
SAS/AF®

9.1
Procedure Guide

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS/AF ® 9.1 Procedure Guide. Cary, NC: SAS Institute Inc.

SAS/AF® 9.1 Procedure Guide
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
ISBN 1–59047–225–X
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

Chapter 1 � Introduction to SAS/AF Software 1
Overview 1

Learning More 1

Chapter 2 � The BUILD Procedure 3
Overview 3

BUILD Procedure Syntax 4

BUILD Command Syntax 18

BUILD Procedure Windows 19

Chapter 3 � SAS/AF Catalog Entry Types 21
Overview 22

CBT Entries 23

CLASS Entries 30

FRAME Entries 31

HELP Entries 32

INTRFACE Entries 32

LIST Entries 33

MENU Entries 34

PROGRAM Entries 35

RANGE Entries 46

RESOURCE Entries 47

SCL Entries 48

General Attributes for Application Windows 50

Chapter 4 � Executing SAS/AF Applications 53
Overview 53

AF Command 53

AFAPPLICATION Command 59

Passing Options to an Application 61

Suppressing SAS Windows When a SAS/AF Application Opens 63

Chapter 5 � AF Window Commands 65
Overview 65

Window Management Commands 66

Scrolling Commands 72

Printing Commands 73

Appendix 1 � Recommended Reading 75
Recommended Reading 75

Glossary 77

Index 83

iv

1

C H A P T E R

1
Introduction to SAS/AF Software

Overview 1
Learning More 1

Overview

SAS/AF software provides a set of tools that you can use to develop applications
within the SAS System. SAS/AF applications provide interactive user interfaces to all
the data access, management, analysis, and presentation features of SAS software.

SAS/AF applications are stored in SAS catalog entries. You use the BUILD procedure
(or the BUILD command) in SAS/AF software to create the following types of catalog
entries:

� FRAME entries, which provide visual, object-oriented components for developing
applications in environments that support a graphical user interface

� PROGRAM and MENU entries, which provide character-based features for
developing applications in environments where a graphical user interface is not
available

� SCL entries, which store SAS Component Language (SCL) programs

� CBT and HELP entries, which provide information and assistance to application
users.

Other utility entry types can also be created to support your applications.
Although SAS/AF software is required for building applications, users do not need to

license or install SAS/AF software in order to run the applications. The commands and
procedure that launch SAS/AF applications are available in Base SAS software. Catalog
entry types that provide a display run in the AF window, which supports its own set of
window management commands in addition to any custom commands that your
application supports.

Learning More

� For information about the syntax of the BUILD procedure and the BUILD
command, see Chapter 2, “The BUILD Procedure,” on page 3.

� For information about the types of catalog entries you can create with the BUILD
procedure, see Chapter 3, “SAS/AF Catalog Entry Types,” on page 21.

� For information about running the applications you create with the BUILD
procedure, see Chapter 4, “Executing SAS/AF Applications,” on page 53.

2 Learning More � Chapter 1

� For information about the commands provided in the AF windows in which
SAS/AF applications run, see Chapter 5, “AF Window Commands,” on page 65.

� For an introduction to developing FRAME entry applications with SAS/AF
software, refer to SAS Guide to Applications Development.

3

C H A P T E R

2
The BUILD Procedure

Overview 3
BUILD Procedure Syntax 4

PROC BUILD Statement 4

COMPILE Statement 7

CROSSREF Statement 8

MERGE Statement 10
MLINK Statement 13

PRINT Statement 14

SYNC Statement 17

BUILD Command Syntax 18

BUILD Command 18

BUILD Procedure Windows 19

Overview

You use the BUILD procedure in SAS/AF software to create applications that can

� display or update the contents of SAS data sets, catalogs, or external files, using
either a graphical or character-based user interface

� create SAS statements to be submitted for processing by other SAS procedures

� provide menus for selecting other applications

� provide computer-based training

� provide online Help.

This section provides reference information about the BUILD procedure, including
the complete syntax of the statements that are used in the procedure.

Note: You can also open the BUILD procedure windows by using

� the BUILD command

� the CALL BUILD routine in SAS Component Language

� the SAS Explorer window (when you select one of the SAS/AF catalog entry types
described in Chapter 3, “SAS/AF Catalog Entry Types,” on page 21).

See “BUILD Command” on page 18 for details about the BUILD command. Refer to
SAS Component Language: Reference for information about using the CALL BUILD
routine. Refer to the online Help for Base SAS software for information about using the
Explorer window. �

4 BUILD Procedure Syntax � Chapter 2

BUILD Procedure Syntax
Note: You can use any number of COMPILE, MERGE, MLINK, PRINT, and SYNC
statements with the PROC BUILD statement. The statements execute before any
procedure windows are opened. All MERGE statements are executed first, followed by
all PRINT statements, all MLINK statements, all SYNC statements, and finally all
COMPILE statements.

PROC BUILD <CATALOG=<libref.>catalog-name<.entry-name.entry-type>>

<options>;

COMPILE <options>;

CROSSREF PROJECT=libref.catalog-name | (catalog-list) <options>;

MERGE CATALOG=libref.catalog-name <options>;

MLINK <options>;

PRINT items <options>;

SYNC <options>;

The PROC BUILD statement is required. The other statements are optional and are
used as follows:

To do this Use this statement

Compile the SAS Component Language code in FRAME, PROGRAM,
and SCL entries

COMPILE

Collect information for the Static Analyzer performance analysis tool CROSSREF

Combine entries from another SAS catalog into the current catalog MERGE

Generate submenu links between MENU entries MLINK

Print the contents of catalog entries PRINT

Synchronize changes in RESOURCE, CLASS, or FRAME entries SYNC

PROC BUILD Statement

Starts the BUILD procedure and specifies the catalog or catalog entry to open.

Tip: When you specify a four-level name for the CATALOG= argument, a BUILD
procedure window opens in which you can edit the specified entry. By default, when you
close the BUILD window, the procedure opens an Explorer window showing the contents
of the catalog that contains the specified entry. If you want the procedure to end when
you close the BUILD window, use the NODIR option in the PROC BUILD statement.

The BUILD Procedure � PROC BUILD Statement 5

PROC BUILD <BATCH>
<BROWSE>
<CATALOG=<libref.>catalog-name<.entry-name<.entry-type>>>
<ENTRYTYPE=entry-type>
<NODIR>
<PADCHAR=’character’>
<RESOURCE=< libref.catalog-name.>resource-name<.RESOURCE>>
<TESTAF <DEBUG>>
<TEXTLENGTH=n>;

Options
You can use the following options in the PROC BUILD statement:

BATCH
executes the BUILD procedure in batch mode rather than interactively. You cannot
build individual entries in batch mode, but it is a convenient way to execute PRINT,
COMPILE, MERGE, MLINK, and SYNC statements when you do not need to view
the catalog or catalog entry. If you use the BATCH option without a PRINT,
COMPILE, MERGE, MLINK, or SYNC statement, the specified catalog or catalog
entry is not opened.

Note: When you use the BATCH option, all of the other PROC BUILD options
except for CATALOG= are ignored. �

BROWSE
opens the specified catalog entry for browsing only. By default, the BUILD procedure
tries to open the specified catalog entry for editing. Use the BROWSE option if you
only want to view the entry without making changes.

Note: Catalog entries for which you have read-only access are automatically
opened for browsing. �

CATALOG=<libref.>catalog-name<.entry-name.entry-type>
CAT=<libref.>catalog-name<.entry-name.entry-type>
C=<libref.>catalog-name<.entry-name.entry-type>

specifies the current catalog or the specific catalog entry to create, edit, or browse.
The name that you specify with this argument is interpreted as follows:

� A one-level name identifies a catalog in the default library, WORK.
� A two-level name identifies a catalog in a specified library.
� A three-level name also identifies a catalog in a specified library. The third level

is ignored and the first two levels (libref.catalog-name) are used.
� A four-level name identifies an entry of a specified type in a specified catalog.

Unless you also use the BATCH option, the procedure opens a window.
� If you supply a one-, two-, or three-level name, an Explorer window opens to

display the contents of the specified catalog.
� If you specify a four-level name, the appropriate window opens for the specified

entry type. See “BUILD Procedure Windows” on page 19 for information about
the corresponding window for each entry type. Refer to Chapter 3, “SAS/AF
Catalog Entry Types,” on page 21 for information about the uses of the different
catalog entry types. If the specified entry does not already exist, a new entry of
the specified type is created.

6 PROC BUILD Statement � Chapter 2

If you omit the CATALOG= argument, a SAS Explorer window opens from which
you can select a library and catalog and then create a new entry or select an existing
entry to edit or browse.

ENTRYTYPE=entry-type
ETYPE=entry-type
ET=entry-type

specifies the default catalog entry type for the EDIT and BROWSE commands in
BUILD procedure windows. The initial default entry type is PROGRAM. Use the
ENTRYTYPE= option to change the default entry type to CBT, FRAME, HELP,
MENU, or SCL.

NODIR
prevents the Explorer window from opening when a specified catalog entry is closed.
By default, the Explorer window opens with the contents of the current catalog
displayed when you close the BUILD procedure window. This makes it easy to
continue working in the same catalog. Use the NODIR option to prevent this default
behavior, in which case the BUILD procedure ends when you close the BUILD
procedure window for the entry.

Note: The NODIR option is valid only when you specify a four-level name in the
CATALOG= argument. �

PADCHAR=’character’
specifies the default pad character that is displayed for empty user fields in
PROGRAM entry windows. By default, the pad character is the underscore (_). Use
the PADCHAR= option to specify a different default pad character for the BUILD
session.

Note: The pad character for individual fields can be specified in the ATTR
window. �

RESOURCE=<libref.catalog-name.>resource-name<.RESOURCE>
specifies the RESOURCE entry that is associated with any FRAME entries you
create with the BUILD procedure. By default, new FRAME entries use the
RESOURCE entry that is specified in the SAS registry. You can use the
RESOURCE= option to override the default for the current BUILD session. The
resource-name value must be the name of an existing RESOURCE entry. If you omit
the libref.catalog-name value, the procedure looks for the specified RESOURCE entry
in the current catalog, which is identified in the CATALOG= option.

Note: You can use the RESOURCE command in a BUILD procedure window to
change the default RESOURCE entry during the BUILD session. �

TESTAF <DEBUG>
executes the specified CBT, FRAME, HELP, MENU, PROGRAM, or SCL entry in a
test environment. You can test features such as field validation, the appearance of
windows, and flow of control. Statements within submit blocks in PROGRAM entries
are not submitted to the SAS session for processing. When you close the entry in the
test environment, the Explorer window opens unless you also use the NODIR option.

Note: The TESTAF option is valid only when you specify a four-level name in the
CATALOG= argument. �

The DEBUG option activates the SAS Component Language source-level debugger,
provided that the SCL program in the specified entry was previously compiled with
the DEBUG compile option.

The BUILD Procedure � COMPILE Statement 7

TEXTLENGTH=n
TEXTLEN=n

specifies the length of the text line in the DISPLAY window for catalog entry types
that use the SAS text editor (CBT, HELP, MENU, and PROGRAM). The default
value is 78. Use the TEXTLENGTH= option to specify a shorter or longer line
length. Valid values for n are 1 through 255.

This option is especially useful when you are developing applications that will be
used on displays that are wider than the one on which they are being created.

Using the PROC BUILD Statement
The BUILD procedure enables you to create, edit, and manage SAS/AF catalogs and

catalog entries. The types of entries you can build depend on your display environment.
� In graphical display environments, FRAME entries provide a graphical user

interface and object-oriented programming tools for application development. The
information in CLASS and RESOURCE entries defines the objects that are
available in the development environment.

� In character-based display environments, SAS/AF applications usually consist of a
combination of PROGRAM, CBT, MENU, and HELP entries. The information in
EDPARMS, FORM, and KEYS entries supplements the application.

Refer to Chapter 3, “SAS/AF Catalog Entry Types,” on page 21 for more information
about the different types of catalog entries you can create and edit with the BUILD
procedure.

COMPILE Statement

Compiles an application’s source programs into stored, executable code.

Note: The compile operation is performed before the procedure opens any windows.
Tip: By default, all PROGRAM entries in the current catalog are compiled. You can use
the SELECT= option to select individual entries to compile, or use the EXCLUDE=
option to prevent certain entries from being compiled.

COMPILE <DEBUG>
<EXCLUDE=entry-name | (entry-list)> | <SELECT=entry-name<.entry-type> |

(entry-list)>;

Options
You can use the following options in the COMPILE statement:

DEBUG
specifies that extra information is collected for the SAS Component Language (SCL)
debugger when programs are compiled.

EXCLUDE=entry-name | (entry-list)
SELECT=entry-name<.entry-type> | (entry-list)

specify entries to exclude from or select for the compile operation. By default, all
PROGRAM entries in the current catalog are compiled. Use the EXCLUDE= option
to prevent specific PROGRAM entries from being compiled. Use the SELECT= option

8 CROSSREF Statement � Chapter 2

to compile only the specified entries. To compile FRAME or SCL entries, you must
explicitly specify the entry names, including the entry type, by using the SELECT=
option. An error occurs if you specify an entry of any type other than FRAME,
PROGRAM, or SCL. If you specify more than one entry name for either of these
options, enclose the list in parentheses and separate the names with at least one
space.

Each COMPILE statement can include only one EXCLUDE= option or one
SELECT= option. However, you can use multiple COMPILE statements in the same
PROC BUILD statement.

Using the COMPILE Statement
The SAS Component Language code in FRAME, PROGRAM, and SCL entries must

be compiled before the source programs can run. If you do not use the COMPILE
command while you are working in the catalog entries, you can use the COMPILE
statement to compile the code in existing entries.

If error or warning messages are generated by the compile process, they are written
to the SAS log.

COMPILE Statement Example
The following example illustrates a COMPILE statement that compiles three SCL

source programs and collects the extra information needed to run the SCL debugger. In
this example, the PROGRAM entries named ONE, TWO, and THREE in the catalog
EX.APPLIC are compiled in batch mode. No interactive BUILD session is initiated.

proc build catalog=ex.applic batch;
compile debug select=(one two three);

run;

CROSSREF Statement
Collects information about the SAS Component Language code in a SAS/AF application for use by
the Static Analyzer tool.

Restriction: When you use a CROSSREF statement with the PROC BUILD statement,
no other BUILD procedure statements can be used.
Note: When you use the CROSSREF statement, the procedure ends after the analysis
data is collected. No BUILD procedure windows are opened, and any options that you
specify for the PROC BUILD statement are ignored.

CROSSREF PROJECT=<libref.>catalog-name | (catalog-list)
<DETAIL=ALL | NONE | <libref.>catalog-name | (catalog-list)>
<EXCLUDE=entry-name.entry-type | (entry-list)> | <SELECT=entry-name.entry-type

| (entry-list)>
<OUTLIB=libref>
<SEARCH=<libref.>catalog-name | (catalog-list)>;

Required Argument
You must always supply the following argument with the CROSSREF statement:

The BUILD Procedure � CROSSREF Statement 9

PROJECT= <libref.>catalog-name | (catalog-list)
specifies one or more SAS catalogs that comprise the project you want to analyze. If
you specify more than one catalog, enclose the list in parentheses and separate the
names with spaces.

Options
You can use the following options in the CROSSREF statement:

DETAIL=ALL | NONE | <libref.>catalog-name | (catalog-list)
controls the depth of data collection when functions that refer to other entries (such
as CALL DISPLAY, CALL METHOD, or CALL GOTO) are encountered. Specify one
of the following values:

ALL
the analysis traverses all links and collects data on all other entries that are
referenced in the project. (This is the default behavior.)

NONE
the analysis does not traverse any links nor does it collect data on any entries
outside the specified project catalogs.

<libref.>catalog-name | (catalog-list)
the analysis traverses links and collects data on only those entries that reside in
the specified catalogs. If you specify more than one catalog name, you must
enclose the list in parentheses and separate the names with spaces.

EXCLUDE=entry-name.entry-type | (entry-list)
SELECT=entry-name.entry-type | (entry-list)

specifies one or more entries for which no data is collected or for which data is
collected. Use the EXCLUDE= option to prevent data from being collected for the
specified entries. Data is still collected for the remaining entries in the catalogs
specified in the PROJECT= or DETAIL= arguments. Use the SELECT= option to
collect data for only the specified entries in the catalogs specified in the PROJECT=
or DETAIL= arguments. If you specify more than one catalog entry name, you must
enclose the list in parentheses and separate the names with spaces.

The EXCLUDE= and SELECT= options are mutually exclusive. You cannot use
both options in the same CROSSREF statement.

OUTLIB=libref
specifies the libref for the SAS data library in which the analysis data sets are
generated. The new analysis data sets replace any previous analysis data sets in the
specified library. If you omit this option, the default is the WORK library.

SEARCH=<libref.>catalog-name | (catalog-list)
specifies one or more SAS catalog names that are used as the catalog search rule.
The search rule is applied when a function that refers to another entry (such as
CALL DISPLAY, CALL METHOD or CALL GOTO) includes a parameter that has a
two-level name in the form entry-name.entry-type. The catalogs in the search rule are
searched in the specified order for an entry that matches the two-level entry name.
When no search rule is in effect, the default is to search only the catalog that
contains the entry that includes the function.

If you specify more than one catalog name, you must enclose the list in
parentheses and separate the names with spaces.

Using the CROSSREF Statement
The CROSSREF statement performs the data collection phase for the Static Analyzer,

one of the performance analysis tools that are provided with SAS/AF software. The

10 MERGE Statement � Chapter 2

Static Analyzer scans the SCL code for a project and reports usage information for the
SCL program elements, including which functions, variables, constants, widgets, SAS
macros, and SAS options are used in the project. For purposes of the analysis, you can
define a project to include entries in multiple SAS catalogs and SAS data libraries.

After using the CROSSREF statement to collect data, you can view the results by
issuing the following command in any SAS window:

SCLPROF STATIC <LIB=analysis-library>

Note: Use the LIB= option in the SCLPROF command if you used the OUTLIB=
option in the CROSSREF statement to specify a library other than the default. �

For more information about the Static Analyzer, refer to the online Help for the tool.

CROSSREF Statement Examples
The following example illustrates the use of the SELECT= option to restrict data

collection to a single entry:

proc build;
crossref project=sashelp.aftools

select=astopts.frame;
run;

The following example illustrates the use of the DETAIL= option to limit the depth of
data collection in a large project:

proc build;
crossref project=(sashelp.eis sashelp.eisbol1)

detail=(sashelp.afclass sashelp.eisbol1
sashelp.fsp sashelp.mb)

search=(sashelp.eisbol1 sashelp.mb
sashelp.eis sashelp.fsp
sashelp.assist sashelp.calc)

outlib=sasuser;
run;

MERGE Statement

Copies entries from the catalog specified in the MERGE statement into the current catalog.

Note: The merge operation is performed before the procedure opens any windows.
Tip: By default, all entries in the specified catalog are copied to the current catalog (the
catalog that was specified in the PROC BUILD statement). You can use the SELECT=
option to select individual entries to copy, or use the EXCLUDE= option to prevent
certain entries from being copied.

MERGE CATALOG=< libref.>catalog-name
<ENTRYTYPE=type>
<EXCLUDE=entry-name.entry-type | (entry-list)> | <SELECT=entry-name.entry-type

| (entry-list)>
<NOEDIT>
<NOSOURCE>

The BUILD Procedure � MERGE Statement 11

<REPLACE>

<UPCASE>;

Required Argument
You must always supply the following argument with the MERGE statement:

CATALOG=<libref.>catalog-name
CAT=<libref.>catalog-name
C=<libref.>catalog-name

specifies the SAS catalog from which entries are copied. If you specify a one-level
name, it is assumed to be a catalog name in the default WORK library.

Options
You can use the following options in the MERGE statement:

ENTRYTYPE=entry-type
ETYPE=entry-type
ET=entry-type

specifies the type of entry to copy into the merged catalog. By default, entries of all
types are copied (unless you also use the SELECT= or EXCLUDE= option). Use the
ENTRYTYPE= option to copy only entries of the specified type.

To copy entries of more than one type, use a separate MERGE statement for each
entry type.

EXCLUDE=entry-name.entry-type | (entry-list)
SELECT=entry-name.entry-type | (entry-list)

specify entries to exclude from or select for the merge operation. By default, all
entries in the specified catalog are copied into the current catalog (unless you also
use the ENTRYTYPE= option). Use the EXCLUDE= option to prevent specific
entries from being copied. Use the SELECT= option to copy only the specified
entries. If you specify more than one entry name for either of these options, enclose
the list in parentheses and separate the names with at least one space.

If you use the ENTRYTYPE= option in the same MERGE statement, you can omit
the entry-type portion of the entry specification for the EXCLUDE= and SELECT=
options because only entries of the type specified in the ENTRYTYPE= option can be
copied.

Each MERGE statement can include only one EXCLUDE= option or one
SELECT= option. However, you can use multiple MERGE statements with the same
PROC BUILD statement.

NOEDIT
NOED

specifies that the entries that are merged into the current catalog cannot be edited
with the BUILD procedure. This option is useful when you are moving entries from a
development catalog into a production catalog and you want to prevent changes to
the entries in the production catalog.

NOSOURCE
NOSRC

specifies that the SCL source programs for PROGRAM entries are not copied.

REPLACE
specifies that entries from the catalog specified in the MERGE statement replace
like-named entries in the current catalog. By default, existing entries in the current
catalog are not replaced.

12 MERGE Statement � Chapter 2

UPCASE
converts all text to uppercase during the merge.

Using the MERGE Statement
The MERGE statement merges entries from the specified catalog, sorted in

alphabetical order by entry type. Unless you use the ENTRYTYPE=, EXCLUDE=, or
SELECT= options, the merge operation attempts to copy all entries from the specified
catalog to the current catalog (the catalog that was specified in the PROC BUILD
statement). However, if any entries in the current catalog have the same names and
types as entries in the specified catalog, then the existing entries in the current catalog
are not replaced unless you use the REPLACE option.

MERGE Statement Examples

Example 1: Using the SELECT= and ENTRYTYPE= Options
The following example copies only the entry AAA.HELP from the catalog OLD.CAT1
into the catalog NEW.CAT2:

proc build catalog=new.cat2;
merge catalog=old.cat1 entrytype=help select=aaa;

run;

Example 2: Using the EXCLUDE= and ENTRYTYPE= Options
The following example copies all the HELP entries except for AAA.HELP and
BBB.HELP from the catalog OLD.CAT1 into the catalog NEW.CAT2:

proc build catalog=new.cat2;
merge catalog=old.cat1 entrytype=help exclude=(aaa bbb);

run;

Example 3: Using the SELECT= Option without the ENTRYTYPE= Option
The following example copies only the entries A.MENU and B.PROGRAM from the
catalog OLD.CAT1 into the catalog NEW.CAT2:

proc build catalog=new.cat2;
merge catalog=old.cat1 select=(a.menu b.program);

run;

Example 4: Using the REPLACE Option
The following example copies all entries of type CBT from the catalog EX.FINAL into
the catalog EX.COURSES. If a CBT entry in EX.COURSES has the same name as one
that is being copied, the procedure replaces it with the copied entry.

proc build c=ex.courses;
merge c=ex.final entrytype=cbt replace;

run;

The BUILD Procedure � MLINK Statement 13

MLINK Statement

Generates menu links for MENU entries that have the Menu-Link attribute in the catalog specified
in the PROC BUILD statement.

Note: The menu-linking operation is performed before the procedure opens any
windows.
Tip: By default, all MENU entries in the current catalog (the catalog that was specified
in the PROC BUILD statement) are checked for selections that have the Menu-Link
attribute. You can use the SELECT= option to select individual entries to check, or use
the EXCLUDE= option to prevent certain entries from being checked.

MLINK <EXCLUDE=entry-name | (entry-list)> | <SELECT=entry-name | (entry-list)>
<LEVELS=n | _MAX_>
<VERBOSE>;

Options
You can use the following options in the MLINK statement:

EXCLUDE=entry-name | (entry-list)
SELECT=entry-name | (entry-list)

specify the MENU entries to exclude from or select for the linking operation. By
default, all MENU entries in the current catalog are checked for selections that have
the Menu-Link attribute. Use the EXCLUDE option to prevent specific MENU
entries from being checked for links. Use the SELECT= option to check only the
specified entries for links. If you specify more than one entry for either of these
options, enclose the names in parentheses and separate the names with spaces.

LEVELS=n | _MAX_
specifies the number of levels of submenus to be linked. By default, only one level of
submenu selections is linked. Use the LEVELS= option to specify a different number
of levels. Use the _MAX_ option value to link all designated submenus.

VERBOSE
produces additional messages for each menu that has the Menu-Link attribute.
These messages identify the name of the MENU entry from which selections are
being linked, as well as the level number of the link. By default, messages for each
MENU entry report only the start and completion of the MLINK operation, the name
of MENU entries that contain no links, and any error conditions that are found.

Using the MLINK Statement
Menu links enable users to access submenu choices directly from an application’s

higher-level menu. Linked menus are useful to users who have become familiar with a
system and who want to bypass intermediate menus to directly invoke choices on
secondary menus. For example, suppose a MENU entry includes a selection 3 that
opens another MENU entry, and that the second MENU entry includes a selection
SALES that displays a sales report. If menu links are generated for the first MENU
entry, then users can go directly to the sales report by specifying SALES in the first
menu, without having to open the second menu.

Menu linking is applicable only to MENU entries. In order for a menu to be linked,
the Menu-Link attribute must be assigned to it in the ATTR window of the calling

14 PRINT Statement � Chapter 2

MENU entry. Each time you change menus or submenus, you should re-generate the
links to ensure that all linked selections are available from the highest-level menu.

Note: You can also generate menu links by issuing the MLINK command while
building the MENU entries. �

PRINT Statement

Prints the contents of entries from the catalog specified in the PROC BUILD statement.

Restriction: The PRINT statement can print the contents of CBT, HELP, LIST, MENU,
PROGRAM, SCL, and SOURCE entries. It cannot print the contents of FRAME,
CLASS, RANGE, and RESOURCE entries or of any other entry types that are not
supported by the BUILD procedure.
Note: The print operation is performed before the procedure opens any windows.
Tip: By default, the procedure attempts to print all entries in the current catalog (the
catalog that was specified in the PROC BUILD statement). You can use the SELECT=
option to select individual entries to print, or use the EXCLUDE= option to prevent
certain entries from being printed.

PRINT items
<ENTRYTYPE=entry-type>
<EXCLUDE=entry-name.entry-type | (entry-list)> | <SELECT=entry-name.entry-type

| (entry-list) <XREF>>
<FORM=form-name>
<LEFT>
<LINENUM>
<NOPAGEBREAK>
<PRTFILE=’filename’ | fileref <APPEND>>;

where items must be one or more of the following:
ATTR
DISPLAY<SHOWPAD>
LISTDIR
SOURCE

Required Arguments
You must always supply at least one of the following arguments with the PRINT

statement. Any combination of the following arguments can be specified.

ATTR
prints all of the attribute information that is associated with each entry.

DISPLAY <SHOWPAD | SP>
DISP <SHOWPAD | SP>

prints the display portion of each entry.
For PROGRAM entries, user fields in the display are by default represented by

their respective field names. Use the SHOWPAD option in conjunction with the

The BUILD Procedure � PRINT Statement 15

DISPLAY option to represent user fields by their corresponding pad characters
instead.

For LIST entries, the values in the list are printed.

LISTDIR
LD

prints a listing of the contents of the catalog specified in the PROC BUILD statement.

SOURCE
SRC

prints the SAS Component Language source code from each PROGRAM, SCL, or
SOURCE entry.

Options
You can use the following options in the PRINT statement:

ENTRYTYPE=entry-type
ETYPE=entry-type
ET=entry-type

specifies the type of entry to print. By default, all CBT, HELP, LIST, MENU,
PROGRAM, SCL, and SOURCE entries in the current catalog are printed (unless
you also use the SELECT= or EXCLUDE= option). Use the ENTRYTYPE= option to
print only entries of the specified type.

To print entries of more than one type, use a separate PRINT statement for each
entry type.

EXCLUDE=entry-name.entry-type | (entry-list)
SELECT=entry-name.entry-type | (entry-list) <XREF>

specify catalog entries to exclude from or select for printing. By default, all CBT,
HELP, LIST, MENU, PROGRAM, SCL, and SOURCE entries in the current catalog
are printed (unless you also use the ENTRYTYPE= option). Use the EXCLUDE=
option to prevent specified entries from being printed. Use the SELECT= option to
print only specified entries. If you specify more than one entry for either of these
options, enclose the list in parentheses and separate the names with spaces.

If you use the ENTRYTYPE= option in the same PRINT statement, you can omit
the entry-type portion of the entry specification for the EXCLUDE= or SELECT=
options because only entries of the type specified in the ENTRYTYPE= option can be
printed.

When you use the SELECT= option to print CBT or MENU entries, you can also
use the XREF option to print two cross-reference tables for each MENU or CBT
entry. One table lists all entries that are called by that entry, and the other table
lists all entries that call the entry.

Each PRINT statement can include only one EXCLUDE= option or one SELECT=
option. However, you can use multiple PRINT statements with the same PROC
BUILD statement.

FORM=form-name
specifies the name of a FORM entry to control the output generated by the PRINT
statement. Specify either a one- or three-level name for form-name. A one-level name
is assumed to be the name of a FORM entry in the current catalog. If the FORM
entry is in a different catalog, use a three-level name
(libref.catalog-name.entry-name). The default is the standard system form,
SASHELP.FSP.DEFAULT.FORM.

LEFT
specifies that output produced by the PRINT statement is aligned at the left margin
of the page or print file. By default, output is indented four spaces.

16 PRINT Statement � Chapter 2

LINENUM
prints line numbers (up to 99999) at the beginning of each line of SCL source code.

Note: The LINENUM option is valid only when SOURCE is specified for the
items argument. �

NOPAGEBREAK
prints entries without page breaks. By default, a page break is generated each time
the number of lines per page defined by your FORMS entry is reached, and each
page of the program listing has a page header. Blank lines are printed at the end of
the program listing until the specified page length is reached. Use the
NOPAGEBREAK option to print the program listing without page breaks. Headers
are printed only at the top of the entry and every 32,768 lines thereafter.

Note: The NOPAGEBREAK option is valid only when SOURCE is specified for
the items argument. �

PRTFILE=’filename’ | fileref <APPEND>
specifies a file to receive the output of the PRINT statement. By default, output is
sent to the default printer or to the printer specified in the form identified in the
FORM= option. Use the PRTFILE= option to redirect the output to a file instead.
Specify the print file using either

� a fully-qualified filename enclosed in quotes
� a fileref that has been assigned to the file with a FILENAME statement or with

an external allocation.

By default, if output is sent to a print file that already exists, the output
overwrites the current contents of the file. Add the APPEND option to append
printed output to the end of the file if it already exists.

Using the PRINT Statement
You can use the PRINT statement to generate hardcopy documentation of the

displays, attributes, and source code in your applications. By default, output is sent to
the default printer or to the printer specified in the FORM= option. You can use the
PRTFILE= option to route output to a file instead.

PRINT Statement Examples

Example 1: Selecting Entries to Print
The following example shows how to print the DISPLAY window views for two entries,
GETFIELD.PROGRAM and GETTYPE.PROGRAM. Pad characters are printed to show
the DISPLAY windows as users see them. Because the PRTFILE= option is not
specified, the output is sent to the default printer. This example uses batch mode,
which is the optimum way to print entries when you do not need to view the catalog or
its entries.

proc build cat=mylib.mycat batch;
print display showpad et=program

select=(getfield gettype);
run;

Example 2: Excluding Entries from Printing
The following example shows how to print the SCL source programs for all PROGRAM
entries in the MYLIB.MYCAT catalog except GETFIELD.PROGRAM and
GETTYPE.PROGRAM. Because the BATCH option is not specified, the Explorer window
opens after the printing is performed so that you can work in the BUILD session.

The BUILD Procedure � SYNC Statement 17

proc build cat=mylib.newcat;
print source etype=program

exclude=(getfield gettype);
run;

Example 3: Printing a Cross Reference
The following example prints a cross reference of entries that call or are called by the
MAIN.MENU entry. Output is routed to the file identified by the fileref MENUREF,
which you must have previously assigned.

proc build cat=mylib.newcat batch;
print xref select=main.menu

prtfile=menuref;
run;

SYNC Statement

Updates RESOURCE entries to incorporate changes made to one or more CLASS entries contained
in the RESOURCE entries, or updates CLASS and FRAME entries to re-establish links from instance
variables in the CLASS or FRAME entries to the parent classes.

Note: The synchronization operation is performed before the procedure opens any
windows.

Tip: By default, all CLASS, FRAME, and RESOURCE entries in the current catalog
(the catalog that was specified in the PROC BUILD statement) are synchronized. You
can use the SELECT= option to select individual entries to synchronize, or use the
EXCLUDE= option to prevent certain entries from being synchronized.

SYNC <ENTRYTYPE=entry-type>

<EXCLUDE=entry-name.entry-type | (entry-list)> | <SELECT=entry-name.entry-type
| (entry-list) >

ENTRYTYPE=entry-type
ET=entry-type

specifies the type of entry to synchronize. By default, all CLASS, FRAME, and
RESOURCE entries in the current catalog are synchronized (unless you also use the
SELECT= or EXCLUDE= option). Use the ENTRYTYPE= option to synchronize only
entries of the specified type.

To synchronize entries of more than one type, use a separate SYNC statement for
each entry type.

EXCLUDE=entry-name.entry-type | (entry-list)
SELECT=entry-name.entry-type | (entry-list)

specify catalog entries to exclude from or select for synchronizing. By default, all
CLASS, FRAME, and RESOURCE entries in the current catalog are synchronized
(unless you also use the ENTRYTYPE= option). Use the EXCLUDE= option to
prevent specified entries from being synchronized. Use the SELECT= option to
synchronize only specified entries. If you specify more than one entry for either of
these options, enclose the list in parentheses and separate the names with spaces.

18 BUILD Command Syntax � Chapter 2

If you use the ENTRYTYPE= option in the same SYNC statement, you can omit
the entry-type portion of the entry specification for the EXCLUDE= or SELECT=
options because only entries of the type specified in the ENTRYTYPE= option can be
synchronized.

Each SYNC statement can include only one EXCLUDE= option or one SELECT=
option. However, you can use multiple SYNC statements with the same PROC
BUILD statement.

Using the SYNC Statement
Objects and classes can link their instance variables to their parent classes, enabling

you to change instance variables in a class. The change will also affect instances in
subclasses of that class. However, it is possible to break the link to the parent class by
changing a value to something other than the value specified in the parent, then
changing it back. This gives you an instance variable that has the same value as the
variable in the parent class. Synchronization restores this link by removing the
duplicate item from the object attribute list (for FRAME entries) or from the class
instance variables list (for CLASS and RESOURCE entries).

Note: You can also synchronize CLASS, FRAME, and RESOURCE entries by issuing
the SYNC command in the BUILD procedure windows while editing the entries. �

BUILD Command Syntax
Tip: The BUILD command provides an easy way to open a BUILD window from any
SAS command line.

BUILD <<libref.>catalog-name< .entry-name<.entry-type>>>

<RESOURCE=< libref.catalog-name.>resource-name<.RESOURCE>>

BUILD Command

Initiates a BUILD session.

BUILD <<libref.>catalog-name< .entry-name<.entry-type>>>

<RESOURCE=< libref.catalog-name.>resource-name<.RESOURCE>>

Options
You can specify the following optional arguments with the BUILD command:

<libref.>catalog-name<.entry-name<.entry-type>>
specifies the catalog or catalog entry to open. Argument values are interpreted as
follows:

� A one-level name (catalog-name) identifies a catalog in the default library,
WORK. Remember that the contents of the WORK library are deleted when the
SAS session ends.

� A two-level name (libref.catalog-name) identifies a catalog in a specified library.

The BUILD Procedure � BUILD Procedure Windows 19

� A three-level name (libref.catalog-name.entry-name) identifies a PROGRAM
entry in a specified catalog.

� A four-level name (libref.catalog-name.entry-name.entry-type) identifies an entry
of a specified type in a specified catalog.

The form of the argument determines which window the BUILD command opens,
as follows:

� If you supply a one- or two-level name, an Explorer window opens to display the
contents of the catalog. You can then select an existing entry in the catalog to
edit, or you can create a new catalog entry.

� If you supply a three-level name, the DISPLAY window opens for editing the
specified PROGRAM entry.

� If you supply a four-level name, the appropriate window opens for the specified
entry type.

See “BUILD Procedure Windows” on page 19 for information about the corresponding
window for each entry type. If you specify an entry name that does not already exist,
a new entry of the specified type is created. Refer to Chapter 3, “SAS/AF Catalog
Entry Types,” on page 21 for information about the uses of the different catalog entry
types.

If you issue a BUILD command with no catalog or entry name argument, a SAS
Explorer window opens, from which you can select a library and catalog and then
either select an existing catalog entry or create a new catalog entry.

RESOURCE=<libref.catalog-name.>resource-name<.RESOURCE>
specifies the RESOURCE entry that is associated with any FRAME entries you create
during the BUILD session. By default, new FRAME entries use the RESOURCE
entry that is specified in the SAS registry. You can use the RESOURCE= option to
override the default for the current BUILD session. The resource-name value must
be the name of an existing RESOURCE entry. If you omit the libref.catalog-name
value, the procedure looks for the specified RESOURCE entry in the current catalog
(the catalog that was specified in the BUILD command’s catalog-name argument).

Note: You can use the RESOURCE command in a BUILD procedure window to
change the default RESOURCE entry during the BUILD session. �

Using the BUILD Command
The BUILD command can be issued from any SAS window. Each BUILD command

starts a separate BUILD session, so you can have several BUILD sessions running at
the same time, each building different entries in the same or different catalogs. If you
attempt to open an entry that is already open for editing in a different BUILD session,
it is opened for browsing rather than editing.

BUILD Procedure Windows
When you specify a catalog entry to create, edit, or browse, the BUILD procedure

opens the entry in the appropriate BUILD window for the entry type. The following
table shows the corresponding window for each of the catalog entry types that the
BUILD procedure supports:

20 BUILD Procedure Windows � Chapter 2

Entry Type Window Opened

CBT DISPLAY

CLASS Class Editor

EDPARMS EDPARMS

FORM FORM

FRAME DISPLAY and Components

HELP DISPLAY

INTRFACE Interface Editor

KEYS KEYS

LIST LISTATTR and LISTVALUES

MENU DISPLAY

PROGRAM DISPLAY

RANGE RANGE

RESOURCE Resource Editor

SCL SOURCE

For more information about the behavior of each of the BUILD procedure windows,
including details of the commands you can use in the windows, refer to the online Help
for the corresponding window. For information about the entry features that you can
define in the BUILD procedure windows, see Chapter 3, “SAS/AF Catalog Entry Types,”
on page 21.

Note: The EDPARMS, FORM, and KEYS windows are SAS windowing environment
windows that the BUILD procedure opens as a convenience for application developers.
Refer to the SAS Help System for information about the EDPARMS, FORM, and KEYS
windows. �

21

C H A P T E R

3
SAS/AF Catalog Entry Types

Overview 22
CBT Entries 23

CBT Entry Displays 23

Scrolling Controls 23

Query Frames 24

Frame Indicator Syntax 25
Frame Indicator Options 25

Feedback Indicator Syntax 28

Feedback Indicator Options 28

CBT Entry General Attributes 29

CBT Entry Child Attribute 30

CLASS Entries 30
FRAME Entries 31

HELP Entries 32

INTRFACE Entries 32

LIST Entries 33

MENU Entries 34
MENU Entry Displays 34

MENU Entry General Attributes 34

MENU Entry Selection Attributes 34

PROGRAM Entries 35

PROGRAM Entry Displays 36
Fields 36

Choice Groups 36

Selection Lists 37

Extended Tables 37

PROGRAM Entry General Attributes 37

PROGRAM Entry Field Attributes 37
Field Types 43

PROGRAM Entry SCL Programs 45

RANGE Entries 46

RESOURCE Entries 47

SCL Entries 48
Calling SCL Entries from Other SAS/AF Programs 49

Using CALL DISPLAY to Execute SCL Entries 49

Using CALL METHOD to Execute SCL Routines 49

General Attributes for Application Windows 50

22 Overview � Chapter 3

Overview
You can use the BUILD procedure in SAS/AF software to create and edit the

following types of catalog entries. Other types of entries (for example, SLIST entries
containing SCL lists or PMENU entries containing menu definitions) can appear in the
catalog along with these entry types, but you cannot edit other types with the BUILD
procedure.

Table 3.1 SAS/AF Catalog Entry Types

Entry Type Purpose

CBT Provides sequences of text and responses to user input for tutorials or
computer-based training courses. You can also build Help facilities with
CBT entries.

CLASS Stores class definitions for FRAME objects, including the attributes,
methods, events, event handlers, and interfaces that are used within a
class. See also the RESOURCE entry type.

EDPARMS Stores default colors, highlighting attributes, and general editing
specifications for the SAS text editor that is used to build the displays for
CBT, HELP, MENU, and PROGRAM entries.

FORM Stores printing device, paper, destination, and special print control
information. The form information is used when output is routed to a
printer.

FRAME Stores graphical user interfaces for object-oriented applications.

HELP Provides assistance and instructions for users.

INTRFACE Stores method definitions that determine whether and how model/view
FRAME components can communicate.

KEYS Associates commands with function keys.

LIST Stores lists of values that are used to validate user input to fields in
PROGRAM entries.

MENU Provides menus of options that users can select to run other entries.

PROGRAM Stores the display, field attributes, and the SAS Component Language
program code for character-based applications.

RANGE Stores range definitions that control traffic lighting in FRAME entry
objects.

RESOURCE Stores a collection of classes for FRAME applications.

SCL Stores a SAS Component Language (SCL) program and its compiled code,
but does not include a DISPLAY window.

The EDPARMS, FORM, and KEYS entries are catalog entry types that the BUILD
procedure opens as a convenience for application developers. Refer to the SAS Help
System for information about the EDPARMS, FORM, and KEYS entries. The
remaining SAS/AF entry types are discussed in the following sections.

SAS/AF Catalog Entry Types � CBT Entry Displays 23

CBT Entries
CBT entries store interactive user assistance or tutorial applications, which consist of
� a display that provides information and questions to users and which accepts user

responses
� general attributes that control the appearance and behavior of the window in

which the CBT entry executes
� a Child attribute that specifies another entry to which control can be passed when

users reach the last frame in the CBT entry.

The following sections describe each of these components of a CBT entry.

CBT Entry Displays
You use the BUILD procedure’s DISPLAY window to design the displays for CBT

entries. The displays can use any of the text color features and highlighting features
that the SAS text editor supports. In addition to static text, the display can include
fields in which users can enter or select answers to questions, as well as graphics.

The display for a CBT entry is divided into a sequence of frames. Frame boundaries
in the display are indicated with either a frame indicator line or a divider line that
consists of dash (-) characters across the full width of the DISPLAY window. (You can
use the FILL command in the DISPLAY window to create divider lines.) Refer to “Frame
Indicator Syntax” on page 25 for information about the syntax of frame indicator lines.

In addition to presenting information to users, frames in CBT entries can pose both
fill-in-the-blank and multiple-choice questions. Refer to “Query Frames” on page 24 for
details about creating frames that present questions. If the frame contains a question
for users, it must begin with a frame indicator line, and it must include one or more
feedback indicator lines that determine how the entry responds to user input. Refer to
“Feedback Indicator Syntax” on page 28 for information about the syntax of feedback
indicator lines.

If a frame does not present a question, users can press ENTER to advance to the
next frame in the sequence. If the frame presents a question, users must either attempt
to answer the question or use the FORWARD command to skip the question. Users can
issue the BACKWARD command to scroll back to previous frames in the sequence.
When a user issues an END command to close the CBT entry, the current entry name is
stored as the AF checkpoint (unless the CHECKLAST=NO option was specified in the
AF command that started the application). Users can issue the SAVE command to save
the current frame number and end the current SAS session. When the user opens the
CBT entry again, it resumes at the frame that was displayed when the SAVE command
was issued.

You can define frames that branch unconditionally to other SAS/AF catalog entries.
To define a frame that jumps to another entry, use a divider line to begin the frame, and
enter three uppercase P characters in the first three columns of the next line. Follow
the PPP with the name of the entry to open.

Scrolling Controls
If you design a frame that has more lines than the current window size, only the

number of lines that fit in the window are initially displayed. Users must issue a
FORWARD command to display the remaining lines of the frame. You can designate a
portion of the frame that does not scroll. Enter three caret (^) or NOT () characters in
the first three columns of a line to delineate the nonscrolling region of the frame. Any
text and fields above the line that contains the ^^^ or remain visible as long as the

24 CBT Entry Displays � Chapter 3

current frame is displayed; FORWARD and BACKWARD commands scroll only the
region below the nonscrolling area.

You can define pause indicators in the display to delay the presentation of portions of
the text. Enter three at (@) characters in the first three columns of a line to define a
pause. Only the text between the beginning of the frame and the first pause indicator
(@@@) appears when the frame is initially displayed. When the user presses ENTER, the
text from the current pause indicator up to the next pause indicator (or up to the end of
the frame, if there are no more pause indicators) is added to the frame, and so on.

You can use the LOCK option in the frame indicator to segment frames. A frame
indicator line with the LOCK option ends a sequence of frames. Users cannot press the
ENTER key or issue FORWARD or BACKWARD commands to move into or out of a
locked frame. Locked frames are displayed only when they are specifically called, such
as in a branch from a feedback item in another frame.

Query Frames
CBT entries can pose either fill-in-the-blank or multiple-choice questions. If a frame

poses a question, the user cannot press the ENTER key to move to the next frame
without attempting to answer the question. However, the FORWARD command can be
used to skip the question, unless the field is locked.

You designate the response field for a fill-in-the-blank question with an initial
ampersand (&), followed by underscore (_) characters to pad the field to the length
required to hold the largest answer value. A response field can be as short as a single &
or as long as the width of a display line. The ampersand and pad characters do not
appear when the frame is displayed to the user.

Use the CORRECT= option in the frame indicator to specify the correct answer to the
fill-in-the-blank question. You can use feedback indicators to define the entry’s response
to correct or incorrect answers. The feedback indicators can either display messages or
branch to other frames or entries.

Designate the response fields for multiple-choice questions with underscore (_)
characters. The underscore for each response field should be preceded and followed by a
space. You can use up to eight multiple-choice response fields in a frame. When the
frame is displayed to users, they can use the TAB key to move the cursor from field to
field, and they can either press ENTER or click the mouse to select the desired field.

Each multiple-choice response field should have a corresponding feedback indicator
that specifies the entry’s response to the selection. The feedback indicators can either
display messages or branch to other frames or entries. Use the C option in the feedback
indicator to indicate which responses are considered correct.

You can collect information about the user’s responses to the questions in the CBT
entry. The response statistics are stored in a SAS data set. Refer to the descriptions of
the QUIZ= and QUIZ options in “Frame Indicator Options” on page 25 for details.

The AF task creates the following macro variables when a CBT entry is executed:
� &_NQSEEN, which stores the number of questions presented to the user
� &_NQRIGHT, which stores the number of questions that the user answered

correctly.

You can use these macro variables in other SAS programs after the CBT entry ends.
In addition to response fields, you can define the following other methods for

enabling users to interact with the frames in a CBT entry:
� You can use the SELECT= option in feedback indicator lines to create selection

boxes, which are areas of the display in which users can either press ENTER or
click the mouse to select the corresponding feedback item.

� You can use the MENU= option in feedback indicator lines to define values that
users can enter on the application window’s command line to select the
corresponding feedback item.

SAS/AF Catalog Entry Types � CBT Entry Displays 25

The feedback items for selection boxes and menu choices can either display a message
or branch to a specified frame or entry.

Frame Indicator Syntax
The general form of a frame indicator is

? <* | n> <options>

where options can be one or more of the following:

AUTO | AUTO=n | NOAUTO

CORRECT=answer-value | ’answer-string’ | ?

GRAPH=<(left-col, right-col, top-row, bottom-row)> libref.catalog-name.graphic-entry
</ERASE>

LOCK

NAME=frame-name

QUIZ

QUIZ=< libref.>response-data-set

SOUND | MUSIC=freq-1 duration-1 <... freq-n duration-n> | note-1 duration-1 <...
note-n duration-n>

WRONG=<libref.catalog-name.>entry-name.entry-type

Use the slash character (/) to continue a frame indicator across multiple lines of the
display. For example, the following lines comprise a single frame indicator:

?2 name=mean /
correct=42 /
wrong=review.cbt

Frame Indicator Options
You can use the following options in frame indicators:

*
indicates that the remainder of the line is a comment.

n
specifies how many attempts the user is given to provide the correct answer to the
question in the frame. The value for n must be in the range 1 to 8, and it must
appear in column 2 of the feedback indicator line.

If you omit the n option, feedback indicator lines in the frame are ignored, so the
value of n should always be at least 1 if the frame includes feedback indicator lines.

If the user fails to enter or select the correct answer to the question within the
allotted number of attempts, then by default the correct answer is displayed, and
the user is prompted to press ENTER to continue. However, if the frame indicator
includes the WRONG= option, then control passes to the specified entry.

AUTO
AUTO=n
NOAUTO

specify the beginning or end of a sequence of frames that are displayed without
waiting for user input. Use the AUTO option to display frames as fast as the
display device allows. Use AUTO=n to specify the rate at which frames are
displayed, where n is the number of frames per second to display.

26 CBT Entry Displays � Chapter 3

By default, frames from the current sequence are displayed until a query frame
is encountered or until the last frame of the sequence is displayed. Use the
NOAUTO option to stop the automatic display before the last frame is reached.

CORRECT=answer-value | ’answer-string’ | ?
specifies the correct answer when the frame includes a fill-in-the-blank question.
The answer can be up to 32 characters long. Enclose the answer string in single or
double quotes if it contains embedded blanks.

If you specify CORRECT=?, then any answer that a user enters in the response
field is considered correct.

GRAPH=<(left-col, right-col, top-row, bottom-row)> libref.catalog-name.graph-entry
</ERASE>

specifies a graph to be displayed in the frame. The graph must be a catalog entry
of type GRSEG created with SAS/GRAPH software. You must specify the
libref.catalog-name portion of the entry name, even if the entry resides in the
same catalog as the CBT entry.

Note: In order for users to see the graph when the CBT entry runs in the
application window, SAS/GRAPH software must be licensed at their site, and their
display devices must support SAS/GRAPH output. �

By default, the graph is displayed starting on the second row of the display area
to leave room for a line of text above. The display must contain enough blank lines
so that the graph does not overlay any text. You can specify left and right column
values and top and bottom row values to control the position of the graph within
the display. The position values must be enclosed in parentheses. The following
rules apply:

� the left-col value must be greater than 1 and less than the number of columns
in the display. (Column 1 is reserved for frame and feedback indicators.)

� the right-col value must be greater than 2 and less than the number of
columns in the display.

� the top-row value can be 1 or greater, but it must be less than the number of
rows in the display minus 2.

� the bottom-row value must be greater than 1 and equal to or less than the
number of rows in the display minus 2.

By default, any new graph that you display overlays any previous graph. Add
the /ERASE option to erase any previous graphs before displaying the current
graph. To erase the previous graph without displaying a new graph, specify the
following:

graph=erase.erase.erase/erase

LOCK
specifies a frame that is not part of a sequence. Users cannot use the ENTER key
or the FORWARD and BACKWARD commands to scroll into or out of locked
frames. Locked frames are displayed only when they are explicitly called, such as
when they are the target of a branch in a feedback indicator. To exit from a locked
frame, a user must either answer a question that branches to a different frame or
issue an END command. The END command returns to the CBT frame that called
the locked frame.

NAME=frame-name
specifies a name for the frame that can be used instead of the frame number when
another frame branches to the frame. Using frame names for branch targets is
preferable to using frame numbers because a frame’s number can change as
frames are added or removed.

SAS/AF Catalog Entry Types � CBT Entry Displays 27

QUIZ
specifies that information about the user’s responses to the question in the current
frame is recorded in the SAS data set specified in the QUIZ= option.

QUIZ=<libref.>response-data-set
specifies the name of a SAS data set that is used to record information about the
user’s responses to questions in the frames of the CBT entry. If you omit the libref
portion of the data set name, the data set is created in the default WORK library.

Note: Use the QUIZ= option in the first frame for which you wish to collect
response data, and use the QUIZ option in subsequent frames. �

The tracking data set contains the following variables:

LIBREF is the libref that contains the catalog where the CBT entry
resides.

CATNAME is the name of the catalog that contains the CBT entry.

OBJNAME is the name of the CBT entry (or XTESTAFX, if you are testing
the entry with the TESTAF command).

FRAME is the frame number for which response data was recorded.

MATRICES is the number of attempts that the user is allotted to answer
the question.

TRIES is the number of attempts that the user actually used.

Note: The number of attempts is not incremented if the
frame does not specify a correct answer for the question. �

SCORE is a number that represents the user’s success in answering the
question in the frame, as follows:

-1 indicates that the user exhausted all
allotted attempts and failed to answer the
question correctly.

0 indicates that the user answered the
question incorrectly and did not use all the
allotted attempts before requesting the
correct response.

1 indicates that the user gave the correct
response.

2 indicates that the user skipped the frame.

SOUND=freq-1 duration-1 <... freq-n duration-n> | note-1 duration-1
<... note-n duration-n>
MUSIC=freq-1 duration-1 <... freq-n duration-n> | note-1 duration-1
<... note-n duration-n>

specifies one or more tones or notes that are played when the frame is displayed,
provided the user’s display device supports sounds.

You can use either of the following formats to specify the sounds to play:
� frequency-duration pairs, where freq is the frequency of the tone in cycles per

second and duration is the duration of the tone in units of 1/100ths of a
second.

� note-duration pairs, where note is a note specification and duration is the
duration of the note in units of 1/100ths of a second. A note specification
consists of the note name from the musical scale (A, B, C, D, E, F, or G) and
an octave designation (0-7, corresponding to the octaves on a piano keyboard,

28 CBT Entry Displays � Chapter 3

starting at the bass end). You can also add a # to raise the note by a half tone
or a lowercase b to lower the note by a half tone. For example, E6b specifies
an E flat in octave 6.

For a rest (silence), specify either 0 for the frequency or Z for the note name.

Note: Users can use the SOUND command in the application window to turn
sounds on or off. �

WRONG=<libref.catalog-name.>entry-name.entry-type
specifies an entry that is displayed when the user fails to give the correct response
in the allotted number of attempts.

Feedback Indicator Syntax
The general form of a feedback indicator is

#<n<C>> <branch> <options>

where options can be one or more of the following:

FRAME=frame-number | frame-name

HELP=<libref.catalog-name.>entry-name.entry-type

MENU=value

SELECT=(left-col, right-col, top-row, bottom-row)

SOUND | MUSIC=freq-1 duration-1 <... freq-n duration-n> | note-1 duration-1 <...
note-n duration-n>

Use the slash character (/) to continue a feedback indicator across multiple lines of
the display. For example, the following lines comprise a single feedback indicator:

#1 >< fruit.cbt frame=app /
select=(10,14,3,3) /
menu=apple

If you do not use the branch option in the feedback indicator, you can follow the
feedback indicator with one or more lines of text. The lines of text that follow the
feedback indicator are displayed when users select the corresponding response field or
selection box. If the indicator designates a correct response, the first line of text after
the indicator is considered the congratulatory message, and the remaining lines are
considered the explanatory message. Both are displayed when a user enters a correct
response, but only the explanatory lines are displayed if the user fails to give the
correct response in the allotted number of attempts or when the user asks to see the
correct response without giving the correct response.

Feedback Indicator Options
You can use the following options in feedback indicators:

n
specifies the sequence number of the feedback item. This value must appear in
column 2 of the feedback indicator line.

If the frame includes a fill-in-the-blank question, then use the value 1 to provide
feedback on user responses to the question. If the frame includes a multiple-choice
question, the value of n should correspond to the order of the choice field (1 for the
first choice, 2 for the second choice, and so on). For feedback indicators that are
not associated with response fields (for example, when the SELECT= or MENU=
options are used), the value of n is not significant.

SAS/AF Catalog Entry Types � CBT Entry General Attributes 29

C
designates a correct response. For multiple-choice questions, you can designate
more than one correct response.

branch
specifies that the corresponding feedback response branches to another entry
rather than displaying feedback text. Use one of the following forms for the
branch specification:

> <libref.catalog-name.>entry-name.entry-type
branches to the specified entry and stores the current frame number as the
CBT checkpoint. The current frame is displayed the next time the CBT entry
is opened.

>> <libref.catalog-name.>entry-name.entry-type
branches to the specified entry but does not store a CBT checkpoint. The first
frame is displayed the next time the CBT entry is opened.

>< <libref.catalog-name.>entry-name.entry-type
branches to the specified entry and returns to the branching frame when the
target entry is closed.

FRAME=frame-number | frame-name
specifies the frame number or frame name to display when the target of the
branch option or the entry specified in the HELP= option is a CBT entry.

HELP=<libref.catalog-name.>entry-name.entry-type
specifies an entry to open when a user issues the HELP command while the cursor
is positioned on the corresponding response field or selection box.

Note: If you do not specify the HELP= option, the HELP command opens the
entry specified in the Help general attribute for the CBT entry. �

MENU=value
specifies a value that users can enter on the application window’s command line to
select the corresponding feedback response.

SELECT=(left-col, right-col, top-row, bottom-row)
specifies the coordinates of a rectangular region that comprises the selection box
for the feedback item. The selection box is highlighted when a user moves the
cursor into that region of the display, If a user presses the ENTER key or clicks
the mouse while the cursor is within the selection box, the corresponding feedback
item is selected. Users can press the TAB key to move between the selection boxes
in the current frame.

Selection boxes should be separated by at least one space.

SOUND=freq-1 duration-1 <... freq-n duration-n> | note-1 duration-1
<... note-n duration-n>
MUSIC=freq-1 duration-1 <... freq-n duration-n> | note-1 duration-1
<... note-n duration-n>

specifies tones or notes that play when the feedback item is selected, provided the
user’s display device supports sound. Refer to the description of the SOUND=
option for frame indicators in “Frame Indicator Options” on page 25 for details
about the argument values.

CBT Entry General Attributes
CBT entries also store attributes for the application window in which the entries are

displayed to users. See “General Attributes for Application Windows” on page 50 for
details about the general attributes you can specify for the application window.

30 CBT Entry Child Attribute � Chapter 3

CBT Entry Child Attribute
CBT entries can store a Child attribute that specifies the name of another SAS/AF

entry that opens if users press ENTER from the last frame of the CBT entry. You
specify the Child attribute in the ATTR window for the CBT entry. Use the ATTR
command in the BUILD procedure’s DISPLAY window to open the ATTR window.

Note: The child entry is opened only when a user presses the ENTER key while the
final frame of the CBT entry is displayed. Use the Parent general attribute to specify
an entry to open when users end some other CBT entry. �

The Child attribute consists of the four-level name of the entry to open. If the target
entry is in the same catalog as the CBT entry, you only need to specify the name and
type of the target entry. If the target entry is stored in a different catalog or in a
catalog in a different library, then you must also specify the libref and catalog for the
target entry.

CLASS Entries
CLASS entries (also referred to simply as classes) store the definitions of components

that can be used to build FRAME entries. You use the BUILD procedure’s Class Editor
window to edit the component definitions in CLASS entries.

Note: Changing the properties of a class changes the properties of all instances of
the class and of any subclasses that are derived from the class. �

The class definition in a CLASS entry consists of the following elements:

Description
is a description for the CLASS entry that is also used as the name for the class
when it appears in the Components window for use in building FRAME entries.

Parent Class
specifies the four-level name of the CLASS entry from which the current class
inherits its attributes, methods, events, event handlers, and interfaces. Once you
specify the parent class for a new class, you cannot change it.

Meta Class
specifies the optional four-level name of a CLASS entry of which the current class
is an instance. The metaclass enables you to collect information about and modify
the behavior of the current class at run time. The metaclass also enables the
current class to obtain information about parent classes and child classes.

By default, all classes are instances of the Class metaclass. See the description
of the Class class in the online Help for SAS/AF software for more information
about the methods that the default metaclass provides.

Class Properties
define the appearance and behavior of the class. In the SAS Component Object
Model (SCOM), classes have the following properties:

Attributes define characteristics of the component, such as its name,
description, color, label, or size. Each attribute specification
consists of a list of metadata that includes the attribute name,
value, type, scope, description, and other items that enable
functionality.

Methods define the operations that can be executed by any component
you create from the class. Each method specification consists of

SAS/AF Catalog Entry Types � FRAME Entries 31

a list of metadata that includes the method name, signature,
description, and the name and label of the entry that contains
the method implementation. A method’s signature is comprised
of the method’s arguments and their types and order; it
uniquely identifies the method to the SCL compiler.

Note: The code that implements the method is not stored in
the CLASS entry itself, but rather in an entry specified in the
metadata. The implementation typically consists of a labeled
CLASS, USECLASS, or METHOD section in an SCL entry. �

Events alert applications when there is a change of state, such as
when the user clicks the mouse button on a component that
was created from the class. Each event specification consists of
a list of metadata that includes the event name, description,
and items that determine whether the event is enabled and
how it is sent.

Event handlers specify which methods are executed after events occur. Each
event handler specification consists of an list of metadata that
includes the name of the event that is handled, the name of the
object that generates the event, the name of the method to
execute in response to the event, and a description.

Interfaces enable components that you create from the class to indirectly
call methods in another component. Each interface
specification includes the name of the INTRFACE entry that
contains the interface definition. Refer to “INTRFACE Entries”
on page 32 for more information.

Refer to the online Help for SAS/AF software for details about the attributes,
methods, events, event handlers, and interfaces of the classes that are provided
with SAS/AF software.

You can use RESOURCE entries to collect individual classes into libraries. Doing
this simplifies the maintenance and deployment of the classes. See “RESOURCE
Entries” on page 47 for more information.

For an introduction to using classes and creating your own CLASS entries, refer to
SAS Guide to Applications Development.

FRAME Entries
FRAME entries store Frame objects plus all the visual objects (or controls) and

nonvisual objects (or models) that comprise a FRAME application. You use the BUILD
procedure’s DISPLAY window to create and edit FRAME entries.

Frame objects are instances of the Frame class. The Frame class is the foundation of
SAS/AF applications that have graphical user interfaces. The Frame class provides
windowing capabilities and serves as a container to which you add visual controls and
nonvisual components to create a user interface.

The Frame class (and any subclass of it that you create) provides the properties of
the window in which your applications run. You specify the frame properties in the
Properties window for the FRAME entry. Use the PW command in the DISPLAY
window to open the Properties window. For more information about the properties of
the Frame class, refer to the online Help for SAS/AF software.

You use the associated Components window to select objects to place in the frame.
The FRAME entry can include multiple instances of the same class, and each instance

32 HELP Entries � Chapter 3

has its own properties. You use the Properties window to edit the properties of the
objects that you add to the frame. For more information about the properties of the
classes of objects that you can add to FRAME entries, refer to the online Help for SAS/
AF software.

Note the distinction between editing the properties of a class in the Class Editor
window and editing the properties of an object in the Properties window for a FRAME
entry: Editing the properties of a class changes all instances of the class, whereas
editing the properties of an object in the FRAME entry changes only the particular
instance of the object.

Whenever you create a new FRAME entry, a RESOURCE entry is associated with
the FRAME entry. By default, the standard RESOURCE entry that is provided with
SAS/AF software (SASHELP.FSP.AFCOMPONENTS.RESOURCE) is used. You can use
the RESOURCE= option with the PROC BUILD statement or BUILD command to
specify a different initial resource. Once the FRAME entry is created, the associated
resource cannot be changed. The specified RESOURCE entry must be available any
time you open the FRAME entry in the BUILD environment or execute the entry in the
application window.

If the associated resource has an active Frame class, then the new Frame object in
the FRAME entry is an instance of that class. If the associated resource has no active
Frame class, the default Frame class (SASHELP.FSP.FRAME.CLASS) is used.

For an introduction to building applications with FRAME entries, refer to SAS Guide
to Applications Development.

HELP Entries

HELP entries store a single frame of text that can be displayed to provide instructions
or other assistance to users of your application. You use the BUILD procedure’s
DISPLAY window to design the displays for HELP entries. The display can use any of
the text color features and highlighting features that the SAS text editor supports.

HELP entries can also be used as selection lists for PROGRAM entries. See the
discussion of the List attribute for PROGRAM entries in “PROGRAM Entry Field
Attributes” on page 37 for details.

HELP entries also store attributes for the application window in which the entries
are displayed to users. See “General Attributes for Application Windows” on page 50 for
details about the attributes you can specify for the application window.

INTRFACE Entries

INTRFACE entries (also referred to simply as interfaces) store abstract method
definitions, which define shared methods that FRAME components can use to
communicate with each other. You use the BUILD procedure’s Interface Editor window
to create, edit, or remove method definitions in INTRFACE entries.

Method definitions in INTRFACE entries consist of the method name and, optionally,
the method signature. The method signature specifies the name, order, type, and
description of the method’s arguments. The code that implements the methods is not
stored in the INTRFACE entry. Rather, a class that uses the methods defined in the
interface to communicate with another class indirectly calls the corresponding methods
in the other class.

For an introduction to using interfaces to implement model/view communications,
refer to SAS Guide to Applications Development.

SAS/AF Catalog Entry Types � LIST Entries 33

LIST Entries
LIST entries store lists of values that are used in conjunction with PROGRAM

entries to validate field values and to provide selection lists.
You can specify the following attributes for the list. You use the BUILD procedure’s

LISTATTR window to set list attributes.

Type
specifies one of the following types for the values in the list:

CHAR indicates that the list contains character values. (This is the
default.)

NUM indicates that the list contains numeric values.

The list type should match the type of the PROGRAM entry field that the list is
used to validate.

Note: You cannot change the list type once the list is saved. �

Length
specifies the length of items in the list. Valid values are 1 to 80.

Note: You cannot change the item length once the list is saved. �

Fileref
specifies a fileref that is associated with a file that is used to populate the list. The
fileref must have previously been defined in the SAS session. Each value that is
read from the file is appended to the list. The file can contain more than one value
per record or line as long as the values are separated by one or more spaces.
Values that are longer than the specified item length are truncated.

Note: The fileref is not stored in the LIST entry. The Fileref attribute is blank
each time the LISTATTR window opens. �

Pad
specifies which pad character to use for fields in the LISTVALUES window. The
default is the underscore (_) character.

Format
specifies which format to use for values in the LISTVALUES window and when
values from the list are displayed in selection lists.

Just
specifies how values are aligned in the fields in the LISTVALUES window. The
choices are LEFT (default), RIGHT, CENTER, and NONE.

Informat
specifies the informat that must be used when values are entered in the
LISTVALUES window.

Options
specify one or more of the following characteristics of the list:

SORT
specifies that the values in the list are sorted in ascending order when the
entry is saved. This option is selected by default. Deselect the SORT option if
you want to store list values in the order in which they are entered.

CAPS
specifies that character values in the list are converted to uppercase. This
option is selected by default. Deselect the CAPS option if you want to store
mixed-case values in the list.

34 MENU Entries � Chapter 3

CASE-INSENSITIVE
specifies that the case of character values is ignored when values from the list
are used to validate field values. For example, if this option is selected, then
the value RED in the list matches the value red in the PROGRAM entry field
that is being validated. If this option is not selected, the values do not match.

Error msg
specifies the message that is displayed when no value in the list matches the value
in the PROGRAM entry field that is being validated.

You can use the special indicator %s to include the field value in the message, as
in the following example:

The value %s is not valid for this field.

You use the BUILD procedure’s LISTVALUES window to enter or edit values in the
list. The LISTVALUES window opens automatically when you close the LISTATTR
window.

MENU Entries
Menu entries store menu definitions that consist of
� a display that provides instructions to users and accepts user options

� general attributes that control the appearance and behavior of the window in
which the MENU entry executes

� selection attributes that define which other SAS/AF entries are opened in response
to the options that users specify.

The following sections describe each of these components of a MENU entry.

MENU Entry Displays
Each MENU entry stores a single frame of text that can provide instructions to users

about the options that are available in the menu. You use the BUILD procedure’s
DISPLAY window to design the displays for MENU entries. The text can use any of the
color and highlighting features that the SAS text editor supports.

Users select menu options by entering designated option values on the application
window’s command line. Menus can be linked so that users can access choices on
submenus from the command line of the main menu. Refer to the description of the
Menu-Link attribute in “MENU Entry Selection Attributes” on page 34 for details.

MENU Entry General Attributes
MENU entries also store general attributes for the application window in which the

entries are displayed to users. See “General Attributes for Application Windows” on
page 50 for details about the attributes you can specify for the application window.

MENU Entry Selection Attributes
MENU entries support the following attributes for each menu option. You specify

these attributes in the ATTR window for the MENU entry. Use the ATTR command in
the BUILD procedure’s DISPLAY window to open the ATTR window.

SAS/AF Catalog Entry Types � PROGRAM Entries 35

Option specifies the selection value that users issue in the application
window’s command line to invoke the option. The selection value

� can be from one to eight characters long
� can consist of a combination of letters, numbers, and

underscores
� must not be a command that is valid in the application window.

See Chapter 5, “AF Window Commands,” on page 65 for a list
of commands that the AF window provides. Remember that
SAS windowing environment global commands are also valid in
the AF window in which MENU entries are displayed. Refer to
the online Help for Base SAS software for more information on
global commands for the SAS windowing environment.

Name specifies the name of the catalog entry that the option invokes.

Type specifies the type of the catalog entry that the option invokes (CBT,
FRAME, HELP, MENU, PROGRAM or SCL).

Note: For CBT entries, you can append a frame number to open
the entry at a specified frame. For example, use CBT5 to open frame
5 of the specified CBT entry. �

Libref
Catalog

specify the library and catalog that contain the target entry. Enter
values for these two attributes only if the target entry is stored in a
catalog other than the one that contains the MENU entry.

Menu-Link specifies that menu choices in the selected submenu are linked to
menus at a higher level in the application’s hierarchy of menus. If
the submenu is linked, you can specify options from the submenu in
the higher-level menu without having to display the lower-level
menu.

Note: The Menu-Link attribute is valid only when the target of
the option is another MENU entry. �

If you assign this option to any menu choices, you must issue the
MLINK command (or use the MLINK statement with the BUILD
procedure) to generate the linkages for the selected options. Any
time you change or add the Menu-Link option for menu choices, you
must repeat the linking procedure to reestablish the internal menu
linkages.

By default, only one level of menus is linked. To link all levels of
menus, use the MLOPTS LEVEL=_MAX_ option with the MLINK
command, or use the LEVELS=_MAX_ option with the MLINK
statement.

PROGRAM Entries
PROGRAM entries store SAS/AF applications that consist of
� a display that provides instructions and data-entry fields and which accepts user

input
� general attributes that control the appearance and behavior of the window in

which the PROGRAM entry executes
� field attributes that define the appearance and behavior of fields

36 PROGRAM Entry Displays � Chapter 3

� a SAS Component Language (SCL) program that controls the application.

The following sections describe each of these components of a PROGRAM entry.

PROGRAM Entry Displays
You use the BUILD procedure’s DISPLAY window to design the displays for

PROGRAM entries. The displays can use any of the text color features and highlighting
features that the SAS text editor supports. In addition to static text, the display can
include fields in which users can enter values. The PROGRAM entry’s SCL program
can also manipulate field values. Refer to “Fields” on page 36 for more information
about defining fields in the display.

If your display includes a large amount of text or many fields, you can divide it into
units called frames. Users can issue FORWARD and BACKWARD commands in the
application window to scroll between the frames of the display. To divide the display
into frames, enter divider lines consisting of dash (-) characters across the full width of
the DISPLAY window. You can also use the FILL command to create divider lines.

You can designate a portion of the display that remains visible and does not scroll.
Enter three caret (^) or NOT () characters in the first three columns of a line in the
first frame of the display to delineate the nonscrolling region. Any text and fields above
the line that contains the ^^^ or appear in every frame of the display; FORWARD
and BACKWARD commands scroll only the region below the nonscrolling area.

You can also create extended tables in the display. In an extended table, you define
one row of fields and use SAS Component Language to dynamically display multiple
rows based on the one you define. Refer to “Extended Tables” on page 37 for details.

Fields
Fields in PROGRAM entries accept user input and display information or program

output. You designate fields in the display with an initial ampersand (&), followed by
an optional name up to eight characters in length. Use underscore characters (_) to pad
the field to the length required to hold the largest field value. The field length is
determined by the number of columns from the ampersand through the last underscore.
A field can be as short as a single & or as long as the width of a display line.

If you omit the field name (or if you create one-character fields that consist of only an
ampersand), the field is given the default name FIELDn, where n is the order of the
field on the DISPLAY window, counting from left to right starting in the upper-left
corner and descending.

Each field has a set of attributes that determine its appearance and behavior. Refer
to “PROGRAM Entry Field Attributes” on page 37 for information about the field
attributes. When you refer to a field in the entry’s SCL program, you use the name
specified in the field’s Alias attribute rather than the field name. By default, the field
alias is the same as the field name, but you can change the alias in the entry’s ATTR
window to give the field a more meaningful name.

Choice Groups
You can join one or more fields into a choice group. Fields that are assigned to choice

groups are referred to as stations. Only one station of a choice group can be active at a
time. Pressing the ENTER key or clicking the mouse button while the cursor is on one
of the fields in the choice group selects the active station. The choice group name can be
used as a variable in the entry’s SCL program. It returns the value of the selected
station.

SAS Component Language provides functions for manipulating choice groups. Refer
to SAS Component Language: Reference for more information.

SAS/AF Catalog Entry Types � PROGRAM Entry Field Attributes 37

Selection Lists
If you specify the List attribute for a field, users can select values for the field from a

selection list. The selection list of valid field values is displayed when a user enters a
designated prompt character in the first column of the field. The default prompt
character is the question mark (?), but you can use the PROGRAM entry’s Prompt
character general attribute to specify a different prompt character for your application.

Note: If the List attribute specifies a range of values rather than a list of valid
values (or if it specifies an entry that contains a list of valid values), then entering the
prompt character does not display a selection list. Rather, it displays a dialog window
that explains the range of valid values. �

SAS Component Language provides a variety of functions for displaying selection
lists. Refer to SAS Component Language: Reference for more information.

Extended Tables
You can use PROGRAM entries to display tables of values called extended tables. The

extended table can be static, with a fixed number of rows, or dynamic, in which rows
can be added or deleted. The values in the rows of the extended table can come from a
SAS data set, from an array in the SCL program, or from an external file. In addition
to displaying information, extended tables can be used as custom selection lists in your
applications.

To create an extended table, you must
� select the EXTENDED TABLE general attribute in the PROGRAM entry’s GATTR

window.
� create the fields that define a row of the extended table in the PROGRAM entry’s

DISPLAY window.

Note: If you define a nonscrolling region to serve as a table heading, the fields
for the extended table must appear below the ^^^ or characters that delineate
the nonscrolling region. �

� add the SCL code to support the extended table in the PROGRAM entry’s
SOURCE window. Refer to SAS Component Language: Reference for more
information on the SCL elements that support extended tables.

PROGRAM Entry General Attributes
PROGRAM entries also store attributes for the application window in which the

entries are displayed to users. See “General Attributes for Application Windows” on
page 50 for details about the attributes you can specify for the application window.

PROGRAM Entry Field Attributes
Each field that you define in the PROGRAM entry’s display has the following

attributes. You specify these field attributes in the ATTR window for the PROGRAM
entry. Use the ATTR command in the BUILD procedure’s DISPLAY window to open the
ATTR window.

Alias specifies the name by which you refer to the field in the entry’s SCL
program. Each field in a PROGRAM entry must have a unique
alias. By default, the alias is the same as the field name.

Choice Group specifies a choice group to which the field belongs. The choice group
name cannot be the same as an existing alias. The fields in a choice

38 PROGRAM Entry Field Attributes � Chapter 3

group are called stations, and the choice group variable takes the
value of the active station. Only one station in a choice group can be
active at a time. Refer to “Choice Groups” on page 36 for more
information on creating choice groups.

Pad specifies the character that is used to fill blank fields in the
application window. By default, fields are padded with underscore
(_) characters. You can use the Pad attribute to change the pad
character for an individual field. To change the default pad character
for all fields, use the PADCHAR= option with the PROC BUILD
statement, or issue the PDCHAR command in the DISPLAY window.

Type specifies the type of validation that is performed to verify the values
that users enter in the field. By default, fields are assigned one of
the following types:

� ACTION, if the field is one character in length
� CHAR, if the field length is greater than one character.

Refer to “Field Types” on page 43 for details about these and other
field types that you can specify.

When a user enters a value in a field, the AF task evaluates
whether the value meets the conditions of the specified type. If the
value is determined to be invalid,

� an error message is displayed on the application window’s
message line

� the cursor is positioned on the field
� the field is highlighted, using the color and highlighting

attribute specified in the Error color and Error attr attributes.

Users cannot use the END command to exit from the application
window until the field contains a valid value. They must use the
CANCEL command to exit without correcting the invalid value.

Protect controls whether field values can be changed and whether the TAB
key moves the cursor to the field.

YES specifies that users cannot change values in the
field and that the TAB key does not move the
cursor to the field. However, the entry’s SCL
program can still change the field value.

NO specifies that users can change values in the field
and that the TAB key moves the cursor to the
field. This is the default behavior.

INITIAL specifies that users cannot change values in the
field, but that the TAB key moves the cursor to
the field. If a user attempts to change the field
value, the field reverts to the value specified in
the Initial attribute when the user presses
ENTER. This attribute is typically used for fields
that participate in choice groups or that are
assigned a push button Type attribute.

CAUTION:
If you set the Protect attribute to YES, do not select the REQUIRED
option. Making a protected field required means that users cannot
use the END command to exit from the application because

SAS/AF Catalog Entry Types � PROGRAM Entry Field Attributes 39

attempting to end the application while a required field is blank
results in an error. �

Format specifies a format that controls how values that are entered in the
field are displayed. You can specify any standard SAS format or a
user-defined format.

Note: If you assign a format to a field, you should also assign a
compatible informat. �

Just specifies how values that are entered in the field are aligned after
the user presses ENTER.

LEFT aligns values with the left margin of the field.
This is the default behavior.

RIGHT aligns values with the right margin of the field.

CENTER centers values in the field width.

NONE displays character values as they are entered.
Numeric values are aligned with the right
margin of the field.

Informat specifies an informat that controls how values that are entered into
the field are interpreted. You can specify any standard SAS informat
or a user-defined informat.

Note: If you assign an informat to a field, you should also assign
a compatible format. �

Error color specifies a color that is applied to the field when a user enters an
invalid value. The following standard SAS color values are
supported:

BLACK CYAN MAGENTA RED

BLUE GRAY ORANGE WHITE

BROWN GREEN PINK YELLOW

Error attr specifies a highlighting attribute that is applied to the field when a
user enters an invalid value. The following attribute values are
allowed, although some attributes may not be supported on some
display devices: REVERSE, HIGHLIGHT, UNDERLINE,
BLINKING, or NONE (the default).

Help specifies the name and type of an entry that provides help
information about the field. The specified entry is displayed when a
user issues the HELP command while the cursor is positioned on the
field.

Valid help entry types are CBT, HELP, MENU, and PROGRAM.
Because only two-level names can be entered, the specified entry
must reside in the same catalog as the current PROGRAM entry.
For CBT entries, you can specify a frame number by appending the
number to the entry type. For example, specify INFO and CBT5 to
open the entry INFO.CBT with frame 5 displayed.

40 PROGRAM Entry Field Attributes � Chapter 3

If the Help attribute is not specified for the field, the entry
specified in the Help general attribute for the PROGRAM entry is
displayed when a user requests help for the field.

List determines the values that are valid for a field, provided the Type
attribute permits a List attribute. Depending on the Type attribute,
the List attribute can contain one or more of the following:

� a list of values separated by spaces.
� a range of values.

Use the less than (<) character to indicate that the List
attribute value is a range. If you specify one value after the <,
the range consists of all values greater than or equal to the
specified value. For example, < 100 indicates all values greater
than or equal to 100. If you specify a pair of values following
the <, the range includes all values between and including the
specified values. For example, the following range specification
matches all values between 10 and 100:

< 10 100

The following range specification matches all uppercase
values between A and Z:

< A Z

� the name of a LIST entry that contains a list of valid values.
Use the form =libref.catalog-name.entry-name to specify the

name of the LIST entry. Note that an equal sign (=) is added as
a prefix. You can omit the libref.catalog-name portion if the
LIST entry is in the same catalog as the current PROGRAM
entry. Refer to “LIST Entries” on page 33 for more information
about LIST entries.

� the name of a data set or the name of one or more fields that
contain the names of SAS data sets.

For types such as ONEVAR, VARLIST, and VARSTMT that
verify the names of variables in a data set, the value of the List
attribute determines which data set is searched for the
variables that are specified in the field.

Use the form *libref.data-set-name to specify the data set
name. Note that an asterisk (*) is added as a prefix.

If you specify one or more field names that contain data set
names, the corresponding fields should be defined as INPUT
type to ensure that the data sets named in the fields exist. By
default, the field values are valid only if specified variables
exist in all the data sets named in the variable. To specify that
the field values are valid if the specified variables exist in one
or more of the data sets, add an at (@) character as the first
character in the List attribute value.

You can also use the List attribute to specify a selection list for
the field. In this case, the List attribute has the following form:

\<prompt> <num-sel> =entry-name<C | F | L> | @link-name\

where

prompt specifies the prompt character that displays the
selection list when a user enters it as the first

SAS/AF Catalog Entry Types � PROGRAM Entry Field Attributes 41

character in the field. If you omit the prompt
argument, the default is the question mark (?).

num-sel specifies how many items users can select from
the list. If you omit the num-sel argument, the
default is 1.

=entry-name <C
| F | L>

specifies a LIST, HELP, or CBT entry that
provides the items for the selection list.

If you specify a HELP entry, each line of text
in the entry’s display becomes an item in the
selection list. You can add one of the following
options to specify which portion of the selected
line is returned:

C indicates that the word at the
cursor position in the selected
line is returned. This option
is valid only when one
selection is allowed.

F indicates that the first word
on the selected line is
returned. This is the default
behavior.

L indicates that the entire
selected line is returned.

@link-name specifies the name of a linked field that
determines which type of format or informat
information is displayed. This form of the List
attribute is valid only for fields of type FMT or
INFMT. If the first character in the linked field is
C or $, then Help on character formats or
informats is displayed. Otherwise, Help on
numeric formats or informats is displayed. Only
the names of formats or informats of the
corresponding type can be entered in the field.

Initial specifies a character string (up to 56 characters) or a numeric value
that is displayed in the field when the PROGRAM entry is initially
displayed to a user in the application window. If the Initial attribute
is blank, the field is represented with the specified pad character or
with a default pad character.

Replace specifies a character string (up to 56 characters) that is used as a
replacement string when values are substituted in SUBMIT blocks
in the PROGRAM entry’s SCL program. Refer to the description of
the REPLACE statement in SAS Component Language: Reference
for more information about replacement strings.

Options control the following characteristics of the field:

CAPS specifies that characters entered into the field are
converted to uppercase when the user presses
ENTER. This attribute is selected by default.
Deselect this attribute if you want users to be
able to enter mixed-case values in the field.

42 PROGRAM Entry Field Attributes � Chapter 3

CURSOR specifies that the cursor is positioned on the field
when the application window opens. By default,
the CURSOR attribute is selected for the first
field created in the DISPLAY window and is
deselected for the remaining fields. Only one
field should have the CURSOR attribute selected.
If more than one field has the CURSOR attribute
selected, the cursor is initially positioned on the
first field that has the attribute selected.

REQUIRED specifies that a user must enter a valid value in
the field before the application window can be
closed with the END command.

CAUTION:
If you select the REQUIRED option, do not set the
Protect attribute to YES. Protecting a required
field means that users cannot use the END
command to exit from the application because
attempting to end the application while a
required field is blank results in an error. �

AUTOSKIP specifies that the cursor moves automatically to
the next unprotected field when user input fills
the current field’s last position. By default, the
AUTOSKIP attribute is selected for all fields.
Deselect the AUTOSKIP attribute if you want
the cursor to remain on the current field when a
user enters values that fill the field.

NOPROMPT specifies that the prompt character is ignored for
the field. By default, when a user enters a
designated prompt character in the first position
of the field, the AF task displays either a
selection list of valid values or information about
the range of valid values for the field. (The
behavior depends on the value of the List
attribute.) Select the NOPROMPT option to
disable this behavior and treat the prompt
character like a regular text character.

The prompt character for the entry is specified
in the entry’s Prompt character general
attribute. The default prompt character is the
question mark (?).

NON-DISPLAY specifies that values that users enter in the field
are not displayed in the application window.
Users can still tab to a nondisplayed field
(provided the field is not protected), and field
values are still validated. This attribute is useful
when the field is used for entering passwords or
other values that should be kept hidden.

SAS/AF Catalog Entry Types � PROGRAM Entry Field Attributes 43

Field Types
The Type field in PROGRAM entries can take one of the following attribute values:

ACTION
specifies that the value that a user enters in the field is converted to a predefined
character or character string. For ACTION fields for which no List attribute is
specified, a value entered in the field is automatically converted to uppercase X. If
a List attribute is specified, then any value entered in the field is automatically
converted to the value that is specified as the field’s List attribute. This enables
you to define the value for the field as a single character (for example, *) or as a
word (for example, YES).

ATTR
verifies that the field value is the name of a text highlighting attribute. Valid
values are REVERSE, HIGHLIGHT, UNDERLINE, BLINKING, or NONE, or the
corresponding one-character abbreviations (R, H, U, B, or N).

CHAR
verifies that the field value is standard SAS character data.

CHARLST
verifies that the field contains a list of standard SAS character data values. Values
in the list are separated by spaces.

COLOR
verifies that the field value is one of the standard SAS color names:

BLACK CYAN MAGENTA RED

BLUE GRAY ORANGE WHITE

BROWN GREEN PINK YELLOW

DSNAME
verifies that the field value is a valid one- or two-level SAS data set name.

Note: The DSNAME type tests only whether the specified name is valid, not
whether the specified data set exists. Use the INPUT type to verify that the
specified data set exists, or use the OUTPUT type to verify that the specified data
set does not exist. �

FILENAME
verifies that the field value is a fileref that has been previously defined in the
current SAS session.

FIXED
verifies that the field value is an integer numeric value.

FIXEDLST
verifies that the field contains a list of integer numeric values. Values in the list
are separated by spaces.

FMT
FMTC
FMTN

verify that the field value is a valid format name. Use FMTC to verify that the
field value is the name of a character format, or use FMTN to verify that it is the
name of a numeric format. Use FMT to verify that the field value is the name of
either a character format or a numeric format.

44 PROGRAM Entry Field Attributes � Chapter 3

Note: Do not specify a value for the List attribute when you specify FMT,
FMTC, or FMTN for the Type attribute. The field value is validated against the
list of all standard SAS formats and user-defined formats. �

INFMT
INFMTC
INFMTN

verify that the field value is a valid informat name. Use INFMTC to verify that
the field value is the name of a character informat, or use INFMTN to verify that
it is the name of a numeric informat. Use INFMT to verify that the field value is
the name of either a character informat or a numeric informat.

Note: Do not specify a value for the List attribute when you specify INFMT,
INFMTC, or INFMTN for the Type attribute. The field value is validated against
the list of all standard SAS informats and user-defined informats. �

INPUT
verifies that the field value is the name of an existing SAS data set.

INPUTALL
verifies that the field value is either a list of names of existing SAS data sets or
the special SAS designation _ALL_.

Note: The default pad character for this type of field should be a character
other than the default underscore. It should also be a character that is not likely
to be used in a data set name. �

LIBNAME
verifies that the field value is a libref that has previously been defined in the
current SAS session.

NAME
verifies that the field value is a valid SAS name.

NUM
verifies that the field value is a standard SAS numeric value.

Note: Use the FIXED type if you want to restrict the field to integer values. �

NUMLST
verifies that the field contains a list of standard SAS numeric values. Values in
the list are separated by spaces.

Note: Use the FIXEDLST type if you want to restrict the field to a list of
integer values. �

ONEVAR
ONEVARC
ONEVARN

verify that the field value is the name of one variable from a SAS data set. Use
ONEVARC to verify that the field value is the name of a character variable, or use
ONEVARN to verify that it is the name of a numeric variable. Use ONEVAR to
verify that the field name is the name of either a character variable or a numeric
variable.

The List attribute specifies which data set to search for the variable. The List
attribute can specify either the name of the data set or the names of fields that
contain the name of the data set. If the List attribute is not specified, the
PROGRAM entry’s Lookup data set general attribute is used. The Lookup data set
general attribute contains the name of a field that contains the name of the data
set to search.

SAS/AF Catalog Entry Types � PROGRAM Entry SCL Programs 45

OUTPUT
verifies that the field value is a valid data set name and that the specified data set
does not currently exist.

Note: The OUTPUT field type is typically used for names of data sets that are
created for application output. This type of validation ensures that the output
data set does not overwrite an existing data set. �

PUSHBTNC
PUSHBTNN

display the field as a push button that users can click (or move the cursor to and
press ENTER) to cause an action to occur. Use the Initial attribute to specify the
value that appears as the button label. Use PUSHBTNC for fields that return
character values, or use PUSHBTNN for fields that return numeric values.

SHORT
verifies that the field value is an integer number in the range of -32767 to 32767.

VARLIST
VARLISTC
VARLISTN

verify that the field contains a list of variable names that appear in a data set.
Use VARLISTC to verify that the field contains the names of character variables,
or use VARLISTN to verify that it contains the names of numeric variables. Use
VARLIST to verify that the field contains the names of either character variables
or numeric variables. These types ignore any other characters in the field, such as
arithmetic operators, and verify only the field’s variable names.

The List attribute specifies which data set to search for the variable. The List
attribute can specify either the name of the data set or the names of fields that
contain the name of the data set. If the List attribute is not specified, the
PROGRAM entry’s Lookup data set general attribute is used. The Lookup data set
general attribute contains the name of a field that contains the name of the data
set to search.

VARSTMT
VARSTMTC
VARSTMTN

verify that the field contains a list of variable names that appear in a data set.
Use VARSTMTC to verify that the field contains the names of character variables,
or use VARSTMTN to verify that it contains the names of numeric variables. Use
VARSTMT to verify that the field contains the names of either character or
numeric variables. These types allows only variable names to be entered into the
field. Use VARLIST (or VARLISTC or VARLISTN) to allow the field to contain
other characters in addition to the variable names.

The List attribute specifies the data set to search for the variable. The List
attribute can specify either the name of the data set or the names of fields that
contain the name of the data set. If the List attribute is not specified, the
PROGRAM entry’s Lookup data set general attribute is used. The Lookup data set
general attribute contains the name of a field that contains the name of the data
set to search.

PROGRAM Entry SCL Programs
PROGRAM entries can store a SAS Component Language (SCL) program that can

manipulate field values and control the behavior of the entry. You use the BUILD
procedure’s SOURCE window to edit the PROGRAM entry’s SCL program. You can
issue the SOURCE command in the DISPLAY window to open the SOURCE window for

46 RANGE Entries � Chapter 3

the entry. Refer to SAS Component Language: Reference for details about the
statements and functions that you can use in SCL programs.

Before the SCL code in an PROGRAM entry can be executed, it must be compiled. To
compile the program, issue the COMPILE command in either the SOURCE window or
the DISPLAY window for the entry. You can also use the COMPILE statement with the
PROC BUILD statement to compile the contents of existing PROGRAM entries.

When the source code in the SCL entry is compiled, the SCL compiler writes any
error or warning messages to the SAS log. If the SCL program is compiled successfully,
the compiled code is added to the PROGRAM entry along with the source code.

When you invoke a PROGRAM entry, the AF task executes the statements in the
program’s INIT section. When you modify a field value, statements in the program’s
MAIN section are executed. If the program contains labeled sections whose labels
match the names of the modified fields, then those sections are also executed before the
MAIN section. Statements in the TERM section of the program are executed when you
end the PROGRAM entry. Refer to SAS Component Language: Reference for more
information on SAS Component Language processing.

RANGE Entries
RANGE entries are utility entries that store range definitions. Range definitions are

used in conjunction with FRAME entries to control traffic lighting for Text Entry
objects and Critical Success Factor objects. You use the BUILD procedure’s RANGE
window to edit the range definition in a RANGE entry.

A range definition can consist of up to 24 segments. Each segment defines the range
of values that match that segment, as well as the color and highlighting attributes that
are applied to values that match the segment. For each segment, you can define the
following attributes:

Lower value
specifies a numeric minimum value for the range segment. This value can be
omitted for the first segment, implying that all values lower than or equal to the
Upper value match the first segment.

Note: If a statistic has been defined for the segment, you cannot modify the
Lower value attribute. �

If the Lower value of the current segment is the same as the Upper value of the
preceding segment, then the segments are contiguous, and the specified Lower
value is not inclusive in the current segment. That is, a value must be greater
than the Lower value in order to match the current segment. Values that are
equal to the Lower value match the preceding segment. If the Lower value of the
current segment is not the same as the Upper value of the preceding segment,
then the segments are noncontiguous. In this case, values that are equal to the
Lower value do match the current segment.

Upper value
specifies a numeric maximum value for the range segment. This value can be
omitted for the last segment in the range definition, implying that all values
greater than the Lower value (and equal to the Lower value, if the segment is
noncontiguous) match the last segment.

Note: If a statistic has been defined for the segment, you cannot modify the
Upper value attribute. �

Color
specifies the color for the segment. In the RANGE window, you can select the
down arrow control in the Color field to obtain a list of valid colors, or select the

SAS/AF Catalog Entry Types � RESOURCE Entries 47

right arrow control to define a custom color. You must specify a color for each
segment that has range values. The RANGE window includes a Color scale bar
that shows which colors have been selected for the defined segments.

Attribute
specifies a highlighting attribute for the segment. In the RANGE window, you can
select the down arrow control in the Attribute field to obtain a list of valid
display attributes. The default is NONE.

Statistics data set
specifies a data set and variable to be used in computing the statistics for the
lower and upper values of the range segment, as an alternative to specifying range
values for the Lower value and Upper value attributes.

By default, the statistics are computed and stored when the RANGE entry is
built. However, you can choose to refresh the statistics when the RANGE entry is
used.

Formats
specifies an informat and a format for the range segment. The informat is used to
convert character values to numeric values for comparison purposes. The format is
used to display values in Critical Success Factor (CSF) objects.

RESOURCE Entries

RESOURCE entries (also referred to simply as resources) store a collection of classes
that are used for building FRAME entries. You use the BUILD procedure’s Resource
Editor window to add classes to or remove classes from RESOURCE entries.

When you add a class to a RESOURCE entry, the class definition is copied from the
corresponding CLASS entry into the RESOURCE entry. The RESOURCE entry stores a
complete, static copy of its classes. If you change the name, location, description, or any
of the properties of a class that is added to a resource, you must synchronize the
resource to update the copy of the class in the RESOURCE entry. You use the SYNC
command in the Resource Editor window (or the SYNC statement with a PROC BUILD
statement) to synchronize a RESOURCE entry.

Note: If you open a class for editing from within the Resource Editor window, the
resource is automatically synchronized when you save your changes to the class. �

The BUILD procedure’s Components window displays the classes that are available
when you are building a FRAME entry. Classes can appear in the Components window
even if they are not part of a resource, but you can collect a set of classes into a
resource and then add the single resource to the Components window to make all the
classes in the resource available for use in the FRAME entry. The Components window
displays the RESOURCE entry’s description as the name of the resource.

The RESOURCE entry stores the display status of each class. The display status
determines whether the class appears in the Components window when the resource is
added to that window. Visual classes that can be dropped onto a frame should have
their status option set to Display. If you do not want the class to appear in the
Components window, you can use the Toggle Display Status control in the Resource
Editor window to turn off the display status. Although a resource should contain all the
classes that an application uses, only those components that can be dropped onto a
frame should be set to display in the Components window.

You can use resources to organize and maintain class libraries for developing SAS/AF
applications. For example, you could use a personal RESOURCE entry to store classes

48 SCL Entries � Chapter 3

that you develop, and a separate RESOURCE entry to store classes that are developed
at your site, in addition to the standard RESOURCE entry that is provided with
SAS/AF software (SASHELP.FSP.AFCOMPONENTS.RESOURCE).

Note: Although resources are helpful organizational aids, there are performance
drawbacks to using multiple resources. If a FRAME entry has only one resource to
load, the initialization stage is generally faster than when multiple resources must be
loaded. �

Whenever you create a new FRAME entry, a RESOURCE entry is associated with
the FRAME entry. By default, the standard RESOURCE entry provided with SAS/AF
software (SASHELP.FSP.AFCOMPONENTS.RESOURCE) is used. You can use the
RESOURCE= statement with the PROC BUILD statement or the RESOURCE= option
with the BUILD command to specify a different initial resource. Once the FRAME
entry is created, the associated resource cannot be changed. The associated
RESOURCE entry must be available any time you open the FRAME entry in the
BUILD environment or execute the entry in the application window.

If the associated resource has an active Frame class, then the new FRAME entry is
an instance of that class. When you add a subclass of the Frame class to the resource,
you have the option of making it the active Frame class for the resource. A resource can
contain multiple Frame classes, but only one can be active at a time. You can use the
Active control in the Resource Editor window to select the active Frame class. If the
associated resource has no active Frame class, the default Frame class
(SASHELP.FSP.FRAME.CLASS) is used.

Refer to SAS Guide to Applications Development for an introduction to working with
RESOURCE entries.

SCL Entries
SCL entries store SAS Component Language (SCL) code, but they do not provide a

display. The SCL programs for FRAME entries are stored in associated SCL entries.
You can also use SCL entries to store method definitions and SCL programs that
perform tasks that do not require any user interaction. You use the BUILD procedure’s
SOURCE window to edit the SCL code in SCL entries. Refer to SAS Component
Language: Reference for more information on the SAS Component Language elements
that you can use in SCL programs.

Before the SCL code in an SCL entry can be executed, it must be compiled. To
compile the program, issue the COMPILE command in the SOURCE window (or in the
DISPLAY window if the code is associated with a FRAME entry). You can also use the
COMPILE statement with the PROC BUILD statement to compile the contents of
existing SCL entries.

When the source code in an SCL entry is compiled, the SCL compiler writes any
error or warning messages to the SAS log. If no errors are encountered, a message
similar to the following is displayed:

Code generated for MYPROG. Code size=1276

However, if there are warning messages, you see a message similar to the following:

Code generated (with messages) for MYPROG. Code size=1276

If there are errors in your program, you see the following message:

ERROR: Compile error(s) detected. No code generated.

When you save an SCL entry after its program is compiled successfully, the compiled
code is saved to the entry along with the source code. At this point, you can execute the

SAS/AF Catalog Entry Types � Calling SCL Entries from Other SAS/AF Programs 49

SCL entry as described in “Calling SCL Entries from Other SAS/AF Programs” on page
49.

Note: You should always compile an entry before you save it. If you save an SCL
entry without compiling it, you cannot execute it. SAS/AF software provides a warning
message indicating that the entry has been saved without intermediate code. �

Calling SCL Entries from Other SAS/AF Programs
You can execute SCL code that has been compiled and stored in an SCL entry in the

following ways:
� by using the AF or AFAPPLICATION commands to execute the SCL entry
� by using the CALL DISPLAY routine in an SCL program to execute the SCL entry
� by using the CALL METHOD routine in an SCL program to execute individual

sections of code in the SCL entry.

The following sections describe the use of the CALL DISPLAY and CALL METHOD
routines in SAS Component Language. Refer to Chapter 4, “Executing SAS/AF
Applications,” on page 53 for information on using the AF and AFAPPLICATION
commands.

Using CALL DISPLAY to Execute SCL Entries
When you use the CALL DISPLAY routine to invoke an SCL entry, the AF task

executes statements in the following order before returning to the calling program:
1 ENTRY statement
2 INIT section
3 MAIN section
4 TERM section

The program in the SCL entry must have at least one of the special labels INIT, MAIN,
or TERM.

You can pass parameters in the CALL DISPLAY statement and receive them via an
ENTRY statement in the SCL code.

Refer to SAS Component Language: Reference for more information on the CALL
DISPLAY routine.

Using CALL METHOD to Execute SCL Routines
You can create modular SCL routines that you can invoke from any SAS/AF

application. Each module can have its own parameter list. The parameter list is
analogous to an ENTRY statement. You can store several different modules in a single
SCL entry.

You identify each module in the SCL source code with the METHOD statement plus
an associated label. You invoke each module with the CALL METHOD routine,
specifying the entry name and the label, plus any parameters to pass. For example, the
following code invokes the module labeled FUNC1 in the entry MYFUNC.SCL in the
current search path:

call method("MYFUNC", "FUNC1", 10, 30, x);

CAUTION:
A program halts if you attempt to invoke a routine that does not exist in the SCL program.
For example, if your application executes the METHOD call in the previous example
and the label FUNC1 does not exist in MYFUNC.SCL, your program halts. �

50 General Attributes for Application Windows � Chapter 3

Refer to SAS Component Language: Reference for more information on the CALL
METHOD routine.

General Attributes for Application Windows
In addition to other information, CBT, HELP, MENU, and PROGRAM entries also

store attributes that control the appearance and behavior of the application window in
which the entries are displayed to users.

You can specify the following general attributes for CBT, HELP, MENU, and
PROGRAM entries. You define these general attributes in the GATTR window for the
entry. Use the GATTR command in the BUILD procedure’s DISPLAY window to open
the GATTR window.

� Window Attributes

Name
specifies a window name that is displayed in the window’s title bar when
users execute the entry.

Start row, col
specify the default position of the upper-left corner of the application window
on the user’s display (or within the AWS window, if application workspaces
are used). The default for all entry types is row 1 and column 1. However, the
numbers for the default are not displayed in these fields, and the specification
for the starting position is ignored in some windowing environments.

Number of rows, cols
specify the default window height (in rows) and width (in columns). No
default window size values are displayed in these fields in the GATTR
window. The default size depends on your host windowing environment.

Note: You can issue the SETWSZ command in the DISPLAY window to
change the window size while you are building the entry. �

Banner
specifies the appearance of the entry’s command line.

COMMAND provides a command line with the prompt Command===>.

SELECT provides a command line with the prompt
Select Option===> (typically used for MENU entries).

NONE disables the command line and the message line as well.

Note: Messages are not displayed in windows for
which you select the NONE option. In PROGRAM entries,
you can use SCL to display messages in a field. �

Note: If you specify a PMENU entry in the Command menu attribute and
the PMENU facility is active, then the specified menu is displayed instead of
a command line. �

� General Attributes

Help
specifies the name and type of an entry to display when users issue the
HELP command while the current entry is executing. If you omit the entry
type, the default type is CBT.

Note: Because you can specify only a one- or two-level name, the entry
that you specify must reside in the same catalog as the current entry. �

SAS/AF Catalog Entry Types � General Attributes for Application Windows 51

Keys
specifies the name of a KEYS entry that defines function key settings for the
application window. The default is to use the DMKEYS.KEYS function key
entry. You can use the BUILD procedure to create custom function key
definitions for your applications.

Note: Because you can specify only a one-level name, the KEYS entry
that you specify must reside in the same catalog as the current entry. �

Lookup data set
specifies the alias of a field that identifies the data set that is used to validate
fields in a PROGRAM entry when no data set is specified in the field’s List
attributes. The Type attribute of the field that you specify should be set to
Input and should contain the name of the desired SAS data set, but the AF
task does not verify that these conditions are met.

Note: The Lookup data set attribute is applicable only to PROGRAM
entries. �

Command menu
specifies the name of a PMENU entry that contains menu definitions for the
application window.

Note: Because you can specify only a one-level name, the PMENU entry
that you specify must reside in the same catalog as the current entry. �

Prompt character
specifies a character that a user can type in a field to get assistance or
information about valid values for the field. A user must type the specified
character in the first position of the field in order for it to be considered a
prompt. The default prompt character is ? (question mark).

The response to the prompt character depends on whether the List
attribute is defined for the field.

� For fields to which a LIST attribute is assigned, a selection window
opens, from which users can choose from the field values defined by the
List attribute.

� For fields to which no LIST attribute is assigned, a dialog box opens
that provides information about the type of values (character or
numeric) that can be entered in the field.

You can prevent the prompting behavior for specific fields by specifying the
NOPROMPT field attribute for the corresponding fields.

The Prompt character attribute applies only to PROGRAM entries.

System options
control the following window behaviors:

NO EXIT
prevents users from switching to other windows. If a user moves the
cursor out of the application window and presses ENTER, the cursor
returns to the application window.

EXTENDED TABLE
specifies that the scrollable portion of a PROGRAM entry’s display is
used as an extended table. See “Extended Tables” on page 37 for more
information about extended tables.

RESIDENT
retains the entry’s program in memory after it is first loaded. Keeping
frequently used entries resident in memory can improve the

52 General Attributes for Application Windows � Chapter 3

performance of your applications by eliminating the wait for the entries
to be loaded. However, making a large number of entries resident can
cause your session to run out of memory.

Note: You can use the AFSYS command in the application window to
determine which entries are currently resident in memory. �

� Parent Attributes

Name, Type, Libref, Catalog
specify the name of an entry to which control is passed when a user issues an
END or CANCEL command. By default, control returns to the calling entry,
except for CBT entries, which return control to the SAS session.

To pass control to another entry in the same catalog as the current entry,
you only need to specify values for the Name and Type attributes. If the
target entry is in another catalog or another library, specify values for the
Libref and Catalog attributes as well.

� Window Type Attributes

STANDARD
specifies that the window can be resized and moved and can open other
windows without passing permanent control to them.

DIALOG
specifies that the window cannot be resized or moved. Select this attribute if
you want to prevent users from issuing ZOOM, GROW, MOVE, or SHRINK
commands in the application window. Dialog windows can open other
windows and can pass temporary control to them.

If you assign a PMENU entry to the window, the menu selections are
displayed as a row of buttons at the bottom of the window.

DIALOG BOX
specifies that the window cannot be resized or moved and cannot open any
other windows. Use the DIALOG BOX attribute for the last window that can
be opened in a hierarchy.

If you assign a PMENU entry to the window, the menu selections are
displayed as a row of buttons at the bottom of the window.

LIST
specifies that the window can be resized and moved and can open other
windows without passing permanent control to them. Assign this attribute to
windows that are used as selection lists.

If you assign a PMENU entry to the window, the menu selections are
displayed as a row of buttons at the bottom of the window.

HELP
specifies that the window can be resized or moved but cannot open any other
windows.

If you assign a PMENU entry to the window, the menu selections are
displayed as a row of buttons at the bottom of the window.

� Scroll Bar Attributes

HORIZONTAL
controls whether a horizontal scroll bar is displayed along the bottom window
border when scroll bars are turned on. Horizontal scroll bars are useful when
the entry’s display area is wider than the current window size.

VERTICAL
controls whether a vertical scroll bar is displayed along the right window
border when scroll bars are turned on. Vertical scroll bars are useful when
the entry’s display area is taller than the current window size.

53

C H A P T E R

4
Executing SAS/AF Applications

Overview 53
AF Command 53

Syntax 54

Requirement 54

Options 54

Using the AF Command 59
AFAPPLICATION Command 59

Syntax 59

Comparison with the AF Command 60

Sharing Data Between Multiple Applications 60

Passing Options to an Application 61

Values That Are Automatically Placed in the Command List 61
Differences in Storing AF Command and Application-specific Options 61

Using Command Macros 63

Suppressing SAS Windows When a SAS/AF Application Opens 63

Overview
Although you must license SAS/AF software in order to create applications with the

BUILD procedure, only Base SAS software is required in order to run the applications
that you create. Users can run your SAS/AF applications

� by issuing the global AF or AFAPPLICATION command
� by submitting the DISPLAY procedure in Base SAS software
� by executing the CALL DISPLAY routine in SAS Component Language.

The AF and AFAPPLICATION commands are available in all SAS windows. The
following sections describe the syntax and usage of these commands. Refer to Base SAS
Procedures Guide for information about the DISPLAY procedure. Refer to SAS
Component Language: Reference for information about the CALL DISPLAY routine.

AF Command
Use the AF command to execute applications that have been created with the BUILD

procedure in SAS/AF software.

Note: The AF command can execute entry types that provide a display (CBT,
FRAME, HELP, MENU, or PROGRAM), as well as SCL entries that execute without a
display. The other SAS/AF catalog entry types are not executable and cannot be
executed with the AF command. �

54 Syntax � Chapter 4

You can issue the AF command from any SAS window. Only one application that is
invoked by the AF command can be active at a time. If you issue an AF command while
another application is already running, the previous application is closed before the new
application is executed. To run additional SAS/AF applications simultaneously, use the
AFAPPLICATION command instead. See “AFAPPLICATION Command” on page 59 for
details.

Syntax
The general form of the AF command is

AF <AUTORECALL=YES | NO>
<AUTOSAVE=YES | NO>
<AUTOTERM=YES | NO | VERBOSE | NOVERBOSE>
<AWS=YES | NO | KEEP>
<CATALOG=libref.catalog-name.entry-name.entry-type>
<CATNAME=libref.catalog-reference(libref.catalog-1 ... libref.catalog-n)>
<CHECKLAST=YES | NO>
<DEBUG=YES | NO>
<FRAME=frame-number | frame-name>
<ICON=icon-number>
<LABEL=label>
<PMENU=YES | NO>
<RESIDENT=number>
<RESTART=YES | NO>
<SCLPROF=COVERAGE | TIMER>
<TITLE=’title’>
<application-options>

Requirement
The first time you use the AF command, you must use the CATALOG= argument to

identify the application to execute. The name of the entry at which an application
starts executing is recorded in the special AF.AFGO entry in your SASUSER.PROFILE
catalog. This entry is referred to as the AF checkpoint. Any subsequent AF command
that does not include the CATALOG= argument starts at the entry identified in the AF
checkpoint. The AF checkpoint is retained across SAS sessions.

Note: If you exit an application from a CBT entry, the name of the CBT entry from
which you exit the application is stored as the AF checkpoint rather than the name of
the initial entry in the application. This enables you to resume CBT applications at the
point where you stopped. Use the CHECKLAST=NO option to override this default
behavior and to store the name of the initial entry even when exiting from CBT
entries. �

Options
For most of the following AF command options, there is a default action if you do not

use the option. You should use an option only when you want to change the default
behavior.

Executing SAS/AF Applications � Options 55

AUTORECALL=YES | NO
specifies whether field values that have been saved from a previous invocation of a
PROGRAM entry are recalled when the entry is invoked again. By default, field
values are not recalled (AUTORECALL=NO). Use AUTORECALL=YES if you
want the stored field values to be recalled. Stored values are available only if the
entry has previously been closed while the AUTOSAVE=YES option was in effect.

Note: The AUTORECALL= option only affects the behavior of PROGRAM
entries. �

AUTOSAVE=YES | NO
specifies whether the values in the fields of PROGRAM entries are saved when
you exit from an entry. By default, field values are not saved (AUTOSAVE=NO).
Use AUTOSAVE=YES to store all current field values when you close a
PROGRAM entry. You can use the AUTORECALL=YES option to recall these
values the next time the entry is invoked.

Note: The AUTOSAVE= option only affects the behavior of PROGRAM entries.
�

AUTOTERM=YES | NO | VERBOSE | NOVERBOSE
specifies whether the _term method of FRAME entry objects is automatically
executed if the objects still exist when the entry ends. By default, any open objects
are automatically terminated (AUTOTERM=YES). Use AUTOTERM=NO if you
want to prevent the _term method of open FRAME objects from being executed
when the entry ends.

By default, no list of open objects is generated (AUTOTERM=NOVERBOSE).
Use AUTOTERM=VERBOSE to print to the SAS log a note containing the object
list for each object that still exists when the entry ends. This feature works even if
automatic object termination is off, and it serves as a debugging aid to identify
objects whose _term method has not run.

You cannot combine options in one string. Instead, use a separate
AUTOTERM= option with the AF or AFAPPLICATION command. For example:

af c=mylib.cat.primary.frame autoterm=verbose autoterm=yes

Note: The AUTOTERM= option only affects the behavior of FRAME entries. �

AWS=YES | NO | KEEP
specifies whether the application’s windows are confined to a container window
called the application workspace (AWS). When an application workspace is used,
you can minimize or maximize the entire application by minimizing or maximizing
the AWS window.

Note: The AWS= option is ignored if your host environment does not support
application workspaces. �

Specify one of the following values for the AWS= option:

YES opens all windows displayed by the AF application (including
windows displayed by the CALL DISPLAY routine) within the
single AWS window. This is the default behavior unless it is
overridden by a host-specific resource.

NO opens each entry in an application in its own window rather
than in the AWS window.

KEEP keeps the application workspace open after the last window in
the workspace is removed. This prevents the AWS from being
deleted during situations such as unconditional branching in
CBT entries or using CALL GOTO routines in SCL programs.

56 Options � Chapter 4

In these situations, all the current windows for the application
are closed before other windows are opened.

CATALOG=libref.catalog-name.entry-name.entry-type
CAT=libref.catalog-name.entry-name.entry-type
C=libref.catalog-name.entry-name.entry-type

specifies the name and type of the SAS catalog entry at which an application
starts executing. You must specify a complete four-level name. You must include
this argument the first time you use the AF command.

If you omit the CATALOG= option, the AF command starts the entry that is
identified as your AF checkpoint in the SASUSER.PROFILE.AF.AFGO entry. If
the application starts executing at a FRAME, PROGRAM, MENU, or HELP entry,
then the name of the initial entry is identified in the AF checkpoint. If you exit
the application from a CBT entry, then the CBT entry from which you exit is
identified as the AF checkpoint.

CATNAME=libref.catref (libref.catalog-1 ... libref.catalog-n)
logically combines two or more catalogs into one by associating them with a catref
(a shortcut name). You can use any valid SAS name for catref, but if you use the
name of an existing catalog you will not be able to access the contents of that
catalog until the catref is cleared. The libref that you specify with the catref must
already exist. Enclose the list of catalogs in parentheses, and use blanks to
separate the catalog names in the list.

When a program in the SAS/AF application contains a reference to an entry in
the libref.catref catalog, the AF task searches for the entry in the specified list of
catalogs, starting with catalog-1 and ending with catalog-n.

For example, suppose that you open an application with

af cat=mylib.mycat.main.frame
catname=mylib.all (mylib.apps1 mylib.apps2 master.apps)

A reference in a program to MYLIB.ALL.TEST.SCL causes the AF task to search
for MYLIB.APPS1.TEST.SCL, then for MYLIB.APPS2.TEST.SCL, and finally for
MASTER.APPS.TEST.SCL.

Refer to the description of the CATNAME statement in SAS Language
Reference: Dictionary for more information about creating and using catrefs. You
can also create and clear catrefs by using the CATNAME command in AF
windows. See the description of the CATNAME command in “Window
Management Commands” on page 66 for details.

CHECKLAST=YES | NO
CHECK=YES | NO

specifies whether the system stores the name of the CBT entry at which you exit
an application. By default, the name of the current entry is stored as the AF
checkpoint when you exit an application from a CBT entry (CHECKLAST=YES).
The AF checkpoint identifies the application that runs when you issue an AF
command without using a CATALOG= argument. Use CHECKLAST=NO to record
the name of the initial entry for the application instead, so that the CBT
application resumes at the beginning rather than at the entry where you stopped.

Note: The CHECKLAST= option only affects the behavior of CBT entries. �

DEBUG=YES | NO
specifies whether the SCL source-level debugger runs on an application’s
programs. By default, the debugger is not activated (DEBUG=NO). Use
DEBUG=YES to activate the debugger.

Note: In order to analyze programs with the SCL debugger, the programs must
be compiled with the compiler’s DEBUG ON option. �

Executing SAS/AF Applications � Options 57

The SCL debugger can interactively monitor the execution of SAS/AF
applications. It enables you to track down logical errors while the program
executes. The debugger displays the source program, specifies which line is
executing, and dynamically watches the values of variables. It also enables you to
suspend an executing program that is part of a nested series of programs and to
execute other programs in the series. For more information about the SCL
debugger, see SAS Component Language: Reference.

FRAME=frame-number | frame-name
specifies the starting frame for a CBT application. Identify the starting frame by
using either of the following:

� the frame number. To determine the number of a frame in a CBT entry, use
the ID command when that frame is displayed.

� the frame name, which is the name specified in the NAME= option on the
frame delimiter line. This method is more efficient because the AF command
can remain the same even if the number of frames changes.

For testing CBT applications, the FRAME= option provides a convenient way to
return directly to a specific frame in the system. It is also useful for indexing a
CBT course that contains multiple topics.

Note: The FRAME= option only affects the behavior of CBT entries. �

ICON=icon-number
specifies the number of the icon that is used to represent an AWS window when
the window is minimized. By default, the SAS/AF icon is displayed.

Note: This option has an effect only if the native windowing system supports
application workspaces and you also use the AWS=YES option. �

LABEL=label
specifies the name of an SCL program label where execution begins when the AF
command is used to execute a stand-alone SCL entry. Execution begins at the
specified label and continues until a RETURN statement is reached.

Note: The LABEL= option only affects the behavior of SCL entries. �

PMENU=YES | NO
specifies whether the PMENU facility can be turned off in an application. By
default, users can issue the PMENU OFF command to turn off menus in the
application (PMENU=NO). Use PMENU=YES if you have customized the menus
in your windows and want to ensure that users cannot turn the PMENU facility
off for windows in your application.

If your SAS/AF application invokes additional applications by issuing an AF or
AFAPPLICATION command with the EXECCMD routine, include the
PMENU=YES option in the command if you want the additional applications to
have the same behavior.

RESIDENT=number
specifies the number of SCL entries that are kept resident in memory after they
are read from the catalog. Entries can be read from memory much more quickly
than from the catalog, so keeping frequently used SCL entries in memory
improves the performance of SAS/AF applications.

When an SCL entry is invoked, the AF task searches resident memory for the
entry. If the search is successful, the entry moves to the top of the search list. An
SCL entry that is called frequently remains at or near the top of the list and so is
found more quickly. If the SCL entry is not found in the search list, it is read from
the catalog and inserted at the top of the list. If the maximum number of entries

58 Options � Chapter 4

are already resident, then the last entry in the search list (the least-recently used)
is removed to make room for the new entry.

By default, 64 SCL entries are saved in memory. The number value is
interpreted as follows:

0 No SCL entries are kept in memory. All SCL entries must be
read from the catalog each time they are called.

> 0 The specified number of entries are kept in memory.

RESTART=YES
specifies whether CBT entries are restarted from the beginning. By default, a CBT
entry starts at the CBT frame that was last accessed (RESTART=NO). Use
RESTART=YES if you want to ensure that the CBT entry starts at the first frame.

Note: The RESTART= option only affects the behavior of CBT entries. �

SCLPROF=COVERAGE | TIMER
starts the data collection phase for the specified diagnostic tool.

COVERAGE starts data collection for the Coverage Analyzer tool. The
Coverage Analyzer can uncover gaps in your interactive
applications testing by identifying which lines in an application
are not executed during a test session. When you end the
application that was started by the AF command, the SCL
Coverage Analyzer window opens to present the results of the
analysis. Refer to the online Help for the Coverage Analyzer
for more information on using this diagnostic tool.

TIMER starts data collection for the Performance Analyzer tool. The
Performance Analyzer provides timing and frequency statistics
for each entry, label, and function call that is executed in an
application’s SCL code. It also provides a hierarchical view of
the execution sequence for the application. When you end the
application that was started by the AF command, the SCL
Performance Analyzer window opens to present the results of
the analysis. Refer to the online Help for the Performance
Analyzer for more information on using this diagnostic tool.

TITLE=’title’
specifies a title for the AWS window. If the title contains embedded blanks, enclose
it in single quotes, as in the following example:

af c=corp.fin.inv.program title=’Inventory Analysis’

Note: The TITLE= option has an effect only if the native windowing system
supports application workspaces and you also use the AWS=YES option. �

application-options
are options for the application that is being invoked by the AF command. These
options are handled differently, depending on which entry type is being invoked.

� For FRAME, PROGRAM, or SCL entries, values are passed to the entry in
the SCL list _CMDLIST_, which is a sublist of the local environment list. See
“Passing Options to an Application” on page 61 for details.

� For CBT entries, values specified following the AF command options cause
the AF task to search the entry’s initial frame for a feedback indicator line
that has a matching MENU=value option. If a match is found, the CBT
frame specified in the line’s FRAME= option is displayed.

Executing SAS/AF Applications � Syntax 59

For example, the following command causes the AF task to search the first
frame of the entry USING.CBT for a feedback indicator line that contains the
option MENU=HELLO:

af c=company.sales.using.cbt hello

If a matching option is found, the AF task branches to the CBT frame that
is specified in the line’s FRAME= option. If no matching MENU= option is
found, then the HELLO argument is ignored.

� For MENU entries, values that follow the AF command options are matched
with that menu’s selection options.

For example, the following command causes the AF task to search the
MAIN.MENU entry for a selection option named HELLO:

af c=company.sales.main.menu hello

If the specified option exists, the AF task branches to the entry that is
invoked by the selection option. If HELLO is not a valid selection, the AF
task displays the following message:

Warning: no HELLO selection for this menu

You can also specify an option number on the primary menu or on
submenus. To specify option numbers for submenus, separate the option
numbers by periods. For example, you can specify 3.2 to display the entry
called by choice 2 from the submenu that is called by choice 3 of the main
menu.

� For HELP entries, values that follow the AF command options are ignored.

Using the AF Command
For entry types that provide a display (CBT, FRAME, HELP, MENU, and

PROGRAM), the AF command opens the specified entry in an AF window. You can use
SAS windowing environment commands while executing applications in the AF window,
including commands that move, resize, and change the windows. However, window
sizes and colors cannot be saved. Window properties are determined permanently when
an application is designed. See Chapter 5, “AF Window Commands,” on page 65 for
information about other commands that are supported in the AF window.

You can also use the AF command to execute SCL entries. In this case, the SAS
Component Language code in the entry is executed without opening a display window.

AFAPPLICATION Command
The AFAPPLICATION command is similar to the AF command, but it enables you to

run multiple SAS/AF applications simultaneously. Each application that is executed
with the AFAPPLICATION command runs as a separate task.

Syntax
The AFAPPLICATION command uses the same syntax as the AF command:

AFAPPLICATION <AUTORECALL=YES | NO>
<AUTOSAVE=YES | NO>
<AUTOTERM=YES | NO | VERBOSE | NOVERBOSE>

60 Comparison with the AF Command � Chapter 4

<AWS=YES | NO | KEEP>
<CATALOG=libref.catalog-name.entry-name.entry-type>
<CATNAME=libref.catalog-reference(libref.catalog-1 ... libref.catalog-n)>
<CHECKLAST=YES | NO>
<DEBUG=YES | NO>
<FRAME=frame-number | frame-name>
<ICON=icon-number>
<LABEL=label>
<PMENU=YES | NO>
<RESIDENT=number>
<RESTART=YES | NO>
<SCLPROF=COVERAGE | TIMER>
<TITLE=title>
<application-options>

Note: The AFAPPLICATION command can be abbreviated as AFAPPL or AFA. �

The AFAPPLICATION command options are the same as for the AF command. See
“Options” on page 54 for details.

Comparison with the AF Command
The AFAPPLICATION command is similar to the AF command in the following ways:
� The same command options can be used.
� The checkpoint entry identified in SASUSER.PROFILE.AF.AFGO runs if the

CATALOG= option is omitted.
� Application-specific options that you supply with the command are passed to the

application for further processing via the _CMDLIST_ sublist of the local
environment list.

The AFAPPLICATION command differs from the AF command in that it does not
update the AF checkpoint. That is, the name of the initial entry in the application that
is executed by the AFAPPLICATION command (or the name and frame of the CBT
entry, if the user is exiting from a CBT entry) is not recorded in the
SASUSER.PROFILE.AF.AFGO entry as it is for the AF command.

Sharing Data Between Multiple Applications
When you run a SAS/AF application with the AFAPPLICATION command, remember

that other applications may be running at the same time. Those other applications may
try to access the same SAS data sets or members of SAS catalogs as your application.
For example, suppose your application uses the FILLIST function to read an SLIST
catalog member. Before your application updates the list and writes it back to the SLIST
entry, another application that has update access to the catalog can read from and write
to the same SLIST entry. This situation can create problems with data integrity.

If your application needs to share data with another application, you should consider
� opening your data sets with member-level locking to prevent other applications

from opening the data sets at the same time
� accessing your catalog and data files through SAS/SHARE software so that other

applications can have simultaneous update access

Executing SAS/AF Applications � Differences in Storing AF Command and Application-specific Options 61

� locking your catalog entries and other SAS data files by using the SCL LOCK
function.

Passing Options to an Application
The AF and AFAPPLICATION commands can pass option values to your FRAME,

PROGRAM, and SCL applications. The general form for application options is

<option-name=>option-value <... <option-name-n=>option-value-n>

For example, if you design an application that requires a list of observation numbers
as input, you can invoke the application with the following AF command:

af c=master.apps.obs.scl obs=17 23 19 47

The AF task stores the specified options and their values in a special list called
CMDLIST. This list is a sublist of the SCL local environment list that is created
when a SAS/AF application is invoked.

If the option is specified in the form name=value (for example, OBS=17), then both the
name and the value are stored in the list; otherwise just the value (for example, 23 or
19) is stored. In this case value is a number. However, it also can be one of the following:

� an unquoted text string such as YES or NO

� a quoted text string such as ’Apply SAS Software’

� a hexadecimal string such as ’534153’x

� a date, time, or datetime literal such as ’19Jun1991’D.

Note: If you want several words to be treated as one argument, you must enclose
them in quotes. �

You can use the list manipulation functions in SAS Component Language to extract
the option values and to use them in your applications. Refer to SAS Component
Language: Reference for information about SCL list functions.

Values That Are Automatically Placed in the Command List
The library, catalog name, entry name, and entry type values are automatically

added to the command list. (If you omit the CATALOG= option in the AF command, the
application name is retrieved from the SASUSER.PROFILE.AF.AFGO catalog entry.)
Therefore, the command list is always at least four items long. For example, suppose
you issue the following command:

af c=training.sas.intro.program

For this command, the _CMDLIST_ list contains the following values:

CMDLIST=(LIBNAME=’TRAINING’
CATALOG=’SAS’
NAME=’INTRO’
TYPE=’PROGRAM’
)

Differences in Storing AF Command and Application-specific Options
The rules for storing the values of application-specific options in the _CMDLIST_ list

are somewhat different than for AF command options, as explained in the following
table:

62 Differences in Storing AF Command and Application-specific Options � Chapter 4

Values For AF command options For application-specific
options

Options repeated in the same
AF command

are ignored except for the last
occurrence, which is stored in
the command list

are all stored in the command
list

Abbreviations specified for YES
and NO values

are stored in the command list
as YES and NO (the
abbreviations are expanded
and converted to uppercase)

are stored in the command list
exactly as specified

Values specified in lowercase are converted to uppercase
unless quoted

are stored in the command list
in lowercase

For example, suppose you issue the following AF command:

af c=a.b.c.program check=y check=n

For this command, the _CMDLIST_ list contains the following values:

CMDLIST=(LIBNAME=’A’
CATALOG=’B’
NAME=’C’
TYPE=’PROGRAM’
CHECKLAST=’NO’
)

Note: Notice that the CHECKLAST= option appears only once in the command list,
reflecting the last occurrence of the CHECK= option in the AF command. (The short
form of the option name is expanded to its full form.) �

However, suppose you enter the following command:

af c=a.b.c name=’David S.’ Obs=17 23 19 term=y term=n

For this command, the _CMDLIST_ list contains the following values:

CMDLIST=(LIBNAME=’A’
CATALOG=’B’
NAME=’C’
TYPE=’PROGRAM’
NAME=’David S.’
OBS=17
23
19
TERM=’y’
TERM=’n’
)

Note: The application-specific NAME= option does not conflict with the NAME=
option generated by the AF command that contains the current entry name. �

Executing SAS/AF Applications � Suppressing SAS Windows When a SAS/AF Application Opens 63

Using Command Macros
If your application accepts options, you can design a command macro to invoke the

application. For example, suppose you create an entry named
FINANCE.REPORTS.GENRPT.SCL that accepts the following options:

TITLE="title-text"
DATE=SAS-date-value

You can create the following command macro to invoke the application:

%macro genrpt(title="Financial Report",date=0)/cmd;
afapp c=finance.reports.genrpt.scl title=&title date=&date

%mend genrpt;

Then, users can invoke the application with the GENRPT command, provided the
macro is loaded in the current SAS session and the CMDMAC system option is
specified. If a user issues the genrpt command with no arguments, then the SCL entry
is executed with the default title and date. However, a user can specify a different title
and date. For example, a user can issue the following command:

genrpt date=’24Jul1999’D title="Personnel Report"

The SAS macro facility changes that command into the following command:

afapp c=finance.reports.genrpt.scl
title="Personnel Report" date=’24Jul1999’D

Suppressing SAS Windows When a SAS/AF Application Opens
You can use the SAS system option INITCMD to execute a SAS/AF application when

a SAS session starts and to open the AF window without opening any intervening SAS
windows such as the PROGRAM EDITOR, LOG, or OUTPUT windows. The INITCMD
system option must either be used in conjunction with the command that starts the
SAS session or be specified in the SAS configuration file.

When you invoke your application with the INITCMD system option, the SAS session
automatically ends when the application ends.

Refer to SAS Language Reference: Dictionary for more information about the
INITCMD system option.

64

65

C H A P T E R

5
AF Window Commands

Overview 65
Window Management Commands 66

Scrolling Commands 72

Printing Commands 73

Overview
The following commands are available in the AF window in which SAS/AF

applications execute. The behavior of the window depends on which type of catalog
entry is being displayed. Some commands are not available for all catalog entry types.
Exceptions are noted in the command descriptions.

Note: For FRAME and PROGRAM entries, application developers can provide
additional commands that are specific to the entry.
�

66 Window Management Commands � Chapter 5

Window Management =menu-option-list

AFSYS

CANCEL

CATNAME

CLEAR

DEBUG

DUP

END

FIND

HELP

ID

KEYFIELD

LOCATE

MUSIC

PREVIEW

QCAN

QEND

QSTACK

RECALL

RETURN|=

SAVE

SOUND

TYPE

WREGION

WSIZE

Scrolling BACKWARD

BOTTOM

FORWARD

HSCROLL

LEFT

RIGHT

TOP

VSCROLL

Printing FONT

FORMNAME

PRTFILE

SPRINT

In addition to the commands shown in this list, all of the SAS windowing
environment global commands are also available in the AF window. Refer to the online
Help for Base SAS software for descriptions of the global commands.

Note: Application developers can use SCL programs in FRAME and PROGRAM
entries to block the execution of some or all of these commands, or to provide different
processing of the commands. �

Window Management Commands

=menu-options
executes the entry called by the specified options for the first MENU entry in the
current execution stack. To specify submenu options in the menu-options value,
separate the options with periods.

For example, if the application window currently displays a PROGRAM entry
that was opened from a MENU entry, the following command attempts to open the
entry that is selected by the option value 5 in the original MENU entry:

=5

AFSYS action
enables you to review and manage resident entries and to control the automatic
termination of FRAME objects that still exist when a FRAME entry ends. This
command is useful for testing applications.

AF Window Commands � Window Management Commands 67

The AFSYS command uses the following action arguments:

AUTOTERM ON | OFF
controls whether the _term method of a FRAME entry object is automatically
executed if the object still exists when a FRAME entry ends. By default, any
open objects are automatically terminated (AUTOTERM ON). Use
AUTOTERM OFF if you want to prevent the _term method of open FRAME
objects from being executed when the FRAME entry ends.

AUTOTERM VERBOSE | NOVERBOSE>
controls whether a list of open objects is sent to the Log window. By default,
no list is generated (AUTOTERM NOVERBOSE). Use AUTOTERM
VERBOSE to send the object list for each object that still exists when the
FRAME entry ends.

SHOW ACTIVE
sends a list of all entries that are active for the current application to the Log
window.

SHOW INACTIVE
sends a list of all entries that are resident but inactive for the current
application to the Log window.

RESIDENT ON | OFF
controls whether entries that have the RESIDENT attribute are retained in
memory when they are inactive. The default is to retain entries (RESIDENT
ON). Specify OFF to prevent inactive entries from being retained in memory
even if they have the RESIDENT attribute.

PURGE n | ALL>
removes inactive entries from memory. Specify ALL to remove all inactive
entries. Specify an entry number to remove a particular inactive entry. Use
the AFSYS SHOW INACTIVE command to view the entry numbers for
inactive entries.

To specify a combination of actions, use separate AFSYS commands, as shown in
the following example:

afsys autoterm verbose; afsys autoterm on

CANCEL
closes the current entry and returns control to the calling entry, or to the parent
entry if one was specified in the current entry’s general attributes.

For FRAME and PROGRAM entries, the CANCEL command performs the
following tasks before closing the entry:

� sets the SCL _STATUS_ variable to C

� runs the TERM section of the entry’s SCL program (and, for FRAME entries,
the _term method for the frame and all components).

Any pending SAS statements in the PREVIEW buffer are not submitted to the
SAS session for processing.

CATNAME <CLEAR | LIST> <libref.>catalog-reference (<libref.>catalog-1 ...
<libref.>catalog-n)

defines a catalog reference (catref) that provides a logical combination of the
specified catalogs. You can use any valid SAS name for catalog-reference, but if you
use the name of an existing catalog you will not be able to access the contents of
that catalog until the catref is cleared. The libref that you specify with the catref
must already exist. Enclose the list of catalogs in parentheses, and use blanks to
separate the catalog names in the list.

68 Window Management Commands � Chapter 5

When a program in the SAS/AF application contains a reference to an entry in
the catref catalog, the AF task searches for the entry in the specified list of
catalogs, starting with catalog-1 and ending with catalog-n.

For example, suppose that you issue the following command:

catname mylib.all (mylib.apps1 mylib.apps2 master.apps)

A reference in a program to MYLIB.ALL.TEST.SCL causes the AF task to search
for MYLIB.APPS1.TEST.SCL, then for MYLIB.APPS2.TEST.SCL, and finally for
MASTER.APPS.TEST.SCL.

Catref assignments remain in effect until they are cleared. Use the CLEAR
option with the CATNAME command to clear a specified catref. Use the LIST
option with the CATNAME command to list the catalogs in the catref.

CLEAR
clears values from all unprotected data entry areas of the application window.

Note: The CLEAR command is only supported for PROGRAM entries. �

DEBUG <ON | OFF>
turns the SAS Component Language source-level debugger on or off. If you use the
DEBUG command without an argument, the debugger is turned on. You cannot
turn the debugger off while a debugger command is active.

Note: In order to use the debugger, the SCL code in the entry must have been
compiled with the DEBUG compile option turned on. �

The SCL debugger is a tool for identifying and correcting problems in SAS
Component Language programs. Refer to SAS Component Language: Reference for
information on using the SCL debugger.

DUP
copies the value stored by the SELECT command to the current field. The cursor
must be positioned on the desired field when you issue the command, so the DUP
command is easier to use if you assign it to a function key.

Note: The DUP command is only supported for PROGRAM entries. �

END
closes the current entry and returns control to the calling entry, or to the parent
entry if one was specified in the current entry’s general attributes.

For FRAME and PROGRAM entries, the END command performs the following
actions before closing the entry:

� sets the SCL _STATUS_ variable to E

� verifies that modified fields contain valid values
� executes the MAIN section of the SCL program if any fields have been

modified and contain valid values

� verifies that all required fields contain values

� executes the TERM section of the SCL program (and, for FRAME entries, the
_term method for the frame and all components)

� submits the contents of the PREVIEW buffer, including any submit blocks in
the TERM section.

FIND search-string NEXT | FIRST | LAST | PREV | ALL> <PREFIX | SUFFIX |
WORD> <CASE | ICASE>

scrolls the line that contains the specified value to the top of the window for
MENU and HELP entries.

For PROGRAM entries that contain extended tables, the FIND command finds
an occurrence of the specified value in the field that is identified with the

AF Window Commands � Window Management Commands 69

KEYFIELD command. If the string contains embedded blanks, it must be enclosed
in quotes.

You can modify the behavior of the FIND command by adding any one of the
following options:

ALL reports the total number of occurrences of the string in the
extended table on the window’s message line and moves the
cursor to the first occurrence.

FIRST moves the cursor to the first occurrence of the string in the
extended table .

LAST moves the cursor to the last occurrence of the string in the
extended table.

NEXT moves the cursor to the next occurrence of the string in the
extended table.

PREV moves the cursor to the previous occurrence of the string in the
extended table.

The default behavior is NEXT.
By default, the FIND command locates any occurrence of the specified string,

even where the string is embedded in other strings. You can use any one of the
following options to change the command’s behavior:

PREFIX causes the search string to match the text string only when the
text string occurs at the beginning of a word.

SUFFIX causes the search string to match the text string only when the
text string occurs at the end of a word.

WORD causes the search string to match the text string only when the
text string is a distinct word.

By default, the FIND command is case-sensitive. You can use the following
options to change the command’s behavior:

CASE causes the search string to match the text string only if the
case is the same.

ICASE causes the search string to match the text string regardless of
case.

After you issue a FIND command, you can use the RFIND command to repeat
the search for the next occurrence of the string, or use the BFIND command to
repeat the search for the previous occurrence.

Note: The FIND command is only supported for HELP, MENU, and
PROGRAM entries. �

HELP
opens the entry specified in the current entry’s Help attribute.

ID <ON | OFF>
displays the four-level name of the current entry on the window’s message line for
FRAME, HELP, MENU, or PROGRAM entries. For FRAME entries, the four-level
name of the associated SCL entry is also displayed.

For CBT entries, the ID command shows the current frame number and frame
name in the window title. Once turned on, the ID information is displayed until
you turn it off. If you use the ID command without the ON or OFF option, it acts
as a toggle.

Note: The ON and OFF options are only supported for CBT entries. �

70 Window Management Commands � Chapter 5

KEYFIELD
identifies the field that is searched by subsequent FIND and LOCATE commands.
The cursor must be positioned on the desired field when you issue the command,
so the KEYFIELD command is easier to use if you assign it to a function key.

Note: The KEYFIELD command is only supported for PROGRAM entries. �

LOCATE <:> search-string
finds an occurrence of the specified value in the extended table field that is
identified with the KEYFIELD command. If the string contains embedded blanks,
special characters, or lowercase letters, then it must be enclosed in quotes.

The LOCATE command always begins matching from the first character of the
field value. By default, it searches only for an exact match of the entire field value.
To match only the first part of a field value, add a colon (:) before the search string.

After you issue a LOCATE command, you can use the RLOCATE command to
repeat the search for the next occurrence of the string, or use the BLOCATE
command to repeat the search for the previous occurrence.

Note: The LOCATE command is only supported for PROGRAM entries that
display extended tables. �

MUSIC
See the SOUND command.

PREVIEW
opens the PREVIEW window, in which you can view and edit any SAS statements
that are waiting to be submitted for processing when the application ends. The
SAS statements are generated by SUBMIT blocks in SAS Component Language
programs. Refer to SAS Component Language: Reference for more information on
SUBMIT blocks.

QCAN
closes all open entries for the current application and returns control to the SAS
session.

For FRAME and PROGRAM entries, the QCAN command performs the
following steps before closing the entry:

� sets the SCL _STATUS_ variable to C

� runs the TERM section of the entry’s SCL program (and, for FRAME entries,
the _term method for the frame and all components).

Any pending SAS statements in the PREVIEW buffer are not submitted to the
SAS session for processing.

Note: The difference between the QCAN command and the CANCEL command
is that the QCAN command always returns control to the SAS session, not to the
calling entry or the parent entry. �

QEND
closes all open entries for the current application and returns control to the SAS
session.

For FRAME and PROGRAM entries, the QEND command performs the
following actions before returning control to the SAS session:

� sets the SCL _STATUS_ variable to E

� executes the MAIN section of the SCL program if a field has been modified
� executes the TERM section of the SCL program (and, for FRAME entries, the

_term method for the frame and all components)
� submits the contents of the PREVIEW buffer, including any submit blocks in

the TERM section

AF Window Commands � Window Management Commands 71

Note: The difference between the QEND command and the END command is
that the QEND command always returns control to the SAS session, not to the
calling entry or the parent entry. �

QSTACK
prints a report of the application’s execution stack in the Log window. The stack
contains the active entry that is currently running and all the inactive entries that
have been opened since you started executing the application. The listing shows
two parts of the execution stack:

N-Stack lists entries that can be viewed with the NEXT command.

S-Stack lists all the entries in the execution stack. This stack lists
interim MENU entries that have been called but are inactive
and cannot be displayed with the NEXT command.

RECALL
recalls any field values that have been saved with the SAVE command (or with the
SAVESCREEN function in an SCL program or with the AUTOSAVE=YES option
in the AF command).

Note: The RECALL command is only supported for PROGRAM entries. �

RETURN
=

opens the entry at which the application started executing.

Note: When the RETURN command is issued in a window that was opened by
a CALL GOTO routine in SCL, the result depends on the action option specified in
the routine. �

SAVE
saves the current values of a PROGRAM entry’s fields. You can recall the saved
values later by using the RECALL command. The values are stored in an entry
named program-name.AFPGM in your SASUSER.PROFILE catalog, where
program-name is the name of the PROGRAM entry.

For CBT entries, the SAVE command records the current entry name and frame
number, then ends the application and the SAS session. You can issue the AF
command in a later SAS session to resume the CBT entry at the frame from which
you issued the SAVE command.

Note: The SAVE command is only supported for CBT and PROGRAM entries. �

SOUND <ON | OFF>
MUSIC <ON | OFF>

controls whether sounds are produced for SOUND= or MUSIC= options in frames
of CBT entries (provided your display device is capable of producing sounds). Use
SOUND OFF if you do not want the hear the sounds that are specified in the CBT
frame. If you issue a SOUND command without an ON or OFF option, it acts as a
toggle, turning sound off if it was on or on if it was off.

Note: The SOUND command is only supported for CBT entries. �

TYPE <entry-type>
specifies the entry type that is assumed when the type is not explicitly specified in
a command that must ordinarily be followed by an entry name in the form
entry-name.entry-type. Use the TYPE command without arguments to display the
current default type on the window’s message line.

72 Scrolling Commands � Chapter 5

WREGION <start-row start-column rows columns>
WREGION <<TOP | BOTTOM | LEFT | RIGHT> <DEVICE>>
WREGION CLEAR

specifies the position and size of the next window of a multi-window session.
The start-row and start-column values specify the position of the upper left

corner of the window, and the rows and columns values specify the window size.

Note: You can use the WSIZE command to determine the current window
specifications before you issue a WREGION command. �

Alternatively, you can specify TOP, BOTTOM, LEFT, or RIGHT to cause the
next window to occupy the corresponding half of the current window. For example,
WREGION TOP specifies that the next window occupies the top half of the current
window. Add the DEVICE option to indicate that the specification is relative to the
device display rather than to the current window. For example, WREGION TOP
DEVICE specifies that the next window occupies the top half of the device’s
display. This option is not supported in some display environments.

The CLEAR option clears any previous WREGION setting and returns the
window to the size specified in the entry’s general attributes. If the size is not
specified in the general attributes, the window size returns to the default size.

WSIZE
displays the size and position specifications of the current window on the window’s
message line.

Scrolling Commands

BACKWARD <n | HALF | PAGE | MAX>
scrolls toward the top of the HELP, MENU, or PROGRAM entry’s display text if
the text contains more lines than the current window size. If you omit the scroll
increment, the window is scrolled by a default increment that can be set with the
VSCROLL command.

For CBT entries, the BACKWARD command displays the previous frame in the
current sequence.

Note: The BACKWARD command is not supported for FRAME entries. �

BOTTOM
scrolls the window contents so that the last line of the display text appears in the
window.

Note: The BOTTOM command is only supported for HELP, MENU, and
PROGRAM entries. �

FORWARD <n | HALF | PAGE | MAX>
scrolls toward the bottom of the HELP, MENU, or PROGRAM entry’s display text
if the text contains more lines than the current window size. If you omit the scroll
increment, the window is scrolled by a default increment that can be set with the
VSCROLL command.

For CBT entries, the FORWARD command displays the next frame in the
current sequence.

Note: The FORWARD command is not supported for FRAME entries. �

HSCROLL <n | HALF | PAGE>
sets the scroll amount for LEFT or RIGHT commands that do not specify a scroll
increment. The default horizontal scroll increment is HALF.

AF Window Commands � Printing Commands 73

Note: The HSCROLL command is only supported for HELP, MENU, and
PROGRAM entries. �

LEFT <n | HALF | PAGE>
scrolls the window contents to the left by the specified increment. If you omit the
scroll increment, the window is scrolled by a default increment that can be set
with the HSCROLL command.

Note: The LEFT command is not supported for FRAME entries. �

RIGHT <n | HALF | PAGE>
scrolls the window contents to the right by the specified increment. If you omit the
scroll increment, the window is scrolled by a default increment that can be set
with the HSCROLL command.

Note: The RIGHT command is not supported for FRAME entries. �

TOP
scrolls the window contents so that the first line of display text appears at the top
of the window.

Note: The TOP command is only supported for HELP, MENU, and PROGRAM
entries. �

VSCROLL <n | HALF | PAGE | MAX>
sets the scroll amount for BACKWARD or FORWARD commands that do not
specify a scroll increment. The default vertical scroll increment is PAGE.

Note: The VSCROLL command is only supported for HELP, MENU, and
PROGRAM entries. �

Printing Commands

FONT
opens the FONT window and displays the font-control information from the
current form. The listing shows which color and highlighting attributes the form
interprets as signals to change printing characteristics. The FONT window is for
browsing only; to change the font information you must open the FORM window
and edit the FORM entry. See the description of the FORM window in Base SAS
documentation for more information.

Note: The FONT window is not opened if no font information is defined in the
current form. Instead, a message is displayed, indicating that the form contains no
font information. �

FORMNAME <form-name>
FORMNAME CLEAR

specifies the default FORM entry, which contains instructions for printing images
that are captured with the SPRINT command. The SAS System’s default form is
DEFAULT.FORM. You can use the FORMNAME command to specify a different
default. See Base SAS documentation for more information about forms.

When a form is required, SAS first looks for the specified FORM entry in the
current catalog. If the form is not there, SAS next looks in your personal
PROFILE catalog (SASUSER.PROFILE, or WORK.PROFILE if the SASUSER
library is not defined) and then, finally, in the SASHELP.FSP catalog.

Use the FORMNAME CLEAR command to resume using DEFAULT.FORM as
the default FORM entry name.

74 Printing Commands � Chapter 5

Use the FORMNAME command with no arguments to display the current
default form on the window’s message line.

PRTFILE <fileref | ’actual-filename’ <APPEND | REPLACE>>
PRTFILE CLEAR

specifies a file to which output from the SPRINT command is sent. By default,
output is sent to the printer destination that is specified in the current form. You
can use the PRTFILE command to route the output to a file instead.

To identify the target file, you can use either a previously assigned fileref or the
actual filename. If you specify a filename, it must be enclosed in quotes.

With the filename or fileref, you can also specify either the APPEND or
REPLACE option to determine how output is handled when the file already exists.
The default is REPLACE, which causes output that is sent to an existing file to
overwrite the current contents of the file. To append the new output to any
existing contents, use the APPEND option instead.

Use the PRTFILE CLEAR command to cancel the previous PRTFILE command
and to route output to the printer again.

Use the PRTFILE command with no arguments to display the name of the
current print file on the window’s message line.

SPRINT <FILE=fileref | ’actual-filename’> <FORM=form-name> <NOBORDER>
SPRINT FREE

captures the contents of the current window (except for the command and message
lines). Unless you use the NOBORDER option, the window borders are also
included in the capture.

Output characteristics are determined by an associated FORM entry. You can
use a FORMNAME command before issuing a SPRINT command to change the
default FORM entry for all captures. Use the FORM= option with the SPRINT
command to select a form other than the default for an individual capture.

By default, output is sent to the printer destination that is specified in the
associated form. Use the PRTFILE command before issuing a SPRINT command if
you want to send all output to a file instead of to the printer. To route an
individual capture to a file instead of to the printer, or to route an individual
capture to a file other than the one specified in the PRTFILE command, use the
FILE= option with the SPRINT command. Changing output destinations within
an application automatically frees the previous print file or print queue.

Note: Once you have sent SPRINT output to a file, any additional output that
you send to that file must use the same FORM entry. �

The print queue or print file that the SPRINT command uses is freed when you
end the application from which you captured contents. To free the print queue or
print file before ending the application, use the SPRINT FREE command.

You can use the SPRINT command to capture information from several windows
in a single print file or print queue. In this case, the print file or print queue is not
freed until you end the application that sent output to the file or queue.

75

A P P E N D I X

1
Recommended Reading

Recommended Reading 75

Recommended Reading
Here is the recommended reading list for this title:
� SAS Language Reference: Concepts

� SAS Language Reference: Dictionary
� Base SAS Procedures Guide
� SAS Component Language: Reference

� SAS Guide to Applications Development

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

76

77

Glossary

answer field
in CBT entries, the space in which users respond to either fill-in-the-blank or
multiple-choice questions.

application workspace (AWS)
a window that contains other windows (child windows) or from which other windows
can be invoked, but which is not contained within any parent window that is part of
the same software application. See also child window.

argument
in syntax descriptions, any word that follows the keyword in a SAS statement. See
also parameter.

attributes
the characteristics that describe and control the appearance and function of windows
and window elements. See also field attributes, general attributes.

border
a line that helps define the boundaries of a window.

branching
the process of calling another program or window. CBT entries support two types of
branching: conditional and unconditional. See also conditional branching,
unconditional branching.

button
a component of a graphical user interface. A button is usually in the form of a
rectangle or square that contains a label. The button is programmed to execute a
command, to open a window, or to perform some other function when a user selects
it. For example, many graphical user interfaces include buttons that have labels
such as OK, Cancel, and Help.

catalog entry
See SAS catalog entry.

checkpoint
a SAS catalog entry that identifies the first or last entry from the last SAS/AF
application that was executed with the AF command. See also SAS catalog entry.

78 Glossary

child entry
in CBT entries, a secondary, or sublevel, CBT entry that is displayed when a user
completes the current CBT entry. See also parent entry.

choice group
in PROGRAM entries, fields that have the same Choice group attribute. These fields,
called stations, display values from which users can make a single selection.

class
in object-oriented programming, the template or model for an object. A class includes
data that describes the object’s characteristics (instance variables) and the operations
(methods) that the object can perform.

comment indicator
in CBT entries, an asterisk that marks the beginning of commented text. The asterisk
can be placed either on the frame indicator line or on the feedback indicator line.

conditional branching
in CBT entries, branching in which a response from a user determines which
program or window is called. See also branching, unconditional branching.

critical success factor (CSF)
a graphical object that shows the relative position of a specific numeric value within
a range of values. Many attributes of the object, such as its general shape, the type
of arrow indicator, and how or whether the range is segmented, can be customized.

delimiter line
in SAS/AF PROGRAM entries, a line that contains logical NOT signs in columns 1-3.
This line separates the scrollable area from the fixed, nonscrollable area in the
PROGRAM entry’s DISPLAY window. The nonscrollable area appears above the
delimiter line. SAS/AF software recognizes the caret (^) and the negation character
() as NOT signs.

display
the area of a computer monitor in which the graphical user interface of a software
application is visible to a user of that application.

entry type
a characteristic of a SAS catalog entry that identifies the catalog entry’s structure
and attributes to SAS. When you create an entry, SAS automatically assigns the
entry type as part of the name.

execution stack
a last-in, first-out stack that lists the current and inactive entries that were called
during the execution of a SAS/AF, FSEDIT, or FSVIEW application.

extended table
a window (in a PROGRAM entry) or a window element (in a FRAME entry) that
displays values in a tabular format by repeating a set of fields (or other objects, in a
FRAME entry). The number of rows that are displayed is determined by the SAS
Component Language program or by an attribute of the extended table object in the
FRAME entry. Extended tables are either static or dynamic. For static extended
tables, the number of rows is fixed. For dynamic extended tables, the number of rows
can vary.

feedback indicator line
in CBT entries, a line that the software displays on which the user enters the answer
to a question. This line is designated with a pound sign (#) in column 1 that
indicates feedback.

Glossary 79

field
a window area in which users can view, enter, or modify a value.

field attributes
a set of characteristics that describe and control how the contents of a field are
treated when values are entered or displayed in the field.

field validation
the process of checking user-entered values either against attributes that have been
specified for a field or against conditions that have been specified in a SAS
Component Language program.

frame
a nonscrollable area in a window. Programmers create frames in windows by using
boundary markers. If there are no boundary markers, users execute scroll commands
to see all of the contents of a window when those contents are larger than the
window itself.

frame indicator line
in CBT entries, a text line that separates frames. This line is indicated either by a
question mark in column 1 or by a row of dashes across the width of the DISPLAY
window.

general attributes
the set of characteristics that are assigned to a SAS catalog entry (such as a
PROGRAM entry or a FRAME entry) that displays a window.

global command
a command that is valid in all windows for a particular SAS software product.

KEYS entry
a type of catalog entry that contains function key settings for interactive windowing
procedures.

libref (library reference)
a name that is temporarily associated with a SAS data library. The complete name of
a SAS file consists of two words, separated by a period. The libref, which is the first
word, indicates the library. The second word is the name of the specific SAS file. For
example, in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the
file NEWBDAY. You assign a libref with a LIBNAME statement or with an operating
system command.

line continuation indicator
in CBT entries, a forward slash that is positioned as the last nonblank character on
the frame indicator line or on the feedback indicator line. The line continuation
indicator appends the following line to the line on which the indicator appears.

linked action field
in PROGRAM entries, a field with the Type attribute ACTION, which is associated
with a station of a choice group. Linked action fields enable users to make a choice
by selecting either the field itself or the associated station. See also check box, choice
group.

linking
in MENU entries, the process of associating a primary menu with a series of
secondary MENU entries so that users can access submenu choices directly from the
primary menu.

logical row
a row of fields or objects that is repeated in an extended table. See also extended
table.

80 Glossary

lookup data set
a data set that contains information that is used for additional validation of input
values in fields that can use a lookup data set.

member
a SAS file in a SAS library.

member name
a name that is assigned to a SAS file in a SAS library. See also member type.

member type
a SAS name that identifies the type of information that is stored in a SAS file.
Member types include ACCESS, DATA, CATALOG, ITEMSTOR, MDDB, PROGRAM,
and VIEW.

member-level access
a type of access to a SAS data library that permits only one user to use a member
(such as a SAS data set) at a time. See also record-level access.

menu
a window object that presents choices to users. In SAS software, menus include
menu bars, pull-down menus, block menus, and selection lists.

menu bar
the primary list of items at the top of a window, which represent the actions or
classes of actions that can be executed. Selecting an item executes an action, opens a
pull-down menu, or opens a dialog box that requests additional information. See also
pop-up menu, pull-down menu.

pad character
a special character that is displayed for each character of an empty input field. By
default, the pad character is an underscore (_).

parameter
(1) in SAS/AF and SAS/FSP applications, a window characteristic that can be
controlled by the user. (2) in SAS Component Language (SCL), a value that is passed
from one entry in an application to another. For example, in SAS/AF applications,
parameters are passed between entries by using the CALL DISPLAY and ENTRY
statements. (3) a unit of command syntax other than the keyword. For example,
NAME=, TYPE=, and COLOR= are typical command parameters that can be either
optional or required.

parent entry
the CBT entry that called the current CBT entry.

pause indicator
in CBT entries, a line that indicates that a frame should pause. Additional
information is displayed when a user presses the ENTER key. This line is designated
by three at signs (@) in columns 1-3.

PMENU facility
a menuing system in SAS that is used instead of the command line as a way to
execute commands. The PMENU facility consists of a menu bar, pull-down menus,
and dialog boxes.

pop-up menu
a menu that appears when it is requested. These menus are context-specific,
depending on which window is active and on the cursor location. See also pull-down
menu.

Glossary 81

protected field
a field to which users cannot tab and in which they cannot alter values.

pull-down menu
the list of menu items or choices that appears when you choose an item from a menu
bar or from another menu. See also PMENU facility.

record-level access
a type of access to a SAS data set or other file that permits more than one user to
access the SAS data set or file at a time. Only one user can use a single observation
or record of the file at a time, but other users can access other observations or
records in the same file. See also member-level access.

SAS catalog
a SAS file that stores many different kinds of information in smaller units called
catalog entries. A single SAS catalog can contain several different types of catalog
entries. See also SAS catalog entry.

SAS catalog entry
a separate storage unit within a SAS catalog. Each entry has an entry type that
identifies its purpose to SAS. Some catalog entries contain system information such
as key definitions. Other catalog entries contain application information such as
window definitions, Help windows, formats, informats, macros, or graphics output.
See also entry type.

SAS Component Language (SCL)
See SCL (SAS Component Language).

SCL (SAS Component Language)
a programming language that is provided with SAS/AF and SAS/FSP software. You
can use SCL for developing interactive applications that manipulate SAS data sets
and external files; for displaying tables, menus, and selection lists; for generating
SAS source code and submitting it to SAS for execution; and for generating code for
execution by the host command processor.

selection list
a list of items in a window, from which users can make one or more selections.
Sources for selection lists are LIST entries, special SCL functions, and extended
tables.

station
a field in a choice group. Only one station can be active at a particular time. See also
choice group.

stream
a series of information about the entries and windows that are created when a user
invokes a SAS/AF, FSEDIT, or FSVIEW application. Within the stream, SAS creates
stacks to keep track of which entries have been called and which windows are
currently open. Stacks use a last-in, first-out hierarchy.

tracking data set
a special data set that is created to save information about user responses to
questions in CBT entries.

unconditional branching
in CBT entries, unconditionally changing the flow of control to a statement that does
not immediately follow the current statement. See also branching, conditional
branching.

82

Index 83

Index

A
AF command 53

application-options 58
options 54
passing options to applications 61
requirement 54
syntax 54

AF window commands 65
AFAPPLICATION command 59

compared with AF command 60
passing options to applications 61
syntax 59

AFSYS command 66
application windows, general attributes for 50
application workspace (AWS) 55
applications

See BUILD procedure
ATTR argument, PRINT statement (BUILD) 14
attributes 30
AUTO option, frame indicators 25
AUTORECALL= option, AF command 55
AUTOSAVE= option, AF command 55
AUTOTERM= option, AF command 55
AWS (application workspace) 55
AWS= option, AF command 55
AWS window, title for 58

B
BACKWARD command 72
banners 50
BATCH option, PROC BUILD statement 5
BOTTOM command 72
branch option, feedback indicators 29
BROWSE option, PROC BUILD statement 5
BUILD command 18
BUILD procedure 3

batch mode 5
BUILD command 18
COMPILE statement 7
CROSSREF statement 8
MERGE statement 11
MLINK statement 13
PRINT statement 14
PROC BUILD statement 5
SYNC statement 17
syntax 4
windows 19

BUILD sessions, initiating 18

C
C option, feedback indicators 29
CALL DISPLAY routine, executing SCL en-

tries 49
CANCEL command 67
CATALOG= argument, MERGE statement

(BUILD) 11
catalog entries

browsing 5
printing 14

CATALOG= entry, PROC BUILD statement 5
catalog entry types 22

application windows, general attributes for 50
CBT entries 23
CLASS entries 30
FRAME entries 31
HELP entries 32
INTRFACE entries 32
LIST entries 33
MENU entries 34
PROGRAM entries 35
RANGE entries 46
RESOURCE entries 47
SCL entries 48

CATALOG= option, AF command 56
catalog references 67
catalog search rule 9
catalogs, combining 56
CATNAME command 67
CATNAME= option, AF command 56
CBT entries 23

Child attribute 30
displays 23
general attributes 29
query frames 24
restarting 58
scrolling controls 23
starting frame for CBT applications 57
storing name of, at exit 56

CHECKLAST= option, AF command 56
Child attribute, CBT entries 30
choice groups 36
CLASS entries 30
class properties 30
classes 30

storing for FRAME entries 47

CLEAR command 68
command list, values in 61
command macros 63
command menu 51
commands

AF 53
AF window commands 65
AFAPPLICATION 59
AFSYS 66
BACKWARD 72
BOTTOM 72
BUILD 18
CANCEL 67
CATNAME 67
CLEAR 68
DEBUG 68
DUP 68
END 68
FIND 68
FONT 73
FORMNAME 73
FORMNAME CLEAR 73
FORWARD 72
HELP 50, 69
HSCROLL 72
ID 69
KEYFIELD 70
LEFT 73
LOCATE 70
=menu-options 66
MUSIC 71
PREVIEW 70
printing commands 73
PRTFILE 74
PRTFILE CLEAR 74
QCAN 70
QEND 70
QSTACK 71
RECALL 71
RETURN 71
RIGHT 73
SAVE 71
scrolling commands 72
SOUND 71
SPRINT 74
SPRINT CLEAR 74
TOP 73
TYPE 71
VSCROLL 73
window management commands 66

84 Index

WREGION 72
WREGION CLEAR 72
WSIZE 72

COMPILE statement, BUILD procedure 7
controls 31
CORRECT= option, frame indicators 26
cross references, printing 17
CROSSREF statement, BUILD procedure 8

D
data collection

Coverage Analyzer 58
Performance Analyzer 58
Static Analyzer 8

DEBUG command 68
DEBUG option

COMPILE statement (BUILD) 7
PROC BUILD statement 6

DEBUG= option, AF command 56
DETAIL= option, CROSSREF statement

(BUILD) 9
DIALOG attribute 52
DIALOG BOX attribute 52
DISPLAY argument, PRINT statement

(BUILD) 14
DUP command 68

E
END command 68
entry types

See catalog entry types
ENTRYTYPE= option

MERGE statement (BUILD) 11
PRINT statement (BUILD) 15
PROC BUILD statement 6
SYNC statement (BUILD) 17

event handlers 31
events 31
EXCLUDE= option

COMPILE statement (BUILD) 7
CROSSREF statement (BUILD) 9
MERGE statement (BUILD) 11
MLINK statement (BUILD) 13
PRINT statement (BUILD) 15
SYNC statement (BUILD) 17

execution stack, printing report of 71
Explorer window, default behavior 6
extended tables 37, 51

F
feedback indicators 28

options 28
syntax 28

field values
recalling 55
saving 55, 71
validating 33

fields, in PROGRAM entries 36
FIND command 68
FONT command 73

FONT window 73
FORM entries 15

default 73
FORM= option, PRINT statement (BUILD) 15
FORMNAME CLEAR command 73
FORMNAME command 73
FORWARD command 72
FRAME entries 31

control of FRAME objects 66
RESOURCE entry associated with 6
storing classes for 47
_term method for objects 55
updating 17

frame indicators 24
options for 25
syntax 25

FRAME= option
AF command 57
feedback indicators 29

frames 23
function keys 51

G
GRAPH= option, frame indicators 26
graphs, displaying in frames 26

H
HELP attribute 52
HELP command 50, 69
HELP entries 32
HELP= option, feedback indicators 29

I
ICON= option, AF command 57
ID command 69
interfaces 31, 32
INTRFACE entries 32

K
KEYFIELD command 70

L
LABEL= option, AF command 57
LEFT command 73
LEFT option, PRINT statement (BUILD) 15
LEVELS= option, MLINK statement

(BUILD) 13
LINENUM option, PRINT statement

(BUILD) 16
links, re-establishing 17
LIST attribute 52
LIST entries 33
LISTDIR argument, PRINT statement

(BUILD) 15
LOCATE command 70
LOCK option, frame indicators 26

lookup data sets 51

M
macros, command 63
menu, command 51
MENU entries 34

displays 34
general attributes 34
selection attributes 34

menu links 13
MENU= option, feedback indicators 29
=menu-options command 66
MERGE statement, BUILD procedure 11
meta class 30
methods 30
MLINK statement, BUILD procedure 13
models 31
MUSIC command 71
MUSIC= option

feedback indicators 29
frame indicators 27

N
n option, feedback indicators 28
NAME= option, frame indicators 26
NO EXIT attribute 51
NOAUTO option, frame indicators 25
NODIR option, PROC BUILD statement 6
NOEDIT option, MERGE statement

(BUILD) 11
NOPAGEBREAK option, PRINT statement

(BUILD) 16
NOSOURCE option, MERGE statement

(BUILD) 11

O
options, passing to applications 61
OUTLIB= option, CROSSREF statement

(BUILD) 9

P
PADCHAR= option, PROC BUILD statement 6
page breaks 16
parent attributes 52
parent class 30
Performance Analyzer, data collection phase 58
PMENU facility, turning off in applications 57
PMENU= option, AF command 57
PREVIEW command 70
PRINT statement, BUILD procedure 14
printing

catalog entries 14
commands for 73
cross references 17
excluding entries 15, 16
execution stack report 71
FORM entry for output 15
line numbers 16

Index 85

output file for 16
page breaks 16
selecting entries 15, 16

PROC BUILD statement 5
PROGRAM entries 35

choice groups 36
displays 36
extended tables 37
field attributes 37
field types 43
fields 36
general attributes 37
SCL programs 45
selection lists 37

PROJECT= argument, CROSSREF statement
(BUILD) 9

prompt character 51
PRTFILE CLEAR command 74
PRTFILE command 74
PRTFILE= option, PRINT statement

(BUILD) 16

Q
QCAN command 70
QEND command 70
QSTACK command 71
query frames, CBT entries 24
QUIZ= option, frame indicators 27, 27

R
RANGE entries 46
RECALL command 71
recalling field values 55
REPLACE option, MERGE statement

(BUILD) 11
RESIDENT attribute 51
RESIDENT= option, AF command 57
RESOURCE entries 47

associated with FRAME entries 6
updating 17

RESOURCE= option
BUILD command 19
PROC BUILD statement 6

resources 47
RESTART= option, AF command 58
RETURN command 71
RIGHT command 73

S
SAS/AF applications

See also BUILD procedure
creating 3
passing options to 61
running multiple applications 59
sharing data between multiple applications 60
storing 35

SAS/AF applications, executing
AF command 53
AFAPPLICATION command 59
catalog entry for 56
passing options to applications 61
running multiple applications 59
suppressing SAS windows when applications

open 63
SAS/AF software 1
SAS windows, suppressing when applications

open 63
save, automatic 55
SCL code, storing 48
SCL debugger 6, 7, 56
SCL entries 48

calling from other SAS/AF programs 49
executing SCL routines 49
executing with CALL DISPLAY 49
resident in memory 57

SCL program labels 57
SCL programs, storing in PROGRAM entries 45
SCL routines, executing 49
SCLPROF= option, AF command 58
scroll bar attributes 52
scrolling, CBT entries 23
scrolling commands 72
SEARCH= option, CROSSREF statement

(BUILD) 9
SELECT= option

COMPILE statement (BUILD) 7
CROSSREF statement (BUILD) 9
feedback indicators 29
MERGE statement (BUILD) 11
MLINK statement (BUILD) 13
PRINT statement (BUILD) 15
SYNC statement (BUILD) 17

selection lists 33, 37
sharing data, between multiple applications 60
SOUND command 71
SOUND= option

feedback indicators 29
frame indicators 27

SOURCE argument, PRINT statement
(BUILD) 15

source programs, compiling 7
SPRINT CLEAR command 74
SPRINT command 74
STANDARD attribute 52

Static Analyzer, data collection phase 8

submenus, linking 13

SYNC statement, BUILD procedure 17

system options attribute 51

T
_term method, FRAME entries 55

TESTAF option, PROC BUILD statement 6

TEXTLENGTH= option, PROC BUILD state-
ment 7

TITLE= option, AF command 58

TOP command 73

traffic lighting 46

TYPE command 71

U
UPCASE option, MERGE statement

(BUILD) 12

V
VERBOSE option, MLINK statement

(BUILD) 13

VSCROLL command 73

W
window attributes 50

window commands 65

window management commands 66

window type attributes 52

windows

application windows, general attributes for 50

BUILD procedure windows 19

capturing current contents 74

iconizing 57

moving 52

position of 72

resizing 52

size of 72

suppressing SAS windows when applications
open 63

switching 51

WREGION CLEAR command 72

WREGION command 72

WRONG= option, frame indicators 28

WSIZE command 72

Your Turn

If you have comments or suggestions about SAS/AF® 9.1 Procedure Guide, please
send them to us on a photocopy of this page or send us electronic mail.

Send comments about this book to
SAS Institute Inc.
Publications Division
SAS Campus Drive
Cary, NC 27513
email: yourturn@unx.sas.com

Send suggestions about the software to
SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
email: suggest@unx.sas.com

	Table of Contents
	Contents

	Introduction to SAS/AF Software
	Overview
	Learning More

	The BUILD Procedure
	Overview
	BUILD Procedure Syntax
	PROC BUILD Statement
	COMPILE Statement
	CROSSREF Statement
	MERGE Statement
	MLINK Statement
	PRINT Statement
	SYNC Statement

	BUILD Command Syntax
	BUILD Command

	BUILD Procedure Windows

	SAS/AF Catalog Entry Types
	Overview
	CBT Entries
	CLASS Entries
	FRAME Entries
	HELP Entries
	INTRFACE Entries
	LIST Entries
	MENU Entries
	PROGRAM Entries
	RANGE Entries
	RESOURCE Entries
	SCL Entries
	General Attributes for Application Windows

	Executing SAS/AF Applications
	Overview
	AF Command
	AFAPPLICATION Command
	Passing Options to an Application
	Suppressing SAS Windows When a SAS/AF Application Opens

	AF Window Commands
	Overview
	Window Management Commands
	Scrolling Commands
	Printing Commands

	Recommended Reading
	Recommended Reading

	Glossary
	Index

