
SAS/ACCESS®

9.1
Supplement for DB2 under
UNIX and PC Hosts
SAS/ACCESS for Relational Databases

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS/ACCESS ® 9.1 Supplement for DB2 under UNIX and PC Hosts (SAS/ACCESS for
Relational Databases). Cary, NC: SAS Institute Inc.

SAS/ACCESS® 9.1 Supplement for DB2 under UNIX and PC Hosts (SAS/ACCESS
for Relational Databases)
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
ISBN 1-59047-246-2
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

Chapter 1 � SAS/ACCESS for DB2 under UNIX and PC Hosts 1
Introduction to the SAS/ACCESS Interface to DB2 under UNIX and PC Hosts 2

LIBNAME Statement Specifics for DB2 under UNIX and PC Hosts 2

Data Set Options for DB2 under UNIX and PC Hosts 5

Pass-Through Facility Specifics for DB2 under UNIX and PC Hosts 7

Autopartitioning Scheme for DB2 under UNIX and PC Hosts 8

Temporary Table Support for DB2 under UNIX and PC Hosts 11

DBLOAD Procedure Specifics for DB2 under UNIX and PC Hosts 12

Passing SAS Functions to DB2 under UNIX and PC Hosts 14

Passing Joins to DB2 under UNIX and PC Hosts 15

Locking for DB2 under UNIX and PC Hosts Interface 15

DB2 under UNIX and PC Hosts Bulk Loading 16

DB2 under UNIX and PC Hosts Naming Conventions 19

Data Types for DB2 under UNIX and PC Hosts 20

Appendix 1 � Recommended Reading 25
Recommended Reading 25

Glossary 27

Index 33

iv

1

C H A P T E R

1
SAS/ACCESS for DB2 under UNIX
and PC Hosts

Introduction to the SAS/ACCESS Interface to DB2 under UNIX and PC Hosts 2
LIBNAME Statement Specifics for DB2 under UNIX and PC Hosts 2

Arguments 2

DB2 UNIX/PC LIBNAME Statement Example 5

Data Set Options for DB2 under UNIX and PC Hosts 5

Pass-Through Facility Specifics for DB2 under UNIX and PC Hosts 7
Examples 7

Autopartitioning Scheme for DB2 under UNIX and PC Hosts 8

Overview 8

Autopartitioning Restrictions 8

Nullable Columns 8

Using WHERE Clauses 8
Using DBSLICEPARM= 9

Using DBSLICE= 9

Configuring DB2 EEE Nodes on Physically Partitioned Databases 10

Temporary Table Support for DB2 under UNIX and PC Hosts 11

Establishing a Temporary Table 11
Terminating a Temporary Table 11

Examples 11

DBLOAD Procedure Specifics for DB2 under UNIX and PC Hosts 12

Examples 13

Passing SAS Functions to DB2 under UNIX and PC Hosts 14
Passing Joins to DB2 under UNIX and PC Hosts 15

Locking for DB2 under UNIX and PC Hosts Interface 15

DB2 under UNIX and PC Hosts Bulk Loading 16

Maximizing Load Performance for DB2 under UNIX and PC Hosts 18

Examples 18

DB2 under UNIX and PC Hosts Naming Conventions 19
Data Types for DB2 under UNIX and PC Hosts 20

String Data 20

Numeric Data 20

Dates, Times, and Timestamps 21

DB2 Null and Default Values 22
LIBNAME Statement Data Conversions 22

DBLOAD Procedure Data Conversions 23

2 Introduction to the SAS/ACCESS Interface to DB2 under UNIX and PC Hosts � Chapter 1

Introduction to the SAS/ACCESS Interface to DB2 under UNIX and PC
Hosts

This document includes details only about the SAS/ACCESS interface to DB2 under
UNIX and PC Hosts. It should be used as a supplement to the generic SAS/ACCESS
documentation, SAS/ACCESS for Relational Databases: Reference.

LIBNAME Statement Specifics for DB2 under UNIX and PC Hosts
This section describes the LIBNAME statement as supported by the interface to DB2

under UNIX and PC hosts. For a complete description of this feature, see the LIBNAME
statement section in SAS/ACCESS for Relational Databases: Reference. The DB2
under UNIX and PC hosts specific syntax for the LIBNAME statement is as follows:

LIBNAME libref db2 <connection-options> <LIBNAME-options>;

Arguments
libref

is any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

db2
is the SAS/ACCESS engine name for the interface to DB2 under UNIX and PC
hosts.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. There are several ways to connect to
DB2 when you are using the LIBNAME statement. Use only one of the following
methods for each connection since they are mutually exclusive:

� specify USER=, PASSWORD=, and DATASRC=
� specify COMPLETE=
� specify NOPROMPT=
� specify PROMPT=
� specify REQUIRED=.

Definitions of these connection options are provided below.

USER=<’>user-name<’>
enables you to connect to a DB2 database with a user ID that is different
from the default ID.

USER= is optional. If you specify USER=, you must also specify
PASSWORD=. If USER= is omitted, your default user ID for your operating
environment is used.

PASSWORD=<’>password<’>
specifies the DB2 password that is associated with your DB2 user ID.

PASSWORD= is optional. If you specify USER=, you must specify
PASSWORD=.

DATASRC=<’>data-source-name<’>
specifies the DB2 data source or database to which you want to connect.

SAS/ACCESS for DB2 under UNIX and PC Hosts � Arguments 3

DATASRC= is optional. If you omit it, you connect by using a default
environment variable.

DSN= and DATABASE= are aliases for this option.

COMPLETE=<’>CLI-connection-string<’>
specifies connection information for your data source or database for PCs
only. Separate multiple options with a semicolon. When a successful
connection is made, the complete connection string is returned in the
SYSDBMSG macro variable.

If you do not specify enough correct connection options, you are prompted
with a dialog box that displays the values from the COMPLETE= connection
string. You can edit any field before you connect to the data source.

This option is not available on UNIX platforms. See your DB2
documentation for more details.

NOPROMPT=<’>CLI-connection-string<’>
specifies connection information for your data source or database. Separate
multiple options with a semicolon.

If you do not specify enough correct connection options, an error is
returned (no dialog box is displayed).

PROMPT=<’> CLI-connection-string<’>
specifies connection information for your data source or database for PCs
only. Separate multiple options with a semicolon. When a successful
connection is made, the complete connection string is returned in the
SYSDBMSG macro variable.

PROMPT= does not immediately attempt to connect to the DBMS. Instead,
it displays a dialog box that contains the values that you entered in the
PROMPT= connection string. You can edit values or enter additional values
in any field before you connect to the data source.

This option is not available on UNIX platforms.

REQUIRED=<’>CLI-connection-string<’>
specifies connection information for your data source or database for PCs
only. Separate multiple options with a semicolon. When a successful
connection is made, the complete connection string is returned in the
SYSDBMSG macro variable.

If you do not specify enough correct connection options, a dialog box
prompts you for the connection options. REQUIRED= only allows you to
modify required fields in the dialog box.

This option is not available on UNIX platforms.

LIBNAME-options
define how DBMS objects are processed by SAS. Some LIBNAME options can
enhance performance; others determine locking or naming behavior. The following
table describes which LIBNAME options are supported for DB2 under UNIX and
PC hosts, and presents default values where applicable. See the section about the
LIBNAME statement in SAS/ACCESS for Relational Databases: Reference for
detailed information about these options.

Table 1.1 SAS/ACCESS LIBNAME Options for DB2 under UNIX and PC Hosts

Option Default Value

ACCESS= none

AUTOCOMMIT= varies with transaction type

CONNECTION= SHAREDREAD

4 Arguments � Chapter 1

Option Default Value

CONNECTION_GROUP= none

CURSOR_TYPE= DYNAMIC

DBCOMMIT= 1000 (insert); 0 (update); 10000 (bulk load)

DBCONINIT= none

DBCONTERM= none

DBCREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX= YES

DBLIBINIT= none

DBLIBTERM= none

DBMAX_TEXT= 1024

DBNULLKEYS= YES

DBPROMPT= NO

DBSLICEPARM= THREADED_APPS,2 or 3

DEFER= NO

DIRECT_EXE= none

DIRECT_SQL= YES

IGNORE_ READ_ONLY_COLUMNS= NO

IN= none

INSERTBUFF= 1

MULTI_DATASRC_OPT= NONE

PRESERVE_COL_NAMES= NO (see “DB2 under UNIX and PC Hosts Naming
Conventions” on page 19)

PRESERVE_TAB_NAMES= NO (see “DB2 under UNIX and PC Hosts Naming
Conventions” on page 19)

QUERY_TIMEOUT= 0

READBUFF= 0

READ_ISOLATION_LEVEL= set by the user in the DB2Cli.ini file (see “Locking
for DB2 under UNIX and PC Hosts Interface” on
page 15)

READ_LOCK_TYPE= ROW

REREAD_EXPOSURE= NO

SCHEMA= your user ID

SPOOL= YES

SQL_FUNCTIONS= NONE

STRINGDATES= NO

UPDATE_ISOLATION_LEVEL= CS (see “Locking for DB2 under UNIX and PC Hosts
Interface” on page 15)

SAS/ACCESS for DB2 under UNIX and PC Hosts � Data Set Options for DB2 under UNIX and PC Hosts 5

Option Default Value

UPDATE_LOCK_TYPE= ROW

UTILCONN_TRANSIENT= YES

DB2 UNIX/PC LIBNAME Statement Example
In the following example, the libref MyDBLib uses the DB2 engine and the

NOPROMPT= option to connect to a DB2 database. PROC PRINT is used to display the
contents of the DB2 table Customers.

libname mydblib db2
noprompt="dsn=userdsn;uid=testuser;pwd=testpass;";

proc print data=mydblib.customers;
where state=’CA’;

run;

Data Set Options for DB2 under UNIX and PC Hosts

The following table describes the data set options that are supported for DB2 under
UNIX and PC hosts, and provides default values where applicable. See the section
about data set options in SAS/ACCESS for Relational Databases: Reference for detailed
information about these options.

Table 1.2 SAS/ACCESS Data Set Options for DB2 under UNIX and PC Hosts

Option Default Value

BL_CODEPAGE= the window’s codepage ID

BL_COPYLOCATION= none

BL_DATAFILE= the current directory

BL_DELETE_DATAFILE= YES

BL_INDEXING_MODE= AUTOSELECT

BL_LOAD_REPLACE= NO

BL_LOG= the current directory

BL_METHOD= none

BL_OPTIONS= none

BL_RECOVERABLE= NO

BL_REMOTEFILE= none

BL_SERVER_DATAFILE= same as BL_DATAFILE

BL_WARNING_COUNT= 2147483646

BULKLOAD= NO

CURSOR TYPE= LIBNAME option setting

DBCOMMIT= LIBNAME option setting

6 Data Set Options for DB2 under UNIX and PC Hosts � Chapter 1

Option Default Value

DBCONDITION= none

DBCREATE_TABLE_OPTS= LIBNAME option setting

DBFORCE= NO

DBGEN_NAME= DBMS

DBINDEX= LIBNAME option setting

DBKEY= none

DBLABEL= NO

DBMASTER= none

DBMAX_TEXT= 1024

DBNULL= _ALL_=YES

DBNULLKEYS= LIBNAME option setting

DBPROMPT= LIBNAME option setting

DBSASTYPE= see “Data Types for DB2 under UNIX and PC Hosts” on
page 20

DBSLICE= none

DBSLICEPARM= THREADED_APPS,2 or 3

DBTYPE= see “Data Types for DB2 under UNIX and PC Hosts” on
page 20

ERRLIMIT= 1

IGNORE_
READ_ONLY_COLUMNS=

NO

IN= LIBNAME option setting

INSERTBUFF= LIBNAME option setting

NULLCHAR= SAS

NULLCHARVAL= a blank character

PRESERVE_COL_NAMES= LIBNAME option setting

QUERY_TIMEOUT= LIBNAME option setting

READ_ISOLATION_LEVEL= LIBNAME option setting

READ_LOCK_TYPE= LIBNAME option setting

READBUFF= LIBNAME option setting

SASDATEFMT= none

SCHEMA= LIBNAME option setting

SAS/ACCESS for DB2 under UNIX and PC Hosts � Examples 7

Option Default Value

UPDATE_ISOLATION_LEVEL= LIBNAME option setting

UPDATE_LOCK_TYPE= LIBNAME option setting

Pass-Through Facility Specifics for DB2 under UNIX and PC Hosts
See the section about the Pass-Through Facility in SAS/ACCESS for Relational

Databases: Reference for general information about this feature.
The Pass-Through Facility specifics for DB2 under UNIX and PC Hosts are as follows:
� The dbms-name is DB2.
� The CONNECT statement is required.
� You can connect to only one DB2 database at a time. However, you can use

multiple CONNECT statements to connect to multiple DB2 data sources by using
the alias argument to distinguish your connections.

� The database-connection-arguments for the CONNECT statement are identical to
its LIBNAME connection options.

� The following LIBNAME options are available with the CONNECT statement:
AUTOCOMMIT=
CURSOR_TYPE=
QUERY_TIMEOUT=
READBUFF=
READ_ISOLATION_LEVEL=

See the section about the LIBNAME statement in SAS/ACCESS for Relational
Databases: Reference for information about these options.

Examples
The following example connects to the SAMPLE database and sends it two

EXECUTE statements to process.

proc sql;
connect to db2 (database=sample);
execute (create view

sasdemo.whotookorders as
select ordernum, takenby,

firstname, lastname, phone
from sasdemo.orders,

sasdemo.employees
where sasdemo.orders.takenby=

sasdemo.employees.empid)
by db2;

execute (grant select on
sasdemo.whotookorders to testuser)
by db2;

disconnect from db2;
quit;

The following example connects to the SAMPLE database by using an alias (DB1)
and performs a query, shown in italic type, on the SASDEMO.CUSTOMERS table.

8 Autopartitioning Scheme for DB2 under UNIX and PC Hosts � Chapter 1

proc sql;
connect to db2 as db1 (database=sample);
select *

from connection to db1
(select * from sasdemo.customers

where customer like ’1%’);
disconnect from db1;

quit;

Autopartitioning Scheme for DB2 under UNIX and PC Hosts

See the section about threaded reads in SAS/ACCESS for Relational Databases:
Reference for general information about this feature.

Overview
The autopartitioning method available for the SAS/ACCESS interface to DB2 for

UNIX and PC hosts is a MOD function method as described in the section about
autopartitioning techniques in SAS/ACCESS for Relational Databases: Reference.

Autopartitioning Restrictions
The interface to DB2 under UNIX and PC hosts restricts which columns can be used

for the partitioning column during the autopartitioning phase. Columns are partitioned
as follows:

� INTEGER and SMALLINT columns are given preference.

� The other DB2 numeric columns may be used for partitioning, provided that the
precision minus the scale of the column is between 0 and 10. That is,
0<(precision-scale)<10.

Nullable Columns
If a nullable column is selected for partitioning, then the SQL statement

OR<column-name>IS NULL is appended to the end of the SQL code that is generated for
the threaded reads. This ensures that any possible NULL values are returned in the
result set.

Using WHERE Clauses
Autopartitioning does not select a column to be the partitioning column if it appears

in the WHERE clause. For instance, the following data step would not be able to use a
threaded read to retrieve the data since all of the numeric columns in the table (see the
table definition as described in “Using DBSLICE=” on page 9) are in the WHERE clause:

data work.locemp;
set trlib.MYEMPS;
where EMPNUM<=30 and ISTENURE=0 and
SALARY<=35000 and NUMCLASS>2;
run;

SAS/ACCESS for DB2 under UNIX and PC Hosts � Using DBSLICE= 9

Using DBSLICEPARM=
When using autopartitioning, and DBSLICEPARM= does not specify a maximum

number of threads to use for the threaded read, SAS/ACCESS to DB2 under UNIX and
PC hosts defaults to three threads.

Using DBSLICE=
You can achieve the best possible performance when using threaded reads by

specifying a DB2-specific DBSLICE= data set option in your SAS operation. This
statement is especially true if your DB2 data is evenly distributed across multiple
partitions in a DB2 Enterprise Extended Edition (EEE) database system. When
creating a DB2 table under the DB2 EEE model, you can specify the partitioning key
you want to use by appending the clause PARTITIONING KEY(column-name) to your
CREATE TABLE statement. Inside the SAS environment, this can be accomplished
with the LIBNAME option DBCREATE_TABLE_OPTS=, as follows:

/*points to a triple node server*/
libname trlib2 db2 user=db2user pw=db2pwd db=sample3c
DBCREATE_TABLE_OPTS=’PARTITIONING KEY(EMPNUM);

proc delete data=trlib.MYEMPS1;
run;

data trlib.myemps(drop=morf whatstate
DBTYPE=(HIREDATE="date" SALARY="numeric(8,2)"
NUMCLASS="smallint" GENDER="char(1)" ISTENURE="numeric(1)" STATE="char(2)"
EMPNUM="int NOT NULL Primary Key"));

format HIREDATE mmddyy10.;
do EMPNUM=1 to 100;

morf=mod(EMPNUM,2)+1;
if(morf eq 1) then

GENDER=’F’;
else

GENDER=’M’;
SALARY=(ranuni(0)*5000);
HIREDATE=int(ranuni(13131)*3650);
whatstate=int(EMPNUM/5);
if(whatstate eq 1) then

STATE=’FL’;
if(whatstate eq 2) then

STATE=’GA’;
if(whatstate eq 3) then

STATE=’SC’;
if(whatstate eq 4) then

STATE=’VA’;
else

state=’NC’;
ISTENURE=mod(EMPNUM,2);
NUMCLASS=int(EMPNUM/5)+2;
output;

end;
run;

10 Configuring DB2 EEE Nodes on Physically Partitioned Databases � Chapter 1

After the table MYEMPS is created on this three node database, one third of the
rows will reside on each of the three nodes.

The optimization of the threaded read against this partitioned table depends upon
the location of the DB2 partitions. If the DB2 partitions reside on the same machine,
you can use DBSLICE= in conjunction with the DB2 NODENUMBER function in the
WHERE clause:

proc print data=trlib2.MYEMPS(DBSLICE=("NODENUMBER(EMPNO)=0"
"NODENUMBER(EMPNO)=1" "NODENUMBER(EMPNO)=2"));

run;

If the DB2 partitions reside on different physical machines, you can usually obtain
the best results by using the DBSLICE= option with the SERVER= syntax inaddition to
the DB2 NODENUMBER function in the WHERE clause.

In the following example, the DBSLICE= option contains the DB2-specific
partitioning information, and Sample3a, Sample3b, and Sample3c are DB2 database
aliases that point to individual DB2 EEE database nodes that exist on separate
physical machines. For more information about the configuration of these nodes, refer
to “Configuring DB2 EEE Nodes on Physically Partitioned Databases” on page 10.

proc print data=trlib2.MYEMPS(DBSLICE=(sample3a="NODENUMBER(EMPNO)=0"
samble3b="NODENUMBER(EMPNO)=1" sample3c="NODENUMBER(EMPNO)=2"));

run;

Note that NODENUMBER is not required in order to use threaded reads
for SAS/ACCESS to DB2. The methods and examples described in DBSLICE= work
well in instances where the table you want to read is not stored in multiple partitions
to DB2. These methods also give you full control over which column is used to execute
the threaded read. For instance, if the STATE column in your employee table only
contains a few distinct values, you can tailor your DBSLICE= clause accordingly:

data work.locemp;
set trlib2.MYEMPS (DBSLICE=("STATE=’GA’"

"STATE=’SC’" "STATE=’VA’" "STATE=’NC’"));
where EMPNUM<=30 and ISTENURE=0 and SALARY<=35000 and NUMCLASS>2;
run;

Configuring DB2 EEE Nodes on Physically Partitioned Databases
Assuming that the database SAMPLE is partitioned across three different machines,

you can create a database alias for it at each node from the DB2 Command Line
Processor by issuing the following commands:

catalog tcpip node node1 remote <hostname> server 50000
catalog tcpip node node2 remote <hostname> server 50000
catalog tcpip node node3 remote <hostname> server 50000
catalog database sample as samplea at node node1
catalog database sample as sampleb at node node2
catalog database sample as samplec at node node3

This enables SAS/ACCESS to DB2 to access the data for the SAMPLE table directly
from each node. For more information about configuring DB2 EEE to use multiple
physical partitions, see the DB2 Administrators Guide.

SAS/ACCESS for DB2 under UNIX and PC Hosts � Examples 11

Temporary Table Support for DB2 under UNIX and PC Hosts
See the section on the temporary table support in SAS/ACCESS for Relational

Databases: Reference for general information about this feature.

Establishing a Temporary Table
To make full use of temporary tables, the CONNECTION=GLOBAL connection

option is necessary. This option allows a single connection to be used across SAS DATA
steps and procedure boundaries as well as be shared between LIBNAME statements
and the Pass-Through Facility. Since a temporary table only exists within a single
connection, you must be able to share this single connection between all of the steps
that reference the temporary table. The temporary table cannot be referenced from any
other connection.

The type of temporary table that is used for this processing is created using the
DECLARE GLOBAL TEMPORARY TABLE statement with the ON COMMIT
PRESERVE ROWS clause. This kind of temporary table lasts for the life of the
connection, unless explicitly dropped, and retains its rows of data beyond commit points.

It is important to note that DB2 places all global temporary tables in the SESSION
schema. Therefore, in order to reference these temporary tables within SAS, you must
explicitly provide the SESSION schema in Pass-Through SQL statements or use the
SCHEMA= LIBNAME option with a value of SESSION.

Currently, the only supported way to create a temporary table is to use a PROC SQL
statement. In order to use both the Pass-Through Facility and librefs to reference a
temporary table, you need to specify a LIBNAME statement before the PROC SQL step.
This enables the global connection to persist across SAS steps, even multiple PROC
SQL steps. For example:

libname temp db2 database=sample user=myuser password=mypwd
schema=SESSION connection=global;

proc sql;
connect to db2 (db=sample user=myuser pwd=mypwd connection=global);
execute (declare global temporary table temptab1 like other.table

on commit PRESERVE rows not logged) by db2;
quit;

At this point, you can refer to the temporary table by using the libref Temp or by
using the CONNECTION=GLOBAL option with a PROC SQL step.

Terminating a Temporary Table
You can drop a temporary table at any time, or allow it to be implicitly dropped when

the connection is terminated. Temporary tables do not persist beyond the scope of a
single connection.

Examples
The following examples assume there is a DeptInfo table on the DBMS that has all of

your department information. They also assume that you have a SAS data set with join
criteria that you want to use to get certain rows out of the DeptInfo table, and another
SAS data set with updates to the DeptInfo table.

12 DBLOAD Procedure Specifics for DB2 under UNIX and PC Hosts � Chapter 1

The following librefs and temporary tables are used:

libname saslib base ’SAS-Data-Library’;
libname dept db2 db=sample user=myuser pwd=mypwd connection=global;
libname temp db2 db=sample user=myuser pwd=mypwd connection=global

schema=SESSION;
/* Note that the temporary table has a schema of SESSION */

proc sql;
connect to db2 (db=sample user=myuser pwd=mypwd connection=global);
execute (declare global temporary table

temptab1 (dname char(20), deptno int)
on commit PRESERVE rows not logged) by db2;

quit;

The following example demonstrates how to take a heterogeneous join and use a
temporary table to perform a homogeneous join on the DBMS (as opposed to reading
the DBMS table into SAS to perform the join). Using the table created above, the SAS
data is copied into the temporary table to perform the join.

proc sql;
connect to db2 (db=sample user=myuser pwd=mypwd connection=global);
insert into temp.temptab1 select * from saslib.joindata;
select * from dept.deptinfo info, temp.temptab1 tab

where info.deptno = tab.deptno;
/* remove the rows for the next example */
execute (delete from session.temptab1) by db2;
quit;

In the following example, transaction processing on the DBMS occurs using a
temporary table as opposed to using either DBKEY= or
MULTI_DATASRC_OPT=IN_CLAUSE with a SAS data set as the transaction table.

connect to db2 (db=sample user=myuser pwd=mypwd connection=global);
insert into temp.temptab1 select * from saslib.transdat;
execute (update deptinfo d set deptno = (select deptno from session.temptab1)

where d.dname = (select dname from session.temptab1)) by db2;
quit;

DBLOAD Procedure Specifics for DB2 under UNIX and PC Hosts
See the section about the DBLOAD procedure in SAS/ACCESS for Relational

Databases: Reference for general information about this feature.
The DB2 under UNIX and PC Hosts interface supports all of the DBLOAD procedure

statements in batch mode. The DBLOAD procedure specifics for DB2 under UNIX and
PC hosts are as follows:

� DBMS= value is DB2.
� PROC DBLOAD uses the following database description statements:

IN= <’>database-name<’>;
specifies the name of the database in which you want to store the new DB2
table. The IN= statement is required and must immediately follow the PROC
DBLOAD statement. The database-name is limited to eight characters.
DATABASE= is an alias for the IN= statement.

The database that you specify must already exist. If the database name
contains the following special characters (_,$,@,#), you must enclose it in

SAS/ACCESS for DB2 under UNIX and PC Hosts � Examples 13

quotation marks. However, DB2 recommends against using special
characters in database names.

USER= <’>username<’>;
enables you to connect to a DB2 database, such as Microsoft SQL Server or
AS/400, with a user ID that is different from the default login ID.

USER= is optional in the interface to DB2 UNIX/PC. If you specify
USER=, you must also specify PASSWORD=. If USER= is omitted, your
default user ID is used.

PASSWORD= <’>password<’>;
specifies the password that is associated with your user ID.

PASSWORD= is optional in the interface to DB2 under UNIX and PC
hosts because users have default user IDs. If you specify USER=, however,
you must specify PASSWORD=.

Note: If you do not wish to enter your DB2 password in uncoded text on
this statement, see PROC PWENCODE for a method to encode it. �

� The TABLE= statement is as follows:

TABLE= <’><schema-name.>table-name<’>;
identifies the DB2 table or DB2 view that you want to use to create an access
descriptor. The table-name is limited to 18 characters. If you use quotation
marks, the name is case-sensitive. The TABLE= statement is required.

The schema-name is a person’s name or group ID that is associated with
the DB2 table. The schema name is limited to eight characters.

� The NULLS statement is as follows:

NULLS variable-identifier-1 =Y|N|D < . . . variable-identifier-n =Y|N|D >;
enables you to specify whether the DB2 columns that are associated with the
listed SAS variables allow NULL values. By default, all columns accept
NULL values.

The NULLS statement accepts any one of these three values:
Y – specifies that the column accepts NULL values. This is the default.
N – specifies that the column does not accept NULL values.
D – specifies that the column is defined as NOT NULL WITH DEFAULT.

Examples
The following example creates a new DB2 table, SASDEMO.EXCHANGE, from the

MYDBLIB.RATEOFEX data file. You must be granted the appropriate privileges in
order to create new DB2 tables or views.

proc dbload dbms=db2 data=mydblib.rateofex;
in=’sample’;
user=’testuser’;
password=’testpass’;
table=sasdemo.exchange;

rename fgnindol=fgnindollars
4=dollarsinfgn;

nulls updated=n fgnindollars=n
dollarsinfgn=n country=n;

load;
run;

The following example sends only a DB2 SQL GRANT statement to the SAMPLE
database and does not create a new table. Therefore, the TABLE= and LOAD
statements are omitted.

14 Passing SAS Functions to DB2 under UNIX and PC Hosts � Chapter 1

proc dbload dbms=db2;
in=’sample’;
sql grant select on sasdemo.exchange

to testuser;
run;

Passing SAS Functions to DB2 under UNIX and PC Hosts
The interface to DB2 under UNIX and PC hosts passes the following SAS functions

to DB2 for processing (if the DBMS driver/client that you are using supports the
function). Where the DB2 function name is different than the SAS function name, the
DB2 name appears in parentheses. See the section about optimizing SQL usage in
SAS/ACCESS for Relational Databases: Reference for information.

ABS
ARCOS (ACOS)
ARSIN (ASIN)
ATAN
AVG
CEIL (CEILING)
COS
COSH
COUNT (COUNT_BIG)
EXP
FLOOR
LOG
LOG10
LOWCASE
MAX
MIN
MOD
SIGN
SIN
SINH
SQRT
SUM
TAN
TANH
LOWCASE (LCASE)
UPCASE (UCASE)

If SQL_FUNCTIONS=ALL, the following options are passed down:
BYTE (CHAR)
COMPRESS (REPLACE)
DATE (CURDATE)
DATETIME (NOW)

SAS/ACCESS for DB2 under UNIX and PC Hosts � Locking for DB2 under UNIX and PC Hosts Interface 15

DAY (DAYOFMONTH)
HOUR
INDEX (LOCATE)
LENGTH
MINUTE
MONTH
QTR (QUARTER)
REPEAT
SECOND
SOUNDEX
SUBSTR (SUBSTRING)
TIME (CURTIME)
TODAY (CURDATE)
TRIMN (RTRIM)
TRANWRD (REPLACE)
WEEKDAY (DAYOFWEEK)
YEAR

Passing Joins to DB2 under UNIX and PC Hosts
In order for a multiple libref join to pass to DB2 under UNIX and PC hosts, all of the

following components of the LIBNAME statements must match exactly:

user ID

password

Update_Isolation_Level
(if specified)

Read_Isolation_Level
(if specified)

qualifier

datasource

PROMPT
must not be
specified

See the section about performance considerations in SAS/ACCESS for Relational
Databases: Reference for more information about when and how SAS/ACCESS passes
joins to the DBMS.

Locking for DB2 under UNIX and PC Hosts Interface
The following LIBNAME and data set options enable you to control how the interface

to DB2 under UNIX and PC hosts handles locking. See the section about the LIBNAME
statement in SAS/ACCESS for Relational Databases: Reference for additional
information about these options.

16 DB2 under UNIX and PC Hosts Bulk Loading � Chapter 1

READ_LOCK_TYPE= ROW | TABLE

UPDATE_LOCK_TYPE= ROW | TABLE

READ_ISOLATION_LEVEL= RR | RS | CS | UR
The DB2 database manager supports the RR, RS, CS, and UR isolation levels
defined in the following table. Regardless of the isolation level, the database
manager places exclusive locks on every row that is inserted, updated, or deleted.
Thus, all isolation levels ensure that any row that is changed by this application
process during a unit of work is not changed by any other application process until
the unit of work is complete.

Table 1.3 Isolation Levels for DB2 under UNIX and PC Hosts

Isolation Level Definition

RR (Repeatable Read) no dirty reads, no nonrepeatable reads, no phantom reads

RS (Read Stability) no dirty reads, no nonrepeatable reads; does allow phantom reads

CS (Cursor Stability) no dirty reads; does allow nonrepeatable reads and phantom
reads

UR (Uncommitted Read) allows dirty reads, nonrepeatable reads, and phantom reads

The terms in the table are defined as follows:
� Dirty reads — A transaction that exhibits this phenomenon has very minimal

isolation from concurrent transactions. In fact, it is able to see changes made
that are by those concurrent transactions even before they commit.

For example, suppose that transaction T1 performs an update on a row,
transaction T2 then retrieves that row, and transaction T1 then terminates
with rollback. Transaction T2 has then seen a row that no longer exists.

� Nonrepeatable reads — If a transaction exhibits this phenomenon, it is
possible that it might read a row once and, if it attempts to read that row
again later in the course of the same transaction, the row might have been
changed or even deleted by another concurrent transaction. Therefore, the
read is not (necessarily) repeatable.

For example, suppose that transaction T1 retrieves a row, transaction T2
then updates that row, and transaction T1 then retrieves the same row again.
Transaction T1 has now retrieved the same row twice but has seen two
different values for it.

� Phantom reads — When a transaction exhibits this phenomenon, a set of
rows that it reads once might be a different set of rows if the transaction
attempts to read them again.

For example, suppose that transaction T1 retrieves the set of all rows that
satisfy some condition. Suppose that transaction T2 then inserts a new row
that satisfies that same condition. If transaction T1 now repeats its retrieval
request, it sees a row that did not previously exist, a “phantom.”

UPDATE_ISOLATION_LEVEL= CS | RS | RR
The DB2 database manager supports the CS, RS, and RR isolation levels defined
in the preceding table. Uncommitted reads are not allowed with this option.

DB2 under UNIX and PC Hosts Bulk Loading
Bulk loading is the fastest way to insert large numbers of rows into a DB2 table.

Using this facility enables you to insert rows two to ten times more quickly than using

SAS/ACCESS for DB2 under UNIX and PC Hosts � DB2 under UNIX and PC Hosts Bulk Loading 17

regular SQL insert statements. You must specify BULKLOAD=YES in order to use the
bulk load facility.

The interface to DB2 under UNIX and PC hosts has three bulk loading methods
available; IMPORT, LOAD, and CLI LOAD. The method used is determined by the data
set options BL_REMOTE_FILE= and BL_METHOD=. The following are brief
descriptions of these three methods.

� In order to use the LOAD method, you must have system administrator authority,
database administrator authority, or load authority on the database and the insert
privilege on the table being loaded. This method also requires that the client and
server can reach a common location, and that the DB2 client and server are Version
6 of SAS or later. To use this method, specify the BL_REMOTE_FILE= option.

The bulk loading options available with the LOAD method are listed below. See
the section about data set options in SAS/ACCESS for Relational Databases:
Reference for detailed information about these options.

BL_CODEPAGE=
BL_DATAFILE=
BL_DELETE_DATAFILE=
BL_LOG=

The log file contains a summary of load information and error
descriptions. On most platforms, the default file name takes the form
BL_<table>_<unique-ID>.log where

table is the table name
unique-ID is a number used to prevent collisions in the event of two or

more simultaneous bulk loads of a particular table. The SAS/ACCESS
engine generates the number.

BL_OPTIONS=
BL_REMOTE_FILE=
BL_SERVER_DATAFILE =
BL_WARNING_COUNT=.

� The IMPORT method does not offer the same level of performance as the LOAD
method, but it is available to all users who have insert privileges on the tables
being loaded. The IMPORT method does not require that the server and client
have a common location in order to access the data file. If you do not specify
BL_REMOTE_FILE=, the IMPORT method is automatically used.

The bulk loading options available with the IMPORT method are listed below.
See the section about data set options in SAS/ACCESS for Relational Databases:
Reference for detailed information about these options.

BL_CODEPAGE=
BL_DATAFILE=
BL_DELETE_DATAFILE=
BL_LOG=
BL_OPTIONS=.

� The CLI LOAD method is an interface to the standard DB2 LOAD utility, which
gives the added performance of using LOAD but without setting additional options
for the bulk load. This method requires the same privileges as the LOAD method,
and is only available in DB2 Version 7 FixPak 4 and later clients and servers. If
your client and server can support the CLI LOAD method, you will generally see
the best performance by using it. Since the CLI LOAD method is an interface to
the LOAD utility, it cannot currently be used to load data into a partitioned DB2
database. To use this method, specify BL_METHOD=CLILOAD as a data set

18 Maximizing Load Performance for DB2 under UNIX and PC Hosts � Chapter 1

option. The bulk loading options available with the CLI LOAD method are listed
below:

BL_COPY_LOCATION=
BL_INDEXING_MODE=
BL_LOAD_REPLACE=
BL_LOG=
BL_METHOD=
BL_OPTIONS=
BL_RECOVERABLE=

BL_REMOTE_FILE=

For more information about the differences between IMPORT, LOAD, and CLI
LOAD, refer to the DB2 Data Movement Utilities Guide and Reference.

Maximizing Load Performance for DB2 under UNIX and PC Hosts
The following tips will help you optimize LOAD performance when you are using the

DB2 bulk load facility:

� Specifying BL_REMOTE_FILE= causes the loader to use the DB2 LOAD utility,
which is much faster than the IMPORT utility, but it requires database
administrator authority.

� Performance might suffer if your setting for DBCOMMIT= is too low. Increase the
default (which is 10000 when BULKLOAD=YES) for much better performance.

� Increasing the DB2 tuning parameters, such as Utility Heap and I/O
characteristics, improves performance. These parameters are controlled by your
database or server administrator.

� When using the IMPORT utility, specify BL_OPTIONS="COMPOUND=x" where x
is a number between 1 and 7 on Windows, and between 1 and 100 on UNIX. This
causes the IMPORT utility to insert multiple rows for each execute instead of 1
row per execute.

� When using the LOAD utility on a multi-processor or multi-node DB2 server,
specify BL_OPTIONS="ANYORDER" to improve performance. Note that this
might cause the entries in the DB2 log to be out of order (because it enables DB2
to insert the rows in a order that is different from how they appear in the loader
data file).

Examples
The following example shows how to use a SAS data set, SASFLT.FLT98, to create

and load a large DB2 table, FLIGHTS98. Because the code specifies BULKLOAD=YES
and BL_REMOTE_FILE= is omitted, this load uses the DB2 IMPORT command.

libname sasflt ’SAS-data-libary’;
libname db2_air db2 user=louis using=fromage

database=’db2_flt’ schema=statsdiv;

proc sql;
create table db2_air.flights98

(bulkload=YES bl_options=’compound=7 norowwarnings’)

SAS/ACCESS for DB2 under UNIX and PC Hosts � DB2 under UNIX and PC Hosts Naming Conventions 19

as select * from sasflt.flt98;
quit;

The BL_OPTIONS= option passes DB2 file type modifiers to DB2. The
norowwarnings modifier indicates that all row warnings about rejected rows are to be
suppressed.

The following example shows how to append the SAS data set, SASFLT.FLT98 to a
preexisting DB2 table, ALLFLIGHTS. Because the code specifies BULKLOAD=YES and
BL_REMOTE_FILE=, this load uses the DB2 LOAD command.

proc append base=db2_air.allflights
(BULKLOAD=YES
BL_REMOTE_FILE=’/tmp/tmpflt’
BL_LOG=’/tmp/fltdata.log’
BL_DATAFILE=’/nfs/server/tmp/fltdata.ixf’
BL_SERVER_DATAFILE=’/tmp/fltdata.ixf’)

data=sasflt.flt98;
run;

Here, BL_REMOTE_FILE= and BL_SERVER_DATAFILE= are paths relative to the
server. BL_LOG= and BL_DATAFILE= are paths relative to the client.

The following example shows how to use the SAS data set SASFLT.ALLFLIGHTS to
create and load a large DB2 table, ALLFLIGHTS. Because the code specifies
BULKLOAD=YES and BL_METHOD=CLILOAD, this operation uses the DB2 CLI
LOAD interface to the LOAD command.

data db2_air.allflights(BULKLOAD=YES BL_METHOD=CLILOAD);
set sasflt.allflights;
run;

DB2 under UNIX and PC Hosts Naming Conventions

The PRESERVE_TAB_NAMES= and PRESERVE_COL_NAMES= options determine
how the interface to DB2 under UNIX and PC hosts handles case sensitivity. DB2 is
case-insensitive and all names default to uppercase. See the section about the
LIBNAME statement in SAS/ACCESS for Relational Databases: Reference for
additional information about these options.

DB2 objects include tables, views, columns, and indexes. Use the following naming
conventions for them:

� A name can start with a letter or one of the following symbols: the dollar sign ($),
the number (or pound) sign (#), or the at symbol (@).

� A name can be from 1 to 18 characters long.

� A name can contain the letters A through Z, any valid letter with an accent (such
as a), the digits 0 through 9, the underscore (_), the dollar sign ($), the number or
pound sign (#), or the at symbol (@).

� A name is not case-sensitive (for example, the table name CUSTOMERS is the
same as Customers), but object names are converted to uppercase when typed. If a
name is enclosed in quotation marks, then the name is case-sensitive.

� A name cannot be a DB2 or an SQL reserved word, such as WHERE or VIEW.

� A name cannot be the same as another DB2 object that has the same type.

Schema and database names have similar conventions, except that they are each
limited to eight characters. For more information, see your DB2 SQL reference manual.

20 Data Types for DB2 under UNIX and PC Hosts � Chapter 1

Data Types for DB2 under UNIX and PC Hosts
Every column in a table has a name and a data type. The data type tells DB2 how

much physical storage to set aside for the column and the form in which the data is
stored. DB2 uses IBM SQL data types. For more information about DB2 data types,
and to determine which data types are available for your version of DB2, see your DB2
SQL reference manual.

Note: SAS/ACCESS does not support the BLOB, CLOB, and DBCLOB DB2 data
types. �

String Data

CHAR(n)
specifies a fixed-length column for character string data. The maximum length is
254 characters.

VARCHAR(n)
specifies a varying-length column for character string data. The maximum length
of the string is 4000 characters. If the length is greater than 254, the column is a
long-string column. SQL imposes some restrictions on referencing long-string
columns. For more information about these restrictions, see your IBM
documentation.

LONG VARCHAR
specifies a varying-length column for character string data. The maximum length
of a column of this type is 32700 characters. A LONG VARCHAR column cannot
be used in certain functions, subselects, search conditions, and so forth. For more
information about these restrictions, see your IBM documentation.

GRAPHIC(n)
specifies a fixed-length column for graphic string data. n specifies the number of
double-byte characters and can range from 1 to 127. If n is not specified, the
default length is 1.

VARGRAPHIC(n)
specifies a varying-length column for graphic string data. n specifies the number
of double-byte characters and can range from 1 to 2000.

LONG VARGRAPHIC
specifies a varying-length column for graphic-string data. n specifies the number
of double-byte characters and can range from 1 to 16350.

Numeric Data

BIGINT
specifies a big integer. Values in a column of this type can range from
-9223372036854775808 to +9223372036854775807.

SMALLINT
specifies a small integer. Values in a column of this type can range from -32768
through +32767.

SAS/ACCESS for DB2 under UNIX and PC Hosts � Dates, Times, and Timestamps 21

INTEGER
specifies a large integer. Values in a column of this type can range from
-2147483648 through +2147483647.

FLOAT | DOUBLE | DOUBLE PRECISION
specifies a floating-point number that is 64 bits long. Values in a column of this
type can range from −1.79769E+308 to −2.225E−307 or +2.225E−307 to
+1.79769E+308, or they can be 0. (This data type is stored the same way that SAS
stores its numeric data type. Therefore, numeric columns of this type require the
least processing when they are being accessed by SAS.)

DECIMAL | DEC | NUMERIC | NUM
specifies a mainframe packed decimal number with an implicit decimal point. The
position of the decimal point is determined by the precision and scale of the
number. The scale, which is the numbers to the right of the decimal point, cannot
be negative or greater than the precision. The maximum precision is 31 digits.
Note that numbers that require decimal precision greater than 15 digits might be
subject to rounding and conversion errors.

Dates, Times, and Timestamps
SQL date and time data types are collectively called datetime values. The SQL data

types for dates, times, and timestamps are listed here. Be aware that columns of these
data types can contain data values that are out of range for SAS.

DATE
specifies date values in various formats, as determined by the country code of the
database. For example, the default format for the United States is mm-dd-yyyy
and the European standard format is dd.mm.yyyy. The range is 01-01-0001 to
12-31-9999. A date always begins with a digit, is at least eight characters long,
and is represented as a character string. For example, in the U.S. default format,
January 25, 1991, would be formatted as 01-25-1991.

The entry format can vary according to the edit codes that are associated with
the field. For more information about edit codes, see your IBM documentation.

TIME
specifies time values in a three part format. The values range from 0 to 24 for
hours (hh) and from 0 to 59 for minutes (mm) and seconds (ss). The default form
for the United States is hh:mm:ss, and the IBM European standard format for
time is hh.mm[.ss]. For example, in the U.S. default format 2:25 p.m. would be
formatted as 14:25:00.

The entry format can vary according to the edit codes that are associated with
the field. For more information about edit codes, see your IBM documentation.

TIMESTAMP
combines a date and time and adds an optional microsecond to make a seven part
value of the format yyyy-mm-dd-hh.mm.ss[.nnnnnn]. For example, a timestamp
for precisely 2:25 p.m. on January 25, 1991, would be 1991-01-25-14.25.00.000000.
Values in a column of this type have the same ranges as described earlier for
DATE and TIME.

For more information about SQL data types, datetime formats, and edit codes that
are used in the United States and other countries, see your IBM documentation.

22 DB2 Null and Default Values � Chapter 1

DB2 Null and Default Values
DB2 has a special value called NULL. A DB2 NULL value means an absence of

information and is analogous to a SAS missing value. When SAS/ACCESS reads a DB2
NULL value, it interprets it as a SAS missing value.

You can define a column in a DB2 table so that it requires data. To do this in SQL,
you specify a column as NOT NULL. NOT NULL tells SQL to only allow a row to be
added to a table if there is a value for the field. For example, NOT NULL assigned to
the field CUSTOMER in the table SASDEMO.CUSTOMER does not allow a row to be
added unless there is a value for CUSTOMER. When creating a DB2 table with
SAS/ACCESS, you can use the DBNULL= data set option to indicate whether NULL is
a valid value for specified columns.

DB2 columns can also be defined as NOT NULL WITH DEFAULT. For more
information about using the NOT NULL WITH DEFAULT value, see your DB2 SQL
reference manual.

Knowing whether a DB2 column allows NULLs, or whether the host system supplies
a default value for a column that is defined as NOT NULL WITH DEFAULT, can assist
you in writing selection criteria and in entering values to update a table. Unless a
column is defined as NOT NULL or NOT NULL WITH DEFAULT, it allows NULL
values.

For more information about how SAS handles NULL values, see in SAS/ACCESS
for Relational Databases: Reference.

Note: To control how SAS missing character values are handled by DB2, use the
NULLCHAR= and NULLCHARVAL= data set options. �

LIBNAME Statement Data Conversions
The following table shows the default SAS variable formats that SAS/ACCESS

assigns to DB2 data types during input operations when you use the LIBNAME
statement.

Table 1.4 LIBNAME Statement: Default SAS Formats for DB2 Data Types

DB2 Data Type SAS Data Type Default SAS Format

CHAR(n) character $n.

VARCHAR(n) character $n.

LONG VARCHAR character $n.

GRAPHIC(n),
VARGRAPHIC(n), LONG
VARGRAPHIC

character $n.

INTEGER numeric 11.

SMALLINT numeric 6.

BIGINT numeric 20.

DECIMAL numeric m.n

NUMERIC numeric m.n

FLOAT numeric none

DOUBLE numeric none

SAS/ACCESS for DB2 under UNIX and PC Hosts � DBLOAD Procedure Data Conversions 23

DB2 Data Type SAS Data Type Default SAS Format

TIME numeric TIME8.

DATE numeric DATE9.

TIMESTAMP numeric DATETIMEm.n

* n in DB2 data types is equivalent to w in SAS formats.

The following table shows the default DB2 data types that SAS/ACCESS assigns to
SAS variable formats during output operations when you use the LIBNAME statement.

Table 1.5 LIBNAME Statement: Default DB2 Data Types for SAS Variable Formats

SAS Variable Format DB2 Data Type

m.n DECIMAL (m,n)

other numerics DOUBLE

$n. VARCHAR(n) (n<=4000)

LONG VARCHAR(n) (n>4000)

datetime formats TIMESTAMP

date formats DATE

time formats TIME

* n in DB2 data types is equivalent to w in SAS formats.

DBLOAD Procedure Data Conversions
The following table shows the default DB2 data types that SAS/ACCESS assigns to

SAS variable formats when you use the DBLOAD procedure.

Table 1.6 PROC DBLOAD: Default DB2 Data Types for SAS Variable Formats

SAS Variable Format DB2 Data Type

$w. CHAR(n)

w. DECIMAL(p)

w.d DECIMAL(p,s)

IBw.d, PIBw.d INTEGER

all other numerics* DOUBLE

datetimew.d TIMESTAMP

datew. DATE

time.** TIME

* Includes all SAS numeric formats, such as BINARY8 and E10.0.
** Includes all SAS time formats, such as TODw,d and HHMMw,d.

24

25

A P P E N D I X

1
Recommended Reading

Recommended Reading 25

Recommended Reading

Here is the recommended reading list for this title:
� SAS/ACCESS for Relational Databases: Reference
� SAS Language Reference: Concepts

� SAS Language Reference: Dictionary
� Base SAS Procedures Guide
� SAS Companion that is specific to your operating environment

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

26

27

Glossary

This glossary defines SAS software terms that are used in this document as well as
terms that relate specifically to SAS/ACCESS software.

access descriptor
a SAS/ACCESS file that describes data that is managed by a data management
system. After creating an access descriptor, you can use it as the basis for creating
one or more view descriptors. See also view and view descriptor.

browsing data
the process of viewing the contents of a file. Depending on how the file is accessed,
you can view SAS data either one observation (row) at a time or as a group in a
tabular format. You cannot update data that you are browsing.

bulk load
to load large amounts of data into a database object, using methods that are specific
to a particular DBMS. Bulk loading enables you to rapidly and efficiently add
multiple rows of data to a table as a single unit.

client
(1) a computer or application that requests services, data, or other resources from a
server. (2) in the X Window System, an application program that interacts with the X
server and can perform tasks such as terminal emulation or window management.
For example, SAS is a client because it requests windows to be created, results to be
displayed, and so on.

column
in relational databases, a vertical component of a table. Each column has a unique
name, contains data of a specific type, and has certain attributes. A column is
analogous to a variable in SAS terminology.

column function
an operation that is performed for each value in the column that is named as an
argument of the function. For example, AVG(SALARY) is a column function.

commit
the process that ends a transaction and makes permanent any changes to the
database that the user made during the transaction. When the commit process
occurs, locks on the database are released so that other applications can access the
changed data. The SQL COMMIT statement initiates the commit processs.

28 Glossary

DATA step view
a type of SAS data set that consists of a stored DATA step program. Like other SAS
data views, a DATA step view contains a definition of data that is stored elsewhere;
the view does not contain the physical data. The view’s input data can come from one
or more sources, including external files and other SAS data sets. Because a DATA
step view only reads (opens for input) other files, you cannot update the view’s
underlying data.

data type
a unit of character or numeric information in a SAS data set. A data value
represents one variable in an observation.

data value
in SAS, a unit of character or numeric information in a SAS data set. A data value
represents one variable in an observation.

database
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes

database management system (DBMS)
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes

editing data
the process of viewing the contents of a file with the intent and the ability to change
those contents. Depending on how the file is accessed, you can view the data either
one observation at a time or in a tabular format.

engine
a component of SAS software that reads from or writes to a file. Each engine enables
SAS to access files that are in a particular format. There are several types of engines.

file
a collection of related records that are treated as a unit. SAS files are processed and
controlled by SAS and are stored in SAS data libraries.

format
a collection of related records that are treated as a unit. SAS files are processed and
controlled by SAS and are stored in SAS data libraries. In SAS/ACCESS software,
the default formats vary according to the interface product.

index
(1) in SAS software, a component of a SAS data set that enables SAS to access
observations in the SAS data set quickly and efficiently. The purpose of SAS indexes
is to optimize WHERE-clause processing and to facilitate BY-group processing. (2) in
other software vendors’ databases, a named object that directs the DBMS to the
storage location of a particular data value for a particular column. Some DBMSs
have additional specifications. These indexes are also used to optimize the processing
of WHERE clauses and joins. Depending on the SAS interface to a database product
and how selection criteria are specified, SAS may or may not be able to use the
indexes of the DBMS to speed data retrieval.

Depending on how selection criteria are specified, SAS might use DBMS indices to
speed data retrieval.

informat
a pattern or set of instructions that SAS uses to determine how data values in an
input file should be interpreted. SAS provides a set of standard informats and also
enables you to define your own informats.

Glossary 29

interface view engine
a SAS engine that is used by SAS/ACCESS software to retrieve data from files that
have been formatted by another vendor’s software. Each SAS/ACCESS interface has
its own interface view engine, which reads the interface product data and returns the
data in a form that SAS can understand (that is, in a SAS data set). SAS
automatically uses an interface view engine; the engine name is stored in
SAS/ACCESS descriptor files so that you do not need to specify the engine name in a
LIBNAME statement.

libref
a name that is temporarily associated with a SAS data library. The complete name of
a SAS file consists of two words, separated by a period. The libref, which is the first
word, indicates the library. The second word is the name of the specific SAS file. For
example, in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the
file NEWBDAY. You assign a libref with a LIBNAME statement or with an operating
system command.

member
a SAS file in a SAS data library.

member name
a name that is given to a SAS file in a SAS data library.

member type
a SAS name that identifies the type of information that is stored in a SAS file.
Member types include ACCESS, DATA, CATALOG, PROGRAM, and VIEW.

missing value
in SAS, a term that describes the contents of a variable that contains no data for a
particular row or observation. By default, SAS prints or displays a missing numeric
value as a single period, and it prints or displays a missing character value as a
blank space.

observation
a row in a SAS data set. All of the data values in an observation are associated with
a single entity such as a customer or a state. Each observation contains one data
value for each variable. In a database product table, an observation is analogous to a
row. Unlike rows in a database product table or file, observations in a SAS data file
have an inherent order.

Pass-Through Facility
a group of SQL procedure statements that send and receive data directly between a
relational database management system and SAS. The Pass-Through Facility
includes the CONNECT, DISCONNECT, and EXECUTE statements, and the
CONNECTION TO component. SAS/ACCESS software is required in order to use
the Pass-Through Facility.

PROC SQL view
a SAS data set (of type VIEW) that is created by the SQL procedure. A PROC SQL
view contains no data. Instead, it stores information that enables it to read data
values from other files, which can include SAS data files, SAS/ACCESS views, DATA
step views, or other PROC SQL views. A PROC SQL view’s output can be either a
subset or a superset of one or more files.

query
a set of instructions that requests particular information from one or more data
sources.

30 Glossary

referential integrity
a set of rules that a DBMS uses to ensure that whenever a data value in one table is
changed, the appropriate change is also made to any related values in other tables or
in the same table. Referential integrity is also used to ensure that related data is not
deleted or changed accidentally.

relational database management system
a database management system that organizes and accesses data according to
relationships between data items. Oracle and DB2 are examples of relational
database management systems.

rollback
in most databases, the process that restores the database to its state when changes
were last committed, voiding any recent changes. The SQL ROLLBACK statement
initiates the rollback processes. See also commit.

row
in relational database management systems, the horizontal component of a table. A
row is analogous to a SAS observation.

SAS data file
a type of SAS data set that contains data values as well as descriptor information
that is associated with the data. The descriptor information includes information
such as the data types and lengths of the variables, as well as the name of the engine
that was used to create the data. A PROC SQL table is a SAS data file. SAS data
files are of member type DATA.

SAS data library
a collection of one or more SAS files that are recognized by SAS and that are
referenced and stored as a unit. Each file is a member of the library.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS data view
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS/ACCESS views
See view descriptor and SAS data view.

server
in a network, a computer that is reserved for servicing other computers in the
network. Servers can provide several different types of services, such as file services
and communication services. Servers can also enable users to access shared
resources such as disks, data, and modems.

Structured Query Language (SQL)
the standardized, high-level query language that is used in relational database
management systems to create and manipulate database management system
objects. SAS implements SQL through the SQL procedure.

Glossary 31

table
a two-dimensional representation of data, in which the data values are arranged in
rows and columns.

trigger
a type of user-defined stored procedure that is executed whenever a user issues a
data-modification command such as INSERT, DELETE, or UPDATE for a specified
table or column. Triggers can be used to implement referential integrity or to
maintain business constraints.

variable
a column in a SAS data set. A variable is a set of data values that describe a given
characteristic across all observations.

view
a definition of a virtual data set. The definition is named and stored for later use. A
view contains no data; it merely describes or defines data that is stored elsewhere.
SAS data views can be created by the ACCESS and SQL procedures.

view descriptor
a file created by SAS/ACCESS software that defines part or all of the database
management system (DBMS) data or PC file data that is described by an access
descriptor. The access descriptor describes the data in a single DBMS table, DBMS
view, or PC file.

wildcard
a file created by SAS/ACCESS software that defines part or all of the database
management system (DBMS) data or PC file data that is described by an access
descriptor. The access descriptor describes the data in a single DBMS table, DBMS
view, or PC file.

32

Index 33

Index

A
access descriptors 27
autopartitioning

DB2 under UNIX and PC hosts specifics 8

B
BIGINT data type 20
browsing data, defined 27
bulk loading 27

C
CHAR data type

DB2 under UNIX and PC hosts 20
client, defined 27
commit, defined 27
COMPLETE= option, LIBNAME statement

DB2 under UNIX and PC hosts 3

D
data files

defined 30
data libraries, defined 30
data set options

DB2 under UNIX and PC hosts specifics 5
data sets

defined 30
DATA step

views, defined 28
data types 28

DB2 under UNIX and PC hosts 20
data views, defined 30
databases, defined 28
DATASRC= option, LIBNAME statement

DB2 under UNIX and PC hosts 2
date and time data

DB2 under UNIX/PC data types 21
DATE data type

DB2 under UNIX and PC hosts 21
DB2 under UNIX and PC hosts, interface to 2

autopartitioning scheme 8
data set options 5
data types under 20
DBLOAD procedure 12, 23

LIBNAME statement 2, 22
locking in 15
naming conventions 19
Pass-Through Facility 7
passing joins to 15

DBLOAD procedure
DB2 under UNIX and PC hosts specifics 12,

23
DBMS data 27
DBMS (database management systems), de-

fined 28
DBSLICE= option

autopartitioning, DB2 under UNIX and PC
hosts 9

DBSLICEPARM= option, LIBNAME statement
autopartitioning, DB2 under UNIX and PC

hosts 9
DEC data type 21
DECIMAL data type

DB2 under UNIX and PC hosts 21
dirty reads 16
DOUBLE data type 21
DOUBLE PRECISION data type

DB2 under UNIX and PC hosts 21

E
editing data, defined 28
engine, defined 28

F
files, defined 28
FLOAT data type

DB2 under UNIX and PC hosts 21

G
GRAPHIC data type 20

I
IN= option

PROC DBLOAD statement 12
indexes 28

informats, defined 28
INTEGER data type

DB2 under UNIX and PC hosts 21
interface view engine, defined 29

J
joins

passing to DB2 under UNIX and PC hosts 15

L
LIBNAME statement

DB2 under UNIX and PC hosts specifics 2,
22

librefs
defined 29

locking data, handling
DB2 under UNIX and PC hosts interface 15

LONG VARCHAR data type
DB2 under UNIX and PC hosts 20

LONG VARGRAPHIC data type 20

M
missing values

defined 29

N
naming conventions

DB2 under UNIX and PC hosts 19
nonrepeatable reads 16
NOPROMPT= option, LIBNAME statement

DB2 under UNIX and PC hosts 3
NOT NULL WITH DEFAULT columns

DB2 under UNIX and PC hosts 22
NULL values

DB2 under UNIX and PC hosts 22
nullable columns

autopartitioning, DB2 under UNIX and PC
hosts 8

NULLS option, PROC DBLOAD statement
DB2 under UNIX and PC hosts 13

NUM data type 21

34 Index

numeric data 20
NUMERIC data type

DB2 under UNIX and PC hosts 21

O
observations 29

P
Pass-Through Facility 29

DB2 under UNIX and PC hosts specifics 7
PASSWORD= option, LIBNAME statement

DB2 under UNIX and PC hosts 2
PASSWORD= option, PROC DBLOAD statement

DB2 under UNIX and PC hosts 13
phantom reads 16
PRESERVE_COL_NAMES= option

DB2 under UNIX and PC hosts 19
PRESERVE_TAB_NAMES= option, LIBNAME

statement
DB2 under UNIX and PC hosts 19

PROMPT= option, LIBNAME statement
DB2 under UNIX and PC hosts 3

Q
queries, SQL

defined 29

R
RDMS (relational database management sys-

tem) 30

READ_ISOLATION_LEVEL= option

DB2 under UNIX and PC hosts interface 16

referential integrity, defined 30

REQUIRED= option, LIBNAME statement

DB2 under UNIX and PC hosts 3

rollbacks, defined 30

rows, table

defined 30

S
SAS/ACCESS data set options

DB2 under UNIX and PC hosts specifics 5

SAS data views, defined 30

SAS variables

definition of 31

names and formats 28

SAS views

defined 30

servers, defined 30

SMALLINT data type

DB2 under UNIX and PC hosts 20

SQL views

defined 29

SQL/y1 (Structured Query Language)/y0 30

strings and string data 20

T
TABLE= option, DBLOAD procedure

DB2 under UNIX and PC hosts 13

tables, defined 31

threaded reads

DB2 under UNIX and PC hosts 9

TIME data type

DB2 under UNIX and PC hosts 21

TIMESTAMP data type

DB2 under UNIX and PC hosts 21

triggers 31

U
UPDATE_ISOLATION_LEVEL= option

DB2 under UNIX and PC hosts interface 16

UPDATE_LOCK_TYPE= option

DB2 under UNIX and PC hosts interface 16

USER= option

PROC DBLOAD statement 13

USER= option, LIBNAME statement

DB2 under UNIX and PC hosts 2

V
VARCHAR data type

DB2 under UNIX and PC hosts 20

VARGRAPHIC data type 20

variable names and formats 28

variables

definition of 31

view descriptors

definition of 31

views, SQL

definition of 31

W
wildcards, defined 31

Your Turn

If you have comments or suggestions about SAS/ACCESS® 9.1 Supplement for DB2®

under UNIX and PC Hosts, please send them to us on a photocopy of this page, or send
us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

	Table of Contents
	Contents

	SAS/ACCESS for DB2 under UNIX and PC Hosts
	Introduction to the SAS/ACCESS Interface to DB2 under UNIX and PC Hosts
	LIBNAME Statement Specifics for DB2 under UNIX and PC Hosts
	Arguments
	DB2 UNIX/PC LIBNAME Statement Example

	Data Set Options for DB2 under UNIX and PC Hosts
	Pass-Through Facility Specifics for DB2 under UNIX and PC Hosts
	Examples

	Autopartitioning Scheme for DB2 under UNIX and PC Hosts
	Overview
	Autopartitioning Restrictions
	Nullable Columns
	Using WHERE Clauses
	Using DBSLICEPARM=
	Using DBSLICE=
	Configuring DB2 EEE Nodes on Physically Partitioned Databases

	Temporary Table Support for DB2 under UNIX and PC Hosts
	Establishing a Temporary Table
	Terminating a Temporary Table
	Examples

	DBLOAD Procedure Specifics for DB2 under UNIX and PC Hosts
	Examples

	Passing SAS Functions to DB2 under UNIX and PC Hosts
	Passing Joins to DB2 under UNIX and PC Hosts
	Locking for DB2 under UNIX and PC Hosts Interface
	DB2 under UNIX and PC Hosts Bulk Loading
	Maximizing Load Performance for DB2 under UNIX and PC Hosts
	Examples

	DB2 under UNIX and PC Hosts Naming Conventions
	Data Types for DB2 under UNIX and PC Hosts
	String Data
	Numeric Data
	Dates, Times, and Timestamps
	DB2 Null and Default Values
	LIBNAME Statement Data Conversions
	DBLOAD Procedure Data Conversions

	Recommended Reading
	Recommended Reading

	Glossary
	Index

