
SAS/ACCESS®

9.1
Supplement for ODBC
SAS/ACCESS for Relational Databases

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS/ACCESS ® 9.1 Supplement for ODBC (SAS/ACCESS for Relational Databases).
Cary, NC: SAS Institute Inc.

SAS/ACCESS® 9.1 Supplement for ODBC (SAS/ACCESS for Relational Databases)
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
ISBN 1-59047-249-7
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

Chapter 1 � SAS/ACCESS for ODBC 1
Introduction to the SAS/ACCESS Interface to ODBC 1

LIBNAME Statement Specifics for ODBC 3

Data Set Options for ODBC 7

Pass-Through Facility Specifics for ODBC 8

Autopartitioning Scheme for ODBC 15

DBLOAD Procedure Specifics for ODBC 19

Passing SAS Functions to ODBC 21

Passing Joins to ODBC 22

Temporary Table Support for ODBC 22

ODBC Bulk Loading 24

Locking in the ODBC Interface 24

Naming Conventions for ODBC 25

Data Types for ODBC 26

Appendix 1 � Recommended Reading 29
Recommended Reading 29

Glossary 31

Index 37

iv

1

C H A P T E R

1
SAS/ACCESS for ODBC

Introduction to the SAS/ACCESS Interface to ODBC 1
Overview of ODBC 2

LIBNAME Statement Specifics for ODBC 3

Arguments 3

ODBC LIBNAME Statement Examples 7

Data Set Options for ODBC 7
Pass-Through Facility Specifics for ODBC 8

CONNECT Statement Examples 9

Pass-Through Views 10

IBM AS/400 Specifics 10

Microsoft SQL Server Specifics 12

Connection To Component Examples 12
Special ODBC Queries 13

Autopartitioning Scheme for ODBC 15

Overview 15

Autopartitioning Restrictions 15

Nullable Columns 15
Using WHERE Clauses 16

Using DBSLICEPARM= 16

Using DBSLICE= 16

Configuring SQL Server Partitioned Views for Use with DBSLICE= 17

DBLOAD Procedure Specifics for ODBC 19
Examples 20

Passing SAS Functions to ODBC 21

Passing Joins to ODBC 22

Temporary Table Support for ODBC 22

Establishing a Temporary Table 22

Terminating a Temporary Table 22
Examples 22

ODBC Bulk Loading 24

Locking in the ODBC Interface 24

Naming Conventions for ODBC 25

Data Types for ODBC 26
ODBC Null Values 27

Introduction to the SAS/ACCESS Interface to ODBC
This document includes details only about the SAS/ACCESS Interface to ODBC. It

should be used as a supplement to the generic SAS/ACCESS documentation,
SAS/ACCESS for Relational Databases: Reference.

2 Overview of ODBC � Chapter 1

Overview of ODBC
Open database connectivity (ODBC) standards provide a common interface to a

variety of databases, including AS/400, dBASE, Microsoft Access, Oracle, Paradox, and
Microsoft SQL Server databases. Specifically, ODBC standards define application
programming interfaces (APIs) that enable an application to access a database if both
the application and the database adhere to the specification. ODBC also provides a
mechanism to enable dynamic selection of a database that an application is accessing,
so end users have the flexibility of selecting databases other than those that are
specified by the application developer.

The basic components and features of ODBC include the following:
� ODBC functionality is provided by three components: the client interface, the

ODBC driver manager, and the ODBC driver. SAS provides the SAS/ACCESS
interface to ODBC, which is the client interface. For PC platforms, Microsoft
developed the ODBC Administrator, which is used from the Windows Control Panel
to perform software administration and maintenance activities. The ODBC driver
manager also manages the interaction between the client interface and the ODBC
driver. Other software vendors provide the ODBC manager with their ODBC
drivers, which process requests for external data. These drivers also either directly
manipulate and retrieve the data or they pass the request to a native library for
the specific DBMS. The ODBC interface to SAS is illustrated in the figure below.

Figure 1.1 The ODBC Interface to SAS

� The ODBC administrator defines a data source as the data that is used in an
application and the operating system and network that are used to access the
data. You create a data source by using the ODBC administrator in the Windows
Control Panel, selecting an ODBC driver, and providing the information (for
example, data source name, user ID, password, description, server name) required
by the driver to make a connection to the desired data. The driver displays dialog
boxes in which you enter this information. During operation, a client application
usually requests a connection to a named data source, not just to a specific ODBC
driver. In a UNIX environment such as HP-UX, AIX, or Solaris, no ODBC
Administrator exists. During an install, the driver creates a generic .odbc.ini file
that can be edited to create your own data source names.

For more information about customizing your SAS application, refer to your
vendor-specific documentation.

� ODBC uses SQL syntax for queries and statement execution (or for statements
that are executed as commands). However, all databases that support ODBC are

SAS/ACCESS for ODBC � Arguments 3

not necessarily SQL databases. For example, many databases do not have system
tables, and the term table may be used to describe a variety of items, including a
file, a part of a file, a group of files, a typical SQL table, generated data, or any
potential source of data. This distinction is important because although all ODBC
data sources respond to a base set of SQL statements such as SELECT, INSERT,
UPDATE, DELETE, CREATE, and DROP in their simplest forms, some databases
do not support other statements and more complex forms of the SQL statements.

� The ODBC standard allows for various levels of conformance, generally categorized
as low, medium, and high. As mentioned previously, the level of SQL syntax that
is supported varies. There are also many programming interfaces that might not
be supported by some drivers. The SAS/ACCESS interface to ODBC is designed to
work with API calls that conform to the lowest level of ODBC compliance, Level 1.
However, the interface does use some Level 2 API calls if they are available.

It is the responsibility of the SAS programmer or end user to ensure that the
SQL syntax that is used is supported by the particular driver that is being used. If
the ODBC driver supports a higher level of API conformance, some of the
advanced features are made available through the PROC SQL CONNECT
statement and special queries supported by the SAS/ACCESS interface to ODBC.
For more information, see “Special ODBC Queries” on page 13.

� The ODBC manager and drivers return standard operation states and custom text
for any warnings or errors. The state variables and their associated text are
available through the SAS macro variables SYSDBRC and SYSDBMSG.

� There are three types of data source names that can be specified. A user DSN is
specific to an individual user and is available only to the user who creates it. A
system DSN can be used by anyone who has permission to access the data source.
A file DSN can be shared among users even though it is created locally. Since it is
file based, it contains all the information that is required to connect to a data
source.

� In addition to the information provided in this documentation, you need to refer to
the documentation provided with your ODBC driver. Most ODBC drivers supply a
help file that you can access online. In the Windows Control Panel, double click
the ODBC icon to start the ODBC Administrator application. Within the ODBC
Data Source Administrator, double-click the data source name from the User DSN,
System DSN, or File DSN tabbed dialog box. This brings up the ODBC driver
setup dialog box for your specific ODBC driver. Clicking the Help button provides
the information that you need to configure the ODBC data source for your driver.

LIBNAME Statement Specifics for ODBC

This section describes the LIBNAME statement as supported in the SAS/ACCESS
interface to ODBC. For a complete description of this feature, see the LIBNAME
statement section in SAS/ACCESS for Relational Databases: Reference. The
ODBC-specific syntax for the LIBNAME statement is:

LIBNAME libref odbc <connection-options> <LIBNAME-options>;

Arguments
libref

is any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

4 Arguments � Chapter 1

odbc
is the SAS/ACCESS engine name for the interface to ODBC.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. There are multiple ways that you can
connect to ODBC when you use the LIBNAME statement. The methods are
mutually exclusive, so you must use only one of the following for each connection:

� specify USER=, PASSWORD=, and DATASRC=
� specify COMPLETE=
� specify NOPROMPT=
� specify PROMPT=
� specify REQUIRED=.

These connection options are defined as follows:

USER=<’>user-name<’>
enables you to connect to an ODBC database, such as Microsoft SQL Server
or AS/400, with a user ID that is different from the default ID.

USER= is optional. UID= is an alias for this option.

PASSWORD=<’>password<’>
specifies the ODBC password that is associated with your user ID.

PASSWORD= is optional. PWD is an alias for this option.

Note: If you do not wish to enter your ODBC password in clear text on
this statement, see PROC PWENCODE for a method to encode it. �

DATASRC=<’>ODBC-data-source<’>
specifies the ODBC data source to which you want to connect. For PC
platforms, data sources must be configured by using the ODBC icon in the
Windows Control Panel. For UNIX platforms, data sources must be
configured by modifying the .odbc.ini file.

DSN= is an alias for this option that indicates that the connection is
attempted using the ODBC SQLConnect API, which requires a data source
name. Optionally, a user ID and password can be used in conjunction with
DSN=.

If you want to use an ODBC file DSN, then instead of supplying
DATASRC=<’>ODBC-data-source<’>, use the PROMPT= or NOPROMPT=
option followed by "filedsn=(name-of-your-file-dsn);". For example:

libname mydblib odbc noprompt="filedsn=d:\share\msafiledsn.dsn;";

COMPLETE=<’>ODBC-connection-options<’>
specifies connection options for your data source or database. Separate
multiple options with a semicolon. When a successful connection is made, the
complete connection string is returned in the SYSDBMSG macro variable.

If you do not specify enough correct connection options, you are prompted
with a dialog box that displays the values from the COMPLETE= connection
string. You can edit any field before you connect to the data source.

This option is not supported on UNIX platforms. See your ODBC driver
documentation for more details.

NOPROMPT=<’>ODBC-connection-options<’>
specifies connection options for your data source or database. Separate
multiple options with a semicolon.

If you do not specify enough correct connection options, an error is
returned. No dialog box is displayed to help you complete the connection
string.

SAS/ACCESS for ODBC � Arguments 5

PROMPT=<’>ODBC-connection-information<’>
specifies connection options for your data source or database. Separate
multiple options with a semicolon. When a successful connection is made, the
complete connection string is returned in the SYSDBMSG macro variable.

PROMPT= does not immediately attempt to connect to the DBMS. Instead,
it displays a dialog box that contains the values that you entered in the
PROMPT= connection string. You can edit values or enter additional values
in any field before you connect to the data source.

This option is not supported on UNIX platforms.

REQUIRED=<’>ODBC-connection-options<’>
specifies connection options for your data source or database. Separate
multiple options with a semicolon. When a successful connection is made, the
complete connection string is returned in the SYSDBMSG macro variable.

If you do not specify enough correct connection options, a dialog box
prompts you for the connection options. REQUIRED= allows you to modify
only required fields in the dialog box.

This option is not supported on UNIX platforms.

Note: See your ODBC driver documentation for a list of the ODBC connection
options that your ODBC driver supports. �

The following ODBC connection options are not supported on UNIX:

REQUIRED=

BULKCOPY=

PROMPT=

COMPLETE=

LIBNAME-options
define how DBMS objects are processed by SAS. Some LIBNAME options can
enhance performance; others determine locking or naming behavior. The following
table describes the LIBNAME options that are supported for ODBC, and presents
default values where applicable. See the section about the SAS/ACCESS
LIBNAME statement in SAS/ACCESS for Relational Databases: Reference for
detailed information about these options.

Table 1.1 SAS/ACCESS LIBNAME Options for ODBC

Option Default Value

ACCESS= none

AUTOCOMMIT= data source specific

BL_LOG= none

BL_OPTIONS= none

BULKLOAD= NO

CONNECTION= data source specific

CONNECTION_GROUP= none

CURSOR_TYPE= DYNAMIC

DBCOMMIT= 1000 (inserting) or 0 (updating)

DBCONINIT= none

DBCONTERM= none

6 Arguments � Chapter 1

Option Default Value

DB_CREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX= YES

DBLIBINIT= none

DBLIBTERM= none

DBMAX_TEXT= 1024

DBNULLKEYS= YES

DBPROMPT= NO

DBSLICEPARM= THREADED_APPS,2 or 3

DEFER= NO

DELETE_MULT_ROWS= NO

DIRECT_EXE= none

DIRECT_SQL= YES

IGNORE_
READ_ONLY_COLUMNS=

NO

INSERT_SQL= data source specific

INSERTBUFF= 1

KEYSET_SIZE= 0

MULTI_DATASRC_OPT= NONE

PRESERVE_COL_NAMES= see “Naming Conventions for ODBC” on page 25

PRESERVE_TAB_NAMES = see “Naming Conventions for ODBC” on page 25

QUALIFIER= none

QUERY_TIMEOUT= 0

QUOTE_CHAR= none

READBUFF= 0

READ_ISOLATION_LEVEL= RC (see “Locking in the ODBC Interface” on page 24)

READ_LOCK_TYPE= ROW

REREAD_EXPOSURE= NO

SCHEMA= none

SPOOL= YES

SQL_FUNCTIONS= NONE

STRINGDATES= NO

TRACE= NO

TRACEFILE= none

UPDATE_ISOLATION_LEVEL= RC (see “Locking in the ODBC Interface” on page 24)

UPDATE_LOCK_TYPE= ROW

UPDATE_MULT_ ROWS= NO

SAS/ACCESS for ODBC � Data Set Options for ODBC 7

Option Default Value

UPDATE_SQL= driver specific

USE_ODBC_CL = NO

UTILCONN_TRANSIENT= YES

ODBC LIBNAME Statement Examples
In the following example, USER=, PASSWORD=, and DATASRC= are connection

options.

libname mydblib odbc user=testuser password=testpass datasrc=mydatasource;

In the following example, the libref MYLIB uses the ODBC engine to connect to an
AS/400 database. The connection options are USER=, PASSWORD=, and DATASRC=.

libname mydblib odbc datasrc=as400 user=testuser
password=testpass;

proc print data=mydblib.customers;
where state=’CA’;

run;

In the following example, the libref MYDBLIB uses the ODBC engine to connect to a
Microsoft SQL Server database. The connection option is NOPROMPT=.

libname mydblib odbc
noprompt="uid=testuser;pwd=testpass;dsn=sqlservr;"
stringdates=yes;

proc print data=mydblib.customers;
where state=’CA’;

run;

Data Set Options for ODBC
The following table describes the data set options that are supported for ODBC, and

provides default values where applicable. See the section about data set options in
SAS/ACCESS for Relational Databases: Reference for detailed information about these
options.

Table 1.2 SAS/ACCESS Data Set Options

Option Default Value

CURSOR_TYPE= LIBNAME option setting

DBCOMMIT= LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= LIBNAME option setting

DBFORCE= NO

DBGEN_NAME= DBMS

8 Pass-Through Facility Specifics for ODBC � Chapter 1

Option Default Value

DBINDEX= LIBNAME option setting

DBKEY= none

DBLABEL= NO

DBMASTER= none

DBMAX_TEXT= 1024

DBNULL= YES

DBNULLKEYS= LIBNAME option setting

DBPROMPT= LIBNAME option setting

DBSASTYPE= see “Data Types for ODBC” on page 26

DBSLICE= none

DBSLICEPARM= THREADED_APPS,2 or 3

DBTYPE= see “Data Types for ODBC” on page 26

ERRLIMIT= 1

IGNORE_ READ_ONLY_COLUMNS= NO

INSERT_SQL= LIBNAME option setting

INSERTBUFF= LIBNAME option setting

KEYSET_SIZE= LIBNAME option setting

NULLCHAR= SAS

NULLCHARVAL= a blank character

PRESERVE_COL_NAMES= LIBNAME option setting

QUALIFIER= LIBNAME option setting

QUERY_TIMEOUT= LIBNAME option setting

READBUFF= LIBNAME option setting

READ_ISOLATION_LEVEL= LIBNAME option setting

READ_LOCK_TYPE= LIBNAME option setting

SASDATEFMT= none

SCHEMA= LIBNAME option setting

UPDATE_ISOLATION_LEVEL= LIBNAME option setting

UPDATE_LOCK_TYPE= LIBNAME option setting

UPDATE_SQL= LIBNAME option setting

Pass-Through Facility Specifics for ODBC
See the section about the Pass-Through Facility in SAS/ACCESS for Relational

Databases: Reference for general information about this feature.
The Pass-Through Facility specifics for the ODBC interface are as follows:

� The dbms-name is ODBC.
� The CONNECT statement is required.

SAS/ACCESS for ODBC � CONNECT Statement Examples 9

� PROC SQL supports multiple connections to ODBC. If you use multiple
simultaneous connections, you must use the alias argument to identify the
different connections. If you do not specify an alias, the default alias, odbc, is
used. The functionality of multiple connections to the same ODBC data source
might be limited by the particular data source’s driver.

� The CONNECT statement database-connection-arguments are identical to its
LIBNAME connection-options Not all of these arguments are supported by all
ODBC drivers. Refer to your driver documentation for more information.

� On some DBMSs, the DBMS-SQL-query argument can be a DBMS-specific SQL
EXECUTE statement that executes a DBMS stored procedure. However, if the
stored procedure contains more than one query, only the first query is processed.

� The following LIBNAME options are available with the CONNECT statement:
AUTOCOMMIT=

CURSOR_TYPE=
KEYSET_SIZE=
QUERY_TIMEOUT=
READBUFF=
READ_ISOLATION_LEVEL=
TRACE=
TRACEFILE=
USE_ODBC_CL=

See the section about the LIBNAME statement in SAS/ACCESS for Relational
Databases: Reference for information about these options.

CONNECT Statement Examples
The following examples use ODBC to connect to a data source that is configured

under the data source name User’s Data using the alias USER1. The first example
uses the connection method that is guaranteed to be present at the lowest level of ODBC
conformance. Note that DATASRC= names can contain quotation marks and spaces.

proc sql;
connect to ODBC as user1
(datasrc="User’s Data" user=testuser password=testpass);

The following example uses the connection method that represents a more advanced
level of ODBC conformance. It uses the input dialog box that is provided by the driver.
The DATASRC= and USER= arguments are within the connection string and, therefore,
are not parsed by the Pass-Through Facility but instead are passed to the ODBC
manager.

proc sql;
connect to odbc as user1
(required = "dsn=User’s Data;uid=testuser");

The following ODBC example enables you to select any data source that is configured
on your machine. The example uses the connection method that represents a more
advanced level of ODBC conformance, Level 1. When a successful connection is made,
the connection string is returned in the SQLXMSG and SYSDBMSG macro variables
and can be stored if this method is used to configure a connection for later use.

proc sql;
connect to odbc (required);

10 Pass-Through Views � Chapter 1

The following ODBC example prompts you to specify the information that is required
to make a connection to the DBMS. You are prompted to supply the data source name,
user ID, and password in the dialog boxes that are displayed.

proc sql;
connect to odbc (prompt);

Pass-Through Views
Version 6 SQL views do not need to be updated to be used in Version 7, Version 8, or

SAS 9. The ODBC interface and DBMS client must be available and ready to connect.
In order for any truncated variable names to be correctly interpreted by the ODBC
driver, you must specify the VALIDVARNAME=V6.

The following example, must use the SAS option VALIDVARNAME=V6 in order to
successfully process a Version 6 SQL view. See the section about the LIBNAME
statement in SAS/ACCESS for Relational Databases: Reference for more information
about this option.

options validvarname=v6;
proc sql;

describe view as4sql.invoice4;
run;

/* NOTE: SQL view AS4SQL.INVOICE4 is defined as: */
select
INVOICEN as INVOICE,
AMTBILLE as AMOUNT format=DOLLAR20.2,
BILLEDON
from connection to AS400
/* dbms=AS400, connect options=() */
(select invoicenum, amtbilled, billedon

from sasdemo/invoice
where paidon =’18OCT1998’);

Note: If a view cannot be processed, or if you want to see what a view is, use the
DESCRIBE VIEW statement to see what the existing view is. Then you can use the
PROC SQL statements to create a new view for the ODBC connection. �

In Version 6, the AS/400 column name INVOICENUM is mapped to the SAS variable
INVOICEN, and AMTBILLED is mapped to AMTBILLE. If you do not specify option
VALIDVARNAME=V6, you get the following error because the ODBC driver attempts to
find the truncated column names in the DBMS table:

ERROR: The following columns were not found in the
contributing tables: AMTBILLE, INVOICEN.

IBM AS/400 Specifics
To run your SQL views for IBM AS/400, you must do the following:
� create a data source name first by using the ODBC administrator. Refer to the

installation instructions for the SAS/ACCESS interface to ODBC for more
information.

� set the environment variable AS400DSN (located in your SASV9.cfg) to the data
source name that you assigned. Quotation marks are required if the name
includes blanks or special characters.

SAS/ACCESS for ODBC � IBM AS/400 Specifics 11

In this example,

CONNECT TO AS400 AS market;

is converted to

CONNECT TO ODBC AS market
(NOPROMPT="DATASRC=IBM AS/400 Database;
USER=TESTUSER; PASSWORD=TESTPASS;
NAM=1"

)
;

This example demonstrates a problem in which AS/400 short alias names cannot be
returned by the AS/400 ODBC driver. This problem causes you to get an error, for
example, if you have specified the short alias names in your selection list before the
CONNECTION TO component, but have not specified the short alias names in the
selection list that defines the view. If you encounter this problem with your Version 6
SQL views, you need to re-create the views.

This example creates an AS/400 table named TEST5 with the columns
CUSTOMER_FIRST_NAME and CUSTOMER_LAST_NAME. The short name alias for
CUSTOMER_FIRST_NAME is FNAME and the short name alias for
CUSTOMER_LAST_NAME is LNAME.

options validvarname=v6;
%let name=test5;
proc sql;
describe view as4sql.&name;
/* NOTE: SQL view AS4SQL.TEST5 is defined as: */
select FNAME, LNAME from connection to AS400
/* dbms=AS400, connect options=() */
(select * from sasdemo/test

where lname = ’Ju’);
quit;
proc print data=as4sql.&name;
run;

This example generates the following errors:

ERROR: The following columns were not found in
the contributing tables: FNAME, LNAME.

ERROR: SQL View AS4SQL.TEST5 could not be processed.

The following two examples work successfully because the short alias names are
specified in the SELECT statement that defines the view.

create view as4sql.&name as
select FNAME, LNAME from connection to AS400
/* dbms=AS400, connect options=() */
(select FNAME, LNAME from sasdemo/test

where lname = ’Ju’);

create view as4sql.&name as
select * from connection to AS400
/* dbms=AS400, connect options=() */
(select fname, lname from sasdemo/test

where lname = ’Ju’);

12 Microsoft SQL Server Specifics � Chapter 1

Microsoft SQL Server Specifics
To run your SQL views for Microsoft SQL Server, you are encouraged, but not

required, to create a data source name. You can use the ODBC administrator to create
it. Refer to the installation instructions for this interface for more information. If you
do create a data source name, you must set the environment variable MSSQLDSN to be
the ’data-source-name’. Quotation marks are required if the name includes blanks or
special characters.

In this example,

CONNECT TO SQLSERVR AS finance
(user=testuser password=testpass
server=’dbipc1.pc.sas.com’
database=’sample’
)

;

is converted to

CONNECT TO ODBC AS finance
(NOPROMPT="DATASRC=Microsoft SQL Server Database;
SERVER=dbipc1.pc.sas.com;
USER=testuser; PASSWORD=testpass;
DATABASE=sample"
)

;

Connection To Component Examples
The following example sends an Oracle SQL query (presented in highlighted text) to

the Oracle database for processing. The results from the query serve as a virtual table
for the PROC SQL FROM clause. In this example, MYCON is a connection alias.

proc sql;
connect to odbc as mycon

(datasrc=ora7 user=testuser password=testpass);

select *
from connection to mycon

(select empid, lastname, firstname,
hiredate, salary
from sasdemo.employees

where hiredate>=’31.12.1988’) ;

disconnect from mycon;
quit;

The following example gives the previous query a name and stores it as the SQL
view Samples.Hires88. The CREATE VIEW statement appears highlighted.

libname samples ’SAS-data-library’;

proc sql;
connect to odbc as mycon

(datasrc=ora7 user=testuser password=testpass);

SAS/ACCESS for ODBC � Special ODBC Queries 13

create view samples.hires88 as
select *

from connection to mycon
(select empid, lastname, firstname,
hiredate, salary from sasdemo.employees
where hiredate>=’31.12.1988’);

disconnect from mycon;
quit;

The following example connects to Microsoft Access 7 and creates a view
NEWORDERS from all the columns in the ORDERS table.

proc sql;
connect to odbc as mydb

(datasrc=access7);
create view neworders as
select * from connection to mydb
(select * from orders);

disconnect from mydb;
quit;

The following example sends an SQL query to Microsoft SQL Server 6.5, configured
under the data source name SQL Server, for processing. The results from the query
serve as a virtual table for the PROC SQL FROM clause.

proc sql;
connect to odbc as mydb

(datasrc="SQL Server" user=testuser password=testpass);
select * from connection to mydb

(select CUSTOMER, NAME, COUNTRY
from CUSTOMERS
where COUNTRY <> ’USA’);

quit;

The following example returns a list of the columns in the CUSTOMERS table.

proc sql;
connect to odbc as mydb

(datasrc="SQL Server" user=testuser password=testpass);
select * from connection to mydb

(ODBC::SQLColumns (, , "CUSTOMERS"));
quit;

Special ODBC Queries
The following special queries are supported by the SAS/ACCESS interface to ODBC.

Many databases provide or use system tables that allow queries to return the list of
available tables, columns, procedures, and other useful information. In ODBC, much of
this functionality is provided through special APIs (application programming interfaces)
in order to accommodate databases that do not follow the SQL table structure. You can
use these special queries on non-SQL and SQL databases. The general format of the
special queries is as follows:

ODBC::SQLAPI “parameter 1”,”parameter n”

14 Special ODBC Queries � Chapter 1

where

ODBC::
is required to distinguish special queries from regular queries.

SQLAPI
is the specific API that is being called. Both ODBC:: and SQLAPI are case
sensitive.

"parameter n"
is a quoted string that is delimited by commas.

Within the quoted string, two characters are universally recognized: the percent sign
(%) and the underscore (_). The percent sign matches any sequence of zero or more
characters; the underscore represents any single character. Each driver also has an
escape character that can be used to place characters within the string. Consult the
driver’s documentation to determine the valid escape character.

The values for the special query arguments are DBMS specific. For example, you
supply the fully qualified table name for a “Catalog” argument. In dBase, the value of
“Catalog” might be c:\dbase\tst.dbf and in SQL Server, the value might be
test.customer. In addition, depending on the DBMS that you are using, valid values
for a “Schema” argument might be a user ID, a database name, or a library. All
arguments are optional. If you specify some but not all the arguments within a
parameter, use a comma to indicate the omitted arguments. If you do not specify any
parameters, commas are not necessary.

Note: These special queries might not be available for all ODBC drivers. �

The following special queries are supported:

ODBC::SQLTables <"Catalog", "Schema", "Table-name", "Type">
returns a list of all the tables that match the specified arguments. If no arguments
are specified, all accessible table names and information are returned.

ODBC::SQLColumns <"Catalog", "Schema", "Table-name", "Column-name">
returns a list of all the columns that match the specified arguments. If no
arguments are specified, all accessible column names and information are returned.

ODBC::SQLColumnPrivileges <"Catalog", "Schema", "Table-name", "Column-name">
returns a list of all the column privileges that match the specified arguments. If
no arguments are specified, all accessible column names and privilege information
are returned.

ODBC::SQLForeignKeys <"PK-catalog", "PK-schema", "PK-table-name", "FK-catalog",
"FK-schema", "FK-table-name">

returns a list of all the columns that comprise foreign keys that match the
specified arguments. If no arguments are specified, all accessible foreign key
columns and information are returned.

ODBC::SQLPrimaryKeys <"Catalog", "Schema", "Table-name">
returns a list of all the columns that compose the primary key that matches the
specified table. A primary key can be composed of one or more columns. If no table
name is specified, this special query fails.

ODBC::SQLProcedureColumns <"Catalog", "Schema", "Procedure-name",
"Column-name">

returns a list of all the procedure columns that match the specified arguments. If
no arguments are specified, all accessible procedure columns are returned.

ODBC::SQLProcedures <"Catalog", "Schema", "Procedure-name">
returns a list of all the procedures that match the specified arguments. If no
arguments are specified, all accessible procedures are returned.

SAS/ACCESS for ODBC � Nullable Columns 15

ODBC::SQLSpecialColumns <"Identifier-type", "Catalog-name", "Schema-name",
"Table-name", "Scope", "Nullable">

returns a list of the optimal set of columns that uniquely identify a row in the
specified table.

ODBC::SQLStatistics <"Catalog", "Schema", "Table-name">
returns a list of the statistics for the specified table name, with options of
SQL_INDEX_ALL and SQL_ENSURE set in the SQLStatistics API call. If the
table name argument is not specified, this special query fails.

ODBC::SQLTablePrivileges <"Catalog", "Schema", "Table-name">
returns a list of all the tables and associated privileges that match the specified
arguments. If no arguments are specified, all accessible table names and
associated privileges are returned.

ODBC::SQLGetTypeInfo
returns information about the data types that are supported in the data source.

Autopartitioning Scheme for ODBC
See the section about threaded reads in SAS/ACCESS for Relational Databases:

Reference for general information about this feature.

Overview
The autopartitioning method available for SAS/ACCESS to ODBC is modeled after

the MOD function method as described in the section about autopartitioning techniques
in SAS/ACCESS for Relational Databases: Reference.

Autopartitioning Restrictions
SAS/ACCESS to ODBC places additional restrictions on which columns can be used

for the partitioning column during the autopartitioning phase. Columns are partitioned
as follows:

� SQL_INTEGER, SQL_BIT, SQL_SMALLINT, and SQL_TINYINT columns are
given preference.

� SQL_DECIMAL, SQL_DOUBLE, SQL_FLOAT, SQL_NUMERIC, and SQL_REAL
columns might be used for partitioning, provided the following conditions are met:

� The ODBC driver supports converting these types to SQL_INTEGER via the
INTEGER cast function.

� The precision minus the scale of the column is greater than 0 but less than
10, that is, 0<(precision-scale)<10.

The exception to the above rule is for Oracle SQL_DECIMAL columns. As long as the
scale of the SQL_DECIMAL column is 0, the column can be used as the partitioning
column.

Nullable Columns
If a nullable column is selected for autopartitioning, then the SQL statement

“OR<column-name>IS NULL” will be appended to the end of the SQL code that is

16 Using WHERE Clauses � Chapter 1

generated for the threaded read to ensure that any possible NULL values are returned
in the result set. In addition, if the column to be used for the partitioning is SQL_BIT,
then the number of threads will automatically be changed to two, regardless of the
setting of the DBSLICEPARM= option.

Using WHERE Clauses
Autopartitioning does not select a column to be the partitioning column if it appears

in the WHERE clause. For instance, the following data step would not be able to use a
threaded read to retrieve the data since all of the numeric columns in the table are in
the WHERE clause:

data work.locemp;
set trlib.MYEMPS;
where EMPNUM<=30 and ISTENURE=0 and
SALARY<=35000 and NUMCLASS>2;
run;

Using DBSLICEPARM=
When using autopartitioning, and DBSLICEPARM= does not specify a maximum

number of threads to use for the threaded read, SAS/ACCESS to ODBC defaults to
three threads.

Using DBSLICE=
You might achieve the best possible performance when using threaded reads by

specifying an ODBC-specific DBSLICE= option in your SAS operation. This is
especially true if your DBMS supports multiple database partitions and provides a
mechanism to allow connections to individual partitions. If your DBMS supports this
concept, you can configure an ODBC datasource for each partition and use the
DBSLICE= clause to specify both the datasource and the WHERE clause for each
partition, as shown in the following example:

proc print data=trilib.MYEMPS(DBSLICE=(DSN1="EMPNUM BETWEEN 1 AND 33"
DSN2="EMPNUM BETWEEN 34 AND 66"
DSN3="EMPNUM BETWEEN 67 AND 100"));
run;

Consult your DBMS or ODBC driver documentation for more information about
configuring for multiple partition access. You can also refer to “Configuring SQL Server
Partitioned Views for Use with DBSLICE=” on page 17 for an example of configuring
multiple partition access to a table.

Using the DATASOURCE= syntax is not required in order to use DBSLICE= with
threaded reads for SAS/ACCESS to ODBC. The methods and examples described in
DBSLICE= work well in instances where the table you want to read is not stored in
multiple partitions in your DBMS. These methods also give you flexibility in column
selection. For example, if you know that the STATE column in your employee table only
contains a few distinct values, you can tailor your DBSLICE= clause accordingly:

datawork.locemp;
set trlib2.MYEMP(DBSLICE=("STATE=’FL’" "STATE=’GA’"

"STATE=’SC’" "STATE=’VA’" "STATE=’NC’"));

SAS/ACCESS for ODBC � Configuring SQL Server Partitioned Views for Use with DBSLICE= 17

where EMPNUM<=30 and ISTENURE=0 and SALARY<=35000 and NUMCLASS>2;
run;

Configuring SQL Server Partitioned Views for Use with DBSLICE=
Microsoft SQL Server implements multiple partitioning by creating a global view

across multiple instances of a Microsoft SQL Server database. For this example,
assume that Microsoft SQL Server has been installed on three separate machines
(SERVER1, SERVER2, SERVER3), and three ODBC datasources (SSPART1, SSPART2,
SSPART3) have been configured against these servers. Also, a linked server definition
for each of these servers has been defined. This example uses SAS to create the tables
and associated views, but this can be accomplished outside of the SAS environment.

First create a local SAS table to build the Microsoft SQL Server tables:

data work.MYEMPS;
format HIREDATE mmddyy 0. SALARY 9.2

NUMCLASS 6. GENDER $1. STATE $2. EMPNUM 10.;
do EMPNUM=1 to 100;

morf=mod(EMPNUM,2)+1;
if(morf eq 1) then

GENDER=’F’;
else

GENDER=’M’;
SALARY=(ranuni(0)*5000);
HIREDATE=int(ranuni(13131)*3650);
whatstate=int(EMPNUM/5);
if(whatstate eq 1) then

STATE=’FL’;
if(whatstate eq 2) then

STATE=’GA’;
if(whatstate eq 3) then

STATE=’SC’;
if(whatstate eq 4) then

STATE=’VA’;
else

state=’NC’;
ISTENURE=mod(EMPNUM,2);
NUMCLASS=int(EMPNUM/5)+2;
output;

end;
run;

Next, create a table on each of the SQL server databases with the same table
structure, and insert 1/3 of the overall data into each table. These table definitions also
use CHECK constraints to enforce the distribution of the data on each of the subtables
of the target view.

libname trlib odbc user=ssuser pw=sspwd dsn=sspart1;
proc delete data=trlib.MYEMPS1;
run;
data trlib.MYEMPS1(drop=morf whatstate

DBTYPE=(HIREDATE="datetime" SALARY="numeric(8,2)"
NUMCLASS="smallint" GENDER="char(1)" ISTENURE="bit" STATE="char(2)"
EMPNUM="int NOT NULL Primary Key CHECK (EMPNUM BETWEEN 0 AND 33)"));

set work.MYEMPS;

18 Configuring SQL Server Partitioned Views for Use with DBSLICE= � Chapter 1

where (EMPNUM BETWEEN 0 AND 33);
run;

libname trlib odbc user=ssuer pw=sspwd dsn=sspart2;
proc delete data=trlib.MYEMPS2;
run;
data trlib.MYEMPS2(drop=morf whatstate

DBTYPE=(HIREDATE="datetime" SALARY="numeric(8,2)"
NUMCLASS="smallint" GENDER="char(1)" ISTENURE="bit" STATE="char(2)"
EMPNUM="int NOT NULL Primary Key CHECK (EMPNUM BETWEEN 34 AND 66)"));

set work.MYEMPS;
where (EMPNUM BETWEEN 34 AND 66);
run;

libname trlib odbc user=ssuer pw=sspwd dsn=sspart3;
proc delete data=trlib.MYEMPS3;
run;
data trlib.MYEMPS3(drop=morf whatstate

DBTYPE=(HIREDATE="datetime" SALARY="numeric(8,2)"
NUMCLASS="smallint" GENDER="char(1)" ISTENURE="bit" STATE="char(2)"
EMPNUM="int NOT NULL Primary Key CHECK (EMPNUM BETWEEN 67 AND 100)"));

set work.MYEMPS;
where (EMPNUM BETWEEN 67 AND 100);
run;

Next, create a view using the UNION ALL construct on each Microsoft SQL Server
instance which references the other two tables. This creates a global view that
references the entire data set.

/*SERVER1,SSPART1*/
proc sql noerrorstop;
connect to odbc (UID=ssuser PWD=sspwd DSN=SSPART1);
execute (drop view MYEMPS) by odbc;
execute (create view MYEMPS AS

SELECT * FROM users.ssuser.MYEMPS1
UNION ALL
SELECT * FROM SERVER2.users.ssuser.MYEMPS2
UNION ALL
SELECT * FROM SERVER3.users.ssuser.MYEMPS3) by odbc;

quit;

/*SERVER2,SSPART2*/
proc sql noerrorstop;
connect to odbc (UID=ssuser PWD=sspwd DSN=SSPART2);
execute (drop view MYEMPS) by odbc;
execute (create view MYEMPS AS

SELECT * FROM users.ssuser.MYEMPS2
UNION ALL
SELECT * FROM SERVER1.users.ssuser.MYEMPS1
UNION ALL
SELECT * FROM SERVER3.users.ssuser.MYEMPS3) by odbc;

quit;

/*SERVER3,SSPART3*/
proc sql noerrorstop;

SAS/ACCESS for ODBC � DBLOAD Procedure Specifics for ODBC 19

connect to odbc (UID=ssuser PWD=sspwd DSN=SSPART3);
execute (drop view MYEMPS) by odbc;
execute (create view MYEMPS AS

SELECT * FROM users.ssuser.MYEMPS3
UNION ALL
SELECT * FROM SERVER2.users.ssuser.MYEMPS2
UNION ALL
SELECT * FROM SERVER1.users.ssuser.MYEMPS1) by odbc;

quit;

Finally, set up your SAS operation to perform the threaded read. The DBSLICE
option contains the Microsoft SQL Server partitioning information.

proc print data=trlib.MYEMPS(DBLICE=(sspart1="EMPNUM BETWEEN 1 AND 33"
sspart2="EMPNUM BETWEEN 34 AND 66"
sspart3="EMPNUM BETWEEN 67 AND 100"));
run;

This configuration enables SAS/ACCESS to ODBC to access the data for the
MYEMPS view directly from each subtable on the corresponding Microsoft SQL Server
instance. The data is inserted directly into each subtable, but this process can also be
accomplished by using the global view to divide up the data. For instance, you can
create empty tables and then create the view as seen in the example with the UNION
ALL construct. You can then insert the data into the view MYEMPS. The CHECK
constraints will allow the Microsoft SQL Server query processor to determine which
subtables should receive the data.

There are other tuning options available when configuring Microsoft SQL Server to
use partitioned data. For more information, see the "Creating a Partitioned View" and
"Using Views with Partitioned Data" sections in the SQL Server On-line Guide.

DBLOAD Procedure Specifics for ODBC

See the section about the DBLOAD procedure in SAS/ACCESS for Relational
Databases: Reference for general information about this feature.

The ODBC interface supports all of the DBLOAD procedure statements (except
ACCDESC=) in batch mode. The DBLOAD procedure specifics for ODBC are as follows:

� The DBLOAD step DBMS= value is ODBC.

� PROC DBLOAD uses the following database description statements:

DSN= <’>ODBC-data-source<’>;
specifies the name of the data source in which you want to store the new
ODBC table. The data-source is limited to eight characters.

The data source that you specify must already exist. If the data source
name contains the following special characters (_,$,@,#), you must enclose it
in quotation marks. However, the ODBC standard recommends against using
special characters in data source names.

USER= <’>username<’>;
enables you to connect to an ODBC database, such as Microsoft SQL Server
or AS/400, with a user ID that is different from the default ID.

USER= is optional in ODBC. If you specify USER=, you must also specify
PASSWORD=. If USER= is omitted, your default user ID is used.

PASSWORD=<’>password<’>;
specifies the ODBC password that is associated with your user ID.

20 Examples � Chapter 1

PASSWORD= is optional in ODBC because users have default user IDs. If
you specify USER=, you must specify PASSWORD=.

Note: If you do not wish to enter your ODBC password in uncoded text on
this statement, see PROC PWENCODE for a method to encode it. �

BULKCOPY= YES|NO;
determines whether SAS uses the Microsoft Bulk Copy facility to insert data
into a DBMS table (Microsoft SQL Server only). The default value is NO.

BCP is Microsoft’s Bulk Copy facility, and it enables you to efficiently
insert rows of data into a DBMS table as a unit. As SAS/ACCESS sends each
row of data to BCP, the data is written to an input buffer. When you have
inserted all the rows, or the buffer reaches a certain size (as determined by
the DBCOMMIT= data set option), all of the rows are inserted as a unit into
the table, and the data is committed to the table.

Alternatively, you can set the DBCOMMIT=n option to commit rows after
every n insertions.

If an error occurs, a message is written to the SAS log, and any rows that
have been inserted in the table before the error are rolled back.

Note: To use BULKCOPY=, your installation of Microsoft SQL Server
must include the ODBCBCP.DLL, which is currently only supported by
Microsoft SQL Server 7.0. BULKCOPY= is not supported on UNIX. �

� The TABLE= statement is as follows:

TABLE= <authorization-id.>table-name;
identifies the table or view that you want to use to create an access
descriptor. The TABLE= statement is required.

The authorization-id is a user ID or group ID that is associated with the
table.

� The NULLS statement is as follows:

NULLS variable-identifier-1 =Y|N|D < . . . variable-identifier-n =Y|N|D >;
enables you to specify whether the columns that are associated with the
listed SAS variables allow NULL values. By default, all columns accept
NULL values.

The NULLS statement accepts any one of these three values:
Y – specifies that the column accepts NULL values. This is the default.
N – specifies that the column does not accept NULL values.
D – specifies that the column is defined as NOT NULL WITH DEFAULT

Examples
The following example creates a new ODBC table, TESTUSER.EXCHANGE, from

the DLIB.RATEOFEX data file. You must be granted the appropriate privileges in
order to create new ODBC tables or views.

proc dbload dbms=odbc data=dlib.rateofex;
dsn=sample;
user=’testuser’;
password=’testpass’;
table=exchange;
rename fgnindol=fgnindollars

4=dollarsinfgn;
nulls updated=n fgnindollars=n

dollarsinfgn=n country=n;

SAS/ACCESS for ODBC � Passing SAS Functions to ODBC 21

load;
run;

The following example only sends an ODBC SQL GRANT statement to the SAMPLE
database and does not create a new table. Therefore, the TABLE= and LOAD
statements are omitted.

proc dbload dbms=odbc;
user=’testuser’;
password=’testpass’;
dsn=sample;
sql grant select on testuser.exchange

to dbitest;
run;

Passing SAS Functions to ODBC

The interface to ODBC passes the following SAS functions to the data source for
processing (if the DBMS server supports the function). See the section about optimizing
SQL usage in SAS/ACCESS for Relational Databases: Reference for information.

ABS

ARCOS

ARSIN

ATAN

AVG

CEIL

COS

EXP

FLOOR

LOG

LOG10

LOWCASE

MAX

MIN

SIGN

SIN

SQRT

TAN

UPCASE

SUM

COUNT

22 Passing Joins to ODBC � Chapter 1

Passing Joins to ODBC
In order for a multiple libref join to pass to ODBC, all of the following components of

the LIBNAME statements must match exactly:

user ID

password

datasource

catalog

UPDATE_ISOLATION_LEVEL=
(if specified)

READ_ISOLATION_LEVEL=
(if specified)

PROMPT=
must not be
specified

See the section about performance considerations in SAS/ACCESS for Relational
Databases: Reference for more information about when and how SAS/ACCESS passes
joins to the DBMS.

Temporary Table Support for ODBC
See the section on the temporary table support in SAS/ACCESS for Relational

Databases: Reference for general information about this feature.

Establishing a Temporary Table
When you want to use temporary tables that persist across SAS procedures and

DATA steps with ODBC, you must use the CONNECTION=SHARED LIBNAME option.
In doing so, the temporary table is available for processing until the libref is closed.

Terminating a Temporary Table
You can drop a temporary table at any time, or allow it to be implicitly dropped

when the connection is terminated. Temporary tables do not persist beyond the scope of
a single connection.

Examples
Using the Internat sample table, the following example creates a temporary table,

#LONDON, with Microsoft SQL Server that contains information about flights that flew
to London. This table is then joined with a larger SQL Server table that lists all the
flights, March, but matched only on flights that flew to London.

libname samples odbc dsn=lupinss uid=dbitest pwd=dbigrp1 connection=shared;

SAS/ACCESS for ODBC � Examples 23

data samples.’#LONDON’n;
set work.internat;
where dest=’LON’;

run;

proc sql;
select b.flight, b.dates, b.depart, b.orig

from samples.’#LONDON’n a, samples.march b
where a.dest=b.dest;

quit;

In the following example a temporary table called New is created with Microsoft SQL
Server. The data from this table is then appended to an existing SQL Server table
named Inventory.

libname samples odbc dsn=lupinss uid=dbitest pwd=dbigrp1 connection=shared;

data samples.inventory(DBTYPE=(itemnum=’char(5)’ item=’varchar(30)’
quantity=’numeric’));

itemnum=’12001’;
item=’screwdriver’;
quantity=15;
output;

itemnum=’12002’;
item=’hammer’;
quantity=25:
output;

itemnum=’12003’;
item=’sledge hammer’;
quantity=10;
output;

itemnum=’12004’;
item=’saw’;
quantity=50;
output;

itemnum=’12005’;
item=’shovel’;
quantity=120;
output;

run;

data samples.’#new’n(DBTYPE=(itemnum=’char(5)’ item=’varchar(30)’
quantity=’numeric’));

itemnum=’12006’;
item=’snow shovel’;
quantity=5;
output;

itemnum=’12007’;
item=’nails’;
quantity=500;
output;

run;

proc append base=samples.inventory data=samples.’#new’n;
run;

24 ODBC Bulk Loading � Chapter 1

proc print data=samples.inventory;
run;

The following example demonstrates the use of a temporary table using the
Pass-Through Facility.

proc sql;
connect to odbc as test (dsn=lupinss uid=dbitest

pwd=dbigrp1 connection=shared);
execute (create table #FRANCE (flight char(3), dates datetime,

dest char(3))) by test;

execute (insert #FRANCE select flight, dates, dest from internat
where dest like ’%FRA%’) by test;

select * from connection to test (select * from #FRANCE);
quit;

ODBC Bulk Loading
The LIBNAME option BULKLOAD= calls the Bulk Copy facility (BCP), which

enables you to efficiently insert rows of data into a DBMS table as a unit. BCP= is an
alias for this option.

Note: The Bulk Copy facility is available only when you are accessing Microsoft
SQL Server data on Windows platforms. To use this facility, your installation of
Microsoft SQL Server must include the ODBCBCP.DLL file. BULKCOPY= is not
available on UNIX. �

As SAS/ACCESS sends rows of data to the Bulk Copy facility, the data is written to
an input buffer. When you have sent all of the rows or when the buffer reaches a
certain size (as determined by the DBCOMMIT= option), all of the rows are inserted as
a unit into the table and the data is committed to the table. You can set the
DBCOMMIT= option to commit rows after a specified number of rows are inserted.

If an error occurs, a message is written to the SAS log, and any rows that were
inserted before the error are rolled back.

Locking in the ODBC Interface
The following LIBNAME and data set options enable you to control how the interface

to ODBC handles locking. See the section about the LIBNAME statement in
SAS/ACCESS for Relational Databases: Reference for additional information about
these options.

READ_LOCK_TYPE= ROW | TABLE | NOLOCK

UPDATE_LOCK_TYPE= ROW | TABLE | NOLOCK

READ_ISOLATION_LEVEL= S | RR | RC | RU | V
The ODBC driver manager supports the S, RR, RC, RU, and V isolation levels
defined in the following table.

SAS/ACCESS for ODBC � Naming Conventions for ODBC 25

Table 1.3 Isolation Levels for ODBC

Isolation Level Definition

S (serializable) Does not allow dirty reads, nonrepeatable reads, or
phantom reads.

RR (repeatable read) Does not allow dirty reads or nonrepeatable reads; does
allow phantom reads.

RC (read committed) Does not allow dirty reads or nonrepeatable reads; does
allow phantom reads.

RU (read uncommitted) Allows dirty reads, nonrepeatable reads and phantom reads.

V (versioning) Does not allow dirty reads, nonrepeatable reads, or
phantom reads. These transactions are serializable but
higher concurrency is possible than with the serializable
isolation level. Typically, a nonlocking protocol is used.

The terms in the table are defined as follows:

� Dirty read — A transaction that exhibits this phenomenon has very minimal
isolation from concurrent transactions. In fact, it can see changes that are
made by those concurrent transactions even before they commit.

For example, suppose that transaction T1 performs an update on a row,
transaction T2 then retrieves that row, and transaction T1 then terminates
with rollback. Transaction T2 has then seen a row that no longer exists.

� Nonrepeatable read — If a transaction exhibits this phenomenon, it is
possible that it might read a row once and if it attempts to read that row
again later in the course of the same transaction, the row might have been
changed or even deleted by another concurrent transaction. Therefore, the
read is not (necessarily) repeatable.

For example, suppose that transaction T1 retrieves a row, transaction T2
then updates that row, and transaction T1 then retrieves the same row again.
Transaction T1 has now retrieved the same row twice but has seen two
different values for it.

� Phantom reads — When a transaction exhibits this phenomenon, a set of
rows that it reads once might be a different set of rows if the transaction
attempts to read them again.

For example, suppose that transaction T1 retrieves the set of all rows that
satisfy some condition. Suppose that transaction T2 then inserts a new row
that satisfies that same condition. If transaction T1 now repeats its retrieval
request, it sees a row that did not previously exist, a phantom.

UPDATE_ISOLATION_LEVEL= S | RR | RC | V
The ODBC driver manager supports the S, RR, RC, and V isolation levels defined
in the preceding table.

Naming Conventions for ODBC
Since ODBC is not a database but rather is an application programming interface, or

API, table names and column names are determined at run time. Beginning in Version
7 of SAS, table or column names can be up to 32 characters long. The ODBC engine
supports table and column names up to 32 characters long. If the DBMS column names

26 Data Types for ODBC � Chapter 1

are longer than 32 characters, they are truncated to 32 characters. If truncating a
columns name results in identical names, then SAS generates unique names by
replacing the last character with a number. DBMS table names must be 32 characters
or less, since SAS will not truncate a longer name. If you already have a table name
greater than 32 characters, it is recommended that you create a table view.

The PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options determine
how the interface to ODBC handles case sensitivity, spaces, and special characters. The
default value for both options is YES for Microsoft Access, Microsoft Excel, and
Microsoft SQL Server; and and NO for all others.

The following example specifies SYBASE as the DBMS.

libname mydblib odbc user=TESTUSER password=testpass
database=sybase;

data mydblib.a;
x=1;
y=2;

run;

SYBASE is generally case sensitive. Therefore, this example would produce a
SYBASE table named a and columns named x and y.

If the DBMS being accessed was Oracle, which is not case sensitive, the example
would produce an Oracle table named A and columns named X and Y. The object names
would be normalized to uppercase.

Data Types for ODBC
Every column in a table has a name and a data type. The data type tells the DBMS

how much physical storage to set aside for the column and the form in which the data
is stored.

The following table shows all of the data types and default SAS formats that are
supported by the SAS/ACCESS interface to ODBC. This table does not explicitly define
the data types as they exist for each DBMS. It lists the SQL types that each DBMS
data type would map to. For example, a CHAR data type under DB2 would map to an
ODBC data type of SQL_CHAR. There are no unsupported data types.

Table 1.4 ODBC Data Types and Default SAS Formats

ODBC Data Type Default SAS Format

SQL_CHAR $n

SQL_VARCHAR $n

SQL_LONGVARCHAR $n

SQL_BINARY $n.*

SQL_VARBINARY $n.*

SQL_LONGVARBINARY $n.*

SQL_DECIMAL m or m.n or none if m and n are not specified

SQL_NUMERIC m or m.n or none if m and n are not specified

SQL_INTEGER 11.

SQL_SMALLINT 6.

SAS/ACCESS for ODBC � ODBC Null Values 27

ODBC Data Type Default SAS Format

SQL_TINYINT 4.

SQL_BIT 1.

SQL_REAL none

SQL_FLOAT none

SQL_DOUBLE none

SQL_BIGINT 20.

SQL_INTERVAL $n

SQL_GUID $n

SQL_TYPE_DATE DATE9.

SQL_TYPE_TIME TIME8.

ODBC cannot support fractions of seconds for
time values

SQL_TYPE_TIMESTAMP
DATETIMEm.n where m and n depend on
precision

* Because the ODBC driver does the conversion, this field is displayed as though the $HEXn.
format were applied.

The following table shows the default data types that the SAS/ACCESS interface to
ODBC uses when creating tables.

Table 1.5 Default ODBC Output Data Types

SAS Variable Format Default ODBC Data Type

m.n
SQL_DOUBLE or SQL_NUMERIC using m.n if
the DBMS allows it

$n. SQL_VARCHAR using n

datetime formats SQL_TIMESTAMP

date formats SQL_DATE

time formats SQL_TIME

The interface to ODBC allows nondefault data types to be specified with the
DBTYPE= data set option.

ODBC Null Values
Many relational database management systems have a special value called NULL. A

DBMS NULL value means an absence of information and is analogous to a SAS
missing value. When SAS/ACCESS reads a DBMS NULL value, it interprets it as a
SAS missing value.

In most relational databases, columns can be defined as NOT NULL so that they
require data (they cannot contain NULL values). When a column is defined as NOT
NULL, the DBMS will not add a row to the table unless the row has a value for that
column. When creating a DBMS table with SAS/ACCESS, you can use the DBNULL=
data set option to indicate whether NULL is a valid value for specified columns.

28 ODBC Null Values � Chapter 1

ODBC mirrors the behavior of the underlying DBMS with regard to NULL values.
Refer to the documentation for your DBMS for information about how it handles NULL
values.

For more information about how SAS handles NULL values, see “Potential Result
Set Differences When Processing Null Data” in SAS/ACCESS for Relational Databases:
Reference.

Note: To control how SAS missing character values are handled by the DBMS, use
the NULLCHAR= and NULLCHARVAL= data set options. �

29

A P P E N D I X

1
Recommended Reading

Recommended Reading 29

Recommended Reading

Here is the recommended reading list for this title:
� SAS/ACCESS for Relational Databases: Reference
� SAS Language Reference: Concepts

� SAS Language Reference: Dictionary
� Base SAS Procedures Guide
� SAS Companion that is specific to your operating environment

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

30

31

Glossary

This glossary defines SAS software terms that are used in this document as well as
terms that relate specifically to SAS/ACCESS software.

access descriptor
a SAS/ACCESS file that describes data that is managed by a data management
system. After creating an access descriptor, you can use it as the basis for creating
one or more view descriptors. See also view and view descriptor.

browsing data
the process of viewing the contents of a file. Depending on how the file is accessed,
you can view SAS data either one observation (row) at a time or as a group in a
tabular format. You cannot update data that you are browsing.

bulk load
to load large amounts of data into a database object, using methods that are specific
to a particular DBMS. Bulk loading enables you to rapidly and efficiently add
multiple rows of data to a table as a single unit.

client
(1) a computer or application that requests services, data, or other resources from a
server. (2) in the X Window System, an application program that interacts with the X
server and can perform tasks such as terminal emulation or window management.
For example, SAS is a client because it requests windows to be created, results to be
displayed, and so on.

column
in relational databases, a vertical component of a table. Each column has a unique
name, contains data of a specific type, and has certain attributes. A column is
analogous to a variable in SAS terminology.

column function
an operation that is performed for each value in the column that is named as an
argument of the function. For example, AVG(SALARY) is a column function.

commit
the process that ends a transaction and makes permanent any changes to the
database that the user made during the transaction. When the commit process
occurs, locks on the database are released so that other applications can access the
changed data. The SQL COMMIT statement initiates the commit processs.

32 Glossary

DATA step view
a type of SAS data set that consists of a stored DATA step program. Like other SAS
data views, a DATA step view contains a definition of data that is stored elsewhere;
the view does not contain the physical data. The view’s input data can come from one
or more sources, including external files and other SAS data sets. Because a DATA
step view only reads (opens for input) other files, you cannot update the view’s
underlying data.

data type
a unit of character or numeric information in a SAS data set. A data value
represents one variable in an observation.

data value
in SAS, a unit of character or numeric information in a SAS data set. A data value
represents one variable in an observation.

database
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes

database management system (DBMS)
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes

editing data
the process of viewing the contents of a file with the intent and the ability to change
those contents. Depending on how the file is accessed, you can view the data either
one observation at a time or in a tabular format.

engine
a component of SAS software that reads from or writes to a file. Each engine enables
SAS to access files that are in a particular format. There are several types of engines.

file
a collection of related records that are treated as a unit. SAS files are processed and
controlled by SAS and are stored in SAS data libraries.

format
a collection of related records that are treated as a unit. SAS files are processed and
controlled by SAS and are stored in SAS data libraries. In SAS/ACCESS software,
the default formats vary according to the interface product.

index
(1) in SAS software, a component of a SAS data set that enables SAS to access
observations in the SAS data set quickly and efficiently. The purpose of SAS indexes
is to optimize WHERE-clause processing and to facilitate BY-group processing. (2) in
other software vendors’ databases, a named object that directs the DBMS to the
storage location of a particular data value for a particular column. Some DBMSs
have additional specifications. These indexes are also used to optimize the processing
of WHERE clauses and joins. Depending on the SAS interface to a database product
and how selection criteria are specified, SAS may or may not be able to use the
indexes of the DBMS to speed data retrieval.

Depending on how selection criteria are specified, SAS might use DBMS indices to
speed data retrieval.

informat
a pattern or set of instructions that SAS uses to determine how data values in an
input file should be interpreted. SAS provides a set of standard informats and also
enables you to define your own informats.

Glossary 33

interface view engine
a SAS engine that is used by SAS/ACCESS software to retrieve data from files that
have been formatted by another vendor’s software. Each SAS/ACCESS interface has
its own interface view engine, which reads the interface product data and returns the
data in a form that SAS can understand (that is, in a SAS data set). SAS
automatically uses an interface view engine; the engine name is stored in
SAS/ACCESS descriptor files so that you do not need to specify the engine name in a
LIBNAME statement.

libref
a name that is temporarily associated with a SAS data library. The complete name of
a SAS file consists of two words, separated by a period. The libref, which is the first
word, indicates the library. The second word is the name of the specific SAS file. For
example, in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the
file NEWBDAY. You assign a libref with a LIBNAME statement or with an operating
system command.

member
a SAS file in a SAS data library.

member name
a name that is given to a SAS file in a SAS data library.

member type
a SAS name that identifies the type of information that is stored in a SAS file.
Member types include ACCESS, DATA, CATALOG, PROGRAM, and VIEW.

missing value
in SAS, a term that describes the contents of a variable that contains no data for a
particular row or observation. By default, SAS prints or displays a missing numeric
value as a single period, and it prints or displays a missing character value as a
blank space.

observation
a row in a SAS data set. All of the data values in an observation are associated with
a single entity such as a customer or a state. Each observation contains one data
value for each variable. In a database product table, an observation is analogous to a
row. Unlike rows in a database product table or file, observations in a SAS data file
have an inherent order.

Pass-Through Facility
a group of SQL procedure statements that send and receive data directly between a
relational database management system and SAS. The Pass-Through Facility
includes the CONNECT, DISCONNECT, and EXECUTE statements, and the
CONNECTION TO component. SAS/ACCESS software is required in order to use
the Pass-Through Facility.

PROC SQL view
a SAS data set (of type VIEW) that is created by the SQL procedure. A PROC SQL
view contains no data. Instead, it stores information that enables it to read data
values from other files, which can include SAS data files, SAS/ACCESS views, DATA
step views, or other PROC SQL views. A PROC SQL view’s output can be either a
subset or a superset of one or more files.

query
a set of instructions that requests particular information from one or more data
sources.

34 Glossary

referential integrity
a set of rules that a DBMS uses to ensure that whenever a data value in one table is
changed, the appropriate change is also made to any related values in other tables or
in the same table. Referential integrity is also used to ensure that related data is not
deleted or changed accidentally.

relational database management system
a database management system that organizes and accesses data according to
relationships between data items. Oracle and DB2 are examples of relational
database management systems.

rollback
in most databases, the process that restores the database to its state when changes
were last committed, voiding any recent changes. The SQL ROLLBACK statement
initiates the rollback processes. See also commit.

row
in relational database management systems, the horizontal component of a table. A
row is analogous to a SAS observation.

SAS data file
a type of SAS data set that contains data values as well as descriptor information
that is associated with the data. The descriptor information includes information
such as the data types and lengths of the variables, as well as the name of the engine
that was used to create the data. A PROC SQL table is a SAS data file. SAS data
files are of member type DATA.

SAS data library
a collection of one or more SAS files that are recognized by SAS and that are
referenced and stored as a unit. Each file is a member of the library.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS data view
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS/ACCESS views
See view descriptor and SAS data view.

server
in a network, a computer that is reserved for servicing other computers in the
network. Servers can provide several different types of services, such as file services
and communication services. Servers can also enable users to access shared
resources such as disks, data, and modems.

Structured Query Language (SQL)
the standardized, high-level query language that is used in relational database
management systems to create and manipulate database management system
objects. SAS implements SQL through the SQL procedure.

Glossary 35

table
a two-dimensional representation of data, in which the data values are arranged in
rows and columns.

trigger
a type of user-defined stored procedure that is executed whenever a user issues a
data-modification command such as INSERT, DELETE, or UPDATE for a specified
table or column. Triggers can be used to implement referential integrity or to
maintain business constraints.

variable
a column in a SAS data set. A variable is a set of data values that describe a given
characteristic across all observations.

view
a definition of a virtual data set. The definition is named and stored for later use. A
view contains no data; it merely describes or defines data that is stored elsewhere.
SAS data views can be created by the ACCESS and SQL procedures.

view descriptor
a file created by SAS/ACCESS software that defines part or all of the database
management system (DBMS) data or PC file data that is described by an access
descriptor. The access descriptor describes the data in a single DBMS table, DBMS
view, or PC file.

wildcard
a file created by SAS/ACCESS software that defines part or all of the database
management system (DBMS) data or PC file data that is described by an access
descriptor. The access descriptor describes the data in a single DBMS table, DBMS
view, or PC file.

36

Index 37

Index

A
autopartitioning

ODBC specifics 15

B
BCP (Bulk Copy facility) 20, 24
Bulk Copy facility (BCP) 20, 24
BULKCOPY= option, PROC DBLOAD state-

ment 20
BULKLOAD= option, LIBNAME statement

ODBC interface 24

C
COMPLETE= option, LIBNAME statement

ODBC interface 4
conformance, ODBC 3
CONNECT statement, SQL procedure

options, ODBC 9

CONNECTION TO component, SQL SELECT
statement

ODBC interface 12

D
data set options

ODBC interface 7
data source, ODBC 2
data types

ODBC interface 26

DATASRC= option, LIBNAME statement
ODBC interface 4

DBLOAD procedure

ODBC specifics 19
DBSLICE= option

autopartitioning, ODBC 16
DBSLICEPARM= option, LIBNAME statement

autopartitioning, ODBC 16
dirty reads 25
DSN= option

LIBNAME statement 4

PROC DBLOAD statement 19

I
IBM AS/400, SQL views for 10

J
joins

passing to ODBC 22

L
LIBNAME statement

ODBC specifics 3, 7
locking data, handling

ODBC interface 24

M
Microsoft Bulk Copy facility 20, 24
Microsoft SQL Server, interface to

multiple partitioning, configuring 17
SQL views 12

N
naming conventions

ODBC interface 25
nonrepeatable reads 25
NOPROMPT= option, LIBNAME statement

ODBC interface 4
NULL values

ODBC 27
nullable columns

autopartitioning, ODBC 15
NULLS option, PROC DBLOAD statement

ODBC interface 20

O
ODBC, interface to 1

autopartitioning scheme 15
data set options 7
data types 26
DBLOAD procedure 19

LIBNAME statement 3, 7
locking in 24
naming conventions 25
ODBC standards basics 2
Pass-Through Facility 8
passing joins to 22
passing SAS functions to 21

ODBC:: special queries 13

P
partitioning

partitioned views, Microsoft SQL Server 17
Pass-Through Facility

ODBC specifics 8
PASSWORD= option, LIBNAME statement

ODBC interface 4
PASSWORD= option, PROC DBLOAD statement

ODBC 19
phantom reads 25
PROMPT= option, LIBNAME statement

ODBC interface 5

Q
queries, SQL

ODBC special queries 13

R
READ_ISOLATION_LEVEL= option

ODBC interface 24
READ_LOCK_TYPE= option

ODBC interface 24
REQUIRED= option, LIBNAME statement

ODBC interface 5

S
SAS/ACCESS data set options

ODBC interface 7
SAS SQL functions

passing to ODBC 21
SELECT statement (SQL)

CONNECTION TO component, ODBC 12

38 Index

SQL_ data types
ODBC interface 26

SQL SELECT statement
CONNECTION TO component, ODBC 12

T
TABLE= option, DBLOAD procedure

ODBC interface 20

threaded reads
ODBC interface 15

U
UPDATE_ISOLATION_LEVEL= option 25
UPDATE_LOCK_TYPE= option

ODBC interface 24

USER= option
PROC DBLOAD statement 19

USER= option, LIBNAME statement
ODBC interface 4

V
VALIDVARNAME= option, SQL CONNECT

statement 10
views, SQL

Pass-Through Facility, ODBC interface 10

Your Turn

If you have comments or suggestions about SAS/ACCESS® 9.1 Supplement for ODBC,
please send them to us on a photocopy of this page, or send us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

.

	Table of Contents
	Contents

	SAS/ACCESS for ODBC
	Introduction to the SAS/ACCESS Interface to ODBC
	Overview of ODBC

	LIBNAME Statement Specifics for ODBC
	Arguments
	ODBC LIBNAME Statement Examples

	Data Set Options for ODBC
	Pass-Through Facility Specifics for ODBC
	CONNECT Statement Examples
	Pass-Through Views
	IBM AS/400 Specifics
	Microsoft SQL Server Specifics
	Connection To Component Examples
	Special ODBC Queries

	Autopartitioning Scheme for ODBC
	Overview
	Autopartitioning Restrictions
	Nullable Columns
	Using WHERE Clauses
	Using DBSLICEPARM=
	Using DBSLICE=
	Configuring SQL Server Partitioned Views for Use with DBSLICE=

	DBLOAD Procedure Specifics for ODBC
	Examples

	Passing SAS Functions to ODBC
	Passing Joins to ODBC
	Temporary Table Support for ODBC
	Establishing a Temporary Table
	Terminating a Temporary Table
	Examples

	ODBC Bulk Loading
	Locking in the ODBC Interface
	Naming Conventions for ODBC
	Data Types for ODBC
	ODBC Null Values

	Recommended Reading
	Recommended Reading

	Glossary
	Index

