
SAS/ACCESS®

9.1
Interface to PC Files
Reference

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS/ACCESS ® 9.1 Interface to PC Files: Reference. Cary, NC: SAS Institute Inc.

SAS/ACCESS® 9.1 Interface to PC Files: Reference
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
ISBN 1-59047-221-7
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New vii

Overview vii

Windows Details vii

UNIX Details vii

P A R T 1 Accessing PC Files 1

Chapter 1 � Overview of the SAS/ACCESS Interface to PC Files 3
Methods for Accessing PC Files Data 3

Using This Document 4

Sample Data in This Document 4

Chapter 2 � The LIBNAME Statement for PC Files on Windows 5
Overview of the LIBNAME Statement for PC Files on Windows 5

Assigning a Libref Interactively 6

LIBNAME Options for PC Files on Windows 11

Data Set Options for PC Files on Windows 17

Chapter 3 � The Pass-Through Facility for PC Files on Windows 35
Overview of the Pass-Through Facility for PC Files 35

Syntax for the Pass-Through Facility for PC Files 36

Special Jet Queries 45

Special Jet Commands 47

Chapter 4 � The Import/Export Wizard and Procedures 49
Import/Export Overview for PC Files 49

Import/Export Wizard 50

IMPORT and EXPORT Procedures 54

Chapter 5 � The DBF and DIF Procedures 59
Introduction to the DBF and DIF Procedures 59

Chapter 6 � The ACCESS Procedure for PC Files 65
Overview of the ACCESS Procedure for PC Files 65

SAS/ACCESS Descriptors for PC Files 67

SAS Passwords for Descriptors 68

Performance and Efficient View Descriptors for PC Files 70

ACCESS Procedure Syntax 71

Chapter 7 � The DBLOAD Procedure for PC Files 91
Overview of the DBLOAD Procedure for PC Files 91

DBLOAD Procedure Naming Conventions 92

DBLOAD Procedure Syntax 92

iv

P A R T 2 Accessing PC Files on UNIX 101

Chapter 8 � Overview of the SAS/ACCESS Interface to PC Files on UNIX 103
Introduction to the SAS/ACCESS Interface to PC Files on UNIX 103

Chapter 9 � The PC Files Server 105
Overview of the PC Files Server 105

Starting the PC Files Server 105

Configuring the PC Files Server 107

Constraints 107

Shared Information 108

Chapter 10 � The LIBNAME Statement for PC Files on UNIX 109
Overview of the LIBNAME Statement for PC Files on UNIX 109

Sorting PC Files Data 109

Using SAS Functions with PC Files Data 109

Chapter 11 � The Import/Export Wizard and Procedures on UNIX 117
Import/Export Overview for PC Files on UNIX 117

Import/Export Wizard on UNIX 118

The IMPORT and EXPORT Procedures on UNIX 122

Chapter 12 � The Pass-Through Facility for PC Files on UNIX 129
Overview of the Pass-Through Facility for PC Files on UNIX 129

Syntax for the Pass-Through Facility for PC Files 129

Special PC Files Queries 138

Chapter 13 � The DBF and DIF Procedures on UNIX 141
Introduction to the DBF and DIF Procedures 141

Chapter 14 � JMP Essentials for PC Files 147
Overview of JMP Essentials 147

JMP Files 147

JMP Data Types 148

JMP Missing Values 148

P A R T 3 File Format Specific Reference 149

Chapter 15 � Microsoft Excel XLS Files 151
How to Access XLS Files from SAS 151

LIBNAME Statement Data Conversions for XLS Files 152

ACCESS Procedure: XLS Specifics 154

DBLOAD Procedure: XLS Specifics 160

Setting Environment Variables for XLS Files 164

XLS Essentials 165

How SAS/ACCESS Works with XLS Files 168

Chapter 16 � Microsoft Access MDB Files 169

v

How to Access MDB Files from SAS 169

LIBNAME Statement Data Conversions for MDB Files 169

MDB Essentials 172

How SAS/ACCESS Works with MDB Files 173

Chapter 17 � Lotus WKn Files 175
How To Access WKn Files from SAS 175

ACCESS Procedure: WKn Specifics 176

DBLOAD Procedure: WKn Specifics 179

Setting Environment Variables for WKn Files 182

WKn Essentials 183

How SAS/ACCESS Works with WK n Files 186

Chapter 18 � dBase DBF Files 187
How To Access DBF Files from SAS 187

ACCESS Procedure: DBF Specifics (Windows) 187

DBLOAD Procedure: DBF Specifics (Windows) 189

DBF Essentials 191

How SAS/ACCESS Works with DBF Files 194

Chapter 19 � Lotus DIF Files 195
How To Access DIF Files from SAS 195

ACCESS Procedure: DIF Specifics 195

DBLOAD Procedure: DIF Specifics 198

DIF Essentials 201

How SAS/ACCESS Works With DIF Files 202

P A R T 4 Sample Code 205

Chapter 20 � Accessing PC Files Data with the LIBNAME Statement 207
Introduction to Accessing PC Files Data with the LIBNAME Statement 207

Charting PC Files Data with the LIBNAME Statement 207

Calculating Statistics with the PC Files LIBNAME Statement 208

Selecting and Combining PC Files Data with the LIBNAME Statement 209

Chapter 21 � Accessing PC Files with Descriptors 211
Introduction to Accessing PC Files with Descriptors 211

Reviewing Variables 212

Charting PC Files Data with Descriptors 214

Calculating Statistics with PC Files Descriptors 215

Selecting and Combining PC Files Data with Descriptors 220

Using the SAS Viewer on PC Files Data 225

Reading and Updating PC Files Data with the SQL Procedure 226

Updating PC Files Data with the MODIFY Statement 230

Updating a SAS Data File with PC Files Data 233

Appending Data with the APPEND Procedure 236

vi

P A R T 5 Appendixes 241

Appendix 1 � Sample Data 243
Introduction to Sample Data 243

Sample PC Files 243

SAS Data Files 251

Appendix 2 � Recommended Reading 257
Recommended Reading 257

Glossary 259

Index 263

vii

What’s New

Overview

The differences between the PC and UNIX features for SAS/ACCESS for PC files
have been significantly decreased. The documentation has also been enhanced with new
sections added for these two operating environments.

Note:

� This section describes the features of SAS/ACCESS for PC files that are new or
enhanced since SAS 8.2.

�

Windows Details

� The LIBNAME statement for PC files (Chapter 2, “The LIBNAME Statement for
PC Files on Windows,” on page 5) , new for SAS 9, provides direct, transparent
access to Microsoft Access (97, 2000, and 2002) and Microsoft Excel (5, 95, 97,
2000, and 2002).

� PROC IMPORT and PROC EXPORT, using the SAS/ACCESS engine for PC files,
provide direct access to JMP data files.

� PROC SQL, using capabilities of the new PC files engine, enables you to
communicate with Microsoft Access and Microsoft Excel.

� Enhancements to the Import/Export wizard and procedures (Chapter 4, “The
Import/Export Wizard and Procedures,” on page 49) enable you to interact with
JMP data files and to access multiple Microsoft Excel worksheets.

UNIX Details

� The SAS/ACCESS interface to PC Files on UNIX communicates with the PC files
server (Chapter 9, “The PC Files Server,” on page 105) . The server enables you to
process requests for PC data.

viii What’s New

� A new engine (Chapter 10, “The LIBNAME Statement for PC Files on UNIX,” on
page 109), called pcfiles, is available in SAS 9.1. This engine enables you to access
data stored on network accessible PCs. This engine, working with new UNIX
features, also enables you to directly access Microsoft Access (97, 2000, and 2002),
Microsoft Excel (5, 95, 97, 2000, and 2002), and data from ODBC data sources on
the PC (for example, the Microsoft SQL Server).

� Enhancements to PROC IMPORT and PROC EXPORT (Chapter 11, “The Import/
Export Wizard and Procedures on UNIX,” on page 117) enable you to access local
JMP data files and remote JMP data files that are stored on the PC via the client/
server model, in addition to Microsoft Access, Microsoft Excel, and ODBC data
sources.

� The Pass-Through Facility for PC files (Chapter 12, “The Pass-Through Facility for
PC Files on UNIX,” on page 129) uses the pcfiles engine to communicate directly
with Microsoft Access, Microsoft Excel, and ODBC data sources.

1

P A R T1

Accessing PC Files

Chapter 1.Overview of the SAS/ACCESS Interface to PC Files 3

Chapter 2.The LIBNAME Statement for PC Files on Windows 5

Chapter 3.The Pass-Through Facility for PC Files on Windows 35

Chapter 4.The Import/Export Wizard and Procedures 49

Chapter 5.The DBF and DIF Procedures 59

Chapter 6.The ACCESS Procedure for PC Files 65

Chapter 7.The DBLOAD Procedure for PC Files 91

2

3

C H A P T E R

1
Overview of the SAS/ACCESS
Interface to PC Files

Methods for Accessing PC Files Data 3
Using This Document 4

Sample Data in This Document 4

Methods for Accessing PC Files Data
SAS/ACCESS for PC files enables you to read data from PC files, to use that data in

SAS reports or applications, and to use SAS data sets to create PC files in various
formats. SAS/ACCESS for PC files includes the following features:

LIBNAME statement (UNIX and Windows operating environments)
provides direct, transparent access to Microsoft Access (97, 2000, or 2002) and
Microsoft Excel (5, 95, 97, 2000, or 2002) data.

Pass-Through Facility (UNIX and Windows operating environments)
enables you to interact with Microsoft Access (97, 2000, or 2002) and Microsoft
Excel (5, 95, 97, 2000, or 2002) data using the data source’s SQL syntax without
leaving your SAS session. The SQL statements are passed directly to the data
source for processing.

Import/Export wizard and procedures (OpenVMS, UNIX, and Windows operating
environments)

enable you to transfer data between SAS and several PC file formats including
Microsoft Access, Microsoft Excel, Lotus 1-2-3, and DBF. Not every PC file format
is available under every operating environment. See “Import/Export Overview for
PC Files” on page 49 for a list of file formats supported under your operating
environment.

DBF and DIF procedures (UNIX, Windows, and OS/390 operating environments)
enable you to convert between dBASE (DBF) files and SAS data sets and between
data interchange format (DIF) files and SAS data sets. The DIF procedure is not
available under OS/390.

ACCESS procedure (Windows operating environments)
creates descriptor files that describe data in a PC file to SAS, enabling you to
directly read, update, or extract PC files data into a SAS data file. You can use the
ACCESS procedure with the following file formats: Microsoft Excel (4, 5, 95),
Lotus 1-2-3 (WK1, WK3, or WK4), DBF, and DIF.

DBLOAD procedure (Windows operating environments)
creates PC files and loads them with data from a SAS data set. You can use the
DBLOAD procedure with any of the file formats that are supported by the
ACCESS procedure.

4 Using This Document � Chapter 1

Using This Document
This document is intended for applications programmers and users who know how to

use their operating environment, and basic SAS commands and statements, and who
are familiar with their PC file format.

This document provides both general reference and file format specific details about
how to access data in PC file formats from SAS. It includes examples that demonstrate
how you can use SAS/ACCESS software to read and write PC files data directly from
SAS programs. The sample data that is used in the examples is provided in an
appendix.

Sample Data in This Document
This document uses sample PC files that show you how to use the SAS/ACCESS

interface to PC files. The PC files were created for a fictitious international textile
manufacturer. This company’s product line includes some special fabrics that are made
to precise specifications. All the data in the files is fictitious.

Note: The files are designed to show how the SAS/ACCESS interface treats data
stored in PC files. They are not meant as examples for you to follow in designing files
for any purpose. �

Appendix 1, “Sample Data,” on page 243 shows you the data in these sample PC files.
The SAS/ACCESS software sample library contains the following files for your use.
These files enable you to create the PC files and SAS/ACCESS descriptors and to run
the examples.

PcfFdbl.sas
contains the DATA steps and PROC DBLOAD statements to create the PC files.

PcfFsamp.sas
contains the SAS code of the examples in “Examples” on page 76.

PcfFmacs.sas
contains macros that enable any SAS/ACCESS interface for a PC file format to
create database description statements; these statements are used in the PROC
DBLOAD and the PROC ACCESS code in PCDBL.SAS and PCSAMP.SAS files.

PcfFscl.sas
contains the SAS Component Language (SCL) examples used in this document to
create SAS/AF software examples.

These files are shipped with your SAS/ACCESS software. Check with your SAS
system administrator or SAS Software Consultant for access to these files.

5

C H A P T E R

2
The LIBNAME Statement for PC
Files on Windows

Overview of the LIBNAME Statement for PC Files on Windows 5
Sorting PC Files Data 5

Using SAS Functions with PC Files Data 5

Assigning a Libref Interactively 6

LIBNAME Options for PC Files on Windows 11

Data Set Options for PC Files on Windows 17

Overview of the LIBNAME Statement for PC Files on Windows
The SAS/ACCESS LIBNAME statement extends the SAS global LIBNAME

statement to support assigning a libref to Microsoft Excel and Microsoft Access files.
This enables you to reference spreadsheets and databases directly in a DATA step or
SAS procedure, and to read from and write to a Microsoft Access or Excel object as
though it were a SAS data set.

Sorting PC Files Data
When you use the LIBNAME statement to associate a libref with PC files data, you

might observe some behavior that differs from that of normal SAS librefs. Because
these librefs refer to database and workbook objects, such as tables, they are stored in a
format that differs from the format of normal SAS data sets. This is helpful to
remember when you access and work with PC files data.

For example, you can sort the observations in a normal SAS data set and store the
output to another data set. However, in a Microsoft Access database, sorting data has
no effect on how it is stored. Because your data might not be sorted in the external file,
you must sort the data at the time of query. Furthermore, when you sort PC files data,
the results might vary depending on whether the external spreadsheet or database
places data with NULL values (which are translated in SAS to missing values) at the
beginning or the end of the result set.

Using SAS Functions with PC Files Data
When you use librefs that refer to PC files data with SAS functions, some functions

might return a value that differs from what is returned when you use the functions
with normal SAS data sets. For example, the PATHNAME function might return a
Microsoft Excel filename assigned for the libref. For a normal SAS libref, it returns the
pathname for the assigned libref.

Usage of some functions might also vary. For example, the LIBNAME function can
accept an optional SAS-data-library argument. When you use the LIBNAME function to

6 Assigning a Libref Interactively � Chapter 2

assign or deassign a libref that refers to PC files data, you omit this argument. For full
details about how to use SAS functions, see the SAS Language Reference: Dictionary.

Assigning a Libref Interactively
An easy way to associate a libref with PC files data is to use the New Library

window. To open this window, issue the LIBASSIGN command from your SAS session’s
command box or command line. You can also access the New Library window by
right-clicking on the libraries icon in the Explorer window and selecting New.

The following list describes how to use the New Library window:
� Name: enter the libref that you want to assign to a SAS data library or an external

data source.
� Engine: click the down arrow to select a name from the pull-down listing.
� Enable at startup: click this if you want the specified libref to be assigned

automatically when you open a SAS session.
� Library Information: these fields represent the SAS/ACCESS connection

options and vary according to the SAS/ACCESS engine that you specify. Enter the
appropriate information for your PC file format.

� OK : click this button to assign the libref, or click Cancel to exit the window
without assigning a libref.

LIBNAME Statement Syntax for PC Files on Windows

Associates a SAS libref with a workbook or database

Valid in: anywhere

Syntax
u LIBNAME libref <engine-name> <physical-file-name>

<SAS/ACCESS-engine-connection-options>
<SAS/ACCESS-libname-options>;

v LIBNAME libref CLEAR | _ALL_ CLEAR;

w LIBNAME libref LIST | _ALL_ LIST;

Arguments

libref
is any SAS name that serves as an alias to associate SAS with a spreadsheet or
database. Like the global SAS LIBNAME statement, the SAS/ACCESS LIBNAME
statement creates shortcuts or nicknames for data storage locations. While a SAS
libref is an alias for a virtual or physical directory, a SAS/ACCESS libref for PC files
is an alias for the spreadsheet or database where your data is stored.

engine-name
is the SAS/ACCESS engine name for your PC file format. The engine name is
optional if physical-file-name is specified. The SAS/ACCESS LIBNAME statement

The LIBNAME Statement for PC Files on Windows � LIBNAME Statement Syntax for PC Files on Windows 7

associates a libref with a SAS/ACCESS engine that supports connections to a
particular PC file. The following are the valid values for engine-name:

EXCEL for Microsoft Excel data (5, 95, 97, 2000, or 2002).

ACCESS for Microsoft Access data (97, 2000, or 2002).

physical-file-name
is the path and filename, including extension (.xls or .mdb), of the data source.

Note: If you omit physical-file-name, your engine connection options should
identify the data source or you will be prompted for a filename, unless PROMPT=NO
or NOPROMPT is indicated in the engine connection options. �

CLEAR
disassociates one or more currently assigned librefs.

Specify libref to disassociate a single libref. Specify _ALL_ to disassociate all
currently assigned librefs.

ALL
specifies that the CLEAR or LIST argument applies to all currently-assigned librefs.

LIST
writes the attributes of one or more SAS/ACCESS libraries or SAS data libraries to
the SAS log.

Specify libref to list the attributes of a single SAS/ACCESS library or SAS data
library. Specify _ALL_ to list the attributes of all libraries that have librefs in your
current session.

SAS/ACCESS-engine-connection-options
provide connection information to SAS/ACCESS to connect to your PC files. If the
connection options contain characters that are not allowed in SAS names, enclose the
values of the arguments in quotation marks. In some instances, if you specify the
appropriate system options or environment variables for your data source, you can
omit the connection options.

See “Connection Options” on page 7 for detailed information about connection
options.

SAS/ACCESS-libname-options
define how SAS interacts with your data source, providing enhanced control of the
way that SAS processes data source objects. For example, some LIBNAME options
can improve performance. For many tasks, you do not need to specify any of these
advanced options.

See “LIBNAME Statement Syntax for PC Files on Windows” on page 6 for detailed
information about LIBNAME options.

Connection Options

SAS/ACCESS provides many ways to connect to your PC files.

DBPASSWORD="database-file-password"
enables you to access your file if you have database-level security set in your MDB
file. A database password is case-sensitive and is defined in addition to user-level
security.

Aliases: DBPWD=, DBPW=

Note: This connection option is only for Microsoft Access. Use of this option
does not change your current security setting for your MDB file. �

8 LIBNAME Statement Syntax for PC Files on Windows � Chapter 2

DBSYSFILE="workgroup-information-file"
contains information about the users in a workgroup based on information that
you define for you Microsoft Access database. Any user and group accounts or
passwords you create are saved in the workgroup information file.

Alias: DBSYS=, WGDB=

Note: This connection option is only for Microsoft Access. Use of this option
does not change your current security setting for your MDB file. �

HEADER=YES | NO
determines whether the first row of data in a Microsoft Excel range (or
spreadsheet) are column names when SAS is reading data from a Microsoft Excel
file.

Aliases: HDR=, GETNAMES=

YES specifies to use the first row of data in an Excel range (or
spreadsheet) as column names when SAS is reading data from
an Excel file.

NO specifies not to use the first row of data as column names in an
Excel range (or spreadsheet) when SAS is reading data from an
Excel file. SAS generates and uses the variable names F1, F2,
F3 and so on.

Note: This connection option is only for Microsoft Excel. �

Note: This option is ignored when you are writing data to an Excel file. �

INIT= "connection-string"
specifies an initialization string that SAS uses when connecting to a data source.
For example:

libname db ACCESS init="Provider=Microsoft.Jet.OLEDB.4.0
Data Source=c:\temp\sasdemo.mdb"

Alias: INIT_STRING=

Note: This option should not be used with a physical filename or other
connection options, such as PATH= and UDL=. �

MIXED=YES | NO
specifies whether to convert numeric data values into character data values for a
column with mixed data types. This option is valid only while you are importing
data from Excel.

The default is NO, which means that numeric data will be imported as missing
values in a character column. If MIXED=YES, the engine assigns a SAS character
type for the column and convert all numeric data values to character data.

Alias: MIXED_DATA=, MIXED_DATATYPE=.

Note: The use of MIXED= option causes the Excel workbook to be locked in
READONLY mode. No update is possible until the libref is deassigned. This
option is not valid for accessing data in Microsoft Access database. �

PASSWORD="user-password"
specifies a password for the user account. A password can be 1 to 14 characters
long and can include any characters except ASCII character 0 (null). Passwords
are case-sensitive.

Aliases: PWD=, PW=

Note: This connection option is only for Microsoft Access. Use of this option
does not change your current security setting for your MDB file. �

PATH="path-for-file"

The LIBNAME Statement for PC Files on Windows � LIBNAME Statement Syntax for PC Files on Windows 9

specifies the data source file. This is the full path and filename for your Microsoft
Access database file or Microsoft Excel workbook file. This option value is treated
the same as the physical filename and should only be used when the physical
filename is not specified in the LIBNAME statement. However, use of this option
requires the engine name to be specified. Always enter file extension .mdb for
Microsoft Access and .xls for Excel.

Alias: DATASRC=, DS=

PROMPT=YES | NO |REQUIRED | NOPROMPT | PROMPT | UDL
determines whether you are prompted for connection information that supplies the
data source information.

YES enables you to be prompted with a Data Link Properties dialog
box. To write the initialization string to the SAS log, submit the
following code immediately after connecting to the data source:

%put %superq (SYSDBMSG);

NO does not allow you to be prompted with a Data Link Properties
dialog box, and you are required to specify the data source
(physical filename or PATH=).

REQUIRED enables you to connect without prompting for more information
only if a valid physical filename is specified for a successful
connection. Otherwise, you are prompted for the connection
options with a dialog box that enables you to change the data
source file and other properties.

NOPROMPT disables the prompt of the Data Link Properties dialog box.

PROMPT enables you to be prompted for connection information that
supplies the data source information.

UDL enables you to browse and select an existing data link file (.udl).

UDL="path-for-udl-file"
specifies the path and filename for a UDL file (a Microsoft data link file). For
example, you could specify

UDL=’’C:\WinNT\profiles\me\desktop\MyDBLink.UDL’’;
%put %superq(SYSDBMSG);

This option does not support SAS filerefs. Macro variable SYSDBMSG is set on
successful completion. For more information, see Microsoft’s documentation about
using data link.

Alias: UDL_FILE=

Note: This option should not be used with a physical file name or other
connection options, such as PATH= and INIT=. �

USER="user-ID"
specifies a user account name. User names can be 1 to 20 characters long and can
include alphabetic characters, accented characters, numbers, and spaces. If you
have user-level security set in your .mdb file, you need to use this option and the
PASSWORD= option to be able to access your file.

Alias: UID=, USERID=

Note: This connection option is only for Microsoft Access. Use of this option
does not change your current security setting for your MDB file. �

VERSION=2002 | 2000 | 97 | 95 | 5
sets the version of Microsoft Excel. The default value is 97.

10 LIBNAME Statement Syntax for PC Files on Windows � Chapter 2

Alias: VER=

Note: This connection option is only for Microsoft Excel. �

Note: You do not need to specifiy this option if you do not know the version of
your Microsoft Excel file. However, if you want to create a new Microsoft Excel
file, you can use this option to specify the version you want to create. �

2002 sets the version of Microsoft Excel to 2002.

2000 sets the version of Microsoft Excel to 2000.

97 sets the version of Microsoft Excel to 97.

95 sets the version of Microsoft Excel to 95.

5 sets the version of Microsoft Excel to 5.

The following example assigns the libref Db for an Excel file:

libname db ’c:\demo.xls’;

The following example prompts you for data source information:

libname db excel;
libname db excel prompt= yes;

The following example prompts you for the UDL file:

libname db excel prompt=udl;

The following example uses the connection string to connect to the data source:

libname db excel init=’’connection_string’’;

Details

u Using Data from a PC File You can use a LIBNAME statement to read from and
write to a data source table or view as though it were a SAS data set. The LIBNAME
statement associates a libref with a SAS/ACCESS engine to access tables or views in a
spreadsheet or database. The SAS/ACCESS engine enables you to connect to a
particular data source and to specify an external data object name in a two-level SAS
name.

For example, in MyPCLib.Employees_Q2, MyPCLib is a SAS libref that points to a
particular group of external data objects, and Employees_Q2 is a table name. When you
specify MyPCLib.Employees_Q2 in a DATA step or procedure, you dynamically access
the external data object. SAS supports reading, updating, creating, and deleting
external data objects dynamically.

v Disassociating a Libref from a SAS Data Library To disassociate or clear a libref,
use a LIBNAME statement, specifying the libref (for example, MyPCLib) and the
CLEAR option as follows:

libname mypclib CLEAR;

You can clear a single specified libref or all current librefs.
SAS/ACCESS disconnects from the data source and closes any free threads or

resources that are associated with that libref’s connection.

w Writing SAS Data Library Attributes to the SAS Log Use a LIBNAME statement
and the LIST option to write the attributes of one or more SAS/ACCESS libraries or
SAS data libraries to the SAS log. Specify libref to list the attributes of a single
SAS/ACCESS library or SAS data library, as follows:

The LIBNAME Statement for PC Files on Windows � LIBNAME Options for PC Files on Windows 11

libname mypclib LIST;

Specify _ALL_ to list the attributes of all libraries that have librefs in your current
session.

Examples

Assigning a Libref with a SAS/ACCESS LIBNAME Statement The following statement
creates a libref, mymdb, as a Microsoft Access database file:

libname mymdb "c:\demo.mdb";

The Demo.mdb database contains a number of objects, including several tables, such as
Staff. After you assign the libref, you can reference the Microsoft Access table like a
SAS data set and use it as a data source in any DATA step or SAS procedure. In the
following PROC SQL statement, MyMdb.Staff is the two-level SAS name for the Staff
table in the Microsoft Access database Demo.

proc sql;
select idnum, lname

from mymdb.staff
where state=’NY’
order by lname;

quit;

You can use the Microsoft Access data to create a SAS data set:

data newds;
set mymdb.staff(keep=idnum lname fname);

run;

You can also use the libref and data set with any other SAS procedure. This
statement prints the information in the Staff table:

proc print data=mymdb.staff;
run;

This statement lists the database objects in the MyMdb library:

proc datasets library=mymdb;
quit;

The following statement associates the SAS libref MYXLS with an Excel workbook:

libname myxls "c:\demo.xls";

See Also

“Overview of the LIBNAME Statement for PC Files on Windows” on page 5
“LIBNAME Statement Data Conversions for MDB Files” on page 169
“LIBNAME Statement Data Conversions for XLS Files” on page 152

LIBNAME Options for PC Files on Windows
The following LIBNAME statement options provide enhanced control over the way

that SAS processes PC files data. For many tasks, you do not need to specify any of
these advanced options.

12 LIBNAME Options for PC Files on Windows � Chapter 2

Many of these options are also available as data set options.

ACCESS=READONLY
indicates that tables and views can be read but not updated.

AUTOCOMMIT=YES | NO
determines whether the ACCESS engine commits (saves) updates as soon as the
user submits them.

YES
specifies that updates are committed to a table as soon as they are submitted,
and no rollback is possible.

NO
specifies that the SAS/ACCESS engine automatically performs the commit
when it reaches the end of the file.

Default: NO

COMMAND_TIMEOUT=number-of-seconds
specifies the number of seconds that pass before a data source command times out.
Default: 0 (no timeout)
Alias: TIMEOUT=

CONNECTION= SHAREDREAD | UNIQUE |GLOBALREAD
determines whether operations against a single libref share a connection to the
data source. Also determines whether operations against multiple librefs share a
connection to the data source.

SHAREDREAD
specifies that all READ operations that access data source tables in a single
libref share a single connection. A separate connection is established for each
table that is opened for update or output operations.

Where available, this is usually the default value because it offers the best
performance and it guarantees data integrity.

UNIQUE
specifies that a separate connection is established every time a data source
table is accessed by your SAS application.

Use UNIQUE if you want each use of a table to have its own connection.

GLOBALREAD
specifies that all READ operations that access data source tables in multiple
librefs share a single connection if the following conditions are met:

� the participating librefs are created by LIBNAME statements that
specify identical values for the CONNECTION= and
CONNECTION_GROUP= options

� the participating librefs are created by LIBNAME statements that
specify identical values for any data source connection options.

A separate connection is established for each table that is opened for update
or output operations.

GLOBALREAD is the default value for CONNECTION= when you specify
CONNECTION_GROUP=.

Default: SHAREDREAD

CONNECTION_GROUP= connection-group
causes operations against multiple librefs to share a connection to the data source.
Also causes operations against multiple Pass-Through Facility CONNECT
statements to share a connection to the data source.

The LIBNAME Statement for PC Files on Windows � LIBNAME Options for PC Files on Windows 13

CURSOR_TYPE=KEYSET_DRIVEN | STATIC
specifies the cursor type for read-only and updatable cursors. If CURSOR_TYPE=
is not set, then the default cursor type is determined by the Jet provider you are
using.

KEYSET_DRIVEN
specifies that the cursor determines which rows belong to the result set when
the cursor is opened. However, changes that are made to these rows are
reflected as you move the cursor. The OLE DB property
DBPROP_OTHERUPDATEDELETE is set as TRUE for keyset cursors and
FALSE for static cursors.

STATIC
specifies that the complete result set is built when the cursor is opened, but
no changes made to the result set will be reflected in the cursor. Static
cursors are read-only.

Default: none
Alias: CURSOR=

DBCOMMIT=number-of-rows
affects update, delete, and insert processing. The number of rows that are
processed includes rows that are not processed successfully. If you set
DBCOMMIT=0, a commit is issued only once (after the procedure or DATA step
completes). If the DBCOMMIT= option is explicitly set, SAS/ACCESS fails any
update that has a WHERE clause.

Note: If you specify both DBCOMMIT= and ERRLIMIT=, and these options
collide during processing, then the commit is issued first and the rollback is issued
second. Because the commit (caused by the DBCOMMIT= option) is issued prior to
the rollback (caused by the ERRLIMIT= option), the DBCOMMIT= option is said
to override the ERRLIMIT= option in this situation. �

Default: 1,000 (inserting) or 0 (updating; commit occurs when data set or
procedure completes)

DBGEN_NAME=DBMS | SAS
specifies that the data source columns are renamed and the format the names will
follow.

DBMS
specifies that the data source columns are renamed to valid SAS variable
names. Disallowed characters are converted to underscores. If a column is
converted to a name that already exists, then a sequence number is appended
to the end of the new name.

SAS
specifies that data source columns are renamed to the format _COLn, where
n is the column number (starting with zero).

Default: DBMS

DBMAX_TEXT=n
specifies an integer between 1 and 32,767 that indicates the maximum length for a
character string. Longer character strings are truncated. This option only applies
when you are reading, appending, and updating character data in a Microsoft
Access database or Excel workbook from SAS.

Note: Although you may specify a value less than 256, it is not recommended
for reading data from Microsoft Access Database. �

14 LIBNAME Options for PC Files on Windows � Chapter 2

Default: 1,024

DBNULLKEYS=YES | NO
specifies column definitions.

YES
If there might be NULL values in the transaction table or the master table
for the columns that you specify in the DBKEY= option, use
DBNULLKEYS=YES. When you specify DBNULLKEYS=YES and specify a
column that is not defined as NOT NULL in the DBKEY= data set option,
SAS generates a WHERE clause that can find NULL values. For example, if
you specify DBKEY=COLUMN and COLUMN is not defined as NOT NULL,
SAS generates a WHERE clause with the following syntax:

WHERE ((COLUMN = ?) OR ((COLUMN IS NULL) AND (? IS NULL)))

This syntax enables SAS to prepare the statement once and use it for any
value (NULL or NOT NULL) in the column. Note that this syntax has the
potential to be much less efficient than the shorter form of the WHERE
clause (presented below).

NO
When you specify DBNULLKEYS=NO or specify a column that is defined as
NOT NULL in the DBKEY= option, SAS generates a simple WHERE clause.
If you know that there are no NULL values in the transaction table or the
master table for the columns that you specify in the DBKEY= option, then
you can use DBNULLKEYS=NO. If you specify DBNULLKEYS=NO and
specify DBKEY=COLUMN, SAS generates a shorter form of the WHERE
clause (regardless of whether or not the column specified in DBKEY= is
defined as NOT NULL):

WHERE (COLUMN = ?)

Default: YES

DBSASLABEL=COMPAT | NONE
specifies whether SAS/ACCESS saves the data source column names as SAS label
names. This option is valid only when you are reading data into SAS from the
data source.

COMPAT
specifies that the data source column names are saved as SAS label names.
This is compatible to the previous SAS releases.

NONE
specifes that the data source column names are not saved as SAS label
names. SAS label names are left as NULLs.

Default: COMPAT

DEFER=NO | YES
enables you to specify when the connection to the data source occurs.

NO
specifies that the connection to the data source occurs when the libref is
assigned by a LIBNAME statement.

YES
specifies that the connection to the data source occurs when a table in the
data source is opened.

Default: NO

DIRECT_SQL=YES | NO | NONE | specific-functionality

The LIBNAME Statement for PC Files on Windows � LIBNAME Options for PC Files on Windows 15

enables you to specify whether generated SQL is passed to the data source for
processing.

YES
specifies that, whenever possible, generated SQL, except multiple outer joins,
is passed to the data source for processing. This includes SQL that is
generated from PROC SQL, SAS functions that can be converted into data
source functions, joins, and WHERE clauses.

NO
specifies that generated SQL from PROC SQL is not passed to the data
source for processing. This is the same as specifying the specific-functionality
value NOGENSQL.

NONE
specifies that generated SQL is not passed to the data source for processing.
This includes SQL that is generated from PROC SQL, SAS functions that can
be converted into data source functions, joins, and WHERE clauses.

specific-functionality
identifies types of processing to be handled by SAS instead of the data source.
You can specify the following values:

NOFUNCTIONS
causes SAS to handle all SAS functions. The SAS functions are not
converted into data source functions and are not passed to the data
source for processing.

NOMULTOUTJOINS
causes SAS to process outer joins that involve more than two tables.
This option does not affect outer joins of two tables.

Note: This option is always turned ON for the Jet libname engine. �

NOGENSQL
prevents PROC SQL from generating SQL to be passed to the data
source for processing.

NOWHERE
prevents WHERE clauses from being passed to the data source for
processing. This includes SAS WHERE clauses and PROC SQL
generated or PROC SQL specified WHERE clauses.

Default: YES

INSERTBUFF=number-of-rows
specifies the number of rows for a multiple-rows insert. The value for
INSERTBUFF= must be a positive number. If the INSERTBUFF= value is greater
than the DBCOMMIT= value, the DBCOMMIT= value will override it.

Note: When you assign a value that is greater than INSERTBUFF=1, the SAS
application notes that indicate the success or failure of the insert operation might
be incorrect because these notes only represent information for a single insert,
even when multiple inserts are performed. �

Default: 1

READBUFF=number-of-rows
specifies the number of rows to use when you are reading data from a data source.
Setting a higher value for this option reduces I/O and increases performance, but
also increases memory usage. Additionally, if too many rows are read at once,
values returned to SAS might be out of date.

16 LIBNAME Options for PC Files on Windows � Chapter 2

Default: 1
Alias: ROWSET=

ROWSET_SIZE=

SCAN_TEXTSIZE= YES | NO
specifies whether to scan the length of text data for a data source column and use
the length of the longest string data found as the SAS column width.

YES
scans the length of text data for a data source column and use the length of
the longest string data found as the SAS variable width. However, if the
maximum length found is greater than what is specified in the
DBMAX_TEXT= option, the smaller value specified in DBMAX_TEXT= will
be applied as the SAS variable width.

For Microsoft Excel, this option applies to all character data type columns.
For Microsoft Access, this only applies to the MEMO data type field and does
not apply to the TEXT (less than 256 characters long) field.

NO
does not scan the length of text data for a data source column. The column
length returned from Microsoft Jet provider will be used as the SAS variable
width. However, if the returned column width is greater than what is
specified in the DBMAX_TEXT= option, the smaller value specified in
DBMAX_TEXT= will be applied as the SAS variable width.

Note: Specify SCANTEXT=NO when you need to update data in the
Microsoft Access database or Excel workbook. �

Default: YES for Microsoft Excel workbook
NO for Microsoft Access database

Alias: SCAN_TEXT=, SCANTEXT=, SCANMEMO=

SCAN_TIMETYPE=YES | NO
specifies whether to scan all row values for a DATETIME data type field and
automatically determine the TIME data type if only time values (that is, no date
or datetime values) exist in the column.

YES
specifies that a column with only time values will be assigned a TIME8.
format.

NO
specifies that a column with only time values will be assigned a DATE9.
format or DATETIME19 format. Please refer to USE_DATETYPE= option for
more information.

Default: NO
Alias: SCAN_TIME=, SCANTIME=

SPOOL=YES | NO
specifies whether SAS creates a utility spool file during read transactions that
read data more than once.

YES
specifies that SAS creates a utility spool file into which it writes the rows
that are read the first time. For subsequent passes through the data, the
rows are read from the utility spool file rather than being reread from the
data source table. This guarantees that the row set is the same for every
pass through the data.

NO

The LIBNAME Statement for PC Files on Windows � COMMAND_TIMEOUT= 17

specifies that the required rows for all passes of the data are read from the
data source table. No spool file is written. There is no guarantee that the row
set is the same for each pass through the data.

Default: YES

STRINGDATES=YES | NO
specifies whether datetime values are read from the data source as character
strings or as numeric date values. STRINGDATES= is not available as a data set
option.

YES
specifies that SAS/ACCESS reads datetime values as character strings.

NO
specifies that SAS/ACCESS reads datetime values as numeric date values.

Default: NO
Alias: STRDATES=

USE_DATETYPE=YES | NO
specifies whether to use DATE. format for datetime columns in the data source
table while importing data from Microsoft Access database or Excel workbook.

YES
specifies that the SAS DATE format is assigned for datetime columns in the
data source table.

NO
specifies that the SAS DATETIME format is assigned for datetime columns in
the data source table.

Default: YES for Microsoft Excel workbook
NO for Microsoft Access database

Alias: USE_DATE=, USEDATE=

Data Set Options for PC Files on Windows
You can specify SAS/ACCESS data set options on a SAS data set when you access PC

files data with the LIBNAME statement. A data set option applies only to the data set
on which it is specified, and it remains in effect for the duration of the DATA step or
procedure.

The following generic example illustrates the format of data set options:

LIBNAME libref engine-name;
PROC PRINT libref.data-set-name(DATA_SET_OPTION=value)

You can use the CNTLLEV=, DROP=, FIRSTOBS=, IN=, KEEP=, OBS=, RENAME=,
and WHERE= SAS data set options when you access PC files data. The REPLACE=
SAS data set option is not supported by SAS/ACCESS interfaces. For information about
using SAS data set options, refer to the SAS Language Reference: Dictionary.

Note: Specifying data set options in PROC SQL might reduce performance, because
it prevents operations from being passed to the data source for processing. �

COMMAND_TIMEOUT=
Specifies the number of seconds to wait before a command times out

18 CURSOR_TYPE= � Chapter 2

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)
Default value: LIBNAME option setting

Syntax
COMMAND_TIMEOUT=number-of-seconds

See Also
To assign this option to a group of tables, use the COMMAND_TIMEOUT= option

specified in “LIBNAME Options for PC Files on Windows” on page 11.

CURSOR_TYPE=

Specifies the cursor type for read-only and updatable cursors

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)
Default value: LIBNAME option setting

Syntax
CURSOR_TYPE=KEYSET_DRIVEN |STATIC

Syntax Description

KEYSET_DRIVEN
specifies that the cursor determines which rows belong to the result set when the
cursor is opened. However, changes that are made to these rows are reflected as you
move the cursor.

STATIC
specifies that the cursor builds the complete result set when the cursor is opened. No
changes made to the rows in the result set after the cursor is opened are reflected in
the cursor. Static cursors are read-only.

Details
By default, this option is not set and the Microsoft Jet provider uses a default. The
OLE DB properties applied to an open row set are as follows:

The LIBNAME Statement for PC Files on Windows � DBCOMMIT= 19

CURSOR_TYPE= OLE DB Properties Applied

KEYSET_DRIVEN
DBPROP_OTHERINSERT=FALSE,
DBPROP_OTHERUPDATEDELETE=TRUE

STATIC
DBPROP_OTHERINSERT=FALSE,
DBPROP_OTHERUPDATEDELETE=FALSE

See your OLE DB programmer reference documentation for details about these
properties.

See Also
To assign this option to a group of tables, use the CURSOR_TYPE= option specified

in “LIBNAME Options for PC Files on Windows” on page 11.

DBCOMMIT=

Enables you to issue a commit statement automatically after a specified number of rows have
been processed

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)

Default value: LIBNAME option setting

Syntax
DBCOMMIT=number-of-rows

Syntax Description

number-of-rows
is an integer greater than or equal to 0.

Details
DBCOMMIT= affects update, delete, and insert processing. The number of rows
processed includes rows that are not processed successfully. When DBCOMMIT=0, a
commit is issued only once (after the procedure or DATA step completes).

If the DBCOMMIT= option is explicitly set, SAS/ACCESS fails any update that has a
WHERE clause.

Note: If you specify both DBCOMMIT= and ERRLIMIT=, and these options collide
during processing, then the commit is issued first and the rollback is issued second.
Because the commit (caused by the DBCOMMIT= option) is issued prior to the rollback
(caused by the ERRLIMIT= option), the DBCOMMIT= option is said to override the
ERRLIMIT= option in this situation. �

20 DBCONDITION= � Chapter 2

Example

In the following example, a commit is issued after every 10 rows are inserted:

data myxls.dept(dbcommit=10);
set mysas.staff;

run;

See Also
To assign this option to a group of tables, use the DBCOMMIT= option specified in

“LIBNAME Options for PC Files on Windows” on page 11.

DBCONDITION=

Specifies criteria for subsetting and ordering data

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)
Default value: none

Syntax
DBCONDITION="SQL-query-clause"

Syntax Description

SQL-query-clause
is a data source specific SQL query clause, such as WHERE, GROUP BY, HAVING,
or ORDER BY.

Details
This option enables you to specify selection criteria in the form of data source specific
SQL query clauses, which the SAS/ACCESS engine passes directly to the data source
for processing. When selection criteria are passed directly to the data source for
processing, performance is often enhanced. The data source checks the criteria for
syntax errors when it receives the SQL query.

The DBKEY= option is ignored when you use DBCONDITION=.

DBCREATE_TABLE_OPTS=

Specifies data source specific syntax to be added to the CREATE TABLE statement

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)

The LIBNAME Statement for PC Files on Windows � DBFORCE= 21

Default value: LIBNAME option setting

Syntax
DBCREATE_TABLE_OPTS=’SQL-clauses’

Syntax Description

SQL-clauses
are one or more data source specific clauses that can be appended to the end of an
SQL CREATE TABLE statement.

Details
This option enables you to add data source specific clauses to the end of the SQL
CREATE TABLE statement. The SAS/ACCESS engine passes the SQL CREATE
TABLE statement and its clauses to the data source, which executes the statement and
creates the table.

See Also
To assign this option to a group of tables, use the DBCREATE_TABLE_OPTS= option

specified in “LIBNAME Options for PC Files on Windows” on page 11.

DBFORCE=

Specifies whether to force the truncation of data during insert processing

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)

Default value: NO

Syntax
DBFORCE=YES | NO

Syntax Description

YES
specifies that the rows that contain data values that exceed the length of the column
are inserted, and the data values are truncated to fit the column length.

NO
specifies that the rows that contain data values that exceed the column length are
not inserted.

22 DBGEN_NAME= � Chapter 2

Details
This option determines how the SAS/ACCESS engine handles rows that contain data
values that exceed the length of the column.

The SAS data set option FORCE= overrides this option when it is used with PROC
APPEND or the PROC SQL UPDATE statement. The PROC SQL UPDATE statement
does not provide a warning before truncating the data.

DBGEN_NAME=

Specifies whether to rename columns automatically when they contain characters that SAS does
not allow

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)

Default value: LIBNAME option setting

Syntax
DBGEN_NAME=DBMS | SAS

Syntax Description

DBMS
specifies that disallowed characters are converted to underscores.

SAS
specifies that columns that contain disallowed characters are converted into valid
SAS variable names, using the format _COLn, where n is the column number
(starting with zero). If a name is converted to a name that already exists, a sequence
number is appended to the end of the new name.

Details
SAS retains column names when reading data, unless a column name contains
characters that SAS does not allow, such as $ or @. SAS allows alphanumeric
characters and the underscore (_).

This option is intended primarily for National Language Support, notably the
conversion of Kanji to English characters because the English characters converted
from Kanji are often those that are not allowed in SAS. If you specify
DBGEN_NAME=SAS, a column named DEPT$AMT is renamed to _COLn where n is
the column number. If you specify DBGEN_NAME=DBMS, a column named
DEPT$AMT is renamed to DEPT_AMT.

See Also
To assign this option to a group of tables, use the DBGEN_NAME= option specified

in “LIBNAME Options for PC Files on Windows” on page 11.

The LIBNAME Statement for PC Files on Windows � DBLABEL= 23

DBKEY=

Improves performance when you are processing a join that involves a large data source table and
a small SAS data set (by specifying a column to use as an index)

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)

Default value: none

Syntax
DBKEY=(<’>column-1<’> <... <’>column-n<’>>)

Syntax Description

column
is the name of the column that forms the index on the data source table.

Details
When processing a join that involves a large data source table and a relatively small
SAS data set, you might be able to use DBKEY= to improve performance.

CAUTION:
Improper use of this option can harm performance. �

DBLABEL=

Specifies whether to use SAS variable labels as data source column names during output
processing

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)

Default value: NO

Syntax
DBLABEL=YES | NO

Syntax Description

YES
specifies that SAS variable labels are used as data source column names during
output processing.

24 DBMAX_TEXT= � Chapter 2

NO
specifies that SAS variable names are used as data source column names.

Details
This option is valid only for creating data source tables.

Note: Only up to 64 characters of SAS variable labels are written to Microsoft
Access or Microsoft Excel files. �

Example

In the following example, the SAS data set New is created with one variable C1. This
variable is assigned a label of DeptNum. In the second DATA step, the
MyDBLib.MyDept table is created by using DeptNum as the data source column name.
Setting DBLABEL=YES enables the label to be used as the column name.

data new;
label c1=’deptnum’;
c1=001;

run;

data mydblib.mydept(dblabel=yes);
set new;

run;

proc print data=mydblib.mydept;
run;

DBMAX_TEXT=

Determines the length of a very long data source character data type that is read into SAS or
written from SAS when you are using a SAS/ACCESS engine

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)

Default value: LIBNAME option setting

Syntax
DBMAX_TEXT= integer

Syntax Description

integer
is a number between 1 and 32,767.

The LIBNAME Statement for PC Files on Windows � DBNULL= 25

Details
This option applies to reading, appending, and updating rows in an existing table. It
does not apply when you are creating a table.

DBMAX_TEXT= is usually used with a very long character data type.

Note: Although you can specify a value less than 256, it is not recommended for
reading data from Microsoft Access Database. �

See Also
To assign this option to a group of tables, use the DBMAX_TEXT= option specified in

“LIBNAME Options for PC Files on Windows” on page 11.

DBNULL=

Indicates whether NULL is a valid value for the specified columns when a table is created

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)
Default value: YES

Syntax
DBNULL= (column-name-1=YES | NO <...column-name-n=YES | NO > |_ALL_=YES

| NO)

Syntax Description

YES
specifies that the NULL value is valid for the specified columns.

NO
specifies that the NULL value is not valid for the specified columns.

Details
This option is valid only for creating data source tables. If you specify more than one
column name, the names must be separated with spaces.

The DBNULL= option processes values from left to right, so if you specify a column
name twice, or if you use the _ALL_ value, the last value overrides the first value
specified for the column.

Note: This option is only supported by the Access engine and is not supported by
the Excel engine. �

Examples

In the following example, by using the DBNULL= option, the EmpId and Jobcode
columns in the new MyDBLib.MyDept2 table are prevented from accepting null values.

26 DBNULLKEYS= � Chapter 2

If the Employees table contains null values in the EmpId or Jobcode columns, the
DATA step fails.

data mydblib.mydept2(dbnull=(empid=no jobcode=no));
set mydblib.employees;

run;

In the following example, all columns in the new MyDBLib.MyDept3 table except for
the Jobcode column are prevented from accepting null values. If the Employees table
contains null values in any column other than the Jobcode column, the DATA step fails.

data mydblib.mydept3(dbnull=(_ALL_=no jobcode=YES));
set mydblib.employees;

run;

DBNULLKEYS=

Controls the format of the WHERE clause when you use the DBKEY= data set option

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)

Default value: LIBNAME setting

Syntax

DBNULLKEYS= YES | NO

Details

If there might be NULL values in the transaction table or the master table for the
columns that you specify in the DBKEY= option, then use DBNULLKEYS=YES. When
you specify DBNULLKEYS=YES and specify a column that is not defined as NOT
NULL in the DBKEY= data set option, SAS generates a WHERE clause that can find
NULL values. For example, if you specify DBKEY=COLUMN and COLUMN is not
defined as NOT NULL, SAS generates a WHERE clause with the following syntax:

WHERE ((COLUMN = ?) OR ((COLUMN IS NULL) AND (? IS NULL)))

This syntax enables SAS to prepare the statement once and use it for any value (NULL
or NOT NULL) in the column. Note that this syntax has the potential to be much less
efficient than the shorter form of the WHERE clause (presented below). When you
specify DBNULLKEYS=NO or specify a column that is defined as NOT NULL in the
DBKEY= option, SAS generates a simple WHERE clause.

If you know that there are no NULL values in the transaction table or the master
table for the columns that you specify in the DBKEY= option, you can use
DBNULLKEYS=NO. If you specify DBNULLKEYS=NO and specify
DBKEY=COLUMN, SAS generates a shorter form of the WHERE clause (regardless of
whether or not the column specified in DBKEY= is defined as NOT NULL):

WHERE (COLUMN = ?)

The LIBNAME Statement for PC Files on Windows � DBSASTYPE= 27

See Also
To assign this option to a group of tables, use the DBNULLKEYS= option specified in

“LIBNAME Options for PC Files on Windows” on page 11.

DBSASLABEL=

specifies whether SAS/ACCESS saves the data source’s column names as SAS label names

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)

Default value: COMPAT

Syntax
DBSASLABEL= COMPAT | NONE

Syntax Description

COMPAT
specifies that SAS/ACCESS saves the data source’s column names as SAS label
names. This is compatible to the previous SAS releases.

NONE
specifies that SAS/ACCESS does not save the data source’s column names as SAS
label names. SAS label names are left as NULLs.

Details
This option is valid only while you are reading data into SAS from the data source.

DBSASTYPE=

Specifies data type(s) to override the default SAS data type(s) during input processing of data

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)

Default value: none

Syntax
DBSASTYPE=(column-name-1=<’>SAS-data-type<’>

<...column-name-n=<’>SAS-data-type<’>>)

28 DBTYPE= � Chapter 2

Syntax Description

column-name
specifies a data source column name.

SAS-data-type
specifies a SAS data type. SAS data types include the following: CHAR(n),
NUMERIC, DATETIME, DATE, TIME.

Details
By default, SAS/ACCESS converts each data source data type to a SAS data type
during input processing. When you need a different data type, you can use this option
to override the default and assign a SAS data type to each specified data source column.
Some conversions might not be supported. If a conversion is not supported, SAS prints
an error to the log.

DBTYPE=

Specifies a data type to use instead of the default data source data type when SAS creates a data
source table

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)

Default value: none

Syntax
DBTYPE=(column-name-1=<’>data-source-type<’>

<...column-name-n=<’>data-source-type<’>>)

Syntax Description

column-name
specifies a data source column name.

data-source-type
specifies a data source data type. See the documentation for your SAS/ACCESS
interface for the default data types for your data source.

Details
By default, SAS/ACCESS converts each SAS data type to a predetermined data source
data type when outputting data to your data source. When you need a different data
type, use DBTYPE= to override the default data type chosen by the SAS/ACCESS
engine.

The LIBNAME Statement for PC Files on Windows � ERRLIMIT= 29

Examples

In the following example, DBTYPE= specifies the data types that are used when you
create columns in the table.

data mydblib.newdept(dbtype=(deptno=’double’ city=’char(25)’));
set mydblib.dept;

run;

See Also

“LIBNAME Statement Data Conversions for MDB Files” on page 169

“LIBNAME Statement Data Conversions for XLS Files” on page 152

ERRLIMIT=

Specifies the number of errors that are allowed before SAS stops processing and issues a rollback

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)

Default value: 1

Syntax
ERRLIMIT=integer

Syntax Description

integer
is a positive integer that represents the number of errors after which SAS stops
processing and issues a rollback.

Details
SAS calls the data source to issue a rollback after a specified number of errors occurs
during the processing of inserts, deletes, updates, and appends. If ERRLIMIT= is set to
0, SAS processes all rows, regardless of the number of errors that occur. The SAS log
displays the total number of rows processed and the number of failed rows, if applicable.

The DBCOMMIT= option overrides the ERRLIMIT= option. If you specify a value for
DBCOMMIT= other than zero, then rollbacks affected by the ERRLIMIT= option might
not include records that are processed unsuccessfully because they were already
committed by DBCOMMIT=.

Note: This option cannot be used from a SAS client session in a SAS/SHARE
environment. �

30 INSERT_SQL= � Chapter 2

Example

In the following example, SAS stops processing and issues a rollback to the data
source at the occurrence of the tenth error. The MyDBLib libref was assigned in a prior
LIBNAME statement.

data mydblib.employee3 (errlimit=10);
set mydblib.employees;
where salary > 40000;

run;

INSERT_SQL=

Determines the method that is used to insert rows into a data source

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)
Default value: LIBNAME option setting

Syntax
INSERT_SQL=YES | NO

Syntax Description

YES
specifies that the SAS/ACCESS engine uses the data source’s SQL insert method to
insert new rows into a table.

NO
specifies that the SAS/ACCESS engine uses an alternate (data source specific)
method to add new rows to a table.

See Also
To assign this option to a group of tables, use the INSERT_SQL= option specified in

“LIBNAME Options for PC Files on Windows” on page 11.

INSERTBUFF=

Specifies the number of rows in a single insert

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)
Default value: LIBNAME option setting

The LIBNAME Statement for PC Files on Windows � NULLCHAR= 31

Syntax

INSERTBUFF=number-of-rows

Syntax Description

number-of-rows
specifies the number of rows to insert. The value must be a positive integer.

Details

SAS allows the maximum number of rows that is allowed by the data source. The
optimal value for this option varies with factors such as network type and available
memory. You might need to experiment with different values to determine the best
value for your site.

When you assign a value that is greater than INSERTBUFF=1, the SAS application
notes that indicate the success or failure of the insert operation might be incorrect
because these notes only represent information for a single insert, even when multiple
inserts are performed.

If the DBCOMMIT= option is specified with a value that is less than the value of
INSERTBUFF=, then DBCOMMIT= overrides INSERTBUFF=.

Note: When you are inserting with the VIEWTABLE window or the FSEDIT or
FSVIEW procedure, use INSERTBUFF=1 to prevent the data source interface from
trying to insert multiple rows. These features do not support inserting more than one
row at a time. �

See Also

To assign this option to a group of tables, use the INSERTBUFF= option specified in
“LIBNAME Options for PC Files on Windows” on page 11.

NULLCHAR=

Indicates how SAS character missing values are handled during insert, update, and DBKEY=
processing

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)

Default value: SAS

Syntax

NULLCHAR= SAS | YES | NO

32 NULLCHARVAL= � Chapter 2

Syntax Description

SAS
indicates that character missing values in SAS data sets are treated as NULL values
if the data source allows them. Otherwise, character missing values are treated as
the NULLCHARVAL= value.

YES
indicates that character missing values in SAS data sets are treated as NULL values
if the data source allows them. Otherwise, an error is returned.

NO
indicates that character missing values in SAS data sets are treated as the
NULLCHARVAL= value (regardless of whether the data source allows NULLs for the
column).

Details
This option affects insert and update processing and also applies when you use the
DBKEY= option.

This option works in conjunction with the NULLCHARVAL= data set option, which
determines what is inserted when NULL values are not allowed.

All SAS numeric missing values (represented in SAS as ’.’) are treated by the data
source as NULLs.

NULLCHARVAL=

Defines the character string that replaces SAS character missing values during insert, update, and
DBKEY= processing

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)
Default value: a blank character

Syntax
NULLCHARVAL=’character-string’

Details
This option affects insert and update processing and also applies when you use the
DBKEY= option.

This option works with the NULLCHAR= option, which determines whether or not a
SAS character NULL value is treated as a NULL value.

If NULLCHARVAL= is longer than the maximum column width, one of the following
occurs:

� The string is truncated if DBFORCE=YES.
� The operation fails if DBFORCE=NO.

The LIBNAME Statement for PC Files on Windows � SASDATEFMT= 33

READBUFF=

Specifies the number of rows of data to read into the buffer

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)

Default value: LIBNAME option setting

Syntax
READBUFF=number-of-rows

Syntax Description

number-of-rows
is the maximum value that is allowed by the data source.

Details
This option improves performance by specifying a number of rows that can be held in
memory for input into SAS. Buffering data reads can decrease network activities and
increase performance. However, because SAS stores the rows in memory, higher values
for READBUFF= use more memory. In addition, if too many rows are selected at once,
then the rows that are returned to the SAS application might be out of date.

When READBUFF=1, only one row is retrieved at a time. The higher the value for
READBUFF=, the more rows the SAS/ACCESS engine retrieves in one fetch operation.

ROWSET_SIZE is an alias for this option.

See Also
To assign this option to a group of tables, use the READBUFF= option specified in

“LIBNAME Options for PC Files on Windows” on page 11.

SASDATEFMT=

Changes the SAS date format of a data source column

Valid in: DATA and PROC steps (when accessing PC files data using SAS/ACCESS
software)

Default value: none

Syntax
SASDATEFMT=(data-source-date-column-1=’SAS-date-format’

<... data-source-date-column-n=’SAS-date-format’>)

34 SASDATEFMT= � Chapter 2

Syntax Description

data-source-date-column
specifies the name of a date column in a data source table.

SAS-date-format
specifies a SAS date format that has an equivalent (like-named) informat. For
example, DATETIME21.2 is both a SAS format and a SAS informat, so it is a valid
value for the SAS-date-format argument.

Details
If the date format of a SAS column does not match the date format of the corresponding
data source column, you must convert the SAS date values to the appropriate data
source date values. The SASDATEFMT= option enables you to convert date values from
the default SAS date format to another SAS date format that you specify.

Use the SASDATEFMT= option to prevent date type mismatches in the following
circumstances:

� during input operations to convert data source date values to the correct SAS
DATE, TIME, or DATETIME values

� during output operations to convert SAS DATE, TIME, or DATETIME values to
the correct data source date values.

If the SAS date format and the data source date format match, this option is not
needed.

The default SAS date format is data source specific and is determined by the data
type of the data source column. See the documentation for your SAS/ACCESS interface.

Note: For non-English date types, SAS automatically converts the data to the SAS
type of NUMBER. The SASDATEFMT= option does not currently handle these date
types, but you can use a PROC SQL view to convert the data source data to a SAS date
format as you retrieve the data, or use a format statement in other contexts. �

35

C H A P T E R

3
The Pass-Through Facility for
PC Files on Windows

Overview of the Pass-Through Facility for PC Files 35
Syntax for the Pass-Through Facility for PC Files 36

Return Codes 36

Example 36

Special Jet Queries 45

Examples 47
Special Jet Commands 47

Examples 47

Overview of the Pass-Through Facility for PC Files
The SQL procedure implements the Structured Query Language (SQL) for SAS. See

the SQL procedure topic in Base SAS Procedures Guide for information about PROC
SQL. You can send data source specific SQL statements directly to a data source using
an extension to the SQL procedure called the Pass-Through Facility.

This facility uses SAS/ACCESS to connect to a data source and to send statements
directly to the data source for execution. This facility is an alternative to the
SAS/ACCESS LIBNAME statement. It enables you to use the SQL syntax of your data
source, and it supports any non-ANSI standard SQL that is supported by your data
source.

The Pass-Through Facility enables you to do the following:
� establish and terminate connections with a data source using the facility’s

CONNECT and DISCONNECT statements
� send dynamic, non-query, data source specific SQL statements to a data source

using the facility’s EXECUTE statement
� retrieve data directly from a data source using the facility’s CONNECTION TO

component in the FROM clause of a PROC SQL SELECT statement.

You can use Pass-Through Facility statements in a PROC SQL query or you can
store them in a PROC SQL view. When you create a PROC SQL view, any arguments
that you specify in the CONNECT statement are stored with the view. Therefore, when
the view is used in a SAS program, SAS can establish the appropriate connection to the
data source.

36 Syntax for the Pass-Through Facility for PC Files � Chapter 3

Syntax for the Pass-Through Facility for PC Files
This section presents the syntax for the Pass-Through Facility statements and the

CONNECTION TO component, which can be used in conjunction with the PROC SQL
SELECT statement to query data from a data source.

PROC SQL <options-list>;

CONNECT TO data-source-name <AS alias> <(<connect-statement-arguments>
<database-connection-arguments>)>;

DISCONNECT FROM data-source-name | alias;

EXECUTE (data-source-specific-SQL-statement) BY data-source-name | alias;

SELECT column-list FROM CONNECTION TO data-source-name | alias
(data-source-query)

Return Codes
As you use the PROC SQL statements that are available in the Pass-Through

Facility, any error conditions are written to the SAS log. The Pass-Through Facility
generates return codes and messages that are available to you through the following
two SAS macro variables:

SQLXRC
contains the data source return code that identifies the data source error.

SQLXMSG
contains descriptive information about the data source error that is generated by
the data source.

The contents of the SQLXRC and SQLXMSG macro variables are printed in the SAS
log using the %PUT macro. They are reset after each Pass-Through Facility statement
has been executed.

Example
To connect to an Excel file and query the INVOICE table (range) within the Excel

workbook:

PROC SQL DQUOTE=ANSI;
CONNECT TO EXCEL (PATH="c:\sasdemo\sasdemo.xls");
SELECT * FROM CONNECTION TO EXCEL

(SELECT * FROM INVOICE);
DISCONNECT FROM EXCEL;
QUIT;

The Pass-Through Facility for PC Files on Windows � CONNECT Statement 37

CONNECT Statement

Establishes a connection with the data source

Valid in: PROC SQL steps

Syntax
CONNECT TO data-source-name <AS alias> <(<connect-statement-arguments>

<database-connection-arguments>)>;

Arguments
data-source-name

identifies the data source to which you want to connect, such as ACCESS for
Microsoft Access or EXCEL for Microsoft Excel. You may also specify an optional
alias in the CONNECT statement.

alias
specifies an optional alias for the connection that has 1 to 32 characters. If you
specify an alias, the keyword AS must appear before the alias. If an alias is not
specified, the data source name is used as the name of the Pass-Through
connection.

connect-statement-arguments
specifies arguments that indicate whether you can make multiple connections,
shared or unique connections, and so on to the database. These arguments are
optional.

database-connection-arguments
specifies the data source specific arguments that are needed by PROC SQL to
connect to the data source. These arguments are not required and the default
behavior opens a dialog box.

Database Connection Arguments
The arguments that are listed below are available with the Pass-Through Facility for
PC files. These arguments extend some of the LIBNAME statement connection
management features to the Pass-Through Facility.

DBPASSWORD="database-file-password"
enables you to access your file if you have database-level security set in your MDB
file. A database password is case-sensitive and is defined in addition to user-level
security.

Note: This connection option is only for Microsoft Access. �

DBSYSFILE="workgroup-information-file"
contains information about the users in a workgroup based on information that
you define for you Microsoft Access database. Any user and group accounts or
passwords you create are saved in the new workgroup information file.

Note: This connection option is only for Microsoft Access. �

38 CONNECT Statement � Chapter 3

HEADER=YES | NO
determines whether the first row of data in an Excel range (or spreadsheet) is
column names when you are reading data from the Excel file.

YES specifies to use the first row of data in an Excel range (or
spreadsheet) as column names when you are reading data from
the Excel file.

NO specifies to not use the first row of data as column names in an
Excel range (or spreadsheet) when you are reading data from
the Excel file.

Note: This connection option is only for Microsoft Excel. �

INIT= "connection-string"
specifies an initialization string (that is, a connection string) when connecting to a
data source.

MIXED=YES | NO
specifies whether to convert numeric data values into character data values for a
column with mixed data types. This option is valid only when you are importing
data from Excel.

Aliases: MIXED_DATA=, MIXED_DATATYPE=.

YES specifies that the engine assigns a SAS character type for the
column and convert all numeric data values to character data.

NO specifies that numeric data is imported as missing values in a
character column (default).

Note: The use of MIXED= option causes the Excel workbook to be locked in
READONLY mode. No update is possible until the libref is deassigned. This
option is not valid for accessing data in Microsoft Access database. �

PASSWORD="user-password"
specifies a password for the user account. A password can be 1 to 14 characters
long and can include any characters except ASCII character 0 (null). Passwords
are case-sensitive.

Note: This connection option is only for Microsoft Access. �

PATH="path-for-file"
specifies the data source file location for the Microsoft Access database file or
Microsoft Excel workbook file.

PROMPT=YES | NO |REQUIRED | NO PROMPT | PROMPT | UDL
determines whether you will be prompted for connection information to supply to
the data source information.

YES enables you to be prompted with the Data Link Properties
window.

NO does not enable you to be prompted with a window, and
requires you to specify the physical-filename.

REQUIRED enables you to connect without prompting for more information
only if a valid physical filename is specified for a successful
connection. Otherwise, you are prompted for the connection
options with a window that enables you to change the data
source file and other properties.

NOPROMPT disables the prompt of the Data Link Properties window.

The Pass-Through Facility for PC Files on Windows � CONNECT Statement 39

PROMPT enables you to be prompted for connection information to
supply the data source information.

UDL enables you to browse and select an existing data link file (.udl).

Note: This statement also applies to the INIT= and UDL=
options. �

UDL="path-for-udl-file"
specifies the path and filename for a UDL (a Microsoft data link file). For example,
you could specify

UDL_FILE="C:\WinNT\profiles\me\desktop\MyDBLink.udl’’;
%put %superq(SYSDBMSG);

This option does not support SAS filerefs. The macro variable SYSDBMSG is
set on successful completion. For more information, see Microsoft’s documentation
on the data link API.

USER="user-ID"
specifies a default user account name. The default value is Admin. User names
can be 1 to 20 characters long and can include alphabetic characters, accented
characters, numbers, and spaces. If you have user-level security set in your MDB
file, you need to use this option and the PASSWORD= option to be able to access
your file.

Note: This connection option is only for Microsoft Access. �

VERSION=2002 | 2000 | 97 | 95 | 5
sets the version of Microsoft Excel. The default value is 97.

Note: This connection option is only for Microsoft Excel. �

2002 sets the version of Microsoft Excel to 2002.

2000 sets the version of Microsoft Excel to 2000.

97 sets the version of Microsoft Excel to 97.

95 sets the version of Microsoft Excel to 95.

5 sets the version of Microsoft Excel to 5.

CONNECT Statement Arguments
The arguments that are listed below are available with the Pass-Through Facility
CONNECT statement for PC files. These arguments extend some of the LIBNAME
statement connection management features to the Pass-Through Facility.

AUTOCOMMIT=YES | NO
determines whether the ACCESS engine commits (saves) updates as soon as the
user submits them.

YES
specifies that updates are committed (that is, saved) to table as soon as they
are submitted, and no rollback is possible.

NO
specifies that the SAS/ACCESS engine automatically performs the commit
when it reaches the end of the file.

Default: YES

Note: The default value for this option is different from the LIBNAME
option. �

40 CONNECT Statement � Chapter 3

COMMAND_TIMEOUT=number-of-seconds
specifies the number of seconds that pass before a data source command times out.
Default: 0 (no timeout)
Alias: TIMEOUT=

CONNECTION= SHARED | GLOBAL
specifies whether multiple CONNECT statements for a data source can use the
same connection. The CONNECTION= option enables you to control the number
of connections, and therefore transactions, that your SAS/ACCESS engine executes
and supports for each CONNECT statement.

SHARED
specifies that the CONNECT statement makes one connection to the DBMS.
Only Pass-Through statements that use this alias share the connection.

GLOBAL
specifies that multiple CONNECT statements can share the same connection
to the DBMS if they use identical values for CONNECTION=,
CONNECTION_GROUP=, and any database connection arguments.

Default: SHARED

CONNECTION_GROUP= connection-group
causes operations against multiple librefs to share a connection to the data source.
Also causes operations against multiple Pass-Through Facility CONNECT
statements to share a connection to the data source.

CURSOR_TYPE=KEYSET_DRIVEN | STATIC
specifies the cursor type for read-only and updatable cursors.

KEYSET_DRIVEN
specifies that the cursor determines which rows belong to the result set when
the cursor is opened. However, changes that are made to these rows are
reflected as you move the cursor. The OLE DB property
DBPROP_OTHERUPDATEDELETE is set as TRUE for keyset cursors and
FALSE for static cursors.

STATIC
specifies that the complete result set is built when the cursor is opened, but
no changes made to the result set will be reflected in the cursor. Static
cursors are read-only.

Default: none
Alias: CURSOR=

DBGEN_NAME=DBMS | SAS
specifies that the data source columns are renamed, and specifies the format that
the new names will follow.

DBMS
specifies that the data source columns are renamed to valid SAS variable
names. Disallowed characters are converted to underscores. If a column is
converted to a name that already exists, then a sequence number is appended
to the end of the new name.

SAS
specifies that data source columns are renamed to the format _COLn, where
n is the column number (starting with zero).

Default: DBMS

DBMAX_TEXT=n

The Pass-Through Facility for PC Files on Windows � CONNECT Statement 41

specifies an integer between 1 and 32,767 that indicates the maximum length for a
character string. Longer character strings are truncated. This option only applies
when you are reading, appending, and updating Microsoft Access or Excel
character data from SAS.

Note: Although you can specify a value less than 256, it is not recommended. �
Default: 1,024

DEFER=NO | YES
enables you to specify when the connection to the data source occurs.

NO
specifies that the connection to the data source occurs when the libref is
assigned by a LIBNAME statement.

YES
specifies that the connection to the data source occurs when a table in the
data source is opened.

Default: NO

READBUFF=number-of-rows
specifies the number of rows to use when you are reading data from a data source.
Setting a higher value for this option reduces I/O and increases performance, but
also increases memory usage. Additionally, if too many rows are read at once,
values returned to SAS might be out of date.
Default: 1
Alias: ROWSET=

ROWSET_SIZE=

STRINGDATES=YES | NO
specifies whether datetime values are read from the data source as character
strings or as numeric date values. STRINGDATES= is not available as a data set
option.

YES
sepcifies that SAS/ACCESS reads datetime values as character strings.

NO
specifies that SAS/ACCESS reads datetimes values as numeric date values.

Default: NO
Alias: STRDATES

USE_DATETYPE=YES | NO
specifies whether to use DATE. format for date/time columns/fields in the data
source table while importing data from Microsoft Access database or Excel
workbook.

YES
specifies that SAS DATE format is assigned for datetime columns in the data
source table.

NO
specifies SAS DATETIME format is assigned for datetime columns in the
data source table.

Default: NO
Alias: STRDATES

Details
The CONNECT statement establishes a connection with the data source. You establish
a connection to send data source specific SQL statements to the data source or to

42 DISCONNECT Statement � Chapter 3

retrieve data source data. The connection remains in effect until you issue a
DISCONNECT statement or terminate the SQL procedure.

To connect to a data source using the Pass-Through Facility, complete the following
steps:

1 Initiate a PROC SQL step.

2 Use the Pass-Through Facility’s CONNECT statement, identify the data source
(such as Microsoft Access or Excel), and (optionally) assign an alias.

3 Specify any arguments needed to connect to the database.

4 Specify any attributes for the connection.

The CONNECT statement is optional for some data sources. However, if it is not
specified, the default values for all of the database connection arguments are used.

Any return code or message that is generated by the data source is available in the
macro variables SQLXRC and SQLXMSG after the statement executes. See “Return
Codes” on page 36 for more information about these macro variables.

Example

The following example uses the CONNECT statement with PATH= option to connect
to the Microsoft Access database file, c:/demo.mdb:

proc sql;
connect to access as db (path="c:\demo.mdb");

DISCONNECT Statement

Terminates the connection to the data source

Valid in: PROC SQL steps

Syntax
DISCONNECT FROM data-source-name | alias

Arguments
data-source-name

specifies the data source from which you want to disconnect. You can use an alias
in the DISCONNECT statement. The DISCONNECT statement’s data source
name or alias must match the name or alias that you specified in the CONNECT
statement.

alias
specifies an alias that was defined in the CONNECT statement.

Details
The DISCONNECT statement ends the connection with the data source. If the
DISCONNECT statement is omitted, an implicit DISCONNECT is performed when

The Pass-Through Facility for PC Files on Windows � EXECUTE Statement 43

PROC SQL terminates. The SQL procedure continues to execute until you submit a
QUIT statement, another SAS procedure, or a DATA step.

Any return code or message that is generated by the data source is available in the
macro variables SQLXRC and SQLXMSG after the statement executes. See “Return
Codes” on page 36 for more information about these macro variables.

Example

The following example, after the connection and SQL processing uses the
DISCONNECT statement to disconnect the connection from the database, and uses the
QUIT statement to quit the SQL procedure:

disconnect from db;
quit;

EXECUTE Statement

Sends data source specific, non-query SQL statements to the data source

Valid in: PROC SQL steps

Syntax
EXECUTE (data-source-specific-SQL-statement) BY data-source-name | alias;

Arguments
(data-source-specific-SQL-statement)

a dynamic nonquery, data source specific SQL statement. This argument is
required and must be enclosed in parentheses. However, the SQL statement
cannot contain a semicolon because a semicolon represents the end of a statement
in SAS. The SQL statement can be case-sensitive, depending on your data source,
and it is passed to the data source exactly as you type it.

Any return code or message that is generated by the data source is available in
the macro variables SQLXRC and SQLXMSG after the statement executes. See
“Return Codes” on page 36 for more information about these macro variables.

data-source-name
identifies the data source to which you direct the data source specific SQL
statement. The keyword BY must appear before the data-source-name argument.
You must specify either the data source name or an alias.

alias
specifies an alias that was defined in the CONNECT statement. (You cannot use
an alias if the CONNECT statement was omitted.)

Details
The EXECUTE statement sends dynamic nonquery, data source specific SQL
statements to the data source and processes those statements.

44 CONNECTION TO Component � Chapter 3

The EXECUTE statement cannot be stored as part of a Pass-Through Facility query
in a PROC SQL view.

Useful Statements to Include in EXECUTE Statements
You can pass the following statements to the data source by using the Pass-Through
Facility’s EXECUTE statement.

CREATE
creates a data source table, view, index, or other data source object, depending on
how the statement is specified.

DELETE
deletes rows from a data source table.

DROP
deletes a data source table, view, or other data source object, depending on how
the statement is specified.

INSERT
adds rows to a data source table.

UPDATE
modifies the data in the specified columns of a row in a data source table.

For more information about these and other SQL statements, see the SQL
documentation for your data source.

Example
The following example, after the connection, uses the EXECUTE statement to drop a
table, create a table, and insert a row of data:

execute(drop table ’My Invoice’) by db;
execute(create table ’My Invoice’(
’Invoice Number’ LONG not null,
’Billed To’ VARCHAR(20),
’Amount’ CURRENCY,
’BILLED ON’ DATETIME)) by db;
execute(insert into ’My Invoice’
values(12345, ’John Doe’, 123.45, #11/22/2003#)) by db;

CONNECTION TO Component
Retrieves and uses data source data in a PROC SQL query or view

Valid in: PROC SQL step SELECT statements

Syntax
CONNECTION TO data-source-name<AS alias>< (database-connection-options)>

Arguments
data-source-name

The Pass-Through Facility for PC Files on Windows � Special Jet Queries 45

identifies the data source (Microsoft Access or Excel) to which you direct the data
source specific SQL statement.

alias
specifies an alias, if one was defined in the CONNECT statement.

Details
The CONNECTION TO component specifies the data source connection that you want
to use or that you want to create (if you have omitted the CONNECT statement).
CONNECTION TO then enables you to retrieve data source data directly through a
PROC SQL query.

You use the CONNECTION TO component in the FROM clause of a PROC SQL
SELECT statement:

SELECT column-list

FROM CONNECTION TO data source-name (data source-query);

CONNECTION TO can be used in any FROM clause, including those in nested
queries (that is, in subqueries).

You can store a Pass-Through Facility query in a PROC SQL view and then use that
view in SAS programs. When you create a PROC SQL view, any options that you
specify in the corresponding CONNECT statement are stored too. Thus, when the
PROC SQL view is used in a SAS program, SAS can establish the appropriate
connection to the data source.

Because external data sources and SAS have different naming conventions, some
data source column names might be changed when you retrieve data source data
through the CONNECTION TO component.

Example

The following example, after the connection, uses the CONNECTION TO component
to query a table or a subtable:

select * from connection to db(select * from ’my invoice’);
select * from connection to db
(select ’Invoice Number’, Amount from ’my invoice’);

Special Jet Queries

SAS/ACCESS software for PC Files supports a number of special queries that return
information such as available tables, columns, and procedures.

The general format of the special queries is the following:

JET::schema-rowset<"parameter-1",.....,"parameter-n">

where

JET::
is required to distinguish special queries from regular queries.

schema-rowset
is the specific schema rowset that is being called. The valid schema rowsets are
listed below.

46 Special Jet Queries � Chapter 3

"parameter-n"
is a quoted string. Parameters are separated from one another by commas. All
parameters are optional, but the parentheses must be included. If you specify
some, but not all, parameters within an argument, use commas to indicate the
omitted parameters.

The following special queries are supported:

JET::CHECK_CONSTRAINTS
returns the check constraints that are defined in the database file.

JET::COLUMNS <“table-name”, “column-name”>
returns the columns of the tables that are defined in the database file.

JET::CONSTRAINT_COLUMN_USAGE <“table-name”, “column-name”>
returns the columns that are used by referential constraints, unique constraints,
check constraints, and assertions that are defined in the database file.

JET::FOREIGN_KEYS <“primary-key-table-name”, “foreign-key-table-name”>
returns the foreign key columns that are defined in the database file.

JET::INDEXES <“index-name”, “table-name”>
returns the indexes that are defined in the database file.

JET::KEY_COLUMN_USAGE <“constraint-name”, “table-name”, “column-name”>
returns the key columns that are defined in the database file.

JET::PRIMARY_KEYS <“table-name”">
returns the primary key columns that are defined in the database file.

JET::PROCEDURES <“procedure-name”>
returns the procedures that are defined in the database file.

JET::PROVIDER_TYPES
returns information on the base data types that are supported by the Jet data
provider.

JET::REFERENTIAL_CONSTRAINTS <“constraint-name”>
returns the referential constraints that are defined in the database file.

JET::STATISTICS <“table-name”>
returns the statistics that are defined in the database file.

JET::TABLE_CONSTRAINTS <“constraint-name”, “table-name”, “constraint-type”>
returns the table constraints that are defined in the database file.

JET::TABLES <“table-name”, “table-type”>
returns the tables that are defined in the database file.

JET::VIEWS <“table-name”>
returns the viewed tables that are defined in the database file.

The Pass-Through Facility for PC Files on Windows � Examples 47

Examples
The following example retrieves a rowset that displays all of the tables in the

NorthWind database:

proc sql;
connect to access (path="c:\NorthWind.mdb");
select * from connection to access(jet::tables);

quit;

In the following example, you retrieve the information of all the data types supported
by the Jet provider for Microsoft Access:

proc sql;
connect to access (path="c:\NorthWind.mdb");
select * from connection to access(jet::provider_types);

quit;

Special Jet Commands
Microsoft Access and Microsoft Excel engines support several special commands in

the Pass-Through Facility.
The general format of the special command is the following:

JET::command

where

JET::
is required to distinguish special queries from regular queries.

The following special commands are supported:

JET::COMMIT
commits the transaction.

JET::ROLLBACK
causes a rollback in the transaction.

JET::AUTOCOMMIT
sets the COMMIT mode to AUTO and commits the transaction immediately.

JET::NOAUTOCOMMIT
sets the COMMIT mode to MANUAL. When the COMMIT mode is set to
MANUAL, you must issue a COMMIT or ROLLBACK command to commit or
rollback the transaction.

Examples
The following example specifies the AUTOCOMMIT=NO connection option.

Note: Although the examples below state that they are Microsoft Access, the syntax
is the same for both Microsoft Access and Microsoft Excel. �

48 Examples � Chapter 3

proc sql;
connect to access(path="d:\dbms\access\test.mdb" autocommit= no);

execute(create table x (c1 int)) by access;
execute(insert into x values(1)) by access;

/* To commit the table create and insert ; */
execute(jet::commit) by access;

execute(insert into x values(2)) by access;
/* To rollback the previous insert ; */

execute(jet::rollback) by access;

execute(jet::autocommit) by access;
/* the insert is automatically committed, you cannot rollback the insert. */

execute(insert into x values(3)) by access;

/* you should have a table created with 2 rows. */
disconnect from access; quit;

49

C H A P T E R

4
The Import/Export Wizard and
Procedures

Import/Export Overview for PC Files 49
Import/Export Wizard 50

IMPORT and EXPORT Procedures 54

IMPORT Procedure 55

Example: Importing a Microsoft Access File 55

Example: Importing a Table from a Microsoft Excel Workbook File 55
Example: Importing a Locally available JMP File (Running SAS on UNIX) 56

EXPORT Procedure 56

Example: Exporting a Delimited File 56

Example: Exporting a Table to a Microsoft Excel File on a PC Server 57

Example: Exporting a Locally Available JMP File 57

Import/Export Overview for PC Files
This section introduces the Import/Export wizard and procedures for PC Files. For

comprehensive documentation about these features, see Base SAS Procedures Guide.
The “Import/Export Wizard” on page 50 and the “IMPORT and EXPORT Procedures”

on page 54 enable you to read and write data between SAS data sets and external PC
files. The wizard and procedures have similar capabilities; the wizard is a
point-and-click interface and the procedures are code-based. The wizard does not
provide the ability to specify data set options (for example, DROP, KEEP, and WHERE.)

These wizard and procedures are available under the following operating
environments:

Table 4.1 Availability of the Import/Export Wizard and Procedures

Operating Environment File Formats

Windows 2000, XP, NT dBASE DBF (III, III PLUS, IV, or 5.0)

Microsoft Access (97, 2000, or 2002)

Microsoft Excel (4, 5, 95, 97, 2000, or 2002)

Lotus 1-2-3 (1, 3, or 4)

delimited

JMP

OpenVMS Alpha delimited

Note: The Import/Export wizard and procedures are part of Base SAS software. If
you do not have a license to SAS/ACCESS software for PC Files, however, you can only
access CSV, TXT, and delimited files. �

50 Import/Export Wizard � Chapter 4

Import/Export Wizard
The Import/Export wizard guides you through the importing or exporting process.

See Table 4.1 on page 49 for a list of file formats supported under your operating
environment.

To invoke the Import/Export wizard, from the SAS windowing environment, select
File and then either Import Data or Export Data. Detailed information about using
the wizard is available from the Help button.

The Import wizard enables you to read data from an external data source and write
it to a SAS data set. External data sources can include Microsoft Access files, Microsoft
Excel files, DIF files, DBF files, JMP files, or delimited files, which are files containing
columns of data values that are separated by a delimiter such as a blank or a comma.
The following displays show the steps of the Import wizard under Windows NT.

1 Select the type of files you are importing.

Display 4.1 Import Wizard: Select Import Type

2 Locate the Input File (Excel workbook in this case).

Display 4.2 Import Wizard: Import an Excel File

The Import/Export Wizard and Procedures � Import/Export Wizard 51

3 Select the table range or worksheet from which to import data.

Display 4.3 Import Wizard: Select Table

4 Select a location to store the imported file.

Display 4.4 Import Wizard: SAS destination

52 Import/Export Wizard � Chapter 4

5 Save the generated PROC IMPORT code. (Optional)

Display 4.5 Import Wizard: Save Generated Code

The Export wizard reads data from a SAS data set and writes it to an external file
source. The following display shows an example of the Export wizard under Windows.

1 Select the SAS data set from which you want to export data.

Display 4.6 Export Wizard: Select Library and Member

2 Select the type of data source to which you want to export files.

The Import/Export Wizard and Procedures � Import/Export Wizard 53

Display 4.7 Export Wizard: Select Export Type

3 Assign the output file.

Display 4.8 Export Wizard: Assign Output File (Excel Workbook)

4 Assign the table name (in Excel, sheet name).

Display 4.9 Export Wizard: Name Table

5 Save the generated PROC EXPORT code. (Optional)

54 IMPORT and EXPORT Procedures � Chapter 4

Display 4.10 Export Wizard: Save Generated Code

From the primary window of the Import/Export wizard, you can also access the
External File Interface (EFI). EFI is a point-and-click interface that enables you to read
and write data in a file type that is not known to the Import/Export wizard. For
example, you could use EFI to transfer data from a SAS data set to a file format that is
proprietary for your company. Detailed information about using EFI is available from
the Help button. The following display shows you how to access EFI from the Import
wizard.

Display 4.11 Accessing the External File Interface

IMPORT and EXPORT Procedures

Like the “Import/Export Wizard” on page 50, the IMPORT and EXPORT procedures
transfer data between SAS and external data sources. These external data sources can
include tables, PC files, spreadsheets, and delimited external files, which are files
containing columns of data values that are separated by a delimiter such as a blank or
a comma.

The Import/Export Wizard and Procedures � IMPORT Procedure 55

IMPORT Procedure
The syntax for the IMPORT procedure is shown here briefly but is described in detail

in the Base SAS Procedures Guide. See “Import/Export Overview for PC Files” on page
49 for a list of file formats supported under your operating environment.

PROC IMPORT
DATAFILE=“filename” | TABLE=“tablename”
OUT=<libref.> SAS-data-set <(SAS-data-set-options)>
<DBMS=identifier><REPLACE>;

<data-source-statements>;

After you invoke the IMPORT procedure, it reads the input file and writes the data to
a SAS data set, where the names of the SAS variables are based on the column names
of the input data. PROC IMPORT imports the data by one of the following methods:

� generated DATA step code
� generated SAS/ACCESS code
� translation engines.

You control the results with options and statements that are specific to your input
data source. PROC IMPORT produces the specified SAS data set and writes
information about the import to the SAS log. In the log, you see the DATA step or the
SAS/ACCESS code that is generated by PROC IMPORT. If a translation engine is used,
then the code is not submitted.

Example: Importing a Microsoft Access File
This example imports a Microsoft Access table called customers and from it creates a

permanent SAS data set named sasuser.cust. The Microsoft Access table has user-level
security and, therefore, you need to specify the following statements: PWD=, UID=, and
WGDB=.

PROC IMPORT DBMS=ACCESS TABLE="customers" OUT=sasuser.cust;
DATABASE="c:\demo\customers.mdb";
UID="bob"; /* Microsoft Access Database User ID */
PWD="cat"; /* Microsoft Access Database Password */
WGDB="c:\winnt\system32\system.mdb"; /* Workgroup Administrator Database */

RUN;
proc print data=sasuser.cust;
run;

Note: See the Base SAS Procedures Guide for restrictions, interactions, and tips
about PROC IMPORT. �

Example: Importing a Table from a Microsoft Excel Workbook File
This example imports a sheet (Invoice) in a Microsoft Excel workbook (sasdemo.xls),

and from it creates a permanent SAS data set named work.invoice.

PROC IMPORT DBMS=EXCEL OUT= work.invoice
DATAFILE= "c:\excel\sasdemo.xls" REPLACE ;

VERSION=’2002’; /* Excel File Version */
SHEET="Invoice"; /* Sheet name */
GETNAMES=YES; /* Use the first row of data as column names */
SCANTEXT=YES; /* Scan all rows of data for the largest size */

56 EXPORT Procedure � Chapter 4

USEDATE=YES; /* Use DATE format for date/time columns */
SCANTIME=YES; /* Scan and identify time columns */
DBSASLABEL=NONE; /* Leave SAS label names to be nulls */
TEXTSIZE=512; /* largest text size allowed */

RUN;

Note: See the Base SAS Procedures Guide for restrictions, interactions, and tips
about PROC IMPORT. �

Example: Importing a Locally available JMP File (Running SAS on UNIX)
This example imports a JMP file that is located on a local drive.

proc import dbms=jmp out=bicycle
datafile="/jmp/stored/here/bicycle.jmp";

run;

proc print data=bicycle;
run;

Note: See the Base SAS Procedures Guide for restrictions, defaults, requirements,
and limitations of PROC IMPORT. �

EXPORT Procedure
The syntax for the EXPORT procedure is shown here briefly but is described in detail

in the Base SAS Procedures Guide. See “Import/Export Overview for PC Files” on page
49 for a list of file formats supported under your operating environment.

PROC EXPORT
DATA=<libref.>SAS-data-set <(SAS-data-set-options)>
OUTFILE=“filename” | OUTTABLE=“tablename”
<DBMS=identifier> <REPLACE>;

The EXPORT procedure reads data from a SAS data set and exports it to an external
data source by using one of the following methods:

� generated DATA step code
� generated SAS/ACCESS code
� translation engines.

PROC EXPORT also controls the results with options and statements that are specific
to the output data source.

Example: Exporting a Delimited File
The following example exports a SAS data set named myfile.class and creates a

delimited external file called Class. Notice that the DELIMITER= statement specifies
the ampersand (&) delimiter to separate the column names in the new file. This
example is repeated from the Base SAS Procedures Guide; see it for the SAS log.

proc export data=myfiles.class
outfile="/myfiles/class"
dbms=dlm;
delimiter=’&’;

run;

The Import/Export Wizard and Procedures � EXPORT Procedure 57

The following code shows the first five rows of the external file that PROC EXPORT
produces:

NAMES&SEX&AGE&HEIGHT&WEIGHT
Alice&F&13&56.5&84
Becka&F&13&65.3&98
Gail&F&14&64.3&90
Karen&F&12&56.3&77
Kathy&F&12&59.8&84.5

Note: See the Base SAS Procedures Guide for restrictions, defaults, requirements,
and limitations of PROC EXPORT. �

Example: Exporting a Table to a Microsoft Excel File on a PC Server
This example exports a data set (work.employee) to a Microsoft Excel workbook

(sasdemo.xls) on a PC Server (Sales) and from it, creates a new sheet (employee) in the
Excel workbook. This example is for SAS UNIX users using Client Server Model.

PROC EXPORT DBMS=EXCELCS DATA= work.employee
OUTFILE= "c:\temp\sasdemo.xls" REPLACE;

SHEET="Employee";
VERSION="2002"; /* Excel Version */
SERVER="sales"; /* Server Name */
SERVICE=PCFILE ; /* Service Name */

RUN;

Note: See the Base SAS Procedures Guide for restrictions, interactions, and tips
about PROC EXPORT. �

Example: Exporting a Locally Available JMP File
This example exports a JMP file that is located on a local drive.

PROC EXPORT DBMS=jmp DATA=results OUTFILE= "c:\invoicing\customers.jmp"
REPLACE;

Note: See the Base SAS Procedures Guide for restrictions, interactions, and tips
about PROC EXPORT. �

58

59

C H A P T E R

5
The DBF and DIF Procedures

Introduction to the DBF and DIF Procedures 59

Introduction to the DBF and DIF Procedures
The DBF and DIF procedures give Windows, OS/390, and UNIX users an alternative

way of accessing DBF and DIF files. Instead of creating access descriptors and view
descriptors, you can convert these PC file types to SAS data sets, or vice versa.

Under UNIX and Windows operating environments, you can use the DBF and DIF
procedures to convert a DBF or DIF file to a SAS data set or to convert a SAS data set
to a DBF or DIF file. Under OS/390, only the DBF procedure is available.

See “Methods for Accessing PC Files Data” on page 3 for the other methods for
accessing data in PC file formats under Windows, UNIX, and OpenVMS operating
environments.

The DBF Procedure

Converts a dBASE file to SAS data set or a SAS data set to a dBASE file

Syntax
PROC DBF options;

PROC DBF Options

DB2|DB3|DB4|DB5=fileref | filename
specifies the fileref or filename of a DBF file. The DBn option must correspond to the
version of dBASE with which the DBF file is compatible. You specify the version with
the DBn option, where n is the version number and can have a value of 2, 3, 4, or 5.

If you specify a fileref, the FILENAME statement that you used to define it must
specify the filename plus a .dbf extension (for example, filename myref ’/my_dir/
myfile.dbf’).

If you specify a filename instead of a fileref, you can only specify the name itself
(omitting the .dbf extension) and the file must be in the current directory. For

60 The DBF Procedure � Chapter 5

example, this PROC DBF statement creates the EMP.DBF file (with the name in
uppercase) from the MyLib.Employee data set:

proc dbf db5=emp data=mylib.employee;

You cannot specify emp.dbf or a full pathname (proc dbf db5=’/my/
unix_directory/emp.dbf’).

The DBn= option is required.

DATA=<libref.>member
names the input SAS data set. Use this option if you are creating a DBF file from a
SAS data set. If you use the DATA= option, do not use the OUT= option. If you omit
the DATA= option, SAS software creates an output SAS data set from the DBF file.

OUT=<libref.>member
names the SAS data set that is created to hold the converted data. Use this option
only if you are creating a SAS data set from a DBF file and you did not specify the
DATA= option.

If OUT= is omitted, SAS creates a temporary data set in the Work library. (Under
UNIX and OS/390, the temporary data set is named Data1 [...Datan]; under
Windows, it is called _DATA_.) If OUT= is omitted or if you do not specify a two-level
name in the OUT= option, the data set remains available during your current SAS
session, but it is not permanently saved.

Details
The DBF procedure converts dBASE files to SAS data sets that are compatible with the
current release of SAS, or it converts SAS data sets to DBF files.

PROC DBF produces one output file but no printed output. The output file contains
the same information as the input file but in a different format.

The DBF procedure works with DBF files created by all the current versions and
releases of dBASE (II, III, III PLUS, IV, and 5.0) and with most DBF files that are
created by other software products.

Future versions of dBASE files might not be compatible with the current version of
the DBF procedure. To use the DBF procedure, you must have a SAS/ACCESS interface
to PC files license.

Converting DBF Fields to SAS Variables
Numeric variables are stored in character form by DBF files. These numeric variables
become SAS numeric variables when converted from a DBF file to a SAS data set. If a
DBF numeric value is missing, the corresponding dBASE numeric field is filled with the
character 9, by default.

Character variables become SAS character variables. Logical fields become SAS
character variables with a length of 1. Date fields become SAS date variables. When
you are converting a DBF file to a SAS data set, fields whose data is stored in auxiliary
DBF files (Memo and General fields) are ignored.

When a dBASE II file is translated into a SAS data set, any colons in dBASE
variable names are changed to underscores in SAS variable names. Conversely, when a
SAS data set is translated into a dBASE file, any underscores in SAS variable names
are changed to colons in dBASE field names.

Converting SAS Variables to DBF Fields
Numeric variables are stored in character form by DBF files. SAS numeric variables
become numeric variables with a length of 16 when converting from a SAS data set to a
DBF file. A SAS numeric variable with a decimal value must be stored in a decimal

The DBF and DIF Procedures � The DBF Procedure 61

format in order to be converted to a DBF numeric field with a decimal value. In other
words, unless you associate the SAS numeric variable with an appropriate format in a
SAS FORMAT statement, the corresponding DBF field will not have any value to the
right of the decimal point. You can associate a format with the variable in a SAS data
set when you create the data set or by using the DATASETS procedure.

If the number of digits — including a possible decimal point — exceeds 16 a warning
message is issued and the DBF numeric field is filled with the character 9. All SAS
character variables become DBF fields of the same length. When you are converting
data from a SAS data set to a DBF file that is compatible with dBASE III or later, SAS
date variables become DBF date fields. When you are converting data from a SAS data
set to a dBASE II file, SAS date variables become dBASE II character fields in the form
YYYYMMDD.

Transferring Other Software Files to DBF Files
You might find it helpful to save another software vendor’s file to a DBF file and then
convert that file into a SAS data set. UNIX users find this especially helpful. For
example, you could save an Excel XLS file to a DBF file (by selecting

File � Save As

from within an Excel spreadsheet and selecting the Emp.dbf file) and then use PROC
DBF to convert that file into a SAS data set. Or you could do the reverse: use PROC
DBF to convert a SAS data set into a DBF file and then load that file into an Excel
spreadsheet.

Examples for UNIX

Example 1: Converting a dBASE II File to a SAS Data Set In this example, a dBASE II
file named Employee.dbf is converted to a SAS data set. Because no FILENAME
statement is specified, the last level of the filename is assumed to be .dbf and the file is
assumed to be in your current directory and in uppercase.

libname save ’/my/unx_save_dir’;
proc dbf db2=employee out=save.employee;
run;

Example 2: Converting a SAS Data Set to a dBASE 5 File In this example, a SAS data
set is converted to a dBASE 5 file. A FILENAME statement specifies a fileref that
names the dBASE 5 file. You must specify the FILENAME statement before the PROC
DBF statement.

libname mylib ’/my/unix_directory’;
filename employee ’/sasdemo/employee.dbf’;
proc dbf db5=employee data=mylib.employee;
run;

In a Windows environment, this example would be:

libname mylib ’c:\my\directory’;
filename employee ’c:\sasdemo\employee.dbf’;
proc dbf db5=employee data=mylib.employee;
run;

62 The DIF Procedure � Chapter 5

In an OS/390 environment, this example would be:

libname mylib ’sasdemo.employee.data’;
filename dbfout ’sasdemo.newemp.dbf’ recfm=n;
proc dbf db5=dbfout data=mylib.employee;
run;

The DIF Procedure

Converts a DIF file to SAS data set or a SAS data set to a DIF file

Restrictions: The DIF procedure is only available under UNIX and Windows operating
environments.

Syntax
PROC DIF options;

PROC DIF Options

DIF=fileref | filename
specifies the fileref or filename of a DIF file.

If you specify a fileref, the FILENAME statement that you used to define it must
specify the filename plus a .dif extension (for example, filename myref ’/my_dir/
myfile.dif’).

If you specify a filename instead of a fileref, you can only specify the name itself
(omitting the .dif extension) and the file must be in the current directory. For
example, this PROC DIF statement creates the Emp.dif file from the
MyLib.Employee data set:

proc dif dif=emp data=mylib.employee;

You cannot specify emp.dif or a full pathname (proc dif dif=’/my/
unix_directory/emp.dif’).

DATA=<libref.>member
names the input SAS data set. Use this option if you are creating a DIF file from a
SAS data set. If you use this option, do not use the OUT= option. If you omit the
DATA= option, SAS creates an output SAS data set from the DIF file.

OUT=<libref.>member
names the SAS data set to hold the converted data. You use this option only if you
omit the DATA= option and you are creating a SAS data set from a DIF file.

If OUT= is omitted, SAS creates a temporary data set in the Work library. (Under
UNIX, the temporary data set is named Data1 [...Datan]; under Windows, it is called
DATA. If OUT= is omitted or if you do not specify a two-level name in the OUT=
option, the data set remains available during your current SAS session but is not
permanently saved.

LABELS
causes PROC DIF to write the names of the SAS variables as the first row of the DIF
file and a row of blanks as the second row of the DIF file. The actual data portion of

The DBF and DIF Procedures � The DIF Procedure 63

the DIF file begins in the third row. The LABELS option is allowed only when you
are converting a SAS data set to a DIF file.

PREFIX=name
specifies a prefix to be used in constructing SAS variable names when you are
converting a DIF file to a SAS data set. For example, if PREFIX=VAR, the new
variable names are VAR1, VAR2, ... VARn. If you omit the PREFIX= option, PROC
DIF assigns the names Col1, Col2, ... Coln.

SKIP=n
specifies the number of rows, beginning at the top of the DIF file, to be ignored when
converting a DIF file to a SAS data set. For example, suppose the first row of your
DIF file contains column headings and the second row of your DIF file is a blank row.
The actual data in your DIF file begin in row 3. You should specify SKIP=2 so that
PROC DIF ignores the nondata portion of your DIF file. Alternatively, you could
delete the first two rows of your DIF file before using PROC DIF.

Details
The DIF procedure converts data interchange format (DIF) files to SAS data sets that
are compatible with the current release of SAS software, or it converts SAS data sets to
DIF files.

PROC DIF produces one output file but no printed output. The output file contains
the same information as the input file but in a different format.

Software Arts, Inc. developed the data interchange format to be used as a common
language for data. Originally, DIF was made popular by products such as Lotus 1-2-3
and VisiCalc. Although DIF is not as popular today as it once was, it is still supported
by many software products.

Note: Any DIF file that you plan to convert to a SAS data set should be in a tabular
format. All items in a given column should represent the same type of data. If any rows
in the DIF file contain inconsistent data — for example, a row of underscores, dashes,
or blanks — delete these rows before converting the DIF file to a SAS data set. It is
recommended that you make a backup copy of your DIF table before you make these
modifications. �

When you are converting data from a DIF file to a SAS data set, each row of the DIF
file becomes an observation in the SAS data set. Conversely, when you are converting a
SAS data set to a DIF file, each SAS observation becomes a row in the DIF file. To use
the DIF procedure, you must have a SAS/ACCESS interface to PC files license.

Converting DIF Variables to SAS Variables
Character variables in a DIF file (sometimes referred to as string values) become SAS
character variables of length 20. If a DIF character variable’s value is longer than 20
characters, it is truncated to a length of 20 in the SAS output data set. The quotation
marks that normally enclose character variable values in a DIF file are removed when
the value is converted to a SAS character value.

Numeric variables, which can be represented in either integer or scientific notation in
a DIF file, become SAS numeric variables when a DIF file is converted to a SAS data set.

Transferring SAS Data Sets to and from Other Software Products Using DIF
DIF files are not generally used as the native file format for a software product’s data
storage. Therefore, transferring data between SAS and another software product is a
two-step process when using DIF files.

64 The DIF Procedure � Chapter 5

To send SAS data sets to another software product using DIF files, you must first run
PROC DIF to convert your SAS data set to a DIF file. Use whatever facility is provided
by the target software product to read the DIF file. For example, you use the
Lotus 1-2-3 Translate Utility to translate a DIF file to a 1-2-3 worksheet file. (This
facility might be provided by an import tool or from an Open window in that software
product.) After the application reads the DIF file data, the data can be manipulated
and saved in the application’s native format.

To transfer data in the opposite direction — from a software product to a SAS data
set — the process is reversed. First, export the data to a DIF file and then run PROC
DIF to read the DIF file into a SAS data set.

Missing Values
The developers of the data interchange format (DIF) files suggest that you treat all
numeric values that have a value indicator other than V as missing values. PROC DIF
follows this convention. When a DIF file is converted to a SAS data set, any numeric
value with a value indicator other than V becomes a SAS missing value.

When a SAS data set that has missing values for some numeric variables is
converted to a DIF file, the following assignments are made in the DIF file for the
variables with missing values:

� the type indicator field value is set to 0

� the number field value contains a string of 16 blanks
� the value indicator is set to NA.

Examples

Example 1: Converting a DIF File to a SAS Data Set In this example, a DIF file named
Employee.dif is converted to a SAS data set. Because no FILENAME statement is
specified, the last level of the filename is assumed to be .dif, and the file is assumed to
be in your current directory and in uppercase.

libname save ’/my/my_unx_dir’;
proc dif dif=employee out=save.employee;
run;

Example 2: Converting a SAS Data Set to a DIF File In this example, a SAS data set is
converted to a DIF file. A FILENAME statement is used to specify a fileref that names
the DIF file. You must specify the FILENAME statement before the PROC DIF
statement.

filename employee ’c:\sasdemo\employee.dif’;
proc dif dif=employee data=save.employee;
run;

Or, in a UNIX environment, this example would be:

filename employee ’/sasdemo/employee.dif’;
proc dif dif=employee data=save.employee;
run;

See Also
“Programmer’s Guide to the DIF,” Software Arts Technical Notes (SATN-18).

65

C H A P T E R

6
The ACCESS Procedure for PC
Files

Overview of the ACCESS Procedure for PC Files 65
Using ACCESS Procedure Statements 66

SAS/ACCESS Descriptors for PC Files 67

Access Descriptors 67

View Descriptors 67

SAS Passwords for Descriptors 68
Assigning Passwords 69

Performance and Efficient View Descriptors for PC Files 70

General Guidelines 70

Extracting Data Using a View 70

ACCESS Procedure Syntax 71

PROC ACCESS Statement 72
ASSIGN Statement 73

CREATE Statement 74

DROP Statement 77

FORMAT Statement 78

LIST Statement 79
MIXED Statement 80

PATH= Statement 80

QUIT Statement 81

RENAME Statement 81

RESET Statement 83
SELECT Statement 84

SUBSET Statement 85

TYPE Statement 85

UNIQUE Statement 86

UPDATE Statement 87

Overview of the ACCESS Procedure for PC Files

The ACCESS procedure for PC files is only available under Windows operating
environments. You can use the ACCESS procedure with DBF, DIF, WK1, WK3, WK4,
Excel 4, Excel 5, and Excel 95 file formats. See “Methods for Accessing PC Files Data”
on page 3 for alternate methods for accessing data in PC file formats under Windows,
UNIX, OS/390, and OpenVMS operating environments.

The ACCESS procedure enables you to create access descriptors, view descriptors,
and SAS data files. Descriptor files describe PC files data so that you can directly read,
update, or extract the PC files data while working within a SAS program. See “SAS/
ACCESS Descriptors for PC Files” on page 67 for more information.

66 Using ACCESS Procedure Statements � Chapter 6

CAUTION:
Altering a PC file might invalidate defined descriptors. Altering the format of a PC file
that has descriptor files defined on it might cause these descriptors to be out-of-date
or invalid. For example, if you add a column to a file and an existing access
descriptor is defined on that file, the access descriptor and any view descriptors based
on it do not show the new column. You must re-create the descriptors to be able to
show and select the new column. �

Using ACCESS Procedure Statements
The following table presents a task-oriented overview of the statements you use

inside a PROC ACCESS program block to create or modify access and view descriptors.
See “ACCESS Procedure Syntax” on page 71 for the complete syntax for this procedure.

Table 6.1 Options and Statements Required for the ACCESS Procedure

Task Options and Statements You Use

create an access descriptor PROC ACCESS DBMS=DBF|DIF|WKn|XLS;
CREATE libref.member-name.ACCESS;

required-database-description-statements;
optional-editing-statements;

RUN;

create an access descriptor and
a view descriptor

PROC ACCESS DBMS=DBF|DIF|WKn| XLS;
CREATE libref.member-name.ACCESS;

required-database-description-statements;
optional-editing-statements;

CREATE libref.member-name.VIEW;
SELECT column-list;

optional-editing-statements;

RUN;

create a view descriptor from an
existing access descriptor

PROC ACCESS DBMS=DBF|DIF|WKn|XLS
ACCDESC=libref.access-descriptor;

CREATE libref.member-name.VIEW;
SELECT column-list;

optional-editing-statements;

RUN;

As the table indicates, you can create one or more access descriptors and view
descriptors in one execution of PROC ACCESS, or you can create the descriptors in
separate executions. See “CREATE Statement” on page 74 for additional information
about statement order.

The ACCESS Procedure for PC Files � View Descriptors 67

SAS/ACCESS Descriptors for PC Files

SAS/ACCESS descriptor files are the tools that the ACCESS procedure uses to
establish a connection to a PC file. To create descriptor files, use the ACCESS
procedure. There are two kinds of descriptor files: access descriptors and view
descriptors. The following sections give a brief overview of these files.

Access Descriptors

An access descriptor holds essential information about the structure of the PC file
that you want to access. For example, you can access the file’s format and name, its
database field or column names, and its data types. Access descriptors can also contain
the corresponding SAS information such as the SAS variable names and formats.
Typically, you have only one access descriptor for each PC file.

An access descriptor only describes a PC file’s format and contents to SAS; that is, it
is a master description file of the PC file for SAS. You cannot use an access descriptor in
a SAS program. Rather, you use an access descriptor to create other SAS files, called
view descriptors, that you use in SAS programs.

View Descriptors

A view descriptor defines some or all of the data that is described by one access
descriptor (and, therefore, one PC file). For example, you might want to use only three
of nine possible database columns and only some of the rows in a PC file. The view
descriptor enables you to do this by selecting the database fields or columns that you
want to use and specifying criteria to retrieve only the rows you want. Typically, you
create several view descriptors based on one access descriptor, where each view
descriptor selects a different subset of the PC files data.

A view descriptor is a SAS data set or, more specifically, a SAS data view. You use a
view descriptor in a SAS program much as you would any SAS data set. For example,
you can specify a view descriptor in the DATA= statement of a SAS procedure or the
SET statement of a DATA step. You can use a view descriptor in a SELECT statement
of the SQL procedure to join, for example, the view descriptor’s data with SAS data.

You can use a view descriptor to update data directly in some of the PC file formats,
such as the DBF file format. For example, you can use a view descriptor to add records
or mark records for deletion in a DBF file or to change the values in a DBF file field by
using the DBF, FSEDIT, or SQL procedures. You can also modify DBF file data by
specifying a view descriptor in the MODIFY or REPLACE statements in a DATA step.
See the "Essentials" section in the appropriate chapter for information on whether a PC
file format allows updates.

In some cases, you might also want to create a SAS data file from data stored in a
PC file. Using a view descriptor to copy PC files data into a SAS data file is called
extracting the data. You can extract PC files data in a number of ways, for example, by
specifying a view descriptor when you are using various methods within the ACCESS
procedure. Or you could specify a view descriptor in a DATA step or in a SAS
procedure’s OUT= option. When you need to use the same PC files data in a number of
SAS procedures or DATA steps, extracting the PC files data into a SAS data file might
use fewer resources than directly accessing the data repeatedly.

The following figure illustrates the relationships between a PC file, an access
descriptor, and one or more view descriptors.

68 SAS Passwords for Descriptors � Chapter 6

Figure 6.1 Relationships between a PC File, an Access Descriptor, and View
Descriptors

PC File

Access
Descriptor

View Descriptors

SAS Passwords for Descriptors
SAS enables you to control access to SAS data sets and access descriptors by

associating one or more SAS passwords with them. You must first create the descriptor
files before assigning SAS passwords to them, as described in “Assigning Passwords” on
page 69. The following table summarizes the levels of protection that SAS passwords
have and their effects on access descriptors and view descriptors.

The ACCESS Procedure for PC Files � Assigning Passwords 69

Table 6.2 Password and Descriptor Interaction

READ= WRITE= ALTER=

access descriptor no effect on descriptor no effect on descriptor protects descriptor from
being read or updated

view descriptor protects PC file data from
being read or updated

protects PC file data from
being updated

protects descriptor from
being read or updated

When you create view descriptors, you can use a SAS data set option after the
ACCDESC= option to specify the access descriptor’s password (if one exists). In this
case, you are not assigning a password to the view descriptor that is being created.
Rather, using the password grants you permission to use the access descriptor to create
the view descriptor. For example:

proc access dbms=dbf
accdesc=adlib.customer(alter=rouge);

create vlib.customer.view;
select all;

run;

By specifying the ALTER-level password, you can read the AdLib.Customer access
descriptor and therefore create the VLib.Customer view descriptor.

For detailed information on the levels of protection and the types of passwords you
can use, refer to your Base SAS software documentation.

Assigning Passwords
To assign, change, or delete a SAS password, use the DATASETS procedure’s

MODIFY statement. Here is the basic syntax for using PROC DATASETS to assign a
password to an access descriptor, a view descriptor, or a SAS data file:

PROC DATASETS LIBRARY=libref MEMTYPE=member-type;

MODIFY member-name (password-level=password-modification);

RUN;

The password-level argument can have one or more of the following values: READ=,
WRITE=, ALTER=, or PW=. PW= assigns read, write, and alter privileges to a
descriptor or data file. The password-modification argument enables you to assign a
new password or to change or delete an existing password. For example, this PROC
DATASETS statement assigns the password MONEY with the ALTER level of
protection to the access descriptor AdLib.Salaries

proc datasets library=adlib memtype=access;
modify salaries (alter=money);

run;

In this case, you are prompted for the password whenever you try to browse or edit
the access descriptor or to create view descriptors that are based on AdLib.Salaries.

In the next example, the PROC DATASETS statement assigns the passwords MYPW
and MYDEPT with READ and ALTER levels of protection to the view descriptor
VLib.JobC204:

proc datasets library=vlib memtype=view;
modify jobc204 (read=mypw alter=mydept);

run;

70 Performance and Efficient View Descriptors for PC Files � Chapter 6

In this case, you are prompted for the SAS passwords when you try to read the PC
file data, or try to browse or edit the view descriptor VLib.JobC204 itself. You need both
levels to protect the data and descriptor from being read. However, you could still
update the data accessed by VLib.JobC204, for example, by using a PROC SQL
UPDATE statement. Assign a WRITE level of protection to prevent data updates.

To delete a password on an access descriptor or any SAS data set, put a slash after
the password:

proc datasets library=vlib memtype=view;
modify jobc204 (read=mypw/ alter=mydept/);

run;

Performance and Efficient View Descriptors for PC Files

General Guidelines
When you create and use view descriptors, follow these guidelines to minimize the

use of SAS resources and to reduce the time it takes to access data:
� Select only the columns your SAS program needs. Selecting unnecessary columns

adds extra processing time.
� Where possible, specify selection criteria to subset the number of observations

processed by SAS.
� To present PC files data in sorted order, reference a view descriptor in a PROC SQL

query. Otherwise, you might need to extract the data to sort it, as described below.

Extracting Data Using a View
In some cases, it might be more efficient to use a view descriptor to extract PC files

data and place it in a SAS data file instead of using the view descriptor to read the data
directly.

A PC file is read every time a view descriptor is referred to in a SAS program and
the program is executed; the program’s output reflects the latest updated level of the
PC file. If many users are reading the same PC file repeatedly, performance might
decrease. If you create several reports during the same SAS session, they might not be
based on the same PC files data due to updates by other users. Therefore, in the
following circumstances, it is better to extract data:

� Extract PC files data if the file is large and you use the data repeatedly in SAS
programs.

If a view descriptor describes a large PC file and you plan to use the same data
in several procedures or DATA steps during the same SAS session, you might
improve performance by extracting the data. Placing the data into a SAS data file
requires a certain amount of disk space to store the data and I/O to write the data.
However, SAS data files are organized to provide optimal performance with PROC
and DATA steps. Programs that use SAS data files are often more efficient than
programs that read PC files data directly.

� Extract PC files data if you use sorted data several times in a SAS program.
If you intend to use PC file data in a particular sorted order several times, run

the SORT procedure on the view descriptor using the OUT= option to extract the
data. The OUT= option is required whenever PROC SORT references a view
descriptor. Extracting the data in this way is more efficient than requesting the

The ACCESS Procedure for PC Files � ACCESS Procedure Syntax 71

same sort repeatedly on the PC files data. Note that using the ORDER BY clause
in the SQL procedure does not sort the data in the physical PC file; it only
presents the data in a sorted order.

� Extract PC files data for added security.
If you are the owner of a PC file and do not want anyone else to read the data,

you might want to extract the data (or a subset of the data) and not distribute
information about either the access descriptor or view descriptor. Or, you might
want to assign PC file security features to your PC files to prevent unauthorized
reading or writing to them.

On the SAS side, you might also want to assign SAS passwords to your
descriptors for additional security. If a view descriptor has a password assigned to
it and you extract the data, the new SAS data file is automatically assigned the
same password. If a view descriptor does not have a password, you can assign a
password to the extracted SAS data file.

ACCESS Procedure Syntax
The general syntax for the ACCESS procedure is presented here; see the DBF, DIF,

WKn, MDB, and XLS chapters for file format specific information.

PROC ACCESS options;

Create and Update Statements
CREATE libref.member-name.ACCESS|VIEW ;

UPDATE libref.member-name.ACCESS|VIEW ;

Database Description Statement
PATH= ’path-and-filename<.PC-filename-extension>’ | <’>filename<’> | fileref;
(See your file format-specific chapter for additional database-description statements.)

Editing Statements
ASSIGN <=>YES|NO|Y|N;
DROP <’>column-identifier-1<’>

<<’>…column-identifier-n <’>>;
FORMAT <’>column-identifier-1<’><=>SAS-format-name-1<’>

<…<’>column-identifier-n<’><=>SAS-format-name-n>;
LIST <ALL|VIEW|<’>column-identifier <’>>;
MIXED <=> YES | NO | Y | N;
(The MIXED statement is not available for DIF and DBF files.)
QUIT;
RENAME <’>column-identifier-1<’><=>SAS-variable-name-1

<…<’>column-identifier-n<’><=>SAS-variable-name-n>;
RESET ALL | <’>column-identifier-1 <’><…<’>column-identifier-n<’>>;
SELECT ALL|<’>column-identifier-1<’>

<…<’>column-identifier-n <’>>;
SUBSET selection-criteria;
TYPE <’>column-identifier-1<’><=> C | N

<…column-identifier-n <=> C | N>;
(The TYPE statement is not available for DBF files.)

72 PROC ACCESS Statement � Chapter 6

UNIQUE <=>YES|NO|Y|N ;

RUN;

PROC ACCESS Statement
Requirement: This statement is required.
Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 files under
Windows operating environments

PROC ACCESS options;

Options
The PROC ACCESS statement options that are available with all supported PC file

formats are described below. Other options, specific to particular PC file formats, are
described in the file format specific chapters.

DBMS=pc-file-format
specifies which PC database product or spreadsheet system you want to access
from SAS. This is the only required option. The valid types are DBF, DIF, WK1,
WK3, WK4, and XLS.

ACCDESC=libref.access-descriptor <(READ|WRITE|ALTER=password)>
specifies an existing access descriptor.

Use this option when creating or updating a view descriptor based on an access
descriptor that was created in a separate PROC ACCESS step.

You name the view descriptor in the CREATE statement. You can also use a
SAS data set option on the ACCDESC= option to specify a SAS password for the
access descriptor.

The ACCDESC= option has two aliases: AD= and ACCESS=.

VIEWDESC=libref.view-descriptor
specifies a view descriptor as input for the OUT= option. (See the description of
OUT=.)

OUT= <libref.>member-name
specifies a SAS data file. When VIEWDESC= and OUT= are used together, you
can write data that is accessed from the view descriptor to the SAS data set that is
specified in OUT=. For example:

proc access viewdesc=vlib.invq4
out=dlib.invq4;

run;

The ACCESS Procedure for PC Files � ASSIGN Statement 73

ASSIGN Statement

Indicates whether SAS variable names and formats are automatically generated

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments

Applies to: access descriptor

Interacts with: FORMAT, RENAME, RESET, UNIQUE

Not allowed with: UPDATE

Default: NO

Alias: AN

ASSIGN <=> YES|NO|Y|N;

Details
The ASSIGN statement indicates whether SAS variable names and formats are

automatically generated. Where long names must be shortened to the SAS length limit
of 8 characters, variable names are automatically generated.

An editing statement such as ASSIGN appears after the CREATE and
database-description statements. See “CREATE Statement” on page 74 for more
information.

The value NO (or N) enables you to modify SAS variable names and formats when
you create an access descriptor and when you create view descriptors that are based on
this access descriptor. During an access descriptor’s creation, you use the RENAME
statement to change SAS variable names, and you use the FORMAT statement to
change SAS formats.

Specify a YES (or Y) value for this statement to generate unique SAS variable names
from the first 8 characters of the PC file column names, according to the rules listed
below. With YES, you can change the SAS variable names only in the access descriptor.
The SAS variable names that are saved in an access descriptor are always used when
view descriptors are created from the access descriptor; you cannot change them in the
view descriptors.

Default SAS variable names are generated according to these rules:

� If the column name is longer than 8 characters, SAS uses only the first 8
characters. If truncating results in duplicate names, numbers are appended to the
ends of the names to prevent duplicate names. For example, the names
clientsname and clientsnumber become the SAS names clientsn and clients0.

� If the column name in the PC file contains blank characters, SAS ignores the
blank characters. For example, the column name Paid On becomes the SAS name
PaidOn.

� If the column name in the PC file starts with a digit (0 through 9), SAS adds the
character Z before it. For example, the column name 1stYear becomes the SAS
name Z1stYear.

� If the column name contains characters that are invalid in SAS names (including
national characters), SAS replaces the invalid characters with underscores (_). For
example, the column name $Paid becomes the SAS variable name _Paid

74 CREATE Statement � Chapter 6

If you specify YES for this statement, SAS automatically resolves any duplicate
variable names. However, if you specify YES, you cannot specify the RENAME,
FORMAT, RESET, or UNIQUE statements when you create view descriptors that are
based on the access descriptor. When you are updating an access descriptor, you cannot
specify the ASSIGN statement.

When the SAS/ACCESS interface encounters the next CREATE statement to create
an access descriptor, the ASSIGN statement is reset to the default NO value.

CREATE Statement

Creates a SAS/ACCESS descriptor file

Requirement: This statement is required.

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments

Applies to: access descriptor or view descriptor

CREATE libref.descriptor-name.ACCESS|VIEW;

Details
Use CREATE to create an access or view descriptor for a PC file you want to access

from SAS. To access a particular PC file of a supported type, you must create first an
access descriptor, and then one or more view descriptors based on the access descriptor.

The descriptor name has three parts, separated by periods(.). The libref identifies a
SAS data library, which is associated with a directory on the local system’s disk where
the descriptor will be created. The libref must already have been created using the
LIBNAME statement. The descriptor-name is the name of the descriptor to be created.
The third part is the descriptor type. Specify ACCESS for an access descriptor or VIEW
for a view descriptor.

You can use the CREATE statement as many times as necessary in one procedure
execution. That is, you can create multiple access descriptors, as well as one or more
view descriptors based on these access descriptors, within the same execution of the
ACCESS procedure. Or, you can create access descriptors and view descriptors in
separate executions of the procedure.

You can use CREATE and UPDATE in the same PROC ACCESS block with one
restriction: a CREATE statement for a view descriptor may not follow an UPDATE
statement.

Creating Access Descriptors
When you create an access descriptor, you must place statements or groups of

statements in a certain order after the PROC ACCESS statement and its options, as
listed here:

1 CREATE must be the first statement after the PROC ACCESS statement with one
exception: if the block includes both CREATE and UPDATE statements, either
statement may be the first in the block.

The ACCESS Procedure for PC Files � CREATE Statement 75

2 Next, specify any database-description statement, such as PATH=. This
information describes the location and characteristics of the PC file. These
statements must be placed before any editing statements. Do not specify these
statements when you create view descriptors.

Information from database-description statements is stored in an access
descriptor. Therefore, you do not repeat this information when you create view
descriptors.

3 Next, specify any editing statements: ASSIGN, DROP, FORMAT, LIST, RENAME,
RESET, and SUBSET. QUIT is also an editing statement, but using it terminates
PROC ACCESS without creating your descriptor.

4 Finally, specify the RUN statement. RUN executes the ACCESS procedure.

The order of the statements within the database-description and editing groups
sometimes matters; see the individual statement descriptions for more information.

Note: Altering a PC file that has descriptor files defined on it might cause the
descriptor files to be out-of-date or invalid. For example, if you re-create a file and add
a new column to the file, an existing access descriptor defined on that file does not show
that column, but the descriptor can still be valid. However, if you re-create a file and
delete an existing column from the file, the descriptor might be invalid. If the deleted
column is included in a view descriptor and this view is used in a SAS program, the
program fails and an error message is written to the SAS log. �

Creating View Descriptors
You can create view descriptors and access descriptors in the same ACCESS

procedure or in separate procedures.
To create a view descriptor and the access descriptor on which it is based within the

same PROC ACCESS execution, you must place the statements or groups of statements
in a particular order after the PROC ACCESS statement and its options, as listed below:

1 First, create the access descriptor as described in “Creating Access Descriptors” on
page 74, except omit the RUN statement.

2 Next, specify the CREATE statement for the view descriptor. The CREATE
statement must follow the PROC ACCESS statements that you used to create the
access descriptor.

3 Next, specify any editing statements: SELECT, SUBSET, and UNIQUE are valid
only when creating view descriptors. FORMAT, LIST, RENAME, and RESET are
valid for both view and access descriptors. FORMAT, RENAME, and UNIQUE can
be specified only when ASSIGN=NO is specified in the access descriptor referenced
by this view descriptor. QUIT is also an editing statement but using it terminates
PROC ACCESS without creating your descriptor.

The order of the statements within this group usually does not matter; see the
individual statement descriptions for any restrictions.

4 Finally, specify the RUN statement. RUN executes PROC ACCESS.

To create a view descriptor based on an access descriptor that was created in a
separate PROC ACCESS step, you specify the access descriptor’s name in the
ACCDESC= option in the new PROC ACCESS statement. You must specify the
CREATE statement before any of the editing statements for the view descriptor.

If you create only one descriptor in a PROC step, the CREATE statement and its
accompanying statements are checked for errors when you submit PROC ACCESS for
processing. If you create multiple descriptors in the same PROC step, each CREATE
statement (and its accompanying statements) is checked for errors as it is processed.

76 CREATE Statement � Chapter 6

If no errors are found when the RUN statement is processed, all descriptors are
saved. If errors are found, error messages are written to the SAS log, and processing is
terminated. After you correct the errors, resubmit your statements.

Examples

The following example creates the access descriptor AdLib.Product for the worksheet
file named c:\sasdemo\specprod.wk4:

libname adlib ’c:\sasdata’;

proc access dbms=wk4;
create adlib.product.access;
path=’c:\sasdemo\specprod.wk4’;
getnames=yes;
assign=yes;
rename productid prodid

fibername fiber;
format productid 4.

weight e16.9
fibersize e20.13
width e16.9;

run;

The following example creates an access descriptor named AdLib.Employ for the
Excel worksheet named c:\dubois\employ.xls. It also creates a view descriptor
named VLib.Emp1204 for this same file:

libname adlib ’c:\sasdata’;
libname vlib ’c:\sasviews’;

proc access dbms=xls;
/* create access descriptor */
create adlib.employ.access;
path=’c:\dubois\employ.xls’;
getnames=yes;
assign=no;
list all;

create vlib.emp1204.view;
/* create view descriptor */
select empid lastname hiredate salary

dept gender birthdate;
format empid 6.

salary dollar12.2
jobcode 5.
hiredate datetime7.
birthdate datetime7.;

subset where jobcode=1204;
run;

The following example creates a view descriptor VLib.BDays from the AdLib.Employ
access descriptor, which was created in the previous PROC ACCESS step. Note that
FORMAT could be used because the access descriptor was created with ASSIGN=NO.

libname adlib ’c:\sasdata’;
libname vlib ’c:\sasviews’;

The ACCESS Procedure for PC Files � DROP Statement 77

proc access accdesc=adlib.employ;
create vlib.bdays.view;
select empid lastname birthdate;
format empid 6.

birthdate datetime7.;
run;

DROP Statement

Drops a column from a descriptor

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments

Applies to: access descriptor, view descriptor

Interacts with: RESET, SELECT, UPDATE

DROP <’>column-identifier-1<’>
<…<’>column-identifier-n<’>>;

Details

The DROP statement drops the specified column from an access descriptor. The
column cannot be selected for a view descriptor that is based on the access descriptor.
However, the specified column in the PC file remains unaffected by this statement.

Note: The DROP statement can only be specified when creating or updating an
access descriptor, or when you are updating a view descriptor. DROP is not allowed
when you are creating a view descriptor. When you use the UPDATE statement, you
can specify DROP to remove a column from the view descriptor. However, the specified
column in the PC file remains unaffected by the DROP statement. �

An editing statement, such as DROP, must follow the CREATE and
database-description statements when you create an access descriptor. See “CREATE
Statement” on page 74 for more information about the order of statements.

The column-identifier argument can be either the column name or the positional
equivalent from the LIST statement, which is the number that represents the column’s
place in the access descriptor or view descriptor. For example, to drop the third and
fifth columns, submit the following statement:

drop 3 5;

If the column name contains lowercase characters, special characters, or national
characters, enclose the name in quotation marks. You can drop as many columns as you
want in one DROP statement.

To display a column that was previously dropped, specify that column name in the
RESET statement. However, doing so also resets all the column’s attributes (such as
SAS variable name, format, and so on) to their default values.

78 FORMAT Statement � Chapter 6

FORMAT Statement

Changes a SAS format for a PC file column

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments
Applies to: access descriptor or view descriptor
Interacts with: ASSIGN, DROP, RESET

FORMAT|FMT <’>column-identifier-1<’><=>SAS-format-name-1
<…<’>column-identifier-n<’><=>SAS-format-name-n>;

Details
The FORMAT statement changes a SAS variable format from its default format; the

default SAS variable format is based on the data type and format of the PC file column.
(See your PC file’s chapter for information about the default data types and formats
that SAS assigns to PC files data.)

An editing statement, such as FORMAT, must follow the CREATE statement and the
database-description statements when you create a descriptor. See “CREATE
Statement” on page 74 for more information about the order of statements.

The column-identifier argument can be either the column name or the positional
equivalent from the LIST statement, which is the number that represents the column’s
place in the access descriptor. For example, to associate the DATE9. format with the
BIRTHDATE column and with the second column in the access descriptor, submit the
following statement:

format 2=date9. birthdate=date9.;

The column identifier is specified on the left and the SAS format is specified on the
right of the expression. The equal sign (=) is optional. If the column name contains
lowercase characters, special characters, or national characters, enclose the name in
quotation marks. You can enter formats for as many columns as you want in one
FORMAT statement.

You can use the FORMAT statement with a view descriptor only if the ASSIGN
statement that was used when creating the access descriptor was specified with the NO
value.

Note: When you use the FORMAT statement with access descriptors, the FORMAT
statement also reselects columns that were previously dropped with the DROP
statement. �

The ACCESS Procedure for PC Files � LIST Statement 79

LIST Statement

Lists columns in the descriptor and gives information about them

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments
Applies to: access descriptor or view descriptor
Default: ALL

LIST <ALL|VIEW|<’>column-identifier<’>>;

Details
The LIST statement lists columns in the descriptor along with information about the

columns. You can use the LIST statement when creating an access descriptor or a view
descriptor. The LIST information is written to your SAS log.

If you use an editing statement, such as LIST, it must follow the CREATE statement
and the database-description statements when you create a descriptor. You can specify
LIST as many times as you want while creating a descriptor; specify LIST last in your
PROC ACCESS code to see the entire descriptor. Or, if you are creating multiple
descriptors, specify LIST before the next CREATE statement in order to list all the
information about the descriptor you are creating.

The LIST statement can take one or more of the following arguments:

ALL
lists all the columns in the PC file, the positional equivalents, the SAS variable
names, and the SAS variable formats that are available for the access descriptor.
When you are creating an access descriptor, *NON-DISPLAY* appears next to the
column description for any column that has been dropped. When you are creating
a view descriptor, *SELECTED* appears next to the column description for columns
that you have selected for the view.

VIEW
lists all the columns that are selected for the view descriptor, along with their
positional equivalents, their SAS names and formats, and any subsetting clauses.
Any columns that were dropped in the access descriptor are not displayed. The
VIEW argument is valid only for a view descriptor.

column-identifier
lists the specified column name, its positional equivalent, its SAS variable name
and format, and whether the column has been selected. If the column name
contains lowercase characters, special characters, or national characters, enclose
the name in quotation marks.

The column-identifier argument can be either the column name or the positional
equivalent, which is the number that represents the column’s place in the
descriptor. For example, to list information about the fifth column in the
descriptor, submit the following statement:

list 5;

You can use one or more of these previously described options in a LIST statement,
in any order.

80 MIXED Statement � Chapter 6

MIXED Statement

Determines whether to convert numeric data values in a column to their character representation
when the corresponding SAS variable is expecting a character value

Valid: for WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under Windows
operating environments

MIXED <=> YES | NO | Y | N;

Details
You use the MIXED statement with WKn and XLS files if you have both numeric and

character data in a column. Specifying YES allows both numeric and character data to
be displayed as SAS character data. NO, the default, treats any data in a column that
does not match the specified type as missing values.

You can change the default value to YES by setting the SS_MIXED environment
variable. See “Setting Environment Variables for WKn Files” on page 182 for more
information about setting and changing environment variables.

The MIXED statement is an editing statement and must follow the CREATE
statement and any database descriptions when you create an access descriptor.

PATH= Statement

Specifies the path and filename of the file to be accessed

Requirement: This statement is required.
Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, Excel 95 file formats under
Windows operating environments
Applies to: access descriptor

PATH= ’path-and-filename<.PC-file-extension>’ |<’>filename<’> | fileref ;

Details
The PATH= statement indicates the path and name of the file you want to access. The

length of the filename and its other conventions can vary with the operating system.
See the host documentation for your operating environment for more information.

For compatibility, place the PATH= statement immediately after the CREATE
statement and before any other database-description statements when creating access
descriptors. See “CREATE Statement” on page 74 for more information.

You can specify the PATH= statement with one of the following arguments:

’path-and-filename<.PC-file-extension>’

The ACCESS Procedure for PC Files � RENAME Statement 81

specifies the fully qualified path and filename. You must enclose the entire path
and filename in quotation marks, including the appropriate PC file extension, such
as .dbf, .dif, .wk1, .wk3, wk4, .mdb, or .xls. If you omit the file extension,
SAS/ACCESS software supplies it for you.

<’>filename<’>
specifies the name of a file. The file must be located in your current (default)
directory. If no extension is specified, the SAS/ACCESS interface supplies it for
you. If the filename includes characters that are invalid in SAS names, such as
the dollar sign ($) or if the filename begins with a number, you must enclose the
entire filename in quotation marks.

fileref
specifies a fileref that references the path and name of the file. (Assigning filerefs
with the FILENAME statement is described in Step-by-Step Programming with
Base SAS Software.)

QUIT Statement

Terminates the procedure

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments
Applies to: access descriptor or view descriptor
Alias: EXIT

QUIT;

Details
The QUIT statement terminates the ACCESS procedure without any further

descriptor creation.

RENAME Statement

Modifies the SAS variable name

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments
Applies to: access descriptor or view descriptor
Interacts with: ASSIGN, RESET

RENAME <’>column-identifier-1<’><=>SAS-variable-name-1
<…<’>column-identifier-n<’><=>SAS-variable-name-n>;

82 RENAME Statement � Chapter 6

Details
The RENAME statement enters or modifies the SAS variable name that is associated

with a column in a PC file. Use the RENAME statement when creating an access
descriptor or a view descriptor.

An editing statement, such as RENAME, must follow the CREATE statement and
the database-description statements when you create a descriptor. See “CREATE
Statement” on page 74 for more information about the order of statements.

Two factors affect the use of the RENAME statement: whether you specify the
ASSIGN statement when you are creating an access descriptor, and the kind of
descriptor you are creating.

� If you omit the ASSIGN statement or specify it with a NO value, the renamed SAS
variable names that you specify in the access descriptor are retained throughout
an ACCESS procedure execution. For example, if you rename the Customer
column to CustNum when you create an access descriptor, that column continues
to be named CustNum when you select it in a view descriptor unless a RESET
statement or another RENAME statement is specified.

When creating a view descriptor that is based on this access descriptor, you can
specify the RESET statement or another RENAME statement to rename the
variable again, but the new name applies only in that view. When you create other
view descriptors, the SAS variable names are derived from the access descriptor
variable names.

� If you specify the YES value in the ASSIGN statement, you can use the RENAME
statement to change SAS variable names only while creating an access descriptor.
As described earlier in the ASSIGN statement, SAS variable names and formats
that are saved in an access descriptor are always used when creating view
descriptors that are based on it.

The column-identifier argument can be either the PC file column name or the
positional equivalent from the LIST statement, which is the number that represents the
column’s place in the descriptor. For example, to rename the SAS variable names that
are associated with the seventh column and the nine-character FIRSTNAME column in
a descriptor, submit the following statement:

rename 7 birthdy ’firstname’=fname;

The column name (or positional equivalent) is specified on the left side of the
expression, with the SAS variable name on the right side. The equal sign (=) is
optional. If the column name contains lowercase characters, special characters, or
national characters, enclose the name in quotation marks. You can rename as many
columns as you want in one RENAME statement.

When you are creating a view descriptor, the RENAME statement automatically
selects the renamed column for the view. That is, if you rename the SAS variable
associated with a column, you do not have to issue a SELECT statement for that
column.

When you are creating an access descriptor, the RENAME statement also reselects
columns that were previously dropped with the DROP statement.

The ACCESS Procedure for PC Files � RESET Statement 83

RESET Statement

Resets PC file columns to their default settings

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments
Applies to: access descriptor or view descriptor
Interacts with: ASSIGN, DROP, FORMAT, RENAME, SELECT
Not allowed with: UPDATE

RESET ALL|<’>column-identifier-1<’><…<’>column-identifier-n<’>>;

Details
The RESET statement resets either the attributes of all the columns or the

attributes of the specified columns to their default values. The RESET statement can
be used when you create an access descriptor or a view descriptor, but it is not allowed
when you are updating a descriptor. RESET has different effects on access and view
descriptors, as described below.

If you use an editing statement, such as RESET, it must follow the CREATE
statement and the database-description statements when you create a descriptor. See
“CREATE Statement” on page 74 for more information about the order of statements.

The RESET statement can take one or more of the following arguments:

ALL
for access descriptors, resets all the PC file columns that have been defined to
their default names and format settings and reselects any dropped columns.

For view descriptors, ALL resets all the columns that have been selected so that
no columns are selected for the view; you can then use the SELECT statement to
select new columns. See “SELECT Statement” on page 84 for more information
about that statement.

column-identifier
can be either the PC file column name or the positional equivalent from the LIST
statement, which is the number that represents the column’s place in the access
descriptor. For example, to reset the SAS variable name and format associated
with the third column, submit the following statement:

reset 3;

If the column name contains lowercase characters, special characters, or
national characters, enclose the name in quotation marks. You can reset as many
columns as you want in one RESET statement, or use the ALL option to reset all
the columns.

When creating an access descriptor, the column-identifier is reset to its default
name and format settings. When creating a view descriptor, the specified column
is no longer selected for the view.

Access Descriptors
When you create an access descriptor, the default setting for a SAS variable name is

a blank. However, if you have previously entered or modified any of the SAS variable

84 SELECT Statement � Chapter 6

names, the RESET statement resets the modified names to the default names that are
generated by the ACCESS procedure. How the default SAS variable names are set
depends on whether you included the ASSIGN statement. If you omitted ASSIGN or
set it to NO, the default names are blank. If you set ASSIGN=YES, the default names
are the first eight characters of each PC file column name.

The current SAS variable format is also reset to the default SAS format, which was
determined from the column’s data type. Any columns that were previously dropped,
but that are specified in the RESET statement, become available; they can be selected
in view descriptors that are based on this access descriptor.

View Descriptors
When you create a view descriptor, the RESET statement clears any columns that

were included in the SELECT statement (that is, it de-selects the columns).
When creating the view descriptor, if you reset a SAS variable and then select it

again within the same procedure execution, the SAS variable names and formats are
reset to their default values, which are generated from the column names and data
types. This applies only if you have omitted the ASSIGN statement or set the value to
NO when you created the access descriptor on which the view descriptor is based. If
you specified ASSIGN=YES when you created the access descriptor, the RESET
statement has no effect on the view descriptor.

SELECT Statement

Selects PC file columns for the view descriptor

Requirement: This statement is required.
Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments
Applies to: view descriptor
Interacts with: RESET
Not allowed with: UPDATE

SELECT ALL|<’>column-identifier-1<’><…<’>column-identifier-n<’>>;

Details
The SELECT statement specifies which PC file columns in the access descriptor to

include in the view descriptor. This is a required statement and is used only when you
create view descriptors. You cannot use the SELECT statement when you are updating
a view descriptor.

If you use an editing statement, such as SELECT, it must follow the CREATE
statement when you create a view descriptor. See “CREATE Statement” on page 74 for
more information on the order of statements.

The SELECT statement can take one or more of the following arguments:

ALL
includes in the view descriptor all the columns that were defined in the access
descriptor and that were not dropped.

The ACCESS Procedure for PC Files � TYPE Statement 85

column-identifier
can be either the column name or the positional equivalent from the LIST
statement, which is the number that represents the column’s place in the access
descriptor on which the view is based. For example, to select the first three
columns, submit the following statement:

select 1 2 3;

If the column name contains lowercase characters, special characters, or
national characters, enclose the name in quotation marks. You can select as many
columns as you want in one SELECT statement.

SELECT statements are cumulative within the same view creation. That is, if
you submit the following two SELECT statements, columns 1, 5, and 6 are
selected, not just columns 5 and 6:

select 1;
select 5 6;

To clear all your current selections when creating a view descriptor, use the
RESET ALL statement; you can then use another SELECT statement to select
new columns.

SUBSET Statement

Adds or modifies selection criteria for a view descriptor

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments
Applies to: view descriptor

SUBSET selection-criteria;

Details
You use the SUBSET statement to specify selection criteria when you create a view

descriptor. This statement is optional; if you omit it, the view retrieves all the data
(that is, all the rows) in the PC file.

An editing statement, such as SUBSET, must follow the CREATE statement when
you create a view descriptor. See “CREATE Statement” on page 74 for more information
about the order of statements.

TYPE Statement

Changes the expected data types of SAS variables

Valid: for DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments

86 UNIQUE Statement � Chapter 6

TYPE <’>column-identifier-1<’><=> C | N<…column-identifier-n <=> C | N>;

Details
SAS data sets have two data types: character (C) and numeric (N). Spreadsheet files

have the same two data types: character (for labels and formula strings) and numeric
(for numbers and formulas). Changing the default data type of a SAS variable in a
descriptor file also changes its associated default format in the loaded file.

If you omit the TYPE statement, the database field types are generated from the PC
files data types. You can change as many database field types as you want in one TYPE
statement.

This statement is not available for use with DBF files.

UNIQUE Statement

Generates SAS variable names based on PC file column names

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments
Applies to: view descriptor
Interacts with: ASSIGN
Not allowed with: UPDATE
Alias: UN

UNIQUE <=> YES|NO|Y|N ;

Details
The UNIQUE statement specifies whether the SAS/ACCESS interface generates

unique SAS variable names for PC file columns for which SAS variable names have not
been entered. You cannot use the UNIQUE statement when you are updating a view
descriptor.

An editing statement, such as UNIQUE, must follow the CREATE statement when
you create a view descriptor. See “CREATE Statement” on page 74 for more information
about the order of statements. The UNIQUE statement is affected by whether you
specified the ASSIGN statement when you created the access descriptor on which this
view is based, as follows:

� If you specified the ASSIGN=YES statement, you cannot specify UNIQUE when
creating a view descriptor. YES causes SAS to generate unique names, so
UNIQUE is not necessary.

� If you omitted the ASSIGN statement or specified ASSIGN=NO, you must resolve
any duplicate SAS variable names in the view descriptor. You can use UNIQUE to
generate unique names automatically, or you can use the RENAME statement to
resolve duplicate names yourself. See “RENAME Statement” on page 81 for
information about that statement.

The ACCESS Procedure for PC Files � UPDATE Statement 87

If duplicate SAS variable names exist in the access descriptor on which you are
creating a view descriptor, you can specify UNIQUE to resolve the duplication. When
you specify UNIQUE=YES, the SAS/ACCESS interface appends numbers to any
duplicate SAS variable names, thus making each variable name unique. (See “CREATE
Statement” on page 74 for an explanation of how to create descriptors.)

If you specify UNIQUE=NO, the SAS/ACCESS interface continues to allow duplicate
SAS variable names to exist. You must resolve these duplicate names before saving
(and thereby creating) the view descriptor.

Note: It is recommended that you use the UNIQUE statement. If you omit it and
SAS encounters duplicate SAS variable names in a view descriptor, your job fails.

The equal (=) sign is optional in the UNIQUE statement. �

UPDATE Statement

Updates a SAS/ACCESS descriptor file

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments
Applies to: access descriptor or view descriptor
Not allowed with: ASSIGN, RESET, SELECT, UNIQUE

UPDATE libref.descriptor-name.ACCESS|VIEW ;

Details
Use the UPDATE statement to perform a quick, simple update of a descriptor. For

example, if the PC database file for an existing access descriptor is relocated, you can
use UPDATE with the PATH option to specify the new location.

Descriptors modified by UPDATE are not checked for errors. Where validation is
crucial, use CREATE to overwrite a descriptor rather than UPDATE.

The descriptor is a name in three parts separated by periods (.):

libref
identifies the library container, which is a location either on the local system’s disk
or that the local system can directly access. The libref must have been previously
created by a LIBNAME statement.

descriptor-name
is the descriptor you are updating. It must already exist in libref. (See “CREATE
Statement” on page 74.)

ACCESS
indicates that you are updating an access descriptor while VIEW indicates you are
updating a view descriptor.

Multiple UPDATE statements may appear in one ACCESS procedure block. If you
use UPDATE to change an access descriptor, one or more UPDATE statements might be
required for views that depend on the modified access descriptor.

You can use UPDATE and CREATE in the same PROC ACCESS block.

88 UPDATE Statement � Chapter 6

Updating Access Descriptors
The order of statements in an UPDATE block is as follows:
1 UPDATE must be the first statement after the PROC ACCESS statement with one

exception: if the block includes both UPDATE and CREATE statements, either
statement may be the first in the block.

2 Data source description statements are next. All are allowed.
3 Editing statements are next. These editing statements are not allowed: ASSIGN,

LIST, RESET, SELECT, VIEW.

Since the UPDATE block does not validate the updated descriptor, the order of
description and editing statements does not matter.

Updating View Descriptors

1 UPDATE must be the first statement after the PROC ACCESS statement with one
exception: if the block includes both UPDATE and CREATE statements, either
statement may be the first in the block.

2 Data source description statements are next. All are allowed.
3 Editing statements are next. These editing statements are not allowed: ASSIGN,

DROP, RESET, SELECT, and UNIQUE.

Examples
The following example upates an existing access descriptor named AdLib.Product:

libname adlib ’c:\sasdata’;

proc access dbms=wk4;
update adlib.product.access;
path=c:\lotus\specprod.wk4;
rename productid prodid

fibername fiber;
format productid 4.

weight e16.9
fibersize e20.13
width e16.9;

run;

The following example updates the access descriptor Employ, located in c:\sasdata,
for the spreadsheet named c:\excel\employ.xls and updates the view descriptor for
Employ named Emp1204, located in c:\sasviews:

libname adlib ’c:\sasdata’;
libname vlib ’c:\sasviews’;

proc access dbms=xls;
update adlib.employ.access;
path=’c:\excel\employ.xls’;
list all;

update vlib.emp1204.view;
format empid 6.

salary dollar12.2
jobcode 5.

The ACCESS Procedure for PC Files � UPDATE Statement 89

hiredate datetime9.
birthdate datetime9.;

subset where jobcode=1204;
run;

The following example updates a second view descriptor that is based on Employ
named BDays. It is also located in c:\sasviews. When you update a view, it is not
necessary to specify the access descriptor (using ACCDESC=) in the PROC ACCESS
statement. Note that FORMAT can be used because the access descriptor Employ was
created with ASSIGN=NO.

libname vlib ’c:\sasviews’;

proc access dbms=xls;
update vlib.bdays.view;
format empid 6.

birthdate datetime7.;
run;

90

91

C H A P T E R

7
The DBLOAD Procedure for PC
Files

Overview of the DBLOAD Procedure for PC Files 91
DBLOAD Procedure Naming Conventions 92

DBLOAD Procedure Syntax 92

PROC DBLOAD Statement 92

ACCDESC= Statement 93

DELETE Statement 94
ERRLIMIT= Statement 94

LABEL Statement 95

LIMIT= Statement 95

LIST Statement 96

LOAD Statement 96

PATH= Statement 97
QUIT Statement 98

RENAME Statement 98

RESET Statement 99

WHERE Statement 100

Overview of the DBLOAD Procedure for PC Files

The DBLOAD procedure for PC files is only available under Windows operating
environments. You can use the DBLOAD procedure with DBF, DIF, WK1, WK3, WK4,
Excel 4, Excel 5, and Excel 95 file formats. See “Methods for Accessing PC Files Data”
on page 3 for alternate methods for accessing data in PC file formats under Windows,
UNIX, OS/390, and OpenVMS operating environments.

This section provides general reference information for the DBLOAD procedure. It
presents the PROC DBLOAD options and statements that are common to all formats.
File format specific information for the SAS/ACCESS interface to your PC file is
included in separate sections.

Refer to SAS Language Reference: Dictionary and to the SAS documentation for your
operating environment for more information about SAS data sets and SAS data
libraries and their naming conventions or for help with the terminology used in this
procedure description.

The DBLOAD procedure loads data to and creates PC files. This data can be from
any of the following: a SAS data file, a PROC SQL view, a DATA step view, or a view
descriptor from any SAS/ACCESS interface product. The DBLOAD procedure
associates each SAS variable with a PC file column and assigns a default name and
data type to each column. You can use the default information or change it as
necessary. When you are finished customizing the columns, the procedure creates the
PC file and loads it with the input data.

92 DBLOAD Procedure Naming Conventions � Chapter 7

DBLOAD Procedure Naming Conventions
When you use the DBLOAD procedure to load a SAS data set into a PC file, the SAS

variable names cannot exceed 8 characters. This restriction is applied in order to have
compatibility with Version 6 naming conventions.

DBLOAD Procedure Syntax
When you use the DBLOAD procedure, you use different statements depending on

your task and your PC file. Not all statements are available with all PC file formats,
and additional statements might be used with your PC file. The general syntax for this
procedure is presented here; see the format-specific sections for file format specific
information.

PROC DBLOAD <DBMS=pc-file>
<DATA=< libref.>SAS-data-set>;

Database-Description Statement
PATH=’path-and-filename<.PC-file-extension>’|

<’>filename< ’>|fileref ;

Editing Statements
ACCDESC=< libref.>access-descriptor;
DELETE variable-identifier-1<…variable-identifier-n;>
ERRLIMIT=error-limit;
LABEL;
LIMIT=load-limit;
LIST <ALL|COLUMNS|FIELDS|variable-identifier>;
QUIT;
RENAME variable-identifier-1=<’>column-name-1<’>

<…variable-identifier-n<’>column-name-n<’>>;
RESET ALL|variable-identifier-1 <…variable-identifier-n >;
WHERE SAS-where-expression;

Creating and Loading Statement
LOAD;

RUN;

PROC DBLOAD Statement
Requirement: This statement is required.
Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments

The DBLOAD Procedure for PC Files � ACCDESC= Statement 93

PROC DBLOAD <DBMS=pc-file>
<DATA=< libref.>SAS-data-set>;

Arguments

DBMS=pc-file
Specifies which PC file format that you want to access. Specify DBMS=DBF for
DBF files, DBMS=DIF for DIF files, DBMS=WK1 | WK3 | WK4 for WKn files,
DBMS=MDB for MDB files, or DBMS=XLS for XLS files. The DBMS= option is
required.

DATA=<libref.>SAS-data-set
specifies the input data set. The input data can be retrieved from a SAS data file,
a PROC SQL view, a DATA step view, or a SAS/ACCESS view descriptor. If the
data set is permanent, you must use its two-level name, libref.SAS-data-set. If you
omit the DATA= option, the default is the last SAS data set that was created.

ACCDESC= Statement

Creates an access descriptor based on the new file

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments
Aliases: ACCESS= and AD=

ACCDESC=< libref.>access-descriptor;

Details
The ACCDESC= statement creates an access descriptor based on the PC file that you

are creating and loading. After the new PC file is created and loaded, the access
descriptor is automatically created. You must specify an access descriptor that does not
already exist.

An editing statement, such as ACCDESC=, must be specified after the
database-description statements when you create and load a file. See “LOAD
Statement” on page 96 for more information.

94 DELETE Statement � Chapter 7

DELETE Statement

Prevents variables from being loaded into the new PC file

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments
Interacts with: RENAME, RESET

DELETE variable-identifier-1 <…variable-identifier-n>;

Details
The DELETE statement drops the specified SAS variables from the PC file being

created. The variable-identifier argument can be either the SAS variable name or the
positional equivalent from the LIST statement. The positional equivalent is the number
that represents the variable’s place in the data set. For example, if you want to drop
the third variable, submit the following statement:

delete 3;

You can drop as many variables as you want in one DELETE statement. If you drop
more than one variable, separate the identifiers with spaces, not commas.

Even if you drop a variable from the list of variables, the positional equivalents of
the variables do not change. For example, if you drop the second variable, the third
variable is still referenced by the number 3, not 2.

An editing statement, such as DELETE, must be specified after the
database-description statements when you create and load a file. See “LOAD
Statement” on page 96 for more information.

ERRLIMIT= Statement

Stops loading data after a specified number of errors

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments
Default: 100

ERRLIMIT=error-limit;

Details
The ERRLIMIT= statement stops loading observations after the specified number of

errors has occurred while inserting rows into the file.
The error-limit argument must be a nonnegative integer. Specify ERRLIMIT=0 to

allow an unlimited number of errors to occur.

The DBLOAD Procedure for PC Files � LIMIT= Statement 95

An editing statement, such as ERRLIMIT=, must be specified after the
database-description statements when you create and load a file. See “LOAD
Statement” on page 96 for more information.

LABEL Statement

Causes column names to default to SAS labels

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments
Interacts with: RENAME, RESET

LABEL;

Details
The LABEL statement causes the column names to default to the SAS variable labels

when the new table is created. If a SAS variable has no label, the variable name is
used. If the label is too long to be a valid column name, the label is truncated.

For the LABEL statement to take effect, the RESET statement must be used after
the LABEL statement.

An editing statement, such as LABEL, must be specified after the
database-description statements when you create and load PC files. See “LOAD
Statement” on page 96 for more information.

LIMIT= Statement

Limits the number of observations loaded

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments
Default: 5000

LIMIT=load-limit;

Details
The LIMIT= statement places a limit on the number of observations that can be

loaded into a new file. The maximum number for the limit statement varies with each
PC file. The load-limit argument must be a nonnegative integer. To load all the
observations from your input data set, specify LIMIT=0.

If you omit the LIMIT= statement, a maximum of 5,000 observations are inserted.

96 LIST Statement � Chapter 7

LIST Statement

Lists information about the variables to be loaded

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments

Default: ALL

LIST <ALL|COLUMNS|FIELDS|variable-identifier>;

Details
The LIST statement lists information about all or some of the SAS variables to be

loaded into the new file. By default, the list is sent to the SAS log.
The LIST statement can take one or more of the following arguments:

ALL
lists information about all the variables in the input SAS data set, whether or not
those variables are selected for the load.

COLUMNS
lists information about only the input SAS variables that are selected for the load.
This argument does not apply to DBF files.

FIELDS
lists information about only the input SAS variables that are selected for the load.

variable-identifier
lists information about only the specified variable. The variable-identifier
argument can be either the SAS variable name or the positional equivalent. The
positional equivalent is the number that represents the variable’s position in the
data set. For example, if you want to list information for the column associated
with the third SAS variable, submit the following statement:

list 3;

You can specify LIST as many times as you want while creating a file; specify LIST
before the LOAD statement to see the entire table. LIST must be specified after the
database-description statements. See “LOAD Statement” on page 96 for more
information.

LOAD Statement

Creates and loads the new PC file

Requirement: This statement is required.

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments

The DBLOAD Procedure for PC Files � PATH= Statement 97

LOAD;

Details
The LOAD statement causes the interface view engine to create a file and to transfer

data to it from the input SAS data set after the DBLOAD procedure is submitted for
processing. This statement is required to create and load a new file.

When you create and load a file, you must place statements or groups of statements
in a certain order after the PROC DBLOAD statement and its options, as follows:

1 Database-description statements: PATH= and your PC file specific statements.

2 Editing statements: ACCDESC=, DELETE, ERRLIMIT, LABEL, LIMIT=, LIST,
RENAME, RESET, and WHERE. The order within this group usually does not
matter. See the individual statements for more information. QUIT is also an
editing statement but using it immediately terminates PROC DBLOAD.

3 Creating and loading statement: LOAD must appear last before RUN in order to
create and load the new table.

4 RUN statement: this statement is used to process the DBLOAD procedure.

PATH= Statement

Indicates the name and path of the PC file to be created and loaded

Requirement: This statement is required.

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments

PATH=’path-and-filename <.PC-file-extension>’|
<’>filename< ’>|fileref ;

Details
The PATH= statement indicates the path and name of the PC file you want to create

and load. The length of the filename can vary with the operating environment. See the
SAS documentation for your operating environment for any restrictions.

The PATH= statement can take one of the following arguments:

’path-and-filename<.PC-file-extension>’
specifies the fully qualified path and filename. You must enclose the entire path
and filename in quotation marks, including the appropriate PC file extension, such
as .dbf, .dif, .wkn, .mdb, or .xls. If you omit the file extension, SAS/ACCESS
supplies it for you.

<’>filename <’>
specifies the name of a file. The file must be located in your current (default)
directory. If no extension is specified, the SAS/ACCESS interface supplies it for
you. If the filename includes characters that are invalid in SAS names, such as

98 QUIT Statement � Chapter 7

the dollar sign ($) or if the filename begins with a number, you must enclose the
entire filename in quotation marks.

fileref
specifies a fileref that references the path and name of the file. (Assigning filerefs
with the FILENAME statement is described in Step-by-Step Programming with
Base SAS Software.)

A file with the same name must not already exist. If one does exist, it is not
overwritten. An error message is written to the SAS log, and the PC file that is
specified in this statement is not loaded.

QUIT Statement

Exits the DBLOAD procedure

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments
Alias: EXIT

QUIT;

Details
The QUIT statement exits the procedure without further processing.

RENAME Statement

Renames PC file columns

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments

Interacts with: DELETE, LABEL, RESET

Alias: COLUMN

RENAME variable-identifier-1=<’>column-name-1<’>
<…variable-identifier-n =<’>column-name-n<’>>;

Details
The RENAME statement changes the names of the PC file’s columns that are

associated with the listed SAS variables. If you omit the RENAME statement, all the

The DBLOAD Procedure for PC Files � RESET Statement 99

column names default to the corresponding SAS variable names (unless the LABEL
statement is specified).

The variable-identifier argument can be either the SAS variable name or the
positional equivalent from the LIST statement. The positional equivalent is the number
that represents the variable’s place in the data set. For example, if you want to rename
the column associated with the third SAS variable, submit the following statement:

rename 3=’employname’;

The column-name argument must be a valid PC file column name. If the column
name includes lowercase characters, special characters, or national characters, you
must enclose the column name in quotation marks.

The RENAME statement enables you to include variables that you have previously
deleted. For example, suppose you submit the following statements:

delete 3;
rename 3=’empname’;

The DELETE statement first drops the third variable. Then the RENAME statement
includes the third variable and assigns the name EMPNAME and the default column
type to it.

You can rename as many variables as you want in one RENAME statement. The
RENAME statement overrides the LABEL statement for columns that are renamed.

An editing statement, such as RENAME, must be specified after the
database-description statements when you create and load a PC file. See “LOAD
Statement” on page 96 for more information.

RESET Statement

Resets column names and data types to their default values

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments

Interacts with: DELETE, LABEL, RENAME

RESET ALL|variable-identifier-1<…variable-identifier-n>;

Details
The RESET statement resets the columns that are associated with the listed SAS

variables to the default column name, column data type, and ability to accept null
values. If you specify ALL, all columns are reset to their default values, and any
deleted columns are restored with their default values.

The variable-identifier argument can be either the SAS variable name or the
positional equivalent from the LIST statement. The positional equivalent is the number
that represents the variable’s place in the data set. For example, if you want to reset
the column associated with the third SAS variable, submit the following statement:

reset 3;

You can reset as many columns as you want in one RESET statement.

100 WHERE Statement � Chapter 7

You must use the RESET statement after the LABEL statement for the LABEL
statement to take effect.

An editing statement, such as RESET, must be specified after the
database-description statements when you create and load a PC file. See “LOAD
Statement” on page 96 for more information.

WHERE Statement

Loads a subset of data into the new PC file

Valid: for DBF, DIF, WK1, WK3, WK4, Excel 4, Excel 5, and Excel 95 file formats under
Windows operating environments

WHERE SAS-where-expression;

Details
The WHERE statement loads a subset of observations into the new PC file. The

SAS-where-expression must be a valid SAS WHERE statement that uses SAS variable
names (not column names) as defined in the input data set. The following example
loads only the observations in which the SAS variable Country has the value Brazil.

where country=’Brazil’;

For more information about the syntax of the SAS WHERE statement, see SAS
Language Reference: Dictionary.

An editing statement, such as WHERE, must be specified after the
database-description statements when you create and load a PC File. See “LOAD
Statement” on page 96 for more information.

101

P A R T2

Accessing PC Files on UNIX

Chapter 8.Overview of the SAS/ACCESS Interface to PC Files on
UNIX 103

Chapter 9.The PC Files Server 105

Chapter 10.The LIBNAME Statement for PC Files on UNIX 109

Chapter 11.The Import/Export Wizard and Procedures on UNIX 117

Chapter 12.The Pass-Through Facility for PC Files on UNIX 129

Chapter 13.The DBF and DIF Procedures on UNIX 141

Chapter 14.JMP Essentials for PC Files 147

102

103

C H A P T E R

8
Overview of the SAS/ACCESS
Interface to PC Files on UNIX

Introduction to the SAS/ACCESS Interface to PC Files on UNIX 103

Introduction to the SAS/ACCESS Interface to PC Files on UNIX
The SAS/ACCESS interface to PC files on UNIX has been significantly enhanced in

SAS 9.1.
It is now possible to access a wider range of PC file formats from UNIX, provided that

these files reside on the PC. This is made possible by the PC files server, which resides
on a network PC. You can use the LIBNAME statement, the IMPORT and EXPORT
procedures, and the Pass-Through Facility to access these new PC file formats.

When the PC files reside on UNIX, however, SAS/ACCESS to PC files instead
behaves as it did in SAS Version 8, working with a limited range of PC file formats via
the Import/Export wizard and procedures. In SAS 9.1, locally-residing JMP files can
also be accessed in this way.

The following table summarizes the capabilities of the SAS/ACCESS interface to PC
files on UNIX for SAS 9.1:

Table 8.1 Capabilities of SAS/ACCESS Interface to PC Files on UNIX

Method Location of Data Supported PC File Formats

LIBNAME statement UNIX None

PC Microsoft Access (version 97,
2000, and 2002)

Microsoft Excel (version 5, 95,
97, 2000, and 2002)

ODBC data source

Import/Export wizard UNIX dBASE DBF (III, III PLUS, IV,
and 5.0)

Delimited (tab, space, comma,
and other delimitor)

JMP

PC None

104 Introduction to the SAS/ACCESS Interface to PC Files on UNIX � Chapter 8

Method Location of Data Supported PC File Formats

IMPORT and EXPORT
procedures

UNIX dBASE DBF (III, III PLUS, IV,
and 5.0)

Delimited (tab, space, comma,
and other delimitors)

JMP

PC Microsoft Access (version 97,
2000, and 2002)

Microsoft Excel (version 5, 95,
97, 2000, and 2002)

JMP

Pass-Through Facility UNIX None

PC Microsoft Access (version 97,
2000, and 2002)

Microsoft Excel (version 5, 95,
97, 2000, and 2002)

ODBC data source

DBF procedure UNIX dBASE DBF (III, III PLUS, IV,
and 5.0)

PC None

DIF procedure UNIX DIF files

PC None

105

C H A P T E R

9
The PC Files Server

Overview of the PC Files Server 105
Starting the PC Files Server 105

Configuring the PC Files Server 107

Setting the Service Name or Port Number 107

Setting Maximum Connections 107

Setting Data Encryption 107
Constraints 107

Shared Information 108

Overview of the PC Files Server

The PC files server, when combined with an installation of SAS/ACCESS for PC Files
on UNIX, enables you to access PC data from UNIX. The server is a multi-threaded
server with user controls that are defined in the following sections.

Starting the PC Files Server

After you install the server components, consisting of the server, pcfserver.exe, and
several utility files, you are ready to start the server.

106 Starting the PC Files Server � Chapter 9

Open the pcfserver.exe file to open the SAS PC Files Server window. The SAS PC
Files Server window opens:

The top of the SAS PC Files Server window shows the server name, which identifies
the name of the server that started the PC files server application. It is display only
and cannot be modified.

The Server Options section contains connection information. You can change this
information as needed. See “Configuring the PC Files Server” on page 107.

The bottom of the window displays the active connections to the server. It contains
information about who is connected and what they are looking for via the Host Name,
User ID, and DSN/File Access fields respectively. If a single user opens multiple
connections then the most current DSN/File Access information is shown.

The PC Files Server � Constraints 107

Configuring the PC Files Server

Setting the Service Name or Port Number
The Service/Port field in the SAS PC Files Server window specifies the port

number or service name that the server will use to check for UNIX connection requests
from SAS/ACCESS. You should configure the service or port as a unique component on
your internal network, especially if you are going to run multiple PC files servers on
multiple PCs. The service or port that you specify is saved in the Windows registry. It
is used with subsequent invocations of the server.

Setting Maximum Connections
The Max Connections field in the SAS PC Files Server window specifies the number

of connections that will be supported by the server. The default is 10. Configure the
number of connections based on the load you expect on the PC from your UNIX users.

When calculating the potential connections, estimate one conncetion for every
concurrent LIBNAME statement and two for every concurrent Import/Export execution.
For example, if you have ten UNIX users connecting to the PC server concurrently,
using only PROC IMPORT/EXPORT, then the Max Connections field should be set to
20 (2 * number of users). If the users are utilizing a mix of LIBNAME and procedure
statements, Max Connections should still be set to 20, due to the reusability of client
connections from an individual user (that is, multiple LIBNAME statements can be
executed on one client connection).

The number of connections that you set is saved in the Windows registry. The value
is used with subsequent invocations of the server.

Setting Data Encryption
To enable data encryption between the SAS/ACCESS to PC Files on UNIX client and

the SAS PC files server, select the Data Encryption box on the SAS PC Files Server
window. When this option is selected, plain text is not transmitted across the network.

Note: When this item is checked you might see a decrease in performance. �

Constraints

There are several administrative constraints to be aware of:

� Only one SAS PC files server can be active on a given PC.

� Service names and port numbers need to be unique on each server.

� If you make any changes to the parameters, you must restart the server in order
for them to take effect. During the restart process, any users currently connected
to the server will be disconnected, which can result in loss of data.

� If you stop or restart the server, all users sessions will be closed, which can result
in a loss of data.

108 Shared Information � Chapter 9

Shared Information
After you have configured the PC server, you need to share the configuration

information with the UNIX users who will get data from the PC. They need to be
supplied with the following information:

� server name

� service name or port number

� path to any files or ODBC data sources to which they can have access.

109

C H A P T E R

10
The LIBNAME Statement for PC
Files on UNIX

Overview of the LIBNAME Statement for PC Files on UNIX 109
Sorting PC Files Data 109

Using SAS Functions with PC Files Data 109

Overview of the LIBNAME Statement for PC Files on UNIX
For PC files, the SAS/ACCESS LIBNAME statement extends the SAS global

LIBNAME statement to support assigning a libref to Microsoft Excel, Microsoft Access,
and ODBC data sources. This enables you to reference spreadsheets, databases, and
ODBC sources directly in a DATA step or SAS procedure, and to read from and write to
a Microsoft Access, Microsoft Excel, or ODBC table as though it were a SAS data set.
This section specifies the syntax for this statement and provides examples.

Sorting PC Files Data
Because librefs that refer to PC data refer to database and workbook objects such as

tables, they are stored in a format that differs from that of normal SAS data sets. This
is important to remember when you access and work with PC files data.

For example, you can sort the observations in a normal SAS data set and store the
output to another data set. However, in a Microsoft Access database, sorting data has
no effect on how it is stored. Because your data might not be sorted in the external file,
you must sort the data at the time of query.

Furthermore, when you sort PC files data, the results might vary depending on
whether the external spreadsheet or database places data with NULL values (which are
translated in SAS to missing values) at the beginning or the end of the result set.

Using SAS Functions with PC Files Data
When you use librefs that refer to PC files data with SAS functions, some functions

might return a value different from what is returned when you use the functions with
normal SAS data sets. For example, the PATHNAME function normally returns the
pathname for the assigned libref. However, when the libref refers to PC files data, the
function might return a Microsoft Excel filename assigned for the libref.

Usage of some functions might also vary. For example, the LIBNAME function can
accept an optional SAS-data-library argument. When you use the LIBNAME function
to assign or deassign a libref that refers to PC files data, however, you omit this

110 LIBNAME Statement Syntax for PC Files on UNIX � Chapter 10

argument. For full details about how to use SAS functions, see the SAS Language
Reference: Dictionary.

LIBNAME Statement Syntax for PC Files on UNIX

Associates a SAS libref with a workbook, database, or ODBC data source

Valid in: anywhere

Syntax
u LIBNAME libref pcfiles

<connection-options>
<libname-options>;

v LIBNAME libref CLEAR | _ALL_ CLEAR;

w LIBNAME libref LIST | _ALL_ LIST;

Arguments

libref
is any SAS name that serves as an alias to associate SAS with a spreadsheet, data
source, or database. Like the global SAS LIBNAME statement, the SAS/ACCESS
LIBNAME statement creates shortcuts or nicknames for data storage locations.
While a SAS libref is an alias for a virtual or physical directory, a SAS/ACCESS libref
is an alias for the spreadsheet, data source, or database where your data is stored.

pcfiles
is the SAS/ACCESS engine name for the interface to PC files on UNIX.

CLEAR
deassigns one or more currently assigned librefs.

Specify libref to deassign a single libref. Specify _ALL_ to deassign all currently
assigned librefs.

ALL
specifies that the CLEAR or LIST argument applies to all currently assigned librefs.

LIST
writes the attributes of one or more SAS/ACCESS libraries or SAS data libraries to
the SAS log.

Specify libref to list the attributes of a single SAS/ACCESS library or SAS data
library. Specify _ALL_ to list the attributes of all libraries that have librefs in your
current session.

connection-options
provide connection information to SAS/ACCESS to connect to your PC files. If the
connection options contain characters that are not allowed in SAS names, enclose the
values of the arguments in quotation marks. In some instances, if you specify the
appropriate system options or environment variables for your data source, you can
omit the connection options.

The LIBNAME Statement for PC Files on UNIX � LIBNAME Statement Syntax for PC Files on UNIX 111

See “Connection Options” on page 111 for detailed information about connection
options.

libname-options
define how SAS interacts with your data source, and provide enhanced control of the
way that SAS processes data source objects. For example, some LIBNAME options
can improve performance. For many tasks, you do not need to specify any of these
advanced options.

See “LIBNAME Options for PC Files on Windows” on page 11 for detailed
information about LIBNAME options.

Connection Options
SAS/ACCESS provides many ways to connect to your PC files.

The following options are used when you are connecting to the PC files server.

DSN=“data-source-name”
specifies the ODBC data source name that will be used to access the PC data via
an ODBC driver on the PC.

Note: This ODBC data source must be defined on the PC where the PC files
server is currently running. �

CONNECT_STRING= “connection-string”
specifies connection options for your data source or database. Separate multiple
options with a semicolon. This is an advanced connection method that should only
be used when you know the exact syntax of all the connection options that the
ODBC driver requires for a successful connection.

PASSWORD=“user-password”
specifies a password for the user account, if required by the data source.
Passwords are case-sensitive.

Aliases: PWD, PW, PASS, PASSWORD

PATH=“pathname”
specifies the location of the data file. This is the full path and filename for your
Microsoft Access database file or Microsoft Excel workbook file. Always enter file
extension .mdb for Microsoft Access and .xls for Excel.

PORT=“port-number”
specifies the port or service name that the SAS PC files server is listening on on
the PC. This port or service name is displayed on the PC files server control panel
screen when it is started on the PC. This is a required field when connecting to the
PC files server for data.

Aliases: SERVICE, SERVICE_NAME
Default 8621

SERVER=“pc-server-hostname”
specifies the computer name of the PC on which you started the PC files server.
This name is required by UNIX users to connect to this server machine and is
reflected on the server control panel. This is a required field when you are
connecting to the PC files server for data.

This hostname can be specified as a simple computer name (wxp320), a fully
qualified network name (wxp320.domain.com), or an IP address.

USER=“user-ID”
specifies a user account name, if one is required to connect to the data source. For
Microsoft Access, if you have user-level security set in your .mdb file, you need to
use this option and the PASSWORD= option to be able to access your file.

112 LIBNAME Statement Syntax for PC Files on UNIX � Chapter 10

Alias: UID

The following options are used only for Microsoft Access.

DBPASSWORD=“database-file-password”
enables you to access your file if you have database-level security set in your .mdb
file. A database password is case-sensitive and can be defined instead of user-level
security.

Aliases: DBPWD, DBPW, PASS, PASSWORD

DBSYSFILE=“workgroup-information-file”
contains information about the users in a workgroup based on information that
you define for you Microsoft Access database. Any user and group accounts or
passwords you create are saved in the workgroup information file.

Alias: SYSTEMDB

The following option is used only for Microsoft Excel.

VERSION=2002 | 2000 | 97
sets the version of Microsoft Excel. The default value is 97.

Alias: VER

Note: You do not need to specify this option if you do not know the version of
your Microsoft Excel file. However, if you want to create a new Microsoft Excel
file, you can use this option to specify the version you want to create. �

2002 sets the version of Microsoft Excel to 2002.

2000 sets the version of Microsoft Excel to 2000.

97 sets the version of Microsoft Excel to 97.

The following option is used for Microsoft Excel or Microsoft Access.

TYPE=“file-type”
specifies the file type of the file in the PATH= statement. Valid values of TYPE=
are EXCEL or ACCESS. Use TYPE= if the file identified in the PATH= statement
does not have the .xls or .mdb extension at the end of the name.

The following example assigns the libref db for an Excel file:

libname db pcfiles server=D2323 port=8621 path=’c:\demo.xls’;

Details

u Using Data from a PC File
SAS/ACCESS for PC Files on UNIX enables you to directly access PC data from

UNIX. You can read from and write to a variety of PC file data residing on a PC,
including Microsoft Excel, Microsoft Access, and any other ODBC data source.

The engine utilizes ODBC to support assigning a libref to Microsoft Excel and
Microsoft Access files residing on a PC from UNIX. This enables you to reference
spreadsheets, databases, and other ODBC data sources directly in a DATA step or SAS
procedure, and to read from and write to a Microsoft Access or Excel object as though it
were a SAS data set.

v Disassociating a Libref from a SAS Data Library To disassociate or clear a libref,
use a LIBNAME statement, specifying the libref (for example, mypclib) and the CLEAR
option as follows:

libname mypclib CLEAR;

You can clear a single specified libref or all current librefs.

The LIBNAME Statement for PC Files on UNIX � LIBNAME Statement Syntax for PC Files on UNIX 113

SAS/ACCESS disconnects from the data source and closes any free threads or
resources that are associated with that libref’s connection.

w Writing SAS Data Library Attributes to the SAS Log Use a LIBNAME statement to
write the attributes of one or more SAS/ACCESS libraries or SAS data libraries to the
SAS log. Specify libref to list the attributes of a single SAS/ACCESS library or SAS
data library, as follows:

libname mypclib LIST;

Specify _ALL_ to list the attributes of all libraries that have librefs in your current
session, as follows:

libname _ALL_ LIST;

Examples

Assigning a Libref to a Microsoft Access Database The following statement creates
the libref mymdb:

libname mymdb pcfiles server=D2323 port=8621 path="c:\demo.mdb";

The demo.mdb database contains a number of objects, including several tables, such as
Staff. After you assign the libref, you can reference the Microsoft Access table like a
SAS data set and use it as a data source in any DATA step or SAS procedure. In the
following PROC SQL statement, mymdb.staff is the two-level SAS name for the Staff
table in the Microsoft Access database Demo.

proc sql;
select idnum, lname

from mymdb.staff
where state=’NY’
order by lname;

quit;

You can use the Microsoft Access data to create a SAS data set:

data newds;
set mymdb.staff(keep=idnum lname fname);

run;

You can also use the libref and data set with any other SAS procedure. This
statement prints the information in the staff table:

proc print data=mymdb.staff;
run;

This statement lists the database objects in the mymdb library:

proc datasets library=mymdb;
quit;

Assigning a Libref to a Microsoft Excel Workbook The following statement creates a
libref, myxls, for an Excel workbook:

libname myxls pcfiles server=D2323 port=8621 path="c:\demo.xls";

114 LIBNAME Statement Syntax for PC Files on UNIX � Chapter 10

The demo.xls workbook contains a number of sheets, such as sheet1. After you assign
the libref, you can reference the Microsoft Excel spreadsheet like a SAS data set and
use it as a data source in any DATA step or SAS procedure. In the following example a
SAS data set is created from an Excel sheet:

data a;
set myxls.’sheet1$’n;

run;

Note: When using a LIBNAME statement with Excel, you must refer to Excel
sheets as n-literals because of the “$” character. If you are referencing a named range
in an Excel spreadsheet, it is not necessary to refer to it as a n-literal.

The following example illustrates how to reference a named range called pageone in
an Excel workbook:

libname myxls pcfiles server=d2323 port=8621 path="c:\demo.xls";

data a;
set myxls.pageone;

run;

You can also create an Excel file and use a SAS data set to populate a sheet in that
file. A named range is also created for that sheet.

libname myxls pcfiles server=D2323 port=8621 path="c:\demo.xls";

data myxls.sheet1;
set sashelp.air;

run;

�

You can also use the libref with any other SAS procedure. For example, you can use
PROC PRINT on a sheet in an Excel file:

libname myxls pcfiles server=d2323 port=8621 path="c:\test.xls";
proc print data=myxls.’sheet1$’n;
run;

Assigning a Libref to a Microsoft SQL Server Database The following statement
creates a libref, mysqlsrv, to a Microsoft SQL Server database via ODBC, using the
server on the PC:

libname mysqlsrv pcfiles server=D2323 port=8621 dsn=MQIS user=scott
pwd=tiger schema=dbo;

Using the mysqlsrv libref, a SAS data set called sqltest is created from the crime
table in the Microsoft SQL Server database:

data work.sqltest;
set mysqlsrv.crime;

run;

or

proc sql;
create table work.sqltest as select * from mysqlsrv.crime;

quit;

Using the mysqlsrv libref, a SQL Server table is created called newtable from the
SAS data set sqltest:

The LIBNAME Statement for PC Files on UNIX � LIBNAME Statement Syntax for PC Files on UNIX 115

data mysqlsrv.newtable;
set sqltest;

run;

Assigning a Libref to an Oracle Database The following statement creates a libref,
ora, to an Oracle database table via ODBC, using the PC files server on the PC:

libname ora pcfiles server=D2323 port=8621 dsn=ORA9MS
user=scott pwd=tiger preserve_tab_names=yes;

Using the ora libref, an Oracle table, oratab, is created from a SAS data set
sashelp.class:

data ora.oratab;
set sashelp.class;

run;

Using the ora libref, a SAS data set, sastab, is created from the Oracle table emp:

data sastab;
set ora.emp;

run;

116

117

C H A P T E R

11
The Import/Export Wizard and
Procedures on UNIX

Import/Export Overview for PC Files on UNIX 117
Import/Export Wizard on UNIX 118

The IMPORT and EXPORT Procedures on UNIX 122

IMPORT Procedure 122

Overview of the IMPORT Procedure 122

Example: Importing a Microsoft Access File Via the PC Files Server (File Resides on the
PC) 123

Example: Importing Microsoft Excel Workbook Files Via the PC Files Server (File Resides on
the PC) 123

Example: Importing a JMP File Via the PC Files Server (File Resides on the PC) 124

Example: Importing a DBASE File (File Resides on UNIX) 124

Example: Importing a Delimited File (File Resides on UNIX) 124
Example: Importing a JMP File (File Resides on UNIX) 124

EXPORT Procedure 125

Overview of the EXPORT Procedures 125

Example: Exporting to a Microsoft Access File Via the PC Files Server (New File Will Reside
on the PC) 125

Example: Exporting to a Microsoft Excel File Via the PC Files Server (New File Will Reside
on the PC) 125

Example: Exporting to a JMP File Via the PC Files Server (New File Will Reside on the
PC) 126

Example: Exporting to a DBF File Via the PC Files Server (New File Will Reside on
UNIX) 126

Example: Exporting to a Comma-Delimited File (New File Will Reside on UNIX) 126

Example: Exporting to a Delimited File (New File Will Reside on UNIX) 126

Example: Exporting to a JMP File (File Resides on UNIX) 127

Import/Export Overview for PC Files on UNIX

The Import/Export wizard, PROC IMPORT, and PROC EXPORT enable the transfer
of data between SAS and different PC file formats. The Import/Export wizard is a
point-and-click interface, while the IMPORT and EXPORT procedures are code-based.
At present, the IMPORT and EXPORT procedures handle a broader range of files than
the Import/Export wizard, which will only work with certain PC file formats that reside
on UNIX.

The IMPORT and EXPORT procedures work within the same limited range of file
formats if they reside locally on UNIX, but will also work with a wider range of PC file
formats which reside on the PC. For comprehensive documentation about these
features, see Base SAS Procedures Guide.

118 Import/Export Wizard on UNIX � Chapter 11

The following table summarizes import and export capabilities:

Table 11.1 Import/Export Capabilities on UNIX

Method Location of Data Supported PC File Formats

Import/Export wizard UNIX dbase DBF (Versions III, III
PLUS, IV, and 5.0)

delimited (tab, space, comma,
and other delimitors)

JMP

PC None

IMPORT/EXPORT procedures UNIX dBASE DBF (III, III PLUS, IV,
and 5.0)

delimited (tab, space, and
comma)

JMP

PC Microsoft Acess Client
(versions 97, 2000, and 2002)

Microsoft Excel (versions 5, 95,
97, 2000, and 2002)

JMP

Note: The Import/Export wizard and IMPORT and EXPORT procedures are a part
of Base SAS software. If you do not have a license for SAS/ACCESS to PC files,
however, you can only access delimited files with these features. �

Import/Export Wizard on UNIX
The Import/Export wizard is a point-and-click interface that guides you through the

importing and exporting of certain PC file formats that reside on UNIX. If you are
working in a UNIX environment, it will NOT work with PC files that reside on the PC.

To invoke the Import/Export wizard, from the SAS windowing environment, select
File and then either Import Data or Export Data. Detailed information about using
the wizard is available from the Help button.

The Import wizard enables you to read data from an external data source on UNIX
and write it to a SAS data set. External data sources can include DBF files, JMP files,
or delimited files, which are files containing columns of data values that are separated
by a delimiter such as a blank or a comma. Complete the following steps to use the
Import wizard on UNIX.

1 Select the type of files you are importing.

The Import/Export Wizard and Procedures on UNIX � Import/Export Wizard on UNIX 119

Display 11.1 Import Wizard: Select Import Type

2 Locate the input file.

Display 11.2 Import Wizard: Select File

3 Select a location in which to store the imported file.

Display 11.3 Import Wizard: Imported File Location

4 Save the generated PROC IMPORT code. (Optional)

120 Import/Export Wizard on UNIX � Chapter 11

Display 11.4 Import Wizard: Save Generated Code

The Export wizard reads data from a SAS data set and writes it to an external file
source. Complete the following steps to use the Export wizard on UNIX.

1 Select the SAS data set from which you want to export data.

Display 11.5 Export Wizard: Select Library and Member

2 Select the type of data source to which you want to export files.

Display 11.6 Export Wizard: Select Export Type

The Import/Export Wizard and Procedures on UNIX � Import/Export Wizard on UNIX 121

3 Assign a location to save the exported file.

Display 11.7 Export Wizard: Save Location

4 Save the generated PROC EXPORT code. (Optional)

Display 11.8 Export Wizard: Save Generated Code

122 The IMPORT and EXPORT Procedures on UNIX � Chapter 11

From the primary window of the Import/Export wizard, you can also access the
External File Interface (EFI). EFI is a point-and-click interface that enables you to read
and write data in a file type that is not known to the Import/Export wizard. For
example, you could use EFI to transfer data from a SAS data set to a file format that is
proprietary for your company. Detailed information about using EFI is available from
the Help button. To access the EFI, select the User-defined formats box on the
primary Import/Export wizard window:

Display 11.9 Accessing the External File Interface

The IMPORT and EXPORT Procedures on UNIX

Like the Import/Export wizard, the IMPORT and EXPORT procedures enable you to
transfer data between SAS and certain PC file formats that reside on UNIX. They also
enable you to access other file formats that reside on the PC. (See Table 11.1 on page
118.)

IMPORT Procedure

Overview of the IMPORT Procedure

The syntax for the IMPORT procedure is shown here briefly but is described in detail
in the Base SAS Procedures Guide. See Chapter 1, “Overview of the SAS/ACCESS
Interface to PC Files,” on page 3 for a list of file formats supported under your
operating environment.

PROC IMPORT
DATAFILE=“filename” | TABLE=“tablename”
OUT=<libref.> SAS-data-set <(SAS-data-set-options)>
<DBMS=identifier> <REPLACE>;

<data-source-statements;>

Note: identifier should equal ACCESSCS for Microsoft Access, EXCELCS for
Microsoft Excel, PCFS for JMP, DBF for DBF files, CSV for comma-delimited files, and
DLM for other delimited files (in conjunction with the DELIMITER= option). �

The Import/Export Wizard and Procedures on UNIX � IMPORT Procedure 123

After you invoke the IMPORT procedure, it reads the input file and writes the data to
a SAS data set, where the names of the SAS variables are based on the column names
of the input data. PROC IMPORT imports the data by one of the following methods:

� generated DATA step code
� generated SAS/ACCESS code
� translation engines.

You control the results with options and statements that are specific to your input
data source. PROC IMPORT produces the specified SAS data set and writes
information about the import to the SAS log. In the log, you see the DATA step or the
SAS/ACCESS code that is generated by PROC IMPORT. If a translation engine is used,
then the code is not submitted.

Example: Importing a Microsoft Access File Via the PC Files Server (File
Resides on the PC)

This example imports a Microsoft Access table (Customers) and from it creates a
permanent SAS data set (sasuser.cus). The Microsoft Access table has user-level
security and, therefore, you need to specify the following statements: PWD=, UID=, and
WGDB=.

proc import dbms=accesscs table="customers" out=sasuser.cust;
database="c:\demo\customers.mdb";
server=d2323; /* name of pc files server(required) */
port=8621; /* Port number listening on the PC server */
uid="bob"; /* Microsoft Access database user ID */
pwd="cat"; /* Microsoft Access database password */
wgdb="c:\winnt\system32\system.mdb"; /* Workgroup administrator database */

run;

proc print data=sasuser.cust;
run;

Note: See the Base SAS Procedures Guide for restrictions, interactions, and tips
about PROC IMPORT. �

Example: Importing Microsoft Excel Workbook Files Via the PC Files Server
(File Resides on the PC)

This example imports a worksheet (Invoice) in a Microsoft Excel workbook
(sasdemo.xls) on the PC server (sales), and from it, creates a permanent SAS data set
named work.invoice.

proc import dbms=excelcs out=work.invoice
datafile="c:\excel\sasdemo.xls"
replace;

server="sales"; /* Name of PC files server */
port=8621; /* Port number listening on the PC server */
version=’2002’; /* Excel file version */
sheet="Invoice"; /* Sheet name */
scantext=yes; /* Scan all rows data for the largest size */
usedate=yes; /* Use DATE format for date/time columns */
scantime=yes; /* Scan and identify time columns */
dbsaslabel=none; /* Leave SAS label names to be nulls */
textsize=512; /* Largest text size allowed */

run;

124 IMPORT Procedure � Chapter 11

Note: See the Base SAS Procedures Guide for restrictions, interactions, and tips
about PROC IMPORT. �

Example: Importing a JMP File Via the PC Files Server (File Resides on the
PC)

This example imports a JMP file (test.jmp) and from it creates a temporary SAS data
set (work.invoice).

proc import dbms=pcfs out=work.invoice datafile="c:\jmp\test.jmp";
server=d2323; /* Name of PC files server */
port=8621; /* Port number listening on the PC server */

run;

Note: See the Base SAS Procedures Guide for restrictions, interactions, and tips
about PROC IMPORT. �

Example: Importing a DBASE File (File Resides on UNIX)
This example imports a DBASE file (test.dbf) and from it creates a temporary SAS

data set (work.invoice).

proc import dbms=dbf out=work.invoice datafile="/tmp/invoice.dbf" replace;
run;

Note: See the Base SAS Procedures Guide for restrictions, interactions, and tips
about PROC IMPORT. �

Example: Importing a Delimited File (File Resides on UNIX)
This example imports a comma-delimited file (test.csv) and from it creates a

temporary SAS data set (work.invoice).

Note: It is not necessary to have a license for SAS/ACCESS to PC files to read in a
CSV file in this manner. �

proc import dbms=csv out=work.invoice datafile="/tmp/test.csv";
run;

Note: See the Base SAS Procedures Guide for restrictions, interactions, and tips
about PROC IMPORT. �

Example: Importing a JMP File (File Resides on UNIX)
This example imports a JMP file (invoice.jmp) and from it creates a temporary SAS

data set (work.invoice)

proc import dbms=jmp out=work.invoice datafile="/tmp/invoice.jmp";
run;

Note: See the Base SAS Procedures Guide for restrictions, interactions, and tips
about PROC IMPORT. �

The Import/Export Wizard and Procedures on UNIX � EXPORT Procedure 125

EXPORT Procedure

Overview of the EXPORT Procedures
The syntax for the EXPORT procedure is shown here briefly but is described in detail

in the Base SAS Procedures Guide. See “Methods for Accessing PC Files Data” on page
3 for a list of file formats supported under your operating environment.

PROC EXPORT
DATA=<libref.>SAS-data-set <(SAS-data-set-options)>
OUTFILE=“filename” | OUTTABLE=“tablename”
<<DBMS=identifier> <REPLACE>>;

Note: identifier should equal ACCESSCS for Microsoft Access, EXCELCS for
Microsoft Excel, and PCFS for JMP. �

The EXPORT procedure reads data from a SAS data set and exports it to an external
data source by using one of the following methods:

� generated DATA step code

� generated SAS/ACCESS code

� translation engines.

PROC EXPORT also controls the results with options and statements that are specific
to the output data source.

Example: Exporting to a Microsoft Access File Via the PC Files Server
(New File Will Reside on the PC)

This example uses a SAS data set (work.employee) to create a Microsoft Access table
(Worktable). The new file will reside on the PC.

proc export dbms=accesscs data=work.employee outtable="emptable";
database="c:\demo\customers.mdb";
server=d2323; /* Server name */
port=8621; /* Port number */

run;

Note: See the Base SAS Procedures Guide for restrictions, interactions, and tips
about PROC EXPORT. �

Example: Exporting to a Microsoft Excel File Via the PC Files Server (New
File Will Reside on the PC)

This example uses a SAS data set (work.employee) to create a worksheet (Employee)
in a new Microsoft Excel workbook (newfile.xls). The new file will reside on the PC.

proc export dbms=excelcs data=work.employee outfile="c:\temp\newfile.xls" replace;
sheet=employee;
version="2002"; /* Excel version */
server=d2323; /* Server name */
port=8621; /* Port number */

RUN;

Note: See the Base SAS Procedures Guide for restrictions, interactions, and tips
about PROC EXPORT. �

126 EXPORT Procedure � Chapter 11

Example: Exporting to a JMP File Via the PC Files Server (New File Will
Reside on the PC)

This example uses a SAS data set (work.employee) to create a JMP file
(employee.jmp) that will reside on the PC.

proc export dbms=pcfs data=work.employee outfile="c:\temp\employee.jmp";
server=d2323; /* Server name */
port=8621; /* Port number */

run;

Note: See the Base SAS Procedures Guide for restrictions, interactions, and tips
about PROC EXPORT. �

Example: Exporting to a DBF File Via the PC Files Server (New File Will
Reside on UNIX)

This example uses a SAS data set (work.employee) to create a DBF file
(employee.dbf) that will reside on UNIX.

proc export dbms=dbf data=work.exployee outfile="/tmp/employee.dbf";
run;

Note: See the Base SAS Procedures Guide for restrictions, interactions, and tips
about PROC EXPORT. �

Example: Exporting to a Comma-Delimited File (New File Will Reside on
UNIX)

This example uses a SAS data set (work.employee) to create a flat file (employee.txt)
that will reside on UNIX

Note: It is not necessary to have a license for SAS/ACCESS to PC files in order to
create a delimited flat file in this manner. �

proc export data=work.employee outfile="/tmp/employee.txt" dbms=dbf csv;
run;

Note: See the Base SAS Procedures Guide for restrictions, interactions, and tips
about PROC EXPORT. �

Example: Exporting to a Delimited File (New File Will Reside on UNIX)
The following example exports a SAS data set (myfile.class) and creates a delimited

external file (Class). Notice that the DELIMITER= statement specifies the ampersand
(&) delimiter to separate the column names in the new file. This example is repeated
from the Base SAS Procedures Guide; see it for the SAS log.

proc export data=myfiles.class outfile="/myfiles/class" dbms=dlm;
delimiter=’&’;

run;

The following code shows the first five rows of the external file that PROC EXPORT
produces:

NAMES&SEX&AGE&HEIGHT&WEIGHT
Alice&F&13&56.5&84

The Import/Export Wizard and Procedures on UNIX � EXPORT Procedure 127

Becka&F&13&65.3&98
Gail&F&14&64.3&90
Karen&F&12&56.3&77
Kathy&F&12&59.8&84.5

Note: See the Base SAS Procedures Guide for restrictions, defaults, requirements,
and limitations of PROC EXPORT. �

Example: Exporting to a JMP File (File Resides on UNIX)
The following example exports a SAS data set (work.invoice) and creates a JMP file

(invoice.jmp). This new file will reside on UNIX.

proc export dbms=jmp data=work.invoice outfile="/tmp/invoice.jmp";
run;

Note: See the Base SAS Procedures Guide for restrictions, defaults, requirements,
and limitations of PROC EXPORT. �

128

129

C H A P T E R

12
The Pass-Through Facility for
PC Files on UNIX

Overview of the Pass-Through Facility for PC Files on UNIX 129
Syntax for the Pass-Through Facility for PC Files 129

Return Codes 130

Special PC Files Queries 138

Overview of the Pass-Through Facility for PC Files on UNIX

The SQL procedure implements the Structured Query Language (SQL) for SAS. See
the SQL procedure topic in Base SAS Procedures Guide for information about PROC
SQL. You can send data source specific SQL statements directly to a data source using
an extension to the SQL procedure called the Pass-Through Facility.

This facility uses SAS/ACCESS to connect to a data source and to send statements
directly to the data source for execution. This facility is a complement to the
SAS/ACCESS LIBNAME statement. It enables you to use the SQL syntax of your data
source, which can include any non-ANSI standard SQL that is supported by your data
source.

The Pass-Through Facility enables you to do the following:

� establish and terminate connections with a data source using the facility’s
CONNECT and DISCONNECT statements

� send dynamic, non-query, data source specific SQL statements to a data source
using the facility’s EXECUTE statement

� retrieve data directly from a data source using the facility’s CONNECTION TO
component in the FROM clause of a PROC SQL SELECT statement.

You can use Pass-Through Facility statements in a PROC SQL query or you can
store them in a PROC SQL view. When you create a PROC SQL view, any arguments
that you specify in the CONNECT statement are stored with the view. Therefore, when
the view is used in a SAS program, SAS can establish the appropriate connection to the
data source.

Syntax for the Pass-Through Facility for PC Files

This section presents the syntax for the Pass-Through Facility statements and the
CONNECTION TO component, which can be used in conjunction with the PROC SQL
SELECT statement to query data from a data source.

130 Return Codes � Chapter 12

PROC SQL <options-list>;

CONNECT TO data-source-name <AS alias> <(<connect-statement-arguments>
<database-connection-arguments>)>;

DISCONNECT FROM data-source-name | alias;

EXECUTE (data-source-specific-SQL-statement) BY data-source-name | alias;

SELECT column-list FROM CONNECTION TO data-source-name | alias
(data-source-query)

Return Codes
As you use the PROC SQL statements that are available in the Pass-Through

Facility, any error conditions are written to the SAS log. The Pass-Through Facility
generates return codes and messages that are available to you through the following
two SAS macro variables:

SQLXRC
contains the data source return code that identifies the data source error.

SQLXMSG
contains descriptive information about the data source error that is generated by
the data source.

The contents of the SQLXRC and SQLXMSG macro variables are printed in the SAS
log using the %PUT macro. They are reset after each Pass-Through Facility statement
has been executed.

CONNECT Statement

Establishes a connection with the data source

Valid in: PROC SQL steps

Syntax
CONNECT TO data-source-name <AS alias> <(<connect-statement-arguments>

<database-connection-arguments>)>;

Arguments
data-source-name

identifies the data source to which you want to connect. Since this method
requires connecting through the PC files server, you must use PCFILES as your
data source. You can also specify an optional alias in the CONNECT statement.

alias
specifies an optional alias for the connection that has 1 to 32 characters. If you
specify an alias, the keyword AS must appear before the alias. If an alias is not
specified, the data source name is used as the name of the Pass-Through
connection.

The Pass-Through Facility for PC Files on UNIX � CONNECT Statement 131

connect-statement-arguments
specifies arguments that indicate whether you can make multiple connections,
shared or unique connections, and so on to the database. Some of these arguments
are optional.

database-connection-arguments
specifies the data source specific arguments that are needed by PROC SQL to
connect to the data source. These arguments are not required and the default
behavior opens a dialog box that prompts you for information they provide.

Database Connection Arguments
The arguments that are listed below are available with the Pass-Through Facility for
PC files. These arguments extend some of the LIBNAME statement connection
management features to the Pass-Through Facility.

The following options are used when connecting to the PC files server.

PATH=“path-for-file”
specifies the data source file location for the Microsoft Access database file or
Microsoft Excel workbook file.

PASSWORD=“user-password”
specifies a password for the user account, if required by the data source.
Passwords are case-sensitive.

USER=“user-ID”
specifies a default user account name. The default value is Admin. User names
can be 1 to 20 characters long and can include alphabetic characters, accented
characters, numbers, and spaces. If you have user-level security set in your MDB
file, you need to use this option and the PASSWORD= option to be able to access
your file.

The following options are used only for Microsoft Access.

DBPASSWORD=“database-file-password”
enables you to access your file if you have database-level security set in your MDB
file. A database password is case-sensitive and can be defined instead of user-level
security

DBSYSFILE=“workgroup-information-file”
contains information about the users in a workgroup based on information that
you define for you Microsoft Access database. Any user and group accounts or
passwords you create are saved in the new workgroup information file.

The following option is used only for Microsoft Excel.

VERSION=2002 | 2000 | 97 | 95 | 5
sets the version of Microsoft Excel. The default value is 97.

2002 sets the version of Microsoft Excel to 2002.

2000 sets the version of Microsoft Excel to 2000.

97 sets the version of Microsoft Excel to 97.

95 sets the version of Microsoft Excel to 95.

5 sets the version of Microsoft Excel to 5.

CONNECT Statement Arguments
The arguments that are listed below are available with the Pass-Through Facility
CONNECT statement for PC files. These arguments extend some of the LIBNAME
statement connection management features to the Pass-Through Facility.

132 CONNECT Statement � Chapter 12

AUTOCOMMIT=YES | NO
determines whether the ACCESS engine commits (saves) updates as soon as the
user submits them.

YES
specifies that updates are committed (that is, saved) to the table as soon as
they are submitted, and no rollback is possible.

NO
specifies that the SAS/ACCESS engine automatically performs the commit
when it reaches the end of the file.

Default: YES

Note: The default value for this option is different from the LIBNAME
option. �

COMMAND_TIMEOUT=number-of-seconds
specifies the number of seconds that pass before a data source command times out.

Default: 0 (no timeout)

Alias: TIMEOUT=

CONNECTION= SHARE |GLOBAL
specifies whether multiple CONNECT statements for a data source can use the
same connection. The CONNECTION= option enables you to control the number
of connections, and therefore transactions, that your SAS/ACCESS engine executes
and supports for each CONNECT statement.

SHARED
specifies that the CONNECT statement makes one connection to the DBMS.
Only Pass-Through statements that use this alias share the connection.

GLOBAL
specifies that multiple CONNECT statements using identical values for
CONNECTION=, CONNECTION_GROUP=, and any database connection
arguments can share the same connection to the DBMS.

GLOBAL is the default value for CONNECTION= when you specify
CONNECTION_GROUP=.

Default: SHARED

CONNECTION_GROUP= connection-group
causes operations against multiple Pass-Through Facility CONNECT statements
to share a connection to the data source.

CURSOR_TYPE= DYNAMIC | FORWARD_ONLY | KEYSET_DRIVEN | STATIC |
specifies the cursor type for read-only and updatable cursors.

DYNAMIC
specifies that the cursor reflects all of the changes that are made to the rows
in a result set as you move the cursor. The data values and the membership
of rows in the cursor can change dynamically on each fetch. This is the
default for the DB2 UNIX, PC files, and Microsoft SQL Server interfaces.

FORWARD_ONLY
specifies that the cursor behaves like a DYNAMIC cursor, except that it only
supports fetching the rows sequentially.

The Pass-Through Facility for PC Files on UNIX � CONNECT Statement 133

KEYSET_DRIVEN
specifies that the cursor determines which rows belong to the result set when
the cursor is opened. However, changes that are made to these rows are
reflected as you scroll around the cursor.

STATIC
specifies that the complete result set is built when the cursor is opened. No
changes that are made to the rows in the result set after the cursor is opened
are reflected in the cursor. Static cursors are read-only.

Default: none

Alias: CURSOR=

DBGEN_NAME=DBMS | SAS
specifies that the data source columns are renamed, and specifies the format that
the new names will follow.

DBMS
specifies that the data source columns are renamed to valid SAS variable
names. Disallowed characters are converted to underscores. If a column is
converted to a name that already exists, then a sequence number is appended
to the end of the new name.

SAS
specifies that data source columns are renamed to the format _COLn, where
n is the column number (starting with zero).

Default: DBMS

DBMAX_TEXT=n
specifies an integer between 1 and 32,767 that indicates the maximum length for a
character string. Longer character strings are truncated. This option only applies
when you are reading, appending, and updating Microsoft Access or Excel
character data from SAS.

Note: Although you can specify a value less than 256, it is not recommended. �

Default: 1,024

DEFER=NO | YES
enables you to specify when the CONNECT statement occurs.

NO
specifies that the connection to the data source occurs when the libref is
assigned by a LIBNAME statement.

YES
specifies that the connection to the data source occurs when a table in the
data source is opened.

Default: NO

PORT=“port-number”
The port or service name on the PC that the SAS PC files server is listening on.
This port or service name is displayed on the SAS PC Files Server window when it
is started on the PC. This is a required field when connecting to the PC files server
for data.

Aliases: SERVICE=, SERVICE_NAME=

READBUFF=number-of-rows
specifies the number of rows to use when you are reading data from a data source.
Setting a higher value for this option reduces I/O and increases performance, but

134 CONNECT Statement � Chapter 12

also increases memory usage. Additionally, if too many rows are read at once,
values returned to SAS might be out of date.
Default: 1
Alias: ROWSET=

ROWSET_SIZE=

SERVER=“pc-server-hostname ”
specifies the computer name of the PC on which you started the PC files server.
This name is required by UNIX users to connect to this server machine and is
reflected on the server control panel. This is a required field when connecting to
the PC files server for data.

This hostname can be specified as a simple computer name (for example,
wxp320), a fully qualified network name (for example, wxp320.domain.com), or an
IP address.

STRINGDATES=YES | NO
specifies whether datetime values are read from the data source as character
strings or as numeric date values. STRINGDATES= is not available as a data set
option.

YES
specifies that SAS/ACCESS reads datetime values as character strings.

NO
specifies that SAS/ACCESS reads datetimes values as numeric date values.

Default: NO
Alias: STRDATES

Details
The CONNECT statement establishes a connection with the data source. You establish
a connection to send data source specific SQL statements to the data source or to
retrieve data source data. The connection remains in effect until you issue a
DISCONNECT statement or terminate the SQL procedure.

To connect to a data source using the Pass-Through Facility, complete the following
steps:

1 Initiate a PROC SQL step.
2 Use the Pass-Through Facility’s CONNECT statement with the PC files engine

name, and (optionally) assign an alias.
3 Specify any arguments needed to connect to the database.
4 Specify any attributes for the connection.

The CONNECT statement is optional for some data sources. However, if it is not
specified, the default values for all of the database connection arguments are used.

Any return code or message that is generated by the data source is available in the
macro variables SQLXRC and SQLXMSG after the statement executes. See “Return
Codes” on page 36 for more information about these macro variables.

The Pass-Through Facility for PC Files on UNIX � EXECUTE Statement 135

Example
The following example uses the CONNECT statement with the PATH= option to
connect to the Microsoft Access database file, c:\demo.mdb:

proc sql;
connect to pcfiles as db (server=d2323 path="c:\demo.mdb");

DISCONNECT Statement

Terminates the connection to the data source

Valid in: PROC SQL steps (when accessing PC files data using SAS/ACCESS software)

Syntax
DISCONNECT FROM PCFILES | alias

Arguments
alias

specifies an alias for the connection that was defined in the CONNECT statement.

Details
The DISCONNECT statement ends the connection with the data source. If the
DISCONNECT statement is omitted, an implicit DISCONNECT is performed when
PROC SQL terminates. The SQL procedure continues to execute until you submit a
QUIT statement, another SAS procedure, or a DATA step.

Any return code or message that is generated by the data source is available in the
macro variables SQLXRC and SQLXMSG after the statement executes. See “Return
Codes” on page 36 for more information about these macro variables.

Example

The following example, after the connection and SQL processing, uses the
DISCONNECT statement to disconnect the connection from the database, and uses the
QUIT statement to quit the SQL procedure:

disconnect from pcfiles;
quit;

EXECUTE Statement

Sends data source specific, non-query SQL statements to the data source

Valid in: PROC SQL steps

136 EXECUTE Statement � Chapter 12

Syntax
EXECUTE (data-source-specific-SQL-statement) BY PCFILES | alias;

Arguments
(data-source-specific-SQL-statement)

a dynamic nonquery, data source specific SQL statement. This argument is
required and must be enclosed in parentheses. However, the SQL statement
cannot contain a semicolon because a semicolon represents the end of a statement
in SAS. The SQL statement can be case-sensitive, depending on your data source,
and it is passed to the data source exactly as you type it.

Any return code or message that is generated by the data source is available in
the macro variables SQLXRC and SQLXMSG after the statement executes. See
“Return Codes” on page 36 for more information about these macro variables.

alias
specifies an alias for the connection that was defined in the CONNECT statement.
(You cannot use an alias if the CONNECT statement was omitted.)

Details
The EXECUTE statement sends dynamic nonquery, data source specific SQL
statements to the data source and processes those statements.

The EXECUTE statement cannot be stored as part of a Pass-Through Facility query
in a PROC SQL view.

Useful Statements to Include in EXECUTE Statements
You can pass the following statements to the data source by using the Pass-Through
Facility’s EXECUTE statement.

CREATE
creates a data source table, view, index, or other data source object, depending on
how the statement is specified.

DELETE
deletes rows from a data source table.

DROP
deletes a data source table, view, or other data source object, depending on how
the statement is specified.

GRANT
gives users the authority to access or modify objects such as tables or views.

INSERT
adds rows to a data source table.

REVOKE
revokes the access or modification privileges that were given to users by the
GRANT statement.

UPDATE
modifies the data in the specified columns of a row in a data source table.

The Pass-Through Facility for PC Files on UNIX � CONNECTION TO Component 137

For more information about these and other SQL statements, see the SQL
documentation for your data source.

Example
The following example, after the connection, uses the EXECUTE statement to drop a
table, create a table, and insert a row of data:

execute(drop table ’My Invoice’) by pcfiles;
execute(create table ’My Invoice’(
’Invoice Number’ LONG not null,
’Billed To’ VARCHAR(20),
’Amount’ CURRENCY,
’BILLED ON’ DATETIME)) by pcfiles;
execute(insert into ’My Invoice’
values(12345, ’John Doe’, 123.45, #11/22/2003#)) by pcfiles;

CONNECTION TO Component

Retrieves and uses data source data in a PROC SQL query or view

Valid in: PROC SQL step SELECT statements

Syntax
CONNECTION TO PCILES <AS alias> <(database-connection-options)>

Arguments
alias

specifies an alias, if one was defined in the CONNECT statement.

Details
The CONNECTION TO component specifies the data source connection that you want
to use or that you want to create (if you have omitted the CONNECT statement).
CONNECTION TO then enables you to retrieve data source data directly through a
PROC SQL query.

You use the CONNECTION TO component in the FROM clause of a PROC SQL
SELECT statement:

SELECT column-list

FROM CONNECTION TO data source-name (data source-query);

CONNECTION TO can be used in any FROM clause, including those in nested
queries (that is, in subqueries).

You can store a Pass-Through Facility query in a PROC SQL view and then use that
view in SAS programs. When you create a PROC SQL view, any options that you
specify in the corresponding CONNECT statement are stored too. Thus, when the

138 Special PC Files Queries � Chapter 12

PROC SQL view is used in a SAS program, SAS can establish the appropriate
connection to the data source.

Because external data sources and SAS have different naming conventions, some
data source column names might be changed when you retrieve data source data
through the CONNECTION TO component.

Example

The following example, after the connection, uses the CONNECTION TO component
to query a table or a subtable:

select * from connection to pcfiles(select * from ’my invoice’);
select * from connection to pcfiles
(select ’Invoice Number’, Amount from ’my invoice’);

The following code creates a SAS data set (Newtable) from a Microsoft Access table:

proc sql;
connect to pcfiles(server=d2323 port=8621

path="c:\temp\household.inventory.mdb");
create table newtable as select * from;
connect to pcfiles(select * from rooms);
disconnect from pcfiles;
quit;

The following code connects to an Excel file and query the INVOICE table (range)
within the Excel workbook:

proc sql dquote=ansi;
connect to pcfiles (path="c:\sasdemo\sasdemo.xls" server=d2323 port=8621);
select * from connection to pcfiles

(select * from invoice);
disconnect from pcfiles;
quit;

The following code, to create a SAS data set (Work) from a list of tables in a
Microsoft SQL Server database, using a PC files server via ODBC:

proc sql dquote=ansi;
connect to pcfiles (server=d2323 port=8621 dsn=mqis user=scott pwd=tiger);
create table work as select * from connection to pcfiles (PCFILES::SQLTABLES);
disconnect from pcfiles;
quit;

Special PC Files Queries
The following special queries are supported by the SAS/ACCESS interface to PC files

on UNIX. Many databases provide or use system tables that allow queries to return the
list of available tables, columns, procedures, and other useful information. In PC files,
much of this functionality is provided through special APIs (application programming
interfaces) in order to accommodate databases that do not follow the SQL table
structure. You can use these special queries on non-SQL and SQL databases. The
general format of the special queries is as follows:

PCFILES::SQLAPI “parameter 1”,”parameter n”

The Pass-Through Facility for PC Files on UNIX � Special PC Files Queries 139

where

PCFILES::
is required to distinguish special queries from regular queries.

SQLAPI
is the specific API that is being called. Both PCFILES:: and SQLAPI are case
sensitive.

"parameter n"
is a quoted string that is delimited by commas.

Within the quoted string, two characters are universally recognized: the percent sign
(%) and the underscore (_). The percent sign matches any sequence of zero or more
characters; the underscore represents any single character. Each driver also has an
escape character that can be used to place characters within the string. Consult the
driver’s documentation to determine the valid escape character.

The values for the special query arguments are DBMS specific. For example, you
supply the fully qualified table name for a “Catalog” argument. In dBase, the value of
“Catalog” might be c:\dbase\tst.dbf and in SQL Server, the value might be
test.customer. In addition, depending on the DBMS that you are using, valid values
for “Schema” argument might be a user ID, a database name, or a library. All
arguments are optional. If you specify some but not all the arguments within a
parameter, use a comma to indicate the omitted parameters. If you do not specify any
parameters, commas are not necessary.

Note: These special queries might not be available for all PCFILES drivers. �

The following special queries are supported:

PCFILES::SQLTables <"Catalog", "Schema", "Table-name", "Type">
returns a list of all the tables that match the specified arguments. If no arguments
are specified, all accessible table names and information are returned.

PCFILES::SQLColumns <"Catalog", "Schema", "Table-name", "Column-name">
returns a list of all the columns that match the specified arguments. If no
arguments are specified, all accessible column names and information are returned.

PCFILES::SQLColumnPrivileges <"Catalog", "Schema", "Table-name",
"Column-name">

returns a list of all the column privileges that match the specified arguments. If
no arguments are specified, all accessible column names and privilege information
are returned.

PCFILES::SQLForeignKeys <"PK-catalog", "PK-schema", "PK-table-name",
"FK-catalog", "FKschema", "FKtable-name">

returns a list of all the columns that comprise foreign keys that match the
specified arguments. If no arguments are specified, all accessible foreign key
columns and information are returned.

PCFILES::SQLPrimaryKeys <"Catalog", "Schema", "Table-name">
returns a list of all the columns that compose the primary key that matches the
specified table. A primary key can be composed of one or more columns. If no table
name is specified, this special query fails.

PCFILES::SQLProcedureColumns <"Catalog", "Schema", "Procedure-name",
"Column-name">

returns a list of all the procedure columns that match the specified arguments. If
no arguments are specified, all accessible procedure columns are returned.

140 Special PC Files Queries � Chapter 12

PCFILES::SQLProcedures <"Catalog", "Schema", "Procedure-name">
returns a list of all the procedures that match the specified arguments. If no
arguments are specified, all accessible procedures are returned.

PCFILES::SQLSpecialColumns <"Identifier-type", "Catalog-name", "Schema-name",
"Table-name", "Scope", "Nullable">

returns a list of the optimal set of columns that uniquely identify a row in the
specified table.

PCFILES::SQLStatistics <"Catalog", "Schema", "Table-name">
returns a list of the statistics for the specified table name, with options of
SQL_INDEX_ALL and SQL_ENSURE set in the SQLStatistics API call. If the
table name argument is not specified, this special query fails.

PCFILES::SQLTablePrivileges <"Catalog", "Schema", "Table-name">
returns a list of all the tables and associated privileges that match the specified
arguments. If no arguments are specified, all accessible table names and
associated privileges are returned.

PCFILES::SQLGetTypeInfo
returns information about the data types that are supported in the data source.

141

C H A P T E R

13
The DBF and DIF Procedures on
UNIX

Introduction to the DBF and DIF Procedures 141

Introduction to the DBF and DIF Procedures
The DBF and DIF procedures give UNIX users an alternative way of accessing DBF

and DIF files. Instead of creating access descriptors and view descriptors, you can
convert these PC file types to SAS data sets, or vice versa.

Note: The DBF and DIF files must reside locally on the UNIX machine. �

You can use the DBF and DIF procedures to convert a DBF or DIF file to a SAS data
set or to convert a SAS data set to a DBF or DIF file.

The DBF Procedure

Converts a dBASE file to SAS data set or a SAS data set to a dBASE file

Restrictions: none

Syntax
PROC DBF options;

PROC DBF Options

DB2|DB3|DB4|DB5=fileref | filename
specifies the fileref or filename of a DBF file.

The DBn option must correspond to the version of dBASE with which the DBF file
is compatible. You specify the version with the DBn option, where n is the version
number and can have a value of 2, 3, 4, or 5. You can specify only one of these values.

If you specify a fileref, the FILENAME statement that you used to define it must
specify the filename plus a .dbf extension (for example, filename myref ’/my_dir/
myfile.dbf’).

If you specify a filename instead of a fileref, you can only specify the name itself
(omitting the .dbf extension) and the file must be in the current directory. For

142 The DBF Procedure � Chapter 13

example, this PROC DBF statement creates the EMP.DBF file (with the name in
uppercase) from the MyLib.Employee data set:

proc dbf db5=emp data=mylib.employee;

You cannot specify emp.dbf or a full pathname (proc dbf db5=’/my/
unix_directory/emp.dbf’) in the DBn= option.

The DBn= option is required.

DATA=<libref.>member
names the input SAS data set. Use this option if you are creating a DBF file from a
SAS data set. If you use the DATA= option, do not use the OUT= option. If you omit
the DATA= option, SAS software creates an output SAS data set from the DBF file.

OUT=<libref.>member
names the SAS data set that is created to hold the converted data. Use this option
only if you are creating a SAS data set from a DBF file and you did not specify the
DATA= option.

If OUT= is omitted, SAS creates a temporary data set in the Work library. (Under
UNIX and OS/390, the temporary data set is named Data1 [...Datan]; under
windows, it is called _DATA_.) If OUT= is omitted or if you do not specify a two-level
name in the OUT= option, the data set remains available during your current SAS
session, but it is not permanently saved.

Details
The DBF procedure converts dBASE files to SAS data sets that are compatible with the
current release of SAS, or it converts SAS data sets to DBF files.

PROC DBF produces one output file but no printed output. The output file contains
the same information as the input file but in a different format.

The DBF procedure works with DBF files created by all the current versions and
releases of dBASE (II, III, III PLUS, IV, and 5.0) and with most DBF files that are
created by other software products.

Future versions of dBASE files might not be compatible with the current version of
the DBF procedure. To use the DBF procedure, you must have a SAS/ACCESS interface
to PC files license.

Converting DBF Fields to SAS Variables
Numeric variables are stored in character form by DBF files. These numeric variables
become SAS numeric variables when converted from a DBF file to a SAS data set. If a
DBF numeric value is missing, the corresponding dBASE numeric field is filled with the
character 9, by default.

Character variables become SAS character variables. Logical fields become SAS
character variables with a length of 1. Date fields become SAS date variables. When
you are converting a DBF file to a SAS data set, fields whose data is stored in auxiliary
DBF files (Memo and General fields) are ignored.

When a dBASE II file is translated into a SAS data set, any colons in dBASE
variable names are changed to underscores in SAS variable names. Conversely, when a
SAS data set is translated into a dBASE file, any underscores in SAS variable names
are changed to colons in dBASE field names.

Converting SAS Variables to DBF Fields
Numeric variables are stored in character form by DBF files. SAS numeric variables
become numeric variables with a length of 16 when converting from a SAS data set to a
DBF file. A SAS numeric variable with a decimal value must be stored in a decimal

The DBF and DIF Procedures on UNIX � The DIF Procedure 143

format in order to be converted to a DBF numeric field with a decimal value. In other
words, unless you associate the SAS numeric variable with an appropriate format in a
SAS FORMAT statement, the corresponding DBF field will not have any value to the
right of the decimal point. You can associate a format with the variable in a SAS data
set when you create the data set or by using the DATASETS procedure.

If the number of digits — including a possible decimal point — exceeds 16 a warning
message is issued and the DBF numeric field is filled with the character 9. All SAS
character variables become DBF fields of the same length. When you are converting
data from a SAS data set to a DBF file that is compatible with dBASE III or later, SAS
date variables become DBF date fields. When you are converting data from a SAS data
set to a dBASE II file, SAS date variables become dBASE II character fields in the form
YYYYMMDD.

Transferring Other Software Files to DBF Files
You might find it helpful to save another software vendor’s file to a DBF file and then
convert that file into a SAS data set. UNIX users find this especially helpful. For
example, you could save an Excel XLS file to a DBF file (by selecting

File � Save As � EMP.DBF

from within an Excel spreadsheet and selecting the Emp.dbf file) and then use PROC
DBF to convert that file into a SAS data set. Or you could do the reverse: use PROC
DBF to convert a SAS data set into a DBF file and then load that file into an Excel
spreadsheet.

Examples

Example 1: Converting a dBASE II File to a SAS Data Set In this example, a dBASE II
file named Employee.dbf is converted to a SAS data set. Because no FILENAME
statement is specified, the last level of the filename is assumed to be .dbf and the file is
assumed to be in your current directory and in uppercase.

libname save ’/my/unx_save_dir’;
proc dbf db2=employee out=save.employee;
run;

Example 2: Converting a SAS Data Set to a dBASE 5 File In this example, a SAS data
set is converted to a dBASE 5 file. A FILENAME statement specifies a fileref that
names the dBASE 5 file. You must specify the FILENAME statement before the PROC
DBF statement.

libname mylib ’/my/unix_directory’;
filename employee ’/sasdemo/employee.dbf’;
proc dbf db5=employee data=mylib.employee;
run;

The DIF Procedure
Converts a DIF file to SAS data set or a SAS data set to a DIF file

Restrictions: The DIF procedure is only available under UNIX and Windows operating
environments.

144 The DIF Procedure � Chapter 13

Syntax
PROC DIF options;

PROC DIF Options

DIF=fileref | filename
specifies the fileref or filename of a DIF file.

If you specify a fileref, the FILENAME statement that you used to define in must
specify the filename plus a .dif extension (for example, filename myref ’/my_dir/
myfile.dif’).

If you specify a filename instead of a fileref, you can only specify the name itself
(omitting the .dif extension) and the file must be in the current directory. For
example, this PROC DIF statement creates the Emp.dif file from the
MyLib.Employee data set:

proc dif dif=emp data=mylib.employee;

You cannot specify emp.dif or a full pathname (proc dif dif=’/my/
unix_directory/emp.dif’).

DATA=<libref.>member
names the input SAS data set. Use this option if you are creating a DIF file from a
SAS data set. If you use this option, do not use the OUT= option. If you omit the
DATA= option, SAS creates an output SAS data set from the DIF file.

OUT=<libref.>member
names the SAS data set to hold the converted data. You use this option only if you
omit the DATA= option and you are creating a SAS data set from a DIF file.

If OUT= is omitted, SAS creates a temporary data set in the Work library. (Under
UNIX, the temporary data set is named Data1 [...Datan]; under windows, it is called
DATA. If OUT= is omitted or if you do not specify a two-level name in the OUT=
option, the data set remains available during your current SAS session but is not
permanently saved.

LABELS
causes PROC DIF to write the names of the SAS variables as the first row of the DIF
file and a row of blanks as the second row of the DIF file. The actual data portion of
the DIF file begins in the third row. The LABELS option is allowed only when you
are converting a SAS data set to a DIF file.

PREFIX=name
specifies a prefix to be used in constructing SAS variable names when you are
converting a DIF file to a SAS data set. For example, if PREFIX=VAR, the new
variable names are VAR1, VAR2, ... VARn. If you omit the PREFIX= option, PROC
DIF assigns the names Col1, Col2, ... Coln.

SKIP=n
specifies the number of rows, beginning at the top of the DIF file, to be ignored when
converting a DIF file to a SAS data set. For example, suppose the first row of your
DIF file contains column headings and the second row of your DIF file is a blank row.
The actual data in your DIF file begin in row 3. You should specify SKIP=2 so that
PROC DIF ignores the nondata portion of your DIF file. Alternatively, you could
delete the first two rows of your DIF file before using PROC DIF.

The DBF and DIF Procedures on UNIX � The DIF Procedure 145

Details
The DIF procedure converts data interchange format (DIF) files to SAS data sets that
are compatible with the current release of SAS software, or it converts SAS data sets to
DIF files.

PROC DIF produces one output file but no printed output. The output file contains
the same information as the input file but in a different format.

Software Arts, Inc. developed the data interchange format to be used as a common
language for data. Originally, DIF was made popular by products such as Lotus 1-2-3
and VisiCalc. Although DIF is not as popular today as it once was, it is still supported
by many software products.

Note: Any DIF file that you plan to convert to a SAS data set should be in a tabular
format. All items in a given column should represent the same type of data. If any rows
in the DIF file contain inconsistent data — for example, a row of underscores, dashes,
or blanks — delete these rows before converting the DIF file to a SAS data set. It is
recommended that you make a backup copy of your DIF table before you make these
modifications. �

When you are converting data from a DIF file to a SAS data set, each row of the DIF
file becomes an observation in the SAS data set. Conversely, when you are converting a
SAS data set to a DIF file, each SAS observation becomes a row in the DIF file. To use
the DIF procedure, you must have a SAS/ACCESS interface to PC files license.

Converting DIF Variables to SAS Variables
Character variables in a DIF file (sometimes referred to as string values) become SAS
character variables of length 20. If a DIF character variable’s value is longer than 20
characters, it is truncated to a length of 20 in the SAS output data set. The quotation
marks that normally enclose character variable values in a DIF file are removed when
the value is converted to a SAS character value.

Numeric variables, which can be represented in either integer or scientific notation in
a DIF file, become SAS numeric variables when a DIF file is converted to a SAS data set.

Transferring SAS Data Sets to and from Other Software Products Using DIF
DIF files are not generally used as the native file format for a software product’s data
storage. Therefore, transferring data between SAS and another software product is a
two-step process when using DIF files.

To send SAS data sets to another software product using DIF files, you must first run
PROC DIF to convert your SAS data set to a DIF file. Use whatever facility is provided
by the target software product to read the DIF file. For example, you use the
Lotus 1-2-3 Translate Utility to translate a DIF file to a 1-2-3 worksheet file. (This
facility might be provided by an import tool or from an Open window in that software
product.) After the application reads the DIF file data, the data can be manipulated
and saved in the application’s native format.

To transfer data in the opposite direction — from a software product to a SAS data
set — the process is reversed. First, export the data to a DIF file and then run PROC
DIF to read the DIF file into a SAS data set.

Missing Values
The developers of the data interchange format (DIF) files suggest that you treat all
numeric values that have a value indicator other than V as missing values. PROC DIF
follows this convention. When a DIF file is converted to a SAS data set, any numeric
value with a value indicator other than V becomes a SAS missing value.

146 The DIF Procedure � Chapter 13

When a SAS data set that has missing values for some numeric variables is
converted to a DIF file, the following assignments are made in the DIF file for the
variables with missing values:

� the type indicator field value is set to 0

� the number field value contains a string of 16 blanks
� the value indicator is set to NA.

Examples

Example 1: Converting a DIF File to a SAS Data Set In this example, a DIF file named
Employee.dif is converted to a SAS data set. Because no FILENAME statement is
specified, the last level of the filename is assumed to be .dif, and the file is assumed to
be in your current directory and in uppercase.

libname save ’/my/my_unx_dir’;
proc dif dif=employee out=save.employee;
run;

Example 2: Converting a SAS Data Set to a DIF File In this example, a SAS data set is
converted to a DIF file. A FILENAME statement is used to specify a fileref that names
the DIF file. You must specify the FILENAME statement before the PROC DIF
statement.

filename employee ’/sasdemo/employee.dif’;
proc dif dif=employee data=save.employee;
run;

See Also
“Programmer’s Guide to the DIF,” Software Arts Technical Notes (SATN-18).

147

C H A P T E R

14
JMP Essentials for PC Files

Overview of JMP Essentials 147
JMP Files 147

JMP File Naming Conventions 147

JMP Variable Naming Conventions 147

JMP Data Types 148

JMP Missing Values 148

Overview of JMP Essentials
SAS/ACCESS software for PC files works with JMP files that are created by JMP

Versions 1 to 5 including both Windows and Macintosh based versions. This section
describes only how JMP is processed within SAS/ACCESS. For more information about
a JMP concept or term, see the JMP documentation packaged with your system.

JMP Files
A JMP file is a file format created by the JMP software program, which is an

interactive statistics package. JMP is available for both Windows and Macintosh.
A JMP file contains data that is organized in a tabular format of fields and records.

Each field can contain one type of data, and each record can hold one data value for
each field.

JMP File Naming Conventions
Filenames must follow operating system specific conventions. Refer to the

documentation that comes with your JMP product.

JMP Variable Naming Conventions
Variable names can be up to 31 characters in length. When you are reading a JMP

file, any embedded blank or special character in a variable name is replaced with an
underscore (_). This is noted in the log.

148 JMP Data Types � Chapter 14

JMP Data Types
Every field in a JMP file has a name and a data type. The data type indicates how

much physical storage to set aside for the field and the format in which the data is
stored. The following list describes each data type.

Character
specifies a field for character string data. The maximum length is 255 characters.
Characters can be letters, digits, spaces, or special characters.

Numeric
specifies an 8 byte floating point number. This is also called a double precision
number.

When you are reading data, this maps directly to the SAS double precision
number. When you are writing data, all SAS numeric variables (regardless of
length) become JMP numeric variables.

Rowstate
specifies an integer variable that takes on the value of 1 or missing. When you are
reading data, this maps to a SAS double precision number.

Date
specifies the date format. When you are reading data, the date values are mapped
to a SAS number and scaled to the base date. The JMP date display format maps
to the appropriate SAS date display format. When you are writing data, the SAS
numeric variable’s output format is checked to determine if it is a date format. If
so, the SAS numeric value is scaled to a JMP date value with the appropriate date
display format.

DateTime
specifies the datetime format. When you are reading data, the datetime values are
mapped to a SAS number and scaled to the base datetime. The JMP datetime
display format maps to the appropriate SAS datetime display format. When you
are writing data, the SAS numeric variable’s output format is checked to
determine if it is a datetime format. If so, the SAS numeric value is scaled to a
JMP datetime value with the appropriate datetime display format.

Time
specifies the time format. When you are reading data, the time values are mapped
to a SAS number and scaled to the base time. The JMP time display format maps
to the appropriate SAS time display format. When you are writing data, the SAS
numeric variable’s output format is checked to determine if it is a time format. If
so, the SAS numeric value is scaled to a JMP time value with the appropriate time
display format.

JMP Missing Values
JMP supports a single missing value in all variable types other than character. When

you are reading a JMP file, missing values map to the (.) missing value. When you are
writing a JMP file, all SAS missing values will map to the single JMP missing value.

149

P A R T3

File Format Specific Reference

Chapter 15.Microsoft Excel XLS Files 151

Chapter 16. Microsoft Access MDB Files 169

Chapter 17.Lotus WKn Files 175

Chapter 18.dBase DBF Files 187

Chapter 19.Lotus DIF Files 195

150

151

C H A P T E R

15
Microsoft Excel XLS Files

How to Access XLS Files from SAS 151
LIBNAME Statement Data Conversions for XLS Files 152

ACCESS Procedure: XLS Specifics 154

ACCESS Procedure Syntax for XLS Files 154

ACCESS Procedure Data Conversions for XLS Files 156

Datetime Conversions in the ACCESS Procedure 160
DBLOAD Procedure: XLS Specifics 160

DBLOAD Procedure Syntax for XLS Files 161

DBLOAD Procedure Data Conversions for XLS Files 162

Datetime Conversions in the DBLOAD Procedure 164

Setting Environment Variables for XLS Files 164

XLS Essentials 165
XLS Files 165

XLS File Naming Conventions 167

XLS Data Types 167

How SAS/ACCESS Works with XLS Files 168

Accessing the Data 168
Creating and Loading the Data 168

How to Access XLS Files from SAS
You can interact with Excel files from SAS by using the following features:

LIBNAME statement (UNIX and Windows operating environments)
provides direct, transparent access to data in PC file formats. Available for Excel
5, 95, 97, 2000, or 2002 formats. For details, refer toChapter 2, “The LIBNAME
Statement for PC Files on Windows,” on page 5.

Pass-Through Facility (UNIX and Windows operating environments)
enables you to interact with Microsoft Excel (5, 95, 97, 2000, or 2002) data using
the data source’s SQL syntax without leaving your SAS session. The SQL
statements are passed directly to the data source for processing. For details, refer
to Chapter 3, “The Pass-Through Facility for PC Files on Windows,” on page 35.

Import/Export wizard or procedures (UNIX and Windows operating environments)
enable you to transfer data between SAS and several PC file formats. Available for
Excel 4, 5, 95, 97, 2000, or 2002 formats. For details, refer to “Import/Export
Wizard” on page 50.

152 LIBNAME Statement Data Conversions for XLS Files � Chapter 15

ACCESS procedure (Windows operating environments)
creates descriptor files that describe data in a PC file to SAS, enabling you to
directly read, update, or extract PC file data into a SAS data file. Available for
Excel 4, 5, or 95 formats.

DBLOAD procedure (Windows operating environments)
creates PC files and loads them with data from a SAS data set. Available for Excel
4, 5, or 95 formats.

LIBNAME Statement Data Conversions for XLS Files
The following table shows the default SAS variable formats that SAS/ACCESS

assigns to XLS data types when you read or import XLS data with the LIBNAME
statement.

Table 15.1 Default SAS Variable and Type Formats for Excel Formats

Excel Column Format SAS Variable Format SAS Variable Type

Text $w. character

General

Number

Scientific

Percentage

Fraction

See Note 3 numeric

Currency

Accounting
DOLLAR21.2 numeric

Date

Datetime

Time

DATE9. See Notes 1 and 2 numeric

1 The default format is DATE9. However, you can use the SASDATEFMT option to change the format to other
date or datetime formats. The LIBNAME engine automatically converts the internal date value for you.

2 If you have a time only field in your Microsoft Excel range, you can use SASDATEFMT to assign it with the
SAS TIME. format. Note that the SAS date/time value uses 01Jan1960 as a cutoff line while the Jet provider
date/time value uses 30Dec1899 as a cutoff line.

3 To access Fraction or Percent format data in your Excel file, you can use the FORMAT statement to assign the
FRACT. or PERCENT. format in your data step code.

Note: Microsoft Excel limits for 97, 2000, and 2002 are: columns — 256, rows — 65,536. �

The following table shows the default XLS data types that SAS/ACCESS assigns to
SAS variable formats when you write SAS data to an XLS file with the LIBNAME
statement.

� LIBNAME Statement Data Conversions for XLS Files 153

Table 15.2 Default Excel Formats for SAS Variable Formats

SAS Variable Format XLS Column Data Type

$BINARYw.

$CHARw.

$HEXw.

$w.

Text

w.d

BESTw.

BINARYw.

COMMAw.d

COMMAXw.d

Ew.

FRACTw.

HEXw.

NEGPARENw.d

PERCENTw.d

Number

DOLLARw.d

DOLLARXw.d
Currency

DATEw.

DATETIMEw.d

DDMMYYw.

HHMMw.d

JULDAYw.

JULIANw.

MMDDYYw.

MMYYw.d

MONTHw.

MOYYw.

WEEKDATEw.

WEEKDATXw.

WEEKDAYw.

WORDDATEw.

WORDDATXw.

Date/Time

You can override these default conversions by using the LIBNAME option DBTYPE=
during output processing.

154 ACCESS Procedure: XLS Specifics � Chapter 15

ACCESS Procedure: XLS Specifics
Chapter 6, “The ACCESS Procedure for PC Files,” on page 65 contains general

information about this feature. This section provides XLS-specific syntax for the
ACCESS procedure and describes ACCESS procedure data conversions.

ACCESS Procedure Syntax for XLS Files
To create an access descriptor, you use the DBMS=XLS option and six

database-description statements: PATH=, GETNAMES, RANGE, SCANTYPE,
SKIPROWS, and WORKSHEET. These database-description statements supply
XLS-specific information to SAS, and must immediately follow the CREATE statement.
In addition to the database-description statements, you can use editing statements
when you create an access descriptor. These editing statements must follow the
database-description statements.

Database-description statements are only required when you create access
descriptors. Because the XLS information is stored in an access descriptor, you do not
need to repeat this information when you create view descriptors.

The SAS/ACCESS interface to XLS uses the following procedure statements:

PROC ACCESS DBMS=XLS | EXCEL;
CREATE libref.member-name.ACCESS | VIEW;
UPDATE libref.member-name.ACCESS | VIEW;

GETNAMES <=> YES | NO | Y | N;
PATH= ’path-and-filename’<.XLS> ’| < ’>filename<’> | fileref;
RANGE <=> <’>range-name<’> | ’range-address’;
SCANTYPE <=> YES | NO | Y | N | <number-of-rows>;
SKIPROWS <=> number-of-rows-to-skip;
WORKSHEET <=> worksheet-name;
ASSIGN <=> YES | NO | Y | N ;
DROP <’>column-identifier-1<’> <…<’>column-identifier-n<’>>;
FORMAT <’>column-identifier-1<’> <=> SAS-format-name-1

<…<’>column-identifier-n<’> <=> SAS-format-name-n> ;
LIST <ALL | VIEW | <’>column-identifier<’>> ;
MIXED <=> YES | NO | Y | N;
RENAME <’>column-identifier-1<’> <=> SAS-variable-name-1

<…<’>column-identifier-n<’> <=> SAS-variable-name-n> ;
RESET ALL | <’>column-identifier-1<’> <…<’>column-identifier-n<’>> ;
SELECT ALL | <’>column-identifier-1< ’> <…<’>column-identifier-n<’>> ;
SUBSET selection-criteria ;
TYPE column-identifier-1 <=> C | N <… column-identifier-n <=> C | N>;
UNIQUE <=> YES | NO | Y | N ;

RUN;

Note: By default, PROC ACCESS uses Excel 5 files, which have an identical format
to Excel 95 files. �

� ACCESS Procedure Syntax for XLS Files 155

Note: Microsoft Excel 4, 5, and 7 limits are: columns — 256, rows — 16,384. �

The QUIT statement is also available in PROC ACCESS. However, it causes the
procedure to terminate. QUIT is used most often in the interactive line and
noninteractive modes to exit the procedure without exiting SAS.

The following list provides detailed information about the XLS-specific statements:

GETNAMES <=> YES | NO | Y | N;
determines whether SAS variable names are generated from column names in the
first row of the range when an access descriptor is created. When you update a
descriptor, you are not allowed to specify the GETNAMES statement.

The GETNAMES statement is optional. If you omit it, the default value
GETNAMES=NO is used, and the XLS interface generates the SAS variable
names VAR0, VAR1, VAR2, and so on. If you specify GETNAMES=YES, the SAS
variable names are generated from the column names in the first row of the range.
GETNAMES=YES also sets the SKIPROWS value to 1.

You can change the default value from NO to YES by setting the SS_NAMES
environment variable. See “Setting Environment Variables for XLS Files” on page
164 for more information about setting and changing environment variables.

The GETNAMES statement is a database-description statement. It must follow
the CREATE statement and precede any editing statements when you create a
descriptor.

RANGE <=> <’>range-name<’> | ’range-address’;
subsets a specified section of an XLS file worksheet. The range-name is the name
that is assigned to a range address within the worksheet. Range names can be up
to 15 characters long and are not case-sensitive.

The range-address is identified by the top left cell that begins the range and the
bottom right cell that ends the range within the XLS worksheet file. The
beginning and ending cells are separated by two periods; for example, the range
address C9..F12 indicates a cell range that begins at cell C9, ends at cell F12 and
includes all cells in between.

The RANGE statement is optional. If you omit RANGE, the entire worksheet is
accessed as the default range.

The RANGE is a database-description statement. It must follow the CREATE
statement and precede any editing statements when you create a descriptor.

SCANTYPE <=> YES | NO | Y | N | <number-of-rows>;
finds the most common Excel data type and format for each column in a specified
number of rows in an XLS worksheet in order to generate the default SAS format.
By default, SAS variable formats are generated from the Excel formats found in
the first row of the entire worksheet, or in the first row of a range (if specified) in
the worksheet.

The SCANTYPE statement is optional, and its default value is NO. If you
specify YES, the ACCESS procedure scans the data types and formats of all the
rows in each column of the worksheet or range and uses the most common one to
generate the default SAS format for each column. If you specify a number of rows,
PROC ACCESS scans the specified number of rows only and returns the most
common format.

If you specify the SKIPROWS statement, the ACCESS procedure skips the
specified rows and starts scanning from the next row. For example, if you specify
SKIPROWS=3, PROC ACCESS skips the first three rows and begins scanning the
data type and format on the fourth row.

You can change the default value to YES by setting the SS_SCAN environment
variable. See “Setting Environment Variables for XLS Files” on page 164 for more
information about setting and changing environment variables.

Specifying SCANTYPE=0 is equivalent to specifying SCANTYPE=NO.

156 ACCESS Procedure Data Conversions for XLS Files � Chapter 15

The SCANTYPE statement is a database-description statement. It must follow
the CREATE statement and precede any editing statements when you create a
descriptor.

SKIPROWS <=> number-of-rows-to-skip;
specifies the number rows, beginning at the top of the range in the XLS file, to
ignore when you are reading data from the XLS file. The default value for
SKIPROWS is 0. The skipped (or ignored) rows often contain information such as
column labels or names, or underscores rather than input data.

If GETNAMES=YES, the default value of SKIPROWS automatically changes to
1. The first row of data and formats after SKIPROWS in a range is used to
generate the SAS variable types and formats. However, you can use the
SCANTYPE statement to scan the formats of a specified number of rows and to
use the most common data type and format to generate the default SAS variable
types and formats. See “Setting Environment Variables for XLS Files” on page 164
for more information on setting and changing environment variables.

The SKIPROWS statement is a database-description statement. It must follow
the CREATE statement and precede any editing statements when you create a
descriptor.

WORKSHEET <=> <’>worksheet-name<’>;
identifies one worksheet from a group of worksheets while you are reading from an
XLS file. The worksheet-name is a 31-character name and is not case-sensitive.
For example, specifying WORKSHEET=SHEET2 identifies worksheet 2 from a
group of worksheets

The WORKSHEET statement is optional. For Excel 4 files, there is only one
worksheet identifier, WORKSHEET1. Therefore, the WORKSHEET statement is
ignored. Under Excel 5, the default value is SHEET1. If you change the default
worksheet from within Excel, you can either supply the new worksheet name or
supply the worksheet’s value (such as Sheet5).

The WORKSHEET statement is a database-description statement. It must
follow the CREATE statement and precede any editing statements when you
create an access descriptor.

ACCESS Procedure Data Conversions for XLS Files
You use PROC ACCESS to define descriptors that identify spreadsheet data and the

conversions necessary to use that data in SAS programs. The Microsoft Excel label data
type is formatted as a SAS character type, and the Microsoft Excel number data type is
formatted as a SAS numeric type.

Fonts, attributes, and colors in the XLS files are not read into the SAS data sets.
However, the ACCESS procedure supports most of the XLS number formats and
automatically converts them to the corresponding SAS formats. Any XLS data strings
longer than 200 characters are truncated while being converted into SAS data sets, and
any SAS data file created from XLS files can contain up to 256 variables and 16,384
observations.

The following table shows the default SAS variable formats that the ACCESS
procedure assigns to each type of standard XLS file data. Table 15.4 on page 159
provides SAS variable formats for customized XLS format strings. XLS file numeric
data includes date and time values. See “Datetime Conversions in the ACCESS
Procedure” on page 160 for more information.

� ACCESS Procedure Data Conversions for XLS Files 157

Table 15.3 Default SAS Variable Formats for XLS File Data

XLS File Data SAS Variable Format

Data Type XLS Format String Type Format

Char1 @2 Char $w.

Numeric3 General Num BEST

Numeric 0 Num w.d

Numeric 0.00 Num w.d

Numeric #,##0 Num COMMAw.d

Numeric #,##0.00 Num COMMAw.d

Numeric #,##0_);(#,##0) Num NEGPARENw.d

Numeric #,##0_);[Red](#,##0) Num NEGPARENw.d

Numeric #,##0.00_);(#,##0.00) Num NEGPARENw.d

Numeric #,##0.00_);[Red](#,##0.00) Num NEGPARENw.d

Numeric $#,##0_);($#,##0) Num DOLLARw.d

Numeric $#,##0_);[Red]($#,##0) Num DOLLARw.d

Numeric ($#,##0.00_);($#,##0.00) Num DOLLARw.d

Numeric ($#,##0.00_);[Red]($#,##0.00) Num DOLLARw.d

Numeric _($*#,##0_);_($*(#,##0);_($*"-
"_);_(@_)

Num DOLLARw.d

Numeric _(*#,##0_);_(*(#,##0);_(*"-
"_);_(@_)

Num NEGPARENw.d

Numeric _($*#,##0.00_);_($*(#,##0.00);_
($*"-"??_);_(@_)

Num DOLLARw.d

Numeric _(*#,##0.00_);_(*(#,##0.00);_(*"-
"??_);_(@_)

Num NEGPARENw.d

Numeric 0% Num PERCENTw.d

Numeric 0.00% Num PERCENTw.d

Numeric 0.00E+00 Num Ew.d

Numeric ##0.0E+0 Num Ew.d

Numeric m/d/yy Num MMDDYYw.

Numeric d-mmm-yy Num MMDDYYw.

Numeric d-mmm Num DATEw.

Numeric mmm-yy Num MONYYw.

Numeric h:mm AM/PM Num TIMEw.

Numeric h:mm:ss AM/PM Num TIMEw.

Numeric h:mm Num TIMEw.

Numeric hh:mm Num TIMEw.

Numeric h:mm:ss Num TIMEw.

Numeric hh:mm:ss Num TIMEw.

158 ACCESS Procedure Data Conversions for XLS Files � Chapter 15

XLS File Data SAS Variable Format

Data Type XLS Format String Type Format

Numeric m/d/yy h:mm Num DATETIMEw.

Numeric ddmmmyy Num DATEw.

Numeric ddmmmyyyy:hh:mm:ss Num DATETIMEw.

Numeric dd Num DATEw.

Numeric dd/mm/yy Num DDMMYYw.

Numeric dddd Num DATEw.

Numeric mm/dd/yy Num MMDDYYw.

Numeric mm:ss Num MMSSw.

Numeric mm yy Num MONYYw.

Numeric mm yyyy Num MONYYw.

Numeric mm:yy Num MONYYw.

Numeric mm:yyyy Num MONYYw.

Numeric mm-yy Num MONYYw.

Numeric mm-yyyy Num MONYYw.

Numeric mmyy Num MONYYw.

Numeric mmyyyy Num MONYYw.

Numeric mm.yy Num MONYYw.

Numeric mm.yyyy Num MONYYw.

Numeric mm/yy Num MONYYw.

Numeric mm/yyyy Num MONYYw.

Numeric mmmm Num MONYYw.

Numeric m Num MONYYw.

Numeric mmmyy Num MONYYw.

Numeric mmmyyyy Num MONYYw.

Numeric dddd, mmmm dd, yyyy Num MONYYw.

Numeric dddd, dd mmmm yyyy Num MONYYw.

Numeric mmmm dd, yyyy Num MONYYw.

Numeric dd mmmm yyyy Num MONYYw.

Numeric yy Num YYMMDDw.

Numeric yyyy Num YYMMDDw.

Numeric yy mm Num YYMMDDw.

Numeric yyyy mm Num YYMMDDw.

Numeric yy:mm Num YYMMDDw.

Numeric yyyy:mm Num YYMMDDw.

Numeric yy-mm Num YYMMDDw.

Numeric yyyy-mm Num YYMMDDw.

� ACCESS Procedure Data Conversions for XLS Files 159

XLS File Data SAS Variable Format

Data Type XLS Format String Type Format

Numeric yymm Num YYMMDDw.

Numeric yyyymm Num YYMMDDw.

Numeric yy.mm Num YYMMDDw.

Numeric yyyy.mm Num YYMMDDw.

Numeric yy/mm Num YYMMDDw.

Numeric yyyy/mm Num YYMMDDw.

Numeric yy-mm-dd Num YYMMDDw.

Numeric yymmm Num YYMMDDw.

Numeric yyyymmm Num YYMMDDw.

1 Label data.
2 The XLS character format for Excel Version 5.
3 Number, formula, or missing data.

Table 15.4 Default SAS Variable Formats for Customized XLS Format Strings

XLS File Data SAS Variable Format

Data Type XLS Format String Type Format

Numeric "$" Num DOLLARw.d

Numeric "E" Num Ew.d

Numeric "m, d and y" Num MMDDYYw.

Numeric "m and h" Num TIMEw.d

Numeric "m and s" Num TIMEw.d

Numeric "m and y" Num MONYYw.

Numeric "m" Num DATEw.

Numeric "d" Num DATEw.

Numeric "y" Num DATEw.

Numeric "0.0" Num w.d

Numeric Fraction values (#?/?) Num BESTw.d

Numeric Percent values (0.0%) Num PERCENTw.d

Numeric All others Num BESTw.d

Note that w is based on Excel column width; .d is controlled by the Excel format
string.

If XLS files data falls outside of the valid SAS data ranges, you receive an error
message in the SAS log when you try to access the data.

The SAS/ACCESS interface does not fully support the Microsoft Excel hidden and
text formats. XLS data in hidden format is displayed in SAS data sets. However, you
can drop the hidden column when you are creating the access descriptor. If you want to
display a formula in text format, add a space to indicate that the formula entry is a
label. Otherwise, the results of the formula are displayed.

160 DBLOAD Procedure: XLS Specifics � Chapter 15

If you have set the SS_MIXED environment variable to YES, the numerical values in
XLS files are converted to character strings in SAS data sets if the corresponding SAS
variable type is specified as character.

Datetime Conversions in the ACCESS Procedure
An XLS date value is the integer portion of a number that represents the number of

days between January 1, 1900 and a specified date. An XLS time value is a decimal
portion of a number that represents time as a portion of the day. For example, 0.0 is
12:00:00 a.m., and 0.9999884 is 11:59:59 p.m. While a number can have both a date
and a time portion, the formats in XLS display a number only as one or the other. For
example, for 1:00 p.m., March 12, 1994, the XLS date value is 34405, the time value is
0.5416667, and the datetime value is 34405.5416667.*

SAS handles date and time values differently than XLS. A SAS date value is an
integer that represents the number of days between January 1, 1960 and a specified
date. A SAS time value is an integer that represents the number of seconds since
midnight of the current day. When a date and a time are both present, SAS stores the
value as the number of seconds since midnight, January 1, 1960. For example, for 1:00
p.m., March 12, 1994, the SAS date value is 12,489, and the SAS time value is 46,800.
Therefore, the SAS datetime value is 1,079,096,400.

When you create an access descriptor, SAS converts an XLS datetime format to its
corresponding SAS datetime format if an XLS datetime format is specified for the
variable in the XLS file. Note that if the datetime value does not have an XLS format
in the XLS file, SAS treats the datetime value like a numeric value.

To convert an XLS datetime format to a SAS datetime format, you need a SAS
datetime format in the access descriptor. For example, changing the default SAS
numeric format (15.2) to a SAS date format in the descriptor causes the XLS date value
(based on January 1, 1900) to be converted to an equivalent SAS date value (based on
January 1, 1960). In other words, the XLS numeric value for January 1, 1960 (which is
21,916) is converted to the equivalent SAS representation of January 1, 1960 (which is
0) only if a SAS datetime format is assigned in the descriptor for that column.
Otherwise, the XLS value of 21,916 is treated as a SAS numeric value of 21,916.

The following table shows how SAS uses a Microsoft Excel datetime value to convert
to a SAS datetime format.

Table 15.5 Value-to-Format Conversions

For a SAS format SAS uses

date integer portion of the Microsoft Excel number

time decimal portion of the Microsoft Excel number

date-and-time integer and decimal portion of the Microsoft Excel number

DBLOAD Procedure: XLS Specifics

Chapter 7, “The DBLOAD Procedure for PC Files,” on page 91 contains general
information about this feature. This section provides XLS-specific syntax for the
DBLOAD procedure and describes DBLOAD procedure data conversions.

* In this description, datetime (in lowercase) refers to any value or format that represents a date, a time, or both a date and a
time.

� DBLOAD Procedure Syntax for XLS Files 161

DBLOAD Procedure Syntax for XLS Files
To create and load an XLS table, the SAS/ACCESS interface to XLS uses the

following statements:

PROC DBLOAD DBMS=XLS | EXCEL <DATA=<libref.>SAS-data-set>;
PATH=’path-and-filename<.XLS>’ | <’>filename<’> | fileref;
VERSION <=> EXCEL-product-number;
PUTNAMES <=> YES | NO | Y | N;
ACCDESC= <libref.>access-descriptor;
DELETE variable-identifier-1 <…variable-identifier-n>;
ERRLIMIT= error-limit;
FORMAT SAS-variable-name-1 SAS-format-1 <=>

<…SAS-variable-name-n SAS-format-n>;
LABEL;
LIMIT=load-limit;
LIST <ALL | COLUMNS | FIELDS | variable-identifier>;
RENAME variable-identifier-1 <=> <’>column-name-1<’>

<…variable-identifier-n = <’>column-name-n<’>>;
RESET ALL | variable-identifier-1 <…variable-identifier-n>;
WHERE SAS-where-expression ;
LOAD ;

RUN ;

The QUIT statement is also available in PROC DBLOAD. However, it causes the
procedure to terminate. QUIT is used most often in the interactive line and
noninteractive modes to exit the procedure without exiting SAS.

The following list provides detailed information about the XLS-specific statements:

FORMAT SAS-variable-name-1 SAS-format-1 <…SAS-variable-name-n
SAS-format-n>;

assigns a temporary format to a SAS variable in the input SAS data set. This
format temporarily overrides any other format for the variable. The assignment
lasts only for the duration of the procedure. Assign formats to as many variables
as you want in one FORMAT statement.

Use FORMAT when you want to change the format, column width, or the
number of decimal digits for columns being loaded into the PC file. For example, if
you change the SAS variable format 12.1 to DOLLAR15.2, the column format of
the loaded data changes from a fixed numeric format with a column width of 12
and one decimal digit to a currency format with a column width of 15 and two
decimal digits.

PUTNAMES <=> YES|NO|Y|N;
writes column names to the first row of the new XLS file. The column names can
be default SAS variables names or, if you specify the LABEL statement, SAS
variable labels. You can modify the column names using the RENAME statement.

The PUTNAMES statement is optional. If you omit PUTNAMES, data is read
from the data set and written to the XLS file beginning in the first row of the XLS
file, and no column names are written to the file.

You can change the default value to YES by setting the SS_NAMES
environment variable. See “Setting Environment Variables for XLS Files” on page
164 for more information on setting and changing environment variables.

162 DBLOAD Procedure Data Conversions for XLS Files � Chapter 15

VERSION <=> Excel-product-number;
specifies the version number of the Excel product you are using, such as Excel 5.
The Excel-product-number argument can be one of the following values: 5, 95, 97,
2000, or 2002.

The DBLOAD procedure chooses the default version of Excel depending on
which operating environment you use. If you use Windows, DBLOAD uses Excel.
Excel 5 files have the identical format to Excel 95 files.

PROC DBLOAD does not support Excel 97 files. For information about
accessing these files, see “Import/Export Overview for PC Files” on page 49.

Specify VERSION before the TYPE statement in order to get the correct data
types for your new XLS table.

DBLOAD Procedure Data Conversions for XLS Files
This section explains how SAS data is read into Microsoft Excel data when a table is

loaded. In this conversion, the SAS character data type is converted into the Microsoft
Excel label type and the SAS numeric type is converted into the Microsoft Excel
number type.

The SAS/ACCESS interface automatically converts SAS formats to the same or
associated Microsoft Excel formats and column widths. However, you can temporarily
assign other formats and column widths to SAS variables by using the FORMAT
statement so that the loaded XLS file columns have the formats you want. The
following table shows SAS variable types and formats and the XLS data types, formats,
and column widths to which you can assign them.

Note: The FORMAT statement in PROC DBLOAD only changes the format of SAS
variables while you are creating and loading the XLS files. When the procedure is
completed, the formats of SAS variables return to their original settings. �

XLS date and time values are numeric data. See “Datetime Conversions in the
DBLOAD Procedure” on page 164 for more information.

Table 15.6 Converting SAS Variable Formats to XLS File Data

SAS Variable Format XLS File Data

Type Format XLS Format String Data Type

Char " " General LABEL

Char $CHAR General LABEL

Char $ General LABEL

Num BESTw.d General NUMBER

Num COMMAw.d #,##0 NUMBER

Num COMMAXw.d #,##0 NUMBER

Num DATEw. ddmmmyy NUMBER

Num DATETIMEw.d ddmmmyyyy:hh:mm:ss NUMBER

Num DAYw. dd NUMBER

Num DDMMYYw. dd/mm/yy NUMBER

Num DOLLARw.d "$"#,##0_);("$"#,##0) NUMBER

Num DOLLARXw.d "$"#,##0_);("$"#,##0) NUMBER

� DBLOAD Procedure Data Conversions for XLS Files 163

SAS Variable Format XLS File Data

Type Format XLS Format String Data Type

Num DOWNAMEw.d dddd NUMBER

Num Ew. 0.00E+00 NUMBER

Num HHMMw.d h:mm NUMBER

Num HOURw.d h:mm NUMBER

Num JULDAYw. m/d/yy NUMBER

Num JULIANw. m/d/yy NUMBER

Num MMDDYYw. mm/dd/yy NUMBER

Num MMSSw.d mm:ss NUMBER

Num MMYYxw. mm yy NUMBER

Num MMYYC mm:yy NUMBER

Num MMYYD mm-yy NUMBER

Num MMYYN mmyy NUMBER

Num MMYYP mm.yy NUMBER

Num MMYYS mm/yy NUMBER

Num MONNAMEw. mmmm NUMBER

Num MONTHw. m NUMBER

Num MONYYw. mmmyy NUMBER

Num NEGPARENw.d #,##0_);(#,##0) NUMBER

Num NENGOw. m/d/yy NUMBER

Num PERCENTw.d 0% NUMBER

Num QTRw. m/d/yy NUMBER

Num QTRRw. m/d/yy NUMBER

Num SSNw. 000-00-0000 NUMBER

Num TIMEw.d h:mm:ss NUMBER

Num TODw. h:mm:ss NUMBER

Num W 0 NUMBER

Num WEEKDATEw. dddd, mmmm dd, yyyy NUMBER

Num WEEKDATXw. dddd, dd mmmm yyyy NUMBER

Num WEEKDAYw. m/d/yy NUMBER

Num WORDDATEw. mmmmdd, yyyy NUMBER

Num WORDDATXw. dd mmmm yyyy NUMBER

Num YEARw. yy or yyyy NUMBER

Num YYMM yy mm NUMBER

Num YYMMC yy:mm NUMBER

Num YYMMD yy-mm NUMBER

Num YYMMN yymm NUMBER

164 Setting Environment Variables for XLS Files � Chapter 15

SAS Variable Format XLS File Data

Type Format XLS Format String Data Type

Num YYMMP yy.mm NUMBER

Num YYMMS yy/mm NUMBER

Num YYMMDDw. yy-mm-dd NUMBER

Num YYMONw. yymmm NUMBER

Num Zw.d 0w.d NUMBER

Num FRACTw. # ?/? NUMBER

Note that Excel column widths are set to w and displayed in the column. If the data
is larger than column width, it is displayed as pound signs (###), in which case it can be
viewed by adjusting the column width.

Datetime Conversions in the DBLOAD Procedure
If a SAS variable is specified with a date, time, or datetime format in the FORMAT

statement, the interface view engine converts that SAS datetime format into the
equivalent Microsoft Excel datetime format when the new XLS file is created.

However, if a SAS datetime format is not specified in the input SAS data set, you
have to assign a format by using a PROC DBLOAD FORMAT statement. Doing so
assigns a Microsoft Excel datetime format to the SAS variable when the variable is
loaded into an XLS file. If you do not assign a SAS datetime format, the SAS numeric
value for the date is written to the XLS file. Because SAS dates are based on January
1, 1960, and Microsoft Excel dates are based on January 1, 1900, the date value in the
XLS file will be inaccurate.

To maintain a SAS variable format in the input data set, yet change it just while the
DBLOAD procedure is in progress, use the FORMAT statement in PROC DBLOAD.
This statement enables you to assign a temporary format to a SAS variable for the
duration of the procedure without affecting the input SAS data set.

For example, if the SAS format for the BirthDat variable in the MyData.SasEmps
access descriptor is left at the default 15.2 format, you can specify the FORMAT
statement to change the variable’s format to DATE7. while you are creating and
loading the XLS file. When you load the XLS file, the DATE7. format becomes an
equivalent Microsoft column format, DDMMMYY. When the DBLOAD procedure has
completed, the SAS format for the BirthDat variable returns to the 15.2 format.

You can specify the FORMAT statement in the PROC DBLOAD statement when you
invoke the procedure using any of the methods of processing.

Setting Environment Variables for XLS Files
You can change the default behavior of PROC ACCESS/PROC DBLOAD by setting

environment variables in your SAS configuration file. You can set three SAS/ACCESS
environment variables: SS_MIXED, SS_NAMES, and SS_SCAN. Setting these
variables in your SAS configuration file changes how the interface works by default.

The configuration file omits these three environment variables, which means their
default values are NO.

SS_MIXED YES | NO
YES allows both Microsoft Excel numeric and character data in a column to be
displayed as SAS character data. The Microsoft Excel numeric data is converted to

� XLS Files 165

its character representation when its corresponding SAS variable type is defined
as character.

NO does not convert Microsoft Excel numeric data in a column into SAS
character data. Microsoft Excel numeric data is read in as SAS missing values
when its corresponding SAS variable type is defined as character. NO is the
default.

Setting the SS_MIXED environment variable changes the default value of the
MIXED statement in PROC ACCESS.

SS_NAMES YES | NO
YES in PROC ACCESS generates SAS variable names from column names in the
first row of the worksheet or the specified range of the worksheet and reads data
from the second row. YES in PROC DBLOAD writes column names using SAS
variable names or SAS variable labels to the first row of the new XLS file, reads the
data from the data set, and writes it to the XLS file beginning with the second row.

NO in PROC ACCESS generates the SAS variable names VAR0, VAR1, VAR2,
and so on, and reads data from the first row of the worksheet or specified range.
NO in PROC DBLOAD reads the data from the data set and writes it to the XLS
file beginning with the first row. NO is the default.

Setting the SS_NAMES environment variable changes the default value of the
GETNAMES statement in PROC ACCESS and the PUTNAMES statement in
PROC DBLOAD.

SS_SCAN YES | NO | number-of-rows
YES scans the data type and format of rows in a worksheet or specified range
after skipping the number of rows specified in the SKIPROWS statement. After
scanning the rows, SS_SCAN finds the most common Microsoft Excel data type
and format in order to generate the default SAS data type and format. If a
number of rows is specified, SAS/ACCESS software scans the data type and format
only from these rows.

NO uses the type and format of the first row in a worksheet or specified range,
after skipping the number of rows specified in SKIPROWS, to generate the default
SAS data type and format. NO is the default.

Number-of-rows scans the type and format of the specified number of rows only.
Setting the number of rows is more efficient because data is read only from the
specified number of rows rather than from the entire file.

Setting the SS_SCAN environment variable changes the default value of the
SCANTYPE statement in PROC ACCESS.

XLS Essentials
SAS/ACCESS software for PC files works with Microsoft Excel 4 and Excel 5 files,

which are are referred to collectively throughout this document as XLS files. You can
also access Excel 7, 97, 2000, or 2002 data by using the Import/Export wizard and
procedures, LIBNAME engine, and PROC SQL under Windows operating environments.

XLS Files
Various software products, such as the Microsoft Excel spreadsheet, enable you to

use spreadsheet or database files to enter, organize, and perform calculations on data.
Spreadsheets are most often used for general ledgers, income statements, and other
types of financial record keeping. Database files also enable you to organize related
information, such as the data in an accounts-receivable journal.

166 XLS Files � Chapter 15

In spreadsheets, the data is organized according to certain relationships among data
items. These relationships are expressed in a tabular format — in columns and rows.
Each column represents one category of data, and each row can hold one data value for
each column.

A Microsoft Excel 5 worksheet, for example, is an electronic spreadsheet consisting of
a grid of 256 columns and 16,384 rows. The intersection of a column and a row is called
a cell. The following display illustrates a portion of a standard Excel worksheet.

Display 15.1 Columns and Rows of Data in an XLS File

Column letters for each column appear above the worksheet. Columns are lettered A
through IV (A to Z, AA to AZ, BA to BZ, and so on to IV). Row numbers for each row
appear to the left of the worksheet. Rows are numbered 1 to 16,384. For Excel 4 files,
only one worksheet (worksheet 1) is allowed per file, but more than one worksheet can
be stored in a workbook. You must convert any worksheets you store in a workbook
back to worksheets before you can use the data in a SAS program.

A range is a subset of cells in a worksheet. A range is identified by its address, which
begins with the name of the top left cell and ends with the name of the bottom right cell
separated by two periods. For example, the range B2..E8 is the range address for a
rectangular block of 12 cells whose top left cell is B2 and whose bottom right cell is E8
(as shaded in the display).

� XLS Data Types 167

XLS File Naming Conventions
The following conventions apply to XLS filenames. Filenames must also follow

operating-system specific conventions, so check the documentation that comes with your
Microsoft Excel product or other software products for further information.

� Under Windows 95, 98, NT, 2000, and XP the ACCESS and DBLOAD procedures
support long names that are specified in the PATH= statement (such as path=
’c:\sasdemo\library\new_customer_1999.xls’;). However, XLS files with
paths longer than 64 characters might not accepted by some versions of Microsoft
Excel.

� Filenames start with a letter, and they can contain any combination of the letters
A through Z, the digits 0 through 9, the underscore (_), the hyphen (-), and spaces
(blanks) within filenames.

� Filenames can contain spaces. Filenames that contain spaces or lowercase letters
are supported by the ACCESS and DBLOAD procedures, but they might not be
accepted by some versions of Microsoft Excel.

XLS Data Types
Microsoft Excel software has two data types: character and numeric. Microsoft Excel

character data can be entered as labels or formula strings; Microsoft Excel numeric
data can be entered as numbers or formulas.

Character data is generally considered text and can include dates and numbers.
Numeric data can include numbers (0 through 9), formulas, and cell entries that

begin with one of the following symbols: +, $, @, −, =, or #. When you create and load
an Excel file with PROC DBLOAD, the SAS/ACCESS engine supplies #NA for a missing,
numeric value.

Numeric data also can include date and time values. In Microsoft Excel software, a
date value is the integer portion of a number that can range from 01 January 1900 to
31 December 2078, that is, 1 to 65,380. A Microsoft Excel software time value is the
decimal portion of a number that represents time as a proportion of a day. For example,
0.0 is midnight, 0.5 is noon, and 0.999988 is 23:59:59 (on a 24-hour clock). While a
number can have both a date and a time portion, the formats in Microsoft Excel display
a number only in a date, time, or datetime format. The conversion of date and time
values between SAS data sets and Microsoft Excel spreadsheets is transparent to users.
However, you are encouraged to understand the differences between them. For
information about how the SAS/ACCESS interface handles date and time values and
formats, see “Datetime Conversions in the ACCESS Procedure” on page 160 and
“Datetime Conversions in the DBLOAD Procedure” on page 164.

When you create an access descriptor, the interface software uses the column types
and formats in the XLS file to determine the corresponding SAS variable formats. SAS
generates its default formats based on the values that you specify for the SCANTYPE,
SKIPROWS, and GETNAMES statements (or in the corresponding fields in the Access
Descriptor Identification window). You can change the formats generated by the
software interface. For more information, see “How SAS/ACCESS Works with XLS
Files” on page 168.

When you create an access descriptor, any data value that does not match the
column type (character or numeric) is treated as a missing value. This is the default
action. However, you can use the MIXED=YES statement to convert numeric data
values in a character column to their character representation.

You can also set the SS_MIXED environment variable to YES in your SAS
configuration file so that both numeric and character data are displayed as SAS
character data. Add this line to your SAS configuration file:

-SET SS_MIXED YES

168 How SAS/ACCESS Works with XLS Files � Chapter 15

See “Setting Environment Variables for XLS Files” on page 164 for more information
about environment variables. For more information about changing the column type
from the type determined by SAS/ACCESS software when you create an access
descriptor, refer to the “DBLOAD Procedure: XLS Specifics” on page 160.

How SAS/ACCESS Works with XLS Files
The SAS/ACCESS interface accesses data in the Microsoft Excel XLS files directly. It

enables you to create SAS data sets from XLS files or directly read the XLS file data
without creating SAS data sets. The interface does not allow you to update, add, or
delete data in XLS files.

Accessing the Data
To access the data, the interface accesses a range in a worksheet as a table. If the

range is not specified, the interface accesses the entire worksheet as a table. By default,
the interface uses the Microsoft Excel formats of columns in the first row of the range to
determine the formats of variables in SAS/ACCESS descriptors.

However, you can manipulate where the interface begins to read data and what
format the interface generates by using the SKIPROWS and SCANTYPE statements in
the ACCESS procedure. SKIPROWS skips a specified number of rows before reading
data. SCANTYPE finds the most common data type and format from among a specified
number of rows within an XLS range (after skipping the number of rows specified in
SKIPROWS) and uses it to generate the default data type and format for SAS variables.

The ACCESS procedure enables you to create access descriptors and view descriptors
for XLS files. You then can use the view descriptors as SAS data sets.

You can retrieve a subset of data using the WHERE statement.
To sort XLS file data, you must first extract the data from an XLS file and place it in

a SAS data file, unless you are using the SQL procedure. (The SQL procedure enables
you to present output data in a sorted order using the ORDER BY clause of the
SELECT statement.) You can extract and sort XLS file data in one step with the OUT=
option in the SORT procedure, using a view to the XLS file as input to PROC SORT.

Creating and Loading the Data
When you use PROC DBLOAD to create and load XLS files, the procedure translates

the SAS data set into an XLS file. The file is stored in the location specified by the
PATH= statement. Only one SAS data set can be loaded into an XLS file at one time.
The loaded XLS file can contain only one worksheet. Microsoft Excel then reads data
from the loaded XLS file directly.

In the DBLOAD procedure, you can specify the PUTNAMES statement to place the
SAS variable names in the first row of the spreadsheet and the first observation in the
second row, and so on. If PUTNAMES is not specified, the first observation is placed in
the first row, the second observation is placed in the second row, and so on. Columns do
not have names. The formats for SAS variables are automatically converted to the
closest corresponding Microsoft Excel data types and formats. See the descriptions of
individual statements for more information about how the data and columns are read.

169

C H A P T E R

16
Microsoft Access MDB Files

How to Access MDB Files from SAS 169
LIBNAME Statement Data Conversions for MDB Files 169

MDB Essentials 172

MDB Files 172

MDB Naming Conventions 172

MDB Data Types 172
How SAS/ACCESS Works with MDB Files 173

How to Access MDB Files from SAS
You can interact with Microsoft Access MDB files from SAS by using the following

features:

LIBNAME statement (UNIX and Windows operating environments)
provides direct, transparent access to data in PC file formats. Available for
Microsoft Access 97, 2000, or 2002 formats. For details, refer to Chapter 2, “The
LIBNAME Statement for PC Files on Windows,” on page 5.

Pass-Through Facility (UNIX and Windows operating environments)
enables you to interact with Microsoft Access (97 or 2000) data using the data
source’s SQL syntax without leaving your SAS session. The SQL statements are
passed directly to the data source for processing. For details, refer to Chapter 3,
“The Pass-Through Facility for PC Files on Windows,” on page 35.

Import/Export wizard or procedures (UNIX and Windows operating environments)
enable you to transfer data between SAS and several PC file formats. Available for
Microsoft Access 97, 2000, or 2002 formats. For details, refer to Chapter 4, “The
Import/Export Wizard and Procedures,” on page 49.

LIBNAME Statement Data Conversions for MDB Files
The following table shows the default SAS variable formats that SAS/ACCESS

assigns to MDB data types when you read or import MDB data with the LIBNAME
statement.

170 LIBNAME Statement Data Conversions for MDB Files � Chapter 16

Table 16.1 Default SAS Variable Formats for MDB Data

MDB Field Data Type SAS Variable Format SAS Variable Type

YES|NO 2. numeric

Number (FieldSize=Byte) 4. numeric

Number (FieldSize=Integer) 6. numeric

Number (FieldSize=Long Integer) 11. numeric

Number (FieldSize=Single) numeric

Number (FieldSize=Double) numeric

AutoNumber (FieldSize=Long Integer) 11. numeric

AutoNumber (FieldSize=Replication ID) $38. character

CURRENCY DOLLAR21.2 numeric

Date/Time DATE9.

See Notes 1 and 2
numeric

Text $w.

See Note 3

character

Memo $w.

See Note 4

character

OLE Object $w.

See Note 4

character

Hyperlink $w.

See Note 4
character

1 The default format is DATE9. However, you can use the SASDATEFMT option to change the format to other
date or datetime formats. The engine automatically converts the internal date value for you.

2 If you have a time only field in your Microsoft Access range, you can use SASDATEFMT to assign it with the
SAS TIME. format. Note that the SAS date/time value uses 01Jan1960 as the cutoff date, while the Jet provider
date/time value uses 30Dec1899 as the cutoff date.

3 The width of $w. is equal to the field size of the column defined in your Access table.
4 When the option SCAN_TEXT=YES (which is the default value), the width value of $w. is determined by

the longest string of data that is scanned in the field or by the value specified in the DBMAX_TEXT option,
whichever is less. Otherwise, when the option SCAN_TEXT=NO, the width value of $w. is equal to the value
specified in DBMAX_TEXT option.

The following table shows the default MDB data types that SAS/ACCESS assigns to
SAS variable formats when you write SAS data to an MDB file with the LIBNAME
statement.

Table 16.2 Default MDB Data Types for SAS Variable Formats

SAS Variable Format MDB Data Type

$BINARYw.

$CHARw.

HEXw.

$w.

Text (VarChar> or Memo (LongText)

See Note 2

� LIBNAME Statement Data Conversions for MDB Files 171

SAS Variable Format MDB Data Type

w.d

BESTw.

BINARYw.

COMMAw.d

COMMAXw.d

Ew.

FRACTw.

HEXw.

NEGPARENw.d

PERCENTw.d

Number.

See Notes 3 and 4.

DOLLARw.d

DOLLARXw.d
Currency

DATEw.

DATETIMEw.d

DDMMYYw.

HHMMw.d

JULDAYw.

JULIANw.

MMDDYYw.

MMYYw.d

MONTHw.

MOYYw.

WEEKDATEw.

WEEKDATXw.

WEEKDAYw.

WORDDATEw.

WORDDATXw.

Date/Time

1 You can use the data set option DBTYPE= to override the default data types. For valid data types supported,
please refer to the valid data types list.

2 If the character format length is greater than 255 characters, the loaded format is Memo; otherwise, the loaded
format is Text.

3 For Access 2000 and 2002, a SAS numeric data type with no format specified is converted to a number data type
with a double field size. If the format is specified as w. in SAS, the loaded data type in Access is a number
data type with an integer field size. If the format is specified as w.d in SAS, the loaded data type in Access is
a number data type with a decimal field size.

4 For Access 97, if the format is specified as w. in SAS, the loaded data type in Access is a number data type with
an integer field size. Otherwise, the SAS numeric data type is converted to a number data type with a double
field size.

172 MDB Essentials � Chapter 16

MDB Essentials
This section introduces SAS users to MDB files. It focuses on the terms and concepts

that help you use the SAS/ACCESS interface and includes descriptions of MDB files,
MDB naming conventions, and MDB data types.

SAS/ACCESS software for PC files works with Microsoft Access MDB 97, 2000, and
2002 files, which are referred to collectively throughout this document as MDB files.

MDB Files
Microsoft Access is a desktop relational database management system (DBMS) that

uses the Jet engine to store and retrieve data. All of the objects in a Microsoft Access
MDB-type database (including tables, indexes, forms, and reports) are stored in Jet’s
native MDB file format.

MDB Naming Conventions
The following conventions apply to MDB filenames. Filenames must also follow

operating system specific conventions, so check the documentation that comes with your
Microsoft Access product or other software products for further information.

� The filename can be up to 255 characters, including spaces.

� Names of Microsoft Access objects can be up to 64 characters long.
� Names of Microsoft Access objects can be composed of any combination of letters,

numbers, spaces, and special characters except for the period (.), exclamation point
(!), accent grave (‘), square brackets ([]), and quotation mark (“).

� Names of Microsoft Access objects cannot start with spaces or control characters
(ASCII characters 0 through 31).

MDB Data Types
The following table lists the valid data types supported by Jet provider. You may use

these data types when you use the CREATE statement in SQL Pass-Through to create
a table in your Microsoft ACCESS database.

Data Type Column Size Create Params Prefix/

Suffix

Comments

BIT 2

BYTE 3

SHORT 5

LONG 10

SINGLE 7

DOUBLE 15

DECIMAL 28 precision, scale See Note 6.

COUNTER 10 See Notes 2 and 3.

See Notes 2 and 3.

GUID 16

� How SAS/ACCESS Works with MDB Files 173

Data Type Column Size Create Params Prefix/

Suffix

Comments

CURRENCY 19

DATETIME 8 #. See Note 5.

VARCHAR 255 max length See note 7.

LONGTEXT 536,870,910 See Note 8.

VARBINARY 255 max length See Note 7.

BIGBINARY 4000

LONGBINARY 1,073,741,823 See Note 8.

1 Always use the data type listed above when you use data set option DBTYPE= to change the
data type for a loaded column. Do not use the synonyms.

2 When using the option DBTYPE=, the data type COUNTER is only valid when you set
INSERT_SQL=YES.

3 The data type COUNTER is only supported in the Pass-Through Facility.
4 A column with the BIT data type is not nullable.
5 When using the Pass-Through Facility to set a datetime value, you need to add the prefix and

suffix, #. For example, #01/01/2001#.
6 When using the data type DECIMAL, you can specify the precision and scale.
7 When using the data types VARCHAR or VARBINARY, you need to specify the maximum length.
8 When using the data types LONGTEXT or LONGBINARY, you do not need to specify the

maximum length.

How SAS/ACCESS Works with MDB Files

The SAS/ACCESS interface accesses data in Microsoft Access MDB files directly. It
enables you to create SAS data sets from MDB files or directly read or update the MDB
file data without creating SAS data sets.

The SAS/ACCESS LIBNAME engine interacts with MDB files via the Microsoft Jet
database engine, which manages data that resides in Microsoft Access MDB-type
databases.

To sort MDB file data, you must first extract the data from an MDB file and place it
in a SAS data file, unless you are using the SQL procedure. (The SQL procedure
enables you to present output data in a sorted order using the ORDER BY clause of the
SELECT statement.) You can extract and sort MDB file data in one step with the OUT=
option in the SORT procedure, using a view to the MDB file as input to PROC SORT.

174

175

C H A P T E R

17
Lotus WKn Files

How To Access WKn Files from SAS 175
ACCESS Procedure: WKn Specifics 176

ACCESS Procedure Syntax for WKn Files 176

ACCESS Procedure Data Conversions for WKn Files 178

Datetime Conversions in the ACCESS Procedure 179

DBLOAD Procedure: WKn Specifics 179
DBLOAD Procedure Syntax for WKn Files 180

DBLOAD Procedure Data Conversions for WKn Files 181

Datetime Conversions in the DBLOAD Procedure 182

Setting Environment Variables for WKn Files 182

WKn Essentials 183

WKn Files 183
WKn File Naming Conventions 184

WKn Data Types 185

How SAS/ACCESS Works with WK n Files 186

Accessing the Data 186

Creating and Loading the Data 186

How To Access WKn Files from SAS
You can interact with data in the form of Lotus 1-2-3 spreadsheets (WK1, WK3, or

WK4 files) from SAS by using the following features:

Import/Export wizard or procedures (Windows operating environments)
enable you to transfer data between SAS and several PC file formats.

ACCESS procedure (Windows operating environments)
creates descriptor files that describe data in a PC file to SAS, enabling you to
directly read, update, or extract PC files data into a SAS data file.

DBLOAD procedure (Windows operating environments)
creates PC files and loads them with data from a SAS data set.

This section contains WKn-specific information for the ACCESS and DBLOAD
procedures. See Chapter 4, “The Import/Export Wizard and Procedures,” on page 49 for
information about those features.

176 ACCESS Procedure: WKn Specifics � Chapter 17

ACCESS Procedure: WKn Specifics
Chapter 6, “The ACCESS Procedure for PC Files,” on page 65 contains general

information about this feature. This section provides WKn-specific syntax for the
ACCESS procedure and describes ACCESS procedure data conversions.

ACCESS Procedure Syntax for WKn Files
To create an access descriptor, you use the DBMS=WKn option and six

database-description statements: PATH=, GETNAMES, RANGE, SCANTYPE,
SKIPROWS, and WORKSHEET. These database-description statements supply
WKn-specific information to SAS and must immediately follow the CREATE or
UPDATE statement that specifies the access descriptor to be created or updated. In
addition to the database-description statements, you can use editing statements when
you create an access descriptor. These editing statements must follow the
database-description statements.

Database-description statements are only required when you create access
descriptors. Because WKn information is stored in an access descriptor, you do not need
to repeat this information when you create view descriptors.

The SAS/ACCESS interface to WKn uses the following procedure statements:

PROC ACCESS DBMS=WK1|WK3|WK4;
CREATE libref.member-name.ACCESS | VIEW;
UPDATE libref.member-name.ACCESS | VIEW;

PATH= ’path-and-filename<.WK1 | .WK3 | .WK4>’| <’>filename<’>| fileref;
GETNAMES <=> YES | NO | Y | N;
RANGE <=><’>range-name<’>| ’range-address’;
SCANTYPE <=> YES | NO | Y | N | <number-of-rows>;
SKIPROWS <=> number-of-rows-to-skip;
WORKSHEET <=> worksheet-letter| <’>worksheet-name<’>;
ASSIGN <=> YES | NO | Y | N;
DROP <’>column-identifier-1<’> <…<’>column-identifier-n<’>>;
FORMAT <’>column-identifier-1<’> <=> SAS-format-name-1

<…<’>column-identifier-n<’><=> SAS-format-name-n>;
LIST <ALL | VIEW | <’>column-identifier<’>>;
MIXED <=> YES | NO | Y | N;
RENAME <’>column-identifier-1<’> <=> SAS-variable-name-1

<…<’>column-identifier-n<’> <=> SAS-variable-name-n>;
RESET ALL | <’>column-identifier-1<’> <…<’>column-identifier-n<’>>;
SELECT ALL | <’>column-identifier-1< ’> <…<’>column-identifier-n<’>>;
SUBSET selection-criteria;
TYPE column-identifier-1<=> C | N <…column-identifier-n <=> C | N>;
UNIQUE <=> YES | NO | Y | N ;

RUN ;

The QUIT statement is also available in PROC ACCESS. However, it causes the
procedure to terminate. QUIT is used most often in the interactive line and
noninteractive modes to exit the procedure without exiting SAS.

Lotus WKn Files � ACCESS Procedure Syntax for WKn Files 177

The following list provides detailed information about the WKn-specific statements:

GETNAMES <=> YES | NO | Y | N;
determines whether SAS variable names are generated from column names in the
first row of the Lotus range when an access descriptor is created. When you
update a descriptor, you are not allowed to specify the GETNAMES statement.

The GETNAMES statement is optional. If you omit it, the default value
GETNAMES=NO is used, and the SAS/ACCESS interface generates the SAS
variable names VAR0, VAR1, VAR2, and so on. If you specify GETNAMES=YES,
the SAS variable names are generated from the column names in the first row of
the Lotus range. GETNAMES=YES also sets the default value of SKIPROWS to 1.

You can change the default value from NO to YES by setting the SS_NAMES
environment variable. See “Setting Environment Variables for WKn Files” on page
182 for more information about setting and changing environment variables.

The GETNAMES statement is a database-description statement. It must follow
the CREATE statement and precede any editing statements when you create a
descriptor.

RANGE <=> <’>range-name<’> | ’range-address’;
subsets a specified section of a WKn file worksheet. The range-name is the name
that is assigned to a range address within the worksheet. Range names can be up
to 15 characters long and are not case-sensitive. If you specify a range name, the
name must have been previously defined in the WKn file. The range-address is
identified by the top left cell that begins the range and the bottom right cell that
ends the range within the WKn worksheet file. The beginning and ending cells are
separated by two periods. For example, the range address C9..F12 indicates a cell
range that begins at cell C9, ends at cell F12, and includes all cells in between.

The RANGE statement is optional. If you omit RANGE, the entire worksheet is
accessed as the default range.

The RANGE is a database-description statement. It must follow the CREATE
statement and precede any editing statements when you create a descriptor.

SCANTYPE <=> YES | NO | Y | N | <number-of-rows>;
finds the most common Lotus 1-2-3 format for each column in a specified number
of rows in an WKn worksheet to generate the SAS format. By default, SAS
variable formats are generated from the Lotus 1-2-3 formats found in the first row
of the worksheet, or in the range of the worksheet if you specified a range.

The SCANTYPE statement is optional, and its default value is NO. If you specify
YES, the ACCESS procedure scans the Lotus 1-2-3 formats of all the rows in each
column of the range and uses the most common format to generate the default
SAS format for each column. If you specify a number of rows, PROC ACCESS
scans the specified number of rows only and returns the most common format.

If you specify the SKIPROWS statement, the ACCESS procedure skips the
specified rows and starts scanning the Lotus 1-2-3 format from the next row. For
example, if you specify SKIPROWS=3, PROC ACCESS skips the first three rows
and begins scanning the formats on the fourth row.

You can change the default value to YES by setting the SS_SCAN environment
variable. See “Setting Environment Variables for WKn Files” on page 182 for more
information about setting and changing environment variables.

Specifying SCANTYPE=0 is equivalent to specifying SCANTYPE=NO.
The SCANTYPE statement is a database-description statement. It must follow

the CREATE statement and precede any editing statements when you create a
descriptor.

SKIPROWS <=> number-of-rows-to-skip;
specifies the number of rows, beginning at the top of the range in the WKn file, to
ignore when you are reading data from the WKn file. The default value for

178 ACCESS Procedure Data Conversions for WKn Files � Chapter 17

SKIPROWS is 0. The skipped (or ignored) rows often contain information such as
column labels or names, or underscores rather than input data.

If GETNAMES=YES, the default value of SKIPROWS automatically changes to
1. The first row of data and formats after SKIPROWS in a range is used to
generate the SAS variable types and formats. However, you can use the
SCANTYPE statement to scan the formats of specified rows and use the most
common type and format to generate the default SAS variable types and formats.

The SKIPROWS statement is a database-description statement. It must follow
the CREATE statement and precede any editing statements when you create a
descriptor.

WORKSHEET <=> worksheet-letter | <’>worksheet-name<’>;
identifies a particular worksheet when you are reading from a WKn file that
contains more than one worksheet. You can specify a worksheet name or a
worksheet letter using the WORKSHEET statement. Worksheet names can be up
to 15 characters long and are not case-sensitive. A worksheet letter is a one- or
two-letter alpha character. For WK1 files, there is only one worksheet letter:
worksheet A. For WK3 and WK4 files, there can be up to 256 different worksheet
letters: worksheet A through worksheet Z and worksheet AA through worksheet
IV. The default value is A. For example, specifying WORKSHEET=B identifies
worksheet B from a group of worksheets.

The WORKSHEET statement is optional. The WORKSHEET statement is a
database-description statement. It must follow the CREATE statement and
precede any editing statements when you create an access descriptor.

ACCESS Procedure Data Conversions for WKn Files
You use PROC ACCESS to define descriptors that identify spreadsheet data and the

conversions necessary to use that data in SAS programs. The Lotus 1-2-3 label data
type is formatted as a SAS character type, and the Lotus 1-2-3 number data type is
formatted as a SAS numeric type.

Fonts, attributes, and colors in the WKn files are not read into the SAS data sets.
However, the ACCESS procedure supports most of the WKn number formats and
automatically converts them to the corresponding SAS formats. Any WKn data strings
longer than 200 characters are truncated while being converted into SAS data sets, and
any SAS data file created from WKn files can only contain up to 256 variables and
8,192 observations.

Table 17.2 on page 181 shows the default SAS variable formats that the ACCESS
procedure assigns to each type of WKn file data. WKn numeric data includes date and
time values. See “Datetime Conversions in the ACCESS Procedure” on page 179 for
more information.

If WKn file data falls outside of the valid SAS data ranges, you receive an error
message in the SAS log when you try to access the data.

The SAS/ACCESS interface does not fully support the Lotus 1-2-3 hidden and text
formats. WKn data in hidden format is displayed in SAS data sets. However, you can
drop the hidden column when you are creating the access descriptor. If you want to
display a formula in text format, add a label prefix character to indicate that the
formula entry is a label. Otherwise, the results of the formula are displayed.

If you have set the SS_MIXED environment variable to YES, the numerical values in
WKn files are converted to character strings in SAS data sets if the corresponding SAS
variable type is specified as character.

Lotus WKn Files � DBLOAD Procedure: WKn Specifics 179

Datetime Conversions in the ACCESS Procedure

A Lotus 1-2-3 date value is the integer portion of a number that represents the
number of days between January 1, 1900 and a specified date. A Lotus 1-2-3 time value
is a decimal portion of a number that represents time as a portion of the day. For
example, 0.0 is 12:00:00 a.m. and 0.9999884 is 11:59:59 p.m. While a number can have
both a date and a time portion, the formats in Lotus 1-2-3 display a number only in a
date format or in a time format. For example, for 1:00 p.m., March 12, 1994, the Lotus
1-2-3 date value is 34405, the time value is 0.5416667, and the datetime value is
34405.5416667.

SAS handles date and time values differently than Lotus 1-2-3 . A SAS date value is
an integer that represents the number of days between January 1, 1960 and a specified
date. A SAS time value is an integer that represents the number of seconds since
midnight of the current day. When a date and a time are both present, SAS stores the
value as the number of seconds since midnight, January 1, 1960. For example, for 1:00
p.m., March 12, 1994, the SAS date value is 12489, and the SAS time value is 46800.
Therefore, the SAS datetime value is 1079096400.*

To convert a Lotus 1-2-3 datetime format to a SAS datetime format, you need a SAS
datetime format in the view descriptor. For example, changing the default SAS numeric
format (15.2) to a SAS date format in the descriptor causes the Lotus 1-2-3 date value
(based on January 1, 1900) to be converted to an equivalent SAS date value (based on
January 1, 1960). In other words, the Lotus 1-2-3 numeric value for January 1, 1960
(which is 21916) is converted to the equivalent SAS representation of January 1, 1960
(which is 0) only if a SAS datetime format is assigned in the descriptor for that column.
Otherwise, the Lotus 1-2-3 value of 21916 is treated as a SAS numeric value of 21916.

The table below shows how SAS uses a Lotus 1-2-3 internal datetime value to
convert to a SAS internal datetime value.

Table 17.1 Value-to-Format Conversions

For a SAS format SAS uses

date if the Lotus datetime value is less than 60: integer portion of the
Lotus 1-2-3 datetime value minus 21915

if the Lotus datetime value is greater than 60: integer portion of the
Lotus 1-2-3 datetime value minus 21916

time decimal portion of the Lotus 1-2-3 datetime value times 86400

date-and-time if the Lotus datetime value is less than 60: (integer and decimal
portion of the Lotus 1-2-3 datetime value minus 21915) times 86400

if the Lotus datetime value is greater than 60: integer and decimal
portion of the Lotus 1-2-3 datetime value minus 21916 times 86400

DBLOAD Procedure: WKn Specifics

Chapter 7, “The DBLOAD Procedure for PC Files,” on page 91 contains general
information about this feature. This section provides WKn-specific syntax for the
DBLOAD procedure and describes DBLOAD procedure data conversions.

* In this description, datetime (in lowercase) refers to any value or format that represents a date, a time, or both a date and
time.

180 DBLOAD Procedure Syntax for WKn Files � Chapter 17

DBLOAD Procedure Syntax for WKn Files
To create and load a WKn table, the SAS/ACCESS interface to WKn uses the

following statements:

PROC DBLOAD <DBMS=WK1|WK3|WK4>
<DATA= < libref.>SAS-data-set>;

PATH=’path-and-filename<.WK1|.WK3|.WK4>’ | <’>filename< ’> | fileref;
PUTNAMES <=> YES | NO | Y | N;
ACCDESC= <libref.>access-descriptor;
DELETE variable-identifier-1 <…variable-identifier-n>;
ERRLIMIT= error-limit;
FORMAT SAS-variable-name-1 SAS-format-1 <=>

<…SAS-variable-name-n SAS-format-n>;
LABEL;
LIMIT= load-limit ;
LIST <ALL | COLUMNS | FIELDS | variable-identifier>;
RENAME variable-identifier-1 <=> <’>column-name-1<’>

<…variable-identifier-n = <’>column-name-n<’>>;
RESET ALL | variable-identifier-1 <…variable-identifier-n>;

<…column-identifier-n <=> C | N>;
WHERE SAS-where-expression;
LOAD;

RUN;

The QUIT statement is also available in PROC DBLOAD. However, it causes the
procedure to terminate. QUIT is used most often in the interactive line and
noninteractive modes to exit the procedure without exiting SAS.

The followig list provides detailed information about the WKn-specific statements:

PUTNAMES <=> YES | NO | Y | N;
writes column names to the first row of the new WKn file. The column names can
be default SAS variable names or, if you specify the LABEL statement, SAS
variable labels. You can modify the column names using the RENAME statement.

The PUTNAMES statement is optional. If you omit PUTNAMES, data is read
from the data set and written to the WKn file beginning in the first row of the
WKn file, and no column names are written to the file.

You can change the default value to YES by setting the SS_NAMES
environment variable. See “Setting Environment Variables for WKn Files” on page
182 for more information about setting and changing environment variables.

FORMAT SAS-variable-name-1 SAS-format-1 <SAS-variable-name-n SAS-format-n>;
assigns a temporary format to a SAS variable in the input SAS data set. This
format temporarily overrides any other format for the variable. The assignment
lasts only for the duration of the procedure. Assign formats to as many variables
as you want in one FORMAT statement.

Use FORMAT when you want to change the format, column width, or the
number of decimal digits for columns being loaded into the PC file. For example, if
you change the SAS variable format 12.1 to DOLLAR15.2, the column format of
the loaded data changes from a fixed numeric format with a column width of 12
and one decimal digit to a currency format with a column width of 15 and two
decimal digits.

Lotus WKn Files � DBLOAD Procedure Data Conversions for WKn Files 181

DBLOAD Procedure Data Conversions for WKn Files
This section explains how SAS data is read into Lotus 1-2-3 data when a table is

loaded. In this conversion, the SAS character data type is converted into the Lotus 1-2-3
label type and the SAS numeric type is converted into the Lotus 1-2-3 number type.

The SAS/ACCESS interface automatically converts SAS formats to the same or
associated Lotus 1-2-3 formats and column widths. However, you can temporarily
assign other formats and column widths to SAS variables by using the FORMAT
statement. The following table shows SAS variable types and formats and the WKn
data types, formats, and column widths that you can assign them to.

Note: The FORMAT statement in PROC DBLOAD only changes the format of SAS
variables while you are creating and loading the WKn files. When the procedure is
completed, the formats of SAS variables return to their original settings. �

WKn date and time values are numeric data. See “Datetime Conversions in the
DBLOAD Procedure” on page 182 for more information.

Table 17.2 Converting SAS Variable Formats to WKn File Data

SAS Variable Format WKn File Data

Type Data Format Data Type Column Format Column Width Number

Char $w. LABEL DEFAULT w

Char $CHARw. LABEL DEFAULT w

Num w.d NUMBER FIXED w d

Num Fw.d NUMBER FIXED w d

Num Ew.d NUMBER SCIENTIFIC w d

Num DOLLARw.d NUMBER CURRENCY w d

Num PERCENTw.d NUMBER PERCENT w d

Num COMMAw.d NUMBER COMMA w d

Num BESTw. NUMBER DEFAULT w

Num BESTw. NUMBER GENERAL w

Num DATE5. NUMBER DD-MON 7

Num DATE7. NUMBER DD-MON-YY 10

Num MONYY5. NUMBER MON-YY 7

Num MMDDYY5. NUMBER MM-DD 6

Num MMDDYY8. NUMBER MM-DD-YY 9

Num TIME5. NUMBER HH-MM-SS 6

Num TIME8. NUMBER HH-MM-SS 9

Num TIME9. NUMBER HH-MM AM/
PM

9

Num TIME12. NUMBER HH-MM-SS
AM/PM

12

182 Setting Environment Variables for WKn Files � Chapter 17

Datetime Conversions in the DBLOAD Procedure
If a SAS variable is specified with a date, time, or datetime format in the FORMAT

statement, the interface view engine converts that SAS datetime format into the
equivalent Lotus 1-2-3 datetime format when the new WKn file is created.

However, if a SAS datetime format is not specified in the input SAS data set, you
have to assign a format by using a PROC DBLOAD FORMAT statement. Doing so
assigns a Lotus 1-2-3 datetime format to the SAS variable when the variable is loaded
into a WKn file. If you do not assign a SAS datetime format, the SAS numeric-datetime
value is written to the WKn file. Because SAS dates are based on January 1, 1960, and
Lotus 1-2-3 dates are based on January 1, 1900, the datetime value in the WKn file will
be inaccurate.

To maintain a SAS variable format in the input data set, yet change it only while the
DBLOAD procedure is in progress, use the FORMAT statement in PROC DBLOAD.
This statement enables you to assign a temporary format to a SAS variable for the
duration of the procedure without affecting the input SAS data set.

For example, if the SAS format for the BirthDat variable in the MyData.SasEmps
access descriptor is left at the default 15.2 format, you can specify the FORMAT
statement in the PROC DBLOAD statement. This specification changes the variable’s
format to DATE7. while you are creating and loading the WKn file. When you load the
WKn file, the DATE7. format becomes an equivalent Lotus 1-2-3 column format,
DD-MON-YY. When the DBLOAD procedure has completed, the SAS format for the
BirthDat variable returns to the 15.2 format.

You can specify the FORMAT statement when you invoke the DBLOAD procedure to
assign a temporary format to the variables in your input SAS data set. For more
information, see “DBLOAD Procedure Syntax for WKn Files” on page 180.

Setting Environment Variables for WKn Files

You can change the default behavior of the SAS/ACCESS interface by setting
environment variables in your SAS configuration file. You can set four SAS/ACCESS
environment variables: SS_MISS NULLS, SS_MIXED, SS_NAMES, and SS_SCAN.
Setting these variables in your SAS configuration file changes how the interface works
by default.

The configuration file omits these three environment variables by default, which
means their default values are NO.

SS_MISS NULLS
By default, the DBLOAD procedure loads Lotus @NA cell values for missing
values. Use this option to specify a null cell value instead. If set, missing values in
a SAS data set will be displayed as blanks in the Lotus 1-2-3 table.

SS_MIXED YES | NO
YES allows both Lotus 1-2-3 numeric and character data in a column to be
displayed as SAS character data. The Lotus 1-2-3 numeric data is converted to its
character representation when its corresponding SAS variable type is defined as
character.

NO does not convert Lotus 1-2-3 numeric data in a column into SAS character
data. Lotus 1-2-3 numeric data is read in as SAS missing values when its
corresponding SAS variable type is defined as character. NO is the default.

Setting the SS_MIXED environment variable changes the default value of the
MIXED statement in PROC ACCESS.

SS_NAMES YES | NO

Lotus WKn Files � WKn Files 183

YES in PROC ACCESS generates SAS variable names from column names in the
first row of the worksheet or the specified range of the worksheet and reads data
from the second row. YES in PROC DBLOAD writes column names using SAS
variable names or SAS variable labels to the first row of the new WKn file, time
reads data from the data set and writes it to the WKn file beginning with the
second row.

NO in PROC ACCESS generates the SAS variable names VAR0, VAR1, VAR2,
and so on, and reads data from the first row of the worksheet or specified range.
NO in PROC DBLOAD reads the data from the data set and writes it to the WKn
file beginning with the first row. NO is the default.

Setting the SS_NAMES environment variable changes the default value of the
GETNAMES statement in PROC ACCESS and the PUTNAMES statement in
PROC DBLOAD.

SS_SCAN YES | NO | number-of-rows
YES scans the data type and format of rows in a worksheet or specified range
after skipping the number of rows specified in the SKIPROWS statement.
SS_SCAN finds the most common Lotus 1-2-3 data type and format in order to
generate the default SAS data type and format. If a number of rows is specified,
SAS/ACCESS software scans only the data type and format from these rows.

NO uses the type and format of the first row in a worksheet or specified range,
after skipping the number of rows specified in SKIPROWS, to generate the default
SAS data type and format. NO is the default.

Number-of-rows scans the type and format of the specified number of rows only.
Setting the number of rows is more efficient because data is read only from the
specified number of rows rather than from the entire file.

Setting the SS_SCAN environment variable changes the default value of the
SCANTYPE statement in PROC ACCESS.

WKn Essentials

SAS/ACCESS software for PC files works with WK1, WK3, and WK4 (Releases 4 and
5) files. These files contain data in the form of Lotus 1-2-3 spreadsheets and are
referred to collectively in this document as WKn files, where n stands for 1, 3, or 4.
SAS/ACCESS does not support the .123 format for files from Lotus SmartSuite 97
software.

WKn Files
Various software products, such as the Lotus 1-2-3 spreadsheet and database system,

enable you to use spreadsheet or database files to enter, organize, and perform
calculations on data. Spreadsheets are most often used for general ledgers, income
statements, and other types of financial record keeping. Database files also enable you
to organize related information, such as, the data in an accounts-receivable journal.

In both spreadsheets and database files, the data is organized according to certain
relationships among data items. These relationships are expressed in a tabular form, in
columns and rows. Each column represents one category of data, and each row can hold
one data value for each column.

A Lotus 1-2-3 worksheet is an electronic spreadsheet consisting of a grid of 256
columns and 8,192 rows. The intersection of a column and a row is called a cell. The
following display illustrates a portion of a standard 1-2-3 worksheet.

184 WKn Files � Chapter 17

Display 17.1 Columns and Rows of Data in a WKn File

Column letters for each column appear above the worksheet. Columns are lettered A
through IV (A to Z, AA to AZ, BA to BZ, and so on to IV). Row numbers for each row
appear to the left of the worksheet. Rows are numbered 1 to 8,192. For WK1 files, only
one worksheet (worksheet A) is allowed per file. For WK3 and WK4 files, up to 256
worksheets (worksheets A-IV) are allowed. The SAS/ACCESS interface to WKn files
uses only one worksheet, however, and defaults to worksheet A.

A range is a subset of cells in a worksheet. A range is identified by its address, which
begins with the name of the top left cell and ends with the name of the bottom right cell
separated by two periods. For example, the range B2..E8 is the range address for a
rectangular block of 28 cells whose top left cell is B2 and whose bottom right cell is E8
(as shaded in the figure).

You can give a name to a range and use the name in commands and formulas instead
of the range address in Lotus 1-2-3. A range name can be up to 15 characters long and
should not contain any spaces. For example, if the range B3..D6 is named
GRADE_TABLE, then the formula @AVG(GRADE_TABLE) has the same value as
@AVG(B3..D6).

For more information about ranges and their naming conventions, see the
documentation that accompanies your Lotus 1-2-3 software.

WKn File Naming Conventions
Filenames must also follow operating environment specific conventions, so check the

documentation that comes with your Lotus 1-2-3 product or other software products for
further information. The following conventions apply to WKn filenames:

Lotus WKn Files � WKn Data Types 185

� Under Windows 95, Windows 98, and Windows NT, the ACCESS and DBLOAD
procedures support long names that are specified in the PATH= statement (such as
path= ’c:\sasdemo\library\new_customer_1999.wk4’;). However, WKn files
with long names might not be accepted by some versions of Lotus 1-2-3.

� Filenames can contain up to eight characters.
� Filenames start with a letter, and they can contain any combination of the letters

A through Z, the digits 0 through 9, the underscore (_), the hyphen (-), and spaces
(blanks).

� Filenames can contain spaces. Filenames that contain spaces or lowercase letters
are supported by the ACCESS and DBLOAD procedures, but they might not be
accepted by some versions of Lotus 1-2-3.

WKn Data Types
Lotus 1-2-3 software has two data types: character and numeric. Lotus 1-2-3

character data can be entered as labels or formula string. Lotus 1-2-3 numeric data can
be entered as numbers or formulas.

Character data is generally considered text and can include dates and numbers if
prefixes are used to indicate character data and to align the data in the cell. For
example, in Lotus 1-2-3, the value "110 Maple Street uses the double quote prefix
and aligns the label on the right side of the cell.

Numeric data can include numbers (0 through 9), formulas, and cell entries that
begin with one of the following symbols: +, $, @, −, or #.

Numeric data also can include date and time values. In Lotus 1-2-3 software, a date
value is the integer portion of a number that can range from 01 January 1900 to 31
December 2099, that is, 1 to 73,050. A Lotus 1-2-3 software time value is the decimal
portion of a number that represents time as a proportion of a day. For example, 0.0 is
midnight, 0.5 is noon, and 0.999988 is 23:59:59 (on a 24-hour clock). While a number
can have both a date and a time portion, the formats in Lotus 1-2-3 display a number
only in a date format or a time format. The conversion of date and time values between
SAS data sets and Lotus 1-2-3 spreadsheets is transparent to users. However, you are
encouraged to understand the differences between them. For information about how the
SAS/ACCESS interface handles date and time values and formats, see “Datetime
Conversions in the ACCESS Procedure” on page 179 and “Datetime Conversions in the
DBLOAD Procedure” on page 182.

When you create an access descriptor, the interface software uses the column types
and formats in the WKn file to determine the corresponding SAS variable formats. SAS
generates its default formats based on the values that you specify for the SCANTYPE,
SKIPROWS, and GETNAMES statements. You can change the formats generated by
the software interface. For more information, see “How SAS/ACCESS Works with WK n
Files” on page 186.

When you browse a view descriptor, any data value that does not match the column
type (character or numeric) specified in the descriptor is treated as a missing value.
This is the default action. However, you can use the MIXED=YES statement to convert
numeric data values in a character column to their character representation when you
create an access descriptor.

You can also set the SS_MIXED environment variable to YES in your SAS
configuration file so that both numeric and character data are displayed as SAS
character data. Add this line to your SAS configuration file:

-SET SS_MIXED YES

See “Setting Environment Variables for WKn Files” on page 182 for more information
about environment variables. For more information about changing the column type,
refer to “ACCESS Procedure: WKn Specifics” on page 176.

186 How SAS/ACCESS Works with WK n Files � Chapter 17

How SAS/ACCESS Works with WK n Files
The SAS/ACCESS interface accesses data in the Lotus 1-2-3 WKn files directly. It

enables you to create SAS data sets from WKn files or directly read the WKn file data
without creating SAS data sets. The interface does not allow you to update, add, or
delete data in WKn files.

Accessing the Data
To access the data, the interface accesses a range in a worksheet as a table. If the

range is not specified, the interface accesses the entire worksheet as a table. By default,
the interface uses the Lotus 1-2-3 formats of columns in the first row of the range to
determine the formats of variables in SAS/ACCESS descriptors.

However, you can manipulate where the interface begins to read data and what
format the interface generates by using the SKIPROWS and SCANTYPE statements in
the ACCESS procedure. SKIPROWS skips a specified number of rows before reading
data. SCANTYPE finds the most common data type from among a specified number of
rows within a WKn range (after skipping the number of rows specified in SKIPROWS)
and uses it to generate the default format for SAS variables.

The ACCESS procedure enables you to create access descriptors and view descriptors
for WKn files. You then can use the view descriptors as SAS data sets.

You can retrieve a subset of data using the WHERE statement.
To sort WKn file data, you must first extract the data from a WKn file and place it in

a SAS data file, unless you are using the SQL procedure. (The SQL procedure enables
you to present output data in a sorted order using the ORDER BY clause of the
SELECT statement.) You can extract and sort WKn file data in one step with the OUT=
option in the SORT procedure, using a view to the WKn file as input to PROC SORT.

Creating and Loading the Data
When you use PROC DBLOAD to create and load WKn files, the procedure

translates the SAS data set into a WKn file. The file is stored in the location specified
by the PATH= statement. Only one SAS data set can be loaded into a WKn file at one
time. The loaded WKn file can contain only one worksheet. Lotus 1-2-3 then reads data
from the loaded WKn file directly.

In the DBLOAD procedure, you can specify the PUTNAMES statement to place the
SAS variable names in the first row of the spreadsheet and the first observation in the
second row, and so on. If PUTNAMES is not specified, the first observation is placed in
the first row, the second observation is placed in the second row, and so on. Columns do
not have names. The formats for SAS variables are automatically converted to the
corresponding Lotus 1-2-3 types and formats. See the descriptions of individual
statements for more information about how the data and columns are read.

187

C H A P T E R

18
dBase DBF Files

How To Access DBF Files from SAS 187
ACCESS Procedure: DBF Specifics (Windows) 187

ACCESS Procedure Syntax for DBF Files 188

ACCESS Procedure Data Conversions for DBF Files 189

DBLOAD Procedure: DBF Specifics (Windows) 189

DBLOAD Procedure Syntax for DBF Files 189
DBLOAD Procedure Data Conversions for DBF Files 191

DBF Essentials 191

DBF Files 191

DBF File Naming Conventions 192

DBF File Data Types 192

Handling Missing Values in DBF Files 193
How SAS/ACCESS Works with DBF Files 194

How To Access DBF Files from SAS
You can interact with dBASE (DBF) files from SAS by using the following features:

Import/Export wizard or procedures (UNIX and Windows operating environments)
enable you to transfer data between SAS and several PC files.

DBF procedure (UNIX, Windows, and OS/390 operating environments)
enables you to convert data between dBASE (DBF) files and SAS data sets.

ACCESS procedure (Windows operating environments)
creates descriptor files that describe data in a PC file to SAS, enabling you to
directly read, update, or extract PC files data into a SAS data file.

DBLOAD procedure (Windows operating environments)
creates PC files and loads them with data from a SAS data set.

This section contains DBF-specific information for the ACCESS and DBLOAD
procedures. See Chapter 4, “The Import/Export Wizard and Procedures,” on page 49
and Chapter 5, “The DBF and DIF Procedures,” on page 59 for information about those
features.

ACCESS Procedure: DBF Specifics (Windows)
Chapter 6, “The ACCESS Procedure for PC Files,” on page 65 contains general

information about this feature. This section provides DBF-specific syntax for the
ACCESS procedure and describes ACCESS procedure data conversions.

188 ACCESS Procedure Syntax for DBF Files � Chapter 18

ACCESS Procedure Syntax for DBF Files
To create an access descriptor, you use the DBMS=DBF option and the

database-description statement PATH=. This PATH= statement supplies DBF-specific
information to SAS and must immediately follow the CREATE statement. In addition
to the database-description statement, you can use optional editing statements when
you create an access descriptor. These editing statements must follow the
database-description statement.

The database-description statement is only required when you create access
descriptors. Because the DBF information is stored in an access descriptor, you do not
need to repeat this information when you create view descriptors.

Note: The SAS/ACCESS interface cannot read DBF files that are encrypted.
Therefore, you cannot define an access descriptor based on these files. �

The SAS/ACCESS interface to DBF supports the following procedure statements:

PROC ACCESS options;
CREATE libref.name.ACCESS|VIEW;
UPDATE libref.name.ACCESS|VIEW;

PATH= ’path-and-filename<.DBF>’|<’>filename<’>| fileref;
ASSIGN | AN <=> YES | NO;
DROP <’>column-identifier-1<’> <…<’>column-identifier-n<’>>;
FORMAT <’>column-identifier-1<’><=>SAS-format-name-1

<…<’>column-identifier-n<’> <=>SAS-format-name-n>;
LIST <ALL | VIEW | <’>column-identifier<’>>;
RENAME <’>column-identifier-1<’><=>SAS-variable-name-1

<…<’>column-identifier-n<’><=>SAS-variable-name-n>;
RESET ALL | <’>column-identifier-1<’> <…<’>column-identifier-n<’>>;
SELECT ALL | <’>column-identifier-1< ’> <…<’>column-identifier-n<’>>;
SUBSET selection criteria;
UNIQUE <=> YES | NO;

RUN;

The QUIT statement is also available in PROC ACCESS. However, it causes the
procedure to terminate. QUIT is used most often in the interactive line and
non-interactive modes to exit the procedure without exiting SAS.

The following example creates an access descriptor and a view descriptor based on
DBF file data.

options linesize=80;
libname dbfliba ’SAS-data-library’;
libname dbflibv ’SAS-data-library’;

proc access dbms=dbf;
/* create access descriptor */

create adlib.custs.access;
path=’c:\dbfiles\dbcusts.dbf’;
assign=yes;
rename customer = custnum;
format firstorder date9.;
list all;

dBase DBF Files � DBLOAD Procedure Syntax for DBF Files 189

/* create usacust view */
create vlib.usacust.view;
select customer state zipcode name

firstorder;
run;

ACCESS Procedure Data Conversions for DBF Files
The table below shows the default SAS variable formats that the ACCESS procedure

assigns to each DBF file data type. If DBF file data falls outside of the valid SAS data
ranges, you get an error message in the SAS log when you try to read the data.

Table 18.1 Default SAS Variable Formats for DBF File Data Types

DBF File Data Type SAS Variable Format

Character(n) $n. (n <= 200)

$200. (n > 200)

Numeric(N,n) (N,n)

Float(N,n)* (N,n)

Date MMDDYY8.

Logical $1.

* This data type applies to dBASE V and later. Check with other software products’ documentation
to see if this data type applies.

DBLOAD Procedure: DBF Specifics (Windows)
Chapter 7, “The DBLOAD Procedure for PC Files,” on page 91 contains general

information about this feature. This section provides DBF-specific syntax for the
DBLOAD procedure and describes DBLOAD procedure data conversions .

DBLOAD Procedure Syntax for DBF Files
To create and load a DBF table, the SAS/ACCESS interface to PC files uses the

following statements:

PROC DBLOAD <DBMS=DBF> <DATA=<libref.>SAS-data-set>;
PATH=’path-and-filename<.DBF>’ | <’>filename<’>|fileref;
VERSION= dBASE-product-number;
ACCDESC=<libref.>access-descriptor;
DELETE variable-identifier-1 <…variable-identifier-n>;
ERRLIMIT= error-limit;
LABEL;
LIMIT= load-limit;
LIST <ALL | FIELDS | variable-identifier>;
LOAD;

190 DBLOAD Procedure Syntax for DBF Files � Chapter 18

RENAME variable-identifier-1= <’>database-field-name-1<’>
<…variable-identifier-n = <’>database-field-name-n<’>>;

RESET ALL | variable-identifier-1 <…variable-identifier-n>;
TYPE variable-identifier-1=’database-field-type-1’

<…variable-identifier-n = ’database-field-type-n’>;
WHERE SAS-where-expression;

RUN;

The QUIT statement is also available in PROC DBLOAD. However, it causes the
procedure to terminate. QUIT is used most often in the interactive line and
non-interactive modes to exit the procedure without exiting SAS.

The following list provides detailed information about the DBF-specific statements:

VERSION= dBASE-product-number
specifies the number of the dBASE product you are using, such as dBASE IV. The
dBASE-product-number argument can be one of the following values: II, III, IIIP,
IV, V, 2, 3, 3P, 4, and 5. The statement’s default value is V.

Specify VERSION= before the TYPE statement in order to get the correct data
types for your new DBF table.

TYPE variable-identifier-1 = ’database-field-name-1’
<… variable-identifier-n = ’database-field-name-n’>

specifies a DBF file data type, which is based on the SAS variable format. The
database field name must be enclosed in quotation marks.

The following example defines the data types for several database fields. Notice that
you can specify the length of the data type.

proc dbload dbms=dbf data=employee;
path=’c:\sasdemo\employee.dbf’;
rename firstname = fname;
type empid = ’numeric(6)’

hiredate = ’date’
salary = ’numeric(10,2)’
jobcode = ’numeric(5)’;

run;

The following example creates a new DBF table, Exchange.Dbf, from the data file
DLib.RateOfex. An access descriptor DbFliba.Exchange is also created, based on the
new table. You must be granted the appropriate privileges in order to create new DBF
tables.

libname dbfliba ’SAS-data-library’;
libname dbflibv ’SAS-data-library’;

proc dbload dbms=dbf data=dlib.rateofex;
path=’c:\dbfiles\sasdemo\exchange.dbf’;
accdesc=adlib.exchange;
rename fgnindol=fgnindolar 4=dolrsinfgn;
type country=’char(25)’;
load;

run;

dBase DBF Files � DBF Files 191

DBLOAD Procedure Data Conversions for DBF Files

The following table shows the default DBF file data types that the DBLOAD
procedure assigns to each SAS variable format.

Table 18.2 Default DBF File Data Types for SAS Variable Formats

SAS Variable Formats DBF File Data Types

$w. CHAR(n)

w. NUMERIC

w.d. NUMERIC

datetimew.d DATE

datew. DATE

ew. FLOAT

binaryw. NUMERIC

DBF Essentials

The SAS/ACCESS interface to PC files works with DBF files that are created by
dBASE (II, III, III PLUS, IV, and 5.0) and with DBF files that are created by other
software products. SAS/ACCESS cannot access DBF files created by Visual dBASE 7.

As an introduction to DBF files, this section describes DBF files that are created
using dBASE 5.0, rather than describing each version of dBASE and the differences
among them.* For more information about a dBASE concept or term, see the dBASE
documentation packaged with your system.

DBF Files

DBF files are a file format created by dBASE, a relational database management
system for microcomputer systems. DBF files can be created using a variety of
microcomputer software programs.

A DBF file contains data that is organized in a tabular format of database fields and
records. Each database field can contain one type of data, and each record can hold one
data value for each field. Figure 18.1 on page 192 illustrates four database fields from
Customer.Dbf and highlights a database field and a record.

The SAS/ACCESS interface uses database files that have a .dbf extension. A DBF
file consists of a specific number of database fields and some number of records. DBF
files are one kind of file that you can select in a catalog. You can create DBF files in a
number of ways in dBASE, including using the CREATE command. See your dBASE or
other software product’s documentation for information about creating DBF files and
assigning field names, field types, and other attributes.

* The term dBASE refers to dBASE 5.0 for Windows unless otherwise noted.

192 DBF File Data Types � Chapter 18

Figure 18.1 DBF File

database field

CUSTOMER CITY STATE COUNTRY

14324742 San Jose CA USA
14569877 Memphis TN USA record
14898029 Rockville MD USA
26422096 La Rochelle France
38763919 Buenos Aires Argentina
46783280 Singapore Singapore

The ACCESS procedure uses SAS/ACCESS descriptor files to reference DBF files for
reading or extracting data. It cannot use any dBASE indexes or indexes created by
other software products that are defined on the fields in a DBF file. You can use the
view descriptors you create to update DBF data. You can use the DBLOAD procedure to
create and load DBF files.

The ACCESS procedure cannot reference DBF files that are secured through
encryption. Like other files, DBF files are subject to any security restrictions imposed
by the operating system or network (if applicable).

DBF File Naming Conventions
File names must also follow operating system specific conventions, so check the

documentation that comes with your dBASE product or other software products for
further information. The following conventions apply to DBF file names and field names:

� Under Windows 95, Windows 98, and Windows NT, the ACCESS and DBLOAD
procedures support long names that are specified in the PATH= statement (such as
path=’c:\sasdemo\library\customer99.dbf’;) However, some applications
that support dBASE files might not accept files with long names.

� File names or field names start with a letter, and they can contain any
combination of the letters A through Z, the digits 0 through 9, the colon (:) (in
dBASE II field names only), and the underscore (_).

� Database field names can be from one to ten characters long. Each field in a DBF
file has a unique name.

� File names or field names are not case sensitive; that is, CUSTOMER is the same
as Customer. Field names typed in lowercase are changed to uppercase on the
display.

DBF File Data Types
Every field in a DBF file has a name and a data type. The data type tells how much

physical storage to set aside for the database field and the form in which the data is
stored. The following section lists and describes each data type.

Character(N)
specifies a field for character string data. The maximum length of N is 254
characters. Characters can be letters, digits, spaces, or special characters. You can
abbreviate character to char in your programs.

Numeric(N,n)
specifies a decimal number. The N value is the total number of digits (precision),
and the n value is the number of digits to the right of the decimal point (scale).

dBase DBF Files � Handling Missing Values in DBF Files 193

The maximum values allowed depend on the software product you are using. For
dBASE products, the maximum values allowed are as follows:

dBASE Version N,n

dBASE II 16,14

dBASE III 19,15

dBASE III PLUS 19,15

dBASE IV 20,18

dBASE 5.0 20,18

Numeric field types always preserve the precision of their original numbers.
However, SAS stores all numbers internally as double-precision, floating-point
numbers, so their precision is limited to 16 digits.

Note: If every available digit in a DBF file field is filled with a 9, the value of
the field is interpreted as missing by SAS. If a field in SAS indicates a missing
value (represented by a period), SAS writes a nine for each available digit in the
corresponding DBF file database field. While in a SAS session, if you fill every
available digit in a DBF file field with nines, scroll from the field, and return to
the field, the value is represented as missing. �

Float(N,n)
specifies a floating-point binary number that is available in dBASE IV and later
versions. The maximum N,n value for Float is 20,18. Check with the
documentation that comes with other software products you might be using to
create DBF files to determine if those products support floating-point binary
numbers.

Date
specifies a date value in a format that has numbers and a character value to
separate the month, day, and year. The default format is mm/dd/yy, for example,
02/20/95 for February 20, 1995.

Dates in DBF files can be subtracted from one another, with the result being the
number of days between the two dates. A number (of days) can also be added to a
date, with the result being a date.

Logical
specifies a type that answers a yes/no or true/false question for each record in a
file. This type is 1 byte long and accepts the following character values: Y, y, N, n,
T, t, F, and f.

dBASE also has data types called Memo, General, binary, and OLE, which are stored
in an associated memo text file (called a DBT file), but these data types are not
supported in the SAS/ACCESS interface to PC files.

Chapter 7, “The DBLOAD Procedure for PC Files,” on page 91 describes how the
DBLOAD procedure determines data types when creating DBF files.

Handling Missing Values in DBF Files
Missing numeric values are filled in with nines by default. The DBFMISCH

environment variable is used to change the default by specifying the character that the
interface to DBF files uses to fill missing numeric fields. For example, if you try to

194 How SAS/ACCESS Works with DBF Files � Chapter 18

write a SAS file with a missing numeric variable to a DBF file, the corresponding field
in the DBF file would be filled with the DBFMISCH character. Conversely, any numeric
or float field in a DBF file that is filled with the DBFMISCH character is treated as
missing when read by SAS.

You set the DBMISCH environment variable in the SAS configuration file using the
following syntax:

-set DBFMISCH value

Valid values are

<any single character>
Type in any single character. For example, to fill missing numeric values
with the zero character (0), enter -set DBFMISCH 0.

NULLS
To replace missing numeric values with binary zeros, enter -set DBFMISCH NULLS.

BLANKS
To replace missing numeric values with blanks, enter -set DBFMISCH BLANKS.

How SAS/ACCESS Works with DBF Files
For DBF files, the SAS/ACCESS interface is a read-write interface. When you use the

ACCESS procedure to create an access descriptor, SAS retrieves descriptive information
about the database fields directly from the DBF file. When you create a view descriptor,
SAS retrieves information from the access descriptor without reading the DBF file
again.

If the structure of a DBF file changes — for example, database fields are deleted —
these changes do not appear in the access descriptor that you created with the ACCESS
procedure. The changes also are not reflected in any view descriptors that were created
previously on that access descriptor and, therefore, invalidate the view descriptors.

However, if the data in the DBF file changes, the updated data does appear when it is
retrieved by a view descriptor. Suppose, for example, you have a view descriptor defined
on a DBF file, and you add 30 records to that file. When you perform a SAS PRINT
procedure using that view descriptor, both the old and new records are displayed.

To perform data manipulation tasks, the interface uses SAS commands and
statements. For example, in the ACCESS procedure, you use the SAS WHERE
statement to retrieve a subset of records from a DBF file. To sort DBF data, you must
first extract the data into a SAS data file, unless you are using the SQL procedure. (The
SQL procedure enables you to present output data in a sorted order with the ORDER
BY clause in the SELECT statement without extracting the data.) You can extract and
sort the DBF file data in one step using the OUT= option in the SORT procedure.

SAS does not use dBASE indexes or indexes created by other software products that
are defined on fields in a DBF file. However, once you have extracted DBF file data
with a view descriptor, you can use the SQL or DATASETS procedures to define SAS
indexes on variables in the new SAS data file. Using SAS indexes often enhances the
performance of data manipulation and retrieval tasks.

When you use the DBLOAD procedure to create and load a DBF file from a SAS data
set, the procedure translates the SAS variable formats into field types that can be used
in dBASE or other software products. It stores the file in the path specified by the
PATH= statement so that dBASE and other software products can then read data from
the newly created DBF file.

When you use a view descriptor in a DATA step to display or edit DBF file data, the
SAS DBF file interface view engine reads from or writes to the DBF file that is stored
in the path you specified.

195

C H A P T E R

19
Lotus DIF Files

How To Access DIF Files from SAS 195
ACCESS Procedure: DIF Specifics 195

ACCESS Procedure Syntax for DIF Files 196

ACCESS Procedure Data Conversions for DIF Files 198

Datetime Conversions in the ACCESS Procedure 198

DBLOAD Procedure: DIF Specifics 198
DBLOAD Procedure Syntax for DIF Files 199

Datetime Conversions in the DBLOAD Procedure 200

DIF Essentials 201

DIF Files 201

DIF File Naming Conventions 201

DIF File Data Types 202
How SAS/ACCESS Works With DIF Files 202

How To Access DIF Files from SAS

You can interact with data interchange format (DIF) files from SAS by using the
following features:

DIF procedure (UNIX and Windows operating environments)
enables you to convert between DIF files and SAS data sets.

ACCESS procedure (Windows operating environments)
creates descriptor files that describe data in a PC file to SAS, enabling you to
directly read, update, or extract PC files data into a SAS data file.

DBLOAD procedure (Windows operating environments)
creates PC files and loads them with data from a SAS data set.

This section contains DIF-specific information for the ACCESS and DBLOAD
procedures. See “The DIF Procedure” on page 62 for information about the DIF
procedure.

ACCESS Procedure: DIF Specifics

Chapter 6, “The ACCESS Procedure for PC Files,” on page 65 contains general
information about this feature. This section provides DIF-specific syntax for the
ACCESS procedure and describes ACCESS procedure data conversions.

196 ACCESS Procedure Syntax for DIF Files � Chapter 19

ACCESS Procedure Syntax for DIF Files
To create an access descriptor, you use the DBMS=DIF option and the

database-description statements PATH=, DIFLABEL, and SKIPROWS. These
statements supply DIF-specific information to SAS, and must immediately follow the
CREATE statement. In addition to the database-description statements, you can use
optional editing statements when you create an access descriptor. These editing
statements must follow the database-description statements.

Database-description statements are only required when you create access
descriptors. Because the DIF information is stored in an access descriptor, you do not
need to repeat this information when you create view descriptors.

The SAS/ACCESS interface to DIF uses the following procedure statements:

PROC ACCESS options;
CREATE <libref.>member-name.ACCESS | VIEW;

UPDATE <libref.>member-name.ACCESS | VIEW;

PATH= ’path-and-filename<.DIF>’ | <’>filename< ’>| fileref;
DIFLABEL;
SKIPROWS <=> number-of-rows-to-skip;
ASSIGN | AN <=> YES | NO;
DROP <’>column-identifier-1<’><…<’>column-identifier-n< ’>>;
FORMAT <’>column-identifier-1<’><=>SAS-format-name-1

<…<’>column-identifier-n<’><=> SAS-format-name-n>;
LIST <ALL | VIEW | <’>column-identifier<’>>;
RENAME <’>column-identifier-1<’> <=> SAS-variable-name-1

<…<’>column-identifier-n<’> <=> SAS-variable-name-n>;
RESET ALL | <’>column-identifier-1<’><…<’>column-identifier-n<’>>;
SELECT ALL | <’>column-identifier-1< ’> <…<’>column-identifier-n<’>>;
SUBSET selection criteria ;
TYPE <’>column-identifier-1<’><=> C | N

<…column-identifier-n <=> C | N>;
UNIQUE <=> YES | NO;

RUN;

The QUIT statement is also available in PROC ACCESS. However, it causes the
procedure to terminate. QUIT is used most often in the interactive line and
noninteractive modes to exit the procedure without exiting SAS.

The following list provides detailed information about the DIF-specific statements:

DIFLABEL
indicates whether variable names are generated from the first row of the columns.
If you omit this statement, variable names that are generated are based on the
columns’ placement in the first row. That is, SAS labels each column as COL0,
COL1, COL2, and so on. These labels become the names of SAS variables in the
access descriptor.

If you specify DIFLABEL, the ACCESS procedure reads column labels from the
first row of the DIF file and uses them as the SAS variable names in the access
descriptor. You provide the DIF file column labels; they are not the letters (for

Lotus DIF Files � ACCESS Procedure Syntax for DIF Files 197

example, A, B, and so on) that identify the columns in a worksheet. If you specify
DIFLABEL, the SKIPROWS statement automatically changes to 1.

Always specify DIFLABEL after the PATH= statement and before any editing
statements. When you update a descriptor, you are not allowed to specify the
DIFLABEL statement.

The following example creates an access descriptor and a view descriptor based
on DIF file data.

options linesize=80;
libname difdliba ’SAS-data-library’;
libname diflibv ’SAS-data-library’;

proc access dbms=dif;
/* create access descriptor */

create difliba.custs.access;
path=’c:\difiles\dbcusts.dif’;
diflabel;
skiprows=2;
assign=yes;
rename customer = custnum;
format firstorder date9.;
list all;

/* create usacust view */
create diflibv.usacust.view;
select customer state zipcode name

firstorder;
run;

SKIPROWS <=> number-of-rows-to-skip;
specifies the number of rows, beginning at the top of the DIF file, to ignore when
you read data from the file. The default value for SKIPROWS is 0. The skipped
(or ignored) rows often contain information such as column labels or names, or
underscores rather than input data.

If you specify the DIFLABEL statement, the default value of SKIPROWS
automatically changes to 1. The SKIPROWS statement should always follow the
PATH= statement and precede any editing statements when you are creating a
descriptor. The first row of data after SKIPROWS is used to generate the SAS
variable types and formats. If there is no data in the first row of a column after
SKIPROWS, the data in the rest of the column is assumed to be character data,
even if the data in the next row is numeric.

By default, any data value in a column that does not match the type is treated
as a missing value. However, if you set the DIFNUMS environment variable to
YES in your SAS configuration file, any numeric data values in a character column
are converted to the character representation of the number and are not treated as
missing values. Add the following line to your SAS configuration file to set the
DIFNUMS environment variable to YES:

-SET DIFNUMS YES

The default for the DIFNUMS environment variable is NO. Refer to the SAS
documentation for your operating environment for more information about
environment variables.

You can change the column type from the type determined by SAS/ACCESS
software when you create an access descriptor.

198 ACCESS Procedure Data Conversions for DIF Files � Chapter 19

ACCESS Procedure Data Conversions for DIF Files

The following table shows the default SAS variable formats that the ACCESS
procedure assigns to each type of DIF file data. DIF file numeric data includes date and
time values. See “Datetime Conversions in the ACCESS Procedure” on page 198 for
more information.

Table 19.1 Default SAS Variable Formats for DIF File Data

DIF File Data SAS Variable Format

C (Character) $20.

N (Numeric) 15.2

If DIF file data falls outside of the valid SAS data ranges, you get an error message
in the SAS log when you try to read the data.

Datetime Conversions in the ACCESS Procedure

When you create an access descriptor, SAS cannot distinguish a Lotus datetime value
from other numeric data. SAS stores the Lotus datetime value as a number and
displays it like other Lotus numeric data by using the SAS variable format 15.2 (the
default format for this interface).

To convert a Lotus datetime value to a SAS datetime value, you must specify a SAS
datetime format in the access descriptor. A Lotus datetime value is a number that
represents the number of days between January 1, 1900, and a specified date; changing
the default SAS format (15.2) to a datetime format in the descriptor causes the Lotus
value to be converted to an equivalent SAS datetime value based on January 1, 1960.
In other words, the Lotus numeric value for January 1, 1960 (which is 21,916) is
converted to the equivalent SAS representation of January 1, 1960 (which is 0) only if a
SAS datetime format is stored in the descriptor for that column. Otherwise, the Lotus
value of 21,916 is treated as a SAS numeric value of 21,916.

The following table shows how SAS uses a Lotus datetime value to convert to a SAS
datetime format.

Table 19.2 Value-to-Format Conversions

For a SAS format SAS uses

date integer portion of the Lotus number

time decimal portion of the Lotus number

date-and-time integer and decimal portion of the Lotus number

DBLOAD Procedure: DIF Specifics

Chapter 7, “The DBLOAD Procedure for PC Files,” on page 91 contains general
information about this feature. This section provides DIF-specific syntax for the
DBLOAD procedure and describes DBLOAD procedure datetime conversions .

Lotus DIF Files � DBLOAD Procedure Syntax for DIF Files 199

DBLOAD Procedure Syntax for DIF Files
To create and load a DIF table, the SAS/ACCESS interface to PC files uses the

following statements.

PROC DBLOAD DBMS=DIF <DATA=<libref.>SAS-data-set>;

PATH=’path-and-filename<.DIF>’ | <’>filename< ’>| fileref;

DIFLABEL;

ACCDESC=<libref.>access-descriptor;

DELETE variable-identifier-1 <…variable-identifier-n>;

ERRLIMIT=error-limit;

FORMAT SAS-variable-name-1 SAS-format-1 <…SAS-variable-name-n
SAS-format-n>;

LABEL;

LIMIT=load-limit;

LIST <ALL | COLUMNS | FIELDS | variable-identifier>;

LOAD;

RENAME variable-identifier-1= <’>column-name-1<’>
<…variable-identifier-n=<’>column-name-n<’>>;

RESET ALL | variable-identifier-1 <…variable-identifier-n>;

WHERE SAS-where-expression;

RUN;

The QUIT statement is also available in PROC DBLOAD. However, it causes the
procedure to terminate. QUIT is used most often in the interactive line and
noninteractive modes to exit the procedure without exiting SAS.

The following list provides detailed information about the DIF-specific statements:

DIFLABEL
writes column labels to the first row of the new DIF file and follows the column
labels with a blank row. The column labels can be default SAS variable names or,
if you specify the LABEL statement, SAS labels. You can modify the column labels
using the RENAME statement.

If this statement is omitted, data is read from the data set and written to the
DIF file beginning in the first row of the DIF file, and no column labels are written
to the file.

FORMAT SAS-variable-name-1 SAS-format-1< …SAS-variable-name-n
sas-format-n>;

assigns a temporary format to a SAS variable in the input SAS data set. This
format temporarily overrides any other format for the variable. The assignment
lasts only for the duration of the procedure. Assign formats to as many variables
as you want in one FORMAT statement.

Use FORMAT when you want to change the format, column width, or the
number of decimal digits for columns being loaded into the PC file. For example, if
you change the SAS variable format 12.1 to DOLLAR15.2, the column format of
the loaded data changes from a fixed numeric format with a column width of 12
and one decimal digit to a currency format with a column width of 15 and two
decimal digits.

The following example creates a new DIF table, Exchange.dif, from the data file
Dlib.RateOfex. An access descriptor AdLib.Exchange is also created, based on the new

200 Datetime Conversions in the DBLOAD Procedure � Chapter 19

DIF table. You must be granted the appropriate privileges in order to create new DIF
files.

libname difdliba ’SAS-data-library’;
libname diflibv ’SAS-data-library’;

proc dbload dbms=dif data=dlib.rateofex;
accdesc=adlib.exchange;
path=’c:\difiles\sasdemo\exchange.dif’;
diflabel;
rename fgnindol=fgnindolar 4=dolrsinfgn;
load;

run;

Datetime Conversions in the DBLOAD Procedure
If a SAS variable is specified with a date, time, or datetime format in the FORMAT

statement, the interface view engine converts that datetime value into the equivalent
Lotus datetime value when the new DIF file is created. However, the DIF file has no
way of relating this formatting information to Lotus products. Therefore, when you load
the DIF file into a Lotus 1-2-3 worksheet, the datetime values are represented as
numbers. You should assign (from within Lotus) a Lotus datetime format to any
datetime column that you load from a DIF file.

If a SAS variable represents a date, time, or datetime value, but it has not been
assigned a SAS datetime format — the SAS datetime value is represented as a
number — the number is not converted into an equivalent Lotus datetime value in the
DIF file. Rather, the number is written to the new DIF file as is. Because SAS dates
are based on January 1, 1960, and Lotus dates are based on January 1, 1900, if you
assign a Lotus datetime format to an unconverted Lotus column, the datetime values in
that column are inaccurate.

To maintain a SAS variable format in the input data set, yet change it only while the
DBLOAD procedure is in progress, use the DBLOAD FORMAT statement. This
statement enables you to assign a temporary format to a SAS variable for the duration
of the procedure without affecting how SAS stores the variable.

For example, if the SAS format for the BirthDat variable in the MyData.SasEmps
data set is left at the default 15.2 format, you can specify the FORMAT statement to
change the variable’s format to DATE7. while you are creating and loading the DIF file.
When you load the DIF file into a Lotus 1-2-3 worksheet, you can specify an equivalent
Lotus date format. When the DBLOAD procedure has completed, the SAS format for
the BirthDat variable reverts to the 15.2 format.

You can specify the FORMAT statement in the PROC DBLOAD statement when you
invoke the procedure using any of the methods of processing.

Note: There are certain display restrictions on the SAS datetime values that are
loaded into Lotus 1-2-3 worksheets through DIF files. If you load a SAS variable with a
DATETIMEw.d format into a DIF file, Lotus stores the number with both integer and
decimal portions. However, when you load the DIF file into a Lotus 1-2-3 worksheet
and specify a format for the column, you can only specify a date format (that uses the
integer portion) or time format (that uses the decimal portion) for that column, not both
at the same time. �

Lotus DIF Files � DIF Files 201

DIF Essentials

Data interchange format (DIF) files are used by the SAS/ACCESS interface to PC
files to access data indirectly from other software products, such as data in Lotus 1-2-3
spreadsheets and database files.

DIF Files

DIF files can be created using software under a variety of microcomputer software
packages (such as Lotus 1-2-3). These software products enable you to use spreadsheet
or database files to enter, organize, and perform calculations on data. Spreadsheets are
most often used for general ledgers, income statements, and other types of financial
record keeping. Database files also enable you to organize related information, such as,
the data in an accounts-receivable journal.

In both spreadsheets and database files, the data is organized according to certain
relationships among data items. These relationships are expressed by files in a tabular
form, that is, in columns and rows. DIF files allow both character and numeric data in
the same column. See “DIF File Data Types” on page 202 in this chapter for more
information. Each row can hold one data value for each column. The spreadsheet and
database files can be translated to DIF files that the SAS/ACCESS interface can process.

A spreadsheet consists of columns and rows, and their intersection is called a cell.
The following figure illustrates four columns from the spreadsheet Customers and
highlights a column and a row.

Figure 19.1 Columns and Rows of Data in a DIF File

row

column

CUSTOMER CITY STATE COUNTRY

14324742 San Jose CA USA

14569877 Memphis TN USA

14898029 Rockville MD USA

26422096 La Rochelle France

38763919 Buenos Aires Argentina

46783280 Singapore Singapore

DIF File Naming Conventions

DIF file names must follow operating environment specific conventions, so check the
documentation that comes with your application or operating system software for
further information.

� Under Windows 95, 98, NT, 2000, or XP the ACCESS and DBLOAD procedures
support long names that are specified in the PATH= statement (such as path=
’c:\sasdemo\library\new_customers_1999.dif’;). However, some
applications that support DIF files might not accept files with long names.

� File names start with a letter, and they can contain any combination of the letters
A through Z, the digits 0 through 9, and the underscore (_).

202 DIF File Data Types � Chapter 19

DIF File Data Types

Every column in a DIF file has a name and one or two data types. A DIF file allows
columns that include both character and numeric data.

Character data is generally considered text and can include dates and numbers if
prefixes are used to indicate character data and to align the data in the cell. For
example, in Lotus 1-2-3, the value "110 Maple Street uses the double quote prefix
and aligns the label on the right side of the cell.

Numeric data includes numbers (0 through 9), formulas, and cell entries that begin
with one of the following symbols: +, $, @, −, or #. When you create and load a DIF file
with PROC DBLOAD, the SAS/ACCESS engine supplies NA for a missing, numeric
value. For decimal numbers, the SAS/ACCESS engine queries the operating
environment for the current setting of the decimal separator and uses it when reading
or creating DIF files.

Numeric data also include date and time values. In Lotus software, a date value is the
integer portion of a number that can range from 01 January 1900 to 31 December 2099,
that is, 1 to 73,050. A Lotus software time value is the decimal portion of a number
that represents time as a proportion of a day. For example, 0.0 is midnight, 0.5 is noon,
and 0.999988 is 23:59:59 (on a 24-hour clock). While a number can have both a date
and a time portion, the formats in Lotus 1-2-3 display a number only in a date format
or a time format. For information about how the SAS/ACCESS interface handles date
and time values and formats, see “Datetime Conversions in the ACCESS Procedure” on
page 198 and “Datetime Conversions in the DBLOAD Procedure” on page 200.

When you create an access descriptor, the interface software determines the column
type by the value in the first row of data (excluding any rows that are defined for
column names, blank rows for readability, and so on). If the first row in the column has
no data value, the column type defaults to character data.

By default, any data value in a column that does not match the type is treated as a
missing value. However, if you set the DIFNUMS environment variable to YES in your
SAS configuration file, any numeric data values in a character column are converted to
the character representation of the number and are not treated as missing values. Add
the following line to your SAS configuration file to set the DIFNUMS environment
variable to YES:

-SET DIFNUMS YES

The default for the DIFNUMS environment variable is NO. Refer to the SAS
Companion for your operating system for more information about environment
variables.

You can change the column type from the type determined by SAS/ACCESS software
when you create an access descriptor.

How SAS/ACCESS Works With DIF Files

The SAS/ACCESS interface to DIF files accesses data in spreadsheets and databases
indirectly. Spreadsheet and database data must be translated into a DIF file format
before it can be read by SAS. A DIF file is an ASCII text file with a file header section
and a data section. DIF files, not spreadsheets or databases, are specified in the
ACCESS and DBLOAD procedures. You use your software product’s utilities to
translate your spreadsheets and databases into DIF files. For example, you can use the
Lotus 1-2-3 Translate Utility to translate a Lotus 1-2-3 worksheet or database to a DIF
file. Once your spreadsheet or database is translated into a DIF file, the file is stored in

Lotus DIF Files � How SAS/ACCESS Works With DIF Files 203

a directory that you specify. You then enter this path and DIF filename with the PATH=
statement in the ACCESS procedure.

If you change a spreadsheet or database file after translating the file to DIF format,
retranslate the modified file and save it in a new DIF file. If you do not, the DIF file and
SAS/ACCESS view based on the DIF file will not reflect your changes to the original.

The SAS/ACCESS interface to DIF files is read-only: it cannot be used to modify a
DIF file.

To sort data in a DIF file, you must first extract the data into a data file. You can do
this in one step with the SORT procedure’s OUT= option. Or you can use the SQL
procedure’s SELECT statement with an ORDER BY clause.

The DBLOAD procedure translates a SAS data set into a DIF file format and stores
the DIF file in the path specified by the PATH= statement. Software products such as
Lotus 1-2-3 can then read data from the DIF file.

When you use a view descriptor to a DIF file in a DATA step or procedure, you provide
a path to the DIF file. The DIF file interface view engine retrieves data from this file.

204

205

P A R T4

Sample Code

Chapter 20.Accessing PC Files Data with the LIBNAME Statement 207

Chapter 21.Accessing PC Files with Descriptors 211

206

207

C H A P T E R

20
Accessing PC Files Data with
the LIBNAME Statement

Introduction to Accessing PC Files Data with the LIBNAME Statement 207
Running the LIBNAME Examples 207

Charting PC Files Data with the LIBNAME Statement 207

The GCHART Procedure with a SAS/ACCESS LIBNAME Statement 208

Calculating Statistics with the PC Files LIBNAME Statement 208

The FREQ Procedure with a SAS/ACCESS LIBNAME Statement 209
Selecting and Combining PC Files Data with the LIBNAME Statement 209

The WHERE Statement with a SAS/ACCESS LIBNAME Statement 209

Introduction to Accessing PC Files Data with the LIBNAME Statement

One advantage of using SAS/ACCESS software is that it enables SAS to read and
write PC files data directly from SAS programs. This section presents examples in
which PC files data accessed through LIBNAME statements is used as input data for
SAS programs. It also shows you how to use SAS procedures and the DATA step to
review PC file data that is directly accessed by SAS/ACCESS LIBNAME statements.

The examples in this section use Microsoft Access data. The PC file is identified in
each example and any file-specific issues are described in the example.

Running the LIBNAME Examples
The examples in this chapter use data in different PC files. The PC files data is

identified in each example and any file-specific issues are described in the example.
The examples in this chapter show the following:

� how to create LIBNAME statements

� how to use the LIBNAME statements in SAS procedures and DATA steps.

The files that create the PC files tables and the examples are shipped with your
SAS/ACCESS software. See “Sample Data in This Document” on page 4 for more
information about these files.

Charting PC Files Data with the LIBNAME Statement

This example shows how to use the GCHART procedure with DBMS data by using the
LIBNAME statement to accomplish the task in an easy and direct way. The LIBNAME
statement accommodates member names and variable names of up to 32 characters.

208 The GCHART Procedure with a SAS/ACCESS LIBNAME Statement � Chapter 20

The GCHART Procedure with a SAS/ACCESS LIBNAME Statement
This example uses the GCHART procedure to chart data from the Microsoft Access

table Orders. The LIBNAME statement is used to define a SAS libref that references
Microsoft Access data.

Note: Using this procedure requires a SAS/GRAPH license at your site. �

libname mydblib access ’c:/sampdata/samples.mdb’ user=dmitry pw=elvis

proc gchart data=mydblib.orders;
vbar stocknum / discrete;
title ’Data Described by VLIB.ALLORDER’;
run;

The following output shows the output for this example. STOCKNUM represents
each product. The number of orders for each product is represented by the height of the
bar.

Output 20.1 Vertical Bar Chart of Number of Orders per Product

For more information about the GCHART procedure,
see SAS/GRAPH Reference, Volumes 1 and 2.

Calculating Statistics with the PC Files LIBNAME Statement
This example shows how to use the FREQ procedure with DBMS data. The

LIBNAME statement supports long names of up to 32 characters.

Accessing PC Files Data with the LIBNAME Statement � The WHERE Statement with a SAS/ACCESS LIBNAME Statement 209

The FREQ Procedure with a SAS/ACCESS LIBNAME Statement
This example uses the FREQ procedure to calculate statistics on the Microsoft Access

table Invoice. The LIBNAME statement is used to define a SAS libref that references
Microsoft Access data.

libname mydblib access ’c:/sampdata/samples.mdb’;

proc freq data=mydblib.invoice(keep=invoicenum amtbilled country billedby paidon);
tables country;
title ’Data Described by VLIB.INV’
run;

The following output shows the one-way frequency table that this example generates.

Output 20.2 Frequency Table for Variable COUNTRY Described by View Descriptor VLib.Inv

Data Described by VLIB.INV 6

COUNTRY

Cumulative Cumulative
COUNTRY Frequency Percent Frequency Percent
--
Argentina 2 11.76 2 11.76
Australia 1 5.88 3 17.65
Brazil 4 23.53 7 41.18
USA 10 58.82 17 100.00

For more information about the FREQ procedure, see Step-by-Step Programming with
Base SAS Software and Base SAS Procedures Guide.

Selecting and Combining PC Files Data with the LIBNAME Statement
This example shows how to use the WHERE statement to subset DBMS data.

The WHERE Statement with a SAS/ACCESS LIBNAME Statement
This example uses a WHERE statement directly in the PRINT procedure to print

only unpaid bills over $300,000. The LIBNAME statement is used to define a SAS libref
that references the Microsoft Access data. Column names can be up to 32 characters.

libname mydblib access ’c:/sampdata/samples.mdb’ user=dmitry pw=elvis;

proc print data=mydblib.invoice(where=(paidon is null and amountinus>=300000.00)
drop=paidon);

format amountinus dollar20.2;
title ’High Bills---Not Paid’;
run;

210 The WHERE Statement with a SAS/ACCESS LIBNAME Statement � Chapter 20

Output 20.3 Work.NotPaid Data File Created Using a SAS WHERE Statement

High Bills--Not Paid

OBS INVNUM BILLEDTO AMTINUS BILLEDON

1 11271 18543489 $11,063,836.00 05OCT1998
2 12102 18543489 $11,063,836.00 17NOV1998
3 11286 43459747 $11,063,836.00 10OCT1998
4 12051 39045213 $2,256,870.00 02NOV1998
5 12471 39045213 $2,256,870.00 27DEC1998
6 12476 38763919 $2,256,870.00 24DEC1998

211

C H A P T E R

21
Accessing PC Files with
Descriptors

Introduction to Accessing PC Files with Descriptors 211
Running the Descriptor Examples 212

Reviewing Variables 212

Charting PC Files Data with Descriptors 214

Calculating Statistics with PC Files Descriptors 215

Using the FREQ Procedure 215
Using the MEANS Procedure 216

Using the RANK Procedure 218

Selecting and Combining PC Files Data with Descriptors 220

Using the WHERE Statement 220

Using the SQL Procedure 222

Joining Data from Various Sources 222
Creating New Columns with the GROUP BY Clause 224

Using the SAS Viewer on PC Files Data 225

Reading and Updating PC Files Data with the SQL Procedure 226

Reading Data with the SQL Procedure 227

Updating Data with the SQL Procedure 228
Deleting Data with the SQL Procedure 229

Inserting Data with the SQL Procedure 229

Updating PC Files Data with the MODIFY Statement 230

Updating a SAS Data File with PC Files Data 233

Appending Data with the APPEND Procedure 236

Introduction to Accessing PC Files with Descriptors

One advantage of using SAS/ACCESS software is that it enables SAS to read and
write PC files data directly from SAS programs. This section presents examples in
which PC files data accessed through view descriptors is used as input data for SAS
programs, and it also shows you how to use SAS procedures and the DATA step to
review and update PC files data that is described by SAS/ACCESS view descriptors.

The examples in this section use DIF, DBF, WKn, and XLS data. The PC file format
is identified in each example and any file-specific issues are described in the example.
Throughout the examples, the SAS terms variable and observation are used instead of
column and row because this section illustrates SAS procedures and the SAS DATA step.
The examples show how to create access descriptors and view descriptors and then use
the view descriptors in SAS procedures and DATA steps. For more information about
the SAS language and procedures that are used in the examples, refer to the documents
listed at the end. For information about using view descriptors efficiently in SAS
programs, see “Performance and Efficient View Descriptors for PC Files” on page 70.

212 Running the Descriptor Examples � Chapter 21

In examples that update DBF file data, examples that are rerun will not work the
same because the data has been modified. In this case, submit the PcfFdbl.sas file to
re-create the PC files tables.

See Appendix 1, “Sample Data,” on page 243 for all the PC files on which the access
and view descriptors are defined. This appendix also includes the SAS data files that
are used in this section, as well as the SAS statements that created them.

Running the Descriptor Examples
The examples in this section use data in different PC file formats. The PC files data

is identified in each example and any file-specific issues are described in the example.
The examples show the following:

� how to create access descriptors and view descriptors

� how to use the view descriptors in SAS procedures and DATA steps.

As you work through the examples, notice that you can create the descriptors in a
number of ways. In some cases, the ASSIGN=YES statement is specified and SAS
variable names and formats are assigned when the access descriptor is created. In
other cases, the ASSIGN statement is omitted and editing statements, such as
RENAME and UNIQUE, are specified when the view descriptors are created. How you
create descriptors depends on your site’s needs and practices. When you run the
examples, you only need to create an access descriptor or a view descriptor one time per
example. If you rerun the examples, you do not need to re-create the descriptors.

The macro file (PcfFmac.sas) provided with the files contains macros that enable any
SAS/ACCESS interface for a PC format to create database-description statements. Use
the macro file with PcfFdbl.sas (creates PC files), PcfFsamp.sas (contains samples) and
PcfFscl.sas (contains SAS/AF examples). To adapt the PcfFmac.sas file for use at your
site, insert your PC file format in the first line of the code. See the comments in the
PcfFmac.sas file for more information.

If you run the examples individually instead of running the entire examples file, you
must preface them with LIBNAME statements to identify where your SAS data
libraries are stored. In these examples, the libref Dlib is used for SAS data files; the
libref SLib is used for PROC SQL views; the libref AdLib is used when creating access
descriptors; and the libref VLib is used when creating view descriptors.

The files that create the PC files tables, descriptors, and the examples are shipped
with your SAS/ACCESS software. See “Sample Data in This Document” on page 4 for
more information about these files.

Reviewing Variables

Before retrieving or updating the PC files data that is described by a view descriptor,
you might want to review the attributes of the data’s variables. You can use the
CONTENTS or DATASETS procedure to display a view descriptor’s variable and format
information. You can use these procedures with view descriptors in much the same way
you use them with other SAS data sets.

This example uses the DATASETS procedure to display information about the view
descriptor VLib.UsaCust, which describes the data in the Customers.wk3 file.

options linesize=80;

proc access dbms=wk3;
create adlib.customr.access;

Accessing PC Files with Descriptors � Reviewing Variables 213

/* create access descriptor */
path="c:\sasdemo\customer.wk3";
worksheet=a;
range=’a1..j22’;
getnames=yes;
scantype=5;
mixed=yes;
assign=yes;
rename customer=custnum;
format firstorder date9.;
list all;

create vlib.usacust.view;
/* create vlib.usacust view */
select customer state zipcode name

firstorder;
run;

proc datasets library=vlib memtype=view;
/* example */
contents data=usacust;

run;

The following output shows the results of this example.

Output 21.1 Using the DATASETS Procedure with a View Descriptor

DATASETS PROCEDURE

Data Set Name: VLIB.USACUST Observations: 21
Member Type: VIEW Variables: 5
Engine: SASIOWK3 Indexes: 0
Created: . Observation Length: 83
Last Modified: . Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Informat Label

1 CUSTNUM Char 8 0 $8. $8. CUSTOMER
5 FIRSTORD Num 8 75 DATE9. DATE9. FIRSTORDER
4 NAME Char 60 15 $60. $60. NAME
2 STATE Char 2 8 $2. $2. STATE
3 ZIPCODE Char 5 10 $5. $5. ZIPCODE

As you can see from the DATASETS procedure output, the VLib.UsaCust view
descriptor has five variables: CustNum, FirstOrd, Name, State, and Zipcode. The
variables are listed in alphabetic order, and the # column in the listing shows the order
of each variable in VLib.UsaCust.

The Label field in the DATASETS procedure lists the names of the PC files columns.
The FirstOrder column name has been truncated to the eight-character SAS variable
name FirstOrd because SAS uses only the first eight characters of a PC files column
name when it assigns a default SAS variable name. See “ASSIGN Statement” on page
73 for more information about how SAS variable names are assigned for PC files
column names.

214 Charting PC Files Data with Descriptors � Chapter 21

The information displayed by the DATASETS procedure does not include any
selection criteria that might be specified for the view descriptor. To see selection
criteria, you must review the code that created the view descriptor.

You cannot use the MODIFY statement in the DATASETS procedure to change the
attributes of a view descriptor.

For more information about the DATASETS procedure, see Base SAS Procedures
Guide.

Charting PC Files Data with Descriptors
PROC GCHART programs work with data that is described by view descriptors just

as they do with other SAS data sets. (Using this procedure requires a SAS/GRAPH
license at your site.) The following example uses the view descriptor VLib.AllOrdr to
create a vertical bar chart of the number of orders per product. VLib.AllOrdr describes
the data in the Orders.xls file.

proc access dbms=xls;
create adlib.order.access;
/* create access descriptor */
path="c:\sasdemo\orders.xls";
worksheet=sheet1;
range=’a1..j39’;
getnames=yes;
scantype=5;
mixed=yes;
assign=yes;
rename dateorderd = dateord

processdby = procesby;
format dateorderd date9.

shipped date9.
ordernum 5.0
length 4.0
stocknum 4.0
takenby 6.0
processdby 6.0
fabcharges 12.2;

list all;

create vlib.allordr.view;
/* create vlib.allordr view */
select all;

run;

proc gchart data=vlib.allordr;
/* example */
vbar stocknum / discrete;

title ’Data Described by VLIB.ALLORDR’;
run;

The following output shows the results for this example. StockNum represents each
product. The number of orders for each product is represented by the height of the bar.

Accessing PC Files with Descriptors � Using the FREQ Procedure 215

Output 21.2 Vertical Bar Chart of Number of Orders per Product

For more information about the GCHART procedure,
see SAS/GRAPH Reference, Volumes 1 and 2.

Calculating Statistics with PC Files Descriptors

You can also use SAS statistical procedures on PC files data. This section shows
examples using the FREQ, MEANS, and RANK procedures.

Using the FREQ Procedure
Suppose you want to find the percentages of your invoices that went to each country

so that you can decide where to increase your overseas marketing. The following
example uses the view descriptor VLib.Inv to calculate the percentage of invoices for
each country that appears in the Invoice.dbf file.

proc access dbms=dbf;
/* create access descriptor */
create adlib.invoice.access;

path="c:\sasdemo\invoice.dbf";
assign;
rename invoicenum = invnum

amtbilled = amtbilld ;
format paidon date9.

invoicenum 5.0
billedby 6.0;

assign=yes;

create vlib.inv.view;
/* create vlib.inv view */
select invoicenum amtbilled

216 Using the MEANS Procedure � Chapter 21

country billedby paidon;
list all;

run;

proc freq data=vlib.inv;
/* example */
tables country;
title ’Data Described by VLIB.INV’;

run;

The following output shows the one-way frequency table that this example generates.

Output 21.3 Frequency Table for Variable Country Described by View Descriptor VLib.Inv

Data Described by VLIB.INV 6

COUNTRY

Cumulative Cumulative
COUNTRY Frequency Percent Frequency Percent
--
Argentina 2 11.76 2 11.76
Australia 1 5.88 3 17.65
Brazil 4 23.53 7 41.18
USA 10 58.82 17 100.00

For more information about the FREQ procedure, see Step-by-Step Programming with
Base SAS Software and Base SAS Procedures Guide.

Using the MEANS Procedure
In your analysis of recent orders, suppose you want to calculate some statistics for

each U.S. customer. From the Orders.xls file, the view descriptor VLib.UsaOrdr selects
a subset of observations that have a ShipTo value beginning with a 1, indicating a U.S.
customer.

Using the OUT= option in the SORT procedure, the data from the DBF file is
extracted, placed in a SAS data file, and then sorted.

The following example generates the means and sums of the length of material
ordered (in yards) and the fabric charges (in dollars) for each U.S. customer. Also
included are the number of observations (N) and the number of missing values (NMiss).
The MAXDEC= option specifies the number of decimal places (0-8) for PROC MEANS
to use in printing the results.

proc access dbms=xls;
create adlib.order.access;
/* create access descriptor */
path="c:\sasdemo\orders.xls";
worksheet=shee1;
getnames=yes;
skiprows=2;
scantype=5;
mixed=yes;
assign=yes;
rename dateorderd = dateord

processdby = procesby;
format dateorderd date9.

Accessing PC Files with Descriptors � Using the MEANS Procedure 217

shipped date9.
ordernum 5.0
length 4.0
stocknum 4.0
takenby 6.0
processdby 6.0
fabcharges 12.2;

list all;

create vlib.usaordr.view;
/* create vlib.usaordr view */
select ordernum stocknum length

fabcharges shipto;
subset where shipto like ’1%’;

run;

proc sort data=vlib.usaordr out=work.usaorder;
by shipto;

run;

proc means data=work.usaordr mean
/* example */
sum n nmiss maxdec=0;

by shipto;
var length fabcharg;

title ’Data Described by VLIB.USAORDR’;
run;

The following output shows the results for this example.

218 Using the RANK Procedure � Chapter 21

Output 21.4 PROC MEANS Statistics on Fabric Length and Charges for Each U.S. Customer

Data Described by VLIB.USAORDR 7

-------------------------------- SHIPTO=14324742 -------------------------------

Variable Label Mean Sum N Nmiss

LENGTH LENGTH 1095 4380 4 0

FABCHARG FABCHARGES 1934460 3868920 2 2

-------------------------------- SHIPTO=14898029 -------------------------------

Variable Label Mean Sum N Nmiss

LENGTH LENGTH 2500 5000 2 0

FABCHARG FABCHARGES 1400825 2801650 2 0

-------------------------------- SHIPTO=15432147 -------------------------------

Variable Label Mean Sum N Nmiss

LENGTH LENGTH 725 2900 4 0

FABCHARG FABCHARGES 252149 504297 2 2

-------------------------------- SHIPTO=18543489 -------------------------------

Variable Label Mean Sum N Nmiss

LENGTH LENGTH 303 1820 6 0

FABCHARG FABCHARGES 11063836 44255344 4 2

-------------------------------- SHIPTO=19783482 -------------------------------

Variable Label Mean Sum N Nmiss

LENGTH LENGTH 450 1800 4 0

FABCHARG FABCHARGES 252149 1008594 4 0

-------------------------------- SHIPTO=19876078 -------------------------------

Variable Label Mean Sum N Nmiss

LENGTH LENGTH 690 1380 2 0

FABCHARG FABCHARGES . . 0 2

For more information about the MEANS procedure, see Base SAS Procedures Guide.

Using the RANK Procedure
You can use advanced statistical procedures on PC files data. The following example

uses the RANK procedure to calculate the order of birthdays for a set of employees who
are listed in the Employees.dbf file. The OUT= option creates a SAS data file,
DLib.RankExam, from the view descriptor VLib.Emps so that the data in the SAS file

Accessing PC Files with Descriptors � Using the RANK Procedure 219

can be sorted by the SORT procedure. The RANKS statement assigns the name
DateRank to the new variable (in the SAS data file) that is created by the procedure.
The PRINT procedure then prints the data that is described by DLib.RankExam. You
can also use the PRINT procedure to print all or some of the PC file data values
described by view descriptors.

proc access dbms=dbf;
create adlib.employ.access;
/* create access descriptor */
path="c:\sasdemo\employees";
drop salary;
list all;

create vlib.emps.view;
/* create vlib.emps view */
select empid jobcode birthdate

lastname jobcode;
format birthdate date9.

empid 6.0;
subset where jobcode=602;

run;

proc rank data=vlib.emps out=dlib.rankexam;
/* example */
var birthdat;
ranks daterank;

run;

proc sort data=dlib.rankexam;
by lastname;

run;

proc print data=dlib.rankexam(drop=jobcode);
title ’Order of Dept 602 Employee Birthdays’;

run;

Data stored in the DBF file must be extracted and placed in a SAS data set before it
can be sorted with a SAS procedure. (This restriction also applies to data from other PC
files.) The DROP= data set option is used in the PROC PRINT statement because the
JobCode variable is not needed in the output. The JobCode variable is required in the
SELECT statement so it can be used in the WHERE statement. The JobCode variable
is then included in the view descriptor, even though it is not needed in the output. The
following output shows the result of this example.

220 Selecting and Combining PC Files Data with Descriptors � Chapter 21

Output 21.5 Ranking of Employee Birthdays with PROC RANK

Order of Dept 602 Employee Birthdays

OBS EMPID BIRTHDAT LASTNAME DATERANK

1 456910 24SEP1953 ARDIS 5
2 237642 13MAR1954 BATTERSBY 6
3 239185 28AUG1959 DOS REMEDIOS 7
4 321783 03JUN1935 GONZALES 2
5 120591 12FEB1946 HAMMERSTEIN 4
6 135673 21MAR1961 HEMESLY 8
7 456921 12MAY1962 KRAUSE 9
8 457232 15OCT1963 LOVELL 11
9 423286 31OCT1964 MIFUNE 12
10 216382 24JUL1963 PURINTON 10
11 234967 21DEC1967 SMITH 13
12 212916 29MAY1928 WACHBERGER 1
13 119012 05JAN1946 WOLF-PROVENZA 3

When you use the PRINT procedure, you might want to take advantage of the SAS
data set option OBS=, which enables you to limit the number of observations to be
processed. This option is especially useful when the view descriptor describes a large
amount of data, the SAS data file is large, or when you just want to see an example of
the output. You cannot use OBS= if the view descriptor contains a WHERE clause in
the SUBSET statement.

For more information about RANK, about other advanced statistical procedures, and
about the PRINT procedure, see Base SAS Procedures Guide. For more information
about the OBS= and FIRSTOBS= options, see SAS Language Reference: Dictionary.

Selecting and Combining PC Files Data with Descriptors
For many of your SAS programs, you might need to combine data from more than

one view descriptor or to manipulate data that is accessed by a specific view descriptor.
The following sections describe how you can select and combine data using the following
language elements:

� the WHERE statement in a DATA step
� the SQL procedure to create a new PROC SQL view
� the SQL procedure to join data from various sources

� a summary function in a PROC SQL query to create a new column in the output.

Using the WHERE Statement
Suppose you have a view descriptor VLib.AllInv that lists invoices for all customers.

VLib.AllInv is based on the Invoice.dbf file. You can use a SET statement to create a
SAS data file that contains information on customers who have not paid their bills and
whose bills amount to at least $300,000.

proc access dbms=dbf;
create adlib.invoice.access;
/* create access descriptor */
path="c:\sasdemo\invoice.dbf";
assign=yes;
rename invoicenum = invnum

Accessing PC Files with Descriptors � Using the WHERE Statement 221

amtbilled = amtbilld
amountinus = amtinus;

format paidon date9.
billedon date9.
invoicenum 5.0
billedby 6.0
amtbilled 15.2
amountinus 15.2;

list all;

create vlib.allinv.view;
/* create vlib.allinv view */
select all;

run;

data notpaid(keep=invnum billedto amtinus billedon);
/* example */
set vlib.allinv;
where paidon is missing and amtinus>=300000;

run;

In the DATA step’s WHERE statement, be sure to use SAS variable names, not PC
files column names. The following output shows the result of the new temporary SAS
data file Work.NotPaid.

proc print data=notpaid;
format amtinus dollar20.2;

title ’High Bills--Not Paid’;
run;

Output 21.6 Word.NotPaid Data File Created Using a SAS WHERE Statement

High Bills--Not Paid

OBS INVNUM BILLEDTO AMTINUS BILLEDON

1 11271 18543489 $11,063,836.00 05OCT1998
2 12102 18543489 $11,063,836.00 17NOV1998
3 11286 43459747 $11,063,836.00 10OCT1998
4 12051 39045213 $2,256,870.00 02NOV1998
5 12471 39045213 $2,256,870.00 27DEC1998
6 12476 38763919 $2,256,870.00 24DEC1998

The first line of the DATA step uses the KEEP= data set option. This option works
with view descriptors just as it works with other SAS data sets; it specifies that you
want to include only the listed variables in the new SAS data file Work.NotPaid.
However, you can still use the other view descriptor variables in other statements
within the DATA step.

The SAS WHERE statement includes two conditions to be met. First, it selects only
observations that have a missing value for the PAIDON variable. Second, it requires
that the amount in each bill be higher than a certain figure. You need to be familiar
with the PC files data so that you can determine reasonable values for these expressions.
For information about the SAS WHERE statement, refer to SAS Language: Reference.

222 Using the SQL Procedure � Chapter 21

Using the SQL Procedure
The SQL procedure implements the Structured Query Language in SAS. The SQL

procedure follows the SQL convention of using the terms column and row for variable
and observation.

Joining Data from Various Sources

The SQL procedure provides another way to select and combine data. For example,
suppose you have three data sets: two view descriptors, VLib.CusPhon and
VLib.CusOrdr, which are based on the Customers.wk3 and Orders.xls files, respectively,
and a SAS data file, DLib.OutOfStk, which contains product names and numbers that
are out of stock. You can use the SQL procedure to create a view that joins the data
from these three sources and displays their output. The SAS WHERE or subsetting IF
statements would not be appropriate in this case because you want to compare
variables from several sources, rather than simply merging or concatenating the data.

The following SAS statements select and combine data from the view descriptors and
the SAS data file to create an SQL view, SLib.BadOrdr. SLib.BadOrdr retrieves
customer and product information that the sales department uses to notify customers of
unavailable products.

proc access dbms=wk3;
create adlib.customr.access;
/* create access descriptor */
path="c:\sasdemo\customers.wk3";
worksheet=v;
range=’cus_phone’;
getnames=yes;
skiprows=2;
scantype=5;
mixed=yes;
list all;

create vlib.cusphon.view;
/* create vlib.cusphon view */
select customer phone name;
rename customer=custnum;

run;

proc access dbms=xls;
create adlib.orders.access;
/* create access descriptor */
path="c:\sasdemo\orders.xls";
worksheet=’sheet1’;
range=’a1..j39’;
getnames=yes;
skiprows=2;
scantype=5;
mixed=yes;
list all;

create vlib.cusordr.view;
/* create vlib.cusordr view */
select ordernum stocknum shipto;

Accessing PC Files with Descriptors � Using the SQL Procedure 223

rename ordernum ordnum;
format ordernum 5.0

stocknum 4.0;
run;

proc sql;
/* example */
create view slib.badordr as

select distinct cusphon.custnum,
cusphon.name, cusphon.phone,
cusordr.stocknum,
outofstk.fibernam
as product

from vlib.cusphon, vlib.cusordr,
dlib.outofstk

where cusordr.stocknum=
outofstk.fibernum

and cusphon.custnum=
cusordr.shipto;

The CREATE VIEW statement incorporates a WHERE clause as part of its SELECT
clause. The DISTINCT keyword eliminates any duplicate rows of customer numbers
that occur when companies order an unavailable product more than once.

It is recommended that you not include an ORDER BY clause in a CREATE VIEW
statement. Doing so causes the output data to be sorted every time the PROC SQL
view is submitted, which can have a negative impact on performance. It is more
efficient to add an ORDER BY clause to a SELECT statement that displays your output
data, as shown below.

options linesize=120;
title ’Data Described by SLIB.BADORDR’;

select * from slib.badordr
order by custnum, product;

quit;

This SELECT statement uses the SQL view SLib.BadOrdr to display joined WK3,
XLS, and SAS data in ascending order by the CustNum column and then by the
Product (that is, FiberNam) column. The data is ordered by Product because one
customer might have ordered more than one product. To select all the columns from the
view, use an asterisk (*) in place of column names. When an asterisk is used, the
columns are displayed in the order specified in the SLib.BadOrdr view. The following
output shows the data that is described by the SLib.BadOrdr view.

Output 21.7 Data Described by the SQL View SLib.BadOrdr

Data Described by SLIB.BADORDER

CUSTOMER NAME PHONE STOCKNUM PRODUCT

--

15432147 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS 616/582-3906 4789 dacron

18543489 LONE STAR STATE RESEARCH SUPPLIERS 512/478-0788 8934 gold

29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY (0552)715311 3478 olefin

31548901 NATIONAL COUNCIL FOR MATERIALS RESEARCH 406/422-3413 8934 gold

43459747 RESEARCH OUTFITTERS 03/734-5111 8934 gold

224 Using the SQL Procedure � Chapter 21

Although the query uses SAS variable names like CustNum, you might notice that
the output uses PC files column names like Customer. By default, PROC SQL displays
SAS variable labels, which default to PC files column names. (You can use the
NOLABEL option to change this default.)

Creating New Columns with the GROUP BY Clause

Instead of creating a new PROC SQL view, you might want to summarize your data
and create new columns in a report. Although you cannot use the ACCESS procedure to
create new columns, you can easily do this by using the SQL procedure with data that
is described by a view descriptor.

This example uses the SQL procedure to retrieve and manipulate data from the view
descriptor VLib.AllEmp, which is based on the Employee.dbf file. When this query (as a
SELECT statement is often called) is submitted, it calculates and displays the average
salary for each department. The query enables you to manipulate your data and display
the results without creating a SAS data set.

Because this example reports on employees’ salaries, the view descriptor VLib.AllEmp
is assigned a SAS password (MONEY) using the DATASETS procedure. Because of the
READ= level of protection, the password must be specified in the PROC SQL SELECT
statement before you can see the DBF file data that is accessed by Work.AllEmp.

In the following example, the DISTINCT keyword in the SELECT statement removes
duplicate rows. The AVG function in the SQL procedure is equivalent to the SAS
MEAN function.

options linesize=80;

proc access dbms=dbf;
/* create access descriptor */
create adlib.employ.access;
path="c:\sasdemo\employee.dbf";
assign=yes;
format empid 6.0

salary dollar12.2
jobcode 5.0
birthdate date9.
hiredate date9.;

list all;
run;

/* create work.allemp view */
proc access dbms=dbf

accdesc=adlib.employ;
create work.allemp.view;
select all;

run;

/* assign a password */
proc datasets library=work memtype=view;

modify allemp (read=money);
run;

/* example */
title ’Average Salary Per ACC Department’;

proc sql;

Accessing PC Files with Descriptors � Using the SAS Viewer on PC Files Data 225

select distinct dept,
avg(salary) label=’Average Salary’
format=dollar12.2

from work.allemp(pw=money)
where dept like ’ACC%’
group by dept;

quit;

The columns are displayed in the order specified in the SELECT clause of the query.
The following output shows the result of the query.

Output 21.8 Data Retrieved by an SQL Procedure Query

Average Salary Per ACC Department

Average
DEPT Salary

ACC013 $54,591.33
ACC024 $55,370.55
ACC043 $75,000.34

To delete a password on an access descriptor or any SAS data set, put a slash after
the password:

/* delete the password */
proc datasets library=work memtype=view;

modify allemp (read=money/);
run;

For more information about SAS passwords, see “SAS Passwords for Descriptors” on
page 68.

Using the SAS Viewer on PC Files Data

While your DBF data is displayed in an FSVIEW window, for example, you can save
it to a data file and then re-open that file using the SAS Viewer (VIEWTABLE window).
Take these steps to save your FSVIEW output to a data file:

1 Select the SAS icon in the top, left corner and then select the Menu item. Doing so
opens a listing of menus.

2 Select the File menu and then the Save As item.

3 A Save As window opens and asks you for the directory and filename information
for the file that you want to save. In the Save as type field, click the down arrow
to select Data Files.

4 Click Save . In this example, the output is stored to a file named VLib.OrdShp.

When your file is saved, you can go to the SAS Explorer window and double-click the
libref.name of your new file, in this case, VLib.OrdShp. Doing so opens the
VIEWTABLE window, as shown in the following display:

You can browse or edit the PC files data from the VIEWTABLE window. For
information about using this window, select the Using this Window item from the
Help menu.

226 Reading and Updating PC Files Data with the SQL Procedure � Chapter 21

Display 21.1 Browsing or Editing Data through the VIEWTABLE Window

Reading and Updating PC Files Data with the SQL Procedure

The SQL procedure enables you to retrieve data from PC files and update data in
DBF files. You can read and display PC files data by specifying a view descriptor or
other SAS data set in the SQL procedure’s SELECT statement.

To update DBF data, you can specify view descriptors in the SQL procedure’s
INSERT, DELETE, and UPDATE statements. You can also use these statements to

Accessing PC Files with Descriptors � Reading Data with the SQL Procedure 227

modify SAS data files. However, the ability to update data in a DBF file is subject to
the following conditions:

� As in other PROC and DATA steps, you can use only a view descriptor or other
SAS data set in an SQL procedure statement, not an access descriptor.

� If you did not create the DBF file, you must be granted the appropriate file access
privileges before you can select, insert, delete, or update the data.

� You must also be granted the appropriate file access privileges before you select
the data from MDB, DIF, WKn, or XLS files. The SAS/ACCESS interface to these
files is read-only, so the SELECT statement is the only one of the four PROC SQL
statements (in this section) that can reference a view descriptor based on MDB,
DIF, WKn, or XLS data.

A summary of some of the SQL procedure statements follows:

SELECT retrieves, manipulates, and displays PC files data that is described
by a view descriptor. SELECT can also use data that is described by
a PROC SQL or DATA step view, or data in a SAS data file. A
SELECT statement is usually referred to as a query because it
queries the table for information.

DELETE deletes rows from a SAS data file or from a DBF file that is
described by a view descriptor. When you reference a view
descriptor that is based on a DBF file in the DELETE statement,
the records in the DBF file are marked for deletion.

INSERT inserts rows into a DBF file or a SAS data file.

UPDATE updates the data values in a DBF file or in a SAS data file.

Because the SQL procedure is based on the Structured Query Language, it works
somewhat differently than some SAS procedures. For example, the SQL procedure
executes without a RUN statement when a procedure statement is submitted. The SQL
procedure also displays any output automatically without using the PRINT procedure.

By default, PROC SQL uses the LABEL option to display output. LABEL displays
SAS variable labels, which default to PC files column names. If you prefer to use SAS
variable names in your output, specify NOLABEL in the OPTIONS statement.

For more information about this procedure, its options, and example, see the SQL
procedure chapter in Base SAS Procedures Guide.

Reading Data with the SQL Procedure
You can use the SQL procedure’s SELECT statement to display PC files data that is

described by a view descriptor or by another SAS data set. In the following example,
the query uses the VLib.Product view descriptor to retrieve a subset of the data in the
SpecProd.dif file.

The asterisk (*) in the SELECT statement indicates that all the columns in
VLib.Product are retrieved. The WHERE clause retrieves a subset of the rows. The
ORDER BY clause causes the data to be presented in ascending order according to the
table’s FiberName column.

proc access dmbs=dif;
create adlib.product.access;
/* create access descriptor */
path="c:\sasdemo\specprod.dif";
diflabel;
assign=yes;
rename productid prodid;

228 Updating Data with the SQL Procedure � Chapter 21

format productid 4.
weight e16.9
fibersize e20.13
width e16.9;

list all;

create vlib.product.view;
/* create view descriptor */
select all;
list view;

run;

options nodate linesize=120;
title ’DIF File Data Retrieved with a SELECT

Statement’;

proc sql;
select *
from vlib.product
where cost is not null
order by fibernam;

quit;

The following output displays the query’s results. Notice that the SQL procedure
displays the DIF file’s column names, not the SAS variable names.

Output 21.9 PC Files Data Retrieved with a PROC SQL Query

DIF File Data Retrieved with a SELECT Statement

PRODUCTID WEIGHT FIBERNAME FIBERSIZE COST PERUNIT WIDTH

--

1279 1.278899910E-01 asbestos 6.3476000000000E-10 1289.64 m 2.227550050E+02

2567 1.258500220E-01 fiberglass 5.1880000000000E-11 560.33 m 1.205000000E+02

8934 1.429999950E-03 gold 2.3800000000000E-12 100580.33 cm 2.255999760E+01

Updating Data with the SQL Procedure

You can use the SQL procedure’s UPDATE statement to update the data in a DBF
file, as illustrated by the following example. Because you are referencing a view
descriptor, you use the SAS variable names in the UPDATE statement. However, the
SQL procedure displays the DBF column names.

proc sql;
update vlib.empeeoc

set salary=26678.24,
gender=’M’,
birthdat=’28AUG1959’d

where empid=123456;

options linesize=120;
title ’Updated Data in EMPLOYEES Table’;
select empid, hiredate, salary, dept, jobcode,

Accessing PC Files with Descriptors � Inserting Data with the SQL Procedure 229

gender, birthdat, lastname
from vlib.empeeoc
where empid=123456;

quit;

The following output displays the updated row of data retrieved from the view
descriptor VLib.EmpEEoc.

Output 21.10 DBF File Data Updated with the UPDATE Statement

Updated Data in EMPLOYEES Table

EMPID HIREDATE SALARY DEPT JOBCODE GENDER BIRTHDATE LASTNAME

--

123456 04APR1989 $26,678.24 ACC043 1204 M 28AUG1959 VARGAS

Deleting Data with the SQL Procedure
You can use the SQL procedure’s DELETE statement to delete rows from a DBF file.

In the following example, the row that contains the value 346,917 in the EmpID column
is deleted from the Employee.dbf.

proc sql;
delete from vlib.empeeoc
where empid=346917;

quit;

The deleted observation is marked with an asterisk (*) in the DELETE_FLG field. This
is the only indicator you have that a record in a DBF field has been marked for
deletion. If you have a number of rows to delete, you could use a macro variable EmpID
instead of the individual EmpID values. Doing so would enable you to change the
values more easily.

%let empid=346917;

proc sql;
delete from vlib.empeeoc
where empid=&empid;

quit;

CAUTION:
Use a WHERE clause in the DELETE statement. If you omit the WHERE clause from the
DELETE statement, you delete all the data in the SAS data file or DBF file. �

Inserting Data with the SQL Procedure
You can use the SQL procedure’s INSERT statement to add rows to a DBF file. In

the following example, the row that contains the value 346,917 in the EmpID column is
inserted back into the Employee.dbf file.

proc sql;
insert into vlib.allemp
values(’’,346917,’02MAR1987’d,46000.33,’SHP013’,204,

’F’,’15MAR1950’d,’SHIEKELESLAM’,’SHALA’,

230 Updating PC Files Data with the MODIFY Statement � Chapter 21

’Y.’,’8745’);
quit;

A message is written to the SAS log to indicate that the row has been inserted, as
shown in the following output:

Output 21.11 Message Displayed in the SAS Log When a Row Is Inserted

6698
6699
6700
6701
6702
6703 proc sql;
6704 insert into vlib.allemp
6705 values(’’,346917,’02MAR1987’d,46000.33,
6706 ’SHP013’,204,’F’,’15MAR1950’d,
6707 ’SHIEKELESLAM’,’SHALA’,’Y.’,
6708 ’8745’);

NOTE: 1 row was inserted into VLIB.ALLEMP.

6709 quit;

Updating PC Files Data with the MODIFY Statement
The MODIFY statement extends the capabilities of the DATA step by enabling you to

modify DBF file data that is accessed by a view descriptor or a SAS data file without
creating an additional copy of the data. To use the MODIFY statement with a view
descriptor, you must have update privileges on the view’s underlying DBF file.

You can specify either a view descriptor or a SAS data file as the master data set in
the MODIFY statement. In the following example, the master data set is the view
descriptor VLib.Master, which describes data in the Orders.dbf file. You also create a
transaction data file, DLib.Trans, that you use to update the master data set (and
therefore, the Orders.dbf table). The SAS variable names, formats, and informats of the
transaction data file must correspond to those described by the view descriptor
VLib.Master.

Using the VLib.Master view descriptor, the MODIFY statement updates the
Orders.dbf table with data from the DLib.Trans data file. SAS reads one observation (or
row) of the Orders.dbf table for each iteration of the DATA step, and performs any
operations that the code specifies. In this case, the IF-THEN statements specify
whether the information for an order is to be updated, added, or deleted.

proc access dmbs=dbf;
/* create access descriptor */
create adlib.orders.access;

path="c:\sasdemo\orders.dbf";
assign=yes;
rename dateorderd = dateord;

processdby = procesby;
format dateorderd date9.

shipped date9.

Accessing PC Files with Descriptors � Updating PC Files Data with the MODIFY Statement 231

ordernum 5.0
length 4.0
stocknum 4.0
takenby 6.0
processdby 6.0
fabcharges 12.2;

/* create vlib.master view */
create vlib.master.view;
select all;

run;

data dlib.trans;
ordernum=12102;
/*Obs. 1 specifies Update for ORDERNUM=12102*/

shipped=’05DEC1998’d;
type=’U’;
output;

ordernum=12160;
/*Obs. 2 specifies Update for ORDERNUM=12160*/

shipped=.;
takenby=456910;
type=’U’;
output;

ordernum=13000;
/*Obs. 3 specifies Add for new ORDERNUM=13000*/

stocknum=9870;
length=650;
fabcharg=.;
shipto=’19876078’;
dateord=’18JAN1999’d;
shipped=’29JAN1999’d;
takenby=321783;
procesby=120591;
specinst=’Customer agrees to certain

limitations.’;
type=’A’;
output;

ordernum=12465;
/*Obs. 4 specifies Delete for
ORDERNUM=12465*/
type=’D’;
output;

run;

data vlib.master;
/* MODIFY statement example */
modify vlib.master dlib.trans;
by ordernum;
select (_iorc_);

when (%sysrc(_dsenmr)) do;

232 Updating PC Files Data with the MODIFY Statement � Chapter 21

/* No match in MASTER - Add */
if type=’A’

then output vlib.master;
error = 0;

end;
when (%sysrc(_sok)) do;

/* Match located - Update or Delete */
if type=’U’

then replace vlib.master;
else if type=’D’

then remove vlib.master;
end;
otherwise do;

/* Traps unexpected outcomes */
put ’Unexpected ERROR condition:

IORC = ’ _iorc_ ;
put _all_;

/* This dumps all vars in the PDV */
error = 0;

end;
end;

run;

options linesize=120;
/* prints the example’s output */

proc print data=vlib.master;
where ordernum in(12102 12160 13000 12465);
title ’DBF File Data Updated with the MODIFY

Statement’;
run;

The DATA step uses the SYSRC macro to check the value of the _IORC_ automatic
variable. It also prevents an error message from being generated when no match is
found in the VLib.Master file for an observation that is being added. It prevents the
error message by resetting the _ERROR_ automatic variable to 0. The PRINT
procedure specifies a WHERE statement so that it displays only the observations that
are included in the transaction data set. The observation with OrderNum 12465 is
deleted by the MODIFY statement, so it does not appear in the results. The results of
this example are shown in the following output.

Accessing PC Files with Descriptors � Updating a SAS Data File with PC Files Data 233

Output 21.12 Revising PC Files Data with a MODIFY Statement

DBF File Data Updated with the MODIFY Statement

OBS DELETE_F ORDERNUM STOCKNUM LENGTH FABCHARG SHIPTO DATEORD SHIPPED TAKENBY PROCESBY

22 12102 8934 110 11063836.00 18543489 15NOV1998 05DEC1998 456910 .

23 12160 3478 1000 . 29834248 19NOV1998 . 456910 .

26 * 12465 3478 1000 . 29834248 23DEC1998 . 234967 .

39 13000 9870 650 . 19876078 18JAN1999 29JAN1999 321783 120591

OBS SPECINST

22

23 Customer agrees to pay in full.

26

39 Customer agrees to certain limitations.

In this example, any column value that you specify in the transaction data set carries
over to any subsequent observations if the values for the subsequent observations are
missing. For example, the first observation sets the value of Shipped to 05DEC1998.
The second observation sets the value to missing. If the value of Shipped was not set to
missing in the second observation, the value 05DEC1998 would be incorrectly supplied.
Therefore, you might want to create your transaction data set in a particular order to
minimize having to reset variables.

There are some differences in the way you use a MODIFY statement to update a SAS
data file and to update DBF file data through a view descriptor. When you use a view
descriptor as the master data set in a MODIFY statement, the following conditions
apply:

� You cannot use the POINT= option because observation numbers are not available
in a DBF file.

� The NOBS= option displays the largest positive integer value available on the host
operating system.

� Each PC files statement that is issued, whether an INSERT, DELETE, or
UPDATE, is a separate transaction and is saved in the DBF file. You cannot undo
(or reverse) these changes without re-editing.

For more information about the MODIFY statement, see SAS Language Reference:
Dictionary.

Updating a SAS Data File with PC Files Data
You can update a SAS data file with PC file data that is described by a view

descriptor just as you can update a SAS data file with data from another SAS data file.
Suppose you have a SAS data set, DLib.Birthday, that contains employee ID

numbers, last names, and birthdays. (See Appendix 1, “Sample Data,” on page 243 for a
description of DLib.Birthday.) You want to update this data set with data described by
VLib.EmpBday, a view descriptor that is based on the Employee.dbf file. To perform
this update, enter the following SAS statements:

options linesize=80;

proc access dbms=dbf;
create adlib.employ.access;
/* create access descriptor */

234 Updating a SAS Data File with PC Files Data � Chapter 21

path="c:\sasdemo\employee.dbf";
assign=yes;
format empid 6.

salary dollar12.2
jobcode 5.
hiredate date9.
birthdate date9.;

list all;

create vlib.empbday.view;
/* create view descriptor */
select empid birthdate lastname

firstname phone;
run;

proc sort data=dlib.birthday;
by lastname;

run;

proc print data=dlib.birthday;
/* examples */
format birthdat date9.;
title ’DLIB.BIRTHDAY Data File’;

run;

proc print data=vlib.empbday;
format birthdat date9.;
title ’Data Described by VLIB.EMPBDAY’;

run;

proc sort data=vlib.empbday out=work.empbirth;
by lastname;

run;

data dlib.newbday;
update dlib.birthday work.empbirth;
by lastname;

run;

proc print;
format birthdat date9.;
title ’DLIB.NEWBDAY Data File’;

run;

In this example, a PROC SORT statement with the OUT= option extracts DBF file
data, places it in the SAS data file Work.EmpBirth, and sorts the data by the LastName
variable. (When you use a DATA step, PC files data must be extracted before you can
sort it.) When the UPDATE statement references the SAS data file Work.EmpBirth and
you use a BY statement in the DATA step, the BY statement causes the interface view
engine to generate an ORDER BY clause for the variable LastName. Thus, the ORDER
BY clause causes the DBF data to be presented to SAS in sorted order for use in
updating the DLib.NewBday data file. However, the SAS data file DLib.Birthday must
be sorted before the update because the UPDATE statement expects both the original
file and the transaction file to be sorted by the same BY variable.

The following outputs show the results of the PRINT procedures.

Accessing PC Files with Descriptors � Updating a SAS Data File with PC Files Data 235

Output 21.13 Data File to Be Updated, DLib.Birthday

DLIB.BIRTHDAY Data File

OBS EMPID BIRTHDAT LASTNAME

1 254196 06APR1949 CHANG
2 459288 05JAN1934 JOHNSON
3 127815 25DEC1943 WOLOSCHUK

Output 21.14 DBF File Data Described by the View Descriptor VLib.EmpBday

Data Described by VLIB.EMPBDAY

OBS EMPID BIRTHDAT LASTNAME FIRSTNAM PHONE

1 119012 05JAN1946 WOLF-PROVENZA G. 3467
2 120591 12FEB1946 HAMMERSTEIN S. 3287
3 123456 28AUG1959 VARGAS CHRIS
4 127845 25DEC1943 MEDER VLADIMIR 6231
5 129540 31JUL1960 CHOULAI CLARA 3921
6 135673 21MAR1961 HEMESLY STEPHANIE 6329
7 212916 29MAY1928 WACHBERGER MARIE-LOUISE 8562
8 216382 24JUL1963 PURINTON PRUDENCE 3852
9 234967 21DEC1967 SMITH GILBERT 7274

10 237642 13MAR1954 BATTERSBY R. 8342
11 239185 28AUG1959 DOS REMEDIOS LEONARD 4892
12 254896 06APR1949 TAYLOR-HUNYADI ITO 0231
13 321783 03JUN1935 GONZALES GUILLERMO 3642
14 328140 02JUN1951 MEDINA-SIDONIA MARGARET 5901
15 346917 15MAR1950 SHIEKELESLAM SHALA 8745
16 356134 25OCT1960 DUNNETT CHRISTINE 4213
17 423286 31OCT1964 MIFUNE YUKIO 3278
18 456910 24SEP1953 ARDIS RICHARD 4351
19 456921 12MAY1962 KRAUSE KARL-HEINZ 7452
20 457232 15OCT1963 LOVELL WILLIAM 6321
21 459287 05JAN1934 RODRIGUES JUAN 5879
22 677890 24APR1965 NISHIMATSU-LYNCH CAROL 6245
23 346917 15MAR1950 SHIEKELESLAM SHALA

236 Appending Data with the APPEND Procedure � Chapter 21

Output 21.15 Data in the Updated Data File DLib.NewBday

DLIB.NEWBDAY Data File

OBS EMPID BIRTHDAT LASTNAME FIRSTNAM PHONE

1 456910 24SEP1953 ARDIS RICHARD 4351
2 237642 13MAR1954 BATTERSBY R. 8342
3 254196 06APR1949 CHANG
4 129540 31JUL1960 CHOULAI CLARA 3921
5 239185 28AUG1959 DOS REMEDIOS LEONARD 4892
6 356134 25OCT1960 DUNNETT CHRISTINE 4213
7 321783 03JUN1935 GONZALES GUILLERMO 3642
8 120591 12FEB1946 HAMMERSTEIN S. 3287
9 135673 21MAR1961 HEMESLY STEPHANIE 6329
10 459288 05JAN1934 JOHNSON
11 456921 12MAY1962 KRAUSE KARL-HEINZ 7452
12 457232 15OCT1963 LOVELL WILLIAM 6321
13 127845 25DEC1943 MEDER VLADIMIR 6231
14 328140 02JUN1951 MEDINA-SIDONIA MARGARET 5901
15 423286 31OCT1964 MIFUNE YUKIO 3278
16 677890 24APR1965 NISHIMATSU-LYNCH CAROL 6245
17 216382 24JUL1963 PURINTON PRUDENCE 3852
18 459287 05JAN1934 RODRIGUES JUAN 5879
19 346917 15MAR1950 SHIEKELESLAM SHALA 8745
20 234967 21DEC1967 SMITH GILBERT 7274
21 254896 06APR1949 TAYLOR-HUNYADI ITO 0231
22 123456 28AUG1959 VARGAS CHRIS
23 212916 29MAY1928 WACHBERGER MARIE-LOUISE 8562
24 119012 05JAN1946 WOLF-PROVENZA G. 3467
25 127815 25DEC1943 WOLOSCHUK

Appending Data with the APPEND Procedure
You can append data from any data set to a SAS data file or view descriptor.

Specifically, you can append PC files data that is described by one view descriptor to
another, or you can append a SAS data file. Because the SAS/ACCESS interface to
MDB, DIF, WKn, and XLS files is read-only, you cannot append data to those files. You
can however, append data from them to a DBF file or to a SAS data file.

The following example uses the APPEND procedure’s FORCE option to append a
SAS data file with extra variables to the data file referenced by the view descriptor
VLib.SqlEmps. You must have DBF insert privileges in order to add rows to the
Employees.dbf file.

You can append data to a table that is referenced by a view descriptor even if the
view descriptor contains a subset of columns and a subset of rows. If a PC files column
is defined as NOT NULL, some restrictions apply when appending data. For more
information, see the APPEND procedure in Base SAS Procedures Guide.

The FORCE option forces PROC APPEND to concatenate two data sets even though
they might have some different variables or variable attributes. The SAS data file,
DLib.TempEmps, has Dept, FamilyID, and Gender variables that have not been
selected in the view descriptor VLib.SqlEmps. The extra variables are dropped from
DLib.TempEmps when it and the BASE= data set, VLib.SqlEmps, are concatenated. A
message is displayed in the SAS log indicating that the variables are dropped.

proc access dbms=dbf;
/* create access descriptor */
create adlib.employ.access;

Accessing PC Files with Descriptors � Appending Data with the APPEND Procedure 237

path=’c:\sasdemo\employee.dbf’;
assign=no;
drop salary;
list all;

create vlib.sqlemps.view;
/* create view descriptor */
select empid hiredate lastname

firstname middlename;
format empid 6.0

hiredate date9.;
run;

proc print data=vlib.sqlemps;
/* examples */
title ’Data Described by VLIB.SQLEMPS’;

run;

proc print data=dlib.tempemps;
title ’Data in DLIB.TEMPEMPS Data File’;

run;

The view descriptor VLib.SqlEmps is displayed in the following output, and the SAS
data file DLib.Temps is displayed in Output 21.17.

Output 21.16 Data Described by VLib.SqlEmps

Data Described by VLIB.SQLEMPS

OBS EMPID HIREDATE LASTNAME FIRSTNAM MIDDLENA

1 119012 01JUL1968 WOLF-PROVENZA G. ANDREA
2 120591 05DEC1980 HAMMERSTEIN S. RACHAEL
3 123456 04APR1989 VARGAS CHRIS J.
4 127845 16JAN1967 MEDER VLADIMIR JORAN
5 129540 01AUG1982 CHOULAI CLARA JANE
6 135673 15JUL1984 HEMESLY STEPHANIE J.
7 212916 15FEB1951 WACHBERGER MARIE-LOUISE TERESA
8 216382 15JUN1985 PURINTON PRUDENCE VALENTINE
9 234967 19DEC1988 SMITH GILBERT IRVINE
10 237642 01NOV1976 BATTERSBY R. STEPHEN
11 239185 07MAY1981 DOS REMEDIOS LEONARD WESLEY
12 254896 04APR1985 TAYLOR-HUNYADI ITO MISHIMA
13 321783 10SEP1967 GONZALES GUILLERMO RICARDO
14 328140 10JAN1975 MEDINA-SIDONIA MARGARET ROSE
15 346917 02MAR1987 SHIEKELESLAM SHALA Y.
16 356134 14JUN1985 DUNNETT CHRISTINE MARIE
17 423286 19DEC1988 MIFUNE YUKIO TOSHIRO
18 456910 14JUN1978 ARDIS RICHARD BINGHAM
19 456921 19AUG1987 KRAUSE KARL-HEINZ G.
20 457232 15JUL1985 LOVELL WILLIAM SINCLAIR
21 459287 02NOV1964 RODRIGUES JUAN M.
22 677890 12DEC1988 NISHIMATSU-LYNCH CAROL ANNE
23 346917 02MAR1987 SHIEKELESLAM SHALA Y.

238 Appending Data with the APPEND Procedure � Chapter 21

Output 21.17 Data in DLib.TempEmps

Data in DLIB.TEMPEMPS Data File

OBS EMPID HIREDATE DEPT GENDER LASTNAME FIRSTNAM MIDDLENA FAMILYID

1 765111 04MAY1998 CSR011 M NISHIMATSU-LYNCH RICHARD ITO 677890
2 765112 04MAY1998 CSR010 M SMITH ROBERT MICHAEL 234967
3 219776 15APR1998 ACC024 F PASTORELLI ZORA .
4 245233 10APR1998 ACC013 ALI SADIQ H. .
5 245234 10APR1998 ACC024 F MEHAILESCU NADIA P. .
6 326721 01MAY1998 SHP002 M CALHOUN WILLIS BEAUREGARD .

The APPEND procedure also accepts a WHERE= data set option or a SAS WHERE
statement to retrieve a subset of the observations. In this example, a subset of the
observations from DLib.TempEmps is added to VLib.SqlEmps by using a SAS WHERE
statement; the WHERE statement applies only to the DATA= data set.

proc append base=vlib.sqlemps
data=dlib.tempemps force;

where hiredate >= ’01JAN1998’d;
run;

proc print data=vlib.sqlemps;
title ’Subset of SAS Data Appended

to a View Descriptor’;
run;

The following output shows VLib.SqlEmps with three rows from DLib.TempEmps
appended to it.

Accessing PC Files with Descriptors � Appending Data with the APPEND Procedure 239

Output 21.18 Subset of Data Appended with the FORCE Option

Subset of SAS Data Appended to a View Descriptor

OBS EMPID HIREDATE LASTNAME FIRSTNAM MIDDLENA

1 119012 01JUL1968 WOLF-PROVENZA G. ANDREA
2 120591 05DEC1980 HAMMERSTEIN S. RACHAEL
3 123456 04APR1989 VARGAS CHRIS J.
4 127845 16JAN1967 MEDER VLADIMIR JORAN
5 129540 01AUG1982 CHOULAI CLARA JANE
6 135673 15JUL1984 HEMESLY STEPHANIE J.
7 212916 15FEB1951 WACHBERGER MARIE-LOUISE TERESA
8 216382 15JUN1985 PURINTON PRUDENCE VALENTINE
9 234967 19DEC1988 SMITH GILBERT IRVINE
10 237642 01NOV1976 BATTERSBY R. STEPHEN
11 239185 07MAY1981 DOS REMEDIOS LEONARD WESLEY
12 254896 04APR1985 TAYLOR-HUNYADI ITO MISHIMA
13 321783 10SEP1967 GONZALES GUILLERMO RICARDO
14 328140 10JAN1975 MEDINA-SIDONIA MARGARET ROSE
15 346917 02MAR1987 SHIEKELESLAM SHALA Y.
16 356134 14JUN1985 DUNNETT CHRISTINE MARIE
17 423286 19DEC1988 MIFUNE YUKIO TOSHIRO
18 456910 14JUN1978 ARDIS RICHARD BINGHAM
19 456921 19AUG1987 KRAUSE KARL-HEINZ G.
20 457232 15JUL1985 LOVELL WILLIAM SINCLAIR
21 459287 02NOV1964 RODRIGUES JUAN M.
22 677890 12DEC1988 NISHIMATSU-LYNCH CAROL ANNE
23 346917 02MAR1987 SHIEKELESLAM SHALA Y.
24 765111 04MAY1994 NISHIMATSU-LYNCH RICHARD ITO
25 765112 04MAY1998 SMITH ROBERT MICHAEL
26 219776 15APR1998 PASTORELLI ZORA
27 245233 10APR1998 ALI SADIQ H.
28 245234 10APR1998 MEHAILESCU NADIA P.
29 326721 01MAY1998 CALHOUN WILLIS BEAUREGARD

240 Appending Data with the APPEND Procedure � Chapter 21

See the following output for a copy of the SAS log screen and the messages about the
FORCE option.

Output 21.19 SAS Log with Messages about the FORCE Option

10504
10505
10506
10507
10508
10509 proc append base=vlib.sqlemps
10510 data=dlib.tempemps force;
10511 where hiredate <= ’30APR1998’d;
10512 run;

NOTE: Appending DLIB.TEMPEMPS to VLIB.SQLEMPS.
WARNING: Variable DEPT was not found on BASE
file.
WARNING: Variable GENDER was not found on BASE
file.
WARNING: Variable FAMILYID was not found on
BASE file.
NOTE: FORCE is specified, so dropping/
truncating will occur.
NOTE: 3 observations added.
NOTE: The data set VLIB.SQLEMPS has .
observations and 5 variables.

Because the BASE= data set is a view descriptor in this example, PROC APPEND
generates a SQL INSERT statement for the rows to be appended to the DBF file.

The number of observations in the Employees.dbf file is not displayed in the SAS log
because when the view descriptor is opened by the DBF engine, the number of rows in
the underlying file is not known.

For more information about the APPEND procedure, see Base SAS Procedures Guide.

241

P A R T5

Appendixes

Appendix 1.Sample Data 243

Appendix 2.Recommended Reading 257

242

243

A P P E N D I X

1
Sample Data

Introduction to Sample Data 243
Sample PC Files 243

Customers Data 243

Employees Data 246

Invoice Data 247

Orders Data 248
SpecProd Data 250

SAS Data Files 251

DLib.Birthday SAS Data File 251

DLib.OutOfStk SAS Data File 252

DLib.TempEmps SAS Data File 253

DLib.RateOfex SAS Data File 254

Introduction to Sample Data
This section provides information about the PC files and SAS data files that are used

in the examples in this document. In addition, it lists the SAS statements used to
create the SAS data files and the data in those files. If you want to run the examples in
this document, access your online help system or contact your SAS Software
Representative for information about how to access the sample library files.

Sample PC Files
The following sections provide the data in the PC files that are used in the examples

in this document.

Customers Data
The data in the Customers file is shown in the following table.

244 Customers Data � Appendix 1

Table A1.1 Customer Data

CUSTOMER STATE ZIP CODE COUNTRY PHONE NAME

14324742 CA 95123 USA 408629-0589 SANTA CLARA VALLEY
TECHNOLOGY SPECIALISTS

14569877 NC 27514 USA 919/
489-6792

PRECISION PRODUCTS

14898029 MD 20850 USA 301/
760-2541

UNIVERSITY BIOMEDICAL
MATERIALS

15432147 MI 49001 USA 616/
582-3906

GREAT LAKES LABORATORY
EQUIPMENT MANUFACTURERS

18543489 TX 78701 USA 512/
478-0788

LONE STAR STATE RESEARCH
SUPPLIERS

19783482 VA 22090 USA 703/
714-2900

TWENTY-FIRST CENTURY
MATERIALS

19876078 CA 93274 USA 209/
686-3953

SAN JOAQUIN SCIENTIFIC AND
INDUSTRIAL SUPPLY, INC.

26422096 75014 France 4268-54-72 SOCIETE DE RECHERCHES
POUR LA CHIRURGIE
ORTHOPEDIQUE

26984578 5110 Austria 43-57-04 INSTITUT FUER
TEXTIL-FORSCHUNG

27654351 5010 Belgium 02/215-37-32 INSTITUT DE RECHERCHE
SCIENTIFIQUE MEDICALE

28710427 3607 Netherlands (021)570517 ANTONIE VAN LEEUWENHOEK
VERENIGING VOOR
MICROBIOLOGIE

29834248 —- Britain (0552)715311 BRITISH MEDICAL RESEARCH
AND SURGICAL SUPPLY

31548901 —- Canada 406/
422-3413

NATIONAL COUNCIL FOR
MATERIALS RESEARCH

38763919 1405 Argentina 244-6324 INSTITUTO DE BIOLOGIA Y
MEDICINA NUCLEAR

39045213 01051 Brazil 012/
302-1021

LABORATORIO DE PESQUISAS
VETERINARIAS DESIDERIO
FINAMOR

43290587 —- Japan (02)933-3212 HASSEI SAIBO GAKKAI

43459747 3181 Australia 03/734-5111 RESEARCH OUTFITTERS

46543295 —- Japan (03)022-2332 WESTERN TECHNOLOGICAL
SUPPLY

Sample Data � Customers Data 245

46783280 2374 Singapore 3762855 NGEE TECHNOLOGICAL
INSTITUTE

48345514 —- United Arab
Emirates

213445 GULF SCIENTIFIC SUPPLIES

CUSTOMER CONTACT ADDRESS CITY FIRSTORDER

14324742 A. BAUM 5089 CALERO
AVENUE

SAN JOSE 05FEB1970

14569877 CHARLES BARON 198 FAYETTEVILLE
ROAD

MEMPHIS 15AUG1988

14898029 S. TURNER 1598 PICCARD
DRIVE

ROCKVILLE 12NOV1981

15432147 D.W. KADARAUCH 103 HARRIET
STREET

KALAMAZOO 28APR1991

18543489 A. SILVERIA 5609 RIO GRANDE AUSTIN 10SEP1984

19783482 M.R. HEFFERNAN 4613 MICHAEL
FARADAY DRIVE

RESTON 18JUL1973

19876078 J.A. WHITTEN 1095 HIGHWAY 99
SOUTH

TULARE 11MAY1984

26422096 Y. CHAVANON 40 RUE PERIGNON LA ROCHELLE 14JUN1988

26984578 GUNTHER
SPIELMANN

MECHITARISTENGASSE
5

VIENNA 25MAY1992

27654351 I. CLEMENS 103 RUE D’EGMONT BRUSSELS 14OCT1991

28710427 M.C.
BORGSTEEDE

BIRMOERSTRAAT 34 THE HAGUE 10OCT1990

29834248 A.D.M. BRYCESON 44 PRINCESS GATE,
HYDE PARK

LONDON, SW7
1PU

29JAN1991

31548901 W.E. MACDONALD 5063 RICHMOND
MALL

VANCOUVER,
V5T 1L2

19MAR1989

38763919 JORGE
RUNNAZZO

SALGUERO 2345 BUENOS
AIRES

10DEC1989

39045213 ELISABETE REGIS
GUILLAUMON

RUA DONA
ANTONIA DE
QUEIROS 381

SAO PAULO 18AUG1987

43290587 Y. FUKUDA 3-2-7 ETCHUJMA,
KOTO-KU

TOKYO 101 08FEB1979

43459747 R.G. HUGHES 191 LOWER PLENTY
ROAD

PRAHRAN,
VICTORIA

28JUL1977

46543295 4-3-8 ETCHUJMA,
KOTO-KU

TOKYO 102 19APR1989

246 Employees Data � Appendix 1

46783280 LING TAO SOON 356 CLEMENTI
ROAD

SINGAPORE 27SEP1984

48345514 J.Q. RIFAII POB 8032 RAS AL
KHAIMAH

10SEP1991

Employees Data

The data in the Employees file is shown in the following table.

Table A1.2 Employee Data

EMPID HIREDATE SALARY DEPT JOBCODE SEX

119012 01JUL1973 42340.58 CSR010 602 F

120591 05DEC1985 31000.55 SHP002 602 F

127845 16JAN1972 75320.34 ACC024 204 M

129540 01AUG1987 56123.34 SHP002 204 F

135673 15JUL1989 46322.58 ACC013 602 F

212916 15FEB1958 52345.58 CSR010 602 F

216382 15JUN1990 34004.65 SHP013 602 F

234967 19DEC1993 17000.00 CSR004 602 M

237642 01NOV1981 43200.34 SHP013 602 M

239185 07MAY1986 57920.66 ACC024 602 M

254896 04APR1990 35000.74 CSR011 204 M

321783 10SEP1972 48931.58 CSR011 602 M

328140 10JAN1980 75000.34 ACC043 1204 F

346917 02MAR1992 46000.33 SHP013 204 F

356134 14JUN1990 62450.75 ACC013 204 F

423286 19DEC1993 32870.66 ACC024 602 M

456910 14JUN1983 45000.58 CSR010 602 M

456921 19AUG1992 33210.04 SHP002 602 M

457232 15JUL1990 55000.66 ACC013 602 M

459287 02NOV1969 50000.00 SHP024 204 M

677890 12DEC1993 37610.00 CSR010 204 F

123456 04APR1994 —— ACC043 1204 —-

Employee Data

EMPID BIRTHDATE LASTNAME FIRSTNAME MIDDLENAME PHONE

119012 05JAN1951 WOLF-
PROVENZA

G. ANDREA 3467

120591 12FEB1951 HAMMERSTEIN S. RACHAEL 3287

Sample Data � Invoice Data 247

EMPID BIRTHDATE LASTNAME FIRSTNAME MIDDLENAME PHONE

127845 25DEC1948 MEDER VLADIMIR JORAN 6231

129540 31JUL1965 CHOULAI CLARA JANE 3921

135673 21MAR1966 HEMESLY STEPHANIE J. 6329

212916 29MAY1935 WACHBERGER MARIE-
LOUISE

TERESA 8562

216382 24JUL1968 PURINTON PRUDENCE VALENTINE 3852

234967 21DEC1972 SMITH GILBERT IRVINE 7274

237642 13MAR1959 BATTERSBY R. STEPHEN 8342

239185 28AUG1964 DOS
REMEDIOS

LEONARD WESLEY 4892

254896 06APR1954 TAYLOR-
HUNYADI

ITO MISHIMA 1231

321783 03JUN1940 GONZALES GUILLERMO RICARDO 3642

328140 02JUN1956 MEDINA-
SIDONIA

MARGARET ROSE 5901

346917 15MAR1955 SHIEKELESLAM SHALA Y. 8745

356134 25OCT1965 DUNNETT CHRISTINE MARIE 4213

423286 31OCT1969 MIFUNE YUKIO TOSHIRO 3278

456910 24SEP1958 ARDIS RICHARD BINGHAM 4351

456921 12MAY1967 KRAUSE KARL-HEINZ G. 7452

457232 15OCT1968 LOVELL WILLIAM SINCLAIR 6321

459287 05JAN1939 RODRIGUES JUAN M. 5879

677890 24APR1970 NISHIMATSU-
LYNCH

CAROL ANNE 6245

123456 ——– VARGAS CHRIS J. —-

Invoice Data
The data in the Invoice file is shown in the following table.

Table A1.3 Invoice Data

INVOICENUMBILLEDTO AMTBILLED COUNTRY AMOUNTINUS BILLEDBY BILLEDON PAIDON

11270 39045213 1340738760.90Brazil 2256870.00 239185 05OCT1998 18OCT1998

11271 18543489 11063836.00 USA 11063836.00 457232 05OCT1998 11OCT1998

11273 19783482 252148.50 USA 252148.50 239185 06OCT1998 11NOV1998

11276 14324742 1934460.00 USA 1934460.00 135673 06OCT1998 20OCT1998

11278 14898029 1400825.00 USA 1400825.00 239185 06OCT1998 19OCT1998

11280 39045213 1340738760.90Brazil 2256870.00 423286 07OCT1998 20OCT1998

11282 19783482 252148.50 USA 252148.50 457232 07OCT1998 25OCT1998

248 Orders Data � Appendix 1

INVOICENUMBILLEDTO AMTBILLED COUNTRY AMOUNTINUS BILLEDBY BILLEDON PAIDON

11285 38763919 34891210.20 Argentina 2256870.00 239185 10OCT1998 30NOV1998

11286 43459747 12679156.00 Australia 11063836.00 423286 10OCT1998 ——–

11287 15432147 252148.50 USA 252148.50 457232 11OCT1998 04NOV1998

12051 39045213 1340738760.90Brazil 2256870.00 457232 02NOV1998 ——-

12102 18543489 11063836.00 USA 11063836.00 239185 17NOV1998 ——-

12263 19783482 252148.50 USA 252148.50 423286 05DEC1998 ——-

12468 14898029 1400825.00 USA 1400825.00 135673 24DEC1998 02JAN1999

12471 39045213 1340738760.90Brazil 2256870.00 457232 27DEC1998 ——-

12476 38763919 34891210.20 Argentina 2256870.00 135673 24DEC1998 ——-

12478 15432147 252148.50 USA 252148.50 423286 24DEC1998 02JAN1999

Orders Data
The data in the Orders file is shown in the following table.
The data in the SpecInstr column is shown truncated in some cases. The full text is

Customer agrees to accept any liabilities
that may arise from the use of this product.
If the customer is sued, the customer agrees
not to countersue us.

Table A1.4 Orders Data

ORDERNUM STOCKNUM LENGTH FABCHARGES SHIPTO DATEORDERED

11269 9870 690 - - –19876078 03OCT1998 - - –

11270 1279 1750 2256870 39045213 03OCT1998

11271 8934 110 11063836.00 18543489 03OCT1998

11272 3478 1000 —- 29834248 03OCT1998

11273 2567 450 252148.50 19783482 04OCT1998

11274 4789 1000 —- 15432147 04OCT1998

11275 3478 1000 —- 29834248 04OCT1998

11276 1279 1500 1934460.00 14324742 04OCT1998

11277 8934 100 10058033.00 31548901 05OCT1998

11278 2567 2500 1400825.00 14898029 05OCT1998

11279 9870 650 —- 48345514 05OCT1998

11280 1279 1750 2256870.00 39045213 06OCT1998

11281 8934 110 11063836.00 18543489 06OCT1998

11282 2567 450 252148.50 19783482 06OCT1998

11283 9870 690 —- 18543489 07OCT1998

11284 3478 1000 —- 24589689 07OCT1998

11285 1279 1750 256870.00 38763919 07OCT1998

Sample Data � Orders Data 249

ORDERNUM STOCKNUM LENGTH FABCHARGES SHIPTO DATEORDERED

11286 8934 110 11063836.00 43459747 07OCT1998

11287 2567 450 252148.50 15432147 07OCT1998

11290 9870 690 —- 14324742 10OCT1998

11969 9870 690 —- 19876078 25OCT1998

12051 1279 1750 2256870.00 39045213

12102 8934 110 11063836.00 18543489 15NOV1998

12160 3478 1000 —- 29834248 19NOV1998

12263 2567 450 252148.50 19783482 01DEC1998

12464 4789

1000

—- 15432147 23DEC1998 212916

12465 3478 1000 —- 29834248 23DEC1998

12466 1279 1500 1934460.00 14324742 23DEC1998

12467 8934 100 10058033.00 31548901 23DEC1998

12468

2567

2500 1400825.00 14898029 23DEC1998 03JAN1999

12470 9870 650 —- 48345514 23DEC1998

12471 1279 1750 2256870.00 39045213 23DEC1998

12472 8934 110 11063836.00 18543489 23DEC1998

12473 2567 450 252148.50 19783482 23DEC1998

12474 9870 690 —- 18543489 23DEC1998

12475 3478 1000 —- 24589689 23DEC1998

12476 1279 1750 2256870.00 38763919 23DEC1998

12477 8934 110 11063836.00 43459747 23DEC1998

12478 2567 450 252148.50 15432147 23DEC1998

12479 9870 690 —- 14324742 23DEC1998

ORDERNUM SHIPPED TAKENBY PROCESSDBY SPECINSTR

11269 212916

11270 19Oct1998 321783 237642 Customer agrees to a

11271 13OCT1998 456910 456921 —-

11272 —- 234967 —- —-

11273 14NOV1998 119012 216382 —-

11274 —- 212916 —- —-

11275 —- 234967 —- —-

11276 21OCT1998 321783 120591 Customer agrees to a

11277 —- 456910 —- —-

11278 20OCT1998 119012 456921 —-

11279 —- 212916 —- —-

250 SpecProd Data � Appendix 1

ORDERNUM SHIPPED TAKENBY PROCESSDBY SPECINSTR

11280 21OCT1998 321783 237642 Customer agrees to a

11281 27OCT1998 456910 216382 —-

11282 26OCT1998 119012 456921 —-

11283 —- 212916 —- —-

11284 —- 234967 —- —-

11285 02DEC1998 321783 120591 Customer agrees to a

11286 03NOV1998 456910 237642 —-

11287 07NOV1998 119012 216382 —-

11290 —- 212916 —- Customer agrees to
certain limitations.

11969 —- 212916 —- —-

12051 31OCT1998 —- 321783 —-

12102 —- 456910 —- —-

12160 —- 234967 —- Customer agrees to
pay in full.

12263 —- 119012 —- —-

12464 —- —-

12465 —- 234967 —- —-

12466 —- 321783 —- Customer agrees to a

12467 —- 456910 —- —-

12468

2567

119012 120591 —-

12470 —- 212916 —- —-

12471 —- 321783 —- Customer agrees to a

12472 03JAN1999 456910 237642 —-

12473 —- 119012 —- —-

12474 —- 212916 —- —-

12475 —- 234967 —- —-

12476 03JAN1999 321783 456921 Customer agrees to a

12477 —- 456910 —- —-

12478 03JAN1999 119012 216382 —-

12479 —- 212916 —- —-

SpecProd Data
The data in the SpecProd file is shown in the following table.

Sample Data � DLib.Birthday SAS Data File 251

Table A1.5 Special Products Data

PRODUCED WEIGHT FIBER NAME FIBER SIZE

2356 +8.967499730 E− 01 nylon +6.780000000 E-13

4789 +7.967500090 E− 01 dacron +5.780000000 E-13

9870 +6.967499850 E− 01 polyester +4.760000000 E-13

3478 +9.949499960 E− 01 olefin +9.880000000 E-13

9678 +6.942499880 E− 01 cotton +3.420000000 E-13

3456 +1.675000040 E− 02 silk +2.678000000 E-11

8934 +1.429999950 E− 03 gold +2.380000000 E-12

2567 +1.258500220 E− 01 fiberglass +5.188000000 E-11

1279 +1.278899910 E− 01 asbestos +6.347600000 E-10

PRODUCED COST PER UNIT WIDTH

2356 —- —- —-

4789 —- —- —-

9870 —- —- —-

3478 —- sq yd —-

9678 —- —- —-

3456 —- —- —-

8934 100580.33 cm +2.255999760

2567 560.33 m +1.205000000

1279 1289.64 m +2.227550050

SAS Data Files

This section describes the SAS data files used in the examples in this PC files
documentation. It gives the SAS statements that created each data file and shows the
output from the PRINT procedure.

DLib.Birthday SAS Data File
The SAS data file DLib.Birthday is created with the following SAS statements:

libname dlib ’Your-SAS-data-library’;
data dlib.birthday;

input empid birthdat date7.
lastname $18.
firstnam $15.
phone $4.;

datalines;
459287 05JAN39 RODRIGUES JUAN 5879

252 DLib.OutOfStk SAS Data File � Appendix 1

127845 25DEC48 MEDER VLADIMIR 6231
254896 06APR54 TAYLOR-HUNYADI ITO 0231
;
run;

This PRINT procedure lists the data shown in the following output:

proc print data=dlib.birthday;
format birthdat date9.;
title ’DLIB.BIRTHDAY Data File’;

run;

Output A1.1 Data in SAS Data File DLib.Birthday

DLIB.BIRTHDAY Data File

OBS EMPID BIRTHDAT LASTNAME FIRSTNAM PHONE

1 459287 05JAN1939 RODRIGUES JUAN 5879
2 127815 25DEC1948 MEDER VLADIMIR 6231
3 254196 06APR1954 TAYLOR-HUNYADI ITO 0231

DLib.OutOfStk SAS Data File
The SAS data file DLib.OutOfStk is created with the following SAS statements:

libname dlib ’Your-SAS-data-library’;
data dlib.outofstk;

input fibernam $8. fibernum;
datalines;

olefin 3478
gold 8934
dacron 4789
;

This PRINT procedure lists the data shown in the following output:

proc print data=dlib.outofstk;
title ’SAS Data File DLIB.OUTOFSTK’;

run;

Output A1.2 Data in SAS Data File DLib.OutOfStk

SAS Data File DLIB.OUTOFSTK

OBS FIBERNAM FIBERNUM

1 olefin 3478
2 gold 8934
3 dacron 4789

Sample Data � DLib.TempEmps SAS Data File 253

DLib.TempEmps SAS Data File
The SAS data file DLib.TempEmps is created with the following PROC SQL

statements:

libname dlib ’Your-SAS-data-library’;
proc sql;
create table dlib.tempemps

(label=’Student interns’,
empid num, hiredate date format=date9.,
dept char(6), gender char(1),
lastname char(18), firstnam char(15),
middlena char(15), familyid num);

insert into dlib.tempemps
values(765111,’04MAY1998’d,’CSR011’,’M’,

’NISHIMATSU-LYNCH’,’RICHARD’,
’ITO’,677890)

values(765112,’04MAY1998’d,’CSR010’,’M’,
’SMITH’,’ROBERT’,’MICHAEL’,234967)

values(219776,’15APR98’d,’ACC024’,’F’,
’PASTORELLI’,’ZORA’,null,.)

values(245233,’10APR1998’d,’ACC013’,’
’,’ALI’,’SADIQ’,’H.’,.)

values(245234,’10APR1998’d,’ACC024’,’F’,
’MEHAILESCU’,’NADIA’,’P.’,.)

values(326721,’01MAY1998’d,’SHP002’,’M’,
’CALHOUN’,’WILLIS’,’BEAUREGARD’,.);

quit;

This PRINT procedure lists the data shown in the following output:

options ls=120;
proc print data=dlib.tempemps;

title ’DLIB.TEMPEMPS Data File’;
run;

Output A1.3 Data in DLib.TempEmps

DLIB.TEMPEMPS Data File

OBS EMPID HIREDATE DEPT GENDER LASTNAME FIRSTNAM MIDDLENA FAMILYID

1 765111 04MAY1998 CSR011 M NISHIMATSU-LYNCH RICHARD ITO 677890

2 765112 04MAY1998 CSR010 M SMITH ROBERT MICHAEL 234967

3 219776 15APR1998 ACC024 F PASTORELLI ZORA .

4 245233 10APR1998 ACC013 ALI SADIQ H. .

5 245234 10APR1998 ACC024 F MEHAILESCU NADIA P. .

6 326721 01MAY1998 SHP002 M CALHOUN WILLIS BEAUREGARD .

254 DLib.RateOfex SAS Data File � Appendix 1

DLib.RateOfex SAS Data File
The SAS data file DLib.RateOfex is created with the following SAS statements:

libname dlib ’Your-SAS-data-library’;
data dlib.rateofex;

input updated date9.
currency & $15.
fgnindol : 8.
dolinfgn : 11.
country & $20.;

format updated date9.
currency $15.
fgnindol 8.6
dolinfgn 11.6
country $20.;

datalines;
28JUL1998 peso 1.01 0.99 Argentina
28JUL1998 dollar 0.7457 1.3410 Australia
...more data lines...
;

This PRINT procedure lists the data shown in the following output:

proc print data=dlib.rateofex;
title ’Data in SAS Data File DLIB.RATEOFEX’;

run;

Sample Data � DLib.RateOfex SAS Data File 255

Output A1.4 Data in SAS Data File DLib.RateOfex

Data in SAS Data File DLIB.RATEOFEX

OBS UPDATED CURRENCY FGNINDOL DOLINFGN COUNTRY

1 28JUL1998 peso 1.010000 0.990000 Argentina
2 28JUL1998 dollar 0.745700 1.341000 Australia
3 28JUL1998 schilling 0.095940 10.420000 Austria
4 28JUL1998 dinar 2.652200 0.377100 Bahrain
5 28JUL1998 franc 0.032780 30.510000 Belgium
6 28JUL1998 cruzeiro 0.000260 3872.000000 Brazil
7 28JUL1998 pound 1.919500 0.521000 Britain
8 28JUL1998 dollar 0.841400 1.188500 Canada
9 28JUL1998 peso 0.002835 352.750000 Chile

10 28JUL1998 renminbi 0.182815 5.470000 China
11 28JUL1998 peso 0.001722 580.640000 Columbia
12 28JUL1998 krone 0.175400 5.700500 Denmark
13 28JUL1998 sucre 0.000693 1443.000000 Ecuador
14 28JUL1998 markka 0.246490 4.057000 Finland
15 28JUL1998 franc 0.199980 5.000500 France
16 28JUL1998 mark 0.675400 1.480500 Germany
17 28JUL1998 drachma 0.005491 182.100000 Greece
18 28JUL1998 dollar 0.129190 7.740500 Hong Kong
19 28JUL1998 forint 0.013139 76.110000 Hungary
20 28JUL1998 rupee 0.035650 28.050000 India
21 28JUL1998 rupiah 0.000493 2029.510000 Indonesia
22 28JUL1998 punt 1.802600 0.554800 Ireland
23 28JUL1998 shekel 0.406500 2.460000 Israel
24 28JUL1998 lira 0.000892 1120.500000 Italy
25 28JUL1998 yen 0.007843 127.500000 Japan
26 28JUL1998 dinar 1.527700 0.654600 Jordan
27 28JUL1998 dinar 3.420600 0.292400 Kuwait
28 28JUL1998 pound 0.000503 1990.000000 Lebanon
29 28JUL1998 ringgit 0.400000 2.500300 Malaysia
30 28JUL1998 lira 3.344500 0.299000 Malta
31 28JUL1998 peso 0.000321 3114.510000 Mexico
32 28JUL1998 guilder 0.598900 1.669800 Netherlands
33 28JUL1998 dollar 0.546100 1.831200 New Zealand
34 28JUL1998 krone 0.171800 5.819500 Norway
35 28JUL1998 rupee 0.040000 25.000000 Pakistan
36 28JUL1998 new sol 0.839000 1.190000 Peru
37 28JUL1998 peso 0.040900 24.450000 Philippines
38 28JUL1998 zloty 0.000077 12959.01000 Poland
39 28JUL1998 escudo 0.007949 125.800000 Portugal
40 28JUL1998 riyal 0.267380 3.740000 Saudi Arabia
41 28JUL1998 dollar 0.619000 1.615500 Singapore
42 28JUL1998 rand 0.362300 2.759800 South Africa
43 28JUL1998 won 0.001270 787.400000 South Korea
44 28JUL1998 peseta 0.010612 94.230000 Spain
45 28JUL1998 krona 0.186000 5.376000 Sweden
46 28JUL1998 franc 0.763400 1.310000 Switzerland
47 28JUL1998 dollar 0.039714 25.180000 Taiwan
48 28JUL1998 baht 0.039450 25.350000 Thailand
49 28JUL1998 lira 0.000144 6938.000000 Turkey
50 28JUL1998 dirham 0.272300 3.672500 United Arab
51 28JUL1998 new peso 0.000321 3120.010000 Uruguay
52 28JUL1998 bolivar 0.015130 66.090000 Venezuela

The DLib.RateOfex data is used primarily in the Version 6 compatibility examples.

256

257

A P P E N D I X

2
Recommended Reading

Recommended Reading 257

Recommended Reading

Here is the recommended reading list for this title:
� SAS/ACCESS for Relational Databases: Reference
� SAS Language Reference: Concepts

� SAS Language Reference: Dictionary
� Base SAS Procedures Guide
� SAS Companion that is specific to your operating environment

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

258

259

Glossary

This glossary defines SAS software terms that are used in this document as well as
terms that relate specifically to SAS/ACCESS software.

access descriptor
a SAS/ACCESS file that describes data that is managed by a data management
system. After creating an access descriptor, you can use it as the basis for creating
one or more view descriptors.

browsing data
the process of viewing the contents of a file. Depending on how the file is accessed,
you can view SAS data either one observation (row) at a time or as a group in a
tabular format. You cannot update data that you are browsing.

column
in relational databases, a vertical component of a table. Each column has a unique
name, contains data of a specific type, and has certain attributes. A column is
analogous to a variable in SAS terminology.

column function
an operation that is performed for each value in the column that is named as an
argument of the function. For example, AVG(SALARY) is a column function.

commit
the process that ends a transaction and makes permanent any changes to the
database that the user made during the transaction. When the commit process
occurs, locks on the database are released so that other applications can access the
changed data. The SQL COMMIT statement initiates the commit processs.

data type
an attribute of every column in a table or database. The data type tells the operating
system how much physical storage to set aside for the column and specifies what type
of data the column will contain. It is similar to the type attribute of SAS variables.

data value
in SAS software, a unit of character or numeric information in a SAS data set. A
data value represents one variable in an observation.

database
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes.

260 Glossary

database field
a vertical component of a dBASE .DBF file that contains data of a specific type with
certain attributes. A database field is analogous to a variable in SAS terminology.

database file
a two-dimensional system of representing data in records and fields.

database management system (DBMS)
a software application that enables you to create and manipulate data in the form of
databases. See also relational database management system.

editing data
the process of viewing the contents of a file with the intent and the ability to change
its data. Depending on how the file is accessed, you can view the details either one
observation at a time or in a tabular format.

engine
a component of SAS software that reads from or writes to a file. Each engine enables
SAS to access files that are in a particular format. There are several types of engines.

file
a collection of related records that are treated as a unit. SAS files are processed and
controlled through SAS software and are stored in SAS data libraries.

format
an instruction that SAS uses to display or write each value of a variable (or column).
Some formats are supplied by SAS software. You can create other formats by using
the FORMAT procedure in Base SAS software. In SAS/ACCESS software, the default
formats vary according to the interface product.

index
in SAS software, a component of a SAS data set that enables SAS to access
observations in the SAS data set quickly and efficiently. The purpose of SAS indexes
is to optimize WHERE-clause processing and to facilitate BY-group processing.

informat
a pattern or set of instructions that SAS uses to determine how data values in an
input file should be interpreted. SAS provides a set of standard informats and also
enables you to define your own informats.

interface view engine
a SAS engine that is used by SAS/ACCESS software to retrieve data from files that
have been formatted by another vendor’s software. Each SAS/ACCESS interface has
its own interface view engine, which reads the interface product data and returns the
data in a form that SAS can understand (that is, in a SAS data set). SAS
automatically uses an interface view engine; the engine name is stored in SAS/
ACCESS descriptor files so that you do not need to specify the engine name in a
LIBNAME statement.

libref
a name that is temporarily associated with a SAS data library. The complete name of
a SAS file consists of two words, separated by a period. The libref, which is the first
word, indicates the library. The second word is the name of the specific SAS file. For
example, in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the
file NEWBDAY. You assign a libref with a LIBNAME statement or with an operating
system command.

member
a name that represents a particular data item within a dimension. For example,
September 1996 might be a member of the Time dimension. A member can be either

Glossary 261

unique or non-unique. For example, 1997 and 1998 represent unique members in the
Year level of a Time dimension. January represents non-unique members in the
Month level, because there can be more than one January in the Time dimension if
the Time dimension contains data for more than one year.

member name
a name that is assigned to a SAS file in a SAS library.

member type
a SAS name that identifies the type of information that is stored in a SAS file.
Member types include ACCESS, DATA, CATALOG, ITEMSTOR, MDDB, PROGRAM,
and VIEW.

missing value
in SAS, a term that describes the contents of a variable that contains no data for a
particular row or observation. By default, SAS prints or displays a missing numeric
value as a single period, and it prints or displays a missing character value as a
blank space.

observation
a row in a SAS data set. All of the data values in an observation are associated with
a single entity such as a customer or a state. Each observation contains one data
value for each variable. In a database product table, an observation is analogous to a
row. Unlike rows in a database product table or file, observations in a SAS data file
have an inherent order.

PROC SQL view
a SAS data set (of type VIEW) that is created by the SQL procedure. A PROC SQL
view contains no data. Instead, it stores information that enables it to read data
values from other files, which can include SAS data files, SAS/ACCESS views, DATA
step views, or other PROC SQL views. A PROC SQL view’s output can be either a
subset or a superset of one or more files.

record
a logical unit of information that consists of fields of related data. A collection of
records are stored in a file. A record is analogous to a SAS observation.

relational database management system
a database management system that organizes and accesses data according to
relationships between data items. The main characteristic of a relational database
management system is the two-dimensional table. Examples of relational database
management systems are DB2, INGRES, ORACLE, and SQL/DS.

rollback
in most databases, the process that restores a database to its state when changes
were last committed, voiding any changes. The SQL ROLLBACK statement initiates
the rollback processs.

row
in relational database management systems, the horizontal component of a table. A
row is analogous to a SAS observation.

SAS data file
a type of SAS data set that contains data values as well as descriptor information
that is associated with the data. The descriptor information includes information
such as the data types and lengths of the variables, as well as the name of the engine
that was used to create the data. A PROC SQL table is a SAS data file. SAS data
files are of member type DATA.

262 Glossary

SAS data library
a collection of one or more SAS files that are recognized by SAS and which are
referenced and stored as a unit. Each file is a member of the library.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS data view
a type of SAS data set that retrieves data values from other files. A SAS data view
contains only descriptor information such as the data types and lengths of the
variables (columns), plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors’ file
formats. SAS data views are of member type VIEW.

Structured Query Language (SQL)
a standardized, high-level query language that is used in relational database
management systems to create and manipulate database management system
objects. SAS implements SQL through the SQL procedure.

variable
a column in a SAS data set or in a SAS data view. The data vlues for each variable
describe a single characteristic for all observations. In the ACCESS procedure,
variables are created from the PC files’ columns or fields.

view
a definition of a virtual data set. The definition is named and stored for later use. A
view contains no data but describes or defines data that are stored elsewhere. See
also PROC SQL view, SAS data view, and view descriptor.

view descriptor
a SAS/ACCESS file that defines part or all of the DBMS data that is described by an
access descriptor.

windowing procedure
a SAS procedure that you can use by entering information in one or more windows or
dialog boxes. For example, the FSVIEW procedure is a windowing procedure. Some
procedures, such as ACCESS and DBLOAD, can be used either as windowing
procedures or in batch mode.

Index 263

Index

A
ACCDESC= option

PROC ACCESS statement, PC files 72
ACCDESC= statement

DBLOAD procedure, PC files 93
access descriptors 67, 259

creating 74
DIF files 202
passwords for 68
performance and 70
resetting column settings 83
updating 88
WKn files with 176

ACCESS= option
LIBNAME statement, PC files 12

ACCESS procedure
data conversions, XLS files 156
datetime conversions, XLS files 160
DIFLABEL statement 196
GETNAMES statement 177
QUIT statement 176, 188, 196
RANGE statement 177
SCANTYPE statement 177
SKIPROWS statement 177, 197
WORKSHEET statement 178
XLS files 154

ACCESS procedure, PC files 71
overview 65
statements 66
syntax 71

ACCESS procedure, using
DBF files and 187
DBF files and, data conversions 189
DIF files and 195
DIF files and, data conversions 198
syntax 188, 196
WKn files and 176
WKn files and, data conversions 178

APPEND procedure 236
ASSIGN statement

ACCESS procedure, PC files 73
AUTOCOMMIT= argument

CONNECT statement 39
AUTOCOMMIT= option

CONNECT statement, PC files 132
LIBNAME statement, PC files 12

B
BIRTHDAY data file 251
browsing data, defined 259
buffers

reading rows into 33

C
calculating statistics

FREQ procedure with LIBNAME statement
(example) 208

FREQ procedure with view descriptors (exam-
ple) 215

MEANS procedure with view descriptors (ex-
ample) 216

RANK procedure with view descriptors (exam-
ple) 218

character data
very long character data type 24

charting data
with LIBNAME statement (example) 208
with view descriptors (example) 214

column names
saved as label names 27
variable labels as 23

columns
date format of 34
disallowed characters in 22
NULL values 25
renaming 22

columns in PC files
defined 259

command timeout 18
commands

JET:: commands 47
COMMAND_TIMEOUT= argument

CONNECT statement 40
COMMAND_TIMEOUT= data set option 18
COMMAND_TIMEOUT= option

CONNECT statement, PC files 132
LIBNAME statement, PC files 12

commit operation
defined 259

commit statements
row processing 19

CONNECT statement
arguments 39
database connection arguments 37

Pass-Through Facility, PC files on UNIX 130
Pass-Through Facility for PC files 37

CONNECTION= argument
CONNECT statement 40

CONNECTION= option
CONNECT statement, PC files 132
LIBNAME statement, PC files 12

connection options
LIBNAME statement, PC files on UNIX 111

CONNECTION TO component
Pass-Through Facility, PC files on UNIX 137
Pass-Through Facility for PC files 44

CONNECTION_GROUP= argument
CONNECT statement 40

CONNECTION_GROUP= option
CONNECT statement, PC files 132
LIBNAME statement, PC files 12

CONNECT_STRING= option
LIBNAME statement, PC files on UNIX 111

CONTENTS procedure (example) 212
CREATE statement

ACCESS procedure, PC files 74
CREATE TABLE statement

data source specific syntax 21
cursor type 18
CURSOR_TYPE= argument

CONNECT statement 40
CURSOR_TYPE= data set option 18
CURSOR_TYPE= option

CONNECT statement, PC files 132
LIBNAME statement, PC files 13

CUSTOMERS data 243

D
DATA= argument

PROC DBLOAD statement, PC files 93
data conversions

XLS files 152, 156, 162
data files

defined 261
DLIB.BIRTHDAY file 251
DLIB.OUTOFSTK file 252
DLIB.RATEOFEX file 254
DLIB.TEMPEMPS file 253

data libraries
disassociating librefs from 112
writing attributes to log 10, 113

264 Index

data library
defined 262

DATA= option
DBF procedure 60
DIF procedure 62
DIF procedure, UNIX 144

DATA= options
DBF procedure, UNIX 142

data set options
PC files 17

data sets
appending data to 236
converting dBASE files to 59
converting dBASE II files to 61, 143
converting DIF files to 146
converting to dBASE 5 files 61, 143
converting to DIF files 62, 146
DBF files and 189, 191
defined 262
DIF files and 198
MDB files and 169
transferring to/from other software with DIF

files 145
transferring with DIF files 63
updating with PC Files data 233
WKn files and 178, 181

data source tables
data type for 28

data types
DBF files 192
defined 259
DIF files 202
for data source tables 28
JMP files 148
MDB files 172
overriding 28
WKn files 185
XLS files 167

database connection arguments
CONNECT statement 37

database management system (DBMS) 260
DATASETS procedure (example) 212
date format

of data source columns 34
datetime conversions

XLS files 160, 164
datetime format

conversions with DIF files, DBLOAD proce-
dure 200

conversions with WKn files, ACCESS proce-
dure 179

conversions with WKn files, DBLOAD proce-
dure 182

dBASE 5 files
converting data sets to 61, 143

dBASE DBF files 191, 194
ACCESS procedure with 187
accessing 187
data conversions, ACCESS procedure for 189
data conversions, DBLOAD procedure

for 191
DBLOAD procedure with 189
missing values, handling 193
naming conventions 192

dBASE files
converting to data sets 59

dBASE II files
converting to data sets 61, 143

DBCOMMIT= data set option 19
DBCOMMIT= option

LIBNAME statement, PC files 13
DBCONDITION= data set option 20
DBCREATE_TABLE_OPTS= data set option 21
DBF (dBASE) files 191, 194

ACCESS procedure with 187
accessing 187
data conversions, ACCESS procedure for 189
data conversions, DBLOAD procedure

for 191
DBLOAD procedure with 189
missing values, handling 193
naming conventions 192

DBF fields
converting SAS variables to 60
converting to variables 142
converting variables to 142

DBF files
converting to SAS variables 60
transferring other software files to 61, 143

DBF procedure 59
on UNIX 141

DBFORCE= data set option 21
DBGEN_NAME= argument

CONNECT statement 40
DBGEN_NAME= data set option 22
DBGEN_NAME= option

CONNECT statement 40
CONNECT statement, PC files 133
LIBNAME statement, PC files 13

DBKEY= data set option 23
format of WHERE clause 26

DBKEY= processing
missing values and 32

DBLABEL= data set option 23
DBLOAD procedure

data conversions, XLS files 162
datetime conversions, XLS files 164
DIFLABEL statement 199
FORMAT statement 180, 199
PUTNAMES statement 180
QUIT statement 180, 190, 199
VERSION statement 190
XLS files 160

DBLOAD procedure, PC files 92
naming conventions 92
overview 91
syntax 92

DBLOAD procedure, using
DBF files and 189
DBF files and, data conversions 191
DIF files and 198
Lotus WKn files and 179
syntax 179, 189, 199
WKn files and, data conversions 181

DBMAX_TEXT= argument
CONNECT statement 40

DBMAX_TEXT= data set option 24
DBMAX_TEXT= option

CONNECT statement, PC files 133
LIBNAME statement, PC files 13

DBMS= argument
PROC DBLOAD statement, PC files 93

DBMS (database management system) 260

DBn options
DBF procedure 59
DBF procedure, UNIX 141

DBNULL= data set option 25
DBNULLKEYS= data set option 26
DBNULLKEYS= option

LIBNAME statement, PC files 14
DBPASSWORD= argument

CONNECT statement 37
DBPASSWORD= option

CONNECT statement, PC files 131
LIBNAME statement, PC files 7
LIBNAME statement, PC files on UNIX 112

DBSASLABEL= data set option 27
DBSASLABEL= option

LIBNAME statement, PC files 14
DBSASTYPE= data set option 28
DBSYSFILE= argument

CONNECT statement 37
DBSYSFILE= option

CONNECT statement, PC files 131
LIBNAME statement, PC files 8
LIBNAME statement, PC files on UNIX 112

DBTYPE= data set option 28
DEFER= argument

CONNECT statement 41
DEFER= option

CONNECT statement, PC files 133
LIBNAME statement, PC files 14

DELETE statement
DBLOAD procedure, PC files 94
SQL procedure 229

deleting data with SQL procedure 229
delimited files

exporting 56
descriptor files 67

appending data to (example) 236
creating, examples of 76
passwords for 68
performance and 70

DIF files
converting data sets to 146
converting to data sets 62, 146
missing values and 64
transferring data sets to/from other software

with 145
transferring data sets with 63

DIF (Lotus) files 201, 202
ACCESS procedure with 195
accessing 195
data conversions, ACCESS procedure for 198
DBLOAD procedure with 198
naming conventions 201

DIF= option
DIF procedure 62
DIF procedure, UNIX 144

DIF procedure 62
missing values 145
on UNIX 141, 144

DIF variables
converting to SAS variables 63, 145

DIFLABEL statement
ACCESS procedure 196
DBLOAD procedure 199

DIRECT_SQL= option
LIBNAME statement, PC files 14

Index 265

DISCONNECT statement
Pass-Through Facility, PC files on UNIX 135
Pass-Through Facility for PC files 42

DLIB.BIRTHDAY file 251
DLIB.OUTOFSTK file 252
DLIB.RATEOFEX file 254
DLIB.TEMPEMPS file 253
DMBS= option

PROC ACCESS statement, PC files 72
DNS= option

LIBNAME statement, PC files on UNIX 111
DROP statement

ACCESS procedure, PC files 77

E
EFI (External File Interface) 54, 122
EMPLOYEES data 246
encryption

PC files server 107
environment variables

Lotus WKn files with 182
XLS files 164

ERRLIMIT= data set option 29
ERRLIMIT= statement

DBLOAD procedure, PC files 94
error limit

before rollback 29
Excel

See also XLS files
assigning librefs to workbooks 113
exporting tables to 57
importing workbook files 55
LIBNAME statement, PC files on UNIX 112

EXECUTE statement
Pass-Through Facility, PC files on UNIX 136
Pass-Through Facility for PC files 43

EXPORT procedure
availability of 49
PC files 56
PC files on UNIX 117, 125

exporting
delimited files 56

External File Interface (EFI) 54, 122
extracting data 67

view descriptors for 70

F
FORCE option, APPEND procedure 236
FORMAT statement

ACCESS procedure, PC files 78
DBLOAD procedure 180, 199

FREQ procedure
with LIBNAME statement (example) 208
with view descriptors (example) 215

functions
PC files data with 5, 109

G
GCHART procedure

with LIBNAME statement 208

with view descriptors (example) 214
GETNAMES statement, ACCESS procedure

Lotus WKn files 177
GROUP BY clause, SQL procedure (exam-

ple) 224

H
HEADER= argument

CONNECT statement 38
HEADER= option

LIBNAME statement, PC files 8

I
Import/Export wizard

availability of 49
PC files 50
PC files on UNIX 117, 118

IMPORT procedure
availability of 49
PC files 55
PC files on UNIX 117, 122

importing
JMP files 56
Microsoft Access files 55

index, data set 260
informats, defined 260
INIT= argument

CONNECT statement 38
INIT= option

LIBNAME statement, PC files 8
insert processing

missing values and 32
INSERT statement

SQL procedure 229
INSERTBUFF= data set option 31
INSERTBUFF= option

LIBNAME statement, PC files 15
inserting data

SQL procedure for 229
INSERT_SQL= data set option 30
INVOICE data 247

J
JET:: commands 47
JET:: queries 45
JMP files 147

data types 148
exporting 57
importing 56
missing values 148
naming conventions 147

JMP variables
naming conventions 147

joining data with view descriptors (exam-
ples) 222

joins
performance improvement 23

L
LABEL statement

DBLOAD procedure, PC files 95
LABELS option

DIF procedure 62
DIF procedure, UNIX 144

LIBNAME statement
data conversions for MDB files 169
data conversions for XLS files 152

LIBNAME statement, examples 207
calculating statistics, FREQ procedure 208
charting data, GCHART procedure 208
WHERE statement with 209

LIBNAME statement, PC files 5
assigning librefs 6, 11
connection options 7
functions with PC files data 5
options 11
sorting data 5
syntax 6

LIBNAME statement, PC files on UNIX 110
connection options 111
overview 109
syntax 110

libref
defined 260

librefs
assigning for PC files 6, 11
assigning to Excel workbooks 113
assigning to Microsoft Access databases 113
assigning to Microsoft SQL Server

databases 114
assigning to Oracle databases 115
disassociating 10
disassociating from libraries 112

LIMIT= statement
DBLOAD procedure, PC files 95

LIST statement
ACCESS procedure, PC files 79
DBLOAD procedure, PC files 96

LOAD statement
DBLOAD procedure, PC files 97

log
writing library attributes to 10, 113

Lotus DIF files 201, 202
ACCESS procedure with 195
accessing 195
data conversions, ACCESS procedure for 198
DBLOAD procedure with 198
naming conventions 201

Lotus WKn files 183, 186
ACCESS procedure with 176
accessing 175, 186
creating and loading 186
data conversions, ACCESS procedure for 178
data conversions, DBLOAD procedure

for 181
DBLOAD procedure 179
environment variables, setting 182
naming conventions 184

M
MDB files 172, 173

accessing 169

266 Index

LIBNAME statement data conversions
for 169

naming conventions 172
MEANS procedure with view descriptors (exam-

ple) 216
Microsoft Access

assigning librefs to databases 113
importing files from 55
LIBNAME statement, PC files on UNIX 112

Microsoft Access (MDB) files 172, 173
accessing 169
LIBNAME statement data conversions

for 169
naming conventions 172

Microsoft Excel
See XLS files

Microsoft SQL Server
assigning librefs to databases 114

missing values
DBKEY= processing and 32
DIF file conversions 64
DIF procedure, UNIX 145
insert processing and 32
JMP files 148
update processing and 32

missing values, defined 261
missing values, handling

DBF files 193
MIXED= argument

CONNECT statement 38
MIXED= option

LIBNAME statement, PC files 8
MIXED statement

ACCESS procedure, PC files 80
MODIFY statement, updating PC Files data

with 230

N
naming conventions

DBLOAD procedure, PC files 92
JMP files 147
JMP variables 147

NULL values
in columns 25

NULLCHAR= data set option 32
NULLCHARVAL= data set option 32

O
observations, defined 261
Oracle

assigning librefs to databases 115
ORDERS data 248
oredering PC files data 20
OUT= option

DBF procedure 60
DIF procedure 62
DIF procedure, UNIX 144
PROC ACCESS statement, PC files 72

OUT= options
DBF procedure, UNIX 142

OUTOFSTK data file 252
overriding data types 28

P
Pass-Through Facility, PC files on UNIX 129

return codes 130
special queries 138
syntax 129

Pass-Through Facility for PC files 35
CONNECT statement 37
CONNECTION TO component 44
DISCONNECT statement 42
EXECUTE statement 43
return codes 36
syntax 36

PASSWORD= argument
CONNECT statement 38

PASSWORD= option
CONNECT statement, PC files 131
LIBNAME statement, PC files 8
LIBNAME statement, PC files on UNIX 111

passwords
access descriptors 68
descriptor files 68
view descriptors 68

PATH= argument
CONNECT statement 38

PATH= option
CONNECT statement, PC files 131
LIBNAME statement, PC files 8
LIBNAME statement, PC files on UNIX 111

PATH= statement
ACCESS procedure, PC files 80
DBLOAD procedure, PC files 97

PC files
access methods 3
ACCESS procedure 65
assigning librefs 6, 11
data set options 17
DBLOAD procedure 91
descriptor files 67
functions with PC files data 5, 109
JMP files 147
LIBNAME statement, on UNIX 109, 110
LIBNAME statement for 5
on UNIX 103
Pass-Through Facility on UNIX 129
sorting data 5, 20, 109
special queries 138
subsetting data 20
XLS files 151, 165

PC Files
Microsoft Access (MDB) files 169
Pass-Through Facility 35
sample data 243
SAS Viewer with 225
updating data files with data from 233

PC files server 105
configuring 107
constraints 107
data encryption 107
maximum connections 107
port number 107
service name 107
shared information 108
starting 105

pcffscl.sas file 157
performance

descriptors and 70

joins 23
PORT= option

CONNECT statement, PC files 133
LIBNAME statement, PC files on UNIX 111

PREFIX= option
DIF procedure 63
DIF procedure, UNIX 144

PROC ACCESS statement
for PC files 72

PROC DBLOAD statement
PC files 93

PROMPT= argument
CONNECT statement 38

PROMPT= option
LIBNAME statement, PC files 9

PUTNAMES statement, DBLOAD procedure
Lotus WKn files 180

Q
queries

JET:: queries 45
special PC files queries 138

QUIT statement
ACCESS procedure 176, 188, 196
ACCESS procedure, PC files 81
DBLOAD procedure 180, 190, 199
DBLOAD procedure, PC files 98

R
RANGE statement, ACCESS procedure

Lotus WKn files 177
RANK procedure with view descriptors (exam-

ple) 218
RATEOFEX data file 254
READBUFF= argument

CONNECT statement 41
READBUFF= data set option 33
READBUFF= option

CONNECT statement, PC files 133
LIBNAME statement, PC files 15

reading from PC files
SQL procedure for 226, 227

RENAME statement
ACCESS procedure, PC files 82
DBLOAD procedure, PC files 98

RESET statement
ACCESS procedure, PC files 83
DBLOAD procedure, PC files 99

return codes
Pass-Through Facility, PC files on UNIX 130
Pass-Through Facility for PC files 36

rollback
error limit for 29

rollback, defined 261
row processing

commit statement for 19
rows

insertion method 30
number for single insert 31
number to read into buffer 33

Index 267

S
sample data 4, 243
SAS Viewer on PC Files data 225
SASDATEFMT= data set option 34
SCAN_TEXTSIZE= option

LIBNAME statement, PC files 16
SCAN_TIMETYPE= option

LIBNAME statement, PC files 16
SCANTYPE statement, ACCESS procedure

Lotus WKn files 177
SELECT statement

ACCESS procedure, PC files 84
SQL procedure 227

SERVER= option
CONNECT statement, PC files 134
LIBNAME statement, PC files on UNIX 111

servers
PC files server 105

SKIP= option
DIF procedure 63
DIF procedure, UNIX 144

SKIPROWS statement, ACCESS procedure
DIF files 197
Lotus WKn files 177

sorting
PC files data 109

sorting PC files data 5, 20
MDB (Microsoft Access) files 173
RANK procedure with view descriptors (exam-

ple) 218
SPECPROD data 250
SPOOL= option

LIBNAME statement, PC files 16
SQL procedure

reading and updating data 226
view descriptors with (example) 222

SQL Server
assigning librefs to databases 114

SQLXMSG macro variable 36, 130
SQLXRC macro variable 36, 130
SS_MIXED environment variable

Lotus WKn files with 182, 185
SS_NAMES environment variable

Lotus WKn files with 182
SS_SCAN environment variable

Lotus WKn files with 183
statistics calculations

FREQ procedure with LIBNAME statement
(example) 208

FREQ procedure with view descriptors (exam-
ple) 215

MEANS procedure with view descriptors (ex-
ample) 216

RANK procedure with view descriptors (exam-
ple) 218

STRINGDATES= argument
CONNECT statement 41

STRINGDATES= option
CONNECT statement, PC files 134
LIBNAME statement, PC files 17

SUBSET statement
ACCESS procedure, PC files 85

subsetting PC files data 20

T
TEMPEMPS data file 253
timeout

for commands 18
truncation

forcing 21
TYPE= option

LIBNAME statement, PC files on UNIX 112
TYPE statement

ACCESS procedure, PC files 86

U
UDL= argument

CONNECT statement 39
UDL= option

LIBNAME statement, PC files 9
UNIQUE statement

ACCESS procedure, PC files 86
UNIX

accessing PC data from 105, 112
DBF procedure 141
DIF procedure 141, 144
EXPORT procedure for PC files 125
Import/Export wizard for PC files 117
IMPORT procedure for PC files 122
LIBNAME statement for PC files 109, 110
Pass-Through Facility for PC files 129
PC files on 103

update processing
missing values and 32

UPDATE statement
ACCESS procedure, PC files 87
SQL procedure 228

updating data
missing values, handling 193
MODIFY statement for 230
PC Files data to update data files 233
SQL procedure for 226, 228

USE_DATATYPE= option
LIBNAME statement, PC files 17

USE_DATETYPE= argument
CONNECT statement 41

USER= argument
CONNECT statement 39

USER= option
CONNECT statement, PC files 131
LIBNAME statement, PC files 9
LIBNAME statement, PC files on UNIX 111

V
variables

converting DBF fields to SAS variables 60,
142

converting DIF variables to SAS variables 63,
145

converting SAS variables to DBF fields 60
converting to DBF fields 142
DBF files and 189, 191
defined 262
DIF files and 198
JMP variables 147

MDB files and 169
WKn files and 178, 181

variables, defined 262
VERSION= argument

CONNECT statement 39
VERSION= option

CONNECT statement, PC files 131
LIBNAME statement, PC files 9
LIBNAME statement, PC files on UNIX 112

VERSION statement, DBLOAD procedure
DBF files 190

very long character data type 24
view descriptors 67

creating 75
defined 262
extracting data with 70
passwords for 68
performance and 70
resetting column settings 84
updating 88

view descriptors, examples 211
appending data to descriptors 236
calculating statements, MEANS proce-

dure 216
calculating statements, RANK procedure 218
calculating statistics, FREQ procedure 215
charting data, GCHART procedure 214
reviewing variables with DATASETS proce-

dure 212
SQL procedure 222
WHERE statement with 220

VIEWDESC= option
PROC ACCESS statement, PC files 72

VIEWTABLE Window, PC Files data in 225

W
WHERE clause

format of, with DBKEY= data set option 26
WHERE statement

DBLOAD procedure, PC files 100
LIBNAME statement with (example) 209
view descriptors with (example) 220

windows procedure, defined 262
WKn (Lotus) files 183, 186

ACCESS procedure with 176
accessing 175, 186
creating and loading 186
data conversions, ACCESS procedure for 178
data conversions, DBLOAD procedure

for 181
DBLOAD procedure 179
environment variables, setting 182
naming conventions 184

WORKSHEET statement, ACCESS procedure
Lotus WKn files 178

X
XLS files 151, 165

ACCESS procedure 154
ACCESS procedure data conversions 156
ACCESS procedure datetime conversions 160
accessing data 168

268 Index

creating data 168
data types 167
DBLOAD procedure 160
DBLOAD procedure data conversions 162

DBLOAD procedure datetime conver-
sions 164

environment variables 164

LIBNAME statement data conversions 152
loading data 168
naming conventions 167
SAS/ACCESS and 168

Your Turn

If you have comments or suggestions about SAS/ACCESS® 9.1 Interface to PC Files:
Reference, please send them to us on a photocopy of this page, or send us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

.

.

.

	Table of Contents
	Contents

	What’s New
	Overview
	Windows Details
	UNIX Details

	Accessing PC Files
	Overview of the SAS/ACCESS Interface to PC Files
	Methods for Accessing PC Files Data
	Using This Document
	Sample Data in This Document

	The LIBNAME Statement for PC Files on Windows
	Overview of the LIBNAME Statement for PC Files on Windows
	Sorting PC Files Data
	Using SAS Functions with PC Files Data

	Assigning a Libref Interactively
	LIBNAME Options for PC Files on Windows
	Data Set Options for PC Files on Windows

	The Pass-Through Facility for PC Files on Windows
	Overview of the Pass-Through Facility for PC Files
	Syntax for the Pass-Through Facility for PC Files
	Return Codes
	Example

	Special Jet Queries
	Examples

	Special Jet Commands
	Examples

	The Import/Export Wizard and Procedures
	Import/Export Overview for PC Files
	Import/Export Wizard
	IMPORT and EXPORT Procedures
	IMPORT Procedure
	EXPORT Procedure

	The DBF and DIF Procedures
	Introduction to the DBF and DIF Procedures

	The ACCESS Procedure for PC Files
	Overview of the ACCESS Procedure for PC Files
	Using ACCESS Procedure Statements

	SAS/ACCESS Descriptors for PC Files
	Access Descriptors
	View Descriptors

	SAS Passwords for Descriptors
	Assigning Passwords

	Performance and Efficient View Descriptors for PC Files
	General Guidelines
	Extracting Data Using a View

	ACCESS Procedure Syntax

	The DBLOAD Procedure for PC Files
	Overview of the DBLOAD Procedure for PC Files
	DBLOAD Procedure Naming Conventions
	DBLOAD Procedure Syntax

	Accessing PC Files on UNIX
	Overview of the SAS/ACCESS Interface to PC Files on UNIX
	Introduction to the SAS/ACCESS Interface to PC Files on UNIX

	The PC Files Server
	Overview of the PC Files Server
	Starting the PC Files Server
	Configuring the PC Files Server
	Setting the Service Name or Port Number
	Setting Maximum Connections
	Setting Data Encryption

	Constraints
	Shared Information

	The LIBNAME Statement for PC Files on UNIX
	Overview of the LIBNAME Statement for PC Files on UNIX
	Sorting PC Files Data
	Using SAS Functions with PC Files Data

	The Import/Export Wizard and Procedures on UNIX
	Import/Export Overview for PC Files on UNIX
	Import/Export Wizard on UNIX
	The IMPORT and EXPORT Procedures on UNIX
	IMPORT Procedure
	EXPORT Procedure

	The Pass-Through Facility for PC Files on UNIX
	Overview of the Pass-Through Facility for PC Files on UNIX
	Syntax for the Pass-Through Facility for PC Files
	Return Codes

	Special PC Files Queries

	The DBF and DIF Procedures on UNIX
	Introduction to the DBF and DIF Procedures

	JMP Essentials for PC Files
	Overview of JMP Essentials
	JMP Files
	JMP File Naming Conventions
	JMP Variable Naming Conventions

	JMP Data Types
	JMP Missing Values

	File Format Specific Reference
	Microsoft Excel XLS Files
	How to Access XLS Files from SAS
	LIBNAME Statement Data Conversions for XLS Files
	ACCESS Procedure: XLS Specifics
	ACCESS Procedure Syntax for XLS Files
	ACCESS Procedure Data Conversions for XLS Files

	DBLOAD Procedure: XLS Specifics
	DBLOAD Procedure Syntax for XLS Files
	DBLOAD Procedure Data Conversions for XLS Files

	Setting Environment Variables for XLS Files
	XLS Essentials
	XLS Files
	XLS Data Types

	How SAS/ACCESS Works with XLS Files
	Accessing the Data
	Creating and Loading the Data

	Microsoft Access MDB Files
	How to Access MDB Files from SAS
	LIBNAME Statement Data Conversions for MDB Files
	MDB Essentials
	MDB Files
	MDB Data Types

	How SAS/ACCESS Works with MDB Files

	Lotus WKn Files
	How To Access WKn Files from SAS
	ACCESS Procedure: WKn Specifics
	ACCESS Procedure Syntax for WKn Files
	ACCESS Procedure Data Conversions for WKn Files

	DBLOAD Procedure: WKn Specifics
	DBLOAD Procedure Syntax for WKn Files
	DBLOAD Procedure Data Conversions for WKn Files

	Setting Environment Variables for WKn Files
	WKn Essentials
	WKn Files
	WKn Data Types

	How SAS/ACCESS Works with WKn Files
	Accessing the Data
	Creating and Loading the Data

	dBase DBF Files
	How To Access DBF Files from SAS
	ACCESS Procedure: DBF Specifics (Windows)
	ACCESS Procedure Syntax for DBF Files
	ACCESS Procedure Data Conversions for DBF Files

	DBLOAD Procedure: DBF Specifics (Windows)
	DBLOAD Procedure Syntax for DBF Files
	DBLOAD Procedure Data Conversions for DBF Files

	DBF Essentials
	DBF Files
	DBF File Data Types
	Handling Missing Values in DBF Files

	How SAS/ACCESS Works with DBF Files

	Lotus DIF Files
	How To Access DIF Files from SAS
	ACCESS Procedure: DIF Specifics
	ACCESS Procedure Syntax for DIF Files
	ACCESS Procedure Data Conversions for DIF Files

	DBLOAD Procedure: DIF Specifics
	DBLOAD Procedure Syntax for DIF Files
	Datetime Conversions in the DBLOAD Procedure

	DIF Essentials
	DIF Files
	DIF File Data Types

	How SAS/ACCESS Works With DIF Files

	Sample Code
	Accessing PC Files Data with the LIBNAME Statement
	Introduction to Accessing PC Files Data with the LIBNAME Statement
	Running the LIBNAME Examples

	Charting PC Files Data with the LIBNAME Statement
	The GCHART Procedure with a SAS/ACCESS LIBNAME Statement

	Calculating Statistics with the PC Files LIBNAME Statement
	The FREQ Procedure with a SAS/ACCESS LIBNAME Statement

	Selecting and Combining PC Files Data with the LIBNAME Statement
	The WHERE Statement with a SAS/ACCESS LIBNAME Statement

	Accessing PC Files with Descriptors
	Introduction to Accessing PC Files with Descriptors
	Running the Descriptor Examples

	Reviewing Variables
	Charting PC Files Data with Descriptors
	Calculating Statistics with PC Files Descriptors
	Using the FREQ Procedure
	Using the MEANS Procedure
	Using the RANK Procedure

	Selecting and Combining PC Files Data with Descriptors
	Using the WHERE Statement
	Using the SQL Procedure

	Using the SAS Viewer on PC Files Data
	Reading and Updating PC Files Data with the SQL Procedure
	Reading Data with the SQL Procedure
	Updating Data with the SQL Procedure
	Deleting Data with the SQL Procedure
	Inserting Data with the SQL Procedure

	Updating PC Files Data with the MODIFY Statement
	Updating a SAS Data File with PC Files Data
	Appending Data with the APPEND Procedure

	Appendixes
	Sample Data
	Introduction to Sample Data
	Sample PC Files
	Customers Data
	Employees Data
	Invoice Data
	Orders Data
	SpecProd Data

	SAS Data Files
	DLib.Birthday SAS Data File
	DLib.OutOfStk SAS Data File
	DLib.TempEmps SAS Data File
	DLib.RateOfex SAS Data File

	Recommended Reading
	Recommended Reading

	Glossary
	Index

