
SAS® 9.1.3 Intelligence Platform
Security Administration Guide
Second Edition

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2006.
SAS ® 9.1.3 Intelligence Platform: Security Administration Guide, Second Edition. Cary,
NC: SAS Institute Inc.

SAS® 9.1.3 Intelligence Platform: Security Administration Guide, Second Edition
Copyright © 2002-2006, SAS Institute Inc., Cary, NC, USA
ISBN-13: 978–1–59994–155–4
ISBN-10: 1–59994–155–4
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, November 2006
2nd printing, June 2007
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New vii

Overview vii

New Access Requirement: The Read Permission for Information Maps vii

BI Row-Level Permissions vii

Expanded Support for Web Authentication viii

Documentation Enhancements viii

P A R T 1 Before You Begin 1

Chapter 1 � Understanding Authentication 3
Scope of This Document 4

Accessibility Features in the SAS Intelligence Platform Products 4

Authentication Overview 4

The Authentication Process 11

Authentication Scenarios 21

A Closer Look: Accessing SAS Servers 25

A Closer Look: Accessing Third-Party Servers 30

Chapter 2 � Understanding Authorization 35
Authorization Overview 35

Where Can Permissions Be Set? 38

To Whom Can Permissions Be Assigned? 45

A Closer Look: How Authorization Decisions are Made 46

Summary: Principles of Access Control Precedence 48

Chapter 3 � Security Planning 51
Overview of Security Planning 51

Defining the Security Goals 51

Making Preliminary Decisions about Authentication 52

Determining the Scope of the Identity Management Tasks 55

Reviewing Physical Access Considerations for Data 58

P A R T 2 First Steps in Security Administration 61

Chapter 4 � Securing a Deployment 63
Overview of Securing a Deployment 63

Protecting the Configuration Directories (Windows) 64

Enabling Encryption 64

Protecting the Foundation Repository 67

Creating a Group of Metadata Administrators (Optional) 69

Setting Explicit Protections for Security-Related Resources 71

Minimizing the Availability of Accounts 76

iv

Chapter 5 � Customizing the Authentication Configuration 79
Overview of Customizing the Authentication Configuration 79

Modifications to Support a Mixed Authentication Environment 79

Modifications to Support Additional Servers 80

Modifications to Support Alternative Authentication Mechanisms 82

P A R T 3 Identity Management 87

Chapter 6 � User and Group Management 89
About the User and Group Management Tasks 89

Organizing Users Into Groups 89

Sequence for Populating a Deployment 91

How to Create a User Group 92

How to Add a User 93

How to Designate an Unrestricted, Administrative, or Trusted User 93

How to Remove a User 94

Macro for Protecting Group Definitions 95

Chapter 7 � User ID and Password Management 97
About the User ID and Password Management Tasks 97

How to Store User IDs and Passwords in the Metadata 97

How to Update Passwords for Users 98

How to Update Passwords for Required Accounts 98

Configuration Files That Include Passwords 100

P A R T 4 Access Management 105

Chapter 8 � Using the Metadata Authorization Layer 107
About the Access Management Tasks 107

How to Manage ReadMetadata and WriteMetadata Access 107

How to Manage Read Access 117

How to Manage the Other Permissions 125

Tip: Interpreting the Authorization Tab 126

Chapter 9 � Access Guidelines and Requirements 127
Guidelines for Managing Access 127

Access Requirements by Type of Resource 129

Chapter 10 � BI Row-Level Permissions 137
About BI Row-Level Permissions 138

Row-Level Permissions and Identity-Based Filtering 139

How to Create a Secure Environment for BI Row-Level Permissions 147

How to Implement Row-Level Permissions 150

Example: Using Row-Level Permissions 158

Chapter 11 � OLAP Member-Level Permissions 171

v

About OLAP Member-Level Permissions 171

Format for an OLAP Permission Condition 172

How to Assign an OLAP Permission Condition 173

Example: Using Member-Level Permissions 174

P A R T 5 Appendixes 179

Appendix 1 � Who’s Who in the SAS Intelligence Platform 181
Standard User Metadata Identities 181

Standard Group Metadata Identities 182

Appendix 2 � Bulk-Load Processes for Identity Management 185
Overview of Identity Bulk-Load Processes 186

How to Perform an Initial Import of Identity Information 187

How to Synchronize Imported Identity Information 195

Identity Bulk-Load Processes: Reference 201

Appendix 3 � Security Implementation Example 215
Goals and Configuration 215

Example: Implementing Security 217

Appendix 4 � Recommended Reading 221
Recommended Reading 221

Glossary 223

Index 227

vi

vii

What’s New

Overview
Changes to security aspects of the SAS Intelligence Platform in Service Pack 4

include a new access requirement, a BI row-level permissions feature, and expanded
support for Web authentication.

New Access Requirement: The Read Permission for Information Maps
A new access requirement affects users who view reports that are based on

information maps (or otherwise interact with information maps). In order to access
data through an information map, users must have the Read permission for that
information map. In the interest of greater security, the Read permssion is not granted
to anyone in the initial configuration. Therefore, before users can perform actions such
as generating reports that are based on information maps, you must grant Read access
using a strategy that is appropriate for your site. This is a new requirement with SAS
Web Report Studio 3.1, SAS Information Map Studio 3.1, and Service Pack 4. For
instructions, see “How to Manage Read Access” on page 117.

BI Row-Level Permissions
BI row-level permissions is a new feature that enables you to define fine-grained

access controls for relational data and SAS data sets when the data is accessed through
information maps. This feature requires Service Pack 4 and SAS Information Map
Studio 3.1. For more information, see Chapter 10, “BI Row-Level Permissions,” on page
137.

viii What’s New

Expanded Support for Web Authentication
Web authentication support has been expanded to include the SAS Web OLAP

Viewer for Java. This enables you to authenticate users of this application using the
Web server’s authentication provider (rather than the metadata server’s authentication
provider). This is an enhanced feature that requires SAS Web OLAP Viewer 3.1. For
more information, see “Using Web Authentication” on page 82.

Documentation Enhancements

The following changes have been made in the second edition of this document:

� The instructions for directly using an alternate authentication provider have been
revised.

� A chapter on OLAP member-level permissions has been added.

1

P A R T1

Before You Begin

Chapter 1.Understanding Authentication 3

Chapter 2.Understanding Authorization 35

Chapter 3.Security Planning 51

2

3

C H A P T E R

1
Understanding Authentication

Scope of This Document 4
Accessibility Features in the SAS Intelligence Platform Products 4

Authentication Overview 4

Introduction to Authentication 4

How Identities Are Verified 4

Single Sign-On 5
Identity Management 5

Authentication Terminology 6

Introduction to Authentication Terminology 6

How Metadata Identities Are Used 6

How Logins Are Used 8

How Authentication Domains Are Used 9
Uniqueness Requirements for Names and User IDs 10

The Authentication Process 11

Overview of the Authentication Process 11

Initial Authentication 11

Overview of Initial Authentication 11
Initial Authentication on a Metadata Server 12

Initial Authentication on a Web Application Server 13

Initial Authentication on a SAS OLAP Server 15

Trusted Peer Session Connections 16

Additional Authentication 16
Overview of Additional Authentication 16

Reuse of Credentials That Are Cached from an Interactive Log On 17

Retrieval of Credentials from the Metadata Repository 18

Shared User Context (Among Web Applications) 20

Interactive Prompting for SAS Server Credentials 20

Summary: Credential Management Features by Client 20
Authentication Scenarios 21

Introduction to Authentication Scenarios 21

Single Platform Environments 21

Mixed Platform Environments 22

Diverse Environments 24
A Closer Look: Accessing SAS Servers 25

Introduction to SAS Server Access Examples 25

Accessing a SAS OLAP Server 25

Accessing a SAS Workspace Server 26

Accessing a Pooled SAS Workspace Server 27
Accessing a SAS Stored Process Server 29

A Closer Look: Accessing Third-Party Servers 30

Introduction to Third-Party Server Access Examples 30

4 Scope of This Document � Chapter 1

Accessing a DB2 Database 30
Accessing an SAP System 31

Accessing a Xythos WebFile Server 31

Scope of This Document
This document explains the security model for the SAS Intelligence Platform and

provides instructions for performing security-related administrative tasks. The
emphasis is on suite-wide aspects of the security functionality that SAS provides. Some
interactions with other security layers (such as operating system permissions, WebDAV
access controls, and third-party database security) are noted. Detailed information
about features and requirements that are unique to a particular application is provided
in the administrative documentation for that application.

This document assumes that you are familiar with the concepts and terminology that
are introduced in SAS Intelligence Platform: Overview. For a list of all of the
documents that SAS publishes to support administration of the SAS Intelligence
Platform, see support.sas.com/administration.

Accessibility Features in the SAS Intelligence Platform Products
For information about accessibility for any of the products mentioned in this book,

see the documentation for that product. If you have questions or concerns about the
accessibility of SAS products, send e-mail to accessibility@sas.com.

Authentication Overview

Introduction to Authentication
Authentication is an identity verification process that attempts to determine whether

users (or other entities) are who they say they are. Authentication is a prerequisite for
authorization, because a user’s identity is the basis for authorization decisions about
which actions the user is permitted to perform with which resources.

In the SAS Intelligence Platform, a user’s identity is verified first when the user logs
on to an application and again as the user requests access to other systems. For
example, when a user logs on to SAS Data Integration Studio, the user authenticates to
the SAS Metadata Server. When the user makes a request from SAS Data Integration
Studio to run a job against an Oracle table, the user must authenticate to the SAS
Workspace Server that processes the request and to the Oracle server that manages the
table.

How Identities Are Verified
In most cases, SAS servers rely on their host operating systems to verify identities.

This process is called host authentication. For example, before allowing a user to run a
stored process, a stored process server asks its host computer to authenticate the user.
The host computer compares a provided user ID and password to a list of valid accounts
in the operating system (or in a back-end authentication database that the operating

Understanding Authentication � Identity Management 5

system is using). If the provided user ID and password correspond to a valid account,
the authentication is successful.

Note: As an alternative to relying on the host operating system, the metadata server
and the OLAP server can make direct use of Lightweight Directory Access Protocol
(LDAP) or Microsoft Active Directory to verify identities. However, the preferred way to
use an alternative authentication provider is as a back-end user store behind host
authentication, because direct use of LDAP and Active Directory Direct can significantly
increase the need to store user IDs and passwords in the metadata repository. �

In some cases, SAS servers trust verification that has been performed by other
components. The SAS Intelligence Platform supports the following trust relationships:

� The metadata server trusts the identity verification that the SAS OLAP Server
performs.

� By default, the metadata server trusts the identity verification that a connecting
SAS process performs.

� If SAS Web applications are configured to use Web server authentication, the
metadata server trusts the identity verification that a Web server performs.

Related Topics:
“Using LDAP or Active Directory” on page 82
“Using Web Authentication” on page 82
“The Authentication Process” on page 11

Single Sign-On
Single sign-on enables users to access a variety of computing resources without being

repeatedly prompted for their user IDs and passwords. The SAS Intelligence Platform
provides these single sign-on features:

� Most applications can cache the credentials that a user submits to log on.
� All applications can retrieve credentials that have been stored in the metadata

repository.
� Web applications can share user and session contexts.

Related Topics:
“Reuse of Credentials That Are Cached from an Interactive Log On” on page 17
“Retrieval of Credentials from the Metadata Repository” on page 18
“Shared User Context (Among Web Applications)” on page 20

Identity Management
In addition to managing user accounts in external systems, administrators must

create and maintain some user information in the metadata repository. You can
minimize the amount of identity information that you need to replicate in the metadata
by choosing your authentication providers carefully and making appropriate use of
shared accounts.

The SAS Intelligence Platform provides the following tools for management of
identity information in the metadata:

� Administrators can use SAS Management Console to define and manage metadata
identity information.

� Administrators can use batch processes to extract identity information from
sources such as LDAP or UNIX /etc/passwd files and create corresponding identity

6 Authentication Terminology � Chapter 1

information in the metadata repository. Batch processes can also be used to
periodically update the identity information. Batch processes cannot be used to
manage passwords.

� Users can use the SAS Personal Login Manager desktop application to manage
their own account information.

Related Topics:

“Choosing Authentication Providers” on page 52

“How to Use Shared Accounts” on page 80

Appendix 2, “Bulk-Load Processes for Identity Management,” on page 185

Authentication Terminology

Introduction to Authentication Terminology
The following terms are important to understanding how authentication works in the

SAS Intelligence Platform:

authentication
provider

a technology that servers or applications can use to verify that users
are who they say they are. Operating systems, LDAP, Active
Directory, and third-party database system authentication
mechanisms are examples of authentication providers.

metadata
identity

a metadata object that represents an individual user or a group of
users on a SAS Metadata Server. Each metadata identity must be
unique within a metadata server.

login a metadata object that is owned by a metadata identity. Each login
contains the user ID (and, sometimes, the password) for an account
that has been established with an authentication provider. Each
login corresponds to a particular user account with a particular
authentication provider. For example, if you have a UNIX account
with a user ID of tara and a password of tara1234, then you can
store that account information in the metadata as a login.

authentication
domain

a metadata object that links logins to the servers for which the
logins are valid. Each authentication domain should be associated
with one or more servers and with the logins that provide access to
those servers. All of the computing resources within an
authentication domain use the same authentication provider. You
can choose to use the same groupings and names for your
authentication domains as you do for your host domains or network
domains, but you are not required to do so.

The following topics explain the role of metadata identities, logins, and
authentication domains in the authentication model.

How Metadata Identities Are Used
Metadata identities are used as the basis for making authorization decisions and

responding to requests for credentials. The following figure depicts several metadata
identities within a SAS Metadata Repository.

Understanding Authentication � Authentication Terminology 7

Figure 1.1 Metadata Identities

Tara O'Toole

ETL Developers

Marcel Dupree

Metadata Identities

Metadata Repository

The metadata server discovers a user’s metadata identity by performing these steps:
1 The metadata server searches the metadata repository for a login that contains a

user ID that matches the user ID with which the user was authenticated.
In this process, the metadata server attempts to match the fully qualified user

ID. For example, if a user logs on to a server that is using Windows host
authentication, and the user’s Windows user ID is marcel in a Windows domain
named WinNT, then the metadata server searches the repository for a login that
includes the user ID WinNT\marcel. For this reason, it is important to carefully
specify the user ID in each login that you create.

� When you create a login for a network Windows user account, specify the
user ID in the form Windows-domain-name\userID or in the form
userID@Windows-domain-name.

� When you create a login for a local Windows user account, specify the user ID
in the form machine-name\userID or in the form userID@machine-name.

� When you create a login for an LDAP user account, specify the user ID in the
form userID@authentication-provider.

� When you create a login for a Microsoft Active Directory user account, specify
the user ID in the form Windows-domain-name\userID or in the form
userID@Windows-domain-name.

� When you create a login for a UNIX or z/OS operating system user account,
specify the user ID in the form userID.

2 The metadata server determines which metadata identity owns the login that
contains the matching user ID. For example, if the metadata server finds that a
login that contains the user ID WinNT\marcel is stored with the user definition for
Marcel Dupree, then the metadata server knows that Marcel Dupree is the
metadata identity of the user who logged on.

If there is no matching user ID in the repository, then the user’s access
corresponds to the access of the PUBLIC group, with these exceptions:

� If the user is using SAS Web Report Studio (with the surrogate user
configuration) or the SAS Information Delivery Portal, then the user’s access
corresponds to the access that has been defined for the surrogate user. By
default this is the SAS Guest User.

� If the user has special status as an unrestricted user or an administrative
user of the metadata server, then the user can perform certain tasks even if
he or she does not have an individual metadata identity.

8 Authentication Terminology � Chapter 1

How Logins Are Used
Logins are primarily used in two ways:
� The metadata server uses logins to determine a user’s metadata identity. When a

login is used to determine a user’s metadata identity, the login is functioning as an
inbound login (the login is inbound to the metadata server). As explained in the
preceding topic, the metadata server does not examine passwords or consider
authentication domains in this process.

� Applications use logins to acquire credentials as part of a single sign-on approach
to authentication. An application can retrieve a login from the metadata server
and send those credentials to another system that needs to verify a user’s identity.
When a login is used to provide access to a server other than the metadata server,
the login is functioning as an outbound login (the login is outbound from the
metadata server to another system). An outbound login must include a user ID and
password that are appropriate for the server or host to which the login provides
access. An outbound login must be associated with an authentication domain.

Logins can also be used in these ways:
� The object spawner uses logins to obtain credentials for launching servers that run

under designated accounts. When you configure a stored process server or a pooled
workspace server, you specify an account under which the server will run. For
example, during installation the stored process server is configured to run under
the sassrv account. In order to launch that stored process server, the object
spawner needs the credentials for the sassrv account. The object spawner obtains
those credentials from a login that is owned by the SAS General Servers group.
For more information, see “Accessing a Pooled SAS Workspace Server” on page 27.

� The Xythos WebFile Server uses logins to discover and set up users for access
control in the WebDAV authorization layer. Xythos builds its list of users by
retrieving from the metadata server all of the logins that are associated with the
authentication domain of the Xythos WebFile Server. In the default configuration,
that server is associated with the DefaultAuth authentication domain, so a user
must have a login that is associated with the DefaultAuth authentication domain
in order to be a valid user of the Xythos WebFile Server. In alternate
configurations, a user must have a login for some other authentication domain in
order to be a valid user of the Xythos WebFile Server. For more information, see
“Accessing a Xythos WebFile Server” on page 31.

Each login is owned by only one metadata identity. Each metadata identity can own
multiple logins. The following figure depicts the relationships between logins and
metadata identities in a metadata repository.

Understanding Authentication � Authentication Terminology 9

Figure 1.2 Metadata Identities and Logins

Tara O'Toole

ETL Developers

Marcel Dupree

Metadata Identities

Metadata Repository

Logins

 User ID: WinNT\marcel
Password: *******

 User ID: WinNT\tara
Password: *******

 User ID: tara
Password: *******

 User ID: ETLdev
Password: *******

How Authentication Domains Are Used
Authentication domains are used to support single sign-on from an application to

other systems. Each authentication domain corresponds to a logical grouping of servers
and logins within a metadata repository. The following figure depicts the relationships
between servers, authentication domains, and logins.

Figure 1.3 Metadata Identities, Logins, and Authentication Domains

Tara O'Toole

ETL Developers

Marcel Dupree

Metadata Identities

Metadata Repository

Logins

 User ID: WinNT\marcel
Password: *******

 User ID: WinNT\tara
Password: *******

 User ID: tara
Password: *******

 User ID: ETLdev
Password: *******

DefaultAuth

OracleAuth

UNIXAuth

SAS
Workspace

Server

SAS
Stored Process

Server

Oracle
Server

SAS
OLAP
Server

Authentication
Domains

Logical
Server

Definitions

When an application searches the metadata for a login that provides access to a
particular server, the application uses authentication domains to determine which logins
contain credentials that are appropriate for that server. For example, if Tara makes a
request that requires access to the Oracle server, then the Oracle server will have to
verify Tara’s identity. The application that Tara is using must provide Tara’s Oracle
user ID and password to the Oracle server. The application will complete these steps:

1 Determine that the Oracle server definition is associated with the OracleAuth
authentication domain.

10 Uniqueness Requirements for Names and User IDs � Chapter 1

2 Ask the metadata server for a login that is both associated with the OracleAuth
authentication domain and owned by Tara’s metadata identity (or by a group to
which Tara’s identity belongs).

In the preceding figure, Tara’s second login meets these criteria. If this login includes
Tara’s password for the Oracle server, then Tara will be able to access that server. If
Marcel makes a similar request, he will be denied access to the Oracle server because
Marcel does not have a login for the OracleAuth authentication domain. For additional
examples, see “Authentication Scenarios” on page 21.

Uniqueness Requirements for Names and User IDs
Within a SAS Metadata Server, the following uniqueness requirements apply to

metadata identity names and stored credentials:
� You cannot create a user definition that has the same name as an existing user

definition.

� You cannot create a group definition that has the same name as an existing group
definition.

� You cannot assign the same user ID to two different metadata identities. All of the
logins that include a particular user ID must be owned by the same metadata
identity. This enables the metadata server to resolve each user ID to a single
metadata identity.

� This requirement is case-insensitive. For example, you cannot assign a login
with a user ID of smith to one user and a login with a user ID of SMITH to
another user.

� This requirement applies to the fully qualified form of the user ID. For
example, you can assign a login with a user ID of winDEV\brown to one user
and a login with a user ID of winPROD\brown to another user. In this
example, winDEV and winPROD are Windows domain names, which are
incorporated into the fully qualified form of a user ID.

� This requirement cannot be mitigated by associating the logins with different
SAS authentication domains. For example, if one user has a login with a user
ID of smith that is associated with a SAS authentication domain named
DefaultAuth, you cannot give any other user a login with the user ID smith,
even if you plan to associate the login to a different SAS authentication
domain.

Note: To enable multiple users to share an account, store the credentials for that
account in a login as part of a group definition. Then add the users who will share
the account as members of that group definition. �

� If you give a user two logins that contain the same user ID, the logins must be
associated with different authentication domains. Within an authentication
domain, each user ID must be unique. For example, if you give the person Tara
O’Toole two logins that both have a user ID of tara, then you cannot associate both
of those logins with the OraAuth authentication domain.

Note: Like the previous requirement, this requirement is case-insensitive and is
applied to the fully qualified form of the user ID. �

Understanding Authentication � Initial Authentication 11

The Authentication Process

Overview of the Authentication Process
The authentication process can be thought of as occurring in two phases:
1 In the initial authentication phase, a user logs on with a SAS Intelligence

Platform client or opens a metadata profile. The user ID and password that the
user submits are sent to an authentication provider to verify the user’s identity.
After the user ID and password are verified, the metadata server determines the
user’s metadata identity.

2 In the additional authentication phase, a user makes a request that requires
access to an additional system such as a workspace server, stored process server,
or database server. The application that the user is using provides the user’s
credentials to the additional server. This enables the additional server to verify
the user’s identity against its authentication provider.

These phases are described in detail in the following sections.

Initial Authentication

Overview of Initial Authentication
Initial authentication is the verification of a user’s identity based on information that

the user provides when the user logs on with a SAS Intelligence Platform client. Initial
authentication requires that the user have an account with the authentication provider
that verifies the user ID and password that is submitted. The account can be any of the
following:

� a local user account in the operating system of the computer on which the
authenticating server is running

� a network user account that provides access to the operating system of the
computer on which the authenticating server is running

� an LDAP or Active Directory user account (if the authenticating server is using
one of these alternative authentication providers)

� a user account with any authentication provider that the Web application server
uses (for applications that are configured to use Web authentication)

The initial authentication process varies depending on the software component that
the user is using. The following table describes how each software component verifies
identities.

12 Initial Authentication � Chapter 1

Table 1.1 Initial Authentication

Type of Software Component Identity Verification Process

Desktop applications

Web applications that are using
metadata server authentication

The metadata server’s authentication provider verifies
that the user ID and password that the user submits
correspond to an existing account. For a depiction of this
process, see “Initial Authentication on a Metadata Server”
on page 12.

Web applications that are using Web
authentication

The Web application server’s authentication provider
verifies that the user ID and password that the user
submits correspond to an existing account. The Web
application then uses trusted user* functionality to enable
the user to access the metadata server. The user does not
need an account with the metadata server’s authentication
provider. For a depiction of this process, see “Initial
Authentication on a Web Application Server” on page 13.

Components that connect directly to a
SAS OLAP Server (such as the SAS
OLAP Data Provider)

The SAS OLAP Server’s authentication provider verifies
that the user ID and password that the user submits
correspond to an existing account. The SAS OLAP Server
then uses trusted user* functionality to enable the user to
access the metadata server. The user does not need to
have an account with the metadata server’s authentication
provider. For a depiction of this process, see “Initial
Authentication on a SAS OLAP Server” on page 15.

* Trusted user functionality supports a multi-tier server environment in which user identities are
authenticated by a server other than the metadata server.

After the user ID and password that the user submits are verified by the appropriate
authentication provider, the proof-of-identity is complete. None of the user information
that is stored in the metadata repository is used to prove the user’s identity.

Next, the metadata server must discover the user’s metadata identity for these
reasons:

� In order to provide authorization decisions and credential management, the
metadata server needs to know who the user is.

� Some applications have an additional requirement beyond proof-of-identity and
will not allow users to log on unless they have a metadata identity. For example, a
user must have a metadata identity in order to log on to SAS Information Map
Studio or to access the SAS Information Delivery Portal beyond the public kiosk.
SAS Web Report Studio can also be configured to require each user to have a
metadata identity.

In order to discover your metadata identity, the metadata server examines the user
IDs that are stored in the metadata repository. Passwords that are stored in the
metadata repository are not examined at any point during initial authentication.

Initial Authentication on a Metadata Server
The metadata server handles initial authentication when a user logs on with the

following types of applications:
� a desktop application such as SAS Management Console, SAS Data Integration

Studio, SAS OLAP Cube Studio, or SAS Information Map Studio
� a Web application (such as SAS Web Report Studio or the SAS Information

Delivery Portal) that is configured to authenticate users on the metadata server

Understanding Authentication � Initial Authentication 13

The following figure depicts these activities:

� verification of credentials that a user submits to an application that authenticates
users on a metadata server

� determination of the user’s metadata identity

Figure 1.4 Initial Authentication on a Metadata Server

End
User

Application SAS Metadata
Server

SAS Metadata
Repository

Authentication Provider for
the SAS Metadata Server

3

4

5

6

2

1

In this figure, the numbered arrows correspond to the following activities:

1 The user submits a user ID and password to a SAS application (by logging on or
by opening a metadata profile).

2 The application sends the user ID and password to the metadata server.

3 The metadata server passes the user ID and password to its authentication
provider for verification. For example, if the authentication provider is the host
operating system, then the metadata server passes the user ID and password to
the operating system of the machine on which the metadata server is running.

4 The authentication provider verifies that the user ID and password combination
corresponds to an existing user account. For example, if the authentication
provider is the host operating system, then the user ID and password combination
must correspond to a local or network user account that has been established in
the operating system. After verification, the authentication provider tells the
metadata server that the user ID and password are valid and sends the user ID
back to the metadata server.

5 The metadata server looks for the user ID in the logins that are stored in the
metadata repository.

Note: The metadata server attempts to match the user ID in its fully qualified
form, as described in “How Metadata Identities Are Used” on page 6. �

6 The metadata server determines which metadata identity owns a login that
contains the matching user ID.

Initial Authentication on a Web Application Server
When a Web application such as SAS Web Report Studio or the SAS Information

Delivery Portal is configured to use Web authentication, the authentication provider of
the Web application server must verify the credentials that users submit.

The following figure depicts these activities:

14 Initial Authentication � Chapter 1

� establishment of a trusted connection between a Web application and the
metadata server

� verification of credentials that a user submits to a Web application that is
configured to authenticate users on a Web application server

� determination of the user’s metadata identity

Figure 1.5 Initial Authentication on a Web Application Server

In this figure, the numbered arrows correspond to the following activities:
1 When the SAS Web application initializes, it sends the user ID and password for

the trusted user (sastrust) to the metadata server to request a trusted connection.
2 The metadata server passes the sastrust user ID and password to its

authentication provider.
3 The metadata server’s authentication provider verifies that the sastrust user ID

and password correspond to an existing account.
4 The metadata server tells the Web application that the trusted connection is

accepted. This connection will be used in step 9.
5 After navigating to a URL for a SAS Web application, a user submits a user ID

and password in response to a prompt from the Web application server.
6 The Web application server passes the user’s ID and password to its

authentication provider.
7 The Web application server’s authentication provider verifies that the user’s ID

and password correspond to an existing account.
8 The Web application server sends the authenticated user ID to the SAS Web

application.
9 The SAS Web application uses the (previously established) trusted connection to

the metadata server to request a one-time-use password for the user.
10 The metadata server generates a one-time-use password for the user and sends

that password to the SAS Web application. The metadata server trusts that the
user’s credentials have already been verified.

11 The SAS Web application uses the user’s ID and the generated password to
establish a connection to the metadata server for the user.

Understanding Authentication � Initial Authentication 15

12 The metadata server looks for the user ID in the logins that are stored in the
metadata repository.

Note: The metadata server attempts to match the user ID in its fully qualified
form, as described in “How Metadata Identities Are Used” on page 6. �

13 The metadata server determines which metadata identity owns the login that
contains the matching user ID.

Initial Authentication on a SAS OLAP Server
The SAS OLAP Server handles initial authentication when a user accesses a

component that connects directly to a SAS OLAP Server. For example, when a user
accesses SAS OLAP data from Microsoft Excel, the SAS OLAP Data Provider passes the
user’s credentials to the SAS OLAP Server for initial authentication.

The following figure depicts these activities:
� establishment of a trusted connection between a SAS OLAP Server and the

metadata server
� verification of credentials that a user submits to a component that connects

directly to a SAS OLAP Server
� determination of the user’s metadata identity

Figure 1.6 Initial Authentication on a SAS OLAP Server

SAS OLAP

Data Provider

(within Microsoft Excel)

End

User

SAS

OLAP

Server

Authentication

Provider for the

SAS OLAP Server

Metadata

Server
Metadata

Repository

Authentication

Provider for the

Metadata Server

1

2

3

4

5

6

7

8

9

10

11

12

In this figure, the numbered arrows correspond to the following activities:
1 When the SAS OLAP Server initializes, it sends the user ID and password for the

trusted user (sastrust) to the metadata server to request a trusted connection.
2 The metadata server passes the sastrust user ID and password to its

authentication provider.
3 The metadata server’s authentication provider verifies that the sastrust user ID

and password correspond to an existing account.
4 The metadata server tells the SAS OLAP Server that the trusted connection is

accepted. This connection will be used in step 9.

16 Additional Authentication � Chapter 1

5 After requesting access to SAS OLAP data from within Microsoft Excel, a user
submits a user ID and password in response to a prompt from the SAS OLAP
Data Provider.

6 The SAS OLAP Data Provider passes the user’s ID and password to the SAS
OLAP Server.

7 The SAS OLAP Server passes the user’s ID and password to its authentication
provider for verification.

8 The SAS OLAP Server’s authentication provider verifies that the user’s ID and
password correspond to an existing account.

9 The SAS OLAP Server uses the (previously established) trusted user connection to
request a credential handle for the user. In this process, the user’s authenticated
ID is passed to the metadata server. The metadata server trusts that the SAS
OLAP Server has already verified the user’s credentials.

Note: The SAS OLAP Server uses credential handles to specify which user is
making a particular request over the trusted connection. �

10 The metadata server looks for the user ID in the logins that are stored in the
metadata repository.

Note: The metadata server attempts to match the user ID in its fully qualified
form, as described in “How Metadata Identities Are Used” on page 6. �

11 The metadata server determines which metadata identity owns the login that
contains the matching user ID.

12 The metadata server sends a credential handle for the user to the SAS OLAP
Server.

Trusted Peer Session Connections
During installation, the SAS Configuration Wizard incorporates the trustsaspeer

option in the start command for the metadata server. This causes the metadata server
to accept trusted peer connections from SAS processes that request access using a
certain proprietary protocol. In a trusted peer connection, the metadata server trusts
the authentication that another SAS process (a SAS session, workspace server, or
stored process server) has already performed. Trusted peer session connections are used
by applications that need to generate code or run batch jobs without explicitly providing
credentials to the metadata server.

Additional Authentication

Overview of Additional Authentication
Additional authentication is the use of credentials by other systems after initial

authentication. For example, when a user accesses an application such as SAS Web
Report Studio to view a report that contains live data, the application might have to
provide the user’s credentials to a SAS Stored Process Server to enable that server to
verify the user’s identity.

The SAS Intelligence Platform uses a single sign-on model that enables users to
access a variety of computing resources without being repeatedly prompted for their
user IDs and passwords. The following sections describe the ways that applications can
obtain credentials for the purpose of providing those credentials to the servers that
need to verify users’ identity.

Understanding Authentication � Additional Authentication 17

Reuse of Credentials That Are Cached from an Interactive Log On
Most SAS applications cache the credentials that users provide when they log on.

The cached credentials can be reused for authentication to other servers. For example,
if a user logs on to SAS Information Delivery Portal and is initially authenticated on a
metadata server that is using UNIX host authentication, then the user’s cached UNIX
credentials can be reused for authentication to a stored process server that is running
on UNIX. Of course, the user’s cached credentials will be valid for only one
authentication provider. For example, the user’s cached UNIX credentials cannot be
reused for authentication to a stored process server that is running on Windows, or for
authentication to a third-party database server that is using a proprietary
authentication mechanism. Cached credentials are valid only for servers within only
one authentication domain. In most cases, applications use cached credentials for
servers that are in the DefaultAuth authentication domain. The following table
provides details about how applications determine when to use cached credentials.

Table 1.2 Use of Cached Credentials

Application Authentication Domain for Which Cached Credentials are Used

SAS Add-In for Microsoft
Office

The authentication domain that is specified in the
AuthenticationDomain Name= field in the
CSIDL_APPDATA\SAS\Metadata Server\oms_serverinfo.xml
file.

SAS Data Integration
Studio

The authentication domain that the user specified in the metadata
profile.2

SAS Enterprise Guide Any authentication domain. When a user requests access to a
workspace server, SAS Enterprise Guide 3.1 attempts to reuse the
credentials that the user provided when the user logged on.

SAS Enterprise Miner The authentication domain that is specified in the
default_auth_domain= field in the SASAPCore\conf\server.config
file.1

SAS Information Delivery
Portal

The authentication domain that is specified in the
$SERVICES_OMI_DOMAIN$= field in the
PortalConfigure\install.properties file.1

SAS Information Map
Studio

The authentication domain that the user specified in the metadata
profile.

SAS Marketing
Automation

The authentication domain that is specified in the login.config file
(or its equivalent) for the Web container that SAS Marketing
Automation is using.

SAS OLAP Cube Studio The authentication domain that the user specified in the metadata
profile.2

18 Additional Authentication � Chapter 1

Application Authentication Domain for Which Cached Credentials are Used

SAS Web Report Studio The authentication domain that is specified in the
$LOGON_DOMAIN$= field in the wrs.config file.1

SAS Web OLAP Viewer The authentication domain that is specified in the
$SERVICES_OMI_DOMAIN$= field in the
\SASWebOlapViewerforJava\3.1\Configure\install.properties
file.1

1 The authentication domain that is specified in the application properties file must also match the
authentication domain that is specified in the associated login.config file (or its equivalent).
If the two values do not match, the authentication fails.

2 If you do not specify an authentication domain in your metadata profile, then this application
does not use your cached credentials.

Retrieval of Credentials from the Metadata Repository
In most deployments, there are some authentication events for which cached

credentials cannot be used. For example, if a user’s cached credentials are for a UNIX
system, those credentials will not enable the user to access a stored process server that
is running on Windows. For these authentication events, the user (or a group to which
the user belongs) must have a login in the metadata that contains credentials that are
appropriate for the target server.

Note: In most deployments, you will need to store some passwords in the metadata.
However, you can minimize the need for this by giving careful consideration to your
selection of authentication providers and using shared accounts where appropriate. For
details, see “Choosing Authentication Providers” on page 52 and “How to Use Shared
Accounts” on page 80. �

When an application needs to provide a user’s credentials to another server (and
cached credentials cannot be used), the application asks the metadata server to search
the metadata repository for a login that contains credentials that can be used to access
the target server. The login must be owned by the user’s metadata identity (or by a
user group to which the user’s metadata identity belongs). If the application finds an
appropriate login, the application passes that user ID and password to the server that
the user needs to access. The target server then uses those credentials to verify the
user’s identity against its authentication provider.

The following figure depicts this process. The example assumes these conditions:
� The user is represented in the repository by a metadata identity that owns a login

that contains credentials for accessing the SAS Workspace Server.
� The user has already completed initial authentication.
� The target server is a workspace server that is not configured for pooling.

Understanding Authentication � Additional Authentication 19

Figure 1.7 Additional Authentication

End
User

Application SAS Metadata
Server

SAS Metadata
Repository

Host Authentication
for the Workspace Server

3

4

5

6

2

1

Workspace
Server

7

8

Note: In order to provide a generalized depiction that is applicable to a wide variety
of target servers, the figure omits the object spawner (which is used to launch
workspace servers and stored process servers). For the purposes of completeness,
implementation details relating to the object spawner are noted in the following process
description. Additional examples and depictions of server-specific aspects of this process
are provided in “A Closer Look: Accessing SAS Servers” on page 25 and “A Closer Look:
Accessing Third-Party Servers” on page 30. �

In the figure, the numbered arrows correspond to the following activities:

1 The user makes a request that requires access to a SAS Workspace Server.

2 The application recognizes that the request requires access to a workspace server,
so the application goes to the metadata server to get credentials that will give the
user access to a workspace server.

3 The metadata server looks for the requested credentials in the metadata
repository. The credentials must meet both of these criteria:

� The credentials are stored in a login that is owned by the requesting user’s
metadata identity (or by a group to which that identity belongs).

� The credentials are stored in a login that is associated with the
authentication domain in which the workspace server is registered.

4 The metadata server locates the appropriate credentials in the metadata
repository and retrieves those credentials from the metadata repository.

5 The metadata server sends the credentials to the requesting application.

6 The application sends the credentials to the target server.

Note: Because the target server is an unpooled workspace server, the application
actually sends the credentials to the object spawner that will launch the
workspace server (rather than to the workspace server itself). �

7 The target server passes the credentials to its authentication provider for
verification.

Note: In this example, it is actually the object spawner (rather than the
workspace server) that passes the credentials to its authentication provider for
verification. The authentication provider for a workspace server is always the host
operating system. �

20 Additional Authentication � Chapter 1

8 The authentication provider tells the target server that the credentials are valid.
The target server then accepts the connection.

Note: In this example, the host operating system tells the object spawner (rather
than the workspace server) that the credentials are valid. The object spawner then
launches a workspace server for the requesting user. �

Shared User Context (Among Web Applications)
The previous topics describe single sign-on from an application to different servers.

SAS Web applications can also support single sign-on from one application to another.
When Web applications share user context and session information, users can launch
one Web application from within another Web application without having to log on to
the second application. For example, because the SAS Web Report Viewer and the SAS
Information Delivery Portal use the same remotely deployed session service, a user can
access the SAS Web Report Viewer from the portal application without logging in again.
In this example, the SAS Web Report Viewer shares the session and user context that
was initiated when the user logged on to the SAS Information Delivery Portal.

Interactive Prompting for SAS Server Credentials
If credentials cannot be otherwise obtained, some SAS applications prompt users for

their credentials for accessing SAS servers. For example, SAS Data Integration Studio
prompts users for their user ID and password for a workspace server if those
credentials are not stored in the metadata repository. Interactive prompting is available
only for accessing SAS servers. For authentication to a third-party database server,
credentials must be stored in the metadata repository, as described in “Example:
Managing Authentication to a Database Server” on page 81.

Summary: Credential Management Features by Client
The following table shows which credential management features work with each

SAS client.

Table 1.3 Accessing Additional Resources after Initial Authentication

Supported Credential Management Features
Client

Retrieval of
Stored

Credentials

Reuse of Cached
Credentials

Interactive
Prompting

Sharing User
Context

SAS Add-In for
Microsoft Office

x x x

SAS Data
Integration Studio

x x x

SAS Enterprise
Guide

x x1 x

SAS Enterprise
Miner

x x x

SAS Information
Delivery Portal

x x x

SAS Information
Map Studio

x x

Understanding Authentication � Single Platform Environments 21

Supported Credential Management Features
Client

Retrieval of
Stored

Credentials

Reuse of Cached
Credentials

Interactive
Prompting

Sharing User
Context

SAS OLAP Cube
Studio

x x x

SAS Web Report
Studio

x x x

SAS Web OLAP
Viewer

x x x

SAS Stored
Process
Application

x x x

1 SAS Enterprise Guide 3.1 attempts to reuse cached credentials to provide access to workspace
servers (but not to provide access to stored process servers).

Authentication Scenarios

Introduction to Authentication Scenarios
This section explains the relationships between servers, authentication domains, and

logins in a variety of deployment scenarios. In each scenario, the logins that are stored
in the metadata for an individual user (Tara O’Toole) and a particular user group (ETL
Developers) are identified.

Single Platform Environments
In a homogeneous environment, you might need only one authentication domain.

The following figure depicts a deployment in which all of the logical servers and all of
the logins for all metadata identities are associated with an authentication domain that
is named DefaultAuth.

22 Mixed Platform Environments � Chapter 1

Figure 1.8 Homogeneous Environment, One Authentication Domain

Metadata Server running on Windows

Logins for Tara O'Toole

User ID Password Authentication Domain

WinNT\tara ********* DefaultAuth

Tara O'Toole

ETL Developers

DefaultAuth

 Stored Process Server

 Workspace Server

There are no logins for the ETL Developers User Group

In this figure, the metadata identity that represents Tara owns only one login, which
functions as both an inbound and an outbound login. Because the servers are running
under Windows, the user ID in the login is fully qualified with the name of the
Windows domain (WinNT). Because Tara’s password is stored in the login, Tara will be
able to access the workspace server and stored process server without being prompted
for her credentials.

Note: If all of the applications that Tara uses can cache credentials, then Tara’s
login does not have to include a password. �

In this deployment, no logins have been defined for the ETL Developers user group.
This user group exists to simplify administration of access controls.

Mixed Platform Environments
In a multi-host environment, you will usually need more than one authentication

domain. For example, if you modify the previous deployment by moving the stored
process server to z/OS, then you will need an additional authentication domain, because
your users access servers on z/OS using different credentials than they use on Windows.
In the metadata, you need to link the stored process server to the logins that contain
credentials for accessing that server. You create this link by associating both the server
and the logins with a new authentication domain. The following figure depicts this
modification to the previous deployment.

Understanding Authentication � Mixed Platform Environments 23

Figure 1.9 Mixed Environment, Two Authentication Domains

Metadata Server running on Windows

Logins for Tara O'Toole

User ID Password Authentication Domain

WinNT\tara ********* DefaultAuth

tara ********* MVSAuth

Tara O'Toole

ETL Developers

DefaultAuth

Workspace Server

There are no logins for the ETL Developers User Group

MVSAuth

Stored Process Server

In this figure, a new authentication domain named MVSAuth has been defined, and
the stored process server has been registered in that authentication domain. Two logins
have been defined for Tara:

� The first login is for the DefaultAuth authentication domain. This login is used by
the metadata server to determine Tara’s identity and by the workspace server
during additional authentication.

� The second login is for the MVSAuth authentication domain. This login enables
Tara to access the stored process server during additional authentication.

Note: If the applications that Tara uses cache her credentials, then Tara can access
the workspace server using credentials that are cached from initial authentication. In
this scenario, Tara’s first login would not have to include a password. �

The next figure depicts the deployment after you move the workspace server to z/OS.
Now only the metadata server is running under Windows. All of the other servers are
running under z/OS and are registered in the MVSAuth authentication domain.

Figure 1.10 Mixed Environment, One Authentication Domain

Metadata Server running on Windows

Logins for Tara O'Toole

User ID Password Authentication Domain

WinNT\tara

tara ********* MVSAuth

Tara O'Toole

ETL Developers

DefaultAuth

There are no logins for the ETL Developers User Group

MVSAuth

Stored Process Server

Workspace Server

In this figure, the DefaultAuth authentication domain still exists, but it is not
associated with any servers or logins. Tara still owns two logins, but it is no longer
essential to include a password or an authentication domain in the first login. Tara’s

24 Diverse Environments � Chapter 1

first login is now only used to determine her metadata identity; it is not used for any
other purposes.

Diverse Environments
In a diverse environment, you might need more authentication domains. In this

example, you add two servers to the previous deployment:
� an Oracle server that uses database authentication. When you add this server, you

must add another authentication domain, because your users access the Oracle
server with different credentials than they use to access the other servers. In the
metadata, you must link the Oracle server to the logins that contain credentials
for accessing that server. You create this link by associating both the Oracle server
and the logins with a new authentication domain.

� a Xythos WebFile Server that delegates authentication to the SAS Metadata
Server.* When you add the Xythos server, you do not need to add a new
authentication domain, because your users will use their metadata server
credentials to access the Xythos server. However, for each user who will access
resources on the Xythos server, you must specify the DefaultAuth authentication
domain on the login that the metadata server uses to determine that user’s
identity. This enables the user to authenticate to the Xythos server.

The following figure depicts the revised deployment.

Figure 1.11 Diverse Environment, Multiple Authentication Domains

Metadata Server running on Windows

Logins for Tara O'Toole

User ID Password Authentication Domain

ORA ********* OracleAuth

Tara O'Toole

ETL Developers

MVSAuth

 Stored Process Server

 Workspace Server
Logins for the ETL Developers User Group

OracleAuth

Oracle Server

DefaultAuth

Xythos WebFile Server

User ID Password Authentication Domain

WinNT\tara

tara ********* MVSAuth

 DefaultAuth

In the figure, a new authentication domain named OracleAuth has been defined, and
an Oracle server has been registered in that authentication domain. The Xythos WFS
server has been added to the DefaultAuth authentication domain.

The metadata identity that represents Tara O’Toole owns two logins:
� The first login is used by the metadata server to determine Tara’s identity. This

login is now also used to enable the metadata server to authenticate Tara on
behalf of the Xythos server. This use requires the first login to be assigned to the
DefaultAuth authentication domain.

* This is the default configuration for authentication to a Xythos WebFile Server. More information and configuration details
are provided in “Accessing a Xythos WebFile Server” on page 31.

Understanding Authentication � Accessing a SAS OLAP Server 25

� The second login provides access to the stored process and workspace servers that
are registered in the MVSAuth authentication domain. This login functions as an
outbound login (it is outbound from the metadata server), so this login includes a
password to support a single sign-on approach to additional authentication.

Note: A different set of logins might be required if your metadata server uses an
alternative authentication provider or your deployment includes pooled servers. �

Tara does not directly own a login that provides access to the server in the
OracleAuth authentication domain, so she can access that server only if she is a
member of a user group that owns an appropriate login. In this example, Tara is a
member of the ETL Developers user group, so she can use that group’s shared login to
get to the Oracle server in the OracleAuth authentication domain. If you give the ETL
Developers group a login for the OracleAuth authentication domain, you should not also
give Tara a login for the OracleAuth authentication domain. If more than one login for
a particular authentication domain is available to Tara, then a requesting application
might not be able to determine which set of credentials to use.

Note: In order to access the Oracle server from SAS Data Integration Studio, Tara
must be able to access both the workspace server and the Oracle server. �

A Closer Look: Accessing SAS Servers

Introduction to SAS Server Access Examples
This section contains specific examples of additional authentication from various

applications to SAS OLAP Servers, SAS Workspace Servers, and SAS Stored Process
Servers. The examples assume these conditions:

� The deployment includes the standard, required accounts that are described in the
pre-installation checklist.

� The user has completed initial authentication.

� The user has a metadata identity.

� The logins that the user needs for additional authentication are defined in the
metadata repository.

� The accounts that the user needs have been established with the appropriate
authentication providers.

� Each SAS OLAP Server, SAS Workspace Server, and SAS Stored Process Server is
registered in the metadata and is associated with an appropriate authentication
domain.

Accessing a SAS OLAP Server
This example describes the additional authentication process from SAS Information

Map Studio to a SAS OLAP Server. The process is initiated when a user makes a
request to access cubes from SAS Information Map Studio. The process is depicted in
the following figure.

26 Accessing a SAS Workspace Server � Chapter 1

Figure 1.12 Additional Authentication to a SAS OLAP Server

SAS Information
Map Studio

SAS Metadata
Server

SAS OLAP
Server

1

2

The prerequisites for accessing a SAS OLAP Server are that the metadata server and
the OLAP server must be running (the metadata server must be started before the
OLAP server).

The numbers in the diagram correspond to these activities:
1 SAS Information Map Studio goes to the metadata server to get the user’s

credentials for the SAS OLAP Server. As the requesting client, the user must have
ReadMetadata permission to the SAS OLAP Server definition. The user (or a
group to which the user belongs) must have a login for the authentication domain
that is associated with the SAS OLAP Server definition. The user ID and
password in that login must correspond to an account that has been established
with the SAS OLAP Server’s authentication provider.

Note: If the application can use the user’s cached credentials to access the SAS
OLAP Server, then this step is omitted. �

2 SAS Information Map Studio provides the user’s credentials to the SAS OLAP
Server. The SAS OLAP Server then authenticates the user against its
authentication provider.

Accessing a SAS Workspace Server
This example describes the additional authentication process from SAS Web Report

Studio to a SAS Workspace Server. The process is initiated when a user makes a
request that requires access to a workspace server from SAS Web Report Studio.

Note: In this example, the SAS Workspace Server is not part of a pool. The next
example describes the process for accessing a pooled workspace server. �

These are the prerequisites for accessing a workspace server:
� The metadata server must be running.
� The object spawner must be running and must have been started after the

metadata server was started.
� When it initializes, the object spawner must be able to get information about the

workspace server from the metadata server. To get this information, the object
spawner connects to the metadata server as the SAS Trusted User (which
corresponds to the sastrust account on the metadata server).*

By default, the SAS Trusted User can see the workspace server definition
because sastrust is a member of the SAS System Services user group, which has
ReadMetadata access to the repository. As you set access controls, you must

* As explained in “Minimizing the Availability of Accounts” on page 76, this connection does not make use of any trusted user
functionality.

Understanding Authentication � Accessing a Pooled SAS Workspace Server 27

ensure that the SAS System Services group does not lose its ReadMetadata access
to the workspace server definition.

The following diagram depicts the process that is initiated by the user’s request.

Figure 1.13 Additional Authentication to a SAS Workspace Server

Web
Browser

SAS Metadata
Server

SAS Object
Spawner

2

3
SAS Workspace Server4

Web Application
Server

1

The numbers in the figure correspond to these steps:

1 The user’s Web browser sends the request to the SAS Web Report Studio
application.

2 The application goes to the metadata server to get the user’s credentials for the
workspace server. The application must find a login that is associated with the
workspace server’s authentication domain and is owned by the user (or by a user
group to which the user belongs).

Note: If the application can use the user’s cached credentials to access the
workspace server, then this step is omitted. �

3 The application asks the object spawner to launch a workspace server, using the
user’s credentials.

4 The object spawner uses the credentials that were obtained from the metadata
server to authenticate the user (using host authentication). The object spawner
then launches a workspace server for the user.

Accessing a Pooled SAS Workspace Server
This example describes the additional authentication process from SAS Web Report

Studio to a pooled SAS Workspace Server.
When you set up pooling, you assign one login to each puddle within the pooled

logical workspace server. Each puddle login corresponds to an account that has been
established in the host environment of the workspace server. When an application asks
the object spawner to launch an additional physical workspace server into the pool, the
application must provide the user ID and password for one of the puddle logins. Before
the object spawner launches the physical workspace server, the object spawner checks
those credentials against the host operating system.

If a user makes a request that requires access to the pooled workspace server, the
request does not trigger any further authentication. For this reason, a user does not
have to have a host account in order to access a pooled workspace server. A user does,
however, have to be a member of at least one user group that is associated with at least
one puddle in the pool of workspace servers (as this example explains).

These are the prerequisites for accessing a pooled workspace server:

� The metadata server must be running.

� The object spawner must be running and must have been started after the
metadata server was started.

28 Accessing a Pooled SAS Workspace Server � Chapter 1

� When it initializes, the object spawner must be able to get information about the
workspace server from the metadata server. To get this information, the object
spawner connects to the metadata server as the SAS Trusted User. As explained
in the previous example, the SAS Trusted User can see the workspace server
definition because sastrust is a member of the SAS System Services user group,
which has ReadMetadata access to the repository.

� The requesting application must be able to obtain all of the puddle logins from the
metadata repository. This enables the requesting application to provide the object
spawner with the credentials that the object spawner will use to launch the
workspace servers. The account that the requesting application uses to retrieve
the puddle logins from the metadata repository is called the pool administrator.

� The logical workspace server must be configured for pooling.

The following figures depict the process that is initiated by a user’s request.

Figure 1.14 Accessing an Existing Pooled SAS Workspace Server

Web
Browser

SAS Metadata
Server

SAS Object
Spawner

2

3

SAS Workspace Server
(Pooled)

Web Application
Server

1

Figure 1.15 Accessing a Newly Launched Pooled SAS Workspace Server

Web
Browser

SAS Metadata
Server

SAS Object
Spawner

2

3 SAS Workspace Server
(Pooled)

Web Application
Server

1

The numbers in the figures correspond to these steps:
1 The user’s Web browser sends the request to the SAS Web Report Studio

application.
2 SAS Web Report Studio checks the user’s group membership information in the

metadata repository in order to determine which puddles the user is allowed to use.

Note: In the metadata, each puddle is assigned to one user group. If a user
does not belong to any user groups that are assigned to a puddle, then the user
will not be able to connect to a workspace server. �

3 SAS Web Report Studio performs one of the following actions:
� If there is an available workspace server in a puddle that the user is allowed

to use, then SAS Web Report Studio sends the request to that workspace
server.

Understanding Authentication � Accessing a SAS Stored Process Server 29

� If there are no available workspace servers in any of the puddles that the
user is allowed to use, then SAS Web Report Studio asks the object spawner
to launch a new workspace server in an appropriate puddle.

Accessing a SAS Stored Process Server
This example describes the additional authentication process from the SAS Add-In

for Microsoft Office to a SAS Stored Process Server. The process is initiated when a
user makes a request that requires access to a stored process server from the SAS
Add-In for Microsoft Office.

These are the prerequisites for accessing a stored process server:

� The metadata server must be running.

� The object spawner must be running and must have been started after the
metadata server was started.

� When it initializes, the object spawner must be able to get information about the
stored process server from the metadata server. To get this information, the object
spawner connects to the metadata server as the SAS Trusted User (sastrust). This
user must be able to see the stored process server definition and to use the sassrv
login (under which the stored process server runs).

1 By default, the SAS Trusted User can see the stored process server definition
because sastrust is a member of the SAS System Services user group, which
has ReadMetadata permission for the repository. As you set access controls,
you must ensure that the SAS System Services group does not lose its
ReadMetadata access to the stored process server definition. To learn how to
manage access to server definitions, see “Access Requirements for Server
Definitions” on page 129.

2 The SAS Trusted User can use the sassrv login because sastrust is a member
of the SAS General Servers user group, which owns the sassrv login.

Note: Only members of the SAS General Servers group can use the sassrv
login. An unrestricted user such as the SAS Administrator (which corresponds
to the sasadm account on the metadata server) cannot obtain any passwords,
so you should not use the sasadm account in place of the sastrust account. �

The following figure depicts the process that is initiated by a user’s request.

Figure 1.16 Additional Authentication to a SAS Stored Process Server

SAS Add-In for
Microsoft Office

SAS Metadata
Server

SAS Object
Spawner

1

2
SAS Stored Process Server3

The numbers in the figure correspond to these steps:

1 SAS Add-In for Microsoft Office goes to the metadata server to get the user’s
credentials for the stored process server. The application must find a login that is
associated with the stored process server’s authentication domain and is owned by
the user (or by a user group to which the user belongs).

30 A Closer Look: Accessing Third-Party Servers � Chapter 1

Note: If the application can use the user’s cached credentials to access the stored
process server, then this step is omitted. �

2 The application asks the object spawner for a stored process server.
3 The object spawner either uses an existing stored process server or launches a new

one. The stored process server uses host authentication to verify the user’s
identity and then runs under the sassrv account.

A Closer Look: Accessing Third-Party Servers

Introduction to Third-Party Server Access Examples
This section contains specific examples of additional authentication from various

applications to third-party database servers and WebDAV servers. The examples
assume these conditions:

� The deployment uses the standard, required accounts that are described in the
pre-installation checklist.

� The user has completed initial authentication
� The user has a metadata identity.
� The logins that the user needs for additional authentication are defined in the

metadata repository.
� The accounts that the user needs have been established with the appropriate

authentication providers.
� Each third-party server is registered in the metadata and is associated with an

appropriate authentication domain.

Accessing a DB2 Database
This example describes the additional authentication process from SAS Data

Integration Studio to a DB2 database, using the SAS/ACCESS Interface to DB2.
The process is initiated when a user makes a request to access DB2 data from SAS

Data Integration Studio. The following figure depicts the process.

Figure 1.17 Additional Authentication to a DB2 Database

SAS Data Integration Studio

SAS Metadata
Server

DB2 Server

1

2

The numbers in the figure correspond to the following activities:

1 SAS Data Integration Studio goes to the metadata server to get the user’s
credentials for the DB2 system. As the requesting client, the user must have

Understanding Authentication � Accessing a Xythos WebFile Server 31

ReadMetadata access to the DB2 server definition. The user (or a group to which
the user belongs) must have a login for the authentication domain that is
associated with the DB2 server definition. The user ID and password in that login
must correspond to an account that has been established with the DB2 server.

2 SAS Data Integration Studio provides the user’s DB2 credentials to the DB2
server. The DB2 server verifies that those credentials correspond to an existing
DB2 account.

Accessing an SAP System
This example describes the additional authentication process from SAS Data

Integration Studio to an SAP system, using the SAS Data Surveyor for SAP.
The process is initiated when a user makes a request to access SAP data from SAS

Data Integration Studio. The following figure depicts the process.

Figure 1.18 Additional Authentication to an SAP System

The numbers in the figure correspond to the following activities:
1 SAS Data Integration Studio goes to the metadata server to get the user’s

credentials for the SAP system. As the requesting client, the user must have
ReadMetadata access to the SAP server definition. The user (or a group to which
the user belongs) must have a login for the authentication domain that is
associated with the SAP server definition. The user ID and password in that login
must correspond to an account that has been established with the SAP system.

2 SAS Data Integration Studio provides the user’s SAP credentials to the Remote
Function Call (RFC) server.

3 The RFC server passes the SAP credentials to the SAP system, which verifies that
those credentials correspond to an existing account on the SAP system.

Accessing a Xythos WebFile Server
The process for accessing a Xythos WebFile Server differs from the process for

accessing other servers in some important ways. For this reason, before presenting an
example of how this process works, this topic explains how user credentials for Xythos
are acquired and verified.

The first step in the authentication process is for the application (the SAS Information
Delivery Portal in this example) to acquire the requesting user’s credentials.

� In the default configuration, the SAS Information Delivery Portal acquires the
requesting user’s credentials for the Xythos server by caching the credentials that
the user supplied when logging on.

� In an alternate configuration, the SAS Information Delivery Portal retrieves the
requesting user’s credentials for the Xythos server from the metadata repository.

32 Accessing a Xythos WebFile Server � Chapter 1

The SAS Information Delivery Portal determines the authentication domain for
the Xythos server by checking a configuration file, rather than by examining
metadata that describes that server.

The second step in the authentication process is for the target server (the Xythos
WebFile Server) to verify the acquired credentials against its authentication provider.

� In the default configuration, the SAS User Customization for Xythos WFS uses the
SAS Metadata Server as its authentication provider (this enables you to avoid
maintaining an additional store of user information in the Xythos WebFile Server).
In this process, the metadata server uses its authentication provider to verify the
acquired credentials.

After the authentication provider of the metadata server verifies the requesting
user’s credentials, the SAS User Customization for Xythos WFS must locate a
login that is owned by the requesting user and associated with the authentication
domain of the Xythos server. If no such login exists, then the user cannot connect
to the Xythos server. In the default configuration, the Xythos server is associated
with the DefaultAuth authentication domain.

� In an alternate configuration, the SAS User Customization for Xythos WFS first
retrieves (from the metadata server) the requesting user’s login for the
authentication domain with which the Xythos server is associated. The SAS User
Customization for Xythos WFS then authenticates the requesting user by
determining whether the password in the retrieved login is the same as the
password that was provided by the connecting client (the SAS Information
Delivery Portal in this example). This process requires that the requesting user’s
login for the authentication domain of the Xythos server includes a password.

The following example explains the configuration details and illustrates the
additional authentication process from the SAS Information Delivery Portal to a Xythos
WebFile Server. The example assumes that you are using the default configuration,
which includes these settings:

� In your SAS Information Delivery Portal configuration file, the authentication
domain of the WebDAV server is the same as the cached credentials authentication
domain. The install.properties file in the PortalConfigure directory
includes these lines:

DAV_DOMAIN=DefaultAuth
$SERVICES_OMI_DOMAIN$=DefaultAuth

� In your SAS User Customization for Xythos WFS configuration file, the
authentication domain of both the Xythos server and the metadata server is
DefaultAuth. The saswfs.properties file in the wfs-4.0.48 directory includes
these lines:

com.sas.wfs.domain.dav=DefaultAuth
com.sas.wfs.domain.metadata=DefaultAuth

� The Xythos WebFile Server is not configured to force DIGEST HTTP
authentication.

Note: By default, the SAS User Customization for Xythos WFS configures
Xythos to use BASIC authentication. This is the preferred configuration. �

These configuration files are created for you based on values that you supply during
installation of the SAS Information Delivery Portal and the SAS User Customization
for Xythos WFS. The following tables document how the values that you supply during
installation correspond to the variables in the configuration files.

Understanding Authentication � Accessing a Xythos WebFile Server 33

Table 1.4 Installation of the SAS Information Delivery Portal

Value That You Supply during Installation Line That Is Generated in the
PortalConfigure\install.properties file

Enter the authentication domain for the SAS
Metadata Server > DefaultAuth

$SERVICES_OMI_DOMAIN$=DefaultAuth

Enter the authentication domain for the
WebDAV Server >DefaultAuth

DAV_DOMAIN=DefaultAuth

Table 1.5 Installation of the SAS User Customization for Xythos WFS

Value That You Supply during Installation Line That Is Generated in the
wfs-4.0.48\saswfs.properties file

Enter the authentication domain for the SAS
Metadata Server > DefaultAuth

com.sas.wfs.domain.metadata=DefaultAuth

Enter the authentication domain for the Xythos
WFS WebDAV Server >DefaultAuth

com.sas.wfs.domain.dav=DefaultAuth

The following figure depicts the process that is initiated when a user makes a
request to access a resource that is stored on the Xythos WebFile Server.

Figure 1.19 Additional Authentication to a Xythos WebFile Server

The numbers in the figure correspond to the following activities:
1 From a Web browser, the user makes a request to the SAS Information Delivery

Portal for a resource that is stored in a WebDAV area on a Xythos WebFile Server.
2 The SAS Information Delivery Portal sends the user’s credentials to Xythos for

authentication. In this example, the default configuration is used, so cached
credentials are used.

Note: If the PortalConfigure\install.properties file does not assign both
the Xythos server and the metadata server to the same authentication domain,
then cached credentials are not used. Instead, the SAS Information Delivery
Portal gets the user’s credentials for the Xythos server from the metadata server.
In this process, the SAS Information Delivery Portal searches the metadata
repository for credentials that are associated with the authentication domain that
is specified in the DAV_DOMAIN= setting in the SAS Information Delivery
Portal’s install.properties file. �

34 Accessing a Xythos WebFile Server � Chapter 1

3 The SAS User Customization for Xythos WFS sends the user’s credentials to the
metadata server for authentication. In this example, the default configuration is
used, so the metadata server’s authentication provider verifies the user’s identity.
After the credentials are verified, the SAS User Customization for Xythos WFS
verifies that the user has a login for the authentication domain of the Xythos
server. In this example, the default configuration is used, so the Xythos server is
associated with the DefaultAuth authentication domain.

Note: If the wfs-4.0.48\saswfs.properties file does not assign the Xythos
server and the metadata server to the same authentication domain, or if the
Xythos server is configured to force DIGEST authentication, then the user’s
identity is not verified by the metadata server’s authentication provider. Instead,
the credentials are retrieved from the metadata repository and verified against the
credentials that are provided by the SAS Information Delivery Portal. This
requires that the user’s login for the authentication domain of the Xythos server
includes a password. �

35

C H A P T E R

2
Understanding Authorization

Authorization Overview 35
Introduction to Authorization 35

Which Actions are Controlled by Each Permission? 36

How are Authorization Decisions Made? 37

Authorization Terminology 37

Where Can Permissions Be Set? 38
Direct, Inherited, and Repository-Level Access Controls 38

Direct Access Controls 39

Inherited Access Controls 40

Introduction to Inherited Access Controls 40

Multiple Inheritance of Access Controls 40

Access Control Inheritance Rules 41
Inheritance in SAS Data 41

Inheritance in Relational Database Data 42

Inheritance in OLAP Data 42

Inheritance in Custom Trees 44

Repository-Level Access Controls 44
To Whom Can Permissions Be Assigned? 45

The User/Group Identity Hierarchy 45

Examples of Identity Hierarchies 46

A Closer Look: How Authorization Decisions are Made 46

Summary: Principles of Access Control Precedence 48

Authorization Overview

Introduction to Authorization
Authorization is the process of determining which users have which permissions for

which resources. The outcome of the authorization process is an authorization decision
that permits or denies a specific action on a specific resource, based on the requesting
user’s identity and group memberships.

The SAS Intelligence Platform includes an authorization layer that consists of access
controls that are stored in a metadata repository and managed by the metadata server’s
authorization facility. You can use these controls to manage access to metadata and, in
some cases, to the computing resources that the metadata represents. The metadata
authorization layer has these characteristics:

36 Which Actions are Controlled by Each Permission? � Chapter 2

� Management of access controls is centralized. Metadata access controls are defined,
stored, and evaluated by the authorization facility of a SAS Metadata Server.

� A graphical user interface for setting access controls is provided in SAS
Management Console.

� Eight standard permissions are available. These permissions are described in the
following topic.

Which Actions are Controlled by Each Permission?
The following table explains which actions are controlled by each of the standard

permissions.

Table 2.1 Permissions

Permission
(Abbreviation)

Actions Controlled

ReadMetadata
(RM)

Reading a metadata object. For example, a user must have ReadMetadata
permission to a SAS library definition in order to see that library in SAS
Information Map Studio or SAS Data Integration Studio.

WriteMetadata
(WM)

Creating, updating, or deleting a metadata object. For example, a user must
have WriteMetadata permission to a repository in order to add a new metadata
object (such as an information map or a server definition) to that repository.

CheckInMetadata
(CheckInM)

Checking in metadata from a project repository, and checking out metadata to
a project repository. This permission is applicable only to SAS Data Integration
Studio users who are working in a change-managed environment.

Read (R) Reading data from the resource that is described by a metadata object. For
example, on an OLAP cube, the Read permission controls viewing of the data
within the cube.

The Read permission is enforced only if the SAS OLAP Server or the SAS
metadata LIBNAME engine is used to access the data, or the data is accessed
through an information map.

Write (W) Updating data in the resource that is described by a metadata object. For
example, on a table, the Write permission controls updating the rows in the
table.*

Create (C) Adding data to the resource that is described by a metadata object. For
example, on a table, the Create permission controls adding rows to the table.*

Delete (D) Deleting data from the resource that is described by a metadata object. For
example, on a library, the Delete permission controls deletion of tables from the
library.*

Administer (A) Accessing the administrative interfaces of SAS servers such as the SAS OLAP
Server, the SAS Stored Processes Server, and IOM spawners. For example, a
user must have the Administer permission on the application server in order to
perform OLAP server administration tasks such as viewing sessions,
terminating sessions, and refreshing cubes.

* The Create, Write, and Delete permissions are enforced only if the SAS metadata LIBNAME
engine is used to access the data.

The metadata server requests and enforces authorization decisions for the
ReadMetadata, WriteMetadata, and CheckInMetadata permissions. The other

Understanding Authorization � Authorization Terminology 37

permissions are not enforced by the metadata server, but can be enforced by
applications.

CAUTION:
Because not all applications enforce the Read, Write, Create, and Delete permissions,
these permissions are not always sufficient to control access. For example, even if
PersonA is denied Read access to DataSet1, PersonA can view the data in DataSet1
if PersonA is using SAS Data Integration Studio. SAS Data Integration Studio does
not enforce the Read permission when accessing data sets. You can prevent PersonA
from seeing DataSet1 by denying PersonA the ReadMetadata permission for the data
set. You should also use another authorization layer (such as the data source
authorization layer or the operating system authorization layer) to protect the data. �

Related Topics:
Chapter 8, “Using the Metadata Authorization Layer,” on page 107

How are Authorization Decisions Made?
When a user requests access to a resource, an authorization decision is made based

on an evaluation of all of the relevant access controls. If you want to understand how
the authorization facility will evaluate a permission, you must consider both of these
questions:

Where is the permission set?
You can set a permission on the resource that you want to protect or on a resource
that is a parent to the resource that you want to protect. For example, you can
deny ReadMetadata permission directly on a report, or you can set the denial on
the folder in which the report is stored. The report inherits effective permissions
from the folder.

To whom is the permission assigned?
You can assign a permission to a specific user or to a group to which the user
belongs. For example, you can deny ReadMetadata permission directly to the SAS
Demo User, or you can assign the denial to a group to which the SAS Demo User
belongs. The permissions that you assign to a group are applicable to the members
of that group.

The answers to these questions are incorporated into the access control evaluation
process, with the Where? question having priority over the To whom? question. This is
a high-level explanation; the rest of this chapter provides detailed information about
how permissions can be set and how authorization decisions are made.

Related Topics:
“Where Can Permissions Be Set?” on page 38
“To Whom Can Permissions Be Assigned?” on page 45
“A Closer Look: How Authorization Decisions are Made” on page 46

Authorization Terminology
The following terms are important to understanding how authorization works in the

SAS Intelligence Platform:

access control a grant or denial of a particular permission for a particular resource
to a particular user or group. For example, an access control can
consist of a denial of the WriteMetadata permission for a particular
information map to the PUBLIC user group.

38 Where Can Permissions Be Set? � Chapter 2

authorization
layer

a set of access controls that exists within a particular security
framework, such as an operating system or a database management
system. Authorization layers that can affect access to resources in a
SAS Intelligence Platform environment include the following:

� the metadata authorization layer, which is part of the SAS
Intelligence Platform

� the operating system authorization layer, which consists of the
file, directory, and system permissions that you specify on a
particular machine

� the data source authorization layer, which consists of
permissions to relational database objects, passwords for SAS
data sets, and other access controls specific to data sources

� the WebDAV authorization layer, which consists of the
third-party Web server access controls on report content objects
such as files and directories

� the physical authorization layer, which consists of tangible
protective measures such as locking a server room or cabinet

A user’s ability to perform a particular action is determined not
only by metadata layer access controls but also by external
authorization mechanisms such as operating system permissions
and database controls. In order to perform a particular action, a
user must have the necessary permissions in all of the applicable
authorization layers.

For example, regardless of the access controls that have been
defined for a user in the metadata repository, that user cannot
access a particular file if the operating system permissions do not
permit the action.

effective
permissions

a calculation of the access that a user actually has to a particular
object. For each authorization layer, the calculation determines the
net effect of all applicable access controls. A user’s effective
permissions to resources are limited to access that is permitted by
all authorization layers.

identity
hierarchy

a ranking that is based on a user’s metadata identity and group
memberships.

Where Can Permissions Be Set?

Direct, Inherited, and Repository-Level Access Controls
The following figure introduces the possible answers to the Where? question by

depicting the relative priority and specificity of direct, inherited, and repository-level
access controls.

Understanding Authorization � Direct Access Controls 39

Figure 2.1 Access Controls in the Metadata Authorization Layer

Highest
Precedence

Lowest
Precedence

Narrowest
Impact

Broadest
Impact

Direct Access Controls

Access Control Entries

Access Control Templates

Inherited Access Controls

Repository Level Access Controls

From top to bottom, the access controls in the figure are ordered as follows:

� from highest precedence (hardest to override) to lowest precedence (easiest to
override).

� from narrowest impact (most specific) to broadest impact (least specific). For
example, a repository level access control can affect all of the resources in a
repository, while an access control entry can be directly assigned to only one
resource.

Note that the Where? question is a relative question that depends on the resource
whose access controls you are examining. For example, a permission setting that is a
direct access control for one resource (such as a report folder) can be the source of an
inherited permission for another resource (such as a report within that folder).

Direct Access Controls
The direct access controls for a resource consist of the grants and denials of

permissions that are set on the Authorization tab of a particular resource. There are
two types of direct access controls—access control entries (ACEs) and access control
templates (ACTs).

� An ACE is an access control that is specifically tied to a particular resource. For
example, an ACE can consist of a grant to a user of ReadMetadata permission for
a particular table. On the Authorization tab, permissions that come from
directly assigned ACEs have no added background color.

� An ACT is a reusable, named pattern of identities and permissions. For example,
you can create an ACT named AdminOnlyAccess that consists of a denial of
WriteMetadata permission for the PUBLIC group and a grant of all permissions
for an Administrators user group. You can then apply that ACT to all objects that
should have those particular protections. On the Authorization tab, permissions
that come from directly assigned ACTs have a green background color.

Note: Using ACTs rather than individual ACEs centralizes some of your access
control management, because an ACT can be updated independently of the
resources to which it has been applied. So if you change your mind about how you
want to handle this type of access, you can make changes on the AdminOnlyAccess
ACT, without having to revisit every resource to which you applied that ACT. �

40 Inherited Access Controls � Chapter 2

Inherited Access Controls

Introduction to Inherited Access Controls
The inherited access controls for a resource consist of the effective permissions on

each of the resource’s immediate parents. For example, a library is an immediate
parent to all of the tables that are assigned to it, and the server to which the library is
assigned is an immediate parent to the library.

The effective permissions that each parent resource conveys represent the net effect
of all of the parent’s direct, inherited, and repository-level controls. For example, if the
net effect of all of the access controls on LibraryA yields a grant of ReadMetadata
permission to a user, then every table that is assigned to LibraryA has an inherited
grant of ReadMetadata permission to that user.

Because the effective permissions on the parent encompass all access controls up to
the level of the repository itself, every parent will convey either a grant or denial of
every permission for every user. However, one resource can convey effective permissions
to another resource only if both resources are registered in the same metadata
repository. Even when there is a dependency relationship between two repositories,
resources in one repository cannot convey effective permissions to resources in another
repository.

Multiple Inheritance of Access Controls
The SAS metadata environment supports multiple inheritance, which means that

one resource can have more than one immediate parent. The following figure depicts
examples of single inheritance and multiple inheritance in the SAS metadata
environment.

Figure 2.2 Single and Multiple Inheritance

Single Inheritance Multiple Inheritance

Data Source Structure Data Source Structure ETL Custom Tree

SAS
Application

Server

TableA TableB

SAS
Application

Server

TableA TableB

Parent Folder

LibraryA LibraryA

FolderA

In the single inheritance figure, TableA and TableB share the same immediate
parent, LibraryA. Both tables have inherited access controls that are conveyed from the
effective permissions on LibraryA. LibraryA has inherited access controls that come
from the effective permissions on the SAS Application Server. For example, if the net

Understanding Authorization � Inherited Access Controls 41

effect of the applicable access controls on LibraryA yields a grant of ReadMetadata
permission to a user, then both TableA and TableB have inherited access controls that
grant ReadMetadata permission to that user.

Note: You can override an inherited access control by adding a direct access control.
For example, If you set a permission on TableA that denies the user the ReadMetadata
permission, then that direct access control on TableA will override the conflicting grant
that LibraryA conveys to TableA. In this example, the authorization decision process
will not consider the inherited access control because of the presence of the direct access
control. �

In the multiple inheritance figure, LibraryA is assigned to both a SAS Application
Server and to a folder in the ETL custom tree. The inherited access controls for
LibraryA consist of the effective permissions on both of these immediate parents. For
example, if the net effect of the access controls on the SAS Application Server is a grant
of ReadMetadata permission to a user, and the net effect of the access controls on
FolderA is a denial of the same permission to that user, then LibraryA has both an
inherited grant and an inherited denial of this permission for that user. In this
circumstance, the user can access LibraryA, because a grant that is conveyed by any
parent object is sufficient.

Access Control Inheritance Rules
In a SAS metadata environment, inheritance rules determine which objects can be

parents to which other objects. For example, there is an inheritance rule that specifies
that a SAS library definition is a parent to the SAS data set definitions within that
library. The inheritance rules establish containment structures through which
resources inherit access controls. In each structure, you can set access controls at
varying levels of granularity. For example, you can deny someone ReadMetadata access
to an entire library of SAS data sets, or to a particular data set, or to a particular
variable within a data set. The main resource-containment structures that are
established by inheritance rules are described in the following sections.

Inheritance in SAS Data
In a SAS metadata environment, effective permissions for SAS data flow as follows:
� from a SAS Application Server to the SAS libraries that are defined on the logical

workspace server component of the SAS Application Server
� from a SAS library to the data sets within that library
� from a data set to the variables within that data set

The following figure depicts the inheritance flow for SAS data in the metadata
environment.

Figure 2.3 Inheritance Flow for SAS Data

SAS
Application

Server

SAS
Library

SAS Data
Set

SAS
Variable

Not all permissions are supported at all levels for SAS data.
� The metadata server enforces the ReadMetadata, WriteMetadata, and

CheckInMetadata permissions at all levels—server, library, data set, and variable.

42 Inherited Access Controls � Chapter 2

� The metadata LIBNAME engine enforces the Read, Write, Create, and Delete
permissions at the library and data set levels only. Setting these permissions on a
variable has no effect.

Note: SAS data objects can also inherit effective permissions from custom trees. �

Inheritance in Relational Database Data
In a SAS metadata environment, effective permissions for relational database data

flow as follows:

� from a database management system (DBMS) server definition to the DBMS
schemas that are defined on that DBMS server

Note: A DBMS schema that is associated with a SAS library will also inherit
effective permissions from that library and, in turn, from the SAS Application
Server that includes the workspace server component on which the library is
defined. �

� from a DBMS schema to the tables within that schema
� from a DBMS table to the columns within that table

The following figure depicts the inheritance flow for database data in the metadata
environment.

Figure 2.4 Inheritance Flow for Relational Database Data

SAS
Application

Server

SAS
Library

DBMS
Table

DBMS
Column

DBMS
Server

DBMS
Schema

Not all permissions are supported at all levels for relational database data.

� The metadata server enforces the ReadMetadata, WriteMetadata, and
CheckInMetadata permissions at all levels — server, schema, table, and column.

� The metadata LIBNAME engine enforces the Read, Write, Create, and Delete
permissions at the library and table levels only. Setting these permissions on a
column has no effect.

Note: Relational database objects can also inherit permissions from custom trees. �

Inheritance in OLAP Data
In a SAS metadata environment, effective permissions for OLAP data flow as follows:
� from a SAS Application Server to the OLAP schemas that are defined on the

OLAP server component within the SAS Application Server
� from a schema to the cubes within that schema

� from a cube to the dimensions and measures within the cube
� from a dimension to the hierarchies and levels within the dimension

Understanding Authorization � Inherited Access Controls 43

The following figure depicts the inheritance flow for OLAP data in the metadata
environment.

Figure 2.5 Inheritance Flow for OLAP Data

Hierarchy

Level

SAS
Application

Server

OLAP
Schema Cube

Dimension

Measure

Not all permissions are relevant for all OLAP objects. In order to access a cube, a
user must have both ReadMetadata and Read permission for the cube. However, in
order to access a dimension, measure, hierarchy, or level, only Read permission is
required, because the SAS OLAP Server uses the Read permission to request and
enforce decisions for these objects.

A user’s ability to access OLAP data is also affected by the requirements for drilling
through a cube in order to access the data. If a user does not have Read access to a
particular object (such as an OLAP cube), then that user cannot access other objects
(such as dimensions and measures) within that object. For example, if a direct access
control on an OLAP cube denies the Read permission to a particular user, then that
user cannot access any data within the cube. Even if you give the user Read permission
to a dimension within the cube, the user will be unable to access that dimension. The
problem is not that the user does not have Read access to the dimension. Rather, the
problem is that the user does not have the clear path of grants of Read access that is
necessary to navigate through the cube to the dimension.

The following list and figure document these navigational access requirements for
OLAP data:

� If a user does not have Read permission to a cube, the user cannot navigate to the
dimensions and measures within the cube.

� If a user does not have Read permission to a dimension, the user cannot navigate
to the hierarchies within the dimension.

� If a user does not have Read permission to a hierarchy, the user cannot navigate to
the top levels within the hierarchy.

� If a user does not have Read permission to a particular level in a hierarchy, the
user cannot navigate to the next level in that structure.

Figure 2.6 Access Requirements for Navigating through OLAP Data

SAS
Application

Server

OLAP
Schema

Dimension Hierarchy Level_1 Level_n

Measure

Cube

44 Repository-Level Access Controls � Chapter 2

Inheritance in Custom Trees
A SAS Intelligence deployment can include one or more custom trees that you can

use to organize and manage access for certain resources. For example, SAS Data
Integration Studio enables you to add folders and items to the ETL custom tree. Within
a custom tree, each folder inherits the effective permissions of its parent folder. Most
items in the ETL custom tree inherit the effective permissions of the folder in which the
items are located.

Selecting the optimal folder structure for your custom trees can help you minimize
the number of access controls that you have to set and maintain. Within each tree, you
can use a flat list structure, a nested tree structure, or a blend of the two structures.
For example, the following figures illustrate two of the ways you could structure folders
in your ETL custom tree if you are organizing metadata that describes sales data for a
worldwide sales team and for four regional sales teams.

Figure 2.7 Custom Folder Structures

Shared

World

North

South

East

West

Nested Folder Structure

Shared

Flat Folder Structure

North

South

East

West

World

The arrows show how the inheritance of effective permissions flows in each custom
tree.

� In the nested structure, the regions each inherit the effective permissions of the
World reports folder, which in turn inherits the effective permissions of the Shared
folder.

� In the flat structure, the World folder and all of the regional folders inherit the
effective permissions of the Shared folder.

Repository-Level Access Controls
The permissions that users have been given to the entire repository are their

repository-level access controls. For most resources, you can define access by locating
the resource in SAS Management Console and then setting permissions on the
resource’s Authorization tab. However, you do not use this method to define access to
an entire repository. Instead, you specify repository-level access controls on the Users
and Permissions tab of an ACT that has been designated as the repository ACT.

The repository ACT is represented in SAS Management Console by a blue cylinder
icon and is named Default ACT by default. You can locate the repository ACT under

Understanding Authorization � The User/Group Identity Hierarchy 45

Environment Management � Authorization Manager � Access Control
Templates.

Note: A repository ACT is created for you in each repository. The initial settings on
a foundation repository ACT grant ReadMetadata and WriteMetadata permissions to
the PUBLIC group. For information about narrowing this access, see “Protecting the
Foundation Repository” on page 67. �

Repository-level controls define access to resources for which no specific controls have
been set. Repository-level controls also define users’ ability to perform the actions that
are listed in the following table.

Table 2.2 Actions That Are Controlled by Repository-Level Access Controls

User Action Required Access to the Repository

Access or view objects in the
metadata repository

In many cases, the requesting user must have ReadMetadata
access to the repository.

Create a new object (such as an
information map or report)
anywhere in the metadata
repository

The requesting user must have WriteMetadata access to the
repository.

Access the SAS Information
Delivery Portal (Public Kiosk)

The SAS Guest and the SAS Web Administrator must have
ReadMetadata and WriteMetadata access to the repository.

Log on to the SAS Information
Delivery Portal

The requesting user must have ReadMetadata and
WriteMetadata access to the repository.

As the preceding table indicates, having both ReadMetadata and WriteMetadata
access to the repository is a prerequisite to performing many tasks. For example, in
order to add a new report to a particular folder, a user must have both of these things:

� WriteMetadata access to that particular folder

� WriteMetadata access to the entire repository

To Whom Can Permissions Be Assigned?

The User/Group Identity Hierarchy
The following list introduces the possible answers to the To Whom? question by

describing the precedence ranking for user and group identities:

1 the user’s individual metadata identity.

2 a user-defined group that has the user’s metadata identity as a member. This is a
first-level group membership for the user.

3 a user-defined group that has another user group as a member. For example, if
the user belongs to a group named ETL_Advanced, and that group is a member of
another group called ETL_Basic, then the ETL_Basic group is a second-level group
for that user.

Note: If you have additional levels of nested groups, then each successive
group has less precedence than the group or groups that are its members. �

46 Examples of Identity Hierarchies � Chapter 2

4 the SASUSERS implicit group, which includes everyone who has an individual
metadata identity.

5 the PUBLIC implicit group, which includes everyone who can access the metadata
server (regardless of whether they have an individual metadata identity or not).

Examples of Identity Hierarchies
The examples in the following table illustrate how the identity hierarchy works.

Table 2.3 Examples of Identity Hierarchies

User Information User’s Identity Hierarchy

User has no metadata identity. Primary identity: PUBLIC

User has a metadata identity and no explicit
group memberships.

Primary identity: self

First-level memberships: SASUSERS

Second-level memberships: PUBLIC

User is a direct member of two user-defined
groups (GroupA and GroupB).

Primary identity: self

First-level memberships: GroupA, GroupB

Second-level memberships: SASUSERS

Third-level memberships: PUBLIC

User is a direct member of two user-defined
groups (GroupA and GroupB), and one of those
groups is a member of a third group (GroupA is
a member of the Portal Users group).

Primary identity: self

First-level memberships: GroupA, GroupB

Second-level memberships: Portal Users

Third-level memberships: SASUSERS

Fourth-level memberships: PUBLIC

A Closer Look: How Authorization Decisions are Made
The following list describes the authorization decision process:

1 Permissions that are set on the target resource are examined.
� Any conflicts that arise from group membership are resolved by the identity

hierarchy. For example, a permission that is assigned to a user overrides a
conflicting permission that is assigned to a group to which the user belongs.

� If there is a conflict between an ACE and an ACT at the same level in the
identity hierarchy, then the ACE takes precedence.

� If there is a conflict between two ACE’s (or two ACT’s) at the same level in
the identity precedence hierarchy, then the outcome is a denial.

� If one or more permission conditions have been defined, then the condition
that is assigned at the highest level of identity precedence is applied. Other
conditions that also apply to a user because of group memberships do not
provide additional, cumulative access (unless there are multiple groups at the
highest level of identity precedence).

� If there are no pertinent permissions set on the target resource, then the
evaluation process continues.

2 The inheritance rules are applied to identify all of the target resource’s parent
objects. The entire evaluation process is applied to each of the parent objects.

Understanding Authorization � A Closer Look: How Authorization Decisions are Made 47

� If any of the parent objects conveys a grant, then access is granted.
� If all of the parent objects convey denials, then access is denied.

� If the target resource does not have any parent objects, then the evaluation
process continues.

3 The Users and Permissions tab of the repository ACT is examined. Any
conflicts within the repository ACT are resolved by the identity hierarchy.

� If the repository ACT grants or denies the requested permission, then that
grant or denial is determinative.

� If the repository ACT neither grants nor denies the permission, then the
permission is denied.

Note: If there is no repository ACT, then the permission is granted. You should
always have a designated repository ACT. �

The following flowchart depicts this process.

Figure 2.8 Authorization Decision Process

Are there any
pertinent direct

access controls?

At the highest
level of identity
precedence, is
there a direct
grant and no
direct deny?

Does the target
resource have
any parents?

Does any parent
convey a grant?

Is there a
repository ACT?

Are there any
pertinent settings
on the Users and
Permissions tab
of the repository

ACT?

Is there a
pertinent grant at
a higher level of

identity
precedence than

any pertinent
deny?

Yes
No

Yes

Yes

No

Yes

Grant

Yes

Grant

No

Grant

No

Deny

No

Deny

No Yes

Grant

Yes

No

Deny

1

2

3

At the highest
level of identity
precedence, is
there a direct
deny and no
direct grant?

At the highest
level of identity
precedence, is
there an ACE
grant and an
ACT deny?

No

Deny

Yes

Deny

Yes

Grant

No

Related Topics:

“Where Can Permissions Be Set?” on page 38

“To Whom Can Permissions Be Assigned?” on page 45
“Tip: Interpreting the Authorization Tab” on page 126

48 Summary: Principles of Access Control Precedence � Chapter 2

Summary: Principles of Access Control Precedence
The following table summarizes the precedence principles for metadata layer access

controls and presents an example of each principle.

Table 2.4 Principles of Metadata Layer Access Control Precedence

ExamplePrinciple

Scenario Outcome and Explanation

A direct access
control has
precedence over
access controls that
come from parent
objects or from the
repository ACT.

A direct access control on LibraryA
denies ReadMetadata permission to
PUBLIC.

The repository ACT grants
ReadMetadata permission to the
user.

The user cannot see LibraryA. The
denial to PUBLIC has precedence
because it is assigned directly on the
target resource (LibraryA).

Direct access controls always have
precedence over inherited controls
regardless of who the permissions are
assigned to.

If there are
conflicting direct
controls, then the
identity hierarchy
determines the
outcome.

A direct access control on LibraryA
denies ReadMetadata permission to
PUBLIC.

Another direct access control on
LibraryA grants ReadMetadata
permission to the user.

The user can see LibraryA. This is a
conflict between two direct controls,
so the identity hierarchy becomes
relevant. The user’s primary identity
has priority over the implicit group
PUBLIC, so the direct grant to the
user overrides the direct denial to
PUBLIC.

If there are
conflicting direct
controls at the
same level in the
identity hierarchy,
then the type of
access control
(ACE or ACT)
determines the
outcome.

A direct ACT on LibraryA denies
ReadMetadata permission to GroupA.

A direct ACE on LibraryA grants
ReadMetadata permission to GroupB.

The user is a member of both
GroupA and GroupB.

The user can see LibraryA. The
conflict is between direct controls
that both come from the user’s
first-level group memberships, so the
type of access control becomes
relevant. ACEs are given priority
over ACTs, so the ACE grant
overrides the ACT denial.

If there are
conflicting direct
controls at the
same identity level
and they are both
ACEs (or they are
both ACTs), then
the outcome is a
denial.

A direct ACE on LibraryA denies
ReadMetadata permission to GroupA.

Another direct ACE on LibraryA
grants ReadMetadata permission to
GroupB.

The user is a member of both
GroupA and GroupB.

The user cannot see LibraryA. The
direct controls are both assigned at
the same level in the identity
hierarchy (to the user’s first-level
groups) and they are both of the
same type (ACEs), so the outcome is
a denial.

Understanding Authorization � Summary: Principles of Access Control Precedence 49

ExamplePrinciple

Scenario Outcome and Explanation

If there are no
relevant direct
controls and there
is at least one
parent object that
conveys a grant,
then the outcome
is a grant.

There are no direct controls on
LibraryA.

LibraryA is assigned to ServerA,
which makes ServerA a parent object
to LibraryA.

ServerA conveys a grant of
ReadMetadata permission to the
user.1

The user can see LibraryA. In the
absence of relevant direct controls on
LibraryA, a grant from any of
LibraryA’s parent objects is sufficient
to get access.

(Even if LibraryA had another parent
object that conveyed a denial, the
outcome would be a grant. For an
illustration of this scenario, see
“Multiple Inheritance of Access
Controls” on page 40.)

If there are no
relevant direct
controls and there
are no parent
objects, then the
repository ACT
determines the
outcome.

There are no direct controls on
LibraryA.

LibraryA does not have any parent
objects.

The repository ACT denies
ReadMetadata permission to the
user.

The user cannot see LibraryA.
Because there are no relevant direct
access controls and no parent objects,
the settings on the Users and
Permissions tab of the repository
ACT are determinative.2

Conflicts within an
ACT’s Users
and
Permissions
tab are resolved by
the identity
hierarchy ranking.

There are no direct controls on
LibraryA.

LibraryA does not have any parent
objects.

The repository ACT denies
ReadMetadata permission to
PUBLIC.

The repository ACT grants
ReadMetadata permission to
SASUSERS.

The user has a metadata identity.

The user can see LibraryA. The user
is a member of both PUBLIC and
SASUSERS. In the identity
hierarchy, SASUSERS has
precedence over PUBLIC, so the net
effect of the repository ACT settings
is to grant ReadMetadata permission
to all members of SASUSERS.

1 The conveyed permission comes from an effective permission on ServerA. For this reason, it
makes no difference to LibraryA whether the source of the conveyed effective permission was
a direct control on ServerA or a control that ServerA inherited from one of its parent objects.
It also makes no difference to LibraryA whether the source of the conveyed permission was an
access control that was assigned to the user or an access control that was assigned to a group
to which the user belongs.

2 If there is no repository ACT, then the outcome would be a grant. You should always have a
designated repository ACT.

50

51

C H A P T E R

3
Security Planning

Overview of Security Planning 51
Defining the Security Goals 51

Making Preliminary Decisions about Authentication 52

Choosing Authentication Providers 52

Mapping Authentication Providers to Authentication Domains 53

Determining the Scope of the Identity Management Tasks 55
Introduction to Planning for Identity Management 55

What User Accounts Are Needed? 55

Overview of Planning for User Accounts 55

Accounts That Enable Users to Log On to SAS Applications 55

Accounts That Enable Users to Access Additional Systems 56

What User Definitions Will Be Created in the Metadata? 56
What Group Definitions Will Be Created in the Metadata? 57

Which User IDs and Passwords Will be Stored in the Metadata? 57

Summary: Identity Management Requirements 57

Reviewing Physical Access Considerations for Data 58

Importance of the Physical Protections for Data 58
Physical Access Considerations for SAS Data 59

Physical Access Considerations for RDBMS Data 59

Overview of Security Planning

This chapter outlines a planning process for the security aspects of a deployment of
the SAS Intelligence Platform. The process consists of these tasks:

1 defining the security goals

2 making preliminary decisions about how applications and servers will
authenticate users

3 identifying the user accounts you will need and the metadata identity information
that you will create and maintain

4 reviewing physical access considerations for data

Defining the Security Goals

It is important to customize your security design for your site, so you should begin
your security planning by analyzing your environment to determine your security
needs. Consider these guidelines:

52 Making Preliminary Decisions about Authentication � Chapter 3

� Different types of data require different levels of protection. It is important that
your security policies reflect an understanding of your data and of the needs of the
users who interact with that data.

� You should usually be more conservative in granting the ability to write to
metadata objects and computing resources than you are in granting the ability to
read those objects.

� Even for data that is not highly sensitive, it might be desirable to constrain access
so that your users do not see information that is not relevant to their needs.

� You should evaluate how likely it is that someone will accidentally or intentionally
compromise the security of your deployment, and how severe the consequences of a
compromise would be.

� You should consider the nature of your user community and their expectations
regarding security and privacy.

� Your security policy should meet any applicable organization or legal requirements
for security and auditability.

In this process, remember that there is no absolute security. You should choose a
security design that strikes the right balance between deployability, usability,
maintainability, and security for your environment.

Making Preliminary Decisions about Authentication

Choosing Authentication Providers
Your selection of authentication providers can have a significant impact on the

amount of identity information that has to be created and maintained for the
deployment.

A primary goal in authentication configuration is to minimize the number of places
where you have to create and maintain user IDs and passwords. One way to do this is
to make the credentials that a user submits as reusable as possible (for authenticating
to various servers). Credentials are reusable only to the extent that servers use the
same authentication provider. For example, if all of your servers authenticate users
against the same host operating system, then you need only one set of user accounts,
and you can avoid storing a lot of passwords in the metadata repository. For these
reasons, your choice of authentication providers requires careful consideration.

You can use the following table to document your choices of authentication providers.
For each component, select an authentication provider and note the platform, Windows
domain name, machine name, or other details as appropriate. Not all deployments use
all components.

Security Planning � Mapping Authentication Providers to Authentication Domains 53

Table 3.1 Authentication Provider Checklist

Component How Identity of Requesting User Is Validated

SAS Metadata
Server

__ Server relies on the host operating system.
Includes host-mediated authentication for which the host relies on a
back-end user store such as LDAP or Active Directory.

__ Server relies directly on LDAP or Active Directory.
Requires configuration changes. Can increase credential management
work. See “Using LDAP or Active Directory” on page 82.

SAS OLAP
Server

__ Server relies on the host operating system.
Includes host-mediated authentication for which the host relies on a
back-end user store such as LDAP or Active Directory.

__ Server relies directly on LDAP or Active Directory.
Requires configuration changes. Can increase credential management
work. See “Using LDAP or Active Directory” on page 82.

SAS Stored
Process Server

__ Server relies on the host operating system.
Includes host-mediated authentication for which the host relies on a
back-end user store such as LDAP or Active Directory.

SAS Workspace
Server

__ Server relies on the host operating system.
Includes host-mediated authentication for which the host relies on a
back-end user store such as LDAP or Active Directory.

SAS Workspace
Server (pooled)

__ Access depends on membership in a puddle group.
Requires configuration changes. Available only for Web applications. Can
reduce credential management work. See “Accessing a Pooled SAS
Workspace Server” on page 27.

Third Party
Database
Server

__ Server relies on database authentication.
Databases often have their own authentication providers. You can still
reduce credential management by using shared accounts. See “Example:
Managing Authentication to a Database Server” on page 81.

SAS Web
applications

__ Applications rely on the metadata server’s authentication provider.
For an explanation of how this works, see “Initial Authentication on a
Metadata Server” on page 12.

__ Applications rely on the Web server’s authentication provider.
Requires configuration changes. Can increase credential management
work. See “Using Web Authentication” on page 82.

SAS desktop
applications

__ Applications rely on the metadata server’s authentication provider.
For an explanation of how this works, see “Initial Authentication on a
Metadata Server” on page 12.

SAS OLAP
Data Provider

__ Component relies on the SAS OLAP Server’s authentication provider.
For an explanation of how this works, see “Initial Authentication on a SAS
OLAP Server” on page 15.

Mapping Authentication Providers to Authentication Domains
In order to support single sign-on, you must create authentication domain objects in

the metadata that correspond to your authentication providers. You must have a
separate authentication domain for each authentication provider. To be more specific,
the requirement is for a separate authentication domain for each distinct set of user

54 Mapping Authentication Providers to Authentication Domains � Chapter 3

accounts. For example, if you are using Windows host authentication against local
Windows accounts on different machines, then you will need a separate authentication
domain for each machine (because each machine maintains its own list of valid local
accounts).

You can use the following table to document the relationships between your
authentication providers, authentication domains, and servers.

Table 3.2 Authentication Domain Checklist

Authentication Provider1 Authentication Domain2 Associated Servers

1 Use a separate row for each authentication provider.
2 For each authentication domain, choose a name that will be meaningful to the administrators

who work with user credentials for that authentication provider.

For example, the checklist for a single-machine deployment might look like this:

Table 3.3 Authentication Domain Checklist (example)

Authentication Provider Authentication Domain Associated Servers

Windows host operating system
(local accounts on mymachine)

DefaultAuth Metadata server, stored process
server, workspace server, OLAP
server

If an Oracle database server is added to the deployment, then the checklist might
look like this:

Table 3.4 Authentication Domain Checklist (example)

Authentication Provider Authentication Domain Associated Servers

Windows host operating system
(local accounts on mymachine)

DefaultAuth Metadata server, stored process
server, workspace server, OLAP
server

Oracle authentication OracleAuth Oracle database server

If the stored process server is moved to a UNIX system, then the checklist might look
like this:

Table 3.5 Authentication Domain Checklist (example)

Authentication Provider Authentication Domain Associated Servers

Windows host operating system
(local accounts on mymachine)

DefaultAuth Metadata server, workspace
server, OLAP server

Oracle authentication OracleAuth Oracle database server

UNIX host operating system UnixAuth Stored process server

Security Planning � What User Accounts Are Needed? 55

Related Topics:
“How Authentication Domains Are Used” on page 9
“Authentication Scenarios” on page 21
“How to Create an Authentication Domain” on page 79

Determining the Scope of the Identity Management Tasks

Introduction to Planning for Identity Management
During installation, an initial set of operating system accounts and metadata identity

information is created. This section helps you anticipate the additional user and group
accounts and metadata identity information that you will need when you populate your
deployment.

What User Accounts Are Needed?

Overview of Planning for User Accounts
You need user accounts that enable all users to access the servers that they will use.

Depending on the choices you made in the preliminary decisions phase, these might be
individual or shared accounts. The accounts can be any of the following:

� local accounts in the operating system of the computer on which the
authenticating server is running

� network accounts that provide access to the operating system of the computer on
which the authenticating server is running

� LDAP or Active Directory accounts (for certain servers and configurations)
� a user account with any authentication provider that your Web application server

uses (for applications that are configured to use Web authentication)
� user accounts for database authentication

Note: Accounts that are used for Windows host authentication must have the Log
on as Batch right in the operating system. �

Accounts That Enable Users to Log On to SAS Applications
Each application’s authentication provider must include an account for every user

who logs on to that application. For example, in a deployment that includes the SAS
Information Delivery Portal, SAS Web Report Studio, SAS Management Console, and
SAS Information Map Studio, the credentials that a user submits to log on might be
verified as follows:

� For the SAS Information Delivery Portal and SAS Web Report Studio, you choose
to have the Web application server handle authentication using LDAP as the
authentication provider.

� For SAS Management Console and SAS Information Map Studio, the metadata
server handles authentication and you choose to use the operating system as the
authentication provider.

56 What User Definitions Will Be Created in the Metadata? � Chapter 3

In this example, you need to add the following user accounts to support initial
authentication:

� an LDAP account for every user who uses the SAS Information Delivery Portal or
SAS Web Report Studio

� an operating system account on the computer on which the metadata server is
running for each user who uses SAS Information Map Studio or SAS Management
Console

Accounts That Enable Users to Access Additional Systems
You can use the following analysis to identify the accounts you need to create to

enable users to access additional systems (such as workspace servers, stored process
servers, and other data servers):

1 Identify groups of servers that use the same authentication provider.

2 For each authentication provider, make a list of users who will access resources on
servers that use that authentication provider. If multiple users will use a shared
account for a particular authentication provider, include the shared account in the
list rather than including the individual users who will use the shared account.

3 For each authentication provider, make a list of the additional accounts that you
will need to create.

For example, if the deployment that is described in the previous section includes
stored process and workspace servers running on z/OS and a database server running
on UNIX, you would have the following additional authentication processes:

� z/OS host authentication for the stored process and workspace servers

� database authentication for the database server.

In this example, to enable all of your users to authenticate to all servers, you would
need these accounts:

� a z/OS operating system account for every user (or for each group of users who will
share an account)

� an account on the database server for every user (or for each group of users who
will share an account).

What User Definitions Will Be Created in the Metadata?
In addition to their user accounts, many users must also have a user definition in the

metadata repository. Several of the security features of the SAS Intelligence Platform
are available only for those users who are registered in the metadata.

You need a user definition for every user who meets any of the following criteria:

� requires additional access beyond the access that you will give to the PUBLIC
group (the PUBLIC group includes everyone who can access the metadata server).

� needs to retrieve credentials from the metadata for single sign-on

� uses SAS Information Map Studio or SAS Enterprise Miner. These applications
require that every user have a unique metadata identity.

� uses SAS Web Report Studio in an optional configuration that requires that every
user have a metadata identity.

� uses the SAS Information Delivery Portal (beyond the public kiosk).

You should create all of your user definitions in a single foundation repository.

Security Planning � Summary: Identity Management Requirements 57

What Group Definitions Will Be Created in the Metadata?
You need group definitions in the metadata for these purposes:
� To simplify the process of establishing and managing access controls for

authorization. Granting access to resources on an individual basis can be
cumbersome. After you define user groups, you can assign permissions to groups
rather than to individual users.

� To manage credentials for shared accounts. The user ID and password of the
shared account is stored with a group definition so that any member of the group
can use those credentials.

� To support pooled workspace servers for SAS Web applications. You make each
puddle within a pooled workspace server available to the members of one group.

You should create all of your group definitions in a single foundation repository.
Related Topics:
“Organizing Users Into Groups” on page 89
“How to Use Shared Accounts” on page 80
“Accessing a Pooled SAS Workspace Server” on page 27

Which User IDs and Passwords Will be Stored in the Metadata?
You need to store the following external user account information in the metadata:
� You must store one user ID as part of each user definition (for the purpose of

establishing a metadata identity for the user). In each user definition, you must
store the user ID of the external account with which the user logs on to a SAS
application. This stored user ID is not needed for authentication; it is used only to
establish a unique metadata identity for the user who logged on. Security features
such as authorization decisions are based on each user’s metadata identity. Unlike
user definitions, group definitions do not have to include user IDs for the purpose
of establishing metadata identities.

� You must store additional credentials to the extent necessary to support single
sign-on in your environment. It is never necessary to store passwords in the
metadata to enable a user to log on to a SAS application. However, in some
circumstances, you do need to store user IDs and passwords in the metadata to
enable users to access other systems after they log on. You need to store
credentials only for those authentication events for which no other credential
management features will work.

Note: In most deployments, it is necessary to store some passwords in the
metadata. You can minimize the need for this by giving careful consideration to
your selection of authentication providers and using shared accounts where
appropriate. �

Related Topics:
“How Metadata Identities Are Used” on page 6
“How to Store User IDs and Passwords in the Metadata” on page 97
“Additional Authentication” on page 16
“How to Use Shared Accounts” on page 80

Summary: Identity Management Requirements
The scope of identity management work depends on the number of different

authentication providers that you use, the applications that you have, and your usage of

58 Reviewing Physical Access Considerations for Data � Chapter 3

shared accounts. Most sites will make limited use of shared accounts. To highlight the
identity management consequences, the following table summarizes the requirements
for two extreme environments:

� In the low-security environment, shared accounts are widely used. In this
example, the user IDs and passwords for the shared accounts are stored in the
group definition for a group that everyone belongs to.

� In the high-security environment, every user has an individual account for every
server.

Table 3.6 User Planning Summary

Requirement Low-Security Environment High-Security Environment

Accounts for logging on to SAS
applications

Each user has an account with
an authentication provider.

Each user has an account with
an authentication provider.

Accounts for accessing
additional systems (such as
unpooled workspace servers,
stored process servers, and
other data servers)

For each authentication
provider, all users share a
single account. The credentials
for these shared accounts are
stored with a group definition
for a group that everyone
belongs to.

Each user has an account for
each authentication provider.
The credentials for these
individual accounts are stored
with the user definitions.

User definitions in the
metadata

Every user has a user
definition. This enables you to
assign the users to the group
definition where the shared
credentials are stored.

Every user has a user
definition.

Stored user IDs to establish
metadata identities

Each user definition includes
one user ID.

Each user definition includes
one user ID.

Stored user IDs and passwords
to support single sign-on

The group definition that
everyone belongs to includes
one set of credentials for each
authentication provider.

For circumstances where
neither cached credentials nor
interactive prompting can be
used, each user definition
includes a set of credentials.

Reviewing Physical Access Considerations for Data

Importance of the Physical Protections for Data
Metadata-based access controls provide an additional layer on top of physical security.

Some clients, such as SAS Web Report Studio, run in a controlled environment with no
ability to directly execute SAS code on a back-end server. Other clients, such as SAS
Data Integration Studio and SAS Enterprise Guide, enable power users to create and
run SAS programs, potentially bypassing the metadata-based controls. For this reason,
it is essential to carefully manage physical access in addition to metadata layer access.

Managing physical access to SAS data sets and relational database management
system (RDBMS) data requires an understanding of the behavior of the servers that

Security Planning � Physical Access Considerations for RDBMS Data 59

retrieve the data and an understanding of the methods for assigning libraries. The
following topics describe the default behaviors and explains how you can get different
results by changing your server configuration or pre-assigning libraries.

Physical Access Considerations for SAS Data
When a standard (unpooled) workspace server retrieves SAS data sets for a

requesting user, the requesting user’s account is used to fetch the data. In the physical
layer, you can give each user appropriate permissions for the data sets.

When a pooled workspace server retrieves SAS data sets for a requesting user, a
service account called the puddle account fetches the data. If there is only one puddle,
then all users of the pooled workspace server have identical operating system access to
the data sets. You can create some access distinctions among users by setting up
additional puddles and associating a different user group with each puddle. In the
physical layer, you can give each puddle account different permissions for the data sets.

When a stored process server retrieves SAS data sets for a requesting user, a service
account fetches the data. If there is only one stored process server, then all users have
identical operating system access to the data sets. You can create some access
distinctions among users by setting up additional stored process servers. Each stored
process server should run under a different account and be available to a particular
group of users (you can use the ReadMetadata permission on the server definition to
control availability). In the physical layer, you can give each stored process server
account different permissions for the data sets.

Physical Access Considerations for RDBMS Data
When a standard (unpooled) workspace server retrieves RDBMS data for a requesting

user, the database credentials that are available to the requesting user are used to fetch
the data. In the database layer, you can give each user appropriate permissions for the
data (or each group if you are using shared accounts on the database server).

When a pooled workspace server retrieves RDBMS data for a requesting user, the
database credentials that are available to the requesting user are used to fetch the
data. In the database layer, you can give each user different access to the data (or each
group if you use shared accounts). If instead you want to grant database layer access to
only a privileged account, then preassign the database library using the
METAAUTOINIT or autoexec method, and put the database credentials in a login that
is available to the puddle account. You can create some access distinctions by setting up
multiple puddles, as explained in the previous topic.

When a stored process server retrieves RDBMS data for a requesting user, the
database credentials that are available to a service account are used to fetch the data.
If there is only one stored process server, all users have identical database layer access
to the data. You can create some access distinctions among users by setting up
additional stored process servers, as explained in the previous topic. You can also use
alternate methods of library assignment to achieve different results. For example:

� To provide access using a shared database account, you can preassign the database
library using the METAAUTOINIT or autoexec method and store the database
credentials in a login that is available to the service account that fetches the data.

� To provide access using a shared database account, you can include a LIBNAME
statement with credentials in the stored process. A stored process that includes
credentials should be protected with physical and metadata layer access controls.

� To provide physical access based on the requesting user’s identity, you can create a
parameterized stored process that prompts for database credentials and uses the
resulting macro variables for a LIBNAME assignment in the code.

60 Physical Access Considerations for RDBMS Data � Chapter 3

Note: Another way to launch a stored process under the identity of the requesting
user is to register the stored process with a standard workspace server rather than a
stored process server. In the current release, stored processes that run on workspace
servers cannot produce streaming output. �

61

P A R T2

First Steps in Security Administration

Chapter 4.Securing a Deployment 63

Chapter 5.Customizing the Authentication Configuration 79

62

63

C H A P T E R

4
Securing a Deployment

Overview of Securing a Deployment 63
Protecting the Configuration Directories (Windows) 64

Initial Operating System Settings 64

Recommended Settings (Windows) 64

Enabling Encryption 64

Initial Encryption Settings 64
Increase the Level of Protection 65

Encrypting Passwords that are Included in Configuration Files 66

Protecting the Foundation Repository 67

Initial Settings for the Foundation Repository 67

Temporarily Restrict Access to the Repository 67

Selectively Restore Access for the Required Users 68
Creating a Group of Metadata Administrators (Optional) 69

Setting Explicit Protections for Security-Related Resources 71

Initial Settings for Security-Related Resources 71

Protect Access Control Templates 72

Example: Use a Custom ACT 75
Protect Group Definitions 76

Minimizing the Availability of Accounts 76

Overview of Securing a Deployment
Immediately after installation, you should increase the level of security in your

deployment by performing these tasks:

� On Windows systems, set operating system permissions to protect the
configuration directories.

� Enable encryption beyond the default protection for transmission of user
credentials.

� Set metadata permissions to protect the foundation metadata repository.
� For accountability, create an individual metadata identity for each administrator.

For convenience, you can make these users members of an Administrators group.
� Set metadata permissions to protect security-related resources within the

foundation repository.

� Minimize the availability of accounts.

64 Protecting the Configuration Directories (Windows) � Chapter 4

Protecting the Configuration Directories (Windows)

Initial Operating System Settings
For a secure deployment, the configuration directory must be protected by operating

system controls that prevent copying of repository data sets and potential capture of
passwords. In the current release, the installation process does not establish these
protections on Windows machines, so you must set them manually. Appropriate default
protections are set for you on UNIX and z/OS (see “Default Directory Permissions” in
the chapter “Understanding the State of Your System” in the SAS Intelligence Platform:
System Administration Guide).

Recommended Settings (Windows)
The recommended settings are documented in the following table. These

recommendations assume that your SAS servers and spawners run as services under
the Local System account.

Table 4.1 Recommended Operating System Protections on Windows

Folders Recommended Permissions

MetadataServer, OLAPServer,
ObjectSpawner, ShareServer,
ConnectServer

Grant Full Control to SYSTEM and
Administrators. Remove all other users and
groups.

BatchServer, SASEnvironment, Users,
Utilities, WorkspaceServer

Grant Full Control to SYSTEM and
Administrators. Grant Read to all SAS server
users.

WorkspaceServer\logs If you enable logging for the workspace server
and use this default location for the logs, then
all users of the workspace server should be
granted Modify for this subdirectory.

SASEnvironment\SASCode\Jobs Grant Modify to all SAS server users.

StoredProcessServer,
StoredProcessServer\logs

Grant Full Control to SYSTEM, Administrators,
and the SAS General Server User (sassrv).
Remove all other users and groups.

Note: By default, these folders are located under Lev1\SASMain\. �

Enabling Encryption

Initial Encryption Settings
By default, only the user credentials in an initial credential exchange are protected

during transmission. All other traffic, including credentials that are retrieved from the

Securing a Deployment � Increase the Level of Protection 65

metadata repository for authentication to other systems, are transmitted without
encryption. The user credentials in an initial exchange are encrypted using the SAS
proprietary 32-bit algorithm that is provided with Base SAS software. This algorithm is
appropriate for preventing accidental exposure of information.

Increase the Level of Protection
If network security is essential for your site, you can use an industry-standard

algorithm to encrypt all traffic, thus making it extremely difficult for anyone to discover
the content of messages that are sent over the network. Implementing this protection
involves installing and configuring SAS/SECURE software on every host and desktop
client machine. You must specify the same algorithm and level of encryption
throughout the deployment. On server machines, SAS/SECURE requires a separate
software license.

To enable encryption, complete these steps:
1 On each SAS server machine, install the server-side version of SAS/SECURE

software, accepting the default installation location.
2 On the middle-tier machine, complete these steps:

a Install the client-side version of SAS/SECURE software.
b Rebuild the WAR files for the Web applications, including the sas.rutil.jar

file, and then reconfigure and redeploy the Web applications.
3 On each machine that has a Windows desktop client, install the Windows version

of SAS/SECURE.
4 On each machine that has a Java desktop client, install the Java version of SAS/

SECURE. Then copy the sas.rutil.jar file to all of the following locations (as
applicable for each machine):

� For SAS Management Console, copy the file to drive:\Program
Files\SAS\SASManagementConsole\9.1 (Windows) or install-location/
SASManagementConsole/9.1 (UNIX).

� For SAS Data Integration Studio, copy the file to drive:\Program
Files\SAS\SASETLStudio\9.1.

� For SAS OLAP Cube Studio, copy the file to drive:\Program
Files\SAS\SASOLAPCubeStudio\9.1.

� For SAS Information Map Studio, copy the file to drive:\Program
Files\SAS\SASInformationMapStudio\9.1.

5 Edit the start-up commands for your metadata and OLAP servers as follows:

a In the -netencralg option, replace the sasproprietary algorithm with one of
the industry standard algorithms that is offered by SAS/SECURE.

b For maximum protection, you can modify the cel=credentials argument to
the objectserverparms string to specify an encryption level of everything.

CEL=CREDENTIALS The only information that is encrypted is the transfer of
credentials when a connection is made to a SAS Metadata
Server, SAS Workspace Server, SAS Stored Process
Server, or SAS OLAP Server.

CEL=EVERYTHING All communications are encrypted.

Note: For servers that run as services on a Windows system, make the
preceding changes in the configuration file path-to-config-dir\level\SAS-
application-server\server-type\sasv9_server-type.cfg. For example, to change the
configuration file for a metadata server, you might edit the file
C:\SAS\ETLServerMin\Lev1\SASMain\MetadataServer\sasv9_MetadataServer.cfg. �

66 Encrypting Passwords that are Included in Configuration Files � Chapter 4

Note: For servers that run on a UNIX system or are started via scripts on a
Windows system, edit the start-up scripts. �

6 Use SAS Management Console to edit the server definitions by completing these
steps for each physical server under Server Manager:

a Select the server. This causes the server’s connection(s) to appear on the right
side of the interface.

Note: If the server has more than one connection associated with it, you must
perform the following steps for each connection. �

b Right-click the connection and select Properties.
c In the Properties dialog box, select Options � Advanced Options �

Encryption.
d On the Encryption tab, select the same encryption algorithm and encryption

level that you specified in step 5.

Note: For more information about encryption and SAS/SECURE, see Data Security
Technologies in SAS in SAS OnlineDoc. �

Encrypting Passwords that are Included in Configuration Files
During installation, passwords for required accounts (such as sastrust, saswbadm,

and sasguest) are written to configuration files. In the current release, the installation
process encodes these passwords using base64 encoding. For greater protection, it is
recommended that you encrypt these passwords using SAS proprietary 32-bit
encryption that is provided with Base SAS software. For example, to encrypt a
password of "SAStrust1" you would submit this code in the SAS Program Editor:

proc pwencode in=’SAStrust1’ method=sasenc;
run;

The encrypted password is written to your SAS log. When you use method=sasenc, the
first part of the password is {sasenc}. When you copy the encrypted password into a
configuration file, always overwrite the entire password, including the encoding-type
indicator {sas001} and any trailing equal signs (=).

It is important to provide host protection for configuration files that include
passwords. For a list of files that contain passwords, see “Configuration Files That
Include Passwords” on page 100. Because Web application deployment areas often
include passwords, these areas and any application WAR files should also be host
protected against both read and write access.

Securing a Deployment � Temporarily Restrict Access to the Repository 67

Protecting the Foundation Repository

Initial Settings for the Foundation Repository
During installation, broad access to the metadata repository is granted to the

PUBLIC group. While these initial settings are convenient for an empty repository
(because they enable any user to add resources), they do not provide a secure
environment for a populated deployment.

Temporarily Restrict Access to the Repository
This section describes how you can protect your deployment while you are adding

users, resources, and specific access controls. The approach is to temporarily give a few
administrators exclusive access to the repository.*

To deny access for all users other than the unrestricted user, complete these steps:
1 Log on to SAS Management Console by opening a metadata profile with the

unrestricted user account (SAS Administrator).
2 In the navigation panel, select Environment Management � Authorization

Manager � Access Control Templates � Default ACT.

Note: In SAS Management Console, the repository ACT is represented by a blue
cylinder icon and is named "Default ACT" by default. �

3 From the menu bar, select File � Properties to open the Default ACT Properties
dialog box. Then select the Users and Permissions tab.

CAUTION:
The Users and Permissions tab looks very similar to the Authorization tab. When you
want to set default controls for a repository, be sure that you are on the Users
and Permissions tab. �

4 On the Users and Permissions tab, select PUBLIC in the Names list. In the
permissions list for the PUBLIC group, select the Deny check box for every
permission.

* When you are ready to allow regular users to access the deployment, you will have to expand these repository ACT settings
as documented in “Repository ACT Settings for ReadMetadata and WriteMetadata Permissions” on page 107.

68 Selectively Restore Access for the Required Users � Chapter 4

Display 4.1 Repository ACT Settings for the PUBLIC Group

Note: Other identities that are listed (such as the SAS Administrator and the
SAS System Services group) were added during the installation and configuration
process. Do not modify or remove the permission settings for any such identities.
�

5 Click OK to save the settings and close the Default ACT.

CAUTION:
At this point, your deployment is not fully functional. You must restore access for the
required users (such as sastrust, saswbadm, and sasguest) as explained in the
following topic. �

Selectively Restore Access for the Required Users
Because they are members of the PUBLIC group, the SAS Guest User and the SAS

Web Administrator are affected by the denials that you just gave to the PUBLIC group.
The following table explains how to restore access for these users.

Securing a Deployment � Creating a Group of Metadata Administrators (Optional) 69

Table 4.2 Restoring Access for Required Users

Task Recommended Approach

For the SAS Web Administrator, restore
WriteMetadata access to the repository.

On the Users and Permissions tab of the
repository ACT, add the Portal Administrators
group and grant WriteMetadata permission for
this group.

For the SAS Guest User, restore ReadMetadata
and WriteMetadata access to the repository.

The SAS Guest User also needs Read permission
for certain resources. For more information, see
“How to Manage Read Access” on page 117.

On the Users and Permissions tab of the
repository ACT, add the SAS Guest User and
grant ReadMetadata and WriteMetadata
permissions for this user.

From the Public Kiosk of the SAS Information
Delivery Portal, users can view all resources for
which the SAS Guest User has ReadMetadata
access. For this reason, you might choose to
delay restoring this permission until you have
set direct access controls to protect any
sensitive content.

Note: If your deployment includes a SAS/SHARE server that specifies the sassrv
account as metauser in its sasv9_ShareServer.cfg file, you must also restore
ReadMetadata access for the SAS General Server User. On the Users and
Permissions tab of the repository ACT, add the SAS General Servers group and grant
ReadMetadata permission for this group. �

Creating a Group of Metadata Administrators (Optional)
The purpose of creating one or more administrative users is to enable each

administrator to use his or her own account, rather than continuing to share the highly
privileged unrestricted user account (sasadm). Administrative users can perform almost
all metadata administrative tasks. Assigning the administrators to a user group
simplifies the process of managing access controls for these users. The following
instructions describe how to create a user group for administrators, give the group
broad access to the repository, and populate the group by adding administrative users to
the deployment. The sequence is depicted in the following figure.

Figure 4.1 Sequence for Setting Up Security for Administrators

USERS
Populate the Administrators

group with users.

GROUP
Create a group definition that

is named Administrators.

ACCESS CONTROLS
Give the Administrators group

access to the repository.

To create the administrators group and define their default access, complete these
steps:

1 Log on to SAS Management Console by opening a metadata profile with the
unrestricted user account (SAS Administrator).

2 In the navigation panel, select User Manager.
3 Open the New Group Properties dialog box by selecting this path from the menu

bar: Actions � New � Group.

70 Creating a Group of Metadata Administrators (Optional) � Chapter 4

4 Create a group definition for your administrators.

a On the General tab of the New Group Properties dialog box, enter
Administrators as the group name.

b On the Logins tab, do not add any account information (unless the group
members share an account on another system).

c Click OK to save and close the group definition.

5 Define the group’s default access to the repository.

a In the navigation panel, select Environment Management �
Authorization Manager � Access Control Templates � Default ACT.

Note: In SAS Management Console, the repository ACT is represented by a
blue cylinder icon and is named "Default ACT" by default. �

b From the menu bar, select File � Properties to open the Default ACT
Properties dialog box.

c On the Users and Permissions tab, click Add.
d In the Add Users and/or Groups dialog box, move the Administrators group to

the Selected Identities list and then click OK.
e On the Users and Permissions tab, select Administrators in the Names

list and grant all permissions.*

Display 4.2 Repository ACT Settings for the Administrators Group

To populate the new group, complete these steps for each administrator:

* You can choose to set the Read, Write, Create, Delete, CheckInMetadata, and Administer permissions on specific resources
rather than as default permissions for the entire repository.

Securing a Deployment � Initial Settings for Security-Related Resources 71

1 If the user does not already have an account on the metadata server machine,
create an operating system account (or an LDAP or Active Directory account if you
are using one of these providers). On Windows platforms, give the user the Log on
as Batch right.

Note: If you have a mixed authentication environment, create any additional
accounts that the administrator needs in order to access other servers (such as
workspace servers, stored process servers, or database servers). �

2 Give the user status as an administrative user of the metadata server by adding
the user ID of the primary account that you created in step 1 to the
adminUsers.txt file. For details, see “How to Designate an Unrestricted,
Administrative, or Trusted User” on page 93.

3 Create a metadata definition for the user and assign the user to the
Administrators group.

a Log on to SAS Management Console by opening a metadata profile with an
unrestricted user account (sasadm), and access the foundation repository.

b In the navigation panel, select User Manager.
c Open the New User Properties dialog box by selecting this path from the

menu bar: Actions � New � User.
d On the General tab, enter the user’s name in the Name field. The other fields

on the General tab are optional.
e On the Logins tab, add a login that contains the fully qualified form of the

user ID for the primary account that you created in step 1. If this login will
be used to provide access to other servers from applications that do not cache
credentials, include the password and specify the DefaultAuth authentication
domain.

Note: If you have a mixed authentication environment, add other logins as
needed to support additional authentication. These logins would contain the
credentials for any additional individual user accounts that you created in
step 1. �

f On the Groups tab, make the user a member of the Administrators group.
g Click OK to save and close the user definition.

Note: It is important to restrict access to this group definition as explained in
“Protect Group Definitions” on page 76. �

Setting Explicit Protections for Security-Related Resources

Initial Settings for Security-Related Resources
By default, ACTs and user-defined groups are protected only by the access controls

that these resources inherit from the repository ACT. When you examine the
Authorization tab for one of these resources, you will see inherited (grey background
color) grants and denials that come from the settings on the repository ACT. Because
you will eventually grant wider access on the repository ACT, you should protect
specific resources with additional, direct controls. You set direct access controls on the
Authorization tab of each resource that you want to protect. This ensures that the
resources will remain protected as you expand access to the repository.

72 Protect Access Control Templates � Chapter 4

Protect Access Control Templates
To enable only members of the Administrators group to modify or delete an ACT,

take WriteMetadata permission away from PUBLIC and then give WriteMetadata
permission back to the Administrators group. For example, to protect the repository
ACT, complete these steps:

1 In SAS Management Console, select the repository ACT under Environment
Management � Authorization Manager � Access Control Templates.

2 Right-click and select Properties from the pop-up menu. Then select the
Authorization tab.

Note: You use the Authorization tab (rather than the Users and Permissions
tab) because you want to control who can make changes to this ACT. �

3 On the Authorization tab:

a In the Names list, select PUBLIC. In the permissions list for the PUBLIC
group, the deny WriteMetadata check box should already be selected and
have a gray background color. This denial comes from the pattern that you
defined on the Users and Permissions tab of the repository ACT.

Display 4.3 Initial Setting: PUBLIC Has Inherited Denials

b Select the (already selected) Deny WriteMetadata check box to add a directly
assigned denial of WriteMetadata permission for the PUBLIC group. The
directly assigned denial is indicated by the absence of a background color.

Securing a Deployment � Protect Access Control Templates 73

Display 4.4 Revised Setting: PUBLIC Has Explicit Denial of WriteMetadata

The directly assigned denial ensures that the current resource will remain
protected as you expand default WriteMetadata access to the repository.
Explicit controls have precedence over inherited controls, so the PUBLIC
group’s explicit denial of WriteMetadata will override any grants of
WriteMetadata that come from the repository ACT.

c In the Names list, select Administrators. In the permissions list for the
Administrators group, the Grant WriteMetadata check box should already
be selected and have a gray background color. This grant comes from the
pattern that you defined on the Users and Permissions tab of the
repository ACT.

74 Protect Access Control Templates � Chapter 4

Display 4.5 Initial Setting: Administrators Has Inherited Grants

Because members of the Administrators group are also members of the
PUBLIC group, they are affected by the direct denial of WriteMetadata
permission that you set in step 3b. To enable members of the Administrators
group to modify or delete this resource, you must give the Administrators
group a direct grant of WriteMetadata permission.

Select the (already selected) Grant WriteMetadata check box to add a
directly assigned grant of WriteMetadata permission for the Administrators
group. The directly assigned grant is indicated by the absence of a
background color.

Securing a Deployment � Protect Access Control Templates 75

Display 4.6 Revised Setting: Administrators Has Explicit Grant of WriteMetadata

4 In the properties dialog box, click OK to save the settings and close the ACT.

Now the repository ACT is protected. You will have to repeat these steps for any
other ACTs that you create.

Example: Use a Custom ACT
As an alternative to setting individual access control entries (ACEs) on the

Authorization tab of every ACT, you can use this approach:
1 Create a custom ACT that has a reusable identity/permission pattern on its Users

and Permissions tab.

a In SAS Management Console, navigate to Environment Management �
Authorization Manager � Access Control Templates. Right-click and
select New Access Control Template from the pop-up menu.

b On the General tab in the New Access Control Template dialog box, enter a
name such as ACT Securing ACTs. Or, if you plan to also use this ACT to
protect a variety of resource types, you might want to enter a more general
name such as Exclusive WriteMetadata for Administrators.

c On the Users and Permissions tab, click Add and add the PUBLIC and
Administrators groups to the Names list.

d On the Users and Permissions tab, select PUBLIC and deny WriteMetadata
permission. Then select Administrators and grant WriteMetadata
permission.

e Click OK to save the new ACT.
2 Apply the new ACT on the Authorization tab of each resource that you want to

protect with this particular identity/permission pattern. For example, you can
apply the custom ACT to protect itself by completing these steps:

76 Protect Group Definitions � Chapter 4

a Open the properties dialog box for the custom ACT.
b On the Authorization tab, examine the settings for the Administrators and

PUBLIC groups. You will see inherited grants and denials (with grey
background colors). To apply the new custom ACT on top of these default
settings, click Access Control Templates.

c In the Add/Remove Access Control Templates dialog box, move the custom
template to the Currently Using box and click OK.

On the Authorization tab, examine the settings for the Administrators
and PUBLIC groups again. For the Administrators group, the grant of
WriteMetadata now has a green background color. This indicates that the
grant comes from the directly applied ACT. Similarly, the WriteMetadata
denial for the PUBLIC group now has a green color. The green color assures
you that this is an explicit, directly assigned control that will be preserved
when default WriteMetadata access to the repository is expanded.

This approach gives you a more centralized way to manage access to your ACTs. If
you change your mind about which groups or users should be able to modify or delete
your ACTs, you can make the change in one place (on the custom ACT) rather than
revisiting every ACT to change the individual ACEs that you set on each resource.

Note: If you want different groups to be able to make changes to particular ACTs,
then you cannot use a single ACT to manage access to all of these objects. You use an
ACT to manage access when you want to apply the same identity/permission pattern to
multiple resources. �

Note: You can apply this custom ACT to any resource for which these permission
settings are appropriate. For example, you might also use this custom ACT to protect
group definitions. �

Protect Group Definitions
It is essential that you protect all of your group definitions. The manual approach is

similar to the approach that was used to protect ACTs:
1 Locate each group definition (under the User Manager node in SAS Management

Console).
2 Access the Authorization tab for each group definition.
3 Set direct controls that deny WriteMetadata permission to PUBLIC and grant

WriteMetadata permission to the Administrators group.

As an alternative to manually setting these permissions on each group definition, you
can use an ACT to manage access. SAS provides a macro to simplify this process. See
“Macro for Protecting Group Definitions” on page 95.

Minimizing the Availability of Accounts
The following list provides suggestions for reducing exposure of privileged accounts,

service accounts, and regular user accounts:
� Make trusted user capabilities available only where these special privileges are

needed. Trusted user capabilities are needed in these circumstances:
� The deployment includes a SAS OLAP Server.
� The deployment uses Web authentication.
� The deployment uses batch reporting processes.

Securing a Deployment � Minimizing the Availability of Accounts 77

If your deployment does not make use of trusted user functionality, you can
remove the user ID for the sastrust account from the trustedUsers.txt file. This
makes the sastrust account a normal account that has no special privileges.

If your deployment requires trusted user functionality, you can reduce exposure
of the privileged sastrust account by eliminating its use in situations that do not
require trusted user privileges. For example, an account other than sastrust can be
used as the pool administrator for pooled workspace servers.

� Look for operating system-specific ways to minimize availability of accounts. For
example, on Windows systems the unrestricted user and trusted user accounts can
be local accounts on the metadata server machine rather than network accounts
(these accounts are not authenticated on any other machines).

� On Windows systems, reduce availability by granting the Log on as Batch right
on only those accounts and machines where it is needed. Any user who is
authenticated by a SAS server that is running on Windows and using host
authentication must have this right on that machine.

� If you are using workspace server pooling with SAS Web Report Studio, then
protect the Foundation Services Manager User Service definition by
completing these steps:

1 In SAS Management Console, navigate to Foundation Services Manager
� Query and Reporting � BIP Core Services � Platform User Service
� Properties � Authorization tab.

2 Set direct controls that deny ReadMetadata and WriteMetadata permissions
to the PUBLIC group and grant these permissions to the SAS System
Services group and the Administrators group.

Note: To set these permissions, follow a process similar to step 3 in
“Protect Access Control Templates” on page 72. �

78

79

C H A P T E R

5
Customizing the Authentication
Configuration

Overview of Customizing the Authentication Configuration 79
Modifications to Support a Mixed Authentication Environment 79

Initial Authentication Configuration 79

How to Create an Authentication Domain 79

How to Change an Authentication Domain Assignment 80

Modifications to Support Additional Servers 80
How to Manage Authentication for an Additional Server 80

How to Use Shared Accounts 80

Example: Managing Authentication to a Database Server 81

Modifications to Support Alternative Authentication Mechanisms 82

Using Web Authentication 82

Using LDAP or Active Directory 82
Best Practice for Using LDAP or Active Directory 82

Direct Use of LDAP or Active Directory 82

Overview of Customizing the Authentication Configuration
This chapter contains instructions for setting up specific configurations. You should

perform only those tasks that are applicable for your deployment. See “Making
Preliminary Decisions about Authentication” on page 52 for help determining which
configurations are appropriate for your environment.

Modifications to Support a Mixed Authentication Environment

Initial Authentication Configuration
With the assumption that all of your servers share a single authentication provider,

the default configuration creates a single authentication domain named DefaultAuth. If
your deployment uses more than one authentication provider, it will not be fully
functional until you set up more authentication domains.

How to Create an Authentication Domain
You can create a new authentication domain while you are defining a server or a

login in SAS Management Console. Instead of selecting an existing authentication
domain, click New to access the New Authentication Domain dialog box. The name of an

80 How to Change an Authentication Domain Assignment � Chapter 5

authentication domain should be meaningful to the people who create the logins and
server definitions that will be associated with that authentication domain. For each
authentication domain, you must define associations to the appropriate servers and
logins. “How Authentication Domains Are Used” on page 9 explains the relationships
between authentication domains, servers, and logins.

Note: There is no direct method for deleting an authentication domain from SAS
Management Console. �

How to Change an Authentication Domain Assignment
In order to modify existing authentication domain assignments, you need to know

how to locate those assignments in SAS Management Console.
� The authentication domain for a server is specified on the Options tab of each of

the server’s connection definitions. For example, to access the authentication
domain assignment for a SAS OLAP Server, you will select a path such as: Server
Manager � SASMain � SASMain Logical OLAP Server � SASMain OLAP
Server � Connection: SASMain OLAP Server � Properties � Options.

� The authentication domain for a login is specified on the Logins tab of the user or
group definition to which the login is assigned. You can see a login that is assigned
to another user only when you log on to SAS Management Console as an
unrestricted user.

Modifications to Support Additional Servers

How to Manage Authentication for an Additional Server
For each additional server that you register in the repository, complete these steps to

support authentication:
1 In the server definition, associate the new server with an appropriate

authentication domain.
� If the server uses the same authentication provider as an existing server,

associate the new server with the authentication domain for that provider.
� If the server does not use the same authentication provider as an existing

server, create a new authentication domain when you register the new server
in the metadata.

2 In the new server’s authentication provider, establish user accounts. These can be
either individual accounts or shared accounts.

3 In the metadata repository, provide exactly one login that contains credentials for
accessing the new server for each user who will access that server.

How to Use Shared Accounts
You can enable multiple users to access a server with the same account. Using

shared accounts provides these advantages:
� minimizes the number of user accounts you have to create in the operating system

(or other authentication provider)
� minimizes the number of user credentials you must store in the metadata to

support single sign-on

Customizing the Authentication Configuration � Example: Managing Authentication to a Database Server 81

� improves performance by facilitating the pooling of workspace servers for SAS Web
applications

Using shared accounts has these disadvantages:

� reduces individual accountability

� reduces your ability to make access distinctions between users

� requires you to carefully coordinate credentials in the metadata so that no user
has more than one login for any authentication domain

To store the user ID and password for an account that several users share, you add
that user ID and password to a group definition. This enables all the members of that
group to use those credentials.

Example: Managing Authentication to a Database Server
For example, to manage authentication to an Oracle server that is using database

authentication, you would perform these tasks:

1 Create a new authentication domain for the Oracle server when you register that
server in the metadata. The new authentication domain is necessary because
users do not access the Oracle server with the same credentials that they use for
any other server in the deployment.

2 In the Oracle authentication database, set up user accounts. You can use any of
these approaches:

� Give each user an individual account for Oracle. This provides the greatest
accountability, but also necessitates storing many Oracle user IDs and
passwords in the metadata.

� Create one Oracle account that all users will share. This greatly reduces the
need to store Oracle user IDs and passwords in the metadata, but also
results in a loss of individual accountability and control.

� Create a few Oracle accounts, each of which will be used by several users.
This middle-of-the-road approach enables you to make some access
distinctions in the Oracle authorization layer and still store only a few Oracle
user IDs and passwords in the metadata.

3 In the metadata, store the credentials that users need in order to authenticate to
the Oracle server. Depending on the approach you selected in step 2, this will
involve one of these tasks:

� If you created individual accounts on the Oracle server, then you must add an
Oracle login to each user definition. The login must include the Oracle user
ID and password. The login must be associated with the authentication
domain that you created for the Oracle server.

� If you created one shared account on the Oracle server, then you must
identify (or create) a group that contains the users who will access the Oracle
server. For that group, you add a login that includes the user ID and
password for the Oracle shared account. You associate that login with the
authentication domain that you created for the Oracle server.

� If you created several shared accounts on the Oracle server, then you must
identify (or create) a user group in the metadata for each shared account. You
give each group one login for the Oracle server, and you assign users who will
share an account to the user group that owns the login for that account.

82 Modifications to Support Alternative Authentication Mechanisms � Chapter 5

Modifications to Support Alternative Authentication Mechanisms

Using Web Authentication
Configuring your SAS Web applications to use the Web server’s authentication

provider (rather than the metadata server’s authentication provider) enables you to
avoid creating accounts for your Web application users on the machine on which your
metadata server is running. However, this configuration has these potential
disadvantages:

� Switching to Web authentication can result in increased credential management
work. To determine whether this is the case in your environment, you need to
understand how Web authentication works (see “Initial Authentication on a Web
Application Server” on page 13) and understand the relationships between
authentication providers, servers, and credential management requirements (see
“Authentication Scenarios” on page 21).

� If you use Web authentication for the SAS Information Delivery Portal, you will
not have a public kiosk.

The configuration changes involve setting certain properties for each Web application
and redeploying those applications. For instructions, see “Changing to Trusted Web
Authentication” in the chapter “Setting Up and Managing Middle-Tier Security” in the
SAS Intelligence Platform: Web Application Administration Guide.

Using LDAP or Active Directory

Best Practice for Using LDAP or Active Directory
At many sites, the host authentication process makes use of LDAP or Active

Directory as a back-end authentication mechanism. This is the preferred way to use
LDAP or Active Directory in the SAS Intelligence Platform, and no additional
configuration is required to support this scenario. From the perspective of the SAS
servers, this is host authentication, because the SAS server relies on the host (which
relies in turn on LDAP or Active Directory).

If you have LDAP or Active Directory accounts, we recommend that you determine
whether your host authentication process already interacts with these providers or can
be modified to interact with these providers. For example:

� On Windows, Active Directory is almost always the back-end authentication
mechanism behind the host.

� On UNIX, Pluggable Authentication Modules (PAM) can enable a host to use
LDAP or Active Directory as a back-end authentication mechanism.

Direct Use of LDAP or Active Directory
If your host authentication process cannot interact with your LDAP or Active

Directory provider, you can choose to enable the metadata server and the OLAP server
to use these alternate providers directly. Before you perform the additional
configuration that this scenario requires, review the preceding topic and consider these
points:

� Direct use of LDAP or Active Directory is not an alternative to storing user
information in a SAS Metadata Repository. The security model requires you to

Customizing the Authentication Configuration � Using LDAP or Active Directory 83

maintain user definitions in the metadata, regardless of your choice of
authentication provider.

� Only the metadata server and the OLAP server can directly use alternate
providers. Stored process servers and workspace servers always rely on the host
operating system for authentication, so cached LDAP and Active Directory
credentials cannot provide access to these servers. Direct use of an alternate
provider can increase the need to store credentials in the metadata.

If you want to use an alternate provider directly, complete these steps:
1 Verify that user accounts are in place with the alternate provider. It is not

necessary to create LDAP or Active Directory entries for the required accounts.
These instructions anticipate that all required accounts will continue to exist with
the host authentication provider.

2 Add system environment variables for the metadata server and OLAP server.

Table 5.1 System Environment Variables for Direct Use of LDAP

Variable Value

LDAP_PORT The port number for LDAP. The default is 389.

LDAP_BASE The base DN to use. For example: o=People, dc=orion, dc=com.

LDAP_HOST The host name of the machine where LDAP is running.

LDAP_IDATTR (Optional) an alternative LDAP attribute that the SAS server can use to
find your DN. The default is uid.

LDAP_PRIV_DN* The privileged DN that is allowed to search for users. For example,
cn=useradmin.

LDAP_PRIV_PW* The password for LDAP_PRIV_DN. You can use the PWENCODE
procedure to provide an encoded password.

* Set this variable only if users connect with a user ID instead of a DN, and the LDAP
server does not allow anonymous binds.

Table 5.2 System Environment Variables for Direct Use of Active Directory

Variable Value

AD_PORT The port number for Active Directory. The default is 389.

AD_HOST The host name of the machine where Active Directory is running.

For example, on Windows you can add these settings to
sasv9_MetadataServer.cfg and sasv9_OLAPServer.cfg:

-set LDAP_HOST myhost
-set LDAP_BASE "ou=emp,o=us"
-set LDAP_PORT 389

For example, on UNIX you can add these settings to MetadataServer.sh and
OLAPServer.sh:

LDAP_HOST=myhost
export LDAP_HOST
LDAP_BASE="ou=emp,o=us"
export LDAP_BASE
LDAP_PORT=389
export LDAP_PORT

84 Using LDAP or Active Directory � Chapter 5

Note: On z/OS, a TKMVSENV file is used to make a list of pseudo environment
variables available. A TKMVSENV PDS is created at installation. To define the
environment variables for the metadata server or OLAP server, create a member
in the PDS that specifies the necessary variables, and then reference this PDS
member in the TKMVSENV DD statement in your started task. �

3 In the invocation command for the metadata server and the OLAP server, use the
AUTHPROVIDERDOMAIN option (authpd) to indicate which credentials should
be sent to your alternate provider. For example:

-authpd LDAP:sas
causes the server to send credentials for users who log on as anything@sas to
LDAP for authentication.

-authpd ADIR:sas
causes the server to send credentials for users who log on as anything@sas to
Active Directory for authentication.

Note: You can use another value instead of sas. The examples in these
instructions use @sas to make it easy for users to remember what to append to
their LDAP or Active Directory user IDs when they log on to SAS applications. �

4 Tell users that when they log on to a SAS application, they must specify their user
ID as follows:

� For LDAP, use myLDAPidentifier@authpdLDAPvalue (for example, tom@sas).

Note: The SAS server uses the user’s myLDAPidentifier value to find the
user’s DN. By default, the SAS server expects this value to be the user’s
LDAP uid. To enable users to use a different LDAP attribute, set the
LDAP_IDATTR system environment variable. �

� For Active Directory, use myQualifiedWindowsID@authpdADIRvalue (for
example, OrionNT\Tom@sas or Tom@OrionNT@sas).

Note: The SAS server sends the user’s myQualifiedWindowsID value to
Active Directory for authentication. �

5 In the metadata, ensure that each user definition includes a matching inbound
login in which the user ID is specified as follows:

� For LDAP, the format in the login is the same as the format that the user
submits: myLDAPidentifier@authpdLDAPvalue (for example, tom@sas).

� For Active Directory, the format in the login is an abbreviated version of the
format that the user submits: myQualifiedWindowsID (for example,
OrionNT\Tom).

Note: The password is not specified in this login unless the login is also used
for outbound purposes. �

Note: The authentication domain for this login is usually the authentication
domain that you are using for the OLAP server and the metadata server.
Typically, you will associate this login with a new authentication domain with a
name such as LDAPAuth or ADIRAuth. �

6 In the metadata, ensure that host credentials are stored to enable users to access
stored process servers and workspace servers. Typically, this is achieved in one of
these ways:

� adding a password to each user’s existing host login

� creating a new login for each user to store the user ID and password for the
user’s host account

Customizing the Authentication Configuration � Using LDAP or Active Directory 85

� adding the user ID and password for a shared host account to a group
definition

This table illustrates credential information in a deployment where LDAP is the
alternate provider for a metadata server and an OLAP server running on
Windows. In this example, the workspace server and stored process server are
running on UNIX.

Table 5.3 Example: Credentials If Using LDAP: sas

Source of Credentials User ID Password
Authentication
Domain

interactive log on by Tom tom@sas provided by Tom LDAPAuth

login (inbound) tom@sas not stored LDAPAuth

login (outbound) unxtom stored UNIXAuth

This table illustrates credential information in a deployment where Active
Directory is the alternate provider for a metadata server and an OLAP server
running on UNIX. In this example, the workspace server and stored process server
are running on Windows.

Table 5.4 Example: Credentials If Using ADIR: sas

Source of Credentials User ID Password
Authentication
Domain

interactive log on by Tom OrionNT\Tom@sas provided by Tom ADIRAuth

login (inbound and
outbound)

OrionNT\Tom stored WINAuth

In this example, using Active Directory as an alternate provider enables you to
avoid creating UNIX accounts for your Active Directory users. Note that in this
configuration, a user ID that is cached when the user logs on cannot be reused to
provide access to workspace servers or stored process servers, because that ID is
not in a valid format for host authentication on a Windows machine. For this
reason, the login in this example has these attributes:

� To support inbound use, the user ID in the login is in the abbreviated format
that matches the authenticated user ID as returned by Active Directory.

� To support outbound use, the login includes a password and is associated with
the authentication domain of the workspace server and stored process server.

Related Topics:

“How to Use Shared Accounts” on page 80

“How to Create an Authentication Domain” on page 79

Chapter 6, “User and Group Management,” on page 89

“AUTHPROVIDERDOMAIN” in the chapter “SAS System Options” in the SAS
Language Reference: Dictionary

“The PWENCODE Procedure” in the Base SAS Procedures Guide

86

87

P A R T3

Identity Management

Chapter 6.User and Group Management 89

Chapter 7.User ID and Password Management 97

88

89

C H A P T E R

6
User and Group Management

About the User and Group Management Tasks 89
Organizing Users Into Groups 89

Identifying Related Tasks 89

Defining the Group Structure and Membership 90

Sequence for Populating a Deployment 91

How to Create a User Group 92
How to Add a User 93

How to Designate an Unrestricted, Administrative, or Trusted User 93

How to Remove a User 94

Macro for Protecting Group Definitions 95

Overview of the %MDUGRPAC Macro 95

Syntax of the %MDUGRPAC Macro 95

About the User and Group Management Tasks
This chapter explains how to use SAS Management Console to create and manage

user and group definitions in the metadata. For an alternate method for creating
metadata identity information, see Appendix 2, “Bulk-Load Processes for Identity
Management,” on page 185.

Organizing Users Into Groups

Identifying Related Tasks
Make a list of the business tasks that each user performs and the content domain

(such as the business unit, job title, or geographic region) in which each user operates.
For example, your list might include these activities:

� viewing reports in a particular content domain (such as human resources)
� creating reports in a particular content domain
� scheduling jobs
� defining objects that represent computing resources in a metadata repository
� creating or maintaining user and group definitions

Organize your list of user tasks into logical groups. In this process, look for
variations in

90 Defining the Group Structure and Membership � Chapter 6

� the content domain
� the computing resources that are involved
� the type of access that is required
� the level of sensitivity of the underlying data

Analyze “Standard Group Metadata Identities” on page 182 and your task lists to
identify which additional user groups you need. In this process, keep in mind your
security goals. If you do not intend to define different levels of access for two sets of
users, then you usually do not need to create separate user groups to represent each of
those sets of users.

For example, if you want everyone to be able to read all of your data and you want to
limit write access by job function, your list of tasks and groups might look like the tasks
in the following table.

Table 6.1 A Simple Tasks-to-Groups Mapping

Tasks Group

Create users and groups

Administer servers and repositories

Set repository level security

Administrators

Define metadata for data resources

Define ETL processes

Schedule jobs

ETL Developers

Create and maintain information maps Information Architects

Create and publish standard reports Report Creators

View all reports

Make ad hoc changes to reports

Save modifications to reports

Power Report Consumers

View all reports Report Consumers

Note: Membership in a user group that is named Administrators does not enable a
user to perform tasks that require status as an administrative user of the metadata
server. For details, see “How to Designate an Unrestricted, Administrative, or Trusted
User” on page 93. �

Defining the Group Structure and Membership
Decide how the groups that you create should relate to each other. In the metadata

layer, one group can be a member of other groups. For example, a regional sales group
can be a member of a worldwide sales group.

The following figure depicts one way you could structure the user groups that were
identified in the simple tasks-to-groups mapping in the previous section.

User and Group Management � Sequence for Populating a Deployment 91

Figure 6.1 Example of a Group Structure

PUBLIC

SASUSERS

Administrators

Power Report Consumers

Report Creators

Information Architects

ETL Developers

This group structure simplifies the process of defining and maintaining access
controls. For example, if you make the Report Creators group a member of the Power
Report Consumers group, you simplify the process of giving the report creators a
superset of the access that you will give to the report consumers. You can assign
permissions that you want both groups to have to the Power Report Consumers group,
and the permissions that you want only the creators to have to the Report Creators
group.

Determine which individuals in your organization should be assigned to each of the
user-defined groups that you identified. You will usually assign each user definition to
one or more group definitions in the metadata. Remember that you do not always have
to directly add individual users to every user group; groups can also be members of
other groups.

Sequence for Populating a Deployment

You can use the following sequence to populate your deployment.

Figure 6.2 Sequence for Expanding Access to Your Deployment

USERS
Populate the groups

with users.

GROUPS
Create group definitions.

ACCESS CONTROLS
Give each group appropriate

access to resources.

92 How to Create a User Group � Chapter 6

In this sequence, you create user groups and define access controls before you add
individual users to the deployment. This centralizes management of access controls by
assigning permissions to user groups rather than to individual users. This also enables
you to separate tasks that are typically performed by a security architect (such as
designing the user group structure and the access control strategy) from the more
administrative tasks (such as adding individual users to a deployment).

You can perform the entire sequence separately for each group (or set of groups) in
the deployment. This phased approach is appropriate for a gradual rollout by job
function. For example, a typical sequence is ETL developers, then information map
creators, then report creators, and then report consumers. Or, you can perform the
entire sequence one time for the entire deployment. In this approach, you set up all of
the groups, then create all of the access controls, and then add users to the deployment.
This enables you to do a small (but comprehensive) pilot by adding a few users to each
group and then verifying that you get the security behaviors that you expect.

How to Create a User Group
Most environments will have several user-defined groups in addition to the two

standard user groups (PUBLIC and SASUSERS) that have implicit membership.
To create a user group in the metadata, complete these steps:
1 Log on to SAS Management Console and access the foundation repository. You

should create all of your user and group definitions in a single foundation
metadata repository.

2 In the navigation panel, select User Manager.
3 Open the New Group Properties dialog box by selecting this path from the menu

bar: Actions � New � Group.
4 Create the group definitions. For each group definition, complete these steps:

a On the General tab, enter a name for the group.
b On the Logins tab, add a login to the group definition only if you are using

the group to provide access to servers using a shared account. A login on a
group definition should contain the user ID and password for a shared account
that has been established with an authentication provider. A login on a group
definition should be assigned to an appropriate authentication domain.

For example, you can enable multiple users to share a database account by
storing the credentials for that account in a login on the Logins tab for a
group definition. All users who are members of that group definition can use
that login to access the database server.

c On the Members tab, add any other groups that are members of the current
group, in accordance with your planned group structure.

Unless you define groups in a particular order, you might have to return to
a group’s Members tab to add other groups as members. For example, if you
want GroupA to be a member of GroupB, you must do either of these things:

� Create GroupA before you create GroupB. This enables you to add
GroupA as a member when you define GroupB.

� Create GroupA after you create GroupB. This requires you to return to
the Members tab of GroupB after you create GroupA to add GroupA as a
member.

d Click OK to save and close the group definition.
5 Secure each group definition with directly assigned permissions. If your goal is to

enable only members of the Administrators group to make changes to your group

User and Group Management � How to Designate an Unrestricted, Administrative, or Trusted User 93

definition, you will take WriteMetadata permission away from PUBLIC and then
give WriteMetadata permission back to the Administrators group. For
instructions, see “Protect Group Definitions” on page 76.

How to Add a User
To create the necessary accounts, metadata identities, and group membership

assignments for a regular user, complete these steps for each user:
1 If the user does not already have an account that enables the user to access the

metadata server machine, create such an account. This can be an operating
system account on the metadata server host, an LDAP or Active Directory account
(if you are using an alternate authentication provider), or an account with a Web
authentication provider (if you are using Web authentication). On Windows
platforms, give the user the Log on as Batch right. You can do this by assigning
the user to the SAS Server Users group in the operating system.

Also create any other individual accounts that the user needs to access servers
such as unpooled workspace servers, stored process servers, or database servers.

2 Create a metadata identity for the user (unless the user’s access needs can be met
by membership in the PUBLIC group).

a Log on to SAS Management Console by opening a metadata profile with your
administrative user account (or with the unrestricted user account). Access
the foundation repository. You should create all of your user and group
definitions in a single foundation metadata repository.

b In the navigation panel of SAS Management Console, select User Manager.
c Open the New User properties dialog box by selecting this path from the

menu bar: Actions � New � User.
d On the General tab, enter the user’s name in the Name field. The other fields

on this tab are optional.
e On the Logins tab, perform these steps:

� Add a login that the metadata server can use to determine the user’s
metadata identity. This login must contain the fully qualified form of
the user ID for the primary account that you created in step 1a. If this
login will be used to provide access to other servers from applications
that do not cache credentials, include the password and specify the
DefaultAuth authentication domain.

� Add other logins as needed to support additional authentication. These
logins would contain the credentials for any additional individual user
accounts that you created in step 1.

f On the Groups tab, define the user’s group memberships. Each user can
belong to multiple groups.

g Click OK to save and close the user definition.

Note: By default, only administrative users, unrestricted users, and the user
who is represented by a particular user definition can make changes to that
user definition. �

How to Designate an Unrestricted, Administrative, or Trusted User
Unrestricted, administrative, and trusted users are users who have special status on

the metadata server. You can assign special user status listing user IDs in the

94 How to Remove a User � Chapter 6

adminUsers.txt file or the trustedUsers.txt file. By default, these files are located
in the MetadataServer directory under the SASMain configuration directory. The
metadata server recognizes three types of special users:

administrative
user

a user ID that can perform tasks such as creating repositories,
creating user definitions, stopping the metadata server, refreshing
repositories, and enabling Applications Response Management
logging. Like a regular user, an administrative user is subject to
metadata layer access controls. Administrative users do not have
unrestricted access to metadata.

A user ID that is listed in the adminUsers.txt file without an
initial asterisk is an administrative user.

trusted user a user ID that acquires credentials and acts on behalf of other users
in a multi-tier server environment.

A user ID that is listed in the trustedUsers.txt file is a trusted
user.

unrestricted user a user ID that has unrestricted access to all metadata, regardless of
any access controls that have been specified. An unrestricted user
can also perform all of the tasks that an administrative user can
perform. An unrestricted user can overwrite password information,
but cannot retrieve passwords from the repository. For this reason,
an unrestricted account should be used only within SAS
Management Console and only for tasks that do not require retrieval
of passwords.

A user ID that is listed in the adminUsers.txt file with an initial
asterisk is an unrestricted user.

When you make changes to the adminUsers.txt file or the trustedUsers.txt file,
follow these guidelines:

� Specify one user ID per line.
� List the fully qualified user ID. For example, for a Windows network account,

specify <Windows-domain>\userID. For a local account, specify
<machine-name>\userID.

� In the adminUsers.txt file, distinguish an unrestricted user from an
administrative user by prepending an asterisk to the user ID that has unrestricted
status. For example, *sasadm@netdomain.

� In addition to being listed in the appropriate file, these user IDs must be able to
authenticate to the metadata server.

� You must stop and restart the metadata server to make these changes take effect.

How to Remove a User
Administrative users and unrestricted users can use User Manager to delete user

definitions from a metadata repository. It is recommended that you log on with the
unrestricted user account (SAS Administrator) in order to delete a user definition.
Detailed instructions for deleting user definitions are provided in the online Help for
User Manager.

In addition to removing the user definition from the metadata, you might need to
remove the account that gives the user access to the metadata server. If you do not
remove this account, then the user will still be a member of the PUBLIC group in the
metadata. Even after you delete a person’s metadata identity and user accounts, that
person can still view the public kiosk of the SAS Information Delivery Portal.

User and Group Management � Syntax of the %MDUGRPAC Macro 95

Macro for Protecting Group Definitions

Overview of the %MDUGRPAC Macro
You should limit WriteMetadata permission for group definitions, because you must

prevent regular users from making accidental or deliberate changes such as deleting a
group definition or changing group membership assignments. By default, a group
definition is protected only by the settings on the repository ACT, so it is necessary to
set additional direct controls to protect these objects.

As an alternative to manually setting permissions on the Authorization tab of
every group definition, you can use the %MDUGRPAC autocall macro (available in the
SAS autocall macro library). This macro enables you to centrally manage access to
group definitions. The %MDUGRPAC macro locates group definitions that are not
protected by direct access controls and associates those definitions to an ACT (by
default the ACT is named ACT Securing Groups).

Note: On the Users and Permissions tab of the ACT that is created by this macro,
there are no default settings. See the numbered list below for recommended settings. �

For example, the following code creates an ACT and associates each unsecured
IdentityGroup object in the specified repository to that ACT.

options metaserver=mymachine
metaport=9999
metauser=’winnt\userid’
metapass=’xxxyyyzzz1’
metarepository=Foundation;

%mdugrpac();

After you run this macro for first time, you must perform these tasks:
1 On the Users and Permissions tab of ACT Securing Groups, deny WriteMetadata

permission to the PUBLIC group, and then grant this permission back to only
those users who maintain your group definitions. For example, you might grant
WriteMetadata permission to an Administrators group. Or you might choose not to
grant WriteMetadata permission to anyone, which leaves an unrestricted user as
the only identity that can make changes to group definitions. Do not deny
ReadMetadata permission to anyone.

2 On the Authorization tab of the ACT, set permissions to control who can make
changes to the ACT. It would be appropriate to simply deny WriteMetadata
permission to PUBLIC, so that only an unrestricted user can make changes to this
special ACT.

The following topic contains reference information about this macro.

Syntax of the %MDUGRPAC Macro
Here is the syntax for this macro:

%mdugrpac();

or

%mdugrpac(ACTName="Name of the ACT"
scope= ALL | IMPORTED | NONIMPORTED

96 Syntax of the %MDUGRPAC Macro � Chapter 6

mode= EXECUTE | REPORT);

ACTName
specifies the name of the ACT that will be used to manage access to IdentityGroup
objects (group definitions). By default, the macro creates an ACT named ACT
Securing Groups (if that ACT does not already exist). If you want to associate
unsecured group definitions to an existing ACT, use this option to indicate which
ACT you want to use.

scope
specifies which IdentityGroups can be secured by the ACT. Associations are not
created for objects for which direct access controls are already defined. The default
scope is ALL.

ALL All IdentityGroups in the foundation repository are candidates
for inclusion.

IMPORTED Only IdentityGroups that were created by a bulk-load process
are candidates for inclusion.

NONIMPORTED Only IdentityGroups that were not created by a bulk-load
process are candidates for inclusion.

mode
controls the behavior of the macro. The default mode is EXECUTE.

EXECUTE causes the macro to create the associations and the new ACT
(if it does not already exist), and to generate a list of the
changes that were made.

REPORT causes the macro to only generate a list of the IdentityGroups
that would be modified if you execute the macro.

97

C H A P T E R

7
User ID and Password
Management

About the User ID and Password Management Tasks 97
How to Store User IDs and Passwords in the Metadata 97

How to Update Passwords for Users 98

How to Update Passwords for Required Accounts 98

Configuration Files That Include Passwords 100

About the User ID and Password Management Tasks
In the SAS Intelligence Platform, all user IDs and passwords are for accounts with

external systems. For this reason, user ID and password management activities for the
SAS Intelligence Platform are driven by changes that occur in these external systems.
For example:

� After you create an account for a user in a database system, you must store that
user ID and password in the metadata to support single sign-on access to the
database server from a SAS application.

� When the password for an external user account is stored in the metadata
repository to support single sign-on, the stored password must match the actual
password. Any change to the actual password in the external authentication
provider must be followed by an update to the stored password.

� Passwords for required accounts (such as sastrust or saswbadm) are stored in
additional locations, both in the metadata repository and in configuration files. It
is necessary to update the password in all of these locations after the password
changes in the operating system (or other authentication provider).

How to Store User IDs and Passwords in the Metadata
You use SAS Management Console’s User Manager to store user IDs and passwords.

In the metadata repository, user IDs and passwords are stored in login objects as part
of a user definition or a group definition.

� To store the user ID and password for a person’s individual account, you add that
user ID and password on the Logins tab of a user definition.

� To store the user ID and password for an account that several users share, you
add that user ID and password on the Logins tab of a group definition. This
enables all the members of that group to use those credentials.

The following list explains how logins can be added and removed:
� Each user can add logins to his or her user definition by using either the SAS

Personal Login Manager or SAS Management Console. Web server authentication

98 How to Update Passwords for Users � Chapter 7

is not available for these applications; both of these applications require the user
to have an account with the metadata server’s authentication provider.

� Administrative users and unrestricted users can use SAS Management Console to
add logins to any user definition.

� Any user who has WriteMetadata permission for a group definition (and for the
repository) can add logins to that group definition.

� A group member who has WriteMetadata permission for a group definition (and
for the repository) can remove logins from that group definition.

� An unrestricted user can add or remove logins from any user or group definition.

Related Topics:
“How Logins Are Used” on page 8
“Which User IDs and Passwords Will be Stored in the Metadata?” on page 57

How to Update Passwords for Users
Users can use SAS Management Console or the SAS Personal Login Manager to

update their stored passwords. In order to use either of these desktop applications, the
user must have an account with the metadata server’s authentication provider. An
unrestricted user can use SAS Management Console to reset a password for any user.
The unrestricted user can overwrite the existing password but cannot view the password.

How to Update Passwords for Required Accounts
This topic documents the tasks that you must perform when you change the

operating system passwords for the required accounts (such as SAS Administrator, SAS
Trusted User, SAS General Server User, SAS Web Administrator, and SAS Guest User).

Note: For SAS Financial Management and SAS Strategic Performance
Management, do not use these instructions. Instead, use the instructions that are
provided with the password utility that is available for those solutions. �

To update the passwords for the required accounts, complete these steps:
1 Stop all SAS server sessions and services other than the SAS Metadata Server.
2 Reset the passwords in the operating system (or other authentication provider).
3 Update the passwords that are stored in the metadata repository. Log on to SAS

Management Console as an unrestricted user (sasadm) in order to make these
changes.

a Update the password in the sassrv login by navigating to User Manager �
SAS General Servers Group � Logins. To access the Password and
Confirm Password fields, select a login and click Modify.

b If you have SAS Web Report Studio, update the password for the account
that provides access to the WebDAV content server (by default this is the
saswbadm account). To access the Password and Confirm Password fields,
navigate to Environment Management � BI Manager � BIP Tree �
Properties � General.

c If you have SAS Web Report Studio and you are using pooled workspace
servers, update the password for the pool administrator (by default, this is
the sastrust account). To access the Password and Confirm Password fields,
navigate to Foundation Services Manager � Query and Reporting

User ID and Password Management � How to Update Passwords for Required Accounts 99

Services � BIP Core Services � User Service � Properties � Service
Configuration. On the Users tab of the User Service Configuration dialog
box, select the sastrust account and click Edit.

d If you have the SAS Information Delivery Portal and you are using pooled
workspace servers, update the password for the pool administrator (by
default, this is the sastrust account). To access the Password and Confirm
Password fields, navigate to Foundation Services Manager � ID Portal
Local Services � BIP Local Services OMR � User Service �
Properties � Service Configuration. On the Users tab of the User
Service Configuration dialog box, select the sastrust account and click Edit.

4 Update the passwords that are stored in the file system. In this step you are
working with passwords that are encrypted or encoded. Always overwrite the
entire password, including the encoding-type indicator {sasXXX} and any trailing
equal signs (=).

a Encrypt the new passwords using SAS proprietary 32-bit encryption. For
example, to encrypt a password of "SAStrust1" you would submit this code in
the SAS Program Editor:

proc pwencode in=’SAStrust1’ method=sasenc;
run;

The encrypted password is written to your SAS log. When you use
method=sasenc, the first part of the password is {sasenc}.

b In the configuration files for your deployment, replace the old encrypted
passwords with the new encrypted passwords. “Configuration Files That
Include Passwords” on page 100 lists the changes that are needed for each
account.

c If you have programs that include these passwords and that do not prompt
for credentials, replace the old encrypted passwords with the new encrypted
passwords in those files. For example:

� Scheduled jobs that you create include passwords. These jobs must be
updated and redeployed after a password is updated. By default, these
jobs are stored in LevN/<server-context>/SASEnvironment/SASCode/
Jobs.

� The replication programs that you create to make backups include
passwords.

5 If you are using the LSF schedule server with SAS Web Report Studio, complete
these steps after you change the operating system password for the account that
you are using as the LSF user:

a Update the password in the LSF server by using the lspasswd command.
b In the $LSF_PASSWORD$ field of the wrs.config file, enter the new

password.
6 Reconfigure and redeploy your SAS Web applications. It is not necessary to

re-import the local service deployment files after you update passwords.
7 Restart the SAS server sessions and services, following these guidelines:

� Start the metadata server before starting other SAS servers, spawners, and
the SAS Services Application.

� Start the SAS Services Application and your WebDAV server before starting
your servlet container or J2EE application server.

100 Configuration Files That Include Passwords � Chapter 7

Configuration Files That Include Passwords

The information in the following tables will help you complete step 4 in the previous
topic. The tables list the standard location and name for each configuration file that
must be updated. Context information is provided to indicate where within each file the
passwords are located. In each configuration file that is applicable to your deployment,
replace the old encrypted password with the new encrypted password. Not all
deployments use all accounts or include all components.

Table 7.1 Configuration Files That Include the Password for sasadm

Component Location of Password for the SAS Administrator (sasadm)

SAS Metadata
Server

(Windows)

Lev1\SASMain\MetadataServer\MetadataServer.bat

Context: Set OMAAPW=password

Xythos WebFile
Server 4.0.48

xythos-install-location\wfs-4.0.48\saswfs.properties

Context: com.sas.wfs.metadata.pw

Xythos WebFile
Server 4.2

xythos-install-location\custom\classes\saswfs.properties

Context: com.sas.wfs.metadata.pw

SAS Analytics
Platform Server*

install-location\sasapcore\conf\server.config

Context: omr_password=password

* As an alternative to manually updating the password for this component, you can run the
Analytics Platform Configuration tool (see the SAS Analytics Platform Administrator’s Guide).

Table 7.2 Configuration Files That Include the Password for sastrust

Component Location of Password for the SAS Trusted User (sastrust)

SAS Object
Spawner

Lev1\SASMain\ObjectSpawner\OMRConfig.xml

Context: <Login Name="Metadata Login" UserId="'sastrust'"
Password="password" />

SAS/CONNECT
Server

Lev1\SASMain\ConnectServer\OMRConfig.xml

Context: <Login Name="Metadata Login" UserId="'sastrust'"
Password="password" />

SAS OLAP Server

(UNIX)

Lev1/SASMain/OLAPServer/OLAPServer.sh

Context: metapass=password

SAS OLAP Server

(Windows)

Lev1\SASMain\OLAPServer\sasv9_OLAPServer.cfg

Context: -metapass "password"

SAS Information
Delivery Portal

install-location\Web\Portal2.0.1\PortalConfigure\install.properties

Context: $SERVICES_OMI_USER_PASSWORD$

SAS Web OLAP
Viewer 3.1

install-location\SASWebOlapViewerforJava\3.1\Configure\install.properties

Context: $TRUSTED_USER_ID$

SAS Web Report
Studio 3.1

install-location\SASQueryandReportingServices\3.1\
OutputManagementConfigTemplate.xml

Context: <Password>password</Password>

User ID and Password Management � Configuration Files That Include Passwords 101

Component Location of Password for the SAS Trusted User (sastrust)

SAS Marketing
Automation
(WebLogic)

Lev1\web\webapps\exploded\sas.analytics.crm.ma.webapp.war\
WEB-INF\web.xml

Context: <param-name>OmrServerPassword</param-name><param-value>
password</param-value>

SAS Marketing
Automation
(WebSphere)

WAS_HOME\AppServer\installedApps\<machine-name>\
sas_analytics_crm_ma_webapp_war.ear\sas.analytics.crm.ma.webapp.war\
WEB-INF\web.xml

Context: <param-name>OmrServerPassword</param-name><param-value>
password</param-value>

SAS BI Web
Services for Java

install-location\Web\WebServicesforJava\1.0\Configure\install.properties

Context: $SERVICES_OMI_USER_PASSWORD$

Xythos WebFile
Server 4.0.48

xythos-install-location\wfs-4.0.48\saswfs.properties

Context: com.sas.wfs.metadata.trpw

Xythos WebFile
Server 4.2

xythos-install-location\custom\classes\saswfs.properties

Context: com.sas.wfs.metadata.trpw

Table 7.3 Configuration Files That Include the Password for sassrv

Component Location of Password for the SAS General Server User (sassrv)

SAS/SHARE
Server (UNIX)

Lev1/SASMain/ShareServer/ShareServer.sh

Context: metapass=password

SAS/SHARE
Server (Windows)

Lev1\SASMain\ShareServer\sasv9_ShareServer.cfg

Context: -metapass "password"

SAS Information
Delivery Portal

install-location\Web\Portal2.0.1\PortalConfigure\install.properties

Context: $GENERAL_SERVERS_PASSWORD$

SAS Marketing
Automation
(WebLogic)

Lev1\web\webapps\exploded\sas.analytics.crm.ma.core.ear\
sas.analytics.crm.ma.core.jar (extract ejb-jar.xml)

Context: <env-entry-name>MAConfig/OmrServerPassword</ env-entry-name>
... <env-entry-value>password</env-entry-value>

102 Configuration Files That Include Passwords � Chapter 7

Component Location of Password for the SAS General Server User (sassrv)

SAS Marketing
Automation
(WebSphere)

WAS_HOME\AppServer\installedApps\machine-name\Marketing
Automation 4.1.ear\sas.analytics.crm.ma.core.jar (extract ejb-jar.xml)

Context: <env-entry-name>MAConfig/OmrServerPassword</ env-entry-name>
... <env-entry-value>password</env-entry-value>

SAS BI Web
Services for Java

install-location\Web\WebServicesforJava\version\
Configure\install.properties

Context: $GENERAL_SERVERS_PASSWORD$

Table 7.4 Configuration Files That Include the Password for saswbadm

Component Location of Password for the SAS Web Administrator (saswbadm)

SAS Information
Delivery Portal

install-location\Web\Portal2.0.1\PortalConfigure\install.properties

Context: $PORTAL_ADMIN_PASSWORD$

SAS Web Report
Studio 2.1 or 3.1

install-location\SASWebReportStudio\version\wrs.config

Context: $WEB_ADMIN_PASSWORD$

Context: $SERVICES_OMI_USER_PASSWORD$

SAS Web Report
Viewer 2.1 or 3.1

install-location\SASWebReportViewer\version\wrv.config

Context: $WEB_ADMIN_PASSWORD$

Context: $SERVICES_OMI_USER_PASSWORD$

SAS Web Report
Studio 1.1

install-location\SASWebReportStudio\9.1\wrs.config

Context: $SERVICES_OMI_USER_PASSWORD$

SAS Web Report
Viewer 1.1

install-location\SASWebReportViewer\9.1\wrv.config

Context: $SERVICES_OMI_USER_PASSWORD$

SAS Web OLAP
Viewer

install-location\SASWebOlapViewerforJava\version\
Configure\install.properties

Context: $SERVICES_OMI_USER_PASSWORD$

SAS BI Web
Services for Java

install-
location\Web\WebServicesforJava\version\Configure\install.properties

Context: $PORTAL_ADMIN_PASSWORD$

Table 7.5 Configuration Files That Include the Password for sasguest

Component Location of Password for the SAS Guest User (sasguest)

SAS Information
Delivery Portal

install-location\Web\Portal2.0.1\PortalConfigure\install.properties

Context: $PORTAL_GUEST _PASSWORD$

SAS Web Report
Studio 2.1*

install-location\SASWebReportStudio\2.1\config\
WebReportStudioProperties.xml.orig

Context: <pw> for publicUserSurrogate

SAS Web Report
Studio 3.1*

install-location\SASWebReportStudio\3.1\wrs.config

Context: $PUBLIC_USER_SURROGATE_PW$

SAS Web Report
Viewer 2.1*

install-location\SASWebReportViewer\2.1\config\
WebReportViewerProperties.xml.orig

Context: <pw> for publicUserSurrogate

User ID and Password Management � Configuration Files That Include Passwords 103

Component Location of Password for the SAS Guest User (sasguest)

SAS Web Report
Viewer 3.1*

install-location\SASWebReportViewer\3.1\wrv.config

Context: $PUBLIC_USER_SURROGATE_PW$

SAS BI Web
Services for Java

install-location\Web\WebServicesforJava\version\Configure\
install.properties

Context: $PORTAL_GUEST_PASSWORD$

* Applicable only if you are using sasguest as a surrogate public user. If the password is in the
application’s LocalProperties.xml file, update the password in that location instead.

104

105

P A R T4

Access Management

Chapter 8.Using the Metadata Authorization Layer 107

Chapter 9.Access Guidelines and Requirements 127

Chapter 10.BI Row-Level Permissions 137

Chapter 11.OLAP Member-Level Permissions 171

106

107

C H A P T E R

8
Using the Metadata
Authorization Layer

About the Access Management Tasks 107
How to Manage ReadMetadata and WriteMetadata Access 107

Repository ACT Settings for ReadMetadata and WriteMetadata Permissions 107

Example: Preventing Most Users from Viewing a Particular Library Definition 110

Example: Preventing Most Users from Modifying a Particular Server Definition 115

Example: Preventing Most Users from Adding Reports to a Particular Folder 117
How to Manage Read Access 117

Introduction to Managing Read Access 117

Managing Read Access by Exclusion 118

Introduction to Managing Read Access by Exclusion 118

Example: Giving Everyone Default Read Permission to Everything 118

Example: Denying Most Users Read Permission to a Particular OLAP Cube 119
Managing Read Access by Inclusion 123

Introduction to Managing Read Access By Inclusion 123

Example: Denying Most Users Default Read Permission to Everything 123

Example: Granting Most Users Read Permission to a Set of Information Maps 123

How to Manage the Other Permissions 125
Tip: Interpreting the Authorization Tab 126

About the Access Management Tasks
Immediately after installation, the protections that are described in “Protecting the

Foundation Repository” on page 67 should have been set. When you no longer need a
severely restricted environment, you can expand access to support a fully functional
deployment. Typically, this expansion happens after you have added users and set some
specific metadata layer controls. This chapter explains how to expand and manage
access and provides some simple examples of using access controls.

How to Manage ReadMetadata and WriteMetadata Access

Repository ACT Settings for ReadMetadata and WriteMetadata
Permissions

Almost all users in the SAS Intelligence Platform need global ReadMetadata and
WriteMetadata permissions to the foundation repository. Granting these permissions at

108 Repository ACT Settings for ReadMetadata and WriteMetadata Permissions � Chapter 8

a lower level (such as on a folder or a specific resource) is not a sufficient alternative.
For example, even if you have WriteMetadata permission to a report folder, you cannot
add a report to that folder unless you also have WriteMetadata permission to the
repository.

To establish typical repository ACT settings for the ReadMetadata and
WriteMetadata permissions, complete these steps in SAS Management Console:

1 In the navigation panel, select Environment Management � Authorization
Manager � Access Control Templates � Default ACT.

Note: In SAS Management Console, the repository ACT is represented by a blue
cylinder icon and is named "Default ACT" by default. �

2 From the menu bar, select File � Properties to open the Default ACT Properties
dialog box. Then select the Users and Permissions tab.

CAUTION:
The Users and Permissions tab looks very similar to the Authorization tab. When you
want to set default controls for a repository, be sure that you are on the Users
and Permissions tab. �

3 On the Users and Permissions tab, click Add.
4 In the Add Users and/or Groups dialog box, move the SASUSERS group to the

Selected Identities list and then click OK.
5 On the Users and Permissions tab, select SASUSERS in the Names list and grant

ReadMetadata and WriteMetadata permissions to that group.

Display 8.1 Repository Settings for SASUSERS

6 On the Users and Permissions tab, select PUBLIC in the Names list and verify
that these permissions are denied.

Using the Metadata Authorization Layer � Repository ACT Settings for ReadMetadata and WriteMetadata Permissions 109

Display 8.2 Repository Settings for PUBLIC

7 Click OK to save the changes.

With these settings, every user who has a metadata identity has a default grant of
ReadMetadata and WriteMetadata for the entire repository. Here are some possible
variations on these settings:

� You can choose to be more liberal and grant ReadMetadata permission (and even
WriteMetadata permission) to the PUBLIC group, which includes everyone who
can access the metadata server—regardless of whether they have metadata
identities.

� You can choose to be more restrictive and grant WriteMetadata permission to a
user group that you create. Users who are not members of that group will have
very limited capabilities.

� Users of SAS Data Integration Studio who are working in a change-managed
environment should have CheckInMetadata permission rather than
WriteMetadata permission. This enables these users to interact with resources
through a change-managed process and prevents these users from directly
modifying resources in the foundation repository.

With the necessary broad grants in place, you must manage ReadMetadata and
WriteMetadata access by exclusion; you have to set denials of these permissions on
individual resources or containers of resources. The following examples demonstrate
how you can set specific denials. The examples assume that you have the typical
repository ACT settings that are described in this topic.

110 Example: Preventing Most Users from Viewing a Particular Library Definition � Chapter 8

Example: Preventing Most Users from Viewing a Particular Library
Definition

The goal in this example is to prevent everyone other than administrators from
viewing a library definition. To do this, you will broadly deny ReadMetadata permission
on the library definition and then grant ReadMetadata permission back to the
Administrators group. To begin, navigate to the library definition under the Data
Library Manager in SAS Management Console and access the properties dialog box for
the library. On the library’s Authorization tab, examine the default settings for the
SASUSERS group. As you might expect, the SASUSERS group has an inherited grant
of ReadMetadata permission for the library, as depicted in the following display.

Display 8.3 Initial Library Definition Settings for SASUSERS

You could simply check the ReadMetadata Deny check box to add an explicit denial of
this permission for the SASUSERS group. However, this control would not apply to
users who do not have individual metadata identities (because those users are not
members of the SASUSERS group). Even though those users currently have an
inherited denial (from the Default ACT setting for the PUBLIC group), it is a good
practice to also include those users in any specific protections that you create. For this
reason, we recommend that you assign your blanket denials to the PUBLIC group. On
the Authorization tab, examine the settings for the PUBLIC group. You will see the
inherited denial of ReadMetadata permission.

Using the Metadata Authorization Layer � Example: Preventing Most Users from Viewing a Particular Library Definition 111

Display 8.4 Initial Library Definition Settings for PUBLIC

Click the (already checked) ReadMetadata Deny check box to add an explicit denial.
The explicit denial will have a white background color, as depicted in the following
display.

112 Example: Preventing Most Users from Viewing a Particular Library Definition � Chapter 8

Display 8.5 Revised Library Definition Settings for PUBLIC

The denial that you set for PUBLIC applies to members of SASUSERS because all
members of SASUSERS are also members of PUBLIC. Since the denial is set directly
on the library definition, the denial overrides any grants that come from the Default
ACT. However, if you examine the SASUSERS permissions list again, you will note that
there is no visible evidence of the direct denial. Only the inherited grant is displayed,
as depicted in the following display.

Using the Metadata Authorization Layer � Example: Preventing Most Users from Viewing a Particular Library Definition 113

Display 8.6 Revised Library Definition Settings for SASUSERS

In fact, members of SASUSERS cannot view the library definition. In the current
release, the Authorization tab does not reflect effective permissions when there are
direct controls that apply to an identity because of the identity’s group memberships.

Now that you have an explicit, blanket denial of ReadMetadata permission for the
library, you need to enable your Administrators group to view the library definition.
When you examine the settings for the Administrators group on the library’s
Authorization tab, you will see the inherited grant of ReadMetadata permission, as
depicted in the following display.

114 Example: Preventing Most Users from Viewing a Particular Library Definition � Chapter 8

Display 8.7 Initial Library Definition Settings for Administrators

You know that there is a direct denial for PUBLIC that defeats this inherited grant
(as explained above, the Authorization tab does not depict this fact). To enable the
Administrators to escape the blanket direct denial, give them a direct grant. To add the
direct grant, click the (already checked) ReadMetadata Grant check box. The check box
should now have a white background, as depicted in the following display.

Using the Metadata Authorization Layer � Example: Preventing Most Users from Modifying a Particular Server Definition 115

Display 8.8 Revised Library Definition Settings for Administrators

Example: Preventing Most Users from Modifying a Particular Server
Definition

The goal in this example is to prevent users from modifying or deleting the server
definition for the scheduling server. To do this, you will broadly deny WriteMetadata
permission to the server definition and then grant WriteMetadata permission back to
the Administrators group. The process in this example is very similar to the process in
the previous example, so some of the details have been omitted. To begin, navigate to
the scheduling server definition, which is located directly under the Server Manager in
SAS Management Console.

Note: Denying WriteMetadata access to a server definition prevents users from
associating resources with that server. This is an important consideration when you
deny WriteMetadata permission to any server definition. In this example, users will
still be able to schedule jobs, because those resources are associated with the SAS Main
application server (rather than the scheduling server). �

As you did in the previous example, you will assign a direct denial to the PUBLIC
group, as depicted in the following display.

116 Example: Preventing Most Users from Modifying a Particular Server Definition � Chapter 8

Display 8.9 Revised Server Definition Settings for PUBLIC

Next, restore access for the Administrators group by giving them a direct grant, as
depicted in the following display.

Display 8.10 Revised Server Definition Settings for Administrators

Using the Metadata Authorization Layer � Introduction to Managing Read Access 117

Note that these settings (denial of WriteMetadata permission for PUBLIC, grant of
WriteMetadata permission for Administrators) are identical to the settings of the ACT
that is defined in “Example: Use a Custom ACT” on page 75. As an alternative to
setting the individual controls that are described in this example, you could simply
apply that custom ACT to this server definition.

Example: Preventing Most Users from Adding Reports to a Particular
Folder

The goal in this example is to prevent most users from adding reports to a particular
folder. To do this, you will broadly deny WriteMetadata permission to the folder and
then grant WriteMetadata permission back to a Power Report Creators group. The
process is very similar to the process in the previous example, so some details and all
screenshots have been omitted. These are the steps:

1 In SAS Management Console, locate the folder that you want to protect by
navigating under Environment Management � BI Manager � BIP Tree �
ReportStudio � Shared � Reports.

2 On the Authorization tab for the folder, set an explicit (white background) denial
of WriteMetadata permission for PUBLIC, as you did for the server definition in
the previous example.

3 Click Add and then add the Power Report Creators group to the Names list on the
Authorization tab. Set an explicit (white background) grant of WriteMetadata
permission for this group.

In the absence of additional, more specific controls, these settings create an
environment in which only members of the Power Report Creators group can add,
modify, or delete folders or reports under this particular folder. If you examine the
Authorization tab of a subfolder or a specific report, you will see these settings
conveyed as inherited grants and denials.

How to Manage Read Access

Introduction to Managing Read Access
While the ReadMetadata permission controls the ability to view metadata objects,

the Read permission controls the ability to view the data that is described by those
metadata objects. Management of the Read permission differs from management of
ReadMetadata and WriteMetadata permissions in these ways:

� The Read permission is relevant only for OLAP data, data that is accessed through
the metadata LIBNAME engine, and data that is accessed through information
maps.

� In the interest of greater security, Read permission is not granted in the initial
configuration. Therefore, before users can perform actions such as querying OLAP
cubes or executing reports that are based on information maps, you will need to
grant Read permission using an approach that is appropriate for your site. Sites
with minimal security requirements can simply grant the Read permission to the
PUBLIC group on the repository ACT. Sites with stricter security requirements
typically control Read access on specific folders and schemas.

� The Read permission does not have to be granted at the global level (on the
foundation repository). This means you can choose whether to manage this
permission by exclusion or by inclusion, as explained in the following topics.

118 Managing Read Access by Exclusion � Chapter 8

Managing Read Access by Exclusion

Introduction to Managing Read Access by Exclusion
You can choose to manage Read access by granting the permission at the repository

level and then excluding access for specific resources as appropriate for your
environment. For a site that has minimal security requirements, this is the easiest
approach. This is a liberal approach because it creates a default grant of Read
permission for all SAS OLAP data, all data that is accessed through an information
map, and all data that is accessed through the metadata LIBNAME engine. For a site
that has stricter requirements, this can still be an acceptable approach, because you
can set selective denials on particular resources or sets of resources that you want to
protect. However, this approach requires careful, active management to ensure that
specific denials are created where they are needed.

Example: Giving Everyone Default Read Permission to Everything
To broadly grant default Read permission to the repository, complete these steps in

SAS Management Console:
1 Log on as a user who has WriteMetadata permission to the repository ACT (or as

an unrestricted user).
2 In the navigation panel, select Environment Management � Authorization

Manager � Access Control Templates � Default ACT.

Note: In SAS Management Console, the repository ACT is represented by a blue
cylinder icon and is named "Default ACT" by default. �

3 From the menu bar, select File � Properties to open the Default ACT Properties
dialog box. Then select the Users and Permissions tab.

CAUTION:
The Users and Permissions tab looks very similar to the Authorization tab. When you
want to set default controls for a repository, be sure that you are on the Users
and Permissions tab. �

4 On the Users and Permissions tab, select PUBLIC in the Names list and grant
Read permission to that group.

Using the Metadata Authorization Layer � Managing Read Access by Exclusion 119

Display 8.11 Repository Settings for PUBLIC

5 Check the settings for each of the other identities in the Names list (especially
SASUSERS if that group is listed) to ensure that the Read permission is not denied.

6 Click OK to save the changes.

Example: Denying Most Users Read Permission to a Particular OLAP Cube
This example assumes that you have the repository settings that are described in the

previous example and that your goal is to protect a particular cube. To do this, you will
take Read permission for the cube away from PUBLIC and then grant it back to the
Administrators group. To set these permissions, complete these steps in SAS
Management Console:

1 Navigate to the cube under Environment Management � Authorization
Manager � Resource Management � By Location � <SAS Main> � <SAS
Main – OLAP Schema>. On the cube’s Authorization tab, examine the default
settings for PUBLIC. You will see the inherited grant of Read permission that
comes from the repository ACT, as depicted in the following display.

120 Managing Read Access by Exclusion � Chapter 8

Display 8.12 Initial Cube Settings for PUBLIC

2 Add an explicit denial of Read permission for PUBLIC by checking the Read Deny
check box. The directly assigned permission will have a white background color, as
depicted in the following display.

Using the Metadata Authorization Layer � Managing Read Access by Exclusion 121

Display 8.13 Revised Cube Settings for PUBLIC

3 Examine the default settings for Administrators on the cube’s Authorization tab.
You will see the inherited grant of Read permission.

122 Managing Read Access by Exclusion � Chapter 8

Display 8.14 Initial Cube Settings for Administrators

Note: The direct denial of this permission to PUBLIC is not reflected in the
display, but it will prevent the Administrators from accessing the data in the cube.
�

4 To restore the Administrators access to the cube, you must balance the direct
denial that you gave to the PUBLIC group with a direct grant to the
Administrators group. To add a direct grant of Read permission, click the (already
checked) Read Grant check box. The directly assigned permission has a white
background, as depicted in the following display.

Using the Metadata Authorization Layer � Managing Read Access by Inclusion 123

Display 8.15 Revised Cube Settings for Administrators

Managing Read Access by Inclusion

Introduction to Managing Read Access By Inclusion
As an alternative to managing by exclusion, you can set a repository-level denial of

this permission and then selectively grant it as needed on specific resources or sets of
resources. This can involve more work, but it does have the advantage of making
decisions about opening up Read access to particular resources more explicit.

Example: Denying Most Users Default Read Permission to Everything
Repository-level denials of the Read permission should already be set, with the

possible exception of the Administrators group. Examine the settings on the Users and
Permissions tab of the repository ACT to verify that Read access is denied to PUBLIC
and is not granted to any identities other than the Administrators group.

Example: Granting Most Users Read Permission to a Set of Information
Maps

If you have the repository-level denials of Read permission that are described in the
previous example, then you will have to grant this permission on certain resources as
appropriate for your site. In this example, the goal is to enable all users who have a
metadata identity to view reports that are based on information maps. To do this, you
will grant Read permission at the top of the folder tree that contains information maps
that are used by SAS Web Report Studio. To begin, navigate to that folder in SAS

124 Managing Read Access by Inclusion � Chapter 8

Management Console by selecting this path: Environment Management �
Authorization Manager � Resource Management � By Application � BIP Tree
� Report Studio � Maps.

Note: This is the standard top-level folder for information maps that are used by
SAS Web Report Studio. Information maps can be stored in other locations. �

In the properties dialog box for the Maps folder, access the Authorization tab and
examine the default settings for SASUSERS. You will see the inherited denial of Read
permission that comes from the repository ACT, as depicted in the following display.

Display 8.16 Initial Folder Settings for SASUSERS

To enable SASUSERS to read data through the information maps in this folder tree,
click the Read Grant check box. This adds a direct grant with a white background, as
depicted in the following display.

Using the Metadata Authorization Layer � How to Manage the Other Permissions 125

Display 8.17 Revised Folder Settings for SASUSERS

In this example, you are not granting the Read permission on each individual
information map. Instead, you are relying on the fact that the information maps will
inherit the grant through the folder tree. For this reason, if there is an explicit denial
of the Read permission on a lower folder or on a specific information map, then you will
have to grant the permission at that level (or remove the denial) if you want to enable
access. Using access controls that are inherited through the folder structure to manage
access to information maps is an appropriate and efficient technique. This approach
also enables you to secure specific folders or information maps without having to
explicitly manage access for every item.

How to Manage the Other Permissions
The following list provides recommendations for managing permissions other than

ReadMetadata, WriteMetadata, and Read.

� The Administer permission controls the ability to access the administrative
interfaces of certain SAS servers, such as the SAS OLAP Server, the SAS Stored
Processes Server, and IOM spawners. In Chapter 4, “Securing a Deployment,” on
page 63, you granted your administrators this permission at the repository level
and denied this permission to the PUBLIC group. No further adjustments are
necessary.

� The CheckInMetadata permission controls the ability to check in metadata from a
project repository and check out metadata to a project repository. This permission
is applicable only to SAS Data Integration Studio users who are working in a
change-managed environment. For more information, see “Setting Up Change

126 Tip: Interpreting the Authorization Tab � Chapter 8

Management” in the chapter “Administering SAS Data Integration Studio” in the
SAS Intelligence Platform: Desktop Application Administration Guide.

� Like the Read permission, the Write, Create, and Delete permissions can be
managed by inclusion or by exclusion. In the current release, the Write, Create,
and Delete permissions are enforced only if the SAS metadata LIBNAME engine is
used to access the data. For more information, see “Pre-Assigning Libraries to Use
the MLE” in the chapter “Assigning Libraries” in the SAS Intelligence Platform:
Data Administration Guide.

Tip: Interpreting the Authorization Tab
The permission settings on an Authorization tab for a resource determine who can

access that particular resource. For example, the Authorization tab for a group
definition controls who can view, modify, or delete that definition; these settings do not
determine the group’s access to other objects.

To view the access controls for a resource, locate the resource in SAS Management
Console and display the Properties dialog box for the resource. On the Authorization
tab, examine the permissions that are assigned to each identity (user or group) that is
listed in the Names list.

The default settings for a resource come from the Users and Permissions tab of
the repository ACT and from any access controls that are conveyed by the resource’s
parent objects. These settings have a gray background color. Settings that have been
explicitly added on the resource have a white background color (indicating a directly
assigned ACE) or a green background color (indicating a directly applied ACT).
Permissions that are directly assigned on a resource always have precedence over
permissions that are inherited from the repository ACT or other parent objects.

CAUTION:
In the current release, the permissions list does not always display effective permissions.
The permissions list does not display direct access controls that apply because of
group memberships. For example, if a person has an inherited (gray background)
grant of WriteMetadata permission, and the PUBLIC group has a direct (no
background color) denial of that permission, then the PUBLIC group’s directly
assigned denial overrides the person’s inherited grant. However, when you view the
person’s permissions list, there is no visual indication of the PUBLIC group’s directly
assigned denial. �

127

C H A P T E R

9
Access Guidelines and
Requirements

Guidelines for Managing Access 127
Access Requirements by Type of Resource 129

Access Requirements for Server Definitions 129

Access Requirements for Libraries and Tables 129

Access Requirements for OLAP Data 130

Access Requirements for Information Maps 131
Access Requirements for Reports 133

Access Requirements for Stored Processes 134

Access Requirements for Identity and Permission Objects 136

Guidelines for Managing Access
Effective access control requires an organized approach to setting permissions. For

example, an appropriate user group structure will greatly simplify the process of
assigning and maintaining permissions. In any environment, access controls that are
defined for individual users in an ad hoc fashion quickly become difficult, if not
impossible, to manage.

The following measures can enhance the effectiveness of the protections that you
establish in the metadata layer:

� To control access to the computing resources that are represented by metadata
objects, grant and deny metadata permissions in pairs. In the current release, the
strongest protections come from the ReadMetadata, WriteMetadata, and
CheckInMetadata permissions. The following table documents an approach that
provides the best protections in the current release and the best compatibility for
future releases.

Table 9.1 Recommended Use of Permissions

Action You Want to Control Permissions to Grant or Deny

Reading a metadata object ReadMetadata

Reading the data that is described by a
metadata object

Read and ReadMetadata

Modifying a metadata object WriteMetadata

Modifying data that is described by a
metadata object

Write and WriteMetadata

Creating a new metadata object WriteMetadata

Creating new data Create and WriteMetadata

128 Guidelines for Managing Access � Chapter 9

Action You Want to Control Permissions to Grant or Deny

Deleting a metadata object WriteMetadata

Deleting data that is described by a metadata
object

Delete and WriteMetadata

� Use other authorization layers, such as operating system permissions and
relational database controls, to secure data.

� Understand how permissions are evaluated in the metadata authorization layer.
Remember that this layer supports multiple inheritance, and that the inheritance
rules make it much easier to establish an effective grant of a permission than to
establish an effective denial.

� Use caution when moving objects that inherit permissions from their folders. For
example, moving a report or information map from one folder to another might
change the effective access controls for that object.

� Remember that your effective permissions are limited to access that is allowed in
all applicable authorization layers.

� Remember that managing security is an ongoing process; you will need to define
more access controls as you register additional resources in the metadata
environment.

An important efficiency goal is to minimize the number of access controls that you
have to set and maintain. Tactics that will help you achieve this goal include the
following:

� Assign permissions to the highest appropriate user group in the group hierarchy.
� Use access control templates (ACTs) to centralize management of identity/

permission patterns that you will apply to multiple resources.
� Assign permissions at the highest appropriate level in the resource inheritance

structure.
� Use dedicated folders to manage access to resources. For example, if you have SAS

Data Integration Studio, you can use dedicated folders in the ETL custom tree to
manage access to the metadata that describes data.

� For permissions other than ReadMetadata and WriteMetadata, consider whether
it is more efficient to manage permissions by inclusion or by exclusion.

� When you manage permissions by inclusion, you begin by denying all access to
resources, and then you selectively grant permissions where they are needed.
This approach is typically used when you are following the rule of least
privilege so that you grant only as much access as is required to do the job.

� When you manage permissions by exclusion, you begin by granting broad
access to resources, and then you selectively deny permissions where there is
a need to protect resources or information. This approach is typically used
when you are following the rule of least protection.

� When making decisions about your environment, consider the balance between
deployability, usability, maintainability, and security.

Access Guidelines and Requirements � Access Requirements for Libraries and Tables 129

Access Requirements by Type of Resource

Access Requirements for Server Definitions
The members of the SAS System Services group are used to connect to various

servers, so these identities must be able to access the configuration information that is
stored in server definitions. During installation, the SAS System Services group is
granted ReadMetadata permission to the repository. This gives the SAS System
Services group ReadMetadata access to all objects in the repository, including the server
definitions.

Do not block the SAS System Services group’s access to any server definition. If you
choose to limit access to a logical server definition, you might need to set an additional
access control to preserve the SAS System Services group’s access. For example, you
might set these direct access controls on the Authorization tab of an OLAP server
definition:

� deny the PUBLIC group ReadMetadata permission to the server definition
� grant ReadMetadata permission back to a user group that accesses data on that

server

When you deny ReadMetadata permission to PUBLIC directly on the server
definition, the denial overrides the grant to SAS System Services that comes from the
repository ACT, so the SAS System Services group will not be able to obtain
configuration information about the SAS OLAP Server from the metadata server.

You can remedy this situation by adding a direct grant of ReadMetadata permission
to the permissions list for SAS System Services on the Authorization tab for the
server definition. In the Names list, select SAS System Services. In the permissions list,
the group’s repository ACT grant of ReadMetadata permission is indicated by a checked
box with a gray background. To add a direct grant on top of the repository ACT grant,
select the check box. The gray background is removed and the check box is still
selected. This indicates that the SAS System Services group now has a direct grant of
ReadMetadata permission to the server definition.

Note: Because the SAS Object Spawner attempts to read server definitions only
during initialization, you must stop and restart the spawner after making these
changes. �

For an example of managing WriteMetadata permission for a server definition, see
“Example: Preventing Most Users from Modifying a Particular Server Definition” on
page 115.

Access Requirements for Libraries and Tables
Users who use SAS Data Integration Studio, the metadata LIBNAME engine, or SAS

Management Console to define and manage metadata that describes data sources must
have permissions that enable them to interact with that metadata. This topic describes
the required metadata layer permissions for working with data.

Note: Permissions in other authorization layers are also required for most of these
tasks. For example, although no metadata layer permissions to a data source are
required in order to register the data source, this task involves reading some
information from the source, so some permissions in the data source and operating
system authorization layers are usually required. �

130 Access Requirements for OLAP Data � Chapter 9

The column headings in the following table are the metadata objects that are most
frequently involved when you define and use metadata that describes data sources. For
each metadata object that is listed in the column headings, the table shows the
permissions that are required for a particular task.

Table 9.2 Access Requirements for Common Data Tasks

Task Foundation Repository Metadata Object That
Describes the Data Source

Create metadata that
describes a data source

RM, CheckInM (or WM)* Not applicable

View the metadata that
describes a data source

RM RM

Modify or delete metadata that
describes a data source

RM, CheckInM (or WM)* RM, CheckInM (or WM)*

View the data within a
registered data source

RM RM, R**

* If you are using SAS Data Integration Studio in a change-managed environment, then you must
have CheckInMetadata permission. Otherwise, you must have WriteMetadata permission.

** In the current release, the Read permission is not always required, because not all applications
enforce this permission.

In a change-managed environment, the owner of each project repository should also
have ReadMetadata and WriteMetadata permissions for the entire project repository. To
learn about change management, see “Administering SAS Data Integration Studio” in
the SAS Intelligence Platform: Desktop Application Administration Guide.

Note: In order to navigate to a metadata object, you must also have ReadMetadata
permission to the folder that contains the metadata object, and to all of that folder’s
parent folders. If you cannot see a folder, you cannot browse the objects that the folder
contains. �

Access Requirements for OLAP Data
This table summarizes the permissions that required users should have in order to

support access to SAS OLAP data:

Access Guidelines and Requirements � Access Requirements for Information Maps 131

Table 9.3 Supporting Access to OLAP Data

Requirement Recommended Approach

The SAS Trusted User must have the
ReadMetadata permission for all SAS OLAP
cubes and schemas.

On the SAS OLAP Server definition, grant the
ReadMetadata permission to the SAS System
Services group. Be sure to preserve this access.
For example, if you directly deny the PUBLIC
group ReadMetadata permission to a particular
cube, you should directly grant that permission
back to the SAS System Services group.

The SAS Guest User must be able to access any
SAS OLAP data that is displayed in the public
kiosk of the SAS Information Delivery Portal.

On each appropriate resource, grant the Read
and ReadMetadata permissions to the SAS
Guest User.

Regular users need the following permissions in order to perform common OLAP
tasks:

� ReadMetadata permission for a cube, hierarchy, dimension, level, or measure is
required in order to view the metadata for those resources. ReadMetadata
permission for schemas and cubes is a prerequisite for accessing data within those
resources.

� The OLAP server requires users to have Read permission for cubes, hierarchies,
dimensions, levels, and measures in order to view the data in those resources. If
you deny access to a measure that participates in a calculated measure, the
calculated measure might produce unintended results.

� WriteMetadata permission for a schema is required in order to add or remove
cubes from that schema. To delete a cube, users must also have WriteMetadata
permission for the cube.

� WriteMetadata permission for a cube is required in order to rebuild, modify, or
change the permission settings for that cube.

� Administer permission for the parent application server (such as SASMain) is
required in order to perform tasks such as viewing user sessions, terminating
sessions, and refreshing cubes. These tasks are performed by using the SAS OLAP
Server Monitor in SAS Management Console.

Related Topics:

“Inheritance in OLAP Data” on page 42

Chapter 11, “OLAP Member-Level Permissions,” on page 171

“Example: Denying Most Users Read Permission to a Particular OLAP Cube” on
page 119

Access Requirements for Information Maps
Users who define and use information maps must have permissions that enable them

to interact with those information maps. An information map is a metadata object that
contains a view of one or more data sources, with an added layer of business metadata.
Information maps are used as the data sources for reports.

The column headings in the following table are the metadata objects that can be
involved when you define and manage information maps. For each metadata object that
is listed in the column headings, the table shows the permissions that are required for a
particular task.

132 Access Requirements for Information Maps � Chapter 9

Table 9.4 Access Requirements for Common Information Map Tasks

Task Foundation
Repository

Folder That
Contains the
Information

Map*

Information
Map

Stored
Process

(Optional)

Data
Sources

Create and
save an

information
map

RM, WM RM, WM Not
applicable

RM RM, R**

View an
information

map

RM RM RM RM RM

Edit and
overwrite an

existing
information

map

RM, WM RM RM, WM, R RM RM, R**

Move an
information

map to
another folder

RM, WM RM, WM RM, WM None None

Rename or
delete an

information
map

RM, WM RM, WM RM, WM None None

Run queries
using an

information
map

RM RM RM, R RM RM, R**

* Users who navigate to an information map must have RM permissions to the folder that contains
the information map and to all of that folder’s parent folders. If you cannot see a folder, you
cannot browse the objects that the folder contains. Users who access an information map by
searching do not have to have RM for the folder that contains the information map.

** You must be able to read the data in order to test a query or set a filter value from the data
source. In the current release, Read permission for the target data is not always required,
because not all applications enforce this permission.

Each information map should be created for a particular set of report creators and
report consumers for the following reasons:

� If you attempt to create a report that includes any column to which you do not
have access, then the entire report creation fails.

� If you attempt to view a report without having access to all of the underlying data
sources, then only those report items (such as tables or graphs) that contain data
to which you have access are displayed in the report.

Users need Read permission for an information map in order to access data through
that information map. This requirement does not replace or override access controls
that are set on the data sources; this is an additional requirement. To learn how you
can meet this requirement, see “How to Manage Read Access” on page 117.

Access Guidelines and Requirements � Access Requirements for Reports 133

Access Requirements for Reports

Users who view, create, modify, and delete reports must have permissions that enable
them to perform those activities. The access requirements for working with reports
vary, depending on the relationship the report has to its underlying data. For example:

� Automatically refreshed reports run queries to get current data every time the
report is accessed. Data in an automatically refreshed report is live data.

� Manually refreshed reports are generated and cached on a demand basis. Data in
a manually refreshed report is static data that can be updated by a user action in
the report viewer.

The column headings in the following table are the metadata objects that can be
involved when you work with reports in a repository. For each metadata object that is
listed in the column headings, the table shows the permissions that are required for a
particular task.

Table 9.5 Access Requirements for Common Report Tasks

Task Foundation
Repository

Folder
That

Contains
the

Report*

Report Stored
Processes

Information
Maps

Data
Source

Create and
save a new

report

RM, WM RM, WM Not
applicable

RM RM, R RM, R**

View a
report

RM RM RM RM RM, R RM, R**

View a pre-
generated

report

RM RM RM None None None

Edit and
overwrite

an existing
report

RM RM RM, WM RM RM RM

Move a
report to
another
folder

RM RM, WM RM, WM None None None

Delete or
rename a

report

RM RM, WM RM, WM None None None

Refresh a
pre-

generated
report

RM RM RM RM RM, R RM

* Users who navigate to a report must have RM permissions to the folder that contains the report
and to all of that folder’s parent folders. If you cannot see a folder, you cannot browse the

134 Access Requirements for Stored Processes � Chapter 9

objects that the folder contains. Users who access a report by searching do not have to have
permissions to the folder that contains the report.

** In the current release, the Read permission is not always required, because not all applications
enforce this permission.

CAUTION:
Access to certain types of reports does not require access to the underlying stored
processes, information maps, or data sources. In addition to securing the underlying
components, you should also secure reports—especially reports that contain cached
data. �

Each report should be created for a particular audience of report consumers. If a
user attempts to view a report without having access to all of the underlying data
items, only those objects (such as tables or graphs) that contain data to which the user
has access are displayed. In addition to using the metadata authorization layer,
consider the other authorization layers (such as operating system permissions, data
source controls, or WebDAV controls) when planning security for reports. For more
information, see “Managing Access to Reports” in the chapter “Managing SAS Web
Report Studio Content and Users” in the SAS Intelligence Platform: Web Application
Administration Guide.

Access Requirements for Stored Processes
Users who define and use metadata that describes stored processes must have

permissions that enable them to interact with that metadata. A stored process is a SAS
program that generates output, such as a data set, a table, or a graph. A stored process
can be associated with an information map or with a report.

The column headings in the following table are the metadata objects that are
involved when you register and manage stored processes. For each metadata object that
is listed in the column headings, the table shows the permissions that are required for a
particular task.

Table 9.6 Access Requirements for Common Stored Process Tasks

Task Repository Folder That
Contains the

Stored
Process*

Server That
Hosts the

Stored
Process

Stored
Process

Data
Sources

Create
metadata that

describes a
stored process

RM, WM RM, WM RM, WM Not
applicable

None

View
metadata that

describes a
stored process

RM RM RM RM None

Modify
metadata that

describes a
stored process

RM RM RM RM, WM None

Access Guidelines and Requirements � Access Requirements for Stored Processes 135

Task Repository Folder That
Contains the

Stored
Process*

Server That
Hosts the

Stored
Process

Stored
Process

Data
Sources

Delete
metadata that

describes a
stored process

RM RM, WM RM, WM RM, WM None

Run a stored
process

RM RM RM RM RM, R**

* In order to navigate to a stored process, you must have RM permissions to the folder that contains
the stored process and to all of that folder’s parent folders. If you cannot see a folder, you cannot
browse the objects that the folder contains. If you access a stored process by searching, it is not
necessary to have ReadMetadata permission for the parent folders.

** In the current release, the Read permission is not always required, because not all applications
enforce this permission.

CAUTION:
If a stored process runs on a stored process server (or a pooled workspace server), you
must set appropriate access controls to secure the stored process. These stored
processes use the account under which the server is running to access data. Because
the user’s account is not being used to access the data, the user’s permissions to the
data are not relevant. �

The following table indicates which accounts are used to determine access when a
stored process retrieves data. The accounts involved depend on which type of server
executes the process and how the target library is assigned.

Table 9.7 Security Considerations for Retrieving Data with a Stored Process

Where the
stored
process
runs

Identity whose
physical layer
permissions
affect access1

Identity whose metadata layer permissions affect access

On a
standard
workspace
server

The requesting
user2

The requesting user’s metadata identity

On a pooled
workspace
server

A puddle account

(such as sassrv)

On a stored
process
server

A service account

(such as sassrv)

If the target library is pre-assigned with metaautoinit OR
accessed through the metadata LIBNAME engine, then
metadata access depends on the server’s metadata identity.

� The metadata identity for a pooled workspace server is
the metadata group to which the puddle account is
assigned.

� The metadata identity for a stored process server is the
SAS General Servers Group

Otherwise, metadata access depends on the requesting user’s
metadata identity.

1 The relevant account for physical access is the account under which the server runs.
2 If the standard workspace server runs under a shared account, physical access depends on the

permissions that are granted to that shared account.

136 Access Requirements for Identity and Permission Objects � Chapter 9

Access Requirements for Identity and Permission Objects
The metadata authorization layer provides additional protections for user definitions,

group definitions, logins, and permission objects.
For user definitions, these constraints apply:

� Only an unrestricted user or an administrative user can add and delete user
definitions.

� By default, users can modify their own user definitions. In order to create a new
e-mail, phone, or location object, a user must also have WriteMetadata permission
on the Users and Permissions tab of the repository ACT.

� By default, users can add, modify, and delete their own logins unless their changes
affect the last instance of the user ID that the metadata server used to determine
their identity.

� In order to modify the name, description, or contact information in another
person’s user definition, a user must have either status as an administrative user
or an unrestricted user, or must have ReadMetadata permission and
WriteMetadata permission from a direct access control on that user definition.

� In order to create additional logins for another user, a user must have status as an
unrestricted user or an administrative user.

For group definitions, these constraints apply:

� No one can delete or rename the implicit groups (PUBLIC and SASUSERS).

� Only an administrative user or an unrestricted user can make changes to an
implicit group definition.

� Any user who has WriteMetadata permission on the Users and Permissions tab
of the repository ACT can create a new group definition.

� Only an unrestricted user or a user who has ReadMetadata and WriteMetadata
permissions for a group definition can modify or delete a group definition.

� In order to view a login that belongs to a group, a user must have membership in
the group, or have ReadMetadata permission from a direct access control on the
login, or have status as an unrestricted user.

Note: When an unrestricted user views logins, the passwords are not displayed. �

� In order to add a login for a group, a user must have ReadMetadata and
WriteMetadata permissions for the group definition, or have status as an
unrestricted user.

� In order to modify or delete a login that belongs to a group, a user must have
ReadMetadata and WriteMetadata permissions for the group definition and
membership in the group, or have status as an unrestricted user.

For permission objects, these constraints apply:

� Only an unrestricted user can modify a Permission object.

� No one can delete a Permission object from the Authorization Manager.

Note: An unrestricted user can use the Delete Metadata tab of the metadata
utility in SAS Management Console to delete a Permission object. �

� Only an administrative user or an unrestricted user can create a Permission object
within a repository.

137

C H A P T E R

10
BI Row-Level Permissions

About BI Row-Level Permissions 138
Introduction to BI Row-Level Permissions 138

Prerequisites for BI Row-Level Permissions 139

Row-Level Permissions and Identity-Based Filtering 139

Understanding Row-Level Permissions 139

Filtering Methods for Row-Level Permissions 140
Filters that Use Identity-Driven Properties 141

How Row-Level Permissions Are Incorporated When a Report Is Generated 143

Precedence for Row-Level Permission Conditions 145

Example: Precedence for Row-Level Permission Conditions 146

How to Create a Secure Environment for BI Row-Level Permissions 147

Overview of Requirements 147
Instructions for Setting up the Recommended Environment 148

How to Implement Row-Level Permissions 150

Process Overview for Implementing Row-Level Permissions 150

Business Requirements Phase 150

Planning Phase 150
Data Modeling Phase 152

Overview of the Data Modeling Phase 152

Content of a Security Associations Table 154

Format of a Security Associations Table 154

Creation and Maintenance of a Security Associations Table 155
Information Map Design Phase 156

Overview of the Information Map Design Phase 156

How to Add a Security Associations Table to an Information Map 156

How to Create a Filter for Row-Level Permissions 157

How to Assign a Filter for Row-Level Permissions 157

Verification Phase 158
Example: Using Row-Level Permissions 158

Introduction, Assumptions, and Data Model 158

Implementation Process 159

Variation 1: Use a Different Property for Filtering 165

Variation 2: Apply Different Filtering Logic to Different Groups 166

138 About BI Row-Level Permissions � Chapter 10

About BI Row-Level Permissions

Introduction to BI Row-Level Permissions
BI row-level permissions enable you to limit access to SAS data and third-party

relational data that is accessed through information maps. The initials BI indicate that
this is a business intelligence feature; these row-level permissions are defined within
information maps, mediated and enforced by SAS Intelligent Query Services, and
surfaced when reports are viewed in applications such as SAS Web Report Studio. BI
row-level permissions offer these advantages:

� You can design and construct row-level filters by using a standard graphical user
interface (GUI) within SAS Information Map Studio.

� You can assign row-level filters to specific identities by using the standard
authorization GUI for the SAS Intelligence Platform from within SAS Information
Map Studio.

� This feature is integrated with other SAS Intelligence Platform administrative
functions. BI row-level permissions can be assigned to existing metadata
identities, stored in the metadata repository, and evaluated by the SAS Metadata
Server’s authorization facility.

� This feature is practical for use with large, dimensionally modeled data marts. BI
row-level permissions can limit access to data within fact tables without incurring
the performance cost of directly filtering those tables. This is accomplished by
ensuring that access to a fact table is always subject to an inner join with a filtered
dimension (the filtering criteria is usually some type of identity information).

� This feature provides flexibility in several ways:
� BI row-level permissions work with SAS data sets and third-party relational

databases.
� BI row-level permissions do not require a specific data model.

� BI row-level permissions can be used with dynamically generated filters. This
enables you to make user-specific access distinctions without defining a
separate filter for each person.

� This feature enables you to define granular access to third-party data without
requiring you to maintain individual user accounts within those database systems.

If you want to use BI row-level permissions to implement row-level security, it is
essential to understand these points:

� While BI row-level permissions provide filtering whenever SAS data sets or
third-party relational data are accessed through an information map,
comprehensive security that incorporates this filtering requires a specific,
high-security configuration of SAS Web Report Studio and appropriate
coarse-grained operating system or DBMS protections. For more information, see
“How to Create a Secure Environment for BI Row-Level Permissions” on page 147.

� While BI row-level permissions offer many advantages for Web-based reporting,
not all SAS clients require that users go through information maps in order to
access data. If you need row-level security for clients such as SAS Enterprise
Guide, you must use access controls in the data source layer. For example, the
SAS Scalable Performance Data Server enables you to define database views that
filter rows based on the user ID of the connecting client (this functionality is

BI Row-Level Permissions � Understanding Row-Level Permissions 139

provided by the @SPDSUSR system variable). Some third-party relational data
sources can enforce row-level controls for the data that they store.

Prerequisites for BI Row-Level Permissions
BI row-level permissions require these software components:

� SAS Intelligence Platform (version 9.1.3 with Service Pack 4 or later)

� SAS Information Map Studio (version 3.1)

To make appropriate use of this feature, you must understand that only dynamically
generated reports display data based on the access that is defined for the requesting
user. Static reports display data based on the access that is defined for the user ID that
was used to generate the report. For example:

� Manually refreshed reports contain cached data (which can be updated by a user
action in the report viewer).

� Pre-generated reports reflect the access of the user ID that was used to generate
the report. Identity-specific access distinctions are preserved for pre-generated
reports only if you define a separate report job for each user ID.

Note: Beginning with Service Pack 4, Read permission on an information map is
required in order to access data through an information map. To learn how to meet this
requirement, see “How to Manage Read Access” on page 117. �

Row-Level Permissions and Identity-Based Filtering

Understanding Row-Level Permissions
Row-level permissions provide an additional refinement of control beyond setting

permissions on libraries, tables, and columns. You use row-level permissions to define
access to data at a more granular level, specifying who can access particular rows
within a table. Row-level permissions are typically used to subset data by a user
characteristic such as employee ID or organizational unit. For example, a table that
contains patient medical information might be protected by row-level permissions that
enable each doctor to see only those rows that contain data about that doctor’s patients.
When row-level permissions are used, there are three possible authorization decision
outcomes for a request to view data:

Grant The requesting user can access all rows.

Deny The requesting user cannot access any rows (and will get an error
message).

Grant-with-
conditions

The requesting user can access only those rows that meet specified
SQL filtering conditions.

Unlike access controls for tables or columns, row-level permissions are based on
filters and rely on target data that is modeled to work with those filters. The following
topics describe filtering techniques for row-level permissions and explain how these
controls limit the data that is displayed when a report is generated.

140 Filtering Methods for Row-Level Permissions � Chapter 10

Filtering Methods for Row-Level Permissions
You define row-level permissions in filters that you assign to tables within an

information map. For example, you can use a filter that compares values in a target
table to a specified value. This enables you to implement a rule such as Joe can see his
salary information. You can also use a filter that compares values in the target data to
a value that is dynamically derived based on the identity of each requesting user. This
enables you to implement a rule such as Each user can see his or her own salary
information. “Filters that Use Identity-Driven Properties” on page 141 provides details
and examples.

In order to use any filter for security purposes, you must assign the filter as a
prefilter. This prevents end users from disabling the filter and ensures that the filter is
used to pre-screen the target data before any other criteria are applied. You can assign
the filter in either of these ways:

� Assign the filter as a general prefilter. The filter will be applied to every request
and processed independently of any metadata layer access controls, serving as an
additional layer of restriction. All users are subject to the filter, regardless of
group membership or access controls that grant broader access.

� Assign the filter as an authorization-based prefilter for one or more metadata
identities. The filter will be evaluated by the authorization facility as a permission
condition in coordination with other access controls, so group memberships and
identity precedence can affect the outcome. For example, a filter that is assigned
to the PUBLIC group can be overridden by an unconditional direct grant of Read
permission that is assigned to a particular user. See “Precedence for Row-Level
Permission Conditions” on page 145 for more information and examples.

The following table outlines the methods that you can use to set up filtering for
security purposes. You can combine these approaches as needed to meet your business
requirements.

Table 10.1 Row-Level Filtering Methods

Filter
Assignment
Method

Filter Is
Identity-
Driven

Usage Descriptions

Yes To make per-person (or per-identity) access distinctions for every
member of a particular group, you can create a filter that uses an
identity-driven property and assign that filter to a user group.

The identity of each user in the group determines which rows the
user can access. Users who are not members of the group are not
subject to the filter. Because this is an authorization-based filter
assignment, group memberships and identity precedence can affect
the outcome. It makes sense to use this method when you want
only some users to be subject to the filter, or you need to apply
different filtering logic to different sets of users.

Authorization-
based prefilter

No To explicitly define different subsets for different identities, you can
create a different filter for each subset and assign the filters to the
appropriate users or groups.1

Because these are authorization-based filter assignments, group
memberships and identity precedence can affect the outcome. This
method can be useful for very simple subsetting or in combination
with other methods.

BI Row-Level Permissions � Filters that Use Identity-Driven Properties 141

Filter
Assignment
Method

Filter Is
Identity-
Driven

Usage Descriptions

Yes To make per-person (or per-identity) access distinctions for all
users, you can create a filter that uses an identity-driven property
and assign that filter as a general prefilter.

All users will be subject to the filter, regardless of group
memberships or access controls that grant broader access. It makes
sense to use this method when the same filtering logic is
appropriate for all users.

General prefilter

No To explicitly define one subset of data for all users, you can create a
regular filter and assign that filter as a general prefilter.

All users will be subject to the filter, regardless of group
memberships or access controls that grant broader access. This
method is not useful for row-level security purposes, because it does
not yield different results for different requesting users. This
method is useful for creating one data subset for all users.

1 This method can require that you manage a large number of filters. You can often replace
multiple regular filters with one filter that uses an identity-driven property.

Filters that Use Identity-Driven Properties

An identity-driven property is a user or group characteristic that is stored in the
metadata and can be used in a filter as the value against which target data is compared.
“How to Create a Filter for Row-Level Permissions” on page 157 provides instructions
for creating a filter that uses an identity-driven property. When an information map
that includes this type of filter is executed, an identity-specific value is substituted into
the filter expression to yield a filter that is appropriate for each requesting user.

The metadata server uses the user ID with which a client is authenticated as the
basis for determining other characteristics about that client. For each connecting client,
the metadata server can derive identity-specific values for the following properties:

SAS.ExternalIdentity
an optional, site-specific value for the connecting client (such as employee ID).
This property is often useful for filtering, because its values are likely to match
user information that is already in the site’s data. If more than one external
identity value is associated with the connecting client, then the first of those
values is returned. If there are no associated external identity values, then a
NULL (MISSING) value is returned and an error message is displayed.

As with the other identity-driven properties, the values for the ExternalIdentity
property must be in the metadata so that SAS Intelligent Query Services can
dynamically determine the appropriate value for each connection. However, unlike
the values for other identity-driven properties, the ExternalIdentity values are not
automatically populated in the metadata. If you want to use this property, you
must load and maintain values for this property in the metadata repository by
using the macros that are described in Appendix 2, “Bulk-Load Processes for
Identity Management,” on page 185. During the identity bulk load process,
ExternalIdentity values are extracted from an external enterprise identity source
(such as Microsoft Active Directory Server or UNIX /etc/passwd files) and then
imported into the SAS Metadata Repository. In this process, the association
between each identity and the identity’s value for ExternalIdentity is preserved.

142 Filters that Use Identity-Driven Properties � Chapter 10

CAUTION:
If no extra precautions are taken, it is technically possible for users to change their
ExternalIdentity values. To make the SAS.ExternalIdentity property reliable for
identity-based filtering in a security-sensitive intranet environment, apply
access controls to protect the ExternalIdentity objects. To obtain a macro that
creates the appropriate protections, contact SAS technical support. As you add
new users with ExternalIdentities to your deployment, you can either manually
run the macro periodically or add the macro to automated identity bulk-load
jobs. �

SAS.IdentityGroupName
the name of the requesting group identity, as displayed in the User Manager in
SAS Management Console. If a user logs on with an ID that is part of a group
login, then the name of the group that owns that login is returned. If a user logs
on with a user ID that is not stored in the metadata, then the PUBLIC group
owns the connection.

For the following reasons, this property should rarely be used:
� Unless a user logs on with the user ID that is defined for a group login, a

NULL (MISSING) value is returned and an error message is displayed. In
almost all cases, a user logs on with a user ID that is defined for an
individual user definition.

� This property is not supported when pooled workspace servers are used.

CAUTION:
If standard precautions are not taken, users can change the names of group
definitions. Group definitions should be protected as described in “Protect
Group Definitions” on page 76. �

SAS.IdentityName
the name of the requesting user or group as displayed in the User Manager in SAS
Management Console.

Note: To protect against misuse of this property, see the caution notes for the
SAS.IdentityGroupName and SAS.PersonName properties. �

SAS.PersonName
the name of the requesting user identity, as displayed in the User Manager in SAS
Management Console.

Note: In the rare situation where a user logs on with a user ID that is defined
for a group login, a NULL (MISSING) value is returned and an error message is
displayed. �

CAUTION:
By default, users can use SAS Management Console to change their names to any
name that is not already in use. To protect against misuse of the
SAS.PersonName property, ensure that the matching data mart column
contains only values that are defined in the metadata. �

SAS.Userid
the authenticated user ID of the connecting client, normalized to the uppercase
format USERID or USERID@DOMAIN.

Note: Because the SAS.Userid property is based on the logon ID that is used in
the authentication process, users cannot change their values for this property. For
this reason, filters that are based on the SAS.Userid property do not require the
protection of any additional metadata access controls. �

For example, to enable each user to see only his or her own salary information, you
could give the PUBLIC group a filter that is based on the SAS.PersonName property.

BI Row-Level Permissions � How Row-Level Permissions Are Incorporated When a Report Is Generated 143

At runtime, SAS Intelligent Query Services asks the metadata server for the
SAS.PersonName value that is associated with the connected user ID. SAS Intelligent
Query Services then substitutes that identity-specific value into the filter. In this way,
the query is modified as appropriate for each requesting client.

The following table contains examples of filters that are based on identity properties,
showing both the generic form and how each filter would be modified when executed by
a user named Harry Highpoint. The example assumes that the customer has an
employee information table named EmpInfo which includes Name, Category, WinID,
and EmpID columns.

Table 10.2 Examples of Filters That Use Identity-Driven Properties

As Defined (Generic Form) As Executed (Resolved Form)

Where EmpInfo.Name=&SAS.PersonName; Where EmpInfo.Name="Harry Highpoint"

Where EmpInfo.Category=&SAS.IdentityGroupName; An error message is returned because the
user does not log on with a user ID that
is stored as part of a group definition.

Where EmpInfo.Name=&SAS.IdentityName; Where EmpInfo.Name="Harry Highpoint"

Where EmpInfo.WinID=&SAS.Userid; Where EmpInfo.WinID="HIGH@WINNT"

Where EmpInfo.EmpID=&SAS.ExternalIdentity; Where EmpInfo.EmpID="123–456–789"

How Row-Level Permissions Are Incorporated When a Report Is
Generated

Row-level permissions are evaluated in coordination with controls for related
resources (such as tables and columns) and controls in other authorization layers (such
as physical access). Row-level permissions that are assigned to specific identities
constrain only direct grants of the Read permission on information maps. The following
figure depicts an example of how row-level permissions work. In the figure, a user
requests access to a report that includes data for which row-level permissions have been
defined by using an identity-driven property. For each step of the report-generation
process, the figure depicts the access control activities in the metadata layer.

144 How Row-Level Permissions Are Incorporated When a Report Is Generated � Chapter 10

Figure 10.1 Report-Generation Process

Report Generation Activities

Joe requests to
view the report.

Report definition is
processed.

Information map is
processed.

Joe’s value for
SAS.ExternalIdentity is

substituted into the filter.

A query that
incorporates the
resolved filter is

generated.

Report is compiled
using data that is
retrieved by the

generated query.

Report Definition

reference to
information map

Query
select * from Orders

Filter
where EmpID=&SAS.ExternalIdentity;

Orders Table

EmpID
1234
5151
2233
5678
5151
1234
1234

Name
Tara
Joe
Marcel
Henri
Joe
Tara
Tara

Orders
245
306
75
75
180
224
79

Metadata server enforces
Joe’s ReadMetadata

access to report.

Metadata server enforces
Joe’s ReadMetadata

access to information map.

Metadata server enforces
Joe’s ReadMetadata access to
table and column definitions.

SAS Intelligent Query Services
requires Joe to have Read

access to the information map
in order to access any data

through the information map.

Data server pre-filters the data
as specified in the query that

was generated by
SAS Intelligent Query Services.

Access Control Activities

Information Map

Report is displayed for Joe. Rendered report includes only those rows where “5151” is the employee ID.

The overall flow is the same as for any other report: the report definition and
underlying information map are processed, a query is generated to retrieve the data,
and the report is displayed. These are the row-level security aspects of the process:

� The information map includes a filter that is assigned to a particular metadata
identity. This example uses an identity-driven property in a filter that is based on
each group member’s employee ID. The filter is assigned to a group to which Joe
belongs. At runtime, SAS Intelligent Query Services uses information from the
metadata repository to substitute Joe’s employee ID into the filter. The resolved,
user-specific form of the filter is incorporated into the generated query. The filter
is used to screen the target table before the rest of the generated query runs.

BI Row-Level Permissions � Precedence for Row-Level Permission Conditions 145

� The target data includes information that corresponds to the filter. In this
example, the corresponding information consists of user-specific employee ID
values in the EmpID column within the Orders table. The data server uses these
values to filter the data as specified in the query that was generated by SAS
Intelligent Query Services.

Precedence for Row-Level Permission Conditions
BI row-level filters that are assigned to specific metadata identities are evaluated by

the authorization facility as permission conditions. For complete information about how
authorization decisions are made, see “A Closer Look: How Authorization Decisions are
Made” on page 46. The access control principles that are most relevant to row-level
permission conditions are summarized in the following table:

Table 10.3 Access Control Principles for Row-Level Permission Conditions

ExamplePrinciple

Scenario Outcome and Explanation

A direct access control
on an information map
has precedence over
access controls that
come from the folder
that contains the
information map.

A direct access control on
InformationMapA denies Read
permission to PUBLIC.

A direct access control on the
folder that contains
InformationMapA grants Read
permission to a particular user.

The user cannot access data through
InformationMapA. The denial to
PUBLIC has precedence over the
grant to the user because the denial
is assigned directly on the target
resource (InformationMapA).

Direct access controls always have
precedence over inherited controls
regardless of who the permissions are
assigned to.

In order to assign a
row-level permission
filter to an identity, the
identity (or a group to
which the identity
belongs) must have a
direct grant of Read
permission on the
information map.

The only access control on
InformationMapA is an
inherited grant of Read
permission to PUBLIC.

You cannot define row-level
permissions for InformationMapA.

The identity (or a group to which the
identity belongs) must be added to
the Authorization tab for
Information MapA and directly
granted Read permission. In the
Authorization tab, a direct grant
has a white background.

146 Precedence for Row-Level Permission Conditions � Chapter 10

ExamplePrinciple

Scenario Outcome and Explanation

If there are multiple
row-level filters that
apply to a user because
of the user’s group
memberships, then the
highest precedence
identity controls the
outcome.

A filter on InformationMapA
limits Read permission for
GroupA.

Another filter on
InformationMapA limits Read
permission for the SASUSERS
group.

The user is a member of both
GroupA and SASUSERS.

The user can see only the rows that
GroupA is permitted to see. GroupA
has higher identity precedence than
SASUSERS, so the filters that are
assigned to GroupA define the user’s
access. See “Example: Precedence for
Row-Level Permission Conditions” on
page 146.

If there are multiple
row-level controls at the
same identity level, then
the outcome is the
superset of rows that are
allowed by either filter.

A filter on InformationMapA
limits Read permission for
GroupA.

Another filter on
InformationMapA limits Read
permission for the GroupB.

The user is a first level member
of both GroupA and GroupB.

The user can see any row that is
permitted for either GroupA or
GroupB.

Example: Precedence for Row-Level Permission Conditions
This example describes the impact of identity precedence when a manager uses an

information map that includes both of the following filters for a SALARY table:
� A row-level filter assigned to the SASUSERS group gives each user access to his or

her own salary information.

� A row-level filter assigned to a Managers group enables each manager to see the
salaries of the employees that he or she manages.

When the manager accesses the SALARY table through this information map, the
filter that is assigned to the Managers group is applied, and the filter that is assigned
to SASUSERS is ignored. This is because the manager’s direct membership in the
Managers group has higher identity precedence than the manager’s implicit
membership in the SASUSERS group. To avoid a situation in which managers can see
their employees’ salaries but each manager cannot see his or her own salary, you can
use either of these approaches:

� Assign the filters to two groups that have the same identity precedence. For
example, if you assign the first filter to a general purpose user-defined group
(rather than to SASUSERS), and you make each manager a direct member of that
group, then managers will have an identity precedence tie between that group and
the Managers group. This situation causes the two filters to be combined for
members of the Managers group, enabling those users to see any row that is
permitted by either filter.

� Define the Managers filter in a way that encompasses all of the rows that the
managers should be able to see.

BI Row-Level Permissions � Overview of Requirements 147

How to Create a Secure Environment for BI Row-Level Permissions

Overview of Requirements
Like any other security feature, row-level security requires that you pay careful

attention to the entire environment in order to avoid vulnerabilities in other security
layers. For example, if you do not limit physical access to the target data, there is a
risk that users will exploit their physical access to circumvent the row-level filters that
you create. If this is an acceptable risk, then no special measures are needed. For
example, this can be an acceptable risk in these types of environments:

� prototype environments
� environments in which a firewall segregates untrusted users
� environments in which untrusted users do not have the tools, knowledge, or OS

privileges to access files and metadata on the server tier
� environments that for other reasons do not have strict security requirements

If, on the other hand, you require strict security controls against the possibility of
malicious activity on your company intranet, then a more tightly protected
configuration is necessary. In such circumstances, it is important to strictly limit
physical access to the target tables to prevent direct access by regular users. The goal
is to enable regular users to have only mediated access to the target tables. The
strategy is to ensure that participating applications use a privileged account to fetch
data for requesting users, and to deny regular users physical access to the tables. The
following diagram illustrates these points.

148 Instructions for Setting up the Recommended Environment � Chapter 10

Figure 10.2 Secure Environment

BI row-level controls are applied
when requests go through an

information map.

A user who has physical access to the
data can access the data directly,

bypassing row-level controls.

For effective row-level security,
do not give regular users

physical access to the data.

User A User B User C User A User B User C User A User B User C

Data Data Data

Mediationus
er

A

us
er

B

us
er

C

us
er

A

us
er

B

us
er

C

us
er

A

us
er

B

us
er

C

--
P

hy
si

ca
l C

on
tr

ol
s-

-

--
P

hy
si

ca
l C

on
tr

ol
s-

-

--
P

hy
si

ca
l C

on
tr

ol
s-

-

--
B

I R
ow

-L
ev

el
 C

on
tr

ol
s-

-

--
B

I R
ow

-L
ev

el
 C

on
tr

ol
s-

-

--
B

I R
ow

-L
ev

el
 C

on
tr

ol
s-

-

us
er

A

pr
iv

ile
ge

d
us

er

The mediated configuration is supported only for SAS Web Report Studio. Other
applications can make use of identity-based filtering and row-level permissions but
cannot provide comprehensive row-level security.

Instructions for Setting up the Recommended Environment
The mediation that is depicted in the preceding figure is provided by a pooled

workspace server that is dedicated for use with SAS Web Report Studio for these
reasons:

� Using a pooled workspace server prevents the workspace server processes from
running under the accounts of requesting users. Pooled workspace servers run
under one or more designated accounts that are called puddle accounts.

� Using a dedicated workspace server isolates the puddle account from applications
that do not fully enforce row-level security. The pool administrator account is
identified in a configuration file that is used only by SAS Web Report Studio, so
workspace servers that are launched from other applications cannot use the pool.

To ensure the tightest possible security, follow these instructions.
1 Verify that the basic protections that are described in Chapter 4, “Securing a

Deployment,” on page 63 are in place.

BI Row-Level Permissions � Instructions for Setting up the Recommended Environment 149

2 Create a new pooled workspace server for exclusive use by SAS Web Report
Studio. For instructions, see "Configure a Pooling Workspace Server to Enforce
Row-Level Security" in the chapter "Reconfiguring or Clustering Workspace or
Stored Process Servers" in the SAS Intelligence Platform: Application Server
Administration Guide.

3 Ensure that the puddle account for the restricted workspace server can physically
access the target data and that regular users cannot. Regular users are people
who should be able to access the data only from SAS Web Report Studio.

� For SAS data sets, give read access to the puddle account in the operating
system layer.

� For third-party database tables, give read access to the data to a privileged
database account. (In a later step you will make the credentials for this
privileged database account available to the puddle account).

Note: Some members of your staff will also need physical access to the data. For
example, the person who creates an information map based on the target data
must have physical access to the data. �

4 For target data that is in third-party databases, assign libraries by using the
METAAUTOINIT method of library pre-assignment. This method causes the
libraries to be assigned to the metadata identity for the puddle account.

Note: When you pre-assign a library using the METAAUTOINIT method,
authorization decisions are based on the metadata identity under which the
workspace server connects to the metadata server. Workspace servers that use the
-METAPERSON option connect under the identity that is specified by that option.
Other workspace servers connect under the identity of the puddle account (pooled
workspace servers) or the identity of the connecting client (standard workspace
servers). These statements assume that workspace servers that do not use the
-METAPERSON option connect to a metadata server that uses the
TRUSTSASPEER option, which is the default configuration. �

To use the METAAUTOINIT method to assign libraries, complete these steps:

a In SAS Management Console, navigate to the restricted workspace server
and select Properties � Options.

b In the Object Server Parameters field, enter METAAUTOINIT. This tells the
workspace server to connect to the metadata server to obtain information
about library assignments.

Note: The workspace server connects using the account that it is running
under (the puddle account). The metadata server determines that the
metadata identity for the puddle account is the Restricted Puddle Access
group (because you stored the puddle account user ID in a login on this group
definition). This causes the libraries to be assigned to the Restricted Puddle
Access group. �

c Stop and then restart the object spawner to make this change take effect.
With this method, the restricted workspace server can set up and use a target

DBMS library, while attempts to assign the library under another metadata
identity will fail. For example, a regular workspace server that is launched by
Tara O’Toole while using SAS Enterprise Guide cannot successfully assign the
DBMS library, because the workspace server’s metadata identity (Tara O’Toole)
does not have physical access to the library.

5 For target data that is in third-party databases, set up credentials in the metadata
to enable the puddle account to access those servers. You can make credentials for
a database server available to the puddle account by storing those credentials in a

150 How to Implement Row-Level Permissions � Chapter 10

login as part of the Restricted Puddle Access group definition. For example, to
enable the puddle account to access a DB2 server, you would give the Restricted
Puddle Access group a login that includes a DB2 user ID and password and that is
associated with the DB2 server’s authentication domain.

Note: As explained in step 3, some members of your staff will also need to be able
to authenticate to the database server. �

How to Implement Row-Level Permissions

Process Overview for Implementing Row-Level Permissions
The process for setting up row-level permissions consists of these phases:

1 Review and summarize what you want to accomplish by defining row-level
permissions.

2 Determine how you can combine row-level permissions with other metadata layer
and physical controls to meet your business requirements.

3 Structure the target data to fit with the subsetting that you want to do.

4 Create filters that implement the row-level access rules that you have identified
and that work with your data.

5 Test the row-level controls to verify that they function as intended.

The following topics describe these phases, using simple, abbreviated examples to
explain specific points. For an integrated example of the entire process, see “Example:
Using Row-Level Permissions” on page 158.

Business Requirements Phase
Business requirements often dictate that different users should see different portions,

or slices, of data. In some cases, the requirement is driven by the sensitive nature of
data. For example, company policy might state that each sales person should be able to
access only his or her own salary information. In other cases, the requirement is
intended to prevent information overload. For example, each regional sales team within
a national organization might be interested in only the sales trend information for their
region. Row-level access distinctions are frequently based on each user’s place in an
organizational structure such as a management hierarchy or a product matrix. The
visibility of data can depend on a simple, site-specific condition such as a user’s security
clearance level, or on a more complex condition that consists of multiple filters.

In many cases, there are coarser-grained (table-level) business requirements that
accompany the row-level access rules. For example, business requirements often dictate
that some users (such as executives or system administrators) should be able to access
all rows in a target table, while some users (such as users who do not have individual
metadata identities) should not be able to access any rows.

Planning Phase
Planning for row-level security consists of these steps.

BI Row-Level Permissions � Planning Phase 151

1 If your site has strict security requirements, you must perform additional
deployment configuration steps to create an appropriate environment. See “How to
Create a Secure Environment for BI Row-Level Permissions” on page 147.

2 Set coarse-grained controls as described in the following table.

Table 10.4 Coarse-Grained Controls

Metadata Layer Physical LayerBusiness User
Access Class Target Table Information Map Target Table

All rows Grant R, RM Grant R, RM Deny1

No rows Deny R, RM Grant2 R, RM Deny

Some rows Grant R, RM Grant R3, RM Deny1

1 In a high-security environment, regular users should not have physical access to the data.
In other circumstances, regular users might have physical access to the data.

2 Grant these permissions if the "No rows" users need to access other tables through this
information map.

3 For filters that are assigned as authorization-based prefilters, this must be a direct grant of
Read permission on the information map. This access will be constrained by the row-level
conditions that you define in the next step.

3 Decide how you will create the data subsets that will narrow the direct grant of
Read permission as appropriate for each user. Your options are explained in
“Filtering Methods for Row-Level Permissions” on page 140. For example:

� If you want to make per-person access distinctions for the members of a
particular user group, select an identity-driven property to use as the basis
for an authorization-based prefilter that you will assign to that user group.
For example, to give each user access to a distinct set of rows based on the
user’s metadata identity, you might plan to create a filter that uses the
SAS.Userid property and to assign that filter to the PUBLIC group.

� If you want to make a relatively small number of access distinctions, each of
which will apply to one or more metadata user or group identities, design a
separate filter for each class of access and plan to assign each filter to the
appropriate identities. For example, to create low-, medium-, and
high-security subsets of data, you might design three filters and plan to
assign each of those filters to a different metadata user group.

� For more complex business requirements, you can use combinations of the
different filtering techniques.

Your choice of filtering methods will be affected by the number and type of
access distinctions that you are making, the information that your data already
contains, and your plans for enhancing your existing data to support row-level
filtering. When you are composing the filtering logic that you will use to meet your
business requirements, consider these guidelines:

� For manageability, limit the total number of filters that you define. Many
common business requirements can be met by using a filter that is based on
an identity-driven property. There is significantly less maintenance involved
in this approach than in explicitly defining a different filter for each user.

� For manageability, try to assign filters that you create to user groups rather
than to individual users. In order to assign a filter to a user group, that user
group must be defined in the metadata. Familiarity with the user group
structure in your metadata will help you efficiently define row-level controls.

152 Data Modeling Phase � Chapter 10

� For simplicity, avoid situations in which multiple filters apply to a particular
user as a result of the user’s group memberships. In such situations, the
subset of data that is available to that user is determined by identity
precedence (see “Precedence for Row-Level Permission Conditions” on page
145).

Data Modeling Phase

Overview of the Data Modeling Phase
Row-level permissions require that the target data support the subsetting that you

will use to meet your business requirements. In many cases, you must modify an
existing data model to include information that corresponds to the filters that you will
use. As a simple example, consider a company that consists of a four-person, flat
organizational structure and has a business requirement that each employee should see
only his or her own order information. The order information is stored in a table that
looks like this:

Figure 10.3 Orders Example: Target Table

ORDERS

1234
5151
2233
5678
5151
1234
1234

245
306
75
75

180
224
79

EmpID Orders

You must supplement this existing simple data model to support and fit the filtering
that you want to do. For this example, assume that the choice of filtering method is
affected by these points:

� You do not want to manage a different filter for each user.
� You manually created your metadata identities, so you do not have

SAS.ExternalIdentity values in the metadata that correspond the EmpID values in
the ORDERS table.

In these circumstances, you will need to enhance the data to support filtering based on
another identity-driven property such as SAS.PersonName. To support this subsetting,
you would create an employee information table that includes a PersonName column
(or add a PersonName column to an existing employee information table). In each row,
you would enter a value that corresponds to the employee’s name on the General tab of
his or her user definition in SAS Management Console (because this is the
SAS.PersonName value for the employee). A minimal version of the table that is
needed looks like this:

Figure 10.4 Orders Example: Security Associations Table

EMPLOYEE_INFO

Tara O’Toole
Joe Smith

1234
5151
2233
5678

SASPersonName EmpID

Marcel Dupree
Henri LeBleu

BI Row-Level Permissions � Data Modeling Phase 153

When an end user submits a query, the information map that provides access to the
ORDERS table uses the employee information table to pre-screen the data. The
employee information table is filtered based on each requesting user’s identity and then
inner joined to the ORDERS table (on the EmpID column). The following figure depicts
this process:

Figure 10.5 Orders Example: How the Security Associations Table Is Used

EMPLOYEE_INFO

Tara O’Toole
Joe Smith

1234
5151
2233
5678

SASPersonName EmpID

Marcel Dupree
Henri LeBleu

Security Associations Table

Subset is inner joined to target table:
EMPLOYEE_INFO.EmpID=ORDERS.EmpID

Security associations
table is filtered:

Where SASPersonName=&SAS.PersonName;

SAS Metadata Repository

Person Object for Joe

PersonName:
Joe Smith

ExternalIdentity:

Target Table

5151
1234
1234

245
306
75
75
180
224
79

EmpID Orders

ORDERS

1234
5151
2233
5678

As another simple example, consider a company that has a business requirement that
each manager can see performance rating information for his or her direct reports. As
in the previous example, you must supplement the existing data to support and fit the
filtering that you want to do. For this example, assume that the SAS.ExternalIdentity
information is available in the metadata and that you choose to base your filtering on
this identity-driven property. The following figure depicts a data model that supports
subsetting based on each manager’s value for the ExternalIdentity property.

154 Data Modeling Phase � Chapter 10

Figure 10.6 Performance Example: How the Security Associations Table Is Used

Organization

Tara

Jacques

5151
5151
5151
5151

ManagerID Employee

Marcel
Henri

Security Associations Table

Subset is inner joined to target table:
Organization.Employee=Performance.Employee

Security associations
table is filtered:

Where ManagerID=&SAS.ExternalIdentity;

SAS Metadata Repository

Person Object for Joe

PersonName:
Joe Smith

ExternalIdentity:
5151

Target Table

Performance

24

28

Tara
Marcel
Henri

Jacques

Employee Rating

22
18

The purpose of these simplified examples is to introduce the idea of managing
security associations in a separate table and to illustrate how that table is used. In
most cases, the volume of data is larger and the business requirements are more
complex. For example, the security associations table in the performance rating
example does not enable a manager to see his or her own rating. These differences can
result in additional considerations for the security associations table. The following
topics address some of those considerations.

Content of a Security Associations Table
A security associations table is a type of table that documents the relationships

between a user and some criterion on which you are making access distinctions. When
access distinctions are based on each user’s place within an organizational hierarchy,
the security associations table must contain a representation of the reporting
relationships within the organization. If access distinctions are based on some other
criterion (such as each user’s project assignments), then the security associations table
should reflect that criterion.

Note: In the preceding examples, the security associations tables are the
EMPLOYEE_INFO table (in the orders example) and Organization table (in the
performance rating example). �

Format of a Security Associations Table
BI row-level permissions do not require that the security associations table have a

particular format. However, the format of a security associations table can affect filter
performance. This topic describes a format that supports efficient hierarchy-based

BI Row-Level Permissions � Data Modeling Phase 155

filtering. This format is useful for many common scenarios, because security policies are
often hierarchical. For example, a typical business requirement is that a manager can
see data for all of the employees that he or she manages either directly or indirectly.

The following figure depicts two ways to structure a security associations table that
documents each user’s place in a simple organizational hierarchy. The sparse version of
the table includes only direct reporting relationships; information about indirect
relationships must be derived. The fully articulated (or robust) version explicitly
includes indirect reporting relationships along with direct reporting relationships; this
is advantageous for query performance.

Figure 10.7 Representations of an Organizational Hierarchy

Reporting Relationships

Manager1
VicePresident2
Vice President1

Staff Person2

Vice President1
CEO
CEO

Vice President1
Manager1
Manager1

Manager Employee

Manager2
Staff Person1

Security Associations Table
(sparse)

Organization Hierarchy

CEO

Reporting Relationships

Manager1

VicePresident2
Vice President1

Staff Person2

Staff Person2

Staff Person2

CEO
CEO
CEO

CEO
CEO
CEO

Manager1
Manager1

Manager Employee

Manager2

Staff Person1

Staff Person1

Staff Person1

Security Associations Table
(fully articulated)

Vice President1
Vice President1
Vice President1
Vice President1

Manager1
Manager2

Vice President1 Vice President2

Manager2Manager1

StaffPerson2StaffPerson1

The table that uses the fully articulated format explicitly includes not only the
hierarchy’s immediate parent-child relationships, but also every other
ancestor-descendant association (such as grandparent-child and
greatgrandparent-child). This facilitates simpler queries by eliminating the need to
traverse the hierarchy to find all of the descendants of any particular node.

Creation and Maintenance of a Security Associations Table

This topic contains a general discussion about creating and managing a security
association table for use with dimensional target data. BI row-level security does not
require that target data adhere to a particular structure. This description is for
dimensional data, because that is a frequently used structure for query and reporting.

A security associations table is usually created as a new object by traversing an
existing sparse table and filling in the indirect relationships to create a fully articulated
(or robust) version of the table. If you do not have an existing sparse table, then you
must create that object first.

156 Information Map Design Phase � Chapter 10

Note: If you want to enhance an existing sparse table rather than creating a new
table, you should first review current uses of the sparse table to determine whether the
additional rows will negatively affect those uses. �

In most cases it will be helpful to have an index on the column in the security
associations table that is used for filtering. In some cases, factors such as the size of the
security associations table or query optimization features in a particular data source
might negate the need for this index.

The security associations table must be maintained as security relationships change.
This maintenance should be on a schedule that is appropriate for your environment.
Typically, this maintenance is accomplished by a batch process (such as a nightly ETL
process against the existing tables). In some cases, updates might be entered directly
by an administrator.

Information Map Design Phase

Overview of the Information Map Design Phase
The following figure depicts the row-level permission aspects of information map

design.

Figure 10.8 Information Map Design for Row-Level Permissions

Information map
without row-level

permissions

Information map
with row-level
permissions

Incorporate
a security

assocations
table

Create
one or
more
filters

Assign
the

filters as
prefilters

The following topics provide generic instructions for each of these four tasks. For a
specific example with screenshots, see “Example: Using Row-Level Permissions” on
page 158.

How to Add a Security Associations Table to an Information Map
In order to make the security relationship information that you added to the data

model available for filtering, you must incorporate that information in an information
map. For example, to enhance an existing information map to include a new security
associations table, you would perform these steps:

1 Register the new security associations table in the metadata.

2 In SAS Information Map Studio, open an information map and then select Insert
� Table.

3 In the Insert Table dialog box, select the table that you are using as a security
associations table, and then click OK.

4 On the Relationships tab in the application’s main window, create the
connections between the table that you are using as a security associations table
and other tables in the model. This procedure typically involves defining an inner
join to connect an identifier column in the security associations table with a
corresponding column in the target table (or in an intermediate dimension).

5 Make the security associations table a required table by performing these steps:

BI Row-Level Permissions � Information Map Design Phase 157

a Select Edit � Properties � Information Map, and then select the
Required Tables tab in the Information Map Properties dialog box.

b In the Available tables list, select the table that you are using as a
security associations table.

c Use the arrow button to move the table to the Required tables list.
d Click OK.

Note: We recommend that you do not add data items from a security associations
table to an information map. Excluding these items from the information map prevents
these items from surfacing when reports are created in SAS Web Report Studio. �

How to Create a Filter for Row-Level Permissions
Filters that are based on identity-driven properties can be very useful for row-level

security purposes. To create a filter that is based on an identity-driven property,
perform these steps in SAS Information Map Studio:

1 Open the information map and then select Insert � Filter to open the New Filter
dialog box.

2 Enter a name and description for the filter, and then click Edit Data Item.

Note: In these instructions, the filter uses a physical column rather than one of
the business data items that are listed in the Data item drop-down list. For
row-level security, we recommend that filters use physical columns, because this
prevents the filters from surfacing when reports are created in SAS Web Report
Studio. �

3 In the Edit Expression dialog box, select a physical column (from the table that
you are using as a security associations table), and then click OK.

4 In the New Filter dialog box, the fields in the Values section are now available.
From the Enter value(s) drop-down list, select Derive Identity Values. A
table of identity-driven properties becomes available.

5 In the table of properties, select the row for the identity-driven property that you
want to use in the filter.

6 Click OK. The new filter is now available for use in the current information map.

You can use a wide variety of filters for row-level security purposes. To learn about
other filtering choices, see the Help for SAS Information Map Studio.

How to Assign a Filter for Row-Level Permissions
In order to be used for security purposes, a filter must be assigned as either an

authorization-based prefilter or a general prefilter.
To assign a filter as an authorization-based prefilter, perform these steps in SAS

Information Map Studio:

1 Open the information map and then select Tools � Authorization to open the
Authorization dialog box.

2 In the Names box, select an identity to which you will assign the filter, or click Add
to add an identity to the Names box.

3 If Read permission is not directly granted to the selected identity, add a direct
grant by selecting the Grant check box. In the Permissions list, a white
background color behind a selected check box indicates that the permission is
directly assigned.

4 Click Add Condition (or Edit Condition) to open the Row-Level Permission
Condition dialog box.

158 Verification Phase � Chapter 10

5 In the Selected filters list, select the table that you are using as a security
associations table.

6 In the Available filters list, select the filter and then use the arrow button to
move the filter to the Selected filters list.

7 Click OK to apply the filter assignment and close the Row-Level Permission
Condition dialog box.

8 In the Authorization dialog box, click Close.

9 To make your changes take effect, save the information map.

To assign a filter as a general prefilter, perform these steps in SAS Information Map
Studio:

1 Open the information map and then select Edit � Properties � Information
Map.

2 In the Information Map Properties dialog box, select the General Prefilters tab.

3 In the Selected filters list, select the table that you are using as a security
associations table.

4 In the Available filters list, select the filter and then use the arrow button to
move the filter to the Selected filters list.

5 In the Information Map Properties dialog box, click OK to apply the filter
assignment.

Verification Phase
Testing should be performed from an application such as SAS Web Report Studio.

This testing requires that you log on to that application using different accounts.

Note: For users who have physical access to the data, you can do some preliminary
testing to check your filter logic from within SAS Information Map Studio. Before you
test an information map from within SAS Information Map Studio, you should save the
information map to ensure that all settings are applied. To test a filter that is based on
an identity-driven property, use different accounts to log on to SAS Information Map
Studio. To test other filters, temporarily assign the filters to your identity. �

Example: Using Row-Level Permissions

Introduction, Assumptions, and Data Model
The following example demonstrates how a company could use row-level permissions

to manage access to employee data. The example is based on the following assumptions:

� The company is running SAS Information Map Studio 3.1, SAS Web Report Studio
3.1, and the SAS Intelligence Platform 9.1.3 with Service Pack 4.

� The target tables are registered in the metadata repository.

� Except where otherwise noted, users have Read permission for the information
maps that they are using.

� Except where otherwise noted, the company has constrained physical access to
target data as described in “How to Create a Secure Environment for BI

BI Row-Level Permissions � Implementation Process 159

Row-Level Permissions” on page 147, and has set appropriate protections for the
target library and tables.

The data model for the example is a star schema that contains employee and
customer data for a fictional sporting goods company. To support efficient row-level
filtering, the security associations table includes both direct and indirect reporting
relationships.

Note: This example uses a classic star schema design because this is a common data
structure for query and reporting purposes. BI row-level permissions do not require
that you use a particular data structure. �

Implementation Process
In this example, the business requirement is to enable managers to see salary

information for their employees. One way to meet this requirement is to use the
SAS.PersonName property. The SAS.PersonName of each requesting user is used to
filter the security associations table, based on corresponding values in the
PARENT_EMPLOYEE_NAME column. This yields a subset of rows that includes all
employees who report (directly or indirectly) to the requesting user. That subset of rows
is then inner joined to the table that contains salary information, so that only the
salaries of employees who report to the requesting user are returned. The following
figure depicts this process for a requesting user who is a high-level manager in the
organization. The SAS.PersonName value for this requesting user is "Harry Highpoint".

Figure 10.9 Salary Filtering with the SAS.PersonName Property

SECURITY_ASSOC
EMPLOYEE_ID

PARENT_EMPLOYEE_NAME

Security Associations Table
(partial definition)

SAS Metadata Repository

PersonName:
Harry HighPoint

Target Table
(partial definition)

ORGANIZATION_DIM
EMPLOYEE_ID

SALARY

To set up these row-level permissions, complete these information map design tasks:

1 Create an information map that includes the salary information, security
associations information, and necessary relationships.

a In SAS Information Map Studio, select File � New to open a new
information map.

b Select Insert � Table to open the Insert Table dialog box, and then navigate
to the library that contains the target data. In this example, the library is
named OrionRLS. Select the table that contains a representation of reporting
relationships (SECURITY_ASSOC) and the table that contains salary
information (ORGANIZATION_DIM) and then click OK.

160 Implementation Process � Chapter 10

c In the main application window, on the Presentation tab, add the data
items that you will need from each table:

� It is a good practice to not add any data items from the
SECURITY_ASSOC table. You will use the
PARENT_EMPLOYEE_NAME column when you create a filter, but you
will use the physical item for this purpose.

� From the ORGANIZATION_DIM table, insert the SALARY,
EMPLOYEE_ID, and EMPLOYEE_NAME columns.

d On the Relationships tab, join the two tables on EMPLOYEE_ID.

BI Row-Level Permissions � Implementation Process 161

e Select File � Save, navigate to an appropriate folder, give the new
information map a name such as SalaryByPersonName(withGeneralPrefilter),
and click Save.

f To make the SECURITY_ASSOC table a required table, perform these steps:

i Select Edit � Properties � Information Map.
ii In the Information Map Properties dialog box, select the Required Tables

tab.
iii In the Available tables list, select the SECURITY_ASSOC table.
iv Use the arrow button to move the table to the Required tables list, and

then click OK.

162 Implementation Process � Chapter 10

2 Create a filter that subsets data by comparing each requesting user’s
SAS.PersonName value to the PARENT_EMPLOYEE_NAME values in the
security associations table.

a Select Insert � Filter to open the New Filter dialog box.
If this menu selection is not available, you do not have Read access for the

new information map. To grant the Read permission for this information
map, select Tools � Authorization. As an alternative, you can set a default
grant of this permission for the entire repository, as explained in “Example:
Giving Everyone Default Read Permission to Everything” on page 118.

b Enter a name such as byPersonName for the filter, and then click Edit Data
Item.

c In the Edit Expression dialog box, select Character from the Type drop-down
list. On the Data Sources tab, navigate to Physical Data �
SECURITY_ASSOC � PARENT_EMPLOYEE_NAME, and then click Add
to Expression.

Note: A physical column is used because this prevents the filter from
surfacing when reports are created in SAS Web Report Studio. �

BI Row-Level Permissions � Implementation Process 163

d Click Validate Expression, and then click OK twice.
e In the New Filter dialog box, from the Enter value(s) drop-down list, select

Derive Identity Values. A table of identity-driven properties becomes
available.

f In the table of properties, select the SAS.PersonName row.

164 Implementation Process � Chapter 10

g Click OK. The byPersonName filter is now available for use in the information
map.

3 To assign the filter as a general prefilter, complete these steps:

a Select Edit � Properties � Information Map.
b In the Information Map Properties dialog box, select the General

Prefilters tab.
c In the Selected Filters box, select the SECURITY_ASSOCIATIONS table.
d In the Available Filters box, select the byPersonName filter.
e Click the right arrow button to assign the byPersonName filter to the

SECURITY_ASSOC table, and then click OK.

4 Select File � Save to save the information map.

Users who have physical access to the data can test by logging on to SAS Information
Map Studio and running test queries. To verify that the filter is working as expected,
log on using different accounts. For example:

BI Row-Level Permissions � Variation 1: Use a Different Property for Filtering 165

� For a user who is not included in the security associations table (such as the SAS
Demo User), no salaries should be retrieved.

� For the president of the company, all salaries should be retrieved. Note that by
default only 100 rows of data are returned when you test an information map.

� For a mid-level manager, a subset of salaries should be retrieved.

To run a test query from within SAS Information Map Studio, complete these steps:

1 Select Tools � Test from the main menu.

2 In the Test the Information Map dialog box, use the arrow button to add the
Salary and Employee Name items to the Selected Items box.

3 Click Run Test and then examine the data in the Results window.

4 To test using another account, close the information map, and then select File �
Switch Metadata Profile from the main menu.

Note: Final verification, and verification for users who do not have physical access
to the data, must be performed from within SAS Web Report Studio. �

Variation 1: Use a Different Property for Filtering
If the target data only identified parent employees by their company ID (rather than

also by their employee name), then you would need to use a different identity-driven
property to accomplish this filtering. The SAS.ExternalIdentity of each requesting user
is used to filter the security associations table, based on corresponding values in the
PARENT_EMPLOYEE_ID column. This filtering yields a subset of rows that includes
all employees who report (directly or indirectly) to the requesting user. That subset of
rows is then inner joined to the table that contains salary information, so that only the
salaries of employees who report to the requesting user are returned. The following
figure illustrates how this filtering could be accomplished:

Figure 10.10 Salary Filtering with the SAS.ExternalIdentity Property

SECURITY_ASSOC
EMPLOYEE_ID

PARENT_EMPLOYEE_ID

Security Associations Table
(partial definition)

SAS Metadata Repository

ExternalIdentity:
120261

Target Table
(partial definition)

ORGANIZATION_DIM
EMPLOYEE_ID

SALARY

Note: This variation assumes that bulk-load macros were used to create the
metadata identities in the deployment. As part of the user import process, the
company’s employee IDs were added to the repository as SAS.ExternalIdentity values. �

The implementation process for this variation is very similar to the main example.
The only differences are in step 2—the filter creation process. This variation differs
from the preceding example in these ways:

166 Variation 2: Apply Different Filtering Logic to Different Groups � Chapter 10

� In step 2c you would select a different physical data item
(PARENT_EMPLOYEE_ID rather than PARENT_EMPLOYEE_NAME).

� In step 2f you would select a different identity-driven property
(SAS.ExternalIdentity rather than SAS.PersonName).

Note: The Derive Identity Values selection in the New Filter dialog box is
available only when you are defining a filter for a character data item. �

Variation 2: Apply Different Filtering Logic to Different Groups
This variation addresses the following additional business requirements:

� Four people who work in a Human Resources management department must be
able to view salary information for all employees. You have created a user-defined
group in the metadata repository for the users (the group name is HR All Salaries).

� Users who do not have individual metadata identities must not be able to see any
of the data. These users have the access that has been defined for the PUBLIC
group.

The first part of the implementation process for meeting these requirements is the
same as steps 1 and 2 in the main example. To meet the business requirements in this
variation, you must set some specific access controls at the level of the entire
information map and then assign the filter as an authorization-based prefilter that will
apply only to one particular group of users (rather than as a general prefilter, which
has a universal effect).

The permissions that you will set are summarized in the following table.

Table 10.5 Information Map Controls

Access Class (User Group) Information Map

All rows (Human Resources) Grant R, RM

No rows (PUBLIC) Deny1 R, RM

Some rows (SASUSERS) Grant R2, RM

1 The information map in this example exists only for the purpose of obtaining salary information,
so the "No rows" users do not need to be able to see or use this information map.

2 To narrow this direct grant of Read permission as appropriate for each member of SASUSERS,
you can use the byPersonName filter that you created in the main example.

To set these permissions, complete the following steps:

1 Prepare the information by using either of these methods:

� To create a new information map for this variation, follow the instructions for
steps 1 and 2 in the main example. Use a name such as SalaryByPersonName
(with AuthBasedPreFilter) when you save the information map.

� To reuse the information map from the main example, save that map with a
different name and then deassign any filters that were assigned on the
General Prefilters tab.

2 With the information map open, select Tools � Authorization to open the
Authorization dialog box.

3 In the Names box, select PUBLIC. In the Permissions list, select the Deny check
box for the Read and ReadMetadata permissions.

BI Row-Level Permissions � Variation 2: Apply Different Filtering Logic to Different Groups 167

Note: Make sure that the check boxes for the Read and ReadMetadata
permissions have a white background color. This indicates that these settings are
direct permissions. �

4 To add the HR All Salaries and SASUSERS group identities to the Names box,
click Add, select these groups in the Add Users and/or Groups dialog box, and then
click OK.

168 Variation 2: Apply Different Filtering Logic to Different Groups � Chapter 10

5 In the Names box, examine the settings for the SASUSERS group identity.

In the Permissions list, select the Grant check boxes to directly assign the Read
and ReadMetadata permissions for this information map to the SASUSERS group.

6 To limit the grant of Read permission that you just gave to the SASUSERS group,
assign the byPersonName filter to that group as an authorization-based prefilter.
Complete these steps:

a Click Add Condition to open the Row-Level Permission Condition dialog box.

BI Row-Level Permissions � Variation 2: Apply Different Filtering Logic to Different Groups 169

Note: As the preceding figures illustrate, the Add Condition button became
available when you added a direct grant of Read permission. �

b In the Selected filters list, select the SECURITY_ASSOC table.
c In the Available filters list, select the byPersonName filter and then use

the arrow button to move that filter to the Selected filters list.

Note: Unlike a filter that you assign on the General Prefilters tab, this
filter will apply only to members of the SASUSERS group as evaluated
according to the identity hierarchy and access control precedence rules. �

d Click OK to close the Row-Level Permission Condition dialog box.
7 In the Names box, select the HR All Salaries group identity. In the Permissions

list, select the Grant check box for the Read and ReadMetadata permissions.
(white background).

170 Variation 2: Apply Different Filtering Logic to Different Groups � Chapter 10

Note: Because you want this group to be able to view all salaries, you will not
constrain the direct grant of Read permission by adding a permission condition. �

8 In the Authorization dialog box, click Close.
9 To make your changes take effect, save the information map.

With these access controls in place, the rows that are retrieved vary as follows:
� Users who do not have individual metadata identities will not be able to see or use

the information map.
� Users who have individual metadata identities but are not listed in the security

associations table will see the information map, but will retrieve no rows.
� Users who have individual metadata identities, are listed in the security

associations table, and are not members of the HR All Salaries group will be able
to view only those rows that contain data for their direct and indirect reports.

� Users who are members of the HR All Salaries group will be able to retrieve all
rows.

171

C H A P T E R

11
OLAP Member-Level Permissions

About OLAP Member-Level Permissions 171
Format for an OLAP Permission Condition 172

How to Assign an OLAP Permission Condition 173

Example: Using Member-Level Permissions 174

Introduction, Assumptions, and Data Model 174

Implementation Process 174

About OLAP Member-Level Permissions

OLAP member-level permissions enable you to limit access to SAS OLAP data by
using filters. Each filter consists of an MDX expression that subsets the data in a
dimension as appropriate for a particular user or group. The filters are stored in the
metadata as permission conditions. The OLAP member-level permissions feature offers
these advantages:

� This feature is integrated with other SAS Intelligence Platform administrative
functions. OLAP member-level permissions are assigned to existing metadata
identities, stored in the metadata repository, and evaluated by the SAS Metadata
Server’s authorization facility.

� This feature uses the standard authorization GUI for the SAS Intelligence
Platform from within SAS Management Console.

� This feature relies on the SAS OLAP Server for enforcement. At query time, the
server performs the filtering to determine which dimension members should be
returned to each requesting user. This enables the server to leverage its
knowledge to accomplish the filtering efficiently. This also ensures that the filters
are applied every time the data is accessed.

When you use OLAP member-level permissions, it is essential to understand these
points:

� Permission conditions constrain only direct ACE grants of the Read permission.

� With OLAP data, permission conditions can be specified only on dimension objects.

� If more than one permission condition applies to an identity, then the condition
that is assigned at the highest level of identity precedence is applied. Other
conditions that also apply to a user because of group memberships do not provide
additional, cumulative access (unless there is an identity precedence tie between
multiple groups at the highest level of identity precedence).

� The members that are returned by the MDX expression must all belong to the
dimension on which the permission condition is defined. The returned set of
members cannot be a union of members from other dimensions.

172 Format for an OLAP Permission Condition � Chapter 11

� A permission condition that filters a non-default hierarchy must include at least
one member of the default hierarchy. If a requesting user does not have access to
any members in the default hierarchy, then the query fails with a permissions
error.

Format for an OLAP Permission Condition
The format of the MDX expression that you use to define an OLAP permission

condition varies slightly depending on whether you are filtering against the default
hierarchy for the selected dimension. For example, consider a cube that has this
structure:

Cube: OrionStar
|
|-Dimensions
| |
| |-Organization
| | |
| | |-Hierarchies
| | |-Organization (All)
| | |-Stores (default)
| | | |
| | | |-Levels
| | | |-Stores (All)
| | | |-East
| | | | |
| | | | |-Members
| | | | |--Boston
| | | | |--Washington D.C.
| | | | |--Atlanta
| | | |-North
| | | |-West
| | | |-South
| | |
| | |-Staff
| | |-Staff (All)
| | |-Departments
| | |-Employees
| | |-Salaries
| |
| |-Products
| |-Sales
| |-Time
|
|-Measures

For this cube, you could set the following permission conditions on the Organization
dimension:

� To enable GroupA to read only the East level of the Stores hierarchy, assign this
condition to GroupA:

{[Organization].[Stores].[East].members}

� To enable GroupB to read all members of the Stores hierarchy in the Organization
dimension except for the members in the East level, assign this condition to
GroupB:

OLAP Member-Level Permissions � How to Assign an OLAP Permission Condition 173

EXCEPT({[Organization].[Stores].members}, {[Organization].[Stores].[East].members})

� To limit the display of the Staff hierarchy for GroupC to show only the
Departments level, assign this condition to GroupC:

{[Stores].defaultmember}<!--CONDITION-->{[Staff].[Departments].members}

Notice that because this expression filters against a hierarchy (Staff) that is not
the default hierarchy for the Organization dimension, it must also include a
member from the default hierarchy (Stores). The initial part of the expression,
which concludes with the right angle bracket (>), meets the requirement by
including the default member of the default hierarchy.

Related Topics

“MDX Queries and Syntax” in the SAS OLAP Server: MDX Guide

“Building Cubes” in the SAS OLAP Server: User’s Guide

How to Assign an OLAP Permission Condition

To assign an OLAP permission condition, complete these steps:

1 In SAS Management Console, navigate to Environment Management �
Authorization Manager � Resource Management � By Location � <your
application server> � <your OLAP schema> � <your cube> � Dimensions
and double-click the dimension for which you are defining a permission condition.

2 In the dimension’s Properties dialog box, select the Authorization tab.

3 On the Authorization tab, select (or add) the user or group whose read access
you want to limit with a permission condition.

4 In the permissions list, add a direct grant of the Read permission for the identity
that you selected. The Add Condition button is now enabled.

Notice that the check box for the Read permission has no added background color;
this indicates that the permission is directly granted.

5 Click Add Condition to open the Permission Condition dialog box.

6 In the Permission Condition dialog box, enter an MDX expression that filters the
current dimension as appropriate for the identity that you selected in step 3.

7 Click OK to save the permission condition.

Related Topics

“Access Requirements for OLAP Data” on page 130

174 Example: Using Member-Level Permissions � Chapter 11

“Example: Denying Most Users Read Permission to a Particular OLAP Cube” on
page 119

Example: Using Member-Level Permissions

Introduction, Assumptions, and Data Model
This example demonstrates how you can use member-level permissions. These are

the security goals in this example:
� Enable company executives to access data based on their areas of responsibility.
� Prevent other employees from accessing data in the cube that is used to generate

executive reports.

The following figure shows the relevant parts of a company’s organization structure
and of the OLAP cube against which the company runs executive reports. Notice that
the levels in the cube’s Geography dimension closely correspond to the depicted
organizational structure.

Vice President:
International

Director: Africa

Director: Asia Director: Europe

Manager:
Germany

Manager:
USA

Director:
Australia/Pacific

Director:
North America

Vice President:
Americas

President

Organization Structure Levels in the Geography Dimension

City
Level

Country
Level

Continent
Level

Africa

Asia

Australia/
Pacific

All
Geography

Europe Germany

USANorth
America

All
Level

Implementation Process
To meet the security goals in this example, complete these steps:
1 In SAS Management Console, navigate to the cube under Environment

Management � Authorization Manager � Resource Management � By
Location � SASMain � SASMain-OLAP Schema

OLAP Member-Level Permissions � Implementation Process 175

2 Set these permissions for the entire cube:*
� Give the PUBLIC group direct denials of the Read and ReadMetadata

permissions for the entire cube. The data in the cube is used for executive
reports only.

� Give the company president direct grants of the Read and ReadMetadata
permissions for the entire cube. This user sees all of the data.

� Give the SAS System Services Group a direct grant of the ReadMetadata
permission. You must always preserve the SAS Trusted User’s access to
cubes and schemas.

� In most cases, some members of the information technology staff will also
need access to the data for administrative purposes. Make sure that any such
groups or users have direct grants of the Read and ReadMetadata
permissions.

3 Figure out the expressions that you will use to limit read access within the cube as
appropriate for each executive. This table contains MDX expressions that you
could use to subset the data based on each executive’s area of responsibility.

Table 11.1 Example: MDX Expressions

User MDX Expression Notes

Vice
President
Americas

{[Geography].[All Geography], Descendants([Geography].[All
Geography].[North
America],[Geography].[Continent],SELF_AND_AFTER)}

Vice
President
International

Except({[Geography].Members},
{Descendants([Geography].[All Geography].[North
America],[Geography].[Continent],SELF_AND_AFTER)})

Use Except to
exclude North
America.

{[Geography].[All Geography],[Geography].[All
Geography].[North America],[Geography].[All
Geography].[North America].Children}

Use .Children
to include
countries.

{[Geography].[All Geography],[Geography].[All
Geography].[North America],descendants([Geography].[All
Geography].[North America])}

Alternative:
use
Descendants to
include
countries and
cities.

Director
North
America

{[Geography].[All Geography].[North America],
[Geography].[All Geography].[North America].Children}

Alternative:
exclude the All
level.

Director
Africa

{[Geography].[All Geography].[Africa], [Geography].[All
Geography].[Africa].Children}

Director
Asia

{[Geography].[All Geography].[Asia],[Geography].[All
Geography].[Asia].Children}

Director
Australia/
Pacific

{[Geography].[All Geography].[Australia/Pacific],
[Geography].[All Geography]. [Australia/Pacific].Children}

Director
Europe

{[Geography].[All Geography].[Europe], [Geography].[All
Geography].[Europe].Children}

* For instructions, see “Example: Denying Most Users Read Permission to a Particular OLAP Cube” on page 119.

176 Implementation Process � Chapter 11

User MDX Expression Notes

Manager
Germany

{[Geography].[All Geography].[Europe].[Germany],
descendants([Geography].[All
Geography].[Europe].[Germany])}

Exclude
Europe.*

Manager
USA

{[Geography].[All Geography].[North America].[USA],
descendants([Geography].[All Geography].[North
America].[USA])}

Exclude North
America.*

* Because this expression excludes a parent level, you should also deny this user the
ReadMetadata permission for the level that you are hiding. This is a requirement when
OLAP data is accessed through an information map.

4 In SAS Management Console, define metadata that assigns the correct condition to
each executive who should have limited access to the data. Complete these steps:

a Within the cube, navigate to and double-click the Geography dimension.

b On the Authorization tab of the Properties dialog box, select (or add) the
Vice President Americas user.

c In the permissions list, add a direct grant of the Read permission for the Vice
President Americas user. The Add Condition button is now enabled.

Notice that the check box for the Read permission has no added background
color; this indicates that the permission is directly granted.

d Click Add Condition to open the Permission Condition dialog box. In the
Permission Condition dialog box, enter the MDX expression for the Vice
President Americas user. This condition limits the direct grant of the Read
permission that you just gave to this user.

OLAP Member-Level Permissions � Implementation Process 177

e Click OK to save this permission condition and then return to step 4b to
repeat the process for the next executive.

178

179

P A R T5

Appendixes

Appendix 1.Who’s Who in the SAS Intelligence Platform 181

Appendix 2.Bulk-Load Processes for Identity Management 185

Appendix 3.Security Implementation Example 215

Appendix 4.Recommended Reading 221

180

181

A P P E N D I X

1
Who’s Who in the SAS
Intelligence Platform

Standard User Metadata Identities 181
Standard Group Metadata Identities 182

Standard User Metadata Identities
The following table lists standard user identities that you will see in the User

Manager node in SAS Management Console. Most of these identities are created during
installation. Not all deployments require all identities.

Table A1.1 Standard User Metadata Identities

User Name (account) Functions and Capabilities

SAS Administrator
(sasadm)

An unrestricted account that has full access to all metadata (other
than passwords, which this account can overwrite but cannot read)
and can administer all SAS servers. Use this account only to perform
tasks that require unrestricted privileges (such as resetting a
password for another user). Use this account only with SAS
Management Console. Do not use this account to define a database
library or to perform other tasks that involve reading passwords from
the metadata.

SAS Trusted User
(sastrust)

A trusted account that can impersonate other users on connections to
the metadata server. Impersonation functionality is used by the SAS
OLAP Server, report scheduling, and Web applications that are using
Web authentication. In the default configuration, this account is used
by the object spawner to read server definitions. In the documented
workspace pooling configuration, this account functions as the pool
administrator.

SAS Demo User (sasdemo) A regular account that can serve as a generic end-user account to test
any of the SAS client applications. This account is not required for
configuration and can be removed safely.

182 Standard Group Metadata Identities � Appendix 1

User Name (account) Functions and Capabilities

SAS Web Administrator
(saswbadm)

A service account that SAS Information Delivery Portal and SAS Web
Report Studio use to perform administrative functions.

SAS Guest User (sasguest) A surrogate account that some Web applications use to define access
for users who do not have individual metadata identities. SAS
Information Delivery Portal uses this account to define the content of
the Public Kiosk. In the recommended configuration, SAS Web
Report Studio uses this account as a surrogate user for users who do
not have their own metadata identities.

Note: The SAS General Server User is not listed in this table because there is no
user definition or individual metadata identity for the SAS General Server User. This
account (sassrv) is included as a login for the group definition for the SAS General
Server Users group. By default, this service account is the process owner for stored
process servers. Stored process servers and SAS/SHARE servers use this account to
communicate with the metadata server. �

Related Topics:

“Minimizing the Availability of Accounts” on page 76

“How to Designate an Unrestricted, Administrative, or Trusted User” on page 93

Standard Group Metadata Identities

The following table lists the standard group identities that you will see in the User
Manager node in SAS Management Console. Except where otherwise indicated, these
identities are created during installation and membership is defined by you. Not all
deployments require all identities.

Table A1.2 Standard Group Metadata Identities

Group Name Description

PUBLIC A standard group with implicit membership. This group includes
everyone who can access the metadata server, either directly or
through a trust relationship. In most cases, users who do not have a
individual metadata identities have the access that has been defined
for the PUBLIC group.1

SASUSERS A standard group with implicit membership. This group includes
those members of the PUBLIC group who have a metadata identity.
All members of the SASUSERS group are also members of the
PUBLIC group.

Administrators An optional group that you can create for convenience in managing
access controls for your metadata administrators.

SAS System Services A standard group whose membership includes the SAS Trusted User
and the SAS Web Administrator.

SAS General Servers A standard group whose membership includes the SAS Trusted User.

Portal Admins A standard group for the SAS Information Delivery Portal.
Membership includes the SAS Web Administrator.

� Standard Group Metadata Identities 183

Group Name Description

Portal Demos A standard group for the SAS Information Delivery Portal.
Membership includes the SAS Demo User and any other
demonstration accounts that you create.

WRS Report Consumer2 A standard role for SAS Web Report Studio. Membership in this
group enables users to copy, move, save, rename, and delete reports.

WRS Report Author2 A standard role for SAS Web Report Studio. Membership in this
group provides all of the capabilities of the report consumer role and
also enables users to create and schedule reports.

WRS Advanced User2 A standard role for SAS Web Report Studio. Membership in this
group provides all of the capabilities of the report author role and
also enables users to distribute and archive reports.

WRS Administrator A standard role for SAS Web Report Studio. Membership in this
group enables users to perform all SAS Web Report Studio tasks,
including creating and deleting recipient lists for report distribution.
Unlike the SAS Administrator, members of this group must also have
appropriate metadata permissions in order to perform any task.

WRS Prohibited A standard role for SAS Web Report Studio. Membership in this
group prevents users from logging on to SAS Web Report Studio,
regardless of any other role assignments.

1 In some circumstances, users who do not have metadata identities have the access that has
been defined for a surrogate user (rather than having the access that has been defined for the
PUBLIC group). In the public kiosk of the SAS Information Delivery Portal, all users have the
access that has been defined for the SAS Guest User. In the recommended configuration for
SAS Web Report Studio, a user who does not have a metadata identity has the access that has
been defined for a surrogate user.

2 By default, all SAS Web Report Studio users implicitly have this role. However, if you explicitly
assign any members to the role, then only the explicitly assigned members will have the role.

Note: A role is a special type of group that is used to control the availability of
actions within an application. �

Related Topics:
“Creating a Group of Metadata Administrators (Optional)” on page 69
“Using SAS Web Report Studio Roles” in the chapter “Managing SAS Web Report

Studio Content and Users” in the SAS Intelligence Platform: Web Application
Administration Guide

184

185

A P P E N D I X

2
Bulk-Load Processes for Identity
Management

Overview of Identity Bulk-Load Processes 186
Introduction to Identity Bulk-Load Processes 186

Supported Associations 186

Integrity Constraints 186

Understanding External Identities 187

How to Perform an Initial Import of Identity Information 187
Overview of the Initial Import Process 187

Initial Import from Active Directory 188

Importing Identities from Active Directory 188

Using importad.sas 189

Initial Import from UNIX /etc/passwd Files 190

Importing Identities from UNIX /etc/passwd Files 190
Using importpw.sas 190

Initial Import from Other Sources 192

Sample Code for Generic Identity Import 192

How to Synchronize Imported Identity Information 195

Overview of the Identity Synchronization Process 195
1. Rebuilding the Master Canonical Tables 196

2. Creating Canonical Tables from the SAS Metadata Server 196

3. Comparing the Master and SAS Metadata Server Canonical Tables 197

Overview of the Comparison Process 197

Defining an Exception to the Comparison Process 198
4. Validating the Change Tables 198

5. Updating the SAS Metadata Server with Changed Information 199

Sample Code for Identity Synchronization 199

Identity Bulk-Load Processes: Reference 201

Canonical Tables 201

Overview of Canonical Tables 201
Table Structure 202

Table Requirements 204

Table Relationships 204

Bulk-Load Macros 207

Overview of Bulk-Load Macros 207
%MDUIMPC Autocall Macro 208

%MDUIMPL Autocall Macro 209

%MDUEXTR Autocall Macro 210

%MDUCMP Autocall Macro 210

%MDUCHGV Autocall Macro 212
%MDUCHGL Autocall Macro 213

Connection Options for the SAS Metadata Server 214

186 Overview of Identity Bulk-Load Processes � Appendix 2

Overview of Identity Bulk-Load Processes

Introduction to Identity Bulk-Load Processes
As an alternative to using the User Manager in SAS Management Console, you can

use bulk-load processes for these identity management tasks:
� Perform an initial import of identity information from an external enterprise

source into the metadata server.
� Periodically update the identity information on the metadata server with current

information from the external source.

SAS provides the following items that you can use to define identity bulk-load
processes for your environment:

canonical tables specially formatted tables in which identity information is stored
during bulk processing. For reference information, see “Canonical
Tables” on page 201.

macros SAS autocall macros that you can use to perform specific tasks, such
as creating canonical tables or loading user and group definitions
that originate from an enterprise identity source. For reference
information, see “Bulk-Load Macros” on page 207.

sample
applications

SAS code that uses the bulk-load macros to perform bulk processing
of identity information from enterprise information sources. Two
sample applications (importad.sas for Active Directory and
importpw.sas for UNIX /etc/passwd files) are described in this
chapter. The code for these applications is located in the SAS
Sample Library.

Note: On Windows, the sample library is in SAS-install-dir\SAS
9.1\core\sample. On UNIX, the library is located in
SAS-install-dir/SAS_9.1/samples/base. �

Supported Associations
The metadata server supports the following relationships between identity data:
� A person can have multiple locations, e-mail addresses, and telephone numbers.

However, each person can have only one item of a given type. For example, a
person can have one home e-mail address and one work e-mail address, but not
two work e-mail addresses.

� A person can be a member of multiple groups.
� A person or group can have multiple logins (but no more than one login for each

authentication domain).
� A group can be a member of other groups.

Integrity Constraints
As explained in “Uniqueness Requirements for Names and User IDs” on page 10,

user and group definitions must meet certain criteria before they can be added to a SAS

Bulk-Load Processes for Identity Management � Overview of the Initial Import Process 187

Metadata Server. The following list summarizes the constraints on identity metadata
that are most relevant to the identity bulk-load processes:

� Person names and group names must be unique in the metadata server. That is, if
a person or group name is already defined on the metadata server, another with
the same name cannot be added.

� A person or group can have multiple logins; however, a particular user ID must be
associated with only one person or group.

� The user ID in a login must be unique within the authentication domain in which
it is used. For example, the person "Joe Programmer" cannot have two logins with
a user ID of "joe" that are both associated to the Oracle authentication domain.

� The user IDs for Windows logins must be qualified with the Windows domain that
owns the account.

� If the login is for a network domain, then the user ID should take the form of
domain-name\userid.

� If the account is local to a specific machine, then the user ID should be in the
form of machine-name\userid.

Note: When updating identities, you cannot add and remove a definition for a
person or a group that has the same name at the same time.

If you follow the processes defined in this documentation, then errors that violate
these constraints will be detected by the %MDUCHGV macro before an attempt is
made to load the changes into the metadata server. You can then check the error data
set created by %MDUCHGV and take corrective action before attempting to make the
changes on the server. �

Understanding External Identities
In order to synchronize identity information between two disparate sources, your

program must be able to map an entry in one source to its corresponding entry in the
other source. This list explains how this mapping is accomplished:

1 In your external source, you select a field to use for the mapping. This should be a
field that contains a unique and unchanging value for each identity that you want
to manage with batch processes. Typically, this will be an identifier such as
employee number.

2 When you perform an initial import from your external source into the metadata,
the external identity value for each user or group is stored in the metadata as part
of an ExternalIdentity object. Each imported identity has at least one external
identity value.

3 During the comparison phase of the synchronization process, external identity
values serve as the key between the tables that are extracted from the external
source and the tables that are extracted from the metadata.

How to Perform an Initial Import of Identity Information

Overview of the Initial Import Process
The following figure provides a generalized depiction of the process for importing

identity information and indicates how the %MDUIMPC and %MDUIMPL macros can
be used in this process.

188 Initial Import from Active Directory � Appendix 2

Figure A2.1 Initial Import Process for Identity Information

External Enterprise
Identity Source

SAS Metadata
Repository

Enterprise
Extract Library

(raw data)

Enterprise
Extract Library

source-specific
extraction code

source-specific
normalizing code

MDUIMPC
(creates table
definitions for

canonical tables)

for example:
importad.sas

or
importpw.sas

MDUIMPL
(load)

The remainder of this section describes the initial process in detail for Active
Directory and UNIX /etc/passwd files, and provides some guidance for importing
identity information from other sources.

Initial Import from Active Directory

Importing Identities from Active Directory
SAS provides a sample application (importad.sas) that you can use to bulk load

identity information from an Active Directory server. To adapt and run the sample
application, complete these steps:

1 Ensure that any metadata identities that have already been created on the
metadata server are not included in the enterprise data source from which you
will import identities. If you attempt to import a user or group that has the same
name as an existing metadata identity, then the import will fail.

2 Review “Canonical Tables” on page 201 to understand the information that is
stored and how the associations between objects are formed.

3 Read the information in “Using importad.sas” on page 189. This will enable you to
determine how to map the user information fields in the sample application to the
user information fields in your enterprise system. Comments in the application
source code describe how to modify the applications to use different fields.

4 In the SAS Program Editor, open importad.sas. (This file is in the SAS Sample
Library. On Windows systems, you can find the file in SAS-install-dir\SAS
9.1\core\sample, and on UNIX systems, the file is in SAS-install-dir/SAS_9.1/
samples/base.)

5 Modify section 1 of the program to include site-specific metadata server and source
server connection values. Connect as an unrestricted user (such as sasadm).

Bulk-Load Processes for Identity Management � Initial Import from Active Directory 189

6 In sections 3 and 4 of the program, substitute site-specific attributes or modify
other aspects of the application as needed.

Note: The %MDUIMPC macro uses a keyid variable to uniquely identify Person,
Group, and AuthenticationDomain objects. For this reason, a Person, Group, or
AuthenticationDomain cannot have the same keyid value. �

7 Submit the application.

8 Rename and save the application for use during synchronization.

Using importad.sas

The importad.sas program should be executed in a SAS system installation that
includes SAS Integration Technologies software. SAS Integration Technologies software
is available in installations that are used to run workspace servers.

The importad.sas program references standard Active Directory schemas to identify
the user and group attributes that will be extracted, and it uses the LDAP CALL
Routine interface to query the Active Directory server and perform the extraction. If
your site has extended the standard schema with site-specific attributes, you might
want to modify section 3 to reference additional or alternate attributes. Also, all users
should examine sections 3 and 4 carefully to understand the LDAP filters that are used
to retrieve persons and groups.

Active Directory will not return the full set of records if the number of records
exceeds the maximum query limit. You can use filters to subset the data into sets that
do not exceed the maximum query limit. When you combine these smaller sets, you will
have all the data that you want to extract. You also can modify the filters to customize
which entries are imported. For example, you could specify to import entries only for
people who are members of a particular group.

The program requires you to specify a Distinguished Name in the Active Directory
hierarchy for Person and Group searches to begin. You must also specify attributes that
will serve as the keyid variables for Person and Group information. The default keyid
variable for a Person is the employee ID. For a Group, the Distinguished Name is used.
If you have groups stored in two different areas of the Active Directory server, then you
need to duplicate the extraction code to pull from the different base DNs for the groups.

Other important variables that you need to define include the following:

ADExtIDTag
specifies the source of the identity metadata to be loaded onto the metadata server.
The default value is Active Directory Import. This value should not be quoted.
This value is stored in an ExternalIdentity metadata object that is created and
associated with each Person and Group metadata object created by the import.

MetadataAuthDomain
specifies the name of a metadata authentication domain to which logins created by
the process should be associated. This name can be, but is not required to be, the
same name as the Windows domain. Logins from multiple Windows domains can
participate in the same metadata authentication domain if the Windows domains
trust each other. For example, if you created a default authentication domain
named DefaultAuth at installation, and there are logins that will be accessing
these same servers and using the same authentication mechanism, then specify
DefaultAuth.

WindowsDomain
specifies the name of the Windows domain to prepend to the user ID in Login
objects created by the extraction. The metadata server requires Windows user IDs
to be domain-qualified.

190 Initial Import from UNIX /etc/passwd Files � Appendix 2

filename keepxml ’filename.xml’
specifies a location to store the XML created by the %MDUIMPL macro. Specify a
complete filename, including the path and .xml extension.

Initial Import from UNIX /etc/passwd Files

Importing Identities from UNIX /etc/passwd Files
SAS provides a sample application (importpw.sas) that you can use to bulk load

identity information from a UNIX /etc/passwd file. To adapt and run the sample
application, complete these steps:

1 Ensure that any metadata identities that have already been created on the
metadata server are not included in the enterprise data source from which you
will import identities. If you attempt to import a user or group that has the same
name as an existing metadata identity, then the import will fail.

2 Review “Canonical Tables” on page 201 to understand the information that is
stored and how the associations between objects are formed.

3 Read the information in “Using importpw.sas” on page 190. This will enable you to
determine how to map the user information fields in the sample application to the
user information fields in your enterprise system. Comments in the application
source code describe how to modify the applications to use different fields.

4 In the SAS Program Editor, open importpw.sas. (This file is in the SAS Sample
Library. On Windows systems, you can find the file in SAS-install-dir\SAS
9.1\core\sample, and on UNIX systems, the file is in SAS-install-dir/SAS_9.1/
samples/base.)

5 Modify section 1 of the program to include site-specific metadata server and source
server connection values. Connect as an unrestricted user (such as sasadm).

6 In sections 3 and 4 of the program, substitute site-specific attributes or modify
other aspects of the application as needed.

Note: The %MDUIMPC macro uses a keyid variable to uniquely identify Person,
Group, and AuthenticationDomain objects. For this reason, a Person, Group, or
AuthenticationDomain cannot have the same keyid value. �

7 Submit the application.
8 Rename and save the application for use during synchronization.

Using importpw.sas
The importpw.sas program can import information from /etc/passwd files that

include user information in a gcos field in the following form:

user name : password : uid (numeric) : primary group id : <continued>
gcos-field: home-directory : login-shell

where gcos-field consists of additional comma-delimited fields in the following form:

Person Name, Office, phone extension, misc, employeeid

The following is an example of what a password entry would look like in an /etc/
passwd file that has a gcos field:

user name : password : uid (numeric) : primary group id : <continued>
Person Name, Office, phone extension, misc, employeeid:<continued>

Bulk-Load Processes for Identity Management � Initial Import from UNIX /etc/passwd Files 191

home-directory : login-shell

The placement of colons and commas is important. Use colons to delimit standard
fields in the entry. The commas delimit additional fields to include in the file. The
commas are not required. You can use any delimiter that you want, except a colon,
since it identifies the standard fields. If your /etc/passwd file does not match this layout,
you will need to modify the sample program to either exclude information from the
extraction or to extract it from the appropriate fields.

Note that the employeeid field of the gcos field is required. If the employeeid field for
a particular /etc/passwd entry is empty, then that entry will be dropped from the
import. The values in the Person Name field also should be unique. The program
includes a DUPLICATEPERSONS macro variable that, when set to RECODE, changes
a duplicate value in the Person Name field to the user ID value of the PW file entry.
However, if the DUPLICATEPERSONS macro variable is set to any other value, users
with duplicate names in the Person Name field are deleted.

The program expects to extract group information from an /etc/group file. There are
no special fields in this file. The format of a standard /etc/group file is as follows:

groupname : password : gid (numeric) : comma-delimited list of users

The users in the comma-delimited list of users are identified by user name rather
than by a numeric user ID. Note that groups are not allowed to be members of other
groups.

To disable a user or group entry, enter an asterisk (*) in the password field. The
program drops those entries that contain an asterisk in the password field.

Other important variables that you need to define include the following:

PWExtIDTag
specifies the source of the identity metadata to be loaded onto the metadata server.
The default value is Passwd File Import. This value should not be quoted. This
value is stored in an ExternalIdentity metadata object that is created and
associated with each Person and Group metadata object created by the import.

filename grpfile ’filename’
specifies pathname of the file from which to import group information. The default
value is /etc/group.

filename pwfile ’filename’
specifies the pathname of the file from which to import person information. The
default value is /etc/passwd.

MetadataAuthDomain
specifies the name of a metadata authentication domain to which logins created by
the process should be associated. This name can be, but is not required to be, an
actual network domain. This is a construct for associating logins to servers and
processes for which the logins are valid. Depending on network configuration and
trust relationships, multiple network domains can be associated with a single
metadata authentication domain. For example, if you created a default
authentication domain named DefaultAuth at installation, and there are logins
that will be accessing these same servers and using the same authentication
mechanism, then specify DefaultAuth.

UNIXEMAILDOMAIN
specifies a network domain. This domain will be appended to the user IDs
extracted from the passwd file to form an e-mail address of the form
userid@value_of_variable.

192 Initial Import from Other Sources � Appendix 2

DUPLICATEPERSONS
specifies what to do when multiple accounts are encountered for the same person.
The default behavior is to create a new Person object using the user ID as the
person name.

filename keepxml ’filename.xml’
specifies a location to store the XML created by the %MDUIMPL macro. Specify a
complete filename, including the path and .xml extension.

Initial Import from Other Sources
If your enterprise identity information is not in a format that is covered in the two

previous topics, then your first step in the bulk-import process is to figure out how to
extract the data from your enterprise source and make it available for use with the
bulk-load macros. If you have an LDAP enterprise source, you might be able to modify
the Active Directory sample application for your purposes. Otherwise, you can use the
%MDUIMPC macro to define the canonical tables and then use DATA steps to extract
the information from the external source and insert it into the tables.

After you have created and populated the canonical tables, use the %MDUIMPL
macro to load the identity information into the metadata server. This macro uses the
tables that were created with the %MDUIMPC macro to build the XML that is
necessary to add the user information to a SAS Metadata Repository. The macro then
invokes PROC METADATA to submit the XML to the server. Use the options that are
described in “Connection Options for the SAS Metadata Server” on page 214 to identify
the target metadata server and repository.

If you want to load group definitions that have logins, use the synchronization
process to load the group definitions. The %MDUIMPL macro does not allow group
definitions to have logins associated with them, but the corresponding synchronization
macro, the %MDUCHGL macro, does allow logins on group definitions. The
%MDUCHGL macro works similarly to the %MDUIMPL macro, except that it uses the
change tables created by the %MDUCMP macro as its source of input; therefore, you
must follow the steps in “How to Synchronize Imported Identity Information” on page
195 before you can execute the macro.

If you do not want to load or update the user and group definitions on the metadata
server immediately, specify the options submit=0 and outrequest=fileref to save the
XML that they generate to a file. To execute the XML later, use PROC METADATA.
For more information about PROC METADATA, see the METADATA procedure in the
SAS Open Metadata Interface: Reference (available on SAS OnlineDoc 9.1.3).

If you want to specify information about an imported identity’s origin, use the
EXTIDTAG option. You can enter a descriptive string of up to 32 characters in this
parameter. This string is stored as the Context attribute of an ExternalIdentity object
that is created along with each Person and IdentityGroup object that is created in the
target repository. If you do not specify a value for this option, the default value
IdentityImport will be used. Any value you specify should not be quoted.

Sample Code for Generic Identity Import
The following program includes some sample identity data and demonstrates one

way that you can import generic identity information. The purpose of the example is to
illustrate the structure and relationships of the identity data, rather than to suggest
that you enter large quantities of data using this approach.

The program executes the %MDUIMPC macro without options and uses macro
variables to define the tables and columns. Input data is supplied in DATALINES
statements. After the tables are created, the program executes the %MDUIMPL macro

Bulk-Load Processes for Identity Management � Initial Import from Other Sources 193

to create XML from the tables and to submit the XML to the metadata server. The
OUTREQUEST option specifies to save the XML to the fileref TESTXML.

/*---
* Example use of %MDUIMPC and %MDUIMPL macros for importing
* user information into the SAS Metadata Server.
*--- */
/*---
* Use the META* options to specify the metadata server connection options
* where the user information will be loaded.
---/
options metaserver=myserver

metaport=8561
metauser="mydomain\userid"
metapass="mypassword"
metaprotocol=bridge
metarepository=Foundation;

/* Initialize the macro variable with default values. Do not create empty tables */
%mduimpc();

/* Create the person table */
data &persontbla ;

%definepersoncols;
infile datalines delimiter=’,’ missover;

input keyid name description title;
datalines;

P001,Michelle Harrell,Mgr of Operations,Sr. Mgr
P002,Fred Granite,NE Region Acct. Rep.,Account Rep II
P003,Brian Davis,Accounting System Developer,Senior Programmer
;

/* Create the phone table */
data &phonetbla ;

%definephonecols;
infile datalines delimiter=’,’ missover;

input keyid phoneNumber phoneType;
datalines;

P001,x1532,Office
P001,(919) 555-1212,Home
P003,x2312,Office
;

/* Create the location table */
data &locationtbla ;

%definelocationcols;
infile datalines delimiter=’,’ missover;

input keyid locationName locationType address city postalcode area country;
datalines;

P001,My Company,Office,123 Oak Ave,Clayton,20711,CA,USA
P001,Michelle Harrell,Home,105 Seth Ct.,Apex,20765,CA,USA
P002,Fred Granite,Home,2138 Pond St.,Greenlevel,20832,CA,USA
P002,My Company,Office,123 Oak Ave,Clayton,20711,CA,USA
P003,My Company,Office,123 Oak Ave,Clayton,20711,CA,USA
;

194 Initial Import from Other Sources � Appendix 2

/* Create the email table */
data &emailtbla ;

%defineemailcols;
infile datalines delimiter=’,’ missover;

input keyid emailAddr emailtype;
datalines;

P001,michelle@mycompany.com,business
P001,bosslady1@hotmail.com,home
P002,fred@mycompany.com,business
P003,brian@mycompany.com,business
;

/* Create the idgrp table */
data &idgrptbla ;

%defineidgrpcols;
infile datalines delimiter=’,’ missover;

input keyid name description grpType;
datalines;

G001,Operations Staff,Members of the operations department,
G002,All Groups,Group containing all groups,
G003,Backup Operators, ,
;

/* Create the grpmems table */
data &idgrpmemstbla ;

%defineidgrpmemscols;
infile datalines delimiter=’,’ missover;

input grpkeyid memkeyid;
datalines;

G001,P001
G002,G001
G002,G003
G003,G001
G003,P003
;

/* Create the authdomain table */
data &authdomtbla ;

%defineauthdomcols;
infile datalines delimiter=’,’ missover;

input keyid authDomName;
datalines;

A001,DefaultAuth
A002,UnixAuth
;

/* Create the logins table */
data &logintbla ;

%definelogincols;
infile datalines delimiter=’,’ missover;

/* input &logincoll; */
input keyid userid password authdomkeyid;

Bulk-Load Processes for Identity Management � Overview of the Identity Synchronization Process 195

datalines;
P001,WinNet\Michelle, ,A001
P001,Michelle, ,A002
P002,WinNet\Fred, ,
P003,WinNet\Brian, ,
P003,Brian, ,A002

;
/* Now, load the information contained in the data sets above into the */
/* metadata server. Defaults will read the data sets from the Work */
/* library. */
filename testxml ’filename.xml’ lrecl=1024;

%mduimpl(outrequest=testxml);

How to Synchronize Imported Identity Information

Overview of the Identity Synchronization Process
Metadata identities that are imported into a SAS Metadata Server using SAS

bulk-load processes can be periodically compared to current information from the
external source to ensure that the metadata definitions are current. Use the following
general process to compare and update identity metadata with current information
from an external source:

1 Rebuild the master canonical tables with current information from the external
source.

2 Create canonical tables from the identities on the metadata server.
3 Compare the master tables to the server tables.
4 Validate the changes before updating the metadata server (optional).
5 Update the metadata server with any changes that are found.

The following figure depicts the process and indicates how the macros that SAS
provides can be used in this process. The remaining topics in this section describe each
step in detail.

196 1. Rebuilding the Master Canonical Tables � Appendix 2

Figure A2.2 Synchronization Process for Identity Information

External Enterprise
Identity Source

SAS Metadata
Repository

Enterprise
Extract Library

(raw data)

Master
Library

Target
Library

source-specific
extraction code

source-specific
normalizing code

MDUIMPC
(creates table
definitions for

canonical tables)

MDUEXTR
(extract)

1
2

3
MDUCMP

(comparison)

4

MDUCHGL
(load changes)

5

MDUCHGV
(integrity check)

Changes
Library

Exceptions List

Errors List
M

et
ad

at
a

U
pd

at
es

1. Rebuilding the Master Canonical Tables
It is recommended that you use the same program that you used to create the master

canonical tables to rebuild them. For example, if you used the importad.sas or
importpw.sas sample applications to import identities, then you would use these
applications to create new versions of the master tables. The applications would extract
current information from the Active Directory server or /etc/passwd files, and overwrite
the master canonical tables with new ones. You will need to suppress execution of the
%MDUIMPL macro (which loads the identities on the metadata server) when you
execute the applications. This can be done by specifying the macro variable
_EXTRACTONLY=1 before calling the applications.

2. Creating Canonical Tables from the SAS Metadata Server
In order to compare the content of the rebuilt master canonical tables to the

metadata identities on the metadata server, you need to create canonical tables of the
server identities. SAS provides the %MDUEXTR macro to extract identity metadata
from the metadata server and write it into canonical tables. The %MDUEXTR macro
extracts all Person and IdentityGroup metadata objects that are found on the server
(not just imported ones) and their associated location, login, telephone, and e-mail

Bulk-Load Processes for Identity Management � 3. Comparing the Master and SAS Metadata Server Canonical Tables 197

information. It then creates tables similar to the ones described in “Canonical Tables”
on page 201, except the tables have two additional columns:

objectid specifies the identity’s unique metadata object identifier. This value
is used to map updates to the extracted object back to the source
object on the metadata server.

extid specifies an ExternalIdentity object identifier. The %MDUIMPL and
%MDUCHGL macros create an ExternalIdentity object for every
Person and IdentityGroup object that they create on the SAS
Metadata Server. Identities that are defined in the User Manager in
SAS Management Console do not have an ExternalIdentity object
(or an extid value) associated with them.

3. Comparing the Master and SAS Metadata Server Canonical Tables

Overview of the Comparison Process
SAS provides the %MDUCMP autocall macro to enable you to compare the master

and server canonical tables. This macro creates change tables that contain any changes
that are found. The following list highlights important points to note about the
comparison process:

� The comparison process ignores passwords, unless the password belongs to a new
user or group definition. To change the password of an existing user or group
definition, you must use the SAS Personal Login Manager or the User Manager in
SAS Management Console. Note that only the password owner and the
unrestricted user can change a password, and that the unrestricted user can
overwrite an existing password with a new one, but this user cannot view an
existing password.

� By default, identities that were created manually in SAS Management Console are
excluded from the synchronization process. However, manual updates that have
been made to login, location, telephone number, and e-mail information that was
initially imported will be overwritten by the synchronization process, unless you
define exceptions to that process. See “Defining an Exception to the Comparison
Process” on page 198 for steps that you can take to preserve manual updates to
imported information.

� By default, the comparison process will mark new authentication domains found
in the master canonical tables for addition to the target, but it will not mark an
authentication domain that is not represented in the master tables for deletion.
This is done to protect authentication domains that might have been defined in
SAS Management Console. If you want to be able to compare only imported
authentication domains and to delete domains that do not have a matching
domain in the master tables, set the AUTHDOMCOMPARE parameter to
AUTHDOMCOMPARE=keyid.

� The %MDUCMP macro does not attempt to validate the information in the change
tables. To ensure that the new information from the enterprise data source meets
server-enforced integrity constraints, run the %MDUCHGV macro on the change
data sets before loading the changes on the metadata server.

The %MDUCMP macro records differences in the master and target canonical tables
in six change tables. These tables are described in “%MDUCMP Autocall Macro” on
page 210.

198 4. Validating the Change Tables � Appendix 2

Defining an Exception to the Comparison Process
An exception is something that you exclude from the comparison process. The

%MDUCMP macro enables you to define exceptions in an exceptions data set that is
submitted in the EXCEPTIONS parameter. This exceptions data set needs to have two
columns:

tablename specifies the name of the canonical table to which the exception
applies. Valid values are: person, logins, email, phone, location,
idgrps, grpmems, and authdomain.

filter specifies a SAS WHERE clause expression (without the WHERE) to
apply against the corresponding table. The WHERE clause consists
of a canonical table column name and an exception value. You can
define an exception for any column in a canonical table. To view a
list of the columns defined for each canonical table, see “Canonical
Tables” on page 201. The exception value can be a real or assigned
value. For example:

phone PhoneType="SMC Phone"
email EmailType="SMC Email"
logins authDomKeyId="A002"
logins userid="testid%"

In this example, the first two entries specify an assigned value. That is, it is a value
that users can optionally enter in the Type field of the Phone and Email entry panels of
the User Manager in SAS Management Console to indicate an intentional change to
imported information. The Type field corresponds to the PhoneType column of the
phone canonical table and to the EmailType column of the email canonical table. The
entries specify to exclude Phone and Email objects that have the values "SMC Phone"
and "SMC Email" from the comparison.

The last two entries specify real values. Of these, the first entry specifies to exclude
from the comparison all Login objects that have an authentication domain key identifier
of A002 in the logins table. The authentication domain key identifier is assigned as a
primary key in the authDomKeyId column of the authdomain table and is referenced in
the logins table as a foreign key. The second entry specifies to exclude from comparison
all Login objects which have a value that begins with testid in the userid column.

Note that tables and columns can be listed in the exceptions data set multiple times.
All entries for a table will be applied.

4. Validating the Change Tables
A new or modified user and group definition will be added to the metadata server

only if it meets server-enforced integrity constraints. These constraints are described in
“Integrity Constraints” on page 186. SAS provides the %MDUCHGV autocall macro to
enable you to validate that the changes identified in the change tables will not produce
these errors when loaded by the %MDUCHGL macro. You should run the %MDUCHGV
macro before executing the %MDUCHGL macro to update the metadata server.

The %MDUCHGV macro compares the contents of the change tables to the contents
of the canonical tables created from the metadata server to ensure that no duplicate
user identifiers, duplicate authentication domains, and other integrity violations are
found. When violations are detected, the macro sets the variable MDUCHGV_ERRORS
to a nonzero value and writes any violations to the data set specified in the ERRORSDS
parameter. You can use the information in the ERRORSDS data set to address the
problems in the change tables by hand in the User Manager in SAS Management
Console. As an alternative, you can re-execute the %MDUCMP macro and submit the

Bulk-Load Processes for Identity Management � Sample Code for Identity Synchronization 199

ERRORSDS data set in the EXCEPTIONS= parameter to re-create the change tables
without the offending changes. If an exceptions data set is already being used, you need
to append the content of the ERRORSDS data set to that data set.

If you do not validate the change tables before updating the server, any changes that
violate the server-enforced integrity constraints will cause an error when an attempt is
made to update the metadata server. When this occurs, none of the changes are made
to the server, and an error message is written to the SAS log.

5. Updating the SAS Metadata Server with Changed Information
SAS provides the %MDUCHGL autocall macro for updating metadata on the

metadata server with information from the change tables. See the reference
information for %MDUCHGL for more information.

Sample Code for Identity Synchronization
The following sample program contains code you might execute to update identities

that were imported from a Microsoft Active Directory host server. The program assigns
librefs to work directories, calls the importad.sas sample application to extract
updated metadata, and sets the _EXTRACTONLY macro variable to cause
importad.sas to simply extract updated information and create the canonical tables.
The program then executes the %MDUEXTR macro to extract identity metadata from
the metadata server, executes the %MDUCMP macro to compare the old and new
information, executes the %MDUCHGV macro to validate the changes, and executes
the %MDUCHGL macro to write the changes to the metadata server.

/*---
* Sample program for synchronizing the user and group
* information in the metadata server with Active Directory.
* This sample assumes the metadata was originally populated
* from Active Directory using importad.sas or via this
* sample program.
*
* To use the program, modify the appropriate sections to set
* metadata system options, define libraries, and specify the
* location of the modified importad.sas sample program.
---/

/*---
* Define system options for the metadata server.
---/
options metaserver=METADATASERVER.NETWORK.DOMAIN

metaport=8561
metauser="unrestricted-userid"
metapass="password"
metaprotocol=bridge
metarepository="Foundation";

/* Define the library where the extracted metadata info will be stored. */
libname mdextr "drive:\path\mdextract lib";

/* Define the library where the extracted Active Directory information
/* will be stored. Note: This library must also be used in the
/* importad.sas file because this program will simply include the modified

200 Sample Code for Identity Synchronization � Appendix 2

/* sample program to perform the extraction. */
libname extextr "drive:\path\enterprise extract lib";

/* Define the library where the change data sets will be saved. */
libname extrnchg "drive:\path\enterprise change lib";

/*---
* Step 1.
* When importad.sas is used for synchronization, you must turn %MDUIMPL
* off by defining the macro variable _EXTRACTONLY. Specifying a value
* for this variable has no effect; it is the existence of the _EXTRACTONLY
* macro variable that causes importad.sas to extract information
* and create the canonical tables without loading the information into
* the metadata repository.
--/
%let _EXTRACTONLY = ;
%include "drive:\path\importad.sas";

/*--
* Step 2.
*
* Execute %MDUEXTR to extract user information from the metadata
* server into a modified form of the canonical tables.
--/
%mduextr(libref=mdextr);

/*--
* Step 3.
*
* Execute the %MDUCMP comparison macro with the flag that specifies
* to compare only information that originated from enterprise sources.
* The information in the Enterprise extract lib is treated as the master,
* and the information in Mdextr lib is treated as the target. Exception
* list processing is also possible at this step and may be needed to
* prevent the deletion of information added in SAS Management Console.
* Change tables from this step are stored in the extrnchg lib.
---/
%mducmp(master=extextr, target=mdextr, change=extrnchg, externonly=1);

/*--
* Step 4.
*
* Validate the change tables using the %MDUCHGV macro.
* This macro will check the changes to see if they violate any server
* integrity constraints. Information about violations will be written
* to a SAS data set. The information can be used by an administrator
* or other tool to correct problems before attempting to load the changes.
* NOTE: the violations data set may be fed into the %MDUCMP macro to
* regenerate the change tables without the offending changes.
*

Bulk-Load Processes for Identity Management � Canonical Tables 201

* If problems are found, an error message will be written to the log.
* Code should be added below to inspect the ’returncode’ macro and take
* steps to correct the problems.
---/
%mduchgv(change=extrnchg, target=mdextr, temp=work, errorsds=work.mduchgverrors);

/*---
* Step 5.
*
* Execute the %MDUCHGL macro to build an XML stream from the change
* tables and load the changes into the metadata server, bringing it
* into parallel with the enterprise source. The change tables are read
* from the Enterprise change lib.
*
* If you place the call to %MDUCHGL in a macro, you will be able to
* check the results of %MDUCHGV and abort the load if errors were found.
---/
%macro exec_mduchgl;

%if (&MDUCHGV_ERRORS ^= 0) %then %do;
%put ERROR: Validation errors detected by %nrstr(%mduchgv). Load not attempted.;
%return;
%end;

%mduchgl(change=extrnchg, submit=1);
%mend;

%exec_mduchgl;

Identity Bulk-Load Processes: Reference

Canonical Tables

Overview of Canonical Tables
The bulk-load process uses a set of specially formatted tables (canonical tables) that

you can populate with user and group information from an enterprise source. A
canonical table is a table that defines the standard attributes and associations for an
identity metadata object. Each metadata type in the SAS Metadata Model consists of a
set of attributes and associations: the attributes describe the characteristics of the
metadata type; the associations describe the metadata type’s relationships with other
types. SAS provides the %MDUIMPC autocall macro to enable you to create canonical
tables for creating objects of the Person, IdentityGroup, AuthenticationDomain, Login,
Location, Phone, and Email metadata types on the metadata server, and to create
associations between them. The %MDUIMPC macro defines these canonical tables:

202 Canonical Tables � Appendix 2

Table A2.1 Tables and Macro Variables Created by the %MDUIMPC Macro

Table Name Purpose Name/Keep List
Global Variable
Name

Column Attributes
Macro Name

person Generate Person
objects

&persontbla; %definepersoncols

location Generate Location
objects for associated
Person

&locationtbla; %definelocationcols

phone Generate Phone
objects for associated
Person

&phonetbla; %definephonecols

email Generate E-mail
objects for associated
Person

&emailtbla; %defineemailcols

idgrps Generate
IdentityGroup objects

&idgrptbla; %defineidgrpcols

grpmems Define IdentityGroup
members

&idgrpmemstbla; %defineidgrpmemscols

authdomain Define
AuthenticationDomain
objects

&authdomtbla; %defineauthdomcols

logins Define Login objects
with associated
AuthDomain

&logintbla; %definelogincols

Table Structure
The columns in each of the canonical tables are described in the following tables:

Table A2.2 Columns in the person Table

Column Name Description

keyid Primary key used to identify the person and to
relate other information to this particular person

name Name of the person

description Description of the person

title Person’s title

Table A2.3 Columns in the location Table

Column Name Description

keyid Foreign key identifying the person with whom
the particular location is associated

locationName Location name

Bulk-Load Processes for Identity Management � Canonical Tables 203

Column Name Description

locationType Type of location

address Street address

city City name

postalcode Postal code

area Location area designation

country Country name

Table A2.4 Columns in the phone Table

Column Name Description

keyid Foreign key identifying a person or group using
a telephone number

phoneNumber Telephone number

phoneType Type of telephone number

Table A2.5 Columns in the email Table

Column Name Description

keyid Foreign key identifying a person or group using
an e-mail address

emailAddr E-mail address

emailType Type of e-mail address

Table A2.6 Columns in the idgrps Table

Column Name Description

keyid Primary key identifying a group that is also
used to relate other information to the group

name Group name

description Description of the group

grpType Type of group

204 Canonical Tables � Appendix 2

Table A2.7 Columns in the grpmems Table

Column Name Description

grpkeyid Foreign key to a group

memkeyid Foreign key to a group or person that is a
member of the group identified by grpkeyid

Table A2.8 Columns in the authdomain Table

Column Name Description

keyid Primary key identifying an authentication
domain that is used to relate other information
to the authentication domain

authDomName Authentication domain name

Table A2.9 Columns in the logins Table

Column Name Description

keyid Foreign key identifying the person to whom the
login belongs

userid A user ID that is specified in the format of its
authenticating domain

password Password

authDomKeyId Foreign key to an AuthenticationDomain

Table Requirements
One set of canonical tables should be used to create and maintain all imported

metadata identities on the metadata server. Even if you are extracting user and group
definitions from multiple external sources, you must use a single set of canonical tables
to load and maintain information about the external sources on the metadata server.

A separate canonical table is required for each object type that will be imported. Any
table that you create should also include all columns in the documented order.

Table Relationships
The %MDUIMPC macro uses a series of primary and foreign keys to create table

relationships. Each canonical table contains a keyid column and columns representing
the metadata type’s attributes. The keyid value is a primary key that identifies a
person, group, or authentication domain and relates it to other information. In the
phone, location, email, and logins tables, the keyid is referenced as a foreign key in
order to relate phone, location, e-mail and login information to a person. The grpmems
table references the keyid defined in the idgrps table as a foreign key in the grpkeyid
column in order to relate persons and groups identified in the memkeyid column as
members of a particular group. The logins table references the keyid defined in the
authdomain table as a foreign key in the authDomKeyId column in order to relate an
authentication domain to a person.

Bulk-Load Processes for Identity Management � Canonical Tables 205

Most enterprise identity systems assign a person an attribute for a person which can
act as a natural keyid. For example, an employee identification number stored in Active
Directory or the Distinguished Name attribute of the person as stored in an LDAP
server make good keyid identifiers. An enterprise-wide employee identifier that does
not change over time is the best choice for a keyid.

The figures that follow illustrate how data is stored in the tables and how the primary
and foreign keys are used to relate data for a fictional user named “Michelle Harrell.”

The first figure illustrates the relationship between the data defined for “Michelle
Harrell” in the person, location, email, and phone tables. “Michelle Harrell” has
separate home and office locations, e-mail addresses, and telephone numbers defined for
her. This data is mapped directly to her key identifier in the location, email, and phone
tables.

Figure A2.3 Relationships among the Data in the person, idlocation, location,
email, and phone Tables

Note: Each person should only have one phone, e-mail, or address of a particular
type. For example, if you have two “Office” e-mails, the second one will be overwritten
by the update process. �

The following figure illustrates how information about Michelle Harrell’s group
memberships is stored. Data about group memberships is stored in the person, idgrps,
and grpmems tables.

206 Canonical Tables � Appendix 2

Figure A2.4 Relationships among the Data in the person, idgrps, and grpmems
Tables

The organization described by this data has the following three groups defined:
� Operations Staff (G001)
� All Groups (G002)
� Backup Operators (G003)

“Michelle Harrell” is a member of the Operations Staff group. This relationship is
represented in the first row of the grpmems table shown in Figure 2. The grpmems
table maps the group’s identifier (G001) to Michelle’s key identifier (P001).

A group can also be a member of another group. In the second row of the grpmems
table, we see that the Operations Staff group (G001) is a member of the All Groups
group (G002). In addition, we see in the fourth row that the Operations Staff group
(G001) is also a member of the Backup Operators group (G003). By virtue of the
Operations Staff group’s membership in the other groups, “Michelle Harrell” is an
indirect member of the All Groups and Backup Operators groups.

Finally, the following figure illustrates the relationships between the data defined for
“Michelle Harrell” in the person, logins, and authdomain tables. Person, Login, and
AuthenticationDomain objects are the minimal set of objects required to establish a
metadata identity on the SAS Metadata Server.

“Michelle Harrell” has two logins defined for her in the logins table. Both logins are
associated with an authentication domain. Notice that the logins with user IDs
“WinNet\Fred” and “WinNet\Brian” are not associated with an authentication domain.
A login that is used by the metadata server to establish a user’s identity is not required
to have an authentication domain, because the user has already been authenticated on
the metadata server. A login that will be read by an application to send to another
system must have an authentication domain defined for it, because the information is
needed to establish the connection. The first type of login is an inbound login; the
second type of login is an outbound login. A single login can function as an inbound and
an outbound login. In the figure, the login with user ID “WinNet\Michelle” is an
example of a login that is both inbound and outbound.

Bulk-Load Processes for Identity Management � Bulk-Load Macros 207

Figure A2.5 Relationships among the Data in the person, logins, and authdomain
Tables

When creating the person, logins, and authdomain tables, note the following:

� A person can have multiple logins defined in the logins table; however, a given
login in the table can refer to only one person.

� A user ID used in one login can be used in other logins so long as all of the logins
that use that user ID are owned by the same person.

� A user ID must be unique within an authentication domain. That is, there cannot
be two logins with the same user ID in the same authentication domain.

� A person should have at least one login defined for him or her.

Bulk-Load Macros

Overview of Bulk-Load Macros
SAS provides a set of autocall macros for loading and maintaining user and group

definitions that originate from an enterprise identity source. You can use these macros
to create the tables and to import and periodically update the identity information on
the metadata server. The macros create and maintain metadata objects of the following
metadata types in a SAS Metadata Repository:

� Person

� IdentityGroup

� AuthenticationDomain

� Login

� Location

� Phone

� Email

208 Bulk-Load Macros � Appendix 2

For a description of each metadata type, see the alphabetical list of metadata types
in the SAS Open Metadata Interface: Reference (available on SAS OnlineDoc 9.1.3).

Note: Only Person, Login, and AuthenticationDomain objects are required to
establish a metadata identity on the metadata server. Group, location, e-mail, and
telephone information is optional. �

%MDUIMPC Autocall Macro
The %MDUIMPC autocall macro creates canonical tables or views for importing user

and group definitions to the metadata server from an external source. Here is the
syntax for this macro:

%mduimpc ();
or
%mduimpc (libref=libref,

maketable=0|1|2,
infileref=fileref,
fileheader=1|other_value);

libref
specifies the libref of the SAS library where the canonical tables or views should
be created. If a libref is not specified, the default value is Work.

maketable
specifies whether to simply create macros and macro variables that enable you to
create the canonical tables, or to create empty canonical tables or views.

0 (the default value) creates macro variables only.

1 creates empty canonical tables in addition to the macro
variables.

2 creates canonical views of CSV files in the infileref directory in
addition to the macro variables.

infileref
This parameter is used only when maketable=2. It specifies a SAS fileref that
identifies CSV source files.

Note: The names of the CSV files in this location should match the table
names listed in “Canonical Tables” on page 201. In UNIX host environments, the
filenames must be lowercase. �

Note: The files should contain comma-separated values that are in the same
order as the appropriate table in “Canonical Tables” on page 201. �

fileheaders
specifies whether the input files have a header line. This parameter is used only
when maketable=2.

1 indicates that the input files have header information in the
first row.

any other value indicates that the data begins in the first row.

The %MDUIMPC macro can be used in three ways:
� The default behavior of the macro is to define a set of macro variables that enable

you to write a SAS program that creates the input tables necessary to create the
objects.

� As an alternative, the macro supports options that enable you to create either of
the following:

Bulk-Load Processes for Identity Management � Bulk-Load Macros 209

� empty tables of the correct format for which you can then write a separate
program that appends user and group information

� DATA step views of CSV files that already contain information in the correct
format

See “Table Relationships” on page 204 for information about how the macro joins the
tables.

Submitting the %MDUIMPC macro without options is the same as specifying
maketable=0.

When populating the input tables or defining the views, note that the specified user
and group information should meet the integrity constraints imposed by the metadata
server, as described in “Integrity Constraints” on page 186.

%MDUIMPL Autocall Macro
The %MDUIMPL autocall macro generates the XML necessary to load the tables

created with the %MDUIMPC macro onto the metadata server and optionally executes
it using PROC METADATA. Here is the syntax for this macro:

%mduimpl()
or
%mduimpl(libref=libref,

temp=libref,
outrequest=fileref,
outresponse=fileref,
submit=1|other_value,
extidtag=context_value,
mergeAuthDoms=1|other_value);

libref
specifies the libref of the SAS library that contains the input tables or views
created with the %MDUIMPC macro. If this parameter is omitted, the default
libref is Work.

temp
specifies the libref of a SAS library for storing temporary data sets created during
%MDUIMPL processing. If this parameter is omitted, the default libref is Work.

outrequest
specifies a SAS fileref that identifies an optional file to save the generated XML. If
you omit this parameter, the XML method calls are not saved to a file.

Note: The FILENAME statement assigning the fileref should specify a logical
record length (LRECL) of 1024. �

outresponse
specifies a SAS fileref that identifies an optional file to store the output of the
PROC METADATA request. If you omit this parameter, the PROC METADATA
output is not saved to a file.

submit
specifies whether or not to submit the generated XML to the metadata server. The
target metadata server and repository are determined from metadata system
options.

1 (the default value) submits the generated XML to the metadata
server.

any other value does not submit the XML.

210 Bulk-Load Macros � Appendix 2

extidtag
specifies a value for the Context attribute of the ExternalIdentity object that is
attached to all imported metadata to indicate its origin. The default value, if one
is not specified, is IdentityImport. The value should not be quoted.

mergeAuthDoms
specifies whether or not login information should be associated with existing
authentication domain information on the server or whether new
AuthenticationDomain objects should be added.

1 checks the SAS Metadata Server to see if the authentication
domains in the input match any AuthenticationDomain objects
that already exist on the server. If so, logins are associated to
the existing AuthenticationDomain objects. If not, new
AuthenticationDomain objects are created on the SAS
Metadata Server.

any other value adds new AuthenticationDomain objects with unique names to
the server.

Note: If mergeAuthDoms=0, and an authentication domain
with the same name already exists, the load will fail. �

When executed using submit=1 (the default value), the %MDUIMPL macro requires
that system options be set to connect to the SAS Metadata Server. These system options
are described in “Connection Options for the SAS Metadata Server” on page 214.

If you specify a fileref for OUTREQUEST and specify a value other than 1 for
SUBMIT, then you can load the XML at a later date by using PROC METADATA
directly. For more information, see the documentation for the METADATA procedure in
the SAS Open Metadata Interface: Reference.

%MDUEXTR Autocall Macro
The %MDUEXTR autocall macro extracts identity metadata from the metadata

server and writes it into canonical tables. Here is the syntax for this macro:

%mduextr (libref=SAS-library);

libref
specifies the libref of the SAS library where the canonical tables will be stored.

You need to set SAS system options for the %MDUEXTR macro in order to connect to
the metadata server and to identify the repository from which to read identity
metadata. These options are described in “Connection Options for the SAS Metadata
Server” on page 214.

The macro uses PROC METADATA to submit extraction requests to the metadata
server.

It writes all identity metadata found in the foundation repository into the canonical
tables in the specified library.

%MDUCMP Autocall Macro
The %MDUCMP autocall macro compares the master canonical tables to the target

canonical tables and creates change tables that list the changes that must be made to
the target user information so that it will match the master.

Note: This macro does not attempt to validate the information in the change tables.
To ensure that the new information from the enterprise data source meets
server-enforced integrity constraints, run the %MDUCHGV macro on the change data
sets before loading the changes on the metadata server. �

Bulk-Load Processes for Identity Management � Bulk-Load Macros 211

Note: By default, identities that were created manually in SAS Management
Console are excluded from the synchronization process. However, manual updates that
have been made to login, location, telephone number, and e-mail information that was
initially imported will be overwritten by the synchronization process, unless you define
exceptions to that process. See “Defining an Exception to the Comparison Process” on
page 198 for steps you can take to preserve manual updates to imported information. �

Here is the syntax for this macro:

%mducmp (master=libref,
target=libref,
change=libref,
exceptions=<libref.>dataset,
externonly=0|1
authdomcompare=name|keyid);

master
specifies the libref of the SAS library containing the master canonical tables.
When you are updating imported identities on the metadata server with current
information from the enterprise source, specify the library that contains
information extracted from the enterprise identity source.

target
specifies the libref of the SAS library containing the target canonical tables. When
you are updating imported identities on the metadata server with current
information from the enterprise source, specify the library that contains
information extracted from the SAS Metadata Server.

change
specifies the libref of the SAS library in which to create the change tables. Six
tables are created, where xxx is the base name of the canonical table.

xxx_add contains user and group definitions that need to be added to
the target tables to make them look like the master tables.

xxx_update contains user and group definitions that need to be modified in
the target tables to make them look like the master tables.

xxx_delete contains user and group definitions that need to be deleted from
the target tables to make them look like the master tables.

person_summary summarizes changes to Person objects.

idgrps_summary summarizes changes to IdentityGroup objects.

authdomain_summarysummarizes changes to AuthenticationDomain objects.

exceptions
specifies a data set that contains exception values. Instructions for creating an
exceptions data set are provided in “Defining an Exception to the Comparison
Process” on page 198.

externonly
when the master data set includes an ObjectId column, this option determines
whether identities that were manually created in SAS Management Console are
included in the comparison.

Note: In most circumstances, the master data set does not include an ObjectId
column, so this option has no effect. However, a master data set that is extracted
from the SAS metadata repository (rather than from an external enterprise
identity source) will include an ObjectId column. �

212 Bulk-Load Macros � Appendix 2

A value of 1 ensures that only identities that have an associated
ExternalIdentity object (imported identities) are included in the comparison. This
is the default value. A value of 0 causes both imported identities and identities
that were defined in SAS Management Console to be included in the comparison.

authdomcompare
specifies how authentication domain information should be compared. The default
value, name, specifies to compare all authentication domains in the master and
target canonical tables by name. That is, if an authentication domain is found that
has a matching name in both the master and target canonical tables, then that
domain is left alone (no updates are made). If a domain name is found in the
master tables that does not also exist in the target tables, then the domain is
marked for addition to the target. If a domain name is found in the target tables
that does not also exist in the master tables, the domain is left alone. It is
assumed that the authentication domain was added to the target in SAS
Management Console and is meant to be there.

Note: When EXTERNONLY=1 and AUTHDOMCOMPARE=name,
AUTHDOMCOMPARE=name overrides EXTERNONLY=1 for authentication domains: the
%MDUCMP macro compares all authentication domains whether or not the
domains have an ExternalIdentity object. �

The value keyid specifies to compare authentication domains that have a
matching ExternalIdentity identifier in the master and target tables. For each
domain that has an ExternalIdentity object, the domain is compared and updated
if a matching key identifier exists in the master and target canonical tables. If a
key identifier exists in the master tables that is not in the target tables, the
domain is marked for addition to the target source. If a key identifier exists in the
target tables that is not the master tables, the domain is marked for deletion from
the target source. When AUTHDOMCOMPARE=keyid, the %MDUCMP macro
compares only authentication domains that have an ExternalIdentity, regardless of
the EXTERNONLY setting. Use this option if you wish to be able to update the
authentication domain name or delete an imported authentication domain.

%MDUCHGV Autocall Macro
The %MDUCHGV autocall macro checks the change tables created by the

%MDUCMP macro against information extracted from the metadata server to see if any
of the changes violate server-enforced integrity constraints. Here is the syntax for this
macro:

%mducmp (target=libref,
change=libref,
temp=libref,
errorsds=name);

target
specifies the libref of the SAS library containing the target canonical tables. When
updating imported identities on the metadata server with current information
from the enterprise source, this library contains information extracted from the
SAS Metadata Server.

change
specifies the libref of the SAS library containing the change tables created by the
%MDUCMP macro.

temp
specifies the libref of a SAS library where temporary tables can be written. If this
option is omitted, the macro uses the libref Work.

Bulk-Load Processes for Identity Management � Bulk-Load Macros 213

errorsds
specifies the name of the data set where integrity errors are logged. ERRORSDS
stands for "error data set." The data set has the following columns:

errcode specifies a numeric code which corresponds to a particular error.

errmsg specifies a text message that describes the error that was
detected.

tablename specifies the name of the canonical table from which the error
item should be excepted if the ERRORSDS data set is fed into
the %MDUCMP macro as the exception data set.

filter specifies a SAS WHERE clause that will be used to remove all
objects related to a particular error from the change tables.

Keyid specifies the keyid value of the offending object.

Name specifies the Name value of the object, if the offending object is
a Person or IdentityGroup.

userid specifies the userid value of the object, if the offending object is
a Login.

authDomKeyId specifies the keyid value of an authentication domain when
duplicate userid values are found in an authentication domain.

If any errors are detected, the %MDUCHGV macro sets the DUCHGV_ERRORS
column to a non-zero value and creates the ERRORSDS data set, which lists the errors
that were found. See “4. Validating the Change Tables” on page 198 for information
about how the information in the ERRORSDS data set can be used.

%MDUCHGL Autocall Macro

The %MDUCHGL autocall macro generates the XML necessary to load identity
metadata updates onto the metadata server and optionally submits it using PROC
METADATA. Here is the syntax for this macro:

%mduchgl (change=libref,
temp=libref,
outrequest=fileref,
outresponse=fileref,
submit=1|other_value,
extidtag=context_value);

change
specifies the libref of the SAS library containing the change tables created by the
%MDUCMP macro.

temp
specifies the libref of a SAS library where temporary tables can be written. If this
option is omitted, the macro uses the libref Work.

outrequest
specifies a SAS fileref that identifies an optional file to save the generated XML. If
you omit this parameter, the XML method calls are written to a temporary file.

Note: The FILENAME statement assigning the fileref should specify a logical
record length (LRECL) of 1024. �

214 Connection Options for the SAS Metadata Server � Appendix 2

outresponse
specifies a SAS fileref that identifies an optional file to store the output of the
PROC METADATA request. If you omit this parameter, the PROC METADATA
output is not saved to a file.

submit
specifies whether or not to submit the generated XML to the metadata server. The
target metadata server and repository are determined from metadata system
options.

1 (the default value) submits the generated XML to the metadata
server.

any other value does not submit the XML.

extidtag
specifies a value for the Context attribute of the ExternalIdentity object that is
associated with metadata added by this macro. The default value is
IdentityImport. The value should not be quoted.

You need to set SAS system options for the %MDUCHGL macro in order to connect
to the metadata server and to identify the repository in which to write changes. These
options are described in “Connection Options for the SAS Metadata Server” on page 214.

Connection Options for the SAS Metadata Server
Macros that load, extract, and change metadata (%MDUIMPL, %MDUEXTR, and

%MDUCHGL, respectively) on the metadata server must connect to the SAS Metadata
Server in order to submit their requests. You can connect to a metadata server by
setting the following SAS system options in your SAS program:

options metaserver=server_name
metaport=port_number
metauser="userid"
metapass="password"
metaprotocol=bridge
metarepository=Foundation;

� For METASERVER, specify the host name or TCP address of the computer hosting
a SAS Metadata Server.

� For METAPORT, specify the unique port number where the metadata server is
started and listens for requests. The default port for a metadata server is 8561.

� For METAUSER, specify a valid user ID for the task that you want to perform. In
order to create new user accounts on a metadata server, you must connect to the
server using a user ID that has at least administrative user status on the server.
In order to extract and update existing user accounts on the metadata server,
connect to the metadata server using a user ID that has unrestricted user status.

� For METAPASS, specify the password associated with the specified user ID.
� For METAPROTOCOL, specify bridge. This is the connection protocol required by

the metadata server.
� For METAREPOSITORY, specify Foundation. This is the name of the repository

for storing global metadata and user definitions.

215

A P P E N D I X

3
Security Implementation
Example

Goals and Configuration 215
Example: Implementing Security 217

Goals and Configuration
This simplified case study demonstrates how you can implement mutually exclusive

access control in an environment that has multiple authentication providers. These are
the security goals for this example:

� Establish mutually exclusive access controls for the data in two SAS libraries so
that they meet the following requirements:

� One set of users has exclusive access to the SAS data in LibraryA.
� Another set of users has exclusive access to the SAS data in LibraryB.
� The Administrators group has ReadMetadata access to both libraries.

� Enable only the users who access data in LibraryA to access the third-party
database server.

� Give only members of GroupA, GroupB, and Administrators default write access to
the repository.

The following figure depicts the group structure for this example:

216 Goals and Configuration � Appendix 3

Figure A3.1 Group Structure

PUBLIC

SASUSERS

Administrators

GroupA GroupB

In this example, you have a diverse environment in which more than one
authentication process is being used. The following figure depicts these details of the
environment:

� the servers and authentication domains for this example
� the logins for Tara O’Toole, which provide an example of the metadata identities

that you will create in this example
� the shared login that you will define to enable GroupA to access the Oracle Server

Figure A3.2 Servers, Authentication Domains, and Logins

SAS Metadata Server (Windows host authentication)

Logins for Tara O'Toole

User ID Password Authentication Domain

ORA ********* OracleAuth

Tara O'Toole

GroupA

Logins for GroupA

Oracle Server

User ID Password Authentication Domain

WinNT\tara

tara ********* MVSAuth

Stored Process Server

 Workspace Server

MVSAuth
(z/OS host authentication)

OracleAuth
(database authentication)

� Example: Implementing Security 217

Example: Implementing Security
To set up security for regular users in this example, complete these steps:
1 Log on to SAS Management Console by opening a metadata profile with your

administrative user account.
2 Use User Manager to create a group definition for GroupA.

a On the General tab, enter GroupA as the group name.
b On the Logins tab, add a login for the database server. This login should

specify the user ID (ORA) and the password for a shared account that you
have created on the database server. From the Authentication Domain
drop-down list, select OracleAuth to associate the login with the
authentication domain in which the Oracle server is defined.

c Click OK to save and close the group definition.

Note: No other groups are members of GroupA, so you do not need to add
any members on the Members tab. �

3 Use User Manager to create a group definition for GroupB.

a On the General tab, enter GroupB as the group name.
b Do not add any logins on the Logins tab. Members of GroupB do not access

the database server.
c Click OK to save and close the group definition.

Note: No other groups are members of GroupB, so you do not need to add
any members on the Members tab. �

4 On the Authorization tab for each group, secure the group definition by directly
assigning access controls that deny WriteMetadata permission to PUBLIC and
grant WriteMetadata permission to the Administrators group. For detailed
instructions, see “Setting Explicit Protections for Security-Related Resources” on
page 71.

Note: Directly assigned permissions do not have a gray background color. If the
background color for a permission on the Authorization tab for a group definition
is gray, that permission comes from the repository ACT. A permission from the
repository ACT is not sufficient to protect a group definition, because you will
expand WriteMetadata access to the repository as your security implementation
progresses. �

5 Define each group’s default access to the entire repository. On the Users and
Permissions tab of the Default ACT, set these access controls:

� Leave the permissions for PUBLIC as they are (all permissions are denied).
� Grant Read and ReadMetadata permissions to the SASUSERS group. By

default all users who have a metadata identity will have read access to
resources.

� Leave the permissions for the Administrators group as they are
(ReadMetadata, WriteMetadata, and Administer permissions are granted).

� Grant Write, Create, Delete, and WriteMetadata permissions to GroupA and
GroupB. By default, members of these groups will be able to make changes to
most metadata objects and to the data that those objects represent.

Note: It is not necessary to give GroupA and GroupB the Read and
ReadMetadata permissions. Members of GroupA and GroupB are
automatically members of SASUSERS, and SASUSERS has Read and
ReadMetadata permissions. �

218 Example: Implementing Security � Appendix 3

6 Modify the default access controls for selected resources in accordance with the
security goals. The permissions that you set in the previous step are the default
permissions for all resources. In this example, you will set additional controls for
LibraryA and LibraryB so that only GroupA can access LibraryA and only GroupB
can access LibraryB.

� On the Authorization tab for LibraryA, set these directly assigned
permissions:

� Deny Read, ReadMetadata, Create, Write, Delete, and WriteMetadata
permissions to PUBLIC.

Note: The directly assigned (no background color) denial to PUBLIC
will prevent the Administrators group and GroupB from accessing the
data in LibraryA. However, this denial is not displayed in the
permissions lists for the Administrators group and GroupB. �

� Grant Read, ReadMetadata, Write, Create, Delete, and WriteMetadata
permissions to GroupA.

Note: For members of GroupA, these directly assigned grants to the
user-defined group (GroupA) will override the directly assigned denials
to the implicit group (PUBLIC). �

� Grant ReadMetadata and WriteMetadata permissions to Administrators.

Note: For members of Administrators, these directly assigned grants to
the user-defined group (Administrators) will override the directly
assigned denials to the implicit group (PUBLIC). �

� On the Authorization tab for LibraryB, set these permissions:
� Deny Read, ReadMetadata, Write, Create, Delete, and WriteMetadata

permissions to PUBLIC.

� Grant Read, ReadMetadata, Write, Create, Delete, and WriteMetadata
permissions to GroupB.

� Grant ReadMetadata and WriteMetadata permissions to Administrators.

Note: The permissions that you set on LibraryA and LibraryB will be inherited
by the tables within each library. �

7 Create the necessary user accounts. Each user will need these accounts:

� a Windows account that enables the user to get to the metadata server as
described in initial authentication

� a z/OS account that enables the user to get to the stored process and
workspace servers in the MVSAuth authentication domain

8 Create a user definition for every user whose access needs cannot be met through
membership in the PUBLIC group. In this example, you did not give the PUBLIC
group any access to the repository, so all users must have a metadata identity in
order to access any resources. For each user definition, complete these tasks:

a On the General tab, enter the user’s name in the Name field. The other fields
on the General tab are optional.

b On the Groups tab, define the user’s group memberships. In this example, all
users are automatically members of both PUBLIC and SASUSERS. Add
selected users to either GroupA or GroupB.

c On the Logins tab for each user definition, complete these tasks:

� Add a login to enable the metadata server to determine the user’s
metadata identity. If this login is used only for the purpose of

� Example: Implementing Security 219

determining the user’s metadata identity, then this login does not have
to include a password or specify an authentication domain. In the
figure, the login that is used to determine Tara’s metadata identity
consists of only her user ID (WinNT\tara).

� Add another login so the user can access the workspace server and
stored process server in the MVSAuth authentication domain. As
depicted in the previous figure, this login should include a password and
be associated with the MVSAuth authentication domain. This login
functions only as an outbound login. For example, the login that enables
Tara to access the workspace server and the stored process server
consists of her z/OS user ID (tara) and a password. This login is
associated with the MVSAuth authentication domain.

Note: Do not give any individual users who are members of GroupA a login
for the OracleAuth authentication domain. Members of GroupA will access
the third-party database server using the login that you added on the Logins
tab for GroupA. �

d Click OK to save and close the user definition.

Note: It is not necessary to set any permissions on the Authorization tab
of the user definition. By default, only administrative users, unrestricted
users, and the user who is represented by a particular user definition can
make changes to that user definition. �

If you want to protect multiple resources (rather than protecting just one library for
each user group), you should use an access control template. This enables you to define
each identity/permission pattern only once and then apply each pattern to multiple
resources. To establish mutually exclusive security, you would create two ACTs and
apply one of the ACTs to each resource that is accessed exclusively by either GroupA or
GroupB.

220

221

A P P E N D I X

4
Recommended Reading

Recommended Reading 221

Recommended Reading

Here is the recommended reading list for this title:
� SAS Intelligence Platform: Desktop Application Administration Guide
� SAS Intelligence Platform: Overview

� SAS Intelligence Platform: System Administration Guide
� SAS Intelligence Platform: Web Application Administration Guide

For a complete list of administration documentation for the SAS Intelligence Platform,
see http://support.sas.com/913administration.

For a list of SAS documentation, see
http://support.sas.com/documentation/onlinedoc/sas9doc.html.

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

222

223

Glossary

access control entry (ACE)
a set of identities and permissions that are directly associated with a particular
resource. Each access control entry is directly associated with only one resource.
More than one ACE can be associated with each resource.

access control template (ACT)
a reusable named authorization pattern that you can apply to multiple resources. An
access control template consists of a list of users and groups and indicates, for each
user or group, whether permissions are granted or denied.

administrative user
a special user of a metadata server who can create and delete user definitions and
logins. An administrative user can also perform tasks such as starting, stopping,
pausing, and refreshing the metadata server. You are an administrative user if your
user ID is listed in the adminUsers.txt file or if you connect to the metadata server
using the same user ID that was used to start the metadata server.

authentication
the process of verifying the identity of a person or process within the guidelines of a
specific authorization policy.

authentication domain
a set of computing resources that use the same authentication process. An individual
uses the same user ID and password for all of the resources in a particular
authentication domain. Authentication domains provide logical groupings for
resources and logins in a metadata repository.

authentication provider
a software component that is used for identifying and authenticating users.

authorization
the process of determining which users have which permissions for which resources.
The outcome of the authorization process is an authorization decision that either
permits or denies a specific action on a specific resource, based on the requesting
user’s identity and group memberships.

credentials
the user ID and password for a particular user account that has been established
either in the operating system or with an alternative authentication provider.

224 Glossary

encryption
the act or process of converting data to a form that only the intended recipient can
read or use.

inbound login
a login that is used to determine your metadata identity. The login is inbound to a
SAS Metadata Server. A login that functions only as an inbound login does not need
to include a password or to specify an authentication domain.

login
a combination of a user ID, a password, and an authentication domain. Each login
provides access to a particular set of computing resources. See also inbound login,
outbound login.

metadata identity
a metadata object that represents an individual user or a group of users in a SAS
metadata environment.

member-level permission condition
a control that defines access to data at a low level, specifying who can access
particular members within an OLAP cube. Member-level controls are typically used
to subset data by a user characteristic such as employee ID or organizational unit.
For example, an OLAP cube that contains employee information might have
member-level controls that enable each manager to see the salary history of only that
manager’s employees.

outbound login
a login that applications can retrieve from a SAS Metadata Server and send to other
systems that need to verify a user’s identity. The login is outbound from the SAS
Metadata Server to the other systems. An outbound login must specify an
authentication domain and must include credentials that are appropriate for the
systems to which the login provides access.

permission condition
a constraint on the explicitly granted permissions for a particular resource. You can
use a permission condition to grant access to a specific portion, or slice, of data
within a resource. For example, if an OLAP cube has an EmployeeInfo dimension
that includes a Salary level, you could give a particular user access to data for only
those employees who have salaries that are less than $50,000 per year.

repository access control template
the access control template (ACT) that controls access to a particular repository and
to resources for which access controls are not specified. You can designate one
repository ACT for each metadata repository. The repository ACT is also called the
default ACT.

row-level permission condition
a control that defines access to data at a low level, specifying who can access
particular rows within a table. Row-level controls are typically used to subset data by
a user characteristic such as employee ID or organizational unit. For example, a table
that contains patient medical information might have row-level controls that enable
each doctor to see only those rows that contain data about that doctor’s patients.

single sign-on
an authentication model that enables users to access a variety of computing
resources without being repeatedly prompted for their user IDs and passwords. For
example, single sign-on can enable a user to access SAS servers that run on different
platforms without interactively providing the user’s ID and password for each
platform. Single sign-on can also enable someone who is using one application to

Glossary 225

launch other applications based on the authentication that was performed when the
user initially logged on.

trust relationship
a logical association through which one component of an application accepts
verification that has already been performed by another component. For example,
the establishment of a trust relationship enables users to log on to the application
once, and then to access all associated resources without the need for
re-authentication. See also trusted user.

trusted user
a special user of a metadata server who can acquire credentials on behalf of other
users in a multi-tier server environment.

unrestricted user
a special user of a metadata server who can access all metadata on the server (except
for passwords, which an unrestricted user can overwrite but cannot read). An
unrestricted user can also perform tasks such as starting, stopping, pausing, and
refreshing the metadata server. You are an unrestricted user if your user ID is listed
in the adminUsers.txt file and is preceded by an asterisk.

226

Index 227

Index

A
access control entries (ACEs) 39
access control guidelines 127
access control precedence 48
access control templates (ACTs) 39

protecting 72
protecting with custom ACT 75
repository ACT 44

access controls 37
direct 39
in metadata authorization layer 38
inherited 40
minimizing for efficiency 128
physical access protections for data 58
populating a deployment 91
precedence principles 48, 145
repository-level 44
viewing, for a resource 126

access management tasks 107
access requirements

by resource type 129
group definitions 136
identity objects 136
information maps 131
libraries 129
OLAP data 130
permission objects 136
reports 133
server definitions 129
stored processes 134
tables 129
user definitions 136

accessibility features 4
account availability 76
Active Directory 82

importad.sas and 189
importing identities from 188
initial import from 188

Active Directory Direct 5
additional authentication 16

cached credentials 17
credential management features by client 20
credentials prompting 20
credentials retrieved from metadata reposi-

tory 18
DB2 database 30
definition 11
pooled SAS Workspace Server 27
SAP system 31

SAS OLAP Server 25
SAS server access examples 25
SAS Stored Process Server 29
SAS Workspace Server 26
shared user context 20
single sign-on and 16
third-party server access examples 30
Xythos WebFile Server 31

Administer permission 125
actions controlled by 36

administrative users
creating group of 69
designating 93

authentication 4
See also additional authentication
See also initial authentication
alternative providers 5, 82
for additional servers 80
host authentication 4
how identities are verified 4
identity management 5
LDAP or Active Directory 82
process of 11
scenarios 21
security planning and 52
single sign-on 5
terminology 6
to database servers 81
trust relationships 5
Web authentication 82

authentication configuration 79
additional servers 80
authentication to database servers 81
creating authentication domains 79
creating domain assignment 80
initial 79
LDAP or Active Directory 82
shared accounts 80
Web authentication 82

authentication domains
authentication configuration and 79
changing assignment of 80
checklist 53
creating 79
definition 6
mapping providers to 53
mixed platform environments 22
Oracle 24
scenarios 21
single platform environments 21

use of 9
Xythos WebFile Server 24

authentication providers 6
checklist for choosing 52
choosing 52
mapping to authentication domains 53

authorization 35
access control precedence 48
actions and their permissions 36
assigning permissions 45
decision process 37, 46
metadata authorization layer 35
setting permissions 38
terminology 37

authorization-based prefilters 140
authorization layers 38
Authorization tab 126

B
BI row-level permissions 138

access control principles 145
assigning filters for 157
business requirements phase 150
creating filters for 157
data modeling phase 152
example 158
filtering logic for different groups 166
filtering methods 140, 151
identity-based filtering and 139, 165
implementing 150, 159
information map design phase 156
planning phase 150
precedence for conditions 145
prerequisites for 139
report generation and 143
secure environment for 147
understanding row-level permissions 139
verification phase 158

bulk-load macros 186, 207
bulk-load processes

See identity bulk-load processes
business requirements phase

BI row-level permissions 150

C
cached credentials 17

228 Index

canonical tables 186, 201
columns in 202
comparison process 197
creating from SAS Metadata Server 196
macros 201
rebuilding master tables 196
relationships 204
requirements 204
structure of 202

change tables
validating 198

CheckInMetadata permission 125
actions controlled by 36

clients
credential management features by client 20

coarse-grained controls 138, 150, 151
configuration

See authentication configuration
configuration directories

protecting (Windows) 64
configuration files

encrypting passwords included in 66
passwords included in 100

connection options
SAS Metadata Server 214

Create permission 126
actions controlled by 36

credentials
additional authentication and 16
authentication provider choice and 52
cached 17
interactive prompting for 20
management features by client 20
retrieving from metadata repository 18

custom trees
inheritance in 44

D
data

physical access protections for 58
data marts

BI row-level permissions and 138
data modeling phase 152

content of security associations table 154
creation and maintenance of security associa-

tions table 155
format of security associations table 154

data sets
BI row-level permissions and 138

data source authorization layer 38
database servers

authentication to 81
DB2 database

additional authentication 30
Delete permission 126

actions controlled by 36
deployment

populating 91
deployment security 63

account availability 76
configuration directories 64
encryption 64
foundation repository 67
metadata administrators 69
security-related resources 71

direct access controls 39
protecting security-related resources 71

E
effective permissions 38, 126

access control precedence and 49
encryption 64

increasing protection level 65
initial settings 64
of passwords included in configuration

files 66

F
filtering

See identity-based filtering
folders

preventing users from adding reports to 117
foundation repository

initial settings 67
protecting 67
selectively restoring access 68
temporarily restricting access 67

G
general prefilters 140
generic identity import 192
goals for security 51
group definitions

access requirements for 136
created in metadata repository 57
populating a deployment 91
protecting 76

group identities 45
table of standard identities 182

group management tasks 89
group metadata identities

table of standard identities 182
group structure 90
groups

See also user groups
organizing users into 89
tasks-to-groups mapping 90

H
host authentication 4

I
identity-based filtering 139

filtering methods for row-level permis-
sions 140

filters using identity-driven properties 141
precedence for row-level permission condi-

tions 145
prefilters 140
report generation and row-level permis-

sions 143

identity bulk-load processes 186
bulk-load macros 186, 207
canonical tables 201
connection options for SAS Metadata

Server 214
defining 186
identity synchronization process 195
initial import of identity information 187
integrity constraints 186
reference 201
sample applications 186
supported associations 186

identity hierarchy 38
examples of 46
user/group 45

identity information
initial import of 187

identity management 5, 55
group definitions in metadata 57
summary of requirements 57
user accounts 55
user definitions in metadata 56
user IDs and passwords in metadata 57

identity objects
access requirements for 136

identity synchronization process 195
comparing canonical tables 197
creating canonical tables from SAS Metadata

Server 196
rebuilding master canonical tables 196
sample code for 199
updating SAS Metadata Server with changed

information 199
validating change tables 198

identity verification
See authentication

importad.sas program 189
imported identity information, synchronizing

See identity synchronization process
importpw.sas program 190
inbound logins 8
information map design phase 156

adding security associations table to informa-
tion maps 156

assigning filters for row-level permissions 157
creating filters for row-level permissions 157

information maps
See also BI row-level permissions
access requirements for 131
adding security associations table to 156
Read permission for set of 123

inheritance
in custom trees 44
in OLAP data 42
in relational database data 42
in SAS data 41

inheritance rules 41, 46
inherited access controls 40

inheritance in custom trees 44
inheritance in OLAP data 42
inheritance in relational database data 42
inheritance in SAS data 41
inheritance rules 41
multiple inheritance of 40

initial authentication 11
definition 11
on metadata server 12

Index 229

on SAS OLAP Server 15
on Web application server 13
trusted peer session connections 16

initial import
from other sources 192
sample code for generic identity import 192

initial import process 187
from Active Directory 188
from UNIX /etc/passwd files 190

integrity constraints
identity bulk-load processes 186

L
LDAP 5, 82
libraries

access requirements for 129
library definitions

preventing access 110
Lightweight Directory Access Protocol

(LDAP) 5, 82
logins

adding and removing 97
definition 6
inbound 8
metadata identities and 8
object spawner and 8
outbound 8
use of 8
Xythos WebFile Server and 8

M
macros

bulk-load 186, 207
canonical tables 201

%MDUCHGL autocall macro 213
%MDUCHGV autocall macro 212
%MDUCMP autocall macro 210
%MDUEXTR autocall macro 210
%MDUGRPAC macro 95

syntax 95
%MDUIMPC autocall macro 208
%MDUIMPL autocall macro 209
MDX expressions 171
member-level permissions for OLAP data

See OLAP member-level permissions
METAAUTOINIT method 149
metadata administrators

creating a group of 69
metadata authorization layer 35, 38

access controls in 38
metadata identities

definition 6
initial authentication and 12
logins and 8
names and user IDs 10
use of 6

metadata repository
group definitions created in 57
identity management and 5
passwords stored in 57
retrieving credentials from 18
storing user IDs and passwords in 97

user definitions created in 56
user IDs stored in 57

metadata server
alternate authentication provider 82
encryption 64
identity bulk-load processes 186
initial authentication on 12

Microsoft Active Directory 5
multiple inheritance of access controls 40

N
names

metadata identities and stored credentials 10

O
object spawner

logins and 8
OLAP cubes

denying read access 119
OLAP data

access requirements for 130
inheritance in 42
member-level permissions 171

OLAP member-level permissions 171
assigning an OLAP permission condition 173
example 174
filters 171
OLAP permission condition format 172

OLAP server
Administer permission 36
alternate authentication provider 82
encryption 64

operating system authorization layer 38
operating system settings 64
Oracle

authentication domain 24
authentication to server 81

outbound logins 8

P
passwords 97

configuration files including 100
encrypting, in configuration files 66
stored in metadata repository 57
storing in metadata 97
updating for required accounts 98
updating for users 98

permission objects
access requirements for 136

permissions
See also authorization
See also BI row-level permissions
access control and 127
actions controlled by each permission 36
Administer permission 125
assigning 37, 45
CheckInMetadata permission 125
Create permission 126
Delete permission 126
effective permissions 38, 49, 126

setting 37, 38
settings on Authorization tab 126
Write permission 126

physical access protections for data 58

RDBMS data 59
SAS data 59

physical authorization layer 38

planning phase
BI row-level permissions 150

pooled SAS Workspace Server
additional authentication 27

populating a deployment 91
precedence principles 48
prefilters 140

privileged accounts
minimizing availability of 76

R
RDBMS data

physical access protections for 59
Read permission 117

actions controlled by 36
broadly denying 123
broadly granting 118
denying for an OLAP cube 119

granting for set of information maps 123
read access by exclusion 118
read access by inclusion 123

ReadMetadata permission 107
access to library definitions 110
actions controlled by 36

preventing report additions to folders 117
preventing server definition modifications 115
repository ACT settings for 107

relational databases

inheritance in data 42
reports

access requirements for 133

preventing users from adding to folders 117
row-level permissions and report genera-

tion 143

repository ACT 44
protecting security-related resources 71
settings for ReadMetadata and WriteMeta-

data 107
repository-level access controls 44

actions controlled by 45

repository ACT 44
required accounts

updating passwords for 98
resources

access requirements by resource type 129
resources protection

See security-related resources

roles 183
row-level permissions

See BI row-level permissions
row-level security 138

See BI row-level permissions

230 Index

S
sample applications

for identity bulk-load processes 186
SAP system

additional authentication 31
SAS Analytics Platform Server 100
SAS applications

user accounts for logging on to 55
SAS data

inheritance in 41
physical access protections for 59

SAS Metadata Server
connection options 214
creating canonical tables from 196
updating with changed information 199

SAS OLAP Server
additional authentication 25
enforcing OLAP member-level permis-

sions 171
initial authentication 15

SAS servers
additional authentication examples 25

SAS Stored Process Server
additional authentication 29

SAS Workspace Server
additional authentication 26
pooled 27

sasadm
password location for 100

SAS.ExternalIdentity client
identity-based filtering and 141

sasguest
password location for 103

SAS.IdentityGroupName client
identity-based filtering and 142

SAS.IdentityName client
identity-based filtering and 142

SAS.PersonName client
identity-based filtering and 142

sassrv
password location for 100

sastrust
password location for 100

SAS.Userid client
identity-based filtering and 142

saswbadm
password location for 100

security associations table 152
adding to information maps 156
content of 154
creation and maintenance of 155
format of 154

security goals 51
security implementation example 217

goals and configuration 215
security planning 51

access control guidelines 127
authentication 52
goals for 51
identity management 55
physical access protections for data 58

security-related resources 71
initial settings 71

protecting access control templates 72
protecting group definitions 76

server definitions
access requirements for 129
preventing modifications 115

servers
authentication for additional servers 80
third-party server access 30

service accounts
minimizing availability of 76

shared accounts 80
shared user context 20
single sign-on 5

additional authentication and 16
mapping authentication providers to do-

mains 53
shared user context and 20

stored credentials
names and user IDs 10

stored processes
access requirements for 134

synchronizing imported identity information
See identity synchronization process

T
tables

access requirements for 129
third-party relational databases

BI row-level permissions and 138
third-party server access 30

DB2 database 30
SAP system 31
Xythos WebFile Server 31

trust relationships 5
trusted peer session connections 16
trusted user 12, 76, 93

U
UNIX /etc/passwd files

importing identities from 190
importpw.sas and 190
initial import from 190

unrestricted users 93
user accounts

accessing additional systems 56
enabling logon to SAS applications 55
identity management and 55
minimizing availability of 76
user definitions in metadata 56

user definitions
access requirements for 136
created in metadata repository 56
removing 94

user/group identity hierarchy 45
user groups 89

adding users 93
creating 92
group structure 90
membership 90

organizing users into groups 89
populating with users 91
tasks-to-groups mapping 90

user identities 45
table of standard identities 181

user IDs 97
metadata identities and stored credentials 10
stored in metadata repository 57
storing in metadata 97

user management tasks 89
User Manager node

standard group metadata identities 182
standard user metadata identities 181

user metadata identities
table of standard identities 181

users
See also user groups
adding 93
administrative 93
organizing into groups 89
removing 94
trusted 93
unrestricted 93
updating passwords 98

V
verification phase

BI row-level permissions 158
verifying identities

See authentication

W
Web application servers

initial authentication on 13
Web applications

shared user context 20
switching to Web authentication 82

Web authentication 82
WebDAV authorization layer 38

access control 8
Windows

protecting configuration directories 64
Write permission 126

actions controlled by 36
WriteMetadata permission 95

access management 107
access to library definitions 110
actions controlled by 36
preventing report additions to folders 117
preventing server definition modifications 115
repository ACT settings for 107

X
Xythos WebFile Server

additional authentication 31
authentication domain 24
logins and 8

Your Turn

We want your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

	Contents
	What’s New
	Overview
	New Access Requirement: The Read Permission for Information Maps
	BI Row-Level Permissions
	Expanded Support for Web Authentication
	Documentation Enhancements

	Before You Begin
	Understanding Authentication
	Scope of This Document
	Accessibility Features in the SAS Intelligence Platform Products
	Authentication Overview
	Introduction to Authentication
	How Identities Are Verified
	Single Sign-On
	Identity Management
	Authentication Terminology
	Uniqueness Requirements for Names and User IDs

	The Authentication Process
	Overview of the Authentication Process
	Initial Authentication
	Additional Authentication

	Authentication Scenarios
	Introduction to Authentication Scenarios
	Single Platform Environments
	Mixed Platform Environments
	Diverse Environments

	A Closer Look: Accessing SAS Servers
	Introduction to SAS Server Access Examples
	Accessing a SAS OLAP Server
	Accessing a SAS Workspace Server
	Accessing a Pooled SAS Workspace Server
	Accessing a SAS Stored Process Server

	A Closer Look: Accessing Third-Party Servers
	Introduction to Third-Party Server Access Examples
	Accessing a DB2 Database
	Accessing an SAP System
	Accessing a Xythos WebFile Server

	Understanding Authorization
	Authorization Overview
	Introduction to Authorization
	Which Actions are Controlled by Each Permission?
	How are Authorization Decisions Made?
	Authorization Terminology

	Where Can Permissions Be Set?
	Direct, Inherited, and Repository-Level Access Controls
	Direct Access Controls
	Inherited Access Controls
	Repository-Level Access Controls

	To Whom Can Permissions Be Assigned?
	The User/Group Identity Hierarchy
	Examples of Identity Hierarchies

	A Closer Look: How Authorization Decisions are Made
	Summary: Principles of Access Control Precedence

	Security Planning
	Overview of Security Planning
	Defining the Security Goals
	Making Preliminary Decisions about Authentication
	Choosing Authentication Providers
	Mapping Authentication Providers to Authentication Domains

	Determining the Scope of the Identity Management Tasks
	Introduction to Planning for Identity Management
	What User Accounts Are Needed?
	What User Definitions Will Be Created in the Metadata?
	What Group Definitions Will Be Created in the Metadata?
	Which User IDs and Passwords Will be Stored in the Metadata?
	Summary: Identity Management Requirements

	Reviewing Physical Access Considerations for Data
	Importance of the Physical Protections for Data
	Physical Access Considerations for SAS Data
	Physical Access Considerations for RDBMS Data

	First Steps in Security Administration
	Securing a Deployment
	Overview of Securing a Deployment
	Protecting the Configuration Directories (Windows)
	Initial Operating System Settings
	Recommended Settings (Windows)

	Enabling Encryption
	Initial Encryption Settings
	Increase the Level of Protection
	Encrypting Passwords that are Included in Configuration Files

	Protecting the Foundation Repository
	Initial Settings for the Foundation Repository
	Temporarily Restrict Access to the Repository
	Selectively Restore Access for the Required Users

	Creating a Group of Metadata Administrators (Optional)
	Setting Explicit Protections for Security-Related Resources
	Initial Settings for Security-Related Resources
	Protect Access Control Templates
	Protect Group Definitions

	Minimizing the Availability of Accounts

	Customizing the Authentication Configuration
	Overview of Customizing the Authentication Configuration
	Modifications to Support a Mixed Authentication Environment
	Initial Authentication Configuration
	How to Create an Authentication Domain
	How to Change an Authentication Domain Assignment

	Modifications to Support Additional Servers
	How to Manage Authentication for an Additional Server
	How to Use Shared Accounts
	Example: Managing Authentication to a Database Server

	Modifications to Support Alternative Authentication Mechanisms
	Using Web Authentication
	Using LDAP or Active Directory

	Identity Management
	User and Group Management
	About the User and Group Management Tasks
	Organizing Users Into Groups
	Identifying Related Tasks
	Defining the Group Structure and Membership

	Sequence for Populating a Deployment
	How to Create a User Group
	How to Add a User
	How to Designate an Unrestricted, Administrative, or Trusted User
	How to Remove a User
	Macro for Protecting Group Definitions
	Overview of the %MDUGRPAC Macro
	Syntax of the %MDUGRPAC Macro

	User ID and Password Management
	About the User ID and Password Management Tasks
	How to Store User IDs and Passwords in the Metadata
	How to Update Passwords for Users
	How to Update Passwords for Required Accounts
	Configuration Files That Include Passwords

	Access Management
	Using the Metadata Authorization Layer
	About the Access Management Tasks
	How to Manage ReadMetadata and WriteMetadata Access
	Repository ACT Settings for ReadMetadata and WriteMetadata Permissions
	Example: Preventing Most Users from Viewing a Particular Library Definition
	Example: Preventing Most Users from Modifying a Particular Server Definition
	Example: Preventing Most Users from Adding Reports to a Particular Folder

	How to Manage Read Access
	Introduction to Managing Read Access
	Managing Read Access by Exclusion
	Managing Read Access by Inclusion

	How to Manage the Other Permissions
	Tip: Interpreting the Authorization Tab

	Access Guidelines and Requirements
	Guidelines for Managing Access
	Access Requirements by Type of Resource
	Access Requirements for Server Definitions
	Access Requirements for Libraries and Tables
	Access Requirements for OLAP Data
	Access Requirements for Information Maps
	Access Requirements for Reports
	Access Requirements for Stored Processes
	Access Requirements for Identity and Permission Objects

	BI Row-Level Permissions
	About BI Row-Level Permissions
	Introduction to BI Row-Level Permissions
	Prerequisites for BI Row-Level Permissions

	Row-Level Permissions and Identity-Based Filtering
	Understanding Row-Level Permissions
	Filtering Methods for Row-Level Permissions
	Filters that Use Identity-Driven Properties
	How Row-Level Permissions Are Incorporated When a Report Is Generated
	Precedence for Row-Level Permission Conditions

	How to Create a Secure Environment for BI Row-Level Permissions
	Overview of Requirements
	Instructions for Setting up the Recommended Environment

	How to Implement Row-Level Permissions
	Process Overview for Implementing Row-Level Permissions
	Business Requirements Phase
	Planning Phase
	Data Modeling Phase
	Information Map Design Phase
	Verification Phase

	Example: Using Row-Level Permissions
	Introduction, Assumptions, and Data Model
	Implementation Process
	Variation 1: Use a Different Property for Filtering
	Variation 2: Apply Different Filtering Logic to Different Groups

	OLAP Member-Level Permissions
	About OLAP Member-Level Permissions
	Format for an OLAP Permission Condition
	How to Assign an OLAP Permission Condition
	Example: Using Member-Level Permissions
	Introduction, Assumptions, and Data Model
	Implementation Process

	Appendixes
	Who’s Who in the SAS Intelligence Platform
	Standard User Metadata Identities
	Standard Group Metadata Identities

	Bulk-Load Processes for Identity Management
	Overview of Identity Bulk-Load Processes
	Introduction to Identity Bulk-Load Processes
	Supported Associations
	Integrity Constraints
	Understanding External Identities

	How to Perform an Initial Import of Identity Information
	Overview of the Initial Import Process
	Initial Import from Active Directory
	Initial Import from UNIX /etc/passwd Files
	Initial Import from Other Sources

	How to Synchronize Imported Identity Information
	Overview of the Identity Synchronization Process
	Rebuilding the Master Canonical Tables
	Creating Canonical Tables from the SAS Metadata Server
	Comparing the Master and SAS Metadata Server Canonical Tables
	Validating the Change Tables
	Updating the SAS Metadata Server with Changed Information
	Sample Code for Identity Synchronization

	Identity Bulk-Load Processes: Reference
	Canonical Tables
	Bulk-Load Macros
	Connection Options for the SAS Metadata Server

	Security Implementation Example
	Goals and Configuration
	Example: Implementing Security

	Recommended Reading
	Recommended Reading

	Glossary
	Index

