
SAS/ACCESS®

9.1
Interface to ADABAS
Reference

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS/ACCESS ® 9.1 Interface to ADABAS: Reference. Cary, NC: SAS Institute Inc.

SAS/ACCESS® 9.1 Interface to ADABAS: Reference
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
ISBN 1-59047-215-2
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New v

Overview v

P A R T 1 SAS/ACCESS Interface to ADABAS: Usage 1

Chapter 1 � Overview of the SAS/ACCESS Interface to ADABAS 3
Introduction to the SAS/ACCESS Interface to ADABAS 3

Purpose of the SAS/ACCESS Interface to ADABAS 3

SAS/ACCESS Descriptor Files for ADABAS 4

Example Data in the ADABAS Document 5

Chapter 2 � ADABAS Essentials 7
Introduction to ADABAS Essentials 7

ADABAS DBMS 8

ADABAS Databases 8

ADABAS Data Fields 11

ADABAS Null Values 14

ADABAS and NATURAL Security Options 14

Chapter 3 � ADABAS Data in SAS Programs 17
Introduction to Using ADABAS Data in SAS Programs 17

Reviewing ADABAS Variables 18

Printing ADABAS Data 19

Charting ADABAS Data 20

Calculating Statistics with ADABAS Data 22

Selecting and Combining ADABAS Data 24

Updating a SAS Data File with ADABAS Data 32

Performance Considerations 34

Chapter 4 � Browsing and Updating ADABAS Data 37
Introduction to Browsing and Updating ADABAS Data 37

Browsing and Updating ADABAS Data with the SAS/FSP Procedures 38

Browsing and Updating ADABAS Data with the SQL Procedure 43

Browsing Data with the SELECT Statement 43

Updating Data with the UPDATE Statement 45

Inserting and Deleting Data with the INSERT and DELETE Statements 47

Appending ADABAS Data with the APPEND Procedure 49

P A R T 2 SAS/ACCESS Interface to ADABAS: Reference 53

Chapter 5 � ACCESS Procedure Reference 55
Introduction to ACCESS Procedure Reference 55

iv

Case Sensitivity in the ACCESS Procedure 56
ACCESS Procedure Syntax for ADABAS 56
SAS Passwords for SAS/ACCESS Descriptors 58
Invoking the ACCESS Procedure 60
ACCESS PROCEDURE Statements for ADABAS 61
WHERE Clause in an ADABAS View Descriptor 88
SORT Clause in a View Descriptor 93
Creating and Using ADABAS View Descriptors Efficiently 94
ACCESS Procedure Formats and Informats for ADABAS 95
Effects of the SAS/ACCESS Interface on ADABAS Data 97

P A R T 3 Appendices 99

Appendix 1 � Information for the Database Administrator 101
Introduction to the Information for the Database Administrator 101
How the SAS/ACCESS Interface to ADABAS Works 102
Effects of Changing an ADABAS File or NATURAL DDM on Descriptor Files 107
Data Security with ADABAS 108
Controlling Data Locks with ADABAS 111
Maximizing ADABAS Performance 111
Debug Information for ADABAS 112
System Options for PROC ACCESS and the Interface View Engine 112

Appendix 2 � Advanced Topics 115
Introduction to Advanced Topics 115
Data Set Options for ADABAS 116
Using Multiple View Descriptors 118
Deleting an ADABAS Observation 118
Adding an ADABAS Observation 118
Using a BY Key To Resolve Ambiguous Inserts 119
Missing Values (Nulls) 121
Using Multiple-Value Fields in Selection Criteria 122
Periodic Group Fields in Selection Criteria 124
Using a SAS WHERE Clause for Selection Criteria 127
Deciding How to Specify Selection Criteria 130

Appendix 3 � Example Data 131
Introduction to the ADABAS Example Data 132
ADABAS Files 132
NATURAL DDMs Based on the ADABAS Files 145
Access Descriptors for ADABAS 147
View Descriptors Based on the Access Descriptors for ADABAS 150
SAS Data Files for ADABAS 152

Appendix 4 � Recommended Reading 155
Recommended Reading 155

Glossary 157

Index 163

v

What’s New

Overview
Prior to SAS 9.1, the ADABAS engine could not process a WHERE clause and ISN

option. The ADABAS engine read all of the records in the ADABAS table and returned
the records to SAS, then applied the WHERE clause.

Now, the ADABAS engine issues an L1 command to the ADABAS table that enables
ADABAS to process the WHERE clause and ISN option.With this method, only one
ADABAS record is read instead of the complete table, which results in a performance
enhancement. See “Retrievals with Only a WHERE Clause” on page 105 for more
information.

Note:

� This section describes the only feature of the SAS/ACCESS Interface to ADABAS
that has changed since SAS 8.2.

� z/OS is the successor to the OS/390 operating system. SAS/ACCESS 9.1 for
ADABAS is supported on both OS/390 and z/OS operating systems and,
throughout this document, any reference to z/OS also applies to OS/390, unless
otherwise stated.

�

vi What’s New

1

P A R T1

SAS/ACCESS Interface to ADABAS: Usage

Chapter 1.Overview of the SAS/ACCESS Interface to ADABAS 3

Chapter 2.ADABAS Essentials 7

Chapter 3.ADABAS Data in SAS Programs 17

Chapter 4.Browsing and Updating ADABAS Data 37

2

3

C H A P T E R

1
Overview of the SAS/ACCESS
Interface to ADABAS

Introduction to the SAS/ACCESS Interface to ADABAS 3
Purpose of the SAS/ACCESS Interface to ADABAS 3

SAS/ACCESS Descriptor Files for ADABAS 4

Access Descriptor Files 5

View Descriptor Files 5

Example Data in the ADABAS Document 5

Introduction to the SAS/ACCESS Interface to ADABAS
This section introduces you to SAS/ACCESS software and briefly describes how to

use the interface. This section also introduces the sample ADABAS data, SAS/ACCESS
descriptor files, and SAS data files used in this document.

Purpose of the SAS/ACCESS Interface to ADABAS
SAS/ACCESS software provides an interface between SAS and the ADABAS

database management system (DBMS). With the SAS/ACCESS interface, you can
perform the following tasks:

� create SAS/ACCESS descriptor files using the ACCESS procedure

� directly access ADABAS data from within a SAS program using the SAS/ACCESS
descriptor files created with the ACCESS procedure

� extract ADABAS data and place it in a SAS data file using the ACCESS
procedure, the DATA step, or other SAS procedures

� update ADABAS data using the SQL procedure, SAS/FSP software, SAS/AF
software, and the APPEND procedure.

The SAS/ACCESS interface consists of two parts:
� the ACCESS procedure, which you use to define the SAS/ACCESS descriptor files

� the interface view engine, which enables you to use ADABAS data in SAS
programs in much the same way as you use SAS data files.

The ACCESS procedure enables you to describe ADABAS data to SAS. You store the
description in SAS/ACCESS descriptor files, which you can use in SAS programs much
as you would use SAS data files. You can print, plot, and chart the data described by
the descriptor files, use it to create other SAS data sets, and so on. Several examples of
using ADABAS data in SAS programs are presented in Chapter 3, “ADABAS Data in
SAS Programs,” on page 17. Using SAS/ACCESS descriptor files to update ADABAS

4 SAS/ACCESS Descriptor Files for ADABAS � Chapter 1

data from within a SAS program is shown in Chapter 4, “Browsing and Updating
ADABAS Data,” on page 37.

The interface view engine is an integral part of the SAS/ACCESS interface, but the
interface’s design is transparent, so you seldom have to deal directly with the engine.
SAS automatically interacts with the engine (via the SAS/ACCESS descriptor files)
when you use ADABAS data in your SAS programs. SAS and the interface view engine
do much of the work automatically, so you can simply use ADABAS data in SAS
programs in much the same way you use SAS data.

SAS/ACCESS Descriptor Files for ADABAS
SAS/ACCESS software uses SAS/ACCESS descriptor files to establish a connection

between SAS and ADABAS. You create these files with the ACCESS procedure.
There are two types of SAS/ACCESS descriptor files: access descriptors and view

descriptors.
The following figure illustrates the relationship among ADABAS data, an access

descriptor, and view descriptors.

Figure 1.1 Relationship among ADABAS Data, an Access Descriptor, and View
Descriptors

Overview of the SAS/ACCESS Interface to ADABAS � Example Data in the ADABAS Document 5

Access Descriptor Files

Access descriptor files are of member type ACCESS. Each access descriptor holds
essential information about the ADABAS data you want to access, for example, the
ADABAS file number or NATURAL Data Definition Module (DDM) name, the data field
names, and their data types. It also contains corresponding information related to SAS,
such as the SAS variable names, formats, and informats.

An access descriptor can describe only one ADABAS file or DDM; that is, you cannot
join two ADABAS files or DDMs with a single access descriptor.

View Descriptor Files

View descriptor files are sometimes called views because their member type is VIEW.
This document uses the term view descriptor to distinguish them from views that are
created by the SAS SQL procedure.

Each view descriptor can define all of the data or a particular subset of the data
described by one access descriptor (and therefore one ADABAS file or DDM). For
example, you might want to use only three or four possible data fields and only some of
the logical records. The view descriptor enables you to select the data fields you want
and, by specifying selection criteria, to select only the specific data you want. For
example, your selection criteria might be that the date of transaction is July 3, 1998,
and that customers’ names begin with W.

Typically, for each access descriptor, you will have several view descriptors, selecting
different subsets of data.

You can join data from multiple ADABAS files or NATURAL DDMs with SAS SQL
procedure. The SQL procedure can join data from SAS data files, PROC SQL views,
and SAS/ACCESS view descriptors into one resulting file. In addition, SAS/ACCESS
view descriptors can come from different database management systems. For examples
that use the SQL procedure, see Chapter 3, “ADABAS Data in SAS Programs,” on page
17 and Chapter 4, “Browsing and Updating ADABAS Data,” on page 37.

Example Data in the ADABAS Document

This document uses several NATURAL DDMs to show you how to use the SAS/
ACCESS interface to ADABAS. The data was created for an international textile
manufacturer. This company’s product line includes some special fabrics that are made
to precise specifications. The DDMs are named CUSTOMERS, EMPLOYEE, INVOICE,
and ORDER. All the data is fictitious.

The ADABAS data is designed to show how the interface treats ADABAS data. It is
not meant as an example for you to follow in designing ADABAS files or NATURAL
DDMs for any purpose.

Appendix 3, “Example Data,” on page 131 gives more information about the ADABAS
data, SAS/ACCESS descriptor files, and SAS data files used in examples. The
information about the ADABAS data includes the ADABAS statements that created
each file, the data each ADABAS file contains, and a description of the NATURAL
DDMs. The information about the SAS/ACCESS descriptor files includes their
definitions and any selection criteria that were specified for them. The information
about the SAS data files includes the SAS statements that created each data file and
the data that each contains.

6

7

C H A P T E R

2
ADABAS Essentials

Introduction to ADABAS Essentials 7
ADABAS DBMS 8

ADABAS Databases 8

ADABAS Files 9

ADABAS File Number 9

Level Number 9
Data Field Names 9

Logical Record ISN 9

NATURAL Data Definition Modules 10

DDM File Name 10

Data Field Names 10

ADABAS Descriptors 10
Subdescriptor 10

Superdescriptor 10

Phonetic Descriptor 11

ADABAS Data Fields 11

Data Field Types 11
Elementary Field 11

Multiple-value Field 11

Group Field 11

Periodic Group Field 12

Subfield 12
Superfield 12

Mapping Data between SAS and ADABAS 12

Data Field Formats and Lengths 13

ADABAS Null Values 14

ADABAS and NATURAL Security Options 14

ADABAS Security Options 14
NATURAL Security Options 15

Introduction to ADABAS Essentials
This section introduces SAS users to ADABAS, Software AG’s database management

system (DBMS). The section focuses on the following terms and concepts
� the ADABAS DBMS and ADABAS databases
� ADABAS files, NATURAL Data Definition Modules, and ADABAS descriptors

(indexes)
� ADABAS data fields and ADABAS and NATURAL data formats and lengths
� null (missing) values

8 ADABAS DBMS � Chapter 2

� ADABAS Security and NATURAL SECURITY System options.

If you want more information about an ADABAS concept or term than this section
provides, see the ADABAS information about your system.

ADABAS DBMS
ADABAS is Software AG’s database management system (DBMS). ADABAS

organizes and accesses data according to relationships among data fields. The
relationships among data fields are expressed by ADABAS files, which consist of data
fields and logical records.

With the ADABAS DBMS, you can also use the high-level language NATURAL to
operate on data that is managed by the DBMS. NATURAL is Software AG’s fourth
generation application development system that enables you to create, modify, read,
and protect data that the DBMS manages. All ADABAS files and data fields referenced
in a NATURAL program must be defined to NATURAL through a Data Definition
Module (DDM).

ADABAS has single-user and multi-user execution environments, both of which are
supported by the SAS/ACCESS interface to ADABAS.

ADABAS Databases
An ADABAS database is a collection of data organized into ADABAS files. Each

database has an associated database identifier, which is a numerical value in the range
1 to 65,535, and a database name, which is a character value with a maximum of 16
characters. Each database can consist of up to 5,000 logical files.

An ADABAS database consists of three system files: Data Storage, Associator, and
Work Storage.

� The Data Storage system file contains the actual data records for all ADABAS files
in a database, in compressed form.

� The Associator system file contains internal storage information that manages the
data for the entire database.

� The Work Storage system file contains temporary work files.

To use the SAS/ACCESS interface to ADABAS, you need to be familiar with three
ADABAS components: ADABAS files, NATURAL DDMs, and ADABAS descriptors
(which is an ADABAS data field that provides an index of its values). ADABAS files
and NATURAL DDMs are the components from which you create SAS/ACCESS access
descriptor and view descriptor files. Knowing about ADABAS descriptors can help you
minimize ADABAS’s processing time for your SAS/ACCESS view descriptors.

Note: To avoid confusion, keep in mind the two usages of the term descriptor
throughout this document:

� An ADABAS descriptor is an ADABAS data field that provides an index of the
data field’s values.

� SAS/ACCESS descriptor files, on the other hand, are the files used to establish a
connection between SAS and ADABAS.

�

The following sections describe ADABAS files, NATURAL DDMs, and ADABAS
descriptors.

ADABAS Essentials � ADABAS Files 9

ADABAS Files
An ADABAS file is a collection of logically related data, organized by data fields and

logical records. ADABAS permits maximums of 926 data fields and 4,294,967,294
logical records in each ADABAS file.

The following output illustrates four data fields and seven logical records from an
ADABAS file containing data about customers. The data fields are the vertical columns
of data. The logical records are the horizontal rows of data.

Output 2.1 Sample ADABAS File

CU CI ST CO

14324742 San Jose CA USA
14569877 Memphis TN USA
14898029 Rockville MD USA
24589689 Belgrade Yugoslavia
26422096 La Rochelle France
38763919 Buenos Aires Argentina
46783280 Singapore Singapore

ADABAS files are created with the ADABAS utility ADACMP. (To see the ADABAS
data definition statements that created the ADABAS files used in this document, refer
to Appendix 3, “Example Data,” on page 131.)

ADABAS File Number
When you create an ADABAS file, you assign a file number using the FILE=

statement of the ADACMP utility. Each database can consist of up to 5,000 logical files,
depending on the device type.

Level Number
A data field level number is a one- or two-digit number, from 01 to 07, used in

conjunction with data field grouping. (Grouping is discussed in “ADABAS Data Fields”
on page 11.) Data fields with a level of 2 or greater are considered to be a part of the
immediately preceding group, which has a lower level number.

Data Field Names
ADABAS data fields are identified by a two-character name. Each data field name

in an ADABAS file must be unique. The first character must be alphabetic, and the
second character can be either alphabetic or numeric. For example, AA and B4 are
valid data field names.

Logical Record ISN
Each logical record within an ADABAS file is assigned an internal sequence number

(ISN). An ISN is the logical identifier for each record. ISNs are unique within each
ADABAS file.

Note: When you create SAS/ACCESS descriptor files for ADABAS data, the
ACCESS procedure creates a SAS variable named ISN. This variable gives you access
to the ISNs for all logical records stored in the ADABAS file. �

10 NATURAL Data Definition Modules � Chapter 2

NATURAL Data Definition Modules
To reference an ADABAS file and its data fields in NATURAL programs, you must

create a NATURAL Data Definition Module (DDM) based on the ADABAS file. (Note
that a DDM is often referred to as an ADABAS file, even though it is really only a view
of an actual ADABAS file.) A DDM has an assigned name, which references the
ADABAS file number on which the DDM is based. Also, more descriptive data field
names can be assigned to a DDM. DDMs are stored in a system file, which is simply
another ADABAS file.

DDM File Name
The filename for a NATURAL DDM can be a maximum of 32 characters.

Data Field Names
In a NATURAL DDM, data fields can be assigned a DDM external name of 3 to 32

characters. For example, in the CUSTOMERS DDM, the DDM data field name
CUSTOMER corresponds to the ADABAS file two-character data field name CU.

ADABAS Descriptors
If you plan to use a data field often in selection criteria, you can designate it as a

key field. You designate a key field by specifying the descriptor option in the ADACMP
utility data definition statement. When a data field is a descriptor field, ADABAS
maintains and stores its values in an inverted list. An inverted list contains the
different values of a descriptor data field, along with the count and the ISNs of the
logical records that contain each value. ADABAS descriptors can also be defined so that
inverted lists contain unique values only.

Specifying ADABAS descriptors speeds up the selection process considerably since
ADABAS is able to access key values directly. Also, specifying descriptors controls read
sequence when reading ADABAS data in sequential order.

Several descriptor types can be specified for a data field. Each descriptor type is
explained below.

Note: In order for you to use SAS variables corresponding to ADABAS data fields in
a SAS BY statement, an SQL ORDER BY clause, or a view SORT clause, the data field
must be designated as an ADABAS descriptor. Regarding a WHERE clause, there are
conditions when you can use a nondescriptor data field and when you must use a
descriptor data field. These conditions are explained in Chapter 5, “ACCESS Procedure
Reference,” on page 55. �

Subdescriptor
A subdescriptor is an ADABAS descriptor that is derived from a portion of an

elementary data field. For example, if ZIPCODE is a data field, a subdescriptor for it
could be ZIPLAST2 defined for the last two digits of a zipcode.

You can include a subdescriptor in SAS/ACCESS descriptor files for retrieval and
selection criteria, but you cannot use subdescriptors in SAS updating procedures.

Superdescriptor
A superdescriptor is an ADABAS descriptor derived from more than one data field,

portions of data fields, or combinations thereof. For example, a superdescriptor named

ADABAS Essentials � Data Field Types 11

STATE-ZIPLAST2 could be defined for the first two digits from the STATE data field
and the last two digits from the ZIPCODE data field.

You can include a superdescriptor in SAS/ACCESS descriptor files for retrieval and
selection criteria, but you cannot use superdescriptors in SAS updating procedures.

Phonetic Descriptor

A phonetic descriptor is an ADABAS descriptor defined to perform searches based on
phonetic values, for example, retrieval by family name.

You can include a phonetic descriptor in SAS/ACCESS descriptor files for retrieval
and selection criteria, but you cannot use phonetic descriptors in SAS updating
procedures.

Note that if you use a phonetic descriptor in a SAS WHERE clause, the interface
view engine must be able to process the entire SAS WHERE clause.

Note: The hyperdescriptor type is not described because hyperdescriptors are not
supported by the SAS/ACCESS interface to ADABAS. Your ADABAS file can contain
hyperdescriptors, but they will be ignored. �

ADABAS Data Fields

You can group logically related ADABAS data fields into one ADABAS file, which
consequently can be accessed by one NATURAL DDM. Up to 926 data fields can be
contained in a single logical record. Data fields have assigned types, formats, and
lengths.

Data Field Types
The SAS/ACCESS interface to ADABAS supports the ADABAS data fields as

described below.

Elementary Field

An elementary field is limited to one value per record. For example, LASTNAME
could be an elementary field.

Multiple-value Field

A multiple-value field can have 0 to 191 values per record. For example, JOBTITLE
could be a multiple-value field because each employee at a company could have multiple
job titles during his or her employment.

Group Field

A group field is several consecutive data fields combined into one for efficient access
and ease of reference. Defining a group field enables you to reference a series of data
fields by using a group name. For example, a group field named EDUCATION could
consist of these data fields: COLLEGE, DEGREE, and YEAR.

A group field can also consist of other groups. In conjunction with grouping, you can
assign level numbers 01 to 07 to define a group.

12 Mapping Data between SAS and ADABAS � Chapter 2

Periodic Group Field
A periodic group field is a group of data fields that repeat. A periodic group can be

repeated up to 191 times and can contain one or more elementary fields and
multiple-value fields. Groups can be nested, but periodic groups cannot. One periodic
group cannot contain another. However, a record can have several different periodic
groups.

Subfield
A subfield is a data field defined from a portion of another data field. For example, a

subfield named AREA-CODE could be defined for the first three digits from the PHONE
data field.

You use subfields for read operations only; they cannot be used for updating directly.

Superfield
A superfield is a data field composed of several data fields, portions of fields, or

combinations thereof. For example, a superfield could be STATE-AREA-CODE
accessing such values as TX512, NM505, and CA213.

You use superfields for read operations only; they cannot be used for updating directly.

Mapping Data between SAS and ADABAS
When you access ADABAS data through the SAS/ACCESS interface, the interface

view engine maps the ADABAS data into SAS observations. You need to be aware of
how the interface view engine maps multiple-value fields and periodic groups. That is,
multiple-value field occurrences are mapped to multiple SAS variables, and periodic
group occurrences are mapped to multiple SAS observations.

For example, suppose an ADABAS file has the data fields and values shown in the
following output. LASTNAME is an elementary field, JOBTITLE is a multiple-value
field, and EDUCATION is a periodic group consisting of the data fields COLLEGE,
DEGREE, and YEAR.

Output 2.2 ADABAS Data

__|
LASTNAME	JOBTITLE	EDUCATION		
___________	___________________	_____________________________		
Reid	Systems Analyst	Purdue	BA	1973
___________	-------------------	-----------------------------		

| DBA | Harvard | MBA | 1975 |
|___________________|_____________________________|

The interface view engine would map the ADABAS data into two SAS observations,
as shown in the following output.

Output 2.3 ADABAS Data Mapped into SAS Observations

LASTNAME JOBTITL1 JOBTITL2 COLLEGE DEGREE YEAR
Reid Systems Analyst DBA Purdue BA 1973
Reid Systems Analyst DBA Harvard MBA 1975

ADABAS Essentials � Data Field Formats and Lengths 13

If you were browsing the ADABAS data, such as with the FSVIEW procedure, the
results would be similar to Output 2.3, with LASTNAME, JOBTITL1, and JOBTITL2
repeated for each set of COLLEGE, DEGREE, and YEAR values. Actually though, the
value Reid is stored in the ADABAS file only once. For retrievals, the results are
straightforward. When updating, however, you need to keep in mind how the interface
view engine maps multiple-value fields and periodic groups.

Suppose you want to change the spelling of a last name using the FSVIEW
procedure. To change Reid to Reed, all you need to do is type REED over one of the
REID values, and, with a single update operation, the last names are all changed. On
the other hand, suppose you want to delete an observation for Reid using the FSEDIT
procedure. Each observation for his job titles and education data would display his last
name. If you deleted an observation, for example, the one for Purdue, the deletion
would not affect the last name or the job title data, but the Purdue observation would
be gone. For more information and an example of deleting an observation from
ADABAS data, see Chapter 4, “Browsing and Updating ADABAS Data,” on page 37.

Data Field Formats and Lengths
Data definition statements enable you to define data field formats and lengths for

both ADABAS files and NATURAL DDMs. The standard format of a data field is
specified with a one-character code shown next in the following table. The standard
length of a data field is specified in bytes; the maximum length is also given.

Table 2.1 ADABAS Standard Data Field Formats and Lengths

Data Type Standard Format Standard Length Description

Alphanumeric A (ADABAS) A
(DDM)

253 byte
maximum

Left-justified, with trailing
blanks removed

Binary B (ADABAS) B
(DDM)

126 byte
maximum

Right-justified, unsigned, with
leading zeros removed

Fixed Point F (ADABAS)

B (DDM)

Must be 4 bytes Right-justified, signed, with twos
complement notation

Floating Point G (ADABAS) F
(DDM)

Must be 4 or 8
bytes

In normalized form and signed

Packed Decimal P (ADABAS) P
(DDM)

15 byte
maximum

Right-justified and signed

Unpacked Decimal
(Zoned)

U (ADABAS) N
(DDM)

29 byte
maximum

Right-justified and signed

If the standard length of a data field is specified as zero, the data field is a variable
length field, which has no maximum or required length.

Note that when creating SAS/ACCESS descriptor files, you can specify SAS formats
for ADABAS data to change the way the data appears. For example, you can add
decimal points. Also, you can specify a SAS date format in your SAS/ACCESS
descriptor files to designate a date representation.

14 ADABAS Null Values � Chapter 2

ADABAS Null Values

ADABAS has a special value called a null value, which means an absence of
information. A null value is analogous to a missing value in SAS.

You can define data fields not to store null data by specifying the NU option in data
definition statements. In normal data storage (that is, NU not specified), a null value is
represented by two bytes (one for the value length and one for the null value).
Suppressing null values results in a null value being represented by a one-byte empty
field indicator. The null value itself is not stored.

Knowing whether a data field allows null values assists you in writing selection
criteria and in entering values to update ADABAS data. For example, if the NU option
is specified for an ADABAS descriptor data field, null values for the data field are not
stored in the inverted list. Therefore, a search using this data field and a null value as
the search value, would result in no records selected, even though there might be
records that contain a null value for the data field.

For more information about null values, see “Missing Values (Nulls)” on page 121.

ADABAS and NATURAL Security Options

The ADABAS DBMS offers security options through both ADABAS and NATURAL.
To protect your ADABAS data, you can use either form of security, or you can have both
work together.

ADABAS Security Options
ADABAS provides a security facility to prevent unauthorized access to data stored

in ADABAS files. Security is available through password protection and by maintaining
data in enciphered form.

passwords provide protection at the ADABAS file level, data field level, and data
value level. These security options are defined with the SECURITY
utility ADASCR and are stored in the ADABAS Security system file.

To access an ADABAS file protected by a password, you must
provide the valid password. Each data field in an ADABAS file can
be assigned up to fifteen levels of read and update security. A user
password specifies the authority for the data field, and ADABAS
automatically determines whether the user is authorized to perform
the requested operation. If the permission level of a user’s password
is equal to or greater than the permission level for the file the user
is trying to access, access is granted. Any ADABAS file can be
protected on individual data field values. In this case, the password
specifies value restrictions on logical records to be selected, read,
and updated.

cipher codes are simple numeric codes that you can assign using the ADACMP
utility when creating an ADABAS file. Ciphering renders data
records unreadable when they are not displayed with an ADABAS
program or utility. You must supply this cipher code in order to
access the enciphered data.

ADABAS Essentials � NATURAL Security Options 15

Note: System information such as DDM and NATURAL SECURITY information is
also stored in ADABAS files; they too can be password-protected or enciphered. �

NATURAL Security Options
NATURAL provides an optional security system that controls the access and use of

the NATURAL environment. You can restrict the use of whole application systems,
individual programs and functions, and the access to DDMs.

Security is accomplished by defining objects and the relationships among these
objects. There are three objects that you need to be familiar with when accessing data
through NATURAL DDMs with the SAS/ACCESS interface: users, libraries, and files.

users can be people, terminals, or groups of either, with assigned
identifiers. The user identifier identifies the user to NATURAL
SECURITY and controls user activity during a NATURAL session.
The identifier is unique to NATURAL and can be up to eight
characters long. Each user identifier can have an associated
eight-character password.

libraries contain sets of NATURAL source programs and/or object modules
that perform a particular function, with assigned identifiers. Stored
in the library data are the ADABAS passwords or cipher codes to
enable NATURAL programs to work with ADABAS Security. The
library identifier identifies the library and the ADABAS file it is
authorized to access to NATURAL SECURITY. The identifier is
unique to NATURAL and can be up to eight characters long.

files are the NATURAL DDMs based on ADABAS files.

Relationships, called Links, are defined among these objects. These links define
which users are allowed to use a library and which files a library is allowed to access.
The users, libraries, files, and links are all stored in the NATURAL Security system file,
which can also be protected with an ADABAS password or cipher code since it is an
ADABAS file. For example, one user identifier and library might be able to access a
DDM for read only, while another user identifier and library might be able to read and
update the same DDM.

16

17

C H A P T E R

3
ADABAS Data in SAS Programs

Introduction to Using ADABAS Data in SAS Programs 17
Reviewing ADABAS Variables 18

Printing ADABAS Data 19

Charting ADABAS Data 20

Calculating Statistics with ADABAS Data 22

Calculating Statistics Using the FREQ Procedure 22
Calculating Statistics Using the MEANS Procedure 22

Calculating Statistics Using the RANK Procedure 24

Selecting and Combining ADABAS Data 24

Selecting and Combining Data Using the WHERE Statement 25

Selecting and Combining Data Using the SQL Procedure 26

Combining Data from Various Sources 26
Creating New Variables with the GROUP BY Clause 31

Updating a SAS Data File with ADABAS Data 32

Performance Considerations 34

Introduction to Using ADABAS Data in SAS Programs
An advantage of the SAS/ACCESS interface to ADABAS is that it enables SAS to

read and write ADABAS data directly using SAS programs. This section presents
examples using ADABAS data accessed through view descriptors as input data for SAS
programs.

Throughout the examples, the SAS terms variable and observation are used instead
of comparable ADABAS terms because this section illustrates how to use SAS
procedures and the DATA step. The examples demonstrate how to print and chart data,
how to use the SQL procedure to combine data from various sources, and how to update
a Version 6 SAS data file with ADABAS data. For more information about the SAS
language and procedures used in the examples, refer to the documents listed at the end
of each section.

“Performance Considerations” on page 34, presents some techniques for using view
descriptors efficiently in SAS programs.

For definitions of all view descriptors referenced in this section, see Appendix 3,
“Example Data,” on page 131. This appendix also contains the ADABAS data and SAS
data files used in this document.

18 Reviewing ADABAS Variables � Chapter 3

Reviewing ADABAS Variables
If you want to use ADABAS data that is described by a view descriptor in your SAS

program but cannot remember the variable names or formats and informats, you can
use the CONTENTS or DATASETS procedures to display this information.

The following examples use the DATASETS procedure to give you information about
the view descriptor VLIB.CUSPHON, which references the NATURAL DDM named
CUSTOMERS.

proc datasets library=vlib memtype=view;
contents data=cusphon;

quit;

The following output shows the information for this example. The data that is described
by VLIB.CUSPHON is shown in Output 3.9.

Output 3.1 Results of Using the DATASETS Procedure to Review a View Descriptor

The SAS System

DATASETS PROCEDURE

Data Set Name: VLIB.CUSPHON Observations: .
Member Type: VIEW Variables: 3
Engine: SASIOADB Indexes: 0
Created: 14:09 Friday, October 5, 1990 Observation Length: 80
Last Modified: 14:33 Friday, October 5, 1990 Deleted Observations: 0
Data Set Type: Compressed: NO
Label:

-----Engine/Host Dependent Information-----

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Informat Label
--
1 CUSTNUM Char 8 0 $8. $8. CUSTOMER
3 NAME Char 60 20 $60. $60. NAME
2 PHONE Char 12 8 $12. $12. TELEPHONE

Note the following points about this output:
� You cannot change a view descriptor’s variable labels using the DATASETS

procedure. The labels are generated to be the complete ADABAS data field name
when the view descriptor is created and therefore cannot be overwritten.

� The Created date is the date the access descriptor for this view descriptor was
created.

� The Last Modified date is the last time the view descriptor was updated.
� The Observations number field contains a null value.

For more information about the DATASETS procedure, see the Base SAS Procedures
Guide.

ADABAS Data in SAS Programs � Printing ADABAS Data 19

Printing ADABAS Data
Printing ADABAS data that is described by a view descriptor is like printing any

other SAS data set, as shown in the following examples.
The following example contains the code for printing the ADABAS data that is

described by the view descriptor VLIB.EMPINFO:

proc print data=vlib.empinfo;
title "Brief Employee Information";

run;

VLIB.EMPINFO accesses data from the NATURAL DDM named EMPLOYEE. The
following output shows the results for this example.

Output 3.2 Results of Printing ADABAS Data

Brief Employee Information

OBS EMPID DEPT LASTNAME

1 119012 CSR010 WOLF-PROVENZA
2 120591 SHP002 HAMMERSTEIN
3 123456 VARGAS
4 127845 ACC024 MEDER
5 129540 SHP002 CHOULAI
6 135673 ACC013 HEMESLY
7 212916 CSR010 WACHBERGER
8 216382 SHP013 PURINTON
9 234967 CSR004 SMITH

10 237642 SHP013 BATTERSBY
11 239185 ACC024 DOS REMEDIOS
12 254896 CSR011 TAYLOR-HUNYADI
13 321783 CSR011 GONZALES
14 328140 ACC043 MEDINA-SIDONIA
15 346917 SHP013 SHIEKELESLAM
16 356134 ACC013 DUNNETT
17 423286 ACC024 MIFUNE
18 456910 CSR010 ARDIS
19 456921 SHP002 KRAUSE
20 457232 ACC013 LOVELL
21 459287 SHP024 RODRIGUES
22 677890 CSR010 NISHIMATSU-LYNCH

When you use the PRINT procedure, you might want to use the OBS= option, which
enables you to specify the last observation to be processed. This is especially useful
when the view descriptor describes large amounts of data or when you just want to see
an example of the output. The following example uses the OBS= option to print the
first five observations described by the view descriptor VLIB.CUSORDR.

proc print data=vlib.cusordr (obs=5);
title "First Five Observations Described

by VLIB.CUSORDR";
run;

VLIB.CUSORDR accesses data from the NATURAL DDM named ORDER. The
following output shows the result of this example.

20 Charting ADABAS Data � Chapter 3

Output 3.3 Results of Using the OBS= Option

First Five Observations Described by VLIB.CUSORDR

OBS STOCKNUM SHIPTO

1 9870 19876078
2 1279 39045213
3 8934 18543489
4 3478 29834248
5 2567 19783482

In addition to the OBS= option, the FIRSTOBS= option also works with view
descriptors. The FIRSTOBS= option does not improve performance significantly
because each observation must still be read and its position calculated. The POINT=
option in the SET statement is not currently supported by the SAS/ACCESS interface
to ADABAS.

For more information about the PRINT procedure, see the Base SAS Procedures
Guide. For more information about the OBS= and FIRSTOBS= options, see the SAS
Language Reference: Dictionary.

Charting ADABAS Data
CHART procedure programs work with ADABAS data that is described by view

descriptors just as they do with other SAS data sets. The following example uses the
view descriptor VLIB.ALLORDR to create a vertical bar chart of the number of orders
per product.

proc chart data=vlib.allordr;
vbar stocknum;
title "Data Described by VLIB.ALLORDR";

run;

VLIB.ALLORDR accesses data from the NATURAL DDM named ORDER. The
following output shows the results for this example. STOCKNUM represents each
product; the number of orders for each product is represented by the height of the bar.

ADABAS Data in SAS Programs � Charting ADABAS Data 21

Output 3.4 Results of Charting ADABAS Data

Data Described by VLIB.ALLORDR

Frequency

8 + ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****

7 + ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****

6 + ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****

5 + ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****

4 + ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****

3 + ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****

2 + ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****

1 + ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
***** ***** ***** ***** ***** *****

750 2250 3750 5250 6750 8250 9750

STOCKNUM

For more information about the CHART procedure, see the Base SAS Procedures
Guide.

If you have SAS/GRAPH software, you can create colored block charts, plots, and
other graphics based on ADABAS data. See the SAS/GRAPH Reference, Volumes 1 and
2 for more information about the types of graphics you can produce with SAS/GRAPH
software.

22 Calculating Statistics with ADABAS Data � Chapter 3

Calculating Statistics with ADABAS Data
You can use statistical procedures on ADABAS data that is described by view

descriptors just as you would with SAS data files. This section shows simple examples
using the FREQ, MEANS, and RANK procedures.

Calculating Statistics Using the FREQ Procedure
Suppose you wanted to find what percentage of your invoices went to each country

so that you can decide where to increase your overseas marketing. The following
example calculates the percentages of invoices for each country accessed by the
NATURAL DDM named INVOICE, using the view descriptor VLIB.INV.

proc freq data=vlib.inv;
tables country;
title "Data Described by VLIB.INV";

run;

The following output shows the one-way frequency table this example generates.

Output 3.5 Results of Calculating Statistics Using the FREQ Procedure

Data Described by VLIB.INV

COUNTRY

Cumulative Cumulative
COUNTRY Frequency Percent Frequency Percent
--
Argentina 2 11.8 2 11.8
Australia 1 5.9 3 17.6
Brazil 4 23.5 7 41.2
USA 10 58.8 17 100.0

Frequency Missing = 2

For more information about the FREQ procedure, see the Base SAS Procedures Guide.

Calculating Statistics Using the MEANS Procedure
In an analysis of recent orders, suppose you also want to determine some statistics

for each of your USA customers. In the following SAS program, the view descriptor
VLIB.USAORDR accesses data from the NATURAL DDM named ORDER, the SAS
WHERE statement selects observations that have a SHIPTO value beginning with a 1,
which indicates a USA customer, and the SAS BY statement sorts the data by order
number. (Note that both ORDERNUM and SHIPTO are ADABAS descriptor data
fields.)

The following example generates the mean and sum of the length of material ordered
and the fabric charges for each USA customer. Also included are the number of
observations (N) and the number of missing values (NMISS).

proc means data=vlib.usaordr mean sum n nmiss
maxdec=0;

where shipto like "1%";

ADABAS Data in SAS Programs � Calculating Statistics Using the MEANS Procedure 23

by ordernum;
var length fabricch;
title "Data Described by VLIB.USAORDR";

run;

The following output shows the results for this example.

Output 3.6 Results of Calculating Statistics Using the MEANS Procedure

Data Described by VLIB.USAORDR

--------------------------------- ORDERNUM=11269 -------------------------------

Variable Label N Nmiss Mean Sum

LENGTH LENGTH 1 0 690 690
FABRICCH FABRICCHARGES 1 0 0 0

--------------------------------- ORDERNUM=11271 -------------------------------

Variable Label N Nmiss Mean Sum

LENGTH LENGTH 1 0 110 110
FABRICCH FABRICCHARGES 1 0 11063836 11063836

--------------------------------- ORDERNUM=11273 -------------------------------

Variable Label N Nmiss Mean Sum

LENGTH LENGTH 1 0 450 450
FABRICCH FABRICCHARGES 1 0 252149 252149

--------------------------------- ORDERNUM=11274 -------------------------------

Variable Label N Nmiss Mean Sum

LENGTH LENGTH 1 0 1000 1000
FABRICCH FABRICCHARGES 1 0 0 0

--------------------------------- ORDERNUM=11276 -------------------------------

Variable Label N Nmiss Mean Sum

LENGTH LENGTH 1 0 1500 1500
FABRICCH FABRICCHARGES 1 0 1934460 1934460

--------------------------------- ORDERNUM=11278 -------------------------------

Variable Label N Nmiss Mean Sum

LENGTH LENGTH 1 0 2500 2500
FABRICCH FABRICCHARGES 1 0 1400825 1400825

24 Calculating Statistics Using the RANK Procedure � Chapter 3

For more information about the MEANS procedure, see the Base SAS Procedures
Guide.

Calculating Statistics Using the RANK Procedure
You can use advanced statistics procedures on ADABAS data that is described by a

view descriptor. The following example uses the RANK procedure to calculate the order
of birthdays for a set of employees. This example creates a SAS data file
MYDATA.RANKEX from the view descriptor VLIB.EMPS and assigns the name
DATERANK to the new variable (in the data file) created by the procedure.

proc rank data=vlib.emps out=mydata.rankex;
var birthdat;
ranks daterank;

run;
proc print data=mydata.rankex;

title "Order of Employee Birthdays";
run;

VLIB.EMPS accesses data from the NATURAL DDM named EMPLOYEE. The
following output shows the result of this example.

Output 3.7 Results of Calculating Statistics Using the RANK Procedure

Order of Employee Birthdays

OBS EMPID JOBCODE BIRTHDAT LASTNAME DATERANK

1 456910 602 24SEP53 ARDIS 5
2 237642 602 13MAR54 BATTERSBY 6
3 239185 602 28AUG59 DOS REMEDIOS 7
4 321783 602 03JUN35 GONZALES 2
5 120591 602 12FEB46 HAMMERSTEIN 4
6 135673 602 21MAR61 HEMESLY 8
7 456921 602 12MAY62 KRAUSE 9
8 457232 602 15OCT63 LOVELL 11
9 423286 602 31OCT64 MIFUNE 12

10 216382 602 24JUL63 PURINTON 10
11 234967 602 21DEC67 SMITH 13
12 212916 602 29MAY28 WACHBERGER 1
13 119012 602 05JAN46 WOLF-PROVENZA 3

For more information about the RANK procedure and other advanced statistics
procedures, see the Base SAS Procedures Guide.

Selecting and Combining ADABAS Data
The great majority of SAS programs select and combine data from various sources.

The method you use depends on the configuration of the data. The next three examples
show you how to select and combine data using two different methods. When choosing
between these methods, you should consider the issues described in “Performance
Considerations” on page 34.

ADABAS Data in SAS Programs � Selecting and Combining Data Using the WHERE Statement 25

Selecting and Combining Data Using the WHERE Statement

Suppose you have two view descriptors, VLIB.USAINV and VLIB.FORINV, that list
the invoices for USA and foreign customers, respectively. You can use the SET
statement to concatenate these files into a SAS data file containing information about
customers who have not paid their bills and whose bills amount to at least $300,000.

The following example contains the code to create the SAS data file containing the
information you want on the customers.

data notpaid(keep=invoicen billedto amtbille
billedon paidon);

set vlib.usainv vlib.forinv;
where paidon is missing and

amtbille>=300000;
run;
proc print;

title "High Bills--Not Paid";
run;

In the SAS WHERE statement, you must use the SAS variable names, not the
ADABAS data field names. Both VLIB.USAINV and VLIB.FORINV access data in the
NATURAL DDM named INVOICE. The following output shows the result of the new
temporary data file, WORK.NOTPAID.

Output 3.8 Results of Selecting and Combining Data Using a WHERE statement

High Bills--Not Paid

OBS INVOICEN BILLEDTO AMTBILLE BILLEDON PAIDON

1 12102 18543489 11063836.00 17NOV88 .
2 11286 43459747 12679156.00 10OCT88 .
3 12051 39045213 1340738760.90 02NOV88 .
4 12471 39045213 1340738760.90 27DEC88 .
5 12476 38763919 34891210.20 24DEC88 .

The first line of the DATA step uses the KEEP= data set option. This option works
with view descriptors just as it works with other SAS data sets; that is, the KEEP=
option specifies that you want only the listed variables to be included in the new data
file, NOTPAID, although you can use the other variables within the DATA step.

Notice that the WHERE statement includes two conditions to be met. First, it selects
only observations that have missing values for the variable PAIDON. As you can see, it
is important to know how the ADABAS data is configured before you can use this data
in a SAS program.

Second, the WHERE statement requires that the amount in each bill be higher than
a certain figure. Again, you need to be familiar with the ADABAS data so that you can
determine a reasonable figure for this expression.

When referencing a view descriptor in a SAS procedure or DATA step, it is more
efficient to use a SAS WHERE statement than to use a subsetting IF statement. A
DATA step or SAS procedure passes the SAS WHERE statement as a WHERE clause to
the interface view engine, which adds it (using the Boolean operator AND) to any
WHERE clause defined in the view descriptor. The view descriptor is then passed to

26 Selecting and Combining Data Using the SQL Procedure � Chapter 3

ADABAS for processing. Processing ADABAS data using a WHERE clause might
reduce the number of logical records read and therefore often improves performance.

For more information about the SAS WHERE statement, see the SAS Language
Reference: Dictionary.

Selecting and Combining Data Using the SQL Procedure
This section provides two examples of using the SAS SQL procedure on ADABAS

data. The SQL procedure implements the Structured Query Language (SQL) and is
included in Base SAS software. The first example illustrates using the SQL procedure
to combine data from three sources. The second example shows how to use the PROC
SQL GROUP BY clause to create new variables from data that is described by a view
descriptor.

Combining Data from Various Sources
Suppose you have the view descriptors VLIB.CUSPHON and VLIB.CUSORDR based

on the NATURAL DDMs CUSTOMERS and ORDER, respectively, and a SAS data file,
MYDATA.OUTOFSTK, that contains names and numbers of products that are out of
stock. You can use the SQL procedure to join all these sources of data to form a single
output file. The SAS WHERE or subsetting IF statements would not be appropriate in
this case because you want to compare variables from several sources, rather than
simply merge or concatenate the data.

The following example contains the code to print the view descriptors and the SAS
data file:

proc print data=vlib.cusphon;
title "Data Described by VLIB.CUSPHON";

run;

proc print data=vlib.cusordr;
title "Data Described by VLIB.CUSORDR";

run;

proc print data=mydata.outofstk;
title "SAS Data File MYDATA.OUTOFSTK";

run;

The following three outputs show the results of the PRINT procedure performed on
the data that is described by the view descriptors VLIB.CUSPHON and
VLIB.CUSORDER and on the SAS data file MYDATA.OUTOFSTK.

ADABAS Data in SAS Programs � Selecting and Combining Data Using the SQL Procedure 27

Output 3.9 Data That is Described by the View Descriptor VLIB.CUSPHON

Data Described by VLIB.CUSPHON

OBS CUSTNUM PHONE

1 12345678 919/489-5682
2 14324742 408/629-0589
3 14569877 919/489-6792
4 14898029 301/760-2541
5 15432147 616/582-3906
6 18543489 512/478-0788
7 19783482 703/714-2900
8 19876078 209/686-3953
9 24589689 (012)736-202

10 26422096 4268-54-72
11 26984578 43-57-04
12 27654351 02/215-37-32
13 28710427 (021)570517
14 29834248 (0552)715311
15 31548901 406/422-3413
16 38763919 244-6324
17 39045213 012/302-1021
18 43290587 (02)933-3212
19 43459747 03/734-5111
20 46543295 (03)022-2332
21 46783280 3762855
22 48345514 213445

OBS NAME

1
2 SANTA CLARA VALLEY TECHNOLOGY SPECIALISTS
3 PRECISION PRODUCTS
4 UNIVERSITY BIOMEDICAL MATERIALS
5 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS
6 LONE STAR STATE RESEARCH SUPPLIERS
7 TWENTY-FIRST CENTURY MATERIALS
8 SAN JOAQUIN SCIENTIFIC AND INDUSTRIAL SUPPLY, INC.
9 CENTAR ZA TECHNICKU I NAUCNU RESTAURIRANJE UMJETNINA

10 SOCIETE DE RECHERCHES POUR DE CHIRURGIE ORTHOPEDIQUE
11 INSTITUT FUR TEXTIL-FORSCHUNGS
12 INSTITUT DE RECHERCHE SCIENTIFIQUE MEDICALE
13 ANTONIE VAN LEEUWENHOEK VERENIGING VOOR MICROBIOLOGIE
14 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
15 NATIONAL COUNCIL FOR MATERIALS RESEARCH
16 INSTITUTO DE BIOLOGIA Y MEDICINA NUCLEAR
17 LABORATORIO DE PESQUISAS VETERNINARIAS DESIDERIO FINAMOR
18 HASSEI SAIBO GAKKAI
19 RESEARCH OUTFITTERS
20 WESTERN TECHNOLOGICAL SUPPLY
21 NGEE TECHNOLOGICAL INSTITUTE
22 GULF SCIENTIFIC SUPPLIES

28 Selecting and Combining Data Using the SQL Procedure � Chapter 3

Output 3.10 Data That is Described by the View Descriptor VLIB.CUSORDR

Data Described by VLIB.CUSORDR

OBS STOCKNUM SHIPTO

1 9870 19876078
2 1279 39045213
3 8934 18543489
4 3478 29834248
5 2567 19783482
6 4789 15432147
7 3478 29834248
8 1279 14324742
9 8934 31548901

10 2567 14898029
11 9870 48345514
12 1279 39045213
13 8934 18543489
14 2567 19783482
15 9870 18543489
16 3478 24589689
17 1279 38763919
18 8934 43459747
19 2567 15432147
20 9870 14324742
21 9870 19876078
22 1279 39045213
23 8934 18543489
24 3478 29834248
25 2567 19783482
26 4789 15432147
27 3478 29834248
28 1279 14324742
29 8934 31548901
30 2567 14898029
31 9870 48345514
32 1279 39045213
33 8934 18543489
34 2567 19783482
35 9870 18543489
36 3478 24589689
37 1279 38763919
38 8934 43459747
39 2567 15432147
40 9870 14324742

Output 3.11 Data in the SAS Data File MYDATA.OUTOFSTK

SAS Data File MYDATA.OUTOFSTK

OBS FIBERNAM FIBERNUM

1 olefin 3478
2 gold 8934
3 dacron 4789

The following SAS code selects and combines data from these three sources to create
a PROC SQL view, SQL.BADORDR. The SQL.BADORDR view retrieves customer and
product information that the sales department can use to notify customers of
unavailable products.

ADABAS Data in SAS Programs � Selecting and Combining Data Using the SQL Procedure 29

proc sql;
create view sql.badordr as

select cusphon.custnum, cusphon.name,
cusphon.phone, cusordr.stocknum,
outofstk.fibernam as product

from vlib.cusphon, vlib.cusordr,
mydata.outofstk

where cusordr.stocknum=outofstk.fibernum
and cusphon.custnum=cusordr.shipto

order by cusphon.custnum, product;
title "Data Described by SQL.BADORDR";
select * from sql.badordr;

The CREATE VIEW statement incorporates a WHERE clause as part of its SELECT
statement. The last SELECT statement retrieves and displays the PROC SQL view,
SQL.BADORDR. To select all columns from the view, use an asterisk (*) in place of
variable names. The order of the columns displayed matches the order of the columns
as specified in the view descriptor SQL.BADORDR. (Note that an ORDER BY clause
requires an ADABAS descriptor data field.)

The following output shows the data that is described by the SQL.BADORDR view.
Note that the SQL procedure uses the column labels in the output by default.

30 Selecting and Combining Data Using the SQL Procedure � Chapter 3

Output 3.12 Results of Combining Data from Various Sources

Data Described by SQL.BADORDR

CUSTOMER NAME
TELEPHONE STOCKNUM PRODUCT
--
15432147 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS
616/582-3906 4789 dacron

15432147 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS
616/582-3906 4789 dacron

18543489 LONE STAR STATE RESEARCH SUPPLIERS
512/478-0788 8934 gold

18543489 LONE STAR STATE RESEARCH SUPPLIERS
512/478-0788 8934 gold

18543489 LONE STAR STATE RESEARCH SUPPLIERS
512/478-0788 8934 gold

18543489 LONE STAR STATE RESEARCH SUPPLIERS
512/478-0788 8934 gold

24589689 CENTAR ZA TECHNICKU I NAUCNU RESTAURIRANJE UMJETNINA
(012)736-202 3478 olefin

24589689 CENTAR ZA TECHNICKU I NAUCNU RESTAURIRANJE UMJETNINA
(012)736-202 3478 olefin

29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
(0552)715311 3478 olefin

29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
(0552)715311 3478 olefin

29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
(0552)715311 3478 olefin

29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
(0552)715311 3478 olefin

31548901 NATIONAL COUNCIL FOR MATERIALS RESEARCH
406/422-3413 8934 gold

31548901 NATIONAL COUNCIL FOR MATERIALS RESEARCH
406/422-3413 8934 gold

43459747 RESEARCH OUTFITTERS
03/734-5111 8934 gold

43459747 RESEARCH OUTFITTERS
03/734-5111 8934 gold

The view SQL.BADORDR lists entries for all customers who have ordered
out-of-stock products. However, it contains duplicate rows because some companies
have ordered the same product more than once. To make the data more readable for the
sales department, you can create a final SAS data file, MYDATA.BADNEWS, using the
results of the PROC SQL view as input in the SET statement and the special variable
FIRST.PRODUCT. This variable identifies which row is the first in a particular BY
group. You only need a customer’s name once to notify them that a product is out of
stock, regardless of the number of times the customer has placed an order for it.

ADABAS Data in SAS Programs � Selecting and Combining Data Using the SQL Procedure 31

data mydata.badnews;
set sql.badordr;
by custnum product;
if first.product;

run;

proc print;
title "MYDATA.BADNEWS Data File";

quit;

The data file MYDATA.BADNEWS contains an observation for each unique
combination of customer and out-of-stock product. The following output displays this
data file.

Output 3.13 Results of Grouping Data Using First.variable

MYDATA.BADNEWS Data File

OBS CUSTNUM NAME

1 15432147 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS
2 18543489 LONE STAR STATE RESEARCH SUPPLIERS
3 24589689 CENTAR ZA TECHNICKU I NAUCNU RESTAURIRANJE UMJETNINA
4 29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
5 31548901 NATIONAL COUNCIL FOR MATERIALS RESEARCH
6 43459747 RESEARCH OUTFITTERS

OBS PHONE STOCKNUM PRODUCT

1 616/582-3906 4789 dacron
2 512/478-0788 8934 gold
3 (012)736-202 3478 olefin
4 (0552)715311 3478 olefin
5 406/422-3413 8934 gold
6 03/734-5111 8934 gold

For more information about FIRST.variable, see the SAS Language Reference:
Dictionary.

Creating New Variables with the GROUP BY Clause
It is often useful to create new variables with summarizing or variable functions

such as AVG or SUM. Although you cannot use the ACCESS procedure to create new
variables, you can easily use the SQL procedure with data that is described by a view
descriptor to display output that contains new variables.

This example uses the SQL procedure to retrieve and manipulate data accessed by
the view descriptor VLIB.ALLEMP, which accesses data in the NATURAL DDM named
EMPLOYEE. When this query (as a SELECT statement is often called) is submitted, it
calculates and displays the average salary for each department; the AVG function is the
SQL procedure’s equivalent of the SAS MEAN function.

proc sql;
title "Average Salary Per Department";
select distinct dept,

avg(salary) label="Average Salary"
format=dollar12.2

from vlib.allemp

32 Updating a SAS Data File with ADABAS Data � Chapter 3

where dept is not missing
group by dept;

The order of the variables that are displayed matches the order of the variables as
specified in the SELECT list of the query. The following output shows the query’s result.

Output 3.14 Results of Creating New Variables With the GROUP BY Clause

Average Salary Per Department
Average

DEPT Salary

ACC013 $54,591.33
ACC024 $55,370.55
ACC043 $75,000.34
CSR004 $17,000.00
CSR010 $44,324.19
CSR011 $41,966.16
SHP002 $40,111.31
SHP013 $41,068.44
SHP024 $50,000.00

For more information about the SQL procedure, see the SQL section in the Base SAS
Procedures Guide.

Updating a SAS Data File with ADABAS Data

You can update a SAS data file with ADABAS data that is described by a view
descriptor, just as you can update a SAS data file with data from another data file. In
this section, the term transaction data refers to the new data that is to be added to the
original file. You can even do updates when the file to be updated is a Version 6 data
file and the transaction data is from a Version 7 and later source.

Suppose you have a Version 6 data file, LIB6.BIRTHDAY, that contains employee ID
numbers, last names, and birthdays. You want to update this data file with data that is
described by VLIB.EMPS, a view descriptor that is based on the EMPLOYEE DDM. To
perform the update, enter the following SAS statements.

proc sort data=lib6.birthday;
by lastname;

run;

proc print data=lib6.birthday;
title "LIB6.BIRTHDAY Data File";
format birthdat date7.;

run;

proc print data=vlib.emps;
title "Data Described by VLIB.EMPS";

run;

data mydata.newbday;
update lib6.birthday vlib.emps;
by lastname;

run;

ADABAS Data in SAS Programs � Updating a SAS Data File with ADABAS Data 33

proc print;
title ’MYDATA.NEWBDAY Data File’;

run;

In this example, the new, updated SAS data file, MYDATA.NEWBDAY, is a Version 7
or later data file. It is stored in the Version 7 or later SAS data library associated with
the libref MYDATA.

When the UPDATE statement references the view descriptor VLIB.EMPS and uses a
BY statement in the DATA step, the BY statement causes a BY clause to be generated
for the variable LASTNAME. (Note that a BY statement must reference an ADABAS
descriptor data field.) Thus, the BY clause causes the ADABAS data to be presented to
SAS in a sorted order for use in updating the MYDATA.NEWBDAY data file. However,
the data file LIB6.BIRTHDAY had to be sorted before the update, because the UPDATE
statement expects both the original file and the transaction file to be sorted by the BY
variable.

The following three outputs show the results of PRINT procedures on the original
data file, the transaction data, and the updated data file.

Output 3.15 Data in the Data File to Be Updated, LIB6.BIRTHDAY

LIB6.BIRTHDAY Data File

OBS EMPID BIRTHDAT LASTNAME

1 129540 31JUL60 CHOULAI
2 356134 25OCT60 DUNNETT
3 127845 25DEC43 MEDER
4 677890 24APR65 NISHIMATSU-LYNCH
5 459287 05JAN34 RODRIGUES
6 346917 15MAR50 SHIEKELESLAN
7 254896 06APR49 TAYLOR-HUNYADI

Output 3.16 Data That is Described by the View Descriptor VLIB.EMPS

Data Described by VLIB.EMPS

OBS EMPID JOBCODE BIRTHDAT LASTNAME

1 456910 602 24SEP53 ARDIS
2 237642 602 13MAR54 BATTERSBY
3 239185 602 28AUG59 DOS REMEDIOS
4 321783 602 03JUN35 GONZALES
5 120591 602 12FEB46 HAMMERSTEIN
6 135673 602 21MAR61 HEMESLY
7 456921 602 12MAY62 KRAUSE
8 457232 602 15OCT63 LOVELL
9 423286 602 31OCT64 MIFUNE

10 216382 602 24JUL63 PURINTON
11 234967 602 21DEC67 SMITH
12 212916 602 29MAY28 WACHBERGER
13 119012 602 05JAN46 WOLF-PROVENZA

34 Performance Considerations � Chapter 3

Output 3.17 Results of Updating a Data File with ADABAS Data

MYDATA.NEWBDAY Data File

OBS EMPID BIRTHDAT LASTNAME JOBCODE

1 456910 24SEP53 ARDIS 602
2 237642 13MAR54 BATTERSBY 602
3 129540 31JUL60 CHOULAI .
4 239185 28AUG59 DOS REMEDIOS 602
5 356134 25OCT60 DUNNETT .
6 321783 03JUN35 GONZALES 602
7 120591 12FEB46 HAMMERSTEIN 602
8 135673 21MAR61 HEMESLY 602
9 456921 12MAY62 KRAUSE 602
10 457232 15OCT63 LOVELL 602
11 127845 25DEC43 MEDER .
12 423286 31OCT64 MIFUNE 602
13 677890 24APR65 NISHIMATSU-LYNCH .
14 216382 24JUL63 PURINTON 602
15 459287 05JAN34 RODRIGUES .
16 346917 15MAR50 SHIEKELESLAN .
17 234967 21DEC67 SMITH 602
18 254896 06APR49 TAYLOR-HUNYADI .
19 212916 29MAY28 WACHBERGER 602
20 119012 05JAN46 WOLF-PROVENZA 602

For more information about the UPDATE statement, see SAS Language Reference:
Dictionary.

Note: You cannot update ADABAS data directly using the DATA step, but you can
update ADABAS data using the following procedures: APPEND, FSEDIT, FSVIEW, and
SQL. For more information about updating ADABAS data, see Chapter 4, “Browsing
and Updating ADABAS Data,” on page 37. �

Performance Considerations

While you can generally treat view descriptors like other SAS data sets in SAS
programs, here are a few things you should keep in mind:

� It is sometimes better to extract ADABAS data and place it in a SAS data file
rather than to read it directly. Here are some circumstances when you should
probably extract:

� If you plan to use the same ADABAS data in several procedures during the
same SAS session, you might improve performance by extracting the
ADABAS data. Placing this data in a SAS data file requires a certain amount
of disk space to store the data and I/O to write the data. However, SAS data
files are organized to provide optimal performance with PROC and DATA
steps. Programs using SAS data files often use less CPU time than programs
that directly read ADABAS data.

� If you plan to read large amounts of ADABAS data and the data is being
shared by several users, your direct reading of the data could adversely affect
all users’ response time.

� If you are the creator of an ADABAS file and think that directly reading this
data would present a security risk, you might want to extract the data and not
distribute information about either the access descriptor or view descriptor.

ADABAS Data in SAS Programs � Performance Considerations 35

� If you intend to use the data in a particular sorted order several times, it is
usually best to run the SORT procedure on the view descriptor, using the OUT=
option. This is more efficient than requesting the same sort repeatedly (with a BY
clause) on the ADABAS data. Note that you cannot run the SORT procedure on a
view descriptor unless you use the SORT procedure’s OUT= option.

� Sorting data can be resource-intensive, whether it is done with the SORT
procedure, with a BY statement (which generates a BY clause), or with a SORT
clause stored in the view descriptor. You should sort data only when it is needed
for your program.

� If you reference a view descriptor in SAS code and the code includes a BY
statement for a variable or variables (up to three) that corresponds to a descriptor
data field in the ADABAS file, the interface view engine is called, and it will
support the BY clause if possible. Thus, the BY clause sorts the ADABAS data
before it uses the data in your SAS program. If the ADABAS file is very large, this
sorting can affect performance.

If the view descriptor already has a SORT clause and you specify a BY statement
in your SAS code, the BY statement overrides the view descriptor’s SORT clause.

� When writing a SAS program and referencing a view descriptor, it is more efficient
to use a SAS WHERE statement in the program than it is to use a subsetting IF
statement. The SAS program passes the WHERE statement as a WHERE clause
to the interface view engine, which adds it (using the Boolean operator AND) to
any WHERE clause stored in the view descriptor. The view descriptor is then
passed to ADABAS for processing. Applying a WHERE clause to the ADABAS
data might reduce the number of logical records read; therefore, it often improves
performance.

� Refer to “Creating and Using ADABAS View Descriptors Efficiently” on page 94
for more details about creating efficient view descriptors.

36

37

C H A P T E R

4
Browsing and Updating ADABAS
Data

Introduction to Browsing and Updating ADABAS Data 37
Browsing and Updating ADABAS Data with the SAS/FSP Procedures 38

Browsing Data Using the FSBROWSE Procedure 38

Updating Data Using the FSEDIT Procedure 38

Browsing and Updating Data Using the FSVIEW Procedure 38

Browsing Data Using the FSVIEW Procedure 38
Updating Data Using the FSVIEW Procedure 39

Specifying a SAS WHERE Expression While Browsing or Updating Data 39

Adding and Deleting Data with the SAS/FSP Procedures 41

Adding Data 41

Deleting Data 41

Browsing and Updating ADABAS Data with the SQL Procedure 43
Browsing Data with the SELECT Statement 43

Updating Data with the UPDATE Statement 45

Inserting and Deleting Data with the INSERT and DELETE Statements 47

Appending ADABAS Data with the APPEND Procedure 49

Introduction to Browsing and Updating ADABAS Data
The SAS/ACCESS interface to ADABAS enables you to browse and update ADABAS

data directly from a SAS session or program. This section shows you how to use SAS
procedures to browse and update ADABAS data that is described by SAS/ACCESS view
descriptors.

For definitions of the view descriptors used in this section as well as their associated
access descriptors, and the ADABAS files, NATURAL DDMs, and SAS data files used
throughout the document, see Appendix 3, “Example Data,” on page 131.

Before you can browse or update ADABAS data, you must have access to the data
through appropriate security options. ADABAS and NATURAL have several levels of
security options, and you might be allowed to display or browse data but not update
values. Check with your Database Administrator (DBA) or the ADABAS file’s or
NATURAL DDM’s creator to see what security options you have. If you have been
granted the appropriate ADABAS security options, you can use the SAS procedures
described in this section to update ADABAS data with a SAS/ACCESS view descriptor.
For more information about ADABAS and NATURAL security, see Chapter 2,
“ADABAS Essentials,” on page 7, and Appendix 1, “Information for the Database
Administrator,” on page 101.

38 Browsing and Updating ADABAS Data with the SAS/FSP Procedures � Chapter 4

Browsing and Updating ADABAS Data with the SAS/FSP Procedures

If your site has SAS/FSP software as well as SAS/ACCESS software, you can browse
and update ADABAS data from within a SAS program.

You can use three SAS/FSP procedures: FSBROWSE, FSEDIT, and FSVIEW. The
FSBROWSE and FSEDIT procedures show you one ADABAS logical record at a time,
whereas the FSVIEW procedure displays multiple logical records in a tabular format
similar to the PRINT procedure. PROC FSVIEW enables you to both browse and
update ADABAS data, depending on which option you choose.

Browsing Data Using the FSBROWSE Procedure
The FSBROWSE procedure enables you to look at ADABAS data that is described by

a view descriptor but does not enable you to change it. For example, the following SAS
statements enable you to view one record at a time of the view descriptior
VLIB.USACUST:

proc fsbrowse data=vlib.usacust;
run;

The FSBROWSE procedure retrieves one logical record of ADABAS data at a time.
To browse each logical record, issue the FORWARD and BACKWARD commands.

Updating Data Using the FSEDIT Procedure
The FSEDIT procedure enables you to update ADABAS data that is described by a

view descriptor if you have access to the data through the appropriate ADABAS and
NATURAL security options. For example, the following SAS statements enable you to
browse one record of VLIB.USACUST at a time:

proc fsedit data=vlib.usacust;
run;

A window similar to the FSBROWSE window opens to enable you to edit the
ADABAS data one observation at a time.

Note: When using PROC FSEDIT, you can cancel an edit only before you scroll. The
CANCEL command redisplays the observation as it was before you began to edit it and
cancels your editing changes. After you scroll, the changes are saved. �

Browsing and Updating Data Using the FSVIEW Procedure
The FSVIEW procedure enables you to browse or update ADABAS data using a view

descriptor, depending on how you submit the procedure.

Browsing Data Using the FSVIEW Procedure
Browse mode is the default for the FSVIEW procedure. For example, to browse

ADABAS data, submit the PROC FSVIEW statement as follows:

proc fsview data=vlib.usacust;
run;

The statements display the data as shown in the following output.

Browsing and Updating ADABAS Data � Specifying a SAS WHERE Expression While Browsing or Updating Data 39

Output 4.1 Results of Browsing Data Using the FSVIEW Procedure

FSVIEW: VLIB.USACUST (B)
Command ===>

ROW CUSTNUM STATE ZIPCODE COUNTRY

1 12345678 NC 27702 USA
2 14324742 CA 95123 USA
3 14324742 CA 95123 USA
4 14569877 NC 27514 USA
5 14569877 NC 27514 USA
6 14898029 MD 20850 USA
7 14898029 MD 20850 USA
8 14898029 MD 20850 USA
9 15432147 MI 49001 USA

10 18543489 TX 78701 USA
11 18543489 TX 78701 USA
12 18543489 TX 78701 USA
13 19783482 VA 22090 USA
14 19783482 VA 22090 USA
15 19876078 CA 93274 USA
16 19876078 CA 93274 USA

To see the rest of the accessed ADABAS data, you must scroll the window to the
right multiple times. You can do this by entering the RIGHT command on the command
line or by pressing the function key assigned to this command.

Updating Data Using the FSVIEW Procedure
You can use the FSVIEW procedure to update ADABAS data. To edit the ADABAS

data in a listing format, you have to add EDIT or MODIFY to the PROC FSVIEW
statement, as shown in the following statement:

proc fsview data=vlib.usacust edit;
run;

The same window as shown in Output 4.1 appears, except the window title contains
an (E) for edit, not a (B). SAS/FSP Software: Usage and Reference discusses in detail
how to edit data using the FSVIEW procedure.

Note: The CANCEL command in the FSVIEW window does not cancel your
changes, whether you have scrolled or not. �

Specifying a SAS WHERE Expression While Browsing or Updating Data
You can specify a SAS WHERE statement or a SAS WHERE command to retrieve a

subset of ADABAS data while you are using the FSP procedures. The WHERE
statement is submitted when the FSP procedure is invoked and retrieves only the
observations that meet the conditions of the WHERE statement. The other observations
are not available until you exit the procedure. This is called a permanent WHERE
clause. A SAS WHERE command is a WHERE expression that is invoked from the
command line within a FSP procedure. You can clear the command to make all the
observations available so it is known as a temporary WHERE clause.

40 Specifying a SAS WHERE Expression While Browsing or Updating Data � Chapter 4

The following example of a WHERE statement retrieves the customers from
California. These customers are a subset of the customers for the CUSTOMERS DDM.

proc fsview data=vlib.usacust edit;
where state=’CA’;

run;

The following output shows the FSVIEW window after the statements have been
submitted.

Output 4.2 Results of Specifying a WHERE Statement While Updating Data

FSVIEW: VLIB.USACUST (Subset)
Command ===>

ROW CUSTNUM STATE ZIPCODE COUNTRY

2 14324742 CA 95123 USA
3 14324742 CA 95123 USA
15 19876078 CA 93274 USA
16 19876078 CA 93274 USA

Only the logical records with a STATE value of CA are retrieved for editing. Note
that (Subset) appears after VLIB.USACUST in the window title to remind you that the
data retrieved is a subset of the data that is described by the view descriptor. You can
then edit each observation by typing over the information you want to modify. Issue the
END command to end your editing session.

The following output shows the FSVIEW window when the subset of data is
generated by the WHERE command:

where state=’CA’

Output 4.3 Results of Specifying a WHERE Command While Updating Data

FSVIEW VLIB.USACUST WHERE ...
Command ===>
ROW CUSTNUM STATE ZIPCODE COUNTRY

2 14324742 CA 95123 USA
3 14324742 CA 95123 USA
15 19876078 CA 93274 USA
16 19876078 CA 93274 USA

Output 4.2 and Output 4.3 are identical, except (Subset) after the title is replaced
with WHERE in the upper-right corner. You can then update each observation, as
described earlier.

Although these examples have shown a SAS WHERE statement and a SAS WHERE
command with the FSVIEW procedure, you can also retrieve a subset of data using the
FSBROWSE and FSEDIT procedures. For more information about the SAS WHERE
statement, refer to SAS Language Reference: Dictionary. For more information about
using the SAS WHERE command within the SAS/FSP procedures, refer to SAS/FSP
Software: Usage and Reference.

Browsing and Updating ADABAS Data � Adding and Deleting Data with the SAS/FSP Procedures 41

Adding and Deleting Data with the SAS/FSP Procedures
Adding and deleting ADABAS data with the SAS/FSP procedures is different for

view descriptors than for SAS data files.

Adding Data
Adding ADABAS data as a result of any SAS update operation can cause the

interface view engine to decide whether to add a new ADABAS logical record or to
modify an existing one, for example, to add an occurrence to a periodic group.

If there are no periodic group fields accessed by the view descriptor or within the
ADABAS file, doing an insert is straightforward. However, if a periodic group does exist,
then doing an insert is more complicated, because the interface view engine generates
multiple SAS observations from a single ADABAS record that contains a periodic group.

Values in the observation to be added are compared to values in the previous
observation. If the contents of the previous observation do not help determine whether
to add or modify, a new logical record is added. However, it is possible that some of the
new values might already reside in the ADABAS file, which would mean that a new
logical record is not necessary. This occurs if a periodic group is selected by the view
descriptor, and the new data occurs only in variables corresponding to data fields that
are part of that periodic group.

You can help the interface view engine resolve whether to add a new logical record or
modify an existing one by specifying BY keys. For information about and examples of
using BY keys, see “Using a BY Key To Resolve Ambiguous Inserts” on page 119.

Deleting Data
When you delete a logical record, the results depend on whether the observation is

part of a periodic group. If the logical record is not part of a periodic group, deleting an
observation causes a logical record to be deleted from the ADABAS file. However, if the
logical record is part of a periodic group, the results of deleting an observation depend
on the status of the ADBDEL systems option for the interface view engine, which is set
in the ADBEUSE CSECT. For more information, see “System Options for PROC
ACCESS and the Interface View Engine” on page 112.

� If ADBDEL=N (which is the default setting), the selected values for that occurrence
in the periodic group are set to null (missing), but the logical record is not deleted.

� If ADBDEL=P, the entire logical record is deleted.

The following example illustrates using the DELETE command in the FSEDIT
procedure. (Note that the ADBDEL systems option is set to N.)

Suppose you want to edit the ADABAS data described by VLIB.USACUST. You can
use the FSEDIT procedure with a PROC FSEDIT statement. Scroll forward to the
observation to be deleted. In this example, there are three occurrences for the periodic
group SIGNATURE-LIST. The following output shows the third occurrence, which you
want to delete. (Notice that the variable SL_OCCUR displays the value 3, which tells
you that this is the observation for the third occurrence.) Enter the DELETE command
on the command line, as shown in the following output, and press ENTER.

42 Adding and Deleting Data with the SAS/FSP Procedures � Chapter 4

Output 4.4 Results of Deleting an ADABAS Logical Record

FSEDIT VLIB.USACUST
Command ===> delete

CUSTNUM: 18543489

STATE: TX

ZIPCODE: 78701

COUNTRY: USA

NAME: LONE STAR STATE RESEARCH SUPPLIERS

FIRSTORD: 10SEP79

SL_OCCUR: 3

LIMIT: 100000.00

SIGNATUR: EVAN MASSEY

BRANCH_2: DALLAS

The DELETE command processes the deletion and displays a message to that effect,
as shown in the following output. There is no indication of what actions the interface
view engine actually took.

Output 4.5 Deletion Message Displayed

FSEDIT VLIB.USACUST DELETED
Command ===>
NOTE: Observation has been deleted.

CUSTNUM: ________
STATE: __

ZIPCODE: ______

COUNTRY: ____________________

NAME: _____________________________________

FIRSTORD: _______

SL_OCCUR: _________

LIMIT: __________________

SIGNATUR: ______________________________

BRANCH_2: _________________________

The entire observation seems to have been removed from the ADABAS file, but this
is not the case. For the third occurrence, the interface view engine sets the values for
data fields LIMIT and SIGNATUR to missing; the other data remains the same.
Regardless of the actions though, the observation you deleted is no longer available for
processing. For more information about using the SAS/FSP procedures, see SAS/FSP
Software: Usage and Reference.

Browsing and Updating ADABAS Data � Browsing Data with the SELECT Statement 43

Browsing and Updating ADABAS Data with the SQL Procedure
The SAS SQL procedure enables you to retrieve and update ADABAS data. You can

retrieve and browse ADABAS data by specifying a view descriptor in a PROC SQL
SELECT statement.

To update the data, you can specify view descriptors in the PROC SQL DELETE,
INSERT, and UPDATE statements. You must have access to the data through
appropriate ADABAS and NATURAL security options before you can edit ADABAS
data. Here is a summary of the pertinant PROC SQL statements:

DELETE deletes logical records from an ADABAS file.

INSERT inserts logical records in an ADABAS file.

SELECT retrieves and displays data from an ADABAS file. A SELECT
statement is usually referred to as a query because it queries the
ADABAS file for information.

UPDATE updates values in an ADABAS file.

When using the SQL procedure, note that the data is displayed in the SAS OUTPUT
window. The procedure displays output data automatically without using the PRINT
procedure and executes without using the RUN statement when an SQL procedure
statement is executed.

Browsing Data with the SELECT Statement
You can use the SELECT statement to browse ADABAS data that is described by a

view descriptor. The query in the following example retrieves and displays specified
data fields and logical records in the CUSTOMERS DDM that are described by the
VLIB.USACUST view descriptor. The LINESIZE= system option is used to reset the
default output width to 120 columns.

Note: The following SQL procedure examples assume that the CUSTOMERS DDM
has not been updated by the earlier SAS/FSP examples. �

options linesize=120;

proc sql;
title ’ADABAS Data Output by a

SELECT Statement’;
select custnum, state, name, limit,signatur

from vlib.usacust;

The following output displays the query’s results. Notice in the output that the SQL
procedure displays the ADABAS data field names, not the corresponding SAS variable
names.

44 Browsing Data with the SELECT Statement � Chapter 4

Output 4.6 Results of Browsing Data with a PROC SQL Query

ADABAS Data Output by a SELECT Statement

CUSTOMER STATE NAME LIMIT

SIGNATURE

12345678 NC 0.00

14324742 CA SANTA CLARA VALLEY TECHNOLOGY SPECIALISTS 5000.00

BOB HENSON

14324742 CA SANTA CLARA VALLEY TECHNOLOGY SPECIALISTS 25000.00

KAREN DRESSER

14569877 NC PRECISION PRODUCTS 5000.00

JEAN CRANDALL

14569877 NC PRECISION PRODUCTS 100000.00

STEVE BLUNTSEN

14898029 MD UNIVERSITY BIOMEDICAL MATERIALS 10000.00

MASON FOXWORTH

14898029 MD UNIVERSITY BIOMEDICAL MATERIALS 50000.00

DANIEL STEVENS

14898029 MD UNIVERSITY BIOMEDICAL MATERIALS 100000.00

ELIZABETH PATTON

15432147 MI GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS 10000.00

JACK TREVANE

18543489 TX LONE STAR STATE RESEARCH SUPPLIERS 10000.00

NANCY WALSH

18543489 TX LONE STAR STATE RESEARCH SUPPLIERS 50000.00

TED WHISTLER

18543489 TX LONE STAR STATE RESEARCH SUPPLIERS 100000.00

EVAN MASSEY

19783482 VA TWENTY-FIRST CENTURY MATERIALS 5000.00

PETER THOMAS

19783482 VA TWENTY-FIRST CENTURY MATERIALS 10000.00

LOUIS PICKERING

19876078 CA SAN JOAQUIN SCIENTIFIC AND INDUSTRIAL SUPPLY, INC. 7500.00

EDWARD LOWE

19876078 CA SAN JOAQUIN SCIENTIFIC AND INDUSTRIAL SUPPLY, INC. 25000.00

E.F. JENSEN

You can specify a WHERE clause as part of the SELECT statement to retrieve a
subset of the logical records for display. The following example displays the companies
that are located in North Carolina:

title ’ADABAS Data Output by a WHERE Clause’;
select custnum, state, name, limit, signatur

from vlib.usacust
where state=’NC’;

Notice that the PROC SQL statement is not repeated in this query. With the SQL
procedure, you do not need to repeat the PROC SQL statement unless you use another

Browsing and Updating ADABAS Data � Updating Data with the UPDATE Statement 45

SAS procedure, a DATA step, or a QUIT statement between PROC SQL statements.
The following output displays the companies from North Carolina described by
VLIB.USACUST.

Output 4.7 Results of Browsing Data Subset by a WHERE Clause

ADABAS Data Output by a WHERE Clause

CUSTOMER STATE NAME LIMIT

SIGNATURE

12345678 NC 0.00

14569877 NC PRECISION PRODUCTS 5000.00

JEAN CRANDALL

14569877 NC PRECISION PRODUCTS 100000.00

STEVE BLUNTSEN

Updating Data with the UPDATE Statement
You can use the UPDATE statement to update ADABAS data. Remember that when

you reference a view descriptor in a PROC SQL statement, you are not updating the
view descriptor, but rather the ADABAS data described by the view descriptor.

The following UPDATE statements update the values described by the logical record
that meets the WHERE clause criteria. The SELECT statement then displays the
view’s output as shown in Output 4.8 . The ORDER BY clause in the SELECT
statement causes the data to be presented in ascending order by the CUSTOMER data
field. (Because you are referencing a view descriptor, you use the SAS variable names
for data fields in the UPDATE statement; however, the SQL procedure displays the
ADABAS data field names.)

update vlib.usacust
set zipcode=27702
where custnum=’12345678’;

update vlib.usacust
set name=’DURHAM SCIENTIFIC SUPPLY COMPANY’
where custnum=’12345678’;

update vlib.usacust
set firstord=’02JAN88’d
where custnum=’12345678’;

update vlib.usacust
set limit=5000.00
where custnum=’12345678’;

update vlib.usacust
set signatur=’MARC PLOUGHMAN’
where custnum=’12345678’;

update vlib.usacust
set branch_2=’DURHAM’
where custnum=’12345678’;

title ’Updated ADABAS Data in CUSTOMERS’;

46 Updating Data with the UPDATE Statement � Chapter 4

select custnum, state, name, limit, signatur
from vlib.usacust;

Output 4.8 Results of Updating Data with the UPDATE Statement

Updated ADABAS Data in CUSTOMERS

CUSTOMER STATE NAME LIMIT

SIGNATURE

12345678 NC DURHAM SCIENTIFIC SUPPLY COMPANY 5000.00

MARC PLOUGHMAN

14324742 CA SANTA CLARA VALLEY TECHNOLOGY SPECIALISTS 5000.00

BOB HENSON

14324742 CA SANTA CLARA VALLEY TECHNOLOGY SPECIALISTS 25000.00

KAREN DRESSER

14569877 0 NC PRECISION PRODUCTS 5000.00

JEAN CRANDALL

14569877 NC PRECISION PRODUCTS 100000.00

STEVE BLUNTSEN

14898029 MD UNIVERSITY BIOMEDICAL MATERIALS 10000.00

MASON FOXWORTH

14898029 MD UNIVERSITY BIOMEDICAL MATERIALS 50000.00

DANIEL STEVENS

14898029 MD UNIVERSITY BIOMEDICAL MATERIALS 100000.00

ELIZABETH PATTON

15432147 MI GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS 10000.00

JACK TREVANE

18543489 TX LONE STAR STATE RESEARCH SUPPLIERS 10000.00

NANCY WALSH

18543489 TX LONE STAR STATE RESEARCH SUPPLIERS 50000.00

TED WHISTLER

18543489 TX LONE STAR STATE RESEARCH SUPPLIERS 100000.00

EVAN MASSEY

19783482 VA TWENTY-FIRST CENTURY MATERIALS 5000.00

PETER THOMAS

19783482 VA TWENTY-FIRST CENTURY MATERIALS 10000.00

LOUIS PICKERING

19876078 CA SAN JOAQUIN SCIENTIFIC AND INDUSTRIAL SUPPLY, INC. 7500.00

EDWARD LOWE

19876078 CA SAN JOAQUIN SCIENTIFIC AND INDUSTRIAL SUPPLY, INC. 25000.00

E.F. JENSEN

Browsing and Updating ADABAS Data � Inserting and Deleting Data with the INSERT and DELETE Statements 47

Inserting and Deleting Data with the INSERT and DELETE Statements
You can use the INSERT statement to add logical records to an ADABAS file or the

DELETE statement to remove logical records. In the following example, the logical
record containing the CUSTOMER value 15432147 is deleted by using the
CUSTOMERS DDM. The SELECT statement then displays the VLIB.USACUST data
in the following output, ordering them again by the CUSTOMER data field.

delete from vlib.usacust
where custnum=’15432147’;
title ’Logical Record Deleted from

CUSTOMERS’;
select custnum, state, name, limit, signatur

from vlib.usacust;

48 Inserting and Deleting Data with the INSERT and DELETE Statements � Chapter 4

Output 4.9 Results of Deleting Data with the DELETE Statement

Updated ADABAS Data in CUSTOMERS

CUSTOMER STATE NAME LIMIT

SIGNATURE

12345678 NC DURHAM SCIENTIFIC SUPPLY COMPANY 5000.00

MARC PLOUGHMAN

14324742 CA SANTA CLARA VALLEY TECHNOLOGY SPECIALISTS 5000.00

BOB HENSON

14324742 CA SANTA CLARA VALLEY TECHNOLOGY SPECIALISTS 25000.00

KAREN DRESSER

14569877 NC PRECISION PRODUCTS 5000.00

JEAN CRANDALL

14569877 NC PRECISION PRODUCTS 100000.00

STEVE BLUNTSEN

14898029 MD UNIVERSITY BIOMEDICAL MATERIALS 10000.00

MASON FOXWORTH

14898029 MD UNIVERSITY BIOMEDICAL MATERIALS 50000.00

DANIEL STEVENS

14898029 MD UNIVERSITY BIOMEDICAL MATERIALS 100000.00

ELIZABETH PATTON

18543489 TX LONE STAR STATE RESEARCH SUPPLIERS 10000.00

NANCY WALSH

18543489 TX LONE STAR STATE RESEARCH SUPPLIERS 50000.00

TED WHISTLER

18543489 TX LONE STAR STATE RESEARCH SUPPLIERS 100000.00

EVAN MASSEY

19783482 VA TWENTY-FIRST CENTURY MATERIALS 5000.00

PETER THOMAS

19783482 VA TWENTY-FIRST CENTURY MATERIALS 10000.00

LOUIS PICKERING

19876078 CA SAN JOAQUIN SCIENTIFIC AND INDUSTRIAL SUPPLY, INC. 7500.00

EDWARD LOWE

19876078 CA SAN JOAQUIN SCIENTIFIC AND INDUSTRIAL SUPPLY, INC. 25000.00

E.F. JENSEN

CAUTION:
Always use the WHERE clause in a DELETE statement. If you omit the WHERE clause
from a DELETE statement, you delete all the data in the ADABAS file that is
accessed by the view descriptor. �

For more information about SAS SQL procedure, see the SQL section in the Base
SAS Procedures Guide.

Browsing and Updating ADABAS Data � Appending ADABAS Data with the APPEND Procedure 49

Appending ADABAS Data with the APPEND Procedure
In earlier releases of SAS, the APPEND procedure operated only on SAS data files.

You can append data that is described by SAS/ACCESS view descriptors and PROC
SQL views to SAS data files and vice versa. You can also append data that is described
by view descriptors to each other.

In the following example, two personnel managers have kept separate employee
records. One manager has kept records in a NATURAL DDM named EMPLOYEE,
which is described by the view descriptor VLIB.ADAEMPS. The other manager has
kept records in a SAS data file that is named MYDATA.SASEMPS. Due to a corporate
reorganization, the two sources of data must be combined so that all employee data is
stored in the EMPLOYEE DDM. The APPEND procedure can do this.

The data that is described by the view descriptor VLIB.ADAEMPS and the data that
is in the SAS data file MYDATA.SASEMPS is printed with the following statements
and displayed in the following two outputs:

options linesize=80;

proc print data=vlib.adaemps;
title ’Data Described by VLIB.ADAEMPS’;

run;

proc print data=mydata.sasemps;
format birthdat date7.;
title ’Data in MYDATA.SASEMPS Data File’;

run;

Output 4.10 Data That Is Described by VLIB.ADAEMPS

Data Described by VLIB.ADAEMPS

OBS EMPID BIRTHDAT LASTNAME FIRSTNAM MIDDLENA

1 119012 05JAN46 WOLF-PROVENZA G. ANDREA
2 120591 12FEB46 HAMMERSTEIN S. RACHAEL
3 123456 . VARGAS PAUL JESUS
4 127845 25DEC43 MEDER VLADIMIR JORAN
5 129540 31JUL60 CHOULAI CLARA JANE
6 135673 21MAR61 HEMESLY STEPHANIE J.
7 212916 29MAY28 WACHBERGER MARIE-LOUISE TERESA
8 216382 24JUL63 PURINTON PRUDENCE VALENTINE
9 234967 21DEC67 SMITH GILBERT IRVINE
10 237642 13MAR54 BATTERSBY R. STEPHEN
11 239185 28AUG59 DOS REMEDIOS LEONARD WESLEY
12 254896 06APR49 TAYLOR-HUNYADI ITO MISHIMA
13 321783 03JUN35 GONZALES GUILLERMO RICARDO
14 328140 02JUN51 MEDINA-SIDONIA MARGARET ROSE
15 346917 15MAR50 SHIEKELESLAM SHALA Y.
16 356134 25OCT60 DUNNETT CHRISTINE MARIE
17 423286 31OCT64 MIFUNE YUKIO TOSHIRO
18 456910 24SEP53 ARDIS RICHARD BINGHAM
19 456921 12MAY62 KRAUSE KARL-HEINZ G.
20 457232 15OCT63 LOVELL WILLIAM SINCLAIR
21 459287 05JAN34 RODRIGUES JUAN M.
22 677890 24APR65 NISHIMATSU-LYNCH CAROL ANNE

50 Appending ADABAS Data with the APPEND Procedure � Chapter 4

Output 4.11 Data in MYDATA. SASEMPS

Data in MYDATA.SASEMPS Data File

OBS EMPID BIRTHDAT LASTNAME FIRSTNAM MIDDLENA

1 245962 30AUG64 BEDORTHA KATHY MARTHA
2 765432 01MAR59 POWELL FRANK X.
3 219223 13JUN47 HANSINGER BENJAMIN HAROLD
4 326745 21FEB52 RAWN BEATRICE MAY

The following statements use the APPEND procedure to combine the data from these
two sources:

proc append base=vlib.adaemps
data=mydata.sasemps;

run;

proc print data=vlib.adaemps;
title ’Appended Data’;

run;

The following output displays the appended data that is described by the view
descriptor VLIB.ADAEMPS. Notice that the data in MYDATA.SASEMPS follows the
data that is described by VLIB.ADAEMPS.

Output 4.12 Results of Appending Data with the APPEND Procedure

Appended Data

OBS EMPID BIRTHDAT LASTNAME FIRSTNAM MIDDLENA

1 119012 05JAN46 WOLF-PROVENZA G. ANDREA
2 120591 12FEB46 HAMMERSTEIN S. RACHAEL
3 123456 . VARGAS PAUL JESUS
4 127845 25DEC43 MEDER VLADIMIR JORAN
5 129540 31JUL60 CHOULAI CLARA JANE
6 135673 21MAR61 HEMESLY STEPHANIE J.
7 212916 29MAY28 WACHBERGER MARIE-LOUISE TERESA
8 216382 24JUL63 PURINTON PRUDENCE VALENTINE
9 234967 21DEC67 SMITH GILBERT IRVINE

10 237642 13MAR54 BATTERSBY R. STEPHEN
11 239185 28AUG59 DOS REMEDIOS LEONARD WESLEY
12 254896 06APR49 TAYLOR-HUNYADI ITO MISHIMA
13 321783 03JUN35 GONZALES GUILLERMO RICARDO
14 328140 02JUN51 MEDINA-SIDONIA MARGARET ROSE
15 346917 15MAR50 SHIEKELESLAM SHALA Y.
16 356134 25OCT60 DUNNETT CHRISTINE MARIE
17 423286 31OCT64 MIFUNE YUKIO TOSHIRO
18 456910 24SEP53 ARDIS RICHARD BINGHAM
19 456921 12MAY62 KRAUSE KARL-HEINZ G.
20 457232 15OCT63 LOVELL WILLIAM SINCLAIR
21 459287 05JAN34 RODRIGUES JUAN M.
22 677890 24APR65 NISHIMATSU-LYNCH CAROL ANNE
23 245962 30AUG64 BEDORTHA KATHY MARTHA
24 765432 01MAR59 POWELL FRANK X.
25 219223 13JUN47 HANSINGER BENJAMIN HAROLD
26 326745 21FEB52 RAWN BEATRICE MAY

Browsing and Updating ADABAS Data � Appending ADABAS Data with the APPEND Procedure 51

The APPEND procedure also accepts a WHERE= data set option or a SAS WHERE
statement to retrieve a subset of the data. In the following example, a subset of the
observations from MYDATA.SASEMPS is added to VLIB. ADAEMPS.

proc append base=vlib.adaemps
data=mydata.sasemps

(where=(birthdat>=’01JAN60’d));
run;
proc print data=vlib.adaemps;

title ’Appended Data with a WHERE= Data Set
Option’;

run;

The results are displayed in the following output.

Output 4.13 Results of Appending Data with a WHERE= Data Set Option

Appended Data with a WHERE= Data Set Option

OBS EMPID BIRTHDAT LASTNAME FIRSTNAM MIDDLENA

1 119012 05JAN46 WOLF-PROVENZA G. ANDREA
2 120591 12FEB46 HAMMERSTEIN S. RACHAEL
3 123456 . VARGAS PAUL JESUS
4 127845 25DEC43 MEDER VLADIMIR JORAN
5 129540 31JUL60 CHOULAI CLARA JANE
6 135673 21MAR61 HEMESLY STEPHANIE J.
7 212916 29MAY28 WACHBERGER MARIE-LOUISE TERESA
8 216382 24JUL63 PURINTON PRUDENCE VALENTINE
9 234967 21DEC67 SMITH GILBERT IRVINE

10 237642 13MAR54 BATTERSBY R. STEPHEN
11 239185 28AUG59 DOS REMEDIOS LEONARD WESLEY
12 254896 06APR49 TAYLOR-HUNYADI ITO MISHIMA
13 321783 03JUN35 GONZALES GUILLERMO RICARDO
14 328140 02JUN51 MEDINA-SIDONIA MARGARET ROSE
15 346917 15MAR50 SHIEKELESLAM SHALA Y.
16 356134 25OCT60 DUNNETT CHRISTINE MARIE
17 423286 31OCT64 MIFUNE YUKIO TOSHIRO
18 456910 24SEP53 ARDIS RICHARD BINGHAM
19 456921 12MAY62 KRAUSE KARL-HEINZ G.
20 457232 15OCT63 LOVELL WILLIAM SINCLAIR
21 459287 05JAN34 RODRIGUES JUAN M.
22 677890 24APR65 NISHIMATSU-LYNCH CAROL ANNE
23 245962 30AUG64 BEDORTHA KATHY MARTHA

For more information about the APPEND procedure, see the Base SAS Procedures
Guide.

52

53

P A R T2

SAS/ACCESS Interface to ADABAS: Reference

Chapter 5.ACCESS Procedure Reference 55

54

55

C H A P T E R

5
ACCESS Procedure Reference

Introduction to ACCESS Procedure Reference 55
Case Sensitivity in the ACCESS Procedure 56

ACCESS Procedure Syntax for ADABAS 56

Description 57

PROC ACCESS Statement Options 58

SAS Passwords for SAS/ACCESS Descriptors 58
Assigning Passwords 59

Assigning Passwords with the DATASETS Procedure 59

Invoking the ACCESS Procedure 60

ACCESS PROCEDURE Statements for ADABAS 61

WHERE Clause in an ADABAS View Descriptor 88

View WHERE Clause Syntax 88
View WHERE Clause Examples 89

Specifying Conditions with the SPANS Operator 90

Specifying Expressions 90

Specifying Values in Character Fields 90

Specifying Numeric Format Values 90
Specifying Dates 91

Specifying Values in Superdescriptor Fields 91

Specifying Values in Subdescriptor Fields 92

Specifying Values in Multiple-Value Fields 93

Specifying Values in Periodic Group Fields 93
SORT Clause in a View Descriptor 93

View SORT Clause Syntax 93

SORT Clause Examples 94

Creating and Using ADABAS View Descriptors Efficiently 94

ACCESS Procedure Formats and Informats for ADABAS 95

Effects of the SAS/ACCESS Interface on ADABAS Data 97

Introduction to ACCESS Procedure Reference

The ACCESS procedure enables you to create and edit descriptor files that are used
by the SAS/ACCESS interface to ADABAS. This section provides reference information
for the ACCESS procedure statements, including procedure syntax and statement
options.

Additionally, the following sections provide information to help you optimize the use
of the interface:

� “Creating and Using ADABAS View Descriptors Efficiently” on page 94 presents
efficiency considerations for using the SAS/ACCESS interface to ADABAS.

56 Case Sensitivity in the ACCESS Procedure � Chapter 5

� “ACCESS Procedure Formats and Informats for ADABAS” on page 95 summarizes
how the SAS/ACCESS interface converts each type of ADABAS data into its
equivalent SAS variable format.

� “Effects of the SAS/ACCESS Interface on ADABAS Data” on page 97 explains how
the SAS/ACCESS interface handles specific ADABAS data fields.

If you need help with SAS data sets and data libraries, their naming conventions, or
any terms used in regard to the ACCESS procedure, refer to the SAS Language
Reference: Dictionary and the SAS Companion for z/OS.

Case Sensitivity in the ACCESS Procedure
SAS names are not case sensitive; they can be entered in either uppercase or

lowercase. The ACCESS procedure converts DBMS column names to uppercase
including names enclosed in quotation marks. Any DBMS names that contain special or
national characters must be enclosed in quotation marks.

ACCESS Procedure Syntax for ADABAS

PROC ACCESS <options>;

Creating and Updating Statements
CREATE libref.member-name.ACCESS | VIEW;
UPDATE libref.member-name.ACCESS|VIEW <password-level=SAS-password>;

Database-Description Statements
DDM = data-definition-module-name;
NSS (LIBRARY | LIB= library-identifier

USER= user-identifier
PASSWORD | PW= Natural-Security-password);

ADBFILE (NUMBER | NUM= Adabas-file-number
PASSWORD | PW= Adabas-password
CIPHER | CC= Adabas-cipher-code
DBID= Adabas-database-identifier);

SYSFILE (NUMBER | NUM= Adabas-system-file-number
PASSWORD | PW= Adabas-password
CIPHER | CC= Adabas-cipher-code
DBID= Adabas-database-identifier);

SECFILE (NUMBER | NUM= Natural-Security-system-file-number
PASSWORD | PW= Adabas-password
CIPHER | CC= Adabas-cipher-code
DBID= Adabas-database-identifier);

Editing Statements
ASSIGN <=> YES | NO | Y | N;
CONTENT column-identifier-1 <=> SAS-date-format | length | E

ACCESS Procedure Reference � Description 57

<… column-identifier-n <=> SAS-date-format | length | E >;
DROP column-identifier-1 <… column-identifier-n>;
EXTEND <ALL | VIEW | column-identifier-1 <… column-identifier-n>>;
FORMAT column-identifier-1 <=> SAS-format-name

<…column-identifier-n <=> SAS-format-name>;
INFORMAT column-identifier-1 <=> SAS-format-name

<… column-identifier-n <=> SAS-format-name>;
KEY<=> column-identifier-1 <…column-identifier-n>;
LIST <ALL | VIEW | column-identifier-1 <…column-identifier-n>>;
LISTINFO <ALL | VIEW | column-identifier-1 <…column-identifier-n>>;
LISTOCC column-identifier-1 <… column-identifier-n>;
MVF column-identifier

CONTENT occurrence-1 <=> SAS-date-format | length | E
<… occurrence-n <=> SAS-date-format| length| E >;
|
DROP occurrence-1 <<TO>… occurrence-n>;

|
FORMAT occurrence-1 <=> SAS-format-name

<… occurrence-n <=> SAS-format-name>;
|
INFORMAT occurrence-1 <=> SAS-format-name

<… occurrence-n <=> SAS-format-name>;
|
OCCURS <=> number-of-occurrences;
|
RENAME occurrence-1 <=> SAS-variable-name

<…occurrence-n <=> SAS-variable-name>;
|
RESET occurrence-1 <<TO>… occurrence-n>;

|
SELECT occurrence-1 <<TO>… occurrence-n>;

RENAME column-identifier-1 <=> SAS-variable-name
<… column-identifier-n <=> SAS-variable-name>;

RESET ALL | column-identifier-1 <… column-identifier-n>;
SECURITY <=> YES | NO | Y | N;
SELECT ALL | column-identifier-1 <… column-identifier-n>;
SUBSET selection-criteria;
QUIT;

RUN;

Description
You use the ACCESS procedure to create and edit access descriptors and view

descriptors, and to create SAS data files. Descriptor files describe DBMS data so that
you can read, update, or extract the DBMS data directly from within a SAS session or
in a SAS program.

The ACCESS procedure runs in interactive line and batch modes. The following
sections provide complete information about PROC ACCESS options and statements.

58 PROC ACCESS Statement Options � Chapter 5

PROC ACCESS Statement Options

PROC ACCESS options;

Depending on which options you use, the PROC ACCESS statement performs several
tasks.

You use the PROC ACCESS statement with database-description statements and
certain procedure statements to create descriptors or SAS data files from DBMS data.
See “Invoking the ACCESS Procedure” on page 60 for information about which
procedure statements to use for each task.

ACCDESC=libref.access-descriptor
specifies an access descriptor.

ACCDESC= is used with the DBMS= option to create a view descriptor that is
based on the specified access descriptor. You specify the view descriptor’s name in
the CREATE statement. You can also use a data set option on the ACCDESC=
option to specify any passwords that have been assigned to the access descriptor.

The ACCDESC= option has two aliases: AD= and ACCESS=.

DBMS=ADABAS
specifies which database management system you want to use. DBMS= can be
used with the ACCDESC= option to create a view descriptor, which is then named
in the CREATE statement.

OUT=<libref.>member-name
specifies the SAS data file to which DBMS data is written. OUT= is used only
with the VIEWDESC= option.

VIEWDESC=<libref.>view-descriptor
specifies a view-descriptor that accesses the ADABAS data. VIEWDESC= is used
only with the OUT= option. For example:

proc access dbms=adabas viewdesc=vlib.invq4
out=dlib.invq4;

run;

The VIEWDESC= option has two aliases: VD= and VIEW=.

CAUTION:
Altering a DBMS table can invalidate descriptors. Altering the format of a DBMS table
that has descriptor files defined on it might cause these descriptors to be out-of-date
or no longer valid. For example, if you add a column to a table and an existing access
descriptor is defined on that table, the access descriptor and any view descriptors
that are based on it do not show the new column. You must re-create the descriptors
to be able to show and select the new column. �

SAS Passwords for SAS/ACCESS Descriptors
SAS enables you to control access to SAS data sets and access descriptors by

associating one or more SAS passwords with them. You must first create the descriptor
files before assigning SAS passwords to them.

The following table summarizes the levels of protection that SAS passwords have and
their effects on access descriptors and view descriptors:

ACCESS Procedure Reference � Assigning Passwords 59

Table 5.1 Password and Descriptor Interaction

READ= WRITE= ALTER=

access descriptor no effect on descriptor no effect on descriptor protects descriptor
from being read or
edited

view descriptor protects DBMS data
from being read or
edited

protects DBMS data
from being edited

protects descriptor
from being read or
edited

When you create view descriptors, you can use a data set option after the
ACCDESC= option to specify the access descriptor’s password (if one exists). In this
case, you are not assigning a password to the view descriptor that is being created.
Rather, using the password grants you permission to use the access descriptor to create
the view descriptor. For example:

proc access dbms=ababas accdesc=adlib.customer
(alter=rouge);

create vlib.customer.view;
select all;

run;

By specifying the ALTER-level password, you can read the ADLIB.CUSTOMER
access descriptor and therefore create the VLIB.CUSTOMER view descriptor.

For detailed information about the levels of protection and the types of passwords
you can use, refer to the SAS Language Reference: Dictionary. The following section
describes how you assign SAS passwords to descriptors.

Assigning Passwords
To assign, change, or clear a password for an access descriptor, a view descriptor, or

another SAS file, use the DATASETS procedure.

Assigning Passwords with the DATASETS Procedure
To assign, change, or delete a SAS password, use the DATASETS procedure’s

MODIFY statement in the PROGRAM EDITOR window. The following is the basic
syntax for using PROC DATASETS to assign a password to an access descriptor, a view
descriptor, or a SAS data file:

PROC DATASETS LIBRARY=libref MEMTYPE=member-type;
MODIFY member-name (password-level =
password-modification);

RUN;

The password-level argument can have one or more of the following values: READ=,
WRITE=, ALTER=, or PW=. PW= assigns read, write, and alter privileges to a
descriptor or data file. The password-modification argument enables you to assign a
new password or to change or delete an existing password.

60 Invoking the ACCESS Procedure � Chapter 5

For example, this PROC DATASETS statement assigns the password MONEY with
the ALTER level of protection to the access descriptor ADLIB.SALARIES.

proc datasets library=adlib memtype=access;
modify salaries (alter=money);

run;

In this case, users are prompted for the password whenever they try to browse or
edit the access ADLIB.SALARIES or to create view descriptors that are based on
ADLIB.SALARIES.

You can assign multiple levels of protection to a descriptor or SAS data file. However,
for more than one level of protection (for example, both READ and ALTER), be sure to
use a different password for each level. If you use the same password for each level, a
user to whom you grant READ privileges only (in order to read the DBMS data) would
also have privileges to alter your descriptor (which you do not want to allow).

In the next example, the PROC DATASETS statement assigns the passwords MYPW
and MYDEPT with READ and ALTER levels of protection to the view descriptor
VLIB.JOBC204:

proc datasets library=vlib memtype=view;
modify jobc204 (read=mypw alter=mydept);

run;

In this case, users are prompted for the SAS password when they try to read the
DBMS data, or try to browse or edit ADLIB.SALERIESVLIB.JOBC204 itself. You need
both levels to protect the data and descriptor from being read. However, a user could
still update the data accessed by VLIB.JOBC204, for example, by using a PROC SQL
UPDATE. Assign a WRITE level of protection to prevent data updates.

To delete a password on an access descriptor or any SAS data set, put a slash after
the password:

proc datasets library=vlib memtype=view;
modify jobc204 (read=mypw/ alter=mydept/);

run;

Refer to the SAS Language Reference: Dictionary for more examples of assigning,
changing, deleting, and using SAS passwords.

Invoking the ACCESS Procedure

To invoke the ACCESS procedure you use the options described in “PROC ACCESS
Statement Options” on page 58 and certain procedure statements. The options and
statements that you choose are determined by your task.

� To create an access descriptor, you use the following syntax:

PROC ACCESS DBMS=ADABAS;

CREATE libref.member-name.ACCESS;
required database-description statements;
optional editing statements;

RUN;

� To create an access descriptor and a view descriptor in the same procedure, you
use the following syntax:

PROC ACCESS DBMS=ADABAS;

ACCESS Procedure Reference � ADBFILE Statement 61

CREATE libref.member-name.ACCESS;
required database-description statements;
optional editing statements;

CREATE libref.member-name.VIEW;
SELECT item-list;
optional editing statements;

RUN;

� To create a view descriptor from an existing access descriptor, you use the
following syntax:

PROC ACCESS DBMS=ADABAS ACCDESC=libref.access-descriptor;

CREATE libref.member-name.VIEW;
SELECT item-list;
optional editing statements;

RUN;

� To update an access descriptor, you use the following syntax:

PROC ACCESS DBMS=ADABAS;

UPDATE libref.member-name.ACCESS;
procedure statements;

RUN;

� To update a view descriptor, you use the following syntax:

PROC ACCESS DBMS=ADABAS;

UPDATE libref.member-name.VIEW;
procedure statements;

RUN;

ACCESS PROCEDURE Statements for ADABAS

ADBFILE Statement

Specifies the file number of the ADABAS file to be accessed.

Optional statement

Applies to: access descriptor or view descriptor

Interacts with: DDM, SECURITY

62 ASSIGN Statement � Chapter 5

Syntax
ADBFILE (NUMBER | NUM = Adabas-file-number

PASSWORD | PW = Adabas-password
CIPHER|CC = Adabas-cipher-code
DBID = Adabas-database-identifier);

Details
The ADBFILE statement enables you to specify an ADABAS file number and optional
password, cipher code, and database identifier for the ADABAS file to be used when
reading the access descriptor. If you specified a NATURAL DDM using the DDM=
statement in an access descriptor, then the file number is supplied by the DDM and the
ADBFILE statement is not needed.

If you specified SECURITY=YES in the access descriptor, you cannot change the
values for the password and cipher code in the view descriptor. However, if no values
were entered in the access descriptor, you can enter them in the view descriptor, even if
the SECURITY=YES statement has been issued.

Adabas-file number
is the ADABAS file number of the file to be accessed. The ADABAS file number is
a number from 1 to the lower of 5,000 or the Association block size minus one. It is
assigned when the ADABAS files are created with the ADABAS ADACMP utility.

Adabas-password
is an ADABAS password, which provides security protection at the file or
data-field level, or on the basis of a value at the logical-record level. The value is
not displayed as you enter it, and it is written to the access descriptor in encrypted
form.

Adabas-cipher code
is an ADABAS cipher code, which is a numeric code for ciphering and deciphering
data into and from an ADABAS file. The value is not displayed as you enter it,
and it is written to the access descriptor in encrypted form.

Adabas-database identifier
is the ADABAS database identifier (number) to be accessed. The database
identifier is a numerical value from 1 to 65,535 that is assigned to each ADABAS
database.

ASSIGN Statement

Indicates whether SAS variable names and formats are automatically generated.

Optional statement

Applies to: access descriptor

Interacts with: CONTENT, FORMAT, INFORMAT, KEY, MVF, RENAME, RESET

Default: NO

Syntax
ASSIGN<=>YES | NO | Y | N;

ACCESS Procedure Reference � CONTENT Statement 63

Details
The ASSIGN statement indicates whether SAS variable names are automatically
generated and whether users can change SAS variable names and other column
information the view descriptors created from this access descriptor.

An editing statement, such as ASSIGN, must be specified after the CREATE and
database-description statements when you create an access descriptor. See “CREATE
Statement” on page 64 for more information.

The value NO (or N) enables you to modify SAS variable names, formats, informats,
database contents, occurrence ranges, and BY keys when you create an access descriptor
and when you create view descriptors that are based on this access descriptor.

Specify a YES (or Y) value for this statement to generate unique SAS variable names
from the first eight characters of the DBMS column names, according to the rules listed
below. With YES, you can change the SAS variable names and other column information
only in the access descriptor. The SAS variable names and other column information
that are saved in an access descriptor are always used when view descriptors are
created from the access descriptor; you cannot change them in the view descriptors.

Default SAS variable names are generated according to these rules:
� If the column name is longer than eight characters, SAS uses only the first eight

characters. If truncating results in duplicate names, numbers are appended to the
ends of the names. For example, the DBMS names clientsname and
clientsnumber become the SAS names clientsn and clients1.

If the same descriptor has another set of columns with duplicate names, the
numeric suffix begins at the next highest number from the previous set of
duplicate names. For example, if the descriptor has the duplicate names above and
also has the DBMS names customername, customernumber, and customernode,
the default SAS names would be customer, custome1, and custome2.

� If the column name contains characters that are not valid in SAS names
(including national characters), SAS replaces these characters with underscores
(_). For example, the column name func$ becomes the SAS variable name func_.

If you specify YES for this statement, SAS automatically resolves any duplicate
variable names. However, if you specify YES, you cannot specify the CONTENT,
FORMAT, INFORMAT, KEY, MVF (with OCCURS option), RENAME, or RESET
statements when you create view descriptors that are based on the access descriptor.

When the SAS/ACCESS interface encounters the next CREATE statement to create
an access descriptor, the ASSIGN statement is reset to the default NO value.

AN is the alias for the ASSIGN statement.

CONTENT Statement

Specifies a SAS date format or length.

Optional statement
Applies to: access descriptor or view descriptor
Interacts with: ASSIGN

Syntax
CONTENT column-identifier-1 <=> SAS-date-format | length | E

<... column-identifier-n <=> SAS-date-format |length|E>;

64 CREATE Statement � Chapter 5

Details
The CONTENT statement enables you to enter a SAS date format, a variable length, or
an extended time format. A date format means that the ADABAS data has the specified
representation. A variable length determines the number of characters to be accessed.
The extended time format (E) invokes NATURAL date, time, and datetime values. SAS
stores datetime values as the number of days and seconds before and after January 1,
1960. The NATURAL 4th generation language stores date and time values as the
number of days and seconds since 0 A.D.

For ADABAS files, entering a SAS date or a variable length automatically changes
default values for SAS formats and informats. For NATURAL DDMs, entering a date
changes the default format and informat but entering a length does not. However, if
you have previously changed any format and informat values, specifying a CONTENT
value does not alter those values. Specifying extended time format changes default
values for SAS informat and format values to DATETIME16.

For groups and periodic groups, the CONTENT field is for information only and is set
to *GROUP* and *PGROUP*, respectively.

ADABAS does not have a specific date type; therefore, the CONTENT statement
enables you to identify dates for SAS processing. You can enter one of four SAS date
formats.

� YYMMDDw. where w is 6 for two-digit years or 8 for four-digit years
� MMDDYYw. where w is 6 for two-digit years or 8 for four-digit years
� DDMMYYw. where w is 6 for two-digit years or 8 for four-digit years
� JULIANw. where w is 5 for two-digit years or 7 for four-digit years.

If you specified ASSIGN=YES when creating an access descriptor, you cannot change
the value for this statement when you later create a view descriptor based on that
access descriptor. If you specified ASSIGN=NO, you can change the value for this
statement in a subsequent view descriptor.

You do not have to issue a SELECT statement for columns named in the CONTENT
statement.

Note: The SAS/ACCESS to ADABAS engine does not provide automatic conversion
to the extended time format in releases of SAS prior to Release 6.08 TSO420. However,
it is possible to convert a value to the extended time format in a SAS DATA step by
using the following formulas:

SAS date value = NATURAL date value − 715874
SAS datetime value = (NATURAL datetime value / 10)

− (715874 * 3600 *24)
SAS time value = NATURAL time value / 10

�

CREATE Statement
Creates a SAS/ACCESS descriptor file.

Required statement
Applies to: access descriptor or view descriptor

Syntax
CREATE libref.member-name.ACCESS|VIEW;

ACCESS Procedure Reference � CREATE Statement 65

Details
The CREATE statement identifies the access descriptor or view descriptor that you
want to create. This statement is required for creating a descriptor.

To create a descriptor, use a three-level name. The first level identifies the libref of
the SAS data library where you will store the descriptor. You can store the descriptor in
a temporary (WORK) or permanent SAS data library. The second level is the
descriptor’s name (member name). The third level is the type of SAS file: specify
ACCESS for an access descriptor or VIEW for a view descriptor.

You can use the CREATE statement as many times as necessary in one procedure
execution. That is, you can create multiple access descriptors, as well as one or more
view descriptors based on these access descriptors, within the same execution of the
ACCESS procedure. Or, you can create access descriptors and view descriptors in
separate executions of the procedure.

Access descriptors
When you create an access descriptor, you must place statements or groups of
statements in a certain order after the PROC ACCESS statement and its options, as
listed below:

1 CREATE statement for the access descriptor: must follow the PROC ACCESS
statement.

2 Database-description statements: must follow the CREATE statement. Use either
the ADBFILE or the DDM statement with the SECFILE and SYSFILE
statements. Additionally with the DDM statement, use the NSS statement. The
ADBFILE statement enables you to access an ADABAS file. The DDM statement
accesses a view to an ADABAS file that you can use to reference the ADABAS file
in NATURAL programs. In making your choice, note that the two statements use
different naming conventions for ADABAS data field names.

Information from database-description statements is stored in an access
descriptor; therefore, you do not need to repeat this information when you create
view descriptors. However, if no security values were entered in the access
descriptor or values were provided but the SECURITY statement was set to NO,
then you can use the database-description statements in a view descriptor to
supply or modify them.

3 Editing statements: must follow the database-description statements. ASSIGN,
CONTENT, DROP, EXTEND, FORMAT, INFORMAT, KEY, LIST, LISTINFO,
LISTOCC, MVF, RENAME, RESET, and SECURITY can all be used in an access
descriptor. QUIT is also an editing statement but using it terminates PROC
ACCESS without creating your descriptor.

4 RUN statement: this statement is used to process the ACCESS procedure.

The order of the statements within the database-description group does not matter.
For example, you could submit either the DDM= or the NSS() statement first. The
order of the statements within the editing group sometimes matters; see the individual
statement descriptions for any restrictions.

Note: Altering a DBMS table that has descriptor files defined on it might cause
these files to be out-of-date or not valid. For example, if you re-create a table and add a
new column to the table, an existing access descriptor defined on that table does not
show that column; in this case the descriptor is still valid. However, if you re-create a
table and delete an existing column from the table, the descriptor might not be valid. If
the deleted column is included in a view descriptor and this view is used in a SAS
program, the view fails and an error message is written to the SAS log. �

66 CREATE Statement � Chapter 5

View descriptors
You can create view descriptors and access descriptors in the same execution of the
ACCESS procedure or in separate executions.

To create a view descriptor and the access descriptor on which it is based within the
same PROC ACCESS execution, you must place the statements or groups of statements
in a particular order after the PROC ACCESS statement and its options, as listed below:

1 Create the access descriptor except omit the RUN statement.
2 CREATE statement for the view descriptor: this statement must follow the PROC

ACCESS statements that created the access descriptor.
3 NSS and the password and cipher code parameters of ADBFILE, SECFILE, and

SYSFILE: the ADBFILE, SECFILE, and SYSFILE statements can be specified
only when SECURITY=NO or when SECURITY=YES and no values have been
specified in the access descriptor referenced by this view descriptor.

4 Editing statements: SELECT and SUBSET are used only when creating view
descriptors. CONTENT, FORMAT, INFORMAT, KEY, and MVF OCCURS can be
specified only when ASSIGN=NO is specified in the access descriptor referenced by
this view descriptor. QUIT is also an editing statement, but using it terminates
PROC ACCESS without creating your descriptor.

The order of the statements within this group usually does not matter; see the
individual statement descriptions for any restrictions.

5 RUN statement: this statement is used to process the ACCESS procedure.

To create a view descriptor based on an access descriptor that was created in a
separate PROC ACCESS step, you specify the access descriptor’s name in the
ACCDESC= option in the new PROC ACCESS statement. You must specify the
CREATE statement before any of the editing statements for the view descriptor.

If you create only one descriptor in a PROC step, the CREATE statement and its
accompanying statements are checked for errors when you submit PROC ACCESS for
processing. If you create multiple descriptors in the same PROC step, each CREATE
statement (and its accompanying statements) is checked for errors as it is processed.

When the RUN statement is processed, all descriptors are saved. If no errors are
found, the descriptor is saved. If errors are found, error messages are written to the
SAS log, and processing is terminated. After you correct the errors, resubmit your
statements.

Examples

The following example creates the access descriptor ADLIB.CUSTOMER on the
ADABAS CUSTOMER file using the ADBFILE statement to specify the ADABAS file.

/* Create access descriptor using ADABAS file */
proc access dbms=adabas;

create adlib.customer.access;
adbfile(number=45 password=cuspw

cipher=cuscc dbid=1);
sysfile(number=15 password=cuspwsys

cipher=cusccsys dbid=1);
secfile(number=16 password=cuspwsec

cipher=cusccsec dbid=1);
assign=yes;
rename cu = custnum

ph = phone
ad = street;

format fo = date7.;

ACCESS Procedure Reference � CREATE Statement 67

informat fo = date7.;
content fo = yymmdd8.;
mvf br occurs = 4

run;

The following example creates an access descriptor to the same data using the DDM
statement.

/* Create access descriptor using NATURAL DDM */
proc access dbms=adabas;

create adlib.customer.access;
nss(library=sasdemo user=demo password=demopw).
sysfile(number=15 password=cuspwsys

cipher=cusccsys dbid=1);
secfile(number=16 password=cuspwsec

cipher=cusccsec dbid=1);
ddm=customers;
assign=yes;
rename customer = custnum

telephone = phone
streetaddress = street;

format firstorderdate = date7.;
informat firstorderdate = date7.;
content firstorderdate = yymmdd6.;
mvf "BRANCH-OFFICE" occurs = 4

run;

The following example creates an access descriptor ADLIB.EMPLOY on the ADABAS
EMPLOYEES file and a view descriptor VLIB.EMP1204 based on ADLIB.EMPLOY in
the same PROC ACCESS step. The ADABAS file to access is referenced by a DDM.

/* Create access and view descriptors in
one execution */
proc access dbms=adabas;

/* Create access descriptors */
create adlib.employ.access;
nss(library=sasdemo user=demo password=demopw);
sysfile(number=15 password=cuspwsys

cipher=cusccsys dbid=1);
secfile(number=16 password=cuspwsec

cipher=cusccsec dbid=1);
ddm=employee;
assign=no;
list all;

/* Create view descriptor */
create vlib.emp1204.view;
select empid lastname hiredate salary dept
sex birthdate;
format empid 6.

salary dollar12.2
jobcode 5.
hiredate datetime7.
birthdate datetime7.;

subset where jobcode=1204;

68 DDM= Statement � Chapter 5

run;

The following example creates a view descriptor VLIB.BDAYS from the
ADLIB.EMPLOY access descriptor, which was created in a separate PROC ACCESS
step.

/* Create view descriptors in separate execution */
proc access dbms=adabas accdesc=adlib.employ;

create vlib.bdays.view;
select empid lastname birthdate;
format empid 6.

birthdate datetime7.;
run;

DDM= Statement

Indicates the NATURAL Data Definition Module (DDM) name.

Optional statement

Applies to: access descriptor

Interacts with: NSS

Syntax
DDM= data-definition-module-name;

Details
The DDM= statement specifies the NATURAL DDM. The name assigned to a NATURAL
DDM references an ADABAS file and its data fields. Note that a DDM is often referred
to as an ADABAS file, even though it is only a view of an actual ADABAS file.

The name for a NATURAL DDM can be a maximum of 32 characters. In a
NATURAL DDM, data fields can be assigned a DDM external name of 3 to 32
characters. DDMs are stored in a system file that is simply another ADABAS file.

If you delete or rename a SAS/ACCESS descriptor file, you do not delete or rename
the descriptor file’s underlying ADABAS file or NATURAL DDM. However, changing
your DDM can affect your descriptor files. See “Effects of Changing an ADABAS File or
NATURAL DDM on Descriptor Files” on page 107 for more information about how
changing your DDM can affect your descriptor files.

DROP Statement

Drops a column so that it cannot be selected in a view descriptor.

Optional statement

Applies to: access descriptor

Interacts with: RESET, SELECT

ACCESS Procedure Reference � EXTEND Statement 69

Syntax
DROP column-identifier-1 <...column-identifier-n>;

Details
The DROP statement drops the specified column from an access descriptor. The column
therefore cannot be selected by a view descriptor that is based on the access descriptor.
However, the specified column in the DBMS table remains unaffected by this statement.

An editing statement, such as DROP, must follow the CREATE and
database-description statements when you create an access descriptor. See “CREATE
Statement” on page 64 for more information about the order of statements.

The column-identifier argument can be either the column name or the positional
equivalent from the LIST statement, which is the number that represents the column’s
place in the access descriptor. For example, to drop the third and fifth columns, submit
the following statement:

drop 3 5;

If the column name contains special characters or national characters, enclose the
name in quotation marks. You can drop as many columns as you want in one DROP
statement.

To display a column that was previously dropped, specify that column name in the
RESET statement. However, doing so also resets all the column’s attributes (such as
SAS variable name, format, and so on) to their default values.

EXTEND Statement

Lists columns in the descriptor and gives information about them.

Optional statement
Applies to: access and view descriptors
Default ALL

Syntax
EXTEND <ALL | VIEW | column-identifier-1 <... column-identifier-n>>;

Details
The EXTEND statement lists information about the informat, DB content, occurrence
range, descriptor type, and BY key columns in the descriptor. For groups and periodic
groups, *GROUP* or *PGROUP* is displayed, respectively.

You can use the EXTEND statement when creating an access or a view descriptor.
The EXTEND information is written to your SAS log.

If you use an editing statement, such as EXTEND, it must follow the CREATE
statement and the database-description statements when you create a descriptor. See
“CREATE Statement” on page 64 for more information about the order of statements.

You can specify EXTEND as many times as you want while creating a descriptor;
specify EXTEND last in your PROC ACCESS code to see the completed descriptor

70 FORMAT Statement � Chapter 5

information. Or, if you are creating multiple descriptors, specify EXTEND before the
next CREATE statement to list all the information about the descriptor you are creating.

The EXTEND statement can take one of the following arguments:

ALL
lists all the DBMS columns in the file, the positional equivalents, the
two–character ADABAS names, the SAS variable informats, the database
contents, occurrence ranges, descriptor types, and BY keys that are available for
the access descriptor. When you are creating an access descriptor, *NON-DISPLAY*
appears next to the column description for any column that has been dropped.
When you are creating a view descriptor, *SELECTED* appears next to the column
description for columns that you have selected for the view.

VIEW
lists all the DBMS columns that are selected for the view descriptor, along with
their positional equivalents, their two–character ADABAS names, their SAS
variable informats, the database contents, occurrence ranges, descriptor types, BY
keys, any subsetting clauses, and the word *SELECTED*. Any columns that are
dropped in the access descriptor are not displayed. The VIEW argument is valid
only for a view descriptor.

column-identifier
lists the specified DBMS column name, its positional equivalent, its two–character
ADABAS name, its SAS variable informat, the database content, occurrence range,
descriptor type, BY keys that are available for the access descriptor, and whether
the column has been selected or dropped. If the column name contains special
characters or national characters, enclose the name in quotation marks.

The column-identifier argument can be either the column name, the positional
equivalent from the LIST statement, which is the number that represents the
column’s place in the descriptor, or a list of column names or positions. For
example, to list information about the fifth column in the descriptor, submit the
following statement:

extend 5;

Or, to list information about the fifth, sixth, and eighth columns in the
descriptor, submit the following statement:

extend 5 6 8;

FORMAT Statement

Changes a SAS format for a DBMS column.

Optional statement
Applies to: access descriptor or view descriptor
Interacts with: ASSIGN, CONTENT, DROP, RESET

Syntax
FORMAT column-identifier-1 <=> SAS-format-name

<...column-identifier-n <=> SAS-format-name>;

ACCESS Procedure Reference � INFORMAT Statement 71

Details
The FORMAT statement changes a SAS variable format from its default format; the
default SAS variable format is based on the data type of the DBMS column. (See
“ACCESS Procedure Formats and Informats for ADABAS” on page 95 for information
about the default formats that the ACCESS Procedure assigns to your DBMS data
types.)

An editing statement, such as FORMAT, must follow the CREATE statement and the
database-description statements when you create a descriptor. See “CREATE
Statement” on page 64 for more information about the order of statements.

The column-identifier argument can be either the column name or the positional
equivalent from the LIST statement, which is the number that represents the column’s
place in the access descriptor. For example, to associate the DATE9. format with the
BIRTHDATE column and with the second column in the access descriptor, submit the
following statement:

format 2=date9. birthdate=date9.;

The column-identifier is specified on the left and the SAS format is specified on the
right of the expression. The equal sign (=) is optional. If the column name contains
special characters or national characters, enclose the name in quotation marks. You can
enter formats for as many columns as you want in one FORMAT statement.

You can use the FORMAT statement with a view descriptor only if the ASSIGN
statement that was used when creating the access descriptor was specified with the NO
value.

Note: You do not have to issue a SELECT statement in a view descriptor for the
columns included in the FORMAT statement. The FORMAT statement selects the
columns. When you use the FORMAT statement in access descriptors, the FORMAT
statement reselects columns that were previously dropped with the DROP statement. �

FMT is the alias for the FORMAT statement.

INFORMAT Statement

Changes a SAS informat for a DBMS column.

Optional statement
Applies to: access descriptor or view descriptor
Interacts with: ASSIGN, CONTENT, DROP, RESET

Syntax
INFORMAT column-identifier-1 <=> SAS-format-name

<...column-identifier-n <=> SAS-format-name>;

Details
The INFORMAT statement changes a SAS variable informat from its default informat;
the default SAS variable informat is based on the data type of the DBMS column. (See
“ACCESS Procedure Formats and Informats for ADABAS” on page 95 for information
about the default informats that the ACCESS Procedure assigns to your DBMS data
types.)

72 KEY Statement � Chapter 5

An editing statement, such as INFORMAT, must follow the CREATE statement and
the database-description statements when you create a descriptor. See “CREATE
Statement” on page 64 for more information about the order of statements.

The column-identifier argument can be either the column name or the positional
equivalent from the LIST statement, which is the number that represents the column’s
place in the access descriptor. For example, to associate the DATE9. informat with the
BIRTHDATE column and with the second column in the access descriptor, submit the
following statement:

informat 2=date9. birthdate=date9.;

The column-identifier is specified on the left and the SAS informat is specified on the
right of the expression. The equal sign (=) is optional. If the column name contains
special characters or national characters, enclose the name in quotation marks. You can
enter informats for as many columns as you want in one INFORMAT statement.

You can use the INFORMAT statement with a view descriptor only if the ASSIGN
statement that was used when creating the access descriptor was specified with the NO
value.

Note: You do not have to issue a SELECT statement in a view descriptor for the
columns included in the INFORMAT statement. The INFORMAT statement selects the
columns. When you use the INFORMAT statement with access descriptors, the
INFORMAT statement reselects columns that were previously dropped with the DROP
statement. �

INFMT is the alias for the INFORMAT statement.

KEY Statement

Specifies a BY key for an elementary data field that is designated as an ADABAS descriptor.

Optional statement
Applies to: access descriptor or view descriptor
Interacts with: ASSIGN
Default blank

Syntax
KEY<=> column-identifier-1 <...column-identifier-n>;

Details
The KEY statement specifies a BY key for an elementary data field. This field must be
an ADABAS descriptor.

A BY key, which is an optional set of match variables, is used only when the
interface view engine must examine additional ADABAS records in order to add a new
periodic group occurrence. The engine uses the BY key variables in temporary WHERE
clauses that are designed to locate a record for modification. Examining the additional
ADABAS records is required only if data is changed above the periodic group level from
one observation to the next in a view descriptor with a selected periodic group. It is
suggested that you use BY key variables even if they are not always needed.

A data field is a good candidate for a BY key variable if it uniquely identifies a
logical record. The incoming values of the data fields in a BY key variable are matched

ACCESS Procedure Reference � LIST Statement 73

to existing values in order to locate a position in which to insert new periodic groups.
(A BY key variable is similar to a BY group or a BY variable in SAS.)

The KEY statement can have the following values:

blank (default) indicates that the data field is not to be used as a KEY.

N specifies that the data field is not to be used as a KEY.

Y specifies that the data field is to be used as a KEY.

An editing statement, such as KEY, must follow the CREATE statement and the
database-description statements when you create a descriptor. See “CREATE
Statement” on page 64 for more information about the order of statements.

You can use the KEY statement with a view descriptor only if the ASSIGN statement
that was used when creating the access descriptor was specified with the NO value.

You do not have to issue a SELECT statement in a view descriptor for the columns
included in the KEY statement. The KEY statement selects the columns. When you use
the KEY statement with an access descriptor, the KEY statement reselects columns
that were previously dropped with the DROP statement.

LIST Statement

Lists columns in the descriptor and gives information about them.

Optional statement
Applies to: access descriptor or view descriptor
Default: ALL

Syntax
LIST <ALL | VIEW | column-identifier-1 <... column-identifier-n>>;

Details
The LIST statement lists columns in the descriptor along with information about the
columns. The LIST statement can be used when creating an access descriptor or a view
descriptor. The LIST information is written to your SAS log.

If you use an editing statement, such as LIST, it must follow the CREATE statement
and the database-description statements when you create a descriptor. See “CREATE
Statement” on page 64 for more information about the order of statements.

You can specify LIST as many times as you want while creating a descriptor; specify
LIST last in your PROC ACCESS code to see the completed descriptor information. Or,
if you are creating multiple descriptors, specify LIST before the next CREATE
statement to list all the information about the descriptor you are creating.

The LIST statement can take one of the following arguments:

ALL
lists all the DBMS columns in the file, the positional equivalents, the SAS variable
names, and the SAS variable formats that are available for the access descriptor.
When you are creating an access descriptor, *NON-DISPLAY* appears next to the
column description for any column that has been dropped. When you are creating
a view descriptor, *SELECTED* appears next to the column description for columns
that you have selected for the view.

74 LISTINFO Statement � Chapter 5

VIEW
lists all the DBMS columns that are selected for the view descriptor, along with
their positional equivalents, their SAS names and formats, any subsetting clauses,
and the word *SELECTED* . Any columns that were dropped in the access
descriptor are not displayed. The VIEW argument is valid only for a view
descriptor.

column-identifier
lists the specified DBMS column name, its positional equivalent, its SAS variable
name and format, and whether the column has been selected or dropped. If the
column name contains special characters or national characters, enclose the name
in quotation marks.

The column-identifier argument can be either the column name or the positional
equivalent from the LIST statement, which is the number that represents the
column’s place in the descriptor. For example, to list information about the fifth
and eighth columns in the descriptor, submit the following statement:

list 5 8;

LISTINFO Statement

Shows additional data field information.

Optional statement

Applies to: access descriptor or view descriptor

Default: ALL

Syntax
LISTINFO <ALL | VIEW | column-identifier-1 <... column-identifier-n>>;

Details
The LISTINFO statement shows additional data field information for one or more
DBMS columns in the descriptor. The LISTINFO statement can be used when creating
an access or a view descriptor. The LISTINFO information is written to your SAS log.

An editing statement, such as LISTINFO, must follow the CREATE statement and
the database-description statements when you create a descriptor. See “CREATE
Statement” on page 64 for more information about the order of statements.

The LISTINFO statement is especially helpful for subfields, superfields, and
descriptor data fields. It shows the ADABAS level, ADABAS name, length, data type,
and first-last character positions for a given DBMS column.

When you are creating an access descriptor, *NON-DISPLAY* appears next to the
column description for any column that has been dropped. When you are creating a
view descriptor, *SELECTED* appears next to the column description for columns that
you have selected for the view.

The LISTINFO statement can take one of the following arguments:

ALL
lists all the DBMS columns in the file, the ADABAS levels, the lengths, ADABAS
names, the data types, and the first-last character positions.

ACCESS Procedure Reference � LISTOCC Statement 75

VIEW
lists the DBMS columns that are selected for the view descriptor, along with the
ADABAS levels, ADABAS names, the lengths, the data types, and the first-last
character positions. Any columns that are dropped in the access descriptor are not
displayed. The VIEW argument is valid only for a view descriptor.

column-identifier
lists the specified DBMS columns, the ADABAS levels, ADABAS names, the
lengths, the data types, the first-last character positions, and whether the column
has been selected or dropped. If the column name contains special characters or
national characters, enclose the name in quotation marks.

The column-identifier argument can be either the column name, the positional
equivalent from the LIST statement, which is the number that represents the
column’s place in the descriptor, or a list of column names or positions. For
example, to list information about the fifth column in the descriptor, submit the
following statement:

listinfo 5;

Or, to list information about the fifth, sixth, and eighth columns in the
descriptor, submit the following statement:

listinfo 5 6 8;

LISTOCC Statement

Lists occurrences for multiple value fields.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
LISTOCC column-identifier-1 <... column-identifier-n>;

Details
The LISTOCC statement lists all the requested occurrences for the specified
multiple-value fields along with information such as the ADABAS level, the SAS
variable name, the occurrence number, the SAS variable format and informat, the DB
content, the descriptor type, and whether the occurrence has been selected or dropped.
The LISTOCC statement can be used when creating an access descriptor or a view
descriptor. The LISTOCC information is written to your SAS log.

If you use an editing statement, such as LISTOCC, it must follow the CREATE
statement and the database-description statements when you create a descriptor. See
“CREATE Statement” on page 64 for more information about the order of statements.

The LISTOCC statement takes the following argument:

column-identifier
can be either the column name or the positional equivalent from the LIST
statement, which is the number that represents the column’s place in the
descriptor. For example, to list occurrences for the fifth column in the descriptor,
submit the following statement:

76 MVF Statement � Chapter 5

listocc 5;

The column-identifier must be a multiple-value field.

MVF Statement

Modifies the occurrences of a multiple-value field.

Optional statement

Applies to: access descriptor or view descriptor

Interacts with: ASSIGN

Syntax
MVF column-identifier

CONTENT occurrence-1 <=> E| SAS-date-format | length
<...occurrence-n <=> E | SAS-date-format| length>;
|
DROP occurrence-1 <<TO> ... occurrence-n>;
|
FORMAT occurrence-1 <=> SAS-format-name
<… occurrence-n <=> SAS-format-name>;
|
INFORMAT occurrence-1 <=> SAS-format-name
<… occurrence-n <=> SAS-format-name>;
|
OCCURS<=> number-of-occurrences;
|
RENAME occurrence-1 <=> SAS-variable-name
< ... occurrence-n <=> SAS-variable-name>;
|
RESET occurrence-1 <<TO> ... occurrence-n>;
|
SELECT occurrence-1 <<TO> … occurrence-n>;

Details
You use the MVF statement to modify values for occurrences of a multiple-value field.
The MVF statement can be used when creating an access descriptor or a view descriptor.

If you use an editing statement, such as MVF, it must follow the CREATE statement
and the database-description statements when you create a descriptor. See “CREATE
Statement” on page 64 for more information about the order of statements.

The MVF statement enables you to perform the following tasks:

� choose the number of occurrences by specifying a range of occurrences
� select individual occurrences or a range of occurrences

� drop individual occurrences or a range of occurrences

� reset individual occurrences or a range of occurrences

� change the format value for one or more occurrences
� change the informat value for one or more occurrences

ACCESS Procedure Reference � MVF Statement 77

� change the database content value for one or more occurrences

� rename the SAS variable name for one or more occurrences.

The column identifier must be a multiple-value field, and can be the column name or
the positional equivalent from the LIST statement. The occurrence argument can be
the occurrence name or the occurrence number. If the column name or the occurrence
name contains special characters, like -, enclose the name in quotation marks. The = is
optional for all subcommands.

You can use the LISTOCC statement to review your changes.
You do not have to issue a SELECT statement in a view descriptor for occurrences

included in the CONTENT, FORMAT, INFORMAT, and RENAME subcommands. The
subcommands select the columns.

The MVF statement can take one of the following subcommands:

CONTENT
enables you to change the DB content attribute of an individual occurrence. This
subcommand can be used when creating access or view descriptors. Changing the
DB content attribute of an occurrence has the same effect on the SAS formats and
informats for ADABAS files and NATURAL DDMs as changing the DB content
attribute of a column. See “CONTENT Statement” on page 63 for more
information. For example, if the FIRSTORDERDATE column in the CUSTOMER
DDM is a multiple-value field, and you want to change the DB content attribute
for occurrences nine and ten, submit the following statement:

mvf firstorderdate content 9 yymmdd6.
branch10 = yymmdd6.;

DROP
enables you to drop individual occurrences from your descriptor. If you drop all
occurrences of a column, the column is automatically dropped. This subcommand
is used only when defining access descriptors.

You can drop one or more individual occurrences or a range of occurrences. For
example, if you want to drop occurrences one, two, and three of the
BRANCH-OFFICE column in the CUSTOMER DDM, submit the following
statement:

mvf "BRANCH-OFFICE" drop 1 2 3;

or

mvf "BRANCH-OFFICE" drop 1 to 3;

FORMAT
enables you to change the format attribute of individual occurrences. This
subcommand can be used when creating access or view descriptors. However, the
format attribute cannot be changed in a view descriptor when you set
ASSIGN=YES.

You can change the format attribute of one or more occurrences in one FORMAT
subcommand. For example, if you want to change the format attribute for
occurrences nine and ten of the BRANCH-OFFICE column in the CUSTOMER
DDM, submit the following statement:

mvf "BRANCH-OFFICE" format 9 $21.
branch10 = $8.;

INFORMAT
enables you to change the informat attribute of an individual occurrence. This
subcommand can be used when creating access or view descriptors. However, the

78 MVF Statement � Chapter 5

informat attribute cannot be changed in a view descriptor when you set
ASSIGN=YES.

You can change the informat attribute of one or more occurrences in one
INFORMAT subcommand. For example, if the BRANCH-OFFICE column in the
CUSTOMER DDM is a multiple-value field, and you want to change the informat
attribute for occurrences nine and ten, submit the following statement:

mvf "BRANCH-OFFICE" informat 9 $21.
branch10 = $8.;

OCCURS
enables you to specify a number of occurrences or an occurrence range. The
default occurrence range is displayed as 1 191, which is the maximum number of
occurrences allowed for multiple-value fields. If the value for the ASSIGN
statement in an access descriptor is YES, the number of occurrences or the
occurrence range cannot be changed in any view descriptor that is based on this
access descriptor.

For example, if you want the BRANCH-OFFICE column in the CUSTOMER
DDM to have 4 occurrences, submit the following statement:

mvf "BRANCH-OFFICE" occurs = 4

RENAME
enables you to rename a SAS variable name for an individual occurrence. This
subcommand can be used when creating an access or view descriptor. However,
this subcommand has different effects on access and view descriptors based on the
value specified in the ASSIGN statement.

If you set ASSIGN=NO in the access descriptor, the SAS variable name can be
renamed. If you set ASSIGN=YES, the SAS variable name can be renamed in the
access descriptor but not in the view descriptor.

You can rename the SAS variable name for one or more occurrences in one
RENAME subcommand. For example, if you want to rename occurrences nine and
ten of the BRANCH-OFFICE column in the CUSTOMER DDM, submit the
following statement:

mvf "BRANCH-OFFICE" rename 9 london
branch10 = tokyo;

RESET
enables you to reset the attributes of individual occurrences. This subcommand
can be used when creating an access or view descriptor. Specifying the RESET
subcommand for an occurrence has the same effect on occurrence attributes as
specifying the RESET statement for a column. See “RESET Statement” on page 81
for more information.

You can reset one or more individual occurrences or a range of occurrences. For
example, if you want to reset occurrences one, two, and three of the
BRANCH-OFFICE column in the CUSTOMER DDM, submit the following
statement:

mvf "BRANCH-OFFICE" reset 1 2 3;

or

mvf "BRANCH-OFFICE" reset 1 to 3;

SELECT
enables you to select individual occurrences to be included in your descriptor. This
subcommand is used only when defining view descriptors.

ACCESS Procedure Reference � NSS Statement 79

You can select one or more individual occurrences or a range of occurrences. For
example, if you want to select occurrences one, two, and three of the
BRANCH-OFFICE column in the CUSTOMER DDM, submit the following
statement:

mvf "BRANCH-OFFICE" select 1 2 3;

or

mvf "BRANCH-OFFICE" select 1 to 3;

You can use the LISTOCC statement to review your changes.

NSS Statement

Specifies the NATURAL SECURITY options in the access descriptor.

Optional statement
Applies to: access descriptor
Interacts with: DDM and SECURITY

Syntax
NSS (LIBRARY | LIB = library-identifier

USER = user-identifier
PASSWORD | PW = Natural-Security-password);

Details
Note: This statement is used only when a DDM is specified; otherwise, it is

ignored. �

The NSS statement specifies NATURAL SECURITY options, including a library
identifier, user identifier, and a password.

If you specify YES for the SECURITY statement in an access descriptor, values
declared for Library, User, and Password cannot be changed in a subsequent view
descriptor based on the access descriptor.

library-identifier
is an eight-character library identifier. The first character must be alphabetic. The
library identifier is the same as the application identifier in SAS/ACCESS
Interface to ADABAS, Version 6.

user-identifier
is an eight-character user identifier.

Natural-Security-password
is an eight-character ADABAS password. The value is written to the access
descriptor in encrypted form.

80 QUIT Statement � Chapter 5

QUIT Statement

Terminates the procedure.

Optional statement
Applies to: access descriptor or view descriptor

Syntax
QUIT;

Details
The QUIT statement terminates the ACCESS procedure without any further descriptor
creation.

EXIT is the alias for the QUIT statement.

RENAME Statement

Modifies the SAS variable name.

Optional statement
Applies to: access descriptor or view descriptor
Interacts with: ASSIGN, RESET

Syntax
RENAME column-identifier-1 <=> SAS-variable-name

<...column-identifier-n <=> SAS-variable-name>;

Details
The RENAME statement enters or modifies the SAS variable name that is associated
with a DBMS column. The RENAME statement can be used when creating an access
descriptor or a view descriptor.

An editing statement, such as RENAME, must follow the CREATE statement and
the database-description statements when you create a descriptor. See “CREATE
Statement” on page 64 for more information about the order of statements.

Two factors affect the use of the RENAME statement: whether you specify the
ASSIGN statement when you are creating an access descriptor, and the kind of
descriptor you are creating.

� If you omit the ASSIGN statement or specify it with a NO value, the renamed SAS
variable names that you specify in the access descriptor are retained throughout
the access descriptor and any view descriptor that is based on that access
descriptor. For example, if you rename the CUSTOMER column to CUSTNUM
when you create an access descriptor, that column continues to be named
CUSTNUM when you select it in a view descriptor unless a RESET statement or
another RENAME statement is specified.

ACCESS Procedure Reference � RESET Statement 81

When creating a view descriptor that is based on this access descriptor, you can
specify the RESET statement or another RENAME statement to rename the
variable again, but the new name applies only in that view. When you create other
view descriptors, the SAS variable names are derived from the access descriptor.

� If you specify the YES value in the ASSIGN statement, you can use the RENAME
statement to change SAS variable names only while creating a specific access
descriptor. As described earlier in the ASSIGN statement, SAS variable names
that are saved in an access descriptor are always used when creating view
descriptors that are based on it.

Renamed SAS variable names only apply to the current access descriptor that is
being created. The default SAS variable names will be used for any subsequent
access descriptors that are created in the same ACCESS procedure execution.

The column-identifier argument can be either the DBMS column name or the positional
equivalent from the LIST statement, which is the number that represents the column’s
place in the descriptor. For example, to rename the SAS variable names that are
associated with the seventh column and the nine-character FIRSTNAME column in a
descriptor, submit the following statement:

rename 7 birthdy firstname=fname;

The DBMS column name (or positional equivalent) is specified on the left side of the
expression, with the SAS variable name on the right side. The equal sign (=) is
optional. If the column name contains special characters or national characters, enclose
the name in quotation marks. You can rename as many columns as you want in one
RENAME statement.

When you are creating a view descriptor, the RENAME statement automatically
selects the renamed column for the view. That is, if you rename the SAS variable
associated with a DBMS column, you do not have to issue a SELECT statement for that
column.

RESET Statement

Resets DBMS columns to their default settings.

Optional statement

Applies to: access descriptor or view descriptor

Interacts with: ASSIGN, CONTENT, DROP, FORMAT, INFORMAT, KEY, MVF,
RENAME, SELECT

Syntax
RESET <ALL | column-identifier-1 <... column-identifier-n>>;

Details
The RESET statement resets either the attributes of all the columns or the attributes of
the specified columns to their default values. The RESET statement can be used when
creating an access descriptor or a view descriptor. However, this statement has
different effects on access and view descriptors, as described below.

82 RESET Statement � Chapter 5

If you use an editing statement, such as RESET, it must follow the CREATE
statement and the database-description statements when you create a descriptor. See
“CREATE Statement” on page 64 for more information about the order of statements.

Access descriptors
When you create an access descriptor, the default setting for a SAS variable name is a
blank. However, if you have previously entered or modified any of the SAS variable
names, the RESET statement resets the modified names to the default names that are
generated by the ACCESS procedure. How the default SAS variable names are set
depends on whether you included the ASSIGN statement. If you omitted ASSIGN or
set it to NO, the default names are blank. If you set ASSIGN=YES, the default names are
the first eight characters of each DBMS column name.

The current SAS variable format and informat are reset to the default SAS format
and informat, which was determined from the column’s data type. The current DB
content, occurrence range, and BY key are also reset to the default values. Any columns
that were previously dropped, that are specified in the RESET command, become
available; they can be selected in view descriptors that are based on this access
descriptor.

View descriptors
When you create a view descriptor, the RESET statement clears any columns that were
included in the SELECT statement (that is, it "de-selects" the columns).

When creating the view descriptor, if you reset a SAS variable and then select it
again within the same procedure execution, the SAS variable name, format, informat,
database content, occurrence range, and BY key are reset to their default values, (the
SAS name is generated from the DBMS column name, and the format and informat
values are generated from the data type). This applies only if you have omitted the
ASSIGN statement or set the value to NO when you created the access descriptor on
which the view descriptor is based. If you specified ASSIGN=YES when you created the
access descriptor, the RESET statement has no effect on the view descriptor.

The RESET statement can take one of the following arguments:

ALL
for access descriptors, resets all the DBMS columns that have been defined to
their default names and format settings and reselects any dropped columns.

For view descriptors, ALL resets all the columns that have been selected, so
that no columns are selected for the view; you can then use the SELECT
statement to select new columns.

column-identifier
can be either the DBMS column name or the positional equivalent from the LIST
statement, which is the number that represents the column’s place in the access
descriptor. For example, to reset the third column, submit the following statement:

reset 3;

If the column name contains special characters or national characters, enclose
the name in quotation marks. You can reset as many columns as you want in one
RESET statement, or use the ALL option to reset all the columns.

ACCESS Procedure Reference � SECFILE Statement 83

SECFILE Statement

Specifies parameters for the NATURAL SECURITY system file.

Optional statement
Applies to: access descriptor or view descriptor
Interacts with: SECURITY

Syntax
SECFILE (NUMBER | NUM = Natural-Security-file-number

PASSWORD | PW = Adabas-password
CIPHER|CC = Adabas-cipher-code
DBID = Adabas-database-identifier);

Details
The SECFILE statement enables you to specify the ADABAS file number, password,
cipher code, and database identifier for the NATURAL SECURITY system file.

If you specified SECURITY=YES in the access descriptor, you cannot change the
values for the password and the cipher code in the view descriptor based on this access
descriptor. However, if no values were specified in the parent access descriptor, then the
values can be entered in the view descriptor, even when the SECURITY=YES
statement has been issued.

Note that you can associate a password, cipher code, and database identifier with an
ADABAS file number, system file, and security file.

Natural-Security-file-number
is the ADABAS file number of the NATURAL SECURITY system file. This file
contains the NATURAL SECURITY library identifier, user identifier, and
passwords.

Adabas-password
is an ADABAS password, which provides security protection at the file or
data-field level, or on the basis of a value at the logical-record level. The value is
written to the access descriptor in encrypted form.

Adabas-cipher code
is an ADABAS cipher code, which is a numeric code for ciphering and deciphering
data into and from an ADABAS file. The value is written to the access descriptor
in encrypted form.

Adabas-database-identifier
is the ADABAS database identifier (number) to be accessed. The database
identifier is a numerical value from 1 to 65,535 that is assigned to each ADABAS
database.

84 SECURITY Statement � Chapter 5

SECURITY Statement

Controls the enforcement of security specifications.

Optional statement

Applies to: access descriptor

Interacts with: ADBFILE, SECFILE, SYSFILE

Default: NO

Syntax
SECURITY<=> YES | NO | Y | N;

Details
The SECURITY statement has the default value NO. Its value controls the enforcement
of security specifications when you later create view descriptors based on this access
descriptor.

With a value of NO, when you create view descriptors based on this access descriptor,
you will be able to modify specified values for ADABAS passwords and cipher codes.

With a value of YES, when you create view descriptors based on this access
descriptor, you will not be able to modify specified values forADABAS passwords and
cipher codes. However, any values that are not specified in the access descriptor can be
specified in a view descriptor or with a data set option.

SELECT Statement

Selects DBMS columns for the view descriptor.

Required statement

Applies to: view descriptor

Interacts with: RESET

Syntax
SELECT ALL | column-identifier-1 <...column-identifier-n>;

Details
The SELECT statement specifies which DBMS columns in the access descriptor to
include in the view descriptor. This is a required statement and is used only when
defining view descriptors.

If you use an editing statement, such as SELECT, it must follow the CREATE
statement when you create a view descriptor. See “CREATE Statement” on page 64 for
more information about the order of statements.

The SELECT statement can take one of the following arguments:

ACCESS Procedure Reference � SUBSET Statement 85

ALL
includes in the view descriptor all the columns that were defined in the access
descriptor excluding dropped columns.

column-identifier
can be either the DBMS column name or the positional equivalent from the LIST
statement, which is the number that represents the column’s place in the access
descriptor on which the view is based. For example, to select the first three
columns, submit the following statement:

select 1 2 3;

If the column name contains special characters or national characters, enclose
the name in quotation marks. You can select as many columns as you want in one
SELECT statement.

SELECT statements are cumulative within the same view creation. That is, if you
submit the following two SELECT statements, columns 1, 5, and 6 are selected, not just
columns 5 and 6:

select 1;
select 5 6;

To clear all your current selections when creating a view descriptor, use the RESET
ALL statement; you can then use another SELECT statement to select new columns.

SUBSET Statement

Adds or modifies selection criteria for a view descriptor.

Optional statement
Applies to: view descriptor

Syntax
SUBSET <selection-criteria>;

Details
You use the SUBSET statement to specify selection criteria when you create a view
descriptor. This statement is optional; if you omit it, the view retrieves all the data
(that is, all the rows) in the DBMS table.

An editing statement, such as SUBSET, must follow the CREATE statement when
you create a view descriptor. See “CREATE Statement” on page 64 for more information
about the order of statements.

The selection-criteria argument can be either a WHERE clause or a SORT clause.
For more information about the WHERE clause, see “WHERE Clause in an ADABAS
View Descriptor” on page 88. For more information about the SORT clause, see “SORT
Clause in a View Descriptor” on page 93. You can use either SAS variable names or
DBMS column names, in your selection criteria. Specify your WHERE clause and
SORT clause by using separate SUBSET statements. For example, you can submit the
following SUBSET statements:

subset where jobcode = 1204;
subset sort lastname;

86 SYSFILE Statement � Chapter 5

SAS does not check the SUBSET statement for errors. The statement is verified and
validated only when the view descriptor is used in a SAS program.

To delete the selection criteria, submit a SUBSET statement without any arguments.

SYSFILE Statement

Specifies parameters for the system file containing DDMs.

Optional statement
Applies to: access descriptor or view descriptor
Interacts with: SECURITY

Syntax
SYSFILE (NUMBER | NUM = Adabas-system-file-number

PASSWORD | PW = Adabas-password
CIPHER|CC = Adabas-cipher-code
DBID = Adabas-database-identifier);

Details
The SYSFILE statement enables you to specify the ADABAS file number, password,
cipher code, and database identifier for the system file containing DDMs.

If you specified SECURITY=YES in the access descriptor, you cannot change the
values for the password and cipher code in the view descriptor. However, if no values
were entered in the access descriptor, you can enter them in the view descriptor, even if
the SECURITY=YES statement has been issued.

Note that you can associate a password, cipher code, and database identifier with an
ADABAS file number, system file, and security file.

Adabas-system-file-number
is the ADABAS file number of the system file containing DDMs.

Adabas-password
is an ADABAS password, which provides security protection at the file or
data-field level, or on the basis of a value at the logical-record level. The value is
written to the access descriptor in encrypted form.

Adabas-cipher code
is an ADABAS cipher code, which is a numeric code for ciphering and deciphering
data into and from an ADABAS file. The value is written to the access descriptor
in encrypted form.

Adabas-database-identifier
is the ADABAS database identifier (number) to be accessed. The database
identifier is a numerical value from 1 to 65,535 that is assigned to each ADABAS
database.

ACCESS Procedure Reference � UPDATE Statement 87

UPDATE Statement

Updates a SAS/ACCESS descriptor file.

Optional statement
Applies to: access descriptor or view descriptor

Syntax
UPDATE libref.member-name.ACCESS|VIEW

<password-level=SAS-password>;

Details
The UPDATE statement identifies an existing access descriptor or view descriptor that
you want to update. The descriptor can exist in either a temporary (WORK) or
permanent SAS data library. If the descriptor has been protected with a SAS password
that prohibits editing of the ACCESS or VIEW descriptor, then the password must be
specified on the UPDATE statement.

Note: It is recommended that you re-create (or overwrite) your descriptors rather
than update them. SAS does not validate updated descriptors. If you create an error
while updating a descriptor, you will not know of it until you use the descriptor in a
SAS procedure such as PROC PRINT. �

To update a descriptor, use its three-level name. The first level identifies the libref of
the SAS data library where you stored the descriptor. The second level is the descriptor’s
name (member name). The third level is the type of SAS file: ACCESS or VIEW.

You can use the UPDATE statement as many times as necessary in one procedure
execution. That is, you can update multiple access descriptors, as well as one or more
view descriptors based on these access descriptors, within the same execution of the
ACCESS procedure. Or, you can update access descriptors and view descriptors in
separate executions of the procedure.

You can use the CREATE statement and the UPDATE statement in the same
procedure execution.

If you update only one descriptor in a procedure execution, the UPDATE and its
accompanying statements are checked for errors when you submit the procedure for
processing. If you update multiple descriptors in the same procedure execution, each
UPDATE statement (and its accompanying statements) is checked for errors as it is
processed. In either case, the UPDATE statement must be the first statement after the
PROC ACCESS statement (Note: The ACCDESC= parameter cannot be specified on the
PROC ACCESS statement).

When the RUN statement is processed, all descriptors are saved. If errors are found,
error messages are written to the SAS log, and processing is terminated. After you
correct the errors, resubmit your statements.

The following statements are not supported when using the UPDATE statement:
ASSIGN, RESET, SECURITY, SELECT, and MVF subcommands RESET and SELECT.

Note: You cannot create a view descriptor after you have updated a view descriptor
in the same procedure execution. You can create a view descriptor after updating or
creating an access descriptor or after creating a view descriptor. �

The following example updates the access descriptor MYLIB.ORDER on the ADABAS
file ORDER. In this example, the column names are changed and formats are added.

88 WHERE Clause in an ADABAS View Descriptor � Chapter 5

proc access dbms=adabas;
update mylib.order.access;
rename ordernum ord_num

fabriccharges fabrics;
format firstorderdate date7.;
informat firstorderdate date7.;
content firstorderdate yymmdd6.;

run;

The following example updates an access descriptor ADLIB.EMPLOY on the
ADABAS file EMPLOYEE and then re-creates a view descriptor VLIB.EMP1204, which
was based on ADLIB.EMPLOY. The original access descriptor included all of the
columns in the file. Here, the salary and birthdate columns are dropped from the access
descriptor so that users cannot see this data. Because RESET is not supported when
UPDATE is used, the view descriptor VLIB.EMP1204 must be re-created in order to
omit the salary and birthdate columns.

proc access dbms=adabas;
/* update access descriptor */
update adlib.employ.access;
drop salary birthdate;
list all;

/* re-create view descriptor */
create vlib.emp1204.view;
select empid hiredate dept jobcode sex

lastname firstname middlename phone;
format empid 6.

hiredate date7.;
subset where jobcode=1204;

run;

The following example updates a view descriptor VLIB.BDAYS from the
ADLIB.EMPLOY access descriptor, which was created in a separate procedure
execution. In this example, the WHERE clause replaces the WHERE clause that was
specified in the original view descriptor.

proc access dbms=adabas
update vlib.bdays.view;
subset;
subset where empid GT 212916;

run;

WHERE Clause in an ADABAS View Descriptor
You can use a WHERE clause in a view descriptor to select specific ADABAS records.

View WHERE Clause Syntax
A view WHERE clause consists of the SUBSET and WHERE (or WH) keywords,

followed by one or more conditions that specify criteria for selecting records. A
condition has one of the following forms:

field-name<(occurrence)> operator value
field-name<(occurrence)> range-operator

ACCESS Procedure Reference � View WHERE Clause Examples 89

low-value * high-value

The user-supplied elements of the WHERE clause conditions are described below:

field-name
is the ADABAS name of the data field or corresponding SAS variable name for
which you are specifying criteria. This data field must be selected in the view
descriptor. (The procedure will assume that any name in a condition is a SAS
name. If it is not, the procedure will treat it as an ADABAS name.) If the field’s
ADABAS name is not unique within a NATURAL DDM, you must specify its
external name.

A referenced data field must be an ADABAS descriptor field in the following
situations:

� the view WHERE clause contains more than one condition

� the view WHERE clause uses the SPANS or NE operator

� you are also specifying a view SORT clause

� you are also planning to issue a SAS BY statement or a SAS ORDER BY
clause in a SAS program that references a view descriptor containing a view
WHERE clause

� You are also planning to issue a SAS WHERE clause in a SAS program that
references a view descriptor containing a view WHERE clause.

(occurrence)
is a numeric value from 1 to 99 identifying the nth occurrence of a periodic group.
You must use parentheses around the number. This is an optional value. If you do
not specify an occurrence number, all occurrences are selected.

operator
can be one of the following comparison and logical operators:

= or EQ equal to

> or GT greater than

< or LT less than

!= or = or NE not equal to

≥ or GE or GTE greater than or equal to

≤ or LE or LTE less than or equal to

range-operator
can be one of the following operators:

= or EQ or
SPANS

within the range (inclusive)

value or high-value or low-value
is a valid value for the data field.

View WHERE Clause Examples
This section gives brief examples using the WHERE clause and explains what each

example does.

90 View WHERE Clause Examples � Chapter 5

Specifying Conditions with the SPANS Operator
When comparing low and high values, the asterisk is required. For example, the

following WHERE clause selects those employees with employee numbers between 2300
and 2400:

subset where personnel-number spans 2300 * 2400

The following WHERE clause selects those employees with last names up through
Smith:

subset where name spans ’A’ * ’Smith’

Specifying Expressions
You can combine conditions to form expressions. Two conditions can be joined with

OR (|) or AND (&). Since expressions within parentheses are processed before those
outside, use parentheses to have the OR processed before the AND.

subset where cost = .50 & (type = ansi12 |
class = sorry)

The following WHERE clause selects all records where AVAIL is Y or W:

subset where avail eq y | avail eq w

The next WHERE clause selects all records where PART is 9846 and ON-HAND is
greater than 1,000:

subset where part = 9846 & on-hand > 1000

Specifying Values in Character Fields
For character fields, you can use quoted or unquoted strings. Any value entered

within quotation marks is left as is; all unquoted values are uppercased and redundant
blanks are removed. For example, the following clause extracts data for SMITH:

subset where lastname = Smith

The next example extracts data for Smith:

subset where lastname = ’Smith’

The next WHERE clause selects all records where CITY is TRUTH OR
CONSEQUENCES or STZIP is NM 87901. Notice in the first condition that quotation
marks prevent OR from being used as an operator. In the second condition, they
prevent the extra space between NM and 87901 from being removed.

subset where city = ’TRUTH OR CONSEQUENCES’ |
stzip = ’NM 87901’

The following example selects all records where SHOP is Joe’s Garage. Because the
value is enclosed in quotation marks, the two consecutive single quotation marks are
treated as one.

subset where shop = ’Joe’’s Garage’

You can also use double quotation marks, for example,

subset where shop = "Joe’s Garage"

Specifying Numeric Format Values
For numeric values, use decimal or scientific notation. For example,

ACCESS Procedure Reference � View WHERE Clause Examples 91

subset where horsepower = 2.5

Specifying Dates
Numeric values representing dates in an ADABAS file are not automatically

converted to SAS date values. They are simply treated as numbers. For example,
103098 is considered less than 113188.

However, the ACCESS procedure provides you the ability to specify a SAS date
format with the CONTENT statement. Then, numeric values are converted to SAS
dates. To reference them in a view WHERE clause, use informat representation
(without the ’D at the end as in SAS). See “CONTENT Statement” on page 63 for more
information about specifying a SAS date format with the CONTENT statement.

Specifying Values in Superdescriptor Fields
A superdescriptor field is treated as if it has an alphanumeric (character) ADABAS

standard format unless all of the parent fields from which it is derived have a binary
(numeric) format.

When you enter a value for a numeric superdescriptor or an alphanumeric
superdescriptor where one or more of its parent fields have a numeric format, the value
must be in character hexadecimal format because many data types and from-to
specifications can be contained in one superdescriptor value. When you enter a value
for a character superdescriptor, the value must be entered as character data.

Note: By assigning a SAS format of HEXw. to superdescriptors that are derived
from one or more numeric fields in a view descriptor, you can see the internal
hexadecimal values. You can then use these values as a guide for entering like values
in the WHERE clause. �

For example, the NATURAL DDM named CUSTOMERS has the character
superdescriptor field STATE-ZIPLAST2, which is defined as

’SP=ST(1,2),ZI(1,2)’

The two data fields that make up STATE-ZIPLAST2 are defined as

DDM Name ADABAS ID ADABAS TYPE LENGTH
-------- --------- ----------- ------
STATE ST A 2
ZIPCODE ZI U 5

If you want to select the value TX from the data field STATE and the value 78701 from
the data field ZIPCODE, the view WHERE clause would be as follows:

subset where state_zi = E3E7F0F1

The comparable SAS WHERE clause would be

where state_zi = ’E3E7F0F1’x

F0F1 is the hexadecimal internal representation of a positive zoned decimal value of
01. If ZIPCODE were defined as packed and the from-to specification were the same,
the hexadecimal representation 001F would represent the value 01. Similarly, 0001
would be the correct representation for either binary or fixed. A sign (+ or -) must also
be entered according to type and ADABAS requirements.

Suppose you want to access a character superdescriptor field named DEPT-PERSON,
which is defined as

’S2=DP(1,6),LN(1,18)’

The two data fields that make up DEPT-PERSON are defined as

92 View WHERE Clause Examples � Chapter 5

DDM Name ADABAS ID ADABAS TYPE LENGTH
-------- --------- ----------- ------

DEPT DP A 6
LASTNAME LN A 18

If you want to select the value TECH01 from the data field DEPT and the value BOYER
from the data field LASTNAME, the view WHERE clause would be as follows. (Note
that unquoted values in the view WHERE clause are uppercased.)

subset where dept-person = tech01boyer

A comparable SAS WHERE clause would be

where dept-person = ’TECH01BOYER’

Specifying Values in Subdescriptor Fields
Subdescriptors take the ADABAS type of their parent and the length of their from-to

specification. Unlike superdescriptors, subdescriptor values consist of only one data
type.

For example, the NATURAL DDM named CUSTOMERS has the numeric
subdescriptor field ZIPLAST, which is defined as

’SB=ZI(1,2)’

The data field that ZIPLAST is based on is defined as

DDM Name ADABAS ID ADABAS TYPE LENGTH
-------- --------- ----------- ------
ZIPCODE ZI U 5

If you want to select the values 78701, 82701, and 48301, the view WHERE clause and
the SAS WHERE clause would be as follows.

View WHERE clause:

subset where ziplast2 = 01

SAS WHERE clause:

where ziplast2 = 01

Now suppose you want to access a character subdescriptor field named DEPT-CODE,
which is defined as

’DC=DP(1,4)’

The data field that DEPT-CODE is based on is defined as

DDM Name ADABAS ID ADABAS TYPE LENGTH
-------- --------- ----------- ------

DEPT DP A 6

If you want to select the values TECH01, TECH04, and TECH23, the view WHERE clause
would be

subset where dept-code = tech

The comparable SAS WHERE clause would be

where dept-code = ’TECH’

ACCESS Procedure Reference � View SORT Clause Syntax 93

Specifying Values in Multiple-Value Fields

If the field name refers to a multiple-value field, all values for the field are compared
with the value that you specify. For example, if CARD is a multiple-value field, the
following view WHERE clause selects all records where any one of the values of CARD
is VISA.

subset where card eq visa

Note that in a SAS WHERE clause, you cannot specify a value for a multiple-value
field; however, in a SAS WHERE clause, you can specify an occurrence, which you
cannot do in a view WHERE clause.

For more information about and examples of using multiple-value fields in selection
criteria, see “Using Multiple-Value Fields in Selection Criteria” on page 122.

Specifying Values in Periodic Group Fields

If the field is in a periodic group, use field-name(occurrence) to identify the field in
the nth occurrence of the group. For example, the following WHERE clause selects all
records where PHONE is 234-9876 in the second occurrence of the periodic group
containing PHONE.

subset where phone(2) eq 234-9876

Note that the 2 after PHONE refers to the second occurrence of its parent periodic
group and not to the second occurrence of PHONE.

If you do not specify an occurrence number, all occurrences are checked. For
example, the following WHERE clause selects all records where PHONE is 234-9876 in
any occurrence of the periodic group containing PHONE.

subset where phone eq 234-9876

For more information about and examples of using periodic group fields in selection
criteria, see “Using Multiple-Value Fields in Selection Criteria” on page 122.

SORT Clause in a View Descriptor

When you define a view descriptor, you can also include a SORT clause to specify
data order. You can reference only the data fields selected for the view descriptor, and
the data fields must be descriptors; that is, they must have indexes. Without a SORT
clause or a SAS BY statement, the data order is determined by ADABAS.

A SAS BY statement automatically issues a SORT clause to ADABAS. If a view
descriptor already contains a SORT clause, the BY statement overrides the sort for that
program. An exception is when the SAS procedure includes the NOTSORTED option.
Then, the SAS BY statement is ignored, and the view descriptor SORT clause is used; a
message is written to the log when NOTSORTED causes a SAS BY statement to be
ignored.

View SORT Clause Syntax

The syntax for the SORT clause is

SUBSET SORT field-name <,field-name> <,field-name> <option>

94 SORT Clause Examples � Chapter 5

The elements of the SORT clause are described below.

field-name
is the name of an ADABAS data field or its corresponding SAS variable name to
sort by. The data field must be an ADABAS descriptor; that is, it must be a key
data field. You can use the data field’s ADABAS field name or its DDM name.

You can specify up to three data fields; optionally, you can separate them with
commas. If you specify more than one field name, the values are ordered by the
first named field, then the second, and so on.

option
is one of the following, which applies to all specified field names. That is, you
cannot specify an option for one field name and a different option for another field
name.

<ASCENDING|ASCENDISN|DESCENDING>

ASCENDING
indicates the sort is to be in ascending order (low-to-high). For example, A, B, C, D
or 1, 2, 3 4. The default is ASCENDING.

ASCENDISN
indicates the sort is to be in ascending ISN (internal sequence number) order.
Each logical record in an ADABAS file has an assigned ISN for identification. If
you specify ASCENDISN, you cannot specify a data field name.

DESCENDING
indicates the sort is to be in descending order (high-to-low). For example, Z, Y, X,
W or 9, 8, 7 6.

SORT Clause Examples
The following SORT clause causes the ADABAS values to be presented in ascending

order. Based on the data fields included in the VLIB.USACUST view descriptor, the
logical records are presented first by the values in the data field CUSTOMER, then by
the values in data field ZIPCODE, and then by the values in the data field
FIRSTORDERDATE.

subset sort customer, zipcode, firstorderdate

The following SORT clause causes logical records that are accessed by the
VLIB.CUSPHON view descriptor to be presented in descending order based on the
values in the NAME data field:

subset sort name descending

Creating and Using ADABAS View Descriptors Efficiently
When creating and using view descriptors, follow these guidelines to minimize

ADABAS processing and your operating system resources and to reduce the time
ADABAS takes to access data.

� Specify selection criteria to subset the number of logical records ADABAS returns
to SAS.

� Write selection criteria that enable ADABAS to use inverted lists when possible.
This applies whether you specify the selection criteria as part of the view
descriptor or in a SAS program. This is especially important when accessing a
large ADABAS file.

ACCESS Procedure Reference � ACCESS Procedure Formats and Informats for ADABAS 95

When ADABAS cannot use an inverted list, it sequentially scans the entire file.
You cannot guarantee that ADABAS will use an inverted list to process a condition
on a descriptor data field, but you can write selection criteria that enable ADABAS
to use available inverted lists effectively.

� Select only the data fields your program needs. Selecting unnecessary data fields
adds extra processing time and requires more memory.

� Use a BY statement to specify the order in which logical records are presented to
SAS only if SAS needs the data in a particular order for subsequent processing.
You can use ADABAS descriptor data fields only.

As an alternative to using a BY statement, which consumes CPU time each time
you access the ADABAS file, you could use the SORT procedure with the OUT=
option to create a sorted SAS data file. In this case, SAS, not ADABAS, does the
sorting. This is a better approach for data that you want to use many times.

� If a view descriptor describes a large amount of ADABAS data and you will use
the view descriptor often, it might be more efficient to extract the data and place it
in a SAS data file. See “Performance Considerations” on page 34 for more
information about when it is best to extract data.

� If you don’t need all occurrences of multiple-value fields, limit the number of
occurrences with the MVF statement.

� If you reference data fields in selection criteria that are not ADABAS descriptors,
it is generally more efficient to put those conditions in a SAS WHERE clause, not
in the view descriptor WHERE clause.

� To optimize WHERE clause processing, the ADABAS interface view engine uses
the ADABAS L3 command when possible. However, a number of restrictions must
be satisfied before the L3 command can be used. For these restrictions, see “How
the SAS/ACCESS Interface to ADABAS Works” on page 102.

ACCESS Procedure Formats and Informats for ADABAS
When you create SAS/ACCESS descriptor files from ADABAS data, the ACCESS

procedure converts data field types and lengths to default SAS variable formats and
informats.

The following summary information will help you understand the data conversion.
� The ADABAS interface view engine uses ADABAS standard length and type for

reading and updating ADABAS data (except for variable-length fields and DB
Content overrides). NATURAL DDMs have no effect other than to use DDM
length and decimals to set SAS formats.

� Length and decimal points specified by DDMs might conflict with the ADABAS file
definition (for example, not big enough, too big, and so on). If so, the ADABAS
standard length is used to set default SAS formats.

� Packed, unpacked, and binary types can hold very large numeric data values. SAS
can maintain precision up to sixteen digits. Unpacked fields larger than sixteen
bytes are converted to the character hexadecimal type upon which no numeric
operations can occur. Therefore, precision is not a problem. For large packed and
binary fields, however, you must be aware that precision can be lost when data
values exceed sixteen digits.

� If the standard length is 0 (that is, if the data field has a variable length), the
ACCESS procedure chooses a default length.

� The default length for an alphanumeric is 20.
� The default length for a numeric is the maximum length before assuming a

character hexadecimal type. Packed is 15 bytes (29 digits and a sign),

96 ACCESS Procedure Formats and Informats for ADABAS � Chapter 5

unpacked is 16 bytes (16 digits and a sign), binary is 8 bytes, fixed is 4 bytes,
and float is 8 bytes.

� Superdescriptors and subfields are given an ADABAS type of character unless all
of the parent fields are numeric. Then, they are given an ADABAS type of binary.
Their length is calculated by totaling the number of bytes in the individual parent’s
from-to specification. If the length of a binary superdescriptor or subdescriptor is
greater than 8, the SAS format is changed from numeric to character hexadecimal.

� Subdescriptors and subfields take the type of their parent and the length of their
from-to specification.

� Phonetic descriptors are alphanumeric and use the length of the phonetic parent.
Any retrieval of a phonetic descriptor is actually retrieval of its parent.

� If ADABAS data falls outside the valid SAS data ranges, you will get an error
message in the SAS log when you try to read the data. For example, an ADABAS
date might not fall in the valid SAS date range.

The following table shows the default SAS variable formats and informats that the
ACCESS procedure assigns to each ADABAS data type in an ADABAS file.

Table 5.2 SAS Formats and Informats for ADABAS Data Types in an ADABAS File

ADABAS Type Description
Standard Length in
Bytes SAS Format and Informat

A alphanumeric <=200 $ADBLEN.

>200 $200

B binary < = 4 (2 x ADBLEN) + 1

(unsigned) > 4 and < =8 (2 x ADBLEN).

> 8 and < =100 $HEX(2 x ADBLEN).

> 100 $HEX200.

F fixed (signed) 8.

G floating point (signed) BEST12.

P packed decimal
(signed)

(2 x ADBLEN + 1).

U unpacked decimal < = 16 (ADBLEN + 1).

(zoned decimal) > 16 $HEX(2 x ADBLEN).

(signed)

The following information applies to this table:

� ADBLEN = ADABAS standard length (in bytes). If the standard length equals 0,
then the interface view engine sets the length based on the data type, as follows:
A=20, B=8, F=4, G=8, P=15, and U=16.

� Binary data that is

� < = 4 bytes is treated as signed numbers

� < = 8 bytes and > 4 bytes is treated as positive (unsigned) numbers

� > 8 bytes is treated as character hexadecimal data.

ACCESS Procedure Reference � Effects of the SAS/ACCESS Interface on ADABAS Data 97

� Numeric values greater than 16 displayable digits can lose precision.

The following table shows the default SAS variable formats and informats that the
ACCESS procedure assigns to each ADABAS data type in a NATURAL DDM.

Table 5.3 SAS Formats and Informats for ADABAS Data Types in a NATURAL DDM

ADABAS
Type Description

Standard Length in
Bytes SAS Format and Informat

A alphanumeric < = 200 $DDMLEN.

> 200 $200.

B binary (unsigned) < = 4 (DDMLEN + DECPT + SIGNPT) .

> 4 and < = 8 (DDMLEN +DECPT) .

> 8 and < = 100 $HEX(2 x ADBLEN).

> 100 $HEX200.

F fixed (signed) (DDMLEN + DECPT + SIGNPT) .

G floating point
(signed)

BEST12.

P packed decimal
(signed)

(DDMLEN + DDMDEC + DECPT +
SIGNPT) . DDMDEC.

U unpacked decimal
(zoned decimal)
(signed)

< = 16 (DDMLEN + DDMDEC + DECPT +
SIGNPT) . DDMDEC.

> 16 $HEX(2 x ADBLEN).

The following information applies to this table:
� DDMLEN = DDM digits to the left of the decimal point.
� DDMDEC = DDM digits to the right of the decimal point.
� ADBLEN = ADABAS standard length in bytes. If the standard length equals 0,

then the interface view engine sets the length based on the data type, as follows:
A=20, B=8, F=4, G=8, P=15, and U=16.

� DECPT = 1 when DDM digits to the right of the decimal point are greater than 0.
� DECPT = 0 when DDM digits to the right of decimal point are equal to 0.
� SIGNPT = 1 when numeric type is signed data (fixed, float, packed, unpacked, and

binary ≤4).
� SIGNPT = 0 when numeric type is unsigned data (binary > 4 and ≤ l8).
� Binary data that is

� ≤ 4 bytes is treated as signed numbers
� ≤ 8 bytes and > 4 bytes is treated as positive (unsigned) numbers
� > 8 bytes is treated as character hexadecimal data.

� Numeric values greater than 16 displayable digits can lose precision.

Effects of the SAS/ACCESS Interface on ADABAS Data
When you access ADABAS data through the SAS/ACCESS interface, the interface

view engine maps the ADABAS data into SAS observations.

98 Effects of the SAS/ACCESS Interface on ADABAS Data � Chapter 5

� Multiple-value field occurrences are mapped to multiple SAS variables. For
example, if the ADABAS data has a multiple-value field named JOBTITLE with
two occurrences, the resulting SAS variables would be JOBTITL1 and JOBTITL2.

� Periodic group occurrences are mapped to multiple SAS observations. For example,
if the ADABAS data has a periodic group field named EDUCATION consisting of
data fields COLLEGE, DEGREE, and YEAR, there would be one observation for
COLLEGE, DEGREE, and YEAR for each periodic group occurrence.

When you create SAS/ACCESS descriptor files for ADABAS data, you need to be
aware of how some data fields are affected by the ACCESS procedure and how you can
use them as variables in SAS programs.

� When you create a SAS/ACCESS descriptor file for ADABAS data, the ACCESS
procedure automatically creates a SAS variable named ISN. This variable gives
you access to the ISNs (internal sequence numbers) for all the ADABAS logical
records.

� Selecting either a subdescriptor or a superdescriptor data field creates a SAS
variable for the data field. The variable can be retrieved and used in a WHERE
clause; however, the variable cannot be updated.

� Selecting a phonetic descriptor data field creates a SAS variable for that phonetic
descriptor. The values of the data field for which the phonetic descriptor is defined
are retrieved, and the phonetic descriptor can be used in a WHERE clause.
However, this variable cannot be updated.

If you use a variable for a phonetic descriptor in a SAS WHERE clause, the
interface view engine must be able to process the entire SAS WHERE clause.

� For a multiple-value data field, the ACCESS procedure creates SAS variables that
reference individual occurrences and a SAS variable that references all
occurrences to perform special WHERE clause queries. For example, in the
NATURAL DDM named CUSTOMERS, the BRANCH-OFFICE data field is a
multiple-value data field with four occurrences. The ACCESS procedure creates
SAS variables named BRANCH_1, BRANCH_2, and so on, and a SAS variable
named BR_ANY. For more information and examples, see “Using Multiple-Value
Fields in Selection Criteria” on page 122.

� For a periodic group data field, the ACCESS procedure creates a SAS variable for
the occurrence number within the periodic group. For example, in the NATURAL
DDM named CUSTOMERS, the SIGNATURE-LIST data field is a periodic group
for data fields LIMIT and SIGNATURE. PROC ACCESS creates a SAS variable
named SL_OCCUR for the occurrence numbers. For more information and
examples, see “Periodic Group Fields in Selection Criteria” on page 124.

99

P A R T3

Appendices

Appendix 1.Information for the Database Administrator 101

Appendix 2.Advanced Topics 115

Appendix 3.Example Data 131

Appendix 4.Recommended Reading 155

100

101

A P P E N D I X

1
Information for the Database
Administrator

Introduction to the Information for the Database Administrator 101
How the SAS/ACCESS Interface to ADABAS Works 102

How the ADABAS Interface View Engine Works 102

Calls Made on Behalf of the ACCESS Procedure 103

Calls Made by Other SAS Procedures 103

Retrieval Processing 103
Retrievals with No WHERE Clause and No Sorting Criteria 104

Retrievals with Only a WHERE Clause 105

Retrievals with Sorting Criteria 106

Update Processing 106

Competitive Updating and Logical Transaction Recovery 107

Effects of Changing an ADABAS File or NATURAL DDM on Descriptor Files 107
Changes That Have No Effect on Existing View Descriptors 107

Changes That Might Have an Effect on Existing View Descriptors 108

Changes That Cause Existing View Descriptors to Fail 108

Data Security with ADABAS 108

How the Interface View Engine Uses Security Specifications 108
SAS Security 110

ADBSE User Exit 110

Effects of Changing Security Options 110

Controlling Data Locks with ADABAS 111

Maximizing ADABAS Performance 111
Debug Information for ADABAS 112

System Options for PROC ACCESS and the Interface View Engine 112

ADBAUSE System Options Default Values 112

View Engine ADBEUSE System Options Default Values 113

Introduction to the Information for the Database Administrator
This appendix explains how the SAS/ACCESS interface to ADABAS works so that

you can decide how to administer its use at your site. This appendix also discusses the
effects of changing ADABAS data on SAS/ACCESS descriptor files, data security,
controlling data locks, maximizing the ADABAS interface view engine performance,
how to debug problems, and defaults for system options.

102 How the SAS/ACCESS Interface to ADABAS Works � Appendix 1

How the SAS/ACCESS Interface to ADABAS Works

When you use the ACCESS procedure to create a SAS/ACCESS access descriptor
file, SAS calls ADABAS to get a description of the ADABAS data. When you create a
view descriptor file, SAS has information about the ADABAS data in the access
descriptor, so it does not call ADABAS.

The ACCESS procedure writes the SAS/ACCESS descriptor files to a SAS data
library. Then, when you issue a SAS procedure using a view descriptor whose data is in
an ADABAS file, the SAS Supervisor calls the interface view engine to access the data.
The engine can access ADABAS data for reading, updating, inserting, and deleting.

When you edit either an access descriptor or a view descriptor, SAS does not call
ADABAS.

ADABAS data records are uniquely identified by an Internal Sequence Number
(ISN). As discussed in Chapter 2, “ADABAS Essentials,” on page 7, multiple SAS
observations are generated from a single ADABAS record when the view descriptor
contains periodic group fields. Creating multiple SAS observations does not preserve
the unique quality of the ISN number (that is, more than one SAS observation can refer
to a single ADABAS record). As a result, ADABAS records cannot be uniquely
addressed by a single number within the SAS environment.*

In SAS terms, this means that an ADABAS record is not addressable by an
observation number. Therefore, various SAS procedures behave differently when
accessing ADABAS data than they do when accessing a SAS data file. For example,
consider the following PRINT procedure and FSEDIT procedure behavior with ADABAS
data:

� The PRINT procedure issues messages informing you that observation numbers
are not available and that the procedure has generated line numbers for its
output. The numbers do not come from the ADABAS file.

� The FSEDIT procedure does not display an observation number in the upper right
corner of the window. If you try to enter a number on the command line, an error
message is displayed.

How the ADABAS Interface View Engine Works

The ADABAS interface view engine is an applications program that retrieves and
updates ADABAS data. Calls are in one of the following categories:

� calls made on behalf of the ACCESS procedure when it is creating an ACCESS
descriptor

� calls made by a SAS DATA step or by SAS procedures that reference a view
descriptor with the DATA= option.

In all situations, the interface view engine initiates and terminates communication
between SAS and ADABAS. Each time a different SAS procedure requires use of
ADABAS, the program makes an initialization call to the engine. This first call
establishes communication with ADABAS. Additional calls to the engine perform
retrieval and update operations required by the SAS procedure.

* In combination, the SAS variables that contain the ISN and periodic group occurrence number uniquely identify an
observation. The periodic group occurrence number variable is a fabricated SAS variable that does not have a corresponding
field in the ADABAS file. It can be selected when creating a view descriptor and is valued with the occurrence number of
each periodic group accessed.

Information for the Database Administrator � Retrieval Processing 103

Calls Made on Behalf of the ACCESS Procedure
For both NATURAL DDMs and ADABAS files, the ACCESS procedure calls the

interface view engine to retrieve data field information. The engine sends this
information (such as, name, level number, data format, and definition options) to the
ACCESS procedure for each ADABAS data field.

When you specify a DDM name, the interface view engine retrieves information from
two places. First, the engine uses a combination of S1 and L1 commands to search and
retrieve the DDM records that have been previously cataloged into a system file. The
DDM records contain information for each field included in the DDM. Along with the
field information, the engine also obtains the ADABAS file number and the database
identifier on which the DDM is based. The ADABAS file number and database identifier
are used in conjunction with the LF command to retrieve even more information directly
from the Field Definition Table (FDT). The engine then combines the information
retrieved from the DDM and the FDT to give a detailed description of each field.

When dealing directly with an ADABAS file, the engine uses only the LF command
for retrieving field information from the FDT. The ACCESS procedure stores this
information in the access descriptor file for later use when creating view descriptors.

If you use the ACCESS procedure to extract data and store it in a SAS data file, the
ACCESS procedure calls the interface view engine to retrieve the actual data.

Calls Made by Other SAS Procedures
SAS procedures can access records in an ADABAS file by referring to a view

descriptor with the DATA= option. SAS examines the view descriptor to determine
which database management system is referred to and passes control to the appropriate
engine. The interface view engine uses information stored in the view descriptor (such
as name, level number, data format, and definition options) to process ADABAS data
records as if they were observations in a SAS data file.

Before doing any retrievals, the engine processes the WHERE clause (if any) to select
a subset of data records to be processed as observations. The engine inspects the view
WHERE clause and the SAS WHERE clause (if any) and issues the ADABAS
commands that are necessary to qualify the appropriate records. If no WHERE clause
exists, all data records in the file qualify.

The interface view engine forms a SAS observation (according to the view descriptor),
which it passes back to the calling procedure for processing.

Based on the capabilities of the SAS procedure, the next call to the engine might be a
request to update or delete the SAS observation that was just retrieved. For updates,
the engine issues reads with holds followed by the appropriate update command. Adds
do not require a record to be read (except in special cases when you are dealing with
ADABAS files that contain periodic group fields).

The SAS procedure then calls the engine again to retrieve another SAS observation.
The engine locates another data record, constructs another SAS observation, and
returns it to the SAS procedure. This cycle continues until the SAS procedure
terminates or until the last qualified SAS observation has been constructed and
returned to the SAS procedure.

Retrieval Processing

The SAS/ACCESS interface view engine uses the ADABAS multifetch feature when
reading data records from ADABAS. When data records are requested from ADABAS,
this feature buffers multiple data records and transfers the records to the engine. The
data records are returned to the engine in the ADABAS record buffer with information

104 Retrieval Processing � Appendix 1

about each record that is returned in the ISN buffer. Therefore, the number of records
that are returned depends on the sizes of the record buffer and ISN buffer.

The read commands that use the multifetch feature in the engine are L1, L2, L3, and
L9 commands (the engine does not use the feature when issuing L4 commands). In
cases where there is a large number of periodic group occurrences selected in the view
descriptor, the multifetch feature might not be used to read the data records from
ADABAS.

The type of processing and the subset of ADABAS commands used by the interface
view engine depends on the following conditions:

� whether you specify a WHERE clause (view or SAS) and sorting criteria (view
SORT clause, SAS BY statement, SAS ORDER BY clause) separately or in
combination

� whether the SAS procedure requires sequential or random access of the ADABAS
records

� whether the SAS procedure requests exclusive control of the ADABAS data, either
implicitly or explicitly (using the SAS software CNTLLEV=MEMBER data set
option).

Retrievals with No WHERE Clause and No Sorting Criteria
If you do not specify a WHERE clause or any sorting criteria, the type of ADABAS

commands used for retrievals is controlled by the type of access (either sequential or
random) required by the SAS procedure. A SAS procedure requiring sequential access
(for example, PROC PRINT) results in the engine issuing L2 commands to retrieve the
records from the ADABAS file. Since there is no WHERE clause to subset the data, the
engine retrieves every ADABAS record.

A SAS procedure requiring random access (for example, PROC FSEDIT) must have
the ability to navigate both forward and backward. To support forward and backward
navigation, an ISN list must exist. When a WHERE clause has not been entered, the
engine generates a default WHERE clause. The engine searches for the first ADABAS
descriptor data field in the view descriptor. Once the engine finds an ADABAS
descriptor field, its format and length are used to construct a default WHERE clause.
(If no ADABAS descriptors exist, the engine displays an error message.)

The ADABAS field formats and their corresponding default WHERE clause are listed
below (assuming that the data field named AA is the first ADABAS descriptor field):

Table A1.1 ADABAS Field Formats and Corresponding Default WHERE Clauses

Format Default WHERE Clause

alphanumeric where aa >= ’b’

binary where (aa <= 0) or (aa > 0)

fixed point

floating point

packed decimal

unpacked decimal

The default WHERE clause results in the ADABAS interface view engine issuing S1
and S8 commands. Those commands generate an ISN list whose corresponding records
are read using L1 or L4 commands. The engine uses L4 commands if the SAS
procedure is capable of performing updates (that is, PROC FSEDIT). The engine uses

Information for the Database Administrator � Retrieval Processing 105

L1 commands if the SAS procedure is not allowed to perform updates (that is, PROC
FSBROWSE).

Note: A default WHERE clause can use considerable resources, depending on the
number of ADABAS records. Therefore, for large amounts of ADABAS data, it is best to
include either a view WHERE clause or a SAS WHERE clause. Also, the ADBDEFW
systems option and ADBL3 data set option are available to alter the interface view
engine’s handling of the default WHERE clause. A default WHERE clause might also
be issued for an ADABAS descriptor that has the NULL SUPPRESS option. That is,
ADABAS records might exist that are not pointed to by the ISN list. �

Retrievals with Only a WHERE Clause
If you specify a WHERE clause (either view or SAS), the engine typically issues S1,

S8, and L1 or L4 commands to extract the appropriate ADABAS records. The only
instance where this does not apply is when the L3 command is used. (This case is
discussed later.)

If you specify both a view WHERE clause and a SAS WHERE clause, the two are
combined using the Boolean AND operator, that is,

(SAS WHERE clause) AND (view WHERE clause)

Note: The only part of the SAS WHERE clause being logically combined is the part
that ADABAS can support. See “Using a SAS WHERE Clause for Selection Criteria” on
page 127. �

Combining the two WHERE clauses does not alter the set of commands used to
retrieve the records. It does require the execution of an additional S8 command. The S1
and S8 commands generate an ISN list whose records are subsequently read using L1
or L4 commands.

Note: In SAS 9.1 and later, the ADABAS engine can issue an L1 command to
ADABAS when an ISN is specified in a SAS WHERE clause. With this method, only one
record is read instead of the complete table, resulting in a performance enhancement. �

The L1 command is issued if an ISN is specified in a SAS WHERE clause and all of
the following conditions are met:

� the WHERE clause must be a SAS WHERE clause

� no view descriptior SUBSET can be used

� the WHERE clause can contain only a single condition

� the operator must be EQ or =

� sorting criteria cannot be specified

� option ADBL3 must be set to NO (its default value).

To optimize WHERE clause processing, you can specify use of the L3 command with
the SAS software ADBL3 data set option. The ADBL3 data set option also controls
which commands are used if the L3 command cannot be used. A number of restrictions
must be satisfied before the L3 command can be used.

� The SAS procedure must have exclusive control of the view descriptor and
therefore exclusive control of the underlying ADABAS data. This control is
accomplished implicitly by some procedures and explicitly by using the SAS
software CNTLLEV=MEMBER data set option.

� The SAS procedure must request sequential access.

� Sorting criteria cannot be specified.

� A WHERE clause can contain only a single condition.

106 Update Processing � Appendix 1

� The field referenced in the single condition must be an ADABAS descriptor field.
(Phonetic descriptors and descriptors contained within or derived from a field
within a periodic group cannot be used.)

� The operator used in the single condition must be LT, LE, GT, GE, or SPANS.

The L3 command reads data records in logical sequential order based on the sequence
of values for a given ADABAS descriptor field. The inverted list associated with the
descriptor field controls the order in which the records are read. Unlike the S1 command
that creates an ISN list, the L3 command uses an existing inverted list resulting in
more optimal retrievals. The L3 command produces the most dramatic results for very
large ADABAS files, or in ADABAS environments where ISN list buffer sizes are set
comparatively low, or in system environments where disk space is a problem.

If the L3 command cannot be used, the ADBL3 data set option lets you specify the
use of either the S1 or the S2 command to retrieve data records in its place. If the S2
command cannot be used, the engine returns an error.

Retrievals with Sorting Criteria
To sort data records, you can use only ADABAS descriptor fields since both ADABAS

commands used for sorting rely on ADABAS descriptors. The S9 command requires an
ISN list as input, and the L3 command uses an inverted list. This means that all
ADABAS data fields referenced in a view descriptor SORT clause, a SAS BY statement,
or a SAS ORDER BY clause must be associated with ADABAS descriptor fields.

As with the WHERE clause, certain sorting criteria can be optimized with the L3
command. However, the following conditions must apply before the L3 command can be
used for sorting:

� The SAS procedure must request sequential access.
� Only one sort field is requested.
� A WHERE clause cannot be specified.
� The sorting sequence must be ascending.

You invoke the L3 command with the SAS software ADBL3 data set option. The L3
command reads data records in logical sequential order using the inverted list
associated with the ADABAS descriptor field. The inverted list is maintained in
ascending logical order.

If the ADBL3 data set option is not set, or it specifies use of the L3 command only
and one of the above conditions is not met, the S9 command is used to satisfy the
sorting criteria. The S9 command also imposes some limitations: a maximum of three
descriptor fields can be used for sorting, and the ordering sequence (either ascending or
descending) applies to every sort field. In all cases, the S9 command requires an ISN
list as input. Since the ISN list is generated by WHERE clause processing, a default
WHERE clause must be used if a WHERE clause is not specified. The S9 command
generates a final ISN list in sorted order. L1 or L4 commands are used to read the
ADABAS records represented in the final ISN list.

The S9 command can also sort the input ISN list in ascending ISN sequence. This is
accomplished by supplying only the ordering verb ASCENDISN (no sort fields) in the
view descriptor SORT clause.

Update Processing
Update processing involves updating, deleting, and adding data records. You must

retrieve the data record before updating or deleting it.
Updating, deleting, and adding records is a straightforward process if there are no

periodic group fields in the view descriptor or in the ADABAS data on which the view

Information for the Database Administrator � Changes That Have No Effect on Existing View Descriptors 107

descriptor is based. In this case, the A1, E1, and N1 ADABAS commands are used for
updating, deleting, and adding records, respectively.

If periodic groups do exist, adding new records and deleting existing records is more
complicated. This is due to multiple SAS observations being generated from a single
ADABAS record containing periodic group fields. The complexities of adding records
containing periodic group fields is discussed in “Adding an ADABAS Observation” on
page 118. Deleting records when the view descriptor or ADABAS data contains periodic
group fields is discussed in “Deleting an ADABAS Observation” on page 118.

Competitive Updating and Logical Transaction Recovery
The interface view engine is an ET logic user application program. The ET (End

Transaction) command and the record HOLD facility manage disaster recovery and
multi-user concurrency issues.

SAS procedures capable of performing updates use the L4 command (read data
record with hold) to read and hold data records. The held record is released with an ET
command just before the next record is read. This means that any system or program
failure recovers updates up to, but not necessarily including, the last ADABAS record
read. When processing ADABAS data with periodic groups, remember that many SAS
observations can represent one ADABAS record. Therefore, it is possible to have
updated several SAS observations without issuing an ET command.

If an update procedure requests a record that another update procedure has locked,
the read fails. The interface view engine recognizes this condition and re-issues the
read without the HOLD option. The record is displayed with a message indicating that
the record was unable to be locked and cannot be updated.

SAS procedures that do not have update authorization use the L1 command when
reading records. The L1 command does not place the record in hold status, and
subsequent ET commands are unnecessary.

Effects of Changing an ADABAS File or NATURAL DDM on Descriptor
Files

Changes to an ADABAS file or NATURAL DDM can affect associated SAS/ACCESS
descriptor files. If changes to ADABAS data invalidate your descriptor files, you must
fix them manually by following these steps:

1 When you change an ADABAS file or NATURAL DDM, you must re-create the
access descriptor(s) with PROC ACCESS, using the same access descriptor
name(s).

2 Then you must update each view descriptor with PROC ACCESS. Change the
view descriptor as needed.

3 The SAS/ACCESS interface view engine does a rudimentary validation of a view
descriptor upon opening it. For example, the engine checks data type and data
field grouping information. If a problem is found, the engine writes a message to
the log and stops.

Before changing ADABAS data, consider the guidelines listed below.

Changes That Have No Effect on Existing View Descriptors
The following changes to an ADABAS file or NATURAL DDM have no effect on

existing view descriptors:

108 Changes That Might Have an Effect on Existing View Descriptors � Appendix 1

� creating ADABAS descriptors.
� inserting new data fields.
� deleting data fields not referenced in any view descriptor. (Note that if an access

descriptor includes the deleted data field, users could eventually create a view
descriptor using that data field, which would be a problem.)

Changes That Might Have an Effect on Existing View Descriptors
The following changes to an ADABAS file or NATURAL DDM might have an effect

on existing view descriptors:
� changing a data field name. If the data field name was used in selection criteria

stored in the view descriptor, when you try to use the view descriptor, you will
receive a syntax error message indicating an unrecognized data field name.

� deleting ADABAS descriptor data fields if the field is used in selection criteria.

Changes That Cause Existing View Descriptors to Fail
The following changes to an ADABAS file or NATURAL DDM cause existing view

descriptors to fail when they are used:
� changing a numeric type to a character type.
� changing a character type to a numeric type.
� deleting a data field that is referenced in a view descriptor.
� modifying a periodic group field or a multiple-value field. A field defined as a

periodic group, a field within a periodic group, or a multiple-value field must
retain its properties.

� changing lengths that affect a SAS format. Certain ADABAS numeric types are
changed to character hexadecimal when their lengths are too large for SAS to
handle. You cannot change lengths that result in changing SAS formats from
character to numeric or numeric to character.

� changing superdescriptors, superfields, subdescriptors, and subfields. You cannot
change the definition of these field types, such as adding or subtracting parentage
information, changing the order of parentage information, or changing the from-to
specification.

Data Security with ADABAS
SAS preserves data security provided by ADABAS, NATURAL, and your operating

system. As the DBA, you have control over who has security. You control who can
create ADABAS files, and creators of the files control who can access the data.
Therefore, SAS users can access only ADABAS files they created or ones for which they
have been granted specific security options.

To secure data from accidental update or deletion, you can take precautionary
measures on both sides of the interface view engine.

How the Interface View Engine Uses Security Specifications
This section contains an explanation of how the interface view engine works in

conjunction with both ADABAS Security and the NATURAL SECURITY System (NSS).
The twelve ADABAS Information fields and the three NSS fields discussed in this

section can be passed to the interface view engine via a view descriptor or through the

Information for the Database Administrator � How the Interface View Engine Uses Security Specifications 109

use of data set options. For simplicity, it is assumed that each field has been stored in a
view descriptor.

If ADABAS Security is in use at your site, up to four separate fields of information
might need to be provided for each of three ADABAS files that the interface view engine
might reference during the execution of a single SAS procedure. The following are the
three ADABAS files:

� the file from which data records are to be retrieved and updated (generally
referred to as the ADABAS file)

� a system file containing DDM information

� a security file containing NSS information about the applications and users
defined at your site.

The following are the four fields of information associated with each ADABAS file:

� file number

� password

� cipher code

� database identifier.

The file number is the number of the ADABAS file from which data records are
actually retrieved and updated. The database identifier field indicates which database
contains the file. The interface view engine obtains the file number and database
identifier from one of two places: either directly from a view descriptor or from a DDM.

If you want to work directly with an ADABAS file (without referencing a DDM), you
must supply the file number and database identifier in the view descriptor. (If the
ADABAS file is protected using ADABAS Security, you must also supply a password
and/or cipher code in the view descriptor.) The engine reads the file number and
database identifier from the view descriptor and uses them to retrieve and update the
appropriate records.

If a DDM name is stored in the view descriptor, the engine obtains the ADABAS file
number and database identifier from the DDM. Since a DDM is stored as one or more
records in a system file*, the engine must read that file to obtain the file number and
database identifier.

The system file containing the DDM records is just another ADABAS file. As such, it
has a corresponding database identifier and can be security-protected using ADABAS
Security. If the system file is protected, you must supply the necessary password and
cipher code in the view descriptor. The database identifier must also be stored in the
view descriptor.

Once the file number and database identifier are obtained from the DDM, the engine
retrieves and updates the appropriate records.

The security file is the third and final ADABAS file that might be referenced by the
interface view engine. The security file contains the NATURAL SECURITY data (for
each user identifier, application identifier, file, and so on) that are defined at your site.

The interface view engine requires that the security file number, password, cipher
code, and database identifier be provided in these situations:

� NSS is installed at your site.

� The view descriptor refers to a DDM name.

� The DDM referenced in the view descriptor has been defined to NSS.

� A library identifier, user identifier, and password have been supplied to the engine
via the view descriptor or through data set options.

* Using the NATURAL View Maintenance application (SYSDDM) is one method of defining and cataloging a DDM in a system
file. Your site might have more than one NSS system file.

110 SAS Security � Appendix 1

(The security file password and cipher code are required only if the security file has
been security-protected using ADABAS security.)

In order to communicate with NSS, the interface view engine needs the security file
number, password, cipher code, and database identifier, as well as the NSS library
identifier, user identifier, and user password. The engine can use only library identifiers
and user identifiers that were previously identified to NSS.

An application program must determine whether a specific library identifier and user
identifier have authorization to access or update a particular DDM. To do that,
Software AG developed an interface to NSS, which is delivered as a load module named
NSCDDM.

The interface view engine uses this NSS interface to check access and update
authorization for a library identifier and user identifier. If they do not have the
appropriate authorization, an error message is displayed.

SAS Security
To secure data from accidental update or deletion, you can do the following on SAS

side of the interface:

� Set up all access descriptors yourself. Drop data fields containing sensitive data
from display by using the DROP statement.

� Set up all view descriptors yourself and give them to users on a selective basis.
You can store the appropriate security options in the SAS/ACCESS descriptors, or
you might not want to store any options so that users must supply security with
data set options. You can also include view WHERE clauses to restrict data access.

� Give users read-only access or no access to the SAS data library where you store
the access descriptors. Read-only access prevents users from editing access
descriptors and allows them to see only the data fields selected for each view
descriptor.

� Set up several access descriptors for multiple security options, or require the user
to create them.

� Set the ADBUPD systems option to R (for read only) to disable all updates from
SAS. See “View Engine ADBEUSE System Options Default Values” on page 113.

ADBSE User Exit
The SAS/ACCESS interface also provides a user exit named ADBSE for execution

and access authorization. For information regarding this user exit, contact your SAS
Technical Support representative.

Effects of Changing Security Options
The owner of an ADABAS file or NATURAL DDM can change any security option at

any time. If a security option that is stored in a view descriptor is changed, you can
either update the view descriptor or override the stored option each time you need to
use the view descriptor. The software does not require that you use the same option,
but either option must have enough authority to service the view descriptor.

Security options can be stored in access descriptors or associated view descriptors.
However, changing a security option does not affect access descriptors or view
descriptors. The access descriptor still has all its data fields, but you might not be able
to use the view descriptor.

Information for the Database Administrator � Maximizing ADABAS Performance 111

Note that if an access descriptor was created with Assign Security=YES, data set
options cannot override security specifications included in a SAS/ACCESS view
descriptor.

Controlling Data Locks with ADABAS
SAS software supports several levels of data locking, which is a means of holding

information constant so that it doesn’t change unexpectedly. The control level is the
degree to which a SAS procedure can restrict access to data. SAS procedures can request
locks on individual records, on library members, and so on. Locking is also controlled by
the SAS software CNTLLEV data set option, which can request record-level locking and
member-level locking. Some SAS procedures set CNTLLEV equal to MEM internally
for their own processing reasons. Many statistical procedures must make multiple
passes of the data. For example, finding the median requires more than one pass.

The ADABAS interface view engine honors all locking requests in a multi-user
environment. (Locks are not required in a single-user environment.) The following
conditions apply:

� If there are no locking requests, you cannot update ADABAS data.
� For record-level locking, ADABAS locks one ADABAS logical record at a time. If

the record contains a periodic group, the lock will include one or more SAS
observations.

� For member-level locking, ADABAS puts a hold on the entire ADABAS file.

For more information about how the interface view engine handles locking, see
“Competitive Updating and Logical Transaction Recovery” on page 107.

Maximizing ADABAS Performance
Among the factors that affect ADABAS performance are the size of the file being

accessed, the number of data fields being accessed, and the number of logical records
qualified by the selection criteria. For files that have many data fields and many logical
records, you should evaluate all SAS programs that need to access the data directly. In
your evaluation, consider the following questions:

� Do the selection criteria enable ADABAS to use ADABAS descriptor data fields
efficiently? See “Creating and Using ADABAS View Descriptors Efficiently” on
page 94 for some guidelines on specifying efficient selection criteria.

� Does the program need all the ADABAS data fields? If not, create and use an
appropriate view descriptor that includes only the data fields to be used.

� Do the selection criteria retrieve only those logical records needed for subsequent
analysis? If not, specify different conditions so that the selected data is restricted
for the program being used.

� Is the data going to be used by more than one procedure in a single SAS session?
If so, consider extracting the data and placing it in a SAS data file for SAS
procedures to use, instead of allowing the data to be accessed directly by each
procedure. See “Performance Considerations” on page 34 for circumstances when
extracting data is the more efficient method.

� Does the data need to be in a particular order? If so, include a SORT clause in the
appropriate view descriptor or a SAS BY statement in the SAS program.

� What kind of locking mechanism will ADABAS need to use? See “Controlling Data
Locks with ADABAS” on page 111.

112 Debug Information for ADABAS � Appendix 1

� Are you using a view SORT clause, a SAS BY statement, or a SAS ORDER BY
clause without either a view WHERE clause or a SAS WHERE clause? Without a
WHERE clause, the engine qualifies all ADABAS data to be sorted, which can use
a considerable amount of resources.

Debug Information for ADABAS
If you are experiencing a problem with the SAS/ACCESS interface to ADABAS, the

Technical Support staff at SAS might ask you to provide additional debug information.
They might instruct you to set a debugging option for your job and rerun it.

The ADBTRACE option is available as a data set option on your PROC statement or
DATA step. For example, if ADBTRACE=1, you can look at the WHERE clause that
was processed. That is, the SAS WHERE clause, if any, and the combined view
WHERE clause appear on the SAS log.

The ADBTRACE= data set option can also be used to produce other types of traces
for debugging purposes. Contact your SAS Technical Support representative if you need
more information.

System Options for PROC ACCESS and the Interface View Engine
Certain values used by the ACCESS procedure and the interface view engine are

stored in two CSECTs (assembler language constant sections) and automatically linked
with the SAS/ACCESS software load modules as system options. The two CSECTs are:
ADBAUSE for the ACCESS procedure and ADBEUSE for the interface view engine.

The system options associated with PROC ACCESS control the default values used
when creating a new access descriptor. The system options associated with the interface
view engine control various run-time characteristics of the engine.

ADBAUSE System Options Default Values
The following system options set default values to be used by the ACCESS

procedure when you create an access descriptor. You can override the default values by
specifying different values by using the NSS, ADBFILE, SYSFILE, and SECFILE
statements in the ACCESS procedure.

Table A1.2 ADBAUSE System Options Using the ACCESS Procedure

Option Default Purpose

ADBNATAP blanks NATURAL SECURITY system library
identifier.

ADBNATPW blanks NATURAL SECURITY system user
password.

ADBNATUS blanks NATURAL SECURITY system user
identifier.

ADBSECCC blanks Security file cipher code.

ADBSECDB 0 Security file database identifier.

ADBSECFL 16 Security file number.

ADBSECPW blanks Security file password.

Information for the Database Administrator � View Engine ADBEUSE System Options Default Values 113

Option Default Purpose

ADBSYSCC blanks System file cipher code.

ADBSYSDB 0 System file database identifier.

ADBSYSFL 15 System file number.

ADBSYSPW blanks System file password.

View Engine ADBEUSE System Options Default Values
The system options shown in the following table set default values to be used by the

interface view engine to control various run-time characteristics. You can override some
of these settings by specifying data set options in a SAS procedure.

Table A1.3 ADBEUSE System Options Default Values

Option Default Purpose

R BY key mode processing:

R - generate return code when adding a new periodic
group to a record that has reached the maximum
number of periodic group occurrences.

ADBBYMD

N - add a new record.

Database execution mode:

M - multi-user

ADBDBMD M

S - single user

Default WHERE clause setting:

0 - creates a default WHERE clause for ADABAS
data field formats as follows (assuming that the data
field named AA is the first ADABAS descriptor file):

where (aa<=0) or aa>0 (numeric)

where aa>= “ (alphanumeric blank)”

1 - creates a default WHERE clause for ADABAS
data field formats as follows (assuming that the data
field named AA is the first ADABAS descriptor file):

where aa=0 (numeric)

where aa= “(alphanumeric blank)”

ADBDEFW 0

2 - displays an error return code. A view WHERE
clause or SAS WHERE clause is required when
random access is desired or when performing
updates.

114 View Engine ADBEUSE System Options Default Values � Appendix 1

Option Default Purpose

Deleting periodic group flag:

N - nulls periodic group values when (1) more than
one occurrence still exists or (2) other periodic
groups exist within the ADABAS file but are not
represented in the view descriptor.

ADBDEL N

P - always deletes the record, regardless of the
existence of periodic group fields. The P means "to
prune." When ADBDEL=P, you want to remove
(reduce) what is superfluous, in this case, the entire
logical record.

ADBDELIM \ View WHERE clause delimiter.

Engine authorization code:

U - authorized to perform updates.

ADBUPD U

R - read authorization only.

ADBFMTL 500 ADABAS format buffer length. Minimum value =
100.

ADBISNL 5000 ADABAS ISN buffer length. Minimum value = 100.

ADBMAXM 191 Maximum multiple-value occurrence number.

ADBMAXP 9 Maximum periodic group occurrence number.

ADBMINM 1 Minimum multiple-value occurrence number.

ADBRECL 7500 ADABAS record buffer length:

Minimum value = 2100.

Maximum value = 32767.

ADBSCHL 500 ADABAS search buffer length. Minimum value =
100.

ADBSPANS * View WHERE clause SPANS character.

User ISN flag:

Y - user can specify ISN value when adding new
records.

ADBUISN Y

N - user cannot specify ISN values.

ADBVALL 300 ADABAS value buffer length:

Minimum value = 100.

Maximum value = 32767.

115

A P P E N D I X

2
Advanced Topics

Introduction to Advanced Topics 115
Data Set Options for ADABAS 116

Using Multiple View Descriptors 118

Deleting an ADABAS Observation 118

Adding an ADABAS Observation 118

Using a BY Key To Resolve Ambiguous Inserts 119
BY Key Examples 119

By Key Example 1 120

By Key Example 2 120

By Key Example 3 120

BY Key Considerations 121

Missing Values (Nulls) 121
Using Multiple-Value Fields in Selection Criteria 122

WHERE Clause Examples 123

WHERE Clause Example 1 123

WHERE Clause Example 2 123

WHERE Clause Example 3 124
Periodic Group Fields in Selection Criteria 124

WHERE Clause Examples 125

WHERE Clause Example 1 125

WHERE Clause Example 2 126

WHERE Clause Example 3 126
Using a SAS WHERE Clause for Selection Criteria 127

SAS WHERE Clause Conditions Acceptable to ADABAS 128

SAS WHERE Clause Conditions Not Acceptable to ADABAS 129

When a SAS WHERE Clause Must Reference Descriptor Data Fields 129

Deciding How to Specify Selection Criteria 130

View WHERE Clause 130
SAS WHERE Clause 130

Introduction to Advanced Topics
This appendix contains details about some advanced topics such as using data set

options, using multiple view descriptors, deleting and adding observations, using BY
keys, and processing null values, as well as topics pertaining to selection criteria. The
discussions supplement other portions of this document.

116 Data Set Options for ADABAS � Appendix 2

Data Set Options for ADABAS

In order for the ADABAS interface view engine to obtain ADABAS dictionary
information, it needs certain ADABAS information. Specifically, the engine needs either
a NATURAL DDM name or an ADABAS file number, in addition to a library identifier,
a user identifier, passwords, cipher codes, and a database identifier.

If any of this information is required to access an ADABAS file or a NATURAL DDM
but is not specified in the SAS/ACCESS view descriptor or cannot be obtained from
either the ADBEUSE or ADBAUSE CSECT, you must use the appropriate data set
option in your SAS procedure statement to supply the appropriate value.

Data set options enable you to specify these values. Data set options also enable you
to override certain values that are specified in view descriptors but not enforced by
ASSIGN SECURITY=YES.

Each data set option is an option in the DATA= specification where DATA= specifies
a view descriptor that will be used as input to a SAS procedure. Data set options apply
only for the duration of that procedure.

The following example executes the FSEDIT procedure using a view descriptor
named VLIB.USAINV. The data set option specified in the PROC statement will
execute ADABAS using the NATURAL SECURITY password INVOICE.

proc fsedit data=vlib.usainv (adbnatpw=’invoice’};
run;

The available data set options appear below. Options marked with an asterisk (*) are
enforced by ASSIGN SECURITY=YES. That is, if ASSIGN SECURITY=YES, the values
specified in the view descriptor take precedence over values specified with a data set
option; the data set option is ignored.

ADBCC=’cipher-code’
specifies a cipher code for the target ADABAS file.

ADBDBID=database-identifier
specifies a database identifier for the target ADABAS file.

ADBDEL=N|NO|Y|YES
enables you to override the default value for the interface view engine’s system
option that determines whether a record containing periodic group fields should be
completely deleted or its periodic group fields set to nulls. The default is set by the
ADBDEL systems option in the ADBEUSE CSECT.

NO means set the fields to null; YES means delete the entire record.

ADBDDM=’ddm-name’
specifies a NATURAL Data Definition Module (DDM) name. The ADBFILE and
ADBDDM data set options are mutually exclusive. If you specified a DDM name
in the view descriptor, you can use ADBDDM, but you cannot use ADBFILE. If
you specified an ADABAS file number instead, you can use ADBFILE but not
ADBDDM.

ADBFILE=file-number
specifies an ADABAS file number. The ADBFILE and ADBDDM data set options
are mutually exclusive. If you specified a DDM name in the view descriptor, you
can use ADBDDM, but you cannot use ADBFILE. If you specified an ADABAS file
number instead, you can use ADBFILE but not ADBDDM.

ADBFMTL=length
specifies the length for the ADABAS format buffer. The minimum value is 100.
The default value is 500.

Advanced Topics � Data Set Options for ADABAS 117

ADBISNL=length
specifies the length for the ADABAS ISN buffer. The minimum value is 100. The
default value is 5,000.

ADBL3=N|NO|Y|YES |O|ONLY
controls the use of the ADABAS L3 command by the interface view engine and
what commands are used when L3 cannot be used. The L3 command optimizes
WHERE and sort processing, with dramatic results for very large ADABAS files.
However, there are limitations on when the command can be used. See “Retrievals
with Only a WHERE Clause” on page 105 for more information.

NO means the L3 command should not be used; YES means L3 is used and S1
and S9 are used if L3 cannot be used; ONLY means L3 is used and S2 is used, or
an error is generated, when L3 cannot be used.

ADBNATAP=’library-id’ *
specifies a NATURAL SECURITY library identifier.

ADBNATPW=’password’ *
specifies a NATURAL SECURITY user password.

ADBNATUS=’user-id’ *
specifies a NATURAL SECURITY user identifier.

ADBPW=’password’ *
specifies an ADABAS password for the target ADABAS file.

ADBRECL=length
specifies the length for the ADABAS record buffer. Acceptable values are in the
range of 2,100–32,767. The default value is 7,500.

ADBSCHL=length
specifies the length for the ADABAS search buffer. The minimum value is 100.
The default value is 500.

ADBSECCC=’cipher-code’ *
specifies an ADABAS cipher code for the NATURAL SECURITY system file.

ADBSECDB=database-identifier
specifies an ADABAS database identifier for the NATURAL SECURITY system file.

ADBSECFL=file-number
specifies an ADABAS file number for the NATURAL SECURITY system file.

ADBSECPW=’password’ *
specifies an ADABAS password for the NATURAL SECURITY system file.

ADBSYSCC=’cipher-code’ *
specifies an ADABAS cipher code for the DDM system file.

ADBSYSDB=database-identifier
specifies an ADABAS database identifier for the DDM system file.

ADBSYSFL=file-number
specifies an ADABAS file number for the DDM system file.

ADBSYSPW=’password’ *
specifies an ADABAS password for the DDM system file.

ADBTRACE=option
specifies a trace option, which analyzes problems in SAS software. The default is
ADBTRACE=0. If you specify ADBTRACE=1, WHERE clauses are displayed in

118 Using Multiple View Descriptors � Appendix 2

the log. For more information about ADBTRACE, see “Debug Information for
ADABAS” on page 112.

ADBVALL=length
specifies the length for the ADABAS value buffer. Acceptable values are in the
range of 100–32,767. The default value is 300.

Using Multiple View Descriptors
You can use more than one view descriptor in a single SAS session, but only one can

be open for updating. This is the default mode of operation.
For information about how to modify the engine to support multiple view descriptors

in a single SAS session, contact your SAS Technical Support Representative.

Deleting an ADABAS Observation
If the ADABAS file on which a view descriptor is based does not contain a periodic

group, deleting an observation (for example, with the FSEDIT procedure DELETE
command) causes a logical record to be deleted from the ADABAS data.

If the ADABAS file on which a view descriptor is based does contain a periodic group
(the periodic group may or may not be included in the view descriptor), the results of
deleting an observation depend on the status of the ADBDEL systems option, which is
set either in the ADBEUSE CSECT (see “System Options for PROC ACCESS and the
Interface View Engine” on page 112) or by a data set option (see “Data Set Options for
ADABAS” on page 116).

� When ADBDEL=N (which is the default setting), the following results occur:
� If there is only one periodic group occurrence (regardless of how many periodic

group fields are in the view descriptor) and there are no other periodic group
fields in the ADABAS file, deleting the observation containing the one
occurrence causes the logical record containing the occurrence to be deleted.

� If there are multiple occurrences for any periodic group field(s) in the view
descriptor or if there are other periodic group fields in the ADABAS file,
deleting the observation containing values from a periodic group occurrence
causes the selected values for that occurrence to be set to null. The record is
not deleted.

� If ADBDEL=P, the entire logical record is deleted, even if there are multiple
occurrences for periodic group fields in the view descriptor or if there are other
periodic group fields in the ADABAS file.

Adding an ADABAS Observation
Adding ADABAS data as a result of update operations from various SAS procedures

might cause the interface view engine to decide whether to add a new logical record to
the ADABAS file or modify an existing logical record, for example, add an occurrence to
a periodic group. The purpose of the engine making this determination is to reduce
data redundancy.

The engine compares values in the new observation to be added to values in the
previous observation. If the contents of the previous observation do not help determine
whether to add or modify, a new logical record is added.

Advanced Topics � BY Key Examples 119

However, some of the new values might already reside in the ADABAS file, so a new
record is not necessary. This situation occurs if a periodic group is included in a view
descriptor, and the new data (which does not reside in the ADABAS file) occurs only in
variables corresponding to data fields that are part of that periodic group.

The interface view engine can determine whether this situation exists. If not, a new
logical record can be added. If so, an existing record can be modified. The optional BY
key specification makes this possible. See “Using a BY Key To Resolve Ambiguous
Inserts” on page 119.

Using a BY Key To Resolve Ambiguous Inserts

When the interface view engine is called to examine additional ADABAS records in
order to add a new periodic group occurrence, the engine must decide whether to add a
new logical record or modify an existing one. The purpose is to reduce data redundancy.

You can help in the resolution of this decision by specifying a BY key. You can specify
BY keys in the access descriptor by using the KEY statement. If ASSIGN NAMES=NO,
you can use the KEY statement to specify BY keys in the view descriptor. Only
elementary data fields that are designated as ADABAS descriptors can be specified as
BY keys.

A BY key is a set of match variables. A data field is a good candidate for a BY key if
it uniquely identifies a logical record.

A BY key is similar to a BY group in SAS, which groups observations based on one or
more fields. Many SAS procedures process records in BY groups. Also, some updates in
the DATA step are performed by matching specified BY variables in different data sets.
A similar matching process occurs with BY key data fields in the SAS/ACCESS
interface to ADABAS.

The BY key comparison process is as follows:

1 If values for a BY key match a record already in the ADABAS file, it will be
modified. That is, the interface view engine inserts a new occurrence within a
periodic group.

2 If values for a BY key do not match an existing record, a new record is added to
the ADABAS file.

BY Key Examples
The following examples illustrate that using a BY key helps keep data organized

and prevents unnecessary duplication of data.
Suppose you are working with the following two ADABAS logical records, which

make up three SAS observations as shown in the following output. The data field
named DF1 is specified as a BY key. DF2 is a periodic group consisting of data fields
DF21 and DF22.

Output A2.1 By Key Example Containing Two ADABAS Logical Records of Three
SAS Observations

Data Fields DF1 DF2
DF21 DF22

Record 1 A CCC 1 (obs 1)
CCC 2 (obs 2)

Record 2 B DDD 3 (obs 3)

120 BY Key Examples � Appendix 2

By Key Example 1
You are in the FSEDIT procedure on observation 1. You enter an ADD or a DUP

command and the values A, CCC, and 4. This is not an ambiguous insert, and a BY key
is not required. The following output shows the result.

Output A2.2 Results of Entering an ADD or DUP Command

Data Fields DF1 DF2
DF21 DF22

Record 1 A CCC 1 (obs 1)
CCC 2 (obs 2)
CCC 4 (new observation (obs 4))

Record 2 B DDD 3 (obs 3)

By Key Example 2
You are in the FSEDIT procedure on observation 1. You enter an ADD or a DUP

command and the values B, DDD, and 5 for data fields DF1, DF21, and DF22,
respectively. This is an ambiguous insert because all the values you are entering are
different than the ones in observation 1. If there were not a BY key, the result would be
as shown in the following output.

Output A2.3 Results of an Ambiguous Insert

Data Fields DF1 DF2
DF21 DF22

Record 1 A CCC 1 (obs 1)
CCC 2 (obs 2)
CCC 4 (obs 3)

Record 2 B DDD 3 (obs 4)
Record 3 B DDD 5 (new observation)

With a BY key, the engine locates the BY key value DF1=B. The following output
shows the result.

Output A2.4 Results with a BY Key

Data Fields DF1 DF2
DF21 DF22

Record 1 A CCC 1 (obs 1)
CCC 2 (obs 2)
CCC 4 (obs 3)

Record 2 B DDD 3 (obs 4)
DDD 5 (new observation)

By Key Example 3
You are in the FSVIEW procedure, looking at the first three observations. You decide

to add the values B, DDD, and 7 at the end. The current position is the third
observation on the display. The following output shows the result with no BY key.

Advanced Topics � Missing Values (Nulls) 121

Output A2.5 Results without a By Key

Data Fields DF1 DF2
DF21 DF22

Record 1 A CCC 1 (obs 1)
CCC 2 (obs 2)
CCC 4 (obs 3)

Record 2 B DDD 3 (obs 4)
DDD 5 (obs 5)

Record 3 B DDD 7 (new observation)

The following output shows the result with a BY key.

Output A2.6 Results with a BY Key

Data Fields DF1 DF2
DF21 DF22

Record 1 A CCC 1 (obs 1)
CCC 2 (obs 2)
CCC 4 (obs 3)

Record 2 B DDD 3 (obs 4)
DDD 5 (obs 5)
DDD 7 (new observation)

BY Key Considerations
When specifying BY keys for your view descriptors, keep in mind the following

considerations:
� A duplicate consecutive observation results in an additional occurrence in any

periodic group in the view descriptor.
� If you do an insert from an observation that has all missing values, the interface

view engine inserts a record that is equivalent to all zeros and blanks.
� The APPEND function of the SAS Component Language (SCL) must be preceded

by a call to the SET function. Otherwise, APPEND inserts an observation that is
equivalent to all zeros and blanks because the insert is too ambiguous for the
interface view engine to resolve.

� If a view descriptor includes a periodic group and you try to add an observation
that is another occurrence in that periodic group, the add might fail if you are
attempting to add more occurrences than the periodic group field definition allows.
One of the following will occur, depending on whether a BY key is specified:

� If no BY key is defined, and
� if the last observation was not created from the periodic group, a new

logical record is added.
� if the last observation was created from the periodic group, the add fails

with a return code, and a new record is then added.

� If a BY key is defined and the periodic group is selected to have an added
occurrence, the add fails and a message displays.

Missing Values (Nulls)
When the interface view engine is reading ADABAS data and constructing an

observation, it could find missing (null) values for data fields within an observation.

122 Using Multiple-Value Fields in Selection Criteria � Appendix 2

The interface view engine uses the L1, L2, L3, and L4 commands to retrieve
ADABAS data. The values are returned in the record buffer using the standard length
and format defined for that field. (Standard length is not used if you have specified a
value for the DB Content field or the field is a variable length field.) If the field’s value
is null, the data is returned in the format in effect for that field.

Formats and their corresponding null values are listed below.

Table A2.1 ADABAS Data Formats and Null Values

Format Null Value

Alphanumeric blanks

Binary binary zeros

Fixed Point binary zeros

Unpacked Decimal unpacked decimal zeros

Packed Decimal packed decimal zeros

Floating point binary zeros

When an ADABAS record is read, the interface view engine is unable to tell whether
a field has a value of zero (for numeric fields) or blanks (for alphanumeric fields) or
truly has a null value. This is also true when you are updating. When you are using
the FSEDIT procedure, if a value of zero or missing is used to modify an existing
record, zeros are placed in the ADABAS record buffer and subsequently added to the
ADABAS file. Blanks are placed in the record buffer if a blank or missing value was
supplied for an alphanumeric field.

Since SAS missing values are stored as zeros and blanks in ADABAS files, some SAS
WHERE clauses are also impacted. For example, if either of the following SAS WHERE
clauses are issued,

where aa is missing;
where aa is null;

the resulting condition is sent to ADABAS:

where aa = 0 (numeric)
where aa = ’�’ (alphanumeric)

Note: Null values are processed differently by ADABAS if the ADABAS descriptor
used in a WHERE clause has the Null Value Suppress (NU) definition option defined
for it. �

Using Multiple-Value Fields in Selection Criteria

A multiple-value field can have 0 to 191 values per record, and ADABAS assigns an
occurrence number to each value. When you include a multiple-value field in
SAS/ACCESS descriptor files, you can use SAS variables that reference individual
occurrences and a SAS variable that references all occurrences to perform special
WHERE clause queries.

The following table lists whether you can use a multiple-value field or its
corresponding SAS variables in the SAS and view WHERE clauses.

Advanced Topics � WHERE Clause Examples 123

Table A2.2 Multiple-Value Fields in WHERE Clauses

Multiple-Value Field
SAS WHERE
Clause

View WHERE
Clause

ADABAS data field name no yes

SAS name for individual Occurrence variable yes no

_ANY variable yes yes

WHERE Clause Examples
Using the multiple-value data field BRANCH-OFFICE from the CUSTOMERS

DDM, the following examples illustrate using a multiple-value field in WHERE clauses.

WHERE Clause Example 1
In a view WHERE clause, you can reference an ADABAS multiple-value field name,

but you cannot do so in a SAS WHERE clause. For example, with the following
WHERE clause in a view descriptor, the interface view engine searches all values of the
multiple-value field:

where branch-office=’LONDON’

The view WHERE clause produces the results in the following output.

Output A2.7 Results of ADABAS Multiple-Value Field Name in View WHERE Clause

OBS CUSTNUM BR_ANY BRANCH_1 BRANCH_2 BRANCH_3 BRANCH_4
1 14324742 TORONTO HOUSTON TOKYO LONDON
2 26422096 LONDON NEW YORK
3 26984578 LONDON NEW YORK ROME
4 27654351 LONDON BOSTON
5 28710427 LONDON

WHERE Clause Example 2
You can use the individual occurrence SAS variables created by the ACCESS

procedure such as BRANCH_1, BRANCH_2, and so on, in SAS WHERE clauses, but you
cannot use them in a view WHERE clause. Note that individual occurrence conditions
must be processed by SAS after ADABAS has completed its selection processing.

For example, the following SAS WHERE clause searches the second occurrence for
BRANCH-OFFICE and retrieves the London values. SAS post-processes all records
returned from the interface view engine to see if they meet the SAS WHERE clause in
effect.

where branch_1=’LONDON’

The SAS WHERE clause produces the results in the following output.

124 Periodic Group Fields in Selection Criteria � Appendix 2

Output A2.8 Results of Individual Occurrence SAS Variable in SAS WHERE Clause

OBS CUSTNUM BR_ANY BRANCH_1 BRANCH_2 BRANCH_3 BRANCH_4
1 26422096 LONDON NEW YORK
2 26984578 LONDON NEW YORK ROME
3 27654351 LONDON BOSTON
4 28710427 LONDON

WHERE Clause Example 3
You can use the _ANY variable created by the ACCESS procedure in both a SAS

WHERE clause and a view WHERE clause. However, if you use the _ANY variable in a
SAS WHERE clause, the ADABAS interface view engine must be able to process the
entire SAS WHERE clause.

For example, with the following WHERE clause, the engine searches all occurrences
of the multiple-value field:

where br_any = ’LONDON’

Whether that WHERE clause is a SAS WHERE clause or a view WHERE clause, the
results in the following output are produced. They are the same as for Output A2.7.

Output A2.9 Results of _ANY Variable in View or SAS WHERE Clause

OBS CUSTNUM BR_ANY BRANCH_1 BRANCH_2 BRANCH_3 BRANCH_4
1 14324742 TORONTO HOUSTON TOKYO LONDON
2 26422096 LONDON NEW YORK
3 26984578 LONDON NEW YORK ROME
4 27654351 LONDON BOSTON
5 28710427 LONDON

This functionality prevents you from having to enter repetitive selection criteria such
as the following:

where branch_1=’LONDON’ or branch_2=’LONDON’
or branch_3=’LONDON’ ...

Periodic Group Fields in Selection Criteria

For an ADABAS periodic group data field, the ACCESS procedure automatically
creates a SAS variable for the occurrence number within the periodic group. For
example, the NATURAL DDM named CUSTOMERS has a periodic group field named
SIGNATURE-LIST, which groups data fields LIMIT and SIGNATURE. The ACCESS
procedure creates a SAS variable named SL_OCCUR for the occurrence numbers in
LIMIT and SIGNATURE.

By including the _OCCUR variable in a view descriptor, you can retrieve the
occurrence numbers for the periodic group. You can also include the _OCCUR variable
in SAS WHERE clauses to qualify data, but the condition is processed by SAS after
ADABAS has completed its selection processing. You cannot update the occurrence
values, and you cannot use the _OCCUR variable in a view WHERE clause.

Advanced Topics � WHERE Clause Examples 125

The following table lists whether you can use periodic group SAS variable names,
periodic group occurrence syntax, and a periodic group’s corresponding _OCCUR
variable in SAS and view WHERE clauses.

Table A2.3 Periodic Group Fields in WHERE Clauses

Periodic Group Field
SAS WHERE
Clause View WHERE Clause

SAS variable name yes yes

ADABAS data field name and occurrence syntax no yes

_OCCUR variable yes no

WHERE Clause Examples
Using the periodic group data field LIMIT from the CUSTOMERS DDM, the

following examples illustrate using a periodic group data field in WHERE clauses.

WHERE Clause Example 1
You can use the SAS variable name of a data field within a periodic group in both a

SAS WHERE clause and a view WHERE clause. However, they will not always produce
the same results because the SAS WHERE clause post-processes the results and, using
the following example, looks at the value of variable LIMIT to determine whether it’s
equal to 5000. The view WHERE clause is not post-processed; when you use a periodic
group field, ADABAS qualifies all periodic group occurrence values if any one meets the
WHERE clause criteria.

For example, you can include the following WHERE clause in a view descriptor, and
you can issue it as a SAS WHERE clause:

where limit = 5000

Stored in a view descriptor, the WHERE clause produces the results in the following
output:

Output A2.10 Results of Referencing a Periodic Group Data Field in View a WHERE
Clause

OBS CUSTNUM SL_OCCUR LIMIT

1 12345678 1 5000.00
2 14324742 1 5000.00
3 14324742 2 25000.00
4 14569877 1 5000.00
5 14569877 2 100000.00
6 19783482 1 5000.00
7 19783482 2 10000.00
8 26422096 1 5000.00
9 26422096 2 10000.00

10 27654351 1 5000.00
11 29834248 1 5000.00

However, as a SAS WHERE clause, the results in the following output are produced.

126 WHERE Clause Examples � Appendix 2

Output A2.11 Results of Referencing Periodic Group Data Field in SAS WHERE
Clause

OBS CUSTNUM SL_OCCUR LIMIT

1 12345678 1 5000.00
2 14324742 1 5000.00
3 14569877 1 5000.00
4 19783482 1 5000.00
5 26422096 1 5000.00
6 27654351 1 5000.00
7 29834248 1 5000.00
8 43459747 2 5000.00

WHERE Clause Example 2
You can qualify a specific occurrence of a periodic group with a view WHERE clause,

but only by using the periodic group occurrence syntax. However, all of the periodic
group occurrence values for the qualified records are returned, not just the individual
occurrence specified in the view WHERE clause. You cannot specify the occurrence
syntax in a SAS WHERE clause. For example, this view WHERE clause produces the
results in the following output.

where limit(2) = 5000

Output A2.12 Results of Qualifying Periodic Group Occurrence Syntax in View
WHERE Clause

OBS CUSTNUM SL_OCCUR LIMIT

1 43459747 1 1000.00
2 43459747 2 5000.00

WHERE Clause Example 3
If you include the _OCCUR SAS variable in the view descriptor, you can use it in a

SAS WHERE clause to specify an occurrence. However, you cannot use the _OCCUR
variable in a view WHERE clause.

For example, this SAS WHERE clause produces the results shown in the following
output.

where sl_occur = 2

Advanced Topics � Using a SAS WHERE Clause for Selection Criteria 127

Output A2.13 Results of Including _OCCUR Variable in SAS WHERE Clause

OBS CUSTNUM SL_OCCUR LIMIT

1 14324742 2 25000.00
2 14569877 2 100000.00
3 14898029 2 50000.00
4 18543489 2 50000.00
5 19783482 2 10000.00
6 19876078 2 25000.00
7 26422096 2 10000.00
8 43459747 2 5000.00

To qualify the data even further, you could use this SAS WHERE clause, which
produces the results in the following output.

where sl_occur = 2 and limit = 5000

Output A2.14 Results of Including _OCCUR Variable and Occurrence Syntax in SAS
WHERE Clause

OBS CUSTNUM SL_OCCUR LIMIT

1 43459747 2 5000.00

Using a SAS WHERE Clause for Selection Criteria

In addition to (or instead of) including a WHERE clause in your view descriptor for
selection criteria, you can also specify a SAS WHERE clause in a SAS program for
selection criteria.

When you specify a SAS WHERE clause, the SAS/ACCESS interface view engine
translates those conditions into view WHERE clause conditions. Then, if the view
descriptor includes a WHERE clause, the interface view engine connects the conditions
with the Boolean operator AND. By default, the SAS WHERE clause conditions are
connected before the view WHERE clause conditions. For example, if a view descriptor
includes the condition

sex=female

and the SAS WHERE clause condition translates into

position=marketing

the resulting selection criteria are

(position=marketing) and (sex=female)

When the interface view engine translates SAS WHERE clause conditions into view
WHERE clause conditions, some SAS WHERE clause capabilities are not available in a
view WHERE clause. That is, some SAS WHERE clauses cannot be totally satisfied by
the interface view engine.

To allow for this possibility, the interface view engine first evaluates the SAS
WHERE clause and determines whether the conditions can be handled. The interface

128 SAS WHERE Clause Conditions Acceptable to ADABAS � Appendix 2

view engine might be able to partially satisfy a SAS WHERE clause, as in the following
example:

proc print data=vlib.emp1;
where lastname < ’KAP’ and payrate > 30 * overtime;
run;

The interface view engine translates as much of the SAS WHERE clause as possible
without producing incorrect results or a syntax error. In the example above, the engine
has no problem with the first condition, but the arithmetic in the second condition is
not supported. The interface view engine uses the condition where lastname < ’KAP’ to
filter out as many logical records as possible to improve performance.

Any conditions that are not supported are bypassed by the interface view engine, and
post-processing (handled automatically by SAS) is required after the engine does its
subsetting. The engine bypasses the following conditions:

� unacceptable conditions.
� conditions connected with OR to unacceptable conditions.

In the following table, assume DF1, DF2, and DF3 are ADABAS data fields
referenced by a view descriptor. Remember that SAS never sees view WHERE clauses.

Table A2.4 Periodic Group Fields in WHERE Clauses

SAS WHERE Clause View WHERE Clause Translation Processing Required?

DF2=B OR DF3>DF4+10 (DF1=A) (DF1=A) Yes

DF2=B & DF3>DF4+10 DF1=A (DF2=B) & (DF1=A) Yes

DF2=B & DF3>C DF1=A (DF2=B) & (DF3>C) &
(DF1=A)

No

DF2=B OR DF3>C DF1=A (DF2=B) OR (DF3>C) &
(DF1=A)

No

SAS WHERE Clause Conditions Acceptable to ADABAS
The following information explains how the interface view engine translates

acceptable SAS WHERE clause conditions into view WHERE clause conditions.

� The operators are translated as shown in the following table.

Table A2.5 Acceptable SAS WHERE Clause Conditions in View WHERE Clause Conditions

SAS WHERE Clause Syntax View WHERE Clause Translation

= =

> >

< <

<> !=

≥ ≥

≤ ≤

Advanced Topics � When a SAS WHERE Clause Must Reference Descriptor Data Fields 129

SAS WHERE Clause Syntax View WHERE Clause Translation

((

))

AND AND

OR OR

� The interface view engine also translates BETWEEN and IN conditions and the
date format (if a SAS format is supplied in the DB Content field).

Table A2.6 Translating BETWEEN and IN Condtions and the Date Format

SAS WHERE Clause Syntax View WHERE Clause Translation

DF1 BETWEEN 1 AND 3 (DF1 >= 1 AND DF1 <= 3)

DF1 IN (4,9,14) DF1=4 OR DF1=9 or DF1=14

DF4 = ’02AUG87’D DF4 = 870802

SAS WHERE Clause Conditions Not Acceptable to ADABAS
Any SAS WHERE clause conditions that are not acceptable to the ADABAS

interface view engine are handled automatically by SAS post-processing. Following are
some (but not all) of those conditions:

� item-to-item comparison
� pattern matching
� arithmetic expressions, for example,

WHERE DF1 = DF4 * 3
WHERE DF4 < - DF5

� expressions in which a variable or combination of variables assumes a value of 1
or 0 to signify true or false, for example,

WHERE DF1
WHERE (DF1 = DF2) * 20

� concatenation of character variables
� truncated comparison, for example,

DF1 =: ABC

� DATETIME and TIME formats, for example,

’12:00’T
’01JAN60:12:00’DT

� SOUNDEX
� HAVING, GROUP BY
� NOT CONTAINS.

When a SAS WHERE Clause Must Reference Descriptor Data Fields
When you are using a SAS WHERE clause, a referenced ADABAS data field must be

an ADABAS descriptor in the following situations:

130 Deciding How to Specify Selection Criteria � Appendix 2

� The SAS WHERE clause contains more than one condition.
� The SAS WHERE clause uses the SPANS or NE operator.
� You are also planning to issue a SAS BY statement or a SAS ORDER BY clause.
� The view descriptor also includes a view SORT clause.
� The view descriptor also includes a view WHERE clause.

Deciding How to Specify Selection Criteria
Use the following guidelines to determine when to use a SAS WHERE clause and

when to use a view WHERE clause.

View WHERE Clause
Include a WHERE clause in your view descriptor when you want to do the following:
� restrict users of view descriptors to certain subsets of data
� prevent users from sequentially passing all the ADABAS data
� use syntax not available in the SAS WHERE clause, such as periodic group

occurrence syntax or multiple-value compares.

SAS WHERE Clause
Use a SAS WHERE clause when the previous guidelines do not apply and you want

to meet the following criteria
� have more run-time flexibility in subsetting data
� use SAS WHERE clause capabilities that the view WHERE clause does not

support, such as arithmetic expressions, truncated comparisons, or pattern
matching

� use conditions on fabricated data fields such as ISN, periodic group _OCCUR
variables, or any individually selected multiple-value fields

� combine AND and OR conditions using non-descriptor data fields.

131

A P P E N D I X

3
Example Data

Introduction to the ADABAS Example Data 132
ADABAS Files 132

CUSTOMERS ADABAS File 132

EMPLOYEE ADABAS File 138

INVOICE ADABAS File 140

ORDER ADABAS File 142
NATURAL DDMs Based on the ADABAS Files 145

CUSTOMERS DDM 145

EMPLOYEE DDM 145

INVOICE DDM 146

ORDER DDM 146

Access Descriptors for ADABAS 147
Access Descriptors Based on ADABAS Files 147

ADLIB.CUSTOMER Access Descriptor 147

Access Descriptors Based on the NATURAL DDMs 148

MYLIB.CUSTS Access Descriptor 148

MYLIB.EMPLOYEE Access Descriptor 148
MYLIB.INVOICE Access Descriptor 149

MYLIB.ORDER 149

View Descriptors Based on the Access Descriptors for ADABAS 150

VLIB.ADAEMPS View Descriptor 150

VLIB.ALLEMP View Descriptor 150
VLIB.ALLORDR View Descriptor 150

VLIB.CUSORDR View Descriptor 150

VLIB.CUSPHON View Descriptor 150

VLIB.EMPINFO View Descriptor 151

VLIB.EMPS View Descriptor 151

VLIB.FORINV View Descriptor 151
VLIB.INV View Descriptor 151

VLIB.USACUST View Descriptor 151

VLIB.USAINV View Descriptor 152

VLIB.USAORDR View Descriptor 152

SAS Data Files for ADABAS 152
MYDATA.OUTOFSTK SAS Data File 152

MYDATA.SASEMPS SAS Data File 153

LIB6.BIRTHDAY Data File 153

132 Introduction to the ADABAS Example Data � Appendix 3

Introduction to the ADABAS Example Data
This appendix provides information about the ADABAS files, NATURAL DDMs,

access descriptors, view descriptors, and SAS data files used in the examples in this
document.

It shows the ADABAS data definition statements and the data that were used to
build the ADABAS files. It also shows the access descriptors and view descriptors,
along with any selection criteria. In addition, this appendix shows the data and the
SAS statements that were used to create the SAS data files for the examples.

If you want to run the examples in this document, contact your SAS Software
Representative for information about accessing the sample library files. The sample
files contain instructions for creating the ADABAS files. The steps are as follows:

1 Create the ADABAS files using the ADABAS data definition statements.
2 Create the NATURAL DDMs for the ADABAS files as shown in each description.
3 Create the SAS data files.
4 Create an access descriptor and an associated view descriptor for each ADABAS

file. Make sure that all SAS names match between the view descriptor and the
ADABAS file. Use the access descriptors in this appendix as a model. Select every
field for the access descriptors, and create views that also select every field.

5 Run the APPEND procedure with the data set options shown below. Use the SAS
data file to update the view.

proc append data=SAS-file base=view-descriptor;
run;

ADABAS Files
This section describes the ADABAS files associated with the NATURAL DDMs that

are used in this document’s examples. For each file, the following information is
provided:

� the ADABAS data definition statements used to create the ADABAS file
� the SAS DATA step used to create the SAS data file for populating the ADABAS file
� the example data.

The four ADABAS files used in the examples are named CUSTOMERS, EMPLOYEE,
INVOICE, and ORDER.

CUSTOMERS ADABAS File
The CUSTOMERS file was created with the following ADABAS data definition

statements:

//STEP01.DDCARD DD *
ADARUN PROGRAM=ADACMP
ADARUN DATABASE=001
ADARUN DEVICE=3380
ADARUN MODE=MULTI
ADARUN SVC=253
//STEP01.DDKARTE DD *
ADACMP COMPRESS

Example Data � CUSTOMERS ADABAS File 133

ADACMP FILE=45
ADACMP NUMREC=0
ADACMP FNDEF=’01,CU,008,A,DE’
ADACMP FNDEF=’01,SZ’
ADACMP FNDEF=’02,ST,002,A,DE’
ADACMP FNDEF=’02,ZI,005,U’
ADACMP FNDEF=’01,CY,020,A,DE’
ADACMP FNDEF=’01,PH,012,A’
ADACMP FNDEF=’01,NA,060,A’
ADACMP FNDEF=’01,CN,030,A’
ADACMP FNDEF=’01,AD,040,A’
ADACMP FNDEF=’01,CI,025,A’
ADACMP FNDEF=’01,FO,006,U’
ADACMP FNDEF=’01,SL,PE’
ADACMP FNDEF=’02,LI,0014,U’
ADACMP FNDEF=’02,SI,0030,A’
ADACMP FNDEF=’01,BR,0025,A,MU(10)’
ADACMP SUPDE=’SP=ST(1,2),ZI(1,2)’
ADACMP SUBDE=’SB=ZI(1,2)’
//STEP02.DDCARD DD *
ADARUN PROGRAM=ADALOD
ADARUN DATABASE=001
ADARUN DEVICE=3380
ADARUN MODE=MULTI
ADARUN SVC=253
//STEP02.DDKARTE DD *
ADALOD LOAD FILE=45
ADALOD DSSIZE=5B
ADALOD NAME=CUSTOMERS
ADALOD MAXISN=100
ADALOD DSDEV=3380
ADALOD TEMPDEV=3380
ADALOD SORTSIZE=5
ADALOD TEMPSIZE=5

The DATA step is as follows:

data customer;
/* customer number */
input @1 custnum $8.

@10 state $2.
/* zipcode if company is */
/* in the U.S.; otherwise */
/* it is the mail code */
/* appropriate for the */
/* country where the */
/* company is located */
@13 zipcode 5.
@20 country $20.
@42 phone $12. /
/* customer’s company name*/
@1 name $60. /
/* contact at customer’s */
/* company */
@1 contact $30.

134 CUSTOMERS ADABAS File � Appendix 3

@31 street $40. /
@1 city $25.
/* date of first order */
@30 firstord yymmdd6./
/* signature limit #1 */
@1 limit 15.2
/* signature name #1 */
@20 signatur $30. /
/* branch office #1 */
@1 branch_1 $25.
/* branch office #2 */
@30 branch_2 $25. /
/* branch office #3 */
@1 branch_3 $25.
/* branch office #4 */
@30 branch_4 $25.;

format firstord date7.;
datalines;

The data is shown in the following four outputs.

Example Data � CUSTOMERS ADABAS File 135

Output A3.1 Data in CUSTOMERS ADABAS File—Part 1

************* CUSTOMER DATA ************
OBS CUSTNUM STATE ZIPCODE COUNTRY PHONE

1 12345678 NC . USA 919/489-5682
2 14324742 CA 95123 USA 408/629-0589
3 14324742 CA 95123 USA 408/629-0589
4 14569877 NC 27514 USA 919/489-6792
5 14569877 NC 27514 USA 919/489-6792
6 14898029 MD 20850 USA 301/760-2541
7 14898029 MD 20850 USA 301/760-2541
8 14898029 MD 20850 USA 301/760-2541

OBS NAME

1
2 SANTA CLARA VALLEY TECHNOLOGY SPECIALISTS
3 SANTA CLARA VALLEY TECHNOLOGY SPECIALISTS
4 PRECISION PRODUCTS
5 PRECISION PRODUCTS
6 UNIVERSITY BIOMEDICAL MATERIALS
7 UNIVERSITY BIOMEDICAL MATERIALS
8 UNIVERSITY BIOMEDICAL MATERIALS

OBS CONTACT STREET

1
2 A. BAUM 5089 CALERO AVENUE
3 A. BAUM 5089 CALERO AVENUE
4 CHARLES BARON 198 FAYETTVILLE ROAD
5 CHARLES BARON 198 FAYETTVILLE ROAD
6 S. TURNER 1598 PICCARD DRIVE
7 S. TURNER 1598 PICCARD DRIVE
8 S. TURNER 1598 PICCARD DRIVE

OBS CITY FIRSTORD LIMIT SIGNATUR BRANCH_1

1 . .
2 SAN JOSE 05FEB65 5000 BOB HENSON TORONTO
3 SAN JOSE 05FEB65 25000 KAREN DRESSER TORONTO
4 MEMPHIS 15AUG83 5000 JEAN CRANDALL NEW YORK
5 MEMPHIS 15AUG83 100000 STEVE BLUNTSEN NEW YORK
6 ROCKVILLE 12NOV76 10000 MASON FOXWORTH NEW YORK
7 ROCKVILLE 12NOV76 50000 DANIEL STEVENS NEW YORK
8 ROCKVILLE 12NOV76 100000 ELIZABETH PATTON NEW YORK

OBS BRANCH_2 BRANCH_3 BRANCH_4

1
2 HOUSTON TOKYO LONDON
3 HOUSTON TOKYO LONDON
4 CHICAGO LOS ANGELES
5 CHICAGO LOS ANGELES
6 CHICAGO DALLAS
7 CHICAGO DALLAS
8 CHICAGO DALLAS

136 CUSTOMERS ADABAS File � Appendix 3

Output A3.2 Data in CUSTOMERS ADABAS File—Part 2

************* CUSTOMER DATA ************

OBS CUSTNUM STATE ZIPCODE COUNTRY PHONE

9 15432147 MI 49001 USA 616/582-3906
10 18543489 TX 78701 USA 512/478-0788
11 18543489 TX 78701 USA 512/478-0788
12 18543489 TX 78701 USA 512/478-0788
13 19783482 VA 22090 USA 703/714-2900
14 19783482 VA 22090 USA 703/714-2900
15 19876078 CA 93274 USA 209/686-3953
16 19876078 CA 93274 USA 209/686-3953

OBS NAME

9 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS
10 LONE STAR STATE RESEARCH SUPPLIERS
11 LONE STAR STATE RESEARCH SUPPLIERS
12 LONE STAR STATE RESEARCH SUPPLIERS
13 TWENTY-FIRST CENTURY MATERIALS
14 TWENTY-FIRST CENTURY MATERIALS
15 SAN JOAQUIN SCIENTIFIC AND INDUSTRIAL SUPPLY, INC.
16 SAN JOAQUIN SCIENTIFIC AND INDUSTRIAL SUPPLY, INC.

OBS CONTACT STREET

9 D.W. KADARAUCH 103 HARRIET STREET
10 A. SILVERIA 5609 RIO GRANDE
11 A. SILVERIA 5609 RIO GRANDE
12 A. SILVERIA 5609 RIO GRANDE
13 M.R. HEFFERNAN 4613 MICHAEL FARADAY DRIVE
14 M.R. HEFFERNAN 4613 MICHAEL FARADAY DRIVE
15 J.A. WHITTEN 1095 HIGHWAY 99 SOUTH
16 J.A. WHITTEN 1095 HIGHWAY 99 SOUTH

OBS CITY FIRSTORD LIMIT SIGNATUR BRANCH_1

9 KALAMAZOO 28APR86 10000 JACK TREVANE CHICAGO
10 AUSTIN 10SEP79 10000 NANCY WALSH HOUSTON
11 AUSTIN 10SEP79 50000 TED WHISTLER HOUSTON
12 AUSTIN 10SEP79 100000 EVAN MASSEY HOUSTON
13 RESTON 18JUL68 5000 PETER THOMAS WASHINGTON D.C.
14 RESTON 18JUL68 10000 LOUIS PICKERING WASHINGTON D.C.
15 TULARE 11MAY79 7500 EDWARD LOWE
16 TULARE 11MAY79 25000 E.F. JENSEN

OBS BRANCH_2 BRANCH_3 BRANCH_4

9 COLUMBUS
10 DALLAS EL PASO LUBBOCK
11 DALLAS EL PASO LUBBOCK
12 DALLAS EL PASO LUBBOCK
13 NEW YORK
14 NEW YORK
15
16

Example Data � CUSTOMERS ADABAS File 137

Output A3.3 Data in CUSTOMERS ADABAS File—Part 3

************* CUSTOMER DATA ************
OBS CUSTNUM STATE ZIPCODE COUNTRY PHONE

17 24589689 . Yugoslavia (012)736-202
18 26422096 75014 France 4268-54-72
19 26422096 75014 France 4268-54-72
20 26984578 5110 Austria 43-57-04
21 27654351 5010 Belgium 02/215-37-32
22 28710427 HV 3607 Netherlands (021)570517
23 29834248 . Britain (0552)715311
24 31548901 BC . Canada 406/422-3413

OBS NAME

17 CENTAR ZA TECHNICKU I NAUCNU RESTAURIRANJE UMJETNINA
18 SOCIETE DE RECHERCHES POUR DE CHIRURGIE ORTHOPEDIQUE
19 SOCIETE DE RECHERCHES POUR DE CHIRURGIE ORTHOPEDIQUE
20 INSTITUT FUR TEXTIL-FORSCHUNGS
21 INSTITUT DE RECHERCHE SCIENTIFIQUE MEDICALE
22 ANTONIE VAN LEEUWENHOEK VERENIGING VOOR MICROBIOLOGIE
23 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
24 NATIONAL COUNCIL FOR MATERIALS RESEARCH

OBS CONTACT STREET

17 J.V. VUKASINOVIC TAKOVSKA 4
18 Y. CHAVANON 40 RUE PERIGNON
19 Y. CHAVANON 40 RUE PERIGNON
20 GUNTER SPIELMANN MECHITARISTENGASSE 5
21 I. CLEMENS 103 RUE D’EGMONT
22 M.C. BORGSTEEDE BIRMOERSTRAAT 34
23 A.D.M. BRYCESON 44 PRINCESS GATE, HYDE PARK
24 W.E. MACDONALD 5063 RICHMOND MALL

OBS CITY FIRSTORD LIMIT SIGNATUR BRANCH_1

17 BELGRADE 30NOV81 .
18 LA ROCHELLE 14JUN83 5000 MICHELE PICARD LONDON
19 LA ROCHELLE 14JUN83 10000 M.L. SEIS LONDON
20 VIENNA 25MAY87 100000 FRANZ BECH LONDON
21 BRUSSELS 14OCT86 5000 C.J. HELMER LONDON
22 THE HAGUE 10OCT85 10000 J.J. JASPER LONDON
23 LONDON, SW7 1PU 29JAN86 5000 ELVIN POMEROY SINGAPORE
24 VANCOUVER, V5T 1L2 19MAR84 1000 DAPHNE MARSHALL SEATTLE

OBS BRANCH_2 BRANCH_3 BRANCH_4

17
18 NEW YORK
19 NEW YORK
20 NEW YORK ROME
21 BOSTON
22
23 TORONTO CAIRO
24 TORONTO

138 EMPLOYEE ADABAS File � Appendix 3

Output A3.4 Data in CUSTOMERS ADABAS File—Part 4

************* CUSTOMER DATA ************

OBS CUSTNUM STATE ZIPCODE COUNTRY PHONE

25 38763919 1405 Argentina 244-6324
26 39045213 SP 1051 Brazil 012/302-1021
27 43290587 . Japan (02)933-3212
28 43459747 3181 Australia 03/734-5111
29 43459747 3181 Australia 03/734-5111
30 46543295 . Japan (03)022-2332
31 46783280 2374 Singapore 3762855
32 48345514 . United Arab Emirates 213445

OBS NAME

25 INSTITUTO DE BIOLOGIA Y MEDICINA NUCLEAR
26 LABORATORIO DE PESQUISAS VETERNINARIAS DESIDERIO FINAMOR
27 HASSEI SAIBO GAKKAI
28 RESEARCH OUTFITTERS
29 RESEARCH OUTFITTERS
30 WESTERN TECHNOLOGICAL SUPPLY
31 NGEE TECHNOLOGICAL INSTITUTE
32 GULF SCIENTIFIC SUPPLIES

OBS CONTACT STREET

25 JORGE RUNNAZZO SALGUERO 2345
26 ELISABETE REGIS GUILLAUMON RUA DONA ANTONIA DE QUEIROS 381
27 Y. FUKUDA 3-2-7 ETCHUJMA, KOTO-KU
28 R.G. HUGHES 191 LOWER PLENTY ROAD
29 R.G. HUGHES 191 LOWER PLENTY ROAD
30 4-3-8 ETCHUJMA, KOTO-KU
31 LING TAO SOON 356 CLEMENTI ROAD
32 J.Q. RIFAII POB 8032

OBS CITY FIRSTORD LIMIT SIGNATUR BRANCH_1

25 BUENOS AIRES 10DEC84 2500 M.L. CARLOS MIAMI
26 SAO PAULO 18AUG82 1500 RICK ESTABAN MIAMI
27 TOKYO 101 08FEB74 10000 R. YAMOTO SAN FRANCISCO
28 PRAHRAN, VICTORIA 28JUL72 1000 DENNIS RICHMOND SEATTLE
29 PRAHRAN, VICTORIA 28JUL72 5000 JANICE HEATH SEATTLE
30 TOKYO 102 19APR84 10000 DAPHNE MARSHALL SEATTLE
31 SINGAPORE 27SEP79 .
32 RAS AL KHAIMAH 10SEP86 .

OBS BRANCH_2 BRANCH_3 BRANCH_4

25 NEW YORK
26 NEW YORK
27
28
29
30 TORONTO SAN FRANCISCO DENVER
31
32

EMPLOYEE ADABAS File

The EMPLOYEE ADABAS file was created with the following ADABAS data
definition statements:

//STEP01.DDCARD DD *
ADARUN PROGRAM=ADACMP

Example Data � EMPLOYEE ADABAS File 139

ADARUN DATABASE=001
ADARUN DEVICE=3380
ADARUN MODE=MULTI
ADARUN SVC=253
//STEP01.DDKARTE DD *
ADACMP COMPRESS
ADACMP FILE=46
ADACMP NUMREC=0
ADACMP FNDEF=’01,ID,006,U,DE’
ADACMP FNDEF=’01,HD,006,U’
ADACMP FNDEF=’01,SA,007,U’
ADACMP FNDEF=’01,DP,006,A’
ADACMP FNDEF=’01,JC,005,U,DE’
ADACMP FNDEF=’01,SX,001,A’
ADACMP FNDEF=’01,BD,006,U’
ADACMP FNDEF=’01,LN,018,A,DE’
ADACMP FNDEF=’01,FN,015,A’
ADACMP FNDEF=’01,MN,015,A’
ADACMP FNDEF=’01,PH,004,A’
//STEP02.DDCARD DD *
ADARUN PROGRAM=ADALOD
ADARUN DATABASE=001
ADARUN DEVICE=3380
ADARUN MODE=MULTI
ADARUN SVC=253
//STEP02.DDKARTE DD *
ADALOD LOAD FILE=46
ADALOD DSSIZE=5B
ADALOD NAME=EMPLOYEE
ADALOD MAXISN=100
ADALOD DSDEV=3380
ADALOD TEMPDEV=3380
ADALOD SORTSIZE=5
ADALOD TEMPSIZE=5

The DATA step is as follows:

data employ;
/* employee id number */
input @1 empid 6.

@10 hiredate yymmdd6.
@20 salary 8.2
@30 dept $6.
@40 jobcode 5.
@47 sex $1.
@50 birthdat yymmdd6. /
@1 lastname $18.
@20 firstnam $15.
@40 middlena $15.
@60 phone $4. ;

format hiredate date7.;
format birthdat date7.;
datalines;

The data is shown in the following output.

140 INVOICE ADABAS File � Appendix 3

Output A3.5 Data for EMPLOYEE ADABAS File

EMPID HIREDATE SALARY DEPT JOBCODE SEX BIRTHDAT

119012 01JUL68 42340.58 CSR010 602 F 05JAN46
120591 05DEC80 31000.55 SHP002 602 F 12FEB46
123456 04APR89 . . .
127845 16JAN67 75320.34 ACC024 204 M 25DEC43
129540 01AUG82 56123.34 SHP002 204 F 31JUL60
135673 15JUL84 46322.58 ACC013 602 F 21MAR61
212916 15FEB51 52345.58 CSR010 602 F 29MAY28
216382 15JUN85 34004.65 SHP013 602 F 24JUL63
234967 19DEC88 17000.00 CSR004 602 M 21DEC67
237642 01NOV76 43200.34 SHP013 602 M 13MAR54
239185 07MAY81 57920.66 ACC024 602 M 28AUG59
254896 04APR85 35000.74 CSR011 204 M 06APR49
321783 10SEP67 48931.58 CSR011 602 M 03JUN35
328140 10JAN75 75000.34 ACC043 1204 F 02JUN51
346917 02MAR87 46000.33 SHP013 204 F 15MAR50
356134 14JUN85 62450.75 ACC013 204 F 25OCT60
423286 19DEC88 32870.66 ACC024 602 M 31OCT64
456910 14JUN78 45000.58 CSR010 602 M 24SEP53
456921 19AUG87 33210.04 SHP002 602 M 12MAY62
457232 15JUL85 55000.66 ACC013 602 M 15OCT63
459287 02NOV64 50000.00 SHP024 204 M 05JAN34
677890 12DEC88 37610.00 CSR010 204 F 24APR65

LASTNAME FIRSTNAM MIDDLENA PHONE

WOLF-PROVENZA G. ANDREA 3467
HAMMERSTEIN S. RACHAEL 3287
VARGAS PAUL JESUS
MEDER VLADIMIR JORAN 6231
CHOULAI CLARA JANE 3921
HEMESLY STEPHANIE J. 6329
WACHBERGER MARIE-LOUISE TERESA 8562
PURINTON PRUDENCE VALENTINE 3852
SMITH GILBERT IRVINE 7274
BATTERSBY R. STEPHEN 8342
DOS REMEDIOS LEONARD WESLEY 4892
TAYLOR-HUNYADI ITO MISHIMA 0231
GONZALES GUILLERMO RICARDO 3642
MEDINA-SIDONIA MARGARET ROSE 5901
SHIEKELESLAM SHALA Y. 8745
DUNNETT CHRISTINE MARIE 4213
MIFUNE YUKIO TOSHIRO 3278
ARDIS RICHARD BINGHAM 4351
KRAUSE KARL-HEINZ G. 7452
LOVELL WILLIAM SINCLAIR 6321
RODRIGUES JUAN M. 5879
NISHIMATSU-LYNCH CAROL ANNE 6245

INVOICE ADABAS File

The INVOICE ADABAS file was created with the following ADABAS data definition
statements:

//STEP01.DDCARD DD *
ADARUN PROGRAM=ADACMP
ADARUN DATABASE=001
ADARUN DEVICE=3380
ADARUN MODE=MULTI
ADARUN SVC=253
//STEP01.DDKARTE DD *

Example Data � INVOICE ADABAS File 141

ADACMP COMPRESS
ADACMP FILE=47
ADACMP NUMREC=0
ADACMP FNDEF=’01,IV,005,U,DE’
ADACMP FNDEF=’01,BT,008,A’
ADACMP FNDEF=’01,AM,014,U,DE’
ADACMP FNDEF=’01,CY,020,A,DE’
ADACMP FNDEF=’01,AU,010,U’
ADACMP FNDEF=’01,BB,006,U,DE’
ADACMP FNDEF=’01,BO,006,U’
ADACMP FNDEF=’01,PO,006,U,DE’
ADACMP FNDEF=’01,CX,008,G’
//STEP02.DDCARD DD *
ADARUN PROGRAM=ADALOD
ADARUN DATABASE=001
ADARUN DEVICE=3380
ADARUN MODE=MULTI
ADARUN SVC=253
//STEP02.DDKARTE DD *
ADALOD LOAD FILE=47
ADALOD DSSIZE=5B
ADALOD NAME=INVOICE
ADALOD MAXISN=100
ADALOD DSDEV=3380
ADALOD TEMPDEV=3380
ADALOD SORTSIZE=5
ADALOD TEMPSIZE=5

The DATA step is as follows:

data invoice;
/* invoice number */
input @1 invoicen 5.

/* company that placed the order */
@7 billedto $8.

/* amount of bill in local currency */
@15 amtbille 15.2
@30 country $20.
/* amount of bill in U.S. dollars */
@50 amountin 11.2 /

/* employee who wrote the bill */
@1 billedby 6.

/* date that bill was sent */
@10 billedon yymmdd6.

/* date that bill was paid */
@20 paidon yymmdd6.

/* time of day that the */
/* exchange rate to U.S. */
/* dollars was computed */

142 ORDER ADABAS File � Appendix 3

@30 computed time8. ;
format billedon date7.;
format paidon date7.;
datalines;

The data is shown in the following output.

Output A3.6 Data for ORDER ADABAS File

INVOICEN BILLEDTO AMTBILLE COUNTRY AMOUNTIN

11270 39045213 1340738760.9 Brazil 2256870.0
11271 18543489 11063836.0 USA 11063836.0
11273 19783482 252148.5 USA 252148.5
11276 14324742 1934460.0 USA 1934460.0
11278 14898029 1400825.0 USA 1400825.0
11280 39045213 1340738760.9 Brazil 2256870.0
11282 19783482 252148.5 USA 252148.5
11285 38763919 34891210.2 Argentina 2256870.0
11286 43459747 12679156.0 Australia 11063836.0
11287 15432147 252148.5 USA 252148.5
12051 39045213 1340738760.9 Brazil 2256870.0
12102 18543489 11063836.0 USA 11063836.0
12263 19783482 252148.5 USA 252148.5
12468 14898029 1400825.0 USA 1400825.0
12471 39045213 1340738760.9 Brazil 2256870.0
12476 38763919 34891210.2 Argentina 2256870.0
12478 15432147 252148.5 USA 252148.5

BILLEDBY BILLEDON PAIDON COMPUTED

239185 05OCT88 18OCT88 39646
457232 05OCT88 11OCT88 .
239185 06OCT88 11NOV88 .
135673 06OCT88 20OCT88 .
239185 06OCT88 19OCT88 .
423286 07OCT88 20OCT88 58154
457232 07OCT88 25OCT88 .
239185 10OCT88 30NOV88 55163
423286 10OCT88 . 33827
457232 11OCT88 04NOV88 .
457232 02NOV88 . 31185
239185 17NOV88 . .
423286 05DEC88 . .
135673 24DEC88 02JAN89 .
457232 27DEC88 . 50945
135673 24DEC88 . 39563
423286 24DEC88 02JAN89 .

ORDER ADABAS File

The ORDER ADABAS file was created with the following ADABAS data definition
statements:

//STEP01.DDCARD DD *
ADARUN PROGRAM=ADACMP
ADARUN DATABASE=001
ADARUN DEVICE=3380
ADARUN MODE=MULTI
ADARUN SVC=253
//STEP01.DDKARTE DD *
ADACMP COMPRESS

Example Data � ORDER ADABAS File 143

ADACMP FILE=48
ADACMP NUMREC=0
ADACMP FNDEF=’01,ON,005,U,DE’
ADACMP FNDEF=’01,SN,004,U’
ADACMP FNDEF=’01,LN,004,U’
ADACMP FNDEF=’01,FC,010,U’
ADACMP FNDEF=’01,ST,008,A,DE’
ADACMP FNDEF=’01,DO,006,U’
ADACMP FNDEF=’01,DS,006,U’
ADACMP FNDEF=’01,TB,006,U’
ADACMP FNDEF=’01,PB,006,U’
ADACMP FNDEF=’01,SF,001,A’
//STEP02.DDCARD DD *
ADARUN PROGRAM=ADALOD
ADARUN DATABASE=001
ADARUN DEVICE=3380
ADARUN MODE=MULTI
ADARUN SVC=253
//STEP02.DDKARTE DD *
ADALOD LOAD FILE=48
ADALOD DSSIZE=5B
ADALOD NAME=ORDER
ADALOD MAXISN=100
ADALOD DSDEV=3380
ADALOD TEMPDEV=3380
ADALOD SORTSIZE=5
ADALOD TEMPSIZE=5

The DATA step is as follows:

data orders;
/* order number */
input @1 ordernum 5.

/* stock number */
@6 stocknum 4.

/* length of material ordered */
@10 length 4.

/* fabric charges */
@15 fabricch 11.2

/* customer whom order is to be */
/* shipped to */
@27 shipto $8.

/* date of order */
@35 dateorde yymmdd6.
/* date that order was shipped */
@45 shipped yymmdd6.

/* employee who took the order */
@55 takenby 6.

144 ORDER ADABAS File � Appendix 3

/* employee who processed the order */
@62 processe 6.

/* this flag signals that */
/* special instructions are */
/* associated with this order. */
@69 speciali $1. ;

format dateorde date7.;
format shipped date7.;
datalines;

The data is shown in the following output.

Output A3.7 Data for ORDER ADABAS File

O S F D P S
R T A A S T R P
D O L B S T H A O E
E C E R H E I K C C
R K N I I O P E E I
N N G C P R P N S A
U U T C T D E B S L
M M H H O E D Y E I

11269 9870 690 . 19876078 03OCT88 . 212916 .
11270 1279 1750 2256870.0 39045213 03OCT88 19OCT88 321783 237642 X
11271 8934 110 11063836.0 18543489 03OCT88 13OCT88 456910 456921
11272 3478 1000 . 29834248 03OCT88 . 234967 .
11273 2567 450 252148.5 19783482 04OCT88 14NOV88 119012 216382
11274 4789 1000 . 15432147 04OCT88 . 212916 .
11275 3478 1000 . 29834248 04OCT88 . 234967 .
11276 1279 1500 1934460.0 14324742 04OCT88 21OCT88 321783 120591 X
11277 8934 100 10058033.0 31548901 05OCT88 . 456910 .
11278 2567 2500 1400825.0 14898029 05OCT88 20OCT88 119012 456921
11279 9870 650 . 48345514 05OCT88 . 212916 .
11280 1279 1750 2256870.0 39045213 06OCT88 21OCT88 321783 237642 X
11281 8934 110 11063836.0 18543489 06OCT88 27OCT88 456910 216382
11282 2567 450 252148.5 19783482 06OCT88 26OCT88 119012 456921
11283 9870 690 . 18543489 07OCT88 . 212916 .
11284 3478 1000 . 24589689 07OCT88 . 234967 .
11285 1279 1750 2256870.0 38763919 07OCT88 02DEC88 321783 120591 X
11286 8934 110 11063836.0 43459747 07OCT88 03NOV88 456910 237642
11287 2567 450 252148.5 15432147 07OCT88 07NOV88 119012 216382
11288 9870 690 . 14324742 10OCT88 . 212916 . Y
11969 9870 690 . 19876078 25OCT88 . 212916 .
12051 1279 1750 2256870.0 39045213 31OCT88 . 321783 . X
12102 8934 110 11063836.0 18543489 15NOV88 . 456910 .
12160 3478 1000 . 29834248 19NOV88 . 234967 . Z
12263 2567 450 252148.5 19783482 01DEC88 . 119012 .
12464 4789 1000 . 15432147 23DEC88 . 212916 .
12465 3478 1000 . 29834248 23DEC88 . 234967 .
12466 1279 1500 1934460.0 14324742 23DEC88 . 321783 . X
12467 8934 100 10058033.0 31548901 23DEC88 . 456910 .
12468 2567 2500 1400825.0 14898029 23DEC88 03JAN89 119012 120591
12470 9870 650 . 48345514 23DEC88 . 212916 .
12471 1279 1750 2256870.0 39045213 23DEC88 . 321783 . X
12472 8934 110 11063836.0 18543489 23DEC88 03JAN89 456910 237642
12473 2567 450 252148.5 19783482 23DEC88 . 119012 .
12474 9870 690 . 18543489 23DEC88 . 212916 .
12475 3478 1000 . 24589689 23DEC88 . 234967 .
12476 1279 1750 2256870.0 38763919 23DEC88 03JAN89 321783 456921 X
12477 8934 110 11063836.0 43459747 23DEC88 . 456910 .
12478 2567 450 252148.5 15432147 23DEC88 03JAN89 119012 216382
12479 9870 690 . 14324742 23DEC88 . 212916 .

Example Data � EMPLOYEE DDM 145

NATURAL DDMs Based on the ADABAS Files
This section shows descriptions of the NATURAL DDMs created for the preceding

ADABAS files. The DDMS are presented in alphabetical order.

CUSTOMERS DDM
The CUSTOMERS DDM contains the description in the following output.

Output A3.8 CUSTOMERS DDM

VIEW : CUSTOMERS DEF.SEQ: DBID:1 FNR: 45
COMMAND:
I T L DB NAME F LENG S D REMARK
- - - -- -----------bottom------------ - ---- - - ------------------

1 CU CUSTOMER A 8.0 D
G 1 SZ STATEZIP

2 ST STATE A 2.0 D
2 ZI ZIPCODE N 5.0
1 CY COUNTRY A 20.0 D
1 PH TELEPHONE A 12.0
1 NA NAME A 60.0
1 CN CONTACT A 30.0
1 AD STREETADDRESS A 40.0
1 CI CITY A 25.0
1 FO FIRSTORDERDATE N 6.0

P 1 SL SIGNATURE-LIST
2 LI LIMIT N 14.2
2 SI SIGNATURE A 30.0

M 1 BR BRANCH-OFFICE A 25.0
1 SP STATE-ZIPLAST2 A 4.0
1 SB ZIPLAST2 N 2.0

EMPLOYEE DDM
The EMPLOYEE DDM contains the description shown in the following output.

146 INVOICE DDM � Appendix 3

Output A3.9 EMPLOYEE DDM

VIEW : EMPLOYEE DEF.SEQ: DBID:1 FNR: 46
COMMAND:
I T L DB NAME F LENG S D REMARK
- - - -- ------------all-------------- - ---- - - ------------------

1 ID EMPID N 6.0 D
1 HD HIREDATE N 6.0
1 SA SALARY N 7.2
1 DP DEPT A 6.0
1 JC JOBCODE N 5.0 D
1 SX SEX A 1.0
1 BD BIRTHDATE N 6.0
1 LN LASTNAME A 18.0 D
1 FN FIRSTNAME A 15.0
1 MN MIDDLENAME A 15.0
1 PH PHONE A 4.0

INVOICE DDM
The INVOICE DDM contains the description shown in the following output.

Output A3.10 INVOICE DDM

VIEW : INVOICE DEF.SEQ: DBID:1 FNR: 47
COMMAND:
I T L DB NAME F LENG S D REMARK
- - - -- ------------all-------------- - ---- - - ------------------

1 IB INVOICENUM N 5.0 D
1 BT BILLEDTO A 8.0
1 AM AMTBILLED N 14.2 D
1 CY COUNTRY A 20.0 D
1 AU AMOUNTINUS N 10.2
1 BB BILLEDBY N 6.0 D
1 BO BILLEDON N 6.0
1 PO PAIDON N 6.0 D
1 CX COMPUTEREXCHANGE F 8.0 F

ORDER DDM
The ORDER DDM contains the description shown in the following output.

Example Data � Access Descriptors Based on ADABAS Files 147

Output A3.11 ORDER DDM

VIEW : ORDER DEF.SEQ: DBID:1 FNR: 48
COMMAND:
I T L DB NAME F LENG S D REMARK
- - - -- ------------all-------------- - ---- - - ------------------

1 ON ORDERNUM N 5.0 D
1 SN STOCKNUM N 4.0
1 LN LENGTH N 4.0
1 FC FABRICCHARGES N 10.2
1 ST SHIPTO A 8.0 D
1 DO DATEORDERED N 6.0
1 DS SHIPPED N 6.0
1 TB TAKENBY N 6.0
1 PB PROCESSEDBY N 6.0
1 SF SPECIALINSTRUCTION A 1.0

Access Descriptors for ADABAS

An ADABAS access descriptor can be based on an ADABAS file or on a NATURAL
DDM.

Access Descriptors Based on ADABAS Files

This section shows an access descriptor definition that is based on an ADABAS file
and the same access descriptor definition based on the CUSTOMER NATURAL DDM.

ADLIB.CUSTOMER Access Descriptor

The ADLIB.CUSTOMER access descriptor was created as follows:

proc access dbms=adabas;
create adlib.customer.access;
adbfile(number=15 password=cuspw

cipher=cuscc dbid=1);
sysfile(number=15 password=cuspwsys

cipher=cusccsys dbid=1);
secfile(number=16 password=cuspwsec

cipher=cusccsec dbid=1);
assign=yes;
rename cu = custnum

ph = phone
ad = street;

format fo = date7.;
informat fo = date7.;
content fo = yymmdd6.;
mvf br occurs = 4

run;

148 Access Descriptors Based on the NATURAL DDMs � Appendix 3

By specifying an ADABAS file number instead of a DDM, the definition bypasses
NATURAL SECURITY. The following is an example of the same access descriptor
written to use NATURAL SECURITY:

proc access dbms=adabas;
create adlib.customer.access;
nss(library=sasdemo user=demo password=demopw);
adbfile(password=cuspw cipher=cusscc dbid=1);
sysfile(number=15 password=cuspwsys

cipher=cusccsys dbid=1);
secfile(number=16 password=cuspwsec

cipher=cusccsec dbid=1);
ddm=customers;
assign=yes;
rename customer = custnum

telephone = phone
streetaddress = street;

format firstorderdate = date7.;
informat firstorderdate = date7.;
content firstorderdate = yymmdd6.;
mvf "BRANCH-OFFICE" occurs = 4

run;

Access Descriptors Based on the NATURAL DDMs
This section shows the access descriptors used in this document that are based on

NATURAL DDMs. All of the view descriptors in this document were created from these
access descriptors. The access descriptors are presented in alphabetical order.

MYLIB.CUSTS Access Descriptor
The MYLIB.CUSTS access descriptor was created as follows:

proc access dbms=adabas;
create mylib.custs.access;
nss(library=demo user=demo1 password=demo1);
sysfile(number=15 dbid=1);
secfile(number=16 dbid=1);
ddm=customers;
assign=yes;
drop contact;
rename customer = custnum

telephone = phone
streetaddress = street;

format firstorderdate = date7.;
informat firstorderdate = date7.;
content firstorderdate = yymmdd6.;
mvf "BRANCH-OFFICE" occurs = 4;

run;

MYLIB.EMPLOYEE Access Descriptor
The MYLIB.EMPLOYEE access descriptor was created as follows:

proc access dbms=adabas;
create mylib.employee.access;

Example Data � Access Descriptors Based on the NATURAL DDMs 149

nss(library=demo user=demo1 password=demo1);
sysfile(number=15 dbid=1);
secfile(number=16 dbid=1);
ddm=employee;
assign=yes;
format hiredate = date7.;
informat hiredate = date7.;
content hiredate = yymmdd6.;
format birthdate = date7.;
informat birthdate = date7.;
content birthdate = yymmdd6.;

run;

MYLIB.INVOICE Access Descriptor
The MYLIB.INVOICE access descriptor was created as follows:

proc access dbms=adabas;
create mylib.invoice.access;
nss(library=demo user=demo1 password=demo1);
sysfile(number=15 dbid=1);
secfile(number=16 dbid=1);
ddm=invoice;
assign=yes;
format billedon = date7.;
informat billedon = date7.;
content billedon = yymmdd6.;
format paidon = date7.;
informat paidon = date7.;
content paidon = yymmdd6.;

run;

MYLIB.ORDER
The MYLIB.ORDER access descriptor was created as follows:

proc access dbms=adabas;
create mylib.order.access;
nss(library=demo user=demo1 password=demo1);
sysfile(number=15 dbid=1);
secfile(number=16 dbid=1);
ddm=order;
assign=yes;
format dateordered = date7.;
informat dateordered = date7.;
content dateordered = yymmdd6.;
format shipped = date7.;
informat shipped = date7.;
content shipped = yymmdd6.;

run;

150 View Descriptors Based on the Access Descriptors for ADABAS � Appendix 3

View Descriptors Based on the Access Descriptors for ADABAS
This section shows the view descriptors used in this document to access ADABAS

data. The view descriptors are presented in alphabetical order.

VLIB.ADAEMPS View Descriptor
The VLIB.ADAEMPS view descriptor was created as follows:

proc access dbms=adabas ad=mylib.employee;
create vlib.adaemps.view;
select empid birthdate;
select lastname firstname middlename;

run;

VLIB.ALLEMP View Descriptor
The VLIB.ALLEMP view descriptor was created as follows:

proc access dbms=adabas ad=mylib.employee;
create vlib.allemp.view;
select all;
reset isn;

run;

VLIB.ALLORDR View Descriptor
The VLIB.ALLORDR view descriptor was created as follows:

proc access dbms=adabas ad=mylib.order;
create vlib.allordr.view;
select all;
reset isn;

run;

VLIB.CUSORDR View Descriptor
The VLIB.CUSORDR view descriptor was created as follows:

proc access dbms=adabas ad=mylib.order;
create vlib.cusordr.view;
select stocknum shipto;

run;

VLIB.CUSPHON View Descriptor
The VLIB.CUSPHON view descriptor was created as follows:

proc access dbms=adabas ad=mylib.custs;
create vlib.cusphon.view;
select customer telephone name;

run;

Example Data � VLIB.USACUST View Descriptor 151

VLIB.EMPINFO View Descriptor
The VLIB.EMPINFO view descriptor was created as follows:

proc access dbms=adabas ad=mylib.employee;
create vlib.empinfo.view;
select empid dept lastname;

run;

VLIB.EMPS View Descriptor
The VLIB.EMPS view descriptor was created as follows. This descriptor includes

sort and WHERE statements to specify selection criteria.

proc access dbms=adabas ad=mylib.employee;
create vlib.emps.view;
select empid jobcode birthdate lastname;
subset where jobcode = 602;
subset sort lastname;

run;

VLIB.FORINV View Descriptor
The VLIB.FORINV view descriptor was created as follows. This descriptor includes

a WHERE statement to specify selection criteria.

proc access dbms=adabas ad=mylib.invoice;
create vlib.forinv.view;
select all;
reset isn computedexchange;
subset where country != ’USA’;

run;

VLIB.INV View Descriptor
The VLIB.INV view descriptor was created as follows. This descriptor includes a

sort statement to specify selection criteria.

proc access dbms=adabas ad=mylib.invoice;
create vlib.inv.view;
select invoicenum amtbilled country

billedby paidon;
subset sort billedby;

run;

VLIB.USACUST View Descriptor
The VLIB.USACUST view descriptor was created as follows. This descriptor

includes SORT and WHERE statements to specify selection criteria.

proc access dbms=adabas ad=mylib.custs;
create vlib.usacust.view;
select all;

152 VLIB.USAINV View Descriptor � Appendix 3

reset isn telephone streetaddress
city "STATE-ZIPLAST2" ziplast2;

mvf "BRANCH-OFFICE" reset br_any
branch_1 branch_3 branch_4;

subset where country = ’USA’;
subset sort customer;

run;

VLIB.USAINV View Descriptor
The VLIB.USAINV view descriptor was created as follows. This descriptor includes

a WHERE statement to specify selection criteria.

proc access dbms=adabas ad=mylib.invoice;
create vlib.usainv.view;
select all;
reset isn computedexchange;
subset where country = ’USA’;

run;

VLIB.USAORDR View Descriptor
The VLIB.USAORDR view descriptor was created as follows. This view descriptor

uses a SORT statement to specify selection criteria.

proc access dbms=adabas ad=mylib.order;
create vlib.usaordr.view;
select ordernum stocknum length
fabriccharges shipto;

subset sort shipto;
run;

SAS Data Files for ADABAS
This section describes the SAS data files used in this document. It provides the SAS

statements that created each data file and shows the output with the PRINT procedure.

MYDATA.OUTOFSTK SAS Data File
The SAS data file MYDATA.OUTOFSTK is used in Chapter 3, “ADABAS Data in

SAS Programs,” on page 17. It was created with the following SAS statements:

libname mydata ’your-SAS-library’;
data mydata.outofstk;

input fibernam $8. /* fiber name */
fibernum; /* fiber number */

datalines;
olefin 3478
gold 8934
dacron 4789
;
run;

Example Data � LIB6.BIRTHDAY Data File 153

The following PRINT procedure lists the data shown in Output 3.11.

proc print data=mydata.outofstk;
title ’SAS Data File MYDATA.OUTOFSTK’;

run;

MYDATA.SASEMPS SAS Data File
The SAS data file MYDATA.SASEMPS is used in Chapter 4, “Browsing and Updating

ADABAS Data,” on page 37. It was created with the following SAS statements:

libname mydata ’your-SAS-library’;
data mydata.sasemps;
/* employee identification */

input empid
/* birth date */
birthdat date7.
/* last name */
lastname $18.
/* first name */
firstnam $15.
/* middle name */
middlena $15.;

datalines;
245962 30AUG64 BEDORTHA KATHY MARTHA
765432 01MAR59 POWELL FRANK X.
219223 13JUN47 HANSINGER BENJAMIN HAROLD
326745 21FEB52 RAWN BEATRICE MAY
;
run;

The following PRINT procedure lists the data shown in Output 4.11:

proc print data=mydata.sasemps;
title ’Data in MYDATA.SASEMPS Data File’;
format birthdat date7.;

run;

LIB6.BIRTHDAY Data File
The SAS data file LIB6.BIRTHDAY is used in Chapter 3, “ADABAS Data in SAS

Programs,” on page 17. It was created with the following SAS statements:

libname lib6 ’your-SAS-library’;
data lib6.birthday;

/* employee identification */
input empid

/* birth date */
birthdat date7.
/* last name */
lastname $18.;

datalines;
129540 31JUL60 CHOULAI

154 LIB6.BIRTHDAY Data File � Appendix 3

356134 25OCT60 DUNNETT
127845 25DEC43 MEDER
677890 24APR65 NISHIMATSU-LYNCH
459287 05JAN34 RODRIGUES
346917 15MAR50 SHIEKELESLAN
254896 06APR49 TAYLOR-HUNYADI
;
run;

The following PRINT procedure lists the data shown in Output 3.15:

proc print data=lib6.birthday;
title ’LIB6.BIRTHDAY Data File’;
format birthdat date7.;

run;

155

A P P E N D I X

4
Recommended Reading

Recommended Reading 155

Recommended Reading

Here is the recommended reading list for this title:
� SAS Language Reference: Concepts
� SAS Language Reference: Dictionary

� Base SAS Procedures Guide
� Getting Started with the SAS System in the MVS Environment
� SAS/CONNECT User’s Guide

� SAS/GRAPH Reference, Volumes 1 and 2
� SAS/STAT User’s Guide

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

156

157

Glossary

access descriptor
a SAS/ACCESS file that describes a single ADABAS file or NATURAL DDM to SAS.
After creating an access descriptor, you can use it as the basis for creating one or
more view descriptors. See also view descriptor.

Associator
an ADABAS system file that contains internal storage information that is used for
managing the data for an entire database.

batch mode
a method of executing SAS programs in which a file that contains SAS statements
plus any necessary operating environment commands is submitted to the computer’s
batch queue. After you submit the program, control returns to your terminal or
workstation, where you can perform other tasks. Batch mode is sometimes referred
to as running in the background. The program output can be written to files or
printed on an output device.

browsing data
the process of viewing the contents of a file. You can view the data either one
observation at a time or in a tabular format. You cannot update data that you are
browsing.

ciphered data
data records that are stored in a form that cannot be read by non-ADABAS programs.

compressed data
ADABAS data from which blanks in alphanumeric fields and leading zeros in numeric
fields have been removed. (SAS also has a compression option for SAS data files.)

data field
the smallest logical unit of information in an ADABAS file. The six types of data
fields are elementary, multiple-value, group, periodic group, subfield, and superfield.

Data Storage
an ADABAS file that contains the compressed data records for all ADABAS files. A
single physical block of Data Storage contains a varying number of logical records.

data value
a character value or numeric value that is stored in one variable in an observation.
In other words, a data value is the intersection of a variable (the vertical component

158 Glossary

of a data table) and an observation (the horizontal component). For example, the
variable LASTNAME might contain the data value Smith.

database
an organized collection of related data. In ADABAS, a database can consist of up to
5,000 logical files. These files are contained in the Associator system file and the
Data Storage file.

database management system (DBMS)
a software application that enables you to create and manipulate data that is stored
in the form of databases.

descriptor (ADABAS)
an ADABAS data field that has been defined as the key data field and which provides
an index of the data field’s value. The SAS/ACCESS interface to ADABAS supports
three descriptor types: subdescriptor, superdescriptor, and phonetic descriptor.

descriptor file
a type of SAS/ACCESS file that is used to establish a connection between SAS and
ADABAS. To create descriptor files, you use the ACCESS procedure. There are two
types of descriptor files: access descriptors and view descriptors.

editing data
the process of viewing the contents of a file with the intent and ability to change
those contents. You can view the data either one observation at a time or as a group
in a tabular format.

elementary field
an ADABAS data field that can contain only one value per record.

engine
a component of SAS software that reads from or writes to a file. Each engine enables
SAS to access files that are in a particular format. See also interface view engine.

exclusive file control
the control of one or more files by a single user. Exclusive file control prevents other
users from updating the file during a session.

field
See data field.

file
a collection of related records that are treated as a unit. SAS files are processed and
controlled by SAS and are stored in SAS data libraries.

An ADABAS file can contain from 0 to 4,294,967,294 records. The records are
physically stored in compressed form in the Data Storage file. File control
information, field definitions, and inverted list entries are contained in the Associator
System file.

format, variable
a pattern or set of instructions that SAS uses to determine how the values of a
variable should be written or displayed. SAS provides a set of standard formats and
also enables you to define your own formats.

group
several consecutive data fields that have been combined into one field so that they
can be accessed more efficiently and referred to more easily.

index
a component of a SAS data set that enables SAS to access observations in the SAS
data set quickly and efficiently. The purpose of SAS indexes is to optimize
WHERE-clause processing and to faciliate BY-group processing.

Glossary 159

informat, variable
a pattern or set of instructions that SAS uses to determine how data values in an
input file should be interpreted. SAS provides a set of standard informats and also
enables you to define your own informats.

interactive line mode
a method of running SAS programs in which you enter one line of a SAS program at
a time at the SAS session prompt. SAS processes each line immediately after you
press the ENTER or RETURN key. Procedure output and informative messages are
returned directly to your display device.

interface view engine
a SAS engine that retrieves data directly from files that were formatted by another
vendor’s software. The SAS/ACCESS interface to ADABAS includes an interface
view engine.

inverted list
a list that contains the different values of a descriptor data field, along with the
count and the ISNs of the records that contain each value.

ISN (Internal Sequence Number)
a logical identifier for a record. Each record in an ADABAS file has a unique ISN.

key field
See descriptor (ADABAS).

libref
a temporary name that points to a SAS data library. The complete name of a SAS file
consists of two words, separated by a period. The libref, which is the first word,
indicates the library; the second word is the specific SAS file in the library. For
example, in VLIB.NEWBDAY, VLIB is the libref that tells SAS where to look to find
the file NEWBDAY.

member
a SAS file in a SAS data library.

member name
a name that is assigned to a SAS file in a SAS data library.

member type
a SAS name that identifies the type of information that is stored in a SAS file.
Member types include ACCESS, DATA, CATALOG, PROGRAM, and VIEW.

missing value
a term that describes the contents of a variable that contains no data for a particular
row or observation. By default, SAS prints or displays a missing numeric value as a
single period, and it prints or displays a missing character value as a blank space.

multiple-value field
an ADABAS data field that can contain 0 to 191 values per record.

null value
a special value that indicates the absence of information. Null values are analogous
to SAS missing values.

observation
a row in a SAS data set. Each observation contains one data value for each variable
in the data file. In a database product table, an observation is analogous to a row.
Unlike rows in a DBMS table or file, observations in a SAS data file have an
inherent order.

160 Glossary

occurrences
the number of values in a single record for an ADABAS multiple-value field or the
number of times a periodic group is repeated in a given record.

periodic group
a collection of ADABAS data fields that can contain one or more elementary fields
and multiple-value fields and which can be repeated up to 191 times.

phonetic descriptor
an ADABAS descriptor that performs a search according to a phonetic value, such as
a last name. See also descriptor (ADABAS)

SAS data file
a SAS data set that contains data values as well as descriptor information that is
associated with the data.

SAS data library
a collection of SAS files that are recognized by SAS and which are referenced and
stored as a unit.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS data view
one of the formats of a SAS data set that contains only the descriptor and other
information required to retrieve the data values from other SAS files or external
files. Both PROC SQL views and SAS/ACCESS views are considered SAS data views.
SAS data views are of the member type VIEW.

subdescriptor
an ADABAS descriptor that has been derived from part of an elementary data field.

subfield
an ADABAS data field that has been defined from part of another data field. For
example, the subfield AREA CODE could be the first three digits of the PHONE data
field. Subfields can be used only in read operations.

superdescriptor
an ADABAS descriptor that has been derived from more than one data field, from
portions of data fields, or both.

superfield
a data field that consists of several data fields, portions of fields, or both. Superfields
can be used only in read operations.

system file
a type of ADABAS file that is used to store Data Definition Modules (DDMs) and
NATURAL SECURITY information. System files are created and maintained by
ADABAS and should not be updated directly.

variable
a column in a SAS data file. The data values for each variable describe a single
characteristic for all observations (rows). Each SAS variable can have the following
attributes: name, type (character or numeric), length, format, informat, and label. In
the ACCESS procedure, variables are created from ADABAS data fields.

Glossary 161

variable-length field
an ADABAS data field whose length can vary. The maximum length for a variable
length field is the length that has been specified for its format.

view
a definition of a virtual data set. The definition is named and stored for later use. A
view contains no data; it merely describes or defines data that is stored elsewhere.
SAS data views can be created by the ACCESS and SQL procedures. See also SAS
data view.

view descriptor
a SAS/ACCESS file that defines a subset of a database that is described by an access
descriptor. The subset consists of selected data fields from an ADABAS file, with
optional selection and ordering criteria. See also access descriptor.

162

Index 163

Index

A
ACCDESC= option

PROC ACCESS statement (ADABAS) 58
access descriptors 5

creating 65
effects of changing ADABAS files 107
effects of changing NATURAL DDMs 107
example data 147
invalidating 58
NATURAL SECURITY options 79
passwords 58
resetting column defaults 82
specifying 58
updating 87

ACCESS procedure, ADABAS 55, 56
calls on behalf of 103
case sensitivity 56
data conversion 95
description 57
formats 95
informats 95
invoking 60
SORT clause in view descriptors 93
syntax 56
system options 112
terminating 80
WHERE clause in view descriptors 88

ADABAS databases 8
ADABAS descriptors 10
ADABAS files 9
NATURAL data definition modules 10

ADABAS DBMS 8
ADABAS descriptors 10

definition 8
phonetic descriptors 11
subdescriptors 10
superdescriptors 10

ADABAS files 9
cipher codes 116
data field names 9
database identifiers 116
definition 8
effects of changing 107
example data 132
file numbers 9, 116
level numbers 9
logical record ISN 9
passwords 117

ADABAS interface 3
ACCESS procedure 55
database administration 102
effects on ADABAS data 97

ADABAS Security 108
ADBAUSE system options 112
ADBCC= data set option 116
ADBDBID= data set option 116
ADBDDM= data set option 116
ADBDEL= data set option 116
ADBEUSE system options 113
ADBFILE= data set option 116
ADBFILE statement

ACCESS procedure (ADABAS) 62
ADBFMTL= data set option 116
ADBISNL= data set option 117
ADBL3= data set option 116
ADBNATAP= data set option 117
ADBNATPW= data set option 117
ADBNATUS= data set option 117
ADBPW= data set option 117
ADBRECL= data set option 117
ADBSCHL= data set option 117
ADBSE user exit 110
ADBSECC= data set option 117
ADBSECDB= data set option 117
ADBSECFL= data set option 117
ADBSECPW= data set option 117
ADBSYSCC= data set option 117
ADBSYSDB= data set option 117
ADBSYSFL= data set option 117
ADBSYSPW= data set option 117
ADBTRACE= data set option 112, 117
ADBVALL= data set option 118
adding ADABAS data

SAS/FSP procedures 41
ambiguous inserts 119
APPEND procedure

appending ADABAS data 49
ASSIGN statement

ACCESS procedure (ADABAS) 63
Associator system file 8

B
browsing ADABAS data 37

FSBROWSE procedure 38
FSVIEW procedure 38
SAS/FSP procedures 38

SELECT statement 43
SQL procedure for 43
WHERE expression while browsing 39

BY keys
examples 119
for elementary data fields 72
resolving ambiguous inserts 119
view descriptor considerations 121

BY statement
sort order efficiency 95

C
calls

by other SAS procedures 103
on behalf of ACCESS procedure 103

case sensitivity
ACCESS procedure (ADABAS) 56

CHART procedure
charting ADABAS data 20

cipher codes 14, 62
ADABAS files 116
DDM system files 117
NATURAL SECURITY system files 117

combining data
See selecting and combining data

competitive updating 107
CONTENT statement

ACCESS procedure (ADABAS) 64
CREATE statement

ACCESS procedure (ADABAS) 65

D
data conversion

ACCESS procedure (ADABAS) 95
data definition module

See DDM (data definition module)
data field names 9

DDMs 10
data fields 11

definition 8
elementary fields 11
formats 13
group fields 11
length of 13
mapping data 12
multiple-value fields 11

164 Index

periodic group fields 12
subfields 12
superfields 12
types of 11

data locks 111
data redundancy 118
data security

See security
data set options 116
Data Storage system file 8
database administration 101

ACCESS procedure, system options 112
ADABAS interface 102
competitive updating 107
data locks 111
data security 108
debugging 112
effects of changing ADABAS files 107
effects of changing NATURAL DDMs 107
interface view engine 102
interface view engine, system options 112
logical transaction recovery 107
performance 111
retrieval processing 103
update processing 106

database identifiers 8, 62
ADABAS files 116
DDM system files 117
NATURAL SECURITY system files 117

database names 8
databases

See ADABAS databases
DATASETS procedure

assigning passwords 59
date formats 64
DBMS (ADABAS) 8
DBMS columns

changing formats 71
changing informats 71
data field information 74
dropping 69
listing, with information 69, 73
resetting to defaults 81
selecting 84

DBMS= option
PROC ACCESS statement (ADABAS) 58

DBMS tables
invalidating descriptors 58

DDM (data definition module) 10
data field names 10
effects of changing 107
example data 145
filename 10
name specification 68, 116
system file containing 86

DDM= statement
ACCESS procedure (ADABAS) 68

DDM system files 117
debugging 112
DELETE statement

deleting ADABAS data 47
WHERE clause and 48

deleting ADABAS data 47
SAS/FSP procedures 41

descriptor files 4, 8
access descriptor files 5
creating 65

effects of changing ADABAS files 107
effects of changing NATURAL DDMs 107
updating 87
view descriptor files 5

DROP statement
ACCESS procedure (ADABAS) 69

E
elementary fields 11

BY key for 72
example data 5, 132

access descriptors 147
ADABAS files 132
DDMs 145
SAS data files 152
view descriptors 150

expressions
in view WHERE clauses 90

EXTEND statement
ACCESS procedure (ADABAS) 69

extended time formats 64
extracting ADABAS data 34, 95

F
file numbers 9, 62

ADABAS files 116
DDM system file 117
NATURAL SECURITY system file 117

file objects 15
files

See ADABAS files
FORMAT statement

ACCESS procedure (ADABAS) 71
formats

ACCESS procedure (ADABAS) 95
automatically generated 63

FREQ procedure 22
FSBROWSE procedure

browsing ADABAS data 38
FSEDIT procedure

updating ADABAS data 38
FSVIEW procedure

browsing and updating ADABAS data 38

G
GROUP BY clause

creating new variables 31
group fields 11

H
hyperdescriptors 11

I
INFORMAT statement

ACCESS procedure (ADABAS) 71

informats
ACCESS procedure (ADABAS) 95

INSERT statement
inserting ADABAS data 47

inserting ADABAS data 47
ambiguous inserts 119

interface to ADABAS
See ADABAS interface

interface view engine 4, 102
calls 103
mapping ADABAS data into observations 97
overriding default values 116
security and 108
system options 112

internal sequence number (ISN) 9, 102
inverted lists 10
ISN (internal sequence number) 9, 102

K
KEEP= data set option 25
KEY statement

ACCESS procedure (ADABAS) 72

L
level numbers 9
library identifier 117
library objects 15
links

NATURAL SECURITY and 15
LIST statement

ACCESS procedure (ADABAS) 73
LISTINFO statement

ACCESS procedure, ADABAS 74
LISTOCC statement

ACCESS procedure (ADABAS) 75
logical record ISN 9
logical records 8
logical transaction recovery 107

M
mapping data 12, 97
MEANS procedure 22
missing values 121
multiple-value fields 11

DB content attribute 77
dropping 77
format attribute 77
in selection criteria 122
information attribute 77
listing occurrences of 75
mapping to SAS observations 97
modifying occurrences of 76
occurrences 78
renaming variables 78
resetting attributes 78
SAS variables and 98
selecting occurrences 78
view WHERE clauses and 93

MVF statement
ACCESS procedure (ADABAS) 76

Index 165

N
NATURAL 8

See also DDM (data definition module)
file objects 15
library objects 15
user objects 15

NATURAL SECURITY 108
library identifier 117
links and 15
options 15, 79
password specification 117
system file parameters 83
system files 117
user identifier 117

NSS statement
ACCESS procedure (ADABAS) 79

null values 14, 121

O
observations

adding 118
deleting 118
mapping ADABAS data into 97
null values 121

OUT= option
PROC ACCESS statement (ADABAS) 58

P
passwords 14, 62

access descriptors 58
ADABAS files 117
assigning 59
DDM system files 117
NATURAL SECURITY 117
view descriptors 58

percentages 22
performance 34, 111
periodic group fields 12

adding 119
in selection criteria 124
mapping to SAS observations 98
SAS variables and 98
view WHERE clauses and 93

permanent WHERE clauses 39
phonetic descriptor fields 98
phonetic descriptors 11
PRINT procedure

printing ADABAS data 19
PROC ACCESS statement (ADABAS) 58

Q
QUIT statement

ACCESS procedure (ADABAS) 80

R
RANK procedure 24
redundancy 118

RENAME statement
ACCESS procedure (ADABAS) 80

renaming variables 80
multiple-value fields 78

RESET statement
ACCESS procedure (ADABAS) 81

retrieval processing 103
no sorting criteria 104
no WHERE clause 104
sorting criteria with 106
with only a WHERE clause 105

S
SAS/ACCESS descriptor files 8
SAS/ACCESS interface to ADABAS

See ADABAS interface
SAS/FSP procedures

adding and deleting ADABAS data 41
browsing and updating ADABAS data 38

SAS security 110
SECFILE statement

ACCESS procedure (ADABAS) 83
security 108

See also NATURAL SECURITY
ADABAS options 14
ADABAS Security 108
ADBSE user exit 110
database administration 108
effects of changing security options 110
interface view engine and 108
NATURAL options 15
SAS security 110
specifications 84

SECURITY statement
ACCESS procedure (ADABAS) 84

SELECT statement
ACCESS procedure (ADABAS) 84
browsing and updating ADABAS data 43

selecting and combining data 24
SQL procedure 26
WHERE statement 25

selection criteria
multiple-value fields in 122
periodic group fields in 124
specifying 130
view descriptors 85, 94
view WHERE clause for 130
WHERE clauses 127, 130

SORT clauses
in view descriptors 93

sort order efficiency 95
SORT procedure

ADABAS 95
sorting criteria

omitting, in retrieval processing 104
retrievals with 106

SPANS operator
in view WHERE clauses 90

SQL procedure
browsing and updating ADABAS data 43
combining data from various sources 26
creating variables with GROUP BY clause 31
selecting and combining data 26

statistics calculation 22
subdescriptor fields 92, 98

subdescriptors 10
subfields 12, 96
SUBSET statement

ACCESS procedure (ADABAS) 85
superdescriptor fields 91

data conversion 96
SAS variables and 98

superdescriptors 10
superfields 12
SYSFILE statement

ACCESS procedure (ADABAS) 86
system files 8

Associator system file 8
containing DDMs 86
Data Storage system file 8
DDM 117
NATURAL SECURITY 83, 117
Work Storage system file 8

system options
ACCESS procedure (ADABAS) 112
interface view engine 112

T
temporary WHERE clauses 39
trace options 117
transaction data 32

U
update processing 106
UPDATE statement

ACCESS procedure (ADABAS) 87
updating ADABAS data 45

updating, competitive 107
updating access descriptors 87
updating ADABAS data 37

FSEDIT procedure 38
FSVIEW procedure 38
SAS/FSP procedures for 38
SELECT statement 43
SQL procedure 43
UPDATE statement 45
WHERE expression while updating 39

updating data files 32
updating view descriptors 87
user exits

ADBSE 110
user identifier 117
user objects 15

V
variable length 64
variable length fields 13
variable names

automatically generated 63
variables

creating with GROUP BY clause 31
renaming 78, 80
reviewing ADABAS variables 18

view descriptors 5
BY key considerations 121

166 Index

creating 65, 66
DBMS columns, selecting 84
effects of changing ADABAS files 107
effects of changing NATURAL DDMs 107
efficient use of 94
example data 150
invalidating 58
multiple 118
passwords 58
performance 34
resetting column defaults 82
selection criteria 85, 94
SORT clauses in 93
specifying 58
updating 87
WHERE clauses in 88

view SORT clauses 93
examples 94
syntax 93

view WHERE clauses 88
character field values 90

dates 91

examples 89

expressions 90

multiple-value field values 93

numeric format values 90

periodic group field values 93

selection criteria 130

SPANS operator 90

subdescriptor field values 92

superdescriptor field values 91

syntax 88

VIEWDESC= option

PROC ACCESS statement (ADABAS) 58

views 5

W
WHERE clause processing

ADABAS 95
WHERE clauses

acceptable conditions 128
DELETE statement and 48
in retrievals 105
in view descriptors 88
multiple-value fields in selection criteria 123
omitting, in retrieval processing 104
periodic group fields in selection criteria 125
permanent 39
referencing descriptor data fields 129
selection criteria 127, 130
temporary 39
unacceptable conditions 129

WHERE expressions
while browsing/updating data 39

WHERE statement
selecting and combining data 25

Work Storage system file 8

Your Turn

If you have comments or suggestions about SAS/ACCESS ® 9.1 Interface to ADABAS:
Reference, please send them to us on a photocopy of this page or send us electronic mail.

Send comments about this document to, please return the photocopy to
SAS Publishing
SAS Campus Drive
Cary, NC 27513
email: yourturn@sas.com

For suggestions about the software, please return the photocopy to
SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
email: suggest@sas.com

	Table of Contents
	Contents

	What’s New
	Overview

	SAS/ACCESS Interface to ADABAS: Usage
	Overview of the SAS/ACCESS Interface to ADABAS
	Introduction to the SAS/ACCESS Interface to ADABAS
	Purpose of the SAS/ACCESS Interface to ADABAS
	SAS/ACCESS Descriptor Files for ADABAS
	Access Descriptor Files
	View Descriptor Files

	Example Data in the ADABAS Document

	ADABAS Essentials
	Introduction to ADABAS Essentials
	ADABAS DBMS
	ADABAS Databases
	ADABAS Files
	NATURAL Data Definition Modules
	ADABAS Descriptors

	ADABAS Data Fields
	Data Field Types
	Mapping Data between SAS and ADABAS
	Data Field Formats and Lengths

	ADABAS Null Values
	ADABAS and NATURAL Security Options
	ADABAS Security Options
	NATURAL Security Options

	ADABAS Data in SAS Programs
	Introduction to Using ADABAS Data in SAS Programs
	Reviewing ADABAS Variables
	Printing ADABAS Data
	Charting ADABAS Data
	Calculating Statistics with ADABAS Data
	Calculating Statistics Using the FREQ Procedure
	Calculating Statistics Using the MEANS Procedure
	Calculating Statistics Using the RANK Procedure

	Selecting and Combining ADABAS Data
	Selecting and Combining Data Using the WHERE Statement
	Selecting and Combining Data Using the SQL Procedure

	Updating a SAS Data File with ADABAS Data
	Performance Considerations

	Browsing and Updating ADABAS Data
	Introduction to Browsing and Updating ADABAS Data
	Browsing and Updating ADABAS Data with the SAS/FSP Procedures
	Browsing Data Using the FSBROWSE Procedure
	Updating Data Using the FSEDIT Procedure
	Browsing and Updating Data Using the FSVIEW Procedure
	Specifying a SAS WHERE Expression While Browsing or Updating Data
	Adding and Deleting Data with the SAS/FSP Procedures

	Browsing and Updating ADABAS Data with the SQL Procedure
	Browsing Data with the SELECT Statement
	Updating Data with the UPDATE Statement
	Inserting and Deleting Data with the INSERT and DELETE Statements
	Appending ADABAS Data with the APPEND Procedure

	SAS/ACCESS Interface to ADABAS: Reference
	ACCESS Procedure Reference
	Introduction to ACCESS Procedure Reference
	Case Sensitivity in the ACCESS Procedure
	ACCESS Procedure Syntax for ADABAS
	Description
	PROC ACCESS Statement Options

	SAS Passwords for SAS/ACCESS Descriptors
	Assigning Passwords

	Invoking the ACCESS Procedure
	ACCESS PROCEDURE Statements for ADABAS
	WHERE Clause in an ADABAS View Descriptor
	View WHERE Clause Syntax
	View WHERE Clause Examples

	SORT Clause in a View Descriptor
	View SORT Clause Syntax
	SORT Clause Examples

	Creating and Using ADABAS View Descriptors Efficiently
	ACCESS Procedure Formats and Informats for ADABAS
	Effects of the SAS/ACCESS Interface on ADABAS Data

	Appendices
	Information for the Database Administrator
	Introduction to the Information for the Database Administrator
	How the SAS/ACCESS Interface to ADABAS Works
	How the ADABAS Interface View Engine Works
	Retrieval Processing
	Update Processing
	Competitive Updating and Logical Transaction Recovery

	Effects of Changing an ADABAS File or NATURAL DDM on Descriptor Files
	Changes That Have No Effect on Existing View Descriptors
	Changes That Might Have an Effect on Existing View Descriptors
	Changes That Cause Existing View Descriptors to Fail

	Data Security with ADABAS
	How the Interface View Engine Uses Security Specifications
	SAS Security
	ADBSE User Exit
	Effects of Changing Security Options

	Controlling Data Locks with ADABAS
	Maximizing ADABAS Performance
	Debug Information for ADABAS
	System Options for PROC ACCESS and the Interface View Engine
	ADBAUSE System Options Default Values
	View Engine ADBEUSE System Options Default Values

	Advanced Topics
	Introduction to Advanced Topics
	Data Set Options for ADABAS
	Using Multiple View Descriptors
	Deleting an ADABAS Observation
	Adding an ADABAS Observation
	Using a BY Key To Resolve Ambiguous Inserts
	BY Key Examples
	BY Key Considerations

	Missing Values (Nulls)
	Using Multiple-Value Fields in Selection Criteria
	WHERE Clause Examples

	Periodic Group Fields in Selection Criteria
	WHERE Clause Examples

	Using a SAS WHERE Clause for Selection Criteria
	SAS WHERE Clause Conditions Acceptable to ADABAS
	SAS WHERE Clause Conditions Not Acceptable to ADABAS
	When a SAS WHERE Clause Must Reference Descriptor Data Fields

	Deciding How to Specify Selection Criteria
	View WHERE Clause
	SAS WHERE Clause

	Example Data
	Introduction to the ADABAS Example Data
	ADABAS Files
	CUSTOMERS ADABAS File
	EMPLOYEE ADABAS File
	INVOICE ADABAS File
	ORDER ADABAS File

	NATURAL DDMs Based on the ADABAS Files
	CUSTOMERS DDM
	EMPLOYEE DDM
	INVOICE DDM
	ORDER DDM

	Access Descriptors for ADABAS
	Access Descriptors Based on ADABAS Files
	Access Descriptors Based on the NATURAL DDMs

	View Descriptors Based on the Access Descriptors for ADABAS
	VLIB.ADAEMPS View Descriptor
	VLIB.ALLEMP View Descriptor
	VLIB.ALLORDR View Descriptor
	VLIB.CUSORDR View Descriptor
	VLIB.CUSPHON View Descriptor
	VLIB.EMPINFO View Descriptor
	VLIB.EMPS View Descriptor
	VLIB.FORINV View Descriptor
	VLIB.INV View Descriptor
	VLIB.USACUST View Descriptor
	VLIB.USAINV View Descriptor
	VLIB.USAORDR View Descriptor

	SAS Data Files for ADABAS
	MYDATA.OUTOFSTK SAS Data File
	MYDATA.SASEMPS SAS Data File
	LIB6.BIRTHDAY Data File

	Recommended Reading
	Recommended Reading

	Glossary
	Index

