
SAS/ACCESS®

9.1
DATA Step Interface to CA-IDMS
Reference

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS/ACCESS ® 9.1 for the DATA Step Interface to CA-IDMS: Reference. Cary, NC: SAS
Institute Inc.

SAS/ACCESS® 9.1 for the DATA Step Interface to CA-IDMS: Reference
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
ISBN 1-59047-217-9
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

Chapter 1 � Overview of the SAS/ACCESS Interface to CA-IDMS 1

Introduction to SAS/ACCESS DATA Step Interface to CA-IDMS 1

Features of the DATA Step Interface 1

Prerequisites for Using This Document 1

Example Data in The Interface to CA-IDMS Document 2

Chapter 2 � Using the SAS/ACCESS Interface to CA-IDMS 3

Overview of the DATA Step Statement Extensions 4

Creating DATA Step Views 8

The CA-IDMS INFILE Statement 10

Guidelines for Using the CA-IDMS INFILE Statement 14

Specifying DML Function Calls 14

The CA-IDMS INPUT Statement 32

Example: Traversing a Set 37

Example: Using the Trailing @ and the INPUT Statement with No Arguments 41

Chapter 3 � Examples of SAS/ACCESS DATA Step Programs 45

Introduction to Examples of SAS/ACCESS DATA Step Programs 45

Statements Common to All SAS/ACCESS DATA Step Examples 45

Performing an Area Sweep 46

Navigating Multiple Set Relationships 50

Using a SAS Data Set as a Transaction File 57

Using Information in a SAS Data Set to Locate Records 62

Supplying Transaction Information and Navigating Set Occurrences 67

Re-establishing Currency on a Record 71

Using RETURN and GET Across Executions of the DATA Step 77

Appendix 1 � IDMS Essentials 83

Introduction to IDMS Essentials 83

Data Dictionaries and the DDS 83

CA-IDMS Networks and Sets 84

CA-IDMS Documentation 85

Appendix 2 � Recommended Reading 87

Recommended Reading 87

Index 89

iv

1

C H A P T E R

1
Overview of the SAS/ACCESS
Interface to CA-IDMS

Introduction to SAS/ACCESS DATA Step Interface to CA-IDMS 1
Features of the DATA Step Interface 1

Prerequisites for Using This Document 1

Example Data in The Interface to CA-IDMS Document 2

Introduction to SAS/ACCESS DATA Step Interface to CA-IDMS
SAS/ACCESS software provides a DATA step interface between SAS and Computer

Associates’ Integrated Data Management System (CA-IDMS). Through the DATA step,
you can use INPUT statements and special extensions on the INFILE statement to
access or extract data from the CA-IDMS database.

Note: The DATA step interface allows only read access to CA-IDMS data. You
cannot update CA-IDMS data through the SAS/ACCESS interface to CA-IDMS. �

This document describes the DATA step interface and how to write CA-IDMS
INFILE and INPUT statements.

Features of the DATA Step Interface
The following list describes the major features of the DATA step interface:
� The DATA step interface enables you to access CA-IDMS data by traversing the

network using DML program functions calls. You cannot access data through
Computer Associate’s Logical Record Facility (LRF).

� The DATA step interface is a programming interface. You do not have to create
descriptor files to retrieve the CA-IDMS data requested by your application.

� Coding DATA step programs requires knowledge of the database that is being
accessed and the ability to write host-level calls to retrieve CA-IDMS data. In
order to provide transparent access to CA-IDMS data, you can store compiled
DATA step programs as SAS DATA step views.

Prerequisites for Using This Document
This document assumes that you understand the SAS DATA step and the statements

that are used in the DATA step. It also assumes that you know how to enter standard
SAS INFILE and INPUT statements. For complete information about DATA steps,
INFILE statements, and INPUT statements, refer to SAS Language Reference:
Dictionary.

2 Example Data in The Interface to CA-IDMS Document � Chapter 1

There are many references to CA-IDMS processing in this document, such as
CA-IDMS functions and status codes. If you are not familiar with the CA-IDMS
information, refer to the appropriate Computer Associates documentation. You should
also read Appendix 1, “IDMS Essentials,” on page 83, which gives an overview of
CA-IDMS concepts that are important in writing DATA step programs for CA-IDMS.

Example Data in The Interface to CA-IDMS Document

This document contains several examples that demonstrate how to use the DATA
step interface to CA-IDMS. These examples use the CA-IDMS data contained in the
EMPSCHM schema of the Employee database, which is the sample database Computer
Associates ships with their CA-IDMS product. The examples in this document use data
contained in the subschema EMPSS01, which is part of the EMPSCHM schema. Refer
to your CA-IDMS documentation for more information about the Employee database.

Note: You cannot name a fileref for a task that is the same name as the
subschema. �

The SAS/ACCESS software sample library file IDMSDS contains the SAS code used
in the examples in this document.

3

C H A P T E R

2
Using the SAS/ACCESS Interface
to CA-IDMS

Overview of the DATA Step Statement Extensions 4
CA-IDMS Record Currency 4

CA-IDMS Input Buffer 4

Introductory Example of a DATA Step Program 5

Creating DATA Step Views 8

The CA-IDMS INFILE Statement 10
CA-IDMS Environment Options 10

Other CA-IDMS Options 11

Standard INFILE Statement Options 12

Summary of CA-IDMS INFILE Statement Options 13

Guidelines for Using the CA-IDMS INFILE Statement 14

Specifying DML Function Calls 14
ACCEPT Function Call 15

BIND Function Call 16

FIND and OBTAIN Function Calls 17

FIND/OBTAIN CALC Function 17

FIND/OBTAIN CURRENT Function 19
FIND/OBTAIN DBKEY Function 20

FIND/OBTAIN OWNER Function 21

FIND/OBTAIN SORT KEY Function 22

FIND/OBTAIN WITHIN SET or AREA Function 23

GET Function Call 25
IF Function Call 26

RETURN Function Call 27

Summary of Options Needed to Generate CA-IDMS Function Calls 29

How the CA-IDMS Function Call Is Generated 31

Using Multiple Sources of Input 32

The CA-IDMS INPUT Statement 32
The Null INPUT Statement 34

Holding Records in the Input Buffer 34

Checking Call Status Codes 35

Obtaining the Value of _ERROR_ 35

Obtaining the CA-IDMS Error Codes 35
Checking for Non-Error Conditions and Resetting _ERROR_ 35

Catching Errors Before Moving Data 36

Handling End of File 36

Example: Traversing a Set 37

Example: Using the Trailing @ and the INPUT Statement with No Arguments 41

4 Overview of the DATA Step Statement Extensions � Chapter 2

Overview of the DATA Step Statement Extensions
Special SAS extensions to the standard SAS INFILE statement enable you to access

CA-IDMS data in a SAS DATA step. The extended statement is referred to as the
CA-IDMS INFILE statement and its corresponding INPUT statement is referred to as
the CA-IDMS INPUT statement. The CA-IDMS INFILE and CA-IDMS INPUT
statements work together to generate and issue calls to CA-IDMS. A CA-IDMS DATA
step can contain standard SAS statements as well as the SAS statements that are used
with the SAS/ACCESS interface to CA-IDMS.

The CA-IDMS INFILE statement defines to SAS the parameters that are needed to
build CA-IDMS calls. The CA-IDMS INFILE statement performs the following tasks:

� names the subschema
� names SAS variables to contain the following information:

� the dictionary name
� the database name
� the node name (for distributed DBMS)
� CA-IDMS functions (for example, OBTAIN or FIND)
� the area name
� the set name
� the record name
� the sort field
� the database key
� the CALC key
� the key offset
� the key length
� the status returned by the call.

When it is executed, the CA-IDMS INPUT statement formats and issues the
CA-IDMS function call using the parameters specified in the CA-IDMS INFILE
statement.

The CA-IDMS INFILE statement is required in any DATA step that accesses a
CA-IDMS database because the special extensions of the CA-IDMS INFILE statement
specify the variables that set up the CA-IDMS calls. When a CA-IDMS INFILE
statement is used with a CA-IDMS INPUT statement, the database function calls are
issued.

The syntax and usage of the CA-IDMS INFILE and INPUT statements are described
in detail later in this section.

CA-IDMS Record Currency
You need to understand the concept of currency before using the DATA step

interface to CA-IDMS. CA-IDMS keeps track of the most recently accessed record by its
database location or db-key. As each record is accessed, it becomes current for the
run-unit, record type, set, or area. Some DML calls require that certain currencies are
established before the call is issued. See your CA-IDMS documentation for more
information about currency.

CA-IDMS Input Buffer
A buffer is allocated by SAS as an input area for data retrieval. The length of this

buffer is specified by the LRECL= option in the CA-IDMS INFILE statement. The

Using the SAS/ACCESS Interface to CA-IDMS � Introductory Example of a DATA Step Program 5

input buffer is formatted by CA-IDMS in the same way an input area for any CA-IDMS
program is formatted.

The data INFORMATS specified in the CA-IDMS INPUT statement must match the
original data format. This information can be obtained from CA-IDMS Integrated Data
Dictionary (IDD) or from a COBOL or Assembler copy library, source programs, a SAS
macro library, or other documentation sources. Database Administrator (DBA) staff at
your installation can help you find the segment data formats you need.

Introductory Example of a DATA Step Program
The following example is a simple DATA step program that reads record occurrences

from a CA-IDMS database and creates a SAS data set. Next, the program processes the
SAS data set with PROC PRINT.

The example accesses the EMPLOYEE database with the subschema EMPSS01.
This subschema allows access to all of the DEPARTMENT records. This example uses
the IDMS option in the INFILE statement, which tells SAS that this particular
external file reference is for a CA-IDMS database.

The numbers in the program correspond to the numbered comments following the
program.

u data work.org_department;
retain iseq;

v infile empss01 idms func=func1 record=recname
area=iarea sequence=iseq errstat=err
set=iset;

/* BIND the DEPARTMENT record */
w if_n_ = 1 then do;

func1 = ’BIND’;
recname = ’DEPARTMENT’;

x input;
if (err ne ’0000’) then go to staterr;
iseq = ’FIRST’;

end;

/* Now get the DEPARTMENT records by issuing */
/* OBTAIN for DEPT record and test for success */

func1 = ’OBTAIN’;
recname = ’DEPARTMENT’;
iarea = ’ORG-DEMO-REGION’;

y input @;
U if (err ne ’0000’ and err ne ’0307’) then go to

staterr;
if err eq ’0307’ then do;

error = 0;
/* No more DEPT records so STOP */
stop;

end;
V input

@1 department_id 4.0
@5 department_name $char45.
@50 department_head 4.0;

6 Introductory Example of a DATA Step Program � Chapter 2

W iseq = ’NEXT’;
X return;

staterr:
at put @1 ’WARNING: ’ @10 func1 @17

’RETURNED ERR =’ @37 err;
atop;

end;
run;

ak proc print data=work.org_department;
run;

u The DATA statement references a temporary SAS data set called
ORG_DEPARTMENT, which is opened for output.

v The INFILE statement tells SAS to use the EMPSS01 subschema.
The IDMS option tells SAS that EMPSS01 is a CA-IDMS subschema
instead of a fileref. This statement also tells the CA-IDMS interface
to use the named SAS variables as follows:

� FUNC1 to store the function type
� RECNAME to store the record name
� IAREA to store the area name
� ISEQ to store the function call sequence information
� ISET to store the set name.

The CA-IDMS INFILE statement also tells the interface to store
the error status from the call in ERR.

w The first time through the DATA step, all CA-IDMS records that will
be accessed must be bound to CA-IDMS. To bind the DEPARTMENT
record type, the program sets FUNC1 to BIND and RECNAME to
DEPARTMENT.

x The CA-IDMS INPUT statement uses the values in the SAS
variables FUNC1 and RECNAME to generate the first call to
CA-IDMS. In this example, the call generated is a BIND for the
DEPARTMENT record. All records must be bound to CA-IDMS
before any data retrieval calls are performed. A null INPUT
statement is used because the BIND function does not retrieve any
CA-IDMS data.

y This INPUT statement also uses the values in the SAS variables
FUNC1 and RECNAME, along with the values in ISEQ and IAREA
to generate an OBTAIN FIRST DEPARTMENT RECORD IN AREA
ORG-DEMO-REGION call. However, no data is moved into the
program data vector because no variables are defined in the INPUT
@; statement. The call holds the contents of the input buffer and
allows the DATA step to check the call status that is returned from
CA-IDMS.

U The program examines the status code returned by CA-IDMS. If
CA-IDMS returns 0000, then the program proceeds to the next
INPUT statement. If CA-IDMS does not return 0000 or 0307, then
the program branches to the error routine.

V When this INPUT statement executes, data is moved from the input
buffer into the program data vector.

Using the SAS/ACCESS Interface to CA-IDMS � Introductory Example of a DATA Step Program 7

W The ISEQ value is changed to NEXT to generate an OBTAIN NEXT
DEPARTMENT RECORD IN AREA ORG-DEMO-REGION.

X For the subsequent interations of the DATA step, the RETURN
statement causes execution to return to the beginning of the DATA
step.

at For any unexpected status codes, a message is written to the SAS
log and the DATA step stops.

ak The PRINT procedure prints the contents of the
WORK.ORG-DEPARTMENT data set.

The following output shows the SAS log for this example.

Output 2.1 SAS Log for Introductory DATA Step Program

1 data work.org_department;
2 infile empss01 idms func=func1 record=recname area=iarea
3 sequence=iseq errstat=err set=iset;
4
5 err = ’0000’;

.

.

.
37 end;
38 run;

NOTE: The infile EMPSS01 is:
Subschema=EMPSS01

NOTE: 11 records were read from the infile EMPSS01.
The minimum record length was 0.
The maximum record length was 56.

NOTE: The data set WORK.ORG_DEPARTMENT has 9 observations and 3 variables.
NOTE: The DATA statement used 0.22 CPU seconds and 2629K.
39 proc print data=work.org_department;
40 run;

NOTE: The PROCEDURE PRINT printed page 1.

The following output shows the results of this example.

Note: The log shows that 11 records were read from the infile, but the following
results show only 9 observations. Every time SAS encounters a CA-IDMS INPUT
statement that submits a call, it increments by one an internal counter that keeps track
of how many record occurrences are read from the database. The count is printed to the
SAS log as a NOTE. Because this program contains CA-IDMS INPUT statements that
do not retrieve data, this count can be misleading. �

Output 2.2 Results of Introductory DATA Step Program

The SAS System
Obs department_id department_name department_

head
1 2000 ACCOUNTING AND PAYROLL 11
2 3200 COMPUTER OPERATIONS 4
3 5300 BLUE SKIES 321
4 5100 BRAINSTORMING 15
5 1000 PERSONNEL 13
6 4000 PUBLIC RELATIONS 7
7 5200 THERMOREGULATION 349
8 3100 INTERNAL SOFTWARE 3
9 100 EXECUTIVE ADMINISTRATION 30

8 Creating DATA Step Views � Chapter 2

Creating DATA Step Views

The preceding introductory DATA step example can be made into a DATA step view.
A DATA step view is a SAS data set of type VIEW that contains a definition of the data
rather than containing the physical data. For CA-IDMS, a DATA step view is a compiled
version of statements that, when executed, access and retrieve the data from CA-IDMS.

A DATA step view is a stored SAS file that you can reference in other SAS tasks to
access data directly. A view’s input data can come from one or more sources, including
external files and other SAS data sets. Because a DATA step view only reads (opens for
input) other files, you cannot update the view’s underlying data. For a complete
description of using DATA step views, refer to SAS Language Reference: Dictionary.

Note: You cannot name a fileref for a task that has the same name as the
CA-IDMS subschema. �

The following DATA step code is part of a SAS macro that is invoked twice to create
two DATA step views. When the DATA step views are referenced in the SET
statements of the subsequent DATA step executions, DEPARTMENT records are read
from the CA-IDMS database and selected record data values are placed in two SAS
data sets. Then, each SAS data set is processed with PROC PRINT.

The numbers in the program correspond to the numbered comments following the
program.

u %macro deptview(viewname=,p1=,p2=,p3=);
v data &viewname / view &viewname;
w keep &p1 &p2 &p3;

retain iseq;
infile empss01 idms func=func1 record=recname

area=iarea sequence=iseq errstat=err
set=iset;

/* BIND the DEPARTMENT record */
if _n_ eq 1 then do;

func1 = ’BIND’;
recname = ’DEPARTMENT’;
input;
iseq = ’FIRST’;

end;

/* Now get the DEPARTMENT records */
func1 = ’OBTAIN’;
recname = ’DEPARTMENT’;
iarea = ’ORG-DEMO-REGION’;
input @;
if (err ne ’0000’ and err ne ’0307’) then go to

staterr;
if err eq ’0307’ then do;

error = 0;
/* No more DEPT records so STOP */
stop;

end;
input
@1 department_id 4.0
@5 department_name $char45.
@50 department_head 4.0;

Using the SAS/ACCESS Interface to CA-IDMS � Creating DATA Step Views 9

iseq = ’NEXT’;
return;
staterr:
put @1 ’WARNING: ’ @10 func1 @17

’RETURNED ERR = ’@37 err;
stop;

x %mend;
y %deptview(viewname=work.deptname , p1=DEPARTMENT_ID,

p2=DEPARTMENT_NAME);
U %deptview(viewname=work.depthead , p1=DEPARTMENT_ID,

p2=DEPARTMENT_HEAD);

options linesize=132;

V data work.deptlist;
set work.deptname;

W proc print data=work.deptlist;
title2 ’DEPARTMENT NAME LIST’;

X data work.headlist;
set work.depthead;

at proc print data=work.headlist;
title2 ’HEADS OF DEPARTMENTS LIST’;

run;

u %MACRO defines the start of the macro DEPTVIEW, which contains
4 parameter variables: one required and three input overrides.
VIEWNAME is required; it is the name of the DATA step view.
VIEWNAME can be overridden at macro invocation. The overrides
are P1, P2, and P3. These may or may not be specified, but one
must be specified to avoid a warning message.

P1 name of the first data item name to keep.

P2 name of the second data item name to keep.

P3 name of the third data item name to keep.

Three data items are allowed because there are 3 input fields in
the CA-IDMS INPUT statement for the database.

v The DATA statement specifies the DATA step view name.

w The KEEP statement identifies the variables that are available to
any task that references this input DATA step view.

x %MEND defines the end of macro DEPTVIEW.

y %DEPTVIEW invokes the macro and generates a DATA step view
named WORK.DEPTNAME that, when referenced as input, supplies
observations containing values for the variables DEPARTMENT_ID
and DEPARTMENT_NAME.

U %DEPTVIEW invokes the macro and generates a DATA step view
named WORK.DEPTHEAD that, when referenced as input, supplies

10 The CA-IDMS INFILE Statement � Chapter 2

observations containing values for the variables DEPARTMENT_ID
and DEPARTMENT_HEAD.

V Data set WORK.DEPTLIST is created using the DATA step view
WORK.DEPTNAME as input.

W PROC PRINT prints WORK.DEPTLIST.

X Data set WORK.HEADLIST is created using the DATA step view
WORK.DEPTHEAD as input.

at PROC PRINT prints WORK.HEADLIST.

The CA-IDMS INFILE Statement

If you are unfamiliar with the standard INFILE statement, refer to SAS Language
Reference: Dictionary for more information.

A standard INFILE statement specifies an external file to be read by an INPUT
statement. A CA-IDMS INFILE statement specifies a subschema, which in turn
identifies the CA-IDMS database, records, and elements to be accessed with CA-IDMS
calls. Special extensions in the CA-IDMS INFILE statement specify SAS variables and
constants that are used to build a CA-IDMS call and to handle the data returned by the
call. A subset of the standard INFILE statement options can also be specified in a
CA-IDMS INFILE statement.

Use the following syntax when you issue a CA-IDMS INFILE statement:

INFILE SUBSCHname IDMS <options>;

SUBSCHname
specifies the name of the subschema used to communicate with CA-IDMS in the
current DATA step. A subschema name is required and must immediately follow
INFILE. (A standard INFILE statement would specify a fileref in this position.)
You can open only one subschema per DATA step.

IDMS
tells SAS that this INFILE statement refers to a CA-IDMS database. IDMS is
required and must follow the subschema name.

options
usually define SAS variables that contain CA-IDMS information used to generate
DML calls. These variables are not added automatically to a SAS output data set
(that is, they have the status of variables that are dropped). To include the
variables in an output SAS data set, create separate variables and assign values to
them. The variables do not need to be predefined before specification in the
CA-IDMS INFILE statement. SAS defines them automatically with the correct
type and length. The following sections describe the options that are valid in the
INFILE statement.

CA-IDMS Environment Options
The following options affect how the bind-run call is generated. All of the

environment options are optional. If any of the next four options’ values should change
during the execution of the DATA step, a finish call is executed, followed by a new
bind-run call.

Using the SAS/ACCESS Interface to CA-IDMS � Other CA-IDMS Options 11

DANAME=variable
specifies a SAS variable that contains the logical CA-IDMS database name, as
defined in the database name table.

DANODE=variable
specifies a SAS variable that contains the DC/UCF of CA-IDMS where the database
is defined. Use this option only if you are running a Distributed Database System.

DCNAME=variable
specifies a SAS variable that contains the name of the CA-IDMS dictionary where
the subschema is defined. Use this option only if you are using a subschema that
is defined in a dictionary other than the default dictionary.

DCNODE=variable
specifies a SAS variable that contains the DC/UCF system needed to process the
database requests. Use this option only if you are running a Distributed Database
System.

Other CA-IDMS Options
The following list describes additional options that are available only on the

CA-IDMS INFILE statement:

AREA=variable
names a SAS variable that contains the name of the CA-IDMS AREA you want to
access. The AREA must be included in the subschema that was specified on the
INFILE statement.

DBKEY=variable
names a SAS variable to which the database record’s key, db-key, is assigned after
successful execution of an ACCEPT or a RETURN call to the database. A record’s
db-key can then be used to access a record directly. In this case, the DBKEY
variable contains the db-key of the record that you want to access directly, along
with FIND or OBTAIN in the FUNC= variable.

ERRSTAT=variable
names a SAS variable to which the CA-IDMS call status is assigned after each
CA-IDMS call. If ERRSTAT= is not specified, call status codes are not returned.
The variable is a character variable with a length of 4.

It is highly recommended that you check the call status codes that CA-IDMS
returns, and this option provides a convenient way to do so. (See “Checking Call
Status Codes” on page 35 for more information about checking call statuses in
CA-IDMS DATA step programs.)

FUNC=variable
names a SAS variable that contains the CA-IDMS call function that is used when
the CA-IDMS INPUT statement is executed. The variable must be assigned a
valid CA-IDMS call function code before a CA-IDMS INPUT statement is executed.
The value of the FUNC= variable can be changed between calls. The valid
function calls are BIND, FIND, OBTAIN, ACCEPT, GET, IF, and RETURN. Each
of these function calls is described in “Specifying DML Function Calls” on page 14.

IKEY=variable
specifies a SAS variable that contains the CALC KEY. Owner records of a set can
be predefined to have a CALC key. Using the CALC key enables direct access to the
owner records. The IKEY option is used with the IKEYLEN and KEYOFF options.

12 Standard INFILE Statement Options � Chapter 2

IKEYLEN=variable
specifies a SAS variable that contains the length of the CALC key. The SAS
variable for the IKEYLEN option is defined as a numeric variable.

KEYOFF=variable
specifies a numeric SAS variable that is set to the position of the CALC key within
the CA-IDMS record.

LRECL=length
specifies the length of the SAS buffers that are used as I/O areas when CA-IDMS
calls are executed. The length must be greater than or equal to the length of the
longest record accessed. If LRECL= is not specified, the default buffer length is
1000 bytes. See “CA-IDMS Input Buffer” on page 4 for more information.

RECORD=variable
specifies a SAS variable that contains the name of the CA-IDMS record type you
want to access. The record type must be included in the subschema that was
specified on the INFILE statement.

SEQUENCE=variable
names a SAS variable that contains the requested record location within the set or
area. This variable can also establish currency and/or determine the direction of
the traversal. Valid values for the SEQUENCE SAS variable are:

� NEXT

� FIRST

� LAST

� PRIOR

� nth

� CURRENT

� OWNER

� DUP

� USING.

SET=variable
names a SAS variable that contains the name of the CA-IDMS set you want to
access. The set must be included in the subschema that was specified on the
INFILE statement.

SORTFLD=variable
names a SAS variable that contains the sort control element to be used in
searching the sorted set. If the FUNC= variable contains RETURN, SORTFLD=
will contain the record’s symbolic key, after successful completion of the call to
CA-IDMS.

Standard INFILE Statement Options
The following standard INFILE statement options can be specified in a CA-IDMS

INFILE statement:

OBS=n
specifies, in a CA-IDMS DATA step program, the maximum number of CA-IDMS
function calls to execute. This number includes INPUT statements that do not
retrieve data, such as BIND.

Using the SAS/ACCESS Interface to CA-IDMS � Summary of CA-IDMS INFILE Statement Options 13

STOPOVER
stops processing if the record returned to the input buffer does not contain values
for all the variables that are specified in the CA-IDMS INPUT statement.

OBS= and STOPOVER are the only standard INFILE options that can be specified in
a CA-IDMS INFILE statement.

One other standard INFILE statement option, the MISSOVER option, is the default
for CA-IDMS INFILE statements and does not have to be specified. The MISSOVER
option prevents SAS from reading past the current record data in the input buffer if
values for all variables specified by the CA-IDMS INPUT statement are not found.
Variables for which data is not found are assigned missing values. Without the default
action of the MISSOVER option, SAS would issue another function call anytime the
INPUT statement execution forced the input pointer past the end of the record.

Refer to SAS Language Reference: Dictionary for complete descriptions of these
options.

Summary of CA-IDMS INFILE Statement Options
The following table summarizes the CA-IDMS INFILE statement options.

Table 2.1 Summary of CA-IDMS INFILE Statement Options

Option Specifies

AREA= the variable that contains the CA-IDMS area name.

DANAME= the variable that contains database to be accessed by the run unit.

DANODE= the variable that contains the central version of CA-IDMS where the
database resides.

DBKEY= the variable that contains a database record’s key.

DCNAME= the variable that contains the name of the CA-IDMS dictionary
where the subschema is defined.

DCNODE= the variable that contains the DC/UCF system needed to process the
database requests.

ERRSTAT= the variable to which the CA-IDMS error status is assigned after
each CA-IDMS call.

FUNC= the variable that contains the CA-IDMS call function used when a
CA-IDMS INPUT statement is executed.

IKEY= the variable that contains the value of the CALC KEY.

IKEYLEN= the variable that contains the length of the CALC key.

KEYOFF= the variable that is set to the position of the CALC key within the
CA-IDMS record.

LRECL= the length of the SAS buffers used as I/O areas when CA-IDMS calls
are executed.

<MISSOVER> that SAS does not read past the current record data in the input
buffer if values for all variables specified by the CA-IDMS INPUT
statement are not found. Specified by default.

OBS= the maximum number of CA-IDMS function calls to be issued by the
DATA step.

14 Guidelines for Using the CA-IDMS INFILE Statement � Chapter 2

Option Specifies

RECORD= the variable that contains the name of the CA-IDMS record you
want to access.

SEQUENCE= the variable that contains the requested record location within the
set or area, and/or establishes currency, and/or determines the
direction of the traversal.

SET= the variable that contains the name of the CA-IDMS set you want to
access.

SORTFLD= the variable that contains the value of the sort-control element to be
used in searching the sorted set.

STOPOVER that SAS stops processing if the record returned to the input buffer
does not contain values for all variables specified in the CA-IDMS
INPUT statement.

Guidelines for Using the CA-IDMS INFILE Statement
You access CA-IDMS records and sets, one record at a time, using the CA-IDMS

INFILE and INPUT statements.
By specifying options on the INFILE statement, you can generate navigational DML

calls to CA-IDMS. To issue the appropriate DML calls, you need a thorough knowledge
of the database structure.

The CA-IDMS access method that you need to use depends on how the sets were
defined to the database. The access methods are CALC, CURRENT, DBKEY, OWNER,
SORT KEY, or WITHIN.

The DATA step interface determines what type of access method to generate the calls
for, based on the DML function call and options that you specify in the INFILE
statement. Valid DML functions are OBTAIN, FIND, BIND, ACCEPT, GET, IF, and
RETURN. The OBTAIN and GET functions are the only functions that retrieve a
record’s contents from the database.

Specifying DML Function Calls
The following sections describe which options to use to issue each of the CA-IDMS

function calls: ACCEPT, BIND, FIND, OBTAIN, GET, IF, and RETURN.
Each of the following sections shows the required and optional information that

needs to be specified in INFILE statement option variables. The INFILE statement
option variables are SAS variables assigned in the INFILE statement.

For example, to generate the ACCEPT CURRENCY function call, you must first
assign INFILE statement option variables by using FUNC=, RECORD=, and
SEQUENCE=. Then you can give the variables the values ACCEPT, DEPARTMENT,
and CURRENT, respectively. See the example below for a detailed description of the
ACCEPT CURRENCY function call.

Note: The values of INFILE statement option variables remain set and are used for
each subsequent function call unless you override or reassign their values. �

Using the SAS/ACCESS Interface to CA-IDMS � ACCEPT Function Call 15

ACCEPT Function Call
The ACCEPT db-key statement moves the db-key of the current record to the

DBKEY= option variable that you have defined in the CA-IDMS INFILE statement.
After accepting the db-key, you can use the FIND or OBTAIN db-key statements to
access records directly by using the db-key you saved from the ACCEPT db-key function
call.

The db-key is a unique 4-byte identifier assigned to a record when the record is
stored in the database. The db-key remains unchanged until the record is erased or the
database is unloaded and reloaded. Any record in the subschema can be accessed
directly using its db-key, regardless of its location.

Note: If other function calls to CA-IDMS are made before you want to use the
db-key again, it must be copied into another variable. If the db-key is not needed for
the next function call, it must be blanked out, or its value will be used in the function
call, which will produce unexpected results. �

To generate the ACCEPT CURRENCY <record-name|set|area> INTO DBKEY
function call, specify these options:

� FUNC= ACCEPT
� DBKEY= contains the current record’s DBKEY
� SEQUENCE= CURRENT|NEXT|PRIOR|OWNER.

And specify one of these options:
� RECORD= the IDMS record name
� SET= the IDMS set name
� AREA= the area the record participates in.

The following example shows the ACCEPT CURRENCY function call for the
DEPARTMENT record. The numbers in the program correspond to numbered
comments following the program.

infile empss01 idms func=func1 record=rec1
dbkey=key1 errstat=err sequence=seq1;

.

.

.
u func1 = ’ACCEPT’;
v rec1 = ’DEPARTMENT’;
w seq1 = ’CURRENT’;

input;
if err eq ’0000’ then do

x put @1 ’DBKEY OF RECORD = ’ @19 key1;
.
.
.

u FUNC1 is assigned the value of ACCEPT.

v REC1 is assigned the record name DEPARTMENT because you
want the db-key of this record. Before you can issue an ACCEPT
function call for a specific record, you must first establish currency
on the record.

w SEQ1 is set to CURRENT to indicate that you want the db-key of
the DEPARTMENT record which is current of the run unit.

16 BIND Function Call � Chapter 2

x After successful execution of the the ACCEPT function call, KEY1
contains the db-key for the current DEPARTMENT record. The PUT
statement prints the value of KEY1 on the SAS log.

The following example shows the ACCEPT NEXT function call for the
DEPT-EMPLOYEE set. The numbers in the program correspond to the numbered
comments following the program.

infile empss01 idms func=func1 set=set1
dbkey=key1 errstat=err sequence=seq1;

.

.

.
u func1 = ’ACCEPT’;
v set1 = ’DEPT-EMPLOYEE’;
w seq1 = ’NEXT’;

input;
if err eq ’0000’ then do

x put @1 ’DBKEY OF RECORD = ’ @19 key1;
.
.
.

u FUNC1 is assigned the function of ACCEPT.

v SET1 is assigned the set name that is current of the run unit. If, for
example, you have currency on the EMPLOYEE record, the
ACCEPT NEXT causes the db-key of the next record in the
DEPT-EMPLOYEE set to be returned from the function call to
CA-IDMS. The next record in the DEPT-EMPLOYEE set could be
either an EMPLOYEE record or a DEPARTMENT record, depending
on your location in the set when the ACCEPT NEXT function call is
issued.

w SEQ1 is set to NEXT to indicate that you want the db-key from the
next record in the DEPT-EMPLOYEE set.

x After successful execution of the ACCEPT function call, KEY1
contains the db-key for the NEXT record. The PUT statement prints
the db-key on the SAS log.

You can now save the db-key to use now or later with the OBTAIN or FIND
functions. Using the db-key gives you direct access to the record regardless of
established currencies.

BIND Function Call
The only form of the BIND function that is needed in the CA-IDMS DATA step is

the BIND RECORD. The BIND RECORD statement establishes addressability for a
CA-IDMS record so that its data can be retrieved and placed into the input buffer. A
BIND RECORD must be issued for every record type the DATA step will access before
any data is retrieved. The BIND RECORD function call does not retrieve any data from
CA-IDMS. A BIND function call is not necessary if no data is being retrieved, that is, if
you are issuing a FIND, ACCEPT, or RETURN function call.

Using the SAS/ACCESS Interface to CA-IDMS � FIND and OBTAIN Function Calls 17

To generate the BIND RECORD function call, specify these options:

� FUNC= BIND

� RECORD= the IDMS record name

The following example shows the BIND RECORD function call. The numbers in the
program correspond to the numbered comments following the program.

infile empss01 idms func=func1 record=recname
.
.
.

u func1 = ’BIND’;
v recname = ’DEPARTMENT’;
w input;

.

.

.

u FUNC1 is assigned the function of BIND.

v RECNAME is assigned the value of DEPARTMENT because this is
the record on which you want to perform the BIND RECORD.

w This INPUT statement generates and submits the BIND RECORD
function call to CA-IDMS.

FIND and OBTAIN Function Calls
The FIND function locates a record in the database. The OBTAIN function locates a

record and moves the data from the record to the input buffer. The FIND and OBTAIN
functions have identical options so they will be discussed together. There are six
formats of the FIND and OBTAIN functions. Each one will be described individually.

FIND/OBTAIN CALC Function

The FIND/OBTAIN CALC function accesses a record by using its CALC key value.
The record must be stored in the database with a location mode of CALC. The FIND/
OBTAIN CALC DUP function accesses duplicate records with the same CALC key as
the current record, provided that the current record of the same record type had been
accessed using FIND/OBTAIN CALC.

For an example program that locates records directly using CALC key values that
have been stored in a SAS data set, see “Example: Using the Trailing @ and the INPUT
Statement with No Arguments” on page 41.

To generate the FIND|OBTAIN CALC record-name function call, specify these
options:

� FUNC= FIND or OBTAIN

� RECORD= an IDMS record name

� IKEY= a valid IDMS record CALC key

� KEYOFF= the offset into the record where the CALC key is located

� IKEYLEN= the length of the CALC key.

18 FIND and OBTAIN Function Calls � Chapter 2

To generate the FIND|OBTAIN CALC DUP record-name function call, include this
option:

� SEQUENCE = ’DUP’.

The following example shows a FIND CALC function call for the EMPLOYEE record
followed by an OBTAIN CALC DUP for the same record. The numbers in the program
correspond to the numbered comments following the program.

infile empss01 idms func=funct record=recname
ikey=ckey keyoff=key0 errstat=stat
sequence=seq ikeylen=klen;

.

.

.
u funct = ’FIND’;
v recname = ’EMPLOYEE’;
w ckey = ’0101’;
x key0 = 0;
y klen = 4;
U input;

.

.

.
V funct = ’OBTAIN’;
W seq = ’DUP’;

if stat eq ’0000’ then do
X input @1 employee_id 4.0

@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@76 phone 10.0
@86 status $char2.
@88 ssnumber $char9.
@97 startdate 6.0
@103 termdate 6.0
@109 birthdate 6.0;

.

.

.

u FUNCT is assigned the value of FIND.

v RECNAME is assigned the name of the record that you want to
access. In this example, the record is the EMPLOYEE record.

w CKEY is assigned the character value of ’0101’, which is the value of
the CALC key of the EMPLOYEE record you want to access. Upon
successful execution of the FIND CALC function call, currency is set
to the EMPLOYEE record with the employee ID number of 0101.
The CALC key for the employee record is the employee ID.

x KEYO is set to zero because the employee ID or the CALC key is at
offset zero in the employee record. In other words, the employee ID
is the first element in the employee record.

Using the SAS/ACCESS Interface to CA-IDMS � FIND and OBTAIN Function Calls 19

y KLEN is set to 4, which is the length of the CALC key, the employee
ID.

U This INPUT statement generates and submits the FIND CALC
function call to CA-IDMS. No SAS variables are created. The FIND
function establishes currency but does not retrieve data.

V FUNCT is set to OBTAIN to generate an OBTAIN CALC function
call to CA-IDMS.

W SEQ is set to DUP so the code will generate an OBTAIN CALC DUP
function call. RECNAME, CKEY, KLEN, and KEYO are still set
from the previous FIND CALC function call and do not have to be
set.

X This INPUT statement contains SAS variables because the OBTAIN
function call causes CA-IDMS to locate the specified record and
move the data associated with the record to the record buffer.

The INPUT keyword submits the generated function call, which,
if successful, returns a record to the buffer. The remaining portion of
the INPUT statement maps fields from the buffer to the program
data vector.

FIND/OBTAIN CURRENT Function
The FIND/OBTAIN CURRENT function accesses records by using established

currencies. You can FIND or OBTAIN records that are current of the record type, set,
or area. You can also use this form of the FIND or OBTAIN function call to establish
the appropriate record as current of the run unit.

To generate the FIND|OBTAIN CURRENT OF <record|set|area> function call,
specify these options:

� FUNC= FIND or OBTAIN
� SEQUENCE= CURRENT.

And optionally use one of the following options:
� RECORD= a IDMS record name
� SET= an IDMS set name
� AREA= the area in which the record is a participant.

The following example shows a FIND CURRENT function call for the
DEPARTMENT record. The numbers in the program correspond to the numbered
comments following the program.

infile empss01 idms func=funct record=recname
errstat=stat sequence=seq;

.

.

.
u funct = ’FIND’;
v seq = ’CURRENT’;
w recname = ’DEPARTMENT’;
x input;

.

.

.

20 FIND and OBTAIN Function Calls � Chapter 2

u FUNCT is assigned the value of FIND.

v SEQ is assigned CURRENT so the function call to CA-IDMS will
locate the current record of the specified record type, set, or area. In
this example, the code is looking for the current record of the record
type DEPARTMENT.

w RECNAME specifies the name of the record type that is to be
accessed. In this example, the record is the DEPARTMENT record.

You can use the AREA option or the SET option instead of the
RECORD option with the FIND/OBTAIN CURRENT function to
locate the current record of the named area or set, respectively.

x This INPUT statement generates and submits the FIND CURRENT
function call to CA-IDMS.

FIND/OBTAIN DBKEY Function
The FIND/OBTAIN DBKEY function locates a record directly using a db-key that

has been stored previously by your DATA step program. The ACCEPT function is used
to acquire the record’s db-key. Any record in the subschema can be accessed directly
using the db-key, regardless of its location mode.

To generate the FIND|OBTAIN DBKEY function call, specify these options:

� FUNC= FIND or OBTAIN

� DBKEY= a db-key value.

And optionally specify the following option:

� RECORD= the IDMS record name.

The following example shows an ACCEPT NEXT function call, which acquires the
db-key of a record. It is followed by an OBTAIN DBKEY function call, which uses the
db-key acquired by the ACCEPT NEXT function call. The numbers in the program
correspond to the numbered comments following the program.

infile empss01 idms func=funct dbkey=dkey
errstat=stat sequence=seq;

.

.

.
u funct = ’ACCEPT’;

seq = ’NEXT’;
v dkey = ’ ’;

input;
.
.
.
funct = ’OBTAIN’;

w seq = ’ ’;
x input @1 department_id 4.0

@5 department_name $char45.
@50 department_head 4.0;

.

.

.

Using the SAS/ACCESS Interface to CA-IDMS � FIND and OBTAIN Function Calls 21

u FUNCT is assigned the value of ACCEPT to get the db-key for the
next record, based on currency.

v DKEY is set to blanks to receive the new db-key.

After the ACCEPT function call has successfully executed, the
db-key is returned to the DATA step in the DKEY variable. The
db-key can be saved and used later to access the record directly.

w The SEQ option is set to blanks because it is not used with the
OBTAIN DBKEY function call.

If the RECORD option is used with FIND/OBTAIN DBKEY, the
db-key value must contain a db-key of the named record type.

x The INPUT statement generates and submits the OBTAIN DBKEY
function call. If successful, data returned to the buffer is mapped to
the named variables.

FIND/OBTAIN OWNER Function
The FIND/OBTAIN OWNER function locates the owner record of the current set.

This function call can be used to return the owner record of any set, whether or not the
set has been assigned owner pointers.

To generate the FIND|OBTAIN OWNER function call, specify these options:
� FUNC= FIND or OBTAIN
� SET= an IDMS set name
� SEQUENCE= OWNER.

The following example shows an OBTAIN OWNER function call. This example
assumes currency is on an employee record occurrence. The numbers in the program
correspond to the numbered comments following the program.

infile empss01 idms func=funct set=inset
errstat=stat sequence=seq;

.

.

.
u funct = ’OBTAIN’;
v seq = ’OWNER’;
w inset = ’DEPT-EMPLOYEE’;
x input @1 department_id 4.0

@5 department_name $char45.
@50 department_head 4.0;

.

.

.

u FUNCT is assigned the value of OBTAIN so that the data for the
owner record is returned to the DATA step program.

v SEQ is assigned OWNER to generate an OBTAIN OWNER function
call.

w INSET specifies the set whose owner record is to be retrieved.

x The INPUT statement generates and submits the OBTAIN OWNER
function call. If successful, data returned to the buffer are mapped
to the named variables.

22 FIND and OBTAIN Function Calls � Chapter 2

FIND/OBTAIN SORT KEY Function
The FIND/OBTAIN SORT KEY function locates a member record in a sorted set.

Sorted sets are ordered in ascending and descending sequence based on the sort field
value. The search for member records begins with either the current record of the set or
the owner of the set. The record that is retrieved will be the first record that has a sort
field value that is equal to the value in the SORTFLD SAS variable. If no record
matches the SORTFLD value, currencies to the next and prior records of the set are
maintained so that the DATA step program can traverse the set using the SORTFLD
value to perform a generic search.

To generate the FIND|OBTAIN record WITHIN set|record USING sortfield function
call, specify these options:

� FUNC= FIND or OBTAIN

� SORTFLD= a valid sort field value

� RECORD= a IDMS record name

� SET= an IDMS set name.

To generate the FIND|OBTAIN record WITHIN set|record CURRENT USING
sortfield function call, include the following option:

� SEQUENCE= CURRENT.

The following example shows an OBTAIN record WITHIN CURRENT set USING
sortfield function call. The numbers in the program correspond to the numbered
comments following the program.

infile empss01 idms func=funct record+recname
errstat=stat sequence=seq set=inset
sortfld=skey;

.

.

.
u funct = ’OBTAIN’;
v seq = ’CURRENT’;
w skey = ’GARFIELD’ || ’JENNIFER’;
x recname = ’EMPLOYEE’;
y inset = ’EMP-NAME-NDX’;
U input @1 employee_id 4.0

@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@76 phone 10.0
@86 status $char2.
@88 ssnumber $char9.
@97 startdate 6.0
@103 termdate 6.0
@109 birthdate 6.0
@115 filler01 $char2. ;

.

.

.

Using the SAS/ACCESS Interface to CA-IDMS � FIND and OBTAIN Function Calls 23

u FUNCT is assigned the value of OBTAIN to retrieve the data for the
employee record with the sort key of JENNIFER GARFIELD.

v SEQ is set to CURRENT to indicate that the search begins with the
current record of the set specified in INSET.

w SKEY contains the value of the sort control element to be used in
searching the sorted set. In this example, SKEY is set to the last
and first name value of the employee name sort control element in
the EMP-NAME-NDX set where you want to begin the search.

x RECNAME is set to the name of the record to retrieve. In this
example, you are looking for the EMPLOYEE record.

y INSET is assigned the name of a sorted set.

U The INPUT statement generates and submits the OBTAIN
SORTFLD WITHIN CURRENT set function call. If successful, data
is mapped from the buffer to the named variables.

FIND/OBTAIN WITHIN SET or AREA Function

The FIND/OBTAIN WITHIN function locates a record either logically, based on set
relationships, or physically, based on database location. Using various options with
FIND/OBTAIN WITHIN, you can either access each record sequentially in a set or area,
or select specific occurrences of a given record within a set or area.

Follow these rules when selecting members within a set:

� Currency must be established on a set before attempting to access records in the
set.

� The next or prior records in the set are determined by the record that is current
for the set named in the SET= option. The set must have prior pointers defined in
order to retrieve records using the SEQUENCE= option of PRIOR.

� The first or last record in a set is the first or last member in the logical order of
the set. The last record in a set can only be accessed if prior pointers have been
established for the set.

� The nth record in a set is the set member in the nth position of the set. The search
for the nth member begins with the owner of the current set and continues until
the nth record is located or until an end-of-set condition occurs. If the nth number
is negative, the search uses prior pointers. To use negative numbers, prior
pointers must have been established for the set.

� When an end-of-set occurs, the owner of the set becomes the current record of the
run-unit, the record type, its area, and its set.

Follow these rules when selecting records within an area:

� The first record within an area is the record with the lowest db-key. The last
record within an area is the record with the highest db-key.

� The next record within an area is the record with the next highest db-key in
relationship to the record which is current of the named area. The prior record
works the same way, except the prior record is the record with the next lowest
db-key.

� Before the next or prior record within an area can be requested, the first, last, or
nth record within an area must be accessed to correctly establish a starting
position within the area.

24 FIND and OBTAIN Function Calls � Chapter 2

To generate the FIND | OBTAIN NEXT | PRIOR | FIRST | LAST | nth <record>
WITHIN set|area function call, specify this option:

� FUNC= FIND or OBTAIN.

And specify one of these options:
� SET= an IDMS set name
� AREA= the area that the record participates in
� SEQUENCE= NEXT|PRIOR|FIRST|LAST|nth.

And optionally specify this option:
� RECORD= a IDMS record name.

The following example shows an OBTAIN PRIOR record WITHIN AREA function
call. Currency has already been established on an EMPLOYEE record. The numbers in
the program correspond to the numbered comments following the program.

infile empss01 idms func=funct area=subarea
record=recname errstat=stat
sequence=seq;

.

.

.
u funct = ’OBTAIN’;
v seq = ’PRIOR’;
w subarea = ’EMP-DEMO-REGION’;

recname = ’EMPLOYEE’
x input @1 employee_id 4.0

@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@76 phone 10.0
@86 status $char2.
@88 ssnumber $char9.
@97 startdate 6.0
@103 termdate 6.0
@109 birthdate 6.0
@115 filler01 $char2. ;

.

.

.

u FUNCT is assigned the function of OBTAIN to retrieve the data for
the EMPLOYEE record.

v SEQ is set to PRIOR to indicate that the prior EMPLOYEE record is
requested.

w SUBAREA contains the name of the current area from which to
retrieve the EMPLOYEE record.

x The INPUT statement generates and submits the OBTAIN PRIOR
function call. If successful, data is mapped from the buffer to the
named variables.

Using the SAS/ACCESS Interface to CA-IDMS � GET Function Call 25

GET Function Call
The GET statement moves the record that is current of the run unit into the input

buffer. The GET function is used in conjunction with the FIND function. The FIND
function locates records in the database without moving the data associated with the
record to the record buffer.

To generate the GET <record-name> function call, specify the following option:

� FUNC= GET.

And optionally specify the following option:

� RECORD= the IDMS record name.

The following example shows the GET function call with no other options:

infile empss01 idms func=func1 record=rec1
errstat=err;

.

.

.
u func1 = ’GET’;
v input @1 department_id 4.0

@5 department_name $char45.
@50 department_head 4.0;

.

.

.

u FUNC1 is assigned the value of GET.

v The record that is current of the run unit is moved into the input
buffer. Currency must be established before issuing the GET
function.

The following example shows the GET function call for the DEPARTMENT record:

infile empss01 idms func=func1 record=rec1
errstat=err;

.

.

.
func1 = ’GET’;

u rec1 = ’DEPARTMENT’;
input @1 department_id 4.0

@5 department_name $char45.
@50 department_head 4.0;

.

.

.

u The difference between this GET function call and the previous GET
call is the use of the SAS variable REC1. This variable is set to the
name of the specific record to move into the record buffer. In this
example, the data associated with the DEPARTMENT record is

26 IF Function Call � Chapter 2

moved. Currency must be established on the DEPARTMENT record
before a GET call can be made for the record.

IF Function Call
The DML IF statement tests for the existence or membership of a record occurrence

in a named set occurrence, and returns the result in the ERRSTAT variable.
There are two formats for the DML IF statement:
� IF SET <NOT> EMPTY tests for the existence of a record occurrence and returns

a status value of 0000 if the set occurrence is empty, and a status value of 1601 if
the set occurrence is not empty.

� IF <NOT> SET MEMBER checks the membership of the current record occurrence
and returns a status value of 0000 if the record occurrence is a member of the
named set occurrence, and a status value of 1608 if the record occurrence is a
non-member.

To issue the DML IF statement, specify these options:
� FUNC= IF
� INSET= an IDMS set name
� SEQUENCE= EMPTY|NEMPTY|MEMBER| NMEMBER.

The following is an example of a DML IF function call:

infile empss01 idms func=funct record=recname
area=subarea errstat=stat sequence=seq
set=inset;

u funct = ’FIND’;
seq = ’FIRST’;
recname = ’DEPARTMENT’;
subarea = ’ORG-DEMO-REGION’;
input;
if (stat ^= ’0000’) then go to staterr;

v funct = ’IF’;
w seq = ’NEMPTY’;
x inset = ’DEPT-EMPLOYEE’;

recname = ’ ’;
subarea = ’ ’;
input;

y if (stat = ’1601’) then do;
put @1 ’Set ’ @5 inset @14 ’is not empty’;
stat = ’0000’;
error = 0;
end;

U else if (stat = ’0000’) then
put @1 ’Set’ @5 inset @14 ’is empty’;
else go to staterr;
stop;

u Run-unit currency for the DML IF statement is established by the
previous function call. Here, a FIND function call establishes
run-unit currency on the record DEPARTMENT for the DML IF
statement, but does not retrieve the record.

Using the SAS/ACCESS Interface to CA-IDMS � RETURN Function Call 27

v FUNCT is assigned the value of IF to indicate that a test will be
performed. Set currency is determined by the owner of the current
record in the set named in INSET.

w SEQ is set to NEMPTY to indicate the type of test.

x INSET names the set to test.

y The first SAS IF statement directs the DATA step to write a
message to the log if the value of STAT is 1601, which means that
the set is not empty.

U The second SAS IF statement directs the DATA step to stop if the
value of STAT is 0000, which means the set is empty.

RETURN Function Call
The RETURN function retrieves the db-key and the symbolic key for an indexed

record without retrieving the record’s data. This function establishes currency on the
index set.

There are two formats for the RETURN function:

� The RETURN CURRENCY function retrieves the db-key and symbolic key for an
index entry based on established currencies or its position in the index set.

� The RETURN USING SORTKEY function retrieves the db-key and symbolic key
associated with a specific index key entry.

To generate the RETURN CURRENCY <set> NEXT |PRIOR|FIRST|LAST INTO
DBKEY key INTO SORTKEY skey function call, specify these options:

� FUNC= RETURN.

� SET= an IDMS index set name.

� SEQUENCE= FIRST|LAST|NEXT|PRIOR.

� SORTFLD= upon successful completion of the function call, this SAS variable will
contain the current record’s symbolic key.

� DBKEY= upon successful completion of the function call, this SAS variable will
contain the current record’s db-key.

The following example shows the RETURN FIRST function call:.

infile empss01 idms func=func1 errstat=err
sequence=seq set=inset sortkey=skey dbkey=dkey;

.

.
u func1 = ’RETURN’;
v seq = ’FIRST’;
w inset = ’EMP-NAME-NDX’;

input;
x put @1 ’DBKEY OF RECORD = ’ @19 dkey;

put @1 ’SKEY OF RECORD = ’ @19 skey;
.
.
.

28 RETURN Function Call � Chapter 2

u FUNC1 is assigned the function of RETURN.

v SEQ is assigned the value of FIRST. FIRST returns the db-key for
the first index entry in the set EMP-NAME-NDX. You could also
request the db-key from the PRIOR, NEXT, or LAST index entry in
the set by assigning these values to the SEQUENCE= option.

w SET is assigned the name of the index set (INSET) from which the
specified db-key is to be returned.

x DKEY will contain the db-key for the first entry in
EMP-NAME-NDX. SKEY will contain the symbolic key for the entry.
The PUT statements print the db-key and the symbolic key on the
SAS log.

To generate the RETURN USING SORTKEY <set> INTO DBKEY key INTO
SORTKEY skey function call, specify these options:

� FUNC= RETURN.

� SEQUENCE= USING.

� SET= an IDMS set name.

� SORTKEY= the index key entry to search for. After successful completion of the
function call, this SAS variable will contain the record’s symbolic key.

� DBKEY= upon successful completion of the function call, this SAS variable will
contain the record’s db-key.

The following example shows the RETURN USING function call:

infile empss01 idms func=func1 record=recname
ikeylen=keyl errstat=err sequence=seq
set=inset dbkey=dkey sortkey=skey;

.

.

.
u func1 = ’RETURN’;
v seq = ’USING’;
w inset = ’EMP-NAME-NDX’;
x skey = ’GARFIELD JENNIFER’;
y keyl = 25;
U dkey = ’ ’;

input;
.
.
.

u FUNC1 is assigned the function of RETURN.

v SEQ is set to USING to indicate that the index key entry in SKEY
will be used to locate the db-key. In this example, SKEY is set to the
last name and first name GARFIELD JENNIFER. The call will
return the db-key and symbolic key of the first record it encounters
which contains the name GARFIELD JENNIFER.

w INSET is the name of the index set to be searched.

x SKEY specifies the index key value to search for.

y KEYL specifies the length of index key value.

U DKEY is set to blanks to receive the db-key.

Using the SAS/ACCESS Interface to CA-IDMS � Summary of Options Needed to Generate CA-IDMS Function Calls 29

After the RETURN function call has successfully executed, the
db-key is returned to the DATA step in the DKEY variable.

Summary of Options Needed to Generate CA-IDMS Function Calls
The following table outlines the SAS INFILE parameters that are required to

generate each of the CA-IDMS function calls for COBOL DML.

Table 2.2 Options Needed to Generate CA-IDMS Function Calls for COBOL DML

COBOL DML Call INFILE Statement Options

FUNC=ACCEPT

SEQUENCE=CURRENT

ACCEPT db-key FROM CURRENCY

DBKEY=Required

FUNC=ACCEPT

SEQUENCE=CURRENT

RECORD=Required

ACCEPT db-key FROM record-name
CURRENCY

DBKEY=Required

FUNC=ACCEPT

SEQUENCE=CURRENT

SET=Required

ACCEPT db-key FROM set-name CURRENCY

DBKEY=Required

FUNC=ACCEPT

SEQUENCE=CURRENT

AREA=Required

ACCEPT db-key FROM area-name
CURRENCY

DBKEY=Required

FUNC=ACCEPT

SEQUENCE=NEXT|PRIOR|OWNER

SET=Required

ACCEPT db-key FROM set-name
NEXT|PRIOR|OWNER CURRENCY

DBKEY=Required

SEQUENCE=BINDBIND record-name

SET=Required

FUNC=FIND|OBTAIN

RECORD=Required

IKEY=Required

FIND/OBTAIN CALC* record-name

IKEYLEN=Required

30 Summary of Options Needed to Generate CA-IDMS Function Calls � Chapter 2

COBOL DML Call INFILE Statement Options

FUNC=FIND|OBTAIN

SEQUENCE=DUP

RECORD=Required

IKEY=Required

FIND/OBTAIN DUPLICATE* record-name

IKEYLEN=Required

FUNC=FIND|OBTAINFIND/OBTAIN CURRENT

SEQUENCE=CURRENT

FUNC=FIND|OBTAIN

SEQUENCE=CURRENT

FIND/OBTAIN CURRENT record-name

RECORD=Required

FUNC=FIND|OBTAIN

SEQUENCE=NEXT|PRIOR|FIRST|LAST|Nth

RECORD=Optional

FIND/OBTAIN
CURRENT|NEXT|PRIOR|FIRST|LAST|Nth
WITHIN set-name

SET=Required

FUNC=FIND|OBTAIN

SEQUENCE=NEXT|PRIOR|FIRST|LAST|Nth

RECORD=Optional

FIND/OBTAIN
CURRENT|NEXT|PRIOR|FIRST|LAST|Nth
WITHIN area-name

AREA=Required

FUNC=FIND|OBTAIN

SEQUENCE=OWNER

FIND/OBTAIN OWNER WITHIN set-name

SET=Required

FUNC=FIND|OBTAIN

RECORD=Required

FIND/OBTAIN record-name WITHIN
set-name USING sort-key

SET=Required

FUNC=FIND|OBTAIN

SEQUENCE=CURRENT

RECORD=Required

FIND/OBTAIN record-name WITHIN
set-name CURRENT USING sort-key

SET=Required

FUNC=FIND|OBTAINFIND/OBTAIN DBKEY db-key

DBKEY=Required

FUNC=FIND|OBTAIN

RECORD=Required

FIND/OBTAINrecord-name DB-KEY IS db-key

DBKEY=Required

SEQUENCE=GETGET record-name

SET=Required

Using the SAS/ACCESS Interface to CA-IDMS � How the CA-IDMS Function Call Is Generated 31

COBOL DML Call INFILE Statement Options

FUNC=RETURN

SEQUENCE=CURRENT|FIRST|LAST|NEXT|PRIOR

SET=Required

DBKEY=Required

RETURN db-key FROM index-set-name
CURRENT|FIRST|LAST|NEXT| PRIOR
KEY INTO symbolic-key

SORTFLD=Required

FUNC=RETURN

SEQUENCE=USING

SET=Required

DBKEY=Required

RETURN db-key FROM index-set-name
USING index-key-value KEY INTO
symbolic-key

SORTFLD=Required

* KEYOFF= INFILE statement option required for these calls

How the CA-IDMS Function Call Is Generated
To determine which type of DML function call you want to generate, the CA-IDMS

DATA step access method must make some assumptions from the various options that
you specify. The access method first determines what value is specified in the FUNC
option.

� If the FUNC option contains BIND, GET, ACCEPT, or RETURN, the required
options are checked for a value, then the optional options are checked, and the
appropriate function call is generated.

� If the FUNC option contains FIND or OBTAIN, the access method checks whether
a value was entered for the following options:

SORTFLD
If the SORTFLD option was entered, the required and optional options for
the OBTAIN or FIND with the SORTFLD are verified before a function call is
generated. If the SORTFLD option was not entered, the access method then
determines if the IKEY option was entered to generate a function call using
the CALC key.

IKEY
If the IKEY option was entered, then all of the required and optional options
are verified for a function call using the CALC key. If the IKEY option was
not entered, the access method then looks to see if the DBKEY option was
entered.

DBKEY
If the DBKEY was entered, the same verification is done for the options as
before and a function call is generated. If DBKEY was not entered, then the
access method looks to see if the SEQUENCE option was entered.

SEQUENCE
If a value was entered for the SEQUENCE option, the value is examined. If
the value is

CURRENT
The other options are checked to determine what type of currency call to
generate.

32 Using Multiple Sources of Input � Chapter 2

OWNER
An OBTAIN or FIND OWNER or a FIND DUP OWNER function call is
generated.

NEXT, PRIOR, FIRST, LAST, or nth
The access method tries to generate an OBTAIN or FIND WITHIN
function call by using the other options that were entered.

If the access method cannot generate a function call from the options that you
entered or if the options for a particular function call are incorrect, an error message is
returned, the automatic variable _ERROR_ is set to 1, and the CA-IDMS call status is
set to 9999. Your DATA step program should check for these conditions after each
function call to the database.

Using Multiple Sources of Input
You can have more than one input source in a DATA step. For example, you can

read from a CA-IDMS database and a SAS data set in the same DATA step. You
cannot, however, read from more than one subschema in a single DATA step. If you
want to use several external files (MVS data sets) in a DATA step, use separate INFILE
statements for each source.

The input source is set (or reset) when an INFILE statement is executed. The file or
CA-IDMS subschema referenced in the most recently executed INFILE statement is the
current input source for INPUT statements. The current input source does not change
until a different INFILE statement executes, regardless of the number of INPUT
statements executed.

If after you change input sources by executing multiple INFILE statements you want
to return to an earlier input source, it is not necessary to repeat all options specified in
the original INFILE statement. SAS remembers options from the first INFILE
statement with the same fileref or subschema name. In a standard INFILE statement,
you need only specify the fileref. In a CA-IDMS INFILE statement, specify the
subschema and IDMS. Options specified in a previous INFILE statement with the same
fileref or subschema name cannot be altered.

Note: The subschema name cannot be the same name as a fileref on a JCL DD
statement, a TSO ALLOC statement, or a filename’s fileref for the current execution of
SAS. �

The CA-IDMS INPUT Statement
If you are unfamiliar with the INPUT statement, refer to SAS Language Reference:

Dictionary for more information.
An INPUT statement reads from the file specified by the most recently executed

INFILE statement. If the INFILE statement is a CA-IDMS INFILE statement, the
INPUT statement issues a CA-IDMS function call as formatted by variables specified in
the INFILE statement.

There are no special options for the CA-IDMS INPUT statement as there are for the
CA-IDMS INFILE statement. The form of the CA-IDMS INPUT statement is the same
as that of the standard INPUT statement:

INPUT <specification-1 > <…specification-n > <@|@@ >;

For example, suppose you issue an OBTAIN function call for the EMPLOYEE record.
The CA-IDMS INPUT statement might be coded as follows:

Using the SAS/ACCESS Interface to CA-IDMS � The CA-IDMS INPUT Statement 33

input @1 employee_id 4.0
@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@76 phone 10.0
@86 status $char2.
@88 ssnumber $char9.
@97 startdate 8.0
@105 termdate 8.0
@113 birthdate 8.0;

When this CA-IDMS INPUT statement executes, the DATA step interface generates
and submits a function call from the options you entered on the CA-IDMS INFILE
statement. If the FUNC= variable specified in the INFILE statement is assigned a
value of GET or OBTAIN, an EMPLOYEE record is retrieved and placed in the input
buffer. Data for the variables specified in the CA-IDMS INPUT statement are then
moved from the input buffer to SAS variables in the program data vector.

Depending on which options you specify in the CA-IDMS INFILE statement and
which form of the CA-IDMS INPUT statement you use, the INPUT statement will do
one of the following:

� retrieve a record from the database, place it into the input buffer without moving
any variables into the program data vector, and possibly hold the record for the
next INPUT statement. If the FUNC= variable specifies GET or OBTAIN, but the
INPUT statement does not list any variables, then data is placed into the input
buffer without being moved into the program data vector. If the INPUT statement
specifies a trailing @ or @@, the record is held for processing by the next INPUT
statement. See “The Null INPUT Statement” on page 34 and “Holding Records in
the Input Buffer” on page 34 for more information.

� retrieve a record from the database, place it into the input buffer, move data from
the input buffer into variables in the program data vector, and possibly hold the
record for the next INPUT statement. If the FUNC= variable specifies GET or
OBTAIN, and the INPUT statement specifies one or more variables, then data is
placed into the input buffer and mapped into variables in the program data vector.
If the INPUT statement specifies a trailing @ or @@, the record is held for
processing by the next INPUT statement. See “Holding Records in the Input
Buffer” on page 34 for more information.

� submit a DBMS request without retrieving a record. If the FUNC= variable
specifies BIND, FIND, ACCEPT or RETURN, then no record data is retrieved from
the database. These functions are described in “Specifying DML Function Calls”
on page 14. See “The Null INPUT Statement” on page 34 for more information.

� release a previously held record from the input buffer. If the previous INPUT
statement specified a trailing @ or @@, and the current INPUT statement is a null
INPUT statement (input;), then the previously held record is released. See
“Holding Records in the Input Buffer” on page 34 for more information.

Note: Every time SAS encounters a CA-IDMS INPUT statement, it increments by
one an internal counter that keeps track of how many function calls are issued from the
input data set. The count is printed to the SAS log as a NOTE. Because you can code
several CA-IDMS INPUT statements that do not retrieve data, this count might not
accurately reflect the actual number of records retrieved from the database. �

34 The Null INPUT Statement � Chapter 2

Although the syntax of the CA-IDMS INPUT statement and the standard INPUT
statement are the same, your use of the CA-IDMS INPUT statement is often different.
Suggested uses of the CA-IDMS INPUT statement are described in the following
sections.

The Null INPUT Statement
When an INPUT statement does not specify any variable names or options, it is

called a null INPUT statement:

input;

A null INPUT statement serves three purposes:
� A null CA-IDMS INPUT statement generates and submits a CA-IDMS function

call to the database. To issue a CA-IDMS function call that does not retrieve data
(FIND, ACCEPT, RETURN, and BIND), use a null INPUT statement.

� A null CA-IDMS INPUT statement retrieves a record from the database and
places it in the input buffer, but does not move data values to the program data
vector. When you want to issue an OBTAIN or GET function call, you can use the
INPUT statement with a trailing ’@’ or ’@@’ to retrieve a record from the database,
then check the status code returned from CA-IDMS before moving data values to
the program data vector.

� If the previous INPUT statement was input @; or input var1 var2 var3 @;, a
null INPUT statement releases the previously held record. See “Holding Records
in the Input Buffer” on page 34 for information.

Holding Records in the Input Buffer
The trailing @ and @@ pointer controls tell SAS to hold the current record in the

input buffer so that it can be processed by a subsequent INPUT statement. The trailing
@ tells SAS to hold the record for the next INPUT statement in the same iteration of
the DATA step. The double trailing @ tells SAS to hold the record for the next INPUT
statement across iterations of the DATA step.

Assuming the FUNC= variable in your INFILE statement specifies GET or OBTAIN,
the following INPUT statement submits a function call to the database, retrieves a
record from the database, places it in the input buffer, and places a hold on the buffer:

input @;

The next INPUT statement that is executed does not issue another function call and
does not place a new record in the input buffer. Instead, the second INPUT statement
uses the data placed in the input buffer by the first INPUT statement.

If your INPUT statement also specifies variable names, then that statement issues a
function call to the database, retrieves a record, places the record into the input buffer,
and moves data values for the named variables into the program data vector:

input ssnumber $char11. @;

SAS holds the record in the input buffer for use with the next INPUT statement.
If you have used an INPUT statement with a trailing @ or @@, and you now want to

release the record from the input buffer, use a null INPUT statement as described in
“The Null INPUT Statement” on page 34.

Using the SAS/ACCESS Interface to CA-IDMS � Checking Call Status Codes 35

Checking Call Status Codes
For each function call issued, CA-IDMS returns a call status code that indicates

whether or not the function call was successful. Because the success of a function call
can affect the remainder of the program, you should check call status codes after every
call to CA-IDMS. SAS provides the automatic SAS variable _ERROR_, whose values
indicate the success of a function call.

The following table shows the _ERROR_ values and their meaning.

Table 2.3 Summary of _ERROR_ Values

Value of _ERROR_

Possible
Corresponding
Status Codes Description

0 CA-IDMS 0000 Function call executed successfully.

1 All CA-IDMS status
codes except 0000

CA-IDMS error code returned. Contents of the input buffer
and the program data vector are printed in the SAS log with
the next INPUT statement or when control returns to the
beginning of the DATA step, whichever comes first.

SAS status 9999 Program cannot perform function call from options specified.

Obtaining the Value of _ERROR_
Check the SAS log to see the value of _ERROR_. If _ERROR_=1, it is printed in the

SAS log along with the contents of the input buffer and the program data vector.

Obtaining the CA-IDMS Error Codes
You can obtain the status code returned by CA-IDMS by specifying a variable name

with the ERRSTAT= option of the CA-IDMS INFILE statement. This variable will be
assigned the CA-IDMS status after each function call to the database.

Refer to your CA-IDMS documentation for explanations of CA-IDMS error status
codes.

Checking for Non-Error Conditions and Resetting _ERROR_
Some of the CA-IDMS status codes that set _ERROR_ to 1 might not represent

errors in your SAS program. When this happens in your application, you should check
the actual error status code returned by CA-IDMS as well as the value of _ERROR_ by
the methods stated in the above sections, and possibly reset _ERROR_ to 0.

For example, suppose you are writing a program that accesses all the
DEPARTMENT and EMPLOYEE records from all the DEPT-EMPLOYEE set
occurrences. When an end-of-set condition (CA-IDMS status code 0307) occurs on the
EMPLOYEE record, _ERROR_ is set to 1; however, you do not consider the end-of-set
condition to be an error. Instead, you want your application to obtain the next owner
record or DEPARTMENT record from the next DEPT-EMPLOYEE set occurrence.

If a status code sets _ERROR_ but you do not consider the condition to be an error,
you should reset _ERROR_ to 0 before executing another INPUT statement or
returning to the beginning of the DATA step. Otherwise, the contents of the input
buffer and program data vector are printed on the SAS log. See U in “Example:
Traversing a Set” on page 37 for an example of how to reset _ERROR_ to 0.

36 Handling End of File � Chapter 2

Catching Errors Before Moving Data
In all programs it is important to check the values of either the _ERROR_ or

ERRSTAT= variables before moving data from the input buffer into the program data
vector. For example, if a GET or OBTAIN function call fails to retrieve the expected
record, the input buffer might still contain data from a previous GET or OBTAIN call or
be filled with missing values. You might not want to move these values to SAS
variables. By checking either the ERRSTAT= or _ERROR_ variable, you can determine
whether the function call was successful and decide whether to move the input buffer
data to SAS variables.

When you need to issue a retrieval call but you want to check either _ERROR_ or
ERRSTAT= values before moving data to SAS variables, use a CA-IDMS INPUT
statement with no variables specified, but with a trailing @, to issue the call:

input @;

Because no variables are specified, no data is moved to the program data vector. The
statement contains a trailing @, so the record remains in the input buffer, and your
application can check the values in _ERROR_ and/or ERRSTAT= before determining
what action to take. For more information, see “Holding Records in the Input Buffer”
on page 34.

For example, suppose you have specified ERRSTAT=ERR and FUNC=FUNC1 on
your INFILE statement, and you have assigned FUNC1= ’GET’ or ’OBTAIN’. You can
use the following code to check the error status before moving data:

u input @;
v if (err ne ’0000’ and err ne ’0307’) then

go to staterr;
w if err eq ’0307’ then do;
x _error_ = 0;

/* No more DEPT records so STOP */
stop;

end;
y input @1 department_id 4.0

@5 department_name $char45.
@50 department_head 4.0;

u The INPUT statement retrieves a record from the database and
places a hold on the input buffer but does not move data to the
program data vector.

v A SAS IF statement checks to see if ERR is not equal to 0000 or
0307. If not, the program branches to the STATERR routine, which
issues an error message and stops the DATA step.

w If the INPUT statement encountered the end-of-set, then the
ERROR variable is reset to 0 (x) to prevent the contents of the
input buffer and program data vector from being printed on the SAS
log, and the DATA step stops.

y If the first INPUT statement (u) was successful, then the second
INPUT statement moves the data from the record being held in the
input buffer to the program data vector and releases the hold.

Handling End of File
Because of the nature and design of a network database, the concept of an end of file

does not exist. Consequently, the SAS option EOF= should not be used on a CA-IDMS

Using the SAS/ACCESS Interface to CA-IDMS � Example: Traversing a Set 37

INFILE statement. Instead you should either write your DATA step code to stop
processing when you have retrieved all the records you need or set up your code to loop,
stopping only when it reaches a desired condition.

Example: Traversing a Set

The following DATA step shows how to traverse the DEPT-EMPLOYEE set using
the CA-IDMS INFILE and CA-IDMS INPUT statements. The numbers in the program
correspond to the numbered comments following the program.

u data work.dept_employee;

v infile empss01 idms func=func1 record=recname
area=iarea sequence=iseq errstat=err
set=iset;

/* BIND the DEPARTMENT and EMPLOYEE */
/* records in the first data set */
/* iteration; if successful, then */
/* OBTAIN FIRST DEPARTMENT WITHIN AREA */

w if _n_ = 1 then do;
func1 = ’BIND’;
recname = ’DEPARTMENT’;

x input;
if (err ne ’0000’) then go to staterr;
recname = ’EMPLOYEE’;
input;
if (err ne ’0000’) then go to staterr;

/* Get a DEPARTMENT record */

iseq = ’FIRST’;
func1 = ’OBTAIN’;
recname = ’DEPARTMENT’;
iarea = ’ORG-DEMO-REGION’;

end;

else do;
func1 = ’FIND’;
iseq = ’OWNER’;
input;
if (err ne ’0000’) then go to staterr;
func1 = ’OBTAIN’;
iseq = ’NEXT’;
recname = ’DEPARTMENT’;
iarea = ’ORG-DEMO-REGION’;
iset = ’ ’;

end;

/* OBTAIN DEPT record and test */
/* for success */

38 Example: Traversing a Set � Chapter 2

y input @;
U if (err ne ’0000’ and err ne ’0307’) then

go to staterr;
if err eq ’0307’ then do;

error = 0;
/* No more DEPT records so STOP */
stop;

end;
V input @1 department_id 4.0

@5 department_name $char45.
@50 department_head 4.0;

/* Get the EMPLOYEE records for this DEPT */
/* record */

iseq = ’FIRST’;
recname = ’EMPLOYEE’;
iset = ’DEPT-EMPLOYEE’;
iarea = ’ ’;
do until (err = ’0307’);

/* OBTAIN EMPLOYEE records and test for */
/* SUCCESS */

input @;
if (err ne ’0000’ and err ne ’0307’) then

go to staterr;
if err = ’0000’ then do;

input @1 employee_id 4.0
@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@75 phone 10.0
@85 status $char2.
@87 ssnumber $char9.
@96 startdate 8.0
@104 termdate 8.0
@112 birthdate 8.0;

W output;
X iseq = ’next’;

end;
end;
error = 0;
return;

staterr:
put @1 ’WARNING: ’ @10 func1 @17

’RETURNED ERR =’@37 err;
stop;

run;

Using the SAS/ACCESS Interface to CA-IDMS � Example: Traversing a Set 39

at proc print data=work.dept_employee;
title1 ’This is an Area Sweep of the

DEPT-EMPLOYEE Set’;
title2 ’The Area Sweep is from the Beginning to End’;
run;

u The DATA statement references a temporary SAS data set called
DEPT_EMPLOYEE, which is to be opened for output.

v The INFILE statement tells SAS to use the EMPSS01 subschema.
The IDMS option tells SAS that EMPSS01 is a CA-IDMS subschema
instead of a fileref. The statement also tells the DATA step interface
to use the SAS variables as follows:

� FUNC1 to contain the function type

� RECNAME to contain the record name

� IAREA to contain the area name

� ISEQ to contain the function call sequence information

� ISET to contain the set name.

The statement also tells the interface to store the call status in
ERR.

w All record types to be retrieved must first be bound to CA-IDMS.
The BIND function call needs to be issued only once per record type
prior to retrieval. The automatic SAS variable _N_ is used to
indicate the first iteration of the DATA step code.

x The INPUT statements generate and submit the function call to
CA-IDMS requesting that a BIND be performed for the record type
specified in RECNAME. In this example, the DEPARTMENT record
type is bound first, then the EMPLOYEE record type is bound.

y This INPUT statement also uses the values in the SAS variables
FUNC1 and RECNAME, along with the values in ISEQ and IAREA
to generate an OBTAIN FIRST DEPARTMENT RECORD IN AREA
ORG-DEMO-REGION DML call. However, no data is moved into
the program data vector because no variables are defined on the
INPUT @; statement. This function call allows the DATA step to
check the status that is returned from CA-IDMS before moving data
into the program data vector. This function call is issued only on the
first iteration of the DATA step. On subsequent iterations, the
values in these SAS variables are used to generate an OBTAIN
NEXT DEPARTMENT RECORD IN AREA ORG-DEMO-REGION
DML call.

U The program examines the status code returned by CA-IDMS. If
CA-IDMS returns 0000, then the program proceeds to the next
statement. If CA-IDMS returns 0307 (end of set), then there are no
more department records and the DATA step stops.

V When this INPUT statement executes, DEPARTMENT RECORD
data is moved from the SAS buffer into the program data vector.

W As the DATA step executes, EMPLOYEE records that are members
of the DEPT-EMPLOYEE set are retrieved, and observations that

40 Example: Traversing a Set � Chapter 2

contain the EMPLOYEE data is written to the DEPT_EMPLOYEE
data set.

X The ISEQ value is changed to NEXT to generate an OBTAIN NEXT
EMPLOYEE RECORD IN SET DEPT-EMPLOYEE DML call.

at The PRINT procedure prints the list of DEPARTMENT and
EMPLOYEE records.

The following output shows the SAS log for this example.

Output 2.3 SAS Log for Traversing a Set

1 data work.dept_employee(drop=filler);
2 infile empss01 idms func=func1
3 record=recname
4 area=iarea
5 sequence=iseq
6 errstat=err
7 set=iset;

.

.

.
91 run;
NOTE: The infile EMPSS01 is:

Subschema=EMPSS01
NOTE: 86 records were read from the infile EMPSS01.

The minimum record length was 0.
The maximum record length was 116.

NOTE: The data set WORK.DEPT_EMPLOYEES has 56
observations and 16 variables.

NOTE: The DATA statement used 0.37 CPU seconds
and 2709K.

92 proc print data=work.dept_employees;
93 title1 ’This is an Area Sweep of the

DEPT-EMPLOYEE Set’;
94 title2 ’The Area Sweep is from the

Beginning to End’;
95 run;
NOTE: The PROCEDURE PRINT printed pages 1-3.

The following output shows a portion of the results of this example.

Using the SAS/ACCESS Interface to CA-IDMS � Example: Using the Trailing @ and the INPUT Statement with No Arguments 41

Output 2.4 Traversing a Set

This is an Area Sweep of the DEPT-EMPLOYEE Set

The Area Sweep is from the Beginning to End

department_ department_ employee_

Obs id department_name head id firstname lastname street

1 2000 ACCOUNTING AND PAYROLL 11 69 JUNE BLOOMER 14 ZITHER TERR

2 2000 ACCOUNTING AND PAYROLL 11 100 EDWARD HUTTON 781 CROSS ST

3 2000 ACCOUNTING AND PAYROLL 11 11 RUPERT JENSON 999 HARVEY ST

.

.

.

24 5100 BRAINSTORMING 15 15 RENE MAKER 10 DROVER DR

25 5100 BRAINSTORMING 15 341 RICHARD MUNYON 17 BLACKHILL DR

26 5100 BRAINSTORMING 1 458 RICHARD WAGNER 677 GERMANY LN

Obs city state zip phone status ssnumber startdate termdate birthdate

1 LEXINGTON MA 01675 617555554 40 103955781 880050 500000 60042

2 MELROSE MA 02176 617665101 00 101122333 377090 700000 41030

3 MELROSE MA 02176 617665555 60 102234789 180092 900000 48081

.

.

.

24 BOSTON MA 02123 617452141 40 101067334 378010 200000 45052

25 WESTWOOD MA 02090 617329001 70 111100208 180111 400000 50121

26 NATICK MA 02178 617432110 90 101177666 378060 700000 34030

This is an Area Sweep of the DEPT-EMPLOYEE Set

The Area Sweep is from the Beginning to End

department_ department_ employee_

Obs id department_name head id firstname lastname street

27 1000 PERSONNEL 13 81 TOM FITZHUGH 450 THRUWAY ST

28 1000 PERSONNEL 13 51 CYNTHIA JOHNSON 17 MANIFESTO DR

29 1000 PERSONNEL 13 91 MADELINE ORGRATZI 67 RAINBOW DR

.

.

.

50 3100 INTERNAL SOFTWARE 3 35 LARRY LITERATA 123 SATURDAY TERR

51 3100 INTERNAL SOFTWARE 3 23 KATHERINE O’HEARN 12 EAST SPEEN ST

52 3100 INTERNAL SOFTWARE 3 21 RALPH TYRO 888 FORTITHE ST

Obs city state zip phone status ssnumber startdate termdate birthdate

27 MANSFIELD MA 03458 617882012 30 111234567 881091 900000 56021

28 WALPOLE MA 02546 617777888 80 501134787 877032 300000 45010

29 KENDON MA 06182 617431191 90 123106787 880101 0 51101

.

.

.

50 WILMINGTON MA 02476 617591232 30 102356783 180090 900000 55043

51 NATICK MA 02364 617889713 40 101955671 278050 400000 54040

52 SINGER MA 02254 617445919 10 101989345 680122 100000 55122

Example: Using the Trailing @ and the INPUT Statement with No
Arguments

This example shows the use of the trailing @ and the INPUT statement with no
arguments. This DATA step creates a SAS data set, DEPT5100, from data in the
EMPLOYEE records in department number 5100. The subschema that is used defines
the DEPARTMENT and the EMPLOYEE record with all their elements.

The example starts by issuing a BIND on the DEPARTMENT record and the
EMPLOYEE record. This CA-IDMS call is required for each record that will be

42 Example: Using the Trailing @ and the INPUT Statement with No Arguments � Chapter 2

retrieved, but the BIND function itself does not retrieve any data. To generate these
calls, a null INPUT statement is used. The same thing is done with the FIND CALC
DEPARTMENT call. Once again, this call does not retrieve any data so the null INPUT
statement is used.

Each OBTAIN call is issued by a CA-IDMS INPUT statement with a trailing @, so
the retrieved record is placed in the buffer and held there. The ERR variable is
checked. If a call results in an error, the job terminates. If a call is successful, another
CA-IDMS INPUT statement moves the data to SAS variables in the program data
vector, and the observation is written to the appropriate SAS data set. Output 2.5
shows the output of this example.

data work.dept5100(drop=filler);
infile empss01 idms func=func1 record=recname

sequence=iseq errstat=err ikey=ckey
ikeylen=keylen keyoff=offset set=iset;

/* BIND the DEPARTMENT and EMPLOYEE */
/* records; then, if successful */
/* OBTAIN FIRST DEPARTMENT WITHIN AREA */

func1 = ’BIND’;
recname = ’DEPARTMENT’;
input;
if (err ne ’0000’) then go to staterr;
recname = ’EMPLOYEE’;
input;
if (err ne ’0000’) then go to staterr;

/* FIND DEPT record with CALC key 5100 */

func1 = ’FIND’;
recname = ’DEPARTMENT’;
ckey = ’5100’;
keylen = 4;
offset = 0;
input;
if (err ne ’0000’) then go to staterr;

/* Reset the options for the next call */

func1 = ’OBTAIN’;
recname = ’EMPLOYEE’;
ckey = ’ ’;
keylen = 0;
offset = 0;
iseq = ’FIRST’;
iset = ’DEPT-EMPLOYEE’;

do while (err = ’0000’);

/* OBTAIN EMPLOYEE records and test */
/* for success */

input @;
if (err ne ’0307’ and err ne ’0000’) then

Using the SAS/ACCESS Interface to CA-IDMS � Example: Using the Trailing @ and the INPUT Statement with No Arguments 43

go to staterr;
if (err eq ’0307’) then do;

error = 0;
stop;

end;
input @1 employee_id 4.0

@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@75 phone 10.0
@85 status $char2.
@87 ssnumber 9.0
@96 startdate 8.0
@104 termdate 8.0
@112 birthdate 8.0;

output;
iseq = ’NEXT’;

end;
staterr:

put @1 ’ERROR: ’ @10 func1 @17
’returned err =’ @37 err ;

stop;
run;
proc print data=work.dept5100;
title1 ’All the EMPLOYEES in the BRAINSTORMING

Department’;
run;

Output 2.5 Using the Trailing @ and Null INPUT Statement

All the EMPLOYEES in the BRAINSTORMING Department

employee_

Obs id firstname lastname street city state zip phone status ssnumber startdate termdate birthdate

1 466 ROY ANDALE 44 TRIGGER RD FRAMINGHAM MA 03461 617554110 80 302760111 578061 500000 60030

2 457 HARRY ARM 77 SUNSET STRIP NATICK MA 02178 617432092 30 502877014 777120 100000 34040

3 467 C. BREEZE 200 NIGHTINGALE ST FRAMINGHAM MA 03461 617554238 70 111155669 279060 200000 34050

4 334 CAROLYN CROW 891 SUMMER ST WESTWOOD MA 02090 617329177 60 102398011 79061 700000 44040

5 301 BURT LANCHESTER 45 PINKERTON AVE WALTHAM MA 01476 617534110 90 112904050 675020 300000 32041

6 15 RENE MAKER 10 DROVER DR BOSTON MA 02123 617452141 40 101067334 378010 200000 45052

7 341 RICHARD MUNYON 17 BLACKHILL DR WESTWOOD MA 02090 617329001 70 111100208 180111 400000 50121

8 458 RICHARD WAGNER 677 GERMANY LN NATICK MA 02178 617432110 90 101177666 378060 700000 34030

44

45

C H A P T E R

3
Examples of SAS/ACCESS DATA
Step Programs

Introduction to Examples of SAS/ACCESS DATA Step Programs 45
Statements Common to All SAS/ACCESS DATA Step Examples 45

Performing an Area Sweep 46

Navigating Multiple Set Relationships 50

Using a SAS Data Set as a Transaction File 57

Using Information in a SAS Data Set to Locate Records 62
Supplying Transaction Information and Navigating Set Occurrences 67

Re-establishing Currency on a Record 71

Using RETURN and GET Across Executions of the DATA Step 77

Introduction to Examples of SAS/ACCESS DATA Step Programs
This section contains several example programs designed to introduce and illustrate

the SAS/ACCESS DATA step interface to CA-IDMS.
All of the examples in this section can be executed using the sample EMPLOYEE

database provided by Computer Associates. These examples illustrate syntax and call
formats as well as logic tips for sequential and direct access of DBMS records and
transaction-oriented applications. Each example is described using numbered
comments that correspond to numbered lines of code. The output is shown for each
example, but the log files are not included. For an example of a log file, see
“Introductory Example of a DATA Step Program” on page 5. All of the examples have
several statements in common, as described in the following section.

Statements Common to All SAS/ACCESS DATA Step Examples
All of the examples in this section contain or generate the following statements:

OPTIONS
The $IDMDBUG system option tells SAS to write information to the SAS log
regarding call parameter values and the formatted calls submitted to CA-IDMS.
You can use this information to debug your application and to inspect or verify the
DML calls generated by the DATA step interface. Each of the examples in this
section begin with an OPTIONS statement that specifies the $IDMDBUG option,
but these OPTIONS statements are commented out with an asterisk. To execute
the OPTIONS statement (and activate the $IDMDBUG system option), remove the
asterisk.

46 Performing an Area Sweep � Chapter 3

INFILE
The INFILE statements used in these examples specify a subschema and the
IDMS keyword, which indicates that the task will be accessing CA-IDMS records.
The parameters on the INFILE statements create SAS variables whose values are
used to format DML calls and check error status codes after those calls have been
issued. None of the parameters have default values and, therefore, each variable
must be assigned a valid value or blank before each call. None of the defined
variables are included in the output data set. For specific information about each
INFILE parameter, see “The CA-IDMS INFILE Statement” on page 10.

BIND RECORD
A BIND function call must be issued for each record whose data will be retrieved
during execution of the DATA step. The BIND RECORD statement establishes
addressibility for a named record. In each of these examples, a null INPUT
statement issues a BIND RECORD statement for each record (see “The Null
INPUT Statement” on page 34). After the call is issued, the programs check the
status code returned by CA-IDMS to be sure the call was successful. If the call is
successful, the DATA step continues. If the call is unsuccessful, execution
branches to the STATERR label, error information is written to the SAS log, and
the DATA step terminates.

STATERR statements
For each call to CA-IDMS, the examples in this section check the status code that
is returned by CA-IDMS. When CA-IDMS returns an unexpected status code,
these examples execute the statements associated with the STATERR label. These
statements

� issue an ERROR message to the SAS log describing the unexpected condition
� reset _ERROR_ to 0 to prevent the contents of the PDV (program data vector)

from being written to the SAS log
� issue a STOP statement to immediately terminate the DATA step.

For more information about dealing with status codes, see “Checking Call
Status Codes” on page 35.

Performing an Area Sweep
This example performs an area sweep of all DEPARTMENT records in the

ORG-DEMO-REGION, and for each DEPARTMENT record, obtains all the EMPLOYEE
records within the DEPT-EMPLOYEE set. An area sweep makes a sequential pass
based on the physical location of a defined area for a specified record type. Records are
accessed using the OBTAIN FIRST and OBTAIN NEXT DML calls. The example
illustrates the concept of flattening out network record occurrences in an owner-member
relationship. Owner (DEPARTMENT) information is repeated for each member
(EMPLOYEE) in the set for observations written to the output SAS data set. The
numbers in the program correspond to the numbered comments following the program.

u *options $idmdbug;
data work.dept_employee;

v infile empss01 idms func=func
record=recname area=iarea sequence=seq
errstat=stat set=inset;

Examples of SAS/ACCESS DATA Step Programs � Performing an Area Sweep 47

/* BIND records to be accessed */

if _n_ = 1 then do;
w func = ’BIND’;

recname = ’DEPARTMENT’;
input;
if stat ne ’0000’ then go to staterr;

recname = ’EMPLOYEE’;
input;
if stat ne ’0000’ then go to staterr;

/* OBTAIN FIRST DEPARTMENT record */

x seq = ’FIRST’;
func = ’OBTAIN’;
recname = ’DEPARTMENT’;
iarea = ’ORG-DEMO-REGION’;

end;

/* FIND and OBTAIN NEXT DEPARTMENT record */

y if _n_ ge 2 then do;
func = ’FIND’;
seq = ’OWNER’;
input;
if stat ne ’0000’ then go to staterr;

func = ’OBTAIN’;
seq = ’NEXT’;
recname = ’DEPARTMENT’;
iarea = ’ORG-DEMO-REGION’;
inset = ’ ’;

end;

U input @;
if stat not in (’0000’, ’0307’) then go

to staterr;

/* Stop DATA step when all DEPARTMENT records */
/* have been accessed */

if stat = ’0307’ then do;
error = 0;
stop;

end;

input @1 department_id 4.0
@5 department_name $char45.
@50 department_head 4.0;

48 Performing an Area Sweep � Chapter 3

/* OBTAIN EMPLOYEE records in set DEPT- */
/* EMPLOYEE for CURRENT DEPARTMENT */

V seq = ’FIRST’;
recname = ’EMPLOYEE’;
inset = ’DEPT-EMPLOYEE’;
iarea = ’ ’;

do until (stat ne ’0000’);
input @;
if stat not in (’0000’, ’0307’) then go

to staterr;
if stat = ’0000’ then do;

input @1 employee_id 4.0
@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@75 phone 10.0
@85 status $char2.
@87 ssnumber 9.0
@96 startdate yymmdd6.
@102 termdate 6.0
@108 birthdate yymmdd6.;
output;

seq = ’NEXT’;
end;

end;
W _error_ = 0;

return;

X staterr:
put @1 ’ERROR: ’ @10 func @17 ’RETURNED

STATUS =’ @37 stat ;
put @1 ’ERROR: INFILE parameter values are: ’;
put @1 ’ERROR: ’ recname= iarea= seq=

inset=;
put @1 ’ERROR: DATA step execution

terminating.’;
error = 0;
stop;

run;

proc print data=work.dept_employee;
format startdate birthdate date9.;
title1 ’This is an Area Sweep of the DEPT-

EMPLOYEE Set’;
run;

Examples of SAS/ACCESS DATA Step Programs � Performing an Area Sweep 49

u See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the OPTIONS statement.

v See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the INFILE statement.

w See “Statements Common to All SAS/ACCESS DATA Step Examples”
on page 45 for a description of the BIND RECORD statement.

x For the first iteration of the DATA step, initialize the call
parameters to obtain the FIRST DEPARTMENT record in the
ORG-DEMO-REGION area.

y For subsequent iterations of the DATA step, initialize the call
parameters to find the OWNER of the current EMPLOYEE record
so that the program can obtain the NEXT DEPARTMENT record in
the area. The null INPUT statement forces the call to be generated
and submitted, but no data is returned to the input buffer (see “The
Null INPUT Statement” on page 34). The status code returned by
the FIND call is checked before proceeding to the next call.

U The INPUT @; statement holds the contents of the input buffer so
the program can check the status code returned by CA-IDMS. (See
“Holding Records in the Input Buffer” on page 34.) For a successful
call, the next INPUT statement moves DEPARTMENT information
from the input buffer to the named variables in the PDV.

When all records in the area have been accessed, CA-IDMS
returns a 0307 status code (end-of-area). The program then issues a
STOP statement to terminate the DATA step. Because there is no
other end-of-file condition to normally terminate the DATA step, the
STOP statement must be issued to avoid a looping condition.
Because non-blank status codes set the automatic DATA step
variable _ERROR_ to 1, _ERROR_ is reset to 0 to prevent the
contents of the PDV from being written to the SAS log.

V After a DEPARTMENT record has been obtained, issue an OBTAIN
for all EMPLOYEES that occur within the current
DEPT-EMPLOYEE set. The DO UNTIL loop issues OBTAIN calls,
verifies the status code, and moves employee information from the
input buffer to the named variables in the PDV. For each successful
OBTAIN, the INPUT @; statement holds onto the current input
buffer contents until the status code is checked. After all
EMPLOYEE records in the set have been accessed, CA-IDMS
returns a status code of 0307, which terminates the DO UNTIL loop.

W At this point, the STAT variable must have a value of 0307. Because
this code is non-zero, _ERROR_ is reset to 0, which prevents the
contents of the PDV from being written to the SAS log.

X See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the STATERR statements.

50 Navigating Multiple Set Relationships � Chapter 3

The following output shows a portion of the output from this program.

Output 3.1 Performing an Area Sweep

This is an Area Sweep of the DEPT-EMPLOYEE Set

department_ department_ employee_
Obs id department_name head id firstname

1 2000 ACCOUNTING AND PAYROLL 11 69 JUNE
2 2000 ACCOUNTING AND PAYROLL 11 100 EDWARD
3 2000 ACCOUNTING AND PAYROLL 11 11 RUPERT
4 2000 ACCOUNTING AND PAYROLL 11 67 MARIANNE
5 2000 ACCOUNTING AND PAYROLL 11 106 DORIS
6 2000 ACCOUNTING AND PAYROLL 11 101 BRIAN
7 3200 COMPUTER OPERATIONS 4 4 HERBERT
8 3200 COMPUTER OPERATIONS 4 32 JANE

Obs lastname street city state zip phone

1 BLOOMER 14 ZITHER TERR LEXINGTON MA 01675 617555554
2 HUTTON 781 CROSS ST MELROSE MA 02176 617665101
3 JENSON 999 HARVEY ST MELROSE MA 02176 617665555
4 KIMBALL 561 LEXINGTON AVE LITTLETON MA 01239 617492121
5 KING 716 MORRIS ST MELROSE MA 02176 617665616
6 NICEMAN 60 FLORENCE AVE MELROSE MA 02176 617665431
7 CRANE 30 HERON AVE KINGSTON NJ 21341 201334143
8 FERNDALE 60 FOREST AVE NEWTON MA 02576 617888811

Obs status ssnumber startdate termdate birthdate

1 40 103955781 880050 500000 60042
2 00 101122333 377090 700000 41030
3 60 102234789 180092 900000 48081
4 20 102277887 878091 900000 49042
5 10 106784551 680081 600000 60091
6 50 103345611 80050 600000 55121
7 30 101677745 177051 400000 42032
8 20 103456789 179090 900000 58011

Navigating Multiple Set Relationships

This example shows how to navigate multiple set relationships and use direct access
methods involving database record keys. The output consists of observations containing
related employee, office, and dental claim information. Observations are only output for
employees that have dental claim record occurrences. To gather the information, the
program performs an area sweep for the DEPARTMENT records and uses the FIND
command to establish currency and navigate the DEPT-EMPLOYEE,
OFFICE-EMPLOYEE, EMP-COVERAGE, and COVERAGE-CLAIMS sets. By accepting
and storing database keys, currency can be re-established on the EMPLOYEE record
after obtaining OFFICE information and prior to gathering COVERAGE and DENTAL
CLAIM information. The numbers in the program correspond to the numbered
comments following the program.

u *options $idmdbug;
data work.dental_records;
drop tempkey;

Examples of SAS/ACCESS DATA Step Programs � Navigating Multiple Set Relationships 51

v infile empss01 idms func=func record=recname
dbkey=dkey errstat=stat sequence=seq
set=inset area=subarea;

/* BIND the records to be accessed */

w if _n_ = 1 then do;
func = ’BIND’;
recname = ’EMPLOYEE’;
input;
if stat ne ’0000’ then go to staterr;

recname = ’DEPARTMENT’;
input;
if stat ne ’0000’ then go to staterr;

recname = ’COVERAGE’;
input;
if stat ne ’0000’ then go to staterr;

recname = ’DENTAL-CLAIM’;
input;
if stat ne ’0000’ then go to staterr;

recname = ’OFFICE’;
input;
if stat ne ’0000’ then go to staterr;

end;

/* FIND FIRST/NEXT DEPARTMENT record in */
/* area ORG-DEMO-REGION */

x seq = ’NEXT’;
if _n_ = 1 then seq = ’FIRST’;
func = ’FIND’;
recname = ’DEPARTMENT’;
subarea = ’ORG-DEMO-REGION’;
inset = ’ ’;
input;
if stat not in (’0000’, ’0307’) then go to

staterr;

/* STOP DATA step execution if no more */
/* DEPARTMENT records */

y if stat = ’0307’ then do;
error = 0;
stop;

end;

52 Navigating Multiple Set Relationships � Chapter 3

U do until (stat ne ’0000’);

/* OBTAIN NEXT EMPLOYEE record */

func = ’OBTAIN’;
seq = ’NEXT’;
recname = ’EMPLOYEE’;
inset = ’DEPT-EMPLOYEE’;
input @;
if stat not in (’0000’,’0307’) then go to

staterr;
if stat = ’0000’ then do;

input @1 employee_id 4.0
@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@76 phone 10.0
@86 status $char2.
@88 ssnumber $char9.
@109 birthdate yymmdd6.;

/* ACCEPT DBKEY for current EMPLOYEE and */
/* store in tempkey */

V func = ’ACCEPT’;
seq = ’CURRENT’;
dkey = ’ ’;
inset = ’ ’;
input;
if stat ne ’0000’ then go to staterr;
tempkey=dkey;

/* OBTAIN OFFICE record for current */
/* EMPLOYEE */

W func = ’OBTAIN’;
seq = ’OWNER’;
dkey = ’ ’;
inset = ’OFFICE-EMPLOYEE’;
input @;
if stat ne ’0000’ then go to staterr;
input @1 office_code $char3.

@4 office_street $char20.
@24 office_city $char15.
@39 office_state $char2.
@41 office_zip $char9.;

/* FIND EMPLOYEE using DBKEY stored in */

Examples of SAS/ACCESS DATA Step Programs � Navigating Multiple Set Relationships 53

/* tempkey */

X func = ’FIND’;
recname = ’ ’;
dkey = tempkey;
seq = ’ ’;
inset = ’ ’;
input;
if stat ne ’0000’ then go to staterr;

/* FIND FIRST COVERAGE record for */
/* current EMPLOYEE */

at func = ’FIND’;
recname = ’COVERAGE’;
dkey = ’ ’;
seq = ’FIRST’;
inset = ’EMP-COVERAGE’;
input;
if stat ne ’0000’ then go to staterr;

/* OBTAIN LAST DENTAL-CLAIM record */
/* within COVERAGE-CLAIMS */
/* Observations are only OUTPUT for */
/* employees with dental claim records */

ak func = ’OBTAIN’;
recname = ’DENTAL-CLAIM’;
seq = ’LAST’;
inset = ’COVERAGE-CLAIMS’;
input @;
if stat not in (’0000’,’0307’) then go to

staterr;
do while (stat eq ’0000’);

input @1 claim_year $2.
@3 claim_month $2.
@5 claim_day $2.
@7 claim_firstname $10.
@17 claim_lastname $15.
@32 birthyear $2.
@34 birthmonth $2.
@36 birthday $2.
@38 sex $1.
@39 relation $10.
@49 dds_firstname $10.
@59 dds_lastname $15.
@74 ddsstreet $20.
@94 ddscity $15.
@109 ddsstate $2.
@111 ddszip $9.
@120 license $6.
@126 num_procedure ib2.

54 Navigating Multiple Set Relationships � Chapter 3

@131 tooth_number $2.
@133 service_year $2.
@135 service_month $2.
@137 service_day $2.
@139 procedure_code $4.
@143 descservice $60.
@203 fee pd5.2;

output;

/* OBTAIN PRIOR DENTAL-CLAIM record */

seq = ’PRIOR’;
input @;

end;

/* When DENTAL-CLAIM records have been */
/* processed, release INPUT buffer and */
/* reset STAT to OBTAIN NEXT EMPLOYEE */

al if stat = ’0307’ then do;
stat = ’0000’;
input;

end;
else go to staterr;

end;
end;

/* When all EMPLOYEEs have been processed, */
/* reset ERROR flag and continue with next */
/* DEPARTMENT */

am _error_ = 0;
return;

an STATERR:
put @1 ’ERROR: ’ @10 func @17 ’RETURNED

STATUS =’ @37 stat;
put @1 ’ERROR: INFILE parameter values are: ’;
put @1 ’ERROR: ’ recname= seq= inset= dkey=

subarea=;
put @1 ’ERROR: DATA step execution

terminating.’;
error = 0;
stop;

run;

proc print data=work.dental_records;
format birthdate date9.;
title1 ’Dental Claim Information’;

run;

Examples of SAS/ACCESS DATA Step Programs � Navigating Multiple Set Relationships 55

u See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the OPTIONS statement.

v See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the INFILE statement.

w See “Statements Common to All SAS/ACCESS DATA Step Examples”
on page 45 for a description of the BIND RECORD statement.

x The first time the DATA step executes, the FIND command locates
the FIRST DEPARTMENT record in the area. For subsequent
DATA step iterations, initialize the call parameters to find the
NEXT DEPARTMENT record in the area. The null INPUT
statement generates and submits the call, but no data is returned to
the input buffer. A SAS IF statement checks the status code
returned by the FIND call.

y As DEPARTMENT records are located, the program checks the
status code returned by CA-IDMS. When all records in the area
have been accessed, CA-IDMS returns a 0307 status code
(end-of-area). The program then issues a STOP statement to
terminate the DATA step. Since there is no other end-of-file
condition to normally terminate the DATA step, the STOP statement
must be issued to avoid a looping condition. Also, non-blank status
codes set the automatic DATA step variable _ERROR_ to 1, so
ERROR is reset to 0, which prevents the contents of the PDV from
being written to the SAS log.

U For the current DEPARTMENT, the program must access all
EMPLOYEE records in the DEPT-EMPLOYEE set. The DO UNTIL
loop executes until the status code that is returned from CA-IDMS is
not equal to 0000. For unexpected status codes, the statements
associated with the STATERR label are executed, and the loop
terminates when the end-of-set status code (0307) is encountered.
An OBTAIN is used to retrieve the EMPLOYEE records. After the
status code is verified to be successful, data is moved from the input
buffer to the PDV by executing the INPUT statement. The first
INPUT @; statement forces the call to be submitted and allows a
returned status code to be checked prior to any attempt to move
data from the input buffer to the PDV. This process eliminates any
possibility of moving invalid data into the PDV and avoids
unnecessary data conversions when the call fails.

V After an EMPLOYEE record has been obtained, the ACCEPT
command takes the record’s database key and stores it in DKEY, the
variable defined by the DBKEY= INFILE parameter. The value is
then stored in a variable called TEMPKEY because the DKEY
variable must be set to blanks to generate the next call correctly. By
saving the record’s database key, the program can re-establish
currency on the EMPLOYEE record after obtaining OWNER
information from the OFFICE record in the OFFICE-EMPLOYEE
set.

W OFFICE records are retrieved by issuing an OBTAIN OWNER
within the OFFICE-EMPLOYEE set. The INPUT @; statement
generates and submits the call. For a successful OBTAIN, OFFICE
information is moved from the held input buffer to the PDV.

X The program is now ready to establish currency back to the
EMPLOYEE record current in the DEPT-EMPLOYEE set. The

56 Navigating Multiple Set Relationships � Chapter 3

database key value stored in TEMPKEY is used to format a FIND
DBKEY command. The null INPUT statement submits the call and
the status code is checked to be sure it was successful. Any status
code other than 0000 routes execution to the STATERR label.

at Now current on EMPLOYEE, a FIND is issued to locate the FIRST
COVERAGE record in the EMP-COVERAGE set. For any status
code not equal to 0000, execution is routed to the STATERR label.

ak The goal is to process all the DENTAL-CLAIM records in the
COVERAGE-CLAIMS set for the current COVERAGE record. An
OBTAIN LAST is submitted by the INPUT @; statement, and if
DENTAL-CLAIM records exist in the set, then the subsequent
INPUT statement maps the returned data from the input buffer to
the PDV. At this point, a complete observation–one containing
EMPLOYEE, OFFICE and DENTAL-CLAIM data–is output to the
SAS data set. The sequence variable SEQ is assigned a value of
PRIOR so that subsequent iterations of the DO WHILE loop submit
an OBTAIN PRIOR call. The DO WHILE continues executing until
the OBTAIN PRIOR returns a status code not equal to 0000.

al If the status code indicates end-of-set (0307) then the status variable
is reset to 0000. The assignment is done to allow the DO UNTIL
loop (see U) to continue executing and issuing OBTAIN calls for
employees in the current department. The null INPUT statement is
issued to release the buffer held by the INPUT @; statement within
the DO WHILE loop. In this example, because there was a held
buffer, the null INPUT statement does not attempt to generate and
submit a DML call. The buffer must be released so the next DML
call, the OBTAIN NEXT EMPLOYEE WITHIN DEPT-EMPLOYEE,
can be generated. For any other status code, execution branches to
the STATERR label.

am At this point, the STAT variable must have a value of 0307. Since
this code is non-zero, _ERROR_ is reset to 0, which prevents the
contents of the PDV from being written to the SAS log.

an See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the STATERR statements.

The following output shows a portion of the output from this program.

Examples of SAS/ACCESS DATA Step Programs � Using a SAS Data Set as a Transaction File 57

Output 3.2 Navigating Multiple Set Relationships

Dental Claim Information

employee_
Obs id firstname lastname street city state zip

1 4 HERBERT CRANE 30 HERON AVE KINGSTON NJ 21341
2 30 HENRIETTA HENDON 16 HENDON DR WELLESLEY MA 02198

office_
Obs phone status ssnumber birthdate code office_street

1 2013341433 01 016777451 420321 001 20 W BLOOMFIELD ST
2 6178881212 01 011334444 331006 002 567 BOYLSTON ST

office_ office_ claim_ claim_ claim_ claim_ claim_
Obs office_city state zip year month day firstname lastname

1 SPRINGFIELD MA 02076 80 10 04 JESSICA CRANE
2 BOSTON MA 02243 77 05 23 HELOISE HENDON

dds_ dds_
Obs birthyear birthmonth birthday sex relation firstname lastname

1 57 01 11 F WIFE DR PEPPER
2 68 03 15 F DAUGHTER SAL SARDONICUS

num_ tooth_
Obs ddsstreet ddscity ddsstate ddszip license procedure number

1 78 COLA RD PRINCETON NJ 01762 877073 2 08
2 402 NATURE’S WAY NEEDHAM MA 02243 459631 1 14

service_ service_ service_ procedure_
Obs year month day code descservice fee

1 80 09 16 0076 FILLING 14
2 77 05 02 0076 FILLING 14

Using a SAS Data Set as a Transaction File

This example illustrates how to use an input SAS data set as a transaction file to
supply parameter values for direct access DML calls. These calls obtain CA-IDMS
records using CALC key values. The transaction data set WORK.EMP supplies CALC
key values for EMPLOYEE records. The program then accesses EMPOSITION records
in the EMP-EMPOSITION set to create an output SAS data set that contains all of the
position information for the employees named in WORK.EMP. The DATA step
terminates after all observations from WORK.EMP have been read. The numbers in
the program correspond to the numbered comments following the program.

u *options $idmdbug;

v data work.emp;
input id $4.;

datalines;
0471
0301
0004
0091

58 Using a SAS Data Set as a Transaction File � Chapter 3

1002
;
data work.emp_empos;
drop id chkrec nxtrec;
length chkrec $ 29;

w infile empss01 idms func=func record=recname
ikeylen=keyl errstat=stat sequence=seq
set=inset ikey=ckey dbkey=dkey;

/* BIND the records to be accessed */

x if _n_ = 1 then do;
func = ’BIND’;
recname = ’EMPLOYEE’;
input;
if stat ne ’0000’ then go to staterr;

recname = ’EMPOSITION’;
input;
if stat ne ’0000’ then go to staterr;

end;

/* OBTAIN EMPLOYEE records using CALC key */
/* from EMP data set */

y set work.emp;
func = ’OBTAIN’;
ckey = id;
keyl = 4;
recname = ’EMPLOYEE’;
input @;
if stat not in (’0000’, ’0326’) then go to

staterr;
if stat = ’0000’ then do;

input @1 employee_id 4.0
@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@76 phone 10.0
@86 status $char2.
@88 ssnumber $char9.
@97 emp_start yymmdd6.
@103 emp_term 6.0
@109 birthdate yymmdd6.;

/* OBTAIN LAST EMPOSITION record in */
/* EMP-EMPOSITION set */

Examples of SAS/ACCESS DATA Step Programs � Using a SAS Data Set as a Transaction File 59

U func = ’OBTAIN’;
seq = ’LAST’;
ckey = ’ ’;
keyl = 0;
dkey = ’ ’;
recname = ’EMPOSITION’;
inset = ’EMP-EMPOSITION’;
input @;
if stat not in (’0000’, ’0326’) then go to

staterr;
if stat = ’0000’ then do;
chkrec = put(employee_id,z4.) ||firstname ||

lastname;

/* Process all EMPOSITION records for */
/* current EMPLOYEE */

V do until (nxtrec = chkrec);
input @1 pos_start yymmdd6.

@7 pos_finish 6.0
@13 salarygrade 2.0
@15 salary pd5.2
@20 bonus pd2.0
@22 commission pd2.0
@24 overtime pd2.0;

output;

/* ACCEPT CURRENCY for PRIOR record in */
/* EMP-EMPOSITION set */

W func = ’ACCEPT’;
dkey = ’ ’;
seq = ’PRIOR ’;
recname = ’ ’;
inset = ’EMP-EMPOSITION’;
input;
if stat eq ’0000’ then do;

/* OBTAIN current record using the DBKEY */

X func = ’OBTAIN’;
seq = ’ ’;
inset = ’ ’;
input @1 nxtrec $29. @;
if stat ne ’0000’ then go to staterr;
end;

end;
end;

at else do;
put ’WARNING: No EMPOSITION record for

60 Using a SAS Data Set as a Transaction File � Chapter 3

EMPID= ’ id;
put ’WARNING: Execution continues with

next EMPID.’;
error = 0;

end;
end;
else do;

put ’WARNING: No EMPLOYEE record for EMPID= ’
id;

put ’WARNING: Execution continues with next
EMPID.’;

error = 0;
end;

return;

ak staterr:
put @1 ’ERROR: ’ @10 func @17 ’RETURNED

STATUS =’ @37 stat;
put @1 ’ERROR: INFILE parameter values are: ’;
put @1 ’ERROR: ’ recname= ckey= seq= inset=

keyl= dkey=;
put @1 ’ERROR: DATA step execution

terminating.’;
error = 0;
stop;

run;

proc print data=work.emp_empos;
format emp_start birthdate pos_start

date9. salary dollar12.2
title1 ’Positions Held by Specified

Employees’;
title2 ’Listed in Ascending Order by

Initdate/Termdate’;
run;

u See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the OPTIONS statement.

v This DATA step execution creates the transaction data set
WORK.EMP. The 4-byte character variable ID contains CALC key
values that will be used to access EMPLOYEE records directly by
employee ID.

w See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the INFILE statement.

x See “Statements Common to All SAS/ACCESS DATA Step Examples”
on page 45 for a description of the BIND RECORD statement.

y An observation is read from WORK.EMP, and the current ID value
is used as a CALC key for obtaining the EMPLOYEE. The length of
the CALC key is specified with the IKEYLEN= variable KEYL. The
INPUT @; statement submits the call and places a hold on the input
buffer so that the status code can be checked. For any unexpected

Examples of SAS/ACCESS DATA Step Programs � Using a SAS Data Set as a Transaction File 61

status code, execution branches to the STATERR label. A status code
of 0000 directs execution to the INPUT statement which maps data
from the held input buffer to the PDV and then releases the buffer.

U The program now attempts to obtain EMPOSITION records in the
order of oldest (LAST) to most current (FIRST). First, an OBTAIN
LAST call is issued for the EMPOSITION record in set
EMP-EMPOSITION. The INPUT @; statement submits the call and
holds the buffer so the status code can be checked. Execution
branches to the STATERR label for any unexpected status code. For
status code 0000, a variable called CHKREC is assigned a value
that is composed of the current employee’s CALC key, first name,
and last name. CHKREC is used in the condition of the DO UNTIL
loop described in the next step.

V The DO UNTIL loop navigates the EMP-EMPOSITION set
occurrences in reverse order. The condition on a DO UNTIL loop is
evaluated at the bottom of the loop after the statements in the loop
have been executed (see X).

The input buffer already contains an EMPOSITION record. The
INPUT statement maps EMPOSITION data from the held buffer
into the variables in the PDV. At this point, a complete observation
exists and is output to the WORK.EMP_EMPOS data set. No
observation is written when no EMPOSITION records exist for a
specified employee.

W To move in reverse order, the ACCEPT PRIOR call is generated and
issued within the EMP-EMPOSITION set to return the database
key of the prior record in the current set occurrence. The database
key is stored in the variable defined by the DBKEY= parameter on
the INFILE statement, DKEY. The null INPUT statement submits
the call. For any status code not equal to 0000, execution branches
to the STATERR label.

X For a successful ACCEPT call, an OBTAIN is issued using the
database key stored in DKEY. Using this method to navigate the set
implies that no end-of-set status code is set. To determine whether
an end-of-set condition exists, the INPUT statement submits the
OBTAIN, moves the first 29 bytes of data into a character variable
called NXTREC and places a hold on the buffer contents. For a
successful OBTAIN, execution resumes with the evaluation of the
DO UNTIL condition. If CHKREC equals NXTREC, then the
program is current on the EMPLOYEE (owner of the set) so the loop
terminates. If the variables are not equal, then the record in the
buffer is an EMPOSITION record, so data is moved into the PDV
from the input buffer, and another observation is output for the
current employee.

at This group of statements enables execution to continue when either
no EMPOSITION records exist for the specified employee or no
EMPLOYEE record exists for the CALC value specified in the
transaction data set. In both cases, informative WARNING messages
are written to the SAS log, and _ERROR_ is reset to 0, which
prevents the contents of the PDV from being written to the SAS log.

ak See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the STATERR statements.

62 Using Information in a SAS Data Set to Locate Records � Chapter 3

The following output shows a portion of the output from this program.

Output 3.3 Using a SAS Data Set as a Transaction File

Positions Held by Specifed Employees
Listed in Ascending Order by Initdate/Termdate

employee_
Obs id firstname lastname street city state

1 471 THEMIS PAPAZEUS 234 TRANSWORLD ST NORTHBORO MA
2 471 THEMIS PAPAZEUS 234 TRANSWORLD ST NORTHBORO MA
3 301 BURT LANCHESTER 45 PINKERTON AVE WALTHAM MA
4 301 BURT LANCHESTER 45 PINKERTON AVE WALTHAM MA
5 301 BURT LANCHESTER 45 PINKERTON AVE WALTHAM MA
6 4 HERBERT CRANE 30 HERON AVE KINGSTON NJ
7 4 HERBERT CRANE 30 HERON AVE KINGSTON NJ
8 4 HERBERT CRANE 30 HERON AVE KINGSTON NJ
9 91 MADELINE ORGRATZI 67 RAINBOW DR KENDON MA

Obs zip phone status ssnumber emp_start emp_term birthdate pos_start

1 03256 6174561277 01 022887770 07SEP1978 0 04MAR1935 07SEP1978
2 03256 6174561277 01 022887770 07SEP1978 0 04MAR1935 01JAN1982
3 01476 6175341109 01 129040506 03FEB1975 0 19APR1932 03FEB1975
4 01476 6175341109 01 129040506 03FEB1975 0 19APR1932 03FEB1977
5 01476 6175341109 01 129040506 03FEB1975 0 19APR1932 03FEB1980
6 21341 2013341433 01 016777451 14MAY1977 0 21MAR1942 14MAY1977
7 21341 2013341433 01 016777451 14MAY1977 0 21MAR1942 15NOV1979
8 21341 2013341433 01 016777451 14MAY1977 0 21MAR1942 14MAY1982
9 06182 6174311919 01 231067878 10OCT1980 0 16OCT1951 10OCT1980

pos_
Obs finish salarygrade salary bonus commission overtime

1 811231 72 $90,000.00 10 0 0
2 0 82 $100,000.00 10 0 0
3 770202 52 $39,000.00 7 0 0
4 800202 52 $45,000.00 7 0 0
5 0 53 $54,500.00 7 0 0
6 791114 71 $60,000.00 10 0 0
7 820513 71 $70,000.00 10 0 0
8 0 71 $75,000.00 10 0 0
9 0 43 $39,000.00 7 0 0

Using Information in a SAS Data Set to Locate Records
This example, like the previous example, uses the information stored in a SAS data

set to locate records in the CA-IDMS database. In this case, not only do the observations
in the transaction data set WORK.OFFICE provide CALC information for the OFFICE
record, they supply sort key information as well for the EMPLOYEE record. Therefore,
the program uses both pieces of information to locate a specific occurrence of the
OFFICE record, followed by a specific occurrence of the EMPLOYEE record in the
OFFICE-EMPLOYEE set occurrence. If any of the transaction information is incorrect,
a WARNING message is issued and no observation is output to WORK.EMP. The
numbers in the program correspond to the numbered comments following the program.

u *options $idmdbug;

v data work.office;
input offkey $3. emp $25.;
datalines;

Examples of SAS/ACCESS DATA Step Programs � Using Information in a SAS Data Set to Locate Records 63

001GARFIELD JENNIFER
002BLOOMER JUNE
005JOE SMITH
008WAGNER RICHARD
010ANDALE ROY
;
data work.emp;

drop offkey emp;

w infile empss01 idms func=func record=recname
ikey=ckey ikeylen=keyl errstat=stat
sequence=seq set=inset sortfld=skey;

/* BIND the records to be accessed */

x if _n_ = 1 then do;
func = ’BIND’;
recname = ’EMPLOYEE’;
input;
if stat ne ’0000’ then go to staterr;

recname = ’OFFICE’;
input;
if stat ne ’0000’ then go to staterr;

end;

/* OBTAIN OFFICE record based on CALC key */

y set work.office;
func = ’OBTAIN’;
ckey = offkey;
keyl = 3;
recname = ’OFFICE’;
inset = ’ ’;
skey = ’ ’;
input @;
if stat not in (’0000’, ’0326’) then go to

staterr;
if stat = ’0000’ then do;

input @1 office_code $char3.
@4 office_street $char20.
@24 office_city $char15.
@39 office_state $char2.
@41 office_zip $char9.
@50 officephone1 9.0
@59 officephone2 9.0
@68 officephone3 9.0
@77 areacode $char3.
@80 speeddial $char3.;

/* FIND EMPLOYEE record within set */

64 Using Information in a SAS Data Set to Locate Records � Chapter 3

/* using SORT key */

U func = ’FIND’;
skey = emp;
ckey = ’ ’;
keyl = 25;
recname = ’EMPLOYEE’;
inset = ’OFFICE-EMPLOYEE ’;
input;
if stat not in (’0000’, ’0326’) then

go to staterr;
if stat = ’0000’ then do;

/* OBTAIN CURRENT record */

V func = ’OBTAIN’;
seq = ’CURRENT’;
skey = ’ ’;
keyl = 0;
inset = ’ ’;
input @;
if stat ne ’0000’ then go to staterr;
input @1 employee_id 4.0

@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@76 phone 10.0
@86 status $char2.
@88 ssnumber $char9.
@97 startdate yymmdd6.
@103 termdate 6.0
@109 birthdate yymmdd6.;

output;
end;

W else do;
put ’WARNING: No EMPLOYEE record for

SORT key= ’ emp ’.’;
put ’WARNING: Execution continues with

next OFFICE CALC.’;
put;
error = 0;

end;
end;
else do;

put ’WARNING: No OFFICE record for CALC
key= ’offkey ’.’;

put ’WARNING: Execution continues with
next OFFICE CALC.’;

put;

Examples of SAS/ACCESS DATA Step Programs � Using Information in a SAS Data Set to Locate Records 65

error = 0;
end;

return;

X STATERR:
put @1 ’ERROR: ’ @10 func @17 ’RETURNED

STATUS =’ @37 stat;
put @1 ’ERROR: INFILE parameter values are: ’;
put @1 ’ERROR: ’ recname= ckey= keyl= seq=

inset= skey=;
put @1 ’ERROR: DATA step execution

terminating.’;
error = 0;
stop;

run;

proc print data=work.emp;
format startdate birthdate date9.;
title1 ’Office and Employee Information’;
title2 ’as Specified in Transaction Data Set’;

run;

u See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the OPTIONS statement.

v This DATA step execution creates the transaction data set
WORK.OFFICE. The 3-byte character variable OFFKEY contains
CALC key values that will be used to access OFFICE records
directly by office code. The 25-byte character variable EMP contains
SORT key values that will be used to access EMPLOYEE records
directly using the EMP-NAME-NDX.

w See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the INFILE statement.

x See “Statements Common to All SAS/ACCESS DATA Step Examples”
on page 45 for a description of the BIND RECORD statement.

y An observation is read from WORK.OFFICE, and the current
OFFKEY value is used as a CALC value to obtain the OFFICE
record. The length of the CALC key is specified by the IKEYLEN=
variable KEYL. The INPUT @; statement submits the call and
places a hold on the input buffer so that the status code can be
checked. Any unexpected status code branches execution to the
STATERR label. A status code of 0000 directs execution to the
INPUT statement, which maps data from the held input buffer to
the PDV, then releases the buffer.

U The program must now locate a specific occurrence of EMPLOYEE
within the current OFFICE-EMPLOYEE set. A FIND EMPLOYEE
WITHIN OFFICE-EMPLOYEE call is generated using the sort key
information in the EMP variable read from WORK.OFFICE. The
sort key length is set to 25. (The previous length of 3 applied to the
OFFICE CALC key.) The null INPUT statement submits the call
but does not place a hold on the buffer. FIND does not return any
data. For any unexpected status code, execution branches to the

66 Using Information in a SAS Data Set to Locate Records � Chapter 3

STATERR label. If the FIND is successful, execution continues with
the next DML call.

V Having successfully located the EMPLOYEE using the supplied
index value, an OBTAIN CURRENT call is generated so that
EMPLOYEE record information can be accessed by the program.
SKEY is set to blank and KEYL is set to 0 so that their values are
not used for the OBTAIN call. The INPUT @; statement submits the
generated call and places a hold on the input buffer so that the
status code can be checked. Any status code not equal to 0000
routes execution to the STATERR label. For a successful OBTAIN,
the INPUT statement maps EMPLOYEE record data from the input
buffer to the specified variables in the PDV and releases the input
buffer. At this point, the OUTPUT statement writes an observation
to the output data set. Only observations that contain both office
and employee information are output.

W This group of statements enables execution to continue when either
no EMPLOYEE record exists for the specified sort key value or no
OFFICE record exists for the specified CALC value from
WORK.OFFICE. In both cases, informative WARNING messages are
written to the SAS log and _ERROR_ is reset to 0, which prevents
the contents of the PDV from being written to the SAS log.

X See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the STATERR statements.

The following output shows a portion of the output from this program.

Output 3.4 Using a Data Set to Locate Records

Office and Employee Information
as Specified in Transaction Data Set

office_ office_ office_
Obs code office_street office_city state zip officephone1

1 001 20 W BLOOMFIELD ST SPRINGFIELD MA 02076 369772100
2 002 567 BOYLSTON ST BOSTON MA 02243 956237795
3 008 910 E NORTHSOUTH AVE WESTON MA 02371 367919136

employee_
Obs officephone2 officephone3 areacode speeddial id firstname

1 0 0 3 JENNIFER
2 625719562 398000000 69 JUNE
3 792923671 327000000 458 RICHARD

Obs lastname street city state zip phone status

1 GARFIELD 110A FIRTH ST STONEHAM MA 02928 6173321967 01
2 BLOOMER 14 ZITHER TERR LEXINGTON MA 01675 6175555544 01
3 WAGNER 677 GERMANY LN NATICK MA 02178 6174321109 01

Obs ssnumber startdate termdate birthdate

1 021994516 21JAN1977 0 18AUG1945
2 039557818 05MAY1980 0 25APR1960
3 011776663 07JUN1978 0 04MAR1934

Examples of SAS/ACCESS DATA Step Programs � Supplying Transaction Information and Navigating Set Occurrences 67

Supplying Transaction Information and Navigating Set Occurrences

This example introduces alternate techniques for supplying transaction information
and for navigating set occurrences. It also uses program logic to subset records that are
accessed to produce output which meets specified criteria. A macro variable supplies
the transaction information that produces the subset of employee data. An OBTAIN
Nth EMPLOYEE WITHIN DEPT-EMPLOYEE call is used to navigate the current set
occurrence.

Using macro variables is one tool for providing transaction information. SAS data set
variables have been used in previous examples; another method might make use of an
SCL variable. The numbers in the program correspond to the numbered comments
following the program.

u *options $idmdbug;

v %let hireyear = 1977;

data work.emp;
format initdate date9.;
drop i;

w infile empss01 idms func=func record=recname
area=subarea errstat=stat sequence=seq
set=inset;

/* BIND records to be accessed */

x if _n_ = 1 then do;
func = ’BIND’;
recname = ’EMPLOYEE’;
input;
if stat ne ’0000’ then go to staterr;

recname = ’DEPARTMENT’;
input;
if stat ne ’0000’ then go to staterr;

end;

/* FIND FIRST/NEXT DEPARTMENT record in AREA */

y seq = ’NEXT’;
if _n_ = 1 then seq = ’FIRST’;
func = ’FIND’;
recname = ’DEPARTMENT’;
subarea = ’ORG-DEMO-REGION’;
inset = ’ ’;
input;
if stat not in (’0000’, ’0307’) then go

to staterr;

/* STOP DATA step execution if no more */
/* DEPARTMENT records */

68 Supplying Transaction Information and Navigating Set Occurrences � Chapter 3

U if stat = ’0307’ then do;
error = 0;
stop;

end;

/* OBTAIN nth EMPLOYEE within
DEPT-EMPLOYEE */

V i=0;
do until (stat ne ’0000’);

i + 1;
func = ’OBTAIN’;
seq = trim(left(put(i,8.)));
recname = ’EMPLOYEE’;
inset = ’DEPT-EMPLOYEE’;
subarea = ’ ’;
input @;
if stat not in (’0000’, ’0307’) then

go to staterr;
if stat = ’0000’ then do;

input @1 employee_id 4.0
@5 firstname $char10.
@15 lastname $char15.
@97 initdate yymmdd6.;

/* For employees hired in 1977 FIND */
/* CURRENT DEPARTMENT */

W if year(initdate) = &hireyear then do;
func = ’FIND’;
seq = ’CURRENT’;
recname = ’DEPARTMENT’;
inset = ’ ’;
input;
if stat ne ’0000’ then go to staterr;

/* OBTAIN CURRENT DEPARTMENT info */
/* and OUTPUT */

X func = ’OBTAIN’;
seq = ’CURRENT’;
recname = ’ ’;
input @;
if stat ne ’0000’ then go to staterr;
input @1 department_id 4.0

@5 department_name $char45.;
output;

end;
end;

end;

Examples of SAS/ACCESS DATA Step Programs � Supplying Transaction Information and Navigating Set Occurrences 69

at _error_ = 0;
return;

ak staterr:
put @1 ’ERROR: ’ @10 func @17 ’RETURNED

STATUS =’ @37 stat;
put @1 ’ERROR: INFILE parameter values are: ’;
put @1 ’ERROR: ’ recname= subarea= seq=

inset=;
put @1 ’ERROR: DATA step execution

terminating.’;
error = 0;
stop;

run;

proc print data=work.emp;
title "Departments that Hired Employees in

&hireyear";
run;

u See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the OPTIONS statement.

v The %LET statement assigns the value 1977 to a newly defined
macro variable called HIREYEAR. This macro variable is used to
supply subset criteria as part of the condition on the IF statement in
step V.

w See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the INFILE statement.

x See “Statements Common to All SAS/ACCESS DATA Step Examples”
on page 45 for a description of the BIND RECORD statement.

y On the first DATA step iteration, the FIND command locates the
FIRST DEPARTMENT record in the area. For subsequent DATA
step iterations, initialize the call parameters to find the NEXT
DEPARTMENT record in the area. The null INPUT statement
generates and submits the call, but no data is returned to the input
buffer. The IF statement checks the status code returned by the
FIND call.

U As DEPARTMENT records are located, the program checks the
status code returned by CA-IDMS. When all records in the area
have been accessed, CA-IDMS returns a 0307 status code
(end-of-area). The program then issues a STOP statement to
terminate the DATA step. Since there is no other end-of-file
condition to normally terminate the DATA step, the STOP statement
must be issued to avoid a looping condition. Also, non-blank status
codes set the automatic DATA step variable _ERROR_ to 1.
ERROR is reset to 0, which prevents the contents of the PDV from
being written to the SAS log.

V At this point, the program has currency on a DEPARTMENT record
and needs to navigate the current occurrence of the
DEPT-EMPLOYEE set. The DO UNTIL loop generates an OBTAIN
Nth EMPLOYEE call for each EMPLOYEE record in the set. Valid

70 Supplying Transaction Information and Navigating Set Occurrences � Chapter 3

N values are generated using the loop counter variable i and the
PUT, LEFT, and TRIM functions. The N values are stored in the
variable SEQ.

The INPUT @; statement submits the call and places a hold on
the input buffer while the status code is checked. For any
unexpected status codes, execution branches to the STATERR label.
For a successful OBTAIN Nth call, the INPUT statement maps
employee information from the input buffer to the specified variables
in the PDV and releases the input buffer.

The DO UNTIL loop terminates when CA-IDMS returns an
end-of-set status code (0307).

W The program now evaluates the condition in the IF statement and
enters the DO-END block of code only if the employee INITDATE
indicates a hire year of 1977. The %LET statement assigned the
value 1977 to macro variable &HIREYEAR before the DATA step
executed (see v). This variable was resolved when the DATA step
was compiled. If the year portion of the employee INITDATE is
1977, then a FIND CURRENT DEPARTMENT is generated to
obtain the owner of the current EMPLOYEE record. The null
INPUT statement submits the call but does not place a hold on the
input buffer because FIND does not return any data. If the FIND
returns any status code other than 0000, execution branches to label
STATERR.

X After the owner DEPARTMENT record is located, an OBTAIN
CURRENT is generated to request that the DEPARTMENT record
be placed into the input buffer. The INPUT @; statement submits
the call and places a hold on the input buffer while the status is
checked. For any status code other than 0000, execution branches to
the STATERR label. For a successful OBTAIN call, the INPUT
statement maps department information from the input buffer to
the specified variables in the PDV and releases the input buffer. The
OUTPUT statement writes the current observation to data set
WORK.EMP. To avoid unnecessary input/output for departments
that contain no employees with a hire year of 1977, the program
postpones the OBTAIN of DEPARTMENT until the EMPLOYEE
qualification criteria have been met. If you anticipate that many
employees across multiple departments were hired in &HIREYEAR,
then you could either OBTAIN DEPARTMENT before navigating the
DEPT-EMPLOYEE set or add additional logic to OBTAIN
CURRENT only once for the current set occurrence.

at At this point, the STAT variable must have a value of 0307. Since
this code is non-zero, _ERROR_ is reset to 0, which prevents the
contents of the PDV from being written to the SAS log.

ak See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the STATERR statements.

The following output shows a portion of the output from this program.

Examples of SAS/ACCESS DATA Step Programs � Re-establishing Currency on a Record 71

Output 3.5 Supplying Transaction Information

Departments that Hired Employees in 1977

d
e

d p
e a

e p r
m a t
p f r m

i l i l t e
n o r a m n
i y s s e t
t e t t n _
d e n n t n

O a _ a a _ a
b t i m m i m
s e d e e d e

1 07SEP1977 100 EDWARD HUTTON 2000 ACCOUNTING AND PAYROLL
2 14MAY1977 4 HERBERT CRANE 3200 COMPUTER OPERATIONS
3 04MAR1977 371 BETH CLOUD 5300 BLUE SKIES
4 01DEC1977 457 HARRY ARM 5100 BRAINSTORMING
5 23MAR1977 51 CYNTHIA JOHNSON 1000 PERSONNEL
6 14DEC1977 119 CHARLES BOWER 4000 PUBLIC RELATIONS
7 07JUL1977 158 JOCK JACKSON 4000 PUBLIC RELATIONS
8 08SEP1977 149 LAURA PENMAN 4000 PUBLIC RELATIONS
9 21JAN1977 3 JENNIFER GARFIELD 3100 INTERNAL SOFTWARE

Re-establishing Currency on a Record

This example illustrates how a program can re-establish currency on a record to
complete set navigation after accessing a record that is not contained in the current set
occurrence.

In this example, a transaction SAS data set, WORK.EMPLOYEE, supplies a CALC
key value for the OBTAIN of an EMPLOYEE record. COVERAGE records are then
obtained within the current EMP-COVERAGE set occurrence. PLANCODE values from
employee COVERAGE records provide links to INSURANCE-PLAN records through a
CALC key. Once current on INSURANCE-PLAN, the program gathers data and uses a
stored database key to return to the current COVERAGE record. At that point, the
next COVERAGE record in the current set occurrence of EMP-COVERAGE can be
obtained. The output data set consists of observations which contain employee,
coverage, and related insurance plan data. The numbers in the program correspond to
the numbered comments following the program.

u *options $idmdbug;

v data work.employee;
input empnum $4.;

datalines;
0007
0471
0000
0301
0004
;

72 Re-establishing Currency on a Record � Chapter 3

data work.empplan;
drop covdbkey empnum;

w infile empss01 idms func=func record=recname
ikey=ckey ikeylen=keyl errstat=stat
sequence=seq set=inset area=subarea
dbkey=dkey;

/* BIND records to be accessed */

x if _n_ = 1 then do;
func = ’BIND’;
recname = ’EMPLOYEE’;
input;
if stat ne ’0000’ then go to staterr;

recname = ’INSURANCE-PLAN’;
input;
if stat ne ’0000’ then go to staterr;

recname = ’COVERAGE ;
input;
if stat ne ’0000’ then go to staterr;

end;

/* OBTAIN EMPLOYEE record using CALC key */
/* value */

y set work.employee;
func = ’OBTAIN’;
seq = ’ ’;
inset = ’ ’;
ckey = empnum;
keyl = 4;
recname = ’EMPLOYEE’;
input @;
if stat not in (’0000’, ’0326’) then go to

staterr;
if stat = ’0000’ then do;

input @1 employee_id 4.0
@5 firstname $char10.
@15 lastname $char15.;

/* OBTAIN COVERAGE records for EMPLOYEE */

U seq = ’FIRST’;
do while (stat = ’0000’);

func = ’OBTAIN’;
keyl = 0;
ckey = ’ ’;
dkey = ’ ’;

Examples of SAS/ACCESS DATA Step Programs � Re-establishing Currency on a Record 73

recname = ’COVERAGE’;
inset = ’EMP-COVERAGE’;
input @;
if stat not in (’0000’, ’0307’) then go

to staterr;
if stat = ’0000’ then do;

input @13 type $1.
@14 plancode $3.;

/* ACCEPT CURRENT database key */

V func = ’ACCEPT’;
seq = ’CURRENT’;
dkey = ’ ’;
input;
if stat ne ’0000’ then go to staterr;
covdbkey = dkey;

/* FIND INSURANCE-PLAN using CALC */

W func = ’FIND’;
ckey = plancode;
keyl = 3;
seq = ’ ’;
recname = ’INSURANCE-PLAN’;
inset = ’ ’;
dkey = ’ ’;
input;
if stat ne ’0000’ then go to

staterr;

/* OBTAIN CURRENT INSURANCE-PLAN */
/* record */

X func = ’OBTAIN’;
seq = ’CURRENT’;
ckey = ’ ’;
keyl = 0;
recname = ’ ’;
subarea = ’ ’;
input @;
if stat ne ’0000’ then go to staterr;
input @4 company_name $45.

@105 group_number 6.0
@111 plndeduc PD5.2
@116 maxlfcst PD5.2
@121 famlycst PD5.2
@126 depcost PD5.2;

output;

74 Re-establishing Currency on a Record � Chapter 3

/* FIND COVERAGE using stored */
/* database key */

at func = ’FIND’;
seq = ’ ’;
recname = ’COVERAGE’;
dkey = covdbkey;
input;
if stat ne ’0000’ then go to staterr;
seq = ’NEXT’;

end;
end;

end;

ak else do;
put ’WARNING: No EMPLOYEE record for CALC=

’ckey;
put ’WARNING: Execution continues with next

EMPLOYEE.’;
error = 0;

end;

al _error_ = 0;
return;

am staterr:
put @1 ’ERROR: ’ @10 func @17 ’RETURNED

STATUS =’ @37 stat;
put @1 ’ERROR: INFILE parameter values are: ’;
put @1 ’ERROR: ’ recname= ckey= keyl= seq=

inset= subarea= dkey=;
put @1 ’ERROR: DATA step execution

terminating.’;
error = 0;
stop;

run;

proc print data=work.empplan;
title ’Employee Coverage and Plan Record

Information’;
run;

u See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the OPTIONS statement.

v This DATA step execution creates the transaction data set
WORK.EMPLOYEE. The 4-byte character variable EMPNUM
contains CALC key values that will be used to access EMPLOYEE
records directly by employee id.

w See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the INFILE statement.

x See “Statements Common to All SAS/ACCESS DATA Step Examples”
on page 45 for a description of the BIND RECORD statement.

Examples of SAS/ACCESS DATA Step Programs � Re-establishing Currency on a Record 75

y The current EMPNUM value from WORK.EMPLOYEE is used as a
CALC key to obtain an EMPLOYEE record from the database.
KEYL specifies the length of the CALC key. The INPUT @;
statement submits the call and places a hold on the input buffer so
that the status code can be checked. For any unexpected status
code, execution branches to the STATERR label. If the status code is
0000, the INPUT statement maps data from the input buffer to the
PDV and then releases the buffer.

U The DO WHILE loop obtains COVERAGE records for the current
employee in the EMP-COVERAGE set. When all COVERAGE
records in the set have been obtained, the status code is set to 0307,
and the loop terminates. At that point, the DATA step obtains the
next EMPLOYEE as specified by the CALC value read from
WORK.EMPLOYEE. The INPUT @; statement submits the OBTAIN
FIRST/NEXT call and places a hold on the input buffer while the
status code is checked. For any unexpected status codes, execution
branches to the STATERR label. For a successful OBTAIN call, the
INPUT statement maps coverage information from the input buffer
to the specified variables in the PDV and releases the input buffer.
The PLANCODE variable now contains a CALC key value that can
be used to directly access related INSURANCE-PLAN record
information.

V The next DML call generated is an ACCEPT CURRENT, which
takes the current database key of the COVERAGE record and stores
it in the variable defined by the DBKEY= INFILE parameter,
DKEY. The null INPUT statement submits the ACCEPT call but
does not place a hold on the input buffer because ACCEPT returns
no data. For any status code other than 0000, execution branches to
the STATERR label. For a successful ACCEPT call, the value
returned to DKEY is moved into variable COVDBKEY to be used in
a later call. By storing the database key of this record for later use,
the program can regain currency on the record.

W Now that the database key of the COVERAGE record is stored, a
FIND call is generated to locate and establish currency on the
related INSURANCE-PLAN record. The FIND call uses the CALC
value stored in PLANCODE. To issue this call, the DKEY field is set
to blank. The null INPUT statement submits the call to CA-IDMS
but no hold is placed on the input buffer because FIND does not
return data. For any status code other than 0000, execution
branches to the STATERR label.

X After the INSURANCE-PLAN record has been successfully located,
an OBTAIN CURRENT call is generated to request that the record
be retrieved. The INPUT @; statement submits the generated call
and places a hold on the input buffer so that the returned status
code can be checked. For any status code other than 0000, execution
branches to the STATERR label. For a successful OBTAIN, the
INPUT statement maps INSURANCE-PLAN data from the input
buffer to the specified variables in the PDV. At this point, an
observation is written to output data set WORK.EMPPLAN that
contains related EMPLOYEE, COVERAGE, and
INSURANCE-PLAN information.

at Currency must be re-established on the COVERAGE record so that
the DO WHILE loop can obtain the NEXT COVERAGE record in the

76 Re-establishing Currency on a Record � Chapter 3

current set occurrence of EMP-COVERAGE. A FIND call is
generated using the stored database key in COVDBKEY. This call
locates the correct COVERAGE record occurrence. The null INPUT
statement submits the generated call, but no hold is placed on the
input buffer since FIND establishes a position in the database
rather than returning data. For any status code other than 0000,
execution branches to the STATERR label. If the FIND is successful,
currency has been re-established, and SEQ is assigned a value of
NEXT to generate OBTAIN NEXT COVERAGE.

ak This group of statements enables execution to continue when no
EMPLOYEE record exists for the CALC value specified in the
transaction data set. In this case, an informative WARNING
message is written to the SAS log and _ERROR_ is reset to 0, which
prevents the contents of the PDV from being written to the SAS log.

al At this point, the STAT variable must have a value of 0307, which
indicates that all COVERAGE records for the specified EMPLOYEE
have been accessed. Since this code is non-zero, _ERROR_ is reset to
0, which prevents the contents of the PDV from being written to the
SAS log.

am See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the STATERR statements.

The following output shows a portion of the output from this program.

Examples of SAS/ACCESS DATA Step Programs � Using RETURN and GET Across Executions of the DATA Step 77

Output 3.6 Re-establishing Currency on a Record

Employee Coverage and Plan Record Information

employee_
Obs id firstname lastname type plancode

1 7 MONTE BANK F 004
2 471 THEMIS PAPAZEUS F 003
3 471 THEMIS PAPAZEUS F 002
4 471 THEMIS PAPAZEUS M 001
5 301 BURT LANCHESTER D 004
6 301 BURT LANCHESTER F 003
7 301 BURT LANCHESTER F 002
8 301 BURT LANCHESTER M 001
9 4 HERBERT CRANE F 004

10 4 HERBERT CRANE F 003
11 4 HERBERT CRANE M 001

group_
Obs company_name number

1 TEETH R US 545598
2 HOLISTIC GROUP HEALTH ASSOCIATION 329471
3 HOMOSTASIS HEALTH MAINTENANCE PROGRAM 952867
4 PROVIDENTIAL LIFE INSURANCE 347815
5 TEETH R US 545598
6 HOLISTIC GROUP HEALTH ASSOCIATION 329471
7 HOMOSTASIS HEALTH MAINTENANCE PROGRAM 952867
8 PROVIDENTIAL LIFE INSURANCE 347815
9 TEETH R US 545598

10 HOLISTIC GROUP HEALTH ASSOCIATION 329471
11 PROVIDENTIAL LIFE INSURANCE 347815

Obs plndeduc maxlfcst famlycst depcost

1 50 0 5000 1000
2 200 0 200 200
3 0 0 900000 100000
4 0 100000 0 0
5 50 0 5000 1000
6 200 0 200 200
7 0 0 900000 100000
8 0 100000 0 0
9 50 0 5000 1000

10 200 0 200 200
11 0 100000 0 0

Using RETURN and GET Across Executions of the DATA Step

This example contains two separate DATA steps and demonstrates the use of the
RETURN and GET calls across executions of the DATA step. The first DATA step
creates an output data set containing index values from EMP-NAME-NDX. The
RETURN command is used to navigate the index set. The index values stored in
WORK.EMPSRTKY are used to locate EMPLOYEE records in the second DATA step.
Once a record is located, a GET call moves the record data to the input buffer. The
numbers in the program correspond to the numbered comments following the program.

u *options $idmdbug;
data work.empsrtky;
length namekey $ 25;

78 Using RETURN and GET Across Executions of the DATA Step � Chapter 3

keep namekey;

v infile empss01 idms func=func sequence=seq
dbkey=dkey sortfld=skey errstat=stat
set=inset;

/* RETURN EMP-NAME-NDX key values to store */
/* in EMPSRTKY data set */

w func = ’RETURN’;
seq = ’FIRST’;
inset = ’EMP-NAME-NDX’;
skey = ’ ’;
dkey = ’ ’;

x do until (stat ne ’0000’);
input;
if stat not in (’0000’, ’1707’) then go to

staterr;
if stat = ’0000’ then do;

namekey = skey;
output;
dkey = ’ ’;
skey = ’ ’;
seq = ’NEXT’;

end;
end;

y _error_ = 0;
stop;

U staterr:
put @1 ’ERROR: ’ @10 func @17 ’RETURNED

STATUS =’ @37 stat ;
put @1 ’ERROR: INFILE parameter values are: ’;
put @1 ’ERROR: ’ seq= inset= dkey= skey=;
put @1 ’ERROR: DATA step execution

terminating.’;
error = 0;
stop;

run;

proc print data=work.empsrtky;
title1 ’This is a List of Index Entries from

EMP-NAME-NDX’;
run;

data work.employee;
drop namekey;

V infile empss01 idms func=func sortfld=skey
ikeylen=keyl errstat=stat set=inset
record=recname;

Examples of SAS/ACCESS DATA Step Programs � Using RETURN and GET Across Executions of the DATA Step 79

/* BIND the record to be accessed */

W if _n_ = 1 then do;
func = ’BIND’;
recname = ’EMPLOYEE’;
input;
if stat ne ’0000’ then go to staterr;

end;

/* Read NAMEKEY values from EMPSRTKY and */
/* FIND EMPLOYEE using the EMP-NAME-NDX */

X set work.empsrtky;
func = ’FIND’;
recname = ’EMPLOYEE’;
inset = ’EMP-NAME-NDX’;
skey = namekey;
keyl = 25;
input;
if stat not in (’0000’, ’0326’) then go to

staterr;
if stat = ’0000’ then do;

func = ’GET’;
recname = ’ ’;
inset = ’ ’;
skey = ’ ’;
keyl = 0;
input @;
if stat ne ’0000’ then go to staterr;
input @1 employee_id 4.0

@5 firstname $char10.
@15 lastname $char15.
@30 street $char20.
@50 city $char15.
@65 state $char2.
@67 zip $char9.
@76 phone 10.0
@86 status $char2.
@88 ssnumber $char9.
@97 startdate yymmdd6.
@103 termdate 6.0
@109 birthdate yymmdd6.;

output;
end;

at else do;
put @1 ’WARNING: No EMPLOYEE record with

name = ’ namekey;
put @1 ’WARNING: Execution continues with

next NAMEKEY’;
error = 0;

end;

80 Using RETURN and GET Across Executions of the DATA Step � Chapter 3

return;

ak staterr:
put @1 ’ERROR: ’ @10 func @17 ’RETURNED

STATUS =’ @37 stat ;
put @1 ’ERROR: INFILE parameter values are: ’;
put @1 ’ERROR: ’ inset= skey= keyl= recname=;
put @1 ’ERROR: DATA step execution

terminating.’;
error = 0;
stop;

run;

proc print data=work.employee;
format startdate birthdate date9.
title1 ’This is a List of Employee Information

Obtained’;
title2 ’Using a Transaction Data Set

Containing Name Index Values’;
run;

u See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the OPTIONS statement.

v See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the INFILE statement.

w Parameter values are initialized to generate the RETURN
CURRENCY SET call for the entries in the EMP-NAME-NDX index
set. The SKEY and DKEY variables are set to blank and will be
assigned the sort key and database key values returned from the
call.

x In the DO UNTIL loop, the null INPUT statement submits the
generated RETURN CURRENCY SET FIRST/NEXT call. The call
returns sort key and database key values to the SKEY and DKEY
variables. For any unexpected status code, execution branches to the
STATERR label. For a successful call, the SKEY value is assigned to
NAMEKEY, the current NAMEKEY is written to
WORK.EMPSRTKY, SKEY and DKEY variables are reset to blank,
and SEQ is set to NEXT. The next iteration of the DO UNTIL loop
will return the next index entry.

The DO UNTIL loop executes as long as STAT equals 0000. When
the index set has been traversed and all sort values returned and
stored in output data set WORK.EMPSRTKY, CA-IDMS returns a
1707 status code, which terminates the loop.

y When the DO UNTIL loop terminates, _ERROR_ is reset to 0, which
prevents the contents of the PDV from being written to the SAS log.
The index set is traversed in the DO UNTIL loop during the first
DATA step iteration, so a STOP statement is used to prevent the
DATA step from executing again. Without the STOP statement, the
DATA step would loop endlessly, traversing the same index set once
for each iteration.

U See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the STATERR statements.

Examples of SAS/ACCESS DATA Step Programs � Using RETURN and GET Across Executions of the DATA Step 81

V See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the INFILE statement.

W See “Statements Common to All SAS/ACCESS DATA Step Examples”
on page 45 for a description of the BIND RECORD statement.

X The WORK.EMPSRTKY data set, which was created in the first
DATA step, serves as a transaction data set. Each interation of this
DATA step reads a new sort key value, NAMEKEY, and uses it to
locate an EMPLOYEE record via the EMP-NAME-NDX. The DATA
step terminates when all observations have been read from
WORK.EMPSRTKY. To gather employee information, INFILE
parameter variables are initialized to generate the FIND
EMPLOYEE WITHIN EMP-NAME-NDX call using the supplied sort
key from NAMEKEY. The IKEYLEN= parameter variable KEYL is
set to 25 to indicate the sort key length. The null INPUT statement
submits the FIND call but places no hold on the input buffer
because no record data is returned. For any unexpected status code,
execution branches to the STATERR label. For a successful FIND, a
GET call is generated to request that the record data be retrieved.
The INPUT @; statement submits the GET call and places a hold on
the input buffer so the status code can be checked. Any status code
not equal to 0000 branches execution to the STATERR label. If the
GET call is successful, the INPUT statement maps EMPLOYEE
data from the input buffer to the specified variables in the PDV. The
contents of the PDV are then written as an observation to output
data set WORK.EMPLOYEE.

at This group of statements enables execution to continue when no
EMPLOYEE record exists for the sort key value specified in the
transaction data set. In this case, an informative WARNING
message is written to the SAS log and _ERROR_ is reset to 0, which
prevents the contents of the PDV from being written to the SAS log.

ak See “Statements Common to All SAS/ACCESS DATA Step
Examples” on page 45 for a description of the STATERR statements.

82 Using RETURN and GET Across Executions of the DATA Step � Chapter 3

The following output shows a portion of the output from this program.

Output 3.7 Using RETURN and GET

This is a List of Index Entries from EMP-NAME-NDX

Obs namekey

1 ANDALE ROY
2 ANGELO MICHAEL
3 ARM HARRY
4 BANK MONTE
5 BLOOMER JUNE
6 BOWER CHARLES
7 BREEZE C.
8 CLOTH TERRY
9 CLOUD BETH
10 CRANE HERBERT
11 CROW CAROLYN
12 DONOVAN ALAN
13 DOUGH JANE
14 FERNDALE JANE

This is a List of Employee Information Obtained
Using a Transaction Data Set Containing Name Index Values

employee_
Obs id firstname lastname street city state

1 466 ROY ANDALE 44 TRIGGER RD FRAMINGHAM MA
2 120 MICHAEL ANGELO 507 CISTINE DR WELLESLEY MA
3 457 HARRY ARM 77 SUNSET STRIP NATICK MA
4 7 MONTE BANK 45 EAST GROVE DR HANIBAL MA
5 69 JUNE BLOOMER 14 ZITHER TERR LEXINGTON MA
6 119 CHARLES BOWER 30 RALPH ST WELLESLEY MA
7 467 C. BREEZE 200 NIGHTINGALE ST FRAMINGHAM MA
8 479 TERRY CLOTH 5 ASPHALT ST EASTON MA
9 371 BETH CLOUD 3456 PINKY LN NATICK MA
10 4 HERBERT CRANE 30 HERON AVE KINGSTON NJ
11 334 CAROLYN CROW 891 SUMMER ST WESTWOOD MA
12 366 ALAN DONOVAN 6781 CORNWALL AVE MELROSE MA
13 24 JANE DOUGH 15 LOCATION DR NEWTON MA
14 32 JANE FERNDALE 60 FOREST AVE NEWTON MA

Obs zip phone status ssnumber startdate termdate birthdate

1 03461 6175541108 03 027601115 15JUN1978 0 04MAR1960
2 01568 6178870235 01 127675593 08SEP1979 0 05APR1957
3 02178 6174320923 05 028770147 01DEC1977 0 05APR1934
4 02415 6173321933 01 022446676 30APR1978 0 01JAN1950
5 01675 6175555544 01 039557818 05MAY1980 0 25APR1960
6 01568 6178841212 01 092345812 14DEC1977 0 04MAR1939
7 03461 6175542387 01 111556692 02JUN1979 0 04MAY1934
8 05491 6177738398 01 028701666 02NOV1979 0 04MAR1945
9 02178 6174321212 01 326710472 04MAR1977 0 09SEP1945
10 21341 2013341433 01 016777451 14MAY1977 0 21MAR1942
11 02090 6173291776 01 023980110 17JUN1979 0 03APR1944
12 02176 6176655412 01 025503622 10OCT1981 0 17NOV1951
13 02456 6174458155 01 022337878 08AUG1976 0 29MAR1951
14 02576 6178888112 01 034567891 09SEP1979 0 17JAN1958

83

A P P E N D I X

1
IDMS Essentials

Introduction to IDMS Essentials 83
Data Dictionaries and the DDS 83

CA-IDMS Networks and Sets 84

CA-IDMS Documentation 85

Introduction to IDMS Essentials

This appendix introduces SAS users to Computer Associates’ Integrated Database
Management System (CA-IDMS). It focuses on the terms and concepts that help you
access CA-IDMS files with SAS/ACCESS software.

If you want more information about a CA-IDMS concept or term, see the documents
listed in “CA-IDMS Documentation” on page 85.

Data Dictionaries and the DDS

CA-IDMS enables you to build one or more databases using a data dictionary. A
data dictionary is itself a CA-IDMS database that contains all the data and system
definitions for one or more databases.

A data dictionary is divided logically into areas. The information is organized into
entity types, which correspond to the main data processing components, such as
elements, records, files, programs, and users. Data dictionaries monitor most aspects of
the database environment, from tracking the status of terminals, systems, and users to
being a central resource of information about the system and providing security. Some
large information systems use multiple dictionaries; for example, a system might have
one dictionary for each division of a company.

A database administrator (DBA) manages and maintains the data dictionaries and
the entire CA-IDMS system. DBA duties often include programming systems,
managing resources, monitoring the system’s performance, and overseeing its security.
The DBA has a key role in the SAS/ACCESS interface to CA-IDMS, which is explained
in more detail in this section.

Within a CA-IDMS data dictionary are the definitions for a database’s schema and
subschema. A schema describes the contents and structure of a single database,
including all of the records and sets that are necessary to define its data elements and
data relationships.

A subschema is a subset of a schema that is used by programs at runtime. It
consists of all the data elements, records, sets, and areas that are defined in the schema
or a subset thereof. It includes database records and can include logical records as well

84 CA-IDMS Networks and Sets � Appendix 1

as logical-record paths (defined below). The DBA defines logical records and their paths
in the subschema before application programs are coded and executed.

The following figure illustrates the relationships among the data dictionary, schemas,
and subschemas.

Figure A1.1 Data Dictionary, Schemas, and Subschemas

CA-IDMS provides two operating environments, or modes, for accessing data
dictionaries and databases. In the central version, multiple concurrently executing
programs access the database(s) through one shared copy of the database management
system (DBMS). The central version controls concurrent updating of the database by
multiple users in order to maintain database integrity.

In local mode, one program at a time accesses the database through a dedicated
copy of the DBMS. You cannot run local mode against a database at the same time that
the central version is accessing it.

A Distributed Database System (DDS) distributes data storage and processing
functions among several systems. These systems can execute on one or more machines
and at one or more sites. Each system is a node in the DDS configuration. A central
version specifies which node within the DDS system to access.

CA-IDMS Networks and Sets

Each CA-IDMS database consists of database records that are grouped into record
types. A record type consists of the record’s name, all of its elements, and the elements’
attributes, such as data types and sizes. These record types are linked together through
different logical groups called sets. Sets are defined to the schema.

A set is a logical relationship established between two or more named record types.
One record type is the owner of the set and the other record types are members. Record
types can belong to more than one set, so a record type can be both an owner of one set
and a member of another. That same record type can also be a member of more than
one set. These sets and their interweaving relationships make up a network and give
CA-IDMS its network capabilities.

To move through the database, each record type contains pointers to other record
types in its set or sets. Pointers identify the next record in the set and link the records
together in a chain. There are three kinds of pointers:

IDMS Essentials � CA-IDMS Documentation 85

Next pointer (required pointer)
points to the next record type in the set, regardless of whether the record type is
an owner or a member of the set.

Prior pointer
works the same way as the Next pointer except that it points to the prior record
type.

Owner pointer
points from a member record type to the owner record type.

Through these pointers, a program can navigate through the network and travel a
specific path through one or many sets.

The database administrator is responsible for defining record types and sets in the
schema.

CA-IDMS Documentation
You might find the following Computer Associates’ Release 12.0 CA-IDMS

documentation helpful while you are using the SAS/ACCESS interface to CA-IDMS.
Refer to these manuals for information about your CA-IDMS system and DML
application programming.

� System Operations
� Database Administration

� Security Administration

� System Generation

� Features Summary
� Messages and Codes

� System Tasks and Operator Commands

� Utilities

� Database Design
� Quick Reference

� Programming Quick Reference

� Master Index
� Glossary

� Navigational DML Programming

86

87

A P P E N D I X

2
Recommended Reading

Recommended Reading 87

Recommended Reading

Here is the recommended reading list for this title:
� SAS Language Reference: Concepts
� SAS Language Reference: Dictionary

� Base SAS Procedures Guide, Volumes 1 and 2
� Getting Started with the SAS System in the MVS Environment
� SAS/CONNECT User’s Guide

� SAS/GRAPH Reference, Volumes 1 and 2
� SAS/STAT User’s Guide

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

88

Index 89

Index

A
ACCEPT function call 15
access descriptors 1
addressability, of database records 16
AREA= option, CA-IDMS INFILE statement 11
area sweeps (example) 46
at sign, trailing 34

example 41

B
BIND function call 16

C
CA-IDMS error codes, obtaining 35
CA-IDMS INFILE statement 4

See also DML function calls
accessing CA-IDMS records 14
AREA= option 11
DANAME= option 11
DANODE= option 11
DBKEY= option 11
DCNAME= option 11
DCNODE= option 11
ERRSTAT= option 11
FUNC= option 11
IKEYLEN= option 12
KEY= option 11
KEYOFF= option 12
LRECL= option 12
OBS= option 12
options summary 13
purpose 10
RECORD= option 12
SEQUENCE= option 12
SET= option 12
SORTFLD= option 12
STOPOVER option 13

CA-IDMS input buffer 4
CA-IDMS INPUT statement 4

null INPUT statements 34
null INPUT statements (example) 81
reading external files 32
syntax 32
trailing at sign, definition 34
trailing at sign, example 41

CA-IDMS record currency 4
re-establishing 71
reading records by 19

CA-IDMS records, accessing 14
CALC option, DML function calls 17
call status codes

CA-IDMS error codes, obtaining 35
checking 35
end of file, handling 36
ERROR values, obtaining 35
ERROR values, resetting 35
error values, summary of 35
errors, catching before moving data 36
non-error conditions, checking 35

central version mode 84
currency 4

re-establishing 71
reading records by 19

current input source 32
CURRENT option, DML function calls 19

D
DANAME= option, CA-IDMS INFILE state-

ment 11
DANODE= option, CA-IDMS INFILE state-

ment 11
data dictionaries 83
DATA step interface 1

current input source 32
features of 1
multiple input sources 32
read-only access 1

DATA step program (example) 5
DATA step statement extensions 4

See also CA-IDMS INFILE statement
See also CA-IDMS INPUT statement
CA-IDMS input buffer 4
CA-IDMS record currency 4
DATA step program (example) 5

DATA step views, creating
example 8
fileref names 8

database administrators (DBAs) 83
database records, reading

See reading database records
DB-KEY option, DML function calls 20
db-keys

accepting 15

reading database records 20
retrieving 27

DBKEY option
DML function calls 31

DBKEY= option, CA-IDMS INFILE state-
ment 11

DCNAME= option, CA-IDMS INFILE state-
ment 11

DCNODE= option, CA-IDMS INFILE state-
ment 11

DDS (Distributed Database System) 84
descriptors 1
Distributed Database System (DDS) 84
DML function calls 14

See also CA-IDMS INFILE statement
ACCEPT 15
BIND 16
DBKEY option 31
determining type of 31
FIND, CALC option 17
FIND, CURRENT option 19
FIND, DB-KEY option 20
FIND, OWNER option 21
FIND, SORT KEY option 22
FIND, WITHIN option 23
FUNC option 31
GET 25, 77
IF 26
IKEY option 31
INFILE statement parameters for 29
OBTAIN, CALC option 17
OBTAIN, CURRENT option 19
OBTAIN, DB-KEY option 20
OBTAIN, OWNER option 21
OBTAIN, SORT KEY option 22
OBTAIN, WITHIN option 23
RETURN 27, 77
SEQUENCE option 31
SORTFLD option 31
tracking 33

E
end of file, handling 36
error codes, CA-IDMS 35
error values

summary of 35
ERROR values

obtaining 35

90 Index

resetting 35
errors, catching before moving data 36
ERRSTAT= option, CA-IDMS INFILE state-

ment 11
examples 2

area sweeps 46
DATA step program 5
DATA step views, creating 8
GET function 77
navigating multiple set relationships 50
null INPUT statements 81
record occurrences, reading 5
RETURN function 77
SAS data sets, creating 5
trailing at sign 41

examples, reading database records
area sweep 46
navigating multiple set relationships 50
physically 46
traversing a set 37
within an area 46

external files, reading 4, 32

F
fileref names

creating DATA step views 8
limitations 2

FIND function call
CALC option 17
CURRENT option 19
DB-KEY option 20
OWNER option 21
SORT KEY option 22
WITHIN option 23

FUNC= option, CA-IDMS INFILE statement 11
FUNC option, DML function calls 31
function calls

See DML function calls

G
GET function call 25

example 77

I
IF function call 26
IKEY option, DML function calls 31
IKEYLEN= option, CA-IDMS INFILE state-

ment 12
INFILE statement 29

See also CA-IDMS INFILE statement
options supported by CA-IDMS INFILE state-

ment 12
parameters for DML function calls 29

input buffer 4
reading database records into 25

input sources
current 32
multiple 32

INPUT statement 4
See CA-IDMS INPUT statement

K
KEY= option, CA-IDMS INFILE statement 11
KEYOFF= option, CA-IDMS INFILE state-

ment 12

L
local mode 84
Logical Record Facility (LRF) 1
LRECL= option, CA-IDMS INFILE state-

ment 12
LRF (Logical Record Facility) 1

M
multiple input sources 32
multiple set relationships, navigating 50

N
navigating multiple set relationships 50
navigating set occurrences 67
networks 84
next pointer 85
non-error conditions, checking 35
null INPUT statements 34

example 81

O
OBS= option, CA-IDMS INFILE statement 12
OBTAIN function call

CALC option 17
CURRENT option 19
DB-KEY option 20
OWNER option 21
SORT KEY option 22
WITHIN option 23

OWNER option, DML function calls 21
owner pointer 85
owner records, locating 21

P
pointers 84
prior pointer 85

R
re-establishing currency on a record 71
read-only access 1
reading database records 46

across DATA steps 77
area sweep (example) 46
by CALC key value 17
by currency 19
by db-key 20
establishing addressability 16
into the input buffer 25

logically 23
navigating multiple set relationships (exam-

ple) 50
navigating set occurrences 67
owner records, locating 21
physically 23, 46
re-establishing currency on a record 71
SAS data sets, as transaction files 57
SAS data sets, locating records 62
transaction information, specifying 67
traversing a set (example) 37
within a set 23
within a sorted set 22
within an area 23, 46

reading external files 4, 32
record currency, CA-IDMS 4

re-establishing 71
reading records by 19

record occurrences
reading 5
testing for 26

RECORD= option, CA-IDMS INFILE state-
ment 12

record types 84
records

See reading database records
records, accessing 14
RETURN function

example 77
RETURN function call 27

S
SAS data sets

as transaction files 57
creating 5
locating records 62

schemas 83
SEQUENCE= option, CA-IDMS INFILE state-

ment 12
SEQUENCE option, DML function calls 31
SET= option, CA-IDMS INFILE statement 12
sets 84

navigating multiple set relationships 50
navigating set occurrences 67
reading records within a set 23
reading records within a sorted set 22
traversing 37

SORT KEY option, DML function calls 22
SORTFLD= option, CA-IDMS INFILE state-

ment 12
SORTFLD option, DML function calls 31
STOPOVER option, CA-IDMS INFILE state-

ment 13
subschemas 83
symbolic keys, retrieving 27

T
tracking DML function calls 33
trailing at sign 34

example 41
transaction files

SAS data sets as 57

Index 91

transaction information, specifying 67 V
view descriptors 1

views, creating
example 8
fileref names 8

W
WITHIN option, DML function calls 23

Your Turn

If you have comments or suggestions about SAS/ACCESS® 9.1 for the DATA Step
Interface to CA-IDMS: Reference, please send them to us on a photocopy of this page, or
send us electronic mail.

For comments about this document, please return the photocopy to
SAS Publishing
SAS Campus Drive
Cary, NC 27513
email: yourturn@sas.com

For suggestions about the software, please return the photocopy to
SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
email: suggest@sas.com

	Table of Contents
	Contents

	Overview of the SAS/ACCESS Interface to CA- IDMS
	Introduction to SAS/ACCESS DATA Step Interface to CA-IDMS
	Features of the DATA Step Interface
	Prerequisites for Using This Document
	Example Data in The Interface to CA-IDMS Document

	Using the SAS/ACCESS Interface to CA- IDMS
	Overview of the DATA Step Statement Extensions
	CA-IDMS Record Currency
	CA-IDMS Input Buffer
	Introductory Example of a DATA Step Program

	Creating DATA Step Views
	The CA-IDMS INFILE Statement
	CA-IDMS Environment Options
	Other CA-IDMS Options
	Standard INFILE Statement Options
	Summary of CA-IDMS INFILE Statement Options

	Guidelines for Using the CA-IDMS INFILE Statement
	Specifying DML Function Calls
	ACCEPT Function Call
	BIND Function Call
	FIND and OBTAIN Function Calls
	GET Function Call
	IF Function Call
	RETURN Function Call
	Summary of Options Needed to Generate CA-IDMS Function Calls
	How the CA-IDMS Function Call Is Generated
	Using Multiple Sources of Input

	The CA-IDMS INPUT Statement
	The Null INPUT Statement
	Holding Records in the Input Buffer
	Checking Call Status Codes
	Handling End of File

	Example: Traversing a Set
	Example: Using the Trailing @ and the INPUT Statement with No Arguments

	Examples of SAS/ACCESS DATA Step Programs
	Introduction to Examples of SAS/ACCESS DATA Step Programs
	Statements Common to All SAS/ACCESS DATA Step Examples
	Performing an Area Sweep
	Navigating Multiple Set Relationships
	Using a SAS Data Set as a Transaction File
	Using Information in a SAS Data Set to Locate Records
	Supplying Transaction Information and Navigating Set Occurrences
	Re-establishing Currency on a Record
	Using RETURN and GET Across Executions of the DATA Step

	IDMS Essentials
	Introduction to IDMS Essentials
	Data Dictionaries and the DDS
	CA-IDMS Networks and Sets
	CA-IDMS Documentation

	Recommended Reading
	Recommended Reading

	Index

