
environment

DMPRINT command “Using the Print Dialog Box in
UNIX Environments” on page
157

Print dialog box “Using the Print Dialog Box in
UNIX Environments” on page
157

FILENAME statement and
PRTFILE, PRINT, and FILE
commands

“Using PRTFILE and PRINT
with a Fileref” on page 160

an external file any mode PRINTTO procedure and
FILENAME statement

“Using the PRINTTO Procedure
in UNIX Environments” on page
161

windowing
environment

Print dialog box “Using the Print Dialog Box in
UNIX Environments” on page
157

FILENAME statement and
PRTFILE, PRINT, and FILE
commands

“Using PRTFILE and PRINT
with a Fileref” on page 160

batch LOG and PRINT system options “Using SAS System Options to
Route Output” on page 163

a UNIX command
(pipe)

any mode FILENAME statement and
PRINTTO procedure

“Using the PRINTTO Procedure
in UNIX Environments” on page
161

windowing
environment

FILENAME statement and
PRTFILE and PRINT commands

“Using PRTFILE and PRINT
with a Fileref” on page 160

its usual location and
to an external file

any mode ALTLOG and ALTPRINT system
options

“Using SAS System Options to
Route Output” on page 163

windowing
environment

FILE command “Using the FILE Command” on
page 161

Printing and Routing Output Printing from Text Windows 157

To route your SAS log
or output to...

Using this
mode of
processing... Use this method... See...

Print dialog box “Using the Print Dialog Box in
UNIX Environments” on page
157

a terminal batch FILENAME statement and
PRINTTO procedure

“Routing Output to a Terminal”
on page 163

Using the Print Dialog Box in UNIX Environments

Printing from Text Windows

Opening the Print Dialog Box
To print part or all of the contents of a window, complete the following steps:
1 Click in the window to make it the active window. If you want to mark and print

only selected lines of text, mark the text before you open the Print dialog box.
2 Issue the DMPRINT command or select

File Print

to open the Print dialog box.

Display 6.1 Print Dialog Box

158 Printing from GRAPH Windows Chapter 6

Default Printing Mode
In UNIX, the default printing mode is Universal Printing. For more information

about how to use Universal Printing, click Help on the Print dialog box.

Specifics for Forms Printing
To use forms for printing, select Use forms. SAS prompts you to enter a spool

command and the name of your system printer. When you click OK , SAS prints the
contents of the active window using the command and printer name that you specified
and additional information from your default form. See SAS Language Reference:
Dictionary for more information about forms printing.

Troubleshooting Print Server Errors
After clicking OK , if SAS displays a clock icon for a long time and you are sending

output to a network printer, your printer server might be down. If so, you will
eventually see a message in the shell where you invoked your SAS session that
indicates that the server is down.

Printing from GRAPH Windows

Opening the Print Dialog Box
With Universal Printing, you can use the Print dialog box to print the contents of a

GRAPH window. Click in the window to make it the active window, and then issue the
DMPRINT command or select

File Print

to open the Print dialog box.

Display 6.2 Print Dialog Box for Graphs

Note: Fonts set through the Print dialog box have no effect when you print from
GRAPH windows. Make sure that you specify the correct options on a GOPTIONS
statement. �

Printing and Routing Output Specifying the Print File 159

Specifics for SAS/GRAPH Drivers
To print output using a SAS/GRAPH driver, select Use SAS/GRAPH Drivers. Select

the down arrow beside the Driver field to display the available drivers. Make sure that
your printer destination has been set inside the device using the GDEVICE procedure
or the GOPTIONS statement. For complete information about printing from GRAPH
windows, refer to SAS/GRAPH Reference, Volumes 1 and 2 and the online help for SAS/
GRAPH.

Troubleshooting Print Server Errors
After clicking OK , if SAS displays a clock icon for a long time and you are sending

output to a network printer, your printer server might be down. If so, you will
eventually see a message in the shell where you invoked your SAS session that
indicates that the server is down.

Using Commands to Print in UNIX Environments

Differences between the PRTFILE, PRINT, and FILE Commands
In the SAS windowing environment, you can use the PRTFILE, PRINT, and FILE

commands to send the contents of the active window to an output device.
The following table lists the results of each of these commands.

Table 6.3 Routing Output Commands

Command Action Performed

PRTFILE specifies the filename or fileref for your output.

FILE sends the contents of the active window to the filename or fileref you specify.

PRINT sends the contents of the active window either:

� to your default printer when issued from the command line of the window

� to the location specified with the PRTFILE command.

Sending Output to a UNIX Command
If you want to send your output to a UNIX command, you can use the FILENAME

statement. The FILENAME statement enables you to create filerefs that point to
printers, plotters, or external files or filerefs that pipe to a UNIX command. For more
information, see “FILENAME Statement” on page 293.

Specifying the Print File
When you issue the PRINT command, SAS sends your output to your default printer

unless you specify a print file. You can specify a print file in two ways:

� entering the PRTFILE command:

PRTFILE file-spec CLEAR|APPEND|REPLACE

160 Using PRTFILE and PRINT with a Fileref Chapter 6

The file-spec can be either a fileref or a filename.
� selecting

File Print Utilities Set Print File

and entering the name of the print file if you are using forms. This option is only
available when Universal Printing is turned off.

Using PRTFILE and PRINT with a Fileref
You can use the PRTFILE command, followed by the PRINT command, to print the

contents of windows. PRTFILE establishes the destination, and PRINT sends the
contents of the window to that destination. If you do not specify a destination with the
PRTFILE command, PRINT automatically sends the window contents to your default
printer.

Steps for Sending Output Directly to a Printer
If you want to send output directly to a printer, you must first submit the

FILENAME statement to assign a fileref to the PRINTER or PIPE device. For example,
to print the contents of your OUTPUT window, complete the following steps:

Table 6.4 Printing the Contents of Your Output Window

Step Action Example

1 Submit a FILENAME statement or FILENAME
function to associate a fileref with a system printer
(PRINTER device type) or a UNIX command (PIPE
device type). Enclose the printer name or UNIX
command in either single or double quotation
marks.

filename myrpt printer ’bldga2’;

or

filename ascout pipe ’lp -dmyljet’;

For more information, see “Examples
of FILENAME Statements Using
PRINTER and PIPE” on page 160.

2 Issue the PRTFILE command as described in
“Specifying the Print File” on page 159. Specify the
fileref from your FILENAME statement or
FILENAME function.

prtfile myrpt

3 Issue the PRINT command from the command line
of the windows whose contents you want to print. If
you are sending output to a system printer or if you
are using forms-based printing, then you can print
the contents of more than one window.

4 Enter A in the requestor window that appears to
warn you that the destination file already exists.
The A value tells SAS to append the window
contents to the destination file.

5 Submit a FILENAME statement or FILENAME
function to clear (deassign) the fileref.

filename myrpt clear;

To clear the print file setting, issue the PRTFILE CLEAR command.

Examples of FILENAME Statements Using PRINTER and PIPE
The following statement associates MyRpt with the system printer named BldgA2

and specifies two copies of every printout:

Printing and Routing Output Important Note about the PRINTTO Procedure 161

filename myrpt printer ’bldga2 -n2’;

(See the documentation for your print command for information about other options
that you can specify.)

The following statement enables you to print output using the lp command on the
printer named myljet:

filename ascout pipe ’lp -dmyljet’;

The following statement sends output to the lp command and redirects any error
messages produced by this command to the LpError file in your home directory:

filename myrpt pipe ’lp 2>$HOME/lperror’;

Note: Redirecting standard error is allowed only in the Bourne and Korn shells. �

If you frequently use the same print command and destination, you can add the
appropriate FILENAME statement to your autoexec file. See “Customizing Your SAS
Session Using System Options” on page 18 for more information.

Using the FILE Command
You can use the FILE command to copy the contents of many different windows to

external files. Issue the FILE command on the command line of the window whose
contents you want to copy. For example, to copy the contents of the LOG window to
/u/myid/log/app1, issue the following command on the command line of the LOG
window:

file ’/u/myid/log/app1’

If the file does not exist, SAS creates it. If the file already exists, a requestor window
asks you whether you want to replace it or to append data to the existing data.

If you have already associated a fileref with your external file, you can use the fileref
instead of the filename:

file myref

Note: If you use the FILE command to save your output, carriage-control
information is not saved (that is, page breaks are removed from the output). You might
want to use the PRINT command with the FILE option instead:

PRINT FILE=fileref | ’pathname’

�

Using the PRINTTO Procedure in UNIX Environments

Important Note about the PRINTTO Procedure

Any time you use PROC PRINTTO to route output, you must close the output device
before PROC PRINTTO will release the output or log and send it to the destination you
have specified. To close the output device, issue PROC PRINTTO without any
parameters:

proc printto;
run;

162 Using the LOG= and PRINT= Options Chapter 6

Issuing PROC PRINTTO without any parameters closes the output device, generates
output, and reroutes the log and procedure output to their default destinations. See
Table 6.1 on page 155 for a list of the default destinations.

For more information, see “PRINTTO Procedure” on page 281 and Base SAS
Procedures Guide.

Using the LOG= and PRINT= Options
When you use the PRINTTO procedure with its LOG= and PRINT= options, you can

route the SAS log or SAS procedure output to an external file or a fileref from any
mode. Specify the external file or the fileref in the PROC PRINTTO statement. The
following example routes procedure output to /u/myid/output/prog1:

proc printto print=’/u/myid/output/prog1’ new;
run;

The NEW option causes any existing information in the file to be cleared. If you omit
the NEW option from the PROC PRINTTO statement, the SAS log or procedure output
is appended to the existing file.

If you plan to specify the same destination several times in your SAS program, you
can assign a fileref to the file using a FILENAME statement. (See “Assigning Filerefs
to External Files or Devices with the FILENAME Statement” on page 135 for details
and examples.)

Routing Output to a Universal Printer
You can direct output directly to your Universal Printer by using the UPRINTER

device type:

filename myoutput uprinter;
proc printto print=myoutput;
run;

Output will be sent to your default Universal Printer. This output will be in PostScript
or PCL format.

Routing Output to a Printer
You can direct output directly to your system printer by using the PRINTER device

type:

filename myoutput printer;
proc printto print=myoutput;
run;

Output will be sent to your default system printer or, if you have specified the
SYSPRINT system option, to the printer specified with that option. This method will
produce output in ASCII format.

Piping Output to a UNIX Command
You can also use the PIPE device type to send output to a UNIX command. When

you specify the print command, you might also want to specify a destination for
(redirect) any error messages produced by the print command. Enclose the UNIX

Printing and Routing Output Changing the Output Destination Using the LOG, PRINT, ALTLOG, and ALTPRINT System Options 163

command in either single or double quotation marks. The following example associates
the fileref MyOutput with the print command lp, which will send output to the printer
named myljet:

filename myoutput pipe ’lp -dmyljet’;
proc printto print=myoutput;
run;

You can send the SAS log to the same printer by using the LOG= option:

filename mylog pipe ’lp -dmyljet’;
proc printto log=mylog;
run;

The log and procedure output continue to be routed to the designated external file
until another PROC PRINTTO statement reroutes them.

Routing Output to a Terminal
In batch mode, you can direct output to a terminal by associating a fileref with a

terminal and then using PROC PRINTTO to send output to that fileref. In the
FILENAME statement, specify the TERMINAL device-type and the special file
associated with the terminal. For example, the following statements send the SAS log
to the terminal that is associated with the /dev/tty3 special file:

filename term terminal ’/dev/tty3’;
proc printto log=term;
run;

Using SAS System Options to Route Output

Changing the Output Destination Using the LOG, PRINT, ALTLOG, and
ALTPRINT System Options

You can use SAS system options to change the destination of the SAS log and
procedure output. The options that you use depend on which task you want to
accomplish:

� To route your SAS log or procedure output to an external file instead of to their
default destinations, use the LOG and PRINT system options.

� To route the log or output to an external file in addition to their default
destinations, use the ALTLOG and ALTPRINT system options. This method works
in all modes of running SAS.

LOG and PRINT are normally used in batch and interactive line modes. These
system options have no effect in the windowing environment. If you are running in the
windowing environment, use the ALTLOG and ALTPRINT system options.

You can specify these options in following locations:

� the SAS command

� a configuration file

� the SASV9_OPTIONS environment variable.

164 Creating Postscript Output with the PRINTCMD and SYSPRINT System Options Chapter 6

For example, you could specify these options in the SAS command as follows:

sas -log ’/u/myid/log’ -print ’/u/myid/prt’
sas -altlog ’/u/myid/log’ -altprint ’/u/myid/prt’

See “Ways to Specify a SAS System Option” on page 18 for more information.

Creating Postscript Output with the PRINTCMD and SYSPRINT System
Options

You can use the pstext UNIX command, the PRINTCMD and SYSPRINT system
options, and the PRINT command to create PostScript output. The PRINTCMD option
sets the UNIX print command that SAS will use, and the SYSPRINT option specifies a
destination.

You can use the pstext command as your print command and redirect or pipe the
output of that command. For example, the following options send your output through
the pstext command and then redirect the output of that command to the file named
/tmp/file.ps:

options printcmd=’pstext’;
options sysprint=’>/tmp/file.ps’;

When you issue the PRINT command, SAS creates the file /tmp/file.ps.
The following options send your output through the pstext command and then pipe

the output of that command to the lp command:

options printcmd=’pstext’;
options sysprint=’| lp -dmylaserjet’;

When you issue the PRINT command from within SAS, the PostScript output is sent to
the printer named mylaserjet.

Printing Large Files with the PIPE Device Type in UNIX Environments
When you print a file with the lp command, a symbolic link is created from the file

to the /usr/spool directory. When you pipe output to the lp command, the output is
copied under the /usr/spool directory.

If you experience problems printing large files using the PIPE device type, you can
circumvent the problem in either of the following ways:

� save the print file to a disk file and then print it with the lp command. Issue the
PRINT command from the output or log window, for example:

print file=’bigfile’

Exit your SAS session and print the file, or use the SAS X command to print the
file from within your SAS session, for example:

x ’lp -dmylsrjt bigfile’

� create a fileref using the PIPE device type that can handle large files. For
example, the following fileref saves the print file to disk, prints the saved file, and
then removes the file:

filename myfile pipe ’cat >bigfile;lp -dmylsrlt bigfile;rm bigfile;’;

Printing and Routing Output Controlling the Content and Appearance of Output in UNIX Environments 165

Changing the Default Print Destination in UNIX Environments

When you print a file, SAS looks in the following locations to determine where to
send output. The locations are listed in order of precedence:

1 the destination specified in Universal Printing or the form printer device that you
are using. See Universal Printing or forms printing in SAS Language Reference:
Dictionary for more information.

2 the value specified in the SYSPRINT system option. You can use the SYSPRINT
option to set your default print destination. Use the SYSPRINT system option to
specify the destination option that is used with your print command. For example,
if your print command is lp, you can set the default destination to the printer
named myljet by entering the following OPTIONS statement:

options sysprint=’-dmyljet’;

3 the value of the $LPDEST environment variable. See “Defining Environment
Variables in UNIX Environments” on page 21 for more information.

SAS uses the first destination that it finds. If you specify a destination in all three
locations, SAS uses the destination specified by Universal Printing.

Changing the Default Print Command in UNIX Environments

UNIX uses lp as the default print command. You can use the PRINTCMD system
option to specify a different print command. For example, you can change your default
print command to lpr by entering the following at SAS invocation:

sas -printcmd ‘‘lpr’’

You can also customize your default print command in your SAS configuration file. If
you use this method, then you will not have to change the default print command every
time you invoke SAS. For more information, see “PRINTCMD System Option” on page
352.

Controlling the Content and Appearance of Output in UNIX Environments

Some of the attributes of the SAS log and procedure output depend on the
destination to which they are being sent. For example, if the log and output are being
sent to your display, the default line and page size are derived from your display. If one
or both of these files are sent to the system printer or written to a file, the default line
size and page size depend on your printer and page setup. The line size and page size
for your current settings can be seen in the Print dialog box.

Some of the attributes of the SAS log and procedure output depend on the mode in
which you are running. For example, if you are running in interactive line mode, SAS
source statements are not echoed to the SAS log. If you are using the SAS windowing
environment all source statements are written to the log as they are submitted. In
batch mode, the log and procedure output are formatted for a standard system printer.

See “Customizing Your SAS Session Using System Options” on page 18 for
information about specifying system options.

166 SAS Log Options Chapter 6

SAS Log Options
Use the following options to control the contents of the log. See Chapter 17, “System

Options under UNIX,” on page 311 for details on specifying options.

FULLSTIMER
NOFULLSTIMER

controls whether a list of resources (such as I/O performed, page faults, elapsed
time, and CPU time) used for each PROC or DATA step is written to the log.
NOFULLSTIMER is the default.

LINESIZE=width
controls the line length used. Width can be any value from 64 to 256.

NEWS
NONEWS

controls whether messages are written to the SAS log. NEWS is the default.

NOTES
NONOTES

controls printing of NOTES on the log. NOTES is the default setting for all
execution modes. Specify NOTES unless your SAS program is completely
debugged.

PAGESIZE=n
controls the number of lines that are printed on each page. N can be any number
from 15 to 32767.

SOURCE
NOSOURCE

controls whether SAS source statements are written to the log. NOSOURCE is the
default setting in interactive line mode; otherwise, SOURCE is the default.

SOURCE2
NOSOURCE2

controls whether SAS statements that are included with %INCLUDE statements
are written to the log. NOSOURCE2 is the default setting for all execution modes.

STIMER
NOSTIMER

controls whether user CPU time and elapsed time are written to the log. STIMER
is the default.

Procedure Output Options
Use these system options to control the contents of the procedure output:

CENTER
NOCENTER

controls whether the printed results are centered or left-aligned on the procedure
output page. CENTER is the default.

DATE
NODATE

controls whether the date is written at the top of each procedure output page.
DATE is the default.

LINESIZE=width
controls the line length used. Width can be any value from 64 to 256.

Printing and Routing Output Procedure Output Options 167

NUMBER
NONUMBER

controls whether the output page number is written on each procedure output
page. NUMBER is the default.

PAGENO=n
resets the current page number in the print file. The default page number at the
beginning of the SAS session is 1. The pages are numbered sequentially
throughout the SAS session unless the PAGENO option is specified in an
OPTIONS statement during the session.

PAGESIZE=n
controls the number of lines that are printed on each page. N can be any number
from 15 to 32,767.

168

169

C H A P T E R

7
Accessing Shared Executable
Libraries from SAS

Overview of Shared Libraries in SAS 170

What Is a Shared Library? 170
Invoking Shared Libraries from within SAS 170

Steps for Accessing an External Shared Library 170

The SASCBTBL Attribute Table 170
Introduction to the SASCBTBL Attribute Table 170

What Is the SASCBTBL Attribute Table? 171

Syntax of the Attribute Table 171
ROUTINE Statement 171

ARG Statement 173
The Importance of the Attribute Table 175

Special Considerations When Using Shared Libraries 176

32-Bit and 64-Bit Considerations 176
Compatibility between Your Shared Libraries and SAS 176

Memory Storage Allocated by the Shared Library 176

Naming Considerations When Using Shared Libraries 177
Example of Creating a Symbolic Link 177

Using PEEKLONG Functions to Access Character String Arguments 177
Accessing Shared Libraries Efficiently 178

Grouping SAS Variables as Structure Arguments 179

Example: Grouping Your System Information as Structure Arguments 179
Using Constants and Expressions as Arguments to MODULE 181

Specifying Formats and Informats to Use with MODULE Arguments 181

C Language Formats 182
FORTRAN Language Formats 182

PL/I Language Formats 183
COBOL Language Formats 183

$CSTRw. Format 184

$BYVALw. Format 184
Understanding MODULE Log Messages 185

Examples of Accessing Shared Executable Libraries from SAS 187

Example 1: Updating a Character String Argument 187
Example 2: Passing Arguments by Value 188

Example 3: Using PEEKCLONG to Access a Returned Pointer 189
Example 4: Using Structures 190

Example 5: Invoking a Shared Library Routine from PROC IML 192

170 Overview of Shared Libraries in SAS Chapter 7

Overview of Shared Libraries in SAS

What Is a Shared Library?
Shared libraries in UNIX are libraries that contain executable programs that are

written in any of several programming languages. In UNIX, the names of these
programs typically end with a .so or .sl extension. However, they are not constrained to
this naming convention.

Shared libraries are a mechanism for storing useful routines that might be needed by
multiple applications. When an application needs a routine that resides in an external
shared library, it loads the shared library, invokes the routine, and unloads the shared
library upon completion.

Invoking Shared Libraries from within SAS
SAS provides routines and functions that let you invoke these external routines from

within SAS. You can access the shared library routines from the DATA step, the IML
procedure, and SCL code. You use the MODULE family of SAS call routines and
functions (including MODULE, MODULEN, MODULEC, MODULEI, MODULEIN, and
MODULEIC) to invoke a routine that resides in a shared library. This documentation
refers to the MODULE family of call routines and functions generically as the
MODULE function.

Steps for Accessing an External Shared Library
The following are steps for accessing an external shared library routine:
1 Create a text file that describes the shared library routine you want to access,

including the arguments it expects and the values it returns (if any). This
attribute file must be in a special format, as described in “The SASCBTBL
Attribute Table” on page 170.

2 Use the FILENAME statement to assign the SASCBTBL fileref to the attribute
file you created.

3 In a DATA step or SCL code, use a call routine or function (MODULE, MODULEN,
or MODULEC) to invoke the shared library routine. The specific function you use
depends on the type of expected return value (none, numeric, or character). (You
can also use MODULEI, MODULEIN, or MODULEIC within a PROC IML step.)
The MODULE functions are described in “MODULE Function” on page 251.

CAUTION:
Only experienced programmers should access external routines in shared libraries. By
accessing a function in a shared library, you transfer processing control to the
external function. If done improperly, or if the external function is not reliable, you
might lose data, get unreliable results, or receive severe errors. �

The SASCBTBL Attribute Table

Introduction to the SASCBTBL Attribute Table
Because the MODULE function invokes an external routine that SAS knows nothing

about, you must supply information about the routine’s arguments so that the

Accessing Shared Executable Libraries from SAS Syntax of the Attribute Table 171

MODULE function can validate them and convert them, if necessary. For example,
suppose you want to invoke a routine that requires an integer as an argument. Because
SAS uses floating point values for all of its numeric arguments, the floating point value
must be converted to an integer before you invoke the external routine. The MODULE
function looks for this attribute information in an attribute table that is referred to by
the SASCBTBL fileref.

What Is the SASCBTBL Attribute Table?
The attribute table is a sequential text file that contains descriptions of the routines

you can invoke with the MODULE function. The table defines how the MODULE
function should interpret supplied arguments when it builds a parameter list to pass to
the called routine.

The MODULE function locates the table by opening the file that is referenced by the
SASCBTBL fileref. If you do not define this fileref, the MODULE function simply calls
the requested shared library routine without altering the arguments.

CAUTION:
Using the MODULE function without defining an attribute table can cause SAS to crash,
produce unexpected results, or result in severe errors. You need to use an attribute
table for all external functions that you want to invoke. �

Syntax of the Attribute Table
The attribute table should contain the following:
� a description in a ROUTINE statement for each shared library routine you intend

to call
� descriptions in ARG statements for each argument associated with that routine.

At any point in the attribute table file, you can create a comment using an asterisk
(*) as the first nonblank character of a line or after the end of a statement (following
the semicolon). You must end the comment with a semicolon.

ROUTINE Statement
The syntax of the ROUTINE statement is

ROUTINE name MINARG=minarg MAXARG=maxarg
<CALLSEQ=BYVALUE|BYADDR>
<TRANSPOSE=YES|NO> <MODULE=shared-library-name>
<RETURNS=SHORT|USHORT|LONG|ULONG

|DOUBLE|DBLPTR|CHAR<n>>

The following are descriptions of the ROUTINE statement attributes:

ROUTINE name
starts the ROUTINE statement. You need a ROUTINE statement for every shared
library function you intend to call. The value for name must match the routine
name or ordinal you specified as part of the ’module’ argument in the MODULE
function, where module is the name of the shared library (if not specified by the
MODULE attribute) and the routine name or ordinal. For example, in order to
specify libc,getcwd in the MODULE function call, the ROUTINE name should
be getcwd.

The name argument is case sensitive, and is required for the ROUTINE
statement.

172 Syntax of the Attribute Table Chapter 7

MINARG=minarg
specifies the minimum number of arguments to expect for the shared library
routine. In most cases, this value will be the same as MAXARG; but some routines
do allow a varying number of arguments. This is a required attribute.

MAXARG=maxarg
specifies the maximum number of arguments to expect for the shared library
routine. This is a required attribute.

CALLSEQ=BYVALUE | BYADDR
indicates the calling sequence method used by the shared library routine. Specify
BYVALUE for call-by-value and BYADDR for call-by-address. The default value is
BYADDR.

FORTRAN and COBOL are call-by-address languages. C is usually
call-by-value, although a specific routine might be implemented as call-by-address.

The MODULE function does not require that all arguments use the same
calling method. You can identify any exceptions by using the BYVALUE and
BYADDR options in the ARG statement.

TRANSPOSE=YES | NO
specifies whether SAS transposes matrices that have both more than one row and
more than one column before it calls the shared library routine. This attribute
applies only to routines called from within PROC IML with MODULEI,
MODULEIC, and MODULEIN.

TRANSPOSE=YES is necessary when you are calling a routine that is written
in a language that does not use row-major order to store matrices. (For example,
FORTRAN uses column-major order.)

For example, consider this matrix with three columns and two rows:

columns
1 2 3

rows 1 | 10 11 12

2 | 13 14 15

PROC IML stores this matrix in memory sequentially as 10, 11, 12, 13, 14, 15.
However, FORTRAN routines will expect this matrix as 10, 13, 11, 14, 12, 15.

The default value is NO.

MODULE=shared-library-name
names the executable module (the shared library) in which the routine resides.
You do not need to specify this attribute if the name of the shared library is the
same name as the routine. If you specify the MODULE attribute here in the
ROUTINE statement, then you do not need to include the module name in the
module argument of the MODULE function (unless the shared library routine
name you are calling is not unique in the attribute table). The MODULE function
is described in “MODULE Function” on page 251.

You can have multiple ROUTINE statements that use the same MODULE name.
You can also have duplicate routine names that reside in different shared libraries.

The MODULE function searches the directories that are defined in each
operating system’s library path environment variable when it attempts to load the
shared library argument provided in the MODULE attribute. The following table
lists this environment variable for each UNIX operating system that SAS supports.

Accessing Shared Executable Libraries from SAS Syntax of the Attribute Table 173

Table 7.1 Shared Library Environment Variable Name

Operating System Environment Variable Name

Solaris $LD_LIBRARY_PATH

AIX/R $LIBPATH

HP-UX $LD_LIBRARY_PATH or $SHLIB_PATH

Linux $LD_LIBRARY_PATH

Note: For more information about these environment variables, see the man
pages for your operating system. �

You can also use the PATH system option to point to the directory that contains
the shared library specified in the MODULE= option. Using the PATH system
option overrides your system’s environment variable when you load the shared
library. For more information, see “PATH System Option” on page 351.

RETURNS=SHORT | USHORT | LONG | ULONG | DOUBLE | DBLPTR |
CHAR<n>

specifies the type of value that the shared library routine returns. This value will
be converted as appropriate, depending on whether you use MODULEC (which
returns a character) or MODULEN (which returns a number). The following are
the possible return value types:

SHORT
short integer.

USHORT
unsigned short integer.

LONG
long integer.

ULONG
unsigned long integer.

DOUBLE
double-precision floating point number.

DBLPTR
pointer to a double-precision floating point number (instead of using a
floating point register). Consult the documentation for your shared library
routine to determine how it handles double-precision floating point values.

CHARn
pointer to a character string up to n bytes long. The string is expected to be
null-terminated and will be blank-padded or truncated as appropriate. If you
do not specify n, the MODULE function uses the maximum length of the
receiving SAS character variable.

If you do not specify the RETURNS attribute, you should invoke the routine
with only the MODULE and MODULEI call routines. You will get unpredictable
values if you omit the RETURNS attribute and invoke the routine using the
MODULEN/MODULEIN or MODULEC/MODULEIC functions.

ARG Statement
The ROUTINE statement must be followed by as many ARG statements as you

specified in the MAXARG= option. The ARG statements must appear in the order that
the arguments will be specified within the MODULE function.

174 Syntax of the Attribute Table Chapter 7

The syntax for each ARG statement is

ARG argnum NUM|CHAR <INPUT|OUTPUT|UPDATE>
<NOTREQD|REQUIRED> <BYADDR|BYVALUE> <FDSTART>
<FORMAT=format>;

Here are the descriptions of the ARG statement attributes:

ARG argnum
defines the argument number. This a required attribute. Define the arguments in
ascending order, starting with the first routine argument (ARG 1).

NUM | CHAR
defines the argument as numeric or character. This is a required attribute.

If you specify NUM here but pass the routine a character argument, the
argument is converted using the standard numeric informat. If you specify CHAR
here but pass the routine a numeric argument, the argument is converted using
the BEST12 informat.

INPUT | OUTPUT | UPDATE
indicates the argument is either input to the routine, an output argument, or both.
If you specify INPUT, the argument is converted and passed to the shared library
routine. If you specify OUTPUT, the argument is not converted, but is updated
with an outgoing value from the shared library routine. If you specify UPDATE,
the argument is converted, passed to the shared library routine and updated with
an outgoing value from the routine.

You can specify OUTPUT and UPDATE only with variable arguments (that is,
no constants or expressions are allowed).

NOTREQD | REQUIRED
indicates whether the argument is required. If you specify NOTREQD, then the
MODULE function can omit the argument. If other arguments follow the omitted
argument, identify the omitted argument by including an extra comma as a
placeholder. For example, to omit the second argument to routine XYZ, you would
specify:

call module(’XYZ’,1,,3);

CAUTION:
Be careful when using NOTREQD; the shared library routine must not attempt to
access the argument if it is not supplied in the call to MODULE. If the routine does
attempt to access it, you might receive unexpected results or severe errors. �

The REQUIRED attribute indicates that the argument is required and cannot
be omitted. REQUIRED is the default value.

BYADDR | BYVALUE
indicates whether the argument is passed by reference or by value.

BYADDR is the default value unless CALLSEQ=BYVALUE was specified in the
ROUTINE statement, in which case BYVALUE is the default. Specify BYADDR
when you are using a call-by-value routine that also has arguments to be passed
by address.

FDSTART
indicates that the argument begins a block of values that are grouped into a
structure whose pointer is passed as a single argument. Note that all subsequent
arguments are treated as part of that structure until the MODULE function
encounters another FDSTART argument.

Accessing Shared Executable Libraries from SAS The Importance of the Attribute Table 175

FORMAT=format
names the format that presents the argument to the shared library routine. Any
SAS supplied formats, PROC FORMAT style formats, or SAS/TOOLKIT formats
are valid. Note that this format must have a corresponding valid informat if you
specified the UPDATE or OUTPUT attribute for the argument.

The FORMAT= attribute is not required, but is recommended, since format
specification is the primary purpose of the ARG statements in the attribute table.

CAUTION:
Using an incorrect format can produce invalid results, cause SAS to crash, or result
in serious errors. �

The Importance of the Attribute Table
The MODULE function relies heavily on the accuracy of the information in the

attribute table. If this information is incorrect, unpredictable results can occur
(including a system crash).

Consider an example routine xyz that expects two arguments: an integer and a
pointer. The integer is a code indicating what action takes place. For example, action 1
means that a 20-byte character string is written into the area that is pointed to by the
second argument, the pointer.

Now suppose you call xyz using the MODULE function, but you indicate in the
attribute table that the receiving character argument is only 10 characters long:

routine xyz minarg=2 maxarg=2;
arg 1 input num byvalue format=ib4.;
arg 2 output char format=$char10.;

Regardless of the value given by the LENGTH statement for the second argument to
MODULE, MODULE passes a pointer to a 10-byte area to the xyz routine. If xyz
writes 20 bytes at that location, the 10 bytes of memory following the string provided by
MODULE are overwritten, causing unpredictable results:

data _null_;
length x $20;
call module(’xyz’,1,x);

run;

The call might work fine, depending on which 10 bytes were overwritten. However, this
might also cause you to lose data or cause your system to crash.

Also, note that the PEEKLONG and PEEKCLONG functions rely on the validity of
the pointers you supply. If the pointers are invalid, it is possible that severe errors will
result. For example, this code would cause an error:

data _null_;
length c $10;

/* trying to copy from address 0!!!*/
c = peekclong(0,10);

run;

176 Special Considerations When Using Shared Libraries Chapter 7

Special Considerations When Using Shared Libraries

32-Bit and 64-Bit Considerations

Compatibility between Your Shared Libraries and SAS
Starting in SAS System 9, SAS is a 64-bit application that runs on all supported

UNIX environments that are 64-bit enabled. The only exception is the Linux version of
SAS which is a 32-bit application. When you call external routines in shared libraries,
the shared library needs to be compatible with SAS.

For example, suppose you are running a 64-bit version of SAS on Solaris. You need
to call a routine that is located in libc.so. In order for this shared library to be
compatible with SAS, it needs to be a 64-bit shared library.

To determine whether a vendor supplied library is 32-bit or 64-bit, you can use the
file command. The following output shows the results of using this command on
Solaris for a 32-bit and 64-bit library.

$ file libc.so
libc.so: ELF 32--bit MSB dynamic lib SPARC Version 1, dynamically linked,
not stripped

$ file ./libc.so
./libc.so: ELF 64--bit MSB dynamic lib SPARCV9 Version 1, dynamically linked,
not stripped

Memory Storage Allocated by the Shared Library
When specifying your SAS format and informat for each routine argument in the

FORMAT attribute of the ARG statement, you need to consider the amount of memory
the shared library allocates for the parameters that it receives and returns. To
determine how much storage is being reserved for the input and return parameters of
the routine in the external shared library, you can use the sizeof() C function.

The following table lists the typical memory allocations for C data types for 32-bit
and 64-bit systems:

Table 7.2 Memory Allocations for C Data Types

Type
32-Bit System
Size (Bytes)

32-Bit System
Size (Bits)

64-Bit System
Size (Bytes)

64-Bit System
Size (Bits)

char 1 8 1 8

short 2 16 2 16

int 4 32 4 32

long 4 32 8 64

long long 8 64 8 64

float 4 32 4 32

Accessing Shared Executable Libraries from SAS Using PEEKLONG Functions to Access Character String Arguments 177

Type
32-Bit System
Size (Bytes)

32-Bit System
Size (Bits)

64-Bit System
Size (Bytes)

64-Bit System
Size (Bits)

double 8 64 8 64

pointer 4 32 8 64

For information about the SAS formats to use for your data types, see “Specifying
Formats and Informats to Use with MODULE Arguments” on page 181.

Naming Considerations When Using Shared Libraries
SAS loads external shared libraries that meet the following naming constraints:
� the name is eight characters or less
� the name does not contain a period.

If the name of your external shared library is greater than eight characters or
contains a period, then you can create a symbolic link to point to the destination of the
shared library. Once the link is created, you can add the name of the symbolic link to
the MODULE statement in the SASCBTBL attribute table. When you are ready to
execute your SAS program, use the PATH system option to point to the directory that
contains the symbolic link.

Example of Creating a Symbolic Link
The Hewlett Packard shared library libc.sl that is installed in the /usr/lib/

pa20_64 directory contains a period in the name. Before SAS will load this shared
library, you need to create a symbolic link that meets the naming convention of eight
characters or less and no period. The symbolic link shown in the following example
points to the target location of libc.sl:

$ ln -s /usr/lib/pa20_64/libc.sl /tmp/libclnk

After the symbolic link is created, you can then update the MODULE= option in the
SASCBTBL attribute table, as shown in the following code:

routine name minarg=2 maxarg=2 returns=short module=libclnk;
arg 1 char output byaddr fdstart format=$cstr9.;
arg 2 char output format=$cstr9.;

To load the shared library during your invocation of SAS, type the following
command:

/usr/local/sasv91/sas -path /tmp module.sas

Using PEEKLONG Functions to Access Character String Arguments
Since the SAS language does not provide pointers as data types, you can use the SAS

PEEKLONG functions to access the data stored at these address values.
For example, the following program demonstrates how the address of a pointer is

supplied and how it can set the pointer to the address of a static table containing the
contiguous integers 1, 2, and 3. It also calls the useptr routine in the useptr shared
library on a 64-bit operating system.

static struct MYTABLE {
int value1;
int value2;

178 Accessing Shared Libraries Efficiently Chapter 7

int value3;
} mytable = {1,2,3};

useptr(toset)
char **toset;
{

*toset = (char *)&mytable
}

The following would be the SASCBTBL attribute table entry:

routine useptr minarg=1 maxarg=1;
arg 1 char update format=$char20.;

The following would be the SAS code:

data _null_;
length ptrval $20 thedata $12;
call module(’*i’,’useptr’,ptrval);
thedata=peekclong(ptrval,12);

/* Converts hexadecimal data to character data */
put thedata=$hex24.;

/* Converts hexadecimal positive binary values to fixed or floating point value */
ptrval=hex40.;

run;

The following would be the SAS log output:

Output 7.1 Log Output for Accessing Character Strings with the PEEKCLONG
Function

thedata=000000010000000200000003 ptrval=800003FFFF0C

In this example, the PEEKCLONG function is given two arguments, a pointer via a
numeric variable and a length in bytes. PEEKCLONG returns a character string of the
specified length containing the characters at the pointer location.

For more information about the PEEKLONG functions, see “PEEKLONG Function”
on page 254.

Accessing Shared Libraries Efficiently
The MODULE function reads the attribute table that is referenced by the

SASCBTBL fileref once per step (DATA step, PROC IML step, or SCL step). It parses
the table and stores the attribute information for future use during the step. When you
use the MODULE function, SAS searches the stored attribute information for the
matching routine and module names. The first time you access a shared library during
a step, SAS loads the shared library and determines the address of the requested
routine. Each shared library you invoke stays loaded for the duration of the step, and is
not reloaded in subsequent calls. All modules and routines are unloaded at the end of
the step. For example, suppose the attribute table had the following basic form:

* routines XYZ and BBB in FIRST.Shared Library;
routine XYZ minarg=1 maxarg=1 module=FIRST;

Accessing Shared Executable Libraries from SAS Grouping SAS Variables as Structure Arguments 179

arg 1 num input;
routine BBB minarg=1 maxarg=1 module=FIRST;
arg 1 num input;
* routines ABC and DDD in SECOND.Shared Library;
routine ABC minarg=1 maxarg=1 module=SECOND;
arg 1 num input;
routine DDD minarg=1 maxarg=1 module=SECOND;
arg 1 num input;

and the DATA step looked like the following:

filename sascbtbl ’myattr.tbl’;
data _null_;

do i=1 to 50;
/* FIRST.Shared Library is loaded only once */
value = modulen(’XYZ’,i);
/* SECOND.Shared Library is loaded only once */
value2 = modulen(’ABC’,value);
put i= value= value2=;

end;
run;

In this example, MODULEN parses the attribute table during DATA step compilation.
In the first loop iteration (i=1), FIRST.Shared Library is loaded and the XYZ routine is
accessed when MODULEN calls for it. Next, SECOND.Shared Library is loaded and
the ABC routine is accessed. For subsequent loop iterations (starting when i=2),
FIRST.Shared Library and SECOND.Shared Library remain loaded, so the MODULEN
function simply accesses the XYZ and ABC routines. SAS unloads both shared libraries
at the end of the DATA step.

Note that the attribute table can contain any number of descriptions for routines
that are not accessed for a given step. This does not cause any additional overhead
(apart from a few bytes of internal memory to hold the attribute descriptions). In the
above example, BBB and DDD are in the attribute table but are not accessed by the
DATA step.

Grouping SAS Variables as Structure Arguments
A common need when calling external routines is to pass a pointer to a structure.

Some parts of the structure might be used as input to the routine, while other parts
might be replaced or filled in by the routine. Even though SAS does not have structures
in its language, you can indicate to the MODULE function that you want a particular
set of arguments grouped into a single structure. You indicate this by using the
FDSTART option of the ARG statement to flag the argument that begins the structure
in the attribute table. SAS gathers that argument and all that follow (until
encountering another FDSTART option) into a single contiguous block, and passes a
pointer to the block as an argument to the shared library routine.

Example: Grouping Your System Information as Structure Arguments
This example uses the uname routine, which is part of the /usr/lib/pa20_64/

libc.sl shared library in the HP/UX operating environment. This routine returns the
following information about your computer system:

� the nodename on which you are executing SAS
� the version of the operating system
� the vendor of the operating system

180 Grouping SAS Variables as Structure Arguments Chapter 7

� the machine identification number
� model type of your machine
� the unique identification number of your class of hardware. This value could be a

serial number.

The following is the C prototype for this routine:

int uname(struct utsname *name);

In C, the utsname structure is defined with the following members:

#define UTSLEN 9
#define SNLEN 15

char sysname[UTSLEN];
char nodename[UTSLEN];
char release[UTSLEN];
char version[UTSLEN];
char machine[UTSLEN];
char idnumber[SNLEN];

Each of the above structure members are null terminated strings.
To call this routine using the MODULE function, you would use the following

attribute table entries:

* attribute table entry;
routine uname minarg=6 maxarg=6 returns=short module=libc;
arg 1 char output byaddr fdstart format=$cstr9.;
arg 2 char output format=$cstr9.;
arg 3 char output format=$cstr9.;
arg 4 char output format=$cstr9.;
arg 5 char output format=$cstr9.;
arg 6 char output format=$cstr15.;

The following would be the SAS source code to call the uname routine from within the
DATA step:

x ’if [! -L ./libc]; then ln -s /usr/lib/pa20_64/libc.sl ./libc ; fi’ ;
x ’setenv LD_LIBRARY_PATH .:/usr/lib:/lib:/usr/lib/pa20_64’

data _null_;
length sysname $9 nodename $9 release $9 version $9 machine $9 idnumber $15.
retain sysname nodename release version machine idnumber ‘‘ ‘‘;
rc=modulen(’uname’, sysname, nodename, release, version, machine, idnumber)
put rc = ;
put sysname = ;
put nodename = ;
put release = ;
put version = ;
put machine = ;
put idnumber = ;

run;

The following would be the SAS log output:

Accessing Shared Executable Libraries from SAS Specifying Formats and Informats to Use with MODULE Arguments 181

Output 7.2 Grouping SAS Variables as a Structure

rc=0
sysname=HP-UX
nodename=garage
release=B.11.00
version=u
machine=9000/800
idnumber=103901537

Using Constants and Expressions as Arguments to MODULE
You can pass any kind of expression as an argument to the MODULE function. The

attribute table indicates whether the argument is for input, output, or update.
You can specify input arguments as constants and arithmetic expressions. However,

because output and update arguments must be able to be modified and returned, you
can pass only a variable for them. If you specify a constant or expression where a value
that can be updated is expected, SAS issues a warning message pointing out the error.
Processing continues, but the MODULE function cannot perform the update (meaning
that the value of the argument you wanted to update will be lost).

Consider these examples. Here is the attribute table:

* attribute table entry for ABC;
routine abc minarg=2 maxarg=2;
arg 1 input format=ib4.;
arg 2 output format=ib4.;

Here is the DATA step with the MODULE calls:

data _null_;
x=5;
/* passing a variable as the */
/* second argument - OK */
call module(’abc’,1,x);

/* passing a constant as the */
/* second argument - INVALID */
call module(’abc’,1,2);

/* passing an expression as the */
/* second argument - INVALID */
call module(’abc’,1,x+1);

run;

In the above example, the first call to MODULE is correct because x is updated by
the value that the abc routine returns for the second argument. The second call to
MODULE is not correct because a constant is passed. MODULE issues a warning
indicating you have passed a constant, and passes a temporary area instead. The third
call to MODULE is not correct because an arithmetic expression is passed, which causes
a temporary location from the DATA step to be used, and the returned value to be lost.

Specifying Formats and Informats to Use with MODULE Arguments
You specify the SAS format and informat for each shared library routine argument

by specifying the FORMAT attribute in the ARG statement. The format indicates how

182 Specifying Formats and Informats to Use with MODULE Arguments Chapter 7

numeric and character values should be passed to the shared library routine and how
they should be read back upon completion of the routine.

Usually, the format you use corresponds to a variable type for a given programming
language. The following sections describe the proper formats that correspond to
different variable types in various programming languages.

C Language Formats

C Type
SAS Format/Informat for
32-Bit Systems

SAS Format/Informat for
64-Bit Systems

double RB8. RB8.

float FLOAT4. FLOAT4.

signed int IB4. IB4.

signed short IB2. IB2.

signed long IB4. IB8.

char * IB4. IB8.

unsigned int PIB4. PIB4.

unsigned short PIB2. PIB2.

unsigned long PIB4. PIB8.

char[w] $CHARw. or $CSTRw. (see
“$CSTRw. Format” on page
184)

$CHARw. or $CSTRw. (see
“$CSTRw. Format” on page
184)

Note: For information about passing character data other than as pointers to
character strings, see “$BYVALw. Format” on page 184. �

FORTRAN Language Formats

FORTRAN Type SAS Format/Informat

integer*2 IB2.

integer*4 IB4.

real*4 RB4.

real*8 RB8.

character*w $CHARw.

The MODULE function can support FORTRAN character arguments only if they are
not expected to be passed by a descriptor.

Accessing Shared Executable Libraries from SAS Specifying Formats and Informats to Use with MODULE Arguments 183

PL/I Language Formats

PL/I Type SAS Format/Informat

FIXED BIN(15) IB2.

FIXED BIN(31) IB4.

FLOAT BIN(21) RB4.

FLOAT BIN(31) RB8.

CHARACTER(w) $CHARw.

The PL/I descriptions are added here for completeness. This does not guarantee that
you will be able to invoke PL/I routines.

COBOL Language Formats

COBOL Format

SAS

Format/Informat Description

PIC Sxxxx BINARY IBw. integer binary

COMP-2 RB8. double-precision
floating point

COMP-1 RB4. single-precision
floating point

PIC xxxx or Sxxxx Fw. printable numeric

PIC yyyy $CHARw. character

The following COBOL specifications might not match properly with the SAS supplied
formats because zoned and packed decimal are not truly defined for systems based on
Intel architecture.

COBOL Format

SAS

Format/Informat Description

PIC Sxxxx DISPLAY ZDw. zoned decimal

PIC Sxxxx PACKED-DECIMAL PDw. packed decimal

The following COBOL specifications do not have true native equivalents and are only
usable in conjunction with the corresponding S370Fxxx informat and format, which
enables IBM mainframe-style representations to be read and written in the UNIX
environment.

184 Specifying Formats and Informats to Use with MODULE Arguments Chapter 7

COBOL Format SAS Format/Informat Description

PIC xxxx DISPLAY S370FZDUw. zoned decimal unsigned

PIC Sxxxx DISPLAY SIGN LEADING S370FZDLw. zoned decimal leading
sign

PIC Sxxxx DISPLAY SIGN LEADING
SEPARATE

S370FZDSw. zoned decimal leading
sign separate

PIC Sxxxx DISPLAY SIGN TRAILING
SEPARATE

S370FZDTw. zoned decimal trailing
sign separate

PIC xxxx BINARY S370FIBUw. integer binary unsigned

PIC xxxx PACKED-DECIMAL S370FPDUw. packed decimal unsigned

$CSTRw. Format

If you pass a character argument as a null-terminated string, use the $CSTRw.
format. This format looks for the last nonblank character of your character argument
and passes a copy of the string with a null terminator after the last nonblank character.
For example, given the following attribute table entry:

* attribute table entry;
routine abc minarg=1 maxarg=1;
arg 1 input char format=$cstr10.;

you can use the following DATA step:

data _null_;
rc = module(’abc’,’my string’);
run;

The $CSTR format adds a null terminator to the character string my string before
passing it to the abc routine. This is equivalent to the following attribute entry:

* attribute table entry;
routine abc minarg=1 maxarg=1;
arg 1 input char format=$char10.;

with the following DATA step:

data _null_;
rc = module(’abc’,’my string’||’00’x);

run;

The first example is easier to understand and easier to use when using variable or
expression arguments.

The $CSTR informat converts a null-terminated string into a blank-padded string of
the specified length. If the shared library routine is supposed to update a character
argument, use the $CSTR informat in the argument attribute.

$BYVALw. Format

When you use a MODULE function to pass a single character by value, the argument
is automatically promoted to an integer. If you want to use a character expression in
the MODULE call, you must use the special format/informat called $BYVALw. The
$BYVALw. format/informat expects a single character and will produce a numeric

Accessing Shared Executable Libraries from SAS Understanding MODULE Log Messages 185

value, the size of which depends on w. $BYVAL2. produces a short, $BYVAL4. produces
a long, and $BYVAL8. produces a double. Consider this example using the C language:

long xyz(a,b)
long a; double b;
{
static char c = ’Y’;
if (a == ’X’)

return(1);
else if (b == c)

return(2);
else return(3);
}

In this example, the xyz routine expects two arguments, a long and a double. If the
long is an X, the actual value of the long is 88 in decimal. This is because an ASCII X is
stored as hex 58, and this is promoted to a long, represented as 0x00000058 (or 88
decimal). If the value of a is X, or 88, then a 1 is returned. If the second argument, a
double, is Y (which is interpreted as 89), then 2 is returned.

Now suppose that you want to pass characters as the arguments to xyz. In C, you
would invoke them as follows:

x = xyz(’X’,(double)’Z’);
y = xyz(’Q’,(double)’Y’);

This is because the X and Q values are automatically promoted to integers (which are
the same as longs for the sake of this example), and the integer values corresponding to
Z and Y are cast to doubles.

To call xyz using the MODULEN function, your attribute table must reflect the fact
that you want to pass characters:

routine xyz minarg=2 maxarg=2 returns=long;
arg 1 input char byvalue format=$byval4.;
arg 2 input char byvalue format=$byval8.;

Note that it is important that the BYVALUE option appears in the ARG statement as
well. Otherwise, MODULEN assumes that you want to pass a pointer to the routine,
instead of a value.

Here is the DATA step that invokes MODULEN and passes it characters:

data _null_;
x = modulen(’xyz’,’X’,’Z’);
put x= ’ (should be 1)’;
y = modulen(’xyz’,’Q’,’Y’);
put y= ’ (should be 2)’;

run;

Understanding MODULE Log Messages
If you specify i in the control string parameter to MODULE, SAS prints several

informational messages to the log. You can use these messages to determine whether
you have passed incorrect arguments or coded the attribute table incorrectly.

Consider this example that uses MODULEIN from within the IML procedure. It uses
the MODULEIN function to invoke the changi routine (which is stored in theoretical
TRYMOD.so). In the example, MODULEIN passes the constant 6 and the matrix x2,
which is a 4x5 matrix to be converted to an integer matrix. The attribute table for
changi is as follows:

186 Understanding MODULE Log Messages Chapter 7

routine changi module=trymod returns=long;
arg 1 input num format=ib4. byvalue;
arg 2 update num format=ib4.;

The following IML step invokes MODULEIN:

proc iml;
x1 = J(4,5,0);
do i=1 to 4;

do j=1 to 5;
x1[i,j] = i*10+j+3;

end;
end;
y1= x1;

x2 = x1;
y2 = y1;

rc = modulein(’*i’,’changi’,6,x2);
....

The ’*i’ control string causes the lines shown in the following output to be printed in
the log.

Output 7.3 MODULEIN Log Output

---PARM LIST FOR MODULEIN ROUTINE--- CHR PARM 1 885E0AA8 2A69 (*i)

CHR PARM 2 885E0AD0 6368616E6769 (changi)

NUM PARM 3 885E0AE0 0000000000001840

NUM PARM 4 885E07F0

0000000000002C400000000000002E40000000000000304000000000000031400000000000003240

000000000000384000000000000039400000000000003A400000000000003B400000000000003C40

0000000000004140000000000080414000000000

---ROUTINE changi LOADED AT ADDRESS 886119B8 (PARMLIST AT 886033A0)--- PARM 1 06000000 <CALL-BY-VALUE>

PARM 2 88604720

0E0000000F00000010000000110000001200000018000000190000001A0000001B0000001C000000

22000000230000002400000025000000260000002C0000002D0000002E0000002F00000030000000

---VALUES UPON RETURN FROM changi ROUTINE--- PARM 1 06000000 <CALL-BY-VALUE>

PARM 2 88604720

140000001F0000002A0000003500000040000000820000008D00000098000000A3000000AE000000

F0000000FB00000006010000110100001C0100005E01000069010000740100007F0100008A010000

---VALUES UPON RETURN FROM MODULEIN ROUTINE--- NUM PARM 3 885E0AE0 0000000000001840

NUM PARM 4 885E07F0

00000000000034400000000000003F4000000000000045400000000000804A400000000000005040

00000000004060400000000000A06140000000000000634000000000006064400000000000C06540

0000000000006E400000000000606F4000000000

The output is divided into four sections.

� The first section describes the arguments passed to MODULEIN.

The ’CHR PARM n’ portion indicates that character parameter n was passed. In
the example, 885E0AA8 is the actual address of the first character parameter to
MODULEIN. The value at the address is hex 2A69, and the ASCII representation
of that value (’*i’) is in parentheses after the hex value. The second parameter is
printed similarly. Only these first two arguments have their ASCII equivalents
printed. This is because other arguments might contain unreadable binary data.

The remaining parameters appear with only hex representations of their values
(NUM PARM 3 and NUM PARM 4 in the example).

The third parameter to MODULEIN is numeric, and it is at address 885E0AE0.
The hex representation of the floating point number 6 is shown. The fourth
parameter is at address 885E07F0, which points to an area containing all the

Accessing Shared Executable Libraries from SAS Example 1: Updating a Character String Argument 187

values for the 4x5 matrix. The *i option prints the entire argument. Be careful if
you use this option with large matrices, because the log might become quite large.

� The second section of the log lists the arguments that are to be passed to the
requested routine and, in this case, changed. This section is important for
determining whether the arguments are being passed to the routine correctly. The
first line of this section contains the name of the routine and its address in
memory. It also contains the address of the location of the parameter block that
MODULEIN created.

The log contains the status of each argument as it is passed. For example, the
first parameter in the example is call-by-value (as indicated in the log). The
second parameter is the address of the matrix. The log shows the address, along
with the data to which it points.

Note that all the values in the first parameter and in the matrix are long
integers because the attribute table states that the format is IB4.

� In the third section, the log contains the argument values upon return from
changi. The call-by-value argument is unchanged, but the other argument (the
matrix) contains different values.

� The last section of the log output contains the values of the arguments as they are
returned to the MODULEIN calling routine.

Examples of Accessing Shared Executable Libraries from SAS

Example 1: Updating a Character String Argument
This example uses the tmpnam routine in the Solaris supplied shared library libc.so

installed in the /usr/lib/sparcv9 directory. The tmpnam routine generates a unique
filename that can be used safely as a temporary filename. The temporary filename is
typically placed in the /var/tmp directory.

The C prototype for this routine is:

char * tmpnam(char *s);

The attribute table for this would be:

routine tmpnam minarg=1 maxarg=1 returns=char255. module=libc;
arg 1 char output byaddr format=$cstr255;

188 Example 2: Passing Arguments by Value Chapter 7

The SAS source code would be:

x ’if [! -L ./libc] ; then ln -s /usr/lib/sparcv9/libc.so.1 ./libc ; fi’ ;
x ’setenv LD_LIBRARY_PATH .:/usr/lib/sparcv9:/usr/lib:/lib’;

data _null_;
length tempname $255 tname $255;
retain tempname tname ‘‘ ‘‘;
tname = modulec (’tmpnam’, tempname);
put tempname = ;
put tname = ;

run;

The SAS log output would be:

Output 7.4 Updating a Character String Argument

tempname=/var/tmp/aaaKraydG
tname=/var/tmp/aaaKraydG

The POSIX standard for the maximum number of characters in a pathname is
defined in /usr/include/limits.h to be 255 characters, so this example uses 254 as
the length of the generated filename (tempname) with one character reserved for the
null terminator. The $CSTR255. informat ensures that the null-terminator and all
subsequent characters are replaced by trailing blanks when control returns to the
DATA step.

Example 2: Passing Arguments by Value
This example calls the access routine that is supplied by most UNIX vendors. This

particular access routine is in the Hewlett Packard shared library libc.sl installed
under the /usr/lib/pa20_64 directory.

The C prototype for this routine is:

int access(char *path, int amode);

The access routine checks the file that is referenced by the accessibility path
according to the bit pattern contained in amode. You can use the following integer
values for amode that correspond to the type of permission for which you are testing:

4 Read access
2 Write access
1 Execute (search) access
0 Check existence of file

A return value of 0 indicates a successful completion and the requested access is
permitted. A return value of –1 indicates a failure and the requested access is not
permitted.

Because the amode argument is a pass by value, this example includes the
BYVALUE specification for the arg 2 in the attribute table. If both arguments were
pass by value, one could use the CALLSEQ=BYVALUE attribute in the ROUTINE
statement and it would not be necessary to specify the BYVALUE option in arg 2.

The attribute table would be:

routine access minarg=2 maxarg=2 returns=short module=libc;
arg 1 char input byaddr format=$cstr200.;

Accessing Shared Executable Libraries from SAS Example 3: Using PEEKCLONG to Access a Returned Pointer 189

arg 2 num input byvalue format=ib4.;

The SAS source code would be:

x ’if [! -L ./libc] ; then ln -s /usr/lib/pa20_64/libc.so ; fi’ ;
x ’setenv LD_LIBRARY_PATH .:/usr/lib/pa20_64:/usr/lib:/lib’ ;

data _null_;
length path $200.;
path=’/dev’;

/* A non-root user is testing for write permission in the /dev directory */
rc = modulen("*ie",’access’,path,2);
put rc = ;

run;

The SAS log output would be:

Output 7.5 Log Output If Request Access Is Permitted

rc=-1

If you changed the SAS source code to check for a write permission in the user’s
$HOME directory, the output would be different.

data _null_;
length homedir $200.;
homedir=sysget(’HOME’);

/* A user is testing for write permissions in their $HOME directory */
rc = modulen(‘‘*ie’’,’access’,homedir,2);
put rc = ;

run;

In this case, the SAS log output would be:

Output 7.6 Log Output for Successful Completion (Access Permitted)

rc=0

Example 3: Using PEEKCLONG to Access a Returned Pointer

This example uses the strcat routine which is part of the Red Hat Linux shared
library libc-2.2.3.so. This library is typically installed under the /lib/i686 directory.
This routine concatenates two strings together and returns a pointer to the newly
concatenated string.

The C prototype for this routine is:

char *strcat(char, *dest, const char *src);

The proper SASCBTBL attribute table would be:

routine strcat minarg=2 maxarg=2 returns=ulong module=libc;
arg 1 char input format=$cstr200.;

190 Example 4: Using Structures Chapter 7

arg 2 char input format=$cstr200.;

The SAS code would be:

x ’if [! -L ./libc]; then ln -s /lib/i686/libc-2.2.3.so ./libc ; fi’ ;
x ’setenv LD_LIBRARY_PATH .:/lib/i686:/usr/lib:/lib’;

data _null_;
length string1 string2 newstring $200;
string1 = ’This is string one and’;
string2 = ’this is string two.’ ;
ptraddr = modulen(’strcat’,string1,string2);
newstring = peekclong(ptraddr,200);
put newstring = ;

run;

The SAS log output would be:

Output 7.7 Log Output for Using PEEKCLONG to Access a Returned Pointer

newstring=This is string one and this is string two.

The PEEKCLONG function was used here because the Red Hat Linux shared library
/lib/i686/libc-2.2.3.so is a 32-bit library. The following output demonstrates this:

$pwd
/lib/i686

$file ./libc-2.2.3.so
libc-2.2.3.so: ELF 32-bit LSB shared object, Intel 80386, version 1, not stripped

For more information about the PEEKLONG functions, see “PEEKLONG Function”
on page 254.

Example 4: Using Structures
“Grouping SAS Variables as Structure Arguments” on page 179 describes how to use

the FDSTART attribute to pass several arguments as one structure argument to a
shared library routine. This is another example of using structures with another
routine in an external shared library.

The statvfs routine that is available under most UNIX operating systems retrieves
file system information. This example uses the statvfs routine that is in the Solaris
libc.so.1 shared library and typically installed under the /usr/lib/sparcv9 directory.

The C prototype for this routine is:

int statvfs(const char *path, struct statvfs *buf);

The statvfs routine will return a 0 if the routine completes successfully and –1 if
there is a failure.

The statvfs structure is defined with the following members:

unsigned long f_bsize; /* preferred file system block size */
unsigned long f_frsize; /* fundamental file system block */
unsigned long f_blocks; /* total number of lbocks on file system in units */
unsigned long f_bfree; /* total number of free blocks */
unsigned long f_bavail; /* number of free blocks available to non-superuser */

Accessing Shared Executable Libraries from SAS Example 4: Using Structures 191

unsigned long f_files; /* total number of file nodes (inodes) */
unsigned long f_ffree; /* total number of free file nodes */
unsigned long f_favail; /* number of inodes available to non-superuser */
unsigned long f_fsid; /* file system id (dev for now) */
char f_basetype[16]; /* target fs type name, null-terminated */
unsigned long f_flag; /* bit mask of flags */
unsigned long g f_namemax; /* maximum filename length */
char f_fstr[32]; /* file system specific string */

The SASCBTBL attribute table would be:

routine statvfs
minarg=14
maxarg=14
returns=short
module=libc;

arg 1 char input byaddr format=$char256.;
arg 2 num output byaddr fdstart format=pib8.;
arg 3 num output format=pib8.;
arg 4 num output format=pib8.;
arg 5 num output format=pib8.;
arg 6 num output format=pib8.;
arg 7 num output format=pib8.;
arg 8 num output format=pib8.;
arg 9 num output format=pib8.;
arg 10 num output format=pib8.;
arg 11 char output format=$cstr16.;
arg 12 num output format=pib8.;
arg 13 num output format=pib8.;
arg 14 char output format=$cstr32.;

The SAS source code to call the statvfs routine from within the DATA step would be:

x ’if [! -L ./libc]; then ln -s /usr/lib/sparcv9/libc.so.1 ./libc ; fi’ ;
x ’setenv LD_LIBRARY_PATH .:/usr/lib/sparcv9:/usr/lib:/lib’;

data _null_;
length f_basetype $16. f_fstr $32.;
retain f_bsize f_frsize f_blocks f_bfree f_bavail f_files f_ffree f_favail

f_fsid f_flag f_namemax 0;
retain f_basetype f_fstr ’ ’;
rc=modulen (’statvfs’ , ’/tmp’, f_bsize, f_frsize, f_blocks, f_bfree, f_bavail,

f_files, f_ffree, f_favail, f_fsid, f_basetype, f_flag,
f_namemax, f_fstr);

put rc = ;
put f_bsize = ;
put f_frsize = ;
put f_blocks = ;
put f_bfree = ;
put f_bavail = ;
put f_files = ;
put f_ffree = ;
put f_favail = ;
put f_fsid = ;
put f_basetype = ;
put f_flag = ;

192 Example 5: Invoking a Shared Library Routine from PROC IML Chapter 7

put f_namemax = ;
/* Determining the total bytes available in the file system and then dividing the
total number of bytes by the number of bytes in a gigabyte */
gigsfree = ((f_bavail * f_bsize)/1073741824);
put ’The total amount of space available in /tmp is ’gigsfree 4.2’ Gigabytes.’;

run;

The SAS log output would be:

Output 7.8 Log Output for Using Structures

rc=0
f_bsize=8192
f_frsize=8192
f_blocks=196608
f_bfree=173020
f_bavail=173020
f_files=884732
f_ffree=877184
f_favail=877184
f_fsid=2
f_basetype=tmpfs
f_flag=4
f_namemax=255

The total amount of space available in /tmp is 1.32 Gigabytes.

Example 5: Invoking a Shared Library Routine from PROC IML
This example shows how to pass a matrix as an argument within PROC IML. The

example creates a 4x5 matrix. Each cell is set to 10x+y+3, where x is the row number
and y is the column number. For example, the cell at row 1 column 2 is set to
(10*1)+2+3, or 15.

The example invokes several routines from the theoretical TRYMOD shared library.
It uses the changd routine to add 100x+10y to each element, where x is the C row
number (0 through 3) and y is the C column number (0 through 4). The first argument
to changd specifies the extra amount to sum. The changdx routine works just like
changd, except that it expects a transposed matrix. The changi routine works like
changd except that it expects a matrix of integers. The changix routine works like
changdx except that integers are expected.

Note: A maximum of three arguments can be sent when invoking a shared library
routine from PROC IML. �

In this example, all four matrices x1, x2, y1, and y2 should become set to the same
values after their respective MODULEIN calls. Here are the attribute table entries:

routine changd module=trymod returns=long;
arg 1 input num format=rb8. byvalue;
arg 2 update num format=rb8.;
routine changdx module=trymod returns=long

transpose=yes;
arg 1 input num format=rb8. byvalue;
arg 2 update num format=rb8.;
routine changi module=trymod returns=long;
arg 1 input num format=ib4. byvalue;
arg 2 update num format=ib4.;
routine changix module=trymod returns=long

Accessing Shared Executable Libraries from SAS Example 5: Invoking a Shared Library Routine from PROC IML 193

transpose=yes;
arg 1 input num format=ib4. byvalue;
arg 2 update num format=ib4.;

Here is the PROC IML step:

proc iml;
x1 = J(4,5,0);
do i=1 to 4;

do j=1 to 5;
x1[i,j] = i*10+j+3;
end;

end;
y1= x1; x2 = x1; y2 = y1;
rc = modulein(’changd’,6,x1);
rc = modulein(’changdx’,6,x2);
rc = modulein(’changi’,6,y1);
rc = modulein(’changix’,6,y2);
print x1 x2 y1 y2;

run;

The following are the results of the PRINT statement:

Output 7.9 Invoking a Shared Library Routine from PROC IML

X1
20 31 42 53 64

130 141 152 163 174
240 251 262 273 284
350 361 372 383 394
X2
20 31 42 53 64

130 141 152 163 174
240 251 262 273 284
350 361 372 383 394
Y1
20 31 42 53 64

130 141 152 163 174
240 251 262 273 284
350 361 372 383 394
Y2
20 31 42 53 64

130 141 152 163 174
240 251 262 273 284
350 361 372 383 394

194

195

P A R T2

Application Considerations

Chapter 8.Data Representation 197

196

197

C H A P T E R

8
Data Representation

Numeric Variable Length and Precision in UNIX Environments 197

Missing Values in UNIX Environments 198
Reading and Writing Binary Data in UNIX Environments 198

Numeric Variable Length and Precision in UNIX Environments
The default length of numeric variables in SAS data sets is 8 bytes. (You can control

the length of SAS numeric variables with the LENGTH statement in the DATA step.)
The issue of numeric precision affects the return values of almost all SAS math

functions and many numeric values returned from SAS procedures. Numeric values in
SAS for UNIX are represented as IEEE double-precision floating-point numbers. The
decimal precision of a full 8-byte number is effectively 15 decimal digits.

The following table specifies the significant digits and largest integer that can be
stored exactly in SAS numeric variables.

Table 8.1 Significant Digits and Largest Integer by Length for SAS Variables
under UNIX

Length in Bytes Significant Digits

Retained

Largest Integer

Represented Exactly

3 3 8,192

4 6 2,097,152

5 8 536,870,912

6 11 137,438,953,472

7 13 35,184,372,088,832

8 15 9,007,199,254,740,992

When you are specifying variable lengths, keep in mind that variable length affects
both the amount of memory used and the time required for I/O and arithmetic
operations. See SAS Language Reference: Dictionary for more information about
specifying variable lengths.

If you know that the value of a numeric variable will be between 0 and 100, you can
use a length of 3 to store the number and thus save space in your data set. For example:

data mydata;
length num 3;
...more SAS statements...

run;

198 Missing Values in UNIX Environments Chapter 8

Numeric dummy variables (those whose only purpose is to hold 0 or 1) can be stored in
a variable whose length is 3 bytes.

CAUTION:
Use 3 bytes only for those variables with small values, preferably integers. If the value of
a variable becomes large or has many significant digits, you might lose precision in
arithmetic calculations when the length of a variable is less than 8 bytes. �

For more information about specifying variable lengths and optimizing system
performance, refer to SAS Language Reference: Concepts.

Missing Values in UNIX Environments
In SAS on UNIX, missing values are represented by IEEE Not-a-Number values. An

IEEE Not-a-Number value is an IEEE floating-point bit pattern that represents
something other than a valid numeric value. These numbers are not computationally
derivable.

Reading and Writing Binary Data in UNIX Environments

Different computers store numeric binary data in different forms. For more
information about compatible machine types, see “Accessing SAS Files across
Compatible Machine Types in UNIX Environments” on page 108. If you try to move
binary data in flat files across systems that are incompatible, problems will occur. A
safer way to move data is by using SAS data sets.

SAS provides several sets of informats and formats for handling binary data. Some
of these informats and formats are host dependent. For example, the IBw.d, PDw.d,
PIBw.d, and RBw.d. informats and formats read and write data in native mode. That
is, they use the byte-ordering system that is standard for the machine. If you create a
file using the IBw.d format on a 64-bit HP-UX host and then use the IBw.d informat to
read the same file on a 32-bit Linux host, you will get unpredictable results.

For more information about all of the informats and formats, refer to SAS Language
Reference: Dictionary.

199

P A R T3

Host-Specific Features of the SAS Language

Chapter 9.Commands under UNIX 201

Chapter 10.Data Set Options under UNIX 223

Chapter 11.Formats under UNIX 231

Chapter 12.Functions and CALL Routines under UNIX 237

Chapter 13.Informats under UNIX 257

Chapter 14.Macro Facility under UNIX 263

Chapter 15.Procedures under UNIX 269

Chapter 16.Statements under UNIX 289

Chapter 17.System Options under UNIX 311

200

201

C H A P T E R

9
Commands under UNIX

SAS Commands under UNIX 202

AUTOSCROLL Command 202
CAPS Command 203

COLOR Command 203

DLGABOUT Command 204
DLGCDIR Command 204

DLGENDR Command 204

DLGFIND Command 205
DLGFONT Command 205

DLGOPEN Command 206
DLGPREF Command 207

DLGREPLACE Command 207

DLGSAVE Command 208
DLGSCRDUMP Command 208

DLGSMAIL Command 209

FILE Command 209
FILL Command 211

FONTLIST Command 211
GSUBMIT Command 212

HOME Command 212

HOSTEDIT Command 213
INCLUDE Command 213

SETAUTOSAVE Command 215

SETDMSFONT Command 215
TOOLCLOSE Command 216

TOOLLARGE Command 217
TOOLLOAD Command 217

TOOLTIPS Command 218

WBROWSE Command 218
WCOPY Command 219

WCUT Command 219

WDEF Command 220
WPASTE Command 220

WUNDO Command 221
X Command 221

XSYNC Command 221

202 SAS Commands under UNIX Chapter 9

SAS Commands under UNIX
This section describes commands that you can enter on the command line in the

windowing environment of SAS. The commands that are described here have behavior
or syntax that is specific to UNIX environments. Each command description includes a
brief “UNIX specifics” section that explains which aspect of the command is specific to
UNIX. If the information under the “UNIX specifics” says “all,” then the command is
described only in this document. Otherwise, the command is described in both this
documentation and in SAS Language Reference: Dictionary.

The following commands are not supported in UNIX environments:

CASCADE

DCALC

ICON

PCLEAR

RESIZE

SCROLLBAR

SMARK

TILE

WGROW

WMOVE

WSHRINK

ZOOM

AUTOSCROLL Command

Controls the display of lines in the Log and Output windows

UNIX specifics: valid arguments and default values

Syntax
AUTOSCROLL <n>

n specifies the number of lines that the window should scroll when it receives a line
of data that cannot fit.

Details
The AUTOSCROLL command controls the scrolling of lines as they are written to the
Log and Output windows. The default value for AUTOSCROLL in the Log and Output
windows is 1. Processing is slower when AUTOSCROLL displays one line at a time. To
expedite processing, you can specify a greater AUTOSCROLL value in your
autoexec.sas file. Specifying a value of 0 optimizes processing and results in the fastest
scrolling (similar to jump scrolling in xterm windows).

Commands under UNIX COLOR Command 203

CAPS Command

Causes characters to be translated to uppercase when you move the cursor off of the line or press
ENTER

UNIX specifics: all

Syntax
CAPS

COLOR Command

Changes the color and highlighting of selected portions of a window

UNIX specifics: valid field types and attributes

Syntax
COLOR field-type color|NEXT <highlight>

Details
Under UNIX, you cannot use the COLOR command to change the colors in these field
types: BORDER, MENU, MENUBORDER, SCROLLBAR, or TITLE. Also, the H
(highlight) and B (blink) attributes are not supported. For more information about the
COLOR command, refer to the online help for the Program Editor window.

See Also

� Online help for the Program Editor window
� “Syntax of the COLOR Command” on page 85

204 DLGABOUT Command Chapter 9

DLGABOUT Command
Displays the About SAS dialog box

UNIX specifics: all

Syntax
DLGABOUT

Details
The About SAS dialog box displays information such as the version of SAS that you are
running, your site number, the operating system, the version of Motif that you are
using, and the color information from your terminal.

To access this dialog box from the pull-down menus, select

Help About SAS System

DLGCDIR Command
Invokes the Change Working Directory dialog box

UNIX specifics: all

Syntax
DLGCDIR

Details
The Change Working Directory dialog box enables you to select a new working
directory. To access this dialog box from the pull-down menus, select

Tools Options Change Directory

DLGENDR Command
Displays the Exit dialog box

UNIX specifics: all

Syntax
DLGENDR

Commands under UNIX DLGFONT Command 205

Details
The Exit dialog box prompts you to confirm that you want to exit SAS. If you choose
OK , the SAS session ends. If you have set the SAS.confirmSASExit resource to False,
this command becomes equivalent to the BYE command. To access this dialog box from
the pull-down menus, select

File Exit

See Also

� “Miscellaneous Resources in UNIX Environments” on page 96

DLGFIND Command

Invokes the Find dialog box

UNIX specifics: all

Syntax
DLGFIND

Details
The Find dialog box enables you to search for text strings. To access this dialog box
from the pull-down menus, select

Edit Find

See Also

� “DLGREPLACE Command” on page 207

DLGFONT Command

Invokes the Font dialog box

UNIX specifics: all

Syntax
DLGFONT

206 DLGOPEN Command Chapter 9

Details
The Font dialog box enables you to dynamically change the SAS windowing
environment font. To access this dialog box from the pull-down menus, select

Tools Options Fonts

See Also

� “Customizing Fonts in UNIX Environments” on page 80

� “SETDMSFONT Command” on page 215

DLGOPEN Command

Invokes the Open or Import Image dialog box

UNIX specifics: all

Syntax
DLGOPEN <FILTERS=’filters’ <IMPORT> <SUBMIT|NOSUBMIT> <VERIFY>>

FILTERS=’filters’
specifies one or more file filters to use as search criteria when displaying files. For
example

DLGOPEN FILTERS="*.sas *.txt"

displays all files in the current directory that have a .sas extension and adds *.txt
to the File type box in the dialog box. You can specify multiple filters; they all
appear in the box. If you do not specify any filters, the dialog box displays a default
list. See the description of the SAS.pattern resource in “Miscellaneous Resources in
UNIX Environments” on page 96 for information about specifying a default file
pattern.

IMPORT
invokes the Import Image dialog box, which enables you to import graphic files to
SAS/GRAPH applications.

SUBMIT|NOSUBMIT
specifies whether the SUBMIT command is pushed after the file is opened.

VERIFY
checks whether the DLGOPEN command is appropriate for the active window.

Details
The Open and Import Image dialog boxes enable you to select a file to read into the
active window. If the active window is a SAS/GRAPH window, then the Import Image
dialog box is displayed; otherwise, the Open dialog box is displayed. To access these
dialog boxes from the pull-down menus, select

File Open

Commands under UNIX DLGREPLACE Command 207

or

File Import Image

See Also

� Information about image extensions in online documentation for SAS/GRAPH

DLGPREF Command

Invokes the Preferences dialog box

UNIX specifics: all

Syntax
DLGPREF

Details
The Preferences dialog box enables you to dynamically change certain resource settings.
To access this dialog box from the pull-down menus, select

Tools Options Preferences

See Also

� “Modifying X Resources through the Preferences Dialog Box” on page 57

DLGREPLACE Command

Invokes the Change dialog box

UNIX specifics: all

Syntax
DLGREPLACE

Details
The Change dialog box enables you to search for and replace text strings. To access this
dialog box from the pull-down menus, select

Edit Replace

208 DLGSAVE Command Chapter 9

See Also

� “DLGFIND Command” on page 205

DLGSAVE Command

Invokes the Save As or Export as Image dialog box

UNIX specifics: all

Syntax
DLGSAVE <FILTERS=’filters’ <EXPORT> <VERIFY>>

FILTERS=’filters’
specifies one or more file filters to use as search criteria when displaying files. For
example, the following command displays all files in the current directory that have a
.sas extension and adds *.txt to the File type box in the dialog box:

DLGSAVE FILTERS="*.sas *.txt"

You can specify multiple filters; they all appear in the combo box. If you do not
specify any filters, the dialog box displays a default list.

EXPORT
invokes the Export as Image dialog box, enabling you to export graphic files in your
SAS session.

VERIFY
checks whether the DLGSAVE command is appropriate for the active window.

Details
To access this dialog box from the pull-down menus, select

File Save as

or

File Export as Image

See Also

� Information about image extensions in online documentation for SAS/GRAPH

DLGSCRDUMP Command

Saves the active GRAPH window as an image file using the filename and file type that you specify

Commands under UNIX FILE Command 209

UNIX specifics: all

Syntax
DLGSCRDUMP <’filename.ext’ ’FORMAT=file-type’>

Details
DLGSCRDUMP saves the active GRAPH window as an image file by using the filename
and file type that you specify. If you do not specify arguments, DLGSCRDUMP opens
the Export dialog box and enables you to choose a filename and file type. You can save
screen captures in any image format supported by SAS/GRAPH with image extensions.
If your site has not licensed SAS/GRAPH with image extensions, then screen captures
can be saved only as XPM files.

See Also

� Information about image extensions in online documentation for SAS/GRAPH

DLGSMAIL Command

Invokes the Send Mail dialog box

UNIX specifics: all

Syntax
DLGSMAIL

Details
The Send Mail dialog box lets you send electronic mail while working in SAS. To access
this dialog box from the pull-down menus, select

File Send mail

See Also

� “Sending Electronic Mail Using the FILENAME Statement (EMAIL)” on page 143
and “Sending Mail from within Your SAS Session in UNIX Environments” on page
47

� “EMAILSYS System Option” on page 326

FILE Command

Writes the contents of the current window to an external file

210 FILE Command Chapter 9

UNIX specifics: valid values for encoding-value and host-options

Syntax
FILE <file-specification> <ENCODING=’encoding-value’><portable-options>

<host-options>

file-specification
can be any of the following:

� a single filename. SAS writes the file in the current directory. If you enclose the
filename in quotation marks, SAS uses the filename exactly as you specify it. If
you do not enclose the filename in quotation marks and if you do not specify a
filename extension, SAS uses .sas, .log, or .lst, depending on whether you issue
the command from the Program Editor, Log, or Output window.

� an entire pathname. SAS does not assume any filename extensions, even if you
do not enclose the pathname in quotation marks.

� a fileref.

ENCODING=’encoding-value’
specifies the encoding to use when writing to the output file. The value for
ENCODING= indicates that the output file has a different encoding from the current
session encoding.

When you write data to the output file, SAS transcodes the data from the session
encoding to the specified encoding.

For valid encoding values, see “Encoding Values in SAS Language Elements” in
SAS National Language Support (NLS): User’s Guide.

portable-options
are options for the FILE command that are valid in all operating environments. See
the SAS Language Reference: Dictionary for information about these options.

host-options
are specific to UNIX environments. These options can be any of the following:

BLKSIZE=
BLK=

specifies the number of bytes that are physically written in one I/O operation. The
default is 8K. The maximum is 1G-1.

LRECL=
specifies the logical record length. Its meaning depends on the record format in
effect (RECFM). The default is 256. The maximum length is 1G.

� If RECFM=F, then the value for the LRECL= option determines the length of
each output record. The output record is truncated or padded with blanks to
fit the specified size.

� If RECFM=N, then the value for the LRECL= option must be at least 256.

� If RECFM=V, then the value for the LRECL= option determines the
maximum record length. Records that are longer than the specified length
are truncated.

NEW|OLD
indicates that a new file is to be opened for output. If the file already exists, then
it is deleted and re-created. This is the default action.

Commands under UNIX FONTLIST Command 211

RECFM=
specifies the record format. Values for the RECFM= option are

D default format (same as variable).

F fixed format. That is, each record has the same length. Do not
use RECFM=F for external files that contain carriage-control
characters.

N binary format. The file consists of a stream of bytes with no
record boundaries.

P print format. SAS writes carriage-control characters.

V variable format. Each record ends with a newline character.

S370V variable S370 record format (V).

S370VB variable block S370 record format (VB).

S370VBS variable block with spanned records S370 record format (VBS).

UNBUF
tells SAS not to perform buffered writes to the file on any subsequent FILE
statement. This option applies especially when you are writing to a data collection
device.

Details
If you do not enter a file specification, then SAS uses the filename from the previous
FILE or INCLUDE command. In this case, SAS first asks if you want to overwrite the
file. If you have not issued any FILE or INCLUDE commands, then you receive an
error message that indicates that no default file exists.

FILL Command
Specifies the fill character and fills the current field

UNIX specifics: default character

Syntax
FILL <fill-character>

Details
Under UNIX, the default fill character is an underscore (_).

FONTLIST Command

Lists all of the fonts that are available in your operating environment

212 GSUBMIT Command Chapter 9

UNIX specifics: all

Syntax
FONTLIST

Details
The FONTLIST command opens windows that list all of the software fonts that are
available in your operating environment. This feature is useful if you want to choose a
font to use in a SAS program, typically with a FONT= or FTEXT= option.

Issuing the FONTLIST command from the SAS command line opens the Select Font
window, which contains two buttons, Copy and System . Selecting System opens the
Fonts window, from which you can select and preview all available system fonts. After
you select the desired font and font attributes, select OK . The Select font window
reopens with your selected font name displayed. Selecting Copy places the font name
in the copy buffer so that you can paste the selected font name into your SAS program.

GSUBMIT Command

Submits the specified SAS statements or the SAS code stored in a paste buffer

UNIX specifics: valid buffer names

Syntax
GSUBMIT BUF=buffername|“statement1;statementN...;”

buffername
can be XPRIMARY, XSCNDARY, XCLIPBRD, XTERM, or XCUTn where 0<=n<=7.
See “Customizing Cut-and-Paste in UNIX Environments” on page 91 for more
information.

statementN
can be any SAS statement.

HOME Command

Toggles cursor position between current position and command line

UNIX specifics: keyboard equivalent

Syntax
HOME

Commands under UNIX INCLUDE Command 213

Details
Keyboards vary among the different UNIX operating environments. To determine
which key is assigned to the HOME command, look in the KEYS window. To open the
KEYS window, issue the KEYS command.

See Also

� Online help for the Program Editor window
� “Customizing Key Definitions in UNIX Environments” on page 73

HOSTEDIT Command
Invokes the host editor on the contents of the current window

UNIX specifics: all

Syntax
HOSTEDIT

Details
When you issue the HOSTEDIT command from a SAS text editor window, the contents
of the buffer for that window are written to a temporary file in the /tmp directory. A
command invoking the host editor that was specified in the EDITCMD system option is
passed to the SAS Session Manager. The session manager issues the command to the
operating environment to invoke the editor for the temporary file.

The X display used with the HOSTEDIT command is the same one used with your
SAS session.

HED is an alias for the HOSTEDIT command.

See Also

� “Configuring SAS for Host Editor Support in UNIX Environments” on page 49
� “EDITCMD System Option” on page 325

INCLUDE Command
Copies the entire contents of an external file into the current window

UNIX specifics: valid values for encoding-value and portable-options

Syntax
INCLUDE <file-specification> <ENCODING=’encoding-value’> <portable-options>

<host-options>

214 INCLUDE Command Chapter 9

file-specification
can be any of the following:

� a single filename. SAS searches for the file in the current directory. If you
enclose the filename in quotation marks, then SAS uses the filename exactly as
you specify it. If you do not enclose the filename in quotation marks and if you
do not specify a filename extension, then SAS searches for file-specification.sas.

� an entire pathname. SAS does not assume any filename extensions, even if you
do not enclose the pathname in quotation marks.

� a fileref.

ENCODING=’encoding-value’
specifies the encoding to use when reading from the external file. The value for
ENCODING= indicates that the external file has a different encoding from the
current session encoding.

When you read data from an external file, SAS transcodes the data from the
specified encoding to the session encoding.

For valid encoding values, see “Encoding Values in SAS Language Elements” in
SAS National Language Support (NLS): User’s Guide.

portable-options
are options for the INCLUDE command that are valid in all operating environments.
See the SAS Language Reference: Dictionary for information about these options.

host-options
are specific to UNIX environments. These options can be any of the following:

BLKSIZE=
BLK=

specifies the number of bytes that are physically read in one I/O operation. The
default is 8K. The maximum is 1G-1.

LRECL=
specifies the logical record length. Its meaning depends on the record format in
effect (RECFM). The default is 256. The maximum length is 1G.

� If RECFM=F, then the value for the LRECL= option determines the number
of bytes to be read as one record.

� If RECFM=N, then the value for the LRECL= option must be at least 256.

� If RECFM=V, then the value for the LRECL= option determines the
maximum record length. Records that are longer than the specified length
are truncated.

RECFM=
specifies the record format. Values for the RECFM= option are

D default format (same as variable).

F fixed format. That is, each record has the same length.

N binary format. The file consists of a stream of bytes with no
record boundaries.

P print format.

V variable format. Each record ends with a newline character.

Commands under UNIX SETDMSFONT Command 215

Details
If you do not enter a file specification, then SAS uses the filename from the previous
FILE or INCLUDE command. In this case, SAS first asks if you want to overwrite the
file. If you have not issued any FILE or INCLUDE commands, then you receive an
error message to indicate that no default file exists.

SETAUTOSAVE Command

Turns autosave on and off

UNIX specifics: all

Syntax
SETAUTOSAVE <ON|OFF>

Details
The SETAUTOSAVE command turns autosave on or off for the Program Editor.
However, the value set for autosave on the Preferences dialog box has precedence. To
open the Preferences dialog box, select

Tools Options Preferences

Autosave is controlled by the Backup Documents check box on the DMS tab. On this tab,
there is also a field in which you can specify the interval for these backups.

If you turn autosave on using the SETAUTOSAVE command and the Backup
Documents check box is selected, then SAS automatically saves the contents of the
Program Editor into a file named pgm.asv in your current directory at the interval
specified on the DMS tab.

If you issue this command but do not specify ON or OFF, SAS displays the current
autosave setting.

See Also

� “Modifying the DMS Settings” on page 58
� “Miscellaneous Resources in UNIX Environments” on page 96

SETDMSFONT Command

Specifies a windowing environment font for the current session

UNIX specifics: all

Syntax
SETDMSFONT “font-specification”

216 TOOLCLOSE Command Chapter 9

font-specification
specifies an XLFD (X Logical Font Description) pattern that you want SAS to use in
order to determine the windowing environment font.

Details
Most fonts in the X Window System are associated with an XLFD, which contains a
number of different fields that are delimited by a dash (-) character. The fields in the
XLFD indicate properties such as the font family name, weight, size, resolution, and
whether the font is proportional or monospaced. Refer to your X Window documentation
for more information about the XLFD and font names that are used with X.

See Also

� “DLGFONT Command” on page 205

TOOLCLOSE Command

Closes the toolbox

UNIX specifics: all

Syntax
TOOLCLOSE

Details
The TOOLCLOSE command closes the toolbox.

See Also

� “TOOLLOAD Command” on page 217

TOOLEDIT Command

Invokes the Tool Editor on the specified toolbox

UNIX specifics: all

Syntax
TOOLEDIT <library.catalog.entry>

Commands under UNIX TOOLLOAD Command 217

Details
If you do not specify an entry name, the Tool Editor edits the toolbox for the active
window.

TOOLLARGE Command
Sets the size of the buttons in the SAS ToolBox

UNIX specifics: all

Syntax
TOOLLARGE <ON|OFF>

ON
sets the size of the icons in the SAS ToolBox to 48x48.

OFF
sets the size of the icons in the SAS ToolBox to 24x24.

Details
If you do not specify ON or OFF, the TOOLLARGE command changes the size of the
SAS ToolBox. The size of the SAS ToolBox changes for your current session only; the
new size is not saved.

You can also use the pull-down menus to change the size of the SAS ToolBox through
the Preferences dialog box.

Tools Options Preferences

Select the ToolBox tab, and then select Use large tools. If you change the size of the
SAS ToolBox through the Preferences dialog box, the new size is saved, and SAS will
display the large toolbox in subsequent sessions.

TOOLLOAD Command
Loads the specified toolbox

UNIX specifics: all

Syntax
TOOLLOAD <library.catalog.entry>

Details
If you do not specify an entry name, TOOLLOAD loads the toolbox for the active window.

218 TOOLTIPS Command Chapter 9

See Also

� “TOOLCLOSE Command” on page 216

TOOLTIPS Command

Turns tool tips on and off

UNIX specifics: all

Syntax
TOOLTIPS <ON|OFF>

ON
specifies that tool tip text is displayed when you move the cursor over an icon in the
toolbox.

OFF
specifies that tool tip text is not displayed.

Details
If you do not specify ON or OFF, the TOOLTIPS command turns the tip text on or off,
depending on the current setting.

You can also use the Preferences dialog box to specify whether tip text is displayed.

Tools Options Preferences

Select the ToolBox tab, then select Use tip text.

See Also

� “Changing an Existing Tool” on page 70

WBROWSE Command

Invokes your World Wide Web (WWW) browser

UNIX specifics: all

Syntax
WBROWSE <“url”>

Commands under UNIX WCUT Command 219

Details
WBROWSE invokes the Web browser that is specified by the resource
SAS.helpBrowser. If you specify a URL, the document that the URL identifies is
automatically displayed. If you do not specify a URL, the SAS home page is displayed.

See Also

� “Miscellaneous Resources in UNIX Environments” on page 96

WCOPY Command

Copies the marked contents of the active window to your default buffer

UNIX specifics: all

Syntax
WCOPY

Details
In Base SAS windows, this command executes the STORE command.

See Also

� SAS Help and Documentation for information about the STORE command

WCUT Command

Moves the marked contents of the active window to your default buffer

UNIX specifics: all

Syntax
WCUT

Details
In Base SAS windows, this command executes the CUT command.

This command is valid only when the active window is a text editor window, such as
Program Editor or Notepad.

220 WDEF Command Chapter 9

See Also

� SAS Help and Documentation for information about the CUT and WCUT
commands

WDEF Command

Redefines the active window

UNIX specifics: behavior is controlled by the SAS.awsResizePolicy resource

Syntax
WDEF starting-row starting-col nrows ncols

Details
The WDEF command operates in the application workspace assigned to the SAS session.
The WDEF command does not operate in the AWS container window, except when the
container window needs to be enlarged so that you can view a SAS window contained in
it. AWS resize behavior is controlled by the SAS.awsResizePolicy resource.

See Also

� The description of the SAS.awsResizePolicy resource in “Miscellaneous
Resources in UNIX Environments” on page 96

� “X Window Managers” on page 31 or your window manager documentation for
information about moving and resizing windows in the X environment

WPASTE Command

Pastes the contents of your default buffer into the active window

UNIX specifics: all

Syntax
WPASTE

Details
In Base SAS windows, this command executes the PASTE command.

Commands under UNIX XSYNC Command 221

See Also

� SAS Help and Documentation for information about the PASTE and WPASTE
commands

WUNDO Command
Undoes one line of text entry

UNIX specifics: all

Syntax
WUNDO

Details
In Base SAS windows, this command executes the UNDO command. In SAS/GRAPH
windows, WUNDO is invalid.

X Command
Enables you to enter UNIX commands without ending your SAS session

UNIX specifics: all

Syntax
X UNIX-command

X ’cmd1;cmd2....<;cmd-n>’

Details
When you enter the X command, SAS starts a shell to execute the commands that you
specified. The commands that you enter are processed differently, depending on
whether you enter one command or more than one command.

See Also

� “Executing Operating System Commands from Your SAS Session” on page 13

XSYNC Command
Changes X synchronization during a SAS session

222 XSYNC Command Chapter 9

UNIX specifics: all

Syntax
XSYNC <ON|OFF>

Details
This command turns off the buffering that is normally done by the X Window System.
X synchronization is off by default. Turning it on is useful when you are debugging
applications, although it drastically reduces performance.

If you do not specify ON or OFF, XSYNC toggles the synchronization. The XSYNC
command is valid from any SAS window.

223

C H A P T E R

10
Data Set Options under UNIX

SAS Data Set Options under UNIX 223

Dictionary 223
ALTER= Data Set Option 223

BUFNO= Data Set Option 224

BUFSIZE= Data Set Option 225
FILECLOSE= Data Set Option 226

PW= Data Set Option 227

Summary of SAS Data Set Options in UNIX Environments 227

SAS Data Set Options under UNIX
This section describes SAS data set options that have behavior or syntax that is

specific to UNIX environments. Each data set option description includes a brief “UNIX
specifics” section that explains which aspect of the data set option is specific to UNIX.
Each data set option is described in both this documentation and in SAS Language
Reference: Dictionary.

Specify data set options following the data set name in SAS statements as follows:

...data-set-name(option-1=value-1 option-2=value-2...)

A few data set options are also SAS system options (for example, BUFSIZE=). If the
same option is specified both as a system option and as a data set option, SAS uses the
value given with the data set option. See “Customizing Your SAS Session Using System
Options” on page 18 and Chapter 17, “System Options under UNIX,” on page 311 for
more information about SAS system options.

See “Summary of SAS Data Set Options in UNIX Environments” on page 227 for a
table of all of the data set options available under UNIX.

Dictionary

ALTER= Data Set Option

Assigns an alter password to a SAS file and enables access to a password-protected SAS file

Default: none
Valid in: DATA step and PROC steps

224 BUFNO= Data Set Option Chapter 10

Category: Data Set Control

Engines: V9, V8, V7, V6

UNIX specifics: TAPE engines ignore the alter-password

See: ALTER= Data Set Option in SAS Language Reference: Dictionary

Syntax
ALTER=alter-password

alter-password
must be a valid SAS name. See “Rules for Words and Names in the SAS Language”
in SAS Language Reference: Concepts.

Details
The ALTER= option applies to all types of SAS files except catalogs. You can use this
option to assign an alter-password to a SAS file or to access a read-protected,
write-protected, or alter-protected SAS file.

Note: Under UNIX, TAPE engines ignore the alter-password. �

BUFNO= Data Set Option

Specifies the number of buffers to be allocated for processing a SAS data set

Default: 1

Valid in: DATA step and PROC steps

Category: Data Set Control

Engines: V9, V8, V7, V6, V9TAPE, V8TAPE, V7TAPE, V6TAPE

UNIX specifics: default value

See: BUFNO= Data Set Option in SAS Language Reference: Dictionary

Syntax
BUFNO=n | nK | hexX | MIN | MAX

n | nK
specifies the number of buffers in multiples of 1 (bytes); 1,024 (kilobytes). For
example, a value of 8 specifies 8 buffers, and a value of 1k specifies 1024 buffers.

hexX
specifies the number of buffers as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by hex digits (0–9, A–F), and then followed
by an X. For example the value 2dx specifies 45 buffers.

Data Set Options under UNIX BUFSIZE= Data Set Option 225

MIN
sets the minimum number of buffers to 0, which causes SAS to use the minimum
optimal value for the operating environment.

MAX
sets the number of buffers to the maximum possible number in your operating
environment, up to the largest four-byte signed integer, which is 231-1, or
approximately 2 billion.

Details
The buffer number is not a permanent attribute of the data set; it is valid only for the
current SAS session or job. BUFNO= applies to SAS data sets that are opened for
input, output, or update.

See Also

� “BUFSIZE= Data Set Option” on page 225

� “BUFNO System Option” on page 318

BUFSIZE= Data Set Option

Specifies the permanent buffer page size for an output SAS data set

Default: 0

Valid in: DATA step and PROC steps

Category: Data Set Control

Engines: V9, V8, V7, V9TAPE, V8TAPE, V7TAPE, V6TAPE

UNIX specifics: valid range

See: BUFSIZE= Data Set Option in
SAS Language Reference: Dictionary

Syntax
BUFSIZE=n | nK | nM | nG | hexX | MAX

n | nK | nM | nG
specifies the buffer size in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576
(megabytes); or 1,073,741,824 (gigabytes). For example, a value of 8 specifies 8 bytes,
and a value of 3m specifies 3,145,728 bytes.

The buffer size can range from 1K to 2G-1. For values greater than 1G, use the
nM option.

hexX
specifies the page size as a hexadecimal value. You must specify the value beginning
with a number (0–9), followed by hex digits (0–9, A–F), and then followed by an X.
For example, 2dx sets the page size to 45 bytes.

226 FILECLOSE= Data Set Option Chapter 10

MAX
sets the buffer page size to the maximum possible number in your operating
environment, up to the largest four-byte, signed integer, which is 231-1, or
approximately 2 billion bytes.

Details
The BUFSIZE= data set option specifies the buffer size for data sets you are creating.
This option is valid only for output data sets.

If you use the default value (0) when you create a SAS data set, the engine calculates
a buffer size to optimize CPU and I/O use. This size is the smallest multiple of 8K that
can hold 80 observations but is not larger than 64K.

If you specify a nonzero value when you create a SAS data set, the engine uses that
value. If that value cannot hold at least one observation or is not a valid buffer size, the
engine rounds the value up to a multiple of 1K.

See Also

� “BUFSIZE System Option” on page 319

FILECLOSE= Data Set Option

Specifies how a tape is positioned when a SAS file on the tape is closed

Default: REREAD
Valid in: DATA step and PROC steps
Category: Miscellaneous
Engines: V9TAPE, V8TAPE, V7TAPE, V6TAPE
UNIX specifics: list of valid values
See: FILECLOSE= Data Set Option in
SAS Language Reference: Dictionary

Syntax
FILECLOSE= FREE | LEAVE | REREAD | REWIND

FREE
rewinds and dismounts the tape. If the device cannot dismount the tape, it will only
be rewound.

LEAVE
positions the tape at the end of the file that was just processed. Use
FILECLOSE=LEAVE if you are not repeatedly accessing the same files in a SAS
program but you are accessing one or more subsequent SAS files on the same tape.

REREAD
positions the tape volume at the beginning of the file that was just processed. Use
FILECLOSE=REREAD if you are accessing the same SAS data set on tape several
times in a SAS program.

Data Set Options under UNIX Summary of SAS Data Set Options in UNIX Environments 227

REWIND
rewinds the tape volume to the beginning. Use FILECLOSE=REWIND if you are
accessing one or more previous SAS files on the same tape but you are not repeatedly
accessing the same files in a SAS program.

PW= Data Set Option

Assigns a read, write, or alter password to a SAS file and enables access to password-protected
SAS file

Default: none

Valid in: DATA step and PROC steps

Category: Data Set Control

Engines: V9, V8, V7, V6, V9TAPE, V8TAPE, V7TAPE, V6TAPE

UNIX specifics: TAPE engines ignore the alter-password

See: PW= Data Set Option in
SAS Language Reference: Dictionary

Syntax
PW=password

password
must be a valid SAS name. See “Rules for Words and Names in the SAS Language”
in SAS Language Reference: Concepts.

Details
The PW= option applies to all types of SAS files except catalogs. You can use this option
to assign a password to a SAS file or to access a password-protected SAS file.

Note: Under UNIX, TAPE engines ignore the alter-password. �

Summary of SAS Data Set Options in UNIX Environments
SAS data set options are listed in the following table. The table gives the name of

each option; a brief description; whether the option can be used for a data set opened
for input, output, or update; and a list of engines with which the option is valid. The
See column tells you where to look for more detailed information about an option. Use
the following legend to see where to find more information about an option.

COMP See the description of the data set option in this section.

LR See SAS Language Reference: Dictionary.

NLS See SAS National Language Support (NLS): User’s Guide.

228 Summary of SAS Data Set Options in UNIX Environments Chapter 10

Table 10.1 Summary of SAS Data Set Options

Option Name Description When Used Engines See

ALTER= assigns an alter password to a SAS file output,
update

V9, V8, V7,
V6

LR,
COMP

BUFNO= specifies the number of buffers to be allocated
for processing a SAS data set

input,
output,
update

V9, V8, V7,
V6,
V9TAPE,
V8TAPE,
V7TAPE,
V6TAPE

LR,
COMP

BUFSIZE= specifies the permanent buffer page size for an
output SAS data set

output V9, V8, V7,
V9TAPE,
V8TAPE,
V7TAPE,
V6TAPE

LR,
COMP

CNTLLEV= specifies the level of shared access to SAS
data sets

input,
update

V9, V8, V7 LR

COMPRESS= compresses observations in an output SAS
data set.

output V9, V8, V7,
V6,
V9TAPE,
V8TAPE,
V7TAPE

LR

DLDMGACTION= specifies which action to take when a SAS
catalog in a SAS data library is detected as
damaged.

input,
output,
update

V9, V8, V7 LR

DROP= excludes variables from processing or from
output SAS data sets.

input,
output,
update

all LR

ENCODING= Specifies the character-set encoding to use for
processing a particular input or output SAS
data set

input,
output

V9, V8, V7,
V9TAPE,
V8TAPE,
V7TAPE

NLS

ENCRYPT= encrypts SAS data files output all LR

FILECLOSE= specifies how a tape is positioned when a SAS
file on the tape is closed

input,
output

V9TAPE,
V8TAPE,
V7TAPE,
V6TAPE

LR,
COMP

FIRSTOBS= causes processing to begin at a specified
observation

input,
update

all LR

GENMAX= requests generations for a data set and
specifies the maximum number of versions

output,
update

V9, V8, V7 LR

GENNUM= references a specific generation of a data set input,
output,
update

V9, V8, V7 LR

IDXNAME= directs SAS to use a specific index to satisfy
the conditions of a WHERE expression

input,
update

V9, V8, V7,
V6

LR

Data Set Options under UNIX Summary of SAS Data Set Options in UNIX Environments 229

Option Name Description When Used Engines See

IDXWHERE= overrides the SAS decision whether to use an
index to satisfy the conditions of a WHERE
expression

input,
update

V9, V8, V7,
V6

LR

IN= creates a variable that indicates whether the
data set contributed data to the current
observation

input,
update

all LR

INDEX= defines indexes when creating a data set output V9, V8, V7,
V6,
V9TAPE,
V8TAPE,
V7TAPE

LR

KEEP= specifies variables for processing or writing to
output SAS data sets

input,
output,
update

all LR

LABEL= specifies a label for the data set input,
output,
update

all LR

OBS= specifies the last observation of the data set to
process

input,
update

all LR

OBSBUF= determines the size of the view buffer for
processing a DATA step view

input V9, V8, V7 LR

OUTREP= specifies the data representation for the
output SAS data set

output V9, V8, V7,
V9TAPE,
V8TAPE,
V7TAPE

LR

POINTOBS= controls whether a compressed data set may
be processed with random access (by
observation number) rather than sequential
access only

output V9, V8, V7 LR

PW= assigns a read, write, and alter password to a
SAS file

input,
output,
update

V9, V8, V7,
V6,
V9TAPE,
V8TAPE,
V7TAPE,
V6TAPE

LR,
COMP

PWREQ= controls the pop up of a requestor window for
a data set password

input,
output,
update

V9, V8, V7,
V6
V9TAPE,
V8TAPE,
V7TAPE,
V6TAPE

LR

READ= assigns a read password to a SAS file input,
output,
update

V9, V8, V7,
V6,
V9TAPE,
V8TAPE,
V7TAPE,
V6TAPE

LR

230 Summary of SAS Data Set Options in UNIX Environments Chapter 10

Option Name Description When Used Engines See

RENAME= changes the name of a variable input,
output,
update

all LR

REPEMPTY= controls replacement of like-named temporary
or permanent SAS data sets when the new
one is empty

output V9, V8, V7 LR

REPLACE= controls replacement of like-named temporary
or permanent SAS data sets

output all LR

REUSE= specifies reuse of space when observations are
added to a compressed data set

output V9, V8, V7,
V6

LR

SORTEDBY= specifies how the data set is currently sorted input,
output,
update

V9, V8, V7,
V6,
V9TAPE,
V8TAPE,
V7TAPE,
V6TAPE

LR

SORTSEQ= specifies the collating sequence to be used by
the SORT procedure

input,
output,
update

V9, V8, V7 NLS

SPILL= specifies whether to create a spill file for
non-sequential processing of a DATA step view

output V9, V8, V7 LR

TOBSNO=1 specifies the number of observations to be
transmitted in each multi-observation
exchange with a SAS server

input,
output,
update

V9, V8, V7 LR

TYPE= specifies the data set type for data that is
used by some SAS/STAT procedures

input,
output,
update

all LR

WHERE= selects observations that meet the specified
condition

input,
output,
update

all LR

WHEREUP= specifies whether to evaluate added
observations and modified observations
against a WHERE clause

output,
update

V9, V8, V7,
V6

LR

WRITE= assigns a write password to a SAS file output,
update

V9, V8, V7,
V6
V9TAPE,
V8TAPE,
V7TAPE,
V6TAPE

LR

1 The TOBSNO= option is valid only for data sets that are accessed through a SAS server via the REMOTE engine.

231

C H A P T E R

11
Formats under UNIX

SAS Formats under UNIX 231

Dictionary 231
HEXw. Format 231

$HEXw. Format 232

IBw.d Format 232
PDw.d Format 233

PIBw.d Format 233

RBw.d Format 234
ZDw.d Format 234

SAS Formats under UNIX
This section describes SAS formats that have behavior or syntax that is specific to

UNIX environments. Each format description includes a brief “UNIX specifics” section
that explains which aspect of the data set option is specific to UNIX. Each format is
described in both this documentation and in SAS Language Reference: Dictionary.

Dictionary

HEXw. Format
Converts real binary (floating-point) numbers to hexadecimal representation

Category: Numeric
Width range: 1 to 16
Default width: 8
Alignment: left
UNIX specifics: floating-point representation
See: HEXw. format in SAS Language Reference: Dictionary

Details
The HEXw. format converts a real (floating-point) binary number to its hexadecimal
representation. When you specify a width value of 1 through 15, the real binary number

232 $HEXw. Format Chapter 11

is truncated to a fixed-point integer before being converted to hex. When you specify 16
for the width, SAS writes the floating-point value of the number but does not truncate it.

Note: UNIX systems vary widely in their floating-point representation. See “Reading
and Writing Binary Data in UNIX Environments” on page 198 for more information. �

$HEXw. Format

Converts character values to hexadecimal representation

Category: Character

Width range: 1 to 32767

Default width: 4

Alignment: left

UNIX specifics: produces ASCII codes

See: $HEXw. format in SAS Language Reference: Dictionary

Details
Under UNIX, the $HEXw. format produces hexadecimal representations of ASCII codes
for characters, with each byte requiring two columns. Therefore, you need twice as
many columns to output a value with the $HEXw. format.

IBw.d Format

Writes integer binary values

Category: Numeric

Width range: 1 to 8

Default width: 4

Decimal Range: 0–10

Alignment: left

UNIX specifics: byte order

See: IBw.d format in SAS Language Reference: Dictionary

Details
The IBw.d format writes integer binary (fixed-point) values. Integers are stored in
integer-binary, or fixed-point, form. For example, the number 2 is stored as 00000002.
If the format includes a d value, the data value is multiplied by 10d.

For more details, see “Reading and Writing Binary Data in UNIX Environments” on
page 198.

Formats under UNIX PIBw.d Format 233

PDw.d Format

Writes packed decimal data

Category: Numeric
Width range: 1 to 16
Default width: 1
Decimal Range: 0–31
Alignment: left
UNIX specifics: data representation
See: PDw.d format in SAS Language Reference: Dictionary

Details
The PDw.d format writes values in packed decimal format. In packed decimal data,
each byte contains two digits. The w value represents the number of bytes, not the
number of digits. The value’s sign is the first byte. Because the entire first byte is used
for the sign, you should specify at least a width of 2.

For more details, see “Reading and Writing Binary Data in UNIX Environments” on
page 198.

PIBw.d Format

Writes positive integer binary values

Category: Numeric
Width range: 1 to 8
Default width: 1
Decimal Range: 0–10
Alignment: left
UNIX specifics: byte order
See: PIBw.d format in SAS Language Reference: Dictionary

Details
The PIBw.d format writes fixed-point binary values, treating all values as positive.
Thus, the high-order bit is part of the value, rather than the value’s sign. If a d value is
specified, the data value is multiplied by 10d.

For more details, see “Reading and Writing Binary Data in UNIX Environments” on
page 198.

234 RBw.d Format Chapter 11

RBw.d Format

Writes real binary (floating-point) data

Category: Numeric

Width range: 2 to 8

Default width: 4

Decimal Range: 0–10

Alignment: left

UNIX specifics: floating-point representation
See: RBw.d format in SAS Language Reference: Dictionary

Details
The RBw.d format writes numeric data in real binary (floating-point) notation. SAS
stores all numeric values in floating-point.

Real binary is the most efficient format for representing numeric values because SAS
already represents numbers this way and no conversion is needed.

For more details, see “RBw.d Informat” on page 260 and “Reading and Writing
Binary Data in UNIX Environments” on page 198.

ZDw.d Format

Writes zoned decimal data

Category: Numeric

Width range: 1 to 32
Default width: 1

Alignment: left

UNIX specifics: data representation

See: ZDw.d format in SAS Language Reference: Dictionary

Details
The ZDw.d format writes zoned decimal data. This format is also known as overprint
trailing numeric format. Under UNIX, the last byte of the field includes the sign along
with the last digit. The conversion table for the last byte is as follows:

Digit ASCII Character Digit ASCII Character

0 { -0 }

1 A -1 J

2 B -2 K

3 C -3 L

Formats under UNIX ZDw.d Format 235

4 D -4 M

5 E -5 N

6 F -6 O

7 G -7 P

8 H -8 Q

9 I -9 R

For more details, see “ZDw.d Informat” on page 261 and “Reading and Writing
Binary Data in UNIX Environments” on page 198.

236

237

C H A P T E R

12
Functions and CALL Routines
under UNIX

SAS Functions and CALL Routines under UNIX 237

Dictionary 238
BYTE Function 238

CALL SLEEP Routine 238

CALL SYSTEM Routine 239
COLLATE Function 240

DINFO Function 241

DOPEN Function 242
DOPTNAME Function 242

DOPTNUM Function 243
FDELETE Function 244

FEXIST Function 244

FILEEXIST Function 245
FILENAME Function 245

FILEREF Function 246

FINFO Function 247
FOPTNAME Function 247

FOPTNUM Function 249
LIBNAME Function 250

MODULE Function 251

MOPEN Function 253
PATHNAME Function 254

PEEKLONG Function 254

RANK Function 255
SYSGET Function 255

TRANSLATE Function 256

SAS Functions and CALL Routines under UNIX
This section describes SAS functions and CALL routines whose behavior is specific to

UNIX environments. Each function and CALL routine description includes a brief
“UNIX specifics” section that explains which aspect of the function and CALL routine is
specific to UNIX. For more information about all of these CALL routines and functions,
except SYSGET, see SAS Language Reference: Dictionary.

238 Dictionary Chapter 12

Dictionary

BYTE Function

Returns one character in the ASCII collating sequence

Category: Character

UNIX specifics: Uses the ASCII collating sequence

See: BYTE Function in SAS Language Reference: Dictionary

Syntax
BYTE(n)

n
specifies an integer that represents a specific ASCII character. The value of n can
range from 0 to 255.

Details
If the BYTE function returns a value to a variable that has not yet been assigned a
length, by default the variable is assigned a length of 1.

CALL SLEEP Routine

Suspends the execution of a program that invokes this CALL routine for a specified period of time

Category: Special

UNIX specifics: All

See: CALL SLEEP Routine in SAS Language Reference: Dictionary

Syntax
CALL SLEEP(n<,unit>);

n
is a numeric constant that specifies the number of units of time for which you want
to suspend execution of a program.

unit
specifies the unit of time, as a power of 10, which is applied to n. For example, 1
corresponds to a second, and .001 corresponds to a millisecond. The default is .001.

Functions and CALL Routines under UNIX CALL SYSTEM Routine 239

Details
CALL SLEEP puts the DATA step in which it is invoked into a non-active wait state,
using no CPU time and performing no input or output. If you are running multiple SAS
processes, each process can execute CALL SLEEP independently without affecting the
other processes.

Note: Extended sleep periods can trigger automatic host session termination based
on timeout values set at your site. Contact your host system administrator as necessary
to determine the timeout values used at your site. �

CALL SYSTEM Routine

Submits an operating system command for execution

Category: Special

UNIX specifics: Command must evaluate to a valid UNIX command

See: CALL SYSTEM Routine in SAS Language Reference: Dictionary

Syntax
CALL SYSTEM(command);

command
specifies any of the following: a UNIX command enclosed in quotation marks, an
expression whose value is a UNIX command, or the name of a character variable
whose value is a UNIX command.

Details
The CALL SYSTEM routine issues operating system commands. The output of the
command appears in the window from which you invoked SAS.

The value of the XSYNC system option affects how the CALL SYSTEM routine works.

Note: The CALL SYSTEM routine can be executed within a DATA step. However,
neither the X statement nor the %SYSEXEC macro program statement is intended for
use during the execution of a DATA step. �

In the following example, for each record in answer.week, if the resp variable is y,
the CALL SYSTEM routine will mail a message.

data _null_;
set answer.week;
if resp=’y’ then

do;
call system(’mail mgr < $HOME/msg’);

end;
run;

240 COLLATE Function Chapter 12

See Also

� “Executing Operating System Commands from Your SAS Session” on page 13

COLLATE Function

Returns an ASCII collating sequence character string

Category: Character
UNIX specifics: Uses ASCII collating sequence
See: COLLATE Function in SAS Language Reference: Dictionary

Syntax
COLLATE(start-position <,end-position>) | (start-position<,,length>)

start-position
specifies the numeric position in the collating sequence of the first character to be
returned.

end-position
specifies the numeric position in the collating sequence of the last character to be
returned.

length
specifies the number of characters in the collating sequence.

Details
The COLLATE function returns a string of ASCII characters. The ASCII collating
sequence contains 256 positions, referenced with the numbers 0 through 255.
Characters above 127 correspond to characters used in European languages as defined
in the ISO 8859 character set.

Unless you assign the return value of the COLLATE function to a variable with a
defined length less than 200, the ASCII collating sequence string is padded with blanks
to a length of 200. If the ASCII collating sequence is greater than 200 characters, you
must specify the length for the return string in a LENGTH statement; otherwise, the
returned string will be truncated to a length of 200 characters. For more information,
see the following examples.

Examples: How SAS Determines the Length of the Return String

Example 1: Truncating the Variable Length to 200 Characters Since the following code
does not include a LENGTH statement, the length attribute for the Address variable is
truncated to 200 characters.

data sales;
Address=collate(1,241);

run;

proc contents;

Functions and CALL Routines under UNIX DINFO Function 241

run;

Output 12.1 Portion of PROC CONTENTS Output

Alphabetic List of Variables and Attributes
Variable Type Len

1 Address Char 200

Since length for Address is limited to 200 characters, the returned string from the
COLLATE function will be limited to 200 characters.

Example 2: Specifying a Length Greater than 200 Characters To specify a length
greater than 200 characters for a specific variable, you can use the LENGTH statement.
In the following code, the length of Address is specified as 240 characters.

data sales;
length Address $240;
Address=collate(1,241);

run;

proc contents;
run;

Output 12.2 Portion of PROC CONTENTS Output

Alphabetic List of Variables and Attributes
Variable Type Len

1 Address Char 240

Since the length of Address is set to 240 characters, the returned string from the
COLLATE function will contain 240 characters.

See Also

� “LENGTH Statement” on page 300

DINFO Function

Returns information about a directory

Category: External Files
UNIX specifics: Directory pathname is the only information available
See: DINFO Function in SAS Language Reference: Dictionary

Syntax
DINFO(directory-id, info-item)

242 DOPEN Function Chapter 12

directory-id
specifies the identifier that was assigned when the directory was opened, generally
by the DOPEN function.

info-item
specifies the information item to be retrieved. DINFO returns a blank if the value of
info-item is invalid.

Details
Directories that are opened with the DOPEN function are identified by a directory-id.
Use DOPTNAME to determine the names of the available system-dependent
information items. Use DOPTNUM to determine the number of directory information
items available.

Under UNIX, the only info-item available is Directory, which is the pathname of
directory-id. If directory-id points to a list of concatenated directories, then Directory is
the list of concatenated directory names.

See Also

� “DOPEN Function” on page 242
� “DOPTNAME Function” on page 242
� “DOPTNUM Function” on page 243

DOPEN Function
Opens a directory and returns a directory identifier value

Category: External Files
UNIX specifics: fileref can be assigned with an environment variable
See: DOPEN Function in SAS Language Reference: Dictionary

Syntax
DOPEN(fileref)

fileref
specifies the fileref assigned to the directory.

Details
DOPEN opens a directory and returns a directory identifier value (a number greater
than 0) that is used to identify the open directory in other SAS external file access
functions. If the directory could not be opened, DOPEN returns 0. The directory to be
opened must be identified by a fileref.

DOPTNAME Function
Returns the name of a directory information item

Functions and CALL Routines under UNIX DOPTNUM Function 243

Category: External Files

UNIX specifics: Directory is the only item available

See: DOPTNAME Function in SAS Language Reference: Dictionary

Syntax
DOPTNAME(directory-id, nval)

directory-id
specifies the identifier that was assigned when the directory was opened, generally
by the DOPEN function.

nval
specifies the sequence number of the information item.

Details
Under UNIX, the only directory information item available is Directory, which is the
pathname of the directory-id. The nval, or sequence number, of Directory is 1. If
directory-id points to a list of concatenated directories, then Directory is the list of
concatenated directory names.

DOPTNUM Function

Returns the number of information items that are available for a directory

Category: External Files

UNIX specifics: Directory is the only item available

See: DOPTNUM Function in SAS Language Reference: Dictionary

Syntax
DOPTNUM(directory-id)

directory-id
specifies the identifier that was assigned when the directory was opened, generally
by the DOPEN function.

Details
Under UNIX, only one information item is available for a directory. The name of the
item is Directory; its value is the pathname or list of pathnames for directory-id, and its
sequence number is 1. Since only one information item is available for a directory, this
function will return a value of 1.

244 FDELETE Function Chapter 12

FDELETE Function
Deletes an external file or an empty directory

Category: External Files
UNIX specifics: fileref can be assigned with an environment variable
See: FDELETE Function in SAS Language Reference: Dictionary

Syntax
FDELETE(“fileref”)

fileref
specifies the fileref that is assigned to the external file or directory. The fileref cannot
be associated with a list of concatenated filenames or directories. If the fileref is
associated with a directory, the directory must be empty. You must have permission
to delete the file. Refer to the UNIX man page for chmod for more information about
permissions.

Under UNIX, fileref can also be an environment variable. The fileref must be
enclosed in double quotation marks.

Details
FDELETE returns 0 if the operation was successful, or a non-zero number if it was not
successful.

FEXIST Function
Verifies the existence of an external file by its fileref

Category: External Files
UNIX specifics: fileref can be assigned with an environment variable
See: FEXIST Function in SAS Language Reference: Dictionary

Syntax
FEXIST(“fileref”)

fileref
specifies the fileref assigned to the external file or directory. Under UNIX, fileref can
also be an environment variable. The fileref or the environment variable you specify
must be enclosed in double quotation marks.

Details
The FEXIST function returns a value of 1 if the external file that is associated with
fileref exists, and a value of 0 if the file does not exist.

Functions and CALL Routines under UNIX FILENAME Function 245

FILEEXIST Function

Verifies the existence of an external file by its physical name

Category: External Files

UNIX specifics: filename can be assigned with an environment variable

See: FILEEXIST Function in SAS Language Reference: Dictionary

Syntax
FILEEXIST(“filename”)

filename
specifies a fully qualified physical filename of the external file. In a DATA step,
filename can be a character expression, a string in quotation marks, or a DATA step
variable. In a macro, filename can be any expression.

Under UNIX, filename can also be an environment variable. The filename or the
environment variable you specify must be enclosed in double quotation marks.

Details
FILEEXIST returns 1 if the external file exists and 0 if the external file does not exist.

FILENAME Function

Assigns or deassigns a fileref for an external file, directory, or output device

Category: External Files

UNIX specifics: fileref can be assigned with an environment variable; valid values of
device-type and host-options

See: FILENAME Function in SAS Language Reference: Dictionary

Syntax
FILENAME(“fileref”, “filename” <,device-type<,host-options<,dir-ref>>>)

fileref
in a DATA step, specifies the fileref to assign to an external file. In a macro (for
example, in the %SYSFUNC function), fileref is the name of a macro variable
(without an ampersand) whose value contains the fileref to assign to the external file.
(For details, see the FILENAME function in SAS Language Reference: Dictionary.)

Under UNIX, the fileref can also be a UNIX environment variable. The fileref or
the environment variable you specify must be enclosed in double quotation marks.

246 FILEREF Function Chapter 12

filename
specifies the external file. Specifying a blank filename (“ ”)deassigns a fileref that was
previously assigned.

Under UNIX, the filename differs according to the device type. Table 16.1 on page
296 shows the information appropriate to each device. Remember that UNIX
filenames are case-sensitive. The filename you specify must be enclosed in double
quotation marks.

device-type
specifies the type of device or the access method that is used if the fileref points to an
input or output device or location that is not a physical file. It can be any one of the
devices listed in Table 16.1 on page 296. DISK is the default device type.

host-options
are options that are specific to UNIX. You can use any of the options that are
available on the FILENAME statement. See “FILENAME Statement” on page 293
for a description of the host options.

dir-ref
specifies the fileref that is assigned to the directory in which the external file resides.

Details
FILENAME returns a 0 if the operation is successful, and a non-zero number if it was
not successful.

FILEREF Function

Verifies that a fileref has been assigned for the current SAS session

Category: External Files

UNIX specifics: fileref can be assigned with an environment variable

See: FILEREF Function in SAS Language Reference: Dictionary

Syntax
FILEREF(“fileref”)

fileref
specifies the fileref assigned to be validated.

Under UNIX, fileref can also be a UNIX environment variable. The fileref or the
environment variable you specify must be enclosed in double quotation marks.

Details
A negative return code indicates that the fileref exists but the physical file associated
with the fileref does not exist. A positive value indicates that the fileref is not assigned.
A value of zero indicates that the fileref and external file both exist.

See “FILENAME Function” on page 245 for more information.

Functions and CALL Routines under UNIX FOPTNAME Function 247

FINFO Function

Returns the value of a file information item for an external file

Category: External Files
UNIX specifics: info-items available
See: FINFO Function in SAS Language Reference: Dictionary

Syntax
FINFO(file-id, info-item)

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

info-item
specifies the name of the file information item to be retrieved. This is a character
value. Info-item is either a variable containing a valid value or the valid value in
quotation marks.

Under UNIX, info-item for disk files can have one of the following values:

� File Name
� Owner Name
� Group Name
� Access Permission
� File Size (bytes)

If you concatenate filenames, then an additional info-item is available: File List.
If you are using pipe files, then the only valid value for info-item is Pipe Command.

Details
The FINFO function returns the value of a system-dependent information item for an
external file that was previously opened and assigned a file-id by the FOPEN function.
FINFO returns a blank if the value given for info-item is invalid.

For an example of how to use the FINFO function, see “Example: File Attributes
When Using the Pipe Device Type” on page 248.

See Also

� “FOPEN Function” in SAS Language Reference: Dictionary

FOPTNAME Function

Returns the name of an information item for an external file

Category: External Files

248 FOPTNAME Function Chapter 12

UNIX specifics: Information items available
See: FOPTNAME Function in SAS Language Reference: Dictionary
SAS Language Reference: Dictionary

Syntax
FOPTNAME(file-id, nval)

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

nval
specifies the number of the file information item to be retrieved. The following table
shows the values that nval can have in UNIX operating environments for single,
pipe, and concatenated files.

Information Items Available For...

nval Single File Pipe Files Concatenated Files

1 File Name Pipe Command File Name

2 Owner Name File List

3 Group Name Owner Name

4 Access Permission Group Name

5 File Size (bytes) Access Permission

6 File Size (bytes)

Details
FOPTNAME returns a blank if an error occurs.

Example: File Attributes When Using the Pipe Device Type
The following example creates a data set that contains the name and value attributes
returned by the FOPTNAME function when you are using pipes:

data fileatt;
length name $ 20 value $ 40;
drop fid j infonum;
filename mypipe pipe ’UNIX-command’;
fid=fopen("mypipe","s");
infonum=foptnum(fid);
do j=1 to infonum;

name=foptname(fid,j);
value=finfo(fid,name);
put ’File attribute’ name ’has a value of ’ value;
output;

end;
run;

Functions and CALL Routines under UNIX FOPTNUM Function 249

The following statement should appear in the SAS log:

File attribute Pipe Command has a value of UNIX-command

UNIX-command is the UNIX-command or program where you are piping your output or
where you are reading your input. This command or program must be either fully
qualified or defined in your PATH environment variable.

See Also

� “FINFO Function” on page 247
� “FOPTNUM Function” on page 249
� “FOPEN Function” in SAS Language Reference: Dictionary

FOPTNUM Function

Returns the number of information items that are available for an external file

Category: External Files
UNIX specifics: Information items available
See: FOPTNUM Function in SAS Language Reference: Dictionary

Syntax
FOPTNUM(file-id)

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

Details
Under UNIX, five information items are available for all types of files:

� File Name
� Owner Name
� Group Name
� Access Permission
� File Size (bytes).

If you concatenate filenames, then an additional information item is available: File List.
If you are using pipe files, then the only information item available is Pipe Command.

The open-mode specified in the FOPEN function determines the value that
FOPTNUM returns.

250 LIBNAME Function Chapter 12

Open Mode FOPTNUM Value Information Items Available

Append

Input

Update

6 for concatenated files

5 for single files

All information items available.

Output 5 for concatenated files

4 for single files

Since the file is open for output, the File
Size information type is unavailable.

Sequential

(using Pipe Device Type)

1 The only information item available is
Pipe Command.

For an example of how to use the FOPTNUM function, see “Example: File Attributes
When Using the Pipe Device Type” on page 248.

See Also

� “FINFO Function” on page 247

� “FOPTNAME Function” on page 247

� “FOPEN Function” in SAS Language Reference: Dictionary

LIBNAME Function

Assigns or deassigns a libref for a SAS data library

Category: SAS File I/O

UNIX specifics: Behavior of the ’ ’ libref (with a space between the quotation marks)

See: LIBNAME Function in SAS Language Reference: Dictionary

Syntax
LIBNAME(’libref’<,’SAS-data-library’<,engine<,options>>>)

libref
specifies the libref that is assigned to a SAS data library. Under UNIX, the value of
libref can be an environment variable. libref must be enclosed in single or double
quotation marks.

SAS-data-library
specifies the physical name of the SAS data library that is associated with the libref.
The value of SAS-data-library must be enclosed in single or double quotation marks.

engine
specifies the engine that is used to access SAS files opened in the data library.

options
names one or more options honored by the specified engine, delimited with blanks.

Functions and CALL Routines under UNIX MODULE Function 251

Details
If the LIBNAME function returns a 0, then the function was successful. However,

you could receive a non-zero value, even if the function was successful. A non-zero
value is returned if an error, warning, or note is produced. To determine if the function
was successful, look through the SAS log and use the following guidelines:

� If a warning or note was generated, then the function was successful.
� If an error was generated, then the function was not successful.

Under UNIX, if you specify a SAS-data-library of ’ ’(with a space between the
quotation marks), SAS deassigns the libref.

MODULE Function

Calls a specific routine or module that resides in a shared executable library

Category: External Files
UNIX specifics: All

Syntax
CALL MODULE(<cntl>,module,arg-1,arg-2...,arg-n);

num=MODULEN(<cntl>,module,arg-1,arg-2…,arg-n);

char=MODULEC(<cntl>,module,arg-1…,arg-2,arg-n);

Note: The following functions permit vector and matrix arguments; you can use
them only within the IML procedure. �

CALL MODULEI (<cntl>,modulearg-1,arg-2...,arg-n);

num=MODULEIN(<cntl>,module,arg-1,arg-2...,arg-n)

char=MODULEIC(<cntl>,module,arg-1,arg-2...,arg-n);

cntl
is an optional control string whose first character must be an asterisk (*), followed by
any combination of the following characters:

I prints the hexadecimal representations of all arguments to the
MODULE function and to the requested shared library routine
before and after the shared library routine is called. You can use
this option to help diagnose problems that are caused by incorrect
arguments or attribute tables. If you specify the I option, the E
option is implied.

E prints detailed error messages. Without the E option (or the I
option, which supersedes it), the only error message that the
MODULE function generates is "Invalid argument to function,"
which is usually not enough information to determine the cause of
the error.

Sx uses x as a separator character to separate field definitions. You
can then specify x in the argument list as its own character

252 MODULE Function Chapter 12

argument to serve as a delimiter for a list of arguments that you
want to group together as a single structure. Use this option only
if you do not supply an entry in the SASCBTBL attribute table. If
you do supply an entry for this module in the SASCBTBL
attribute table, you should use the FDSTART option in the ARG
statement in the table to separate structures.

H provides brief help information about the syntax of the MODULE
routines, the attribute file format, and the suggested SAS formats
and informats.

For example, the control string ’*IS/’ specifies that parameter lists be printed and
that the string ’/’ is to be treated as a separator character in the argument list.

module
is the name of the external module to use. The module can be specified as a shared
library and the routine name or ordinal value, separated by a comma. You do not
need to specify the shared library name if you specified the MODULE attribute for
the routine in the SASCBTBL attribute table, as long as the routine name is unique
(that is, no other routines have the same name in the attribute file).

The module must reside in a shared library, and it must be externally callable.
Note that while the shared library name is not case sensitive, the routine name is
based on the restraints of the routine’s implementation language, so the routine
name is case sensitive.

If the shared library supports ordinal-value naming, you can provide the shared
library name followed by a decimal number, such as ’XYZ,30’.

You can specify module as a SAS character expression instead of as a constant;
most often, though, you will pass it as a constant.

arg-1, arg-2, ...arg-n
are the arguments to pass to the requested routine. Use the proper attributes for the
arguments (that is, numeric arguments for numeric attributes and character
arguments for character attributes).

CAUTION:
Be sure to use the correct arguments and attributes. If you use incorrect arguments or
attributes for a shared library function, you can cause SAS to crash, or you will
see unexpected results. �

Details

The MODULE functions execute a routine module that resides in an external (outside
SAS) shared library with the specified arguments arg-1 through arg-n.

The MODULE call routine does not return a value, while the MODULEN and
MODULEC functions return a number num or a character char, respectively. Which
routine you use depends on the expected return value of the shared library function
that you want to execute.

MODULEI, MODULEIC, and MODULEIN are special versions of the MODULE
functions that permit vector and matrix arguments. Their return values are still scalar.
You can invoke these functions only from PROC IML.

Other than this name difference, the syntax for all six routines is the same.
The MODULE function builds a parameter list by using the information in arg-1 to

arg-n and by using a routine description and argument attribute table that you define
in a separate file. Before you invoke the MODULE routine, you must define the fileref
of SASCBTBL to point to this external file. You can name the file whatever you want
when you create it.

Functions and CALL Routines under UNIX MOPEN Function 253

This way, you can use SAS variables and formats as arguments to the MODULE
function and ensure that these arguments are properly converted before being passed to
the shared library routine.

CAUTION:
Using the MODULE function without defining an attribute table can cause SAS to crash,
produce unexpected results, or result in severe errors. You need to use an attribute
table for all external functions that you want to invoke. �

See Also

� “The SASCBTBL Attribute Table” on page 170
� “PEEKLONG Function” on page 254

MOPEN Function

Opens a file by directory ID and by member name, and returns either the file identifier or a 0

Category: External Files
UNIX specifics: Open-modes
See: MOPEN Function in SAS Language Reference: Dictionary

Syntax
MOPEN(directory-id,member-name<,open-mode<,record-length<,record-format>>>)

Note: This is a simplified version of the MOPEN function syntax. For the complete
syntax and its explanation, see the MOPEN function in SAS Language Reference:
Dictionary. �

open-mode
specifies the type of access to the file:

A APPEND mode allows writing new records after the current end
of the file.

I INPUT mode allows reading only (default).

O OUTPUT mode defaults to the OPEN mode specified in the host
option in the FILENAME statement or function. If no host option
is specified, it allows writing new records at the beginning of the
file.

S Sequential input mode is used for pipes and other sequential
devices such as hardware ports.

U UPDATE mode allows both reading and writing.

W Sequential update mode is used for pipes and other sequential
devices such as ports.

Details
MOPEN returns the identifier for the file, or 0 if the file could not be opened.

254 PATHNAME Function Chapter 12

PATHNAME Function

Returns the physical name of a SAS data library or of an external file, or returns a blank

Category: SAS File I/O
UNIX specifics: fileref or libref argument can also specify a UNIX environment variable
See: PATHNAME Function in SAS Language Reference: Dictionary

Syntax
PATHNAME((“fileref” | “libref”)<search-ref>)

fileref
specifies the fileref assigned to the external file. The value of the fileref can be a
UNIX environment variable.

libref
specifies the libref assigned to a SAS library. The value of the libref can be a UNIX
environment variable.

search-ref
specifies whether to search for a fileref or a libref.

F specifies a search for a fileref.

L specifies a search for a libref.

Details
PATHNAME returns the physical name of an external file or SAS library, or a blank if
filref or libref is invalid.

For more information about using an UNIX environment variable for fileref or libref,
see “FILENAME Function” on page 245.

PEEKLONG Function

Stores the contents of a memory address in a numeric variable on 32-bit and 64-bit platforms

Category: Special
UNIX specifics: All
See: PEEKLONG Function in SAS Language Reference: Dictionary

Syntax
PEEKCLONG(address,length);

PEEKLONG(address,length);

Functions and CALL Routines under UNIX SYSGET Function 255

address
specifies the character string that is the memory address.

length
specifies the data length.

Details
CAUTION:

Use the PEEKLONG functions only to access information returned by one of the MODULE
functions. �

The PEEKLONG function returns a value of length length that contains the data
that starts at memory address address.

The variations of the PEEKLONG functions are:

PEEKCLONG accesses character strings.

PEEKLONG accesses numeric values.

Usually, when you need to use one of the PEEKLONG functions, you will use
PEEKCLONG to access a character string. The PEEKLONG function is mentioned
here for completeness.

RANK Function

Returns the position of a character in the ASCII collating sequence

Category: Character
UNIX specifics: Uses ASCII collating sequence
See: RANK Function in SAS Language Reference: Dictionary

Syntax
RANK(x)

x
is a character expression (or character string) that contains a character in the ASCII
collating sequence. If the length of x is greater than 1, you receive the rank of the
first character in the string.

Details
Because UNIX uses the ASCII character set, the RANK function returns an integer
that represents the position of a character in the ASCII collating sequence.

SYSGET Function

Returns the value of the specified environment variable

256 TRANSLATE Function Chapter 12

Category: Special
UNIX specifics: environment-variable is a UNIX environment variable
See: SYSGET Function in SAS Language Reference: Dictionary

Syntax
SYSGET(’environment-variable’)

environment-variable
is the name of a UNIX environment variable.

Details
The SYSGET function returns the value of an environment variable as a character
string. For example, this statement returns the value of the HOME environment
variable:

here=sysget(’HOME’);

TRANSLATE Function

Replaces specific characters in a character expression

Category: Character
UNIX specifics: to and from arguments are required
See: TRANSLATE Function in SAS Language Reference: Dictionary

Syntax
TRANSLATE(source,to-1,from-1<,…to-n,from-n>)

Note: This is a simplified version of the TRANSLATE function syntax. For the
complete syntax and its explanation, see the TRANSLATE function in SAS Language
Reference: Dictionary. �

source
specifies the SAS expression that contains the original character value.

to
specifies the characters that you want TRANSLATE to use as substitutes.

from
specifies the characters that you want TRANSLATE to replace.

Details
Under UNIX, you must specify pairs of to and from arguments, and you can use a
comma as a place holder.

257

C H A P T E R

13
Informats under UNIX

SAS Informats under UNIX 257

Dictionary 257
HEXw. Informat 257

$HEXw. Informat 258

IBw.d Informat 258
PDw.d Informat 259

PIBw.d Informat 259

RBw.d Informat 260
ZDw.d Informat 261

SAS Informats under UNIX
This section describes SAS informats that have behavior or syntax that is specific to

UNIX environments. Each informat description includes a brief “UNIX specifics” section
that explains which aspect of the informat is specific to UNIX. All of these informats
are described in both this documentation and in SAS Language Reference: Dictionary.

Dictionary

HEXw. Informat

Converts hexadecimal positive binary values to fixed- or floating-point binary values

Category: Numeric
Width range: 1 to 16
Default width: 8
UNIX specifics: floating-point representation
See: HEXw. informat in SAS Language Reference: Dictionary

Details
The HEXw. informat converts the hexadecimal representation of positive binary
numbers to real floating-point binary values. The width value of the HEXw. informat

258 $HEXw. Informat Chapter 13

determines whether the input represents an integer (fixed-point) or real (floating-point)
binary number. When you specify a width of 1 through 15, the informat interprets the
input hexadecimal as an integer binary number. When your specify 16 for the width
value, the informat interprets the input hexadecimal as a floating-point value.

For more details, see “Reading and Writing Binary Data in UNIX Environments” on
page 198.

$HEXw. Informat

Converts hexadecimal data to character data

Category: Character

Width range: 1 to 32,767

Default width: 2

UNIX specifics: values are interpreted as ASCII values

See: $HEXw. informat in SAS Language Reference: Dictionary

Details
The $HEXw. informat converts every two digits of hexadecimal data into one byte of
character data. Use the $HEXw. informat to encode hexadecimal values into a
character variable when your input data is limited to printable characters. SAS under
UNIX interprets values that are read with this informat as ASCII values.

IBw.d Informat

Reads integer binary (fixed-point) values

Category: Numeric

Width range: 1 to 8

Default width: 4

Decimal range: 0 to 10

UNIX specifics: byte values

See: IBw.d informat in SAS Language Reference: Dictionary

Details
The IBw.d informat reads fixed-point binary values. For integer binary data, the
high-order bit is the value’s sign: 0 for positive values, 1 for negative. Negative values
are represented in two’s-complement notation. If the informat includes a d value, the
data value is divided by 10d.

For more details, see “Reading and Writing Binary Data in UNIX Environments” on
page 198.

Informats under UNIX PIBw.d Informat 259

PDw.d Informat

Reads packed decimal data

Category: Numeric
Width range: 1 to 16
Default width: 1
Decimal range: 0 to 31
UNIX specifics: data representation
See: PDw.d informat in SAS Language Reference: Dictionary

Details
The PDw.d informat reads packed decimal data. Although it is usually impossible to
type in packed decimal data directly from a console, many programs write packed
decimal data.

Each byte contains two digits in packed decimal data. The value’s sign is the first
byte. Because the entire first byte is used for the sign, you should specify at least a
width of 2.

For more details, see “Reading and Writing Binary Data in UNIX Environments” on
page 198.

PIBw.d Informat

Reads positive integer binary (fixed-point) values

Category: Numeric
Width range: 1 to 8
Default width: 1
Decimal range: 0 to 10
UNIX specifics: byte order
See: PIBw.d informat in SAS Language Reference: Dictionary

Details
The PIBw.d informat reads integer binary (fixed-point) values. Positive integer binary
values are the same as integer binary (see “IBw.d Informat” on page 258), except that all
values are treated as positive. Thus, the high-order bit is part of the value rather than
the value’s sign. If the informat includes a d value, the data value is divided by 10d.

For more details, see “Reading and Writing Binary Data in UNIX Environments” on
page 198.

260 RBw.d Informat Chapter 13

RBw.d Informat

Reads real binary (floating-point) data

Category: Numeric
Width range: 2 to 8
Default width: 4
Decimal range: 0 to 10
UNIX specifics: floating-point representation; supports single-precision numbers only for
those applications that truncate numeric data
See: RBw.d informat in SAS Language Reference: Dictionary

Details
The RBw.d informat reads numeric data that is stored in real binary (floating-point)
notation. SAS stores all numeric values in floating-point.

It is usually impossible to type in floating-point binary data directly from a console,
but many programs write floating-point binary data. Use caution if you are using the
RBw.d informat to read floating-point data created by programs other than SAS
because the RBw.d informat is designed to read only double-precision data.

All UNIX systems that are currently supported by SAS use the IEEE standard for
floating-point representation. This representation supports both single-precision and
double-precision floating-point numbers. Double-precision representation has more
bytes of precision, and the data within the representation is interpreted differently. For
example, for single-precision, the value of 1 in hexadecimal representation is 3F800000.
For double-precision, the hexadecimal representation of 1 is 3FF0000000000000.

The RBw.d informat is designed to read only double-precision data. It supports
widths less than 8 only for applications that truncate numeric data for space-saving
purposes. RB4. does not expect a single-precision floating-point number; it expects a
double-precision number truncated to four bytes. Using the example of 1 above, RB4.
expects 3FF00000 to be the hexadecimal representation of the four bytes of data to be
interpreted as 1. If given 3F800000, the single-precision value of 1, a different number
results.

External programs such as those written in C and FORTRAN can only produce
single- or double-precision floating-point numbers. No length other than four or eight
bytes is allowed. RBw.d allows a length of 3 through 8, depending on the storage you
need to save.

The FLOAT4. informat has been created to read a single-precision floating-point
number. If you read 3F800000 with FLOAT4., the result is a value of 1.

To read data created by a C or FORTRAN program, you need to decide on the proper
informat to use. If the floating-point numbers require an eight-byte width, you should
use the RB8. informat. If the floating point numbers require a four-byte width, you
should use FLOAT4.

Consider this C example:

#include <stdio.h>

main() {

FILE *fp;
float x[3];

Informats under UNIX ZDw.d Informat 261

fp = fopen("test.dat","wb");
x[0] = 1; x[1] = 2; x[2] = 3;

fwrite((char *)x,sizeof(float),3,fp);
fclose(fp);
}

The file Test.dat contains 3f8000004000000040400000 in hexadecimal representation.
The following statements read Test.dat correctly:

data _null_;
infile ’test.dat’;
input (x y z) (float4.);

run;

Also available is the IEEEw.d informat, which reads IEEE floating-point data. On
UNIX systems, IEEE8. is equivalent to RB8., and IEEE4. is equivalent to FLOAT4.
IEEEw.d can be used on any platform, as long as the original IEEE binary data
originated on a platform that uses the IEEE representation.

For more details, see “Reading and Writing Binary Data in UNIX Environments” on
page 198.

ZDw.d Informat

Reads zoned decimal data

Category: Numeric

Width range: 1 to 32

Default width: 1

UNIX specifics: last byte includes the sign; data representation

See: ZDw.d informat in SAS Language Reference: Dictionary

Details
The ZDw.d informat reads zoned decimal data; it is also known as overprint trailing
numeric format. Under UNIX, the last byte of the field includes the sign along with the
last digit. The conversion table for the last byte is as follows:

Digit ASCII Character Digit ASCII Character

0 { -0 }

1 A -1 J

2 B -2 K

3 C -3 L

4 D -4 M

5 E -5 N

6 F -6 O

7 G -7 P

262 ZDw.d Informat Chapter 13

8 H -8 Q

9 I -9 R

For more details, see “ZDw.d Format” on page 234 and “Reading and Writing Binary
Data in UNIX Environments” on page 198.

263

C H A P T E R

14
Macro Facility under UNIX

About the Macro Facility under UNIX 263

Automatic Macro Variables in UNIX Environments 263
Macro Statements in UNIX Environments 265

Macro Functions in UNIX Environments 265

SAS System Options Used by the Macro Facility in UNIX Environments 266
Using Autocall Libraries in UNIX Environments 266

What Is an Autocall Library? 266

Available Autocall Macros 266
Guidelines for Naming Macro Files 266

The SASAUTOS System Option 266
Example: Setting Up and Testing a Macro in an Autocall Library 267

About the Macro Facility under UNIX
Most features of the SAS macro facility are valid in all operating environments. This

documentation discusses only those components of the macro facility that depend on the
UNIX environment. For more information, refer to

� SAS Macro Language: Reference
� SAS Macro Facility Tips and Techniques

� the online help for the macro facility.

Automatic Macro Variables in UNIX Environments
The following automatic macro variables are valid in all operating environments, but

their values are determined by the operating environment:

SYSCC
contains the current SAS condition code. Upon exit, SAS translates this condition
code to a return code that has a meaningful value for the operating environment.

Note: The value of SYSCC might or might not match the return code returned
by the operating system. �

Under UNIX, the following codes can be returned:

0 Normal completion

1 SAS issued warning(s)

2 SAS issued error(s)

3 ABORT;

264 Automatic Macro Variables in UNIX Environments Chapter 14

4 ABORT RETURN n;

5 ABORT ABEND n;

6 Internal error

Note: When ERRORCHECK=NORMAL, then the return code will be 0 even if
an error exists in a LIBNAME or FILENAME statement, or in a LOCK statement
in SAS/SHARE software. Also, the SAS job or session will not abort when the
%INCLUDE statement fails due to a nonexistent file. For more information, see
the “ERRORCHECK= System Option” in SAS Language Reference: Dictionary. �

SYSDEVIC
contains the name of the current graphics device. The current graphics device is
determined by the DEVICE system option. Contact your SAS support
representative to determine which graphics devices are available at your site. (See
“DEVICE System Option” on page 324 and SAS Language Reference: Dictionary
for information about the DEVICE system option.)

SYSENV
reports whether SAS is running interactively. Values for SYSENV are FORE when
the TERMINAL system option is in effect and BACK when the NOTERMINAL
system option is in effect.

SYSJOBID
lists the process identification number (PID) of the process that is executing SAS,
for example, 00024.

SYSMAXLONG
returns the maximum long integer value allowed under UNIX, which is
9,007,199,254,740,992. On 32-bit systems, the maximum is 2,147,483,647.

SYSRC
holds the decimal value of the exit status code that is returned by the last UNIX
command executed from your SAS session. The following output shows an
interactive line mode SAS session that shows two sample SYSRC values.

Output 14.1 Sample SYSRC Values

1? x ’data’;
/bin/ksh: data: not found
2? %put UNIX exit status code is &sysrc;
UNIX exit status code is 256
3? x ’date’;
Tue Mar 19 09:41:27 CST 2003
4? %put UNIX exit status code is now &sysrc;
UNIX exit status code is now 0

SYSSCP
returns the abbreviation for your operating environment, such as HP 800, SUN 4,
or RS6000.

SYSSCPL
returns the name of the specific UNIX environment that you are using, such as
HP-UX, SunOS, or AIX. This variable returns the same value that is returned by the
UNIX command uname.

Macro Functions in UNIX Environments 265

Macro Statements in UNIX Environments
The arguments that can be entered with the following statements depend on the

operating environment:

%SYSEXEC
executes UNIX commands. It is similar to the X statement described in “Executing
Operating System Commands from Your SAS Session” on page 13. The
%SYSEXEC statement enables you to execute operating environment commands
immediately and, if necessary, determine whether they executed successfully by
examining the value of the automatic macro variable SYSRC. You can use the
%SYSEXEC statement inside a macro or in open code. The form of the
%SYSEXEC statement is as follows, where command can be any UNIX command:

%SYSEXEC <command>;

For example, the following code writes the status of the default printer to your
UNIX shell:

%sysexec lpstat;

Entering %SYSEXEC without a UNIX command starts a new shell, except
under the X Interface to SAS. See “Executing Operating System Commands from
Your SAS Session” on page 13 for details.

Macro Functions in UNIX Environments
The following functions have operating environment dependencies:

%SCAN
searches for a word that is specified by its position in a string. The form of the
%SCAN function is

%SCAN(argument,n,<delimiters>);

On ASCII systems, the default delimiters are

blank . < (+ & ! $ *) ; ^ - / , % |

%SYSGET
returns the character string that is the value of the environment variable passed
as the argument. Both UNIX and SAS environment variables can be translated
using the %SYSGET function. A warning message is printed if the global variable
does not exist. The form of the %SYSGET function is

%SYSGET(environment-variable);

For example, the following code writes the value of the HOME environment
variable to the SAS log:

%let var1=%sysget(HOME);
%put &var1;

266 SAS System Options Used by the Macro Facility in UNIX Environments Chapter 14

SAS System Options Used by the Macro Facility in UNIX Environments

The following system options have operating environment dependencies:

MSYMTABMAX
specifies the maximum amount of memory available to all symbol tables (global
and local combined). Under UNIX, the default value for this option is 4M. See
SAS Language Reference: Dictionary for more information.

MVARSIZE
specifies the maximum number of bytes for any macro variable stored in memory.
Under UNIX, the default value for this option is 32K. See SAS Language
Reference: Dictionary for more information.

SASAUTOS
specifies the AUTOCALL library. See “The SASAUTOS System Option” on page
266 for more information.

Using Autocall Libraries in UNIX Environments

What Is an Autocall Library?
An autocall library contains files that define SAS macros. The following sections

discuss aspects of autocall libraries that are dependent on the operating environment.
For more information, see SAS Macro Language: Reference.

Available Autocall Macros
There are two types of autocall macros, those provided by SAS and those you define

yourself. To use the autocall facility, you must have the MAUTOSOURCE system
option set.

When SAS is installed, the SASAUTOS system option is defined in the configuration
file to refer to the location of the default macros supplied by SAS. The products licensed
at your site determine the autocall macros you have available. You can also define your
own autocall macros and store them in one or more directories.

Guidelines for Naming Macro Files
If you store autocall macros in a UNIX directory, the file extension must be .sas.

Each macro file in the directory must contain a macro definition with a macro name
that matches the filename. For example, a file named PrtData.sas should define a
macro named PRTDATA.

The SASAUTOS System Option

To use your own autocall macros in your SAS program, specify their directories with
the SASAUTOS system option. For more information, see “SASAUTOS System Option”
on page 358.

Example: Setting Up and Testing a Macro in an Autocall Library 267

Note: The SASAUTOS system option under UNIX does not recognize filenames that
are in uppercase or mixed case. �

You can set the SASAUTOS system option when you start SAS, or you can use it in
an OPTIONS statement during your SAS session. However, autocall libraries specified
with the OPTIONS statement override any previous specification.

If you use the CONFIG system option to specify a configuration file, add your
autocall library to the library concatenation supplied by SAS. If you use the default
configuration files (sasv9.cfg) simply specify your autocall library there.

Autocall libraries are searched in the order in which you specify them.

Example: Setting Up and Testing a Macro in an Autocall Library
This example shows how to set up and test a macro in an autocall library.
The following output shows the results of executing two UNIX (cat) commands to

display the contents of two files and a SAS command to run the Autocall.sas program.

Output 14.2 AUTOCALL Library Example

$ cat maclib/testauto.sas
%macro testauto;
x echo ’Autocall library is working.’;
%mend testauto;
$ cat source/autocall.sas
filename sysautos (’!SASROOT/sasautos’ ’$HOME/test/sasautos’);
options mautosource sasautos=(sysautos ’$HOME/macros/maclib’);
%testauto
$ sas source/autocall.sas
Autocall library is working.

268

269

C H A P T E R

15
Procedures under UNIX

SAS Procedures under UNIX 269

Dictionary 269
CATALOG Procedure 269

CIMPORT Procedure 270

CONTENTS Procedure 271
CONVERT Procedure 272

CPORT Procedure 275

DATASETS Procedure 276
OPTIONS Procedure 279

PMENU Procedure 280
PRINTTO Procedure 281

SORT Procedure 282

SAS Procedures under UNIX

This section describes SAS procedures that have behavior or syntax that is specific to
UNIX environments. Each procedure description includes a brief “UNIX specifics”
section that explains which aspect of the procedure is specific to UNIX. Each procedure
is described in both this documentation and in Base SAS Procedures Guide.

Dictionary

CATALOG Procedure

Manages entries in SAS catalogs

UNIX specifics: FILE= option in the CONTENTS statement

See: CATALOG Procedure in Base SAS Procedures Guide

Syntax
PROC CATALOG CATALOG=<libref.>catalog <ENTRYTYPE=etype> <KILL>;

CONTENTS <OUT=SAS-data-set> <FILE=fileref>;

270 CIMPORT Procedure Chapter 15

Note: This is a simplified version of the CATALOG procedure syntax. For the
complete syntax and its explanation, see the CATALOG procedure in Base SAS
Procedures Guide. �

fileref
names a file specification that is specific to the UNIX operating environment.

Details
The FILE= option in the CONTENTS statement of the CATALOG procedure accepts a
fileref. If the name specified does not correspond to a fileref, a file with that name and
an extension of .lst is created in the current directory. For example, if MyFile is not a
fileref, the following code creates the file MyFile.lst in your current directory:

proc catalog catalog=sasuser.profile;
contents file=myfile;

run;

Note: The filename that is created is always in lowercase, even if you specified it in
uppercase. �

CIMPORT Procedure

Restores a transport file created by the CPORT procedure

UNIX specifics: name and location of transport file
See: CIMPORT Procedure in Base SAS Procedures Guide

Syntax
PROC CIMPORT destination=libref|<libref.>member-name <option(s)>;

Note: This is a simplified version of the CIMPORT procedure syntax. For the
complete syntax and its explanation, see the CIMPORT procedure in Base SAS
Procedures Guide. �

destination
identifies the file(s) in the transport file as a single SAS data set, single SAS catalog,
or multiple members of a SAS data library.

libref | <libref.>member-name
specifies the name of the SAS data set, catalog, or library to be created from the
transport file.

Details
Note: Starting in SAS 9.1, you can use the MIGRATE procedure to convert your

SAS files. For more information, see “Migrating 32-Bit SAS Files to 64-Bit in UNIX
Environments” on page 106. �

Procedures under UNIX CONTENTS Procedure 271

The CIMPORT procedure imports a transfer file that was created (exported) by the
CPORT procedure. The transport file can contain a SAS data set, a SAS catalog, or an
entire SAS library.

Typically the INFILE= option is used to designate the source of the transport file. If
this option is omitted, CIMPORT uses the default file Sascat.dat in the current
directory as the transport file.

Note: CIMPORT works only with transport files created by the CPORT procedure.
If the transport file was created using the XPORT engine with the COPY procedure,
then another PROC COPY must be used to restore the transport file. For more
information about PROC COPY, see Base SAS Procedures Guide. �

Example
For this example, a SAS data library that contains multiple SAS data sets was exported
to a file (called transport-file) using the CPORT procedure on a foreign host. The
transport file is then moved by a binary transfer to the receiving host.

The following code extracts all of the SAS data sets and catalogs stored within the
transport file and restores them to their original state in the new library, called
SAS-data-library.

libname newlib ’SAS-data-library’;
filename tranfile ’transport-file’;

proc cimport lib=newlib infile=tranfile;
run;

See Also

� “CPORT Procedure” on page 275

� “Migrating 32-Bit SAS Files to 64-Bit in UNIX Environments” on page 106

� The MIGRATE Procedure at support.sas.com/rnd/migration

� Moving and Accessing SAS Files

CONTENTS Procedure

Prints descriptions of one or more files from a SAS data library

UNIX specifics: information displayed in the SAS output

See: CONTENTS Procedure in Base SAS Procedures Guide

Syntax
PROC CONTENTS<option(s)>;

Details
The CONTENTS procedure produces the same information as the CONTENTS
statement in the DATASETS procedure. See “DATASETS Procedure” on page 276 for
sample output.

272 CONVERT Procedure Chapter 15

CONVERT Procedure

Converts BMDP and OSIRIS system files, and SPSS export files to SAS data sets

UNIX specifics: all

Syntax
PROC CONVERT product-specification <option-list>;

Details
The CONVERT procedure converts BMDP and OSIRIS system files, and SPSS export
files to SAS data sets. The procedure is supplied for compatibility. The procedure
invokes the appropriate engine to convert files.

PROC CONVERT produces one output data set, but no printed output. The new data
set contains the same information as the input system file; exceptions are noted in
“How Missing Values Are Handled” on page 273.

The procedure converts system files from these three products:

� BMDP saves files up to and including the most recent release of BMDP (available
for AIX, HP-UX, and Solaris only).

� SPSS saves files in a portable file format. An SPSS portable file can have any file
extension. Two common extensions are .por and .exp.

� OSIRIS saves files through and including OSIRIS IV. (Hierarchical file structures
are not supported.)

Because the BMDP, OSIRIS, and SPSS products are maintained by other
organizations, changes might be made that make new files incompatible with the
current version of PROC CONVERT. SAS upgrades PROC CONVERT to support
changes to these products only when a new version of SAS is released.

In the PROC CONVERT statement, product-specification is required and can be one
of the following:

BMDP=fileref <(CODE=code CONTENT=content-type)>
converts the first member of a BMDP save file created under UNIX (AIX) into a
SAS data set. Here is an example:

filename save ’/usr/mydir/bmdp.dat’;
proc convert bmdp=save;
run;

If you have more than one save file in the BMDP file referenced by the fileref
argument, you can use two options in parentheses after fileref. The CODE= option
specifies the code of the save file that you want, and the CONTENT= option
specifies the content of the save file. For example, if a file with CODE=JUDGES
has a content of DATA, you can use the following statements:

filename save ’/usr/mydir/bmdp.dat’;
proc convert bmdp=save(code=judges

content=data);
run;

Procedures under UNIX CONVERT Procedure 273

OSIRIS=fileref|libref
specifies a fileref or libref for the OSIRIS file to be converted into a SAS data set.
You must also include the DICT= option.

SPSS=fileref|libref
specifies a fileref or libref for the SPSS export file that is to be converted into a
SAS data set. The SPSS file must be created by using the SPSS EXPORT
command, but it can be from any operating system.

The option-list can be one or more of the following:

DICT=fileref|libref
specifies a fileref or libref of the dictionary file for the OSIRIS file. DICT= is valid
only when used with the OSIRIS product specification.

FIRSTOBS=n
gives the number of the observation where the conversion is to begin, so that you
can skip observations at the beginning of the BMDP, OSIRIS, or SPSS file.

OBS=n
specifies the number of the last observation to be converted. This enables you to
exclude observations at the end of the file.

OUT=SAS-data-set
names the SAS data set that will hold the converted data. If OUT= is omitted,
SAS still creates a Work data set and automatically names it DATAn, just as if
you had omitted a data set name in a DATA statement. See Chapter 4, “Using
SAS Files,” on page 101 for more information.

How Missing Values Are Handled
If a numeric variable in the input data set has no value or a system missing value,
CONVERT assigns it a missing value.

How Variable Names Are Assigned
The following sections explain how names are assigned to the SAS variables created by
the CONVERT procedure.

CAUTION:
Be sure that the translated names will be unique. Variable names are translated as
indicated in the following sections. �

Variable Names in BMDP Output Variable names from the BMDP save file are used in
the SAS data set, but nontrailing blanks and all special characters are converted to
underscores in the SAS variable names. The subscript in BMDP variable names, such
as x(1), becomes part of the SAS variable name with the parentheses omitted: X1.
Alphabetic BMDP variables become SAS character variables of corresponding length.
Category records from BMDP are not accepted.

Variable Names in OSIRIS Output For single-response variables, the V1 through V9999
name becomes the SAS variable name. For multiple-response variables, the suffix Rn is
added to the variable name where n is the response. For example, V25R1 would be the
first response of the multiple-response V25. If the variable after V1000 has 100 or more
responses, responses above 99 are eliminated. Numeric variables that OSIRIS stores in
character, fixed-point binary, or floating-point binary mode become SAS numeric
variables. Alphabetic variables become SAS character variables; any alphabetic variable
of length greater than 200 is truncated to 200. The OSIRIS variable description becomes
a SAS variable label, and OSIRIS print format information becomes a SAS format.

274 CONVERT Procedure Chapter 15

Variable Names in SPSS Output SPSS variable names and variable labels become
variable names and labels without change. SPSS alphabetic variables become SAS
character variables of the same length. SPSS blank values are converted to SAS
missing values. SPSS print formats become SAS formats, and the SPSS default
precision of no decimal places becomes part of the variables’ formats. The SPSS
DOCUMENT data is copied so that the CONTENTS procedure can display it. SPSS
value labels are not copied.

File Conversion Examples
These three examples show how to convert BMDP, OSIRIS, and SPSS files to SAS data
sets.

Converting a BMDP save file
The following statements convert a BMDP save file and produce the temporary
SAS data set Temp, which contains the converted data:

filename bmdpfile ’bmdp.savefile’;
proc convert bmdp=bmdpfile out=temp;
run;

Converting an OSIRIS file
The following statements convert an OSIRIS file and produce the temporary SAS
data set Temp, which contains the converted data:

filename osirfile ’osirdata’;
filename dictfile ’osirdict’;
proc convert osiris=osirfile dict=dictfile

out=temp;
run;

Converting an SPSS file
The following statements convert an SPSS Release 9 file and produce the
temporary SAS data set Temp, which contains the converted data:

filename spssfile ’spssfile.num1’;
proc convert spss=spssfile out=temp;
run;

Comparison with Interface Library Engines
The CONVERT procedure is closely related to the interface library engines BMDP,
OSIRIS, and SPSS. (In fact, the CONVERT procedure uses these engines.) For
example, the following two sections of code provide identical results:

filename myfile ’mybmdp.dat’;
proc convert bmdp=myfile out=temp;
run;

libname myfile bmdp ’mybmdp.dat’;
data temp;

set myfile._first_;
run;

However, the BMDP, OSIRIS, and SPSS engines provide more extensive capability
than PROC CONVERT. For example, PROC CONVERT converts only the first BMDP
member in a save file. The BMDP engine, in conjunction with the COPY procedure,
copies all members.

Procedures under UNIX CPORT Procedure 275

See Also

� “Accessing BMDP, OSIRIS, or SPSS Files in UNIX Environments” on page 125

CPORT Procedure

Writes SAS data sets and catalogs into a special format in a transport file that can be moved
between different hosts

UNIX specifics: name and location of transport file

See: CPORT Procedure in Base SAS Procedures Guide

Syntax
PROC CPORT source-type=libref|<libref.>member-name <option(s)>;

Note: This is a simplified version of the CPORT procedure syntax. For the complete
syntax and its explanation, see the “CPORT Procedure” in Base SAS Procedures
Guide. �

source-type
identifies the file(s) to export as either a single SAS data set, single SAS catalog, or
multiple members of a SAS data library.

libref | <libref.> member-name
specifies the name of the SAS data set, catalog, or library to be exported.

Details
Note: Starting in SAS 9.1, you can use the MIGRATE procedure to convert your

SAS files. For more information, see “Migrating 32-Bit SAS Files to 64-Bit in UNIX
Environments” on page 106. �

The CPORT procedure creates a transport file to later be restored (imported) by the
CIMPORT procedure. The transport file can contain a SAS data set, SAS catalog, or an
entire SAS library.

Typically the FILE= option is used to specify the path of the transport file. The value
of the FILE= option can be a fileref defined in a FILENAME statement or an
environment variable. If this option is omitted, CPORT creates the default file
Sascat.dat in the current directory as the transport file.

Examples
In this example, a SAS data library (called Oldlib) that contains multiple SAS data sets
is being exported to the file, called transport-file.

libname oldlib ’SAS-data-library’;
filename tranfile ’transport-file’;

proc cport lib=oldlib file=tranfile;
run;

276 DATASETS Procedure Chapter 15

This transport file is then typically moved by binary transfer to a different host
where the CIMPORT procedure will be used to restore the SAS data library.

See Also

� “CIMPORT Procedure” on page 270
� “Migrating 32-Bit SAS Files to 64-Bit in UNIX Environments” on page 106
� The MIGRATE Procedure at support.sas.com/rnd/migration
� Moving and Accessing SAS Files

DATASETS Procedure

Lists, copies, renames, and deletes SAS files, and also manages indexes for and appends SAS
data sets in a SAS data library

UNIX specifics: Directory information, CONTENT statement output
See: DATASETS Procedure in Base SAS Procedures Guide

Syntax
PROC DATASETS< option(s)>;

CONTENTS <option(s);>

Note: This is a simplified version of the DATASETS procedure syntax. For the
complete syntax and its explanation, see the DATASETS procedure in Base SAS
Procedures Guide. �

CONTENTS option(s)
the value for option(s) can be the following:

DIRECTORY
prints a list of information specific to the UNIX operating environment.

Details
The output from the DATASETS procedure shows you the libref, engine, and physical
name that are associated with the library, as well as the names and other properties of
the SAS files that are contained in the library. Some of the SAS data library
information, such as the filenames and access permissions, that is displayed in the SAS
log by the DATASETS procedure depends on the operating environment and the engine.
The information generated by the CONTENTS statement also varies according to the
device type or access method associated with the data set.

If you specify the DIRECTORY option in the CONTENTS statement, the directory
information is displayed in both the log and output windows.

The CONTENTS statement in the DATASETS procedure generates the same Engine/
Host Dependent information as the CONTENTS procedure.

Example
The following SAS code creates two data sets, Grades.sas7bdat and Majors.sas7bdat,
and runs PROC DATASETS on Majors.sas7bdat.

Procedures under UNIX DATASETS Procedure 277

options nodate pageno=1;
libname classes ’.’;

data classes.grades (label=’First Data Set’);
input student year state $ grade1 grade2;
label year=’Year of Birth’;
format grade1 4.1;
datalines;

1000 1980 NC 85 87
1042 1981 MD 92 92
1095 1979 PA 78 72
1187 1980 MA 87 94
;

data classes.majors(label=’Second Data Set’);
input student $ year state $ grade1 grade2 major $;
label state=’Home State’;
format grade1 5.2;
datalines;

1000 1980 NC 84 87 Math
1042 1981 MD 92 92 History
1095 1979 PA 79 73 Physics
1187 1980 MA 87 74 Dance
1204 1981 NC 82 96 French
;

proc datasets library=classes;
contents data=majors directory;

run;

The output of this example is shown in Output 15.1. The first page of output from
this example SAS code is produced by the DIRECTORY option in the CONTENTS
statement. This information also appears on the SAS log. Pages 2 and 3 in this output
describe the data set Classes.Majors.sas7bdat and appear only on the SAS output.

278 DATASETS Procedure Chapter 15

Output 15.1 PROC DATASETS Example

The SAS System

The DATASETS Procedure

Directory

Libref CLASSES
Engine V9
Physical Name /remote/u/yourid
File Name /remote/u/yourid
Inode Number 1058605
Access Permission rwxrwxrwx
Owner Name yourid
File Size (bytes) 1024

Member File
Name Type Size Last modified
1 GRADES DATA 16384 12MAY2003:14:30:19
2 MAJORS DATA 16384 12MAY2003:14:31:20

The SAS System

The DATASETS Procedure

Data Set Name CLASSES.MAJORS Observations 5
Member Type DATA Variables 6
Engine V9 Indexes 0
Created Monday, May 12, 2003 14:31:20 Observation Length 48
Last Modified Monday, May 12, 2003 14:31:20 Deleted Observations 0
Protection Compressed NO
Data Set Type Sorted NO
Label Second Data Set
Data Representation HP_UX_64, RS_6000_AIX_64, SOLARIS_64, HP_IA64
Encoding latin1 Western (ISO)

Engine/Host Dependent Information

Data Set Page Size 8192
Number of Data Set Pages 1
First Data Page 1
Max Obs per Page 169
Obs in First Data Page 5
Number of Data Set Repairs 0
File Name /remote/u/yourid/majors.sas7bdat
Release Created 9.0101B0
Host Created SunOS
Inode Number 1059264
Access Permission rw-r--r--
Owner Name yourid
File Size (bytes) 16384

Procedures under UNIX OPTIONS Procedure 279

The SAS System

The DATASETS Procedure

Alphabetic List of Variables and Attributes

Variable Type Len Format Label

4 grade1 Num 8 5.2
5 grade2 Num 8
6 major Char 8
3 state Char 8 Home State
1 student Char 8
2 year Num 8

See Also

� “CONTENTS Procedure” in Base SAS Procedures Guide

OPTIONS Procedure

Lists the current values of all SAS system options

UNIX specifics: options available only under UNIX

See: OPTIONS Procedure in Base SAS Procedures Guide

Syntax
PROC OPTIONS=<option(s)>

Note: This is a simplified version of the OPTIONS procedure syntax. For the
complete syntax and its explanation, see the OPTIONS procedure in Base SAS
Procedures Guide. �

option(s)

HOST | NOHOST
displays only host options (HOST) or only portable options (NOHOST).
PORTABLE is an alias for NOHOST.

RESTRICT
displays the system options that have been restricted by your site administrator.
These options cannot be changed by the user. For each option that is restricted,
the RESTRICT option displays the option’s value, scope, and how it was set.

If your site administrator has not restricted any options, then the following
message will appear in the SAS log:

Your Site Administrator has not restricted any options.

280 PMENU Procedure Chapter 15

Details
PROC OPTIONS lists the current values of the system options that are available in all
operating environments and, if you specify the HOST option in the PROC OPTIONS
statement, it lists those options that are available only under UNIX (host options). The
option values displayed by PROC OPTIONS depend on the default values shipped with
SAS, the default values specified by your site administrator, the default values in your
own configuration file, any changes made in your current session through the System
Options window or OPTIONS statement, and possibly, the device on which you are
running SAS.

For more information about a specific option, refer to Chapter 17, “System Options
under UNIX,” on page 311.

See Also

� For more information about restricted options, see “Order of Precedence for SAS
Configuration Files” on page 17.

PMENU Procedure

Defines PMENU facilities for windows created with SAS software

UNIX specifics: ATTR= and COLOR= options in the TEXT statement have no effect;
ACCELERATE= and MNEMONIC= options in the ITEM statement are ignored
See: PMENU Procedure in Base SAS Procedures Guide

Syntax
PROC PMENU <CATALOG=< libref.>catalog>

<DESC ’entry-description’>;

Note: This is a simplified version of the PMENU procedure syntax. For the complete
syntax and its explanation, see the PMENU procedure in Base SAS Procedures Guide. �

CATALOG=<libref.>catalog
specifies the catalog in which you want to store PMENU entries. If you omit libref,
the PMENU entries are stored in a catalog in the Sasuser data library. If you omit
CATALOG=, the entries are stored in the Sasuser.Profile catalog.

DESC ’entry-description’
provides a description of the PMENU catalog entries created in the step.

Details
The PMENU procedure defines PMENU facilities for windows created by using the
WINDOW statement in Base SAS software, the %WINDOW macro statement, the
BUILD procedure of SAS/AF software, or the SAS Component Language (SCL) PMENU
function with SAS/AF, SAS/CALC, and SAS/FSP software.

Under UNIX, the following options are ignored:
� ATTR= and COLOR= options in the TEXT statement. The colors and attributes

for text and input fields are controlled by the CPARMS colors specified in the

Procedures under UNIX PRINTTO Procedure 281

SASCOLOR window. See “Customizing Colors in UNIX Environments” on page 84
for more information.

� ACCELERATE= and the MNEMONIC= options in the ITEM statement.

PRINTTO Procedure

Defines destinations for SAS procedure output and the SAS log

UNIX specifics: Valid values of file specification
See: PRINTTO Procedure in Base SAS Procedures Guide

Syntax
PROC PRINTTO <option(s)>

Note: This is a simplified version of the PRINTTO procedure syntax. For the
complete syntax and its explanation, see the PRINTTO procedure in Base SAS
Procedures Guide. �

LOG=file-specification
specifies a fully qualified pathname (in quotation marks), an environment variable, a
fileref, or a file in the current directory (without extension).

PRINT=file-specification
specifies a fully qualified pathname (in quotation marks), an environment variable, a
fileref, or a file in the current directory (without extension). If you specify a fileref
that is defined with the PRINTER device-type keyword, output is sent directly to the
printer.

Examples
The following statements send any SAS log entries that are generated after the RUN
statement to the external file that is associated with the fileref MyFile:

filename myfile ’/users/myid/mydir/mylog’;
proc printto log=myfile;
run;

If MyFile has not been defined as a fileref, PROC PRINTTO will create the file
MyFile.log in the current directory.

The following statements send any procedure output that is generated after the RUN
statement to the file /users/myid/mydir/myout:

proc printto print=’/users/myid/mydir/myout’;
run;

282 SORT Procedure Chapter 15

The following statements send the procedure output from the CONTENTS procedure
directly to the system printer:

filename myfile printer;
proc printto print=myfile;
run;

proc contents data=oranges;
run;

To redirect the SAS log and procedure output to their original default destinations, run
PROC PRINTTO without any options:

proc printto;
run;

If MYPRINT and MYLOG have not been defined as filerefs, then the following
statements send any SAS procedure output to MyPrint.lst and any log output to
MyLog.log in the current directory:

proc printto print=myprint log=mylog;
run;

If filerefs MyPrint and MyLog had been defined, the output would have gone to the files
associated with these filerefs.

See Also

� Chapter 6, “Printing and Routing Output,” on page 153

SORT Procedure

Sorts observations in a SAS data set by one or more variables, then stores the resulting sorted
observations in a new SAS data set or replaces the original data set

UNIX specifics: sort utilities available

See: SORT Procedure in Base SAS Procedures Guide

Syntax
PROC SORT<option(s)><collating-sequence-option>

Note: This is a simplified version of the SORT procedure syntax. For the complete
syntax and its explanation, see the SORT procedure in Base SAS Procedures Guide. �

option(s)

SORTSIZE=memory-specification
specifies the maximum amount of memory available to the SORT procedure. For
further explanation of the SORTSIZE= option, see the following Details section.

TAGSORT
stores only the BY variables and the observation number in temporary files. For
further explanation of the TAGSORT option, see the following Details section.

Procedures under UNIX SORT Procedure 283

Note: The TAGSORT option is ignored when used with a host sort. �

Details
The SORT procedure sorts observations in a SAS data set by one or more character or
numeric variables, either replacing the original data set or creating a new, sorted data
set. By default under UNIX, the SORT procedure uses the ASCII collating sequence.

The SORT procedure uses the sort utility specified by the SORTPGM system option.
Sorting can be done by SAS or the syncsort utility. You can use all of the options
available to the SAS sort utility, such as the SORTSEQ and NODUPKEY options. In
some situations, you can improve your performance by using the NOEQUALS option. If
you specify an option that is not supported by the host sort, then the SAS sort will be
used instead. For more information about all of the options that are available, see the
SORT procedure in Base SAS Procedures Guide.

SORTSIZE= Option

Limiting the Amount of Memory Available to PROC SORT
You can use the SORTSIZE= option in the PROC SORT statement to limit the amount
of memory available to the SORT procedure. This option can reduce the amount of
swapping SAS must do to sort the data set.

Note: If you do not specify the SORTSIZE= option, PROC SORT uses the value of
the SORTSIZE system option. The SORTSIZE system option can be defined on the
command line or in the SAS configuration file. �

Syntax of the SORTSIZE= Option
The syntax of the SORTSIZE= option is as follows:

SORTSIZE=memory-specification

where memory-specification can be one of the following:

n specifies the amount of memory in bytes.

nK specifies the amount of memory in 1-kilobyte multiples.

nM specifies the amount of memory in 1-megabyte multiples.

nG specifies the amount of memory in 1-gigabyte multiples.

Default Value of the SORTSIZE= Option
The default SAS configuration file sets this option based on the value of the SORTSIZE
system option. The default for the SORTSIZE system option is MAX; however, the
value of MAX depends on your operating system. To view the value of MAX for your
operating environment, run the following code:

proc options option=sortsize;
run;

You can override the default value of the SORTSIZE system option by
� specifying a different SORTSIZE= value in the PROC SORT statement
� submitting an OPTIONS statement that sets the SORTSIZE system option to a

new value
� setting the SORTSIZE system option on the command line during the invocation of

SAS.

Improving Performance with the SORTSIZE= Option
In general, you should set the SORTSIZE= option no larger than the amount of physical
memory available to the SAS process. If the SORTSIZE= value is larger than the

284 SORT Procedure Chapter 15

amount of available memory, then the operating system will be forced to page
excessively. If the SORTSIZE= value is too small, then not all of the sorting can be done
in memory, which also results in more disk I/O.

When the SORTSIZE= value is large enough to sort the entire data set in memory,
you can achieve optimal sort performance. If the entire data set to be sorted will not fit
in memory, SAS creates a temporary utility file to store the data. In this case, SAS uses
a sort algorithm that is tuned to sort using disk space instead of memory.

Note: You can also use the SORTSIZE system option, which has the same effect as
the SORTSIZE= option in the PROC SORT statement. �

TAGSORT Option
The TAGSORT option in the PROC SORT statement is useful when there might not be
enough disk space to sort a large SAS data set. When you specify the TAGSORT option,
only the sort keys (that is, the variables specified in the BY statement) and the
observation number for each observation are stored in the temporary utility files. The
sort keys, together with the observation number, are referred to as tags. At the
completion of the sorting process, the tags are used to retrieve the records from the
input data set in sorted order. Thus, in cases where the total number of bytes of the
sort keys is small compared with the length of the record, temporary disk use is
reduced considerably.

You must have enough disk space to hold an additional copy of the data set (the
output data set) and the utility file that contains the tags. By default, this utility file is
stored in the Work library. If this directory is too small, you can change this directory
using the WORK system option. For more information, see “WORK System Option” on
page 381.

Note: If you are using a host sort utility, then you can use the SORTDEV system
option to change the location of your temporary files. For more information, see
“SORTDEV System Option” on page 366. �

Note that while using the TAGSORT option may reduce temporary disk use, the
processing time could be higher. However, on computers with limited available disk
space, the TAGSORT option might enable sorts to be performed in situations where
they would otherwise not be possible.

Disk Space Considerations for PROC SORT
You need to consider the following items when determining the amount of the disk
space needed to run PROC SORT:

input SAS data set
PROC sort uses the input data set specified by the DATA= option.

output SAS data set
PROC SORT stores the output data set in the location specified by the OUT=
option. If the OUT= option is not specified, PROC SORT stores the output SAS
data set in the Work library.

utility file stored in the Work library
This utility file is approximately the size of the input SAS data set.

temporary output SAS data set
During the sort, PROC SORT creates its output in the directory specified in the
OUT= option (or directory of the input data set if the OUT= option is not
specified). The temporary data set has the same filename as the original data set,
except it has an extension of .lck. After the sort completes successfully, the

Procedures under UNIX SORT Procedure 285

original data set is deleted, and the temporary data set is renamed to match the
original data set. Therefore, you need to have enough available space in the target
directory to hold two copies of the data set.

You can reduce the amount of disk space needed by specifying the OVERWRITE
option on the PROC SORT statement. When you specify this option, SAS replaces the
input data set with the sorted data set. This option should only be used with a data set
that is backed up or with a data set that you can reconstruct. For more information, see
the SORT procedure in Base SAS Procedures Guide.

Performance Tuning for PROC SORT

How SAS Determines the Amount of Memory to Use Generally, SAS uses the memory
value specified in the REALMEMSIZE system option. However, this value is limited by
the SORTSIZE value (which is limited by the value of the MEMSIZE system option). If
SORTSIZE is set to the default value of MAX, then PROC SORT uses the
REALMEMSIZE value to determine the amount of memory to use. For information
about setting the REALMEMSIZE system option, see “Guidelines for Setting the
REALMEMSIZE System Option” on page 285.

Note: If you receive an out of memory error, then increase the value of MEMSIZE.
For more information, see “MEMSIZE System Option” on page 344. �

Guidelines for Setting the REALMEMSIZE System Option Since PROC SORT uses the
REALMEMSIZE system option to determine how much memory to use, it is important
that the REALMEMSIZE value reflects the amount of memory that is available on your
system. If REALMEMSIZE is set too high, then PROC SORT might use more memory
than is actually available. Using too much memory will cause excessive paging and
adversely impact system performance.

In general, REALMEMSIZE should be set to the amount of physical memory (not
including swap space) that you expect to be available to SAS at run time. A good
starting value is the amount of physical memory installed on the computer less the
amount that is being used by running applications and the operating system. You can
experiment with the REALMEMSIZE value until you reach optimum performance for
your environment. In some cases, optimum performance can be achieved with a very
low REALMEMSIZE value. A low value could cause SAS to use less memory and leave
more memory for the operating system to perform I/O caching.

For more information, see “REALMEMSIZE System Option” on page 353.

Creating Your Own Collating Sequences
If you want to provide your own collating sequences or change a collating sequence
provided for you, use the TRANTAB procedure to create or modify translation tables.
For more information about the TRANTAB procedure, see SAS National Language
Support (NLS): User’s Guide. When you create your own translation tables, they are
stored in your Sasuser.Profile catalog, and they override any translation tables by the
same name that are stored in the Host catalog.

Note: System managers can modify the Host catalog by copying newly created
tables from the Profile catalog to the Host catalog. Then all users can access the new or
modified translation table. �

If you are using the SAS windowing environment and want to see the names of the
collating sequences that are stored in the Host catalog, issue the following command
from any window:

catalog sashelp.host

286 SORT Procedure Chapter 15

If you are not using the SAS windowing environment, then issue the following
statements to generate a list of the contents of the Host catalog:

proc catalog catalog=sashelp.host;
contents;
run;

Entries of type TRANTAB are the collating sequences.
To see the contents of a particular translation table, use the following statements:

proc trantab table=table-name;
list;
run;

The contents of collating sequences are displayed in the SAS log.

Specifying the Host Sort Utility

Introduction to Using the Host Sort UNIX has one host sort utility, syncsort. You
can use this sorting application as an alternative sorting algorithm to the SAS sort.
SAS determines which sort to use by the values that are set for the SORTNAME,
SORTPGM, SORTCUT, and SORTCUTP system options.

Setting the Host Sort Utility as the Sort Algorithm To specify a host sort utility as the
sort algorithm, complete the following steps:

1 Specify the name of the host utility (syncsort) in the SORTNAME system option.
2 Set the SORTPGM system option to tell SAS when to use the host sort utility.

� If SORTPGM=HOST, then SAS will always use the host sort utility.
� If SORTPGM=BEST, then SAS chooses the best sorting method (either the

SAS sort or the host sort) for the situation. For more information, see
“Sorting Based on Size or Observations” on page 286.

Sorting Based on Size or Observations The sort routine that SAS uses can be based
on either the number of observations in a data set or on the size of the data set. When
the SORTPGM system option is set to BEST, SAS uses the first available and pertinent
sorting algorithm based on this order of precedence:

� host sort utility
� SAS sort utility

SAS looks at the values for the SORTCUT and SORTCUTP system options to
determine which sort to use.

The SORTCUT option specifies the number of observations above which the host sort
utility is used instead of the SAS sort. The SORTCUTP option specifies the number of
bytes in the data set above which the host sort utility is used.

If SORTCUT and SORTCUTP are set to zero, SAS uses the SAS sort routine. If you
specify both options and either condition is met, SAS uses the host sort utility.

When the following OPTIONS statement is in effect, the host sort utility is used
when the number of observations is 501 or greater:

options sortpgm=best sortcut=500;

In this example, the host sort utility is used when the size of the data set is greater
than 40M:

options sortpgm=best sortcutp=40M;

For more information about these sort options, see “SORTCUT System Option” on
page 364, “SORTCUTP System Option” on page 365, and “SORTPGM System Option”
on page 368.

Procedures under UNIX SORT Procedure 287

Changing the Location of Temporary Files Used by the Host Sort Utility By default, the
host sort utilities use the location that is specified in the -WORK option for temporary
files. To change the location of these temporary files, specify a location by using the
SORTDEV system option. Here is an example:

options sortdev=’’/tmp/host’’;

For more information, see “SORTDEV System Option” on page 366.

Passing Options to the Host Sort Utility To specify options for the sort utility, use the
SORTANOM system option. For a list of valid options, see “SORTANOM System
Option” on page 363.

Passing Parameters to the Host Sort Utility To pass parameters to the sort utility, use
the SORTPARM system option. The parameters that you can specify depend on the
host sort utility. For more information, see “SORTPARM System Option” on page 367.

Specifying the SORTSEQ= Option with a Host Sort Utility
CAUTION:

If you are using a host sort utility to sort your data, then specifying the SORTSEQ= option
might corrupt the character BY variables if the sort sequence translation table and its
inverse are not one-to-one mappings. In other words for the sort to work, the
translation table must map each character to a unique weight, and the inverse table
must map each weight to a unique character variable. �

If your translation tables do not map one-to-one, then you can use one of the following
methods to perform your sort:

� create a translation table that maps one-to-one. Once you create a translation table
that maps one-to-one, you can easily create a corresponding inverse table using
the TRANTAB procedure. If your table is not mapped one-to-one, then you will
receive the following note in the SAS log when you try to create an inverse table:

NOTE: This table cannot be mapped one to one.

For more information, see TRANTAB Procedure in SAS National Language
Support (NLS): User’s Guide.

� use the SAS sort. You can specify the SAS sort using the SORTPGM system
option. For more information, see “SORTPGM System Option” on page 368.

� specify the collation order options of your host sort utility. See the documentation
for your host sort utility for more information.

� create a view with a dummy BY variable. For an example, see “Example: Creating
a View with a Dummy BY Variable” on page 287.

Note: After using one of these methods, you might need to perform subsequent BY
processing using either the NOTSORTED option or the NOBYSORTED system option.
For more information about the NOTSORTED option, see BY Statement in SAS
Language Reference: Dictionary. For more information about the NOBYSORTED
system option, see BYSORTED System Option in SAS Language Reference:
Dictionary. �

Example: Creating a View with a Dummy BY Variable The following code is an
example of creating a view using a dummy BY variable:

options no date nostimer ls-78 ps-60;
options sortpgm=host msglevel=i;

288 SORT Procedure Chapter 15

data one;
input name $ age;
datalines;
anne 35
ALBERT 10
JUAN 90
janet 5
bridget 23
BRIAN 45
;

data oneview / view=oneview;
set one;
name1=upcase(name);

run;

proc sort data=oneview out=final(drop=name1);
by name1;

run;

proc print data=final;
run;

The output is the following:

Output 15.2 Creating a View with a Dummy BY Variable

The SAS System
Obs name age
1 ALBERT 10
2 anne 35
3 BRIAN 45
4 bridget 23
5 janet 5
6 JUAN 90

See Also

� “TRANTAB Procedure” in SAS National Language Support (NLS): User’s Guide

� “MEMSIZE System Option” on page 344

� “REALMEMSIZE System Option” on page 353

� “SORTANOM System Option” on page 363

� “SORTCUT System Option” on page 364

� “SORTCUTP System Option” on page 365

� “SORTDEV System Option” on page 366

� “SORTNAME System Option” on page 367

� “SORTPARM System Option” on page 367

� “SORTPGM System Option” on page 368

� “SORTSIZE System Option” on page 368

� ”UTILLOC System Option” in SAS Language Reference: Dictionary

289

C H A P T E R

16
Statements under UNIX

SAS Statements under UNIX 289

Dictionary 289
ABORT Statement 289

ATTRIB Statement 290

FILE Statement 291
FILENAME Statement 293

FOOTNOTE Statement 297

%INCLUDE Statement 298
INFILE Statement 299

LENGTH Statement 300
LIBNAME Statement 301

SYSTASK Statement 305

TITLE Statement 308
WAITFOR Statement 308

X Statement 310

SAS Statements under UNIX

This section describes SAS statements that exhibit behavior or syntax that is specific
to UNIX environments. Each statement description includes a brief “UNIX specifics”
section that explains which aspect of the statement is specific to UNIX. If the
information under the "UNIX specifics" says "all," then the statement is described only
in this documentation. Otherwise, the statement is described in both this
documentation and in SAS Language Reference: Dictionary.

Dictionary

ABORT Statement

Stops executing the current DATA step, SAS job, or SAS session

Valid: in a DATA step

UNIX specifics: values of n

See: ABORT Statement in SAS Language Reference: Dictionary

290 ATTRIB Statement Chapter 16

Syntax

ABORT <ABEND|RETURN><n>;

Details

The n option enables you to specify the value of the exit status code that SAS returns to
the shell when it stops executing. The value of n can range from 0 to 255.

See Also

� “Determining the Completion Status of a SAS Job in UNIX Environments” on
page 22

ATTRIB Statement

Associates a format, informat, label, and/or length with one or more variables

Valid: in a DATA step

UNIX specifics: length specification

See: ATTRIB Statement in SAS Language Reference: Dictionary

Syntax

ATTRIB variable-list-1 attribute-list-1 <...variable-list-n attribute-list-n>;

Note: Following is a simplified explanation of the ATTRIB statement syntax. For
complete syntax and its explanation, see the ATTRIB statement in SAS Language
Reference: Dictionary. �

attribute-list

LENGTH=<$>length
specifies the length of the variables in variable-list. The minimum length that you
can specify for a numeric variable depends on the floating-point format used by
your system. Because most systems use the IEEE floating-point format, the
minimum is 3 bytes.

See Also

� Chapter 8, “Data Representation,” on page 197

Statements under UNIX FILE Statement 291

FILE Statement

Specifies the current output file for PUT statements

Valid: in a DATA step
UNIX specifics: valid values for file-specification, host-options, and encoding-value
See: FILE Statement in SAS Language Reference: Dictionary

Syntax
FILE file-specification <ENCODING=’encoding-value’ > <options> <host-options>;

file-specification
can be any of the file specification forms that are discussed in the “Accessing an
External File or Device in UNIX Environments” on page 133.

ENCODING=’encoding-value’
specifies the encoding to use when writing to the output file. The value for
ENCODING= indicates that the output file has a different encoding from the current
session encoding.

When you write data to the output file, SAS transcodes the data from the session
encoding to the specified encoding.

For valid encoding values, see “Encoding Values in SAS Language Elements” in
SAS National Language Support (NLS): User’s Guide.

options
can be any of the options for the FILE statement that are valid in all operating
environments. See the SAS Language Reference: Dictionary for a description of these
options.

host-options
are specific to UNIX environments. These options can be any of the following:

BLKSIZE=
BLK=

specifies the number of bytes that are physically written in one I/O operation. The
default is 8K. The maximum is 1G-1.

TERMSTR=
controls the end-of-line/record delimiters in PC and UNIX formatted files. This
option enables the sharing of UNIX and PC formatted files between the two hosts.
The following are values for the TERMSTR= option:

CRLF Carriage Return Line Feed. This parameter is used to create
PC format files.

NL Newline. This parameter is used to create UNIX format files.
NL is the default format.

Use TERMSTR=CRLF when you are writing to a file that you want to read on a
PC. If you use this option when creating the file, then you do not need to use
TERMSTR=NL when reading the file on the PC.

LRECL=
specifies the logical record length. Its meaning depends on the record format in
effect (RECFM). The default is 256. The maximum length is 1G.

292 FILE Statement Chapter 16

� If RECFM=F, then the value for the LRECL= option determines the length of
each output record. The output record is truncated or padded with blanks to
fit the specified size.

� If RECFM=N, then the value for the LRECL= option must be at least 256.

� If RECFM=V, then the value for the LRECL= option determines the
maximum record length. Records that are longer than the specified length
are divided into multiple records.

MOD
indicates that data written to the file should be appended to the file.

NEW | OLD
indicates that a new file is to be opened for output. If the file already exists, then
it is deleted and re-created. If you specify OLD, then the previous contents of the
file are replaced. NEW is the default.

RECFM=
specifies the record format. Values for the RECFM= option are

D default format (same as variable).

F fixed format. That is, each record has the same length. Do not
use RECFM=F for external files that contain carriage-control
characters.

N binary format. The file consists of a stream of bytes with no
record boundaries.

P print format. SAS writes carriage-control characters.

V variable format. Each record ends with a newline character.

S370V variable S370 record format (V).

S370VB variable block S370 record format (VB).

S370VBS variable block with spanned records S370 record format (VBS).

UNBUF
tells SAS not to perform buffered writes to the file on any subsequent FILE
statement. This option applies especially when you are writing to a data collection
device.

Details
The ENCODING= option is valid only when the FILE statement includes a file
specification that is not a reserved fileref. If the FILE statement includes the
ENCODING= argument and the reserved filerefs Log or Print as the file-specification,
then SAS issues an error message. The ENCODING= value in the FILE statement
overrides the value of the ENCODING= system option.

You can set the permissions of the output file by issuing the umask command from
within the SAS session. For more information, see “Executing Operating System
Commands from Your SAS Session” on page 13.

See Also

� Chapter 5, “Using External Files and Devices,” on page 131

Statements under UNIX FILENAME Statement 293

FILENAME Statement

Associates a SAS fileref with an external file or output device

Valid: anywhere
UNIX specifics: device-type, external-file, host-options, and encoding-value
See: FILENAME Statement in SAS Language Reference: Dictionary

Syntax
FILENAME fileref <device-type> ’external-file’ <ENCODING=’encoding-value’>

<host-options>;

FILENAME fileref device-type <’external-file’> <ENCODING=’encoding-value’>
<’host-options’>;

FILENAME fileref (’pathname-1’ ... ’pathname-n’) <ENCODING=’encoding-value’>
<’host-options’>;

FILENAME fileref directory-name <ENCODING=’encoding-value’>;

FILENAME fileref <access-method> ’external-file’ access-information;

FILENAME fileref CLEAR | _ALL_ CLEAR;

FILENAME fileref LIST | _ALL_ LIST;

fileref
is the name by which you reference the file. Under UNIX, the value of fileref can be
an environment variable. See “Using Environment Variables to Assign Filerefs in
UNIX Environments” on page 139 for more information.

device-type
specifies a device for the output, such as a disk, terminal, printer, pipe, and so on.
The device-type keyword must follow fileref and precede pathname. Table 16.1 on
page 296 describes the valid device types. DISK is the default device type. If you are
associating the fileref with a DISK file, then you do not need to specify the device
type.

’external-file’
differs according to device type. Table 16.1 on page 296 shows the information
appropriate to each device. Remember that UNIX filenames are case sensitive. See
“Specifying Pathnames in UNIX Environments” on page 133 for more information.

ENCODING=’encoding-value’
specifies the encoding to use when reading from or writing to the external file. The
value for ENCODING= indicates that the external file has a different encoding from
the current session encoding.

When you read data from an external file, SAS transcodes the data from the
specified encoding to the session encoding. When you write data to an external file,
SAS transcodes the data from the session encoding to the specified encoding.

For valid encoding values, see “Encoding Values in SAS Language Elements” in
SAS National Language Support (NLS): User’s Guide.

’host-options’
are specific to UNIX environments. These options can be any of the following:

294 FILENAME Statement Chapter 16

BLKSIZE=
BLK=

specifies the number of bytes that are physically written or read in one I/O
operation. The default is 8K. The maximum is 1G-1. If you specify
RECFM=S370VBS, then you should specify BLKSIZE=32760 in order to avoid
errors with records longer than 255 characters.

TERMSTR=
controls the end of line/record delimiters in PC and UNIX formatted files. This
option enables the sharing of UNIX and PC formatted files between the two hosts.
The following values for the TERMSTR= option:

CRLF Carriage Return Line Feed. This parameter is used to read and
write PC format files.

NL Newline. This parameter is used to read and write UNIX
format files. NL is the default format.

If you are working on UNIX and reading a file that was created on a PC, specify
TERMSTR=CRLF unless the file was created with the TERMSTR=NL option. If
you are writing a file that will be read on a PC, specify TERMSTR=CRLF.

If you are working on a PC and reading a file that was created on UNIX, specify
TERMSTR=NL unless the file was created with the TERMSTR=CRLF option. If
you are writing a file that will be read on UNIX, specify TERMSTR=NL.

LRECL=
specifies the logical record length. Its meaning depends on the record format in
effect (RECFM). The default is 256. The maximum length is 1G.

� If RECFM=F, then the value for the LRECL= option determines either the
number of bytes to be read as one record or the length of each output record.
The output record is truncated or padded with blanks to fit the specified size.

� If RECFM=N, then the value for the LRECL= option must be at least 256.

� If RECFM=V, then the value for the LRECL= option determines the
maximum record length. Records that are longer than the specified length
are divided into multiple records on output and truncated on input.

� If RECFM=S370VBS, then you should specify LRECL=32760 in order to
avoid errors with records longer than 255 characters.

MOD
indicates that data written to the file should be appended to the file.

NEW | OLD
indicates that a new file is to be opened for output. If the file already exists, then
it is deleted and re-created. If you specify OLD, then the previous contents of the
file are replaced. NEW is the default.

RECFM=
specifies the record format. Values for the RECFM= option are

D default format (same as variable).

F fixed format. That is, each record has the same length. Do not
use RECFM=F for external files that contain carriage-control
characters.

N binary format. The file consists of a stream of bytes with no
record boundaries.

P print format. On output, SAS writes carriage-control
characters.

Statements under UNIX FILENAME Statement 295

V variable format. Each record ends with a newline character.

S370V variable S370 record format (V).

S370VB variable block S370 record format (VB).

S370VBS variable block with spanned records S370 record format (VBS).
If you specify RECFM=S3270VBS, then you should specify
BLDSIZE=32760 and LRECL=32760 in order to avoid errors
with records longer than 255 characters.

The RECFM= option is used for both input and output.

UNBUF
tells SAS not to perform buffered writes to the file on any subsequent FILE
statement. This option applies especially when you are reading from or writing to
a data collection device. As explained in SAS Language Reference: Dictionary, it
also prevents buffered reads on INFILE statements.

’pathname-1’...’pathname-n’
are pathnames for the files that you want to access with the same fileref. Use this
form of the FILENAME statement when you want to concatenate filenames.
Concatenation of filenames is available only for DISK files, so you do not have to
specify the device-type. Separate the pathnames with either commas or blank spaces.
Enclose each pathname in quotation marks. Table 4.6 on page 115 shows character
substitutions you can use when specifying a pathname. If the fileref that you are
defining is to be used for input, then you can also use wildcards as described in
“Using Wildcards in Pathnames (Input Only)” on page 134. Remember that UNIX
filenames are case-sensitive.

directory-name
specifies the directory that contains the files that you want to access. For more
information, see “Assigning a Fileref to a Directory (Using Aggregate Syntax)” on
page 138.

access-method
can be CATALOG, SOCKET, FTP, or URL. Table 16.1 on page 296 describes the
information expected by these access methods.

access-information
differs according to the access method. Table 16.1 on page 296 shows the information
appropriate to each access method.

CLEAR
clears the specified fileref or, if you specify _ALL_, clears all filerefs that are
currently defined.

Note: You cannot clear a fileref that is defined by an environment variable.
Filerefs that are defined by environment variables are assigned for the entire SAS
session. �

ALL
refers to all filerefs currently defined. You can use this keyword when you are listing
or clearing filerefs.

LIST
prints to the SAS log the pathname of the specified fileref or, if you specify _ALL_,
lists the definition for all filerefs that are currently defined. Filerefs defined as
environment variables appear only if you have already used those filerefs in a SAS
statement. If you are using the Bourne shell or the Korn shell, SAS cannot determine
the name of a preopened file, so it displays the following string instead of a filename:

<File Descriptor number>

296 FILENAME Statement Chapter 16

See “Using Environment Variables to Assign Filerefs in UNIX Environments” on
page 139 for more information.

Table 16.1 Device Information in the FILENAME Statement

Device or
Access Method Function External-file

CATALOG references a SAS catalog
as an external file

is a valid two-, three-, or four-part SAS catalog name followed by
catalog options (if needed). See SAS Language Reference: Dictionary
for details.

DISK associates the fileref with
a DISK file

is either the pathname for a single file or, if you are concatenating
filenames, a list of pathnames separated by blanks or commas and
enclosed in parentheses. The level of specification depends on your
location in the file system. Table 4.6 on page 115 shows character
substitutions that you can use when specifying a UNIX pathname.

DUMMY associates a fileref with a
null device

None. DUMMY enables you to debug your application without
reading from or writing to a device. Output to this device is discarded.

EMAIL sends electronic mail to an
address

is an address and e-mail options. See “Sending Electronic Mail Using
the FILENAME Statement (EMAIL)” on page 143 for details.

FTP reads or writes to a file
from any machine on a
network that is running
an FTP server

is the pathname of the external file on the remote machine followed
by FTP options. See the SAS Language Reference: Dictionary and
“Assigning Filerefs to Files on Other Systems (FTP and SOCKET
Access Types)” on page 137 for details.

If you are transferring a file to UNIX from the z/OS operating
environment and you want to use either the S370V or S370VB format
to access that file, then the file must be of type RECFM=U and
BLKSIZE=32760 before you transfer it. If you FTP to an z/OS
machine, only one member of an z/OS PDS can be written to at a
time. If you need to write to multiple members at the same time, an
z/OS PDSE or a UNIX System Services directory should be used.

PIPE reads input from or writes
output to a UNIX
command

is a UNIX command. See Chapter 6, “Printing and Routing Output,”
on page 153 for details.

PLOTTER sends output to a plotter is a device name and plotter options. See “Using PRTFILE and
PRINT with a Fileref” on page 160 and “Using the PRINTTO
Procedure in UNIX Environments” on page 161 for details.

PRINTER sends output to a printer is a device name and printer option. See “Using PRTFILE and
PRINT with a Fileref” on page 160 and “Using the PRINTTO
Procedure in UNIX Environments” on page 161 for details.

SOCKET reads and writes
information over a TCP/IP
socket

depends on whether the SAS application is a server application or a
client application. In a client application, external-file is the name or
IP address of the host and the TCP/IP port number to connect to
followed by any TCP/IP options. In a server application, external-file
is the port number to create for listening, followed by the SERVER
keyword, and then any TCP/IP options. See the SAS Language
Reference: Dictionary for details.

Statements under UNIX FOOTNOTE Statement 297

Device or
Access Method Function External-file

TAPE associates a fileref with a
tape

is the pathname for a tape device. The name specified should be the
name of the special file associated with the tape device. See
“Processing Files on TAPE in UNIX Environments” on page 149 for
more information.

TEMP associates a fileref with an
external file stored in the
Work data library

None

TERMINAL associates a fileref with a
terminal

is the pathname of a terminal.

UPRINTER sends output to the
default printer that was
set up through the Printer
Setup dialog box

None

URL enables you to use the
URL of a file to access it
remotely

is the name of the file that you want to read from or write to on a
URL server. The URL must be in one of these forms:
http://hostname/file
http://hostname:portno/file

See Also

� Chapter 5, “Using External Files and Devices,” on page 131

� Chapter 6, “Printing and Routing Output,” on page 153

FOOTNOTE Statement

Prints up to ten lines of text at the bottom of the procedure output

Valid: anywhere

UNIX specifics: maximum length of footnote

See: FOOTNOTE Statement in SAS Language Reference: Dictionary

Syntax

FOOTNOTE <n> <’text’|"text">;

Details

The maximum footnote length is 255 characters. If the length of the specified footnote
is greater than the value of the LINESIZE option, SAS truncates the footnote to the
line size.

298 %INCLUDE Statement Chapter 16

%INCLUDE Statement

Includes and executes SAS statements and data lines

Valid: anywhere
UNIX specifics: source, if a file specification is used; valid values for encoding-value
See: %INCLUDE Statement in SAS Language Reference: Dictionary

Syntax
%INCLUDE source-1 < ...source-n> </<SOURCE2>

<S2=length><ENCODING=’encoding-value’><host-options>>;

source
describes the location you want to access with the %INCLUDE statement. The three
possible sources are a file specification, internal lines, or keyboard entry. The file
specification can be any of the file specification forms that are discussed in “Accessing
an External File or Device in UNIX Environments” on page 133.

Note: When using aggregate syntax, if the member name contains a leading digit,
enclose the member name in quotation marks. If the member name contains a macro
variable reference, use double quotation marks. �

ENCODING=’encoding-value’
specifies the encoding to use when reading from the specified source. The value for
ENCODING= indicates that the specified source has a different encoding from the
current session encoding.

When you read data from the specified source, SAS transcodes the data from the
specified encoding to the session encoding.

For valid encoding values, see “Encoding Values in SAS Language Elements” in
SAS National Language Support (NLS): User’s Guide.

host-options
consists of statement options that are valid under UNIX. The following options are
available:

BLKSIZE=block-size
BLK=block-size

specifies the number of bytes that are physically read or written in an I/O
operation. The default is 8K. The maximum is 1M.

LRECL=record-length
specifies the record length (in bytes). Under UNIX, the default is 256. The value of
record-length can range from 1 to 1,048,576 (1 megabyte).

RECFM=record-format
specifies the record format. The following values are valid under UNIX:

D default format (same as variable).

F fixed format. That is, each record has the same length.

N binary format. The file consists of a stream of bytes with no
record boundaries.

P print format.

Statements under UNIX INFILE Statement 299

V variable format. Each record ends with a newline character.

S370V variable S370 record format (V).

S370VB variable block S370 record format (VB).

S370VBS variable block with spanned records S370 record format (VBS).
The S370 values are valid with files laid out as z/OS files only. That is, files that

are binary, have variable-length records, and are in EBCDIC format. If you want to
use a fixed-format z/OS file, first copy it to a variable-length, binary z/OS file.

Details
If you specify any options on the %INCLUDE statement, remember to precede the
options list with a forward slash (/).

See Also

� Chapter 5, “Using External Files and Devices,” on page 131

INFILE Statement

Specifies an external file to be read with an INPUT statement

Valid: in a DATA step
UNIX specifics: valid values for encoding-value, file-specification, and host-options

See: INFILE Statement in SAS Language Reference: Dictionary

Syntax
INFILE file-specification <ENCODING=’encoding-value’> <options> <host-options>;

file-specification
can be any of the file specification forms that are discussed in the “Accessing an
External File or Device in UNIX Environments” on page 133.

ENCODING=’encoding-value’
specifies the encoding to use when reading from the external file. The value for
ENCODING= indicates that the external file has a different encoding from the
current session encoding.

When you read data from an external file, SAS transcodes the data from the
specified encoding to the session encoding.

For valid encoding values, see “Encoding Values in SAS Language Elements” in
SAS National Language Support (NLS): User’s Guide.

host-options
are specific to UNIX environments. These options can be any of the following:

BLKSIZE=
BLK=

specifies the number of bytes that are physically read in one I/O operation. The
default is 8K. The maximum is 1G-1.

300 LENGTH Statement Chapter 16

TERMSTR=
controls the end of line/record delimiters in PC and UNIX formatted files. This
option enables the sharing of UNIX and PC formatted files between the two hosts.
The following are values for the TERMSTR= option:

CRLF Carriage Return Line Feed. This parameter is used to read PC
format files.

NL Newline. This parameter is used to read UNIX format files. NL
is the default.

Use TERMSTR=CRLF to read a file that was created on the PC. If this PC
format file was created using TERMSTR=NL, then the TERMSTR option is
unnecessary.

LRECL=
specifies the logical record length. Its meaning depends on the record format in
effect (RECFM). The default is 256. The maximum length is 1G.

� If RECFM=F, then the value for the LRECL= option determines the number
of bytes to be read as one record.

� If RECFM=N, then the value for the LRECL= option must be at least 256.
� If RECFM=V, then the value for the LRECL= option determines the

maximum record length. Records that are longer than the specified length
are truncated.

RECFM=
specifies the record format. The following values are valid under UNIX:

D default format (same as variable).

F fixed format. That is, each record has the same length.

N binary format. The file consists of a stream of bytes with no
record boundaries.

P print format.

V variable format. Each record ends with a newline character.

S370V variable S370 record format (V).

S370VB variable block S370 record format (VB).

S370VBS variable block with spanned records S370 record format (VBS).

Details
The ENCODING= option is valid only when the INFILE statement includes a file
specification that is not a reserved fileref. If the INFILE statement includes the
ENCODING= argument and the reserved filerefs DATALINES or DATALINES4 as a
file-specification, then SAS issues an error message. The ENCODING= value in the
INFILE statement overrides the value of the ENCODING= system option.

See Also

� Chapter 5, “Using External Files and Devices,” on page 131

LENGTH Statement

Specifies the number of bytes that SAS uses to store a variable’s value

Statements under UNIX LIBNAME Statement 301

Valid: in a DATA step

UNIX specifics: valid numeric variable lengths

See: LENGTH Statement in SAS Language Reference: Dictionary

Syntax
LENGTH <variable-1>< ...variable-n> <$> length <DEFAULT=n>

length
can range from 3 to 8 for numeric variables under UNIX. The minimum length you
can specify for a numeric variable depends on the floating-point format used by your
system. Because most systems use the IEEE floating-point format, the minimum is 3
bytes.

DEFAULT=n
changes the default number of bytes that are used for storing the values of newly
created numeric variables from 8 to the value of n. Under UNIX, n can range from 3
to 8.

See Also

� Chapter 8, “Data Representation,” on page 197

LIBNAME Statement

Associates or disassociates one or more SAS data libraries with a libref; lists the characteristics
of a SAS data library

Valid: anywhere

UNIX specifics: engine, library, and engine/host-options

See: LIBNAME Statement in SAS Language Reference: Dictionary

Syntax
LIBNAME libref <engine> ’SAS-data-library’ <options> <engine/host-options>;

LIBNAME libref <engine> (’library-1’<,...’library-n’>) <options>;

LIBNAME libref (’library-1’|libref-1,...,’library-n’|librefn);

LIBNAME libref CLEAR|_ALL _ CLEAR;

LIBNAME libref LIST|_ALL _ LIST;

libref
is any valid libref as documented in SAS Language Reference: Dictionary. SAS
reserves some librefs for special system libraries. See “Librefs Assigned by SAS in
UNIX Environments” on page 118 for more information.

302 LIBNAME Statement Chapter 16

engine
is one of the library engines supported under UNIX. See “Details” on page 303 for a
description of the engines. If no engine name is specified, SAS determines which
engine to use as described in “Omitting Engine Names from the LIBNAME
Statement” on page 304.

’SAS-data-library’
differs according to the engine that you specify and according to your current
working directory. Table 16.2 on page 303 describes what each engine expects for this
argument. Specify directory pathnames as described in “Specifying Pathnames in
UNIX Environments” on page 114. You cannot create directories with the LIBNAME
statement. The directory that you specify here must already exist, and you must
have permissions to it. Enclose the data library name in quotation marks.
Remember that UNIX pathnames are case-sensitive.

’library-n’|libref-n
are pathnames or librefs (that have already been assigned) for the data libraries that
you want to access with one libref. Use these forms of the LIBNAME statement
when you want to concatenate data libraries. Separate the pathnames with either
commas or blank spaces. Enclose library pathnames in quotation marks. Do not
enclose librefs in quotation marks. See “Assigning a Libref to Several Directories
(Concatenating Directories)” on page 115 for more information.

options
are LIBNAME statement options that are available in all operating environments.
See SAS Language Reference: Dictionary for information about these options.

engine/host-options
can be any of the options described in “Engine/Host Options” on page 305.

ALL
refers to all librefs currently defined. You can use this keyword when you are listing
or clearing librefs.

CLEAR
clears the specified libref or, if you specify _ALL_, clears all librefs that are currently
defined. Sasuser, Sashelp, and Work remain assigned.

Note: When you clear a libref defined by an environment variable, the variable
remains defined, but it is no longer considered a libref. You can still reuse it, either
as a libref or a fileref. See “Using Environment Variables as Librefs in UNIX
Environments” on page 117 for more information. �

SAS automatically clears the association between librefs and their respective data
libraries at the end of your job or session. If you want to associate an existing libref
with a different SAS data library during the current session, you do not have to end
the session or clear the libref. SAS automatically reassigns the libref when you issue
a LIBNAME statement for the new SAS data library.

LIST
prints to the SAS log the engine, pathname, file format, access permissions, and so
on, that are associated with the specified libref or, if you specify _ALL_, prints this
information for all librefs that are currently defined. Librefs defined as environment
variables appear only if you have already used those librefs in a SAS statement.

Statements under UNIX LIBNAME Statement 303

Details

There are two main types of engines:

View engines
enable SAS to read SAS data views that are described by SAS/ACCESS software,
the SQL procedure, and DATA step views. The use of SAS view engines is
automatic because the name of the view engine is stored as part of the descriptor
portion of the SAS data set.

Library engines
control access at the SAS data library level. Every SAS data library has an
associated library engine, and the files in that library can be accessed only
through that engine. There are two types of library engines:

native engines
access SAS files created and maintained by SAS. See the following table for a
description of these engines.

interface engines
treat other vendors’ files as if they were SAS files. See the following table
and “Accessing BMDP, OSIRIS, or SPSS Files in UNIX Environments” on
page 125 for more information.

Table 16.2 Engine Names and Descriptions

Engine Type Name (Alias) Description SAS-data-library

default V9 (BASE)
V8

enables you to create new SAS data files and
access existing SAS data files that were
created with Version 8 or SAS 9. The V8 and
V9 engines are identical. This engine enables
read access to data files that were created with
some earlier versions of SAS, but this engine
is the only one that supports SAS 9 catalogs.
This engine allows for data set indexing and
compression and is also documented in SAS
Language Reference: Dictionary.

is the pathname of the
directory containing the
library.

sequential V9TAPE

(TAPE)

V8TAPE

accesses SAS data files that were created in a
sequential format, whether on tape or on disk.
This engine requires less overhead than the
default engine because sequential access is
simpler than random access. This engine is
also documented in SAS Language Reference:
Dictionary.

is the name of the special file
(see “Introduction to External
Files and Devices in UNIX
Environments” on page 132)
associated with the sequential
device, such as
/dev/rmt/0mn.

V6TAPE accesses V6 SAS data files that were created in
a sequential format. This engine is read-only.

is the name of the special file
(see “Introduction to External
Files and Devices in UNIX
Environments” on page 132)
associated with the sequential
device, such as
/dev/rmt/0mn.

compatibility V6 accesses any data file that was created by
Releases 6.09 through 6.12. This engine is
read-only.

is the pathname of the
directory containing the
library.

304 LIBNAME Statement Chapter 16

Engine Type Name (Alias) Description SAS-data-library

servers SPDS enables communication between a client
session and a data server. You must have the
Scalable Performance Data Server licensed on
your client machine to use this engine. Refer
to Scalable Performance Data Server User’s
Guide, Version 2 for more information.

is the logical LIBNAME
domain name for an SPDS
data library on the server
machine. The name server
resolves the domain name
into the physical path for the
library.

MDDB enables communication between a client
session and an MDDB server. You must have
SAS/MDDB Server licensed either or your
client machine or on your server machine to
use this engine. Refer to SAS MDDB Server
Software: Administration Guide for complete
information.

transport XPORT accesses transport data sets. This engine
creates machine-independent SAS transport
files that can be used under all hosts running
Release 6.06 or later of SAS. This engine is
documented in Moving and Accessing SAS
Files.

is the pathname of either a
sequential device or a disk
file.

XML XML generates (writes) and processes (reads) any
XML document, which is an application- and
machine-independent file.

is the pathname of the XML
document.

interface BMDP provides read-only access to BMDP files. This
engine is available only on AIX, HP-UX, and
Solaris.

is the pathname of the data
file.

OSIRIS provides read-only access to OSIRIS files. is the pathname of the data
file.

SPSS provides read-only access to SPSS files is the pathname of the data
file.

Omitting Engine Names from the LIBNAME Statement It is always more efficient to
specify the engine name than to have SAS determine the correct engine. However, if
you omit an engine name in the LIBNAME statement or if you define an environment
variable to serve as a libref, SAS determines the appropriate engine.

If you have specified the ENGINE= system option, SAS uses the engine name that
you specified. See “ENGINE System Option” on page 327 for a discussion of the
ENGINE= system option.

Note: The ENGINE= system option specifies the default engine for data libraries on
disk only. �

If you did not specify the ENGINE= system option, SAS looks at the extensions of the
files in the given directory and uses these rules to determine an engine:

� If all the SAS data sets in the library were created by the same engine, the libref
is assigned using that engine.

Note: If the engine used to create the data sets is not the same as the default
engine, then you will not be able to create a view or stored program. See “Using
Multiple Engines for a Library in UNIX Environments” on page 116 for more
information.

Statements under UNIX SYSTASK Statement 305

� If there are no SAS data sets in the given directory, the libref is assigned using the
default engine.

� If there are SAS data sets from more than one engine, the system issues a message
about finding mixed engine types and assigns the libref using the default engine.

Engine/Host Options The LIBNAME statement accepts the following options:

FILELOCKS=NONE | FAIL | CONTINUE
specifies whether file locking is on or off for the library that you are defining. This
LIBNAME statement option works like the FILELOCKS system option, except
that it applies only to the library that you are defining. See “FILELOCKS System
Option” on page 329 for more information.

You can also specify any of the options supported by the SPDS engines. SPDS is
the Scalable Performance Data Server. Refer to Scalable Performance Data Server
User’s Guide, Version 2 for a description of these options.

See Also

� Chapter 4, “Using SAS Files,” on page 101

SYSTASK Statement

Executes asynchronous tasks

Valid: anywhere

UNIX specifics: all

Syntax
SYSTASK COMMAND “host-command”

<WAIT|NOWAIT>
<TASKNAME=taskname>

<MNAME=name-variable>
<STATUS=status-variable>
<SHELL<=“shell-command”>>

<CLEANUP>;

SYSTASK LIST <_ALL_ | taskname> <STATE> <STATVAR>;

SYSTASK KILL taskname <taskname...>;

COMMAND
executes the host-command.

LIST
lists either a specific active task or all of the active tasks in the system. A task is
active if it is running or if it has completed and has not been waited for using the
WAITFOR statement.

306 SYSTASK Statement Chapter 16

KILL
forces the termination of the specified task(s).

host-command
specifies the name of a UNIX command (including any command-specific options) or
the name of an X Windows or Motif application. Enclose the command in either
single or double quotation marks. If the command options require quotation marks,
repeat them for each option. For example:

SYSTASK COMMAND "xdialog -m ""There was an error."" -t ""Error"" -o";

Note: The host-command that you specify cannot require input from the
keyboard. �

WAIT | NOWAIT
determines whether SYSTASK COMMAND suspends execution of the current SAS
session until the task has completed. NOWAIT is the default. For tasks that start
with the NOWAIT option, you can use the WAITFOR statement when necessary to
suspend execution of the SAS session until the task has finished. See “WAITFOR
Statement” on page 308.

TASKNAME=taskname
specifies a name that identifies the task. Task names must be unique among all
active tasks. A task is active if it is running or if it has completed and has not been
waited for using the WAITFOR statement. Duplicate task names generate an error in
the SAS log. If you do not specify a task name, SYSTASK will automatically generate
a name. If the task name contains a blank character, enclose it in quotation marks.

Task names cannot be reused, even if the task has completed, unless you either
issue the WAITFOR statement for the task or you specify the CLEANUP option.

MNAME=name-variable
specifies a macro variable in which you want SYSTASK to store the task name that
it automatically generated for the task. If you specify both the TASKNAME option
and the MNAME option, SYSTASK copies the name that you specified with
TASKNAME into the variable that you specified with MNAME.

STATUS=status-variable
specifies a macro variable in which you want SYSTASK to store the status of the
task. Status variable names must be unique among all active tasks.

SHELL<=“shell-command”>
specifies that the host-command should be executed with the host shell command. If
you specify a shell-command, SYSTASK uses the shell command that you specify to
invoke the shell; otherwise, SYSTASK uses the default shell. Enclose the shell
command in quotes.

Note: The SHELL option assumes that the shell command that you specify uses
the -i option to pass statements. Usually, your shell command will be sh, csh, ksh,
or bash. �

CLEANUP
specifies that the task should be removed from the LISTTASK output when the task
completes. You can then reuse the task name without issuing the WAITFOR
statement.

Details
SYSTASK enables you to execute host-specific commands from within your SAS session
or application. Unlike the X statement, SYSTASK runs these commands as

Statements under UNIX SYSTASK Statement 307

asynchronous tasks, which means that these tasks execute independently of all other
tasks that are currently running. Asynchronous tasks run in the background, so you
can perform additional tasks while the asynchronous task is still running.

For example, to start a new shell and execute the UNIX cp command in that shell,
you might use this statement:

systask command "cp /tmp/sas* ~/archive/" taskname="copyjob1"
status=copysts1 shell;

The return code from the cp command is saved in the macro variable COPYSTS1.
The output from the command is displayed in the SAS log.

Note: Program steps that follow the SYSTASK statements in SAS applications
usually depend on the successful execution of the SYSTASK statements. Therefore,
syntax errors in some SYSTASK statements will cause your SAS application to abort. �

There are two types of asynchronous processes that can be started from SAS:

Task
All tasks started with SYSTASK COMMAND are of type Task. For these tasks, if
you do not specify STATVAR or STATE, then SYSTASK LIST displays the task
name, type, and state, and the name of the status macro variable. You can use
SYSTASK KILL to kill only tasks of type Task.

SAS/CONNECT Process
Tasks started from SAS/CONNECT with the RSUBMIT statement are of type
SAS/CONNECT Process. For SAS/CONNECT processes, SYSTASK LIST displays
the task name, type, and state. You can use SYSTASK KILL to kill a
SAS/CONNECT process. For information about starting SAS/CONNECT
processes, refer to SAS/CONNECT User’s Guide.

Note: The preferred method for displaying any task (not just SAS/CONNECT
processes) is to use the LISTTASK statement instead of SYSTASK LIST. The
preferred method for ending a task is using the KILLTASK statement in place of
SYSTASK KILL. �

The SYSRC macro variable contains the return code for the SYSTASK statement.
The status variable that you specify with the STATUS option contains the return code
of the process started with SYSTASK COMMAND. To ensure that a task executes
successfully, you should monitor both the status of the SYSTASK statement and the
status of the process that is started by the SYSTASK statement.

If a SYSTASK statement cannot execute successfully, the SYSRC macro variable will
contain a non-zero value. For example, there might be insufficient resources to
complete a task or the SYSTASK statement might contain syntax errors. With the
SYSTASK KILL statement, if one or more of the processes cannot be killed, SYSRC is
set to a non-zero value.

When a task is started, its status variable is set to NULL. You can use the status
variables for each task to determine which tasks failed to complete. Any task whose
status variable is NULL did not complete execution. If a task terminates abnormally,
then its status variable will be set to -1. See “WAITFOR Statement” on page 308 for
more information about the status variables.

Unlike the X statement, you cannot use the SYSTASK statement to start a new
interactive session.

See Also

� “WAITFOR Statement” on page 308
� “X Statement” on page 310

308 TITLE Statement Chapter 16

� “Executing Operating System Commands from Your SAS Session” on page 13

TITLE Statement

Specifies title lines for SAS output

Valid: anywhere
UNIX specifics: maximum length of title
See: TITLE Statement in SAS Language Reference: Dictionary

Syntax
TITLE <n> <’text’ | "text">;

Details
In interactive modes, the maximum title length is 254 characters; otherwise, the
maximum length is 200 characters. If the length of the specified title is greater than
the value of the LINESIZE option, the title is truncated to the line size.

WAITFOR Statement

Suspends execution of the current SAS session until the specified tasks finish executing

Valid: anywhere
UNIX specifics: all

Syntax
WAITFOR <_ANY | _ALL_> taskname <taskname...> <TIMEOUT=seconds>;

taskname
specifies the name of the task(s) that you want to wait for. See “SYSTASK
Statement” on page 305 for information about task names. The task name(s) that
you specify must match exactly the task names assigned through the SYSTASK
COMMAND statement. You cannot use wildcards to specify task names.

ANY | _ALL_
suspends execution of the current SAS session until either one or all of the specified
tasks finishes executing. The default setting is _ANY_, which means that as soon as
one of the specified task(s) completes executing, the WAITFOR statement will finish
executing.

TIMEOUT=seconds
specifies the maximum number of seconds that WAITFOR should suspend the
current SAS session. If you do not specify the TIMEOUT option, WAITFOR will
suspend execution of the SAS session indefinitely.

Statements under UNIX WAITFOR Statement 309

Details

The WAITFOR statements suspends execution of the current SAS session until the
specified task(s) finish executing or until the TIMEOUT= interval (if specified) has
elapsed. If the specified task was started with the WAIT option, then the WAITFOR
statement ignores that task. See “SYSTASK Statement” on page 305 for a description of
the WAIT option.

For example, the following statement starts three different X Windows programs and
waits for them to complete:

systask command "xv" taskname=pgm1;
systask command "xterm" taskname=pgm2;
systask command "xcalc" taskname=pgm3;
waitfor _all_ pgm1 pgm2 pgm3;

The WAITFOR statement can be used to execute multiple concurrent SAS sessions.
The following statements start three different SAS jobs and suspend the execution of
the current SAS session until those three jobs have finished executing:

systask command "sas myprog1.sas" taskname=sas1;
systask command "sas myprog2.sas" taskname=sas2;
systask command "sas myprog3.sas" taskname=sas3;
waitfor _all_ sas1 sas2 sas3;

Note: In this method, SAS terminates after each command which can result in
reduced performance. SAS/CONNECT can also be used for executing parallel SAS
sessions. See SAS/CONNECT User’s Guide for more information. �

The SYSRC macro variable contains the return code for the WAITFOR statement. If
a WAITFOR statement cannot execute successfully, the SYSRC macro variable will
contain a non-zero value. For example, the WAITFOR statement may contain syntax
errors. If the number of seconds specified with the TIMEOUT option elapses, then the
WAITFOR statement finishes executing, and SYSRC is set to a non-zero value if

� you specify a single task that does not finish executing

� you specify more than one task and the _ANY_ option (which is the default
setting), but none of the tasks finishes executing

� you specify more than one task and the _ALL_ option, and any one of the tasks
does not finish executing.

Any task whose status variable is still NULL after the WAITFOR statement has
executed did not complete execution. See “SYSTASK Statement” on page 305 for a
description of status variables for individual tasks.

See Also

� “SYSTASK Statement” on page 305

� “X Statement” on page 310

� SAS/CONNECT User’s Guide

� “Executing Operating System Commands from Your SAS Session” on page 13

310 X Statement Chapter 16

X Statement

Issues an operating system command from within a SAS session

Valid: anywhere
UNIX specifics: valid operating system command
See: X Statement in SAS Language Reference: Dictionary

Syntax
X <’host-command’>;

host-command
specifies the UNIX command. If you specify only one UNIX command, you do not
need to enclose it in quotation marks. Also, if you are running SAS from the Korn
shell, you cannot use aliases.

Details
The X statement issues a UNIX command from within a SAS session. SAS executes the
X statement immediately.

Neither the X statement nor the %SYSEXEC macro program statement is intended
for use during the execution of a DATA step. The CALL SYSTEM routine, however, can
be executed within a DATA step. See “CALL SYSTEM Routine” on page 239 for an
example.

Note: The X statement is not supported without arguments under the X Window
System. �

See Also

� “Executing Operating System Commands from Your SAS Session” on page 13

311

C H A P T E R

17
System Options under UNIX

SAS System Options under UNIX 313

Determining How a System Option Was Set 313
Dictionary 313

ALTLOG System Option 313

ALTPRINT System Option 314
APPEND System Option 315

AUTOEXEC System Option 316

AUTOSAVELOC System Option 317
BATCH System Option 318

BUFNO System Option 318
BUFSIZE System Option 319

CATCACHE System Option 320

CLEANUP System Option 321
CONFIG System Option 322

DBCS System Option 323

DBCSLANG System Option 323
DBCSTYPE System Option 323

DEVICE System Option 324
ECHO System Option 324

EDITCMD System Option 325

EMAILSYS System Option 326
ENCODING System Option 327

ENGINE System Option 327

FILELOCKS System Option 329
FONTSLOC System Option 330

FSDBTYPE System Option 330
FSIMM System Option 330

FSIMMOPT System Option 331

FULLSTIMER System Option 331
GISMAPS System Option 333

HELPINDEX System Option 333

HELPLOC System Option 334
HELPTOC System Option 335

INSERT System Option 337
JREOPTIONS System Option 337

LINESIZE System Option 338

LOADMEMSIZE System Option 339
LOCALE System Option 340

LOG System Option 340

LPTYPE System Option 341
MAPS System Option 342

312 Contents Chapter 17

MAXMEMQUERY System Option 343

MEMSIZE System Option 344
MSG System Option 345

MSGCASE System Option 345

MSYMTABMAX System Option 346
MVARSIZE System Option 347

NEWS System Option 347

NLSCOMPATMODE System Option 348
OBS System Option 348

OPLIST System Option 349
PAGESIZE System Option 350

PATH System Option 351

PRINT System Option 351
PRINTCMD System Option 352

REALMEMSIZE System Option 353

RSASUSER System Option 354
RTRACE System Option 355

RTRACELOC System Option 356
S System Option 356

S2 System Option 357

SASAUTOS System Option 358
SASHELP System Option 360

SASSCRIPT System Option 361

SASUSER System Option 361
SEQENGINE System Option 362

SET System Option 363
SORTANOM System Option 363

SORTCUT System Option 364

SORTCUTP System Option 365
SORTDEV System Option 366

SORTNAME System Option 367

SORTPARM System Option 367
SORTPGM System Option 368

SORTSIZE System Option 368
SSLCALISTLOC System Option 369

SSLCERTLOC System Option 370

SSLCLIENTAUTH System Option 371
SSLCRLCHECK System Option 372

SSLCRLLOC System Option 373

SSLPVTKEYLOC System Option 373
SSLPVTKEYPASS System Option 374

STDIO System Option 375
STIMEFMT System Option 376

STIMER System Option 376

SYSIN System Option 378
SYSPRINT System Option 378

TAPECLOSE System Option 379

USER System Option 380
VERBOSE System Option 380

WORK System Option 381
WORKINIT System Option 382

WORKPERMS System Option 382

XCMD System Option 383
Summary of All SAS System Options in UNIX Environments 384

System Options under UNIX ALTLOG System Option 313

SAS System Options under UNIX
This section describes SAS system options that have behavior or syntax that is

specific to UNIX environments. Each system option description includes a brief “UNIX
specifics” section that explains which aspect of the system option is specific to UNIX. If
the information under “UNIX specifics” is “all,” then the system option is described only
in this documentation. Otherwise, the system option is described in both this
documentation and in SAS Language Reference: Dictionary.

See “Summary of All SAS System Options in UNIX Environments” on page 384 for a
table of all of the system options available under UNIX.

Determining How a System Option Was Set
Because of the relationship between some SAS system options, SAS might modify an

option’s value. This modification might change your results.
To determine how an option was set, enter the following code in the SAS Program

Editor:

proc options option=option value;
run;

After you submit this code, the SAS log will explain how the option was set. For
example, the following output is displayed when you enter

proc options option=CATCACHE value;
run;

Output 17.1 Log Output for the CATCACHE System Option

Option Value Information for SAS Option CATCACHE
Option Value: 0
Option Scope: Default
How option value was set: Shipped Default

Options that are set by SAS will often say “Internal” in the How option value was
set field. Some SAS options are only internal. You cannot specify an internal option as
the option= value in the preceding code. If you do, SAS will return an error stating an
unrecognized option value.

Dictionary

ALTLOG System Option

Specifies the destination for an alternate SAS log

Default: no alternate SAS log is made

Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable

314 ALTPRINT System Option Chapter 17

Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
UNIX specifics: all

Syntax
–ALTLOG destination|–NOALTLOG

-ALTLOG destination
specifies the location where an alternate SAS log is to be sent. The destination
argument can be any valid UNIX path to a directory, a filename, or an environment
variable that is associated with a path. If you specify only the path to a directory, the
SAS log is placed in a file in the specified directory. The name of the file will be
filename.log, where filename is the name of your SAS job. If you are running SAS
interactively and specify only the path to a directory, the log is written to a file
named Sas.log within that path.

-NOALTLOG
causes any previous ALTLOG specifications to be ignored.

Details
All messages that are written to the SAS log are written to the location specified in
destination. You can use this option to capture procedure output for printing.

Note: You can use the LOG option in the PRINTTO procedure to redirect any
portion of the log to an external file. The code for PROC PRINTTO will not appear in
the SAS log for the current session, but it will appear in the SAS log that you created
with the ALTLOG system option. �

See Also

� “ALTPRINT System Option” on page 314
� “PRINTTO Procedure” on page 281
� “Using SAS System Options to Route Output” on page 163

ALTPRINT System Option

Specifies the destination for a copy of the SAS procedure output file

Default: no copy of SAS output is made
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
UNIX specifics: all

Syntax
-ALTPRINT destination | –NOALTPRINT

System Options under UNIX APPEND System Option 315

-ALTPRINT destination
specifies the location where a copy of the procedure output is to be sent. The
destination can be any valid UNIX path to a directory, a filename, or an environment
variable that is associated with a path. If you specify only the path to a directory, the
copy is place in a file in the specified directory. The file’s name will be filename.lst,
where filename is the name of your SAS job. If you are running SAS interactively
and specify only the path to a directory, the filename is Sas.lst.

-NOALTPRINT
causes any previous ALTPRINT specifications to be ignored.

Details
All messages that are written to the SAS procedure output file are also written to the
location specified in destination. You can use this option to capture the procedure
output for printing.

See Also

� “ALTLOG System Option” on page 313
� “Using SAS System Options to Route Output” on page 163

APPEND System Option

Appends the specified pathname to the existing value of the specified system option

Default: none
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
PROC OPTIONS GROUP= ENVFILES
UNIX specifics: all

Syntax
-APPEND system-option new-pathname

system-option
can be HELPLOC, MAPS, MSG, SASAUTOS, SASHELP.

new-pathname
is the new pathname that you want to append to the current value of system-option.

Details
By default, if you specify the HELPLOC, MAPS, MSG, SASAUTOS, or SASHELP
system option more than one time, the last value that is specified is the value that SAS
uses. If you want to add additional pathnames to the pathnames already specified by
one of these options, you must use the APPEND system option to add the new
pathname. For example, if you entered the following SAS command, the only location

316 AUTOEXEC System Option Chapter 17

that SAS will look for help files is /apps/help and the output of PROC OPTIONS will
show only /apps/help:

sas -helploc /sas/help -helploc /apps/help

If you want SAS to look in both locations for help files, you must use the APPEND
option:

sas -helploc /sas/help -append helploc /apps/help

For the value of the HELPLOC option, PROC OPTIONS will now show

(’/sas/help’ ’/apps/help’)

See Also

� “INSERT System Option” on page 337

AUTOEXEC System Option

Specifies the autoexec file to be used

Default: autoexec.sas (see Details below)
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
UNIX specifics: all

Syntax
-AUTOEXEC filename | -NOAUTOEXEC

-AUTOEXEC filename
specifies the autoexec file to be used. The filename must resolve to a valid UNIX
pathname.

-NOAUTOEXEC
specifies that SAS is not to process any autoexec files.

Details
The autoexec file contains SAS statements that are executed automatically when you
invoke SAS or when you start another SAS process. The autoexec file can contain any
SAS statements. For example, your autoexec file can contain LIBNAME statements for
SAS data libraries that you access routinely in SAS sessions.

SAS looks for this option in the following order:
1 on the command line
2 in the SASV9_OPTIONS environment variable
3 in the configuration file.

System Options under UNIX AUTOSAVELOC System Option 317

It uses the first AUTOEXEC option it encounters and ignores all others.
If neither AUTOEXEC nor NOAUTOEXEC is specified, SAS searches three

directories for an autoexec.sas file in the following order:

1 your current directory
2 your home directory

3 the !SASROOT directory (see Appendix 1, “The !SASROOT Directory,” on page 397).

SAS uses the first file it finds to initialize the session.
If you want to see the contents of the autoexec file for your session, use the

ECHOAUTO system option when you invoke SAS.

See Also

� “Customizing Your SAS Session Using System Options” on page 18

AUTOSAVELOC System Option

Specifies the location of the Program Editor autosave file

Default: none

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Display

PROC OPTIONS GROUP= ENVDISPLAY
UNIX specifics: valid values of pathname

Syntax
-AUTOSAVELOC fileref | pathname

AUTOSAVELOC= fileref | pathname

fileref
specifies a fileref to the location where the autosave file is saved.

pathname
specifies the pathname of the autosave file. The pathname must be a valid UNIX
pathname.

Details
By default, SAS saves the Program Editor autosave file, pgm.asv, in the current folder.
You can use the AUTOSAVELOC system option to specify a different location for the
autosave file.

See Also

� “SETAUTOSAVE Command” on page 215

318 BATCH System Option Chapter 17

BATCH System Option

Specifies whether batch settings for LINESIZE, PAGESIZE, and SOURCE are in effect when SAS
executes

Default: NOBATCH
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Initialization and operation
PROC OPTIONS GROUP= EXECMODES
UNIX specifics: default setting
See: BATCH System Option in SAS Language Reference: Dictionary

Syntax
-BATCH | -NOBATCH

-BATCH
specifies that SAS use the batch settings of LINESIZE=132, PAGESIZE=60, and
SOURCE. At the start of an interactive SAS session, you can use the BATCH setting
to simulate the behavior of the system in batch mode.

-NOBATCH
specifies that SAS not use the batch settings for LINESIZE, PAGESIZE, and
SOURCE. While in batch mode, you can specify NOBATCH to use the default
(nonbatch) settings for the options LINESIZE, PAGESIZE, and NOSOURCE.

Details
The setting of the BATCH option does not specify the method of operation. BATCH only
sets the appropriate batch settings for a collection of options that are in effect when
SAS executes. The LINESIZE and PAGESIZE option values for batch mode can be
dynamically set based on terminal characteristics when executing interactively.

In addition, the BATCH system option does not specify whether a terminal is present.

See Also

� “LINESIZE System Option” on page 338
� “PAGESIZE System Option” on page 350

BUFNO System Option

Specifies the number of buffers to be allocated for processing SAS data sets

Default: 1
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable
Category: Files: SAS Files

System Options under UNIX BUFSIZE System Option 319

PROC OPTIONS GROUP= SASFILES, PERFORMANCE

UNIX specifics: default value
See: BUFNO System Option in SAS Language Reference: Dictionary

Syntax
-BUFNO n | nK | nM| nG | hexX | MIN | MAX

BUFNO=n | nK | nM| nG| hexX | MIN | MAX

n | nK | nM | nG
specifies the number of buffers in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576
(megabytes); or 1,073,741,824 (gigabytes). You can specify decimal values for the
number of kilobytes, megabytes, or gigabytes. For example, a value of 8 specifies 8
buffers, a value of .782k specifies 801 buffers, and a value of 3m specifies 3,145,728
buffers.

hexX
specifies the number of buffers as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by hex digits (0–9, A-F), and then followed
by an X. For example, 2dx specifies 45 buffers.

MIN
sets the number of buffers to 0, and requires SAS to use the default value of 1.

MAX
sets the number of buffers to 2,147,483,647.

Details
The number of buffers is not a permanent attribute of the data set; it is valid only for
the current SAS session or job.

BUFNO= applies to SAS data sets that are opened for input, output, or update.
Using BUFNO= can improve execution time by limiting the number of input/output

operations that are required for a particular SAS data set. The improvement in
execution time, however, comes at the expense of increased memory consumption.

Under UNIX, the maximum number of buffers that you can allocate is determined by
the amount of memory available.

BUFSIZE System Option

Specifies the permanent buffer page size for output SAS data sets

Default: 0

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable

Category: Files: SAS Files

PROC OPTIONS GROUP= SASFILES, PERFORMANCE

320 CATCACHE System Option Chapter 17

UNIX specifics: valid range
See: BUFSIZE System Option in SAS Language Reference: Dictionary

Syntax
-BUFSIZE n | nK | nM | nG | hexX | MIN | MAX

BUFSIZE=n | nK | nM | nG | hexX | MIN | MAX

n | nK | nM | nG
specifies the buffer page size in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576
(megabytes); or 1,073,741,824 (gigabytes). You can specify decimal values for the
number of kilobytes, megabytes, or gigabytes. For example, a value of 8 specifies 8
bytes, a value of .782k specifies 801 bytes, and a value of 3m specifies 3,145,728 bytes.

hexX
specifies the buffer page size as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by hex digits (0–9, A-F), and then followed
by an X. For example, 2dx sets the buffer page size to 45 bytes.

MIN
sets the buffer page size to 0. When the buffer size is 0, the BASE engine calculates
a buffer size to optimize CPU and I/O use. This size is the smallest multiple of 8K
that can hold 80 observations but is not larger than 64K.

MAX
sets the buffer page size to 2,147,483,647.

Details
The buffer page size can range from 1K to 2G-1.

If you specify a nonzero value when you create a SAS data set, the BASE engine uses
that value. If that value cannot hold at least one observation or is not a multiple of 1K,
the engine rounds the value up to a multiple of 1K.

CATCACHE System Option
Specifies the number of SAS catalogs to keep open

Default: 0
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES
UNIX specifics: Valid values for n
See: CATCACHE System Option in SAS Language Reference: Dictionary
SAS Language Reference: Dictionary

Syntax
-CATCACHE n | nK | MIN | MAX

System Options under UNIX CLEANUP System Option 321

n | nK
specifies the number of open-file descriptors to keep in cache memory in multiples of
1 (n) or 1,024 (nK). You can specify decimal values for the number of kilobytes. For
example, a value of 8 specifies 8 open-file descriptors, a value of .782k specifies 801
open-file descriptors, and a value of 3k specifies 3,072 open-file descriptors.

If n > 0, SAS places up to that number of open-file descriptors in cache memory
instead of closing the catalogs.

MIN
sets the number of open-file descriptors that are kept in cache memory to 0.

MAX
sets the number of open-file descriptors that are kept in cache memory to 32,767.

Details
By using the CATCACHE system option to specify the number of SAS catalogs to keep
open, you can avoid the repeated opening and closing of the same catalogs.

If SAS is running on an z/OS server and the MINSTG system option is in effect, SAS
sets the value of CATCACHE to 0.

See Also

� The section on optimizing system performance in SAS Language Reference:
Concepts

CLEANUP System Option

Specifies how to handle out-of-resource conditions

Default: CLEANUP for interactive modes; NOCLEANUP otherwise
Valid in: configuration file, SAS invocation, OPTIONS statement, SASV9_OPTIONS
environment variable
Category: Environment control: Error handling
PROC OPTIONS GROUP= ERRORHANDLING
UNIX specifics: behavior when running in interactive line mode and batch mode
See: CLEANUP System Option in SAS Language Reference: Dictionary

Syntax
-CLEANUP| -NOCLEANUP

CLEANUP | NOCLEANUP

CLEANUP
specifies that during the entire session, SAS attempts to perform automatic,
continuous clean up of resources that are not essential for execution. Nonessential
resources include those that are not visible to the user (for example, cache memory)
and those that are visible to the user (for example, the KEYS windows).

322 CONFIG System Option Chapter 17

CLEANUP does not prompt you before SAS attempts to clean up your disk.
However, when an out-of-disk-space condition occurs and your display is attached to
the process, you are prompted with a menu selection even if the CLEANUP option is
on. If you do not want to be prompted for out-of-disk-space conditions, use the
CLEANUP option in conjunction with the NOTERMINAL option.

When the CLEANUP option is on, SAS performs automatic continuous cleanup. If
not enough resources are recovered, the request for the resource fails, and an
appropriate error message is written to the SAS log.

CLEANUP is the default in batch mode because there is no display attached to the
process to accommodate prompting.

NOCLEANUP
specifies that SAS allows the user to choose how to handle an out-of-resource
condition. When NOCLEANUP is in effect and SAS cannot execute because of a lack
of resources, SAS automatically attempts to clean up resources that are not visible to
the user (for example, cache memory). However, resources that are visible to the user
(for example, the KEYS windows) are not automatically cleaned up. Instead, SAS
prompts you before attempting to clean up your disk.

Details
The CLEANUP system option indicates whether you should be prompted with a menu
of items to be cleaned up when SAS encounters an out-of-resource condition. In batch
mode, SAS ignores this option, and if an out-of-resource condition occurs, the SAS
session terminates.

CONFIG System Option

Specifies the name of an alternative configuration file

Default: sasv9.cfg (see “Order of Precedence for SAS Configuration Files” on page 17)

Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable,
SASV9_CONFIG environment variable

Category: Environment control: Files

PROC OPTIONS GROUP= ENVFILES

UNIX specifics: all

Syntax
-CONFIG filename | –NOCONFIG

-CONFIG filename
specifies a configuration file to be read. The filename must resolve to a valid UNIX
filename.

-NOCONFIG
specifies that any previous CONFIG specification should be ignored and that the
default system options should be used.

System Options under UNIX DBCSTYPE System Option 323

Details
Configuration files contain system option specifications that execute automatically
whenever SAS is invoked.

If you specify the CONFIG= system option in a configuration file, the option is
ignored.

See Also

� “Customizing Your SAS Session Using System Options” on page 18

DBCS System Option

Recognizes double-byte character sets (DBCS)

Default: NODBCS
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Language control
PROC OPTIONS GROUP= LANGUAGECONTROL
UNIX specifics: all
See: DBCS System Option in SAS National Language Support (NLS): User’s Guide

DBCSLANG System Option

Specifies a double-byte character set (DBCS) language

Default: NONE
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Language control
PROC OPTIONS GROUP= LANGUAGECONTROL
UNIX specifics: all
See: DBCSLANG System Option in SAS National Language Support (NLS): User’s
Guide

DBCSTYPE System Option

Specifies a double-byte character set (DBCS) encoding method

Default: Depends on UNIX environment
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Language control
PROC OPTIONS GROUP= LANGUAGECONTROL

324 DEVICE System Option Chapter 17

UNIX specifics: all
See: DBCSTYPE System Option in SAS National Language Support (NLS): User’s
Guide

DEVICE System Option

Specifies a device driver for graphics output for SAS/GRAPH software

Default: none
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable, GOPTIONS statement
Category: Graphics: Driver settings
PROC OPTIONS GROUP= GRAPHICS
UNIX specifics: valid device drivers
See: DEVICE System Option in SAS Language Reference: Dictionary

Syntax
-DEVICE device-driver-name

DEVICE=device-driver-name

device-driver-name
specifies the name of a device driver for graphics output.

Details
To see the list of device drivers that are available under UNIX, you can use the
GDEVICE procedure. If you are using the SAS windowing environment, submit the
following statements:

proc gdevice catalog=sashelp.devices;
run;

If you are running SAS in interactive line mode or batch mode, submit the following
statements:

proc gdevice catalog=sashelp.devices nofs;
list _all_;

run;

See Also

� SAS/GRAPH Reference, Volumes 1 and 2

ECHO System Option

Specifies a message to be echoed to the computer

System Options under UNIX EDITCMD System Option 325

Default: NOECHO
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Log and procedure output control: SAS log
PROC OPTIONS GROUP= LOGCONTROL
UNIX specifics: all

Syntax
-ECHO “message” | -NOECHO

ECHO “message”
specifies the text of the message to be echoed to the computer. The text must be
enclosed in single or double quotation marks if the message is more than one word.
Otherwise, the quotation marks are not needed.

NOECHO
specifies that no messages are to be echoed to the computer.

Details
Messages that result from errors in the autoexec file are printed in the SAS log
regardless of how the ECHO system option is set.

You can specify multiple ECHO options. The strings are displayed in the order in
which SAS encounters them. See “How SAS Processes System Options Set in Multiple
Places” on page 20 for information on how that order is determined.

Example

For example, you can specify the following:

-echo ‘‘SAS 9.1 under UNIX is initializing.’’

The message appears in the LOG window as SAS initializes.

See Also

� “ECHOAUTO System Option” in SAS Language Reference: Dictionary

EDITCMD System Option

Specifies the host editor to be used with the HOSTEDIT command

Default: none
Valid in: configuration file, SAS invocation, OPTIONS statement, SASV9_OPTIONS
environment variable
Category: Environment control: Display
PROC OPTIONS GROUP= ENVDISPLAY
UNIX specifics: all

326 EMAILSYS System Option Chapter 17

Syntax
-EDITCMD "host-editor-pathname editor-options"

EDITCMD="host-editor-pathname editor-options"

Details
The EDITCMD system option specifies the command that is issued to the operating
environment. If you are using a terminal-based editor, such as vi, you must specify a
command that runs the editor inside a terminal emulator window.

You can define the EDITCMD option using the SASV9_OPTIONS environment
variable as part of a configuration file or on the command line to make the definition
available automatically to SAS. The option must be specified as a quoted string. You
can use either single or double quotation marks. You can change the value for the
EDITCMD option during a SAS session by issuing an OPTIONS statement.

The host editor that you specify is used when you issue the HOSTEDIT command.
The HOSTEDIT command is valid only when you are running SAS in a windowing
environment.

If you do not specify the full pathname, SAS searches the pathnames specified in the
$PATH environment variable. Quotation marks are needed only when you specify editor
options. If you are using a terminal-based editor, you must specify a command that runs
the editor inside a terminal emulator window. For example, to use vi, you would specify

sas -editcmd "/usr/bin/X11/xterm -e /usr/bin/vi"

See Also

� “Configuring SAS for Host Editor Support in UNIX Environments” on page 49

EMAILSYS System Option

Specifies which email system to use for sending electronic mail from within SAS

Default: SMTP (Simple Mail Transfer Protocol)

Valid in: configuration file, SAS invocation

Category: Communications: Email

PROC OPTIONS GROUP= EMAIL
UNIX specifics: all

Syntax
-EMAILSYS SMTP | name-of-script

SMTP
specifies the Simple Mail Transfer Protocol electronic mail interface.

System Options under UNIX ENGINE System Option 327

name-of-script
specifies which script to use for sending electronic mail from within SAS. Some
external scripts do not support sending e-mail attachments. These scripts are not
supported by SAS.

Details
The EMAILSYS system option specifies which e-mail system to use for sending
electronic mail from within SAS. Specifying SMTP supports sending e-mail attachments
on UNIX, but might require changing the values of the EMAILHOST= and
EMAILPORT=, depending on your site configuration.

See Also

� “Sending Mail from within Your SAS Session in UNIX Environments” on page 47
� “Sending Electronic Mail Using the FILENAME Statement (EMAIL)” on page 143
� “EMAILHOST System Option” in SAS Language Reference: Dictionary
� “EMAILPORT System Option” in SAS Language Reference: Dictionary
� “The SMTP E-mail Interface” in SAS Language Reference: Concepts

ENCODING System Option

Specifies the default character-set encoding for processing external data

Default: latin1
Valid in: configuration file, SAS invocation
Category: Environment control: Language control
PROC OPTIONS GROUP= LANGUAGECONTROL
UNIX specifics: valid values
See: ENCODING= System Option in SAS National Language Support (NLS): User’s
Guide

ENGINE System Option

Specifies the default access method to use for SAS libraries

Default: V9
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES
UNIX specifics: valid values of engine-name

Syntax
-ENGINE engine-name

328 ENGINE System Option Chapter 17

engine-name
can be one of the following under UNIX:

BASE | V9
specifies the default SAS engine for SAS 9 and SAS 9.1 files.

V8
specifies the SAS engine for all SAS Version 8 files.

V7
specifies the SAS engine for all Version 7 files.

V6
specifies the SAS engine for Release 6.09 through Release 6.12. This engine is
read-only.

TAPE | V9TAPE
specifies the default sequential engine for SAS 9 and SAS 9.1 files.

V8TAPE | V7TAPE
specifies the SAS sequential engine for all Version 8 and Version 7 files. These
engines are identical to the V9TAPE engine.

V6TAPE
specifies the SAS sequential engine for Version 6 files. This engine is read-only.

See Also

� “Accessing SAS Files across Compatible Machine Types in UNIX Environments”
on page 108

� “ENGINE System Option” in SAS Language Reference: Dictionary

� SAS Language Reference: Concepts

System Options under UNIX FILELOCKS System Option 329

FILELOCKS System Option

Specifies whether file locking is on or off and what action should be taken if a file cannot be locked

Default: FAIL

Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable

Category: Environment control: Files

PROC OPTIONS GROUP= ENVFILES

UNIX specifics: all

Syntax
-FILELOCKS NONE | FAIL | CONTINUE

NONE
turns file locking off. SAS files are not protected from shared update access.

FAIL
turns file locking on. If a file cannot be locked, an attempt to open it fails.

CONTINUE
turns file locking on. If a file is already locked by someone else, an attempt to open it
fails. If the file cannot be locked for some other reason, the file is opened and a
warning message is sent to the log.

Details
When FILELOCKS is set to FAIL, SAS prevents these situations:

� two SAS sessions simultaneously opening the same SAS file for update or output.

� one SAS session reading a SAS file that another SAS session has open for update
or output.

� one SAS session writing to a file that another SAS session has open in read mode.

With file locking on, multiple SAS sessions will be able to simultaneously read the same
SAS file.

For file locking to work on some hosts, you must have the host’s file locking service
running. This usually involves having a lock daemon (such as lockd) and a stat
daemon (such as statd) running. You might also need to execute other commands. For
specifics, refer to the man pages or system administration instructions for your host.

In addition, if you are working with NFS-mounted files, the "file locking service"
must be running both on your local host and on the remote host.

To prevent data corruption, setting FILELOCKS to NONE or CONTINUE is not
recommended.

See Also

� “WORKINIT System Option” on page 382

330 FONTSLOC System Option Chapter 17

FONTSLOC System Option

Specifies the directory that contains the SAS fonts that are loaded by some Universal Printer drivers

Default: !SASROOT/misc/font

Valid in: configuration file, SAS invocation
Category: Environment control: Display
PROC OPTIONS GROUP= ENVDISPLAY
UNIX specifics: valid pathname

Syntax
FONTSLOC "directory-specification"

"directory-specification"
specifies the directory that contains the SAS fonts that are loaded during the SAS
session. The directory-specification must be enclosed in double quotation marks.

Details
The directory must be a valid operating system path name.

FSDBTYPE System Option

Specifies full-screen double-byte character set (DBCS) encoding method

Default: DEFAULT
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Language control
PROC OPTIONS GROUP= LANGUAGECONTROL
UNIX specifics: all
See: FSDBTYPE System Option in SAS National Language Support (NLS): User’s
Guide

FSIMM System Option

Specifies full-screen double-byte character set (DBCS) input method modules (IMMs)

Default: none
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Language control

System Options under UNIX FULLSTIMER System Option 331

PROC OPTIONS GROUP= LANGUAGECONTROL
UNIX specifics: all
See: FSIMM System Option in SAS National Language Support (NLS): User’s Guide

FSIMMOPT System Option

Specifies options for full-screen double-byte character set (DBCS) input method modules

Default: none
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Language control
PROC OPTIONS GROUP= LANGUAGECONTROL
UNIX specifics: all
See: FSIMMOPT System Option in SAS National Language Support (NLS): User’s
Guide

FULLSTIMER System Option

Writes all available system performance statistics to the SAS log

Default: NOFULLSTIMER
Valid in: configuration file, SAS invocation, OPTIONS statement, SASV9_OPTIONS
environment variable
Category: Log and procedure output control: SAS log
PROC OPTIONS GROUP= LOGCONTROL
UNIX specifics: all

Syntax
-FULLSTIMER | -NOFULLSTIMER

FULLSTIMER | NOFULLSTIMER

FULLSTIMER
writes to the SAS log a list of the host dependent resources that were used for each
step and for the entire SAS session.

NOFULLSTIMER
does not write to the SAS log a complete list of resources.

Details
SAS calls the getrusage() and times() UNIX system calls for your operating
environment to obtain the statistics presented with FULLSTIMER. The following is an
example of FULLSTIMER output.

332 FULLSTIMER System Option Chapter 17

Output 17.2 FULLSTIMER Output

real time 1.34 seconds
user cpu time 0.04 seconds
system cpu time 0.29 seconds
Memory 208k
Page Faults 116
Page Reclaims 656
Page Swaps 0
Voluntary Context Switches 601
Involuntary Context Switches 24
Block Input Operations 10
Block Output Operations 7

Note: If both FULLSTIMER and STIMER are set, the FULLSTIMER statistics are
printed. �

FULLSTIMER displays the following statistics:

Table 17.1 Description of FULLSTIMER Statistics

Statistic Description

Real Time the amount of time spent to process the SAS job. Real time is also
referred to as elapsed time.

User CPU the CPU time spent to execute your SAS code.

System CPU the CPU time spent to perform system overhead tasks on behalf
of the SAS process.

Memory the amount of memory required to run a step.

Page Faults the number of pages that SAS tried to access but were not in
main memory and required I/O activity.

Page Reclaims the number of pages that can be accessed without I/O activity.

Page Swaps the number of times a process was swapped out of main memory.

Voluntary Context Switches the number of times that the SAS process had to give up on the
CPU because of a resource constraint such as a disk drive.

Involuntary Context Switches the number of times that the operating system forced a process
into an inactive state.

Block Input Operations the number of I/O operations performed to read the data into
memory.

Block Output Operations the number of I/O operations performed to write the data to file.

For more information about these statistics, see the man pages for the getrusage()
and times() UNIX system calls for your operating environment.

Note: Starting in SAS 9, some procedures use multiple threads. On computers with
multiple CPUs, the operating system can run more than one thread simultaneously.
Consequently, CPU time might exceed real time in your FULLSTIMER output.

For example, a SAS procedure could use two threads that run on two separate CPUs
simultaneously. The value of CPU time would be calculated as the following:

CPU1 time + CPU2 time = total CPU time
1 second + 1 second = 2 seconds

System Options under UNIX HELPINDEX System Option 333

Since CPU1 can run a thread at the same time that CPU2 runs a separate thread for
the same SAS process, you can theoretically consume 2 CPU seconds in 1 second of real
time. �

See Also

� “STIMER System Option” on page 376

GISMAPS System Option

Specifies the location of the SAS data library that contains U.S. Census Tract maps supplied by
SAS/GIS

Default: GISMAPS, if defined
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable,
LIBNAME statement
Category: Graphics: Driver settings
PROC OPTIONS GROUP= GRAPHICS
UNIX specifics: valid values for library-specification and path-to-library
See: GISMAPS= System Option in SAS Language Reference: Dictionary

Syntax
GISMAPS=library-specification | path-to-library

library-specification | path-to-library
specifies either a library or a physical path to a library that contains U.S. Census
Tract maps supplied by SAS/GIS.

HELPINDEX System Option

Specifies one or more index files to be used by SAS Help and Documentation

Default: /help/common.hlp/index.txt, /help/common.hlp/keywords.htm,
common.hhk

Valid in: configuration file, SAS invocation
Category: Environment control: Help
PROC OPTIONS GROUP= HELP
UNIX specifics: applet and HTML files must reside in the path specified by the
HELPLOC option

Syntax
HELPINDEX = index-pathname-1 < index-pathname-2 < index-pathname-3>>

334 HELPLOC System Option Chapter 17

index-pathname
specifies the partial pathname for the index that is to be used by SAS Help and
Documentation. The index-pathname can be any or all of the following:

/help/applet-index-filename
specifies the partial pathname of the index file that is to be used by the SAS
Documentation Java applet in a UNIX environment. applet-index-filename must
have a file extension of .txt and it must reside in a path that is specified by the
HELPLOC system option. The default is /help/common.hlp/index.txt.

See the default index file for the format that is required for an index file.

/help/accessible-index-filename
specifies the partial pathname of an accessible index file that is to be used by SAS
Help and Documentation in UNIX, OpenVMS, or z/OS environments. An
accessible index file is an HTML file that can be used by Web browsers.
accessible-index-filename must have a file extension of .htm and it must reside in a
path that is specified by the HELPLOC system option. The default pathname is
/help/common.hlp/keywords.htm.

See the default index file for the format that is required for an index file.

HTML-Help-index-pathname
specifies the pathname of the Microsoft HTML Help index that is to be used by
SAS Help and Documentation in Windows environments. The default pathname is
common.hhk. For information about creating an index for Microsoft HTML Help,
see your Microsoft HTML Help documentation.

Details
Use the HELPINDEX option if you have a customized index that you want to use in
place of the SAS-supplied index. If you use one configuration file to start SAS in more
than one operating environment, you can specify all of the partial pathnames in the
HELPINDEX option. The order of the pathnames is not important, although only one
pathname of each type can be specified.

When the HELPINDEX option specifies a pathname for UNIX, OpenVMS, or z/OS
operating environments, SAS determines the complete path by replacing /help/ in the
partial pathname with the pathname specified in the HELPLOC option. If the
HELPLOC option contains more than one pathname, SAS searches each path for the
specified index.

For example, when the value of HELPINDEX is /help/common.hlp/myindex.htm
and the value of HELPLOC is /u/myhome/myhelp, the complete path to the index is
/u/myhome/myhelp/common.hlp/myindex.htm.

See Also

� “HELPLOC System Option” on page 334

HELPLOC System Option

Specifies the location of the text and index files for the facility that is used to view SAS Help and
Documentation

Default: !SASROOT/X11/native_help

System Options under UNIX HELPTOC System Option 335

Valid in: configuration file, SAS invocation

Category: Environment control: Help

PROC OPTIONS GROUP= HELP

UNIX specifics: default pathname

Syntax
-HELPLOC (pathname<,pathname-2...,pathname-n>)

pathname
specifies one or more directory pathnames in which SAS Help and Documentation
files are located.

Details
Specifying a value for the HELPLOC system option causes SAS to insert that value at
the start of a list of concatenated values, the last of which is the default value. This
enables you to access the help for your site without losing access to SAS Help and
Documentation.

To insert or append pathnames by specifying an additional HELPLOC option, you
must use the INSERT or APPEND system option.

Example

The following command contains two specifications of HELPLOC:

sas -helploc /app1/help -helploc /app2/help

The value of the system option is the following:

/app1/help, /app2/help, !SASROOT/X11/native_help

See Also

� “INSERT System Option” on page 337

� “APPEND System Option” on page 315

HELPTOC System Option

Specifies the table of contents files to be used by SAS Help and Documentation

Default: /help/helpnav.hlp/config.txt, /help/common.hlp/toc.htm, common.hhc

Valid in: configuration file, SAS invocation

Category: Environment control: Help

PROC OPTIONS GROUP= HELP

UNIX specifics: applet and HTML files must reside in the path specified by the
HELPLOC option

336 HELPTOC System Option Chapter 17

Syntax
HELPTOC = TOC-pathname-1 < TOC-pathname-2 < TOC-pathname-3>>

TOC-pathname
specifies a partial pathname for the table of contents that is to be used by SAS Help
and Documentation. TOC-pathname can be any or all of the following:

/help/applet-TOC-filename
specifies the partial pathname of the table of contents file that is to be used by the
SAS Documentation Java applet in a UNIX environment. The applet-TOC-filename
must have a file extension of .txt and it must reside in a path that is specified by
the HELPLOC system option. The default is /help/helpnav.hlp/config.txt.

See the default table of contents file for the format that is required for an index
file.

/help/accessible-TOC-filename
specifies the partial pathname of an accessible table of contents file that is to be
used by SAS Help and Documentation in UNIX, OpenVMS, or z/OS environments.
An accessible table of contents file is an HTML file that can be used by Web
browsers. The accessible-TOC-filename have a file extension of .htm and it must
reside in a path that is specified by the HELPLOC system option. The default
pathname is /help/common.hlp/toc.htm.

See the default table of contents file for the format that is required for a table of
contents.

HTML-Help-TOC-pathname
specifies the complete pathname to the Microsoft HTML Help table of contents
that is to be used by SAS Help and Documentation in Windows environments. The
default pathname is common.hhc. For information about creating an index for
Microsoft HTML Help, see your Microsoft HTML Help documentation.

Details
Use the HELPTOC option if you have a customized table of contents that you want to
use in place of the SAS supplied table of contents. If you use one configuration file to
start SAS in more than one operating environment, you can specify all of the partial
pathnames in the HELPTOC option. The order of the pathnames is not important,
although only one pathname of each type can be specified.

When the HELPTOC option specifies the pathname for UNIX, OpenVMS, or z/OS
operating environments, SAS determines the complete path by replacing /help/ in the
partial pathname with the pathname specified in the HELPLOC option. If the
HELPLOC option contains more than one pathname, SAS searches each path for the
table of contents.

For example, when HELPTOC is /help/common.hlp/mytoc.htm and the value of
HELPLOC is /u/myhome/myhelp, the complete path to the table of contents is
/u/myhome/myhelp/common.hlp/mytoc.htm.

See Also

� “HELPLOC System Option” on page 334

System Options under UNIX JREOPTIONS System Option 337

INSERT System Option

Inserts the specified pathname at the beginning of the value of the specified system option

Default: none
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
PROC OPTIONS GROUP= ENVFILES
UNIX specifics: all

Syntax
-INSERT system-option new-pathname

system-option
can be HELPLOC, MAPS, MSG, SASAUTOS, or SASHELP.

new-pathname
is the new pathname that you want to insert at the front of the current value of
system-option.

Details
By default, if you specify the HELPLOC, MAPS, MSG, SASAUTOS, or SASHELP
system option more than one time, the last specification is the one that SAS uses. If
you want to insert additional pathnames to front of the search paths already specified
by one of these options, you must use the INSERT system option to add the new
pathname. For example, if you entered the following SAS command, the only location
that SAS will look for help files is /apps/help and the output of PROC OPTIONS will
show only /apps/help:

sas -helploc /apps/help

If you want SAS to look in both the current path for help files and in /apps/help and if
you want SAS to search /apps/help first, then you must use the INSERT option:

sas -insert helploc /apps/help

If your current path for help files is !SASROOT/X11/native_help, then for the value of
the HELPLOC option, PROC OPTIONS will now show

(’/apps/help’ ’!SASROOT/X11/native_help’)

See Also

� “APPEND System Option” on page 315

JREOPTIONS System Option

Identifies Java Runtime Environment (JRE) options for SAS

338 LINESIZE System Option Chapter 17

Default: none
Valid in: configuration file, SAS invocation
Category: Environment control: Initialization and operation
PROC OPTIONS GROUP= EXECMODES
UNIX specifics: all

Syntax
-JREOPTIONS (-JRE-option-1<-JRE-option-n>)

JREOPTIONS (-JRE-option-1<-JRE-option-n>)

-JRE-option
specifies one or more Java Runtime Environment options. JRE options must begin
with a hyphen (-). Use a space to separate multiple JRE options. Valid values for
JRE-option depend on your installation’s Java Runtime Environment. For
information about JRE options, see your installation’s Java documentation.

Details
The set of JRE options must be enclosed in parentheses. If you specify multiple
JREOPTIONS system options, SAS appends JRE options to JRE options that are
currently defined. Incorrect JRE options are ignored.

Examples

-jreoptions (-verbose)

-jreoptions (-Djava.class.path=myjava/classes/myclasses.jar:myjava2/
classes/myclasses.jar -oss600k)

LINESIZE System Option
Specifies the line size of the SAS Log and Output windows

Default: the display width setting for the interactive modes; 132 for batch mode
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable
Category: Log and procedure output control: SAS log and procedure output
PROC OPTIONS GROUP= LOG_LISTCONTROL
UNIX specifics: default values
See: LINESIZE System Option in SAS Language Reference: Dictionary

Syntax
-LINESIZE n | hexX | MIN | MAX

System Options under UNIX LOADMEMSIZE System Option 339

LINESIZE=n | hexX | MIN | MAX

n
specifies the line size in characters. Valid values range between 64 and 256.

hexX
specifies the line size as a hexadecimal value. You must specify the value beginning
with a number (0–9), followed by hex digits (0–9, A-F), and then followed by an X.
For example, 2dx specifies 45 characters.

MIN
sets the line size to 64 characters.

MAX
sets the line size to 256 characters.

See Also

� “Controlling the Content and Appearance of Output in UNIX Environments” on
page 165

LOADMEMSIZE System Option

Specifies a suggested amount of memory needed for executable programs loaded by SAS

Default: 0
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: System administration: Memory
PROC OPTIONS GROUP= MEMORY
UNIX specifics: all

Syntax
-LOADMEMSIZE n | nK | nM | nG | hexX | MIN | MAX

n | nK | nM | nG
specifies the memory size in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576
(megabytes); or 1,073,741,842 (gigabytes). You can specify decimal values for the
number of kilobytes, megabytes, or gigabytes. For example, a value of 8 specifies 8
bytes, a value of .782k specifies 801 bytes, and a value of 3m specifies 3,145,728 bytes.

hexX
specifies the amount of memory as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by hex digits (0–9, A-F), and then followed
by an X. For example, 2dx sets the amount of memory to 45 bytes.

MIN
specifies 0 bytes, which indicates that there is no limit on the total amount of
memory that can be used.

340 LOCALE System Option Chapter 17

MAX
specifies that the maximum amount of memory for executable programs is limited
only by the amount of memory available.

Details
An executable program is a complied executable. If SAS needs to use a function that is
stored in an executable program, SAS loads the executable program. Then SAS can
access the function that is compiled within the executable program.

When LOADMEMSIZE is set to 0, the memory that is used for executable programs
that are loaded by SAS is limited only by the amount of system memory available. If
LOADMEMSIZE is set to 1, executable programs are purged from memory when they
are no longer in use.

For values of two or greater, SAS first checks the amount of memory available for
SAS executable programs. If the total amount of memory available is greater than the
value of LOADMEMSIZE, SAS purges the SAS loaded executable programs that are not
in use until the memory that is used is less than the value of the LOADMEMSIZE
option, or until there are no other SAS loaded executable programs that can be purged.
If all executable programs have been purged and more memory is needed, additional
system memory is used as long as it is available.

LOCALE System Option

Specifies attributes that reflect the language, local conventions, and culture for a geographic
region and that are used to establish the default working environment for a SAS session

Default: English

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable

Category: Environment control: Language control

PROC OPTIONS GROUP= LANGUAGECONTROL

UNIX specifics: all

See: LOCALE= System Option in SAS National Language Support (NLS): User’s Guide

LOG System Option

Specifies a destination to which the SAS log is written in batch mode

Default: a file in the current directory with the same filename as the SAS source file and
an extension of .log.

Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable

Category: Environment control: Files

PROC OPTIONS GROUP= ENVFILES

UNIX specifics: all

System Options under UNIX LPTYPE System Option 341

Syntax
-LOG destination | -NOLOG

-LOG destination
specifies the destination for the SAS log. The destination can be a any valid UNIX
path to a directory, a filename, or an environment variable that is associated with a
path. If you specify only the path to a directory, the log file is created in the specified
directory. The default name for this file is filename.log, where filename is the name of
your SAS job.

-NOLOG
suppresses the creation of the SAS log. Do not use this value unless your SAS
program is thoroughly debugged.

Details
LOG is valid in batch mode; it is ignored in the interactive modes.

See Also

� “Using SAS System Options to Route Output” on page 163

LPTYPE System Option

Specifies which UNIX command and options settings will be used to route files to the printer

Default: SYSV

Valid in: configuration file, SAS invocation, OPTIONS statement, SASV9_OPTIONS
environment variable

Category: Log and procedure output: Procedure output

PROC OPTIONS GROUP= LISTCONTROL

UNIX specifics: all

Syntax
-LPTYPE BSD | SYSV

LPTYPE=BSD | SYSV

Details
The LPTYPE option determines whether SAS is to use the lpr or the lp UNIX
command to print files.

342 MAPS System Option Chapter 17

The LPTYPE option has two forms:

-LPTYPE BSD
causes SAS to use the lpr command to send files to the printer. The lpr command
is usually supported on UNIX operating systems developed at Berkeley, such as
HP-UX.

-LPTYPE SYSV
causes SAS to use the lp command to send files to the printer. The lp command is
usually supported on operating systems derived from UNIX System V, such as
Solaris.

If you do not know whether to specify BSD or SYSV, check with your System
Administrator.

By default, SAS uses the lpr command if your operating system is derived from
Berkeley’s version; otherwise, it uses the lp command.

See Also

� “PRINTCMD System Option” on page 352

MAPS System Option

Specifies the name of the SAS data library containing the SAS/GRAPH map data sets

Default: !SASROOT/maps (set in the installed !SASROOT/sasv9.cfg file)

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable

Category: Graphics: Driver settings

PROC OPTIONS GROUP= GRAPHICS

UNIX specifics: default value and location-of-maps

See: MAPS System Option in SAS Language Reference: Dictionary

Syntax
-MAPS location-of-maps

MAPS=location-of-maps

location-of-maps
specifies a libref, a valid UNIX pathname, or an environment variable associated
with a pathname. Do not use a specific filename.

Details
You can reassign the MAPS libref, but you cannot clear it.

Map files might have to be uncompressed before they are used. Use the CONTENTS
statement in the DATASETS procedure to determine whether they are compressed.

System Options under UNIX MAXMEMQUERY System Option 343

See Also

� “INSERT System Option” on page 337

� “APPEND System Option” on page 315

MAXMEMQUERY System Option

Specifies the maximum amount of memory that is allocated per request for certain procedures

Default: 6M

Valid in: configuration file, SAS invocation, OPTIONS statement, SASV9_OPTIONS
environment variable

Category: System administration: Memory

PROC OPTIONS GROUP= MEMORY

UNIX specifics: all

Syntax
-MAXMEMQUERY n | nK | nM | nG | hexX | MIN | MAX

MAXMEMQUERY= n | nK | nM | nG | hexX | MIN | MAX

n | nK | nM | nG
specifies the limit in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576 (megabytes);
or 1,073,741,824 (gigabytes). You can specify decimal values for the number of
kilobytes, megabytes, or gigabytes. For example, a value of 8 specifies 8 bytes, a
value of .782k specifies 801 bytes, and a value of 3m specifies 3,145,728 bytes.

hexX
specifies the amount of memory as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by hex digits (0–9, A-F), and then followed
by an X. For example, 2dx sets the amount of memory to 45 bytes.

MIN
specifies 0 bytes, which indicates that there is no limit on the total amount of
memory that can be allocated per request by each SAS procedure. These memory
allocations are limited by the value of MEMSIZE.

MAX
specifies a limit of 2,147,483,647 bytes.

Details
Some SAS procedures attempt to allocate all of the memory that they can, up to the
amount specified by the MEMSIZE option. If this amount of memory is not available,
SAS attempts to use paging. If the amount of page space available is less than the value
of MEMSIZE, SAS generates an error message. The MAXMEMQUERY option specifies
the maximum amount of memory that SAS can request at one time. If your system has
small system paging devices, you might want to lower the value of MAXMEMQUERY.

344 MEMSIZE System Option Chapter 17

MEMSIZE System Option

Specifies the limit on the total amount of memory that can be used by each SAS session

Default: value set in SAS configuration file !SASROOT/sasv9.cfg

Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: System administration: Memory
PROC OPTIONS GROUP= MEMORY
UNIX specifics: all

Syntax
-MEMSIZE n | nK | nM | nG | hexX | MIN | MAX

n | nK | nM | nG
specifies the limit in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576 (megabytes);
or 1,073,741,824 (gigabytes). You can specify decimal values for the number of
kilobytes, megabytes, or gigabytes. For example, a value of 8 specifies 8 bytes, a
value of .782k specifies 801 bytes, and a value of 3m specifies 3,145,728 bytes.

hexX
specifies the amount of memory as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by hex digits (0–9, A-F), and then followed
by an X. For example, 2dx sets the amount of memory to 45 bytes.

MIN
specifies 0 bytes, which indicates that there is no limit on the total amount of
memory that can be used by each SAS session.

MAX
specifies to set the memory value to the largest possible setting. This value depends
on the system limit.

Details
The MEMSIZE option specifies the total amount of memory available to each SAS
session. Too low a value will result in out-of-memory conditions.

SAS does not automatically reserve or allocate the amount of memory that you
specify in the MEMSIZE option. SAS will only use as much memory as it needs to
complete a process. For example, a DATA step might only require 20M of memory, so
even though MEMSIZE is set to 500M, SAS will use only 20M of memory.

While your SAS jobs are running, you can monitor the effect of larger memory
settings by using system monitoring tools, such as top or vmstat.

Note: Setting MEMSIZE to 0 is not recommended except for debugging and testing
purposes. The optimal setting for this option depends on the other applications running
and system resources available at your site. The amount of memory available to SAS
processes can also be limited by your system administrator.

To determine this optimal value, run the SAS procedure or DATA step with
MEMSIZE set to 0 and the FULLSTIMER option. Note the amount of memory used by
the process and then set MEMSIZE to a larger amount. �

System Options under UNIX MSGCASE System Option 345

See Also

� “REALMEMSIZE System Option” on page 353
� “SORT Procedure” on page 282

MSG System Option

Specifies the library that contains SAS error messages

Alias: SASMSG
Default: !SASROOT/sasmsg (set in the installed !SASROOT/sasv9.cfg file)
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
UNIX specifics: all

Syntax
-MSG pathname

-MSG (’pathname’ ’pathname’ ...)

pathname
must resolve to a valid UNIX pathname. You can use an environment variable that
resolves to a valid pathname.

Details
This option is set in the installation process and is not normally changed after
installation.

See Also

� “INSERT System Option” on page 337
� “APPEND System Option” on page 315

MSGCASE System Option

Determines whether SAS displays notes, warnings, and error messages in uppercase

Default: NOMSGCASE
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Log and procedure output: SAS log
PROC OPTIONS GROUP= LOGCONTROL
UNIX specifics: all

346 MSYMTABMAX System Option Chapter 17

Syntax
MSGCASE | NOMSGCASE

MSGCASE
displays messages in uppercase characters.

NOMSGCASE
displays messages in uppercase and lowercase characters.

Details
User-generated messages and source lines are not affected by the MSGCASE system
option.

MSYMTABMAX System Option

Specifies the maximum amount of memory available to the macro variable symbol table(s)

Default: 4M (set in the installed !SASROOT/sasv9.cfg file)

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable

Category: Macro: SAS macro

PROC OPTIONS GROUP= MACRO

UNIX specifics: default value

See: MSYMTABMAX System Option in SAS Macro Language: Reference

Syntax
-MSYMTABMAX n | nK | nM | nG | hexX | MIN | MAX

MSYMTABMAX=n | nK | nM | nG | hexX | MIN | MAX

n | nK | nM | nG
specifies the maximum amount of memory that is available in multiples of 1 (bytes);
1,024 (kilobytes); 1,048,576 (megabytes); or 1,073,741,824 (gigabytes). You can
specify decimal values for the number of kilobytes, megabytes, or gigabytes. For
example, a value of 8 specifies 8 bytes, a value of .782k specifies 801 bytes, and a
value of 3m specifies 3,145,728 bytes.

hexX
specifies the maximum amount of memory that is available as a hexadecimal value.
You must specify the value beginning with a number (0–9), followed by hex digits
(0–9, A-F), and then followed by an X. For example, 2dx sets the maximum amount
of memory to 45 bytes.

System Options under UNIX NEWS System Option 347

MIN
sets the amount of memory that is available to the minimum setting, which is 0
bytes. This causes all macro symbol tables to be written to disk.

MAX
sets the amount of memory that is available to the maximum setting, which is
2,147,483,647 bytes.

MVARSIZE System Option
Specifies the maximum size for in-memory macro variables

Default: 32K (set in the installed !SASROOT/sasv9.cfg file)
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable
Category: Macro: SAS macro
PROC OPTIONS GROUP= MACRO
UNIX specifics: default value
See: MVARSIZE System Option in SAS Macro Language: Reference

Syntax
-MVARSIZE n | nK | nM | nG | hexX | MIN | MAX

MVARSIZE=n | nK | nM | nG | hexX | MIN | MAX

n | nK | nM | nG
specifies the maximum macro variable size in multiples of 1 (bytes); 1,024 (kilobytes);
1,048,576 (megabytes); or 1,073,741,824 (gigabytes). You can specify decimal values
for the number of kilobytes, megabytes, or gigabytes. For example, a value of 8
specifies 8 bytes, a value of .782k specifies 801 bytes, and a value of 3m specifies
3,145,728 bytes.

hexX
specifies the maximum macro variable size as a hexadecimal value. You must specify
the value beginning with a number (0–9), followed by hex digits (0–9, A-F), and then
followed by an X. For example, 2dx sets the maximum macro variable size to 45 bytes.

MIN
sets the macro variable size to the minimum setting, which is 0 bytes. This causes
all macro variable values to be written to disk.

MAX
sets the macro variable size to the maximum setting, which is 2,147,483,647 bytes.

NEWS System Option
Specifies a file that contains messages to be written to the SAS log

348 NLSCOMPATMODE System Option Chapter 17

Default: !SASROOT/misc/base/news (set in the installed !SASROOT/sasv9.cfg file)
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
UNIX specifics: -NONEWS option
See: NEWS System Option in SAS Language Reference: Dictionary

Syntax
-NEWS file-specification | –NONEWS

-NEWS file-specification
specifies an external file. This file contains the messages for the SAS log.

-NONEWS
specifies that the contents of the NEWS file is not displayed in the SAS log, even if
the file exists. This option causes any previous NEWS specifications to be ignored.

Details
The contents of the NEWS file are displayed in the SAS log immediately after the SAS
header.

NLSCOMPATMODE System Option

Provides national language compatibility with previous releases of SAS

Default: NONLSCOMPATMODE
Valid in: configuration file, SAS invocation
Category: Environment control: Language control
PROC OPTIONS GROUP= LANGUAGECONTROL
UNIX specifics: all
See: NLSCOMPATMODE System Option in SAS National Language Support (NLS):
User’s Guide

OBS System Option

Specifies which observation SAS will process last

Default: MAX
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable
Category: Files: SAS Files

System Options under UNIX OPLIST System Option 349

PROC OPTIONS GROUP= SASFILES
UNIX specifics: default value
See: OBS System Option in SAS Language Reference: Dictionary

Syntax
-OBS n | nK | nM | nG | nT | hexX | MIN | MAX

OBS=n | nK | nM | nG | nT | hexX | MIN | MAX

n | nK | nM | nG | nT
specifies a number to indicate when to stop processing. Using one of the letter
notations results in multiplying the integer by a specific value. That is, specifying K
(kilo) multiplies the integer by 1,024, M (mega) multiplies by 1,048,576, G (giga)
multiplies by 1,073,741,824, or T (tera) multiplies by 1,099,511,627,776. You can
specify a decimal value for n when it is used to specify a K, M, G, or T value. For
example, a value of 20 specifies 20 observations or records, a value of .782k specifies
801 observations or records, and a value of 3m specifies 3,145,728 observations or
records.

hexX
specifies a number to indicate when to stop processing as a hexadecimal value. You
must specify the value beginning with a number (0–9), followed by hex digits (0–9,
A-F), and then followed by an X. For example, the hexadecimal value F8 must be
specified as 0F8x in order to specify the decimal equivalent of 248. For example, the
value 2dx specifies the decimal equivalent of 45.

MIN
sets the number to indicate when to stop processing to 0.

If OBS=0 and the NOREPLACE option is in effect, SAS might still be able to take
certain actions. See SAS Language Reference: Dictionary for more information.

MAX
sets the number to indicate when to stop processing to 9,007,199,254,740,992 . On
32-bit systems, MAX is 2,147,483,647.

OPLIST System Option

Writes the settings of SAS system options to the SAS log

Default: NOOPLIST
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Log and procedure output control: SAS log
PROC OPTIONS GROUP= LOGCONTROL
UNIX specifics: all

Syntax
-OPLIST | -NOOPLIST

350 PAGESIZE System Option Chapter 17

Details
The OPLIST system option echoes only the system options specified on the command
line; it does not echo any system options specified in the configuration file or in the
SASV9_OPTIONS environment variable. (If you want to echo the contents of the
configuration file, use the VERBOSE option.) For example, suppose you invoke SAS
with the following command:

sas -nodms -fullstimer -nonews -oplist

SAS writes this line to the SAS log:

NOTE: SAS command line: -nodms -fullstimer -nonews -oplist

See Also

� “VERBOSE System Option” on page 380

PAGESIZE System Option

Specifies the number of lines that compose a page of SAS output

Default: number of lines on your display for interactive modes; 60 for batch mode

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable

Category: Log and procedure output control: SAS log and procedure output

PROC OPTIONS GROUP= LOG_LISTCONTROL

UNIX specifics: default values and range

See: PAGESIZE System Option in SAS Language Reference: Dictionary

Syntax
-PAGESIZE n | nK | hexX | MIN | MAX

PAGESIZE=n | nK | hexX | MIN | MAX

n | nK
specifies the number of lines that compose a page in multiples of 1 (n) or 1,024 (nK).
You can specify decimal values for the number of kilobytes. For example, a value of
800 specifies 800 lines, a value of .782k specifies 801 lines, and a value of 3k
specifies 3,072 lines.

hexX
specifies the number of lines that compose a page as a hexadecimal value. You must
specify the value beginning with a number (0–9), followed by hex digits (0–9, A-F),
and then followed by an X. For example, the value 2dx specifies 45 lines.

MIN
sets the number of lines that compose a page to the minimum setting, which is 15.

System Options under UNIX PRINT System Option 351

MAX
sets the number of lines that compose a page to the maximum setting, which is
32,767.

Details
The default for interactive modes is the number of lines on your display. For batch
mode, the default is 60.

See Also

� “Controlling the Content and Appearance of Output in UNIX Environments” on
page 165

PATH System Option

Specifies the search path for SAS executable modules

Default: !SASROOT/sasexe (set in the installed !SASROOT/sasv9.cfg file)
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
UNIX specifics: all

Syntax
-PATH pathname

Details
The PATH option identifies the search paths for SAS executable files. You can specify
multiple PATH options to define the search order. The paths are searched in the order
in which SAS encounters them; therefore, specify at the front of the list the paths for
the products that you run most frequently. See “How SAS Processes System Options
Set in Multiple Places” on page 20 for information about how that order is determined
when you specify the PATH system option more than once.

PRINT System Option

Specifies the destination for SAS output in batch mode

Default: the SAS output from a batch SAS program is written to a file in the current
directory with the same filename as the SAS source file and an extension of .lst.
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Files

352 PRINTCMD System Option Chapter 17

PROC OPTIONS GROUP= ENVFILES
UNIX specifics: all

Syntax
-PRINT destination | -NOPRINT

-PRINT destination
specifies the location for the SAS procedure output file. The destination can be any
valid UNIX path to a directory, a filename, or an environment variable that is
associated with a path. If you specify only the path to a directory, the procedure
output file is created in the specified directory. The default name for this file is
filename.lst, where filename is the name of your SAS job.

-NOPRINT
suppresses the creation of the SAS procedure output file.

Details
PRINT is valid in batch mode; it is ignored in interactive modes.

See Also

� “Using SAS System Options to Route Output” on page 163

PRINTCMD System Option

Specifies the print command SAS is to use

Default: none
Valid in: configuration file, SAS invocation, OPTIONS statement, SASV9_OPTIONS
environment variable
Category: Log and procedure output control: Procedure output
PROC OPTIONS GROUP= LISTCONTROL
UNIX specifics: all

Syntax
-PRINTCMD “print-command”

PRINTCMD=“print-command”

Details
The syntax of the options passed to the print command is controlled by the LPTYPE
system option. If LPTYPE is set to BSD, the command uses lpr command options; if
LPTYPE is set to SYSV, the command uses lp command options.

System Options under UNIX REALMEMSIZE System Option 353

If your site uses a print command (spooler) other than lp or lpr, print-command
specifies its name. The PRINTCMD option overrides the LPTYPE setting.

When specified in an options statement, the PRINTCMD option will not change the
print commands assigned to previously defined filenames. For example, consider the
following code:

filename pc1 printer;
proc printto print=pc1;
run;
proc print data=sales.week;
run;

options printcmd="netlp";

filename pc2 printer;
proc printto print=pc2;
run;
proc print data=sales.month;
run;

Output associated with PC2 will use the netlp command; output associated with
PC1 will use the default print command.

See Also

� Chapter 6, “Printing and Routing Output,” on page 153
� “LPTYPE System Option” on page 341

REALMEMSIZE System Option

Indicates the amount of real memory SAS can expect to allocate

Default: 0
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: System administration: Memory
PROC OPTIONS GROUP= MEMORY
UNIX specifics: valid values

Syntax
-REALMEMSIZE n | nK | nM | 1G | hexX | MIN | MAX

n | nK | nM
specifies the amount of memory to reserve in multiples of 1 (bytes); 1,024 (kilobytes);
or 1,048,576 (megabytes). You can specify decimal values for the number of kilobytes
or megabytes. For example, a value of 8 specifies 8 bytes, a value of .782k specifies
801 bytes, and a value of 3m specifies 3,145,728 bytes.

1G
specifies the amount of memory to reserve is 1,073,741,824 (1 gigabyte).

354 RSASUSER System Option Chapter 17

hexX
specifies the amount of memory as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by hex digits (0–9, A-F), and then followed
by an X. For example, the value 2dx sets the amount of memory to 45 bytes.

MIN
specifies a value of 0, which indicates that the memory usage is determined by SAS
when SAS starts.

MAX
specifies to set the memory size to the largest permissible value.

Details
Use the REALMEMSIZE system option to optimize the performance of SAS procedures
that alter their algorithms and memory usage. Setting the value of REALMEMSIZE too
low might result in less than optimal performance. For better performance, set
REALMEMSIZE to the amount of memory (excluding swap space) that is available to
the SAS session at invocation.

See Also

� “MEMSIZE System Option” on page 344

� “SORT Procedure” on page 282

RSASUSER System Option

Controls whether members of the Sasuser data library can be opened for update or for read-only
access

Default: NORSASUSER

Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Files

PROC OPTIONS GROUP= ENVFILES
UNIX specifics: network considerations

See: RSASUSER System Option in SAS Language Reference: Dictionary

Syntax
-RSASUSER | -NORSASUSER

Details
RSASUSER

limits access to the Sasuser data library to read-only access. (If the Sasuser data
library is being shared by multiple users or the same user is running SAS multiple
times simultaneously, the Sasuser data library is often shared.) By default, if one
user has a member of the Sasuser data library open for update, all other users are
denied access to that SAS data library member. For example, if one user is writing

System Options under UNIX RTRACE System Option 355

to the Sasuser.Profile catalog, no other user can even read data from the Profile
catalog.

Specifying RSASUSER enables a group of users to share Sasuser data library
members by allowing all users read-only access to members. In the Profile catalog
example, if RSASUSER is in effect, all users can open the Profile catalog for
read-only access, allowing other users to concurrently read from the Profile
catalog. However, no user can write information out to the Profile catalog; you
receive an error message if you try to do so.

Specifying RSASUSER from the command line affects only that session’s access
to files. To enable a group of users to share members in the Sasuser data library,
the system manager should set RSASUSER in a common SAS configuration file,
which is shared by all users who will be sharing the Sasuser data library.

If you specify RSASUSER but no Profile catalog exists in the Sasuser data
library, the Profile catalog is created in the Work data library.

Note: While the RSASUSER option is extremely useful for sharing information
(such as the Profile catalog) stored in the Sasuser data library, it is less practical
when used in conjunction with SAS/ASSIST software or other SAS modules that
require update access to the Sasuser data library. �

NORSASUSER
prevents users from sharing members of the Sasuser data library because it allows
a user to open a file in the Sasuser library for update access. Update access
requires exclusive rights to the data library member.

See Also

� “Sharing Files in UNIX Environments” on page 124

RTRACE System Option

Produces a list of resources that are read during SAS execution

Default: NONE

Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable

Category: Log and procedure output control: SAS log

PROC OPTIONS GROUP= LOGCONTROL

UNIX specifics: all

Syntax
-RTRACE ALL | NONE

ALL
traces both files that are read and executable files that are loaded.

NONE
tells SAS not to produce any trace information.

356 RTRACELOC System Option Chapter 17

Details
The RTRACE system option produces a list of resources that are read or loaded during
the execution of SAS. If you specify ALL but do not specify the RTRACELOC option,
the output is written to the SAS log.

See Also

� “RTRACELOC System Option” on page 356

RTRACELOC System Option

Specify the pathname of the file to which RTRACE information is written

Default: none

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable

Category: Environment control: Files

PROC OPTIONS GROUP= ENVFILES

UNIX specifics: all

Syntax
-RTRACELOC pathname

pathname
specifies the file to which RTRACE information is written. The pathname must
include the path and the filename for the RTRACE output.

Details
The RTRACELOC system option specifies the pathname of the file to which RTRACE
information is written. If the pathname does not include the filename, the output will
be directed to standard output. If you specify RTRACE ALL but do not specify
RTRACELOC, the output is written to the SAS log.

See Also

� “RTRACE System Option” on page 355

S System Option

Specifies the length of statements on each line of source statements and the length of data on the
line following a DATALINES statement

Default: 0

System Options under UNIX S2 System Option 357

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable
Category: Input control: Data processing
PROC OPTIONS GROUP= INPUTCONTROL
UNIX specifics: valid values for n
See: S System Option in SAS Language Reference: Dictionary

Syntax
-S n | nK | nM | nG | hexX | MIN | MAX

S=n | nK | nM | nG | hexX | MIN | MAX

n | nK | nM | nG
specifies the length of statements and data in multiples of 1 (bytes); 1,024 (kilobytes);
1,048,576 (megabytes); or 1,073,741,824 (gigabytes). You can specify decimal values
for the number of kilobytes, megabytes, or gigabytes. For example, a value of 8
specifies 8 bytes, a value of .782k specifies 801 bytes, and a value of 3m specifies
3,145,728 bytes.

hexX
specifies the length of statements and data as a hexadecimal value. You must specify
the value beginning with a number (0–9), followed by hex digits (0–9, A-F), and then
followed by an X. For example, the value 2dx sets the length of statements and data
to 45 bytes.

MIN
specifies the length of statements to be 0, which causes SAS to use the default value.

MAX
specifies to use the maximum line length allowed under UNIX, which is
2,147,483,647 bytes.

Details
Input can be from either fixed- or variable-length records. Both fixed-length and
variable-length records can be either unsequenced or sequenced. Unsequenced records
do not contain sequence fields.

SAS determines whether the input contains sequence numbers that are based on the
value of S. The S system option specifies the length of statements, exclusive of sequence
numbers, on each line of SAS source statements and the length of data, exclusive of
sequence numbers, on lines following a DATALINES statement.

The default value of 0 enables SAS to read a file with any line length up to MAX.

S2 System Option

Specifies the length of secondary source statements

Default: 0

358 SASAUTOS System Option Chapter 17

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable
Category: Input control: Data processing
PROC OPTIONS GROUP= INPUTCONTROL
UNIX specifics: valid values for n
See: S2 System Option in SAS Language Reference: Dictionary

Syntax
S2=S | n | nK | nM | nG | hexX | MIN | MAX

S
uses the current value of the S system option to compute the record length of text that
comes from the %INCLUDE statement, an autoexec file, or an autocall macro file.

n | nK | nM | nG
specifies the value by which to compute the record length of text that comes from an
%INCLUDE statement, an autoexec file, or an autocall macro file. n can be between
0 and 2,147,483,647, or you can specify the value in multiples of 1 (bytes); 1,024
(kilobytes); 1,048,576 (megabytes); or 1,073,741,824 (gigabytes). You can specify
decimal values for the number of kilobytes, megabytes, or gigabytes. For example, a
value of 8 specifies 8 bytes, a value of .782k specifies 801 bytes, and a value of 3m
specifies 3,145,728 bytes.

hexX
specifies the length of statements and data as a hexadecimal value. You must specify
the value beginning with a number (0–9), followed by hex digits (0–9, A-F), and then
followed by an X. For example, the value 2dx sets the length of statements and data
to 45 bytes.

MIN
uses the value of 0, indicating no length restriction.

MAX
uses the value of 2,147,483,647.

Details
The S2 system option operates exactly like the S system option, except that the S2
system option controls input from only an %INCLUDE statement, an autoexec file, or
an autocall macro file.

SASAUTOS System Option

Specifies the autocall library

Default: SASAUTOS fileref
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable

System Options under UNIX SASAUTOS System Option 359

Category: Environment control: Files
Macro: SAS macro

PROC OPTIONS GROUP= ENVFILES
MACRO

UNIX specifics: syntax for specifying multiple dir-names
See: SASAUTOS System Option in SAS Macro Language: Reference

Syntax
-SASAUTOS ’dir-name’|fileref

-SASAUTOS (’dir-name1’|fileref1,...,’dir-name-n’|filerefn)

-NOSASAUTOS

SASAUTOS=’dir-name’|fileref

SASAUTOS =(’dir-name1’|fileref1,...,’dir-name-n’|filerefn)

NOSASAUTOS

Note: The SASAUTOS option uses filerefs, not librefs. �

Details
Each autocall macro library consists of files in a UNIX directory. The dir-name can be
the pathname of a UNIX directory, a fileref, or an environment variable.

If you specify the pathname of a directory, you must enclose the name in quotation
marks. You can omit the quotation marks only if you are specifying the option in the
configuration file, in the SAS command, or in the SASV9_OPTIONS environment
variable, and if the name cannot be taken to be a fileref.

If you specify a fileref, you must define it before attempting to use any of the autocall
macros. You can define the fileref in a FILENAME statement, in an environment
variable, or with the FILENAME function (see “Assigning Filerefs to External Files or
Devices with the FILENAME Statement” on page 135).

How you specify multiple directory names, filerefs, or environment variables depends
on where you specify the SASAUTOS option:

� If you specify the SASAUTOS option in the configuration file or in the
SASV9_OPTIONS environment variable, use either multiple SASAUTOS options,
or enclose the directory names in parentheses. Separate the names with a comma
or a blank space.

� If you specify the SASAUTOS option in the SAS command, use the APPEND or
INSERT system options to append to the end or insert on the beginning of the
current SASAUTOS value. For example, the following code adds /users/userid/
also to the end of the current SASAUTOS value, /users/userid/here:

sas -sasautos /users/userid/here -append sasautos /users/userid/also

� If you specify the SASAUTOS option in the OPTIONS statement or in the System
Options window, you must enclose the directory names in parentheses. Separate
the names with a comma or a blank space.

At configuration time, SAS concatenates all directories specified for SASAUTOS.
However, after the session starts, any new directories you specify override any current
autocall libraries.

360 SASHELP System Option Chapter 17

The NOSASAUTOS option causes SAS to ignore all previous SASAUTOS
specifications (whether specified in the SAS command, in the configuration file, or in the
SASV9_OPTIONS environment variable).

The default value of the SASAUTOS option is the SASAUTOS fileref. There is no
UNIX directory assigned to the fileref, so you must define the SASAUTOS fileref if you
want to use it as your autocall library.

Example: Specifying Multiple Environment Variables in the OPTIONS
Statement

The following example shows the syntax to use if you are specifying multiple
environment variables in the OPTIONS statement:

options sasautos=(AUTODIR, SASAUTOS);

The environment variables that you specify must be defined. For example, you could
define the AUTODIR environment variable at SAS invocation by using the following
code:

-set AUTODIR /tmp/sasautos

For more information about how to define an environment variable, see “SET System
Option” on page 363.

See Also

� “APPEND System Option” on page 315
� “INSERT System Option” on page 337
� SAS Macro Language: Reference

SASHELP System Option

Specifies the locations of Sashelp libraries

Default: !SASROOT/sashelp (set in the installed !SASROOT/sasv9.cfg file)
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
UNIX specifics: pathname can also be an environment variable
See: SASHELP System Option in SAS Language Reference: Dictionary

Syntax
–SASHELP pathname

–SASHELP (’pathname’, ’pathname’...)

Details
This option is set in the installation process and is not normally changed after
installation. An environment variable can be specified as the value of SASHELP.

System Options under UNIX SASUSER System Option 361

See Also

� “INSERT System Option” on page 337
� “APPEND System Option” on page 315

SASSCRIPT System Option

Specifies one or more storage locations of SAS/CONNECT script files

Default: !SASROOT/misc/connect

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable
Category: Communications: Networking and encryption
PROC OPTIONS GROUP= COMMUNICATIONS
UNIX specifics: syntax for specifying multiple directory names

Syntax
-SASSCRIPT ’dir-name’ | (’dir-name-1’,...,’dir-name-n’)

SASSCRIPT=’dir-name’ | (’dir-name-1’,...,’dir-name-n’)

Details
How you specify multiple directory names in the same SASSCRIPT option depends on
where you specify the SASSCRIPT option:

� If you specify the option in the configuration file or in the SASV9_OPTIONS
environment variable, use either multiple SASSCRIPT options, or enclose the
directory names in parentheses. Separate the names with a comma or a blank
space.

� If you specify the option in the SAS command, use multiple SASSCRIPT options,
since parentheses cause syntax errors.

� If you specify the option in the OPTIONS statement or in the System Options
window, you must enclose the directory names in parentheses. Separate the
names with a comma or a blank space.

See Also

� “SASSCRIPT System Option” in SAS/CONNECT User’s Guide

SASUSER System Option

Specifies the name of the Sasuser library

Default: ~/sasuser.v91 (set in the installed !SASROOT/sasv9.cfg file)
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Files

362 SEQENGINE System Option Chapter 17

PROC OPTIONS GROUP= ENVFILES
UNIX specifics: pathname can be an environment variable
See: SASUSER System Option in SAS Language Reference: Dictionary

Syntax
–SASUSER pathname

Details
The pathname identifies the directory for the Sasuser library that contains a user’s
Profile catalog. You can use an environment variable to specify the pathname, for
example:

sas -sasuser $HOME

SEQENGINE System Option

Specifies the default access method for SAS sequential data libraries

Default: TAPE
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES
UNIX specifics: all

Syntax
SEQENGINE=engine-name

engine-name can be one of the following under UNIX:

V9TAPE|TAPE
specifies the default sequential engine for SAS 9 and SAS 9.1. TAPE is the default
value.

V8TAPE
specifies the sequential engine for SAS Version 8. This engine and the V9TAPE
engine are identical.

V6TAPE
specifies the sequential engine for Version 6. This engine is read-only.

Details
The SEQENGINE= option specifies the default access method, or engine, that is used
when you are creating new sequential-format SAS data libraries. The engine that is
used with an existing sequential library is determined by the first data set in that
library and is not affected by this option.

System Options under UNIX SORTANOM System Option 363

See Also

� “Accessing Sequential-Format Data Libraries in UNIX Environments” on page 122

SET System Option

Defines an environment variable

Default: none
Valid in: configuration file, SAS invocation, OPTIONS Statement, SASV9_OPTIONS
environment variable
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
UNIX specifics: all

Syntax
–SET variable-name value

Details
The SET option lets you define an environment variable that is valid within the SAS
session and any shell started from within the SAS session. Using the SET option is
similar to using the SAS setenv command. See “Executing Operating System
Commands from Your SAS Session” on page 13 for details.

A special use for the SET option is to specify the name of the !SASROOT directory:

-set SASROOT pathname

The pathname specified can then be used to expand !SASROOT (as shown in Table 4.6 on
page 115).

After exiting your SAS session, environment variables that are set with the SET
option no longer exist.

See Also

� Appendix 1, “The !SASROOT Directory,” on page 397
� “Defining Environment Variables in UNIX Environments” on page 21

SORTANOM System Option

Specifies certain options for the host sort utility

Default: none
Valid in: configuration file, SAS invocation, OPTIONS statement, SASV9_OPTIONS
environment variable
Category: Sort: Procedure options

364 SORTCUT System Option Chapter 17

PROC OPTIONS GROUP= SORT

UNIX specifics: all

Syntax
SORTANOM=option(s)

–SORTANOM option(s)

The option(s) can be any one or more of the following:

b tells syncsort to run in multi-call mode instead of single-call mode.
(Refer to the documentation for syncsort for more information.)

Note: This option is available for syncsort only. �

t prints statistics about the external sorting process in the SAS log.

v prints (in the SAS log) all of the commands that are passed to the
host sort utility.

SORTCUT System Option

Specifies the number of observations above which the host sort program is used instead of the
SAS sort program

Default: 0

Valid in: configuration file, SAS invocation, OPTIONS statement, SASV9_OPTIONS
environment variable

Category: Sort: Procedure options

PROC OPTIONS GROUP= SORT

UNIX specifics: all

Syntax
SORTCUT=n | nK | nM | nG | hexX | MIN | MAX

-SORTCUT n | nK | nM | nG | hexX | MIN | MAX

n | nK | nM | nG
specifies the number of observations in multiples of 1 (n); 1,024 (nK); 1,048,576 (nM);
or 1,073,741,824 (nG). You can specify decimal values for the number of kilobytes,
megabytes, or gigabytes. For example, a value of 800 specifies 800 observations, a
value of .782k specifies 801 observations, and a value of 3m specifies 3,145,728
observations.

hexX
specifies the number of observations as a hexadecimal value. You must specify the
value beginning with a number (0–9), followed by hex digits (0–9, A-F), and then
followed by an X. For example, the value 2ffx specifies 767 observations.

System Options under UNIX SORTCUTP System Option 365

MIN
specifies 0 observations.

MAX
specifies 2,147,483,647 observations.

Details
When you specify SORTPGM=BEST, SAS uses the value of the SORTCUT and
SORTCUTP options to determine whether to use the host sort or the SAS sort. If the
number of observations in the data set is greater than the number that you specify with
SORTCUT, the host sort will be used. If both SORTCUT and SORTCUTP are either not
defined or are set to 0, the SAS sort is used. If you specify both options and both
conditions are true, SAS chooses the host sort.

See Also

� “SORTCUTP System Option” on page 365

� “SORTPGM System Option” on page 368

SORTCUTP System Option

Specifies the number of bytes above which the host sort program is used instead of the SAS sort
program

Default: 0

Valid in: configuration file, SAS invocation, OPTIONS statement, SASV9_OPTIONS
environment variable

Category: Sort: Procedure options

PROC OPTIONS GROUP= SORT

UNIX specifics: all

Syntax
SORTCUTP=n | nK | nM | nG | hexX | MIN | MAX

-SORTCUTP n | nK | nM | nG | hexX | MIN | MAX

n | nK | nM | nG
specifies the number of bytes in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576
(megabytes); or 1,073,741,824 (gigabytes). You can specify decimal values for the
number of kilobytes, megabytes, or gigabytes. For example, a value of 8 specifies 8
bytes, a value of .782k specifies 801 bytes, and a value of 3m specifies 3,145,728 bytes.

hexX
specifies the number of bytes as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by hex digits (0–9, A-F), and then followed
by an X. For example, the value 2dx specifies 45 bytes.

366 SORTDEV System Option Chapter 17

MIN
specifies 0 bytes.

MAX
specifies 2,147,483,647 bytes.

Details
When you specify SORTPGM=BEST, SAS uses the value of the SORTCUT and
SORTCUTP options to determine whether to use the host sort or the SAS sort. If the
data set to be sorted is larger than the number of bytes (or kilobytes or megabytes) that
you specify with SORTCUTP, the host sort (external) program will be used instead of
the SAS sort (internal) program. The value you specify must be less than or equal to
2,147,483,647 bytes. If both SORTCUT and SORTCUTP are either not defined or are
set to 0, the SAS sort is used. If you specify both options and both conditions are true,
SAS chooses the host sort.

The following equation computes the number of bytes to be sorted:

number-of-bytes= ((length-of-obs)+(length-of-all-keys))
*number-of-obs

See Also

� “SORTANOM System Option” on page 363

� “SORTCUT System Option” on page 364

� “SORTPGM System Option” on page 368

SORTDEV System Option

Specifies the pathname used for temporary files created by the host sort utility

Default: same location as -WORK, which is set in the installed !SASROOT/sasv9.cfg file

Valid in: configuration file, SAS invocation, OPTIONS statement, SASV9_OPTIONS
environment variable

Category: Sort: Procedure options

PROC OPTIONS GROUP= SORT

UNIX specifics: all

Syntax
SORTDEV=’pathname’

-SORTDEV pathname

Details
The SORTDEV option specifies an alternative pathname for temporary files created by
the host sort.

System Options under UNIX SORTPARM System Option 367

SORTNAME System Option

Specifies the name of the host sort utility

Default: none

Valid in: configuration file, SAS invocation, OPTIONS statement, SASV9_OPTIONS
environment variable

Category: Sort: Procedure options

PROC OPTIONS GROUP= SORT

UNIX specifics: all

Syntax
SORTNAME=’host-sort-utility-name’

-SORTNAME host-sort-utility-name

Details
The SORTNAME option specifies the name of the default host sort utility, syncsort.

See Also

� “SORTPGM System Option” on page 368

SORTPARM System Option

Specifies parameters for the host sort utility

Default: none

Valid in: configuration file, SAS invocation, OPTIONS statement, SASV9_OPTIONS
environment variable

Category: Sort: Procedure options

PROC OPTIONS GROUP= SORT

UNIX specifics: all

Syntax
SORTPARM=’parameters’

–SORTPARM ’parameters’

The parameters are any parameters that you want to pass to the sort utility. For a
description of these parameters, refer to the documentation for the sort that you are
using.

368 SORTPGM System Option Chapter 17

SORTPGM System Option

Specifies whether the SAS sort or the host sort is used

Default: BEST
Valid in: configuration file, SAS invocation, OPTIONS statement, SASV9_OPTIONS
environment variable
Category: Sort: Procedure options
PROC OPTIONS GROUP= SORT
UNIX specifics: all

Syntax
–SORTPGM SAS | HOST | BEST

SORTPGM=SAS | HOST | BEST

Details
The SORTPGM system option tells SAS whether to use the SAS sort, to use the host
sort, or to determine which sort is best for the data set.

SAS
tells SAS to use the SAS sort.

HOST
tells SAS to use the sort specified by the SORTNAME system option.

BEST
tells SAS to determine the best routine to sort the data set: the SAS Software sort
or the host sort specified by the SORTNAME system option. The settings of the
SORTCUT and SORTCUTP system options determine whether SAS chooses the
SAS Software sort or the host sort.

See Also

� “SORTCUTP System Option” on page 365
� “SORTNAME System Option” on page 367
� “SORTSIZE System Option” on page 368

SORTSIZE System Option

Specifies the amount of memory available to the SORT procedure

Default: MAX
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable
Category: Sort: Procedure options

System administration: Memory

System Options under UNIX SSLCALISTLOC System Option 369

PROC OPTIONS GROUP= SORT
MEMORY

UNIX specifics: value of MAX
See: SORTSIZE System Option in SAS Language Reference: Dictionary

Syntax
–SORTSIZE n | nK | nM | nG | hexX | MIN | MAX

SORTSIZE=n | nK | nM | nG | hexX | MIN | MAX

n | nK | nM | nG
specifies the number of bytes in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576
(megabytes); or 1,073,741,824 (gigabytes). You can specify decimal values for the
number of kilobytes, megabytes, or gigabytes. For example, a value of 8 specifies 8
bytes, a value of .782k specifies 801 bytes, and a value of 3m specifies 3,145,728 bytes.

hexX
specifies the amount of memory as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by hex digits (0–9, A-F), and then followed
by an X. For example, the value 2dx sets the amount of memory to 45 bytes.

MIN
specifies 0 bytes, which indicates that there is no limit except the limitation specified
by the MEMSIZE system option.

MAX
specifies 2,147,483,647 bytes.

Details
The SORTSIZE option might reduce the amount of swapping that SAS must do to sort
a data set. If the SORT procedure needs more memory than you specify, it creates a
temporary utility file in your SAS Work directory. The SORT procedure’s algorithm can
swap unneeded data more efficiently than the operating system can.

The amount of memory that SAS uses for the SORT procedure also depends on the
values of the MEMSIZE and REALMEMSIZE system options. For more information,
see the “How SAS Determines the Amount of Memory to Use” on page 285 section for
the SORT procedure.

In most cases, you can set SORTSIZE=MAX since this value will limit the amount of
memory used by the SORT procedure.

See Also

� “REALMEMSIZE System Option” on page 353
� “SORTDEV System Option” on page 366
� “SORT Procedure” on page 282

SSLCALISTLOC System Option

Specifies the location of digital certificates for trusted certificate authorities

370 SSLCERTLOC System Option Chapter 17

Default: none
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Communications: Networking and encryption
PROC OPTIONS GROUP= COMMUNICATIONS
UNIX specifics: all

Syntax
SSLCALISTLOC=“file-path”

file-path
specifies the location of a file that contains the digital certificates for the trusted
certificate authorities (CA).

Details
This option is used to identify, for SSL, the certificate authorities that it should trust.
This option is always required for clients because they must trust at least one CA in
order to validate a server’s certificate. This option is required for a server only if client
authentication is enabled.

See Also

� “SSLCERTLOC System Option” on page 370
� “SSLCLIENTAUTH System Option” on page 371
� “SSLCRLCHECK System Option” on page 372
� “SSLCRLLOC System Option” on page 373
� “SSLPVTKEYLOC System Option” on page 373
� “SSLPVTKEYPASS System Option” on page 374
� Appendix 3, “Using SSL in UNIX Environments,” on page 403
� SAS/CONNECT User’s Guide

SSLCERTLOC System Option

Specifies the name of the file that contains the digital certificate that is used for authentication

Default: none
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Communications: Networking and encryption
PROC OPTIONS GROUP= COMMUNICATIONS
UNIX specifics: all

Syntax
SSLCERTLOC=“file-path”

System Options under UNIX SSLCLIENTAUTH System Option 371

file-path
The name of a file that contains a digital certificate.

Details

SSLCERTLOC is required for a server. It is needed on a client only if client
authentication is being performed.

See Also

� “SSLCALISTLOC System Option” on page 369

� “SSLCLIENTAUTH System Option” on page 371

� “SSLCRLCHECK System Option” on page 372

� “SSLCRLLOC System Option” on page 373

� “SSLPVTKEYLOC System Option” on page 373

� “SSLPVTKEYPASS System Option” on page 374

� Appendix 3, “Using SSL in UNIX Environments,” on page 403

� SAS/CONNECT User’s Guide

SSLCLIENTAUTH System Option

Specifies whether a server should perform client authentication

Default: NOSSLCLIENTAUTH

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Communications: Networking and encryption

PROC OPTIONS GROUP= COMMUNICATIONS

UNIX specifics: all

Syntax

SSLCLIENTAUTH | NOSSLCLIENTAUTH

SSLCLIENTAUTH | NOSSLCLIENTAUTH
specifies whether the server should require SSL to provide client authentication.

Details

Server authentication is always performed, but SSLCLIENTAUTH enables a user to
control client authentication. This option is meaningful only when used on a server.

372 SSLCRLCHECK System Option Chapter 17

See Also

� “SSLCALISTLOC System Option” on page 369
� “SSLCERTLOC System Option” on page 370
� “SSLCRLCHECK System Option” on page 372
� “SSLCRLLOC System Option” on page 373
� “SSLPVTKEYLOC System Option” on page 373
� “SSLPVTKEYPASS System Option” on page 374
� Appendix 3, “Using SSL in UNIX Environments,” on page 403
� SAS/CONNECT User’s Guide

SSLCRLCHECK System Option

Specifies whether Certificate Revocation Lists (CRLs) are checked when a digital certificate is
validated

Default: NOSSLCRLCHECK
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Communications: Networking and encryption
PROC OPTIONS GROUP= COMMUNICATIONS
UNIX specifics: all

Syntax
SSLCRLCHECK | NOSSLCRLCHECK

SSLCRLCHECK | NOSSLCRLCHECK
controls whether CRLs are checked when digital certificates are validated.

Details
Certificate Revocation Lists (CRLs) are published by Certificate Authorities (CAs) and
contain a list of revoked digital certificates. The list contains only the revoked
certificates that were issued by that particular certificate authority. This option is
relevant for servers only if client authentication is used. Because clients always check
server certificates, this option is always relevant for clients.

See Also

� “SSLCALISTLOC System Option” on page 369
� “SSLCERTLOC System Option” on page 370
� “SSLCLIENTAUTH System Option” on page 371
� “SSLCRLLOC System Option” on page 373
� “SSLPVTKEYLOC System Option” on page 373
� “SSLPVTKEYPASS System Option” on page 374

System Options under UNIX SSLPVTKEYLOC System Option 373

� Appendix 3, “Using SSL in UNIX Environments,” on page 403
� SAS/CONNECT User’s Guide

SSLCRLLOC System Option

Specifies the location for a Certificate Revocation List (CRL)

Default: none
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Communications: Networking and encryption
PROC OPTIONS GROUP= COMMUNICATIONS
UNIX specifics: all

Syntax
SSLCRLLOC=“file-path”

file-path
specifies the location of a Certificate Revocation List (CRL).

Details
This option is relevant only when the SSLCRLCHECK option is enabled.

See Also

� “SSLCALISTLOC System Option” on page 369
� “SSLCERTLOC System Option” on page 370
� “SSLCLIENTAUTH System Option” on page 371
� “SSLCRLCHECK System Option” on page 372
� “SSLPVTKEYLOC System Option” on page 373
� “SSLPVTKEYPASS System Option” on page 374
� Appendix 3, “Using SSL in UNIX Environments,” on page 403
� SAS/CONNECT User’s Guide

SSLPVTKEYLOC System Option

Specifies where to find the private key that corresponds to the digital certificate that was specified
with the SSLCERTLOC option

Default: none
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Communications: Networking and encryption

374 SSLPVTKEYPASS System Option Chapter 17

PROC OPTIONS GROUP= COMMUNICATIONS

UNIX specifics: all

Syntax
SSLPVTKEYLOC=“file-path”

file-path
specifies the name of the file that contains the private key that corresponds to the
digital certificate that was specified with the SSLCERTLOC= option.

Details

The value of this option must be the name of the file that contains the private key. This
option is required only when SSLCERTLOC is specified.

See Also

� “SSLCALISTLOC System Option” on page 369

� “SSLCERTLOC System Option” on page 370

� “SSLCLIENTAUTH System Option” on page 371

� “SSLCRLCHECK System Option” on page 372

� “SSLCRLLOC System Option” on page 373

� “SSLPVTKEYPASS System Option” on page 374

� Appendix 3, “Using SSL in UNIX Environments,” on page 403

� SAS/CONNECT User’s Guide

SSLPVTKEYPASS System Option

Specifies the password that SSL should use to decrypt the private key that is stored in the file
specified by SSLPVTKEYLOC

Default: none

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Communications: Networking and encryption

PROC OPTIONS GROUP= COMMUNICATIONS

UNIX specifics: all

Syntax

SSLPVTKEYPASS=“password”

System Options under UNIX STDIO System Option 375

password
specifies the password that SSL should use to decrypt the private key that is stored
in the file that is specified by SSLPVTKEYLOC.

Details
The option is required only when the private key is encrypted.

See Also

� “SSLCALISTLOC System Option” on page 369
� “SSLCERTLOC System Option” on page 370
� “SSLCLIENTAUTH System Option” on page 371
� “SSLCRLCHECK System Option” on page 372
� “SSLCRLLOC System Option” on page 373
� “SSLPVTKEYLOC System Option” on page 373
� Appendix 3, “Using SSL in UNIX Environments,” on page 403
� SAS/CONNECT User’s Guide

STDIO System Option

Specifies whether SAS should use stdin, stdout, and stderr

Default: NOSTDIO
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Input control: Data processing
PROC OPTIONS GROUP= INPUTCONTROL
UNIX specifics: all

Syntax
–STDIO | –NOSTDIO

Details
This option tells SAS to take its input from standard input (stdin), to write its log to
standard error (stderr), and to write its output to standard output (stdout).

This option is designed for running SAS in batch mode or from a shell script. If you
specify this option interactively, SAS starts a line mode session. The STDIO option
overrides the DMS, DMSEXP, and EXPLORER system options.

The STDIO option does not affect the assignment of the Stdio, Stdin, and Stderr
filerefs. See “Filerefs Assigned by SAS in UNIX Environments” on page 140 for more
information.

For example, in the following SAS command, the file MyInput is used as the source
program, and files MyOutput and MyLog are used for the procedure output and log
respectively.

376 STIMEFMT System Option Chapter 17

sas -stdio < myinput > myoutput 2> mylog

If you are using the C shell, you should use parentheses:

(sas -stdio < myinput > myoutput) >& output_log

See Also

� Chapter 6, “Printing and Routing Output,” on page 153

STIMEFMT System Option

Control the format of output produced by FULLSTIMER and STIMER

Default: M
Valid in: configuration file, SAS invocation, OPTIONS statement, SASV9_OPTIONS
environment variable
Category: Log and procedure output control: SAS log
PROC OPTIONS GROUP= LOGCONTROL
UNIX specifics: all

Syntax
-STIMEFMT value

STIMEFMT=value

Details
The STIMEFMT system option controls the format of output produced by the
FULLSTIMER and STIMER system options.

STIMEFMT takes the following values:

HOURS, H, or Z
prints time statistics in hh:mm:ss.ss format.

MINUTES or M
prints time statistics in mm:ss.ss format.

SECONDS or S
prints time statistics in ss.ss format.

NORMAL or N
prints time statistics in ss.ss format if the time is less than one minute, in
mm:ss.ss format if the time is less than one hour, or in hh:mm:ss.ss format
otherwise.

STIMER System Option

Writes a subset of system performance statistics to the SAS log

System Options under UNIX STIMER System Option 377

Default: STIMER
Valid in: configuration file, SAS invocation, OPTIONS statement, SASV9_OPTIONS
environment variable
Category: Log and procedure output control: SAS log
PROC OPTIONS GROUP= LOGCONTROL
UNIX specifics: all

Syntax
–STIMER | –NOSTIMER

STIMER | NOSTIMER

STIMER
writes only real time and CPU time to the SAS log.

NOSTIMER
does not write any statistics to the SAS log.

Details
The STIMER system option specifies whether a subset of all the performance statistics
of your system that are available to SAS are written to the SAS log. The following is an
example of STIMER output.

Output 17.3 STIMER Output

real time 1.34 seconds
cpu time 0.04 seconds

STIMER displays the following statistics:

Table 17.2 Description of STIMER Statistics

Statistic Description

Real Time the amount of time spent to process the SAS job. Real time is also referred to
as elapsed time.

CPU time the total time spent to execute your SAS code and spent to perform system
overhead tasks on behalf of the SAS process. This value is the combination of
the user cpu and system cpu statistics from FULLSTIMER.

If both STIMER and FULLSTIMER are set, the FULLSTIMER statistics are printed.

Note: Starting in SAS 9, some procedures use multiple threads. On computers with
multiple CPUs, the operating system can run more than one thread simultaneously.
Consequently, CPU time might exceed real time in your STIMER output.

For example, a SAS procedure could use two threads that run on two separate CPUs
simultaneously. The value of CPU time would be calculated as the following:

CPU1 time + CPU2 time = total CPU time
1 second + 1 second = 2 seconds

378 SYSIN System Option Chapter 17

Since CPU1 can run a thread at the same time that CPU2 runs a separate thread,
you can theoretically consume 2 CPU seconds in 1 second of real time. �

See Also

� “FULLSTIMER System Option” on page 331

SYSIN System Option

Specifies the default location of SAS source code when running in batch mode

Default: none
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
UNIX specifics: all

Syntax
–SYSIN filename

The filename must be a valid UNIX filename.

Details
This option applies only when you are using batch mode. It is not necessary to precede
the filename with the SYSIN option if the filename immediately follows the keyword
SAS. For example, the following two SAS commands are equivalent:

sas saspgms/report1.sas sas -sysin saspgms/report1.sas

See Also

� “Starting SAS Sessions in UNIX Environments” on page 4

SYSPRINT System Option

Specifies the destination for printed output

Default: default system printer
Valid in: configuration file, SAS invocation, OPTIONS statement, SASV9_OPTIONS
environment variable
Category: Log and procedure output control: Procedure output
PROC OPTIONS GROUP= LISTCONTROL
UNIX specifics: all

Syntax
–SYSPRINT destination | ’destination option-list’

System Options under UNIX TAPECLOSE System Option 379

SYSPRINT=destination | ’destination option-list’

destination
is the name of a hardcopy device at your site. Consult your system administrator for
a list of available destinations.

option-list
is the list of options to pass to the lp (or lpr) command.

Details
The SYSPRINT option specifies a destination for printed output other than default
system printer. You can also use the option list to pass options to the lp (or lpr)
command.

Note: When a fileref is assigned, the SYSPRINT option is queried. If the value of
the SYSPRINT option is later changed, the fileref does not pick up this change. �

For details, see “Changing the Default Print Command in UNIX Environments” on page
165.

See Also

� “PRINTCMD System Option” on page 352
� Chapter 6, “Printing and Routing Output,” on page 153

TAPECLOSE System Option

Specifies the default CLOSE disposition when reading and writing a SAS data library on tape

Default: REREAD
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES
UNIX specifics: all

Syntax
–TAPECLOSE disposition

TAPECLOSE=disposition

The disposition can be one of the following values:

REREAD
rewind to the beginning of this file when it is closed. This is the default.

REWIND
rewind to the beginning of the tape after closing each member.

380 USER System Option Chapter 17

LEAVE
perform no tape positioning when you close a member.

FREE
rewind and dismount the tape when the next member is closed.

USER System Option

Specifies the name of the default permanent SAS data library

Default: none
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
UNIX specifics: pathname must be a valid UNIX pathname
See: USER System Option in SAS Language Reference: Dictionary

Syntax
-USER pathname

USER=’pathname’ | libref

pathname
identifies the directory containing your default permanent SAS data library. It must
be a directory name.

libref
is the libref associated with the directory containing your default permanent SAS
data library. It must already be assigned.

See Also

� “Using One-Level Names To Access Permanent Files (User Data Library)” on page
120

VERBOSE System Option

Controls whether SAS writes the settings of SAS system options to the terminal

Default: NOVERBOSE
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Log and procedure output control: SAS log
PROC OPTIONS GROUP= LOGCONTROL
UNIX specifics: all

System Options under UNIX WORK System Option 381

Syntax
–VERBOSE | –NOVERBOSE

-VERBOSE
writes the settings of SAS system options from the configuration file, the SAS
command, and the SASV9_OPTIONS environment variable to the terminal. For the
CONFIG option, VERBOSE lists the name of the configuration file or files.

-NOVERBOSE
does not write the settings of the system options to the terminal.

Details
SAS sends the system option information to standard output. If the standard output is
a terminal, the list is displayed with the more command. You can also use the more
command to scroll the file. The RETURN key scrolls one line; the space bar scrolls the
entire display.

See Also

� “Customizing Your SAS Session Using System Options” on page 18

� “OPLIST System Option” on page 349

WORK System Option

Specifies the name of the Work library

Default: set in the installed !SASROOT/sasv9.cfg file

Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable

Category: Environment control: Files

PROC OPTIONS GROUP= ENVFILES

UNIX specifics: all

See: WORK System Option in SAS Language Reference: Dictionary

Syntax
–WORK pathname

pathname
specifies the directory (not a filename) where your Work SAS data library can be
created or found. SAS will create the directory if it does not exist. You must have
write permission to pathname.

382 WORKINIT System Option Chapter 17

See Also

� “WORKINIT System Option” on page 382

WORKINIT System Option

Initializes the Work data library

Default: WORKINIT
Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
UNIX specifics: WORKINIT does not erase files from previous sessions
See: WORKINIT System Option in SAS Language Reference: Dictionary

Syntax
–WORKINIT | –NOWORKINIT

WORKINIT
specifies that a new subdirectory is to be created in the directory specified in the
WORK option.

NOWORKINIT
specifies that the system is to use the directory specified by the WORK option.

� If the system does not find any old subdirectories, it creates a new one.
� If the system finds more than one old subdirectory, it uses the latest one.
� If file locking is in effect (see FILELOCKS option), the system looks for the

latest unlocked directory. If it finds none, it creates a new one.

Details
The WORKINIT option controls whether the Work data library is initialized at SAS
invocation.

See Also

� “FILELOCKS System Option” on page 329
� “WORK System Option” on page 381

WORKPERMS System Option

Sets the permissions of the SAS Work library when it is initially created

Default: umask

Valid in: configuration file, SAS invocation
Category: Environment control: Files

System Options under UNIX XCMD System Option 383

PROC OPTIONS GROUP= ENVFILES

UNIX specifics: all

Syntax
–WORKPERMS permission value

permission value
specifies the octal value representing the permissions desired for the SAS Work
directory. Values can be any octal value setting the permission of a UNIX directory.
Examples of values include: umask, 700, 755, 770, 775, and 777.

XCMD System Option

Specifies whether the X command is valid in the current SAS session

Default: XCMD

Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable

Category: Environment control: Display

PROC OPTIONS GROUP= ENVDISPLAY

UNIX specifics: all

Syntax
XCMD | NOXCMD

XCMD
specifies that the X command is valid in the current SAS session.

NOXCMD
specifies that the X command is not valid in the current SAS session.

Details
The XCMD system option specifies whether the X command is valid in the current SAS
session.

You cannot use several SAS statements, objects, and facilities if you use the
NOXCMD system option. Examples of these statements, objects, and facilities include:

� the PIPE device type on the FILENAME statement

� the CALL SYSTEM routine

� the %SYSEXEC macro

� any facility that SAS uses to execute a shell-level command.

384 Summary of All SAS System Options in UNIX Environments Chapter 17

See Also

� “Executing Operating System Commands from Your SAS Session” on page 13

� “X Command” on page 221

� “FILENAME Statement” on page 293

� “CALL SYSTEM Routine” on page 239

� %SYSEXEC macro in “Macro Statements in UNIX Environments” on page 265

Summary of All SAS System Options in UNIX Environments

The following table lists every SAS system option available under UNIX. Many of
these options have no host-specific behavior and are described in SAS Language
Reference: Dictionary. If an option is available only under UNIX, it is described in this
documentation. If an option is available under all environments but has some
environment-specific behavior, it is described in both SAS Language Reference:
Dictionary and this documentation. Use the following legend to see where to find more
information on an option.

Access indicates that the option is described in the SAS/ACCESS section of
the SAS Help and Documentation.

Comp indicates that the option is described in this section.

Connect indicates that the option is described in SAS/CONNECT User’s
Guide.

DQ indicates that the option is described in SAS Data Quality Server:
Reference.

IT indicates that the option is described in the documentation for SAS
Integration Technologies, either with the SAS Integration
Technologies software or on the SAS Web site.

LR indicates that the option is described in SAS Language Reference:
Dictionary.

Macro indicates that the option is described in SAS Macro Language:
Reference.

Methods indicates that the option is described in Communications Access
Methods for SAS/CONNECT and SAS/SHARE.

NLS indicates that the option is described in SAS National Language
Support (NLS): User’s Guide.

Share indicates that the option is described in SAS/SHARE User’s Guide.

SPDE indicates that the option is described in SAS Scalable Performance
Data Engine: Reference.

The table also shows the default value for each option and where you can specify the
option:

� at initialization: in the SAS command, in the SASV9_OPTIONS environment
variable, or in the configuration file

� in the OPTIONS statement

� in the System Options window.

System Options under UNIX Summary of All SAS System Options in UNIX Environments 385

Table 17.3 Summary of All SAS System Options

Can Be Specified In

Name Default

SAS Invocation,
SASV9_OPTIONS,
Configuration File

OPTIONS
Statement

System Options
Window See

ALTLOG no copy X Comp

ALTPRINT no copy X Comp

APPLETLOC !SASROOT/misc/
applets

X LR

ARMAGENT sasarmmg X X X LR

ARMLOC none X X X LR

ARMSUBSYS ARM_NONE X X X LR

ASYNCHIO see LR X LR

AUTHPROVIDERDOMAIN NULL X LR

AUTOEXEC see description X Comp

AUTOSAVELOC none X X X Comp

AUTOSIGNON NOAUTOSIGNON X X X Connect

BATCH NOBATCH X Comp/
LR

BINDING DEFAULT X X X LR

BLKSIZE 256 X X X Comp

BOTTOMMARGIN 0 X X X LR

BUFNO 1 X X X Comp/
LR

BUFSIZE 0 X X X Comp/
LR

BYERR BYERR X X X LR

BYLINE BYLINE X X X LR

BYSORTED BYSORTED X LR

CAPS NOCAPS X X X LR

CARDIMAGE NOCARDIMAGE X X X LR

CATCACHE 0 X Comp/
LR

CBUFNO 0 LR

CENTER CENTER X X X LR

CHARCODE NOCHARCODE X X X LR

CLEANUP see description X X X Comp/
LR

CMDMAC NOCMDMAC X X X Macro

CMPLIB NULL X X X LR

386 Summary of All SAS System Options in UNIX Environments Chapter 17

Can Be Specified In

Name Default

SAS Invocation,
SASV9_OPTIONS,
Configuration File

OPTIONS
Statement

System Options
Window See

CMPOPT none X X LR

COLLATE NOCOLLATE X X X LR

COLORPRINTINT COLORPRINTINT X X X LR

COMAMID TCP X Connect/
Share/
Methods

COMAUX1 X Methods

COMAUX2 X Methods

COMPRESS NO X X X LR

CONFIG see description X (also SASV9_CONFIG environment variable) Comp

CONNECTPERSIST YES X Connect

CONNECTREMOTE none X X X Connect

CONNECTSTATUS X X X X Connect

CONNECTWAIT X X X X Connect

COPIES 1 X X X LR

CPUCOUNT 8 X X X LR

CPUID CPUID X LR

DATASTMTCHK COREKEYWORDS X X X LR

DATE DATE X X X LR

DATESTYLE MDY X X X LR

DBCS NODBCS X NLS

DBCSLANG see description X NLS

DBCSTYPE see description X NLS

DBSLICEPARM (THREADED_APPS,
2)

X X X LR

DBSRVTP NONE X Access

DETAILS NODETAILS X X X LR

DEVICE none X X X Comp/
LR

DFLANG ENGLISH X X X NLS

DKRICOND ERROR X X X LR

DKROCOND WARN X X X LR

DLDMGACTION REPAIR X X X LR

DMR NODMR X Connect

DMS DMS X LR

DMSEXP NODMSEXP X LR

System Options under UNIX Summary of All SAS System Options in UNIX Environments 387

Can Be Specified In

Name Default

SAS Invocation,
SASV9_OPTIONS,
Configuration File

OPTIONS
Statement

System Options
Window See

DMSLOGSIZE 99999 X LR

DMSOUTSIZE 99999 X LR

DMSYNCHK NODMSSYNCHK X X X LR

DQLOCALE NULL X X X DQ

DQSETUPLOC NULL X X X DQ

DSNFERR DSNFERR X X X LR

DTRESET NODTRESET X X X LR

DUPLEX NODUPLEX X X X LR

ECHO none X Comp

ECHOAUTO NOECHOAUTO X LR

EDITCMD none X X Comp

EMAILAUTHPROTOCOL LOGIN X LR

EMAILHOST localhost X LR

EMAILID none X LR

EMAILPORT 25 X LR

EMAILPW NULL X LR

EMAILSYS SMTP X (except SASV9_OPTIONS environment variable) Comp

ENCODING latin1 X NLS

ENGINE V9 X Comp/
LR

ERRORABEND NOERRORABEND X X X LR

ERRORBYABEND NOERRORBYABENDX X X LR

ERRORCHECK NORMAL X LR

ERRORS 20 X X X LR

EXPLORER NOEXPLORER X LR

FILELOCKS FAIL X Comp

FIRSTOBS 1 X X X LR

FMTERR FMTERR X X X LR

FMTSEARCH WORK library X X X LR

FSDBTYPE none X NLS

FORMCHAR |----|+|---+=|
-/\<>*

X X X LR

FORMDLIM none X X X LR

FORMS DEFAULT X X X LR

388 Summary of All SAS System Options in UNIX Environments Chapter 17

Can Be Specified In

Name Default

SAS Invocation,
SASV9_OPTIONS,
Configuration File

OPTIONS
Statement

System Options
Window See

FONTSLOC !SASROOT/misc/
font

X Comp/
LR

FSIMM none X NLS

FSIMMOPT none X NLS

FULLSTIMER NOFULLSTIMER X X Comp

GISMAPS see description LR

GWINDOW GWINDOW X X X LR

HELPADDR NULL X X X Web

HELPBROWSER SAS X X X Web

HELPENCMD none X LR

HELPHOST NULL X X X Web

HELPINDEX /help/common.hlp/
index.txt, /help/
common.hlp/
keywords.htm,
common.hhk

X Comp/
LR

HELPLOC !SASROOT/X11/
native_help

X Comp/
LR

HELPPORT 0 X X X Web

HELPTOC /help/common.hlp/
contents.txt, /
help/common.hlp/
toc.htm,
common.hhc

X Comp/
LR

IBUFSIZE 0 X X X LR

IMPLMAC NOIMPLMAC X X X Macro

INITCMD none X LR

INITSTMT none X LR

INVALIDDATA . X X X LR

JREOPTIONS none X Comp

LABEL LABEL X X X LR

LAST _NULL_ X X X LR

LEFTMARGIN 0 X X X LR

LINESIZE see description X X X Comp/
LR

LOADMEMSIZE 0 X Comp

LOCALE English X X X NLS

LOG see description X Comp

System Options under UNIX Summary of All SAS System Options in UNIX Environments 389

Can Be Specified In

Name Default

SAS Invocation,
SASV9_OPTIONS,
Configuration File

OPTIONS
Statement

System Options
Window See

LOGPARM none X LR

LPTYPE see description X X Comp

MACRO MACRO X Macro

MAPS !SASROOT/maps X X X LR/
Comp

MAUTOLOCDISPLAY NOMAUTO-

LOCDISPLAY

X X X Macro

MAUTOSOURCE MAUTOSOURCE X X X Macro

MAXMEMQUERY 6M X Comp

MAXSEGRATIO 75 X X X SPDE

MCOMPILENOTE NONE X X X Macro

MERGENOBY NOWARN X X X LR

MERROR MERROR X X X Macro

MEMSIZE value set in
!SASROOT/
sasv9.cfg

X Comp

METAAUTORESOURCES NULL X LR

METACONNECT NULL X X X LR

METAENCRYPTALG NONE X LR

METAENCRYPTLEVEL EVERYTHING X LR

METAID none X LR

METAPASS none X X X LR

METAPORT 0 X X X LR

METAPROFILE NULL X LR

METAPROTOCOL BRIDGE X X X LR

METAREPOSITORY DEFAULT X LR

METASERVER none X X X LR

METAUSER none X X X LR

MINDELIMITER NULL X X X Macro

MFILE NOMFILE X X X Macro

MINPARTSIZE 0 X SPDE

MISSING . X X X LR

MLOGIC NOMLOGIC X X X Macro

MLOGICNEST NOMLOGICNEST X X X Macro

MPRINT NOMPRINT X X X Macro

MPRINTNEST NOMPRINTNEST X X X Macro

390 Summary of All SAS System Options in UNIX Environments Chapter 17

Can Be Specified In

Name Default

SAS Invocation,
SASV9_OPTIONS,
Configuration File

OPTIONS
Statement

System Options
Window See

MRECALL NOMRECALL X X X Macro

MSG !SASROOT/
sasmsg

X Comp

MSGCASE NOMSGCASE X LR

MSGLEVEL N X X X LR

MSTORED NOMSTORED X X X Macro

MSYMTABMAX 4M X X X Comp/
Macro

MULTENVAPPLE NOMULTENVAPPLE X X LR

MVARSIZE 32K X X X Comp/
Macro

NETENCRYPT NONETENCRYPT X X X Connect

NETENCRYPTALGORITHM
none

X X X Connect

NETENCRYPTKEYLEN
0

X X X Connect

NETMAC NETMAC X X X Connect

NEWS !SASROOT/misc/
base/news

X Comp/
LR

NLSCOMPATMODE NONLSCOMPATMODEX NLS

NOTES NOTES X X X LR

NUMBER NUMBER X X X LR

OBJECTSERVER NOOBJECTSERVERX LR

OBS MAX X X X Comp/
LR

OPLIST NOOPLIST X Comp

ORIENTATION PORTRAIT X X X LR

OVP NOOVP X X X LR

PAGEBREAK
INITIAL

NOPAGEBREAK
INITIAL

X LR

PAGENO 1 X X X LR

PAGESIZE see description X X X Comp/
LR

PAPERDEST none X X X LR

PAPERSIZE LETTER X X X LR

PAPERSOURCE none X X X LR

PAPERTYPE PLAIN X X X LR

System Options under UNIX Summary of All SAS System Options in UNIX Environments 391

Can Be Specified In

Name Default

SAS Invocation,
SASV9_OPTIONS,
Configuration File

OPTIONS
Statement

System Options
Window See

PARM none X X X LR

PARMCARDS FT15F001 X X X LR

PATH !SASROOT/sasexe X Comp

PRINT see description X Comp

PRINTCMD none X X Comp

PRINTERPATH none X (Available on MIPS ABI and Intel ABI only) LR

PRINTINIT NOPRINTINIT X LR

PRINTMSGLIST PRINTMSGLIST X X X LR

PRODTOC NULL X Web

QUOTELENMAX QUOTELENMAX X X X LR

REALMEMSIZE 0 X COMP

REPLACE REPLACE X X X LR

REUSE NO X X X LR

RIGHTMARGIN 0 X X X LR

RSASUSER NORSASUSER X Comp/
LR

RTRACE none X Comp

RTRACELOC none X Comp

S 0 X X X Comp/
LR

S2 0 X X X Comp/
LR

SASAUTOS SASAUTOS
fileref

X X X Comp/
Macro

SASCMD none X Connect

SASFRSCR none Valid in SAS Component Language Connect

SASHELP !SASROOT/
sashelp

X Comp/
LR

SASMSTORE none X X X Macro

SASSCRIPT !SASROOT/misc/
connect

X X X Comp/
Connect

SASUSER ~SASUSER.800 X Comp/
LR

SEQ 8 X X X LR

SEQENGINE V9TAPE X X X Comp

SERROR SERROR X X X Macro

SET none X X Comp

392 Summary of All SAS System Options in UNIX Environments Chapter 17

Can Be Specified In

Name Default

SAS Invocation,
SASV9_OPTIONS,
Configuration File

OPTIONS
Statement

System Options
Window See

SETINIT NOSETINIT X LR

SKIP 0 X X X LR

SOLUTIONS SOLUTIONS X LR

SORTANOM none X X Comp

SORTCUT 0 X X Comp

SORTCUTP 0 X X Comp

SORTDEV see description X X Comp

SORTDUP physical X X X LR

SORTEQUALS SORTEQUALS X X X LR

SORTNAME none X X Comp

SORTPARM none X X Comp

SORTPGM BEST X X Comp

SORTSEQ none X X X NLS

SORTSIZE MAX X X X Comp/
LR

SOURCE SOURCE X X X LR

SOURCE2 NOSOURCE2 X X X LR

SPDEINDEXSORTSIZE 32M X X X SPDE

SPDEMAXTHREADS 0 X SPDE

SPDESORTSIZE 32M X X X SPDE

SPDEUTILLOC NULL X SPDE

SPDEWHEVAL COST X SPDE

SPOOL NOSPOOL X X X LR

SSLCALISTLOC none X X X Comp/
Connect

SSLCERTLOC none X X X Comp/
Connect

SSLCLIENTAUTH NOSSLCLIENTAUTHX X X Comp/
Connect

SSLCRLCHECK NOSSLCRLCHECK X X X Comp/
Connect

SSLCRLLOC none X X X Comp/
Connect

SSLPVTKEYLOC none X X X Comp/
Connect

SSLPVTKEYPASS none X X X Comp/
Connect

System Options under UNIX Summary of All SAS System Options in UNIX Environments 393

Can Be Specified In

Name Default

SAS Invocation,
SASV9_OPTIONS,
Configuration File

OPTIONS
Statement

System Options
Window See

STARTLIB STARTLIB X LR

STDIO NOSTDIO X Comp

STIMEFMT M X Comp

STIMER STIMER X X Comp

SUMSIZE 0 X LR

SYMBOLGEN NOSYMBOLGEN X X X Macro

SYNCHIO see LR X LR

SYNTAXCHECK SYNTAXCHECK X X X LR

SYSIN none X Comp

SYSPARM none X X X Macro

SYSPRINT default system
printer

X Comp

SYSPRINTFONT none X X X LR

SYSRPUTSYNC NO X Connect

TAPECLOSE REREAD X X X Comp

TBUFSIZE 0 X X X Connect

TCPPORTFIRST 0 SAS invocation on the remote host Connect

TCPPORTLAST 0 SAS invocation on the remote host Connect

TERMINAL TERMINAL X LR

TERMSTMT none X LR

TEXTURELOC none X X X LR

THREADS NOTHREADS X X X LR

TOOLSMENU TOOLSMENU X LR

TOPMARGIN 0 X X X LR

TRAINLOC none X LR

TRANTAB none X X X NLS

UNIVERSALPRINT UNIVERSALPRINT X LR

USER none X X X Comp/
LR

UTILLOC none X LR

UUIDCOUNT 100 X X X IT

UUIDGENDHOST none X IT

V6CREATEUPDATE ERROR X LR

VALIDFMTNAME LONG X X X LR

VALIDVARNAME V7 X X X LR

394 Summary of All SAS System Options in UNIX Environments Chapter 17

Can Be Specified In

Name Default

SAS Invocation,
SASV9_OPTIONS,
Configuration File

OPTIONS
Statement

System Options
Window See

VERBOSE NOVERBOSE X Comp

VIEWMENU VIEWMENU X LR

VNFERR VNFERR X X X LR

WORK see description X Comp/
LR

WORKINIT WORKINIT X Comp/
LR

WORKPERMS WORKPERMS X Comp

WORKTERM WORKTERM X X X LR

XCMD XCMD X Comp

YEARCUTOFF 1920 X X X LR

395

P A R T4

Appendices

Appendix 1.The !SASROOT Directory 397

Appendix 2.Tools for the System Administrator 399

Appendix 3.Using SSL in UNIX Environments 403

Appendix 4.SAS Releases in UNIX Environments 413

Appendix 5.Recommended Reading 415

396

397

A P P E N D I X

1
The !SASROOT Directory

Introduction to the !SASROOT Directory 397

Contents of the !SASROOT Directory 397

Introduction to the !SASROOT Directory
When SAS is installed, its entire directory structure is placed on a node in your file

system. This node, which forms the root of SAS, is called the !SASROOT directory.
Although !SASROOT can be located anywhere in your file system, the system
administrator typically installs it in /usr/local/sas91. The SET system option is used
to specify the name of the !SASROOT directory. (See “SET System Option” on page 363.)

Contents of the !SASROOT Directory
The !SASROOT directory contains the files required to use SAS. This directory

includes invocation points, configuration files, sample programs, catalogs, data sets, and
executable files. You do not need to know the organization of these directories to use
SAS.

Many of the files in these directories are not text files, so do not try to read a file
unless the UNIX file command verifies that it contains ASCII text. Typically, files
with a .sas, .cfg, .scr, or .txt extension are readable. If all available SAS products are
installed on your system, the !SASROOT directory contains the files and directories
listed in the following tables:

Table A1.1 SAS Files in the !SASROOT Directory

SAS File Description of Contents

sas is the default invocation point for SAS.

sassetup is the invocation point for SAS Setup, the installation program for SAS.

setinit.sas is the SAS program used for updating licensing information.

sasv9.cfg is the system configuration file for SAS

398 Contents of the !SASROOT Directory Appendix 1

Table A1.2 SAS Directories in the !SASROOT Directory

SAS Directory Description of Contents

bin contains the invocation scripts for each language listed in the nls directory.
This directory also contains the sasenv script that sets the environment
variables that are required by SAS.

dbcs contains the subdirectories for a DBCS installation.

gismaps contains Census Tract maps for SAS/GIS software.

install contains the SAS Setup program files.

maps is a SAS data library that contains SAS data sets used by SAS/GRAPH
software to produce maps. You receive some maps with SAS/GRAPH software.
Additional maps are available in the SAS Map Data Library Series.

misc contains miscellaneous components, such as Java applets, fonts, and textures.
This directory also contains components for various SAS products, such as
script files for SAS/CONNECT and thin client interfaces for SAS/SHARE.

nls contains subdirectories for national language support. These directories
include: en (English), ja (Japanese), ko (Korean), and zh (Simplified Chinese).
Each language directory contains a sascfg subdirectory that contains the SAS
data files created during installation.

samples contains sample programs for different SAS products. These programs are
organized by product subdirectory. Sample programs are optionally installed.
Consequently, this directory might not include samples for every SAS product,
or the directory might be empty.

sasautos contains predefined SAS macros. See “Using Autocall Libraries in UNIX
Environments” on page 266.

sasexe contains executable files for different SAS products.

sashelp is a SAS data library that contains online help files, menus, descriptions of
graphics devices, and other catalogs used by SAS procedures that support
windows.

sasmsg contains files that contain all of the messages and notes that are used by SAS.

saspgm contains various components of SAS products.

sastest contains files that are used by the Feature Testing Tool.

utilities contains man pages and utility programs. See “The Utilities Directory in UNIX
Environments” on page 399 for more information.

X11 contains the files needed to run SAS with the X Window System. These files
include bitmap files, online help files, and resource files.

399

A P P E N D I X

2
Tools for the System
Administrator

The Utilities Directory in UNIX Environments 399

Installing Manual Pages 399
Utilities in the /bin Directory 400

The Utilities Directory in UNIX Environments

The !SASROOT/utilities directory contains two important subdirectories:

man contains the online manual pages for SAS. “Installing Manual
Pages” on page 399 describes how to make these pages accessible to
users through the UNIX man command. This directory contains two
subdirectories: man1, which contains unformatted man pages, and
cat1, which contains formatted man pages.

bin contains the executable files for administrative tools. “Utilities in
the /bin Directory” on page 400 describes some of the tools in this
directory.

Installing Manual Pages

To be able to read the manual pages in the utilities/man directory, move the files
to the man1 subdirectory of the location of the other man files for your system. This
location is usually /usr/man or /usr/local/man. Execute the man man command to
determine the appropriate pathname for your system. When you have found the correct
pathname, use the following command to move the SAS man files:

cp -r sasroot/utilities/man/* pathname

where pathname is the directory location of your system man files.
For example, the following command enables you to access online help by moving the

SAS man files from the !SASROOT directory to the man1 file in your system’s man
directory.

cp /usr/local/sas91/utilities/man/* /usr/local/man/man1

After you have issued this command, you can access online help with the man sas
command.

You can also add the directory to your system’s MANPATH environment variable if it
has been previously defined.

400 Utilities in the /bin Directory Appendix 2

Utilities in the /bin Directory

The following table briefly describes some of the tools in the utilities/bin
directory. You can also use the man command for information on these utilities. You will
need ROOT permissions to execute these commands.

Table A2.1 Tools for the System Administrator

Tool Name Function

cleanwork deletes any leftover Work directories whose associated SAS process has
terminated.

patchname resets the name of the sasroot directory in the specified executable file.

cleanwork Command

Deletes any leftover Work and Utility directories whose associated SAS process has ended

Syntax
cleanwork directory

directory
names the directory containing the Work and Utility directories. The name must
match the value specified in the WORK system option (which is typically /usr/tmp
and installed in the !SASROOT/sasv9.cfg file) or the value specified in the UTILLOC
system option.

Note: Unless cleanwork is run by root, user permissions might prevent you from
deleting a directory. �

Details
The cleanwork command deletes any directories that were assigned to the Work data
library or directories assigned by the UTILLOC system option. cleanwork deletes only
the SAS jobs that are on the UNIX box that your SAS session is running on. Each SAS
process is in the format

SAS_workcode_nodename

or

SAS_utilcode_nodename

code
is a 12-character code. The first four characters are randomly generated numbers.
The next eight characters are based on the hexadecimal process ID of the SAS
session. Processes that are active are not deleted.

Tools for the System Administrator patchname Command 401

nodename
specifies the name of the UNIX box where the SAS process is running.

If you are working on nodename jupiter, then the cleanwork command deletes all
directories with inactive processes on jupiter. cleanwork does not delete a directory
that is associated with an orphaned process if that process is still showing up as active.
In this case, you need to manually kill the process and then rerun cleanwork.

Note: The cleanwork utility for Version 8 will work on Version 8 of SAS as well as
prior versions of SAS. �

See Also

� “Work Data Library” on page 120

patchname Command

Resets the name of the !SASROOT directory in the specified executable file

Syntax
patchname filepath sasroot-directory-pathname

filepath
specifies the absolute pathname of the file in which to set the !SASROOT directory.

sasroot-directory-pathname
specifies the absolute pathname of the new !SASROOT directory.

Details
The patchname command resets the name of the !SASROOT directory in the specified
executable file to the specified directory. When you install SAS, the installation
program uses patchname to write the name of the !SASROOT directory to the file that
needs this information: the executable file containing the sas command. If you change
the !SASROOT directory, you must use patchname to alter this file.

402

403

A P P E N D I X

3
Using SSL in UNIX Environments

What Is SSL? 403

SSL (Secure Sockets Layer) 403
Certification Authorities (CAs) 404

Public and Private Keys 404

Digital Signatures 404
Digital Certificates 404

Using SSL 405

Overview of SSL Set-Up Process 405
SSL for SAS 405

SSL for UNIX 405
System and Software Requirements for SSL under UNIX 405

Setting Up SSL under UNIX 406

Downloading and Building SSL under UNIX 406
Creating Digital Certificate Requests under UNIX 406

Generating Digital Certificates on UNIX 408

Viewing Digital Certificates 409
Terminating OpenSSL 409

Creating a CA Trust List 409
Converting between PEM and DER File Formats 410

SSL Language Elements 411

What Is SSL?

SSL (Secure Sockets Layer)
SSL is a protocol that provides secure network communications. Developed by

Netscape Communications, SSL uses the encryption algorithms that were developed by
RSA Security, Inc. and other cryptography experts.

In addition to providing encryption services, SSL performs client and server
authentication and uses message authentication codes. SSL is supported by both
Netscape Navigator and Internet Explorer. Many Web sites use this protocol to protect
confidential user information, such as credit card numbers. URLs that require an SSL
connection begin with https: instead of http:. The SSL protocol is application
independent, which allows protocols such as HTTP, FTP, and Telnet to be transparently
layered above it. SSL is optimized for HTTP.

404 Certification Authorities (CAs) Appendix 3

Certification Authorities (CAs)
As e-business proliferates, there is a great need to ensure the confidentiality of

business transactions over a network between an enterprise and its consumers,
between enterprises, and within an enterprise. Cryptography products provide security
services by exploiting digital certificates, public-key cryptography, private-key
cryptography, and digital signatures. Certification authorities (CAs) create and
maintain digital certificates, which also help preserve confidentiality.

Various commercial CAs, such as VeriSign and Thawte, provide competitive services
for the e-commerce market. You can also develop your own CA by using products from
companies such as RSA Security and Microsoft or from the Open Source Toolkit
OpenSSL. From a trusted CA, members of an enterprise can obtain digital certificates
to facilitate their e-business needs. The CA provides a variety of ongoing services to the
business client that include handling digital certificate requests, issuing digital
certificates, and revoking digital certificates.

Public and Private Keys
Public-key cryptography uses a public and a private key pair. The public key can be

known by anyone, therefore, anyone can send a confidential message. The private key
is confidential and known only to the owner of the key pair, therefore, only the owner
can read the encrypted message. The public key is used primarily for encryption, but it
can also be used to verify digital signatures. The private key is used primarily for
decryption, but it can also be used to generate a digital signature.

Digital Signatures
A digital signature affixed to an electronic document or to a network data packet is

like a personal signature that concludes a hand-written letter or that validates a credit
card transaction. Digital signatures are a safeguard against fraud. A unique digital
signature results from using a private key to encrypt a message digest. Receipt of a
document that contains a digital signature enables the receiver to verify the source of
the document. Electronic documents can be verified if you know where the document
came from, who sent it, and when it was sent. Another form of verification comes from
MACs, which ensure that a document has not been changed since it was signed.

Digital Certificates
Digital certificates are electronic documents that ensure the binding of a public key

to an individual or an organization. Digital certificates provide protection from fraud.
Usually, a digital certificate contains a public key, a user’s name, and an expiration

date. It also contains the name of the certification authority (CA) that issued the digital
certificate and a digital signature that is generated by the CA. The CA’s validation of
an individual or an organization allows that individual or organization to be accepted at
sites that trust the CA.

Using SSL in UNIX Environments System and Software Requirements for SSL under UNIX 405

Using SSL

Overview of SSL Set-Up Process
The details for installing and setting up SSL at your site are based on the operating

environment and the digital certificate services software that you use. However, the
following tasks are basic:

1 Access the appropriate software for installing and setting up digital certificate
services under your operating environment.

2 Define a Certificate Authority (CA).
3 Request that digital certificates be generated by the CA for users, machines, and

other CAs.
4 Store the digital certificates in a trusted repository.
5 View the properties of the generated digital certificates.
6 Start a server.
7 Connect to the server.

SSL for SAS
You can set SAS system options to use SSL in a SAS session. See the SAS options

that are appropriate to your operating environment.

SSL for UNIX

System and Software Requirements for SSL under UNIX
The system and software requirements for using SSL under UNIX operating

environments are:
� A computer that runs UNIX.
� Internet access and a Web browser such as Netscape Navigator or Internet

Explorer.
� The TCP/IP communications access method.
� Access to the OpenSSL utility at www.openssl.org/source if you plan to use the

OpenSSL CA.
� Knowledge of your site’s security policy, practices, and technology. The properties

of the digital certificates that you request are based on the security policies that
have been adopted at your site.

406 Setting Up SSL under UNIX Appendix 3

Setting Up SSL under UNIX
Perform the following tasks to set up and use SSL:
1 Download and build SSL.
2 Create digital certificate requests.
3 Generate digital certificates from requests.
4 View the digital certificates.
5 Terminate the OpenSSL utility.
6 Create a trusted list of CAs.

Downloading and Building SSL under UNIX
If you want to use OpenSSL as your trusted Certificate Authority (CA), follow the

instructions for downloading and building OpenSSL that are given at www.openssl.org/
source. For complete documentation about the OpenSSL utility, visit www.openssl.org/
docs/apps/openssl.html.

Information about alternative CAs and their Web sites follows:
� For VeriSign, see www.verisign.com
� For Thawte, see www.thawte.com

Creating Digital Certificate Requests under UNIX
To enable an SSL connection at your site, you must
� obtain a digital certificate from a certification authority (CA).
� create a digital certificate request from which a digital certificate is generated.
� request one or more digital certificates for the CA (if you will be running your own

CA), the server, and the client (optional).

The tasks that you perform to request a digital certificate for the CA, the server, and
the client are similar, however, the values that you specify will be different.

In this example, Proton, Inc. is the organization that is applying for certification
authority status by using OpenSSL. After Proton, Inc. becomes a CA, it can serve as a
Certificate Authority for issuing digital certificates to clients (users) and servers on its
network.

Perform the following tasks:
1 Select the apps subdirectory of the directory where OpenSSL was built.
2 Initialize OpenSSL.

$ openssl

3 Issue the appropriate command to request a digital certificate. (See Table A3.1 on
page 407.) The functions of the arguments used in the commands are shown in
Table A3.2 on page 407

Using SSL in UNIX Environments Creating Digital Certificate Requests under UNIX 407

Table A3.1 Open SSL Commands for Requesting a Digital Certificate

Request Certificate
for

OpenSSL Command

CA req -config ./openssl.cnf -new -out sas.req -keyout saskey.pem -nodes

Server req -config ./openssl.cnf -new -out server.req -keyout serverkey.pem

Client req -config ./openssl.cnf -new -out client.req -keyout clientkey.pem

Table A3.2 Arguments and Values Used in OpenSSL Commands

OpenSSL Arguments and
Values

Functions

req requests a certificate

-config ./openssl.cnf specifies where the configuration details for the
OpenSSL program are stored

-new identifies the request as new

-out sas.req specifies where the certificate request will be stored

-keyout saskey.pem specifies where the private key will be stored

-nodes prevents the private key from being encrypted

4 Informational messages are displayed and prompts for additional information
appear according to the specific request.

To accept a default value, press the Return key. To change a default value, type
the appropriate information and press the Return key.

Note: Unless the -NODES option is used in the OpenSSL command when
creating a digital certificate request, OpenSSL will prompt you for a password
before allowing access to the private key.

The following is an example of a request for a digital certificate:
OpenSSL> req -config ./openssl.cnf -new -out sas.req -keyout saskey.pem -nodes
Using configuration from ./openssl.cnf
Generating a 1024 bit RSA private key
............................++++++
..++++++
writing new private key to ’saskey.pem’

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [US]:
State or Province Name (full name) [North Carolina]:
Locality Name (city) [Cary]:
Organization Name (company) [Proton INC.]:
Organizational Unit Name (department) [IDB]:
Common Name (YOUR name) []: Joe Bass

408 Generating Digital Certificates on UNIX Appendix 3

Email Address []:Joe.Bass@proton.com

Please enter the following ’extra’ attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
OpenSSL>

The request for a digital certificate is complete.

Note: For the server, the Common Name must be the name of the machine on which
the server runs; for example, apex.serv.com. �

Generating Digital Certificates on UNIX
Perform the following tasks to generate digital certificates for a CA, a server, and a

client.
1 Issue the appropriate command to generate a digital certificate from the digital

certificate request. (See Table A3.3 on page 408.)

Table A3.3 OpenSSL Commands for Generating Digital Certificates under UNIX

Generate Certificate for OpenSSL Command

CA x509 req -in sas.req -signkey saskey.pem -out sas.pem

Server ca -config ./openssl.cnf -in server.req -out server.pem -nodes

Client ca -config ./openssl.cnf -in client.req -out client.pem

The functions performed by the OpenSSL arguments and values are shown in
Table A3.4 on page 408.

Table A3.4 Arguments and Values Used in OpenSSL Commands on UNIX

OpenSSL Arguments and Values Functions

x509 identifies the certificate display and signing
utility

req specifies that a certificate be generated from
the request

ca identifies the certificate authority utility

-config ./openssl.cnf specifies where the configuration details for
the OpenSSL utility are stored

-in filename.req specifies where the input for the certificate
request is stored

-out filename.pem specifies where the certificate will be stored

-signkey saskey.pem specifies the private key that will be used to
sign the certificate that is generated by the
certificate request

2 Informational messages are displayed and prompts for additional information
appear according to the specific request.

Using SSL in UNIX Environments Creating a CA Trust List 409

To accept a default value, press the Return key. To change a default value, type
the appropriate information, and press the Return key.

Sample dialog for creating a server digital certificate follows:

Note: The password is for the CA’s private key.
Using configuration from ./openssl.cnf
Enter PEM pass phrase: password
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:’US’
stateOrProvinceName :PRINTABLE:’NC’
localityName :PRINTABLE:’Cary’
organizationName :PRINTABLE:’Proton, Inc.’
organizationalUnitName:PRINTABLE:’Development’
commonName :PRINTABLE:’Server’
Certificate is to be certified until Oct 16 17:48:27 2003 GMT (365 days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries Data Base Updated

The subject’s Distinguished Name is obtained from the digital certificate request.

A root CA digital certificate is self-signed. Self-signed means that the digital
certificate is signed with the private key that corresponds to the public key that is
in the digital certificate. Except for root CAs, digital certificates are usually signed
with a private key that corresponds to a public key that belongs to someone else,
usually the CA.

Viewing Digital Certificates

To view a digital certificate, issue the following command:

openssl> x509 -text -in filename.pem

A digital certificate contains data that was collected to generate the digital certificate
timestamps, a digital signature, and other information. However, because the generated
digital certificate is encoded (usually in PEM format), it is unreadable.

Terminating OpenSSL

To terminate OpenSSL, type quit at the prompt.

Creating a CA Trust List

After generating digital certificates for the CA, the server, and the client (optional),
you must identify for the OpenSSL client application one or more CAs that are to be
trusted. This list is called a trust list.

If there is only one CA to trust, specify the name of the file that contains the
OpenSSL CA digital certificate, in the client application.

If multiple CAs are to be trusted, create a new file and copy-and-paste into it the
contents of all the digital certificates for CAs to be trusted by the client application.

410 Converting between PEM and DER File Formats Appendix 3

Use the following template to create a CA trust list:

Certificate for OpenSSL CA

-----BEGIN CERTIFICATE-----

<PEM encoded certificate>

-----END CERTIFICATE-----

Certificate for Keon CA

-----BEGIN CERTIFICATE-----

<PEM encoded certificate>

-----END CERTIFICATE-----

Certificate for Microsoft CA

-----BEGIN CERTIFICATE-----

-----END CERTIFICATE-----

Because the digital certificate is encoded, it is unreadable. Therefore, the content of
the digital certificate in this example is represented as <PEM encoded certificate> .
The content of each digital certificate is delimited with a -----BEGIN
CERTIFICATE----- and -----END CERTIFICATE----- pair. All text outside the
delimiters is ignored. Therefore, you might want to use undelimited lines for
descriptive comments. In the preceding template, the file that is used contains the
content of digital certificates for the CAs: OpenSSL, Keon, and Microsoft.

Note: If you are including a digital certificate that is stored in DER format, you
must first convert it to PEM format. For more information, see “Converting between
PEM and DER File Formats” on page 410. �

Converting between PEM and DER File Formats
By default, OpenSSL files are created in PEM (Privacy Enhanced Mail) format. SSL

files that are created in Windows operating environments are created in DER
(Distinguished Encoding Rules) format.

Under Windows, you can import a file that is created in either PEM or DER format.
However, a digital certificate that is created in DER format must be converted to PEM
format before it can be included in a trust list under UNIX.

An example of converting a server digital certificate from PEM input format to DER
output format follows:

OpenSSL> x509 -inform PEM -outform DER -in server.pem -out server.der

An example of converting a server digital certificate from DER input format to PEM
output format follows:

OpenSSL> x509 -inform DER -outform PEM -in server.der -out server.pem

Using SSL in UNIX Environments SSL Language Elements 411

SSL Language Elements
� “SSLCALISTLOC System Option” on page 369

� “SSLCERTLOC System Option” on page 370
� “SSLCLIENTAUTH System Option” on page 371

� “SSLCRLCHECK System Option” on page 372

� “SSLCRLLOC System Option” on page 373
� “SSLPVTKEYLOC System Option” on page 373

� “SSLPVTKEYPASS System Option” on page 374

� “FILENAME Statement, URL Access Method” in SAS Language Reference:
Dictionary

412

413

A P P E N D I X

4
SAS Releases in UNIX
Environments

SAS Releases in UNIX Environments 413

SAS Releases in UNIX Environments

The following table lists the releases of SAS that were shipped for each UNIX
operating environment.

Table A4.1 SAS Releases in UNIX Environments

SAS Versions and ReleasesUNIX Operating
Environment 9.1 91 8 7 6.12 6.11 6.10 6.09

AIX • • • • • • •

HP-UX2 • • • • • • •

Tru64 UNIX3 • • • • • • •

Solaris4 • • • • • • •

Linux5 • • •

Intel ABI •6 • •

IRIX7 •

SunOS8 • • •

MIPS ABI • •

1Starting in SAS 9, AIX, HP-UX, and Solaris are 64-bit enabled.
2For SAS 9 and 9.1, both HP-UX PA Risc in 64-bit environments and HP-UX for

Itanium are supported.
3formerly DIGITAL UNIX.
4refers to SUN systems starting with release 2.5 (also called 5.5).
5refers to Linux for Intel in 32-bit environments.
6refers to NCR MP/RAS, UnixWare, Sequent Dynix/Ptx, and Solaris for Intel.
7IRIX (the operating system created by Silicon Graphics) was formerly included in

the MIPS ABI architectural group, which SAS supported only in SAS Releases 6.10 and
6.11.

8refers to SUN system releases up to and including release 2.4.

414

415

A P P E N D I X

5
Recommended Reading

Recommended Reading 415

Recommended Reading

Here is the recommended reading list for this title:
� SAS Language Reference: Concepts
� SAS Language Reference: Dictionary
� Base SAS Procedures Guide
� SAS Macro Language: Reference
� SAS National Language Support (NLS): User’s Guide

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/publishing
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

416

417

Glossary

access descriptor
a SAS/ACCESS file that describes data that is managed by a data management
system. After creating an access descriptor, you can use it as the basis for creating
one or more view descriptors.

active window
a window that is open, is displayed, and to which keyboard input is directed. Only
one window can be active at a time.

aggregate storage location
a location on an operating system that can contain a group of distinct files. Different
host operating systems call an aggregate grouping of files different names, such as a
directory, a maclib, or a partitioned data set. The standard form for referencing an
aggregate storage location from within SAS is fileref(name), where fileref is the
entire aggregate and (name) is a specific file or member of that aggregate.

application work space (AWS)
a window that contains other windows (child windows) or from which other windows
can be invoked, but which is not contained within any parent window that is part of
the same software application.

ASCII
an acronym for the American Standard Code for Information Interchange. ASCII is a
7-bit character coding scheme (8 bits when a parity check bit is included) including
graphic (printable) and control (nonprintable) codes.

ASCII collating sequence
an ordering of characters that follows the order of the characters in the American
Standard for Information Interchange (ASCII) character coding scheme. SAS uses
the same collating sequence as its host operating environment.

autoexec file
a file that contains SAS statements that are executed automatically when SAS is
invoked. The autoexec file can be used to specify some SAS system options, as well as
librefs and filerefs to data sources that are used frequently. See also fileref and libref.

background process
in UNIX environments, a process that executes independently of the shell. When a
command is executing in a background process, you can enter other commands or

418 Glossary

start other background processes without waiting for your initial command to finish
executing.

batch file
a file that contains operating-system commands, which are processed sequentially
when the file is executed.

batch mode
a method of executing SAS programs in which a file that contains SAS statements
plus any necessary operating environment commands is submitted to the computer’s
batch queue. After you submit the program, control returns to the terminal or
workstation, where you can perform other tasks. Batch mode is sometimes referred
to as running in the background. The program output can be written to files or
printed on an output device.

Under UNIX, place statements that you want to execute in a file. Then specify
that file when you run SAS in the background.

buffer
an area of computer memory that is reserved for use in performing input/output (I/O)
operations.

button
a component of a graphical user interface. A button is usually in the form of a
rectangle or square that contains a label. The button is programmed to execute a
command, to open a window, or to perform some other function when a user selects
it. For example, many graphical user interfaces include buttons that have labels
such as OK, Cancel, and Help.

catalog
See SAS catalog.

catalog entry
See SAS catalog entry.

class name
a name that provides a way to group individual X resources together. For example,
DMSboldFont and DMSFont are two separate X resources, but they are both part of
the Font class.

client
(1) a computer or application that requests services, data, or other resources from a
server. (2) in the X Window System, an application program that interacts with the X
server and can perform tasks such as terminal emulation or window management.
For example, SAS is a client because it requests windows to be created, results to be
displayed, and so on.

command line
the location in any SAS windowing environment window designated with Command
===>.

command prompt
the symbol after which you enter operating system commands. In UNIX
environments, different shells use different command prompts. The default command
prompt for the Bourne shell and the Korn shell is $, and the default prompt for the C
shell is %.

configuration file
in SAS software, an external file that contains SAS system options. These system
options take effect each time you invoke SAS.

Glossary 419

container window
any SAS window that contains interior windows.

converting SAS files
the process of changing the format of a SAS file from the format that is appropriate
for one version of SAS to the format that is appropriate for another version in the
same operating environment.

current directory
the directory you are working in at any given time. When you log on, your current
directory is the starting point for relative pathnames. See also working directory.

data set option
a SAS language element that specifies actions that apply only to a particular SAS
data set. For example, data set options enable you to rename variables, to select only
the first or last in observations for processing, to drop variables from processing or
from the output data set, and to specify a password for a SAS data set.

descriptor information
information about the contents and attributes of a SAS data set. SAS creates and
maintains descriptor information within every SAS data set.

dialog box
a type of window that opens to prompt you for additional information or to ask you to
confirm a request.

directory
a named subdivision on a disk or diskette used in organizing files. A directory also
contains information about the file such as size and date of last change.

download
to copy a file from the remote host to the local host.

drag
to press and hold a mouse button while moving the mouse.

engine
a component of SAS software that reads from or writes to a file. Each engine allows
SAS to access files with a particular format. There are several types of engines. See
also interface engine, library engine, native engine, and view engine.

environment variable
in UNIX environments, a shell variable whose value or values can be accessed by any
program that is executed from that shell. The shell assigns default values to some
environment variables. For example, the type of terminal and the type of command
prompt are specified by the default values of two environment variables.

error message
a message in the SAS log or Message window that indicates that SAS was not able to
continue processing the program.

external file
a file that is maintained by the host operating environment or by some software
product. SAS can read data from and route output to external files. External files
can contain raw data, SAS programming statements, procedure output, or output
that was created by the PUT statement. An external file is not a SAS data set.

file descriptor
under UNIX operating systems, a nonnegative integer identifier used to refer to a file
opened for reading or writing or both.

420 Glossary

file extension
the classification of a file in a directory that identifies what type of information is
stored in the file. For example, .SCAT is the file extension for SAS catalogs. See also
member type.

fileref
a name that is temporarily assigned to an external file or to an aggregate storage
location such as a directory or folder. The fileref identifies the file or the storage
location to SAS.

Under the UNIX operating system and its derivatives, you can assign a fileref
with a FILENAME statement, or you can define it as an environment variable.

font
a complete set of all the characters of the same design and style. The characters in a
font can be figures or symbols as well as alphanumeric characters.

foreground process
in UNIX environments, a process that executes while you wait for the command
prompt to reappear. You cannot execute additional commands while the initial
command is being executed in a foreground process.

function key
a keyboard key that can be defined to have a specific action in a specific software
environment. For example, Keypad 3 is defined as PASTE in the PROGRAM EDITOR
window, but in the context of the FSEDIT procedure, Keypad 3 is defined as DUP.

home directory
under UNIX operating systems, the directory in which a user is placed after logging
in. The home directory is also called the login directory.

icon
in windowing environments, a pictorial representation of an object. An icon usually
represents a window or an object associated with an action such as printing or filing.

index
in SAS software, a component of a SAS data set that enables SAS to access
observations in the SAS data set quickly and efficiently. The purpose of SAS indexes
is to optimize WHERE-clause processing and facilitate BY-group processing.

interactive line mode
a method of running SAS programs in which you enter one line of a SAS program at
a time at the SAS session prompt. SAS processes each line immediately after you
press the ENTER or RETURN key. Procedure output and informative messages are
returned directly to the display device.

interface engine
a SAS engine that reads and writes file formats supported by other vendors’
software. See also engine and native engine.

interior window
a window within an application workspace that is controlled by SAS. SAS/ASSIST
software is an example of an application with interior windows. See also application
work space (AWS).

kernel
the memory-resident part of a UNIX operating system that manages the computer’s
resources. The kernel allocates memory, schedules programs for execution, monitors
devices, and so on.

Glossary 421

library engine
an engine that accesses groups of files and puts them into the correct form for
processing by SAS utility windows and procedures. A library engine also determines
the fundamental processing characteristics of the library, presents lists of files for the
library directory, and supports view engines. See also engine and view engine.

libref
a name that is temporarily associated with a SAS data library. For example, in the
name Sasuser.Accounts, the name Sasuser is the libref. You assign a libref with a
LIBNAME statement or with an operating system command.

local SAS session
a SAS session running on the local host. The local session accepts SAS statements
and passes those that are remote submitted to the remote host for processing. The
local session manages the output and messages from both the local session and the
remote session.

login directory
See home directory.

login shell
under UNIX operating systems, the program (or command interpreter) started when
a user logs in.

member
a SAS file in a SAS data library.

member type
a SAS name assigned that identifies the type of information stored in a SAS file.
Member types include ACCESS, DATA, CATALOG, PROGRAM, and VIEW.

menu bar
the primary list of items in a window which represent the actions or classes of
actions that can be executed. Selecting an item executes an action, opens a pull-down
menu, or opens a dialog box that requests additional information. See also pop-up
menu and pull-down menu.

methods of running SAS
standard methods of operation used to run SAS programs. These methods are SAS/
ASSIST software, SAS windowing environment, interactive line mode, noninteractive
mode, and batch mode.

Multiple Engine Architecture (MEA)
a feature of SAS that enables it to access a variety of file formats through sets of
instructions called engines. See also engine.

native engine
an engine that accesses forms of SAS files created and processed only by SAS. See
also engine.

network
an interconnected group of computers.

noninteractive mode
a method of running SAS programs in which you prepare a file of SAS statements
and submit the program to the operating system. The program runs immediately
and occupies your current session.

note
in the SAS log, an informative message or explanation.

422 Glossary

path
the route through a hierarchical file system leading to a particular file or directory

permanent SAS data library
a SAS library that is not deleted when a SAS session terminates, and which is
therefore it is available to subsequent SAS sessions. Unless the User libref is
defined, you use a two-level name to access a file in a permanent library. The
first-level name is the libref, and the second-level name is the member name.

physical filename
the name the operating system uses to identify a file.

pipe
under UNIX operating systems and derivatives, the facility that links one command
to another so that the standard output of one becomes the standard input of the other.

PMENU facility
a menuing system in SAS that is used instead of the command line as a way to
execute commands. The PMENU facility consists of a menu bar, pull-down menus,
and dialog boxes.

pop-up menu
a menu that appears when requested. Pop-up menus are context-specific, depending
on which window is active and on the cursor location.

primary windows
in the SAS windowing environment, the PROGRAM EDITOR, LOG, and OUTPUT
(LISTING), and OUTPUT MANAGER windows.

procedure output file
an external file that contains the result of the analysis or the report produced. Most
procedures write output to the procedure output file by default. Reports that DATA
steps produce using PUT statements and a FILE statement with the PRINT
destination also go to this file.

process ID (PID)
a unique number assigned by the operating system to each process

Profile catalog
See Sasuser.Profile catalog.

protocol
a set of rules governing data communications between computers and peripheral
devices.

pull-down menu
the list of menu item or choices that appears when you choose an item from a menu
bar or from another menu. See also PMENU facility.

random access
the ability to retrieve records in a file without reading all records sequentially.

remote host
a computer physically removed from yours that you can log in to.

return code
a code passed to the operating system that indicates whether a command or job step
has executed successfully.

SAS catalog
a SAS file that stores many different kinds of information in smaller units called
entries. A single SAS catalog can contain several different types of catalog entries.
See also SAS catalog entry.

Glossary 423

SAS catalog entry
a separate storage unit within a SAS catalog. Each entry has an entry type that
identifies its purpose to SAS. Some catalog entries contain system information such
as key definitions. Other catalog entries contain application information such as
window definitions, Help windows, formats, informats, macros, or graphics output.

SAS command
a command that invokes SAS. This command may vary depending on the operating
environment and site. See also SAS invocation.

SAS data file
a SAS data set that contains data values as well as descriptor information that is
associated with the data.

SAS data library
a collection of one or more SAS files that are recognized by SAS and which are
referenced and stored as a unit. Each file is a member of the library.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data values from other SAS data
sets or from files whose contents are in other software vendors’ file formats. See also
descriptor information.

SAS data set option
an option that appears in parentheses after a SAS data set name. Data set options
specify actions that apply only to the processing of that SAS data set.

SAS data view
a type of SAS data set that retrieves data values from other files. A SAS data view
contains only descriptor information such as the data types and lengths of the
variables (columns), plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors’ file
formats.

SAS file
a specially structured file that is created, organized, and, optionally, maintained by
SAS. A SAS file can be a SAS data set, a catalog, a stored program, or an access
descriptor.

SAS initialization
the setting of global characteristics that must be in place at start-up for a SAS
programming environment. SAS performs initialization by setting certain SAS
system options called initialization options. Invoking SAS software initiates SAS
initialization.

SAS invocation
the process of calling or starting up SAS software by an individual user through
execution of the SAS command. Invoking SAS initiates SAS initialization. See also
SAS initialization.

SAS log
a file that contains a record of the SAS statements that you enter as well as
messages about the execution of your program.

SAS session
See session.

424 Glossary

SAS system option
an option that affects the processing of an entire SAS program or interactive SAS
session from the time the option is specified until it is changed. Examples of items
controlled by SAS system options include appearance of SAS output, handling of
some files that are used by SAS, use of system variables, the processing observations
in SAS data sets, features of SAS initialization, and the way SAS interacts with your
host operating environment.

SAS windowing environment
an interactive windowing interface to SAS software. In this environment you can
issue commands by typing them on the command line, by pressing function keys, or
by selecting items from menus or menu bars. Within one session, you can perform
many different tasks, including preparing and submitting programs, viewing and
printing results, and debugging and resubmitting programs.

Sashelp library
a SAS data library supplied by SAS software that stores text for HELP windows,
default function key and window definitions, and menus.

Sasuser library
a default, permanent SAS data library that is created at the beginning of your first
SAS session. The Sasuser library contains a Profile catalog that stores the tailoring
features you specify for SAS. You can also store other SAS files in this library.

Sasuser.Profile catalog
a SAS catalog in which SAS stores information about attributes of your SAS
windowing environment. For example, this catalog contains function-key definitions,
fonts for graphics applications, window attributes, and other information that is used
by interactive SAS procedures. See also SAS catalog.

sequential access
a method of file access in which the records are read or written one after the other
from the beginning of the file to the end.

server
(1) in a network, a computer that is reserved for servicing other computers in the
network. Servers can provide several different types of services, such as file services
and communication services. Servers can also enable users to access shared
resources such as disks, data, and modems. (2) in the X Window System, software
that transfers information between various clients on a network. Through their
clients, users can submit input to and request output from a server. See also client.

session
a single period during which a software application is in use, from the time the
application is invoked until its execution is terminated.

session gravity
in the X Window interface to SAS, the resource that controls the region of the
workstation display in which SAS attempts to place its windows.

shell
a UNIX command interpreter. Sample shells are sh, csh, and ksh.

shell script
a file containing commands that can be read and executed by the shell. A shell script
is also called a shell procedure or a shell program.

special file
under UNIX operating systems, an interface to an input or output device. Writing to
or reading from the file activates the device.

Glossary 425

standard error
under UNIX operating systems, the destination of the program’s error messages.

standard input
the primary source of data going into a command. Standard input comes from the
keyboard unless it is being redirected from a file or piped from another command.

standard output
the primary destination of data coming from a command. Standard output goes to
the display unless it is being redirected to a file or piped to another command.

swapping
the action of moving segments from memory to disk and vice versa.

system option
See SAS system option.

temporary SAS data library
a library that exists only for the current SAS session or job. The most common
temporary library is the Work library. See also Work data library.

toggle
an option, parameter, or other mechanism that enables you to turn on or turn off a
processing feature.

Toolbox
a feature of SAS that enables you to associate an icon with any SAS command or
macro. Selecting the icon executes its associated command or string of commands.

toolset
a set of predefined tools that is associated with an application. Toolsets make it
easier for individual users to customize their application toolboxes.

Universal Printing
a feature of SAS software that enables you to send SAS output to PDF, Postscript,
and PCL files, as well as directly to printers. The Universal Printing system also
provides many options that enable you to customize your output, and it is available
in all of the operating environments that SAS supports.

upload
to copy a file from the local host to the remote host.

User data library
a SAS data library defined with the libref User. When the libref User is defined, SAS
uses it as the default libref for one-level names.

view engine
an engine that enables SAS to process SAS data views. A view engine performs in a
transparent manner. See also SAS data view.

warning
in the SAS log, a message that informs you of a potential problem.

Work data library
the SAS data library that is automatically defined by SAS at the beginning of each
SAS session or SAS job. The Work library contains SAS files that are temporary by
default. When the libref User is not defined, SAS uses Work as the default library for
SAS files created with one-level names.

working directory
the directory in which a software application is stored. When the application is
started, the working directory becomes the current directory unless you specify a

426 Glossary

different current directory. Therefore, the working directory for a SAS session is
usually the directory from which you invoked SAS.

X resource
a characteristic of a window interface, such as font type, font size, color, gravity, and
window size.

X resource file
in the X Window System, a file that stores attribute specifications for the windowing
environment, such as color, gravity, font types and sizes, and window sizes.

X window system
a graphical windowing system that was developed at the Massachusetts Institute of
Technology.

Index 427

Index

Numbers
32-bit SAS files

migrating to 64-bit 106
32-bit shared libraries 176
64-bit SAS files

migrating from 32-bit 106

A
ABEND option

ABORT statement 290
ABORT statement 290
About SAS dialog box

invoking 204
access descriptor files 105
aggregate syntax 138
aliases

font aliases 83
ALL option

FILENAME command 295
LIBRNAME statement 302
WAITFOR statement 308

ALTER= data set option 224
alter passwords 224
alternate SAS log

destination for 163, 314
alternative configuration file 322
ALTLOG system option 163, 314
ALTPRINT system option 163, 315
ANY option

WAITFOR statement 308
APPEND system option 315
application workspace (AWS) 31
ARG statement 173
ASCII values

position of character in ASCII collating se-
quence 255

returning characters based on 238
returning string of 240

asynchronous tasks
executing 13, 305

ATTACH= email option 145
ATTRIB statement 290
attribute table 170
authentication

checking CRLs 372
digital certificates, locations of 370

digital certificates, names of files contain-
ing 371

digital certificates, private keys for 374, 375
if required 371

autocall libraries 266
setting up and testing macros in 267
specifying 359

autoexec files 16
configuration files vs. 16
specifying 316

AUTOEXEC system option 316
automatic macro variables

UNIX 263
automatic paste buffer 45
autosave

location of autosave file 317
turning on and off 215

AUTOSAVELOC system option 317
AUTOSCROLL command 202
AWS (application workspace) 31

B
background color definitions 86
background color resources 86
background process 5
batch mode 8

destination for output 352
executing X statements 15
Log window destination 341
source code, default location of 378

BATCH system option 318
BCC= email option 145
/bin directory 400
binary data 198
binary values

fixed-point 258
positive 233, 259
reading and writing in UNIX 198

BLK= option
FILE command 210, 291
FILENAME command 294
INCLUDE command 214, 298
INFILE command 299

BLKSIZE= option
FILE command 210, 291
FILENAME command 294
INCLUDE command 214, 298
INFILE command 299

blocks
marking 42

BMDP engine 126
BMDP files 125
Bourne shell

defining environment variables 21
file descriptors 140

browsers 219
buffers

allocating for data set processing 224, 319
automatic paste buffer 45
command recall buffer 96
paste buffers 91
permanent page size for output data set 225,

320
window contents into 219
X synchronization 222

BUFNO= data set option 224
BUFNO system option 319
BUFSIZE= data set option 225
BUFSIZE system option 320
BYADDR option

ARG statement 174
BYTE function 238
BYVALUE option

ARG statement 174
$BYVALw. format

MODULE arguments with 184

C
C language formats 182
C shell

defining environment variables 22
CALL SLEEP routine 238
CALL SYSTEM routine 13, 14, 239
CALLSEQ= option

ROUTINE statement 172
CAPS command 203
case

for notes, warnings, and messages 346
translating to uppercase 203

CATALOG procedure 270
catalogs 105

number to keep open 321
CATCACHE system option 321
CC= email option 145
CEDA

reading data sets with 111

428 Index

Census Tract maps 333
CENTER system option 166
certificate authorities

checking CRLs 372
digital certificates 370, 371, 374, 375
if client authentication is required 371
location of CRLs 373

Certificate Authority (CA)
creating trust lists 409
definition 404
digital certificates 404

Change dialog box
invoking 207

Change Working Directory dialog box 41
invoking 204

CHAR option
ARG statement 174

character expressions
replacing specific characters in 256

character strings
marking 42

character values
converting to/from hexadecimal 232, 258

CIMPORT procedure 270
CLEANUP option

SYSTASK statement 306
CLEANUP system option 321
cleanwork command 400
CLEAR option

FILENAME command 295
LIBNAME statement 302

COBOL language formats 183
COLLATE function 240
collating sequences

ASCII 255
COLOR command 85, 203
color names 86
color resources 86
color settings

saving 66
Color window 64
colors

customizing in UNIX 84
window elements 86
windows 203

command line
toggling cursor to 213

COMMAND option
SYSTASK statement 305

command recall buffer 96
command window

configuration for 36
invoking with SAS sessions 96
opening and closing 36

commands, SAS
behaviors specific to UNIX 202
executing statements automatically 316

commands, UNIX
executing as asynchronous tasks 305
executing several 14
executing singly 13
for printing 159, 165
issuing from SAS sessions 221, 310
piping to/from UNIX commands 141, 159,

162
specifying for printing tasks 341, 352
submitting for execution 239

synchronous vs. asynchronous 13
compatible machine types 108

determining 109
completion status of jobs 22
concatenated data libraries 115
concatenating directories 115
concatenating filenames 138
CONFIG system option 322
configuration files 16

autoexec files vs. 16
creating 17
order of precedence 17
overriding system option default values 19
specifying 18, 322

connecting to X server, preventing SAS from 11
console log 24
constants

as MODULE function arguments 181
container windows 32
CONTENTS procedure 271
contrast 90
control keys

terminating SAS sessions 23
CONVERT procedure 272
copying

copying, cutting, and pasting text 44
external files into windows 214
text 44
window contents to buffer 219

CPARMS resources 86, 88
CPORT procedure 275
CRLs (Certificate Revocation Lists) 372, 373
cryptography 404
$CSTRw. format

MODULE arguments with 184
cursor position 213
cut-and-paste 44, 91

preserving text and attributes 93

D
data libraries 103, 362

accessing 113, 121
accessing, default method for 328, 362
assigning and deassigning librefs 250, 301
Census Tract maps 333
default permanent, name of 380
listing characteristics of 301
of error messages 345
of map data sets 342
returning names of 254
Sasuser data library 118, 354, 362
sequential-format, accessing 121, 123, 362
Work data library 118, 120, 381, 382,,

data representation 197
binary data 198
missing values 198
numeric variables 197

data set options
summary for UNIX 227
UNIX 223

data sets 104
allocating buffers for processing 224, 319
map data sets, data library containing 342
one-level names 120
size of, influencing sorting method 365

Version 6 111
DATA step

electronic mail, sending 144, 146
sending UNIX command output to 141
stopping execution of 290

data views 104, 105
DATALINES fileref 141
DATALINES statement 357
DATASETS procedure 276
date and time data

format of 376
DATE system option 166
DBCS system options 323
DBMS processes

interrupting 27
decimal data

packed 233, 259
zoned 234, 261

decrypting private keys 375
DEFAULT= option

LENGTH statement 301
DER (Distinguished Encoding Rules) for-

mats 410
device drivers

for graphics output 324
listing all available 324

DEVICE system option 324
devices

assigning and deassigning filerefs 135, 245,
293

DUMMY devices, debugging code with 136
digital certificates

checking CRLs 372
client authentication, if required 371
definition 404
DER formats 410
files that contain, names of 371
location of CRLs 373
location of digital certificates 370
location of private keys for 374
UNIX and 406, 408
viewing 409

digital signatures 404
DINFO function 242
directories

assigning and deassigning filerefs 138, 245
changing working directory 204
concatenating 115
deleting when empty 244
of fonts, specifying 330
opening 242
retrieving information on 242, 243
!SASROOT directory 397, 401
specifying pathnames 114
specifying with SAS resources 40
staging directory 106
unused Work and Utility directories 400
utilities directory 399
working directory 41

DISK files 136
disk-format data libraries 121
disk space

out-of-resource conditions 321
-display option, X command line 11
DLGABOUT command 204
DLGCDIR command 204
DLGENDR command 205

Index 429

DLGFIND command 205
DLGFONT command 206
DLGOPEN command 206
DLGPREF command 207
DLGREPLACE command 207
DLGSAVE command 208
DLGSCRDUMP command 209
DLGSMAIL command 209
DOPEN function 242
DOPTNAME function 243
DOPTNUM function 243
double-byte character sets (DBCS) 323
drag and drop 45
DUMMY devices

debugging code with 136

E
e-mail, sending

default e-mail protocol 47
FILENAME statement for 143
from within SAS 47
pipes for 143
Send Mail dialog box 209
system to use for 326

e-mail directives
specifying in PUT statement 146

ECHO system option 325
echoing messages to computer 325
Edit menu

selecting text with 44
EDITCMD system option 326
EMAILSYS system option 326
ENCODING= option

FILE command 210, 291, 292
FILENAME command 293
INCLUDE command 214, 298
INFILE command 299, 300

ENCODING system option 326
encryption

cryptography 404
encryption services

SSL 403
ENGINE= system option 304, 328
engines 103

multiple for a library 116
environment variables 21

as librefs 117
assigning filerefs 139
defining 21, 363
returning value of 22, 256
specifying multiple in OPTIONS state-

ment 360
errors

displaying messages in uppercase 346
library of SAS error messages 345
print server errors 158, 159
SAS console log 24
specifying stdin, stdout, and stderr 375

executable modules and programs
renaming !SASROOT directory 401
specifying search path for 351
suggesting memory for 339

executing SAS statements
autoexec file 16, 316

Exit dialog box
displaying 96
invoking 205

exit status
SAS jobs 22

exiting SAS
in windowing environment 7
preferred methods 22

Explorer window 6
assigning librefs 113

Export as Image dialog box
invoking 208

EXPORT option
DLGSAVE command 208

expressions
as MODULE function arguments 181
regular expressions in filenames 40

external files 132
assigning and deassigning filerefs 135, 245
associating filerefs with 293
concatenating filenames 138
copying window contents into/from 161, 210,

214
deleting 244
information items for 247, 248, 249
opening 39, 253
processing tape files 149
reading with INPUT statement 299
returning names of 254
routing output into 163
specifying pathnames 133
verifying existence of 244, 245
verifying filref for current SAS session 246
wildcards in pathnames 134
writing data from, with pipes 9

F
FBSTART option

ARG statement 174
FDELETE function 244
FEXIST function 244
FILE command 159, 210

copying window contents into external
files 161

file descriptors 140
file locking 124, 329
file permissions

changing for SAS sessions 15
locking files 124, 329
Work data library 383

FILE statement 291
FILECLOSE= data set option 226
FILEEXIST function 245
FILELOCKS= option

LIBNAME statement 305
FILELOCKS system option 124, 329
filename extensions 105
FILENAME function 245
FILENAME statement 293

assigning filerefs to directories 138
assigning filerefs to external files or de-

vices 135
assigning filerefs to pipes 141
concatenating filenames 138
sending electronic mail 143

sending output directly to printer 160
sending output to UNIX commands 159
specifying pathnames 133

filenames 103
concatenating 138
extensions for 105
regular expressions in 40

FILEREF function 246
filerefs 133

assigned by SAS 140
assigning and deassigning 135, 139, 245
assigning and deassigning, directories 138
assigning and deassigning, pipes 141
associating with files or devices 293
PRTFILE and PRINT commands with 160
reserved 141
verifying external files by 244
verifying for current SAS session 246

files
opening 39

fill character 211
FILL command 211
FILTERS= option

DLGOPEN command 206
DLGSAVE command 208

Find dialog box 46, 205
FINFO function 247
fixed-length records

size of 357
fixed-point values 232

binary 258
positive 233

floating-point values 234, 260
converting to/from hexadecimal 231, 257

font aliases 83
Font dialog box 206
font resources 82
FONTLIST command 212
fonts

customizing in UNIX 80
listing all available 212
specifying directory containing 330
specifying for current session 216
windowing environment fonts 80, 81, 216

Fonts dialog box 81
FONTSLOC system option 330
FOOTNOTE statement 297
footnotes

on procedure output 297
FOPTNAME function 248
FOPTNUM function 249
foreground color definition 86
foreground color resources 86
foreground process 5
FORMAT= option

ARG statement 175
formats

associating with variables 290
for binary data 198
for MODULE arguments 181
UNIX 231

forms printing 158
FORTRAN language formats 182
FTP access method 137
FULLSTIMER system option 166, 331, 376
function key definitions 34

430 Index

functions
UNIX 237

G
GDEVICE procedure 324
geographic attributes

specifying 340
Getting Started Tutorial dialog box 97
GISMAPS system option 333
GRAPH windows

copying contents into external files 161
printing contents of 158, 160
saving contents as image file 209

graphical user interface (GUI) 30
graphics output

device driver for 324
gravity

in SAS sessions 31
grouping SAS variables

as structure arguments 179, 190
GSUBMIT command 212
GUI (graphical user interface) 30

H
halting execution

ABORT statement for 290
DBMS processes 27
SAS processes 26
SAS sessions 23, 308

hard links 128
help

customized index files 334
in UNIX 50
installing manual pages 399
locations of Sashelp libraries 360
table of contents files 336
text and index files 335

HELPINDEX system option 334
HELPLOC system option 335
HELPTOC system option 336
hexadecimal representation

converting to/from character values 232, 258
converting to/from real binary 231, 257

HEXw. format 231
$HEXw. informat 258
HEXw. informat 257
highlighting windows 203
HOME command 213
host editor 34, 50

configuring SAS for support 49
invoking on current window 213
requirements for 49
specifying 326

host sort utility
passing options to 364
passing parameters to 367
specifying if used 368
temporary files used by 366
when to use, based on data set size 365
when to use, based on quantity of observa-

tions 364

HOSTEDIT command 213
host editor for 326

I
IBw.d format 232
IBw.d informat 258
iconizing windows 33
icons

user-defined 94, 95
IEEE Not-a-Number values 198
image files

GRAPH window contents as 209
images

e-mailing non-text window contents 48
IML procedure

invoking shared library routines 192
IMPORT option

DLGOPEN command 206
Importing Image dialog box

invoking 206
INCLUDE command 214
%INCLUDE statement 298

concatenating filenames 138
specifying pathnames 133

index files
customized index files 334
text and index files 335

indexes 104
INFILE statement 299

concatenating filenames 138
specifying pathnames 133

informats
associating with variables 290
for binary data 198
for MODULE arguments 181
UNIX 257

INPUT option
ARG statement 174

INPUT statement
specifying external file to read 299

INSERT system option 337
installing manual pages 399
interactive line mode 7
interface 30
interface library engines 303
interface SAS data views 105
interior windows 32
internationalization

attributes for 340
interrupt menu

SQL procedure 26
interrupting SAS processes 25
interrupting SAS sessions 33
invoking SAS sessions 4

as foreground or background process 5
batch mode 8
in windowing environment 7
interactive line mode 7
remote host 9

J
Java Runtime Environment options 338

jobs
completion status of 22
stopping execution of 290

JRE (Java Runtime Environment) options 338
JREOPTIONS system option 338

K
key definitions

creating 74
customizing 73
defining with Resource Helper 63, 80
function keys 34

key translations 74
defining 74
keyboard action names 77

keyboard action names 77
keys for digital certificates 374, 375
keysyms 75
kill command (UNIX) 24
KILL option

SYSTASK statement 306
Korn shell

defining environment variables 21
file descriptors 140

L
labels

associating with variables 290
language

attributes for 340
compatibility with previous SAS releases 348

length of numeric variables 197, 290
number of bytes used 301

LENGTH= option
ATTRIB statement 290
LIBNAME statement 302

LENGTH statement 301
LIBASSIGN command

assigning librefs 112
LIBNAME function 250

assigning librefs 112
LIBNAME statement 301

assigning librefs 112
named pipes 123
omitting engine names 304
tape access 122

LIBNAME window
assigning librefs 113

library engines 303
librefs 103, 111

assigned by SAS 118
assigning and deassigning 112, 250, 301
assigning to several directories 115
environment variables as 117
multiple engines for 116

LINESIZE= system option 166, 339
batch settings 318

links 128
LIST option

FILENAME command 295
SYSTASK statement 305

LOADMEMSIZE system option 339

Index 431

LOCALE system option 340
locking files 124, 329
log

alternate, specifying destination for 314
changing default routings 155
console log 24
content and appearance 165, 166
default routings 155
destination for 163, 341
messages to be written to 348
MODULE log messages 185
routing output from 162
writing all system performance statistics

to 331, 376
writing some system performance statistics

to 376, 377
writing system option settings to 350

LOG fileref 141
LOG= option

PROC PRINTTO statement 162
LOG system option 163, 341
Log window

controlling display of lines 202
copying contents into external file 161
echoing messages to 325
line size 339

lp command (UNIX) 164, 341, 352
changing default print command 165

lpr command (UNIX) 341, 352
changing default print command 165

LPTYPE system option 341
LRECL= option

FILE command 210, 291
FILENAME command 294
INCLUDE command 214, 298
INFILE command 300

M
macro facility

autocall libraries 359
memory for in-memory macro variables 347
memory for macro variable symbol tables 346
system options in UNIX 266
UNIX 263

macro files
naming 266

macro functions
UNIX 265

macro statements
UNIX 265

macros
setting up and testing in autocall library 267

mainframes
tapes created on 150

manual pages
installing 399

map data sets
data library containing 342

mapping windows 33
MAPS system option 342
MARK command

selecting text 44
marking text 42
MAXARG= option

ROUTINE statement 172

MAXMEMQUERY system option 343
member types 105
memory

allocating for certain procedures 343
allocating for data set processing 224, 319
allocating for in-memory macro variables 347
allocating for macro variable symbol ta-

bles 346
allocating for SAS sessions 344
amount of real memory available 353
available for SORT procedure 369
bytes used to store variables 301
data set size and choice of sorting method 365
for executable programs 339
out-of-resource conditions 321
shared libraries 176
storing contents of memory addresses 255

MEMSIZE system option 344
menus

pull-down 91
migrating SAS files 106
MINARG= option

ROUTINE statement 172
missing values 198
MNAME= option

SYSTASK statement 306
MOD option

FILE command 292
FILENAME command 294

MODULE function 170, 251
constants and expressions as arguments 181
log messages 185
shared libraries, accessing efficiently 178

MODULE= option
ROUTINE statement 172

modules
calling from shared executable libraries 251
memory for executable programs 339
search path for executable modules 351

MOPEN function 253
mouse

selecting text with 43
MSG system option 345
MSGCASE system option 346
MSYMTABMAX system option 266, 346
multivolume tape libraries 122, 150
MVARSIZE system option 266, 347

N
-name option, X command line 11
named pipes 123
names

macro files 266
shared libraries 177

NaN (Not-a-Number) values 198
national language system (NLS) 348
native data files 104
native library engines 303
native SAS data views 105
networks

sharing files 124
NEW option

FILE command 210, 292
FILENAME command 294

NEWS system option 166, 348

NLSCOMPATMODE system option 348
NOSUBMIT option

DLGOPEN command 206
-noterminal option, X command line 11, 12
notes

displaying in uppercase 346
NOTES system option 166
NOTREQD option

ARG statement 174
NOWAIT option

SYSTASK statement 306
NUM option

ARG statement 174
NUMBER system option 167
numeric variables 197

length and precision 197, 290
number of bytes for storing 301
storing contents of memory address in 255

O
OBS system option 349
observations

which to process last 349
observations, sorting

data set size and 365
host sort utility, passing options to 364
host sort utility, passing parameters to 367
location of temporary files for 366
number of observations and 364
specifying host sort vs. SAS sort 368

OLD option
FILE command 210, 292
FILENAME command 294

Open dialog box 39
invoking 206

OpenSSL
arguments and values 407
arguments and values on UNIX 408
digital certificates 406, 408
PEM format and 410
terminating 409

OPLIST system option 350
OPTIONS procedure 279
OPTIONS statement

overriding system option default values 19
OSIRIS engine 127
OSIRIS files 125
out-of-resource conditions 321
output

appearance and content of 165, 166
default routings, changing 155
destination for 163, 352
echoing messages to computer 325
number of lines per page 350
Postscript output, creating 164
previewing 154
sending directly to printer 160
title lines for 308

output devices
assigning and deassigning filerefs 245
associating filerefs with 293

OUTPUT option
ARG statement 174

Output window
controlling display of lines 202

432 Index

line size 339
overriding system option default values 19

P
packed decimal data 233, 259
page size

for output SAS data set buffer 225, 320
PAGENO= system option 167
PAGESIZE= system option 166, 167, 350

batch settings 318
passwords

assigning to SAS files 224, 227
for decrypting private keys 375

paste buffers 91
manipulating text 92
selecting 92
submitting code from 212

pasting text 44, 91
patchname command 401
PATH system option 351
PATHNAME function 254
pathnames 133

character substitutions in 114
specifying 114

pattern resources 97
pausing execution

DBMS processes 27
SAS processes 26
SAS sessions 23

PDw.d format 233
PDw.d informat 259
PEEKCLONG function 178, 255

accessing returned pointer 189
PEEKLONG function 177, 255
performance

amount of real memory available 353
out-of-resource conditions 321
shared libraries 178
SORT procedure, memory available for 369
sorting method, influenced by data set

size 365
sorting method, influenced by number of obser-

vations 364
writing all statistics to log 331, 376
writing some statistics to log 376, 377
X synchronization

PIBw.d format 233
PIBw.d informat 259
PIPE device type 150, 162

printing large files 164
sending output directly to printer 160

pipes
data to/from UNIX commands 141, 159, 162
writing data from external files 9, 123

PL/I language formats 183
PMENU procedure 280
pmenu resources 91
positive integer binary values 233, 259
Postscript output 164
precision of numeric variables 197
Preferences dialog box

customizing X resources 57
invoking 207
modifying DMS settings 58
modifying Editing settings 59

modifying General settings 58
modifying Results settings 60
modifying ToolBox settings 60
opening 57
options 58

previewing output 154
PRINT command 159
Print dialog box

printing from GRAPH windows 158
printing from text windows 157

PRINT fileref 141
print files

specifying 159
PRINT= option

PROC PRINTTO statement 162
PRINT system option 163, 352
PRINTCMD system option 164, 352
printer devices

routing output to 162
PRINTER devices

sending output to 136
printing output 136, 154

commands and settings for 341, 352
default routings, changing 155
destination for 165, 379
large files with PIPE device type 164
Print dialog box 157
print server errors 158, 159
PRINTTO procedure 161

PRINTTO procedure 281
UNIX 161

private keys
definition 404
for digital certificates 374, 375

procedure output
content and appearance 165, 166
copying procedure output files 315
destination for 163, 352
footnotes 297
number of lines per page 350
routing directory to printer 160
routing output from 155, 162
title lines 308

procedures
allocating memory for requests 343
under UNIX 269

PRTFILE command 159
pstext command (UNIX) 164
public keys 404
pull-down menus 91
PUT statements

output file for 291
specifying e-mail directives 146

PW= data set option 227

Q
quitting SAS 7, 22
quotation marks

enclosing filenames 134

R
RANK function 255

RBw.d format 234
RBw.d informat 260
read passwords

assigning to SAS files 227
reading binary data 198
reading external files

resources read during SAS execution 355, 356
real binary values 234, 260

converting to/from hexadecimal 231, 257
REALMEMSIZE system option 285, 353
RECFM= option

FILE command 211, 292
FILENAME command 294
INCLUDE command 214, 298
INFILE command 300

registry files
customizing 16

regular expressions
filename selection 40, 134
pathname substitutions 114

releases of SAS
in UNIX 413

remote host
running SAS on 9, 10

Replace dialog box 46
opening 47
options 47

replacing text strings 46, 256
REQUIRED option

ARG statement 174
reserved filerefs 141
resource database 55
Resource Helper 62

modifying window colors 64
searching for resource definitions 66
setting X resources 62
starting 62

RETURN option
ABORT statement 290

RETURNS= option
ROUTINE statement 173

revoked digital certificates 372
RGB values 86
ROUTINE statement 171
routing output

default routings, changing 155
log and procedure output 155
piping to/from UNIX commands 141, 159,

162
Postscript output, creating 164
PRINTTO procedure 161
sending directly to printer 160
system options for 163

RSASUSER system option 354
RSUBMIT statement 307
RTRACE system option 355
RTRACELOC system option 356
running SAS 4

as foreground or background process 5
batch mode 8
in windowing environment 7
interactive line mode 7
remote host 9

Index 433

S
S system option 357
S2 system option 358
SAS

running in background process 5
running in foreground process 5
running on remote host 10

SAS/AF applications
previewing output from 154

SAS command
invoking SAS 4
overriding system option default values 19
syntax 5

SAS/CONNECT
asynchronous processes 307
storage locations for script files 361

SAS console log 24
SAS data files 104
SAS files 103

accessing across machine types 108
assigning passwords 224, 227
concatenating filenames 138
copying procedure output files 315
index files for SAS Help and Documenta-

tion 334
librefs for 111
member types and filename extensions 105
migrating 32-bit to 64-bit 106
pathnames 114
previous releases or other hosts 110, 111
print files 159
resources read during SAS execution 355, 356
sharing 124
specifying pathnames 133
table of contents files 336

SAS/GIS
Census Tract maps 333

SAS/GRAPH
Census Tract maps 333
device driver for graphics output 324
map data sets, specifying data library

with 342
SAS/GRAPH drivers

printing output 159
SAS Help and Documentation

customized index files 334
locations of Sashelp libraries 360
table of contents files 336
text and index files 335

SAS jobs
completion status 22

SAS processes
interrupting 25
terminating 26

SAS programs
submitting to batch queue 9

SAS releases
in UNIX 413

SAS servers
ending processes for running 24

SAS Session Manager 33
interrupting SAS 23
starting automatically 97
terminating SAS 23

SAS sessions
aborting execution 290

allocating memory for 344
batch mode 8
customizing 16
customizing color settings 84
file permissions for 15
font for current session 216
interactive line mode 7
interrupting 33
invoking in windowing environment 7
issuing commands from 221, 310
remote host 9
sending e-mail from 47
specifying locale attributes 340
starting 4
starting Resource Helper from 62
suspending execution 308
terminating 33
verifying fileref assignment for 246
X command, specifying if valid 383

SAS statements
autoexec file 316
including 298
length of 357
submitting 212
under UNIX 289

SAS ToolBox 35
SAS window session ID 31
SAS windowing environment 6

command window configuration 36
customizing fonts 80
cutting and pasting text 44
drag and drop 45
invoking SAS in 7
opening files 39
SAS Session Manager 23, 33, 97
toolbar configuration 36
ToolBox 35
types of windows 32
working directory 41
X resources for customizing 54, 97

SAS.altVisualID resource 96
SASAUTOS system option 266, 359
SAS.autoSaveInterval resource 96
SAS.autoSaveOn resource 96
SASCBTBL attribute table 170
SASCOLOR window

customizing colors 85
SAS.confirmSASExit resource 96
SAS.defaultCommandWindow resource 96
SAS.directory resource 96
Sashelp libraries 360
Sashelp libref 118
SASHELP system option 360
SAS.helpBrowser resource 96
SAS.htmlUsePassword resource 96
SAS.insertModeOn resource 96
SAS.keyboardTranslations resource 74, 75
SAS.keysWindowLabels resource 76
SAS.noDoCommandRecall resource 96
SAS.pattern resource 97
!SASROOT directory 397

renaming 401
utilities directory 399

SASSCRIPT system option 361
SAS.selectTimeout resource 97
SAS.startSessionManager resource 97
SAS.startupLogo resource 97

SAS.suppressMenuIcons resource 97
SAS.suppressTutorialDialog resource 97
SAS.useNativeXmTextTranslations resource 97
Sasuser data library

specifying if updatable 354
specifying name of 362

Sasuser library 118
Sasuser libref 118
SASUSER system option 362
SASV9_OPTIONS environment variable

overriding system option default values 19
SAS.wsaveAllExit resource 97
Save As dialog box

invoking 208
%SCAN macro function 265
SCL code

sending e-mail 148
search and replace 46
searching

for resource definitions 66
for text strings (Change dialog) 207
for text strings (Find dialog) 205
replacing specific characters in expres-

sion 256
search path for executable modules 351

secondary source statements
length of 358

security
assigning passwords to SAS files 224, 227
checking CRLs 372
digital certificates, locations of 370
digital certificates, names of files contain-

ing 371
digital certificates, private keys for 374, 375
if client authentication is required 371
location of CRLs 373
locking files 124, 329
permissions on Work data library 383

selecting text 42
with mouse 43

Send Mail dialog box 47, 209
SEQENGINE system option 362
sequential data libraries 362

accessing 121
writing to named pipes 123

session gravity 31
customizing 93

session IDs 31
session manager 23, 33

starting automatically 97
terminating SAS sessions 33

session workspace
customizing 93

SET system option 363
SETAUTOSAVE command 215
SETDMSFONT command 216
shared executable libraries

calling modules and routines from 251
shared libraries 170

32-bit and 64-bit considerations 176
efficient access 178
examples of accessing 187
formats and informats 181
SASCBTBL attribute table 170

sharing files 124
SHELL= option

SYSTASK statement 306

434 Index

shells
defining environment variables 21
starting 15
starting remote shells 143
starting Resource Helper from 62

SOCKET access method 137
software fonts

listing all available 212
SORT procedure 282
SORTANOM system option 364
SORTCUT system option 364
SORTCUTP system option 365
SORTDEV system option 366
sorting observations

data set size and 365
host sort utility, passing options to 364
host sort utility, passing parameters to 367
location of temporary files for 366
number of observations and 364
specifying host sort vs. SAS sort 368

SORTPARM system option 367
SORTPGM system option 368
SORTSEQ= option 287
SORTSIZE system option 369
SOURCE system option 166, 318
SOURCE2 system option 166
special files 132
SPSS engine 128
SPSS files 125
SQL procedure

interrupt menu for 26
SSL (Secure Sockets Layer)

checking CRLs 372
definition 403
digital certificates, locations of 370
digital certificates, names of files contain-

ing 371
encryption services 403
for SAS 405
location of CRLs 373
private keys for digital certificates 374, 375
requiring client authentication 371
set-up process 405
UNIX and 405, 406

SSLCALISTLOC system option 370
SSLCERTLOC system option 371
SSLCLIENTAUTH system option 371
SSLCRLCHECK system option 372
SSLCRLLOC system option 373
SSLPVTKEYLOC system option 374
SSLPVTKEYPASS system option 375
staging directory 106
standard error

filrefs for 140
standard input/output

filerefs for 140
reading input from standard input 142
specifying if SAS should use 375

starting SAS sessions 4
as foreground or background process 5
batch mode 8
in windowing environment 7
interactive line mode 7
remote host 9
startup logo 97

startup logo 97

STATUS= option
SYSTASK statement 306

stderr 375
stdin 375
STDIO system option 375
stdout 375
STIMEFMT system option 376
STIMER system option 166, 377

controlling format of 376
stored program files 105
SUBJECT= email option 145
SUBMIT option

DLGOPEN command 206
submitting SAS code 212
submitting SAS statements 212
suspending execution 238, 308

SAS sessions 308
symbolic links 128, 177
synchronous tasks 13
syncsort utility

location of temporary files used by 366
passing options to 364
passing parameters to 367
specifying if used 368
when to use, based on data set size 365
when to use, based on quantity of observa-

tions 364
SYSCC macro variable 263
SYSDEVIC macro variable 264
SYSENV macro variable 264
%SYSEXEC macro statement 13, 14, 265
SYSGET function 256
%SYSGET macro function 265
SYSIN system option 378
SYSJOBID macro variable 264
SYSMAXLONG macro variable 264
SYSPRINT system option 164, 379
SYSRC macro variable 264

SYSTASK statement return code 307
WAITFOR statement return code 309

SYSTASK statement 305
system administration tools 400
system fonts 80
system options

adding pathnames to values for 315, 337
customizing SAS sessions 18
determining how option was set 313
macro facility in UNIX 266
overriding default values 19
routing output with 163
set in one place 20
specifying 18
summary for UNIX 384
UNIX 313
writing settings to log 350
writing settings to terminal 381

T
TAGSORT option

PROC SORT statement 284
TAPE device type 149
tape storage 122

multivolume 150
positioning after file closes 226, 379
processing tape files 149

TAPECLOSE system option 379
TASKNAME= option

SYSTASK statement 306
TEMP devices 137
temporary files 137
TERMINAL devices

accessing 137
routing output to 163

terminating execution
DBMS processes 27
SAS processes 26
SAS sessions 23

terminating SAS sessions
with session manager 33

TERMSTR= option
FILE command 291
FILENAME command 294
INFILE command 300

text
copying 44
cut-and-paste 44
selecting 42

text attributes
transferring 50

text editor windows
host editor, specifying 326

text windows
copying contents into external files 161
e-mailing contents of 48
printing contents of 157, 160

TIMEOUT= option
WAITFOR statement 308

title lines 308
-title option, X command line 12
TITLE statement 308
TO= email option 144
TOLLLARGE command 217
TOOEDIT command 217
Tool Editor 68

invoking 69
invoking on specified toolbox 217

tool tips
turning on and off 218

toolbars
default configuration 36
opening and closing 36

toolboxes
adding tools 70
button size 217
changing appearance of 69
closing 216
creating 72
customizing 36, 67, 72
deleting tools 71
invoking Tool Editor on 217
loading 217
SAS ToolBox 35
saving changes 71
X resources for 67

TOOLCLOSE command 216
TOOLLOAD command 217
tools

changing 70
deleting 71

toolsets 68
creating 72
customizing 72

Index 435

saving changes 71
TOOLTIPS command 218
top-level windows 32

trace information 355, 356
TRANSLATE function 256

transport files
tape storage 122

TRANSPOSE= option

ROUTINE statement 172
troubleshooting

connection problems 11
key definitions 64
NFS mounts, data access over 125

out-of-resource conditions 321
print server errors 158, 159

starting SAS sessions 5
transfer of text attributes 50

trust lists 409

U
UNBUF option

FILE command 292
FILENAME command 295

undoing text entry 221
Universal Printing

default printing mode 158

previewing output with 154
printing from GRAPH windows 158

UNIX
digital certificates 406, 408
OpenSSL and 408

SAS releases 413
SSL and 405, 406

UPDATE option
ARG statement 174

updating Sasuser data library 354
UPRINTER device type 162
user-defined icons

locating 95
X resources for specifying 95

USER system option 380
utilities directory 399

deleting when unused 400

V
variables

grouping as structure arguments 179, 190
number of bytes for storing 301
numeric 197

VERBOSE system option 381
VERIFY option

DLGOPEN command 206
DLGSAVE command 208

Version 6 data sets 111
versions of SAS

in UNIX 413

view engines 302

virtual keysyms 75

W
WAIT option

SYSTASK statement 306
warnings

displaying in uppercase 346
WBROWSE command 219
WCOPY command 219
WCUT command 219
WDEF command 220
Web browsers

invoking 219

wildcards
in pathnames 134

window colors
modifying with Resource Helper 64

window element definitions 86
window managers 31
window sizes

customizing 93

window types 32
windowing environment

copying text 44
customizing 31
cut-and-paste 44
drag and drop 45
e-mail 47
help 50
interface 30

opening files 39
search and replace 46
selecting text 42
working directory 41
X Window System and 31

windowing environment fonts 80, 81
changing 81
specifying for current session 216

windows

color and highlighting of 203
container windows 32
copying contents into external files 161, 210
copying external file contents into 214
copying marked contents to buffer 219
e-mailing contents of 48
host editor, specifying 326
iconizing 33
interior windows 32

invoking on host editor 213
line size 339
mapping 33
pasting buffer contents into 220
positioning 32
printing contents of 157, 160
resizing 32, 220
top-level 32

types of 32
Work data library 120

deleting unused Work directories 400

initializing 382
name of 381
permissions, setting when created 383

Work libref 118
WORK system option 381

working directory 41
changing 41, 204

WORKINIT system option 382

WORKPERMS system option 383
workstations

sharing files 124
WPASTE command 220
write passwords

assigning to SAS files 227
writing binary data 198

WSAVE ALL command 97
WUNDO command 221

X
X command 221

executing several UNIX commands 14

executing single UNIX commands 13
specifying if valid 383

X command line options
unsupported 12

X resources 55

controlling toolbox behavior 67
customizing 55

modifying with Preferences dialog box 57
searching for resource definitions 66
setting with Resource Helper 62

specifying user-defined icons 95
summary of 97

syntax for specifying 55
X server

preventing SAS connection to 11
X statement 310

executing in batch mode 15

executing several UNIX commands 14
executing single UNIX commands 13

X synchronization 222
X window managers 31
X Window System 31

interface 30
SAS window session ID 31

session gravity 31
window managers 31
window types 32

X Window System options 11
XCMD system option 383

-xrm option, X command line 12
XSYNC command 222

Z
ZDw.d format 234
ZDw.d informat 261

zoned decimal data 234, 261

Your Turn

If you have comments or suggestions about SAS 9.1 Companion for UNIX Environments,
please send them to us on a photocopy of this page or send us electronic mail.

Send comments about this book to

SAS Institute Inc.
Publications Division
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@unx.sas.com

Send suggestions about the software to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@unx.sas.com

	Table of Contents
	Contents

	What’s New
	Overview
	Migrating 32-Bit SAS Files to 64–Bit SAS Files
	Accessing SAS Files from Previous Releases
	Restricted System Options
	Executing UNIX Commands within a SAS Session
	Sending E-mail from within Your SAS Session
	Accessing Shared Executable Libraries from SAS
	Changes to the cleanwork Command
	SAS Resources
	SAS Language Elements
	Commands
	Functions and CALL Routines
	Statements
	Procedures
	System Options

	Running SAS Software Under UNIX
	Getting Started with SAS in UNIX Environments
	Starting SAS Sessions in UNIX Environments
	Invoking SAS
	Syntax of the SAS Command
	What If SAS Does Not Start?

	Running SAS in a Foreground or Background Process
	Selecting a Method of Running SAS in UNIX Environments
	SAS Windowing Environment in UNIX Environments
	Introduction to the SAS Windowing Environment
	Invoking SAS in the Windowing Environment
	Exiting SAS in the Windowing Environment

	Interactive Line Mode in UNIX Environments
	Introduction to Interactive Line Mode
	Invoking SAS in Interactive Line Mode
	Exiting SAS in Interactive Line Mode

	Batch Mode in UNIX Environments
	Introduction to Running SAS in Batch Mode
	Invoking SAS in Batch Mode
	Submitting a Program to the Batch Queue
	Writing Data from an External File Using Pipes

	Running SAS on a Remote Host in UNIX Environments
	Introduction to Running SAS on a Remote Host
	Steps for Running SAS on a Remote Host
	Preventing SAS from Attempting to Connect to the X Server
	Troubleshooting Connection Problems

	X Command Line Options
	How to Specify X Window System Options
	Supported X Command Line Options
	Unsupported X Command Line Options

	Executing Operating System Commands from Your SAS Session
	Deciding Whether to Run an Asynchronous or Synchronous Task
	Executing a Single UNIX Command
	Executing Several UNIX Commands
	Starting a Shell
	Changing the File Permissions for Your SAS Session
	Executing X Statements in Batch Mode

	Customizing Your SAS Registry Files
	Customizing Your SAS Session Using Configuration and Autoexec Files
	Introduction to Configuration and Autoexec Files
	Creating a Configuration File
	Order of Precedence for SAS Configuration Files
	Specifying a Configuration File for SAS to Use

	Customizing Your SAS Session Using System Options
	Ways to Specify a SAS System Option
	Overriding the Default Value for a System Option
	How SAS Processes System Options Set in One Place
	How SAS Processes System Options Set in Multiple Places

	Defining Environment Variables in UNIX Environments
	What Is an Environment Variable?
	How to Define an Environment Variable for Your Shell
	Displaying the Value of an Environment Variable

	Determining the Completion Status of a SAS Job in UNIX Environments
	Interrupting or Terminating Your SAS Session in UNIX Environments
	Preferred Methods of Exiting SAS
	Additional Methods for Interrupting or Terminating SAS
	Messages in the SAS Console Log

	Ending a Process That Is Running as a SAS Server
	Ending a SAS Process on a Relational Database
	How to Interrupt a SAS Process
	How to Terminate a SAS Process
	What Happens When You Interrupt a SAS Process and the Underlying DBMS Process

	Working in the SAS Windowing Environment
	Definition of the SAS Windowing Environment
	Description of SAS in the X Environment
	Definition of X Window System
	X Window Managers
	SAS Window Session ID
	Workspace and Gravity in a SAS Session
	Window Types

	The SAS Session Manager (motifxsassm) in UNIX
	What Is the SAS Session Manager?
	Features of the SAS Session Manager
	Disabling the SAS Session Manager

	Displaying Function Key Definitions in UNIX Environments
	Benefits of Assigning Function Key Definitions
	How to Display Function Key Definitions

	The SAS ToolBox in UNIX Environments
	Introduction to the SAS ToolBox
	Default Configuration for the Command Window and the Toolbar
	Opening and Closing the Command Window and the Toolbar
	Executing Commands

	Opening Files in UNIX Environments
	Opening the Open Dialog Box
	Using Regular Expressions in Filenames

	Changing Your Working Directory in UNIX Environments
	What Is Your Working Directory?
	Changing Your Working Directory

	Selecting (Marking) Text in UNIX Environments
	Difference between Marking Character Strings and Blocks
	Techniques for Selecting Text

	Copying or Cutting and Pasting Selected Text in UNIX Environments
	Techniques for Copying or Cutting and Pasting Selected Text
	How SAS Uses the Automatic Paste Buffer
	Copying and Pasting Text between SAS and Other X Clients

	Using Drag and Drop in UNIX Environments
	Difference between Default and Nondefault Drag and Drop
	Limitations of Drag and Drop in UNIX
	How to Drag and Drop Text

	Searching For and Replacing Text Strings in UNIX Environments
	What Are the Find and Replace Dialog Boxes?
	Opening the Find Dialog Box
	Opening the Replace Dialog Box

	Sending Mail from within Your SAS Session in UNIX Environments
	Default E-mail Protocol in SAS
	What Is the Send Mail Dialog Box?
	Sending the Contents of a Text Window
	Sending the Contents of a Non-Text Window

	Configuring SAS for Host Editor Support in UNIX Environments
	Requirements for Using a Host Editor
	Invoking and Using Your Host Editor
	Troubleshooting the Transfer of Text Attributes

	Getting Help in UNIX Environments

	Customizing the SAS Windowing Environment
	Overview of Customizing SAS in X Environment
	Overview of X Resources
	Introduction to X Resources
	Syntax for Specifying X Resources

	Methods for Customizing X Resources
	Modifying X Resources through the Preferences Dialog Box
	What Is the Preferences Dialog Box?
	Opening the Preferences Dialog Box
	Description of the Options on the Preferences Dialog Box

	Setting X Resources with the Resource Helper
	Introduction to the Resource Helper
	How to Start the Resource Helper
	Defining Keys with the Resource Helper
	Modifying the Color of a SAS Window Using the Resource Helper
	How the Resource Helper Searches for X Resources

	Customizing Toolboxes and Toolsets in UNIX Environments
	Techniques for Customizing Toolboxes
	X Resources That Control Toolbox Behavior
	Using the Tool Editor
	Creating a New Toolbox
	Creating or Customizing an Application- or Window-Specific Toolbox
	Creating or Customizing an Application- or Window-Specific Toolset

	Customizing Key Definitions in UNIX Environments
	Techniques for Customizing Your Key Definitions
	Defining Key Translations

	Customizing Fonts in UNIX Environments
	Difference between the System Font and Windowing Environment Fonts
	How SAS Determines Which Windowing Environment Font To Use
	Customizing Fonts Using the Fonts Dialog Box
	Specifying Font Resources
	Specifying Font Aliases

	Customizing Colors in UNIX Environments
	Methods for Customizing the Color Settings in Your SAS Session
	Customizing Colors Using the SASCOLOR Window
	Syntax of the COLOR Command
	Defining Color Resources

	Controlling Pull-Down Menus in UNIX Environments
	Customizing Cut-and-Paste in UNIX Environments
	Types of Paste Buffers
	Selecting a Paste Buffer
	Manipulating Text Using a Paste Buffer
	Notes on Preserving Text and Attribute Information

	Customizing Session Workspace, Session Gravity, and Window Sizes in UNIX Environments
	Specifying User-Defined Icons in UNIX Environments
	Why Specify User-Defined Icons?
	How SAS Locates a User-Defined Icon
	X Resources for Specifying User-Defined Icons

	Miscellaneous Resources in UNIX Environments
	Summary of X Resources for SAS in UNIX Environments

	Using SAS Files
	Introduction to SAS Files, Data Libraries, and Engines in UNIX Environments
	What Is a SAS File?
	What Are Data Libraries?
	What Is an Engine?
	Additional Resources

	Common Types of SAS Files in UNIX Environments
	What Are Data Sets?
	What Are Catalogs?
	What Are Stored Program Files?
	What Are Access Descriptor Files?

	Filename Extensions and Member Types in UNIX Environments
	Migrating 32-Bit SAS Files to 64-Bit in UNIX Environments
	Compatibility of Existing SAS Files with SAS 9.1
	Migrating Supported SAS Files
	Migrating Unsupported SAS Files
	Additional Resources

	Accessing SAS Files across Compatible Machine Types in UNIX Environments
	Characteristics of Compatible Machine Types
	Compatible Machine Types for Release 6.12 through Release 8.2
	Determining Compatible Machine Types in SAS 9.1

	Creating a SAS File to Use with an Earlier Release
	Reading SAS Data Sets from Previous Releases or from Other Hosts
	Reading Version 6 Data Sets
	Using CEDA to Read Data Sets

	Referring to SAS Data Files Using Librefs in UNIX Environments
	Techniques for Referring to a SAS File
	What Is a Libref?
	Assigning Librefs
	Permanently Assigning a Libref
	Accessing a Permanent SAS Data Library Using a Libref

	Specifying Pathnames in UNIX Environments
	Rules for Specifying Directory and Pathnames
	Valid Character Substitutions in Pathnames

	Assigning a Libref to Several Directories (Concatenating Directories)
	Introduction to Concatenating Directories
	How SAS Accesses Concatenated Data Libraries
	Accessing Files for Input and Update
	Accessing Files for Output
	Accessing Data Sets with the Same Name

	Using Multiple Engines for a Library in UNIX Environments
	Using Environment Variables as Librefs in UNIX Environments
	Librefs Assigned by SAS in UNIX Environments
	Automatically Defined Librefs
	Sasuser Data Library
	Work Data Library

	Using One-Level Names To Access Permanent Files (User Data Library)
	Introduction to One-Level Names
	Techniques for Assigning the User Libref

	Accessing Disk-Format Data Libraries in UNIX Environments
	Accessing Sequential-Format Data Libraries in UNIX Environments
	Benefits and Limitations of Sequential Engines
	Reading and Writing SAS Files on Tape
	Reading and Writing Transport Formats on Tape
	Writing Sequential Data Sets to Named Pipes

	Sharing Files in UNIX Environments
	Sharing Files with the FILELOCKS System Option
	Sharing Files in a Network

	Accessing BMDP, OSIRIS, or SPSS Files in UNIX Environments
	Introduction to the BMDP, OSIRIS, and SPSS Files
	The BMDP Engine
	The OSIRIS Engine
	The SPSS Engine

	Support for Links in UNIX Environments

	Using External Files and Devices
	Introduction to External Files and Devices in UNIX Environments
	Accessing an External File or Device in UNIX Environments
	What Is a Fileref?

	Specifying Pathnames in UNIX Environments
	Rules for Specifying Pathnames
	Using Wildcards in Pathnames (Input Only)

	Assigning Filerefs to External Files or Devices with the FILENAME Statement
	Introduction to the FILENAME Statement
	Accessing DISK Files
	Debugging Code With DUMMY Devices
	Sending Output to PRINTER Devices
	Using Temporary Files (TEMP Device Type)
	Accessing TERMINAL Devices Directly
	Assigning Filerefs to Files on Other Systems (FTP and SOCKET Access Types)

	Concatenating Filenames in UNIX Environments
	Assigning a Fileref to a Directory (Using Aggregate Syntax)
	Introduction to Aggregate Syntax
	Assigning a Fileref to Several Directories

	Using Environment Variables to Assign Filerefs in UNIX Environments
	Requirements for Variable Names
	Reading a Data File
	Writing to an External File

	Filerefs Assigned by SAS in UNIX Environments
	Filerefs for Standard Input, Standard Output, and Standard Error
	What Is a File Descriptor?

	Reserved Filerefs in UNIX Environments
	Reading from and Writing to UNIX Commands (PIPE)
	What Are Pipes?
	Syntax of the FILENAME Statement to Assign a Fileref to a Pipe
	Using the Fileref for Reading
	Using the Fileref for Writing

	Sending Electronic Mail Using the FILENAME Statement (EMAIL)
	Advantages of Sending Electronic Mail from within SAS
	Initializing Electronic Mail
	Components of the DATA Step or SCL Code Use to Send E-Mail
	Syntax of the FILENAME Statement for Electronic Mail
	Example: Sending E-mail from the DATA Step
	Example: Sending E-mail Using SCL Code

	Processing Files on TAPE in UNIX Environments
	Introduction to Processing Tape Files
	Using the TAPE Device Type
	Using the PIPE Device Type
	Working with External Files Created on the Mainframe
	Example: Multivolume, Standard Label Tapes

	Printing and Routing Output
	Overview of Printing Output in UNIX Environments
	Previewing Output in UNIX Environments
	Previewing Output Using Universal Printing
	Previewing Output from within SAS/AF Applications

	The Default Routings for the SAS Log and Procedure Output in UNIX Environments
	Changing the Default Routings in UNIX Environments
	Techniques for Routing Output
	Determining Which Technique to Use When Changing the Routing

	Using the Print Dialog Box in UNIX Environments
	Printing from Text Windows
	Printing from GRAPH Windows

	Using Commands to Print in UNIX Environments
	Differences between the PRTFILE, PRINT, and FILE Commands
	Sending Output to a UNIX Command
	Specifying the Print File
	Using PRTFILE and PRINT with a Fileref
	Using the FILE Command

	Using the PRINTTO Procedure in UNIX Environments
	Important Note about the PRINTTO Procedure
	Using the LOG= and PRINT= Options
	Routing Output to a Universal Printer
	Routing Output to a Printer
	Piping Output to a UNIX Command
	Routing Output to a Terminal

	Using SAS System Options to Route Output
	Changing the Output Destination Using the LOG, PRINT, ALTLOG, and ALTPRINT System Options
	Creating Postscript Output with the PRINTCMD and SYSPRINT System Options

	Printing Large Files with the PIPE Device Type in UNIX Environments
	Changing the Default Print Destination in UNIX Environments
	Changing the Default Print Command in UNIX Environments
	Controlling the Content and Appearance of Output in UNIX Environments
	SAS Log Options
	Procedure Output Options

	Accessing Shared Executable Libraries from SAS
	Overview of Shared Libraries in SAS
	What Is a Shared Library?
	Invoking Shared Libraries from within SAS

	The SASCBTBL Attribute Table
	Introduction to the SASCBTBL Attribute Table
	What Is the SASCBTBL Attribute Table?
	Syntax of the Attribute Table
	The Importance of the Attribute Table

	Special Considerations When Using Shared Libraries
	Bit and 64-Bit Considerations
	Naming Considerations When Using Shared Libraries
	Using PEEKLONG Functions to Access Character String Arguments
	Accessing Shared Libraries Efficiently
	Grouping SAS Variables as Structure Arguments
	Using Constants and Expressions as Arguments to MODULE
	Specifying Formats and Informats to Use with MODULE Arguments
	Understanding MODULE Log Messages

	Examples of Accessing Shared Executable Libraries from SAS
	Example 1: Updating a Character String Argument
	Example 2: Passing Arguments by Value
	Example 3: Using PEEKCLONG to Access a Returned Pointer
	Example 4: Using Structures
	Example 5: Invoking a Shared Library Routine from PROC IML

	Application Considerations
	Data Representation
	Numeric Variable Length and Precision in UNIX Environments
	Missing Values in UNIX Environments
	Reading and Writing Binary Data in UNIX Environments

	Host-Specific Features of the SAS Language
	Commands under UNIX
	SAS Commands under UNIX

	Data Set Options under UNIX
	SAS Data Set Options under UNIX
	Dictionary
	Summary of SAS Data Set Options in UNIX Environments

	Formats under UNIX
	SAS Formats under UNIX
	Dictionary

	Functions and CALL Routines under UNIX
	SAS Functions and CALL Routines under UNIX
	Dictionary

	Informats under UNIX
	SAS Informats under UNIX
	Dictionary

	Macro Facility under UNIX
	About the Macro Facility under UNIX
	Automatic Macro Variables in UNIX Environments
	Macro Statements in UNIX Environments
	Macro Functions in UNIX Environments
	SAS System Options Used by the Macro Facility in UNIX Environments
	Using Autocall Libraries in UNIX Environments
	What Is an Autocall Library?
	Available Autocall Macros
	The SASAUTOS System Option
	Example: Setting Up and Testing a Macro in an Autocall Library

	Procedures under UNIX
	SAS Procedures under UNIX
	Dictionary

	Statements under UNIX
	SAS Statements under UNIX
	Dictionary

	System Options under UNIX
	SAS System Options under UNIX
	Determining How a System Option Was Set
	Dictionary
	Summary of All SAS System Options in UNIX Environments

	Appendices
	The !SASROOT Directory
	Introduction to the !SASROOT Directory
	Contents of the !SASROOT Directory

	Tools for the System Administrator
	The Utilities Directory in UNIX Environments
	Installing Manual Pages
	Utilities in the /bin Directory

	Using SSL in UNIX Environments
	What Is SSL?
	SSL (Secure Sockets Layer)
	Certification Authorities (CAs)
	Public and Private Keys
	Digital Signatures
	Digital Certificates

	Using SSL
	Overview of SSL Set-Up Process

	SSL for SAS
	SSL for UNIX
	System and Software Requirements for SSL under UNIX
	Setting Up SSL under UNIX
	Downloading and Building SSL under UNIX
	Creating Digital Certificate Requests under UNIX
	Generating Digital Certificates on UNIX
	Viewing Digital Certificates
	Terminating OpenSSL
	Creating a CA Trust List

	Converting between PEM and DER File Formats
	SSL Language Elements

	SAS Releases in UNIX Environments
	SAS Releases in UNIX Environments

	Recommended Reading
	Recommended Reading

	Glossary
	Index

