SAS Publishing

Gsas

SAS 9.1.3 Intelligence Platform

Data Administration Guide

THE
POWER
TO KNOW.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2006.
SAS® 9.1.3 Intelligence Platform: Data Administration Guide. Cary, NC: SAS Institute
Inc.

SAS® 9.1.3 Intelligence Platform: Data Administration Guide
Copyright © 2002-2006, SAS Institute Inc., Cary, NC, USA

ISBN-13: 978-1-59994-167-7
ISBN-10: 1-59994-167-8

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, November 2006

SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our

e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New
Overview [
Documentation Enhancements [

Chapter 1 A Overview of Common Data Sources i

Overview

Accessibility Features in the SAS Intelligence Platform Products
SAS Data Sets

Shared Access to SAS Data Sets

External Files 3

XML Data [

Relational Database Sources 5

Scalable Performance Data Servers [i

ERP Systems 9

Chapter 2 A Connecting to Common Data Sources |ﬂ|

Overview of Connecting to Common Data Sources

Establishing Connectivity to a Library of SAS Data Sets
Establishing Shared Access to SAS Data Sets

Establishing Connectivity to a Flat File

Establishing Connectivity to XML Data

Establishing Connectivity to an Oracle Database

Establishing Connectivity to an Oracle Database by Using ODBC
Establishing Connectivity to a Microsoft Access Database by Using ODBC
Establishing Connectivity to a Scalable Performance Data Server
Establishing Connectivity to a SAP Server

Verifying Access to Tables

Chapter 3 A Assigning Libraries

Overview of Assigning Libraries

Using Libraries That Are Not Pre-assigned

Pre-assigning Libraries Using Engines Other Than the MLE
Pre-assigning Libraries to Use the MLE

Verifying Pre-assignments by Reviewing the Logs [55]

Chapter 4 A Managing Table Metadata

Overview of Managing Table Metadata

Creating Table Metadata for a New Library

Assessing Potential Changes in Advance

Updating Your Table Metadata to Match Data in Your Physical Tables

Chapter 5 A Optimizing Data Storage
Overview of Optimizing Data Storage

Compressing Data

Indexing Data

Sorting Data

Buffering Data

Using Threaded Reads

Validating SPD Engine Hardware Configuration
Setting LIBNAME Options That Affect Performance
Grid Computing Data Considerations

Chapter 6 A Managing OLAP Cube Data
Introduction to Managing OLAP Cube Data

Data Storage and Access

About OLAP Schemas

Create or Assign an OLAP Schema

Building a Cube

Making Detail Data Available for Drill-Through
Make the Column Labels of Drill-Through Tables Available
Display Detail Data for a Large Cube

Appendix 1 A Recommended Reading
Recommended Reading

Glossary
Index

What’s New

Overview

The SAS Intelligence Platform: Data Administration Guide focuses on the SAS
Intelligence Platform and third-party products that you need to install and the
metadata objects that you need to create in order to establish connectivity to your data
sources (and data targets). It also deals with topics such as setting up shared access to
SAS data and explains how using different data-access engines affects security.

Documentation Enhancements

This document contains information that was previously in the SAS Intelligence
Platform: Administration Guide. Among the enhancements is new information about
the following:

O establishing connectivity to XML data
0 managing OLAP cube data
O using grid computing to optimize data storage

vi

CHAPTER

Overview of Gommon Data
Sources

Overview 1

Accessibility Features in the SAS Intelligence Platform Products 1

SAS Data Sets 1

Shared Access to SAS Data Sets 2

External Files 3

XML Data 4

Relational Database Sources 5
SAS/ACCESS 5
ODBC Sources 6

Scalable Performance Data Servers 1
Symmetric Multiprocessing 8

ERP Systems 9

Overview

This chapter provides a brief introduction to the most common data sources that you
encounter as you perform administrative tasks. The features of each data source are
described. In addition, a simple diagram is provided for each data source that shows
how the data flows as connections are established between source storage, SAS engines
and servers, and SAS applications.

Accessibility Features in the SAS Intelligence Platform Products

For information about accessibility for any of the products mentioned in this book,
see the documentation for that product. If you have questions or concerns about the
accessibility of SAS products, send e-mail to accessibility@sas.com.

SAS Data Sets

SAS data sets (tables) are the default SAS storage format. You can use them to store
data of any granularity. A SAS table is a SAS file stored in a SAS data library that SAS
creates and processes. A SAS table contains data values that are organized as a table of
observations (rows) and variables (columns) that can be processed by SAS software. A
SAS table also contains descriptor information such as the data types and lengths of
the columns, as well as which engine was used to create the data. For more information
about using default SAS storage, see SAS Language Reference: Concepts and SAS

mailto:accessibility@sas.com

2 Shared Access to SAS Data Sets A Chapter 1

Language Reference: Dictionary. The following display shows how connectivity to SAS
data sets is set up.

Figure 1.1 Establishing Connectivity to SAS Data Sets

—

SAS Data Integration
Studio

A4

Workspace Server

h

N

Base SAS Engine

Client SAS Application Server Data

See “Establishing Connectivity to a Library of SAS Data Sets” on page 12 for a
detailed example of a SAS data set connection.

Shared Access to SAS Data Sets

SAS/SHARE software provides concurrent update access to SAS files for multiple
users. SAS/SHARE is often required for transaction-oriented applications where
multiple users need to update the same SAS data sets at the same time. Data entry
applications where multiple users are entering data to the same dataset are a good
example of this type of usage. SAS/'SHARE software provides both member- and
record-level locking. Therefore, two or more users can update different observations
within the same data set, and other users can print reports from the same data set.

SAS/SHARE supports multi-user read/write access to both SAS data files and SAS
catalogs. Multi-user access to SAS catalogs simplifies the maintenance of applications
by allowing users and developers to share the same program libraries. Users can
execute applications at the same time that developers update the source programs.

SAS/SHARE software also acts as a data server that delivers data to users for their
processing needs. This capability provides data administrators both a centralized point
of control for their data and a secure environment to control who accesses the data.
SAS/SHARE is also designed to be a reliable data server that functions as long as the
system that the server is running on is operational.

Finally, SAS/SHARE allows you to make use of SAS software’s ability to define views
of your data. This allows administrators to restrict certain users to subsets of data for
security or efficiency purposes. Access to rows and columns in SAS tables can be defined
using this technique. The following display illustrates shared access to SAS data sets.

Overview of Common Data Sources /\ External Files 3

Figure 1.2 Establishing Shared Access to SAS Data Sets

C |

= *

)

SAS Dast?uldr}téagration »(Workspace Server
v 1
Base SAS Engine . i SAS/SHARE Server
¢Library ofT
SAS Data Sets
Client SAS Application Server Data Server

See “Establishing Shared Access to SAS Data Sets” on page 15 for a detailed example
of a share SAS data set connection.

External Files

An external file is a file that is maintained by the machine operating environment or
by a software product other than SAS. A flat file with comma-separated values is one
example. SAS Data Integration Studio provides three source designer wizards that
enable you to create metadata objects for external files:

O the delimited external file wizard for external files in which data values are
separated with a delimiter character. This wizard enables you to specify multiple
delimiters, nonstandard delimiters, missing values, and multi-line records.

O the fixed-width external file wizard for external files in which data values appear
in columns that are a specified number of characters wide. This wizard enables
you to specify non-contiguous data.

O the user-written external file wizard for complex external files that require
user-written SAS code to access their data.

The external file source designer wizards enable you to do the following:
O display a raw view of the data in the external file

O display a formatted view of the data in the external file, as specified in the SAS
metadata for that file

o display the SAS DATA step and SAS INFILE statement that the wizard generates
for the selected file

O display the SAS log for the code that is generated by the wizard

O specify options for the SAS INFILE statement that is generated by the wizard,
such as National Language Support (NLS) encoding

O override the generated SAS INFILE statement with a user-written statement

O supply a user-written SAS DATA step to access an external file

The following display illustrates establishing connectivity to external files.

4 XML Data A Chapter 1

Figure 1.3 Establishing Connectivity to External Files

— N

SAS Data Integration
Studio

A4

Workspace Server

h

N

Base SAS Code

Client SAS Application Server Files

See “Establishing Connectivity to a Flat File” on page 17 for a detailed example of an
external file connection.

XML Data

The XML LIBNAME engine works in a way similar to other SAS engines. A
LIBNAME statement is executed so that a libref is assigned and an engine is specified.
That libref is then used throughout the SAS session.

Instead of the libref being associated with the physical location of a SAS data library,
the libref for the XML engine is associated with a physical location of an XML
document. When you use the libref that is associated with an XML document, SAS
either translates the data in a SAS data set into XML markup or translates the XML
markup into SAS format.

The XML LIBNAME engine can read input streams from a Web service input and
write an output stream to a Web service output. The XML LIBNAME engine supports
reading XML files in complex structures using XMLMaps. An XMLMap is a
user-defined file that contains XML tags that tell the XML LIBNAME engine how to
interpret an XML document. XMLMaps are defined using the SAS XML Mapper
product. For additional information, see the SAS XML LIBNAME Engine User’s Guide.

XML files are written by the XML Writer transformation provided by SAS Data
Integration Studio. The XML LIBNAME engine supports Output Delivery System
(ODS) tag sets; XMLMaps are not supported for writing. The XML Writer
transformation in SAS Data Integration Studio ships with a sample ODS tag set, if
needed. An output XML document can either be:

0 used by a product that processes XML documents

0 moved to another host for the XML LIBNAME engine to then process by
translating the XML markup back to a SAS data set

Since the XML LIBNAME engine is designed to handle tabular data, all the data
sent to or from a Web service must be in table form.

When you are writing an XML file, we recommend that you define the library
specifically for your write operation.

The following display illustrates connectivity to XML files.

Overview of Common Data Sources /. SAS/ACGCESS 5

Figure 1.4 Establishing Connectivity to XML Files

SAS Data Integration
Studio

hd

Workspace Server

Base SAS Code

Client SAS Application Server XML Files

Relational Database Sources

SAS/ACCESS

Data also can be stored in third-party hierarchical and relational databases such as
IMS, DB2, Oracle, SQL Server, and NCR Teradata. SAS/ACCESS interfaces provide
fast, efficient reading and writing of data to these facilities.

Several of the SAS/ACCESS engines support threaded reads. This enables you to
read entire blocks of data on multiple threads instead of reading data just one record at
a time. This feature can reduce I/O bottlenecks and enables thread-enabled procedures
to read data quickly. These engines and DB2 on z/OS also have the ability to access
database management system (DBMS) data in parallel by using multiple threads to the
parallel DBMS server.

The following SAS/ACCESS engines support this functionality:

Oracle

O

Sybase

DB2 (UNIX and PC)
SQL Server
Teradata

For more information about using the SAS/ACCESS interfaces, see SAS/ACCESS
for Relational Databases: Reference. The following display illustrates how connectivity
to Oracle databases is set up.

6

ODBC Sources A Chapter 1

Figure 1.5 Establishing Connectivity to Oracle Databases

C |

S %

SAS Data Integration |
Studio »(Workspace Server
SAS/ACCESS |—>
Interface to Oracle Oracle Server
: Schema of
Oracle Client 4_| Oracle Tables
Client SAS Application Server Data Server

See “Establishing Connectivity to an Oracle Database” on page 21 for a detailed
example of an Oracle connection.

ODBC Sources

Open database connectivity (ODBC) standards provide a common interface to a
variety of databases, including AS/400, dBASE, Microsoft Access, Oracle, Paradox, and
Microsoft SQL Server databases. Specifically, ODBC standards define application
programming interfaces (APIs) that enable an application to access a database if the
ODBC driver adheres to the specification.

The basic components and features of ODBC include the following:

o ODBC functionality is provided by three components: the client interface, the
ODBC driver manager, and the ODBC driver. SAS provides the SAS/ACCESS
interface to ODBC, which is the client interface. For PC platforms, Microsoft
developed the ODBC Administrator, which is used from the Windows Control
Panel to perform software administration and maintenance activities. The ODBC
driver manager also manages the interaction between the client interface and the
ODBC driver. On Unix platforms, a default ODBC driver manager does not exist
and SAS does not provide a driver manager with SAS/ACCESS to ODBC. For
Unix platforms, you should obtain an ODBC driver manager from your ODBC
driver vendor.

0 The ODBC administrator defines a data source as the data that is used in an
application and the operating system and network that are used to access the
data. You create a data source by using the ODBC Administrator in the Windows
Control Panel and then selecting an ODBC driver. You then provide the
information (for example, data source name, user ID, password, description, server
name) that is required by the driver to make a connection to the desired data. The
driver displays dialog boxes in which you enter this information. During
operation, a client application usually requests a connection to a named data
source, not just to a specific ODBC driver.

0 An ODBC Administrator tool is not available in a UNIX environment such as
HP-UX, AIX, or Solaris. During an install, the driver creates a generic .odbc.ini
file that can be edited to define your own data sources.

The following display illustrates how ODBC is used to establish connectivity to
Oracle databases.

Overview of Common Data Sources /A Scalable Performance Data Servers

Figure 1.6 Establishing Connectivity to Oracle Databases By Using ODBC

A

SAS Data Integration
Studio

v

23

Client

See “Establishing Connectivity to an Oracle Database by Using ODBC” on page 26
for a detailed example of an ODBC-based Oracle connection. The following display
illustrates how ODBC is used to establish connectivity to Access databases.

Workspace Server

v 1

SAS/ACCESS
Interface to ODBC

o0

v 1

Oracle Server

ODBC Driver
Manager

v 1

v 1

Schema of
Oracle Tables

ODBC Driver

SAS Application Server

Data Server

Figure 1.7 Establishing Connectivity to Access Databases By Using O0DBC

=

SAS Data Integration
Studio

v

23

Client

See “Establishing Connectivity to a Microsoft Access Database by Using ODBC” on
page 31 for a detailed example of an ODBC-based Access connection.

Workspace Server

v 1

SAS/ACCESS
Interface to ODBC

o0

v 1

Microsoft Access
Database

ODBC Driver
Manager

v 1

Database Tables

ODBC Driver

SAS Application Server

Data Server

7

Scalable Performance Data Servers

Both the SAS Scalable Performance Data Engine (SPD Engine) and the SAS Scalable
Performance Data Server (SPD Server) are designed for high-performance data delivery.

8

Symmetric Multiprocessing A Chapter 1

They enable rapid access to SAS data for intensive processing by the application. The
SAS SPD Engine and SAS SPD Server deliver data to applications rapidly by
organizing the data into a streamlined file format that takes advantage of multiple
CPUs and I/O channels to perform parallel input/output functions.

The SAS SPD Engine is included with Base SAS software. It is a single-user data
storage solution that shares the high-performance parallel processing and parallel I/O
capabilities of SAS SPD Server, but it lacks the additional complexity of a full-blown
server. The SAS SPD Server is available as a separate product or as part of the SAS
Intelligence Storage bundle. It is a multi-user parallel-processing data server with a
comprehensive security infrastructure, backup and restore utilities, and sophisticated
administrative and tuning options. The SAS SPD Server libraries can now be defined
using SAS Management Console.

The SAS SPD Engine and SAS SPD Server use multiple threads to read blocks of
data very rapidly and in parallel. The software tasks are performed in conjunction with
an operating system that enables threads to execute on any of the machine’s available
CPUs.

Although threaded I/O is an important part of both product offerings’ functionality,
their real power comes from the way that the software structures SAS data. They can
read and write partitioned files and, in addition, use a specialized file format. This data
structure permits threads, running in parallel, to perform I/O tasks efficiently.

Although not intended to replace the default Base SAS engine for most tables that do
not span volumes, SAS SPD Engine and SAS SPD Server are high-speed alternatives
for processing very large tables. They read and write tables that contain billions of
observations.

The SAS SPD Engine and SAS SPD Server performance are boosted in these ways:

o support for terabytes of data

scalability on symmetric multiprocessing (SMP) machines
parallel WHERE selections

parallel loads

parallel index creation

partitioned tables

parallel I/O data delivery to applications

O o o o o o o

implicit sorting on BY statements

The SAS SPD Engine runs on UNIX, Windows, z/OS (on HFS and zFS file systems only),
and OpenVMS for Integrity Servers (on ODS-5 file systems only) platforms. The SAS
SPD Server runs on Tru64 UNIX, Windows Server, HP-UX, and Sun Solaris platforms.

Symmetric Multiprocessing

The SAS SPD Engine exploits a hardware and software architecture known as
symmetric multiprocessing (SMP). An SMP machine has multiple CPUs and an
operating system that supports threads. An SMP machine is usually configured with
multiple disk I/O controllers and multiple disk drives per controller. When the SAS
SPD Engine reads a data file, it launches one or more threads for each CPU; these
threads then read data in parallel. By using these threads, a SAS SPD Engine that is
running on an SMP machine provides the quick data access capability that is used by
SAS in an application.

For more information about using the SAS SPD Engine, see SAS Scalable
Performance Data Engine: Reference and support.sas.com/rnd/scalability/spde.

The following display illustrates how connectivity to SPDS servers is established.

Overview of Common Data Sources /\ ERP Systems 9

Figure 1.8 Establishing Connectivity to an SPD Server

C |

= £ 3

SAS Dast?ugfgration »| Workspace Server
‘ 1
SPDS Engine <] PerforigicicgggeServer
v t
SPDS Tables
Client SAS Application Server Data Server

See “Establishing Connectivity to a Scalable Performance Data Server” on page 34
for a detailed example of an SPDS server connection.

ERP Systems

Enterprise Resource Planning (ERP) systems are composed of thousands of tables,
columns, variables and fields. Although they contain a wealth of data, they lack several
key features:

O the ability to provide integration with other data sources

O the ability to do backward-looking drill-down analysis into what caused the effect
(Business Intelligence)

O the ability to do forward-looking cause and effect analysis (Business Analytics)

To make it possible to get to the data the ERP systems contain, SAS provides data
surveyors for each of the following ERPs:

o SAP

0 Peoplesoft
o Oracle

O Siebel

Data surveyors contain Java plug-ins to SAS Data Integration Studio and SAS
Management Console, plus the required SAS/ACCESS engine necessary to get the
information out of the DBMS system. Understanding the metadata of these business
applications is at the heart of the data surveyor. Each data surveyor has knowledge
about the specific application it is designed for. This knowledge contains information
about the ERP metadata that allows you to do the following:

0 understand complex data structures

O navigate the large amounts of tables (SAP is over 20,000)

The following display illustrates how connectivity to SAP servers is established.

10 ERP Systems A Chapter 1

Figure 1.9 Establishing Connectivity to an SAP Server

ol
—

SAS Dasta{\uldr}tc(’agration »| Workspace Server
SAS Data Surveyor StS/ACCESTS SAP Application
for SAP Inlerface to S?P ¢ Server T
RFC Server y SAP Data Tables
Client SAS Application Server Data Server

See “Establishing Connectivity to a SAP Server” on page 38 for a detailed example of
an SAP server connection.

CHAPTER

Connecting to Common Data

Sources

Overview of Connecting to Common Data Sources 12
Establishing Connectivity to a Library of SAS Data Sets 12
Define the SAS Base Engine Library 12
Working with User-Defined Formats 13
Use a Standard Name and Location for the Format Catalog 14
Create a User-Defined Formats Configuration File 14
Establishing Shared Access to SAS Data Sets 15
Overview of Establishing Shared Access 15
Stage 1: Assign the SAS Base Engine Library to the SAS/SHARE Server
Stage 2: Create a SAS/SHARE Remote Engine Library 16
Stage 3: Enable Library Pre-Assignment 16
Establishing Connectivity to a Flat File 17
Stage 1: Connect to the Flat File 18
Stage 2: Define the Columns in the External File Object 18
Stage 3: Save the External File Object 19
Establishing Connectivity to XML Data 20
Connect to the XML Data 20
Establishing Connectivity to an Oracle Database 21
Set SAS/ACCESS Environment Variables 22
Stage 1: Define the Database Server 22
Stage 2: Define the Database Schema 23
Stage 3: Define the Database Library 24
Establishing Connectivity to an Oracle Database by Using ODBC 26
Stage 1: Define the Data Source 21
Stage 2: Define the Database Server 28
Stage 3: Define the Database Schema 29
Stage 4: Define the Database Library 29
Establishing Connectivity to a Microsoft Access Database by Using ODBC 31
Stage 1: Define the Data Source 31
Stage 2: Define the Database Server 32
Stage 3: Define the Database Schema 33
Stage 4: Define the Database Library 33
Establishing Connectivity to a Scalable Performance Data Server 34
Stage 1: Configure the libnames.parm File 35
Stage 2: Define the Server 35
Stage 3: Define the Server Domain 36
Stage 4: Define the Library 37
Establishing Connectivity to a SAP Server 38
Stage 1: Define the Server 39
Stage 2: Define the Schema 40
Stage 3: Define the Library M

15

1

12

Overview of Connecting to Common Data Sources A Chapter 2

Verifying Access to Tables 42
Stage 1: Import the Tables 42
Stage 2: View the Data in a SAS Application 42

Overview of Connecting to Common Data Sources

This chapter consists of detailed examples for establishing a connection to each of the
common data sources introduced in Chapter 1, “Overview of Common Data Sources,” on
page 1. Some of the connection processes covered in this chapter have common
elements that might be applied to similar data sources. For example, the description of
the process of using SAS/ACCESS to connect to an Oracle database might be useful
when you connect to other relational databases such as DB2, Sybase, and Informix.
Also, the descriptions of ODBC connections to Oracle and Microsoft Access databases
and the account of the connection to an SAP source can be helpful when you connect to
similar data sources.

The chapter also explains a connection verification process that imports tables from
the data sources and enables you to view their data in a SAS application. More detailed
information about managing table metadata can be found in the Chapter 4, “Managing
Table Metadata,” on page 57.

Establishing Connectivity to a Library of SAS Data Sets

Define the SAS Base Engine Library

Figure 2.1 Establishing Shared Access to SAS Data Sets
N

SAS Data Integration
Studio

£

Workspace Server

A4

h

N

Base SAS Engine

Client SAS Application Server Data

After you have installed the required SAS software, you need to set up a connection
from a SAS server to a SAS data set. This connection requires that you define a SAS
Base Engine Library metadata object in the metadata repository. In addition, you must
import any user-defined formats that have been created for the data set in order to view
or operate on the data. Assume that the SAS software has already been loaded by using

Connecting to Common Data Sources /. Working with User-Defined Formats 13

the standard installation wizard and that the data set is stored in a location that can be
accessed.

Define the SAS Base Engine Library metadata object by using SAS Management
Console. This metadata enables your SAS applications to access the data sets that you
need to work with. For this example, the dataset contains information about customers
of the Orion Gold enterprise. Perform the following steps:

1 In SAS Management Console, double-click Data Library Manager. Right-click
SAS Libraries. Then, select the New Library option to access the first page of
the New Library Wizard.

2 Select sAs Base Engine Library from the SAS Libraries list. Click Next.

3 Enter an appropriate library name in the Name field (for example, Orion Gold
Customers). Note that you can supply an optional description if you wish. Click
Next.

4 Enter the following library properties:

Table 2.1 Library Properties

Field Sample Value

Libref ORGOLD

Engine BASE

Path Specification C:\SAS\EntBIServer\Levl\SASMain\Data (Enter

the fully-qualified path to the library. This path is
specified differently in different operating systems.
Make sure that the appropriate path is displayed in the
Selected items field.)

You can also click Advanced Options to perform tasks such as pre-assignment
and setting host-specific and LIBNAME options. Click Next to access the next
page of the wizard.

5 (Optional) Select one or more SAS servers. (You might not need to select a server.
The need to select a server depends on the applications that are included in your
environment. A SAS server is not needed for Network File System [NFS]
volumes.) The library is assigned to the server or servers that you select from this
list. Click Next.

6 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the settings.

At this point, you can import tables, as explained in “Verifying Access to Tables” on
page 42.

Working with User-Defined Formats

If you have existing SAS data sets, you might also have a catalog of user-defined
formats and informats. You have two options for making these formats available to
applications such as SAS Data Integration Studio and SAS Information Map Studio:

0 Give the format catalog a standard name and place it in an expected location. This
is the preferred method.

O Create a user-defined formats configuration file, and use the FMTSEARCH system
option to point to the format catalog.

14 Working with User-Defined Formats A Chapter 2

Use a Standard Name and Location for the Format Catalog

The preferred way to make a format catalog available is to perform these steps:

1 Name the format catalog formats.sas7bcat.

2 Place the catalog in the directory
SAS-config-dir\Lev1\SASMain\SASEnvironment\SASFormats.

Note: In the z/OS environment, you must perform an additional step. In the SASRX
REXX exec, add the following LIBRARY ALLOCATE command, which points to the
SASFormats directory.

allocate dd(library) path(’SAS-config-dir/Levl/SASMain/SASEnvironment/SASFormats’)

A

Create a User-Defined Formats Configuration File

Alternatively, you can create a user-defined formats configuration file in which you
point to the location of the formats catalog.
On Windows and UNIX systems, perform these steps:

1 To the SAS configuration file SAS-config-dir\Lev1\SASMain\sasv9.cfg, add the
CONFIG system option, and use it to point to the user-defined formats
configuration file.

-config "SAS-config-dir\Levl1\SASMain\userfmt.cfg"

2 Then, use the FMTSEARCH system option in the same configuration file to point
to the format catalog:

-set fmtlibl "SAS-config-dir\Levl\Data\orformat"
-fmtsearch (fmtlibl.orionfmt)

In this example, SAS-config-dir\Levl\Data\orformat is the location of the format
catalog, and orionfmt (filename orionfmt.sas7bcat) is the name of the format
catalog.

Note: If you have more than one catalog to list, leave a space between each
catalog name. A

Note: On UNIX systems, you must enter the variable name in uppercase. For
example, you would enter FMTLIB1 instead of fmtlibl. A

On z/0OS systems, perform the following steps:

1 Add the AUTOEXEC system option to the SAS launch command as shown in the
following example.

SAS-config-dir/Levl/SASMain/startsas.sh
o("autoexec="./WorkspaceServer/userfmt.sas"")

In this example, startsas.sh is your SAS launch command script, and
userfmt.sas is the name of the SAS autoexec file. When you enter the command,
you must enter it all on one line.

2 In the autoexec file, use the LIBNAME statement to assign the format library and
the OPTIONS statement to set the FMTSEARCH system option. For example, you
might specify the following statements:

libname fmtlibl ’'SAS-config-dir/Levl/Data/orformat’ repname=Foundation;
options fmtsearch=(fmtlibl.orionfmt);

Connecting to Common Data Sources /A Stage 1: Assign the SAS Base Engine Library to the SAS/SHARE Server 15

Establishing Shared Access to SAS Data Sets

Overview of Establishing Shared Access

Figure 2.2 Establishing Shared Access to SAS Data Sets

A

3

)

SAS Dast?uldr}t(;agration »(Workspace Server
v 1
Base SAS Engine . i SAS/SHARE Server
¢Library ofT
SAS Data Sets
Client SAS Application Server Data Server

Base SAS libraries allow the following access:

O Any number of users can read data.

O A single user can write or update data.

This access can be extended through the use of the SAS/SHARE server. A SAS/SHARE
server permits multiple users to update the same items in a SAS library.

You can share access to a library of existing SAS data sets by using a SAS/SHARE
server to manage access to the data. Assume that the SAS/SHARE software has
already been loaded by using the standard installation wizard, and that you have
created a SAS/SHARE server metadata object (for example, SHAREServer). Also
assume that the other user has already created a SAS Base Engine Library, as
described in “SAS Data Sets” on page 1. Setting up shared access to a SAS data set can
be seen as a three-stage process, as follows:

1 Assign the SAS Base Engine Library to the SAS/SHARE server.
2 Create a SAS/SHARE Remote Engine Library metadata object.

3 Enable library pre-assignment. In this example, you’re assigning the Orion Gold
Customers library to the SHAREServer server.

Stage 1: Assign the SAS Base Engine Library to the SAS/SHARE Server

You need to assign the SAS Base Engine Library for the library that you need to share
to the SAS/SHARE Server. In this example, a library that contains information about
customers of the Orion Gold enterprise is being shared. Perform the following steps:

1 In SAS Management Console, double-click Data Library Manager. Double-click
SAS Libraries. Then, right-click the icon for the library that you need to share

16 Stage 2: Create a SAS/SHARE Remote Engine Library A Chapter 2

(for example, Orion Gold Customers). Finally, select the Properties option to
access the Properties dialog box.

2 Click the Assign tab to see a list of available servers. Click the name of the SAS/
SHARE server. This step enables the SAS/SHARE server to access the data in the
library that you need to share.

3 Click oK to save the server assignment.

Stage 2: Create a SAS/SHARE Remote Engine Library

Perform the following steps:

1 In SAS Management Console, double-click Data Library Manager. Right-click
SAS Libraries. Then, select the New Library option to access the New Library
Wizard.

2 Select SAS/SHARE Remote Engine Library from the SAS Libraries list. Click
Next.

3 Enter an appropriate library name in the Name field (for example,
SharedAccessToOrionGold). Note that you can supply an optional description if
you wish. Click Next.

4 Enter the following library properties:

Table 2.2 Library Properties

Field Sample Value
SAS/SHARE Server SHAREServer
Default Login (None) (This default login is used to resolve conflicts

between multiple logins to an authentication domain.
In such cases, the default login is used.)

SAS/SHARE Server Library Orion Gold Customers (Use the drop-down menu to
select the library that you need to share.)

Click Next.

5 Select one or more SAS servers. The library is assigned to the servers included in
this list. Click Next.

6 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the settings.

Stage 3: Enable Library Pre-Assignment

In order to gain access to the tables, you must perform two additional steps to enable
pre-assignment for the library that you need to share, as follows:

1 In SAS Management Console, double-click Data Library Manager. Double-click
SAS Libraries. Then, right-click the icon for the library that you shared (for
example, Orion Gold Customers). Finally, select the Properties option to access
the Properties dialog box.

2 Click the options tab. Then, click Advanced Options to access the Advanced
Options dialog box.

Connecting to Common Data Sources /A Establishing Connectivity to a Flat File 17

3 Select the Library is pre-assigned option to enable pre-assignment for the
shared library. Click OK to return to the options tab.

Note: When Library is pre-assigned is selected, SAS applications no
longer try to assign a library. Instead, the pre-assigned library is referenced by the
applications. A

4 Click oK to close the Properties dialog box and save the pre-assignment.
5 Update the SAS/SHARE configuration file to include the

METAAUTORESOURCES value for the SAS/SHARE server. Perform the
following steps:

a Navigate
in your local file system to find the SAS/SHARE configuration file (for example,
C:\SAS\EntBIServer\Levl\SASMain\ShareServer\sasv9_ShareServer.cfg).
b Open the SAS/SHARE configuration file in a text editor (such as Notepad).
¢ Add the following text to the end of the file:

-metaautoresources "omsobj:ServerComponent?@Name=’'SASMain - SHAREServer'"
d Save the configuration file to save the new setting.

At this point, you can import tables, as explained in “Verifying Access to Tables” on
page 42.

Establishing Connectivity to a Flat File

Figure 2.3 Establishing Connectivity to External Files

— N

SAS Data Integration
Studio

A4

Workspace Server

h

A
Base SAS Code

Client SAS Application Server Files

You can connect to a flat file using the External File Source Designer in SAS Data
Integration Studio. Setting up a connection from SAS to a flat file can be seen as a
three-stage process, as follows:

1 Connect to the flat file.
2 Define the columns in the external file object.
3 Save the external file object.

18

Stage 1: Connect to the Flat File A Chapter 2

Assume that the SAS software has already been loaded by using the standard
installation wizard, and that the flat file is stored in a location that can be accessed.
This example focuses on a comma-delimited flat file. A similar process is used for other
types of flat files, but some steps are different.

Stage 1: Connect to the Flat File

Perform the following steps to establish a connection to the flat file:

1 Open the SAS Data Integration Studio application. Then, select Tools » Source
Designer to access the Source Designer wizard.

2 Select Delimited External File from the External Files list. Click Next.

3 Enter the fully-qualified path to the flat file in the File name field (for example,
SAS-config-dir\sources\customer_data.dat). Click Next.

Stage 2: Define the Columns in the External File Object

Perform the following steps to define the columns in an external file object:

1 On the Delimiters and Parameters page of the wizard, deselect the Blank option
in the Delimiters group box. Then, select the comma option. Click Next to access
the Column Definitions page of the wizard.

2 Perform the following steps to define the columns in the external file object:

a Click Refresh to view the data from the flat file in the File tab in the view
pane at the bottom of the page.

b Click Auto Fill to access the Auto Fill Columns dialog box. Change the
value entered in the Start record field in the Guessing records group box
to 2. This setting is based on the assumption that the first data record of the
flat file contains header information, and that the record is unique because it
holds the column names for the file. Therefore, excluding the first data record
from the guessing process yields more accurate preliminary data because it is
excluded when the guessing algorithm is run.

¢ Click OK to return to the Column Definitions page.

3 Click Import to access the Import Column Definitions dialog box. The following
four methods are provided for importing column definitions:

0 Get the column definitions from other existing tables or external files.
0 Get the column definitions from a format file.

0 Get column definitions from a COBOL format file.

O Get the column names from column headings in the file.

In most cases, you will either get the column definitions from an external
format file or get the column names from the column headings in the external file.
Here is an example of a format file:

Header follows

Name, SASColumnType, SASColumnName, SASColumnLength,

SA8Informat, SASFormat, Desc, ReadFlag

Column definiticn records follow

Namé, C, name, 8, , Schar8., cl@=sz name column,y

8&x,C,sex,1,,,cl@ss sex column,n

Agé,HN,age, 3, ,,cll@ss age column,y

Comma within gquotatien marks kelow 1z neot a delimiter

Description, C, Dezcription, 32, #char32.,, "Dezcription, Comments, etc.',y

Connecting to Common Data Sources /A Stage 3: Save the External File Object 19

A sample of the output is shown in the following figure:

"% Column Definitions

I%

Define the columns contained in the external file.

Marme Description Length Type Infarr
A MAME Cheracter [(None)
A GEMDER Character [(None)
iy SEX Character [(None)
A AcE Cheracter [tNone)
A HEIGHT Character [(None)
i WEIGHT Character [(None)

| I

|
- | v Auto Fill... Mewy Irmport. Delste

f=) ELN S PR PR A Y
oo w|w o -

For this example, select the Get the column names from column headings
in the file radio button. Keep the default settings for the fields underneath it.

Note: If you select Get the column names from column headings in the
file, the value in the Starting record field in the pata tab of the view pane in
the Column Definitions dialog box is automatically changed. The new value is one
greater than the value in the The column headings are in file record field
in the Import Column Definitions dialog box. A

4 Click OK to return to the Column Definitions page.

5 The preliminary data for the external file object is displayed in the columns table
at the top of the page. The Informat and Format columns for the rows in the
table are based on the values that are included in the sample data that is
processed by the guessing function. The results are accurate for this particular set
of records, but you should still examine them to make sure that they are
representative of the data in the rest of the flat file. Edit the values by clicking
directly on the cells in the column table and making the necessary changes.

6 Click the pata tab at the bottom of the Column Definitions page. Then, click
Refresh. The data should be properly formatted. If not, edit the cells in the
column table and check the results by refreshing the bata tab. You can repeat this
process until you are satisfied. You also can review the SAS log for more details.

Note: To view the code that will be generated for the external file, click the
Source tab. To view the SAS log for the generated code, click the Log tab. The
code that is displayed in the Source tab is the code that will be generated for the
current external file. A

Stage 3: Save the External File Object

Perform the following steps to name and save the external file object:

1 Click Next to access the Select Group page. Assume that you do not want to
specify a custom group for the table in this example.

2 Click Next to access the General page. Enter an appropriate name in the Name
field (for example, Customer Data). Note that you can supply an optional
description if you wish.

3 Click Finish to save the metadata and exit the wizard.

At this point, you can import tables, as explained in “Verifying Access to Tables” on
page 42.

20 Establishing Connectivity to XML Data A Chapter 2

Establishing Connectivity to XML Data

Connect to the XML Data

Figure 2.4 Establishing Connectivity to XML Files

SAS Data Integration
Studio

hd

Workspace Server

—»
e

Base SAS Code

Client SAS Application Server XML Files

The following steps describe how to specify a SAS XML library in SAS Management
Console. Assume that the XML library will point to an XML file that contains climate
information (climate.xml). The XML file is in generic format, as defined for the SAS
XML LIBNAME engine. For additional information, see the SAS XML LIBNAME
Engine User’s Guide.

1 In SAS Management Console, double-click Data Library Manager. Right-click
SAS Libraries. Then, select the New Library option to access the New Library
Wizard.

2 Select SAS XML library from the SAS Libraries list. Click Next.

3 Enter an appropriate library name in the Name field (for example, XML Lib). Click
Next.

4 Enter information about the library, such as the following:

Table 2.3 Library Properties

Field Sample Value

Name XML Lib

Libref xmllib

Engine XML

XML File C:\sources\xml\climate.xml
XML Type GENERIC

Library Access READONLY

Connecting to Common Data Sources A

5 Click Finish to save the wizard settings.

Establishing Connectivity to an Oracle Database

21

Establishing Connectivity to an Oracle Database

Figure 2.5 Establishing Connectivity to Oracle Databases

C |

N g 3

SAS Data Integration
Studio

A4

Workspace Server

v 1

SAS/ACCESS
Interface to Oracle

v 1

Oracle Server

Oracle Client

v 1

]

Client SAS Application Server

Setting up a connection from SAS to a database management system can be seen as a

three-stage process, as follows:

1 Define the database server metadata object.

Schema of
Oracle Tables

Data Server

2 Define the database schema metadata object.

3 Define the database library metadata object.

This example illustrates the process for establishing a SAS connection to an Oracle
database. It assumes that the software for the database has already been loaded by

using the standard installation wizard for the database client. The following

prerequisites have been satisfied:

O installation of SAS/ACCESS Interface to Oracle. For requirements information, go
to the Install Center at http://support.sas.com/documentation/

installcenter/index.html and select the operating system. Then, select the
SAS version and click the Planning Installation Edition Kit link. Finally, select

the appropriate System Requirements for SAS Foundation document in the

Installation category.

O installation of a supported Oracle Database Client.

O validation that the Oracle client can communicate with the Oracle server.
O configuration of SAS/ACCESS environmental variables. Create a UNIX script file

that sets up all the environment variables (for example, LD_LIBRARY_PATH_64,

LD_LIBRARY_PATH, ODBCHOME, ODBCINI, ORACLE_HOME, SYBASE,

INSTHOME, LIBPATH, and SHLIB_PATH). Refer to the Post-Installation Guide

or the Configuration Guide in your Installation Kit to see whether this

configuration is needed. If this configuration is necessary, follow the instructions

in the appropriate document. For information about setting environmental

variables when you use SAS/ACCESS to connect to data on UNIX systems, see

“Set SAS/ACCESS Environment Variables” on page 22.

http://support.sas.com/documentation/installcenter/index.html
http://support.sas.com/documentation/installcenter/index.html

22

Set SAS/ACCESS Environment Variables A Chapter 2

Set SAS/ACCESS Environment Variables

If you are attempting to connect to data sources located on UNIX by using SAS/
ACCESS, you must set the environmental variables for the workspace server. Use the
following steps to set the appropriate environment variables in the SAS Workspace
Server:

1

Use the SASENYV invocation option to call the DBMS environment script file. From
SAS Management Console, select the options tab from the Workspace Server
Properties dialog box. Add -sasenv pathtoscript.txt -- after sas.sh in the
Workspace Server Launch Command field. For example, enter the following:

/BIArchitecture/Levl/SASMain/sas.sh -sasenv dbmsscript.txt --

Note: The trailing -- is required. The file name pathtoscript.txt is any
script file name containing the DBMS environment variable settings provided by
your DBA. 2

Restart the object spawner using the objectspawner.sh script file. For example,
enter the following:

/BIArchitecture/Levl/SASMain/ObjectSpawner/objectspawner.sh

In SAS Management Console, right-click the Workspace Server connection and
select the Test Connection option to verify that the workspace server starts
correctly with the new DBMS environment script file.

Stage 1: Define the Database Server

Perform the following steps to define the database server metadata object:

1
2

Open the SAS Management Console application.

Right-click server Manager and select the New Server option to access the New
Server Wizard.

Select Oracle Server from the Database Servers list. Then, click Next.

Enter an appropriate server name in the Name field (for example, oracle Server).
Note that you can supply an optional description if you wish. Click Next.

Enter the following server properties:

Table 2.4 Server Properties

Field Sample Value

Major Version Number 10

Minor Version Number 2

Software Version 10.2.0

Vendor Oracle Corporation
Click Next.

Enter the following connection properties:

Connecting to Common Data Sources /. Stage 2: Define the Database Schema

Table 2.5 Connection Properties

23

Field Sample Value

Path NEWSERVER10G (This value is contained in the
tnsnames.ora file generated during the Oracle
installation. The file is stored in an Oracle installation
directory such as
C:\oracle\product\10.2.0\client_1\
NETWORK\ADMIN\tnsnames.ora. The alias for the
connection information is contained in this file. See the
following display.)

Authentication Domain oracleAuth (You need to create a new authentication
domain each time you connect to a new database
server. The SAS Metadata Server, Workspace Server,
and others require one set of credentials, while the
database server requires another. Click New to access
the New Authorization Domain dialog box. Then enter
the appropriate value in the Name field and click OK to
save the setting. Make sure that the authentication
domain that you create here is added to the appropriate
users and user groups. Add a login to these users and
groups that includes a user ID, a password, and the
authentication domain.)

Note: If you will have multiple users for the connection, consider creating a
user group for them to avoid the inefficient process of creating separate user IDs
and passwords for each. Use the Access Control Template in the Authorization
Manager in SAS Management Console. For more information, see “Example: Use
a Custom ACT” in the chapter “Securing a Deployment” in the SAS Intelligence
Platform: Security Administration Guide. 2

The following display shows a sample tnsnames.ora file:

thsnames.ora Network Configuration File:
C:hvoracleyproduct™10. 2. osclient_1ynetworkhadminttnsnames. ora
Generated by oracle configuration tools.

Eyservent o)
=
(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCPICHOST = Server.na.sas.Com)CPORT = 152100

[COMMECT_DATA =
(SERVICE_NAME = serverl(s)

Note that the correct path value is circled. Click Next.

7 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the wizard settings.

Stage 2: Define the Database Schema

After you have defined the database server metadata, you can define the database
schema metadata object. The server object must be defined first because the server

24 Stage 3: Define the Database Library A Chapter 2

object must be entered into the wizard when you define the schema object. (If needed,
you can define several schemas per server.) Perform the following steps:

1 In SAS Management Console, double-click Data Library Manager. Then,
right-click Database Schema and select the New Database Schema option to
access the New Database Schema Wizard.

2 Select oracle Schema from the Database Schemas list. Click Next to access the
next page of the wizard.

3 Enter an appropriate schema name in the Name field (for example, Oracle
Schema). Note that you can supply an optional description if you wish. Click Next.

4 Enter the following schema properties:

Table 2.6 Schema Properties

Field Sample Value

Database Schema Name Schema Name (This value needs to be the name of an
existing schema).

Oracle Server Oracle Server (Use the value that you entered in the
Name field in the New Server Wizard when you defined
the database server metadata object. In this case it
must be Oracle Server, which is the name of the
metadata object representing the Oracle server.)

Click Next.
Note: The case of the schema names depends upon the database type. For
example, DB2 schema names are uppercased by default. A

5 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the schema settings.

Stage 3: Define the Database Library

After you have defined the database server metadata object and the database schema
metadata object, you can define the database library metadata object. It is important to
define the library object after the server and schema objects because these objects must
be entered into the wizard when you define the library object. Perform the following
steps:

1 In SAS Management Console, double-click Data Library Manager. Right-click

SAS Libraries. Then, select the New Library option to access the New Library
Wizard.

2 Select Oracle Library from the Database Libraries list. Click Next.

3 Enter an appropriate library name in the Name field (for example, oracle
Library). Note that you can supply an optional description if you wish. Click
Next.

4 Enter the following library properties:

Connecting to Common Data Sources /A Stage 3: Define the Database Library

Table 2.7 Library Properties

25

Field Sample Value
Libref ORAREF
Engine ORACLE

You can also click Advanced Options to perform tasks such as pre-assignment
and optimization. Click Next to access the next page of the wizard.

Enter the following settings:

Table 2.8 Advanced Option Settings

Field

Sample Value

Database Server

Default Login

Database Schema

oracleServer (Use the database server that you
created in the New Server Wizard.)

Login (Select your login from the drop-down list. This
default login is used to resolve conflicts between
multiple logins to an authentication domain. In such
cases, the default login is used.)

OracleSchema (Select the schema name that you
entered in the New Database Schema Wizard.)

Click Next.

(Optional) Select one or more SAS servers. (You might not need to select a server.

The need to select a server depends on the applications that are included in your

environment.) The library is assigned to the servers included in this list. Click

Next.

Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the library settings. At this point, you can import
tables, as explained in “Verifying Access to Tables” on page 42.

26 Establishing Connectivity to an Oracle Database by Using ODBC A Chapter 2

Establishing Connectivity to an Oracle Database by Using ODBC

Figure 2.6 Establishing Connectivity to Oracle Databases By Using ODBC

C |

= %

00aon0

o0

SAS Dast?uldr}tggration »| Workspace Server
v i
Iteriace 1o ODBG Oracle Server
gDBC Drivzr ¢Schema ofT
¢M.’:lnagr—;trT Oracle Tables
ODBC Driver
Client SAS Application Server Data Server

Setting up a connection from SAS to an Oracle database management system by using
ODBC can be seen as a four-stage metadata definition process, as follows:

1 Define an ODBC data source.

2 Define the database server metadata object.
3 Define the database schema metadata object.
4 Define the database library metadata object.

This example illustrates the process for establishing a SAS connection to an Oracle
database. It assumes that the software for the database has already been loaded with
the standard installation wizard for the database client. Before you begin, satisfy the
following prerequisites:

O installation of SAS/ACCESS Interface to ODBC. For requirements information, go
to the Install Center at http://support.sas.com/documentation/
installcenter/index.html and select the operating system. Then, select the
SAS version and click the Planning Installation Edition Kit link. Finally, select
the appropriate System Requirements for SAS Foundation document in the
Installation category.

O installation of a supported Oracle Database Client if your ODBC driver requires a
client. Refer to the ODBC driver vendor’s documentation to determine if an Oracle
client is required.

o validation that the Oracle client can communicate with the Oracle server.

o configuration of SAS/ACCESS environmental variables. Create a UNIX script file
that sets up all the environment variables (for example, LD_LIBRARY_PATH_64,
LD_LIBRARY_PATH, ODBCHOME, ODBCINI, ORACLE_HOME, LIBPATH, and

SHLIB_PATH). Refer to the Post-Installation Guide or the Configuration Guide in
your Installation Kit to see whether this configuration is needed. If this

http://support.sas.com/documentation/installcenter/index.html
http://support.sas.com/documentation/installcenter/index.html

Connecting to Common Data Sources /\ Stage 1: Define the Data Source 27

configuration is necessary, follow the instructions in the appropriate document.
For information about setting environmental variables when you use SAS/
ACCESS to connect to data on UNIX systems, see “Set SAS/ACCESS Environment

Variables” on page 22.

Stage 1: Define the Data Source

First, you must define the ODBC data source. On Window systems, you should
perform these steps:

1 Open the Windows Control Panel. Then, double-click Administrative Tools.
Finally, double-click bata Sources (ODBC) to access the ODBC Data Source
Administrator dialog box.

2 Click add to access the Create New Data Source dialog box. Click the Oracle
driver listed in the window (for example, Oracle in OraClientl10g_ homel). Click
Finish to access the Oracle ODBC Driver Configuration dialog box.

Note: System data sources and user data sources store information about how
to connect to the indicated data provider. A system data source is visible to all
users with access to the system, including NT services. A user data source is only
visible to a particular user, and it can only be used on the current machine. For
this example, we are creating a system data source. A

3 Enter the following configuration settings:

Table 2.9 Configuration Settings

Field Sample Value
Data Source Name Oracle_newserver
TNS Service Name NEWSERVER10G (Select the name entered in the

tnsnames.ora file created during installation of the
Oracle database from the drop-down menu. See the
following display.)

User User Name

The following display shows the tnsnames.ora file:

thsnames.ora Network Configuration File:
C:hvoracleyproduct™10. 2. osclient_1ynetworkhadminttnsnames. ora
Generated by oracle configuration tools.

o
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCPICHOST = Server.na.sas.Com)CPORT = 152100

b
[COMMECT_DATA =
(SERVICE_NAME = serverl(s)
J
b,

Note that the correct TNS Service Name value is circled. You can click Test
Connection to verify the settings.
4 Click oK to save the configuration settings and return to the ODBC Data Source
Administrator dialog box. Then, click OK to save the data source.

28 Stage 2: Define the Database Server A Chapter 2

Stage 2: Define the Database Server

Perform the following steps to define the database server metadata object:
1 Open the SAS Management Console application.

2 Right-click server Manager and select the New Server option to access the New
Server Wizard.

3 Select oDBC server from the Database Servers list. Click Next.

4 Enter an appropriate server name in the Name field (for example, ODBC Server).
Note that you can supply an optional description if you wish. One server is
required for each DSN. Click Next.

5 Enter the following server properties:

Table 2.10 Server Properties

Field Sample Value

Major Version Number 3

Minor Version Number 7

Data Source Type ODBC - Oracle

Software Version 10

Vendor Oracle

Associated Machine newserver.na.sas.com (Select this value from the

drop-down list. If the value that you need is not
available, click New to access the New Machine dialog
box. Then enter the appropriate value in the Host
Name field.)

Click Next.
6 Enter the following connection properties:

Table 2.11 Connection Properties

Field Sample Value

Datasrc oracle newserver (Use the value entered in the
Data Source Name field in the ODBC Data Source
Administrator dialog box.)

Authentication Domain oDBCAuth (You need to create a new authentication
domain each time you connect to a new database
server. The SAS Metadata Server, Workspace Server,
and others require one set of credentials, while the
database server requires another. Click New to access
the New Authorization Domain dialog box. Then enter
the appropriate value in the Name field and click OK to
save the setting. Make sure that the authentication
domain that you create here is added to the appropriate
users and user groups. Add a login to these users and
groups that includes a user ID, a password, and the
authentication domain.

Connecting to Common Data Sources /A Stage 4: Define the Database Library 29

Note: If you will have multiple users for the connection, consider creating a
user group for them to avoid the inefficient process of creating separate user IDs
and passwords for each. Use the Access Control Template in the Authorization
Manager in SAS Management Console. A

Click Next.

7 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the wizard settings.

Stage 3: Define the Database Schema

After you have defined the database server metadata, you can define the database
schema metadata object. It is important to define the server object first because the
server object must be entered into the wizard when you define the schema object.
Perform the following steps:

1 In SAS Management Console, double-click Data Library Manager. Right-click
Database Schemas and select the New Database Schema option to access the
New Database Schema Wizard.

2 Select oDBC Schema from the Database Schemas list. Click Next.

3 Enter an appropriate server name in the Name field (for example, ODBC Schema).
Note that you can supply an optional description if you wish. Click Next.

4 Enter the following schema properties:

Tahle 2.12 Schema Properties

Field Sample Value

Database Schema Name oDBCSchema (The database schema name is case
sensitive.)

ODBC Server ODBC Server (Select the server from the drop-down
list.)

Click Next.

5 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the schema settings.

Stage 4: Define the Database Library

After you have defined the database server metadata object and the database schema
metadata object, you can define the database library metadata object. It is important to
define the library object after the server and schema objects because these objects must
be entered into the wizard when you define the library object. Perform the following
steps:

1 In SAS Management Console, double-click Data Library Manager. Right-click

SAS Libraries and select the New Library option to access the New Library
Wizard.

2 Select 0DBC Library from the Database Libraries list. Click Next.

3 Enter an appropriate library name in the Name field (for example, ODBC Library).
Note that you can supply an optional description if you wish. Click Next.

4 Enter the following library properties:

30 Stage 4: Define the Database Library A Chapter 2

Table 2.13 Library Properties

Field Sample Value
Libref ODBCREF
Engine ODBC

You can also click Advanced Options to perform tasks such as pre-assignment
and optimization. Click Next to access the next page of the wizard.

5 Enter the following settings:

Table 2.14 Advanced Option Settings

Field Sample Value

Database Server obpBCServer (Use the database server that you selected
in the New Server Wizard.)

Default Login Login (ODBCAuth) (Select your login from the
drop-down list. This default login is used to resolve
conflicts between multiple logins to an authentication
domain. In such cases, the default login is used.)

Database Schema ODBCSchema (Select the schema name that you entered
in the New Database Schema Wizard.)

Click Next.

6 Select one or more SAS servers. The library is assigned to the servers included in
this list. Click Next.

7 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the library settings. At this point, you can import
tables, as explained in “Verifying Access to Tables” on page 42.

Connecting to Common Data Sources /A Stage 1: Define the Data Source 31

Establishing Connectivity to a Microsoft Access Database hy Using
ODBC

Figure 2.7 Establishing Connectivity to Access Databases By Using O0DBC

-

0onono

o0

23

SAS Data Integration |

Studio »(Workspace Server

SAS/ACCESS Microsoft Access
Interface to ODBC Database
ODBC Driver Database Tables
Manager

ODBC Driver

Client SAS Application Server Data Server

Setting up a connection from SAS to a Microsoft Access database by using ODBC can be
seen as a four-stage process, as follows:

1 Define an ODBC data source.

2 Define the database server metadata object.

3 Define the database schema metadata object.

4 Define the database library metadata object.

This example illustrates the process for establishing a SAS connection to an Access
database. It assumes that the software for the database has already been loaded with

the standard installation wizard for the database client. The following prerequisite has
been satisfied:

O installation of SAS/ACCESS Interface to ODBC

Stage 1: Define the Data Source

First, you must define the ODBC data source. On Windows systems, perform these
steps:

1 Open the Windows Control Panel. Then, double-click Administrative Tools.
Finally, double-click bata Sources (ODBC) to access the ODBC Data Source
Administrator dialog box.

2 Click add to access the Create New Data Source dialog box. Click the Microsoft
Access driver listed in the window (for example, Microsoft Access Driver
[*.mdb]). Click Finish to access the Oracle ODBC Driver Configuration dialog
box.

32 Stage 2: Define the Database Server A Chapter 2

Note: System data sources and user data sources store information about how
to connect to the indicated data provider. A system data source is visible to all
users with access to the system, including NT services. A user data source is only
visible to a particular user, and it can only be used on the current machine. A

3 Enter the following configuration settings:

Table 2.15 Configuration Settings

Field Sample Value
Data Source Name MS Access
Database Click Select to browse for your Access database file,

such as Northwinds .mdb in the Microsoft Office
Samples directory.

4 Click oK to save the configuration settings and return to the ODBC Data Source
Administrator dialog box. Then, click ok to save the data source.

Stage 2: Define the Database Server

Perform the following steps to define the database server metadata object:
1 Open the SAS Management Console application.

2 Right-click server Manager and select the New Server option to access the New
Server Wizard.

3 Select oDBC server from the Database Servers list. Click Next.

4 Enter an appropriate server name in the Name field (for example, MS Access
Server). One server is required for each DSN. Note that you can supply an
optional description if you wish. Click Next.

5 Enter the following server properties:

Table 2.16 Server Properties

Field Sample Value

Major Version Number 3

Minor Version Number 7

Data Source Type ODBC - Microsoft Access

Software Version 3.7.0

Vendor Microsoft

Associated Machine newserver.na.sas.com (Select this value from the

drop-down list. If the value that you need is not
available, click New to access the New Machine dialog
box. Then enter the appropriate value in the Host
Name field.)

Click Next.
6 Enter the following connection properties:

Connecting to Common Data Sources /A Stage 4: Define the Database Library 33

Table 2.17 Connection Properties

Field Sample Value

Datasrc MS Access (Use the value entered in the Data
Source Name field in the ODBC Data Source
Administrator dialog box.)

Authentication Domain (None)

Click Next.

7 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the wizard settings.

Stage 3: Define the Database Schema

Most databases include schemas that must be identified as part of the connection
process. Microsoft Access databases, though, require that you define a separate library
for each DSN, and they do not use schemas. Nevertheless, SAS expects to connect to a
schema. For this reason, you must create a blank schema object as a placeholder.
Perform the following steps:

1 In SAS Management Console, double-click Data Library Manager. Then,
right-click Database Schemas and select the New Database Schema option to
access the New Database Schema Wizard.

2 Select ODBC Schema from the Database Schemas list. Click Next.

3 Enter an appropriate server name in the Name field (for example, MS Access
Schema). Note that you can supply an optional description if you wish. Click Next.

4 Enter the following schema properties:

Tahle 2.18 Schema Properties

Field Sample Value

Database Schema Name Leave this field blank. (This field must be left blank
because SAS expects a schema value, but Microsoft
Access does not use one.)

ODBC Server MS Access Server (Select the server from the
drop-down list.)

Click Next.

5 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the schema settings.

Stage 4: Define the Database Library

After you have defined the database server metadata object and the database schema
metadata object, you can define the database library metadata object. It is important to
define the library object after the server and schema objects because these objects must
be entered into the wizard when you define the library object. Perform the following
steps:

1 In SAS Management Console, double-click Data Library Manager. Then,

right-click sAs Libraries and select the New Library option to access the New
Library Wizard.

34 Establishing Connectivity to a Scalable Performance Data Server A Chapter 2

2 Select 0DBC Library from the Database Libraries list. Click Next.

3 Enter an appropriate library name in the Name field (for example, MS Access
Library). Note that you can supply an optional description if you wish. Click
Next.

4 Enter the following library properties:

Table 2.19 Library Properties

Field Sample Value
Libref ACCESREF
Engine ODBC

You can also click Advanced Options to perform tasks such as pre-assignment
and optimization. Click Next to access the next page of the wizard.

5 Enter the following setting:

Table 2.20 Advanced Option Setting

Field Sample Value

Database Server MS Access Server (Use the database server that you
created in the New Server Wizard.)

Click Next.

6 Select one or more SAS servers. The library is assigned to the servers included in
this list. Click Next.

7 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the library settings. At this point, you can import
tables, as explained in “Verifying Access to Tables” on page 42.

Establishing Connectivity to a Scalable Performance Data Server

Figure 2.8 Establishing Connectivity to an SPD Server

A

N %

SAS Data Integration
Studio

A4

Workspace Server

v 1

SPDS Engine

A 4

SAS Scalable
Performance Data Server

v 1

SPDS Tables

A

Client SAS Application Server Data Server

Connecting to Common Data Sources /A Stage 2: Define the Server 35

Setting up a connection from SAS to a Scalable Performance Data Server (SPD Server)
can be seen as a four-stage process, as follows:

1 Configure the 1ibnames.parm file.
2 Define the server metadata object.
3 Define the server domain metadata object.

4 Define the library metadata object.

This example illustrates the process for establishing a SAS connection to SPD Server.
It assumes that the software for the database has already been loaded by using the
standard installation wizard for the database client. The SPD Server client and server
software must be installed before the connection can be established.

Stage 1: Configure the libnames.parm File

When you install the SPD Server software on Windows, a 1ibnames.parm file is
created in the C:\Program Files\SAS Institute Inc\SPDS-version\Site directory.
You must specify at least a LIBNAME and a pathname for the directory where the SPD
Server tables will be saved (for example, ¢: \SPDSTables). For the LIBNAME, use the
LIBNAME domain that you created earlier for the library (in this case, spdsrv).

A sample libnames.parm file is shown in the following display:

% libnames.parm - Motepad i [m] [
File Edit Format YWiew Help

Qﬁbname=tmp pathname=C:h\temp;
Thname=spdssrv pathname=c:§SPDSTab1es;

Stage 2: Define the Server

Perform the following steps to define the database server metadata object:
1 Open the SAS Management Console application.

2 Right-click server Manager and select the New Server option to access the New
Server Wizard.

3 Select sAS scalable Performance Data Server from the SAS Servers list.
Then, click Next.

4 Enter an appropriate server name in the Name field (for example, SPDServer).
Note that you can supply an optional description if you wish. Click Next.

5 Enter the following server properties:

36 Stage 3: Define the Server Domain A Chapter 2

Table 2.21 Server Properties

Field Sample Value
Major Version Number 4

Minor Version Number o

Vendor SAS Institute
SAS Compatibility SAS 9

Click Next.

6 Enter the following connection properties:

Tahle 2.22 Connection Properties

Field Sample Value

Host D1234

Port Number or Name 5200 (Enter the port number for the SPDS name
server.)

Communication Protocol TCP

Authentication Domain SPDSAuth (You need to create a new authentication

domain each time you connect to a new server. The
SAS Metadata Server, Workspace Server, and others
require one set of credentials, while the SPDS requires
another. Click New to access the New Authorization
Domain dialog box. Then enter the appropriate value in
the Name field and click OK to save the setting. Make
sure that the authentication domain that you create
here is added to the appropriate users and user groups.
Add a login to these users and groups that includes a
user ID, a password, and the authentication domain.)

Note: If you will have multiple users for the connection, consider creating a
user group for them to avoid the inefficient process of creating separate user IDs
and passwords for each. Use the Access Control Template in the Authorization
Manager in SAS Management Console. A

7 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the wizard settings.

Stage 3: Define the Server Domain

After you have defined the server metadata, you can define the server domain
metadata object. It is important to define the server object first because the server
object must be entered into the wizard when you define the domain object. Perform the
following steps:

1 In SAS Management Console, double-click Data Library Manager. Then,
right-click Database Schemas and select the New Database Schema option to
access the New Database Schema Wizard.

Connecting to Common Data Sources [/ Stage 4: Define the Library 37

2 Select SAS Scalable Performance Data Server Domain from the Database
Schemas list. Then, click Next.

3 Enter an appropriate server domain name in the Name field (for example,
SPDServerDomain). Note that you can supply an optional description if you wish.
Click Next.

4 Enter the following domain properties:

Tahle 2.23 Server Domain Properties

Field Sample Value

LIBNAME Domain Name spdssrv (This value will be entered into the
libnames.parm file).

SPD Server sppSServer (Use the value that you entered in the
Host field of the Connection Properties dialog box
when you defined the server metadata object.)

Click Next.

5 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the schema settings.

Stage 4: Define the Library

After you have defined the server metadata object and the server domain metadata
object, you can define the library metadata object. It is important to define the library
object after the server and domain objects because these objects must be entered into
the wizard when you define the library object. Perform the following steps:

1 In SAS Management Console, double-click Data Library Manager. Right-click
SAS Libraries. Then, select the New Library option to access the New Library
Wizard.

2 Select sAs Scalable Performance Data Server v4 Library from the sAs
Libraries list. Click Next.

3 Enter an appropriate library name in the Name field (for example,
SPDServerLibrary). Note that you can supply an optional description if you wish.
Click Next.

4 Enter the following library properties:

Table 2.24 Library Properties

Field Sample Value
Libref spdsrv
Engine SASSPDS

You can also click Advanced Options to perform tasks such as pre-assignment
and optimization. Click Next to access the next page of the wizard.

5 Enter the following settings:

38 Establishing Connectivity to a SAP Server A Chapter 2

Table 2.25 Advanced Option Settings

Field Sample Value

SPD Server sppSServer (Use the database server that you selected

in the New Server Wizard.)

(None) (Keep this default value. SPD Server does not
use a schema, but SAS expects a value in this field.)

Default Login

spdsrv (Select the domain name that you entered in
the New Database Schema Wizard.)

LIBNAME Domain

Click Next.

6 Select one or more SAS servers. (You might not need to select a server. The need
to select a server depends on the applications that are included in your
environment.) The library is assigned to the servers included in this list. Click
Next to access the next page of the wizard.

7 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the library settings. At this point, you can import
tables, as explained in “Verifying Access to Tables” on page 42.

Establishing Connectivity to a SAP Server

Figure 2.9 Establishing Connectivity to a SAP Server

- o

SAS Data Integration

A4

Studio

SAS Data Surveyor
for SAP

Client

Workspace Server

v 1

SAS/ACCESS
Interface to SAP

SAP Application
Server

v 1

v 1

RFC Server

SAP Data Tables

SAS Application Server

Data Server

Setting up a connection from SAS to a SAP server can be seen as a three-stage process,
as follows:

1 Define the server metadata object.

2 Define the server domain metadata object.

3 Define the library metadata object.

This example illustrates the process for establishing a SAS connection to SAP. It

assumes that the following software has already been loaded by using the standard
installation wizard:

o SAP RFC library. This is required by the SAS RFC service.

0 SAS/ACCESS Interface to R/3. This installation installs the SAS RFC service.
Note that you must manually start this service on both Windows and UNIX each

Connecting to Common Data Sources /A Stage 1: Define the Server

time that you start the SAS server.

39

Stage 1: Define the Server

Perform the following steps to define the SAS server metadata object:

1
2

4 Enter an appropriate server name in the Name field (for example, SAPServer).
Note that you can supply an optional description if you wish. Click Next.

Open the SAS Management Console application.

Right-click server Manager and select the New Server option to access the New

Server Wizard.

Select SAP Server from the Enterprise Applications Servers list. Then, click

Next.

Enter the following server properties:

Tahle 2.26 Server Properties

Field Sample Value
Major Version Number 4

Minor Version Number 6

Software Version 4.6

Vendor SAP AG
Click Next.

Enter the following connection properties:

Table 2.27 Connection Properties

Field Sample Value

Authentication Domain sAPAuth (You need to create a new authentication
domain each time you connect to a new server. The SAS
Metadata Server, Workspace Server, and others require
one set of credentials, while the SAP server requires
another. Click New to access the New Authorization
Domain dialog box. Then enter the appropriate value in
the Name field and click OK to save the setting. Make
sure that the authentication domain that you create
here is added to the appropriate users and user groups.
Add a login to these users and groups that includes a
user ID, a password, and the authentication domain.)

RFC Server Host

the network. If it is installed on the same machine as
the workspace server, this value is populated
automatically. If it is installed anywhere else, enter the

appropriate value.)

localhost (The SAP Server can be installed on the
same machine as the workspace server, on the same
machine as the application server, or on any machine in

40

Stage 2: Define the Schema A Chapter 2

9

Field Sample Value

RFC Server Port 6999 (This is default value, populated automatically. If
the SAP server is installed on the same machine as the
workspace server, this is the correct value. If the SAP
server is installed anywhere else, enter the appropriate
value instead.)

Client 800 (This value is obtained from your SAP
administrator.)

Language EN (This value is obtained from your SAP
administrator.)

Note: If you will have multiple users for the connection, consider creating a
user group for them to avoid the inefficient process of creating separate user IDs
and passwords for each. Use the Access Control Template in the Authorization
Manager in SAS Management Console. A

Select Application Server and click Options to access the Application Server
Host dialog box.

Note: Instead of the Application Server, you might choose other options, as
well, including: SAPGUI Logical Name, SAPRFC.INI Logical Name, and Message
Servers A

Enter the fully-qualified name of the server host that was supplied by the SAP
administrator (for example, sapsrv.na.sas.com) in the Application Server
Host field. Enter the system number that was supplied by the SAP administrator
(for example, 12) in the System Number field. Then, click oK to return to the New
Server Wizard.

Click Next.

10 Examine the final page of the wizard to ensure that the proper values have been

entered. Click Finish to save the wizard settings.

Stage 2: Define the Schema

After you have defined the server metadata, you can define the schema metadata
object. It is important to define the server object first because the server object must be
entered into the wizard when you define the schema object. Perform the following steps:

1

4

In SAS Management Console, double-click bata Library Manager. Then,
right-click Database Schema and select the New Database Schema option to
access the New Database Schema Wizard.

Select SAP Schema from the Enterprise Application Schemas list. Then, click
Next.

Enter an appropriate server domain name in the Name field (for example, SAP
Schema). Note that you can supply an optional description if you wish. Click Next.

Enter the following schema properties:

Connecting to Common Data Sources /. Stage 3: Define the Library 4

Tahle 2.28 Server Domain Properties

Field Sample Value
Database Schema Name Leave this field blank.
SAP Server sapPServer (Use the value that you entered in the

Name field of the New Server Wizard when you defined
the server metadata object.)

Click Next.

5 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the schema settings.

Stage 3: Define the Library

After you have defined the server metadata object and the server domain metadata
object, you can define the library metadata object. It is important to define the library
object after the server and schema objects because these objects must be entered into
the wizard when you define the library object. Perform the following steps:

1 In SAS Management Console, double-click Data Library Manager. Right-click
SAS Libraries. Then, select the New Library option to access the New Library
Wizard.

2 Select sAP Library from the Enterprise Applications Libraries list. Click
Next.

3 Enter an appropriate library name in the Name field (for example, SAP Library).
Note that you can supply an optional description if you wish. Click Next.

4 Enter the following library properties:

Table 2.29 Library Properties

Field Sample Value

Libref SAPLib

Engine SASIOSR3 (Accept the value that is populated
automatically.)

Click Next.

5 Select the SAP server that you entered in the Name field of the New Server Wizard
(for example, SAP Server) by using the Database Server drop-down list. Then,
click Next.

6 (Optional) Select one or more SAS servers. (You might not need to select a server.
The need to select a server depends on the applications that are included in your
environment.) The library is assigned to the servers included in this list. Click
Next.

7 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish to save the library settings. At this point, you can import
tables, as explained in “Verifying Access to Tables” on page 42.

42 Verifying Access to Tables A Chapter 2

Verifying Access to Tabhles

You need to make sure that the end users of your SAS applications can gain access to
tables in your data libraries. The exact steps and authorization requirements vary
across applications and data types, but you must always log on to the application,
create the needed metadata, and verify the existence of the tables. This example will
focus on the process used to verify SAS tables in SAS Management Console.

Verifying your access to tables in SAS Management Console can be seen as a
two-stage process, as follows:

1 Import the tables.
2 View the data in SAS Management Console.

Stage 1: Import the Tables

To import the tables, perform the following steps.

1 Open SAS Management Console, if necessary. Be sure to select the metadata
profile of a user who is not an unrestricted user.

2 Double-click bata Library Manager. Then, double-click SAS Libraries to see
the list of libraries. Right-click the library that contains the tables that you need
to import. Then, select the Import Tables option to access the Connect to SAS
page of the Import Tables wizard.

3 Select a server.

4 Select the library that contains the tables from the SAS Library drop-down list.

5 Verify that the values shown in the fields in the Library details group box are
correct. Click Next.

6 Click the tables that you need to select. (Hold down the CTRL key and click to
select more than one table.) Click Next.

7 Examine the final page of the wizard to ensure that the proper values have been
entered. Click Finish.

Note: You can also import tables using the Source Designer in SAS Data
Integration Studio or through SAS Data Surveyor. A

Stage 2: View the Data in a SAS Application

Open an application that can view SAS data in order to view the data in the
imported tables and review the data. For example, you can perform the following steps
in SAS Data Integration Studio:

1 Navigate to the Inventory tree and double-click Tables.

2 Right-click a table that you need to verify and select the view Data option.
Examine the data contained in the table in the View Data window.

3 Close the View Data window.

4 Optionally, you can also examine the table’s Properties field. Right-click a table,
and select the Properties option.

5 Click the columns tab to see column data for the table.

6 Click the Advanced tab. Notice that the time and date that the metadata for the

table was created is displayed in the MetadataCreated field. Click cancel to
dismiss the Properties dialog box.

43

CHAPTER

Assigning Libraries

Overview of Assigning Libraries 43
What Does It Mean to Assign a Library? 43
Pre-assigning Libraries 44
Data-Access Engines and the MLE 45
Using Libraries That Are Not Pre-assigned 46
How Do the Different Platform Clients Assign Libraries? 47
Processing Stored Processes When the Library is Not Pre-assigned 48
Pre-assigning Libraries Using Engines Other Than the MLE 49
Pre-assignment Using Information Stored in the Metadata 51
Pre-assignment Using Information in an Autoexec File 53
Pre-assigning Libraries to Use the MLE 54
Verifying Pre-assignments by Reviewing the Logs 55

Overview of Assigning Libraries

What Does It Mean to Assign a Library?

In Chapter 2, “Connecting to Common Data Sources,” on page 11, you learned how to
define SAS libraries in metadata. These libraries represented such things as the set of
SAS data sets in a directory or the set of tables in a database schema. This chapter
explains how to assign libraries so that the SAS servers in the environment know
where the libraries are located and how to access them.

Assigning a library means letting a SAS session know that a libref—a shortcut
name—is associated with the information that the SAS session needs to access a data
library. For example, if you were writing a SAS program that needed to access a library
of SAS data sets, your program might include the following statement:

LIBNAME ORGOLD BASE 'C:\SAS\EntBIServer\Levl\SASMain\Data\orgold’ repname=Foundation;

In this case, the libref ORGOLD tells the SAS session that it should access data sets in
the directory c:\SAS\EntBIServer\Levl\SASMain\Data\orgold using the BASE
data-access engine.

SAS Intelligence Platform clients such as SAS Data Integration Studio, SAS OLAP
Cube Studio, and SAS Information Map Studio generate SAS code that makes use of
librefs. Before this code can execute, the corresponding library must have been
assigned, and the server that will execute the code must know about that assignment.

44

Pre-assigning Libraries A Chapter 3

Pre-assigning Libraries

There are two ways in which a server can find out about a library reference. One
way is for you, as the administrator, to configure the environment so that the server
finds out about the libref at server startup. This approach is referred to as
pre-assigning the library, because the libref is established before any code that uses
that libref is submitted. The other way is to let the client application define the libref
for a server when it generates code for submission to that server.

Deciding whether to pre-assign a library or not has important consequences. One
factor to keep in mind is that pre-assigning an excessive number of libraries can slow
the execution of SAS jobs for all users. Other factors are described in “Data-Access
Engines and the MLE” on page 45. SAS clients and stored processes can access a
library using one of two engines:

O the engine specified in the library’s metadata. This would be the Base SAS engine
for libraries of SAS data sets, the ORACLE engine for Oracle libraries, and so
forth.

0 the metadata LIBNAME engine (MLE).
Which engine you use affects security and dictates what operations are possible.

Note: Avoid the “Pre-assigned Library” template. When pre-assigning a library, be
sure to choose the resource template specific to the type of data source library you are
creating and select the This library is pre-assigned checkbox. Do not use the
specialized “Pre-assigned Library” template, which is intended for certain system
libraries only; it will not work for other libraries. A

If you pre-assign libraries, you control which engine is used to access the data. If you
do not pre-assign a library, the client that needs to access that library decides which
engine to use, and different clients use different strategies. For example, SAS Data
Integration Studio and SAS OLAP Cube Studio always use the engine stored in the
library’s metadata, while SAS Enterprise Guide can use either the MLE or its native
engine. For more information, see “Managing Libraries” in the chapter “Managing
Metadata Objects” in SAS Management Console User’s Guide.

Having the server process assign libraries upon start-up based on information in the
metadata results in library assignments that are identical and guaranteed across all
SAS client applications and servers. Some environments where this approach to
assigning libraries is desirable include the following:

0 Environments where users are executing stored processes, and you don’t want
programmers having to manage library assignments in their code or in autoexec
files.

0 Environments where the Data Step Batch Server is used to execute jobs created by
SAS Data Integration Studio, and library assignments for these jobs should be
identical to assignments used when the process was created.

0 Environments where SAS Enterprise Guide or SAS Add-In for Microsoft Office
users will be running tasks that need to create tables in the library defined in the
metadata. Recall that when you define a client-assigned library (a library that is
not pre-assigned), SAS Enterprise Guide and SAS Add-In for Microsoft Office will
assign the library to use the META engine by default. Recall further that a library
assigned with the MLE should not be used as the location for output or target
tables.

When libraries are assigned by the client application, each application can assign the
library in a way that is most suitable for its intended user base, and library connections
are established only if needed. When libraries are assigned by the server, each library
is available to all back-end server processes and is allocated exactly the same way for

Assigning Libraries /A Data-Access Engines and the MLE 45

all client applications. A mixture of some server-assigned and some client
application-assigned libraries will most likely be required to meet the needs of all the
users in your environment.

Data-Access Engines and the MLE

As mentioned previously, when you access the data in a data library, you can use the
data-access engine stored in the metadata definition of the library, or you can use the
MLE. As shown in the following display, the MLE invokes the SAS/ACCESS engine
stored in the metadata.

Display 3.1 MLE Invocation of the SAS/ACCESS Engine

SAS Add-In
for Microsoft Office
(Open SAS Data Source)

= ‘ s P

Workspace - \’%SAS Metadata Server
Server Metadata Engine
(META) < Metadata Repository
| BASE Engine | ==

A 4

D A
File Server

SAS’9 Data Tables

”ﬁ

(0gon
(000

One of the key enhancements made in SAS®9 has been the introduction of the SAS
Open Metadata Architecture authorization facility. This authorization facility gives you,
the administrator, the ability to control which users can access which metadata objects,
such as SASLibrary, PhysicalTable, and LogicalServer. You manage their access to
metadata by setting ReadMetadata and WriteMetadata permissions on the object or on
the repository.

As depicted in the preceding diagram, when SAS users expand a library that they
have ReadMetadata access to and that has been assigned to use the MLE, the engine
first sends a request to the SAS Metadata Server asking for the users’ metadata
permissions on the tables in the library. A list of tables for which the users have at
least ReadMetadata access will be returned and presented to them for selection. If they
then attempt to perform some action against one of those tables, such as opening it, the
MLE sends a query directly to the authorization facility asking for the their data-level
permissions on that table. If the users or the group to which they belong have at least
Read access to the table, the MLE will call upon the engine specified in the metadata to
handle the request, and the table will be opened into the client application for reading.

Client applications contact the metadata server and request access to a metadata
object as the user. The metadata server then queries the SAS authorization facility to

46

Using Libraries That Are Not Pre-assigned A Chapter 3

determine if users have ReadMetadata, CheckInMetadata, or WriteMetadata
permission to the object. These metadata-based permissions are the only permissions
checked by the metadata server. Users attempting to access a table in a SAS
metadata-based library that is pre-assigned by the server will be successful if they have
ReadMetadata access to the library and, in the case of SAS Data Integration Studio,
SAS OLAP Cube Studio, and SAS Information Map Studio, access to the table.

In contrast, data-level authorizations of Read, Write, Create, and Delete are never
checked by the metadata server, because a metadata object is not involved. As a result,
if you need to use the SAS authorization facility to control which users can access a
physical table or library, then you need to assign the server-side library using the MLE.
When used with its default options, the MLE will query the metadata server for
metadata-based permissions. The SAS authorization facility must be queried for
data-level permissions. When MLE libraries are defined in an autoexec file through a
LIBNAME statement, they are always pre-assigned.

The general form of a LIBNAME statement for the META engine is as follows:

LIBNAME libref META LIBID=id | LIBURI=URI-format | LIBRARY=name
<connection-options><engine-options>;

Therefore, a META LIBNAME statement for the Orion Gold Customers library
defined in the metadata would look something like the following:

ORGOLD META library="Orion Gold Customers" METAEEPOSITORY="Foundation";

This is the minimum information you would need to supply in the LIBNAME statement
itself. However, this statement will work only if the META* options that contain the
information necessary to connect to the metadata server have already been specified.
These options, METASERVER, METAPORT, METAREPOSITORY, and
METAPROTOCOL, are defined in the sasv9.cfg file already if you used the
Configuration Wizard to set up your environment.

Having data requests flow through the MLE before they reach the engine that
actually fulfills the request provides an important capability: the MLE enforces the
data-level authorizations that are available in the SAS Authorization Manager. These
include the Read, Write, Create, and Delete permissions. The other data-access engines
ignore these permissions.

At the same time, using the MLE takes away some capabilities. Most important, the
MLE should not be used in its default mode to create or delete tables. It is most suited
to read-only applications.

Using Libraries That Are Not Pre-assigned

By default, newly created libraries are not pre-assigned. When a library is not
pre-assigned, the library is assigned by using the data-access engine that best suits the
client application and its intended user base. Thus, the default assignments for
applications such as SAS Data Integration Studio, SAS Add-In for Microsoft Office, SAS
Enterprise Guide, SAS OLAP Cube Studio, SAS Enterprise Miner, and SAS Information
Map Studio are employed. For example, if you do not pre-assign the library, SAS Data
Integration Studio will assign it for the user in such a way that data-level
authorizations of Read, Write, Create, and Delete are not imposed on the clients. Data
requests are sent directly to the engine specified in the library’s metadata (such as
BASE) without checking data-level authorizations. This approach was chosen as a best
practice, because it is assumed that in most cases SAS Data Integration Studio
developers will be building processes that create or update tables in the library and that
the underlying engine is the only engine that should be used for data-populating tasks.

Assigning Libraries /A How Do the Different Platform Clients Assign Libraries? 47

How Do the Different Platform Clients Assign Libraries?

When libraries are not pre-assigned, each SAS platform client assigns libraries.
Allowing each application to assign libraries as it deems appropriate for its user base
results in the optimal security model for environments where users have different data
access requirements to a library and where you want to capitalize on using metadata
decisions enforced by the SAS authorization facility on top of the operating system or
RDBMS authorization layer. An example of such an environment would be one with
clients running at least SAS Enterprise Guide and SAS Data Integration Studio. In
this environment, SAS Data Integration Studio processes update tables that are in turn
used in ad hoc analysis within SAS Enterprise Guide. The SAS Data Integration Studio
processes need to specify tables in the library as target tables (output), whereas the
SAS Enterprise Guide user’s activities largely involve querying and analyzing chunks of
data (input).

Because SAS Data Integration Studio processes typically update or create target
tables, when SAS Data Integration Studio assigns the library it does not use the META
engine. Instead, it assigns the library using the engine specified in the metadata.
Because SAS Data Integration Studio only works with tables that are defined in the
metadata repository, you can use the SAS authorization facility to control a client’s
access to tables by setting ReadMetadata, WriteMetadata, and CheckInMetadata
permissions on the library and table metadata objects.

SAS Information Map Studio always assigns the library by using a LIBNAME
statement and the engine specified in the metadata, unless the library is explicitly
defined by a SAS administrator (or SAS Data Integration Studio administrator) to use
the META engine.

Note: The metadata authorization layer supplements operating system- and
RDBMS-level security. It does not replace it. Operating system and RDBMS
authorization layers can and should always be employed as the first means of securing
access to tables. o

On the other hand, the SAS Add-In for Microsoft Office and SAS Enterprise Guide
(shown in the following table) assign the library using the META engine by default, so
that data-level authorizations of Read, Write, Create, and Delete, which are specified in
the metadata, are enforced. If defining libraries so that they are not pre-assigned seems
like a potential option for your environment, then you will want to explore this topic a
little further and learn how to ensure that these libraries will be available to server
processes that do not receive direct requests from client applications. For example, you
will need to learn how to manually assign the library in server processes such as the
stored process server and Data Step Batch Server (if present), as discussed in the next
section.

Table 3.1 Platform Client Default Library Assignments

Minimum Metadata

Library Authorizations
Application Pre-assigned Engine Used Required
SAS Add-In for No META Library: ReadMetadata
Microsoft Office Table: ReadMetadata
and Read
SAS Enterprise Guide No META Library: ReadMetadata

Table: ReadMetadata
and Read

48 Processing Stored Processes When the Library is Not Pre-assigned A Chapter 3

Minimum Metadata

Library Authorizations

Application Pre-assigned Engine Used Required

SAS Data Integration No Underlying data Library: ReadMetadata
Studio engine Table: ReadMetadata
SAS OLAP Cube No Underlying data Library: ReadMetadata
Studio engine Table: ReadMetadata
SAS Information Map No Underlying data Library: ReadMetadata
Studio engine Table: ReadMetadata

Processing Stored Processes When the Library is Not Pre-assigned

In the SAS®9 Intelligence Platform, a stored process is a SAS program that is stored
on a server and can be executed as requested by clients who have ReadMetadata access
to the stored process program’s metadata. SAS Stored Processes can be executed by
either a SAS Workspace Server or a SAS Stored Process Server. If a library is not
pre-assigned, it is the responsibility of the stored process program’s author or the SAS
administrator to ensure that the library is assigned to a specific location and physical
path. This can be done either directly in each stored process program or from an
external file that is linked to the stored process with an %#INCLUDE statement.

These methods have the following advantages and disadvantages:

0 Method: Define a META engine library in the stored process program.

O

Advantage: Data-level authorizations specified for the library and table
metadata objects are enforced by the SAS authorization facility. Note that these
permissions are enforced for the server’s identity (usually SAS General
Servers), not the client’s.

Disadvantage: Library and table metadata for any table called in the program
must be defined in the metadata repository, thus preventing a stored process
from accessing tables that might reside in the library but are not defined in the
metadata.

Disadvantage: Changes to the library metadata object’s name or repository
location would require that each stored process that references the library be
updated.

Disadvantage: Metadata inconsistencies or corruptions can result if the stored

process modifies a table’s structure through the library. Examples of this
modification include adding or removing columns.

0 Method: Define the library in the stored process program and use only the
underlying data engine.

O

O

Advantage: A table does not have to be defined in the metadata repository in
order for the stored process to access it.

Advantage: Tables in the library can be re-created or updated and new tables
created without directly impacting the metadata. Note, however, that changes
to the structure of a table that has been defined previously in the metadata
repository can still cause synchronization issues between the table and the
metadata.

Disadvantage: The metadata repository is no longer a single point of
management, because library definitions are stored in multiple places.

Assigning Libraries /\ Pre-assigning Libraries Using Engines Other Than the MLE 49

0 Disadvantage: Changes to the library path or directory would require that each
stored process that references the library be updated.

0 Disadvantage: The SAS authorization facility has no role in managing access to
tables called by the stored process. Thus, the SAS General Server User can
access data in any table in the library for which he has been granted Read
access at the OS or RDBMS layer.

0 Method: Store the library assignment(s) in an external file and then include it in
the stored process program.

O Advantage: Library assignments are defined in one file or directory location
that all stored process programs can reference.

O Advantage: Multiple files that contain library assignments can be created and
referenced as needed in the stored process so that things such as connections to
databases are established only when absolutely required.

0 Advantage: Other advantages depend on how the library is defined in the file.
See the previous two methods.

o Disadvantage: The file(s) referenced in the stored process must be created and
maintained by someone who has Write (and Modify) access to the file’s location
on the system.

0 Disadvantage: Stored processes created through point and click applications
such as SAS Enterprise Guide will have to be modified manually to replace the
library assignment with manually generated %INCLUDE syntax.

0 Disadvantage: Changes to the file’s location or name would require that all
stored processes, including that file, be updated.

Pre-assigning Libraries Using Engines Other Than the MLE

Pre-assigning a library ensures that the library will always be available to and
assigned by SAS server processes on a server-by-server basis when the server starts,
rather than assigned by the client application or later in SAS code. Two types of
pre-assignment are possible. First, you can pre-assign a library so that it will be
accessed by the engine defined in the metadata. Second, you can pre-assign a library so
that it will be accessed by the MLE. In either case, pre-assignment allows you to
designate an assignment method for use by all of the applications that use the library.
However, it should not be used when you create output from the applications if the
assignment is made by using the META engine.

Note: You should be aware that pre-assigning a large number of libraries can have
an impact on the execution time of SAS programs for all users. You should therefore be
judicious in deciding whether to pre-assign a library or not. A

Pre-assigning a library to a non-MLE server requires the following steps:

1 Flag the library as already assigned by the server by selecting the Library is
pre-assigned advanced option in SAS Management Console.
2 Set up the server process to retrieve library metadata by adding the

METAAUTOINIT object server parameter option or the METAAUTORESOURCES
SAS system option to the server’s start-up definition.

Note: Library definitions (and therefore, table definitions) that are pre-assigned
using the METAAUTORESOURCES option must exist in the same repository in order
to support pre-assigned librefs. The code that pre-assigns the libraries on start-up of
the server does not look down the repository dependency chain to find library

50

Pre-assigning Libraries Using Engines Other Than the MLE A Chapter 3

definitions. This is a known limitation with pre-assigned libraries and the
METAAUTORESOURCES option. Libraries must be defined in the same repository as
the server context definition. A

Assume that we are pre-assigning the Orion Gold Customers library. The library can
be set up to be assigned by the server process by either selecting the Library is
pre-assigned advanced option when the library is being defined or by modifying the
library’s properties after the fact. When you select the Library is pre-assigned
option, any server processes that have been configured to do so will connect into the
metadata server on start-up and assign the library. The libraries can be assigned to
SAS Application Servers (which may include a workspace server, a stored process
server, and/or an OLAP server) or to a server defined outside an application server
context, such as a SAS/SHARE server. To access the advanced options for the library,
select the following in SAS Management Console: Data Library Manager » SAS
Libraries » Orion Gold Customers » Properties. Then, click the options tab and
click Advanced Options.

Display 3.2 Library is pre-assigned Option

K ;) File: i ’[_ Wl 23 vzourcesiarion_bank_trans
C:\zourcesizas] _sro oy

Advanced Opltions

With the Orion Gold Customers library flagged to be assigned at start-up, the next
step is to define which server processes should assign libraries. The option or
parameter that you use to tell a server process to connect into the SAS Metadata Server
during start-up depends on the type of server that is handling the request.

Assigning Libraries /A Pre-assignment Using Information Stored in the Metadata 51

The server process must contain the METAAUTOINIT object server parameter in the
server start-up definition for the following IOM (Integrated Object Model) servers: the
workspace server, the stored process server, and the OLAP server. If the server process
is any other SAS session, you use the METAAUTORESOURCES system option. (These
servers include Data Step Batch Servers, the SAS Display Manager System, the SAS/
CONNECT Server, and the SAS/SHARE Server.)

Pre-assignment Using Information Stored in the Metadata

The METAAUTOINIT option can be specified in the IOM server’s definition through
SAS Management Console or in the configuration file defined by the configuration
option in the start-up command. The following example shows how you supply the
METAAUTOINIT option in the object Server Parameters field in the server’s
properties to servers that are started by the object spawner. Modifying the server’s
metadata definition requires that the object spawner be restarted in order for it to
obtain the changes. To access the server’s properties, select the following in SAS
Management Console: Server Manager » SASMain » Workspace Server »
Properties. (Obviously, the path would be different for different servers).

Display 3.3 METAAUTOINIT OBJECTSERVERPARMS Option

SASMain - Workspace Server Properties 1[

Genersl Qptions | Notesl Extended Attributes | Autharization

Major “Yersion kumber: Ig

Minar “ersion kumber: |1

Software YWersion: I9'1

Vandor: |55 Institute

Launch Commands

Cammanc:

sas -confi "COSASBlArchitecturelev S ASKMainsasyd ofy"

Ohject Server Parametersl | etazutoinit

Acvanced Options... |

Changes to the warkspace
server's definition require
that you restart the Object
Spawner.

OK I Cancel Help

Note: Server processes that are currently running will not pick up the new
configuration options until they are restarted. Therefore, load-balanced processes on
stored process servers that use the default configuration of staying open once started

52

Pre-assignment Using Information Stored in the Metadata A Chapter 3

will need to be shut down. The same is true for pooled workspace servers. The object
spawner will restart them as needed.

The METAAUTOINIT OBJECTSERVERPARMS option could be referenced in a
configuration file called by the workspace server instead of being supplied in the
server’s definition. However, because the default configuration file called by the
workspace server (sasv9.cfg) is also used by non-IOM servers executing on the host, it
is recommended that you create a custom configuration file and place it in the
workspace server directory, which is SAS-config-dir\Levl\SASMain\WorkspaceServer.
Use this file to store the METAAUTOINIT option. Options specified in a configuration
file take precedence over conflicting options in the server’s definition. The following
custom configuration files are created during installation for the other IOM servers:

O Metadata server:

SAS-config-dir\Levl\SASMain\MetadataServer\sasv9_MetadataServer.cfg

o OLAP server:

SAS-config-dir\Levl\SASMain\OLAPServer\sasv9_OLAPServer.cfg

O Stored Process server:
SAS-config-dir\Levl\SASMain\StoredProcessServer\sasv9_StorProcSrv.cfg

A

Display 3.4 Options Specified in a Configuration File

u

-config "C:\sAS\BIArchitecturehLevlisamMainhsasvd, cfg”

-nosplash
-notermingl

-log "C:ysashBLArchitectureilevlysasMainystoredrrocessserverylogs\storedProcessServer_¥v. log”
-logparm “rollover=session open=replacecld write=immediate”

fbbjectserverparms “metaautoinit”

-pagesize max
-1inesize max

—sasuser "C:ysas\BIarchitectureiLevl\sasMainistoredProcessserverisasuser”

SAS servers that are not IOM servers connect into the metadata server to retrieve
definitions through the use of META* system options, which are typically specified in
the configuration file. These options provide a SAS session with metadata information
such as the name of the metadata server host, its port number, and optionally the
metadata identity, to use for authentication decisions in the metadata repository. In
addition, the METAUTORESOURCES option tells the SAS session which specific
metadata object it should retrieve in order to determine libraries to assign at start-up.
The following example shows how the METAAUTORESOURCES option can be used to
reference a specific SAS Application Server in the configuration file for the Data Step
Batch Server or SAS Display Manager session, causing it to retrieve pre-assigned
libraries that are associated with the SASMain server context. The configuration file is
located in SAS-config-dir\Levl1\SASMain\sasv9.cfg.

Assigning Libraries /A Pre-assignment Using Information in an Autoexec File 53

Display 3.5 Metaautoresources Option

B sasv9.cfg - Notepad 3 . =]]

File Edit Format Wiew Help

—config "C:\Program FilesySashsas 9.1%sasve. cfg”
-sasinitialfolder "C:vsashBIarchitecturehLevlhsasMain®
-set Tibrary ("sasenviromment/sasFormats")

Fsasautos ("sasEnvironment/sasMacro” SASAUTOS)
-dglocale (ENUSAD

—dgsetuploc "dgsetup.txt”

—-rsasuser

-metaserver "d93¥6.na.sas.com”

-metapa 205 .

—met.as e

2taprotocol BRIDG
metaautoresources

"sasMain”

e ecturetLevlhsasMainhappserver_autoexec. sas”
2| | M4

The METAAUTORESOURCES system option is set differently for a SAS/SHARE
server. Recall that a SAS/SHARE server is not defined within a server context, such as
SASMain, for example. Because it is not defined within a server context, the SAS/
SHARE server will not use the METAAUTORESOURCES option specified in the
previous example. To tell the SAS/SHARE server to connect into the metadata and
retrieve pre-assigned metadata-based libraries, you must add the specific SAS/SHARE
server component that it should retrieve to its configuration file in the following path:
SAS-config-dir\Lev1\SASMain\ShareServer. To do this, add a line similar to the
following to the sasv9.cfg file:

-metaautoresources "omsobj:ServerComponent?@Name=SASMain - SAS/SHARE Server"

Pre-assignment Using Information in an Autoexec File

Recall that a SAS autoexec file is a text file that contains SAS statements that are
executed upon start-up of the server process. If an autoexec file is being used in your
environment, it is important to note that libraries assigned by an autoexec file take
precedence over same-named libraries assigned by the server via
METAAUTORESOURCES or METAAUTOINIT. (Use the autoexec file created during
installation, which is SAS-config-dir\Levl\SASMain\appserver autoexec.sas.) For
example, if ORGOLD is defined in the metadata to be server-assigned, and ORGOLD is
defined in a LIBNAME statement in an autoexec file defined to the server, the
ORGOLD library will be assigned using the information in the autoexec file. Simply
put, the library assignment in the autoexec file always wins.

54

Pre-assigning Libraries to Use the MLE A Chapter 3

Display 3.6 Library Assignment in an Autoexec File

/* Hotice this LIBHAME maps ORGOLD to a different location than *f
/* the location in the metadata. This can cause unexpected LY
Jf* results and definite failures in metadata-dependent applications. *f
LIENAME ORGOLD BASE "D:'Orion3tariMNotsold™ access=readonly:

LIBNAME TAELES 'c:h\ 343\ Training'Levl) SASAppData' access=readonly:
LIBNAME MISC 'c:\34%%\ Training' LevlSAShpp' Data':

LIENAME GLDMALCRO

MO EAS Training Levlhy SASAppY SASEnviromment, 343 Hacr oy GoldProgranmers"
access=readonly;

option fmtsearch= (MI3C.MOREFMTS)] nofmterr:

options MITORED SASMSTORE=GLDMACRO:

/% initialize some macros */

% 1let dbdsoptions=:

t31let dbtempschena=;

% 1let dbmstempF:

Pre-assigning Libraries to Use the MLE

The MLE is a data access engine that enforces the data-level permissions of Read,
Write, Create, and Delete that are set on table objects in the repository. It also enforces
the Create and Delete permissions that are set on library objects. The META engine
acts as a gatekeeper that determines which users can access which metadata-based
libraries and tables.

To define a library that uses the MLE, perform the following steps:

1 Define metadata for the library in the SAS Metadata Repository.
2 Mark the library as pre-assigned.

3 Construct a LIBNAME statement that uses the same libref specified in the
metadata and META as the engine.

4 Add the metadata LIBNAME statement to an autoexec file. During the
configuration process, the Configuration Wizard created a file named
appserver_autoexec.sas and placed it in the same directory as the SAS
Intelligence Platform’s configuration file, sasv9.cfg. In platform implementations
that do not include a SAS Solution, such as Marketing Automation, this file is
typically empty. The purpose of this text file is to serve as the location where SAS
solutions along with administrators like you can place SAS statements that need
to be executed immediately after the SAS server process initializes and before any
user input is accepted. This is considered the SAS Intelligence Platform’s autoexec
file. Add the LIBNAME statement created in Step 3 to this file as shown.

5 Add the autoexec file to the start-up definition of any server that should assign the
library using the META engine. There are a variety of ways to tell a SAS server
process that it should use the autoexec file created in the previous step. Here are
the two approaches you’ve already seen in this chapter:

o Call the autoexec file from the server process’s configuration file (ideally a
shared configuration file). Find the sasv9.cfg file and enter text similar to
the following:

-autoexec ‘SAS-config-dir\Levl\SASMain\appserver autoexec.sas'’

0 Add the autoexec system option to each server’s metadata object definition.
Note that this option is only available to IOM servers.

Assigning Libraries /A \Verifying Pre-assignments by Reviewing the Logs 55

Display 3.7 Adding the Autoexec System Option

SASMain - Stored Process Server Properties |

Genersl Qptions | Notesl Extended Attributes | Autharization

Major “Yersion kumber: Ig

Minar “ersion kumber: |1

Software YWersion: I9'1

Wendar: |55 Institute

Launch Commands

sas -config " SAS-config-dinlev 1SASMainStoredProcessServert
sasvd_StorProcSrvciy” -autoexec "SAS-config-didley'Stored

X ProcessServerappserver_autoexec sas"
Ohject Server Parameters:

Acvanced Options... |

OK I Cancel | Help |

6 Restart the object spawner and any server processes whose autoexec files have
been modified. The SAS/SHARE server must be restarted in order to pick up
changes to the configuration file. On Windows it can be restarted using the NET
STOP and NET START commands at a command prompt on the SAS/SHARE
server’s host, or through the Windows Service Manager. For more information
about restarting the servers, see “Starting, Stopping, and Pausing Servers” in the
SAS Intelligence Platform: System Administration Guide.

Note: We recommended that you treat libraries mapped with the META engine as
read-only and do not allow any users Create access to the library or its tables. A

Verifying Pre-assignments by Reviewing the Logs

After you specify that a library is to be assigned by the server (by specifying the
METAAUTOINIT or METAAUTORESOURCES system option), the SAS server process
will start up as follows:

1 Connect to the metadata server.

2 Retrieve library metadata.

3 Assign the library using the engine specified in the library definition.

For example, if the Orion Gold Customers library is assigned by the workspace

server, then the library assignment would be equivalent to a SAS programmer
submitting a LIBNAME statement such as the following:

56 Verifying Pre-assignments by Reviewing the Logs A Chapter 3

LIBNAME ORGOLD BASE "D:\OrionStar\Gold" repname=Foundation;

In the case of an IOM server (using METAAUTOINIT), you can verify the

pre-assignment of this library by the server process by enabling logging and observing

the note generated from the first GetMetadata method call in the server’s log, as in the
following sample log:

Display 3.8 Verification of Pre-assignment in a Server Log

WOTE: Libref ORGOLD successfully assigned frow logical server.

outMetadata=

< SASLibrary Id="ASESWITEZ.EB6OO00O01" Libref="ORGOLD" Engine="EBLZE™
IsDEMELibhname="0" IsPrelssigned="1"> _

For non-IOM servers using the METAAUTORESOURCES option, a note like the
following would be written to its log file:

NOTE: Libref ORGOLD successfully assigned from logical server.

See SAS Intelligence Platform: Administration Guide for information about setting
logging levels. see “Configure the Logging of XML Information” in the SAS Intelligence

Platform: System Administration Guide.To verify pre-assignment, you should set the
logging level to 1.

57

CHAPTER

Managing Table Metadata

Overview of Managing Table Metadata 57
Creating Table Metadata for a New Library 58
Example: Creating Table Metadata 58
Assessing Potential Changes in Advance 59
Example: Using the NOEXEC and REPORT Statements 59
Updating Your Table Metadata to Match Data in Your Physical Tables 61
Adding and Updating Table Metadata 61
Example: Default PROC METALIB Behavior 61
Changing the Update Rule 62
Examples: Adding, Updating, and Deleting Metadata 62
Specifying Which Tables Are Affected 63
Examples: Specifying Tables 63

Overview of Managing Table Metadata

As explained in “Verifying Access to Tables” on page 42, one way to create metadata
for the tables in a library is to use the Import Tables feature of SAS Management
Console. You can also create this metadata programmatically by using PROC
METALIB. In addition, PROC METALIB provides you with options for maintaining
your table metadata that are not available in SAS Management Console. For example,
by default PROC METALIB creates metadata definitions for any physical tables that
are not registered in the metadata—for instance, tables that have been added since the
table definitions were first created—and updates table definitions that do not reflect the
current structure of the tables that they represent.

By using optional statements, you can also use PROC METALIB to perform the
following tasks:

o Delete table definitions for tables that have been removed from the library.

0 Produce a report that lists the changes made by the procedure—or the changes
that will be made when the procedure is executed.

o Operate on a subset of the tables in a library.

Note: For detailed information about PROC METALIB and its syntax, see
“METALIB Procedure” in the SAS Open Metadata Interface: Reference. A

Note: PROC METALIB cannot work with a library whose metadata is defined by
using the "Pre-assigned Library" resource template. When pre-assigning a library, be
sure to choose the resource template specific to the type of data source library you are
creating and select the This library is pre-assigned checkbox. Do not use the
specialized “Pre-Assigned Library” template. A

58 Creating Table Metadata for a New Library A Chapter 4

The remainder of the chapter presents examples of how PROC METALIB is
commonly used. The examples assume that you have set the following metadata server
connection options in your SAS session.

options METAUSER = "metadata-server-userid"
METAPASS = "metadata-server-password"
METAPORT = metadata-server-port
METASERVER = "metadata-server-machine";

If you have not set these options, you can use PROC METALIB parameters to specify
this information.

Creating Table Metadata for a New Library

When you first define a SAS library, it has no related table metadata. You can add
this metadata by using the Import Tables wizard in SAS Management Console (see
“Overview of Managing Table Metadata” on page 57), or by using PROC METALIB, as
shown in the example below.

Before you can successfully run this PROC METALIB code, you must have Create,
ReadMetadata, and WriteMetadata access to SASLibrary metadata object. To check
your permissions, use the Authorization Manager in the SAS Management Console.
(See “Managing Permissions” in the chapter “Managing Authorizations” in the SAS
Management Console: User’s Guide.)

Example: Creating Table Metadata

The following example shows how to use PROC METALIB to create initial table
definitions for the tables in a library. The REPORT statement causes the procedure to
write information to SAS output about the table definitions that it creates.

proc metalib;
omr (library=&mlibname repname= &mrepname);
report;

run;

The report that this code writes would resemble the following sample.

The METALIB Procedure

Summary Report for Library sas91 1lib2
Repository Meta Proc repos
17MAR2005

Metadata Summary Statistics

Total tables analyzed
Tables Updated

Tables Added

Tables matching data source
Tables not found

o O N ON

Managing Table Metadata /A Example: Using the NOEXEC and REPORT Statements 59

Tables Added

Metadata Name Metadata ID SAS Name
COUNTRY AS5HJ58JU.AX001LPV COUNTRY
POSTAL A5HJ58JU.AX001LPW POSTAL

Assessing Potential Changes in Advance

Before you use PROC METALIB to update existing table metadata, it is a good idea
to execute the procedure with the NOEXEC and REPORT statements. The NOEXEC
statement tells the procedure not to actually add, update, or delete any metadata. The
REPORT statement tells the procedure to create a report that explains what actions it
would have taken had the NOEXEC statement not been present. If you want to make
all of the changes that are shown in the report, you can then remove the NOEXEC
statement and rerun the procedure to update the metadata.

Example: Using the NOEXEC and REPORT Statements

The following example shows how to use the NOEXEC and REPORT statements to
assess potential metadata changes.

ods html "myfile";

proc metalib;

omr (library=&mlibname repname= &mrepname);
update_rule=(delete);

noexec;

report;

run;

Note: The UPDATE_RULE statement tells the procedure to delete table definitions
for any tables that have been deleted from the library. For more information about this
statement, see “Changing the Update Rule” on page 62. A

Here is the resulting SAS log.

55 proc metalib;

56 omr (library=&mlibname repname= &mrepname);
57 update_rule=(delete);

58 noexec;

59 report;

60 run;

NOTE: A total of 22 tables were analyzed for library "SAS91 lib".
NOTE: NOEXEC statement in effect. No Metadata changes applied.
NOTE: Metadata for 4 tables would have been updated.
NOTE: Metadata for 2 tables would have been deleted.
NOTE: Metadata for 2 tables would have been added.
NOTE: Metadata for 13 tables matched the data sources.
NOTE: 0 other tables were not processed due to error or UPDATE_ RULE.
NOTE: PROCEDURE METALIB used (Total process time):

real time 31.26 seconds

60 Example: Using the NOEXEC and REPORT Statements A Chapter 4

cpu time 8.12 seconds

SAS output is the default. This example specifies ODS output. Specifying ODS
produces reports in both ODS and SAS output formats unless you specify the following
to suppress SAS output:

ods listing close;

Here is the resulting ODS output.

The SAS System
The METALIB Procedure

Summatry Report of Potential Changes for Library sas91 lib
Repaository Meta Proc repos

23FEB2006
 Metadata summary statstics
Total tables analyzed 22
Tables to be Updated 4
Tables to be Deleted 2
Tables to be Added 2
Tables matching data source 13
Cther tables not processed]

continent

Column deleted

POPULATION ASHJI58JU.B3000U3) POPULATION Index Deleted

MYSTATE3 Primary ASHJ58JU.B40011M1E prim_key3 Uniqueley Column state added

SASWINTER ASHUS8IULAXODOEIS SASWINTER country ASHJISEIU AY0D0GAT country Column IsNullable

Managing Table Metadata /\ Adding and Updating Table Metadata 61

Tables to be Deleted

Metadata Name Metadata ID SAS Name
NONULLA1 ASHISBIU AXO01723 NONULLA
UPDTAB ABHUS8JU AXOD1AX3 UPDTAB

Tables to be Added
Metadata Name MetadatalD SAS Name

WYSTATES
USPOSTAL

Updating Your Table Metadata to Match Data in Your Physical Tables

Adding and Updating Table Metadata

By default, PROC METALIB creates table definitions for any tables in the library
that do not have table definitions and updates any table definition that does not reflect
the current structure of the table that it represents. It does not, however, delete table
metadata.

Use REPORT when you want an output listing that summarizes metadata changes,
either before changes are made (by using NOEXEC) or to see afterward what changes
were actually made. SAS output is the default.

Example: Default PROC METALIB Behavior

The following example uses the default PROC METALIB behavior. Summary notes
are written to the SAS log regardless of whether you request a report. Unlike the
example shown in “Assessing Potential Changes in Advance” on page 59, the summary
does not mention any deleted tables.

proc metalib;
omr (library=&mlibname repname= &mrepname);

run;
Here is the resulting SAS log.

85 proc metalib;
86 omr (library=&mlibname repname= &mrepname);
87 run;

NOTE: A total of 1 tables were analyzed for library "v9SASlib".
NOTE: Metadata for 0 tables was updated.
NOTE: Metadata for 1 tables was added.
NOTE: Metadata for 0 tables matched the data sources.
NOTE: 0 other tables were not processed due to error or UPDATE_ RULE.
NOTE: PROCEDURE METALIB used (Total process time):

real time 19.06 seconds

cpu time 5.39 seconds

62 Changing the Update Rule A Chapter 4

Changing the Update Rule

By using the optional UPDATE_RULE statement, you can change PROC METALIB’s
default behavior. The principal rules that you can specify are shown below:

NOADD specifies not to add table metadata to the metadata repository for
physical tables that have no metadata.

NOUPDATE specifies not to update existing table metadata to resolve
discrepancies with the corresponding physical tables.

DELETE specifies to delete table metadata if a corresponding physical table is
not found in the specified library.

Examples: Adding, Updating, and Deleting Metadata

The following example shows how to use PROC METALIB to add metadata for new
tables, update table definitions where necessary, and also delete table definitions that

are no longer valid. (You can also perform these functions using Data Integration
Studio.)

proc metalib;

omr (library=&mlibname repname= &mrepname);
update_rule=(delete);

report;

run;

The following example shows how to use UPDATE_RULE with DELETE, NOADD,
and NO UPDATE to delete table definitions that are no longer valid, as well as
suppress the default add and update actions.

proc metalib;
omr (library=&mlibname repname= &mrepname);
update_rule (delete noadd noupdate);
report;

run;
The resulting SAS output would resemble the following sample.

The METALIB Procedure

Summary Report for Library sas91 1lib2
Repository Meta Proc repos
17MAR2005

Metadata Summary Statistics

Total tables analyzed
Tables Updated

Tables Added

Tables matching data source
Tables not found

o O MO N

Managing Table Metadata / Specifying Which Tables Are Affected 63

Metadata Name Metadata ID SAS Name
COUNTRY AS5HJ58JU.AX001LPV COUNTRY
POSTAL A5HJ58JU.AX001LPW POSTAL

Specifying Which Tables Are Affected

You can use the optional SELECT or EXCLUDE statements to perform an operation
against a subset of the tables in a library. SELECT and EXCLUDE are mutually
exclusive, so you should use only one or the other.

When you set the SELECT statement, you can select tables or table definitions for
processing:

0 For tables, specify their SAS name. If no table definition is found, it is created in
the repository that contains the SASLibrary object. If a matching table definition
is found, it is compared to the physical table. If differences are found, the table
definition is updated.

0 For table definitions, specify either the unique metadata identifier or the value in
the SASTableName attribute. If you specify the metadata identifier, only the
specified table definition is updated, not the first table definition in the association
list.

You can use EXCLUDE to specify a single table or a list of tables to exclude from
processing.

Examples: Specifying Tables
The following example shows how to use SELECT to process only a subset of tables.

ods html "myfile";

proc metalib;

omr (library=&mlibname repname= &mrepname);
select(spec_char_col ukeys ndx_multicol);
report;

run;

Here is the resulting ODS output.

64 Specifying Which Tables Are Affected A Chapter 4

The SAS System

The METALIB Procedure

Summary Report for Library SAS91 lib2
Repository Meta Proc repos
13FEB2006

Total tables analyzed 3
Tables Updated 1
Tables Added 1
Tables matching data source 1
Tables nat found 0

0

Other tables not processed

The following example shows how to use EXCLUDE to exclude a specific subset of
tables.

proc metalib;

omr (library=&mlibname repname= &mrepname);
exclude(country postal mystate2);

noexec;

report;

run;

65

CHAPTER

Optimizing Data Storage

Overview of Optimizing Data Storage 65
Compressing Data 66
Indexing Data 67
Sorting Data 69
Multi-Threaded Sorting 70
Sorting a Database Table 70
Buffering Data 70
Base SAS Tables T1
DB2 (UNIX and PC), ODBC, OLE DB, Oracle, SQL Server, and Sybase Tables T1
Using Threaded Reads 12
Validating SPD Engine Hardware Configuration 12
Setting LIBNAME Options That Affect Performance 13
Setting LIBNAME Options That Affect Performance of SAS Tables 13
Setting LIBNAME Options That Affect Performance of SAS/ACCESS Databases 14
Setting LIBNAME Options That Affect Performance of SPD Engine Tables 717
Grid Computing Data Considerations 19

Overview of Optimizing Data Storage

For the purposes of querying, cube loading, and creating data marts and data
warehouses, all four data storage structures (explained in Chapter 1, “Overview of
Common Data Sources,” on page 1) can be optimized to improve performance. Some
optimization can be achieved, for example, by specifying transformation options in SAS
Data Integration Studio. Some optimization requires hardware configuration, as in the
case of SPD Engine tables. Cubes can be optimized for querying and loading during the
cube loading process. For SAS tables, database tables, and SPD Engine tables, libraries
can be defined in the metadata with options that enhance performance.

For more information, see these sections:

o “Compressing Data” on page 66

“Indexing Data” on page 67

“Sorting Data” on page 69

“Buffering Data” on page 70

“Using Threaded Reads” on page 72

“Validating SPD Engine Hardware Configuration” on page 72
“Setting LIBNAME Options That Affect Performance” on page 73

O o o o o o o

“Grid Computing Data Considerations” on page 79

66

Compressing Data A Chapter 5

Compressing Data

Compression is a process that reduces the number of bytes that are required to

represent each table row. In a compressed file, each row is a variable-length record,
while in an uncompressed file, each row is a fixed-length record. Compressed tables
contain an internal index that maps each row number to a disk address so that the
application can access data by row number. This internal index is transparent to the
user. Compressed tables have the same access capabilities as uncompressed tables.
Here are some advantages of compressing a file:

0 reduced storage requirements for the file
o fewer I/O operations necessary to read from or write to the data during processing.

Here are some disadvantages of compressing a file:

0 more CPU resources are required to read a compressed file because of the
overhead of uncompressing each observation

O there are situations when the resulting file size might increase rather than
decrease.

These are the types of compression that you can specify:

o CHAR to use the RLE (Run Length Encoding) compression algorithm, which
works best for character data.

0 BINARY to use the RDC (Ross Data Compression) algorithm, which is highly
effective for compressing medium to large (several hundred bytes or larger) blocks
of binary data. (The SPD Engine does not support binary compression.)

You can compress these types of tables:

o all tables that are created during a SAS session. Besides specifying SAS system
options on the command line or inside a SAS program with the OPTIONS
statement, you can use SAS Data Integration Studio to set system options. For
example, you can use the Additional System Options field to set the
COMPRESS= system option on a loader transformation. (A loader transformation
generates or retrieves code that puts data into a specified target.)

Display 5.1 The Options Tab in a Loader Properties Dialog Box in SAS Data Integration Studio

M Loader Properties —1al=l
Metes | Extended Aftriites | advanced
General I Load Techhigue Process I Mapping Cptions
Cption Marme | Option Yalue

Create SYSLAST hMacro Yariable |fHS
Load Time Column

Additional System Options
Additional Data Table Options

o all tables for a particular SAS data library. For example, when you define a Base
SAS engine library in the metadata, you can specify the COMPRESS= option in
the other options to be appended field on the Options for any host tab
(see “Setting LIBNAME Options That Affect Performance of SAS Tables” on page
73). For third-party relational database tables, you can use the Options to be
appended field on the other Options tab (see “Setting LIBNAME Options That
Affect Performance of SAS/ACCESS Databases” on page 74).

Note: You cannot specify compression for a SPD Engine data library. A

Optimizing Data Storage /\ Indexing Data 67

0 an individual table. In SAS Data Integration Studio, SAS tables have a
Compressed option that is available from the table properties dialog box. To use
CHAR compression, you select YES. To use BINARY compression, you select
Binary.

Display 5.2 The Table Options Dialog Box in SAS Data Integration Studio

Table Options

Option Matne

Compressed
Encrypted
Adeltionsl Options [

For SPD Engine tables and third-party relational database tables, you can use
the Table Options field in the table properties dialog box to specify the
COMPRESS= option.

Note: The SPD Engine compresses the data component (.dpf) file by blocks as the
engine is creating the file. (The data component file stores partitions for an SPD Engine
table.) To specify the number of observations that you want to store in a compressed
block, you use the IOBLOCKSIZE= table option in addition to the COMPRESS= table
option. For example, in the Table Options field in the table properties dialog box, you
might enter COMPRESS=YES IOBLOCKSIZE=10000. The default blocksize is 4096 (4k). A

When you create a compressed table, SAS records in the log the percentage of
reduction that is obtained by compressing the file. SAS obtains the compression
percentage by comparing the size of the compressed file with the size of an
uncompressed file of the same page size and record count. After a file is compressed,
the setting is a permanent attribute of the file, which means that to change the setting,
you must re-create the file. To uncompress a file, you can, for example, in SAS Data
Integration Studio, select Default (NO) for the Compressed option in the table
properties dialog box for a SAS table.

For more information on compression, see SAS Language Reference: Dictionary.

Indexing Data

An index is an optional file that you can create to provide direct access to specific
rows. The index stores values in ascending value order for a specific column or columns
and includes information about the location of those values within rows in the table. In
other words, an index enables you to locate a row by value. For example, if you use SAS
to find a specific social security number (465-33-8613), SAS performs the search
differently depending on whether there is an index on the row that contains the social
security numbers.

0 Without an index, SAS accesses rows sequentially in the order in which they are
stored in the table. SAS reads each row, looking for SSN=465-33-8613 until the
value is found or all observations are read.

0 With an index on column SSN, SAS accesses the row directly. SAS satisfies the
condition by using the index and going straight to the row that contains the value.
SAS does not have to read each row.

When you create an index, you designate which columns to index. You can create two
types of indexes:

O a simple index, which consists of the values of one column.

68 Indexing Data A Chapter 5

O a composite index, which consists of the values of more than one column, with the
values concatenated to form a single value.

For each indexed column, you also can perform these tasks:

0 declare unique values. A unique index guarantees that values for one column or
the combination of a composite group of columns remain unique for every row in
the table. If an update tries to add a duplicate value to that column, then the
update is rejected.

o0 keep missing values from using space in the index by specifying that missing
values are not maintained by the index.

In addition to writing SAS code to create indexes, you can create indexes by using
SAS Data Integration Studio. In SAS Data Integration Studio, you use the properties
window for the table to index individual columns. When you create the index, you also
can specify Unique values and No missing values.

Display 5.3 The Indexes Tab in the Properties Dialog Box for a Table Named STORE_ID

E STORE_ID Properties ;IEIll
Physical Storace | Maotes | Extendrn Attribotes | Advanced
General Columnz Indexes Keys

Columns Indexes

1 Stare_ld
2 | & Region
3 | State
4
5

& City

& Courtry Ll

LT] |

Al Vl = | LrElete |

I | Whitue valies I e rissitn values

Ok I Cancel | Al | Help |

- Options

In general, SAS can use an index to improve performance in these situations:

o For cube loading, a composite index on the columns that make up the cube’s
hierarchies might provide best results.

o For WHERE processing, an index can provide faster and more efficient access to a
subset of data. Note that to process a WHERE expression, SAS decides whether to
use an index or to read the table sequentially.

Note: For WHERE processing, the Base SAS engine uses a maximum of one
index. The SPD Engine can use multiple indexes. A

Even though an index can reduce the time that is required to locate a set of rows,
especially for a large table, there are costs that are associated with creating, storing,
and maintaining the index. When deciding whether to create an index, you must
consider increased resource usage, along with the performance improvement.

Once an index exists, SAS treats it as part of the table. That is, if you add or delete
columns or modify values, the index is automatically updated.

Optimizing Data Storage /A Sorting Data 69

For more information about creating indexes, see SAS Language Reference: Concepts.

Sorting Data

You can sort table rows by the values of one or more character or numeric columns.
For Base SAS tables and third-party relational database tables, the process either
replaces the original table or creates a new table. You can perform sorting in two ways:

O using the SAS SORT procedure.
O setting properties for a SAS sort template in SAS Data Integration Studio.

Display 5.4 The Sort By Columns Tab in the SAS Sort Properties Dialog Box

M S5AS Sort Properties =10/ x|
COptions | Mites | Futenred Lributes | Addvanced
e Sort By Columns Process Mapping

Sort by colunns:
| Column Name | Sort Order

Country

=

Lt

BIRIEE

Ok I Cancel | ARl | Help |

To manage the memory that is used for the sorting process, you can specify the
maximum amount of memory that is available to the sort. Generally, the sort size
should be less than the physical memory available to the process. If the sorting
requires more memory than you specify, then SAS creates a temporary utility file on
disk. To specify a sort size in SAS Data Integration Studio, access the Options tab in
the properties window for the sort template and enter a value in the Sortsize field.

Display 5.5 The Options Tab in the SAS Sort Properties Dialog Box

~Ioix
General | Sort By Columns Process | apping
Optiares: Motes Extended Atributes Advanced
Option Mame: Option Yalue

Create SYSLAST Macro Vatiable YES

Equals Default (EQUALS)

Force Default (ho FORCE)

Tagsort Default (no TAGSORT)

Cuplicates

Sortseq

Sortsize 3m

System Options

PROC SORT Cptions

70

Multi-Threaded Sorting A Chapter 5

The SPD Engine has implicit sorting capabilities, which saves time and resources for
SAS applications that process large tables. When the SPD Engine encounters a BY
clause, if the data is not already sorted or indexed on the BY column, then the SPD
Engine automatically sorts the data without affecting the permanent table or producing
a new table. You can change the implicit sorting options when you define a SPD Engine
library in the metadata. See “Setting LIBNAME Options That Affect Performance of
SPD Engine Tables” on page 77.

For more information about the SORT procedure, see the Base SAS Procedures Guide.

Multi-Threaded Sorting

The SAS system option THREADS activates multi-threaded sorting, which achieves
a degree of parallelism in the sorting operations. This parallelism is intended to reduce
the real-time to completion for a given operation; however, the parallelism comes at the
possible cost of additional CPU resources. For more information, see the section on
"Support for Parallel Processing" in SAS Language Reference: Concepts.

The performance of the multi-threaded sort will be affected by the value of the SAS
system option CPUCOUNT=. CPUCOUNT= indicates how many system CPUs are
available for use by the multi-threaded sort. The multi-threaded sort supports
concurrent input from the partitions of a partitioned table.

Note: For information about the support of partitioned tables in your operating
environment, see the SAS documentation for your operating environment. 2

For more information about THREADS and CPUCOUNT=, see the chapter on SAS
system options in SAS Language Reference: Dictionary.

Sorting a Database Tahle

When you use a third-party database table, the column ordering that is produced by
the SORT procedure depends on whether the DBMS or SAS performs the sorting. If
you use the BEST value of the SAS system option SORTPGM-=, then either the DBMS
or SAS will perform the sort. If the DBMS performs the sort, then the configuration
and characteristics of the DBMS sorting program will affect the resulting data order.
Most database management systems do not guarantee sort stability, and the sort might
be performed by the database table regardless of the state of the SORTEQUALS/
NOSORTEQUALS system option and EQUALS/NOEQUALS procedure option.

If you set the SAS system option SORTPGM= to SAS, then unordered data is
delivered from the DBMS to SAS and SAS performs the sorting. However, consistency
in the delivery order of columns from a database table is not guaranteed. Therefore,
even though SAS can perform a stable sort on the DBMS data, SAS cannot guarantee
that the ordering of columns within output BY groups will be the same, run after run.
To achieve consistency in the ordering of columns within BY groups, first populate a
SAS table with the database table, then use the EQUALS or SORTEQUALS option to
perform a stable sort.

Buffering Data

For Base SAS tables and some relational database tables, you can adjust page buffer
settings to optimize CPU and I/O use. Different options are used for each type of table.

Optimizing Data Storage /. DB2 (UNIX and PC), 0DBC, OLE DB, Oracle, SQL Server, and Sybase Tables Il

Base SAS Tables

For Base SAS tables, you might be able to make performance improvements by

performing these tasks:

O tuning the size of table pages on disk by using the BUFSIZE= system option. SAS
uses the BUFSIZE= option to set the permanent page size for the SAS table. The
page size is the amount of data that can be transferred for an I/O operation to one
buffer. If you know that the total amount of data is going to be small, you can set
a small page size, so that the total table size remains small and you minimize the
amount of wasted space on a page. Large tables that are accessed sequentially
benefit from larger page sizes because sequential access reduces the number of
system calls that are required to read the table.

0 adjusting the number of open page buffers when the SAS table is processed.
Increasing the value of the BUFNO= option can improve performance by enabling
applications to read more data with fewer passes; however, your memory usage
increases. You must determine the optimal value for your needs.

Besides specifying SAS system options on the command line or inside a SAS program
with the OPTIONS statement, you can set the BUFSIZE= and BUFNO= system options
in SAS Data Integration Studio. For example, you can set these Additional System
options in the properties window for a loader transformation.

M Loader Properties —1al=l
Metes | Extended Aftriites | advanced
General I Load Techhigue Process | Mapping Cptions
Cption Marme | Option Yalue

Create SYSLAST hMacro Yariable |fHS
Load Time Column

Additional System Options
Additional Data Table Options

For more information about the BUFSIZE= and BUFNO= options, see the SAS
Language Reference: Dictionary and the documentation for your operating environment.

DB2 (UNIX and PC), ODBC, OLE DB, Oracle, SQL Server, and Sybase
Tables

For DB2 (UNIX and PC), ODBC, OLE DB, Oracle, SQL Server, and Sybase, you can
adjust page buffers by setting the INSERTBUFF= and READBUFF= options on the
library (see “Setting LIBNAME Options That Affect Performance of SAS/ACCESS
Databases” on page 74) or on the individual table.

0 The INSERTBUFF= option specifies the number of rows to insert. SAS allows the
maximum that is supported by the DBMS. The optimal value for this option varies
with factors such as network type and available memory. You might need to
experiment with different values in order to determine the best value for your site.

0 The READBUFF= option specifies the number of rows to hold in memory. SAS
allows the maximum number that is supported by the DBMS. Buffering data
reads can decrease network activities and increase performance. However, because
SAS stores the rows in memory, higher values for READBUFF= use more memory.
In addition, if too many rows are selected at once, then the rows that are returned
to the SAS application might be out of date. For example, if someone else modifies
the rows, you might not see the changes.

12

Using Threaded Reads A Chapter 5

For more information about the INSERTBUFF= and READBUFF= options, see
SAS/ACCESS for Relational Databases: Reference.

Note: In addition, the SASFILE statement enables you to store the entire Base SAS
table in memory, and the table remains open until you close it because SASFILE caches
the data and the open request. For more information about the SASFILE statement,
see the SAS Language Reference: Dictionary. A

Using Threaded Reads

Most SAS/ACCESS interfaces support threaded reads. With a threaded read, the
table read time can be reduced by retrieving the result set on multiple connections
between SAS and a DBMS. To perform a threaded read, SAS performs these tasks:

1 Creates threads, which are standard operating system tasks that are controlled by
SAS, within the SAS session.

2 Establishes a DBMS connection on each thread.

3 Causes the DBMS to partition the result set and reads one partition per thread.
To cause the partitioning, SAS appends a WHERE clause to the SQL so that a
single SQL statement becomes multiple SQL statements, one for each thread.

Threaded reads only increase performance when the DBMS result set is large.
Performance is optimal when the partitions are similar in size. In most cases, threaded
reads should reduce the elapsed time of the SAS job. However, threaded reads
generally increase the workload on the DBMS. For instance, threaded reads for DB2
under z/OS involve a trade-off, generally reducing job elapsed time but increasing DB2
workload and CPU utilization.

Threaded reads are most effective on new, faster computer hardware running SAS,
and with a powerful parallel edition of the DBMS. For example, if SAS runs on a fast
uniprocessor or on a multiprocessor machine and your DBMS runs on a high-end SMP
server, you will receive substantial performance gains.

For information about how to turn the threaded read function on or off for a DBMS
library, see “Setting LIBNAME Options That Affect Performance of SAS/ACCESS
Databases” on page 74.

For information about threaded reads, see SAS/ACCESS for Relational Databases:
Reference.

Validating SPD Engine Hardware Configuration

The SPD Engine automatically determines the optimal process to use to evaluate
observations for qualifying criteria specified in a WHERE statement. WHERE
statement efficiency depends on such factors as whether the columns in the expression
are indexed. A SAS configuration validation program that measures I/O scalability with
respect to WHERE processing can help you determine whether your system is properly
configured for performing WHERE processing with the SPD Engine. The program
performs these tasks:

1 It creates a table with two numeric columns.

Optimizing Data Storage /A Setting LIBNAME Options That Affect Performance of SAS Tables 73

2 It repeatedly reads the entire table, each time doubling the number of threads
used until the maximum number is reached. The maximum number of threads is
determined by the CPUCOUNT= SAS system option and is specified when SAS is
started.

The resulting log file shows timing statistics for each cycle. You can examine this
information to determine whether your system is configured correctly. The program is
available at http://support.sas.com/rnd/scalability/spde/valid.html.

Setting LIBNAME Options That Affect Performance

When you use SAS Management Console to define a library, there are options
available for the library definition that correspond to the LIBNAME options for the
selected engine. Some of those options can be used to optimize use of the tables within
the libraries.

Setting LIBNAME Options That Affect Performance of SAS Tahles

You can set LIBNAME options that might affect performance of the Base SAS
engine. You set these options when you use the New Library wizard to register a Base
SAS engine library in the metadata repository. The LIBNAME options are available on
the options for any host tab and the Host-specific options tab in the Advanced
Options dialog box. To access the Advanced Options dialog box, click the Advanced
Options button on the Library Options window of the New Library wizard.

Display 5.6 The Options for Any Host Tab in the Advanced Options Dialog Box for a Base SAS Library

Advanced Options x|

Pre-Aszsign Options for any host | Host-specific options I

Library access: Blank (no value)

Data representation for output file: W
Encoding to use when reading a file: I—
Encoding to use when cresting = file: I—
wWhether to replace empty SAS data setsr |yves -

Translation table for encoding conversion: I—
Cther option(=s) to be appended: I—

Ok I Cancel | Help |

Here are some examples of options that might affect performance:

Data For all operating environments, you can specify the data
representation representation for the output file. Specifying this option enables you
for the output to create files within the native environment by using a foreign

file (OUTREP=) environment data representation. For example, an administrator
who works in a z/OS operating environment might want to create a
file on an HFS system so that the file can be processed in an HP

http://support.sas.com/rnd/scalability/spde/valid.html

74 Setting LIBNAME Options That Affect Performance of SAS/ACCESS Databases A Chapter 5

UNIX environment. Specifying HP_UX 64 as the value for this
option forces the data representation to match the data
representation of the UNIX operating environment that will process
the file. This method of creating the file can enhance system
performance because the file does not require data conversion when
being read by an HP UNIX machine.

Input/output For Windows, UNIX, and z/OS environments, you can specify the
block size number of bytes that are physically read during an I/O operation.
(BLKSIZE=) The default is 8 kilobytes, and the maximum value is 1 megabyte.

Number of page For VMS, you can specify the number of page caches to use during I/
caches to use for O operations. The number of caches can potentially reduce the

each open number of I/Os that are required to access the data. You also can set
member the size of each cache (CACHESIZE= option).

(CACHENUM=)

The other option(s) to be appended field can be used to specify LIBNAME
options such as COMPRESS= (see “Compressing Data” on page 66).

For information about each of the LIBNAME options in the Advanced Options dialog
box, click the Help button.

Setting LIBNAME Options That Affect Performance of SAS/ACCESS
Databases

The following LIBNAME options can be used to tune performance of the SAS/
ACCESS engines. You can set these options when you use the New Library wizard to
register the database libraries in the metadata repository. To access the Advanced
Options dialog box, click the Advanced Options button on the Library Options window
of the New Library wizard. For example, here are the Optimization tab default
settings for DB2 libraries for UNIX and PC.

Optimizing Data Storage /A Setting LIBNAME Options That Affect Performance of SAS/ACCESS Databases 75

Display 5.7 The Optimization Tab in the Advanced Options Dialog Box for a DB2 Library for UNIX and PC

Advanced Options

Elark (no value) |—
Elark (no value) |—

MOGERSGL
MCYHERE

The tabs that are available in the Advanced Options dialog box, as well as the
options on each of the tabs, vary between database management systems. Here are
descriptions of the options on Optimization tab for DB2 libraries for UNIX and PC.

Block insert
buffer size
(INSERTBUFF=)

Block read
buffer size
(READBUFF=)

Pass functions
to the DBMS
that match those
supported by
SAS (SQL_
FUNCTIONS=)

Pass DELETE
to the DBMS
(DIRECT_EXE=)

Whether to use
indexes

(DBINDEX=)

specifies the number of rows in a single insert operation. See
“Buffering Data” on page 70.

specifies the number of rows of DBMS data to read into the buffer.
See “Buffering Data” on page 70.

when set to ALL, specifies that functions that match functions
supported by SAS should be passed to the DBMS. The functions that
are passed are: DATE, DATEPART, DATETIME, TIME, TIMEPART,
TODAY, QRT, COMPRESS, SUBSTR, DAY, SECOND, INDEX,
TRANWRD, HOUR, WEEKDAY, LENGTH, TRIMN, MINUTE,
YEAR, REPEAT, MOD, MONTH, BYTE, and SOUNDEX. Use of this
option can cause unexpected results, especially if used for NULL
processing and date/time/timestamp handling. Exercise care when
using this option.

specifies that a SQL delete statement is passed directly to the
DBMS for processing. Selecting this option improves performance
because SAS does not have to read the entire result set and delete
one row at a time.

specifies whether SAS uses indexes that are defined on DBMS
columns to process a join. Valid values are YES or NO. For more
information about indexes, see “Indexing Data” on page 67.

76

Setting LIBNAME Options That Affect Performance of SAS/ACCESS Databases A Chapter 5

Whether to check
for null keys
when generating
where clauses

(DBNULLKEYS=)

Multi data

source
optimization
(MULTI_
DATASRC_OPT=)

Whether to
create a spool
file for two-pass
processing

(SPOOL=)

Threaded
DBMS access

specifies whether the WHERE clause should detect NULL values in
columns. Valid values are YES or NO. YES is the default for most
interfaces and enables SAS to prepare the statement once and use it
for any value (NULL or NOT NULL) in the column.

when processing a join between two tables, specifies whether an IN
clause should be created to optimize the join. Valid values are
NONE and IN_CLAUSE. IN_CLAUSE specifies that an IN clause
containing the values read from a smaller table will be used to
retrieve the matching values in a larger table based on a key column
designated in an equi-join.

When processing a join between a SAS table and a DBMS table,
the SAS table should be smaller than the DBMS table for optimal
performance.

specifies whether to create a utility spool file during transactions
that read data more than once. In some cases, SAS processes data
in more than one pass through the same set of rows. Spooling is the
process of writing rows that have been retrieved during the first
pass of a data read to a spool file. In the second pass, rows can be
re-read without performing I/O to the DBMS a second time. In cases
where the data needs to be read more than once, spooling improves
performance. Spooling also guarantees that the data remains the
same between passes. Valid values are YES or NO.

specifies the scope of DBMS threaded reads and the number of
threads. If this option is set to the default, then PROC SQL will not

(DBSLICEPARM=)use threading to read, for example, data for a Web report. To force a

specified number of threads for a threaded read from the DBMS
server, change the default to (ALL,number-of-threads).

Note: If PROC SQL attempts implicit pass-through, then
threading will be disabled, regardless of the Threaded DBMS access
setting. To disable implicit pass-through, set the Pass generated
SELECT SQL to the DBMS - DBMS processing option to NO. A

For more information about threaded reads, see “Using Threaded
Reads” on page 72.

Optimizing Data Storage /\ Setting LIBNAME Options That Affect Performance of SPD Engine Tables 77

Pass generated specifies whether generated SQL is passed to the DBMS for
SELECT SQL to processing. Valid values are YES or NO.

the DBMS -

DBMS

processing

(DIRECT_SQL=)

Pass generated if the value for the previous option is YES, then this option specifies
SELECT SQL to how generated SQL is passed to the DBMS for processing. For

the DBMS - example, NOWHERE prevents WHERE clauses from being passed
exceptions to to the DBMS for processing.

DBMS

processing

(DIRECT_SQL=)

The other Options tab, which is available for all database management systems,
can be used to specify LIBNAME options such as COMPRESS= (see “Compressing
Data” on page 66).

For information about each of the LIBNAME options in the Advanced Options dialog
box, click the Help button. For information about all SAS/ACCESS LIBNAME options,
see SAS/ACCESS for Relational Databases: Reference.

Setting LIBNAME Options That Affect Performance of SPD Engine
Tables

The following LIBNAME options can be used to tune performance of the SPD
Engine. You can set these options when you use the New Library wizard to register a
SPD Engine library in the metadata repository. The LIBNAME options are available on
the options for any host tab in the Advanced Options dialog box. To access the
Advanced Options dialog box, click the Advanced Options button on the Library
Options window of the New Library wizard.

Display 5.8 The Options for Any Host Tab in the Advanced Options Dialog Box for a SPD Engine Library

Pre-Assign Options for any host |

Diata path: ||

Incdes: path: I

Meta path: I

Partition size: I

Temp: INO ﬂ

By sart: IYES j

Starting observation numbet: I

Ending obaervation nutmber: I

QK I Cancel | Help

78 Setting LIBNAME Options That Affect Performance of SPD Engine Tables A Chapter 5

Data path
(DATAPATH=)

Index path
(INDEXPATH-=)

Meta path
(METAPATH-=)

Partition size
(PARTSIZE=)

Temp(TEMP=)

By sort
(BYSORT=)

Starting
observation
number

(STARTOBS=)

Ending
observation

number
(ENDOBS=)

specifies a list of paths in which to store partitions (.dpf files) for an
SPD Engine table. The engine creates as many partitions as are
needed to store all the data. The size of the partitions is set using
the PARTSIZE= option. Partitions are created in the specified paths
in a cyclic fashion. The data path area is best configured as multiple
paths. Allot one I/O controller per data path to provide high I/O
throughput, which is the rate at which requests for work are
serviced by a computer system. The data path area is best
configured for redundancy (RAID 1).

specifies a path or a list of paths in which to store the two index
component files (Chbx and .idx) that are associated with an SPD
Engine table. Additional specified paths accept the overflow from
the immediately preceding path. The index path area is best
configured as multiple paths. Use a volume manager file system
that is striped across multiple disks (RAID 0) to enable adequate
index performance, both when evaluating WHERE clauses and
creating indexes in parallel. Redundancy (RAID 5 or RAID 10) is
also recommended.

specifies a list of overflow paths in which to store metadata
component (.mdf) files for an SPD Engine table. The metadata
component file for each table must begin in the primary path. When
that primary path is full, the overflow is sent to the specified
METAPATH-= location. The metadata path area is best configured
for redundancy (RAID 1) so that metadata about the data and its
indexes is not lost.

specifies the size (in megabytes) of the data component partitions
when an SPD Engine table is created. By splitting the data portion
of an SPD Engine table at fixed-size intervals, you may gain a high
degree of scalability for some operations. For example, the SPD
Engine can spawn threads in parallel, up to one thread per partition
for WHERE evaluations.

specifies whether to create a temporary subdirectory of the directory
specified in the Path field on the Library Properties wizard window.
The directory is used to temporarily store the metadata component
files associated with table creation. It is deleted at the end of the
SAS session.

specifies that the SPD Engine should perform an automatic implicit
sort when it finds a BY statement for processing data in the library
(unless the data is indexed on the BY column). Valid values are YES
(perform the sort) and NO (do not perform the sort). The default is
YES.

specifies the number of the starting observation in a user-defined
range of observations that are qualified with a WHERE expression.
By default the SPD Engine processes all observations in the table.

specifies the number of the ending observation in a user-defined
range of observations that are qualified with a WHERE expression.
By default the SPD Engine processes all observations in the table.

In addition to the LIBNAME options, there are also table and system options that
can be used to tune SPD Engine performance. For example, the SPDEUTILLOC=

Optimizing Data Storage A Grid Computing Data Considerations 79

system option allots space for temporary files that are generated during SPD Engine
operations. This area is best configured as multiple paths. Use a volume manager file
system that is striped across multiple disks (RAID 0) to reduce out-of-space conditions
and improve performance. Redundancy (RAID 5 or RAID 10) is also recommended since
the loss of the work area could stop the SPD Engine from functioning.

The SAS Scalable Performance Data Engine: Reference includes a “Quick Guide to
the SPD Engine Disk-I/O Set-Up” that helps you

0 determine the amount of space that needs to be allocated to the data, metadata,
index, and work areas

O evaluate the advantages and disadvantages of different RAID groups for each of
the different types of areas.

For information about table and other system options for the SPD Engine, see
http://support.sas.com/rnd/scalability/spde/syntax.html. For information
about each of the LIBNAME options in the Advanced Options dialog box, click the Help
button.

Grid Computing Data Considerations

Grid computing has become an important technology for organizations that:
o0 have long-running applications that can benefit from parallel execution

0 want to leverage existing IT infrastructure to optimize computing resources and
manage data and computing workloads

The function of a grid is to distribute tasks. Each of the tasks that are distributed
across the grid must have access to all the required input data. Computing tasks that
require substantial data movement generally do not perform well in a grid. To achieve
the highest efficiency, the nodes should spend the majority of the time computing rather
than communicating. Therefore, the data must either be distributed to the nodes prior
to running the application or— much more commonly—made available through shared
network libraries. Storage on local nodes is discouraged. With grid computing using
SAS Grid Manager, the speed at which the grid operates is related more to the storage
of the input data than to the size of the data.

The parallel data load is monitored throughout.

http://support.sas.com/rnd/scalability/spde/syntax.html

80

81

CHAPTER

Managing OLAP Cube Data

Introduction to Managing OLAP Cube Data 81
Data Storage and Access 81
About OLAP Schemas 82
Create or Assign an OLAP Schema 82
Building a Cube 83
Preparations for Building a Cube 83
Storage Location Requirements for Cube Metadata and Related Objects 84
Making Detail Data Available for Drill-Through 85
Making Detail Data Available to a Cube 85
Making Detail Data Available to an OLAP Server 86
Making Detail Data Available to an Information Map 89
Make the Column Labels of Drill-Through Tables Available 90
Display Detail Data for a Large Cube 92

Introduction to Managing OLAP Cube Data

Online Analytical Processing (OLAP) is a technology that is used to create decision
support software. OLAP enables application users to quickly analyze information that
has been summarized into multidimensional views and hierarchies. By summarizing
predicted queries into multidimensional views prior to run time, OLAP tools provide the
benefit of increased performance over traditional database access tools. Most of the
resource-intensive calculation that is required to summarize the data is done before a
query is submitted. One of the advantages of OLAP is how data and its relationships
are stored and accessed. OLAP systems house data in structures that are readily
available for detailed queries and analytics.

Data Storage and Access

Organizations usually have databases and data stores that maintain repeated and
frequent business transaction data. This provides simple yet detailed storage and
retrieval of specific data events. However, these data storage systems are not well
suited for analytical summaries and queries that are typically generated by decision
makers. For decision makers to reveal hidden trends, inconsistencies, and risks in a
business, they must be able to maintain a certain degree of momentum when querying
the data. An answer to one question usually leads to additional questions and review of
the data. Simple data stores do not generally suffice.

The data warehouse is a structure better suited for this type of querying. In a data
warehouse, data is maintained and organized so that complicated queries and

82

About OLAP Schemas A Chapter 6

summaries can be run. OLAP further organizes and summarizes specific categories and
subsets of data from the data warehouse. One particular kind of data structure derived
from a data warehouse is the cube. A cube is a set of data that is organized and
structured in a hierarchical, multidimensional arrangement. Such an arrangement
results in a robust and detailed level of data storage with efficient and fast query
returns. Stored, precalculated summarizations called aggregations, can be added to the
cube to improve cube access performance.

Ahout OLAP Schemas

OLAP schemas are lists of cubes that are grouped together so that they can be
exclusively accessed by one or more SAS OLAP Servers. Each cube is listed in one and
only one OLAP schema. Each SAS OLAP Server is required to use one OLAP schema.
Multiple servers can use the same schema.

The initial installation of the SAS OLAP Server software creates an OLAP schema
named SAS Main — OLAP Schema. By default, all SAS OLAP Servers are assigned to
the single OLAP schema. The OLAP schema lists all cubes as they are built.

To assign cubes to specific servers you create new OLAP schemas. This might be
necessary if you have multiple large cubes, in which case you might want to assign one
cube to one host, to one SAS OLAP Server, and to one OLAP schema.

New OLAP schemas are required to reside in the same repository as the SAS OLAP
Servers that use those schemas.

New OLAP schemas are created with the Create OLAP Schema wizard in SAS OLAP
Cube Studio or SAS Management Console. SAS OLAP Servers are assigned to new
OLAP schemas by changing server properties in SAS Management Console. To create a
new OLAP schema or assign an OLAP schema to a SAS OLAP Server using SAS
Management Console, see “Create or Assign an OLAP Schema” on page 82.

OLAP schemas are read from metadata only at the start-up of SAS OLAP Servers.
Assigning a new OLAP schema requires a restart of the SAS OLAP Server.

When building, updating, or deleting cubes, you can specify OLAP schemas in the
Cube Designer wizard of SAS OLAP Cube Studio. In batch mode, the OLAP schema is
specified in PROC OLAP in the OLAP_SCHEMA-= option of the METASVR statement.

OLAP schemas help determine security inheritance. Permissions that are set on SAS
OLAP Servers are inherited by their respective OLAP schemas. Schema permissions
are inherited by the cubes that are listed in the schema. Cube permissions are
inherited by their dimensions and measures. Dimension permissions are inherited by
their levels and hierarchies.

Create or Assign an OLAP Schema

Perform these steps to create a new OLAP schema or assign an OLAP schema to a
SAS OLAP Server:

1 Open SAS Management Console.
2 In the left pane, expand Server Manager.

3 Under server Manager, locate the SAS Application Server that contains the SAS
OLAP Server. The name of one such SAS Application Server might be SASMain,
for example.

4 Right-click the top-level SAS Application Server and select Properties.

Managing OLAP Cube Data /A Preparations for Building a Cube 83

5 In the Properties window, click New to create a new OLAP schema, or click the
down arrow to select an existing OLAP schema.

6 Click ok to save changes and close the Properties window.
7 Restart the SAS OLAP Server using the SAS OLAP Server Monitor.

Building a Cube

The following is a summary of the cube-building process. For additional information
about building and modifying SAS OLAP cubes, see the SAS OLAP Server: User’s
Guide.

Before building a cube, you should collect and scrub your data in addition to
planning a dimensional design. When you define the cube, you define the dimensions
and measures for the cube along with information about how aggregations should be
created and stored. There are two methods of creating a cube:

0 You can submit PROC OLAP code by using either the SAS Program Editor or a
batch job. If you use PROC OLAP, the cube is created, and then the cube

definition is stored in a metadata repository. This is referred to as the “long” form
of PROC OLAP.

0 You can use the Cube Designer interface in SAS OLAP Cube Studio to define and
create the cube. The Cube Designer first stores the cube definition in a metadata
repository, and then submits a shorter form of PROC OLAP code to create the
cube. This is referred to as the “short” form of PROC OLAP.

Note: The Cube Designer can also be launched from SAS Data Integration Studio. 2

Preparations for Building a Cube

To build a cube by using either PROC OLAP or SAS OLAP Cube Studio, you must
perform several preliminary tasks:

o Configure a metadata server.

0 Define an OLAP server in the metadata. The server does not need to be running
to create cubes, but it must be defined in the metadata.

O Analyze the data to determine the location of the table(s) that will be used to build
your cubes and what dimensions and measures will be created.

0 Define the table(s) that will be used to create the cube in the metadata. You do
this by using SAS Data Integration Studio or by using SAS OLAP Cube Studio
and SAS Management Console as follows:

0 Use SAS Management Console to define, in the metadata, the server that will
be used to access the tables. This is a SAS Application Server with a
workspace server component.

o Use SAS Management Console to define, in the metadata, the SAS library
that contains the table.

0 In SAS OLAP Cube Studio, specify the server that will be used to access the
tables. To set the server, select Tools » Options. Or, if the shortcut bar is
displayed, select options to set the server.

0 In SAS OLAP Cube Studio, select Source Designer to load the table
definitions (or other information source) as follows:

0 From the shortcut bar, select Tools » Source Designer or select
Source Designer.

84 Storage Location Requirements for Cube Metadata and Related Objects A Chapter 6

O Select a Source Type (SAS, ODBC, etc.), and then select Next.

o If you have not specified a server, or if the server that is specified is not
valid, then you will be prompted again for a server.

o Select the SAS Library that contains the tables that you want to define,
and then select Next.

O Select the tables to define, and then select Next.
O Select Finish. The table definitions are loaded into the metadata.

o If you start to create a cube and do not see the table that you need to
continue, then you can select the Define Table button in any of the
windows that prompt for tables.

0 In the Finish window of the cube designer, you are given the option to create the
physical cube. The metadata definition is always stored as you leave the Finish
window. However, you can defer creation of the physical cube. If you choose to
create the cube as you leave the Finish window, then you must have a SAS
Workspace Server defined that you can submit PROC OLAP code to. This server is
defined in SAS Management Console.

For further information about the different data types that you can use to load cubes
from, see “Loading Cubes” in the SAS OLAP Server: User’s Guide.

Note: The SAS Metadata Server enables duplicate librefs to be defined in the
metadata. To ensure that the correct SAS library definition is found on the metadata
server, you should assign the libref by using the LIBNAME statement for the metadata
engine before submitting the PROC OLAP code. Otherwise, PROC OLAP will select the
first library definition that it finds with your specified libref, and it will associate your
cube metadata with that definition. The selected library definition might or might not
contain a description of the SAS data set that was actually used to build your cube. For
more information about using the LIBNAME statement for the metadata engine, see
“Statements” in SAS Language Reference: Dictionary. A

When a SAS OLAP cube is created, a directory for that cube is also created. This
directory is assigned the same name as the cube, but in uppercase letters. For example:
When you save a cube in c:\olapcubes and name the cube Campaigns, the cube is saved
in the directory c:\olapcubes\CAMPAIGNS. For further information about preliminary
setup and configuration steps see the SAS OLAP Server Administrator’s Guide.

Storage Location Requirements for Cube Metadata and Related
Objects

When storing metadata that describes a cube, the metadata objects that describe the
cube and the cube’s associated libraries and source tables must be stored in the same
repository, or the metadata that describes the cube must be in a custom repository that
is dependent on the repository that contains the library and table objects. Otherwise,
you will not be able to create the cube. In addition, the library and table objects that
are referenced by a cube must always be in the same repository. The following options
illustrate these conditions:

0 The library, table, and cube objects can be in a Foundation repository.

0 The library, table, and cube objects can be in Project A, which is dependent on the
Foundation repository.

0 The library and table objects can be in the Foundation repository, and the cube
object can be in Project A.

Managing OLAP Cube Data /A Making Detail Data Available to a Cube 85

0 The cube object cannot be in the Foundation repository, and the library and table

objects cannot be in Project A.

0 The table object cannot be in the Foundation repository, and the library and cube

objects cannot be in Project A.

0 The library object cannot be in the Foundation repository, and the table and cube

objects cannot be in Project A.

Making Detail Data Available for Drill-Through

You can drill through an OLAP report to the underlying detail data only after you
make the detail data available to the cube, its SAS OLAP Server, and the information
map that you use for creating the report.

Making Detail Data Available to a Cube

You can use either SAS OLAP Cube Studio or the OLAP procedure to make detail
data available to the cube.

0 In SAS OLAP Cube Studio, you can specify a table for drill-through when you
create or edit the cube using the Cube Designer wizard. On the Drill-Through
page of the wizard, select one the following radio buttons:

O Use input table for Drill-Through (to use the table that you selected on

the Input page of the wizard).

Cube Designer - Drill-Through

Select or define a registered data source to be used for Drill-Through. Drill-Through is
the viewing of detail data at reporting time. Once you have selected a data source you
rmay view infarmation about that data source ar continue by pressing the Next button. IF
the data source is not registered press Define Table to go to the Source Designer.

' Notable for Dril-Through

& {lze input table for Dril-Through: CLASS
" Select table for Dril-Through from list

Select a Detail Table:
* Founcation

TahlEPruperties |
Calumr Prapemties |
Define Table |
Tahle Cptions |

Help |

Cancel |

= Back | Mext = I Firisty |

O Select table for Drill-Through from list (to select a table from the list
of tables on the Drill-Through page. If only a repository folder is listed, then
select the repository folder in order to see the tables).

86 Making Detail Data Available to an OLAP Server A Chapter 6

Cube Designer - Drill-Through

Select or define a registered data source to be used for Drill-Through. Drill-Through is
the viewing of detail data at reporting time. Once you have selected a data source you
rmay view infarmation about that data source ar continue by pressing the Next button. IF
the data source is not registered press Define Table to go to the Source Designer.

- ' Notable for Dril-Through
" Use input table for Drill-Through: CLASS
' Select table for Dril-Through from list
Select a Detail Table: E |
= =
Calumr Prapemties

Define Table |
Tl Eatinrs: |

Help | cancel | = Back | Mext = I Firisty |

For more information about the Cube Designer wizard, see the SAS OLAP Cube
Studio Help.

0 In the PROC OLAP statement, use the DRILLTHROUGH_TABLE option to
specify the name of the drill-through table to use. For more information about the
DRILLTHROUGH_TABLE option, see "PROC OLAP Statement" in the SAS OLAP
Server: User’s Guide.

Making Detail Data Available to an OLAP Server

In order for the OLAP server to make detail data available for a cube, the SAS
library for the table that contains the detail data must be defined so that the OLAP
server can access it. The simplest way to define the library to the server is to pre-assign
it in the metadata repository.

To specify a library as pre-assigned for an OLAP server, perform the following steps:

1 In Data Library Manager (in SAS Management Console), find the SAS Libraries
folder and perform one of the following tasks to get to the dialog box that lets you
select advanced options:

o0 For a new library, right-click the sAs Libraries folder and select New Library
to start the New Library Wizard. Then navigate to the wizard page that enables
you to specify library options such as the libref.

Managing OLAP Cube Data /A Making Detail Data Available to an OLAP Server 87

Mew Library Wizard

SASEnvironmentiSAS Cade
i tempiprdsalecube
C:\Program Files\SasSa,

o0 For an existing library, open the SAS Libraries folder and right-click the
desired library. Select Properties from the drop-down menu, and then select
the options tab in the properties dialog box.

sashelp Properties

EasE -

= | |CProgram Files\SASYSAS 9.1 \corelss
=
B

e

2 Click Advanced Options.

3 Select the Library is pre-assigned check box on the Pre-Assign tab in the
Advanced Options dialog box.

88 Making Detail Data Available to an OLAP Server A Chapter 6

Advanced Options

4 On the Assign tab of the properties dialog box or the server selection page of the
New Library Wizard, ensure that the selected application server is the server
container that contains your OLAP server.

sashelp Properties

Managing OLAP Cube Data A Making Detail Data Available to an Information Map 89

5 Click oK in the properties dialog box, or finish entering information in the wizard.
6 Restart the OLAP server.

Note: If you want to enable users to view column labels when they drill through
to detail data, then before you restart the server, perform the steps in “Make the
Column Labels of Drill-Through Tables Available” on page 90. A

The selected library is assigned after the selected OLAP server starts. After the
OLAP server starts, ensure that the library is pre-assigned to the correct SAS OLAP
server.

Making Detail Data Available to an Information Map

In order for an information map to produce a report that has drill-through
capabilities, an option must first be set in the information map. You can set this option
in one of two ways:

0 When you save a new information map, select the Allow (OLAP) drill-through
to detail data check box in the Save As dialog box before you save the
information map.

= Save As

Save in: IJ Marcel ll v X J it w Tools

Mame: Iclassl

v Allorey (OLAPY drill-through to detail data

De=cription:

Save I Cancel | Help

o0 For an existing information map, open the information map, right-click it, and
then select Properties from its drop-down menu. Select the Allow (OLAP)
drill-through to detail data check box on the Definition tab in the
Information Map Properties dialog box.

90 Make the Column Labels of Drill-Through Tables Available A Chapter 6

‘& Information Map Properties

Infarmation map name: class

Falder: BEIF TreeReportStudioMapsMarcel?
Crested: Aug 19, 2005 11:40:19 AM EDT
Author: harcel Dupree

Modified: Feb 6, 2006 11:14:34 An EST

Last modified by Marcel Dupree

Description:

il Allawy (OLAPY drill-throush to detail data

QK I Cancel | Help |

Make the Column Labels of Drill-Through Tables Available

If you want to view column labels when you drill through to detail data for a cube,
then you must set an option in Server Manager (in SAS Management Console) to make
the column labels available.

Note: This option is set for the physical OLAP server, so the setting applies to all
the cubes that are assigned to that server. A

Before you can make column labels available, you must first ensure that SAS 9.1.3
Service Pack 4 is installed and then upgrade the metadata for any existing metadata
repositories. For more information, see “Upgrading Repository Metadata” in the
Metadata Manager Help in SAS Management Console.

After the metadata is upgraded, perform the following steps to make the column
labels of drill-through tables available:

1 In the navigation tree for Server Manager, find the node that represents your
physical OLAP server.

EI.@_) zerver Manager

=% SASMain
o SASMain - Logical Workspace Server
o SA5Main - Logical Stored Process Server
El SASMain - Logical OLAP Server
E_h SAShain - OLAP Server
W SASMain - Logical SAS Data Step Batch Server
[H-58 Sa5Main - Logical SAS Java Batch Server

----- EI S&SMain - Spawner

EIEI Job Scheduler

- [Sa5Main - HTTP Server

2 Select the server, and then select File » Properties from the menu bar.

3 In the properties dialog box, select the Options tab, and then click Advanced
Options.

Managing OLAP Cube Data /A Make the Column Labels of Drill-Through Tables Available 91
SASMain - OLAP Server Properties x|

—

A

SAS Institute

| Notes | Exended atties | authorization]
p
sesnsttee

—

4 In the Advanced Options dialog box, select the server tab, and then select the Use
the drill-through table column labels check box.

92 Display Detail Data for a Large Cube A Chapter 6

Advanced Options X

Guery Thread Poal Debug Query I Dehun Server | Debug Cache | euenats
Perfarmance Performance Logging Cache Server

Buffer size for rowwset access object: 1 000

Buffer size for cellset access ohject: |1 non

Maximum number of region execution threads: Ig

Maxirum number of flattened rowes: |3|:|ng|3

Maxitnum metnory size far flattened rovwset: |253435455

W Usethe drill-through table column labels

Ok I Cancel Helg

5 Click oK to save the setting.
6 Restart the OLAP server.

Display Detail Data for a Large Cube

If your cube contains an extremely large amount of detail data, then in order to view
that data from within SAS Information Map Studio, you might need to increase the
Java heap size for SAS Information Map Studio or increase the maximum number of
drill-through rows that your SAS OLAP Server can handle.

For information about increasing the heap size, see “SAS Services Application Heap
Size” in SAS Intelligence Platform: Web Application Administration Guide.

To increase the number of drill-through rows that your OLAP server can handle, you
can change an OLAP server definition setting in Server Manager (in SAS Management
Console) by completing the following steps. (The default number of drill-through rows
that can be displayed by a query is 300,000 rows.)

1 In the navigation tree for Server Manager, find the node that represents your
physical OLAP server.

Managing OLAP Cube Data A Display Detail Data for a Large Cube 93

EI.@_) Zerver Manager

=% SASMain
W EASMain - Logical Workspace Server
o SA5Main - Logical Stored Process Server
El S&SMain - Logical OLAP Server
BER D =2 5hain - OLAP Server
= SASMain - Logical SAS Data Step Batch Server
F-4F S ASMain - Logical =A% Java Batch Server

----- EI S&SMain - Spawner

EIEI Job Scheduler

- [Sa5Main - HTTP Server

2 Select the server, and then select File » Properties from the menu bar.

3 In the properties dialog box, select the Options tab, and then click Advanced
Options.

SASMain - OLAP Server Properties

General OPioNs | Notes | Extended Attributes | Authorization |

Major “Yersion kumber: Ig

Minar “'ersion kumber: |1

Software Wersion: I9'1

Wendor: [sas Institute

Advanced Options... |

Cancel | Help |

4 In the Advanced Options dialog box, select the Server tab, and then enter the
desired value for the Maximum number of flattened rows field.

94 Display Detail Data for a Large Cube A Chapter 6

Advanced Options

300000
265435456

5 Click OK to save the setting.

95

APPENDIX

1

Recommended Reading

Recommended Reading 95

Recommended Reading

Here is the recommended reading list for this title:
0 SAS Intelligence Platform: System Administration Guide
SAS Data Integration Studio: User’s Guide
SAS Language Reference: Concepts
SAS Language Reference: Dictionary
SAS Management Console: User’s Guide
SAS Metadata LIBNAME Engine: User’s Guide
SAS OLAP Server: Administrator’s Guide
SAS OLAP Server: MDX Guide
SAS Scalable Performance Data Engine: Reference

O o o o o o o o

For a complete list of administration documentation for the SAS Intelligence Platform,
see http://support.sas.com/913administration.

For a list of SAS documentation, see
http://support.sas.com/documentation/onlinedoc/sas9doc.html.

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales

SAS Campus Drive

Cary, NC 27513

Telephone: (800) 727-3228*

Fax: (919) 677-8166

E-mail: sasbook@sas.com

Web address: support.sas.com/pubs

* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

http://support.sas.com/913administration
http://support.sas.com/documentation/onlinedoc/sas9doc.html
mailto:sasbook@sas.com

96

97

Glossary

administrative user
a special user of a metadata server who can create and delete user definitions and
logins. An administrative user can also perform administrative tasks such as
starting, stopping, pausing, and refreshing the metadata server. Unlike an
unrestricted user, an administrative user does not have unrestricted access to the
metadata. You are an administrative user if your user ID is listed in the
adminUsers.txt file or if you connect to the metadata server using the same user ID
that was used to start the metadata server.

aggregation
a summary of detail data that is stored with or referred to by a cube. Aggregations
support rapid and efficient answers to business questions.

application server
a server that is used for storing applications. Users can access and use these server
applications instead of loading the applications on their client machines. The
application that the client runs is stored on the client. Requests are sent to the
server for processing, and the results are returned to the client. In this way, little
information is processed by the client, and nearly everything is done by the server.

authentication domain
a set of computing resources that use the same authentication process. An individual
uses the same user ID and password for all of the resources in a particular
authentication domain. Authentication domains provide logical groupings for
resources and logins in a metadata repository. For example, when an application
needs to locate credentials that enable a particular user to access a particular server,
the application searches the metadata for logins that are associated with the
authentication domain in which the target server is registered.

buffer
a portion of computer memory that is used for special holding purposes or processes.
For example, a buffer might simply store information before sending that information
to main memory for processing, or it might hold data after the data is read or before
the data is written.

client application
an application that runs on a client machine.

98 Glossary

cube
a logical set of data that is organized and structured in a hierarchical,
multidimensional arrangement. A cube is a directory structure, not a single file. A
cube includes measures, and it can have numerous dimensions and levels of data.

data mart
a collection of data that is optimized for a specialized set of users who have a finite
set of questions and reports.

data warehouse
a collection of data that is extracted from one or more sources for the purpose of query,
reporting, and analysis. In contrast to a data mart, a data warehouse is better suited
for storing large amounts of data that originates in other corporate applications or
which is extracted from external data sources such as public databases.

DBMS (database management system)
a software application that enables you to create and manipulate data that is stored
in the form of databases. See also relational database management system.

libref (library reference)
a name that is temporarily associated with a SAS library. The complete name of a
SAS file consists of two words, separated by a period. The libref, which is the first
word, indicates the library. The second word is the name of the specific SAS file. For
example, in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the
file NEWBDAY. You assign a libref with a LIBNAME statement or with an operating
system command.

metadata LIBNAME engine
the SAS engine that processes and augments data that is identified by metadata.
The metadata engine retrieves information about a target SAS data library from
metadata objects in a specified metadata repository.

metadata promotion
in the SAS Open Metadata Architecture, a feature that enables you to copy the
contents of a metadata repository to another repository, and to specify changes in the
metadata that will be stored in the target repository. For example, you can use this
feature to move metadata from a development environment to a testing environment.
In such a scenario, you would probably have to change some ports, hosts, and/or
schema names as part of the process of moving metadata from one environment to
another.

OLAP (online analytical processing)
a software technology that enables users to dynamically analyze data that is stored
in multidimensional database (MDDB) tables.

OLAP schema
a group of cubes. A cube is assigned to an OLAP schema when it is created, and an
OLAP schema is assigned to a SAS OLAP Server when the server is defined in the
metadata. A SAS OLAP Server can access only the cubes that are in its assigned
OLAP schema.

resource
any object that is registered in a metadata repository. For example, a resource can be
an application, a data store, a dimension in an OLAP cube, a metadata item, an
access control template, or a password.

resource template
an XML file that specifies the information that is needed for creating a metadata
definition for a SAS resource.

Glossary 99

SAS Metadata Repository
one or more files that store metadata about application elements. Users connect to a
SAS Metadata Server and use the SAS Open Metadata Interface to read metadata
from or write metadata to one or more SAS Metadata Repositories. The metadata
types in a SAS Metadata Repository are defined by the SAS Metadata Model.

SAS OLAP Cube Studio
a Java interface for defining and building OLAP cubes in SAS System 9 or later. Its
main feature is the Cube Designer wizard, which guides you through the process of
registering and creating cubes.

SAS Open Metadata Architecture
a general-purpose metadata management facility that provides metadata services to
SAS applications. The SAS Open Metadata Architecture enables applications to
exchange metadata, which makes it easier for these applications to work together.

schema
a map or model of the overall data structure of a database. An OLAP schema
specifies which group of cubes an OLAP server can access.

XML (Extensible Markup Language)
a markup language that structures information by tagging it for content, meaning, or
use. Structured information contains both content (for example, words or numbers)
and an indication of what role the content plays. For example, content in a section
heading has a different meaning from content in a database table.

100

Index

Index 101

A

Access databases
connectivity by ODBC ﬂ,
accessibility features
aggregations
assigning libraries
authorization
SAS Open Metadata Architecture facility
autoexec files
pre-assigning libraries with information stored

in

B

Base Engine Library

assigning to SAS/SHARE Server

defining for connectivity to data sets
Base SAS tables

buffering data

LIBNAME options for performance
BLKSIZE= option, LIBNAME statement
buffering data
BYSORT-= option, LIBNAME statement

Cc

CACHENUM= option, LIBNAME statement
clients

platform client library assignments
columns

defining in external file object
compressing data
configuration

libnames.parm file

SPD Engine
connectivity

ODBC f

to Access databases E

to Access databases by ODBC

to data sets

to external files E

to flat files

to library of data sets

to Oracle databases EI,

to Oracle databases by ODBC E,

to SAP server E,

to SPD Server ﬁ,

to XML files [[20]

cube management
creating or assigning OLAP schemas
metadata storage
OLAP schemas

D

data-access engines
data compression
data sets
as data source
connectivity to
connectivity to library of
shared access to ﬂ,
data sources
connecting to
data sets
defining for Oracle database
ERP systems
external files [}
relational database sources [3
scalable performance data servers E
shared access to data sets E
data storage
See also data storage optimization
OLAP cube data
data storage optimization
buffering data
compressing data
grid computing considerations
indexing data
LIBNAME options affecting performance
sorting data
SPD Engine hardware configuration
threaded reads
data surveyors E
data warehouses
for OLAP cube data
database library
defining for Access E
defining for Oracle
database schema
defining for Access
defining for Oracle
database server
defining for Access H
defining for Oracle

database tables

sorting

DATAPATH= option, LIBNAME statement

DB2

buffering table data

DBINDEX= option, LIBNAME statement
DBNULLKEYS= option, LIBNAME state-

ment

DBSLICEPARM= option, LIBNAME state-

ment

delimited external file wizard

detail data

displaying for a large cube
making available to an information map
making available to an OLAP cube
making available to SAS OLAP Servers
making column labels available for
DIRECT_EXE-= option, LIBNAME state-

ment

DIRECT_SQL= option, LIBNAME state-

ment

drill-through tables

making available for cubes

making column labels available

E

ENDOBS= option, LIBNAME statement
Enterprise Resource Planning (ERP) systems E
environment variables

ERP systems

EXCLUDE statement, METALIB procedure

external file objects
defining columns in

saving

External File Source Designer
connecting to flat files

external files [3

connectivity to E

creating metadata objects for

flat files

F

fixed-width external file wizard

flat files

connectivity to

format catalog

3

)

102 /ndex

formats
See user-defined formats

G

grid computing data considerations

H

hardware configuration
SPD Engine

importing tables
indexing data
INDEXPATH= option, LIBNAME statement
information maps
making detail data available to
INSERTBUFF= option, LIBNAME state-
ment

L

LIBNAME options for performance
libnames.parm file
configuring
libraries
See also pre-assigning libraries
assigning
connectivity to library of data sets
creating table metadata for
data-access engines
defining for Access
defining for Oracle
defining for SAP server
defining for scalable performance data
server
MLE for data access
not pre-assigned
platform client library assignments
SAS/SHARE remote engine library
stored processes and assigning
verifying access to tables
logs
verifying pre-assigned libraries

M

METAAUTOINIT object server parameter @
METAAUTORESOURCES system option
metadata
See also table metadata
pre-assigning libraries with information stored
in
metadata objects
creating for external files
METALIB procedure
assessing potential table metadata changes
changing the update rule
creating table metadata

creating table metadata for new library

EXCLUDE statement

matching data in physical tables

NOEXEC statement

REPORT statement

SELECT statement

UPDATE_RULE statement
METAPATH= option, LIBNAME statement
MLE

pre-assigning libraries to use
multi-threaded sorting
MULTI_DATASRC_OPT= option, LIBNAME

statement

N

NOEXEC statement, METALIB procedure

(o)

ODBC
buffering table data
connectivity for Access
connectivity for Oracle
sources E
OLAP cube data
aggregations
building a cube
creating or assigning an OLAP schema
cube metadata storage
displaying for a large cube
making available for drill-through
making column labels available for drill-
through
OLAP schemas
storage and access
OLAP schemas
OLE DB
buffering table data
open database connectivity (ODBC) E
optimizing data storage
See data storage optimization
Oracle
buffering table data
connectivity to databases EI,
connectivity to databases by ODBC E,
ERP system E
OUTREP= option, LIBNAME statement

P

PARTSIZE= option, LIBNAME statement
Peoplesoft
performance
See also data storage optimization
Base SAS tables
LIBNAME options for
SAS/ACCESS databases
SPD Engine tables
physical tables
matching data in
platform client library assignments

pre-assigning libraries
engines other than MLE @
to use MLE
verifying with logs
with information stored in autoexec file
with information stored in metadata

R

READBUFF-= option, LIBNAME statement
relational database sources

ODBC sources

SAS/ACCESS B
remote engine library, SAS/SHARE
REPORT statement, METALIB procedure

S

SAP server E
connectivity to E,
SAS/ACCESS [
environment variables
LIBNAME options for database perfor-
mance
SAS OLAP Servers
making detail data available to
SAS Open Metadata Architecture
authorization facility
SAS Scalable Performance Data (SPD) Engine
See SPD Engine
SAS Scalable Performance Data (SPD) Server
See SPD Server
SAS/SHARE
creating remote engine library
shared access to data sets E
SAS/SHARE Server
assigning Base Engine Library to
SAS XML Mapper
scalable performance data servers
See SPD Server
schemas
defining for Access
defining for Oracle
defining for SAP server
SELECT statement, METALIB procedure
server domain
defining for scalable performance data
server
servers
defining for SAP
defining for scalable performance data
servers
shared access to data sets ﬂ,
Siebel
SMP (symmetric multiprocessing) E
sorting data
database tables
multi-threaded sorting
SPD Engine
LIBNAME options for table performance
validating hardware configuration
SPD Server
connectivity to ﬂ

symmetric multiprocessing

SPOOL= option, LIBNAME statement

SQL Server
buffering table data

SQL_FUNCTIONS= option, LIBNAME state-

ment

STARTOBS= option, LIBNAME statement

stored processes

assigning libraries and
Sybase

buffering table data
symmetric multiprocessing (SMP) 3

T

table metadata
adding

assessing potential changes

creating
creating for new library

deleting
excluding tables

managing
matching data in physical tables

selecting tables
update rule
updating
tables
Base SAS tables
buffering data
data sets as
importing
sorting database tables
verifying access to
viewing data in
TEMP= option, LIBNAME statement
threaded reads EI,

U

UNIX
user-defined formats configuration file
update rule

UPDATE_RULE statement, METALIB proce-
dure

Index 103

user-defined formats

user-written external file wizard P

configuration file

for connectivity to data sets
3

w

Windows

X

user-defined formats configuration file

XML data [

connectivity to E,

XML LIBNAME engine [
XMLMaps [

z

z/0S

user-defined formats configuration file

Your Turn

If you have comments or suggestions about SAS® 9.1.3 Intelligence Platform: Data
Administration Guide, please send them to us on a photocopy of this page, or send us
electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513

E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive

Cary, NC 27513

E-mail: suggest@sas.com

mailto:yourturn@sas.com
mailto:suggest@sas.com

SAS’ Publishing gives you the tools to

flourish in any environment with SAS'!

Whether you are new to the workforce or an experienced professional, you need to distinguish yourself
in this rapidly changing and competitive job market. SAS® Publishing provides you with a wide range of
resources — including publications, online training, and software —to help you set yourself apart.

Expand Your Knowledge with Books from SAS® Publishing

SAS® Press offers user-friendly books for all skill levels, covering such topics as univariate and multivariate
statistics, linear models, mixed models, fixed effects regression, and more. View our complete catalog and get
free access to the latest reference documentation by visiting us online.

support.sas.com/pubs

SAS°® Self-Paced e-Learning Puts Training at Your Fingertips

You are in complete control of your learning environment with SAS Self-Paced e-Learning! Gain immediate
24/7 access to SAS training directly from your desktop, using only a standard Web browser. If you do not have
SAS installed, you can use SAS® Learning Edition for all Base SAS e-learning.

support.sas.com/selfpaced

Build Your SAS Skills with SAS® Learning Edition

SAS skills are in demand, and hands-on knowledge is vital. SAS users at all levels, from novice to advanced,
will appreciate this inexpensive, intuitive, and easy-to-use personal learning version of SAS. With SAS Learning
Edition, you have a unique opportunity to gain SAS software experience and propel your career in new and

exciting directions.
support.sas.com/LE

GSas e

Publishing To KNOWv

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2006 SAS Institute Inc. All rights reserved. 403726US.0806

	Table of Contents
	Contents

	What’s New
	Overview
	Documentation Enhancements

	Overview of Common Data Sources
	Overview
	Accessibility Features in the SAS Intelligence Platform Products
	SAS Data Sets
	Shared Access to SAS Data Sets
	External Files
	XML Data
	Relational Database Sources
	SAS/ACCESS
	ODBC Sources

	Scalable Performance Data Servers
	Symmetric Multiprocessing

	ERP Systems

	Connecting to Common Data Sources
	Overview of Connecting to Common Data Sources
	Establishing Connectivity to a Library of SAS Data Sets
	Define the SAS Base Engine Library
	Working with User-Defined Formats

	Establishing Shared Access to SAS Data Sets
	Overview of Establishing Shared Access
	Stage 1: Assign the SAS Base Engine Library to the SAS/SHARE Server
	Stage 2: Create a SAS/SHARE Remote Engine Library
	Stage 3: Enable Library Pre-Assignment

	Establishing Connectivity to a Flat File
	Stage 1: Connect to the Flat File
	Stage 2: Define the Columns in the External File Object
	Stage 3: Save the External File Object

	Establishing Connectivity to XML Data
	Connect to the XML Data

	Establishing Connectivity to an Oracle Database
	Set SAS/ACCESS Environment Variables
	Stage 1: Define the Database Server
	Stage 2: Define the Database Schema
	Stage 3: Define the Database Library

	Establishing Connectivity to an Oracle Database by Using ODBC
	Stage 1: Define the Data Source
	Stage 2: Define the Database Server
	Stage 3: Define the Database Schema
	Stage 4: Define the Database Library

	Establishing Connectivity to a Microsoft Access Database by Using ODBC
	Stage 1: Define the Data Source
	Stage 2: Define the Database Server
	Stage 3: Define the Database Schema
	Stage 4: Define the Database Library

	Establishing Connectivity to a Scalable Performance Data Server
	Stage 1: Configure the libnames.parm File
	Stage 2: Define the Server
	Stage 3: Define the Server Domain
	Stage 4: Define the Library

	Establishing Connectivity to a SAP Server
	Stage 1: Define the Server
	Stage 2: Define the Schema
	Stage 3: Define the Library

	Verifying Access to Tables
	Stage 1: Import the Tables
	Stage 2: View the Data in a SAS Application

	Assigning Libraries
	Overview of Assigning Libraries
	What Does It Mean to Assign a Library?
	Pre-assigning Libraries
	Data-Access Engines and the MLE

	Using Libraries That Are Not Pre-assigned
	How Do the Different Platform Clients Assign Libraries?
	Processing Stored Processes When the Library is Not Pre-assigned

	Pre-assigning Libraries Using Engines Other Than the MLE
	Pre-assignment Using Information Stored in the Metadata
	Pre-assignment Using Information in an Autoexec File

	Pre-assigning Libraries to Use the MLE
	Verifying Pre-assignments by Reviewing the Logs

	Managing Table Metadata
	Overview of Managing Table Metadata
	Creating Table Metadata for a New Library
	Example: Creating Table Metadata

	Assessing Potential Changes in Advance
	Example: Using the NOEXEC and REPORT Statements

	Updating Your Table Metadata to Match Data in Your Physical Tables
	Adding and Updating Table Metadata
	Changing the Update Rule
	Specifying Which Tables Are Affected

	Optimizing Data Storage
	Overview of Optimizing Data Storage
	Compressing Data
	Indexing Data
	Sorting Data
	Multi-Threaded Sorting
	Sorting a Database Table

	Buffering Data
	Base SAS Tables
	DB2 (UNIX and PC), ODBC, OLE DB, Oracle, SQL Server, and Sybase Tables

	Using Threaded Reads
	Validating SPD Engine Hardware Configuration
	Setting LIBNAME Options That Affect Performance
	Setting LIBNAME Options That Affect Performance of SAS Tables
	Setting LIBNAME Options That Affect Performance of SAS/ACCESS Databases
	Setting LIBNAME Options That Affect Performance of SPD Engine Tables

	Grid Computing Data Considerations

	Managing OLAP Cube Data
	Introduction to Managing OLAP Cube Data
	Data Storage and Access
	About OLAP Schemas
	Create or Assign an OLAP Schema
	Building a Cube
	Preparations for Building a Cube
	Storage Location Requirements for Cube Metadata and Related Objects

	Making Detail Data Available for Drill-Through
	Making Detail Data Available to a Cube
	Making Detail Data Available to an OLAP Server
	Making Detail Data Available to an Information Map

	Make the Column Labels of Drill-Through Tables Available
	Display Detail Data for a Large Cube

	Recommended Reading
	Recommended Reading

	Glossary
	Index

