
SAS/ACCESS®

9.1
Supplement for Informix
SAS/ACCESS for Relational Databases

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS/ACCESS ® 9.1 Supplement for Informix (SAS/ACCESS for Relational Databases).
Cary, NC: SAS Institute Inc.

SAS/ACCESS® 9.1 Supplement for Informix (SAS/ACCESS for Relational
Databases)
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
ISBN 1-59047-247-0
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

Chapter 1 � SAS/ACCESS for Informix 1
Introduction to the SAS/ACCESS Interface to Informix 1

LIBNAME Statement Specifics for Informix 2

Data Set Options for Informix 4

Pass-Through Facility Specifics for Informix 5

Autopartitioning Scheme for Informix 8

Passing SAS Functions to Informix 9

Passing Joins to Informix 10

Temporary Table Support for Informix 10

Locking in the Informix Interface 11

Naming Conventions for Informix 12

Informix Data Types 12

Overview of Informix Servers 15

Appendix 1 � Recommended Reading 17
Recommended Reading 17

Glossary 19

Index 25

iv

1

C H A P T E R

1
SAS/ACCESS for Informix

Introduction to the SAS/ACCESS Interface to Informix 1
Default Environment 2

LIBNAME Statement Specifics for Informix 2

Arguments 2

Informix LIBNAME Statement Example 4

Data Set Options for Informix 4
Pass-Through Facility Specifics for Informix 5

Stored Procedures and the Pass-Through Facility 5

Command Restrictions for the Pass-Through Facility 6

Examples 6

Autopartitioning Scheme for Informix 8

Overview 8
Autopartitioning Restrictions 8

Using WHERE Clauses 8

Using DBSLICEPARM= 9

Using DBSLICE= 9

Passing SAS Functions to Informix 9
Passing Joins to Informix 10

Temporary Table Support for Informix 10

Establishing a Temporary Table 10

Terminating a Temporary Table 10

Example 11
Locking in the Informix Interface 11

Naming Conventions for Informix 12

Informix Data Types 12

Character Data 13

Numeric Data 13

Abstract Data 13
Informix Null Values 14

LIBNAME Statement Data Conversions 14

Pass-Through Facility Data Conversions 15

Overview of Informix Servers 15

Informix Database Servers 15
Using the DBDATASRC Environment Variables 16

Using Fully Qualified Table Names 16

Introduction to the SAS/ACCESS Interface to Informix
This document includes details only about the SAS/ACCESS interface to Informix. It

should be used as a supplement to the generic SAS/ACCESS documentation

2 Default Environment � Chapter 1

SAS/ACCESS for Relational Databases: Reference. See “Overview of Informix Servers”
on page 15 for background information about Informix.

Default Environment
When you access Informix tables by using the SAS/ACCESS interface to Informix,

the default Informix read isolation level is set for committed reads, and SAS spooling is
on. Committed reads enable you to read rows unless another user or process is
updating the rows. Reading in this manner does not lock the rows. SAS spooling
guarantees that you get identical data each time you re-read a row because SAS buffers
the rows after you read them the first time. This default environment is suitable for
most users. If this default environment is unsuitable for your needs, see “Locking in the
Informix Interface” on page 11.

To see the SQL statements that SAS issues to the Informix server, include the
SASTRACE= option in your code:

option sastrace=’,,,d’;

If you use quotation marks in your Informix SQL statements, your DELIMIDENT=
environment variable should be set to DELIMIDENT=YES, or your statements could be
rejected by Informix. Because some of the SAS options that preserve case generate SQL
statements that contain quotation marks, you should set DELIMIDENT=YES in your
environment.

LIBNAME Statement Specifics for Informix

This section describes the LIBNAME statement as supported in the SAS/ACCESS
interface to Informix. For a complete description of this feature, see the LIBNAME
statement section in SAS/ACCESS for Relational Databases: Reference. The Informix
specific syntax for the LIBNAME statement is as follows:

LIBNAME libref informix <connection-options> <LIBNAME-options>;

Arguments
libref

is any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

informix
is the SAS/ACCESS engine name for the interface to Informix.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. The connection options for the
interface to Informix are:

USER=<’>Informix-user-name<’>
specifies the Informix user name that you use to connect to the database that
contains the tables and views that you want to access. If you omit the
USER= option, your operating environment account name is used, if
applicable to your operating environment.

SAS/ACCESS for Informix � Arguments 3

USING=<’>Informix-password<’>
specifies the password that is associated with the Informix user. If you omit
the password, Informix uses the password in the /etc/password file.

USING= can also be specified with the PASSWORD= and PWD= aliases.

SERVER=<’>ODBC-data-source<’>
specifies the ODBC data source to which you want to connect. An error
occurs if the SERVER= option is not set. For UNIX platforms, the data
source must be configured by modifying the .ODBC.ini file. See your ODBC
driver manual for details.

Note: For the SAS/ACCESS 9 interface to Informix, the Informix ODBC Driver
API is used to connect to Informix, and the connection options have been changed
accordingly. The DATABASE= option from SAS/ACCESS Version 8 has been
removed. If you need to specify a database, set it in the .ODBC.init file. For
SERVER= options, instead of specifying the server name, as in Version 8, you
specify an ODBC data source name. Optionally, a user ID and password can be
used in conjunction with SERVER=. �

LIBNAME-options
define how DBMS objects are processed by SAS. Some LIBNAME options can
enhance performance; others determine locking or naming behavior. The following
table describes the LIBNAME options that are supported for Informix, and
presents default values where applicable. See the section about the LIBNAME
statement in SAS/ACCESS for Relational Databases: Reference for detailed
information about these options.

Table 1.1 SAS/ACCESS LIBNAME Options for Informix

Option Default Value

ACCESS= none

CONNECTION= SHAREDREAD

CONNECTION_GROUP= none

DBCOMMIT= 1000 (insert) or 0 (update)

DBCONINIT= none

DBCONTERM= none

DBCREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX= NO

DBLIBINIT= none

DBLIBTERM= none

DBNULLKEYS= NO

DBPROMPT= NO

DBSASLABEL= COMPAT

DBSLICEPARM= THREADED_APPS,2 or 3

DEFER= NO

DIRECT_EXE= none

DIRECT_SQL= YES

4 Informix LIBNAME Statement Example � Chapter 1

Option Default Value

LOCKTABLE= no locking

LOCKTIME= none

LOCKWAIT= not set

MULTI_DATASRC_OPT= NONE

PRESERVE_COL_NAMES= NO

PRESERVE_TAB_NAMES= NO

READ_ISOLATION_LEVEL= COMMITTED READ (see “Locking in the Informix
Interface” on page 11)

REREAD_EXPOSURE= NO

SCHEMA= your user name

SPOOL= YES

UTILCONN_TRANSIENT= NO

Informix LIBNAME Statement Example
In the following example, the libref MYDBLIB uses the Informix interface to connect

to an Informix database:

libname mydblib informix user=testuser using=testpass server=testdsn;

In this example, USER=, USING=, and SERVER= are connection options.

Data Set Options for Informix
The following table describes the data set options that are supported for Informix,

and provides default values where applicable. See the section about data set options in
SAS/ACCESS for Relational Databases: Reference for detailed information about these
options.

Table 1.2 SAS/ACCESS Data Set Options

Option Default Value

DBCOMMIT= LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= LIBNAME option setting

DBFORCE= NO

DBGEN_NAME= DBMS

DBINDEX= LIBNAME option setting

DBKEY= none

DBLABEL= NO

DBMASTER= none

DBNULL= _ALL_=YES

SAS/ACCESS for Informix � Stored Procedures and the Pass-Through Facility 5

Option Default Value

DBNULLKEYS= LIBNAME option setting

DBSASLABEL= COMPAT

DBSASTYPE= see “Informix Data Types” on page 12

DBSLICE none

DBSLICEPARM THREADED_APPS,2 or 3

DBTYPE= see “Informix Data Types” on page 12

ERRLIMIT= 1

LOCKTABLE= LIBNAME option setting

NULLCHAR= SAS

NULLCHARVAL= a blank character

PRESERVE_COL_NAMES= LIBNAME option setting

SASDATEFMT= DATETIME

SCHEMA= LIBNAME option setting

Pass-Through Facility Specifics for Informix
See the section about the Pass-Through Facility in SAS/ACCESS for Relational

Databases: Reference for general information about this feature.
The Pass-Through Facility specifics for Informix are as follows:
� The dbms-name is informix.
� The CONNECT statement is optional when you are connecting to an Informix

database if the DBDATASRC environment variable has been set. When you omit a
CONNECT statement, an implicit connection is performed when the first
EXECUTE statement or CONNECTION TO component is passed to the DBMS.

� You can connect to only one Informix database at a time. However, you can specify
multiple CONNECT statements if they all connect to the same Informix database.
If you use multiple connections, you must use an alias to identify the different
connections. If you omit an alias, informix is automatically used.

� The CONNECT statement database-connection-arguments are identical to its
connection-options .

� If you use quotation marks in your Informix Pass-Through statements, your
DELIMIDENT= environment variable must be set to DELIMIDENT=YES, or your
statements are rejected by Informix.

Stored Procedures and the Pass-Through Facility
The Pass-Through Facility recognizes two types of stored procedures in Informix that

perform only database functions. The methods for executing the two types of stored
procedures are different.

6 Command Restrictions for the Pass-Through Facility � Chapter 1

� Procedures that return no values to the calling application:
Stored procedures that do not return values can be executed directly by using

the Informix SQL EXECUTE statement. Stored procedure execution is initiated
with the Informix EXECUTE PROCEDURE statement. The following example
executes the stored procedure make_table. The stored procedure has no input
parameters and returns no values.

execute (execute procedure make_table())
by informix;

� Procedures that return values to the calling application:
Stored procedures that return values must be executed by using the PROC SQL

SELECT statement with a CONNECTION TO component. The following example
executes the stored procedure read_address, which has one parameter,
"Putnum".

The values that are returned by read_address serve as the contents of a
virtual table for the PROC SQL SELECT statement.

select * from connection to informix
(execute procedure read_address ("Putnum"));

For example, when you try to execute a stored procedure that returns values
from a PROC SQL EXECUTE statement, you get the following error message:

execute (execute procedure read_address
("Putnum")) by informix;

ERROR: Informix EXECUTE Error: Procedure
(read_address) returns too many values.

Command Restrictions for the Pass-Through Facility
Informix SQL contains extensions to the ANSI-89 standards. Some of these

extensions, such as LOAD FROM and UNLOAD TO, are restricted from use by any
applications other than the Informix DB-Access product. Specifying these extensions in
the PROC SQL EXECUTE statement generates this error:

-201
A syntax error has occurred

Examples
The following example connects to Informix by using data source testdsn:

proc sql;
connect to informix
(user=SCOTT password=TIGER server=testdsn);

Note: You can use the DBDATASRC environment variable to specify the data
source. �

The following example grants UPDATE and INSERT authority to user gomez on the
Informix ORDERS table. Because the CONNECT statement is omitted, an implicit
connection is made that uses a default value of informix as the connection alias and
default values for the DATABASE= and SERVER= arguments. Informix is a
case-sensitive database; therefore, the database object ORDERS is in uppercase, as it
was created.

SAS/ACCESS for Informix � Examples 7

proc sql;
execute (grant update, insert on ORDERS to gomez) by informix;

quit;

The following example connects to Informix and drops (that is, removes) the table
TempData from the database. The alias Temp5 that is specified in the CONNECT
statement is used in the EXECUTE statement’s BY clause.

proc sql;
connect to informix as temp5
(server=testdsn);
execute (drop table tempdata) by temp5;
disconnect from temp5;

quit;

The following example sends an SQL query, shown with highlighting, to the database
for processing. The results from the SQL query serve as a virtual table for the PROC
SQL FROM clause. In this example, DBCON is a connection alias.

proc sql;
connect to informix as dbcon

(user=testuser using=testpass
server=testdsn);

select *
from connection to dbcon

(select empid, lastname, firstname,
hiredate, salary

from employees
where hiredate>=’31JAN88’);

disconnect from dbcon;
quit;

The followings example gives the previous query a name and stores it as the PROC
SQL view Samples.Hires88. The CREATE VIEW statement appears in highlighting.

libname samples ’SAS-data-library’;

proc sql;
connect to informix as mycon

(user=testuser using=testpass
server=testdsn);

create view samples.hires88 as
select *

from connection to mycon
(select empid, lastname, firstname,
hiredate, salary from employees
where hiredate>=’31JAN88’);

disconnect from mycon;
quit;

8 Autopartitioning Scheme for Informix � Chapter 1

The following example connects to Informix and executes the stored procedure
testproc. The select * clause displays the results from the stored procedure.

proc sql;
connect to informix as mydb

(server=testdsn);
select * from connection to mydb

(execute procedure testproc(’123456’));
disconnect from mydb;

quit;

Autopartitioning Scheme for Informix

See the section about threaded reads in SAS/ACCESS for Relational Databases:
Reference for general information about this feature.

Overview

The autopartitioning method available for SAS/ACCESS to Informix is modeled after
the MOD function method as described in the section about autopartitioning techniques
in SAS/ACCESS for Relational Databases: Reference.

Autopartitioning Restrictions

SAS/ACCESS to Informix places additional restrictions on which columns can be
used for the partitioning column during the autopartitioning phase. Columns are
partitioned as follows:

� INTEGER

� SMALLINT

� BIT

� TINYINT

DECIMALS with 0 scales columns may also be used as the partitioning column.
Nullable columns are the least preferable.

Using WHERE Clauses

Autopartitioning does not select a column to be the partitioning column if it appears
in a WHERE clause. For instance, the following DATA step cannot to use a threaded
read to retrieve the data since all of the numeric columns in the table (see the table
definition as described in “Using DBSLICE=” on page 9) are in the WHERE clause:

data work.locemp;
set trlib.MYEMPS;
where EMPNUM<=30 and ISTENURE=0 and
SALARY<=35000 and NUMCLASS>2;
run;

SAS/ACCESS for Informix � Passing SAS Functions to Informix 9

Using DBSLICEPARM=
When you use autopartitioning, and DBSLICEPARM= does not specify a maximum

number of threads to use for the threaded read, the SAS/ACCESS interface to Informix
defaults to three threads.

The following example demonstrates the use of DBSLICEPARM=, with the maximum
number of threads set to five:

libname x informix user=dbitest using=dbigrp1 server=odbc15;
proc print data=x.dept(dbsliceparm=(ALL,5));
run;

Using DBSLICE=
You might achieve the best possible performance when using threaded reads by

specifying an Informix specific DBSLICE= data set option in your SAS operation. The
following example demonstrates the use of DBSLICE=:

libname x informix user=dbitest using=dbigrp1 server=odbc15;
data xottest;
set x.invoice(dbslice=("amtbilled<10000000" "amtbilled>=10000000"));
run;

Passing SAS Functions to Informix
The interface to Informix passes the following SAS functions to Informix for

processing. See the section about optimizing SQL usage in SAS/ACCESS for Relational
Databases: Reference for information.

ABS

ARCOS

ARSIN

ATAN

ATAN2

AVG

COS

DATE

EXP

INT

LOG

LOG10

MAX

MDY

MIN

SIN

10 Passing Joins to Informix � Chapter 1

SQRT

TAN

TODAY

YEAR

MONTH

DAY

SUM

COUNT

Passing Joins to Informix
In order for a multiple libref join to pass to Informix, each of the following

components of the LIBNAME statements must match exactly:

user ID

password

server

See the section about performance considerations in SAS/ACCESS for Relational
Databases: Reference for more information about when and how SAS/ACCESS passes
joins to the DBMS.

Temporary Table Support for Informix
See the section on the temporary table support in SAS/ACCESS for Relational

Databases: Reference for general information about this feature.

Establishing a Temporary Table
To establish the DBMS connection to support the creation and use of temporary

tables, issue a LIBNAME statement with the connection options
CONNECTION_GROUP=connection-group and CONNECTION=GLOBAL. This
LIBNAME statement is required even if you connect to the database using the
Pass-Through Facility CONNECT statement, because it establishes a connection group.

For every new PROC SQL step or LIBNAME statement, you must reissue a
CONNECT statement with the CONNECTION_GROUP= option set to the same value
so that the connection can be reused.

Terminating a Temporary Table
To terminate a temporary table, disassociate the libref by issuing the following

statement:

libname libref clear;

SAS/ACCESS for Informix � Locking in the Informix Interface 11

Example
In the following Pass-Through example, joins are pushed to Informix:

libname x informix user=tester using=xxxxx server=dsn_name
connection=global connection_group=mygroup;

proc sql;
connect to informix (user=tester using=xxxxx server=dsn_name

connection=global connection_group=mygroup);
execute (select * from t1 where (id >100)

into scratch scr1) by informix;
create table count2 as select * from connection to informix

(select count(*) as totrec from scr1);
quit;

proc print data=count2;
run;

proc sql;
connect to informix (user=tester using=xxxxx server=dsn_name

connection=global connection_group=mygroup);
execute(select t2.fname, t2.lname, scr1.dept from t2, scr1 where

(t2.id = scr1.id) into scratch t3) by informix;
quit;

libname x clear; /* connection closed, temp table closed */

Locking in the Informix Interface
In most situations, SAS spooling, which is on by default with the Informix interface,

provides the data consistency you need.
The READ_ISOLATION_LEVEL= LIBNAME option enables you to control how the

interface to Informix handles locks. This option can take the following values:

COMMITTED_READ
retrieves only committed rows. No locks are acquired, and rows can be locked
exclusively for update by other users or processes. This is the default setting.

REPEATABLE_READ
gives you a shared lock on every row that is selected during the transaction. Other
users or processes can also acquire a shared lock, but no other process can modify
any row that is selected by your transaction. If you repeat the query during the
transaction, you re-read the same information. The shared locks are released only
when the transaction commits or rolls back. Another process cannot update or
delete a row that is accessed by using a repeatable read.

DIRTY_READ
retrieves committed and uncommitted rows that might include phantom rows,
which are rows that are created or modified by another user or process that might
subsequently be rolled back. This type of read is most appropriate for tables that
are not frequently updated.

12 Naming Conventions for Informix � Chapter 1

CURSOR_STABILITY
gives you a shared lock on the selected row. Another user or process can acquire a
shared lock on the same row, but no process can acquire an exclusive lock to
modify data in the row. When you retrieve another row or close the cursor, the
shared lock is released.

If you set READ_ISOLATION_LEVEL= to REPEATABLE_READ or
CURSOR_STABILITY, it is recommended that you assign a separate libref and that you
clear that libref when you have finished working with the tables. This technique
minimizes the negative performance impact on other users that occurs when you lock
the tables. To clear the libref, include the following code:

libname libref clear;

Note: For current Informix releases, READ_ISOLATION_LEVEL= is only valid
when transaction logging is enabled. If transaction logging is not enabled, an error is
generated when you use this option. Also, locks placed when
READ_ISOLATION_LEVEL= REPEATABLE READ or CURSOR_STABILITY are not
freed until the libref is cleared. �

To see the SQL locking statements that SAS issues to the Informix server, include
the SASTRACE= option in your code:

option sastrace=’,,,d’;

For more details about Informix locking, see your Informix documentation.

Naming Conventions for Informix

The PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options determine
how the interface to Informix handles case sensitivity, spaces, and special characters.
See the section about the LIBNAME statement in SAS/ACCESS for Relational
Databases: Reference for information about these options.

The Informix naming conventions are as follows:

� Table and column names must begin with a letter or an underscore followed by
letters, numbers, or underscores. However, if the name appears within quotation
marks and PRESERVE_TAB_NAMES=YES (when applicable), it can start with
any character.

� Table and column names can contain up to 32 characters for connecting to
Informix Dynamic Server 200, and 18 characters for the other servers.

Note: Informix encourages users to utilize lower case for table and column names.
Several problems have been found in the Informix ODBC driver that result from using
upper case or mixed case.

Currently Informix has no schedule for fixing these known problems. �

Informix Data Types

Every column in a table has a name and a data type. The data type tells Informix
how much physical storage to set aside for the column and the form in which the data
is stored.

SAS/ACCESS for Informix � Abstract Data 13

Character Data
CHAR(n), NCHAR(n)

contains character string data from 1 to 32,767 characters in length and can
include tabs and spaces.

VARCHAR(m,n), NVARCHAR(m,n)
contains character string data from 1 to 255 characters in length.

TEXT
contains unlimited text data, depending on memory capacity.

BYTE
contains binary data of variable length.

Numeric Data
DECIMAL, MONEY, NUMERIC

contains numeric data with definable scale and precision. The amount of storage
that is allocated depends on the size of the number.

FLOAT, DOUBLE PRECISION
contains double-precision numeric data up to 8 bytes.

INTEGER
contains an integer up to 32 bits (from -231 to 231−1).

REAL, SMALLFLOAT
contains single-precision, floating-point numbers up to 4 bytes.

SERIAL
stores sequential integers up to 32 bits.

SMALLINT
contains integers up to 2 bytes.

INT8
contains an integer up to 64 bits (-2(63–1) to 2(63–1)).

SERIAL8
contains sequential integers up to 64 bits.

Abstract Data
DATE

contains a calendar date in the form of a signed integer value.

DATETIME
contains a calendar date and time of day stored in 2 to 11 bytes, depending on
precision.

Note: When the DATETIME column is in an uncommon format (i.e.,
DATETIME MINUTE TO MINUTE or DATETIME SECOND TO SECOND), the
date and time values might not display correctly. �

INTERVAL
contains a span of time stored in 2 to 12 bytes, depending on precision.

14 Informix Null Values � Chapter 1

Informix Null Values
Informix has a special value that is called NULL. An Informix NULL value means

an absence of information and is analogous to a SAS missing value. When
SAS/ACCESS reads an Informix NULL value, it interprets it as a SAS missing value.

If you do not indicate a default value for an Informix column, the default value is
NULL. You can specify the keywords NOT NULL after the data type of the column when
you create an Informix table to prevent NULL values from being stored in the column.
When creating an Informix table with SAS/ACCESS, you can use the DBNULL= data
set option to indicate whether NULL is a valid value for specified columns.

For more information about how SAS handles NULL values, see SAS/ACCESS for
Relational Databases: Reference.

Note: To control how SAS missing character values are handled by Informix, use the
NULLCHAR= and NULLCHARVAL= data set options. �

LIBNAME Statement Data Conversions
The following table shows the default SAS variable formats that SAS/ACCESS

applies to Informix data types during input operations when you use the LIBNAME
statement. You can override these default data types by using the DBTYPE= data set
option on a specific data set.

Table 1.3 LIBNAME Statement: Default SAS Formats for Informix Data Types

Informix Column Type Default SAS Format

CHAR(n) $n

DATE DATE9.

DATETIME** DATETIME24.5

DECIMAL m+2.n

DOUBLE PRECISION none

FLOAT none

INTEGER none

INT8# none

INTERVAL $n

MONEY none

NCHAR(n) $n

NLS support required

NUMERIC none

NVARCHAR(m,n)* $m

NLS support required

REAL none

SERIAL none

SERIAL8# none

SMALLFLOAT none

SAS/ACCESS for Informix � Informix Database Servers 15

Informix Column Type Default SAS Format

SMALLINT none

TEXT* $n

VARCHAR(m,n)* $m

* Only supported by Informix-Online databases
The precision of a INT8 or SERIAL8 is 15 digit.
** If the Informix field qualifier specifies either HOUR, MINUTE, SECOND, or FRACTION as the

largest unit, the value is converted to a SAS TIME value. All others, such as YEAR, MONTH,
or DAY, are converted to a SAS DATETIME value.

The following table shows the default Informix data types that SAS/ACCESS applies
to SAS variable formats during output operations when you use the LIBNAME
statement.

Table 1.4 LIBNAME Statement: Default Informix Data Types for SAS Variable
Formats

SAS Variable Format Informix Data Type

$w. CHAR(w).

w. with SAS format name of NULL DOUBLE

w.d with SAS format name of NULL DOUBLE

all other numerics DOUBLE

datetimew.d DATETIME YEAR TO FRACTION(5)

datew. DATE

time. DATETIME HOUR TO SECOND

Pass-Through Facility Data Conversions
The Pass-Through Facility uses the same default conversion formats as the

LIBNAME statement. See “LIBNAME Statement Data Conversions” on page 14 for the
conversion tables.

Overview of Informix Servers

Informix Database Servers
There are two types of Informix database servers, the Informix-Online and

Informix-SE servers. Informix-Online database servers can support many users and
provide tools that ensure high availability, high reliability, and that support critical
applications. Informix-SE database servers are designed to manage relatively small
databases that are used privately by individuals or shared among a small number of
users.

16 Using the DBDATASRC Environment Variables � Chapter 1

Using the DBDATASRC Environment Variables
The Pass-Through Facility supports the environment variable DBDATASRC, which is

an extension to the Informix environment variable. If you set DBDATASRC, you can
omit the CONNECT statement. The value of DBDATASRC is used instead of the
SERVER= argument in the CONNECT statement. The syntax for setting DBDATASRC
is like the syntax of the SERVER= argument:

Bourne shell:

DBDATABASE=’testdsn’ export DBDATASRC

C shell:

setenv DBDATASRC testdsn

If you set DBDATASRC, you can issue a PROC SQL SELECT or EXECUTE
statement without first connecting to Informix with the CONNECT statement.

If you omit the CONNECT statement, an implicit connection is performed when the
SELECT or EXECUTE statement is passed to Informix.

If you create an SQL view without an explicit CONNECT statement, the view can
dynamically connect to different databases, depending on the value of the DBDATASRC
environment variable.

Using Fully Qualified Table Names
Informix supports a connection to only one database. If you have data that spans

multiple databases, you must use fully qualified table names to work within the
Informix single-connection constraints.

In the following example, the tables Tab1 and Tab2 reside in different databases,
MyDB1 and MyDB2, respectively.

proc sql;
connect to informix
(database=corpdb server=online);

create view tab1v as
select * from connection
to informix

(select * from mydb1.tab1);

create view tab2v as
select * from connection
to informix

(select * from mydb2.tab2);
quit;

data getboth;
merge tab1v tab2v;
by common;

run;

Because the tables reside in separate databases, you cannot connect to each database
with a PROC SQL CONNECT statement and then retrieve the data in a single step.
Using the fully qualified table name (that is, database.table) enables you to use any
Informix database in the CONNECT statement and access Informix tables in the same
or different databases in a single SAS procedure or DATA step.

17

A P P E N D I X

1
Recommended Reading

Recommended Reading 17

Recommended Reading

Here is the recommended reading list for this title:
� SAS/ACCESS for Relational Databases: Reference
� SAS Language Reference: Concepts

� SAS Language Reference: Dictionary
� Base SAS Procedures Guide
� SAS Companion that is specific to your operating environment

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

18

19

Glossary

This glossary defines SAS software terms that are used in this document as well as
terms that relate specifically to SAS/ACCESS software.

access descriptor
a SAS/ACCESS file that describes data that is managed by a data management
system. After creating an access descriptor, you can use it as the basis for creating
one or more view descriptors. See also view and view descriptor.

browsing data
the process of viewing the contents of a file. Depending on how the file is accessed,
you can view SAS data either one observation (row) at a time or as a group in a
tabular format. You cannot update data that you are browsing.

bulk load
to load large amounts of data into a database object, using methods that are specific
to a particular DBMS. Bulk loading enables you to rapidly and efficiently add
multiple rows of data to a table as a single unit.

client
(1) a computer or application that requests services, data, or other resources from a
server. (2) in the X Window System, an application program that interacts with the X
server and can perform tasks such as terminal emulation or window management.
For example, SAS is a client because it requests windows to be created, results to be
displayed, and so on.

column
in relational databases, a vertical component of a table. Each column has a unique
name, contains data of a specific type, and has certain attributes. A column is
analogous to a variable in SAS terminology.

column function
an operation that is performed for each value in the column that is named as an
argument of the function. For example, AVG(SALARY) is a column function.

commit
the process that ends a transaction and makes permanent any changes to the
database that the user made during the transaction. When the commit process
occurs, locks on the database are released so that other applications can access the
changed data. The SQL COMMIT statement initiates the commit processs.

20 Glossary

DATA step view
a type of SAS data set that consists of a stored DATA step program. Like other SAS
data views, a DATA step view contains a definition of data that is stored elsewhere;
the view does not contain the physical data. The view’s input data can come from one
or more sources, including external files and other SAS data sets. Because a DATA
step view only reads (opens for input) other files, you cannot update the view’s
underlying data.

data type
a unit of character or numeric information in a SAS data set. A data value
represents one variable in an observation.

data value
in SAS, a unit of character or numeric information in a SAS data set. A data value
represents one variable in an observation.

database
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes

database management system (DBMS)
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes

editing data
the process of viewing the contents of a file with the intent and the ability to change
those contents. Depending on how the file is accessed, you can view the data either
one observation at a time or in a tabular format.

engine
a component of SAS software that reads from or writes to a file. Each engine enables
SAS to access files that are in a particular format. There are several types of engines.

file
a collection of related records that are treated as a unit. SAS files are processed and
controlled by SAS and are stored in SAS data libraries.

format
a collection of related records that are treated as a unit. SAS files are processed and
controlled by SAS and are stored in SAS data libraries. In SAS/ACCESS software,
the default formats vary according to the interface product.

index
(1) in SAS software, a component of a SAS data set that enables SAS to access
observations in the SAS data set quickly and efficiently. The purpose of SAS indexes
is to optimize WHERE-clause processing and to facilitate BY-group processing. (2) in
other software vendors’ databases, a named object that directs the DBMS to the
storage location of a particular data value for a particular column. Some DBMSs
have additional specifications. These indexes are also used to optimize the processing
of WHERE clauses and joins. Depending on the SAS interface to a database product
and how selection criteria are specified, SAS may or may not be able to use the
indexes of the DBMS to speed data retrieval.

Depending on how selection criteria are specified, SAS might use DBMS indices to
speed data retrieval.

informat
a pattern or set of instructions that SAS uses to determine how data values in an
input file should be interpreted. SAS provides a set of standard informats and also
enables you to define your own informats.

Glossary 21

interface view engine
a SAS engine that is used by SAS/ACCESS software to retrieve data from files that
have been formatted by another vendor’s software. Each SAS/ACCESS interface has
its own interface view engine, which reads the interface product data and returns the
data in a form that SAS can understand (that is, in a SAS data set). SAS
automatically uses an interface view engine; the engine name is stored in
SAS/ACCESS descriptor files so that you do not need to specify the engine name in a
LIBNAME statement.

libref
a name that is temporarily associated with a SAS data library. The complete name of
a SAS file consists of two words, separated by a period. The libref, which is the first
word, indicates the library. The second word is the name of the specific SAS file. For
example, in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the
file NEWBDAY. You assign a libref with a LIBNAME statement or with an operating
system command.

member
a SAS file in a SAS data library.

member name
a name that is given to a SAS file in a SAS data library.

member type
a SAS name that identifies the type of information that is stored in a SAS file.
Member types include ACCESS, DATA, CATALOG, PROGRAM, and VIEW.

missing value
in SAS, a term that describes the contents of a variable that contains no data for a
particular row or observation. By default, SAS prints or displays a missing numeric
value as a single period, and it prints or displays a missing character value as a
blank space.

observation
a row in a SAS data set. All of the data values in an observation are associated with
a single entity such as a customer or a state. Each observation contains one data
value for each variable. In a database product table, an observation is analogous to a
row. Unlike rows in a database product table or file, observations in a SAS data file
have an inherent order.

Pass-Through Facility
a group of SQL procedure statements that send and receive data directly between a
relational database management system and SAS. The Pass-Through Facility
includes the CONNECT, DISCONNECT, and EXECUTE statements, and the
CONNECTION TO component. SAS/ACCESS software is required in order to use
the Pass-Through Facility.

PROC SQL view
a SAS data set (of type VIEW) that is created by the SQL procedure. A PROC SQL
view contains no data. Instead, it stores information that enables it to read data
values from other files, which can include SAS data files, SAS/ACCESS views, DATA
step views, or other PROC SQL views. A PROC SQL view’s output can be either a
subset or a superset of one or more files.

query
a set of instructions that requests particular information from one or more data
sources.

22 Glossary

referential integrity
a set of rules that a DBMS uses to ensure that whenever a data value in one table is
changed, the appropriate change is also made to any related values in other tables or
in the same table. Referential integrity is also used to ensure that related data is not
deleted or changed accidentally.

relational database management system
a database management system that organizes and accesses data according to
relationships between data items. Oracle and DB2 are examples of relational
database management systems.

rollback
in most databases, the process that restores the database to its state when changes
were last committed, voiding any recent changes. The SQL ROLLBACK statement
initiates the rollback processes. See also commit.

row
in relational database management systems, the horizontal component of a table. A
row is analogous to a SAS observation.

SAS data file
a type of SAS data set that contains data values as well as descriptor information
that is associated with the data. The descriptor information includes information
such as the data types and lengths of the variables, as well as the name of the engine
that was used to create the data. A PROC SQL table is a SAS data file. SAS data
files are of member type DATA.

SAS data library
a collection of one or more SAS files that are recognized by SAS and that are
referenced and stored as a unit. Each file is a member of the library.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS data view
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS/ACCESS views
See view descriptor and SAS data view.

server
in a network, a computer that is reserved for servicing other computers in the
network. Servers can provide several different types of services, such as file services
and communication services. Servers can also enable users to access shared
resources such as disks, data, and modems.

Structured Query Language (SQL)
the standardized, high-level query language that is used in relational database
management systems to create and manipulate database management system
objects. SAS implements SQL through the SQL procedure.

Glossary 23

table
a two-dimensional representation of data, in which the data values are arranged in
rows and columns.

trigger
a type of user-defined stored procedure that is executed whenever a user issues a
data-modification command such as INSERT, DELETE, or UPDATE for a specified
table or column. Triggers can be used to implement referential integrity or to
maintain business constraints.

variable
a column in a SAS data set. A variable is a set of data values that describe a given
characteristic across all observations.

view
a definition of a virtual data set. The definition is named and stored for later use. A
view contains no data; it merely describes or defines data that is stored elsewhere.
SAS data views can be created by the ACCESS and SQL procedures.

view descriptor
a file created by SAS/ACCESS software that defines part or all of the database
management system (DBMS) data or PC file data that is described by an access
descriptor. The access descriptor describes the data in a single DBMS table, DBMS
view, or PC file.

wildcard
a file created by SAS/ACCESS software that defines part or all of the database
management system (DBMS) data or PC file data that is described by an access
descriptor. The access descriptor describes the data in a single DBMS table, DBMS
view, or PC file.

24

Index 25

Index

A
abstract data

Informix data types 13

autopartitioning

Informix 8

B
BYTE data type 13

C
CHAR data type

Informix 13

character data

Informix data types 13

committed reads 11

cursor stability reads 12

D
data set options

Informix 4

data types

Informix 12

date and time data

Informix data types 13

DATE data type

Informix 13

DATETIME data type 13

DBDATASRC environment variables 16

DBSLICE= option

autopartitioning 9

DBSLICEPARM= option

LIBNAME statement 9

DECIMAL data type

Informix 13

dirty reads 11

DOUBLE PRECISION data type

Informix 13

F
FLOAT data type

Informix 13

I
Informix, interface to 1

autopartitioning scheme 8

data set options 4

data types 12

Informix database servers, about 15

LIBNAME statement 1, 14

locking in 11

naming conventions 12

Pass-Through Facility 5, 15

passing joins to 10

passing SAS functions to 9

stored procedures, calling 5

INT8 data type 13

INTEGER data type

Informix 13

INTERVAL data type 13

J
joins

passing to Informix 10

L
LIBNAME statement

Informix specifics 1, 14

locking data, handling

Informix interface 11

M
MONEY data type

Informix 13

N
naming conventions

Informix, interface to 12
NCHAR data type 13
null values

Informix 14
numeric data

Informix data types 13
NUMERIC data type

Informix 13
NVARCHAR data type 13

P
Pass-Through Facility

Informix specifics 5, 15, 16
PRESERVE_COL_NAMES= option

Informix 12
PRESERVE_TAB_NAMES= option, LIBNAME

statement
Informix 12

R
READ_ISOLATION_LEVEL= option

Informix interface 11
REAL data type

Informix 13
remote stored procedures

calling, Informix 5
repeatable reads 11

S
SAS/ACCESS data set options

Informix specifics 4
SAS SQL functions

passing to Informix 9
SERIAL data type 13
SERIAL8 data type 13
SERVER= option

LIBNAME statement 3
SMALLFLOAT data type 13
SMALLINT data type

Informix 13

26 Index

stored procedures
calling, Informix 5

T
TEXT data type

Informix 13

threaded reads
Informix, interface to 8

U
USER= option, LIBNAME statement

Informix 2
USING= option, LIBNAME statement 3

V
VARCHAR data type

Informix 13

Your Turn

If you have comments or suggestions about SAS/ACCESS® 9.1 Supplement for
Informix®, please send them to us on a photocopy of this page, or send us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

.

	Table of Contents
	Contents

	SAS/ACCESS for Informix
	Introduction to the SAS/ACCESS Interface to Informix
	Default Environment

	LIBNAME Statement Specifics for Informix
	Arguments
	Informix LIBNAME Statement Example

	Data Set Options for Informix
	Pass-Through Facility Specifics for Informix
	Stored Procedures and the Pass-Through Facility
	Command Restrictions for the Pass-Through Facility
	Examples

	Autopartitioning Scheme for Informix
	Overview
	Autopartitioning Restrictions
	Using WHERE Clauses
	Using DBSLICEPARM=
	Using DBSLICE=

	Passing SAS Functions to Informix
	Passing Joins to Informix
	Temporary Table Support for Informix
	Establishing a Temporary Table
	Terminating a Temporary Table
	Example

	Locking in the Informix Interface
	Naming Conventions for Informix
	Informix Data Types
	Character Data
	Numeric Data
	Abstract Data
	Informix Null Values
	LIBNAME Statement Data Conversions
	Pass-Through Facility Data Conversions

	Overview of Informix Servers
	Informix Database Servers
	Using the DBDATASRC Environment Variables
	Using Fully Qualified Table Names

	Recommended Reading
	Recommended Reading

	Glossary
	Index

